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ABSTRACT 

 

Mini and micro-scale channels have drawn researchers’ attention in the past three 

decades. The use of these channels in a heat exchanger is due to the several advantages 

they provide. Motor oil was chosen as the working fluid since it is greatly utilized in 

automotive applications.  In current investigations, experiments were performed to verify 

the aptness of cooling the oil through a cross-flow minichannel heat exchanger. The inlet 

temperature of the motor oil was kept constant at 75
o
C, while the air inlet temperatures 

were varied within the range of 20
o
C - 40

o
C. The range of oil Reynolds number was 

found to be between 0.85 to 3.5 whereas the air velocities were between 6 m/s and 18 

m/s. Correlations were developed between the Nuoil and Reoil and Proil. The effect of Reoil 

on the heat transfer coefficient, NTU, and effectiveness were investigated. The results 

were compared with the findings of another viscous fluid where a similar test specimen 

was used and same trends were observed. 
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CHAPTER I 

INTRODUCTION 

 

Energy is broadly identified as the ability of a physical system to do work on other 

physical systems. It can be presented in several forms, such as thermal, kinetic, potential, 

electrical, mechanical, and chemical energy. However, the only type of energy that will 

be covered in this thesis is thermal energy (or heat) and the study of this particular type of 

energy, called thermodynamics. Although the phenomenon of thermodynamics has been 

present since the beginning of time, it was not established as an area of interest, until the 

invention of the steam engine in England in 1697 [Çengel (2002) and (2007)]. 

 

The form of energy that transfers from one system to another as a result of discrepancy in 

temperature is known as heat. On the other hand, the topic “heat transfer” specifies the 

rate of heat transferred to or from a system, which results in thermal heating or cooling, 

due to temperature difference. Therefore, heat transfer has many relevant aspects that 

impact our daily lives. There are specific applications of heat transfer, including, but not 

limited to, the human body, household appliances, air-conditioning systems, refrigerators, 

and industrial equipment such as cars, radiators and evaporators [Çengel (2002) and 

(2007)]. 

 

A heat exchanger is a piece of equipment that transfers heat from a hot fluid to a colder 

fluid through single-phase convection (forced or free), two-phase convection 

(condensation or evaporation), and combined convection and radiation heat transfer 
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[Shah and Sekulić (2003)]. In most heat exchangers, a metal wall separates the two 

fluids. All heat exchangers are similar in their principle of operation, but may differ in the 

working fluids used in the heat transfer process, the layout of the metal tubes, and the 

configuration of the enclosure. There are a wide variety of heat exchanger applications, 

such as refrigeration, air conditioning, and residential purposes. 

 

There are two ways to categorize heat exchangers; the first is based on flow arrangement, 

and the second is based on construction of the equipment. Types of the former 

classification include parallel flow, counter-flow, and cross-flow arrangements. The latter 

has numerous types, such as cooling towers, process furnaces, shell-and-tube, double-

pipe, plate-and-frame, and tube-fin heat exchangers. 

 

Since the invention of heat exchangers, they have been a major piece of equipment used 

in factories and oil plants. Their significance has come from the primary function of 

swapping heat between two fluids, which has spawned room for investigation and 

development in this equipment.  An extensive effort has been made in evolving the shape, 

size, and flow arrangements of heat exchangers to reach optimum results. One of the 

most recent improvements in heat exchangers is the alteration in its entire size, 

particularly the size of its channels. There are three focal purposes for using the channel 

[Kandlikar and King (2006)]: 

(1) It lets the fluid have a direct contact with its walls. 

(2) Due to the transport process that takes place inside the channel, previous fluids    

are moved by new fluids.  
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(3) As the channel diameter decreases, the ratio of the heat transfer surface area of 

the heat exchanger to its volume (i.e. area density “β”) increases. 

 

Investigations using small channels in compact heat exchangers have recently gained a 

great deal of interest. The utilization of minichannels has led the compact heat exchanger 

to even more advanced compactness to reach a higher heat transfer rate. Even though 

there has been a straightforward guide for expressing the dimensional range of the 

channel size, which is based on hydraulic diameter, there have been distinct views on the 

dimensional categorizations of channels. For example, Mehendale et al. (2000) classified 

the range from 1 to 100µm as minichannels, 100 µm to 1 mm as meso-channels, 1 to 6 

mm as compact channels, and larger than 6 mm as conventional channels. Another 

categorization (TABLE 1.1) has been made by Kandliker and Grande (2004) which will 

be considered in this thesis: 

Table 1.1: Micro-Scale Channel Categorization 

Conventional channels Dh > 3 mm 

Minichannels 3 mm ≥ Dh > 200 µm 

Microchannels 200 µm ≥ Dh > 10 µm 

Transitional Microchannels 10 µm ≥ Dh > 1 µm 

Transitional Nanochannels 1 µm ≥ Dh > 0.1 µm 

Nanochannels 0.1  µm ≥ Dh 

 

The minichannel has gained interest in the last three decades because of the downsizing 

of the thermal devices used in various aspects of everyday life. The cooling of the Very 
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Large Scale Integrated (VLSI) Circuits, biomedical applications, micro-heat-exchangers 

are some examples of the fundamental ideas of the minichannel heat transfer and fluid 

flow and why they are considered essential for proper design. Utilizing minichannels as a 

cooling medium is a technique of forced convection cooling, which is accomplished by 

forcing liquid through miniature channels. 

 

In 1981, the micro-scale channel cooling theory was initiated by Tuckerman and Peace 

(1981). They managed to dissipate heat, of a flux of rate 790 W/cm
2
, by utilizing a water-

cooled heat sink. Phillips (1987) widened the investigation and developed flow friction 

and Nusselt Number correlations by taking into consideration both laminar and turbulent 

regimes. It is important to mention that Tuckerman and Philips’ studies were based on 

macroscale correlations and the effects of microscale were not considered. Later, many 

researchers conducted experimental and numerical investigations to broaden the 

understanding of the heat transfer phenomenon in microscale channels. 

 

However, the performance of the minichannel heat exchanger (MICHX) cannot be 

evaluated with the other microscale heat sinks that have already been investigated in the 

literature. The majority of the previous studies focused on investigating minichannels in 

isolation, in hopes of developing a solution for cooling of electronics, where a coolant 

flowing through tiny channels is used to remove heat from the microelectronic 

components. The present study considers an entire cross-flow heat exchanger that has a 

different function to transfer heat from a liquid to a gas. Therefore, a direct comparison 

between the cross-flow minichannel and cooling the microelectronic is irrelevant. 
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1.1 Motivation 

The utilization of micro-scale heat exchangers instead of the conventional ones is 

inevitable, as it has been proven by numerical studies that the smaller passages provide a 

great deal of heat transfer per unit volume, compared to larger passages. Furthermore, the 

overheads needed to build a conventional heat exchanger and the time required to 

perform maintenance are two vital reasons that micro scales heat exchangers will surpass 

the conventional types. 

In a broader view, MICHXs offer several enhancements compared to the conventional 

ones, as indicated below: 

 Improving heat transfer performance. The thickness of the thermal boundary layer 

is reduced due to the small cross-sectional size of the narrow channel. Having a 

thin thermal boundary layer enhances the heat transfer [Gui and Scaringe (1995)]. 

 Forcing the fluid to flow through a channel having a small hydraulic diameter 

results in enhancing the heat transfer coefficient.  

 The cost of material used to fabricate the heat exchanger may be reduced since 

less material is used. 

 Tighter package space. The reduction in size and weight of MICHX results in a 

smaller and lighter system.  

The majority of the published studies and papers have used water and different types of 

gas as working fluids in minichannels. On the other hand, investigation on the behavior 

of motor oil flowing in a small diameter has not been active in the previous works. 

Hence, an extensive exploration is needed to become familiar with the heat transfer and 

fluid flow characteristics of motor oil inside minichannels. Cooling motor oil by using 
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cross-flow serpentine minichannels heat exchangers is virtually non-existent in open 

literature. 

 

1.2 Objectives 

The capability of transferring heat between fluids using lightweight compact heat 

exchangers is essential in a number of applications, such as automotive and air 

conditioning applications. As a result, numerous examinations have been performed on 

these miniature passages using different configurations, (cross-flow and counter-flow) as 

well as using different working fluids. 

 

Performing an investigation on serpentine cross-flow minichannel heat exchangers using 

motor oil, as a working fluid, is considered literally scarce in the open literature. Hence, a 

thorough analysis and derivation of correlations on the engine oil performance in such a 

configuration will be addressed and scrutinized in this thesis. 

 

The objective of this work is to conduct experiments and examine the collected data from 

the cross-flow minichannel heat exchanger system (motor oil – air) to obtain the 

following: 

 Study the fluid flow characteristics of motor oil inside the channels. 

 Experimentally analyze the heat transfer characteristics (h, Nu) of motor oil in 

minichannel heat exchanger. 

 Investigate the pressure drop (∆P) and friction factor ( ). Motor oil pressure drop 

across the minichannel will be studied. 
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 Examine the proto-type heat exchanger performance. Overall thermal 

conductance (UA), heat exchanger effectiveness (ε ), and Number of transfer units 

( NTU). 

 Investigate the scaling effects (wall axial heat conduction and viscous dissipation) 

on heat transfer behaviors. 

 Establish correlations among the heat transfer characteristics, fluid flow 

characteristics, and other dimensionless numbers. 

 Compare the experimental results with the findings of a low viscous fluid 

(Automatic Fluid Transmission) analyzed in the same MICHX test specimen. 

 

In order to have the aforementioned objectives accomplished, experimental runs will be 

conducted. A cross-flow multi-port serpentine minichannels heat exchanger with motor 

oil and air as working fluids will be utilized. Both working fluids are in single phase 

conditions throughout all of the experiments. In the current study, concentration will only 

be on motor oil side and thus equations and correlations related to the liquid-side will be 

presented and discussed. 
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CHAPTER II 

REVIEW OF LITERATURE 

 

Heat exchangers are used to take heat from one fluid to another mainly via convection 

heat transfer modes. Their engineering applications and processes, as mentioned before, 

are indispensible to any industrial plants. As such, a great deal of research has been made 

to reach the optimum heat transfer rate that can result from these pieces of equipment. 

 

One of the recent developments of these studies is to minimize the size of the heat 

exchanger, particularly the size of tubes or channels, to even a nanoscale. Therefore, the 

literature found on this development is relatively limited compared to the conventional 

heat exchangers. During the last thirty years, the investigation of the miniature heat 

exchanger has become overly popular that almost all aspects of fluid flow and heat 

transfer characteristics have been examined. Some criteria have been considered for the 

literature research area in order to perfectly evaluate and validate the outcomes of the 

current investigation. These criteria are: 

 The flow regime inside the channel is laminar          . 

 The type of the fluid is single-phase liquid flow.  

 Both experimental and numerical investigations are considered. 

 The size of channel, which is based on the hydraulic diameter, is             

     .  
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 Due to the limited studies made on the circular cross-sectional shape, studies done 

on rectangular and trapezoidal channel shapes are also included in the literature 

review. 

 

Several experimental and numerical works in the literature have shown that the fluid flow 

and heat transfer characteristics of micro-scale channels depart from the well-known 

macro-scale correlations and equations. Choi et al. (1991) calculated the convective heat 

transfer coefficients for flow of nitrogen gas in circular microtubes. The hydraulic 

diameter of these microtubes ranges from 3 to 81 mm. They found that the measured 

Nusselt number in laminar flow is a strong function of the Reynolds number. This result 

contrasts with the conventional prediction for fully developed laminar flow, in which the 

Nusselt number is constant. 

 

Qu et al. (2000) conducted experiments to examine the convective heat transfer of water 

flowing through trapezoidal silicon microchannels with a hydraulic diameter ranging 

from 62 to 169 µm. The authors also performed a numerical analysis to validate the 

experimental results. It was found that the experimental Nusselt number values in laminar 

regime are lower than the predicted ones by the numerical study. They attributed this 

discrepancy to the effect of surface roughness (i.e. roughness viscosity) on walls of the 

microchannels. 

 

Wu and Cheng (2003) experimentally investigated the heat transfer phenomenon of 

deionized water in 13 different trapezoidal silicon microchannels (        
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       . It was demonstrated that the values of the Nusselt number depends greatly on 

different geometric parameters (height-to-top width ratio and bottom-to-top width ratio). 

The authors concluded that the laminar convective heat transfer showed two different 

characteristics at low and high Reynolds number ranges. At low Re (0 < Re < 100), the 

Nu increases sharply with the increase of Re. In contrast, the Nu mildly increases for Re 

> 100. 

 

As the size of a flow channel gets smaller and smaller, wall effects on fluid flow and heat 

transfer become significant. It also approaches the mean free path between two 

molecules, which is mainly true for a gaseous flow.  As a result, the traditional continuum 

assumption in flow analysis cannot be held valid in very small channel flows.  

 

One way to verify the applicability of the continuum assumption is by calculating a 

dimensionless number, called the Knudsen number    . It is defined as the ratio of the 

average distance traveled by a fluid’s molecules without colliding with each other, which 

is known as the fluid molecular mean free path (λ), to the characteristic length of the flow 

field, which is the channel hydraulic diameter      [Kandliker (2003)]. 

    
                               

                     
  

 

  
  (2.1) 

              
    

     
              

Where R, T,    and   are the universal gas constant [J/kg.K], temperature [K], density 

[kg/m
3
], and dynamic viscosity [kg/m.s] respectively. 
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For gas flows, the continuum flow assumption holds for small values of the    number 

(         , and the well known Navier-Stokes equations are applicable for the flow 

field. As the    number increases, the continuum approach fails to be valid; and fluid 

flow and heat transfer problems are solved by using statistical mechanics or molecular 

dynamics simulations.  

 

Morini (2006) stated that the distance between the molecules in liquids is usually much 

smaller than that for gases, leading to even a smaller value of the    number. Hence, the 

assumption of continuum flow holds for liquid flow and the conventional theories are 

valid in describing the fluid flow and heat transfer characteristics. Herwig and Hausner 

(2003) reported that flows in channels having a hydraulic diameter (  ) of ≃ 1 mm are 

definitely considered continuum flows described by the Navier-Stokes equations, if the 

fluid is Newtonian. Hetsroni and Mosyak (2005) also stated that in liquid flow and 

channels with hydraulic diameter between 1µm       1mm, the    number is much 

less than unity. In addition, Qu and Mudawar (2002) confirmed that the conventional 

Navier-Stokes and energy equations would be sufficient for predicting the fluid flow and 

heat transfer characteristics at a micro-scale channel.  

 

2.1 Scaling Effects 

Herwig and Hausner (2003) observed that in order to examine the forced convection of 

liquids in the laminar regime, a general theoretical basis for both macro- and micro-flows 

can be utilized. However, certain effects have to be taken into account and cannot be 

ignored for narrow channels. These effects are called “scaling effects with respect to a 
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standard macro-analysis.” Herwig (2002) defined these effects as “Scaling effects are 

those influences that can be neglected in the original scales but become important in 

different (larger or smaller) scales.” 

 

Some of these effects for single-phase flows in micro-channels, which will be greatly 

discussed in the following chapters, are “axial heat conduction in the channel wall” and 

“viscous dissipation.” Unexpected experimental and numerical results, which were found 

in open literature, have been mostly attributed to these two scaling effects. For instance, 

Morini (2006) examined the role of axial heat conduction in the wall and viscous 

dissipation on the mean value of the Nusselt number in rectangular and circular 

microchannels. The strong dependency of the Nusselt number on the Reynolds number 

was demonstrated, even in the laminar regime. Moreover, the author found that the 

scaling effects play an alternate role if different working fluids and channel geometries 

are considered. 

 

2.2 Axial Heat Conduction in Channel Wall 

The effect of axial heat conduction in the wall on heat transfer in narrow channels has 

been one of the hottest topics in the last ten to fifteen years. The axial wall heat 

conduction represents one of the factors which can lead to some discrepancies in values 

between the minichannel heat transfer data and the well known standard correlations for 

conventional size channels.  In forced convection, heat transfer applications involving 

channels of conventional size, the channel wall thickness is very small compared to the 
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channel hydraulic diameter. As such, the axial heat conduction in the walls can be 

neglected when it is compared to the convective heat transfer in macro-scale flows. 

 

However, in narrow channels, the area of the transverse section of the wall (or solid 

material) perpendicular to the flow direction is comparable to the channel cross-sectional 

area. In other words, the wall thicknesses of narrow channels are of the same order of the 

channel hydraulic diameter. Consequently, the heat transfer occurring in the solid walls 

by conduction cannot be disregarded as it has a profound role on the heat transfer 

mechanism. According to several published studies, when the effect of axial heat 

conduction in the wall is not taken into account in the calculation of convective heat 

transfer coefficients from experimental data, the corresponding Nusselt number is 

generally underestimated. 

 

Besides the wall thickness, there are several proven factors which enhance the effect of 

axial heat conduction on the convective heat transfer in narrow channels. Two of them 

include: Low Reynolds number and high thermal conductivity of the wall material. In the 

low Reynolds number, the effect of the axial heat conduction in the wall on the average 

Nusselt number is crucial because the conduction occurring in the wall becomes a 

comparable mechanism of heat transfer with respect to the fluid convection. 

 

As proven by Herwig and Hausner (2003) and Marazana et al. (2004), the temperature 

distribution along the micro-scale channel is non-linear when the wall axial heat 

conduction is predominant. This leads to an underestimated value of the Nusselt number 
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since the fluid bulk temperature in the channel is also underestimated. Hence, if the 

experimental values of the Nusselt number are compared with their theoretical fully 

developed values, a discrepancy can be noticed. The experimental value of the Nusselt 

number, which is calculated from a liquid passing through a micro-scale channel at a low 

flow rate, can exhibit a strong dependency on the Reynolds number due to the axial heat 

conduction along the solid walls of the channel.  

 

2.3 Literature Review on Axial Heat Conduction in Channel Wall 

Axial heat conduction in micro-scale channels have been studied experimentally and 

numerically by several authors. Herwig and Hausner (2003) applied a numerical 

approach to the experimental investigation done by Tso and Mahulikar (2000). The result 

showed that the bulk temperature is not linearly distributed between the inlet and outlet 

values at a low Reynolds number. The authors attributed the low Nusselt number to the 

effect of axial heat conduction, not to the viscous dissipation. 

 

Hetsroni et al. (2004) reported that the experimental Nusselt number values of water 

flowing through a circular pipe of a 1.07 mm hydraulic diameter were significantly lower 

than the theoretical predicted values. The flow was fully developed laminar and the range 

of Reynolds number was 10 < Re < 450. They suggested that the effect of thermal 

conduction along the solid wall leads to a decrease in the Nusselt numbers, if a linear 

change of the fluid temperature in the flow direction is assumed. Unlike Tso and 

Mahulikar (1998 and 2000), their results did not show substantial effect of the Brinkman 

number on behavior of the Nusselt number in the range of 10 < Re < 450. 
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Maranzana et al. (2004) performed a numerical analysis on water flowing between two 

heated microscale parallel plates to examine the axial conduction in the wall. The authors 

reported that disregarding the effect of axial conduction in the wall can lead to an 

underestimation of the experimental value of the heat transfer coefficient, especially for 

small Reynolds numbers. A new non-dimensional number M quantifying the relative part 

of axial heat conduction in the walls has been generated. The physical importance of M 

will be discussed in Chapter III. 

