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ABSTRACT 

The purpose of this study was to investigate the relationship between ankle joint 

rotational stiffness (AJRS) and localized muscle fatigue on tibial response parameters 

(TRPs): peak acceleration (PA), time to peak acceleration (TPA), and acceleration slope 

(AS).  The right leg of 15 male and 11 female runners was impacted using a human 

pendulum apparatus in both non-fatigue and fatigue conditions across a range of ankle 

angles (0%, 20%, 40%, and 60% of maximum dorsiflexion angle).  No differences in 

TRPs were found between non-fatigue and fatigue conditions, or between sexes.  Overall, 

a positive relationship was found between AJRS and PA, as well as AJRS and AS, while 

a negative relationship existed between AJRS and TPA.  It is proposed that an optimal 

amount of AJRS is needed when regulating the transmission of impact shock as a tradeoff 

between optimizing joint stability and possibly preventing injury resulting from impact. 
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GLOSSARY 

Acceleration slope (AS): the linear portion of the acceleration waveform, typically 

measured as 30%-70% of the rise in amplitude or time (units = g/s) between impact 

initiation and peak acceleration 

 

Ankle joint rotational stiffness (AJRS): the ability of the muscles crossing the ankle 

joint to aid in maintaining ankle stability following a perturbation (units = Nm/rad) 

 

Dorsiflexion: flexion at the ankle, whereby the toes move up towards the head 

Eversion: movement of the foot whereby the bottom of the foot faces outwards  

Extensor digitorum longus (EDL): deep muscle located within the anterior 

compartment of the shank; a dorsiflexor of the foot 

 

Extensor hallucis longus (EHL): deep muscle located within the anterior compartment 

of the shank; a dorsiflexor of the foot 

 

Fibularis longus (FL): superficial muscle on the lateral aspect of the shank; plantarflexor 

and evertor  

 

Isometric: the contraction of a muscle that creates force without a change in joint angle 

or muscle length 

 

Kinematics: the description of motion through examination of the position of body 

segments and joints, without regards to the cause of motion 

 

Kinetics: the study of the causes and the loads that lead to motion  

 

Lateral gastrocnemius (LG): largest and most superficial muscle within the posterior 

compartment of the shank; primary plantarflexor of the foot 

 

Maximum dorsiflexion angle (MDA): the maximum angle that a participant can 

voluntarily achieve in dorsiflexion 

 

Maximum voluntary exertion (MVE): the result of a maximum isometric contraction 

produced by a muscle 

 

Mean ankle joint rotational stiffness (mAJRS): the mean (average) value of the time-

varying AJRS curve, to be taken during the impact phases (pre-impact, at impact, and 

post-impact) 

 

Mean power frequency (MPF): the mean (average) frequency of the power density 

spectrum (which describes how the power of a signal or time series is distributed with respect to 

frequency) 

http://en.wikipedia.org/wiki/Power_(physics)
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Medial gastrocnemius (MG): superficial muscle within the posterior compartment of the 

shank; primary plantarflexor of the foot 

 

Muscle tuning: an alteration in the activation level of a muscle employed to minimize 

soft tissue vibrations 

 

Peak acceleration (PA): the maximum value or point within the acceleration waveform 

(units = g) 

 

Peak ankle joint rotational stiffness (pAJRS): the maximum value or point within the 

time-varying AJRS curve 

 

Peak impact force: the highest peak force, within 50 ms after impact 

 

Plantarflexion: flexion at the ankle, whereby the toes point toward the ground 

 

Shock: the transient condition that occurs following a sudden change in force application, 

causing the disruption of a system‟s equilibrium 

Shock wave: a stress wave through a medium 

Soleus (SOL): superficial muscle within the posterior compartment of the shank acting as 

the primary plantarflexor; located deep and extending distal to the LG 

 

Tibia: the „shin bone‟; the large medial, weight-bearing long bone of the leg 

 

Tibialis anterior (TA): superficial muscle located within the anterior compartment of the 

shank; primary dorsiflexor of the foot 

 

Time to peak acceleration (TPA): the time between the onset of the acceleration 

waveform and the peak acceleration (units = ms) 

 

Recreational runner: participants who engage in running a weekly mileage in the range 

of 20-50 km 
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LIST OF ABBREVIATIONS 

ℓmusc: Muscle length 

 

AJRS: Ankle joint rotational stiffness  

 

AS: Acceleration slope 

 

ATP: Adenosine triphosphate 

 

BW: Body weight 

 

COM: Centre of mass 

 

EDL: Extensor digitorum longus 

 

EHL: Extensor hallucis longus 

 

EMD: Electromechanical delay 

 

EMG: Electromyography 

 

EVA: Ethylene and vinyl acetate 

 

FL: Fibularis longus 

 

GHQ: General health questionnaire 

 

GRF: Ground reaction force 
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CHAPTER I 

INTRODUCTION 

 Running and jogging are popular forms of exercise characterized by relatively 

easy access for most people and few equipment requirements.  The jogging boom of the 

1970s introduced this new form of exercise to North America.  According to Bowerman 

and Harris (1967), “jogging is a graduated program of moderate exercise which can be 

adapted to men and women of varying ages and levels of fitness” (p. 5).  However, with 

the imposed stress to the body, the potential for injury is inevitable for some runners.  