 

Li et al. (2004) conducted a numerical simulation to analyze forced convection heat 

transfer occurring in rectangular microchannel. The results showed that the bulk liquid 

temperature varies in a quasi-linear form along the flow direction only for high flow 

rates, but not for low flow rates. They came to a conclusion that axial heat conduction in 

the wall has an impact on heat transfer at low liquid flow rates. 

 

Li et al. (2007) examined numerically the axial heat conduction in the wall of circular 

microtubes having a range of hydraulic diameters from 50 – 1570 µm. The results reveal 

that the large ratio of the wall thickness over tube diameter in the low Reynolds number 

region causes significant axial heat conduction in the tube wall. This leads to a non-linear 

distribution of water temperature along the flow direction. The authors also reported that 

the effect of axial heat conduction is slowly diminished with the increase of Reynolds 

number and the decrease of the tube wall thickness. 
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Gan et al. (2008) carried out an experimental investigation to evaluate the effect of axial 

heat conduction on the heat transfer characteristics of methanol passing through 

triangular silicon microchannels. The authors concluded that the axial heat conduction in 

the wall greatly affects the convective heat transfer in channels having small hydraulic 

diameter. It was also observed that as the Reynolds number decreases, the axial 

conduction in the channel walls becomes more prominent. 

 

Nonino et al. (2009) numerically analyzed the effect of axial heat conduction in the walls 

of circular cross-section microchannels on the convective heat transfer. The authors 

reported that larger reductions in local Nusselt numbers are found for larger values of the 

ratio of wall thermal conductivity over fluid thermal conductivity (            ). 

 

Cole and Çetin (2011) numerically analyzed the axial heat conduction in the fluid and in 

the channel wall in a parallel-plate microchannel for a fully developed laminar flow. It 

was found that the effect of axial heat conduction in the fluid becomes more pronounced 

if the Péclet number is small (Pe << 100). The authors also concluded that when the 

thermal conductivity of wall material is high, relative to the thermal conductivity of the 

working fluid, the effect of the axial conduction in the channel wall cannot be ignored. 

 

There have been several contradictory results from the above reviews. One of which is 

the investigation made by Tiselj et al. (2004). The authors performed experimental and 

numerical investigation to evaluate heat transfer characteristics of water flowing through 

heated triangular silicon microchannels. CFD analysis was performed to explain the axial 
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heat conduction phenomenon and an acceptable agreement between the experimental and 

numerical results was achieved. Consequently, the authors confirmed the validity of 

using the conventional theory to describe the liquid heat transfer in microchannels. 

 

The other study was performed by Gamrat et al. (2005). In this analysis, the authors 

presented both two and three- dimensional numerical analysis of convective heat transfer 

in rectangular microchannels, taking into account the effect of axial heat conduction in 

the wall. The range of the Reynolds number of water in the study was between 200 and 

3000. As a result of their work, the strong reduction in the Nusselt number observed in 

previous experiments cannot be explained by conduction effects due to the complex 

geometry. However, the authors suggested that the effects of conduction would be much 

stronger for flows at very low Reynolds numbers. 

 

2.4 Axial Heat Conduction in Fluid 

There is another kind of axial heat conduction which occurs in the fluid itself. From heat 

transport perception, the characteristic time for convection and conduction becomes 

comparable at the micro-scale level; and the convection term no longer dominates the 

conduction term in the longitudinal direction. This only happens if the Péclet number (Pe) 

of the fluid is small. If this is the case, the axial heat conduction in the fluid cannot be 

ignored. 

 

From Pe definition, the effect of the fluid axial heat conduction becomes more 

pronounced as Pe decreases. The effect of the heat conduction in the fluid on the heat 
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transfer has been studied by Jeong (2006), Cetin et al. (2008 & 2009), and Cole and Çetin 

(2011) for different boundary conditions. This type of heat conduction is not considered 

in the current study, as the calculated Pe number of the motor oil is large. As such, it is 

out of the scope of this research. 

 

2.5 Viscous Dissipation 

Viscous dissipation effect was demonstrated to be a typical “scaling effect” for narrow 

channel flows. It is the heating of the fluid due to the work done against the viscous 

forces. When a fluid passes through a channel having a small hydraulic diameter, the 

internal heat generation, due to the viscous forces, can produce a temperature increase. 

The temperature variation, due to the viscous dissipation, affects the values of the fluid 

thermo-physical properties, especially viscosity, between the inlet and outlet of the 

channel. The effect of viscous dissipation on heat transfer is considered significant for: 

1. Flows with high velocities. 

2. Flows of highly viscous fluids at moderate velocities. 

3. Flows in micro-scale channels with a moderate Pr number and moderate        

velocities but having small fluid-to-wall temperature difference. 

 

2.6 Literature Review on Viscous Dissipation 

The viscous dissipation is quantified by a dimensionless number called the Brinkman 

number (Br), which is defined as the ratio of the heat generated by the viscous action of 

the dissipation to the conduction. The effect of viscous heating in narrow channels on 

fluid flow and heat transfer characteristics have been studied intensively. Tso and 
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Mahulikar (1998) were able to quantify the presence of the viscous dissipation via the 

Brinkman number (Br).  The authors used experimental results from previous 

investigations done on microchannels in a laminar regime. They found that when the 

water is cooled through the microchannel under a constant velocity, Nu decreases with 

decreasing Re, due to the increase in Br, which represents the viscous heating. 

 

Moreover, Tso and Mahulikar (2000) experimentally analyzed the role of the Brinkman 

number in circular microchannels (Dh = 0.73 mm) in explaining the significance of the 

radial and axial variations occurring in water fluid temperature. For the radial case, the 

variation is captured by the change in wall-fluid temperature (∆T). On the other hand, the 

axial variation is captured by variations in the bulk viscosity (µ). When Br is small, the 

authors identified the effect of its variations in microchannels, as being the result of 

changes in liquid properties. This is the secondary effect of Br. The authors stated that the 

secondary effect might be utilized to explain the reduction in Nu when Re increases in 

laminar regime, if constant heat flux is applied. When Br is of the order of unity or 

higher, Br directly influences liquid temperature, due to the effect of viscous dissipation. 

This is the primary effect of Br. 

 

Tunc and Bayazitoglu (2001) mathematically analyzed the effect of viscous dissipation 

on heat transfer in microtubes. The investigation included uniform temperature and 

uniform heat flux boundary conditions, where the gas was heated and cooled. In both 

cases, it was found that the viscous dissipation actually boosts the heat transfer in laminar 

fully developed flow. 
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Xu et al. (2002) numerically studied the viscous dissipation impacts for water flows in a 

circular micro-channel. They stated that for a micro-scale channel, viscous heating cannot 

be overlooked, due to the high velocity gradient occurring in the channel. They found that 

the importance of the viscous dissipation can be examined based on the temperature rise 

from the inlet and the outlet of the channel. Moreover, a criterion to verify the presence 

of the viscous dissipation inside the channel was proposed. 

 

Koo and Kleinstreuer (2004) applied the computer simulation to study the viscous 

dissipation effects in rectangular microchannels for three distinct liquids:  namely water, 

methanol, and iso-propanol. They demonstrated that the key factors by which the viscous 

heating is determined are: channel size, the Reynolds number and the Brinkman number 

(or the Eckert number and the Prandtl number). Moreover, they found the impact of 

viscous dissipation might be essential for fluids with low specific heat capacities and high 

viscosities, even in relatively low Reynolds number flows. 

 

Morini (2005) observed that even for a very low Reynolds number, the effects of viscous 

dissipation can be significant, if the hydraulic diameter is small. He also found that cross-

sectional geometry plays a major role in viscous heating. Arici et al. (2009) numerically 

studied the effect of viscous dissipation on laminar forced convection. The authors 

concluded that viscous dissipation does affect both the wall and bulk fluid temperature 

profiles. They also noticed that as the Br number increases, the viscous dissipation 

becomes more significant. 
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JiangFeng et al. (2011) analytically studied the influence of viscous heating on parallel 

and counter conventional heat exchangers. The authors concluded that for liquid having a 

small dynamic viscosity, such as water, the effect of viscous heating can be ignored. On 

the other hand, the influence of viscous heating cannot be ignored for liquid with a large 

dynamic viscosity, such as olive oil. 

 

2.7 Effects of Thermo-Physical Properties 

There are a plethora of papers that have been devoted to analyzing the effects of the 

thermo-physical property variations with fluid temperature. The main outcome of these 

studies shows that  it is essential to take into account the variation of the fluid thermal 

conductivity and viscosity in the investigation of conventional [Xie and Hartnett (1992), 

and Shin and Cho (1993)] and narrow channel flows [Park et al. (2001) and Li et al. 

(2004)], especially at low Reynolds numbers. On the other hand, other properties, such as 

fluid density and specific heat, can be considered independent on temperature. 

 

2.8 Working Fluid 

2.8.1 Definition 

Motor Oil is made from a heavier, thicker petroleum hydrocarbon base stock that is 

derived from crude oil after undertaking several processes. This base oil is blended with 

additives to either enhance certain physical properties of the base oil or to introduce 

properties that do not naturally exist in the base oil. These additives can perform their 
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tasks in one of three ways [Heisler (1999) and SAE Fuels and Lubricants Technical 

Committee (2006)]: 

1. Protection of the engine surfaces from oil sludge build-up, which includes 

antiwear agents, corrosion inhibitors, detergents, and friction modifiers. 

2. Modification of oil properties, such as pour point, antifoam agents, and 

viscosity index (VI) improvers. 

3. Protection of base oil, which includes antioxidation and metal 

deactivators. 

Motor oil is a lubricant used in various internal combustion engines. These include 

engines of road vehicles (motorcycles, cars, buses and commercial vehicles), and non-

road vehicles (boats, snowmobiles, lawn mowers, large agricultural machinery, 

construction equipment, locomotives, and aircraft). 

 

2.8.2 Functions 

Before considering the properties of motor oil, a clear knowledge of the functions of the 

lubricant is required. The motor oil has to perform four vital functions [Heisler (1999)]: 

1. Lubricating the rubbing, moving and rotating parts of the engine. The 

contact between moving metallic surfaces deteriorates the parts, which 

leads to degradation of the engine. Therefore, the motor creates a 

separating film or layer between these rubbing surfaces, in order to reduce 

the occurrence of the contact and friction. 

2. Dissipating both the heat generated due to the combustion cycle, and any 

heat caused by bearings, crankshafts, and camshafts. 
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3. Inhibiting corrosion of the internal parts of the engine by diminishing the 

exposure to oxygen and protecting the components from oxidation. 

4. Maintaining the cleanliness of the engine. When metal engine parts are 

rubbing together, they inevitably produce microscopic particles and start 

accumulating. Therefore, the motor oil removes these tiny particles from 

the engine. 

 

2.8.3 Thermo-Physical Properties 

As mentioned earlier, the motor oil used in combustion engines in the recent past has 

natural properties (viscosity, density, thermal conductivity, and specific heat) as well as 

concocted ones, which are added to improve the overall performance of the oil and make 

them suitable for intended applications. For most liquids, the density, thermal 

conductivity, and specific heat are nearly independent of temperature. Viscosity, 

however, markedly decreases with increasing temperature [SAE Fuels and Lubricants 

Technical Committee (2006)]. 

 

2.8.3.1 Viscosity 

Viscosity is a physical property of a fluid, liquid or gas, which displays the fluid’s 

resistance to flow at specific temperatures and pressures. Also, the viscosity of a fluid can 

be considered as its “thickness.”  A high viscous fluid is “thick” and a low viscous fluid 

is “thin.”  The thicker a fluid is, the slower it will flow. Viscosity plays a major role in 

analyzing the convective heat transfer phenomenon in the current investigation, as the 
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magnitude of several dimensionless numbers (Reoil, Proil, Broil, ….etc) are governed by its 

value. 

 

Viscosity is considered an indispensable property of motor oil as it maintains the ability 

of the oil to lubricate and protect the moving parts of an internal combustion engine. 

Under all conditions, it must be high enough to retain a lubricating film, but low enough 

to give oil the ability to flow around the engine parts. If the oil is too viscous (too thick), 

the pump will encounter difficulties in circulating the motor oil. Also, the oil that is too 

thick cannot infiltrate into the tiny space between the moving parts. As a consequence, 

failure from premature deterioration will take place. On the other hand, if the oil is not 

viscous enough (too thin), the pump will not be able to maintain the required pressure to 

circulate the oil. As a result, the metal parts will come into contact with each other and 

eventually wear out because of a lack of proper lubrication. Therefore, it is vital to have 

an appropriate balance of the viscosity of the motor oil. 

 

A viscosity index is a measure of how much oil’s viscosity changes as temperature 

changes. A high viscosity index indicates there should be slight change in viscosity with 

a reasonable temperature rise. In other words, the less change motor oil has from high to 

low temperatures, gives it a high viscosity index. It is desirable to have a high viscosity 

index because it provides a wider range of operating temperatures in which the working 

oil will grant satisfactory lubrication. 
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There are two types of viscosity; dynamic and kinematic. 

Dynamic or simple viscosity (µ) 

It describes the movement of the different layers of a fluid when subjected to a horizontal 

force. The unit of this kind is centipoise (cP or mPa.s) and it is equivalent to (N·s/m
2
) or 

kg/ (m·s). (1 mPa.s = 1 cP) 

 The formula is as follows [SAE Fuels and Lubricants Technical Committee (2006)]:  

                     
     

            
 

        

              

  
            

          
  (2.2) 

Oils that exhibit a constant viscosity at all shear rates in this equation are known as 

“Newtonian” Oils. On the other hand, oils that display a viscosity, which varies with 

changing shear rates in this equation, are known as “non-Newtonian” oils. 

 

Dynamic viscosity of the motor oil decreases rapidly as the temperature increases. A 

sample of the investigated motor oil was sent to a commercial laboratory (Can-Am 

Instruments Ltd., Located in Oakville, ON) to determine the viscosity. A high-end 

rheometer is employed to perform the test at seven different temperatures (0, 10, 20, 40, 

60, 80 and 100 
o
C). From the lab results, the dynamic viscosity value was found to be  

constant at all shear rates for their respective test temperatures. Hence, the motor oil used 

in the current study can be considered as a Newtonian fluid.  The relationship between 

the viscosity and temperature can be seen below in Figure 2.1. 
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As can be seen from the figure, there is a sharp decrease in the viscosity at temperature 

below 3     . On the contrary, above  0   C the change in viscosity is not as much. The 

best fit curve is a 6
th

 order polynomial between the temperature and dynamic viscosity 

and it is as follows: 

                                                              

 

Figure 2.2 portrays the effect of temperature variation on three different automotive 

fluids’ viscosities. The fluids are Motor Oil, Automatic Transmission Fluid (ATF), and 

Ethylene Glycol. This figure shows how highly viscous the motor oil is compared with 

the ATF and Ethylene Glycol. At low temperature, the difference in viscosity values for 

µ = 5E-09T6 - 2E-06T5 + 0.0002T4 - 0.0155T3 + 0.6643T2 - 19.136T + 327.3 
R² = 1 
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Figure 2.1: Oil Dynamic Viscosity Variation with Temperature 
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the three fluids is distinctive. However, the viscosity values of the fluids become very 

close as the temperature increases. 

 

Kinematic viscosity (ν) 

 Kinematic viscosity describes the ease with which a fluid moves under the force of 

gravity. The unit of kinematic viscosity is centistokes (cSt or mm
2
/s).  (1 mm

2
/S = 1 cSt) 

The formula is as follows:    

    
 

 
  (2.3) 

Here,              ν: Kinematic Viscosity (m
2
/s) 

                        µ: Dynamic Viscosity (kg/ (m.s)) 

                         ρ: Density (kg/m
3
) 

0 

50 

100 

150 

200 

250 

300 

350 

0 20 40 60 80 100 

V
is

co
si

ty
 [

m
P

a
.s

] 

Temperature [oC] 

Motor Oil 

ATF 

Glycol 

Figure 2.2: Viscosity Comparison 



Study of Motor Oil Cooling at Low Reynolds Number in Multi-Port Narrow Channels 

Mohammed S. Saadi. M.A.Sc. Thesis 2012. Dept of Mechanical, Automotive, and Materials Eng., University of Windsor, Canada 28 

2.8.3.2 Density  

The motor oil’s density has an inverse linear correlation with temperature, as shown in 

Figure 2.3. The densities at three different temperatures (15, 20, and 40
o
C) were 

determined by the same commercial laboratory (Can-Am Instruments Ltd). The other 

points were interpolated and extrapolated. The following figure displays the density with  

respect to temperature. From the figure below, the density of oil does not significantly 

vary between 0 – 100   C, the range is only 60 kg/m
3
. 

ρ = -0.62T + 869.2 
R² = 0.9996 
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Figure 2.3: Oil Density Variation with Temperature 
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2.8.3.3 Thermal Conductivity 

Similar to oil density, the thermal conductivity conversely and slowly varies with 

temperature. The thermal conductivity of motor oil was provided by the manufacturer. In 

Figure 2.4, with the change in temperature from 0-100 
o
C, the conductivity varies only 

0.0075 W/m-K. For the current study, the oil temperature difference between the inlet 

and outlet is 3  ≥ ∆T ≥   
o
C; the values of oil thermal conductivity extracted from the 

below figure are very close. Thus, the conductivity has no major effect on the convective 

heat transfer characterization. 

 

2.8.3.4 Specific Heat Capacity  

The motor oil specific heat increases as the temperature increases. The correlation is 

linear as shown in Figure 2.5. Similar to the thermal conductivity, the specific heat of oil 

was obtained directly from the manufacturer.  ithin the 100   C temperature difference, 

the specific heat capacity  varies only 0.4 kJ/kg-K. 
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2.8.4 Oil coolers 

The engine oil is circulated in the engine while it is running, and along with the engine, 

the oil also becomes hot on running. As Figure 2.1 shows, the oil loses its viscosity 

(becomes thinner) as the temperature increases. Thus, the lubricating effect of oil 

reduces, which increases friction between the engine parts. 

 

As a result, the circulating oil passes through the oil cooler (heat exchanger) to dissipate 

heat to a cooler medium, such as an air stream or the coolant from the engine’s cooling 

system. This helps to ensure that the oil maintains at an optimum temperature. There are 

two basic types of oil coolers [Heisler (1999)]: 

2.8.4.1 Liquid to air (tube-and-fin heat exchanger) 

This type of heat exchanger acts like that of the engine cooling system radiator. It lets the 

hot oil pass through finned tubes which are exposed to the surrounding air stream. This 
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air stream is caused by the moving vehicle or the engine’s cooling system fan. Heat is 

extracted through the metal walls of each tube to the external fins and then it is absorbed 

by the surrounding atmosphere. 

 

2.8.4.2 Liquid to liquid (shell-and-tube heat exchanger) 

Two fluids of different starting temperatures flow through this oil cooler. One fluid; the 

cooler coolant, flows through the tubes (tube side). On the other hand, the other fluid; the 

hot oil, flows outside the tubes (shell side). The heat is therefore transferred by 

conduction through the metal wall of each tube and then by convection through cycling 

of the ethylene glycol coolant. 

 

2.9 Scope of Current Investigation 

After reviewing a large number of published articles and papers, as well as several books, 

cooling a highly viscous fluid, motor oil, via a minichannel heat exchanger is virtually 

not-existent. The predominant studies were on heating standalone narrow channel and 

analyzing the heating effect on the fluid flowing through the channel. In addition, the 

majority of the working fluids that have been analyzed so far contain very low dynamic 

viscosity. Thus, it can be claimed that this investigation is considered as unique, since it 

examines the applicability of a minichannel heat exchanger for cooling motor oil. 

 

In current investigations, experimental endeavours have been performed using a closed 

loop thermal wind tunnel to verify the aptness of cooling the motor oil through a cross-

flow minichannel heat exchanger. The proto-type heat exchanger utilized in the current 
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examination is a finned multi-port serpentine circular minichannel slab heat exchanger. It 

consists of 3 circuits; each circuit has five slabs, which are connected to each other by 

four serpentines.   There are 68 channels of 1 mm circular diameter drilled through each 

slab. The minichannel heat exchanger comprises of wavy fins arranged parallel to the 

flow of air. The inlet temperature of the motor oil was kept constant at 75
o
C. On the other 

hand, the air inlet temperatures were varied within the range of 20
o
C and 40

o
C for five 

steps.  

 

The flow of the oil falls in the laminar regime, due to the high viscosity, which 

consequently resulted in low Reynolds numbers. The Reynolds numbers were found to be 

from 0.85 to 3.5. Correlations were developed between the liquid side Nusselt number 

and liquid Re, and Pr. The effect of Re on the heat transfer coefficient, NTU, and 

effectiveness were carefully investigated. The outcome of the investigation showed a 

good level of agreement with the findings of the research works in open literature. 
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CHAPTER III 

THEORETICAL BACKGROUND AND ANALYSIS 

 

In the current investigation, a prototype cross-flow minichannel heat exchanger is utilized 

to cool motor oil by passing air through fins. The investigation is solely on the behavior 

of motor oil (liquid side) inside the channels, since the air side of this test specimen has 

already been heavily analyzed by Siddiqui (2011) and Dasgupta (2011) while heating and 

cooling the air by ethylene-glycol and distilled water, respectively. Some milestones or 

important points and assumptions need to be considered for proper usage of equations:  

 

1) The motor oil is Newtonian fluid as affirmed by the results obtained from the 

Can-Am laboratory, discussed in Chapter II.  

2) The wetted perimeter of the inlet and outlet manifolds of the test specimen is 10 

times larger than the diameter of the individual channel. As such, the distribution 

of the oil flow is taken as uniform.  

3) The system is assumed to be insulated; hence there is no heat transfer to/from the 

surroundings. 

4) The minichannels walls are smooth. In the current study, the minichannels are 

made with laser beam or multi-port extruded (MPE) tubing, which is considered 

having smoother channel surface (or wall) when it is compared with channels 

made by chemical etching. The minichannels diameter used in present study 

makes a relative roughness (    ) of 0.0005 (i.e. the surface roughness height of 

the channels is 0.05% of channel diameter). Kandlikar et al. (2003) examined the 



Study of Motor Oil Cooling at Low Reynolds Number in Multi-Port Narrow Channels 

Mohammed S. Saadi. M.A.Sc. Thesis 2012. Dept of Mechanical, Automotive, and Materials Eng., University of Windsor, Canada 34 

role of channel roughness on heat transfer and pressure drop for different 

diameters. They concluded that the circular channel of 1.067 mm diameter having 

     = 0.003 can be dealt with as smooth channel. Consequently, the 

minichannels (   = 1mm and      = 0.0005) in this investigation are taken as 

smooth and the influence of       on heat transfer and pressure drop can be 

disregarded. 

 

The representations of the two phenomena, fluid flow and heat transfer, of MICHX are in 

many ways similar to that of the conventional heat exchangers. Traditionally, these two 

phenomena are quantified by several parameters and dimensionless numbers which 

demonstrate the significance of certain concepts occurring on the fluids or channel walls. 

 

3.1 Reference (Bulk) and Wall Temperatures 

The dependency of heat transfer from one fluid to another is largely on the thermo-

physical properties of the fluids involved; especially density, specific heat, thermal 

conductivity, and dynamic viscosity. The effects of these properties on motor oil with 

respect to temperature were dealt with in the working fluid part. The aforementioned 

thermo-physical properties were determined at the bulk temperature of motor oil. Several 

authors have taken the bulk temperature for estimating the thermo-physical properties of 

the tested fluids [Xie and Hartnett (1992), Qu et al. (2000), Park et al. (2001), Xu et al 

(2002), Wu and Cheng (2003), Tiselj et al. (2004), Hetsroni et al. (2004), Gamrat et al. 

(2005), Gan et al. (2008)]. Air thermo-physical properties were also measured at the bulk 

temperature. 
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The bulk temperature was calculated as the arithmetic average of the motor oil inlet and 

outlet temperatures which were determined by the RTDs: 

            
                  

 
  (3.1) 

The air inlet and outlet temperatures were measured by thermocouples, it will be 

discussed in Chapter IV. Hence, the air bulk temperature, if needed, is evaluated by the 

following equation: 

            
                  

 
   (3.2) 

 

Another temperature that needs to be considered and calculated is the wall temperature 

(     ).       is involved in calculating several parameters and dimensionless numbers, 

such as the heat transfer coefficient (h), the Eckert number (Ec) , and the Brinkman 

number (Br).       is actually the inner wall surface temperature (    , and it is computed 

as: 

                                   (3.3) 

 

Where      is the outer wall surface and is taken from the reading of the thermocouples 

installed on the test specimen’s outer surface.       is the wall thermal resistance and It 

can be calculated as: 

        
   

  
  

 

        
    (3.4) 



Study of Motor Oil Cooling at Low Reynolds Number in Multi-Port Narrow Channels 

Mohammed S. Saadi. M.A.Sc. Thesis 2012. Dept of Mechanical, Automotive, and Materials Eng., University of Windsor, Canada 36 

3.2 Dimensionless Groups 

Fluid flow and heat transfer characteristics, as mentioned earlier, are presented in terms 

of dimensionless numbers, such as the Reynolds number, the friction factor, the Nusselt 

number, and the Prandtl number. These and other important dimensionless parameters 

used in internal flow forced convection are listed with their definitions, physical 

meanings, and formulae. It is known that the hydraulic diameter (  ) is used as a 

characteristic length in the following dimensionless numbers. 

3.2.1 Reynolds Number (Re) 

Fluid flows in a heat exchanger are classified as Laminar, Transitional, or Turbulent 

flows. Laminar flow heat transfer relies utterly on fluid thermal conductivity to transfer 

heat from within a stream to a heat exchanger wall. Turbulent flow; on the other hand, 

generates better heat transfer because it intermingles the fluid particles and thus creates a 

disordered motion within the flow. The Reynolds number is often interpreted as a ratio of 

inertial force to viscous force. For internal flow, an exchanger’s fluid flow in a circular 

geometry channel can be determined as follows: 

     
              

             
  

    

 
    (3.5) 

The units cancel each other, making the Reynolds number a dimensionless parameter. If 

viscous force dominates, the result would be a small value of Re and thus smooth flow, 

which is called Laminar flow. However, if the inertial force completely and considerably 

prevails over viscous force, the Re value would be high and thus disordered motion is 

created. Therefore, in this case, it would be known as Turbulent flow. 
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3.2.2 Prandtl Number (Pr) 

The Prandtl number is a non-dimensional number. It is defined as the ratio of momentum 

diffusivity to thermal diffusivity of the fluid. It can be expressed as: 

     
                                 

                             
  

   

 
    (3.6) 

From the above equation, it can be noted that the Prandtl number is considered as a fluid 

property as it is calculated by the thermo-physical properties of the fluid itself. Compared 

to other non-dimensional numbers, the Prandtl number does not contain a length scale in 

its definition and is reliant only on the fluid and fluid state. In heat transfer phenomenon, 

it represents the relative thickness of the momentum (velocity) and the thermal boundary 

layers. 

 If Pr >> 1                     heat diffuses very slowly from the fluid (such as oil, Pr = 

50 to 2000), consequently the thermal boundary layer is thinner relative to the 

velocity boundary, and the thermal entrance length is longer compared with the 

hydrodynamic length. 

 

 If Pr << 1                     heat diffuses very quickly from the fluid (such as air, Pr = 

0.2 to 1), consequently the thermal boundary layer is thicker relative to the 

velocity boundary, and the thermal entrance length is shorter compared with the 

hydrodynamic length. 

 

For motor oil in the current study, the Prandtl numbers range from 387 to 528, which are 

calculated at oil bulk temperatures. Since Pr >> 1, this indicates that the thermal 
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boundary layer is much thinner compared to the velocity boundary layer. As such, heat 

transfers very slowly from the oil. 

 

3.2.3 Péclet Number (Pe) 

The Péclet number represents the ratio of the thermal energy convected to the fluid to the 

thermal energy axially conducted within the fluid [Shah and London (1987)]. It also can 

be the outcome of the product of the Reynolds and Prandtl numbers. It is expressed by 

the following equation: 

     
                                                         

                                                                     
  

     

 
           (3.7) 

As seen in the above equation, the viscosity parameter is not included. The Péclet number 

is often used to investigate the heat transfer mechanism without taking into account the 

viscous effect. The inverse of Pe is a representation of the significance of axial heat 

conduction in the fluid. 

 

3.2.4 Eckert Number (Ec) 

The Eckert number (Ec) is another dimensionless number, which represents a correlation 

between the kinetic energy and the enthalpy of a fluid flowing inside a tube or channel. It 

is often used to characterize and quantify the viscous dissipation. It is defined as follows: 

     
                     

                                  
  

  

                 
     (3.8) 

 



Study of Motor Oil Cooling at Low Reynolds Number in Multi-Port Narrow Channels 

Mohammed S. Saadi. M.A.Sc. Thesis 2012. Dept of Mechanical, Automotive, and Materials Eng., University of Windsor, Canada 39 

3.2.5 Brinkman Number (Br) 

The Brinkman Number (Br) is a dimensionless number and is a measure of the effect of 

viscous dissipation relative to the heat transferred by conduction. It is essential when a 

viscous fluid is investigated as it shows the presence of the viscous dissipation. It is given 

by the following equation: 

     
                    

               
  

   

                
      (3.9) 

Where   and   are the oil dynamic viscosity and thermal conductivity and both are 

evaluated at the bulk temperature. It presents the importance of the heat added to the fluid 

due to viscous forces. Br also can also be computed from the dimensionless general 

energy equation (as the multiplication of Pr and Ec) as follows: 

                 (3.10) 

 

3.2.6 Nusselt Number (Nu) 

The Nusselt Number is the kernel of heat transfer phenomenon which is usually known as 

the ratio of convection heat transfer to conduction heat transfer. The Nusselt number is 

dependent on the flow passage geometry and the thermal boundary condition, especially 

in a laminar regime. It is defined as the ratio of the convective conductance to pure 

molecular thermal conductance: 

    
                      

                                  
 

 

    
  

    

 
       (3.11) 

For forced convection, the Nusselt number is a function of the Reynolds number (flow 

type) and the Prandtl number (thermal boundary layer thickness or physical properties); 
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or Nu = f (Re, Pr). Hence, the Nusselt numbers are normally described by empirical 

correlations and the most common is expressed by Yataghene et al. (2009): 

                     (3.12) 

The determination of the values of the constant C and the exponents m and n are 

performed experimentally. 

 

One of the rudimentary assumptions considered in the hypothetical correlations for Nu is 

that the fluid properties remain unchanged during the flow passage. However, fluid 

temperatures do alter significantly in practical situations, especially for high Prandtl 

number fluids. As such, oil viscosity alters considerably for motor oil. On the other hand, 

the variations in the thermal conductivity, specific heat, and density with temperature for 

oil; on the other hand, are insignificant [Xie and Hartnett (1992), Shin and Cho (1993), 

Shah and Sekulić (2003) ]. 

 

In the current study, heat is transferred from oil to the channel wall. This will create a 

temperature gradient in the radial direction at a channel cross section. Motor oil will be 

cooler near the channel wall and hotter near the channel centerline. Since the oil viscosity 

increases with decreasing temperature, the oil near the channel wall will have high 

viscosity (Figure 3.1). Consequently, oil velocity near the channel wall will be slower 

than the oil near the channel centerline. Therefore, this results in lower heat transfer 

coefficients h (lower Nu) and lower heat transfer rates. 
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For taking into account the influence of temperature-dependent oil property (i.e. 

viscosity), the following correlation for the Nusselt Number (Nu) is suggested [Phillips 

(1987), Xie and Hartnett (1992), Shin and Cho (1993), Shah and Sekulić (2003) ]: 

 
   

      
  

     

     
                           

     

     
          (3.13) 

Here,     is the corrected Nusselt number, and        is calculated at bulk temperature. 

      and       are the viscosities at bulk and wall temperatures, correspondingly. The 

value of the exponent   for fully developed laminar liquid flow in a circular duct is found 

numerically to be 0.14 [Phillips (1987), Shin and Cho (1993), Shah and Sekulić (2003)].  

 

3.2.7 Axial Heat Conduction Number (M) 

To evaluate and verify the presence of the axial heat conduction effect in the channel 

wall, the so-called axial heat conduction number (M) was introduced by Maranzana et al. 

(2004) and used by Gamrat et al. (2005), Li et al. (2007), Gan et al. (2008), and Nonino 

et al. (2009). 

  

Figure 3.1: Oil Viscosity inside a Flow Passage 
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        (3.14) 

The above dimensionless number allows comparing “axial heat transfer by conduction in 

the wall” and “convective heat transfer of the flowing fluid inside tube”. Here        , 

which is only a nominal value of the axial heat conduction in the wall, is calculated 

assuming the heat transfer is one-dimensional (in the x-direction) through the same fluid 

temperature difference [Maranzana et al. (2004) and Gan et al. (2008)]. Since it was 

experimentally difficult to measure exactly the temperature difference in the channel 

wall,        is taken to be equal to the      . Li et al. (2007) were able to numerically 

determine the exact values of the temperature difference of the fluid and wall. The above 

equation can be simplified as follows (Appendix D): 

    
     

    
   

   
     

  

   
  

 

     
        (3.15) 

3.3 Fluid Flow Characteristics 

The fundamental correlations and equations in analyzing the fluid flow characteristics of 

the working fluid, motor oil, are listed below. 

3.3.1 Entrance Lengths 

When a fluid enters a tube at a uniform velocity, the fluid particles in contact with the 

tube wall come to a complete stop because of wall friction and also make the neighboring 

fluid particles slow down. Consequently, fluid particles velocity at the midsection 

increase and thus a velocity boundary layer starts developing along the tube axial 

direction. The thickness of this layer increases in the flow direction until it reaches the 
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centerline of the tube. The region from the tube inlet to the location where the boundary 

layer merges at the tube centre is called hydrodynamic entrance region (flow is called 

hydrodynamically developing flow) and its length is called hydrodynamic entry length 

(   ). The region beyond the entrance length in which the velocity profile is fully 

developed and remains unchanged is called hydrodynamically fully developed region 

[Çengel (2007)]. 

 

Similarly, a fluid at a uniform temperature enters a tube whose surface temperature is 

maintained. This instigates convection heat transfer between the fluid particles in contact 

with the tube surface, as well as the surface itself. As such, a thermal boundary layer 

starts developing along the tube. The thickness of this layer increases in the flow 

direction until it reaches the tube centerline. The region from the tube inlet to the location 

where the boundary layer merges at the tube centre is called thermal entrance region 

(flow is called thermally developing flow) and its length is called thermal entry length 

(   ). The region beyond the entrance length in which the dimensionless temperature 

profile is fully developed and remains unchanged is called thermally fully developed 

region [Çengel (2007)]. 

 

The region in which the flow is both hydrodynamically and thermally developed is called 

fully developed flow. In laminar flow, the hydrodynamically and thermally entry lengths 

are computed by the following: 

                        (3.16) 

                                  (3.17) 
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3.3.2 Motor Oil Flow Rate and Reynolds Number 

The total mass flow rate of motor oil (       through the minichannel heat exchanger is 

determined by taking the weight of oil in the bucket and dividing it by the time needed to 

fill the bucket. This can be expressed as follows: 

       
  

  
       (3.18) 

However, the calculated flow rate is for the full heat exchanger (204 channels); thus the 

mass flow rate of an individual channel can be evaluated by the following: 

           
     

   
       (3.19) 

From the mass conservation principle, oil velocity can be evaluated as follows: 

                      (3.20a) 

      
     

    
       (3.20b) 

Therefore, 

     
        

       
  

         

    
    

     

   
 

 

    
   

     

      
        (3.21) 

 

The oil mass velocity (    ) into the minichannel heat exchanger core is calculated based 

on the total cross-sectional area of the channels: 

       
     

    
       (3.22) 

 

The motor oil Reynolds number value for one individual channel is then calculated as: 

        
      

 
   

   

 
  

      

      
     

      

      
        (3.23) 
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3.3.3 Pressure Drop 

The evaluation of the pressure drop (∆P) in a heat exchanger device is necessary for 

several reasons. The fluid pressure drop impacts the exchanger heat transfer, operation, 

size, mechanical characteristics, and economic considerations [Shah and Sekulić (2003)]. 

In current investigation, the total pressure drop of the test specimen combines the 

pressure drop occurred in the minichannel itself (straight and serpentine parts) and the 

pressure drop associates with fluid distribution devices (inlet/outlet headers and 

inlet/outlet headers). The pressure drop that takes place due to fluid distribution devices 

was extensively elaborated and discussed by Khan (2011). Hence, only the channel 

hydraulic pressure drop will be considered in this research. 

 

I) Pressure Drop in a Straight Tube 

The calculations for the laminar hydrodynamic and thermal lengths indicate that the flow 

is fully developed (it will be explained in section 5.1) inside the minichannel. Hence, for 

a fully developed laminar flow in a straight tube, the pressure drop can be computed 

using the following equation [Kandlikar et al. (2003), Fox et al. (2004), Cui Silber-Li 

(2004), Çengel (2007)]: 

     
           

          (3.24) 

    
               

   
 

    
            

   
  
   

 
  

        
 

 
  
    

 
        (3.25) 
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II) Pressure Drop in a Curved Tube 

When a certain fluid flow goes through a curved tube, the flow is subjected to two types 

of pressure drop: the radial and axial pressure drops. The radial pressure drop occurs due 

to the added loss which results from the secondary flow. To calculate the radial pressure 

drop, the following equation is used [Vashisth et al. (2008)]: 

                   
 

  
          (3.26) 

3.3.4 Friction Factor 

Friction factor (ƒ) is a dimensionless parameter. It can be used to estimate the major head 

losses, which is the pressure drop. In case of steady fully developed laminar flow, the 

equation with which the friction factor can be determined is as follows [Jiang, X.N. et al. 

(1995), Park et al. (2001), Wu and Cheng (2003), Iyengar and Garimella (2006), Çengel 

(2007)]: 

       
 

 
  

 

   
         (3.27) 

From the above equation, the friction factor is highly dependent on the flow path 

geometry. For a circular cross-sectional geometry and fully developed laminar flow, 

friction factor is inversely proportional to the Reynolds number and it can be shown as 

[Jiang, X.N. et al. (1995), Fox et al. (2004) and Çengel (2007)]: 

     
  

  
          (3.28) 

Moreover, friction factor can be dependent on fluid thermo-physical properties, 

especially viscosity. As explained in section 3.2.6, the oil dynamic viscosity at the wall is 

higher than the viscosity at the center due to the variation in temperature. As a result, 

friction factor and pressure drop would be higher at the channel wall. This fluid property 
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variation can be compensated by the following equation [Phillips (1987), Xie and 

Hartnett (1992), Shin and Cho (1993), Shah and Sekulić (2003)]: 

 
  

     
  

     

     
           (3.29) 

For a fully developed laminar flow in a circular tube and for a cooling mode, the value of 

the exponent m is found to be - 0.54 [Phillips (1987), Shah and Sekulić (2003)]. 

 

3.4 Heat Transfer Characteristics 

The basic equations in computing the forced convection heat transfer mechanism of both 

fluids (motor oil and air) are summarized here. 

3.4.1 Heat Transfer Rate (  ) 

The amount of heat dissipated by a hot fluid and absorbed by a cold fluid in a heat 

exchanger is crucial for the heat transfer study. The steady state heat transfer between the 

hot fluid (motor oil) and the cold fluid (air) using the examined minichannel heat 

exchanger was basically due to the forced convection mechanism. The two heat duties 

can be computed from the following two equations: 

                                                 (3.30) 

                                                 (3.31) 

 

3.4.2 Heat Balance (HB) 

The heat rejected by the motor oil should perfectly be equivalent to the heat taken by the 

air (               in theory. In practice, though, this is not a viable solution due to a 
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number of factors such as heat infiltration to the ambient and experimental errors of some 

instruments used in the system. 

 

One of the methods to verify the reliability of the test specimen and its measurement 

instruments is the approach of heat balance (HB). This approach was recommended by 

the ASME PTC 30-1991 for an air cooled heat exchanger. The method to calculate the 

heat balance is to take the difference of the heat transfer rate between the two fluids and 

divide it by the arithmetic mean of the heat transfer rate of two fluids. The advisable Heat 

Balance (HB) limit is ± 15%.  The formula is as following: 

     
            

     
               (3.32) 

Where       is the arithmetic mean of the heat transfer rate of oil and air, as shown below 

in the equation: 

        
            

 
          (3.33) 

 

3.4.3 Heat Transfer Coefficient ( ) 

The heat transfer coefficient (h) is a quantitative representation of convection heat flux 

per unit temperature difference between a fluid and a surface (wall) or vice versa. 

      
     

                             
  

           

  
           (3.34) 

 

The complexity of the heat transfer phenomenon for a heat transfer surface is fully shown 

in the definition of h, letting it be reliant on several variables and operating conditions. 

These variables/conditions are, but not limited to, phase condition, flow regime, flow 
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passage geometry, fluid physical properties, convection type, viscous dissipation, heat 

transfer rate, and flow and thermal boundary conditions. Hence, in general, the notion of 

h to signify the convection phenomenon is valid, but only in a restricted number of 

applications and might not provide a straightforward solution to a vast range of 

convective heat transfer problems [Shah and Sekulić (2003)]. 

 

3.5 Heat Transfer Performance 

A set of experiments is conducted to analyze the thermal performance of MICHX, whose 

configuration is cross-flow serpentine multi-pass. There are several approaches to 

analyze the heat exchanger performance, such as Overall Conductance (  ), Heat 

Exchanger Effectiveness ( ), and Number of Transfer Unit (   ). 

3.5.1 Overall Heat Transfer Conductance (  ) 

One method to examine the performance is by computing the overall Heat Transfer 

conductance (UA), which is actually equal to the inverse of the overall thermal resistance. 

The overall conductance shows the reliability of a heat exchanger on transferring heat. As 

per Newton’s law of cooling, for a cross-flow heat exchanger the following equation can 

be used: 

    
     

        
           (3.35) 

      is the average heat duty between oil and air and can be computed by equation 3. 33. 

       is the log-mean temperature difference and it is defined as the average effective 

temperature difference between the two fluid streams over the length of the heat 

exchanger.  For a two-fluid heat exchanger with C*   0 (C* will be defined in section 
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3.5.3), the log-mean temperature difference (      ) on the hot- and cold-fluid sides is 

calculated as following [Shah and Sekulić (2003)]: 

          
         

  
   
   

      
                       

                        
            (3.36) 

The correction factor (F) depends on the geometry of the heat exchanger and the inlet and 

outlet temperatures of the hot and cold fluids. It is defined as the ratio of the effective 

mean temperature difference to the log-mean temperature difference [Shah and Sekulić 

(2003)]: 

   
      

      
           (3.37) 

Where                                              
        

 
 

F can also be calculated from specific charts for a cross-flow heat exchanger if the values 

of temperature effectiveness “P” and heat capacity rate ratio “R” are provided [Shah and 

Sekulić (2003), Çengel (2007)]: 

     
                  

                 
          (3.38) 

     
          

          
 

    

    
           (3.39) 

 

3.5.2 Number of Transfer Unit (   ) 

One more way in which the heat exchanger performance can be analyzed is by the 

number of   transfer units (NTU). It is a design parameter and it is the ratio of the overall 

conductance (  ) to the minimum heat capacity rate (    ), [Shah and Sekulić (2003), 

Çengel (2007)]: 

     
  

         
 = 

  

    
           (3.40) 
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It designates the non-dimensional expression of the “heat transfer size or thermal size” of 

a heat exchanger. As shown from the above equation, NTU can be large if the product of 

overall heat transfer coefficient (U) and heat transfer surface area (A) is large. Hence, a 

large value of NTU does not denote the physical size of a heat exchanger. However, 

when the value of 
 

    
 does not vary as much, a higher value of NTU then refers to a 

large physical size. 

 

3.5.3 Heat Exchanger Effectiveness ( ) 

Another approach of verifying the performance of heat exchanger is by calculating the 

effectiveness ( ). Heat exchanger effectiveness is the measure of the ratio of the actual 

heat transfer to the maximum heat that could be transferred by a heat exchanger of 

infinite size. It is defined for a given heat exchanger regardless of its flow arrangement. 

The effectiveness can be calculated from the following equation [Shah and Sekulić 

(2003), Çengel (2007)]: 

   
        

         
   (3.41) 

Or   

   
                               

                             
 

                               

                             
   (3.42) 

In heat exchanger analysis, it is also suitable to obtain another dimensionless parameter 

called heat capacity rate ratio (C*). It is a ratio of the smaller to larger heat capacity rate 

for the two fluid streams; and it is as follows [Shah and Sekulić (2003), Çengel (2007)]: 

    
         

         
 

    

    
   (3.43) 
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C* is considered an operating parameter of the heat exchanger since it relies on fluid 

mass flow rates and fluid temperatures. The fluid that has Cmax is subjected to a lower 

temperature difference than the temperature difference for the Cmin fluid. 

 

Heat exchanger effectiveness (   is a function of number of transfer units (NTU), heat 

capacity rate ratio (C*), and flow arrangement [Çengel (2007)]: 

 

                                     

 

For any given value of NTU, the   is maximum when C* = 0 and minimum when C* = 1 

regardless of the heat exchanger flow arrangement. In the current investigation, the flow 

arrangement is a cross-flow and C* is almost equal to 0. Hence, for a given NTU value, 

the   is maximum. Thus, the following equation can be applied [Shah and Sekulić (2003), 

Çengel (2007)]: 

              (3.44) 
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CHAPTER IV 

EXPERIMENTAL SET-UP AND PROCEDURE 

 

The experimental runs pertaining to this investigation were undertaken at the University 

of  indsor’s Thermal Research Facility, room B0 , of Essex Hall. This facility is fully 

equipped with accurate measurement devices and system controllers. An appropriate 

picture of the research facility is shown in Figure 4.1. Several apparatus are integrated 

together to perform and record the experiments. In order to depict a practical application, 

a gear pump and a blower were used in the current investigation.  This incorporated and 

complex layout, which was designed and built by Dr. Mesbah Khan [Khan and Fartaj 

(2011) and Khan (2011)], offers some flexibility such as adapting with different working 

fluids and acquiring heating or cooling modes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Research Facility 
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A schematic diagram of the experimental set-up used to investigate fluid flow and heat 

transfer characteristics of motor oil in a cross-flow minichannels heat exchanger is shown 

in Figure 4.2. As seen in the diagram, the set-up can be divided into closed oil loop 

(tested fluid), closed air loop (cooling fluid), and test specimen (minichannels heat 

exchanger). The components, functions, and specifications of each part will be 

expounded separately. 

Figure 4.2: Schematic Diagram of the Experimental Set-Up 
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4.1 Oil Loop (Tested Fluid) 

Motor oil loop is considered as the main loop since the working fluid, motor oil, is 

circulating through. The thermo-physical properties and the function of the motor oil was 

discussed in Chapter II. The circulation of the motor oil is taken from a tank and driven 

by a gear pump. The oil then passes through an electric pre-heater to maintain the inlet 

temperature to the Minichannel Heat Exchanger (MICHX). A micro-filter was placed 

between the outlet of the heater and the inlet of the minichannel to avoid any particles or 

bubbles from flowing through and blocking the minichannels. After that, the oil goes 

through channels inside the heat exchanger test specimen and finally it is sent back to the 

tank. Two resistance temperature detectors (RTD 1 & RTD 2) and two pressure 

transducers (PTD 1 & PTD 2) were fixed at the inlet and exit of the MICHX to measure 

the temperatures and the pressures, correspondingly. 

 

Generally, this loop can be said to consist of major and minor components. Major 

components are the oil tank, gear pump, and electric heater. Minor components are flow 

management accessories, flow monitoring devices, and flow measurement instruments. 

 

4.1.1 Major Components 

4.1.1.1 Oil Tank 

The tank is made of Ultra High Molecular Weight Polyethylene (UHMWPE). This type 

of material is highly resistant to corrosion, self-lubricating and has extremely low 

moisture absorption. It is also odourless, tasteless, and of a non-toxic material. The 

following table presents the tank’s dimensions: 
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Table 4.1: Tank Dimensions 

 

 

 

 

 

 

 

 

 

4.1.1.2 Gear Pump 

The oil is circulated through the system by utilizing a positive displacement gear pump 

shown in Figure 4.3.  Unlike other types of pumps, the gear pump can provide a constant 

flow rate of liquid without taking into account the pressure drop that usually occurs 

across the minichannels [Khan and Fartaj (2011), Steinke
1
 et al. (2006), and Steinke

2
 et 

al. (2006)]. 

 

 

 

 

 

 

Height 23.5 in / 60 cm 

Diameter 17 in / 43 cm 

Wall Thickness 0.16 in / 0.4 cm 

 over’s Thickness 0.24 in / 0.6 cm 

Height above ground 17.3 in / 44 cm 

Volume 23 gallons / 0.087 m
3
 

Figure 4.3: Gear Pump 
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The pump is driven by an external variable-speed motor which is managed by a 

frequency controller.  Thus, the oil flow rate can be conveniently adjusted as desired by 

only varying the frequency of the motor.  As been recommended by the pump’s 

manufacturer, a pressure relief valve is installed after the pump’s discharge line to protect 

the pump against excessive back pressure.  The specifications of this pump are shown in 

TABLE 4.2. 

 

Table 4.2: Gear Pump Specifications 

 

4.1.1.3 Electric Heater 

In this investigation, the motor oil is heated up by an inline electric heater which is 

capable of providing up to 6 KW. The components of the heater are presented in Figure 

4.4 [Siddiqui (2011)]. There are 6 heating elements fitted inside the steel casing which 

are in a direct contact with the motor oil, in order to increase its temperature. 

Make OMEGA 

Model (Part) Number FPUGR205  -  RCB 

Temperature Range -54 to 121 
°
C 

Maximum Capacity 17.4 GPM 

Maximum Pressure 

(150 psi / 1034 kPa) for Oil 

(100 psi / 690 kPa) for Water 

Maximum Viscosity 100,000 SSU (21,630 cSt) 

Maximum Motor Speed 1725 rpm 

Horse Power 7.5 hp/5.6 kW 
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A programmed control panel is connected to the electric heater to adjust the required 

heating temperature. The controller type is a proportional integral derivative (PID) 

control which is able to automatically maintain the inserted temperature value with more 

accuracy than the on/off control. The temperature inside the electric heater is measured 

by a thermocouple. The specifications of the heater are shown in TABLE 4.3. 

 

Table 4.3: Electrical Heater Specifications 

Make Wattco 

Model (Part) Number MFLI606X2818 

Maximum Temperature 150 
O
C 

Maximum Pressure 980 psi / 6.8 MPa 

Figure 4.4: Electric Heater 
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4.1.2 Minor Components 

4.1.2.1 Flow Management Accessories 

Valves: Ball valve types are distributed to control and direct the motor oil to the 

minichannel heat exchanger. Each valve can withstand pressure up to 3000 psi. 

Filter:  A 440 micro-filter (MF) is mounted before the inlet of MICHX to prevent the 

unwanted particles from entering the MICHX. The maximum pressure that the filter can 

bear is around 580 psi. 

 

4.1.2.2 Flow Monitoring Devices 

As shown in Figure 4.2, temperature and pressure gauges are located throughout the 

motor oil path to observe the values of the oil’s temperatures and pressures before and 

after certain components, such as the gear pump, electric heater, and MICHX. These 

gauges are employed for monitoring purposes only. 

 

4.1.2.3 Flow Measurement Instruments 

Two sets of Resistance Temperature Detector (RTD) and Pressure Transducer 

Transmitter (PTD) are fixed. One set (RTD 1 and PTD 1) is located just before the inlet 

header of MICHX and the other set (RTD 2 and PTD 2) is installed before the outlet 

header of MICHX. 

 

I) Resistance Temperature Detector (RTD) 

The RTD is basically a type of sensor used to determine temperature by relating the RTD 

element’s resistance with temperature. The working principle of the RTD is based on the 
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Wheatstone bridge circuit. As mentioned earlier, the motor oil inlet and outlet 

temperatures are measured by the RTDs.  The inlet and the outlet ultra precise immersion 

RTD sensors have similar specifications, shown in TABLE 4.4.  Both are equipped with 

a mounting thread for an easy installation and removal from the pipe networking. A 

picture of an uninstalled RTD is shown in Figure 4.5. 

Table 4.4: RTD Specifications 

Make Omega 

Temperature Range -25 to 80 
o
C 

The probe Diameter 6 mm (1/4 in) 

The probe Length 51 mm (2 in) 

 

 

 

 

 

 

 

 

 

 

II) Pressure Transducer Transmitter (PTD) 

PTD is an instrument that converts an amount of pressure to electrical signal. This 

conversion is accomplished by measuring the change in resistance of a strain gauge 

Probe 

Figure 4.5: Resistance Temperature Detector (RTD) 
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connected to a diaphragm, which is being distorted by applied pressure. The Wheatstone 

bridge arrangement is often applied. The pressure drop across the minichannel heat 

exchanger test specimen is determined by using pressure transducers installed 

immediately before the inlet header and after the outlet header. The inlet and the outlet 

PTDs have almost identical specifications except for the pressure range, shown in 

TABLE 4.5.  A lower pressure range (0 – 50 Psi) of PTD is installed at the outlet due to 

the anticipated drop of pressure occurring inside the MICHX. The PTDs, shown in Figure 

4.6, are furnished with a connector to mount it on the pipe networking. 

Table 4.5: PTD Specifications 

 

 

 

 

 

 

 

 

Make Omega 

Model # 

Inlet:  PX309 – 500G5V 

Outlet:  PX309 – 050G5V 

Pressure Range 

Inlet:     0 – 500 Psi / 3448 kPa 

Outlet:    0 – 50 Psi / 344 kPa 

Output Voltage 0 – 5V 

Figure 4.6: Pressure Transducer Transmitter (PTD) 
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4.2 Air Loop (Cooling Fluid) 

Air (cooling fluid) is the fluid used to absorb the heat from the motor oil in this research. 

Air circulation occurs through a closed thermal wind tunnel, in which the air is driven by 

a blower. A built-in (tube-fin) heat exchanger inside the wind tunnel is installed before 

the heat exchanger test specimen to adjust and retain the required air inlet temperature. In 

the built-in exchanger, city water supply is passed through the tubes to exchange heat 

with air which goes through fins. To measure the temperature rise of air in the test 

section, two thermal grids with nine (at inlet) and 25 (at outlet) type-T thermocouples 

were mounted. Differential pressure transducers (DPT) were utilized to determine air 

pressure drop across the MICHX. 

Air loop comprises a thermal wind tunnel, test chamber, and air flow measurement 

instruments (thermocouples and differential pressure transducers). In the following 

subsections, each part will be discussed separately. 

 

4.2.1 Thermal Wind Tunnel 

An integrated, well-insulated, vertical wind tunnel functions as the air passage in the 

current study. This wind tunnel is made of fiber glass material with high insulating 

feature. The bottom part of the wind tunnel contains the blower which circulates the air in 

the direction shown in Figure 4.7. The blower is driven by a motor with a power of 20 HP 

and a rotational speed of 1750 rpm. The maximum air velocity can be produced is 18 m /s 

with the existence of the test specimen. 
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Figure 4.7: Thermal Wind Tunnel 

 

The top part, on the other hand, includes the test chamber. As mentioned earlier, a built-

in heat exchanger (tube-fin type) is fitted at the air upstream side to maintain the air inlet 

temperature by exchanging heat with city water supply. A hot and cold water mixing 

chamber is used to adjust the water temperature before entering the heat exchanger. The 

dimensions of the wind tunnel are shown in TABLE 4.6. 

 

Table 4.6: Wind Tunnel Dimensions 

Length 214 in / 544 cm 

Width 29 in / 75 cm 

Height 64 in / 164 cm 

Wall thickness 0.4 in / 1 cm 

Built-in HX 
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4.2.2 Test Chamber 

The test chamber contains the prototype minichannel heat exchanger. The picture of the 

test chamber before and after installing the test specimen are shown in Figures 4.8 and 

4.9, respectively. The dimensions of the test chamber are presented in Figures 4.10. Small 

voids are drilled to make it possible to measure the air pressure drop and air velocity by 

using the specific instruments. After fitting the heat exchanger, the top and the sides’ lids 

are properly mounted. Additional insulating materials are enfolded to make the test 

chamber thermally insulated. 

 

 

 

Figure 4.8: Test Chamber without Test Specimen 
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Test specimen place 

Figure 4.9: Test Chamber with Test Specimen 

304 mm 

285 mm 

609 mm 

Figure 4.10: Test Chamber Dimensions 
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4.2.3 Thermocouples 

Inlet and outlet air temperatures, as well as the surface temperature of the MICHX, were 

determined by T-type thermocouples. The upstream air temperature was evaluated by 

mounting a grid of 9 equally spaced thermocouples, 4 mm distance from the test chamber 

inlet. To take into account the variation in the downstream air temperature that occurred 

due to the existence of MICHX, a grid of 25 equally spaced thermocouples was installed. 

The inlet and outlet grids were fitted in the wind tunnel rather than the test chamber to 

ease the removal process if a new test specimen needed to be investigated in the future. 

The inlet and outlet grids are shown in Figures 4.11. 

 

For considering the representative air inlet and outlet temperatures in data reduction and 

heat transfer calculating, the arithmetic average values of the 9 and 25 thermocouples are 

obtained as following: 

           
            

 
  (4.1) 

            
             

  
  (4.2) 
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Concerning the outside wall temperature, 46 T-type thermocouples were strategically 

attached to the bends or serpentines, manifolds, headers, and inlet and outlet pipes of the 

MICHX.  All thermocouples were calibrated to read a maximum temperature of 50 
o
C. 

The considered surface temperature is computed as follows:  

        
             

  
  (4.3) 

  

Thermocouple Thermocouple 

Inlet Grid (9 Thermocouples) Outlet Grid (25 Thermocouples) 

Figure 4.11: Thermocouples Grids 
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4.2.4 Differential Pressure Transducers (DPTs) 

Differential pressure transducers (DPTs) are utilized to account for the air pressure drop. 

Holes are drilled at the upstream and downstream air-side test chamber to determine the 

air pressure drop occurred across the test specimen. Small tubes are used to connect the 

holes to DPTs. Three DPTs are employed to measure the air pressure drop at different 

locations, namely at the top, middle, and bottom of the air stream direction. DPTs’ 

specifications are shown in TABLE 4.7.  

 

Table 4.7: DPT Specifications 

 

4.3 Test Specimen 

The prototype MICHX is a cross-flow serpentine compact heat exchanger shown in 

Figure 4.12. It consists of 3 circuits. Each circuit has five slabs (total of 15 slabs) which 

are connected to each other by four serpentines (total of 12 serpentines) shown in Figure 

4.13 [Siddiqui (2011)]. There are 68 channels, with a 1 mm circular diameter, that are 

drilled through each slab. The motor oil goes through these channels, whereas the air 

flows over rectangular fins to cool the oil, shown in Figure 4.14. 

Make Omega 

Model # 

Top:  PX653 – 05D5V 

Middle: PX277 – 05D5V 

Bottom:  PX653 – 03D5V 

Pressure Range 

Top:     0 – 0.18 Psi / 1.25 kPa 

Middle:    0 – 0.18 Psi / 1.25 kPa 

Bottom: 0 – 0.11 Psi / 0.748 kPa 
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Serpentines 

Slabs 

305 mm 

287 mm 

100 mm 

Figure 4.13: MICHX Three Loops 

Figure 4.12: Prototype MICHX Test Specimen 
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A total of 14 horizontal aluminum sheets are fitted tightly between the 15 slabs in order 

to transfer the largest amount of heat possible from the slab to the fins. Each aluminum 

sheet has a number of 144 fins. MICHX is made of aluminum. This material is selected 

due to the practical popularity in using it for manufacturing heat exchangers, especially in 

automotive and thermal applications. Not only is aluminum considered lighter and 

cheaper, but it is also a corrosion-resistant material. The thermo-physical properties of 

this type of aluminum are close to aluminum A3003. The maximum pressure that the 

MICHX can withstand is up to 2200 psi (15 MPa) and its capacity is 6 kW. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Channel Arrangement 

68 Channels 
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Oil Pathway before and after the core (slab) : 

The oil pathway consists of inlet and exit pipes, inlet and exit vertical headers, and three 

inlet and three outlet manifolds, shown in Figure 4.15. The hot motor oil enters the inlet 

vertical header coming from the inlet pipe. Then, the header distributes the oil to the three 

inlet manifolds attached to the inlet slabs. After the oil is flown through the slab, the 

opposite scenario occurs. The cooled motor oil enters the three exit manifolds and it is 

then accumulated in the exit vertical header which is connected to the exit pipe. 

 

 

Figure 4.15: MICHX Header and Manifolds 

  

3 Inlet Manifolds 

Inlet Pipe 

Vertical Header 
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4.4 Data Acquisition System 

The study of fluid flow and heat transfer includes several operating parameters that need 

to be dealt with. Hence, A 16-bit NI Data Acquisition (DAQ) system was incorporated to 

monitor and record all the experimental data, and measurements, except for oil flow rates. 

The temperature and pressure values of both fluids are displayed on a personal computer 

screen, in which LabVIEW (Laboratory Virtual Instrumentation Engineering 

Workbench) version 8 is installed. RTDs and thermocouples were calibrated and adjusted 

in such a way that they are recorded directly in 
o
C without the need for any further 

conversion. However, pressure transducers (PTD & DPT) are displayed in voltage, which 

in turn need to be converted into psi or kPa. 

 

4.5 Operating Conditions 

This study is conducted to verify the applicability of the prototype heat exchanger test 

specimen to cool motor oil. Thus, taking into account all feasible operating conditions, 

that are relevant to a practical situation of oil cooler (air cooled), is the target of this 

experimental investigation. There are four major input parameters by which the fluid 

flow and heat transfer characteristics are managed. The parameters are oil inlet 

temperature (       ), oil mass flow rate (     ), air velocity (    ), and air inlet 

temperature (       ). 

 

Motor oil acquires the longest function life and proper lubricating state when its 

temperature is below 78 
o
C. As such, the oil inlet temperature is remained constant at 75 

o
C. With regards to oil mass flow rate, motor oil is a highly viscous fluid; and by letting it 
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go through a narrow channel at high mass flow rate can lead to a high pressure. 

Therefore, the flow rate is maintained within a small range due to the limitations of the 

system pressure. 

 

It is well known that around only 60 % of the total airflow strikes the car’s parts located 

under bonnet (i.e. the hood). If the vehicle is assumed to be driven at the highway (which 

is around 100 km/h = 28 m/s), the air velocity that faces the parts would be equivalent to 

about 18 m/s. Whereas, if the vehicle speed 40 km/h (= 11 m/s) which is the case at the 

city, the air velocity would be around 6 m/s. Setting up 18 and 6 m/s to be the maximum 

and minimum air velocities that confront the heat exchanger prototype. 

 

The air inlet temperatures are managed by exchanging heat with city water supply via 

built-in heat exchanger. The lowest and the highest air temperatures can be reached 

during the experiment period were 20 
o
C and 40 

o
C. In order to obtain additional output 

information, which results in deeper and better assessment of the heat exchanger, another 

three air inlet temperatures 25, 30, and 35 
o
C are taken into account. 

 

A wide range of test conditions were recorded (total of 80 runs) to attain adequate data 

for analyzing the performance of the MI HX. Both of the fluid’s velocities were varied 

corresponding to each other at different temperatures, in order to gather several fluid flow 

and heat transfer data sets to obtain full exposure on the capability of the test specimen 

thermal performance.  The operating conditions are tabulated in TABLE 4.8. 
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Table 4.8: Operating Conditions 

                           # of Steps 

75 °C 20 °C 

0.29 kg/min 

0.41 kg/min 

0.63 kg/min 

0.83 kg/min 

6 m/s 

10 m/s 

14 m/s 

18 m/s 

16 

75 °C 25 °C 

0.29 kg/min 

0.41 kg/min 

0.63 kg/min 

0.83 kg/min 

6 m/s 

10 m/s 

14 m/s 

18 m/s 

16 

75 °C 30 °C 

0.29 kg/min 

0.41 kg/min 

0.63 kg/min 

0.83 kg/min 

6 m/s 

10 m/s 

14 m/s 

18 m/s 

16 

75 °C 35 °C 

0.29 kg/min 

0.41 kg/min 

0.63 kg/min 

0.83 kg/min 

6 m/s 

10 m/s 

14 m/s 

18 m/s 

16 

75 °C 40 °C 

0.29 kg/min 

0.41 kg/min 

0.63 kg/min 

0.83 kg/min 

6 m/s 

10 m/s 

14 m/s 

18 m/s 

16 
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4.6 Data Collection Methodology  

For any successful experimental investigation, the readings of the parameters obtained 

from the system instrument devices need to be precise to some extent. In order to ensure 

that the collected data in current study accurate and realistic, some actions were 

implemented: 

 The pipes that carry the motor oil from the tank to the test specimen and vise 

versa were dried by blowing air with high pressure. 

 All fittings (inlet and outlet of tank, gear pump, heater, and test specimen) and 

the measuring devices were tightened.  

 The data acquisition system was turned on to check all readings related to the 

thermocouples, RTD, pressure transducers. 

After drying the pipes, the motor oil was poured into the liquid tank. Then, main switches 

for the liquid pre-heater, gear pump, and air blower were turned on. City water valves 

were opened. The gear pump starter’s button was turned on to begin the oil loop. The 

motor oil is drawn from the tank with four different flow rates, which were controlled by 

the motor frequency. The oil then enters a circulation heater where the oil temperature is 

raised up to 75 ± 1
 o

C. The oil inlet temperature to the test specimen), which is set and 

maintained by using the PID controller, will be kept constant for all runs. 

 

Afterwards, the oil goes through the channels of the test specimen and travels back to the 

starting point which is the tank. Motor oil inlet and outlet temperatures are measured by 

placing RTDs at the inlet and the outlet pipes. These RTDs are connected to the DAQ 

and their temperature readings are recorded. 
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An open loop configuration is arranged, where the oil flown out of the MICHX is 

collected by a bucket in a measured time period. The recorded time was determined by a 

stop watch. Flow rates are determined by weighing the collected oil by a precision scale 

capable of measuring the weight of 0.01 g. 

 

The air is thrust inside the closed loop wind tunnel by a blower with four different 

velocities. The built-in heat exchanger, located before the air upstream from the test 

chamber, is used to adjust and retain the air inlet temperature to the test chamber. In this 

investigation, five distinct air inlet temperatures were recorded for each air velocity. 

As stated before, two planes of 9 and 25 thermocouples for measuring air inlet and outlet 

temperatures are mounted in the wind tunnel. The values of the 9 thermocouples on the 

upstream plane are recorded by DAQ and then averaged to get the representative air inlet 

temperature (       ). A similar approach is applied on the downstream plane (        ). 

The MICHX slab surface temperature is determined by 46 thermocouples placed and 

scattered on bends, manifolds, headers, and inlet and outlet pipes. Again, all readings are 

averaged and taken to be the outer surface temperature of the MICHX. 

 

Concerning the pressure drop of both fluids, pressure transducers are utilized. All 

pressure drop readings are recorded by DAQ, which in turns displays the values in 

voltage. The conversion from voltage to psi is provided by the DAQ manufacturer. Prior 

to recording each of the 80 runs, the system is allowed to reach a steady state condition. 

A steady state is reached (30 to 45 minutes) when the fluctuations of the oil and air inlet 

temperatures become stable (within ± 1 
o
C). As soon as the system reaches the state of 
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stability, readings of certain parameters, shown in TABLE 4.8, are taken by the data 

acquisition system. The readings are saved in an Excel sheet. 

 

As seen from TABLE 4.9, five different air inlet temperatures between the range of 20 
o
C 

to 40 
o
C are considered in this study. For each of these inlet temperatures, four air 

velocity steps between 6 m/s to 18 m/s are examined against a constant oil inlet 

temperature and four dissimilar oil flow rates. The oil Reynolds number that resulted 

from these flow rates is 0.85 < Reoil < 3.5. The Reynolds number is based on the MICHX 

diameter which is equal to 1 mm. The details of the calibration curves as well as for the 

instruments’ calibration are given in Khan (2011). 

Table 4.9: Parameters Shown in DAQ 

Parameter Entry Unit 

Inlet Thermocouples (       ) 9 
o
C 

Outlet Thermocouples (        ) 25 
o
C 

Surface Thermocouples (      ) 46 
o
C 

RTD (       ) 1 
o
C 

RTD (        ) 1 
o
C 

PTD (       ) 1 Volt 

PTD (        ) 1 Volt 

DPT (         ) 

DPT (            ) 

DPT (            ) 

1 

1 

1 

Volt 

Volt 

Volt 
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CHAPTER V 

RESULTS AND DISCUSSIONS 

 

The main aim of the current study is to experimentally investigate how a highly viscous 

fluid would behave and perform inside the minichannels when it is cooled. To effectively 

achieve this aim, heat transfer and fluid flow characteristics of the motor oil are attained 

and as such correlations among the key parameters (heat transfer coefficient, Nusselt 

number, Reynolds number, Prandtl number and Peclet number) were generated. The 

performance of the prototype heat exchanger was also examine by obtaining the 

effectiveness ( ) and the number of transfer units (NTU). Moreover, two important 

scaling effects, axial heat conduction and viscous dissipation were studied in order to 

justify the reduction occurred in the Nusselt number value. It is worth noting that the 

investigation of the current study will solely be focusing on the motor oil side. 

 

For practical purposes, the motor oil temperature was fixed at 75 ± 1  C, this is the highest 

temperature that the system can reach, where the air was subjected to a wide range of 

inlet temperatures (20, 25, 30, 35, and  0  C). The details of the other operating conditions 

are presented in Table -8. The range of motor oil Reynolds number was found to be 0.85 

≤ Reoil ≤ 3. , and the Prandtl number 387 ≤ Proil ≤  28.  

 

5.1 Entrance Effect 

To verify whether the oil flow inside the minichannel is developing or fully developed, 

the hydrodynamic and the thermal entrance lengths were calculated for all 80 operating 
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conditions using equations (3.16 and 3.17). The hydrodynamic entrance length was 

computed to be within the range of 0.04-0.18 mm (occupying only 0.013-0.06 % of an 

individual channel length), and the thermal entrance length was within the range of 22-

68.5 mm (occupying 7-22 % of an individual channel length). The computed entrance 

lengths revealed that the flow is hydrodynamically and thermally fully developed almost 

along all the channel length. 

 

As the ratios of the length to hydraulic diameter of the minichannels are large and 

Reynolds number is low, the entrance effect can be ignored and fully developed 

(hydrodynamically and thermally) laminar flow in the minichannels is assumed, Qu 

(2000). The investigation of the entrance effect on the convective heat transfer and 

pressure drop analysis inside the minichannel has been made by several authors. Morini 

(2006) proposed the following inequality in order to test the impact of the entrance effect 

on heat transfer mechanism and pressure drop calculation. 

 
            

 
         (5.1) 

If the above inequality is satisfied, then the entrance effects in the tested minichannel 

become negligible. In other words, if the fraction is less than 10, the effect of the entrance 

on the heat transfer is insignificance. The calculated fraction’s largest value among the 80 

operating conditions is 4.5. Hence, it can be claimed that the entrance effect in the current 

study can be disregarded. 
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5.2 Heat Transfer Characteristics: 

In this subheading, the convective heat transfer characteristics of motor oil is presented 

and discussed. General correlations among the parameters are generated. 

5.2.1 System Heat Balance (HB) 

As stated by the ASME PTC, if the heat balance (HB) that is acquired from equation 3.32 

is within ± 15%, then the heat rates of both fluids can be employed to represent the 

experimental heat transfer data. The heat balance results of this investigation are plotted 

against Reynolds number of the motor oil, which is deduced from equation 3.23. As 

shown in Figure 5.1, the results are varied from -8.6 to + 8.8%, which fits in the 

acceptable limit advocated by the ASME PTC. Therefore, it can be concluded that the 

conducted test facility is reliable and can be examined by analyzing and studying the heat 

transfer phenomenon. 
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Figure 5.1: Heat Balance Vs Oil Reynolds Number 
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5.2.2 Oil Temperature Difference (     ) 

The motor oil temperature difference (inlet to outlet) is plotted against oil Reynolds 

number (Reoil) in Figure 5.2. The figure below shows the effect of air inlet temperature on 

oil temperature difference. For a given air inlet temperature, ∆Toil decrease as oil 

Reynolds number increases. By taking into account only one air inlet temperature value, 

the exit temperature of motor oil is governed by the heat transfer mechanism. The figure 

includes all 80 operating conditions data. The oil obviously stays longer inside the 

minichannel at low Reoil, so the oil loses more of its temperature and the outlet 

temperature becomes lower. Therefore, the inlet-outlet temperature difference is higher at 

lower Reoil and lower at higher Reoil, as shown in the figure. Moreover, the plot reveals 

that the Reynolds number of air does not affect the heat transfer mechanism. 
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Figure 5.2: Oil Temperature Difference Vs Oil Reynolds Number 
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5.2.3 Oil Heat Transfer Rate (     ) 

The heat transfer rate (       was calculated using equation 3.30. The Heat transfer rate of 

motor oil (       is seen to increase as Reynolds number (Reoil) increases for each air inlet 

temperature as shown in Figure 5.3. The correlation is a power law curve-fit with a 

positive exponent with an average R-squared value of 0.998. For a given Reoil, the heat 

transfer rate is always lower at higher air inlet temperature. This is due to large oil 

temperature difference (     ) when the air inlet temperature is reduced. Moreover, the 

slope of the line tends to be sharper as the air inlet temperature decreases. That implies 

that a higher heat performance occurs when the difference of both fluids inlet 

temperatures is high. 
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Figure 5.3: Oil Heat Transfer Rate Vs Oil Reynolds Number 
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5.2.4 Normalized Heat Transfer (  ) 

MICHX performance data or heat transfer rate needs to be normalized so that different oil 

coolers might be compared on an equal basis. The normalized heat transfer quantity (  ) 

can be computed from the following equation: 

     
     

                           
     (5.2) 

The normalized heat transfer is plotted against oil Reynolds number, as shown in Figure 

5.4. All the 80 operating conditions are included in the figure below. Compared to Figure 

5.3, the data almost collapses into one trend line with some uncertainties. The figure 

illustrates with the increase of Reoil, the normalized heat transfer increases. The 

correlation is found to be in power-law mode and it is developed as: 

              
          (5.3) 
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Figure 5.4: Normalized Heat Transfer Quantity Vs Oil Reynolds Number 
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5.2.5 Non-Dimensional Temperatures and (      ) 

The non-dimensional temperature is the ratio of the oil inlet-outlet temperatures to the oil 

inlet temperature as presented below: 

                              
              

       
  

     

       
               (5.4) 

The 80 values of the non-dimensional temperature are plotted against their respective oil 

Reynolds number (Reoil) in Figure 5.5. It can be noticed that the dimensionless 

temperature value slightly increases with decreasing Reoil in polynomial relationship. The 

value of non-dimensionless temperature is larger at a lower air inlet temperature for a 

particular Reoil due to the higher oil temperature difference. 

 

One of the two methods in evaluating performance of a heat exchanger is the log mean 

temperature difference (       . This method is utilized to determine the size of a heat 

exchanger when both fluids inlet-outlet temperatures are known, which is true in current 

research. All four temperatures are measured by specific instrumentations, as mentioned 
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Figure 5.5: Non-Dimensional Temperature Vs Oil Reynolds Number 
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in Chapter IV. In Figure 5.6, the        increases with increasing in oil Reynolds 

number for all five different air inlet temperatures. This increase in        is expected 

due to the fact that the heat transfer rate increases as the oil flow rate (i.e. Reoil) increases. 

Moreover, the plot shows that for a given value of Reoil, a higher        value can be 

obtained at a lower air inlet temperature and vise versa. The dependency of        on 

Reoil in current investigation can be best described by the power law fit curve. 
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5.2.6 Oil Heat Transfer Coefficient (    ) 

The variation of the experimental values of heat transfer coefficient with the oil Reynolds 

numbers is shown in Figure 5.7. One obvious observation is that the heat transfer 

coefficient increases with increasing Reoil for a particular air inlet temperature. Moreover, 

it is evident from the figure that the heat transfer mechanism is greatly affected by oil 

flow rates. On the other hand, air inlet temperature and the air velocity have a nominal 

influence on the convective phenomenon. 

 

Figure 5.7: Oil Heat Transfer Coefficient Vs Oil Reynolds Number 

The values of Reynolds number were different even for a given oil flow rate. This shows 

the strong effect of temperature variation on oil viscosity. In order to negate the viscosity 

effect, and thus make the data collapsed, Péclet number is plotted against the heat transfer 

coefficient values, as shown in Figure 5.8. The correlation between the hoil and Peoil is 

found to be in power-law mode, as shown below:  
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Figure 5.8: Oil Heat Transfer Coefficient Vs Oil Péclet Number 

 

5.2.7 Oil Nusselt Number (     ) and Channel Non-dimensional Length (  ) 

In general, the characteristics and heat transfer performance can be assessed by the 

average Nusselt number. Figure 5.9 shows the variation of the average Nusselt number 

with the channel non-dimensional length. The dimensionless length can be computed 

from the following equation: 

     
 

            
      (5.6) 
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viscosity ratio on Nusselt number values will be mentioned in the coming subheading. L* 

decreases as the product of Re and Pr numbers (i.e. Pe number) increases. As shown in 

the figure below, the data points are best fitted with a power-law mode for the values of 

both Nusselt numbers. The correlations can be stated as: 

                                (5.7) 

                                (5.8) 

To some extent, it can be said that the convective heat transfer would become less 

significant as the oil flows through the entire channel. Figure 5.9 is plotted for a given 

channel length, individual channel length in one loop (L=1.658 m). Equations 6.6 and 6.7 

are valid for         and                  . Gui and Scaringe (1995) studied 

the cooling performance of water through microchannels (               and L = 

0.046 m) and found the same            correlation in their results. 
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5.2.8 Oil Nusselt Number (     ) and Flow Mode 

In forced convection analysis, the primarily interest is to determine a correlation between 

the heat transfer rate (representing in Nusselt number), and the fluid flow (representing in 

Reynolds number). The average Nusselt number was calculated from equation 3.11. Oil 

viscosity is highly dependent on temperature, and thus it cannot be considered constant 

along the radial direction inside the minichannel, as explained in section 3.2.6. Therefore, 

Nusselt number needs to be corrected to take into account this radial variation in oil 

layers by using the viscosity ratio, equation 3.13. 

 

The average motor oil Nusselt numbers (Nuoil,b) are plotted against their respective 

Reynolds number values as shown in Figure 5.10. The plot illustrates that Nuoil,b 

increases with the increase of Reoil. This dependency of Nu on Re has been reported in 

the literature before. Wu and Cheng (2003) experimentally investigated the heat transfer 

mechanism of deionized water in trapezoidal microchannels. They reported that Nusselt 

number sharply increases with increasing in Reynolds number (0 < Re < 100). Hetsroni et 

al. (2004) performed a study for water and water-surfactant solution flowing through a 

pipe of 1.07 mm diameter in low range of Reynolds numbers. It was found that the 

average Nusselt number increases as Reynolds number increases. 

 

Two trend lines are shown in the figure below. The solid line represents the Nusselt 

number values before considering the variable property ratio. After correcting the Nusselt 

number with the viscosity ratio, the values (dashed line) were found to be slightly lower 

than the original ones as shown in Figure 5.10. This reduction in Nusselt number 
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occurred due to the high viscosity of the oil layers near the wall which in turn causes a 

lower heat transfer rate. 

 

The influence of variable properties on the heat transfer varies in magnitude for different 

flow channel geometries. For circular channel flow, Deissler (1951) and Shannon and 

Depew (1962) analytically investigated the effect of variable viscosity on fully developed 

flow. They stated that the value of the exponent “n” in equation 3.13 is equal to 0.14. 

Sieder and Tate (1936) experimentally studied the fully developed flow region with 

heating and cooling modes and they reported an “n” value of 0.1 .  

 

Figure 5.10: Oil Nusselt Number Vs Oil Reynolds Number 

The slope of the 80 experimental data points was best fitted in a power regression type. 

For the constant property case, a Nuoil – Reoil correlation capable of foreseeing the Nuoil,b 

value within ± 11% is generated from the current study: 
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After correcting the Nusselt number values with variable property ratio, the maximum 

influence of variable viscosity ratio on Nusselt number values is generally less than 10% 

for the current investigation. The new values were plotted against the same values of 

Reynolds number and the correlation was found to be as follows: 

                      
      

     

     
 
    

      (5.10) 

However, for the internal forced convection pipe flow, the average Nusselt number of a 

viscous fluid is not only a function of Reynolds number, but it is also a strong function of 

Prandtl number. Moreover, since the oil bulk temperature (         ) varied between 47.8 

and 58.7
 o

C during the experimental runs, the Prandtl number also significantly altered 

from 387.6 to 528.9. As such, the experimental data for heat transfer is regularly 

represented with reasonable accuracy by a power-law relation of the following form: 

             

The values of the constant C and the exponents m and n are determined by experimental 

analysis and curve fitting. Based on the nature of the temperature profile in the thermal 

boundary layer determined by the Pr, the exponent n is usually taken as 1/3. 

 

The oil Nu as a function of both Re and Pr of oil is plotted in Figure 5.11. The variation 

followed a power-law relationship. As mentioned earlier, Prandtl number is a fluid 

property and it decreases as the bulk temperature increases. This inverse relationship is 

due to the high dynamic viscosity of oil, since the specific heat and thermal conductivity 

do not vary significantly with the change in oil bulk temperature. The estimated 

uncertainty for oil Nusselt number varies from 7.14 to 10.3% in all the operating 
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conditions. The correlation generated between Re, Pr, and Nu in the current investigation 

is as follows: 

                     
           

   
      (5.11) 

 

Figure 5.11: Effect of Oil Reynolds and Prandtl Numbers on Oil Nusselt Number 

The corrected Nusselt number values (dashed lines) with the viscosity ratio are also 

correlated with Reynolds and Prandtl numbers as shown in Figure 5.11. As can be 

discerned from the figure, new values of the corrected Nu are lower than the values of the 

constant property Nu. This is due to the high difference between the wall and bulk 

temperatures. Thus, the new correlation developed in the current study is found to be as 
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Quaiyum (2012) conducted a study on Automatic Transmission Fluid (ATF) for 

characterizing the fluid flow and heat transfer through the same minichannel heat 

exchanger test specimen. The corrected Nu of motor oil and ATF as a function of both Re 

and Pr are plotted in Figure 5.12. Log-log plot is used in order to cover both oil and ATF 

Reynolds number ranges. The variation of both trend lines followed a power law 

correlation. 

 

5.3 Wall Axial Heat Conduction 

The effect of axial heat conduction in the wall on the heat transfer in narrow channels has 

been recently investigated by several authors. As mentioned in Chapter II, the convective 

heat transfer mechanism is usually underestimated if the wall axial thermal conduction in 
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narrow channels is neglected, especially at low flow rates. In the current investigation, 

the dissipated heat from the motor oil actually has another avenue other than the cold 

fluid (i.e. air) which is the channel wall. The heat travels inside the wall axially along the 

flow direction. This amount of heat carried away by the wall is bounded by the wall 

thickness and the wall thermal conductivity. 

 

In order to verify the presence of the axial heat conduction occurred in the channel wall, 

axial conduction number (M) was introduced by Maranzana et al. (2004). M is defined as 

the ratio of axial heat conduction in the tube wall to the convective heat transfer of the 

flowing fluid in the tube (equation 3.14). Maranzana et al. (2004) performed numerical 

investigations on the effect of the axial heat conduction in the wall. They found that the 

fluid bulk temperature variation becomes non-linear at lower flow rate (Re < 20). This 

likely implies that considerable amount of heat is distributed axially along the channel 

wall, rather than absorbed by the coolant. This started occurring when the axial 

conduction parameter (M) is greater than 0.01. 

 

Later, several authors have assumed that M > 0.01 to be the milestone value for 

considering the wall axial heat conduction effect. In the present study, M is calculated 

from equation 3.15 and its values vary from 0.010  ≤ M ≤ 0.032 . Thus, the effect of 

wall axial heat conduction may play a role on the heat transfer mechanism. 

 

Figure 5.13 shows a plot of the values of average Nusselt number (Nu) as a function of 

the axial conduction parameter (M). As the value of M increases, the larger the reduction 
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in Nusselt number is. From this relationship, it can be discerned that the heat conduction 

in the solid wall does affect the convective heat transfer mechanism. The data sets fit 

quite well with the power law curve fit with a negative exponent and a very high R
2
 value 

in the following form: 

                              (5.13) 

 

From equation 3.15, it can be observed that the wall axial heat conduction has an inverse 

relationship with the fluid flow. When Reynolds number values are plotted against with 

their respective values of heat conduction parameter, the intersection points give a 

peculiar trend line due to the high viscosity of motor oil. As mentioned earlier in section 

5.2.6, the Péclet number is utilized here in order to take out the viscosity role and to relate 
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the axial heat conduction with the fluid rate of advection. Thus, Péclet number is drawn 

against the heat conduction parameter in Figure 5.14. The data sets perfectly match with 

the power law mode with a negative exponent in the following form: 

    
     

     
      (5.14) 

 

From the above graph, it can be deduced that the wall axial conduction effects is 

gradually strengthened as the fluid flow rate decreases. Moreover, the air velocity and 

inlet temperature do not have a considerable effect on the axial heat conduction in the 

channel wall. 

 

 

Figure 5.14: Axial Heat Conduction Parameter Vs Oil Péclet Number 
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5.4 Viscous Dissipation 

Viscous dissipation is observed in certain viscous flow problems, especially those 

pertaining to lubrication. As been concluded by Koo and Kleinstreuer (2004), the viscous 

heating effects may be of an interest for fluids with high viscosities and relatively low 

specific heat capacities, even in low Reynolds number flows. In current investigation, a 

highly viscous fluid, motor oil, is cooled while flowing through multi-port minichannels. 

One way to characterize the effect of viscous dissipation is by analyzing the change in 

liquid kinetic energy due to the velocity, which can be presented when calculating Eckert 

number (Ec). 

 

The computed Ec, using equation 3.8, is plotted against Péclet number (Pe) of oil and the 

relation is shown in Figure 5.15. Ec number varies positively in power mode with 

increase in oil velocity. Even though the values of Ec number seem to be very small 

(2.8E
-08

 ≤ Ec ≤  . E
-07

), they need to be taken into account as viscous dissipation effects 

can be neglected in the limit of Ec       0 [Tso and Mahulikar (2000)]. The increase in Ec 

would indicate that the viscous dissipation occurs at higher fluid velocities. Thus, 

however smaller the value of Ec is, viscous dissipation cannot be ignored for a highly 

viscous fluid, such as motor oil. 
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Figure 5.15: Oil Eckert Number Vs Oil Péclet Number 

 

At a higher air inlet temperature, the oil has a higher bulk temperature than that at a lower 

air inlet temperature; thus it provides higher kinetic energy due to the low oil viscosity, 

which allows the oil to move faster inside the channel. 

 

The effect of Ec on the heat transfer phenomenon is also examined. Figure 5.16 shows 

that oil Nusselt number increases in power-law mode with the increase in Ec number for 

a given air inlet temperature. From the figure below, the air inlet temperature conditions 

have no substantial impact on the convective heat transfer as Nusselt number values 

increase only from 0.5 to 0.6 when increasing the air inlet temperature from 20 
o
C to 40 

o
C for a given oil velocity. On the other hand, Figure 5.17 exhibits the all 80 operating 

conditions in one trend line. The correlation extracted from the plot is as follows: 
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Another approach by which the presence of viscous dissipation phenomenon can be 

sensed is the approach of Brinkman number. Br is used to couple between viscous 

dissipation (signified by “       ”) and conduction heat transfer (signified by “       ”) 
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across the flow [Tso and Mahulikar (2000)]. Viscous dissipation is simply defined as the 

amount of heat added to the fluid due to its high viscosity. This added heat may lead to a 

significant variation in velocity and temperature fields. Brinkman number can be 

calculated from equation 3.9 or 3.10. Figure 5.18 shows that the Brinkman number, i.e. 

viscous dissipation, increases when Reynolds number increases for a given air inlet 

temperature. Again, the huge effect of oil temperature variation on dynamic viscosity can 

easily be denoted as the values of Reynolds number are plummeted due to higher 

viscosity at lower oil bulk temperature. 

 

Figure 5.18: Oil Brinkman Number Vs Oil Reynolds Number 
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proven that air inlet temperature and air velocity do not play a role in viscous heating. 

The correlation adopted between Péclet and Brinkman numbers in current investigation is 

as follows: 

                  
           (5.16) 

  

In present study, the values of Brinkman number resulted from flowing motor oil through 

a minichannel are within 1.4E-0  ≤ Br ≤ 1.7E-04. Tso and Mahulikar (2000) performed 

an experimental study on water flowing through a circular microchannel with Reynolds 

number of 12.8 – 47.4, and the values of Brinkman number were below 1.7E-07. They 

concluded that having low values in Br (Br < 1) in a narrow channel affects the liquid 

thermo-physical properties, which in turn impacts the single-phase connective heat 
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transfer. It is highly expected that if the oil’s flow rate is higher, the value of Br would 

considerably increase, thus more viscous dissipation would occur. 

 

Since the fluid-wall temperature difference determines heat transfer coefficient, 

variations in Br affect directly the heat transfer mechanism. Figure 5.20 presents the 

effect of viscous heating on the convective heat transfer. The Nusselt number increases as 

Brinkman increases in power-law mode. Since the viscosity near the surface is higher 

than that in the middle of the tube, viscous dissipation influences the surface temperature 

more pronounced than the fluid bulk temperature. Therefore, the difference between the 

bulk and surface temperatures decreases, and this leads to a higher Nusselt number, 

which is evident in the figure below. The correlation obtained between Brinkman and 

Nusselt numbers is as follows: 

                   
             (5.17) 
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5.5 Pressure Drop and Friction Factor 

In the design of narrow channel heat exchanger, it is crucial to predict the overall 

pressure drop between the inlet and outlet of the test specimen. In the current 

investigation, it is speculated to have a high pressure drop in the core (i.e. minichannel), 

since a highly viscous working fluid, motor oil, is forced to go through a narrow channel 

of 1mm in hydraulic diameter. As explained at the beginning of this chapter, the entrance 

effect can be ignored when examining the pressure drop and friction factor. 

 

5.5.1 Pressure Drop  

As mentioned in section 3.3.3, the pressure drop in the minichannel constructed into two 

parts, namely straight and serpentine. The straight path pressure drop is calculated from 

equation 3.25, whereas equation 3.26 is utilized to take into account the radial pressure 

drop at the serpentine portion. The calculated pressure drop in the radial direction is 

found to be very small compared to the axial direction (only 0.001%).  

 

Figure 5.21 presents the effect of oil Reynolds number on the pressure drop for the five 

air inlet temperatures. The channel pressure drop increases with the increase of oil 

Reynolds number. The graph includes the whole 80 experimental data. For a given Reoil, 

the pressure drop is seen to be higher at a lower air inlet temperature. This is because of 

the higher oil viscosity, which is determined based on the oil bulk temperature.  
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5.5.2 Friction Factor ( ) 

As shown from equation 3.27, the relation between the friction factor and pressure drop is 

linear. The friction factor at the radial direction is neglected; since the calculated radial 

pressure drop was very small. So, equation 3.27 is utilized to determine the friction factor 

of the heat exchanger core. As illustrated in section 3.3.4, due to the high dependency of 

friction factor on the oil thermo-physical property, especially viscosity, friction factor 

needs to be amended by using equation 3.29. 

 

Figure 5.22 correlates both friction factors with oil Reynolds number. In the current 

study, all 80 values of friction factor for constant property are compatible with the 

conventional correlation for a fully developed laminar flow in a circular cross-sectional 

path, eqution 3.28. The correlation is generated to be as follows: 
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         (5.18) 

When the friction factor is corrected with a viscosity ratio, the values diverge from the 

conventional correlation. The new empirical correlation is also in a power-law curve fit 

and it is given as: 

               
       

     

     
 
     

         (5.19) 

From the figure below, it can be recognized that the deviation of the amended friction 

factor from the conventional correlation is higher at a lower Reynolds number. At a 

higher Reynolds; however, the data seems to be gradually going to collapse and follow 

the conventional relation. This departure occurs due to the higher oil viscosity at a lower 

Reynolds number. This can be easily recognized from equation 3.28, which shows that 

the friction factor is inversely proportional to Reynolds number. 
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5.6 Heat Exchanger Performance 

In this section, several performance parameters (UA, NTU, ε) pertaining to the current 

prototype heat exchanger will be examined. 

5.6.1 Overall Heat Exchanger Conductance (UA) 

The Overall Heat Exchanger Conductance (UA) value is the inverse of the total thermal 

resistance (Rtotal) and is the measure of how well heat is dissipated via a heat exchanger. 

The UA values based on experimentally measured parameters are computed using 

equation 3.35. The effect of motor oil Reynolds Number (Reoil) on UA value is presented 

in Figure 5.23. The UA values increase as Reoil increases regardless of the air operating 

conditions. The relationship between UA – Reoil in the current study is best represented 

by polynomial curve fit for all air inlet temperatures. It is important to mention that the 

difference among each data point taking at a constant air inlet temperature is the oil flow 

rate; noting that each data point represents the averaged value of the four air velocities for 

that specific air inlet temperature. 
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Figure 5.23: Overall Thermal Conductance Vs Oil Reynolds Number 
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Abdul (2012) conducted a study on cooling ATF (Transmission Oil) using the same heat 

exchanger prototype for his M. A. Sc program, and he found similar slope trends when 

UA values plotted against ReATF. In the current investigation, the overall conductance 

(UA) value ranges 42 < UA < 99.7.  As the value of UA gets higher, the total thermal 

resistance gets lower and thus heat transfer occurs faster. 

 

5.6.2 Number of Transfer Unit (NTU) 

From equation 3.40, it can be noted that Number of transfer units (NTU) is proportional 

to the heat transfer surface area of the heat exchanger    . Therefore, for a given values 

of U and Cmin, the value of NTU is a measure of the heat transfer surface area. Figure 5.24 

shows the obtained values of NTU for all operating conditions data points slowly 

decreases with increasing Reoil in a power-law correlation as: 

                
               (5.20) 
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Figure 5.24: NTU Vs Oil Reynolds Number 
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As stated and documented by several investigations, for a given NTU value, the 

effectiveness of heat exchanger gets the highest value when C* = 0 and lowest when C* 

= 1 [Çengel (2007)]. In the present study, C* ranges from 0.006 - 0.062, which is 

virtually zero. Thus, the current heat exchanger for cooling motor at the stated operating 

condition is supposed to give the highest possible effectiveness. The ԑ-NTU relation is 

drawn in Figure 5.25 and the best curve fit is found to be power-law curve. 

 

As can be seen from the figure below, the effectiveness increases at a snail's pace 

compared to the increment occurred in NTU value for a particular air inlet temperature. 

This indicates that there is no need to enlarge the heat exchanger surface area (i.e. size) in 

order to get a higher effectiveness as NTU values in the current study (NTU > 3) are not 

desirable from an economic point of view [Çengel (2007)]. 
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Figure 5.25: Effectiveness Vs NTU 
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5.6.3 Heat Exchanger Effectiveness (ε) 

The effectiveness of the prototype heat exchanger is determined using equation 3.41. 

Figure 5.26 presents the effect of oil Reynolds number (Reoil) on the effectiveness. As 

can be noticed, the ε decreases with the increase of Reoil for the all five air inlet 

temperatures conditions. For a given Reoil, the effectiveness is seen to be greater with an 

increase in air inlet temperature. This can be illustrated from equation 3.42, if air inlet 

temperature           is high, that will lead to a lower           which is inversely 

proportional to the effectiveness. The correlations between Reoil and ε in the present study 

are found to be in power-law curve fit with negative exponents.  
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary and Conclusion 

The main purpose of the present study is to verify the applicability of cooling motor oil 

via the prototype minichannel heat exchanger. Thus, an experimental study is performed 

to investigate motor oil fluid flow and heat transfer characteristics inside the 

minichannels. The oil is forced to flow through an air-cooled type heat exchanger in a 

cross-flow arrangement, while air passes by through wavy fins. The prototype heat 

exchanger test specimen is mounted inside a test chamber, which is fitted to a close loop 

wind tunnel. The investigation of the air side of the prototype heat exchanger test 

specimen is out of the scope of the current study. 

 

Focal parameters to assess the fluid flow behaviors such as Reynolds number (Re), 

pressure drop (∆P), and friction factor (f) are closely examined. In order to evaluate the 

heat transfer characteristics, heat transfer rates (  ), heat transfer coefficient (h), Nusselt 

number (Nu), and axial heat conduction parameter (M) are carefully scrutinized. In 

addition, some parameters like overall conductance (UA), number of transfer units 

(NTU), and effectiveness ( ) are determined to analyze the thermal performance of the 

prototype heat exchanger test specimen when it is utilized to extract the heat from a 

highly viscous working fluid, such as motor oil. Empirical correlations are developed and 

generated among the above parameters. 
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To successfully achieve the aforementioned objectives, eighty (80) distinct experimental 

operating conditions are conducted. The motor oil inlet temperature remained constant at 

75
o
C during all experimental runs; whereas the air side inlet temperature was set at 20, 

25, 30, 35, and 40 
o
C. Pertaining to the mass flow rate of the two fluids, oil mass flow 

rates are adjusted to four values, yielding Reynolds number of 0.85 < Reoil < 3.5. For 

every oil flow rate, air velocities are changed four times 6, 10, 14, 18 m/s. 

 

The characteristics of fluid flow and heat transfer behaviors of the test working fluid (i.e. 

motor oil) as well as the evaluation of thermal performance of the heat exchanger test 

specimen are often presented in dimensionless forms and correlations. The outcomes and 

observations of the current investigation are listed as follows: 

1) The range of the air velocity was too narrow to have a major impact in the heat 

transfer mechanism. 

 

2) Changing the air inlet temperature affects several oil side heat transfer parameters 

as well as a number of fluid flow characteristics. 

 

3) The calculated heat balance (HB) values of all operating conditions are within ± 

8.8%. As recommended by the ASME PTC, the acceptable limit of the heat 

balance of any system has to be with ±15. 

 

4) Oil heat transfer rate (     ) and log mean temperature difference (      ) are 

highly dependent on oil Reynolds number (     ). Both (     ) and (      ) 
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increase with an increase of Reynolds number of oil in power-law correlations. 

However, their values decrease as         increases for a particular Reoil. 

 

5) Oil convective heat transfer coefficient (    ) is found to be best represented with 

Péclet number (      . The reason for selecting Pe instead of Reynolds number is 

due to the viscosity contribution is not being included in the value of Pe. For the 

same oil mass flow rate, all the 20 different operating conditions are collapsed in 

one point. The correlation between      and       is linear with power-law mode. 

                
      

 

6) The core correlation between the fluid flow and heat transfer is characterized in 

Nusselt, Reynolds, and Prandtl numbers. The correlation is as follows: 

                    
           

   
 

 

The Nusselt number is corrected with the variable property ratio and the 

correlation is as follows: 

                    
           

   
 
     

     
 
    

 

 

7) The effect of the axial heat conduction in the channel wall on the convective heat 

transfer can clearly be observed when the oil Nusselt number (        ) is plotted 

against the axial heat conduction parameter (M). The correlation is best fitted with 

a power law curve with negative exponent: 

                        

 

The relationship between the wall axial heat conduction, the fluid flow, and the 

fluid thermo-physical properties is shown when the heat conduction parameter is 



Study of Motor Oil Cooling at Low Reynolds Number in Multi-Port Narrow Channels 

Mohammed S. Saadi. M.A.Sc. Thesis 2012. Dept of Mechanical, Automotive, and Materials Eng., University of Windsor, Canada 113 

drawn against the Péclet number. All the 80 data sets perfectly conform to the 

power law curve with a negative exponent:  

   
     

     
  

 

8) Viscous dissipation phenomenon is investigated in this work. The presence of this 

phenomenon can be verified by calculating the Brinkman number. Even though 

the calculated values of Brinkman number are small, it shows that the viscous 

dissipation affects the convective heat transfer even for a low oil flow rate. The 

generated empirical correlation in the current study is as follows:  

                  
      

 

9) As expected, the pressure drop inside the minichannel is relatively high compared 

to the conventional size channel. The oil pressure drop increases as 

      increases in power-law trend. Moreover, the air inlet temperature seems to 

engage in determining the amount of pressure drop from the inlet and outlet of the 

channel. As demonstrated before, a higher air inlet temperature results in a lower 

pressure drop occurs in the channel. This is due to the viscosity of oil, which is 

lower at higher oil bulk temperature. 

 

10) The relationship between the friction factor and Reynolds number matches the 

conventional formula when the friction factor is computed based on the constant 

properties. 
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While when the variable property ratio is imposed, the values of the friction factor 

diverge from the traditional formula, and the new correlation found is: 

              
                   

      

 

11)  The thermal performance of the prototype heat exchanger test specimen is 

analyzed by the following parameters:  

a) Overall conductance (UA):  

The UA-value as a function of oil Reynolds number is observed to be higher 

at higher       in polynomial correlation as expected.  

b) Number of transfer units (NTU): 

With C*   0 calculated in current investigation, the values of NTU range 

from 3.33 to 4.5. Hence, the prototype heat exchanger may be considered 

large. The NTU values are found to decrease with the increase in      . The 

relation is as follows: 

               
       

 

c) Heat exchanger effectiveness ( ): 

The correlation between the effectiveness and      is seen to be highly dependent 

on the air inlet temperature. For a given      , the effectiveness decreases while 

decreasing the inlet temperature of air. 

 

This investigation presents a number of empirical relationships that correlate fluid flow 

and heat transfer characteristics of motor oil when it is cooled via minichannel heat 

exchanger. These correlations let also examine the thermal performance of the prototype 

heat exchanger test specimen. Due to the insufficient information in the literature 

concerning the behavior of the motor oil inside the minichannels, the present study 
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cannot be exactly compared to other works. As such, the aforementioned correlations and 

findings might be of an interest for the upcoming researchers. 

 

6.2 Recommendations 

A wide range of experimental operating conditions were conducted to obtain and 

highlight the different scenarios of the test specimen performance. Still, a broader variety 

in working fluids mass flow rates and inlet temperatures would have been better to attain 

and spot the optimum thermal performance of the tested minichannel heat exchanger. 

There were various limitations in the current study which limited the accuracy in 

calculating several heat transfer phenomena and fluid flow parameters. Therefore, a 

number of suggestions are listed below in order to accomplish more useful and precise 

findings. 

 Substituting the current liquid side gear pump with a higher differential pressure 

to have high mass flow rate inside the minichannels, especially if the working 

fluid is a highly viscous. By doing so, the comparison with a practical situation 

can be feasible to some extent. 

 Utilizing a higher capacity heater in order to achieve high liquid inlet temperature. 

This would allow to simulate more realistic conditions in order to acquire a 

superior heat transfer rate. 

 Replacing the existing blower motor with a more powerful one to obtain a greater 

range of air velocity inside the windtunnel. 
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 With having a higher mass flow rate inside the channel, a constant heat 

flux boundary conditions proper permits to measure, not to quantify, the amount 

of heat added to the fluid due to viscous dissipation. 
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APPENDICES 

APPENDIX (A) DIMENSIONAL ANALYSIS 

Dimensional analysis is an analytical method which employs the study of the dimensions 

for solving numerous engineering problems.  It can help to comprehend, to a certain 

extent, that physical problems of very different sizes and dimensions have a common 

background and that it is only our human way to think our macro world sets the standards 

from which problems in other dimensions deviate [Herwig (2002)]. It is of use in 

displaying experimental results in a brief and short form. 

 

One of the usages of dimensional analysis for a physical phenomenon is to develop 

correlations and equations expressed in terms of dimensionless parameters. As such, 

dimensional analysis is proposed to verify the applicability of the dimensionless numbers 

used in the current investigation. From the several methods of dimensional analysis, the 

Buckingham’s  -method/theorem is performed below. 

 

For a fully developed forced convection laminar flow in conventionally-sized channels, 

heat transfer coefficient (h) depends on thermal conductivity (k) and hydraulic diameter 

(Dh) [Tso and Mahulikar (1998)]. For narrow channels, several investigations have 

revealed that h depends also on Reynolds number, and thus on density (ρ), velocity (Vavg), 

and viscosity (µ). Moreover, h relies on fluid properties, local wall and fluid 

temperatures. Hence, the general relationship that includes all pertinent parameters can be 

written as: 

 



Study of Motor Oil Cooling at Low Reynolds Number in Multi-Port Narrow Channels 

Mohammed S. Saadi. M.A.Sc. Thesis 2012. Dept of Mechanical, Automotive, and Materials Eng., University of Windsor, Canada   118 

                                   (A.1) 

                                    (A.2) 

So, the number of the dimensional parameters is 8 (i.e. n = 8). The primary dimensions of 

these parameters are M for mass, L for length, t for time, and T for temperature (i.e. r = 

4). The dimensions of the 8 parameters in terms of primary dimensions are as follows: 

   
 

    
                                          

   

    
 

   
 

  
                                             

 

 
 

                                               
 

   
 

    
  

    
                                             

Since there are eight parameters and four primary dimensions, the Buckingham ∏ 

theorem expects having four independent dimensionless groups, ∏1, ∏2, ∏3, ∏4 Fox et 

al. (2004). Hence, equation (ii) can be written as  

                          (A.3) 

Since the repeating parameters (A) must contain jointly all of the primary dimensions 

involved in the phenomenon and (B) should not include the dependent parameter (i.e. h), 

                  have been selected to be the repeating parameters. By setting up the 

dimensional equations, the following can be obtained: 

 ∏1 =        
    

                 (A.4) 

 ∏2 =        
    

                 (A.5) 

 ∏3 =        
    

                 (A.6) 

 ∏4 =        
    

                  (A.7) 
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 onsidering each ∏-term at a time: 

∏1 =        
    

          

 
 

  
 
 

  
 

 
 
 

              
 

    
             

Equating the exponents of M, L, t, and T: 

M:                                                                       

L:                                                                

t:                                                                        

T:                                                                      

Therefore, substituting the values in (A), the following is obtained:  

∏1 =         
     

          

 ∏1 = 
    

      
         (A.8) 

 

∏2 =        
    

          

 
 

  
 
 

  
 

 
 
 

              
   

    
             

Equating the exponents of M, L, t, and T:  

M:                                                                              

L:                                                                  

t:                                                                               

T:                                                                               

Therefore, substituting the values in (B), the following is obtained 
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∏2 =         
     

           

 ∏2 = 
    

       
   

        (A.9) 

 

∏3 =        
    

          

 
 

  
 
 

  
 

 
 
 

              
 

   
             

Equating the exponents of M, L, t, and T: 

M:                                                                              

L:                                                                  

t:                                                                               

T:                                                                                      

Therefore, substituting the values in (C), the following is obtained 

∏3 =         
     

           

 ∏3 = 
 

         
        (A.10) 

 

∏4 =        
    

           

 
 

  
 
 

  
 

 
 
 

              
  

    
             

Equating the exponents of M, L, t, and T: 

M:                                                                                    

L:                                                                 

t:                                                                               
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T:                                                                                 

Therefore, substituting the values in (D), the following is obtained 

∏4 =        
     

           

 ∏4 = 
        

     
  

        (A.11) 

The four dimensionless groups are:  

∏1 = 
    

      
  

∏2 = 
    

       
   

 

∏3 = 
 

         
 

∏4 = 
        

     
  

 

 

As can be discerned, the inverse of ∏3 and ∏4 are Reynolds and Eckert numbers, 

respectively. That is: 

∏3 = 
 

         
                                          

         

 
 

 

∏4 = 
        

     
  

                                               
    

 

        
 

Moreover, dividing ∏1 over ∏2 yields the dimensionless heat transfer coefficient, which 

is Nusselt number. 

Inverse 

Inverse 
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∏1 / ∏2      

    

      
 

    

       
   

  
    

      
     

       
   

    
  

    

  
 

 

Finally, ∏2, ∏3, and ∏4 obtained from the above dimensional analysis can be re-grouped 

to form Prandtl number as following: 

(∏3. ∏4)/ ∏2       
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APPENDIX (B) UNCERTAINTY ANALYSIS 

 

In the present investigation, a significant number of data was gathered and computed. A 

several devices and instruments were utilized to determine the working fluids operating 

conditions. In addition, a plethora of formulae and equations were employed to 

characterize the oil fluid flow and heat transfer behaviors inside the minichannels. During 

performing an experimental study, there are possibilities in getting errors, either due to a 

human or an instrument. These errors, consequently, impact the credibility and reliability 

of the study. The execution of the uncertainty analysis allows estimating the deviation 

from the actual and supposed values. Previous uncertainty analyses performed on narrow 

channels have revealed that lower Reynolds Number tends to exhibit large uncertainties 

due to the errors associated with flow rate measurements. Smaller diameter channels have 

also been found to have higher overall uncertainty values due to the relative difficulty in 

measuring [Kandlikar and King (2006)]. 

 

In general, the types of parameters need to be considered in any uncertainty analysis can 

be safely divided into: independent and dependent parameters. Independent parameters 

are the measured values from specific instruments (RTD, PTD, thermocouples….etc) or 

from tools to determine the basic geometrical dimensions (length, width…etc). On the 

other hand, the dependent parameters are calculated based on the uncertainty values of 

the independent parameters (mass flow rate, Reynolds number, heat transfer…etc). The 

values of the independent parameters in the current study are recorded by the data 
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acquisition system (DAQ). Whereas, the dependent ones are found and based on their 

respective formulae, which literally consist of the independent parameters. 

 

B.1 Uncertainty Analysis of Independent Parameters 

The errors of independent parameters are usually provided by the manufacturers. The 

errors are classified to be either bias or precision. The bias error includes the linearity, 

hysteresis, and accuracy. This type of error can be computed by utilizing the Root Sum 

Square (RSS) method as follows: 

       
    

      
         (B.1) 

The precision error, which basically account for the repeatability, is computed as follows:  

       
    

      
         (B.2) 

The combined error generated from the independent parameters is calculated from the 

following equation: 

                  (B.3) 

B.1.1 Uncertainties of Oil Inlet and Outlet Temperatures 

To determine the values of the inlet and outlet oil temperatures, RTDs are utilized in 

current study. The evaluation of their uncertainties has to include the errors given by the 

manufacturer (Omega). From the data obtained and the readings of the RTDs, their 

uncertainties can be computed as follows [Siddiqui (2011)]: 

          
 

            

                          
 
 

  
 

  
               

 

      
      

  
 
 

        (B.4) 
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B.1.2 Uncertainties of Some Key Geometrical Parameters 

The uncertainties in the geometrical parameters of the current heat exchanger test 

specimen uncertainties have already been computed by Siddiqui (2011).  

 

Table B.1: Uncertainties Values for Geometrical Parameters 

Description Mean Value Uncertainty (%) 

Minichannel Hydraulic Diameter, (Dh) 0.001    3.48 

Total Inner Heat Transfer Surface Area of all 

minichannels, (           ) 

0.975 m  3.49 

Combined Cross-Sectional area of all 

minichannels (         ) 

1.60X10
-4

 m
2
  6.96 

Frontal Area of the Minichannel Heat 

Exchanger (        ) 
0.08748 m

2
 ±0.29 

Individual Channel Length in One Slab (L) 0.304 m ±0.15 

 

B.2 Uncertainty Analysis of Dependent Parameters 

The uncertainty of the dependent parameters is calculated by evaluating the uncertainty 

of each related dependent parameter. Then, the RSS method is applied: 

   =  
  

   
   

 
 

  
  

   
   

 
 

  
  

   
   

 
 

    
  

   
   

 
 

        (B.5) 

B.2.1 Uncertainty Analysis of Thermo-Physical Properties 

Dynamic viscosity, specific heat, density, and thermal conductivity of motor oil are 

heavily utilized in current study. These properties are evaluated at the oil bulk 
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temperature. Their uncertainties are usually calculated based on their values at the 

maximum and minimum bulk temperatures, as follow:  

                    
                                               

         
         (B.6) 

B.2.2 Uncertainties of Oil Bulk Temperatures 

The bulk temperature of oil can be calculated from: 

           
                

 
        (B.7) 

And its uncertainty is as follows: 

              
          

        
        

 
 

  
          

         
         

 
 

        (B.8) 

 
          

        
 

 

 
        (B.9) 

 
          

         
 

 

 
        (B.10) 

B.2.3 Uncertainty of Oil Mass Flow Rate 

Oil mass flow rate can be found as follows: 

                        (B.11) 

 
      

     
              (B.12) 

 
      

      
             (B.13) 

The overall uncertainty of the oil mass flow rate is: 

       
    

      

     
     

 
 

  
      

      
      

 
 

        (B.14) 
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B.2.4 Uncertainty of Oil Mass Flux 

Mass flux can be calculated from the following:  

      
     

       
        (B.15) 

 
     

      
=

 

       
        (B.16) 

 
     

        
=  

     

       
         (B.17) 

The total uncertainty associated with the oil mass velocity is calculated as, 

      
    

     

      
      

 
 

  
     

        
        

 
 

        (B.18) 

B.2.5 Uncertainty of Oil Velocity 

Oil velocity inside the minichannel can be calculated from the following:  

    
     

      
         (B.19) 

 
  

      
=   

 

      
         (B.20) 

 
  

  
=    

     

       
         (B.21) 

 
  

   
=      

     

      
               (B.22) 

The total uncertainty associated with the oil mass velocity is calculated as, 

       
  

      
      

 
 

  
  

  
   

 

  
  

   
   

 
 

             (B.23) 
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B.2.6 Uncertainty of Oil Reynolds Number 

Reynolds number of motor oil for the current study can be computed from the following:  

       
   

         
        (B.24) 

 
      

      
 

 

         
        (B.25) 

 
      

     
  

     

       
   

        (B.26) 

 
      

   
  

     

        
 
 
        (B.27) 

The total uncertainty associated with the oil Reynolds number is calculated as, 

       
    

      

      
      

 
 

  
      

     
     

 
 

  
      

   
   

 
 

        (B.28) 

B.2.7 Uncertainty of Oil Prandtl Number 

Prandtl number can be calculated from the following: 

       
         

    
        (B.29) 

 
      

     
=
     

    
        (B.30) 

 
      

      
=
    

    
        (B.31) 

 
      

     
= - -

         

      
         (B.32) 

The total uncertainty associated with the oil Prandtl number is calculated as, 

       
    

      

     
     

 
 

  
      

      
      

 
 

  
      

     
     

 
 

        (B.33) 
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B.2.8 Uncertainty of Oil Péclet Number 

Péclet number can be calculated from the following:  

                              (B.34) 

 
      

      
=             (B.35) 

 
      

      
=             (B.36) 

The total uncertainty associated with the oil Péclet number is calculated as, 
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B.2.9 Uncertainty of Oil Eckert Number 
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         (B.42) 

The total uncertainty associated with the oil Eckert number is calculated as, 
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B.2.10 Uncertainty of Oil Brinkman Number 
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         (B.49) 

The total uncertainty associated with the oil Brinkman number is calculated as, 

        
   

  
   

 
  

   

  
   

 
  

   

  
   

 
  

   

          
          

 
 

   
   

      
      

 
 

       (B.50) 

B.2.11 Uncertainty of Oil Heat Transfer Rate 

The oil heat transfer rate depends on the liquid mass flow rate, temperature difference, 

and the specific heat: 

                                      (B.51) 

 
      

      
              (B.52) 

 
      

      
              (B.53) 

 
      

      
              (B.54) 

The total uncertainty associated with the oil heat transfer rate is calculated as, 

       
    

      

      
      

 
 

  
      

      
      

 
 

  
      

      
      

 
 

   (B.55) 

B.2.12 Uncertainty of Oil Heat Transfer Coefficient 
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    (B.59) 

 
     

      
 

                 

                                
    (B.60) 

The total uncertainty associated with the oil heat transfer coefficient is calculated as, 

      
    

     

      
      

 
 
  

     

            
            

 
 

  
     

          
          

 
 

 
     

      
      

 
 

  (B.61) 

B.2.13 Uncertainty of Oil Nusselt Number 

The average oil Nusselt number can be found from the following relationship: 
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    (B.65) 

The total uncertainty associated with the oil Nusselt number is calculated as, 

         
    

        

     
     

 
 

  
        

   
   

 
 

  
        

     
     

 
 

   (B.66) 

B.2.14 Uncertainty of Corrected Oil Nusselt Number 

The corrected oil Nusselt number can be found from the following relationship: 
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         (B.70) 

The total uncertainty associated with the corrected oil Nusselt number is calculated as, 

         
    

        

        
        

 
 

  
        

      
      

 
 

  
        

      
      

 
 

   (B.71) 

B.2.15 Uncertainty of Corrected Oil Nusselt Number Empirical Formula 
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The total uncertainty associated with the corrected oil Nusselt number is calculated as, 
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B.2.16 Uncertainty of Pressure Drop 
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The total uncertainty associated with the pressure drop is calculated as, 
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B.2.17 Uncertainty of Friction Factor 
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The total uncertainty associated with the friction factor is calculated as, 
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B.2.18 Uncertainty of Corrected Friction Factor 

The corrected friction factor can be found from the following relationship: 
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The total uncertainty associated with the corrected friction factor is calculated as, 
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B.2.19 Uncertainty of Normalized Heat Transfer 
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The total uncertainty associated with the normalized heat transfer is calculated as, 
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Table B.2: Uncertainties Values for Certain Parameters 

                                   
  

   
        

 

 
        

           
           

           
    

1 75 20 0.83 6 6.25 5.17 8.11 7.75 

2 75 20 0.83 10 6.21 5.12 8.04 7.71 

3 75 20 0.83 14 6.21 5.13 8.05 7.56 

4 75 20 0.83 18 6.19 5.11 8.02 7.56 

5 75 20 0.63 6 6.19 5.09 8.01 7.69 

6 75 20 0.63 10 6.19 5.07 8.00 7.62 

7 75 20 0.63 14 6.14 5.04 7.94 7.40 

8 75 20 0.63 18 6.17 5.08 8.00 7.42 

9 75 20 0.41 6 6.19 5.09 8.01 7.49 

10 75 20 0.41 10 6.17 5.06 7.98 7.40 

11 75 20 0.41 14 6.14 5.03 7.93 7.29 

12 75 20 0.41 18 6.12 5.01 7.91 7.32 

13 75 20 0.29 6 6.17 5.06 7.98 7.49 

14 75 20 0.29 10 6.19 5.06 7.99 7.43 

15 75 20 0.29 14 6.20 5.05 8.00 7.49 

16 75 20 0.29 18 6.17 5.03 7.96 7.40 

 

17 75 25 0.83 6 5.70 4.49 7.26 7.85 

18 75 25 0.83 10 5.63 4.42 7.16 7.58 

19 75 25 0.83 14 5.64 4.43 7.18 7.52 

20 75 25 0.83 18 5.66 4.44 7.19 7.50 

21 75 25 0.63 6 5.69 4.43 7.22 7.78 

22 75 25 0.63 10 5.68 4.41 7.19 7.62 

23 75 25 0.63 14 5.69 4.42 7.20 7.56 
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24 75 25 0.63 18 5.66 4.39 7.16 7.47 

25 75 25 0.41 6 5.68 4.44 7.21 7.60 

26 75 25 0.41 10 5.74 4.46 7.27 7.65 

27 75 25 0.41 14 5.56 4.15 6.94 7.45 

28 75 25 0.41 18 5.68 4.36 7.16 7.42 

29 75 25 0.29 6 5.70 4.40 7.20 7.51 

30 75 25 0.29 10 5.65 4.38 7.15 7.32 

31 75 25 0.29 14 5.66 4.38 7.16 7.27 

32 75 25 0.29 18 5.65 4.29 7.09 7.32 

 

33 75 30 0.83 6 5.55 4.28 7.01 8.29 

34 75 30 0.83 10 5.46 4.17 6.87 7.98 

35 75 30 0.83 14 5.52 4.17 6.91 8.06 

36 75 30 0.83 18 5.47 4.15 6.87 7.88 

37 75 30 0.63 6 5.53 4.26 6.98 8.13 

38 75 30 0.63 10 5.49 4.20 6.91 7.95 

39 75 30 0.63 14 5.46 4.10 6.83 7.80 

40 75 30 0.63 18 5.50 4.13 6.88 7.81 

41 75 30 0.41 6 5.41 4.11 6.79 7.71 

42 75 30 0.41 10 5.50 4.13 6.88 7.90 

43 75 30 0.41 14 5.48 4.19 6.90 7.77 

44 75 30 0.41 18 5.45 4.12 6.83 7.37 

45 75 30 0.29 6 5.67 4.17 7.04 8.34 

46 75 30 0.29 10 5.66 4.16 7.03 8.15 

47 75 30 0.29 14 5.88 4.18 7.22 8.79 

48 75 30 0.29 18 5.66 4.16 7.03 8.12 
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49 75 35 0.83 6 5.60 4.29 7.05 9.18 

50 75 35 0.83 10 5.62 4.37 7.12 8.96 

51 75 35 0.83 14 5.54 4.26 6.99 8.61 

52 75 35 0.83 18 5.52 4.23 6.96 8.54 

53 75 35 0.63 6 5.48 4.20 6.90 8.60 

54 75 35 0.63 10 5.56 4.15 6.94 8.81 

55 75 35 0.63 14 5.49 4.19 6.90 8.50 

56 75 35 0.63 18 5.36 3.97 6.67 8.19 

57 75 35 0.41 6 5.30 3.78 6.51 8.37 

58 75 35 0.41 10 5.42 4.08 6.78 8.20 

59 75 35 0.41 14 5.60 4.11 6.95 8.61 

60 75 35 0.41 18 5.51 4.13 6.89 8.28 

61 75 35 0.29 6 5.56 4.15 6.94 8.56 

62 75 35 0.29 10 5.62 4.17 7.00 8.59 

63 75 35 0.29 14 5.23 3.82 6.48 7.91 

64 75 35 0.29 18 5.41 3.87 6.66 8.37 

 

65 75 40 0.83 6 5.36 4.05 6.71 9.95 

66 75 40 0.83 10 5.37 4.01 6.71 9.65 

67 75 40 0.83 14 5.42 4.03 6.75 9.68 

68 75 40 0.83 18 5.33 3.96 6.64 9.41 

69 75 40 0.63 6 5.37 3.91 6.64 9.70 

70 75 40 0.63 10 5.23 3.74 6.43 9.32 

71 75 40 0.63 14 5.19 3.68 6.36 9.02 

72 75 40 0.63 18 5.22 3.70 6.40 9.02 

73 75 40 0.41 6 5.10 3.65 6.28 9.13 

74 75 40 0.41 10 5.16 3.68 6.34 9.04 



Study of Motor Oil Cooling at Low Reynolds Number in Multi-Port Narrow Channels 

Mohammed S. Saadi. M.A.Sc. Thesis 2012. Dept of Mechanical, Automotive, and Materials Eng., University of Windsor, Canada   138 

75 75 40 0.41 14 5.48 3.88 6.71 9.85 

76 75 40 0.41 18 5.31 3.67 6.46 9.16 

77 75 40 0.29 6 5.48 3.77 6.65 9.71 

78 75 40 0.29 10 5.35 3.71 6.51 9.29 

79 75 40 0.29 14 5.63 3.66 6.71 9.83 

80 75 40 0.29 18 5.59 3.62 6.66 9.81 

 

TABLE 12: Uncertainties Values for Certain Parameters (Continue) 

                                   
  

   
        

 

 
        

          
             

             
     

1 75 20 0.83 6 0.50 6.70 7.55 8.48 

2 75 20 0.83 10 0.61 6.66 7.52 8.48 

3 75 20 0.83 14 0.55 6.51 7.38 8.37 

4 75 20 0.83 18 0.43 6.55 7.41 8.41 

5 75 20 0.63 6 0.63 6.66 7.52 8.48 

6 75 20 0.63 10 0.80 6.54 7.41 8.40 

7 75 20 0.63 14 0.47 6.40 7.29 8.28 

8 75 20 0.63 18 0.56 6.37 7.26 8.25 

9 75 20 0.41 6 0.66 6.43 7.31 8.30 

10 75 20 0.41 10 0.64 6.34 7.24 8.25 

11 75 20 0.41 14 0.65 6.25 7.15 8.15 

12 75 20 0.41 18 0.62 6.29 7.19 8.21 

13 75 20 0.29 6 0.75 6.42 7.30 8.29 

14 75 20 0.29 10 0.79 6.33 7.22 8.23 

15 75 20 0.29 14 0.93 6.34 7.23 8.26 
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16 75 20 0.29 18 0.90 6.26 7.17 8.20 

 

17 75 25 0.83 6 0.59 7.26 8.05 8.93 

18 75 25 0.83 10 0.41 7.05 7.86 8.75 

19 75 25 0.83 14 0.49 6.96 7.78 8.68 

20 75 25 0.83 18 0.49 6.93 7.76 8.69 

21 75 25 0.63 6 0.86 7.14 7.95 8.85 

22 75 25 0.63 10 0.89 6.96 7.78 8.68 

23 75 25 0.63 14 0.89 6.90 7.73 8.65 

24 75 25 0.63 18 0.90 6.81 7.65 8.58 

25 75 25 0.41 6 0.76 6.98 7.80 8.73 

26 75 25 0.41 10 0.99 6.92 7.75 8.68 

27 75 25 0.41 14 1.33 6.73 7.58 8.50 

28 75 25 0.41 18 1.14 6.68 7.53 8.48 

29 75 25 0.29 6 1.06 6.78 7.62 8.55 

30 75 25 0.29 10 0.84 6.68 7.53 8.49 

31 75 25 0.29 14 0.94 6.58 7.45 8.40 

32 75 25 0.29 18 1.24 6.55 7.41 8.41 

 

33 75 30 0.83 6 0.69 7.83 8.57 9.33 

34 75 30 0.83 10 0.64 7.58 8.34 9.12 

35 75 30 0.83 14 1.05 7.53 8.29 9.12 

36 75 30 0.83 18 0.84 7.42 8.20 9.03 

37 75 30 0.63 6 0.64 7.69 8.44 9.19 

38 75 30 0.63 10 0.77 7.50 8.26 9.04 
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39 75 30 0.63 14 1.02 7.29 8.08 8.90 

40 75 30 0.63 18 1.11 7.25 8.04 8.86 

41 75 30 0.41 6 0.65 7.32 8.11 8.93 

42 75 30 0.41 10 1.10 7.36 8.14 8.97 

43 75 30 0.41 14 0.72 7.32 8.10 8.93 

44 75 30 0.41 18 0.84 6.89 7.72 8.59 

45 75 30 0.29 6 1.67 7.49 8.26 9.11 

46 75 30 0.29 10 1.65 7.30 8.08 8.91 

47 75 30 0.29 14 2.26 7.53 8.29 9.14 

48 75 30 0.29 18 1.66 7.25 8.04 8.90 

 

49 75 35 0.83 6 0.95 8.68 9.35 9.99 

50 75 35 0.83 10 0.69 8.49 9.18 9.83 

51 75 35 0.83 14 0.73 8.16 8.87 9.56 

52 75 35 0.83 18 0.77 8.10 8.81 9.53 

53 75 35 0.63 6 0.67 8.20 8.91 9.60 

54 75 35 0.63 10 1.30 8.22 8.92 9.65 

55 75 35 0.63 14 0.76 8.08 8.80 9.48 

56 75 35 0.63 18 1.01 7.79 8.53 9.25 

57 75 35 0.41 6 1.36 7.91 8.64 9.33 

58 75 35 0.41 10 0.88 7.78 8.52 9.27 

59 75 35 0.41 14 1.58 7.88 8.61 9.36 

60 75 35 0.41 18 1.18 7.73 8.47 9.21 

61 75 35 0.29 6 1.29 7.96 8.68 9.39 

62 75 35 0.29 10 1.50 7.88 8.61 9.36 
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63 75 35 0.29 14 0.91 7.60 8.36 9.07 

64 75 35 0.29 18 1.52 7.77 8.52 9.24 

 

65 75 40 0.83 6 0.57 9.69 10.30 11.00 

66 75 40 0.83 10 0.91 9.32 9.95 10.62 

67 75 40 0.83 14 1.06 9.30 9.93 10.60 

68 75 40 0.83 18 0.90 9.10 9.74 10.40 

69 75 40 0.63 6 1.25 9.30 9.93 10.57 

70 75 40 0.63 10 1.16 9.00 9.65 10.25 

71 75 40 0.63 14 1.20 8.70 9.37 10.03 

72 75 40 0.63 18 1.24 8.68 9.36 10.01 

73 75 40 0.41 6 0.82 8.96 9.61 10.21 

74 75 40 0.41 10 1.04 8.79 9.45 10.08 

75 75 40 0.41 14 1.72 9.23 9.87 10.54 

76 75 40 0.41 18 1.64 8.64 9.31 9.96 

77 75 40 0.29 6 1.96 8.99 9.64 10.24 

78 75 40 0.29 10 1.69 8.74 9.40 10.06 

79 75 40 0.29 14 2.51 8.75 9.42 10.10 

80 75 40 0.29 18 2.49 8.76 9.43 10.10 
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APPENDIX (C) TEST SPECIMEN GEOMETRICAL PARAMETERS 

 

Table C.1: Important Dimensions of the Test Specimen 

Geometrical 

Parameter 

Description and Formula Value 

Uncertainty 

(%) 

   Channel Inside Diameter, (m) 0.001 ±3.48 

   Channel Outside Diameter, (m) 0.002 ±0.5 

   Channel Hydraulic Diameter, (m) 0.001 ±3.48 

   Serpentine Curvature Diameter, (m) 0.022  

  Individual Channel Length in One Slab, (m) 0.304 ±0.15 

       Cross-Sectional Area of an Individual Channel, (m
2
) 7.85X10

-7
 ±6.96 

      
Inner Heat Transfer Surface Area of an Individual 

minichannel, (m
2
) 

9.67X10
-4

 ±3.49 

            
Total Inner Heat Transfer Surface Area of all 

minichannels, (m
2
) 

0.975 ±3.49 

         

 

Frontal Area of the Minichannel Heat Exchanger, 

(m
2
) 

0.08748 ±0.29 
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APPENDIX (D) SIMPLIFICATION OF AXIAL HEAT CONDUCTION 

PARAMETER 
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