Running injuries typically result from overuse, or they are attributed to training and 

biomechanical variables such as vertical force impact peak, maximal vertical loading rate, 

and increased maximal rates of rearfoot pronation and touchdown supination angles 

(Hreljac, Marshall & Hume, 2000).  Typical running injuries are stress fractures, medial 

tibial stress syndrome (shin splints), chondromalacia patellae (runner‟s knee), plantar 

fasciitis, and Achilles tendinitis (Hreljac et al, 2000).  

 In running, the foot collides with the ground and a ground reaction force (GRF) is 

produced (Cavanagh & Lafortune, 1980).  This GRF has an impact peak occurring within 

50 ms (Cavanagh & Lafortune, 1980) and is transmitted as a shock wave that is dissipated 

through the human musculoskeletal system.  These repetitive forces must be dissipated by 

the body in order to limit shock levels to the head (Hamill, Derrick & Holt, 1995).  Shock 

dissipation is defined as the process of absorbing impact energy which results in the 

reduction of impact energy between the foot and head.  Research has proposed that the 

intensity of impact and/or repetitive loading resulting from running constitute injury 

mechanisms (Buckwalter & Lane, 1997; Cole, Nigg, Fick & Morlock, 1995).  However, 
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it has been proposed that runners are no more at risk for degenerative joint disease than 

non-runners (Cole, Nigg, van den Bogert & Gerritsen, 1996), nor is impact peak 

associated with a higher incidence of running injury (Nigg, 1997).  

 The human musculoskeletal system consists of anatomical structures that 

passively aid in shock dissipation, including cartilage (Chu, Yazdani-Ardakani, Gradisar 

& Askew, 1986), bone (Radin, Paul & Lowy, 1970), the heel pad (Whittle, 1999) and the 

wobbling mass (Gruber, Denoth, Stuessi & Ruder, 1987).  The wobbling mass is 

described as the non-rigid soft tissues of the human body, including muscles, fat, skin, 

internal organs and body fluids (Gruber et al., 1987; Gruber, Ruder, Denoth & Schneider, 

1998), which move (translate and rotate) relative to the rigid skeleton.   

 In addition to passive shock attenuation, the body engages in active measures to 

dissipate shock waves.  Muscles become stiffer as a result of increased muscle tension 

caused by an increase in muscle activation (Winter, 2005).  Muscle tuning, described as 

an alteration in the activation level of a muscle in response to impact, is proposed to be 

employed in running situations to minimize soft tissue vibrations experienced after 

impact (Wakeling, Liphardt & Nigg, 2003; Wakeling & Nigg, 2001b; Wakeling, von 

Tscharner, Nigg & Stergiou, 2001).  Changes in muscle activation can be monitored by 

electromyography (EMG) and the resulting changes in soft tissue vibrations can be 

measured by accelerometers placed over soft tissues (Wakeling & Nigg, 2001a, b).   

 Kinematic adaptations have been shown to alter the transmission of the shock 

waves through the body.  Increases in knee and ankle angles alter the effective mass of 

the lower limb segments, and in turn, lower peak impact forces (Derrick, 2004; Gerritsen, 

van den Bogert & Nigg, 1995).  In addition, the altered geometry of the body, by way of 
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increased knee flexion, will decrease the effective stiffness of the body and therefore 

reduce peak impact forces (Derrick, 2004; McMahon, Valiant & Frederick, 1987).  

Conversely, increased stiffness has been proposed to improve performance by 

maximizing the use of the stretch-shortening cycle (Kubo, Kanehisa, Kawakami & 

Fukunaga, 2000).  However, it is thought that an optimal level of stiffness may balance 

performance enhancement with the injury potential of exposing the body to increased 

peak impact forces (McMahon & Cheng, 1990).  

 Most researchers attribute sex differences in stiffness to anthropometrics, with 

increased stiffness in males being due to their increased muscle volume and mass.  

However, researchers have found that male musculature may be more effective at 

resisting changes in its length, and may therefore potentially result in greater joint 

stability (Blackburn, Padua, Weinhold & Guxkiewicz, 2006; Granata, Padua & Wilson, 

2002).  Sex differences are also proposed to be significant when investigating the effect 

of fatigue, as males have been shown to fatigue faster than females due to the increased 

metabolic demands of exerting additional force (Kent-Braun, Ng, Doyle & Towse, 2002).  

It is thought that fatigue could in turn reduce the stiffness levels of the individual muscles 

that contribute to rotational stiffness of the ankle joint, which is a reflection of how much 

the ankle angle changes in response to an applied moment. 

 Because of the link between leg stiffness and mechanical behaviour of the lower 

extremity (McMahon et al., 1987), it is speculated that the stiffness properties of the leg 

system may become altered as the system fatigues.  Fatigue has been proposed to be a 

predecessor to running injuries due to its effect on running mechanics (Derrick, Dereu & 

Mclean, 2002) and shock absorbing capabilities of muscle (Mizrahi, Verbitsky & Isakov, 
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2000a; Voloshin, Mizrahi, Verbitsky & Isakov, 1998).  In order to investigate the 

attenuation characteristics of individual fatigued muscles, Christina, White and Gilchrist 

(2001) examined how local muscle fatigue (LMF) affected the transmission of impact 

shock.  Using a treadmill running protocol to induce fatigue, it was found that loading 

rate of peak force significantly increased, yet the peak magnitude of the impact force 

remained unchanged.  A treadmill running protocol lacks control over the impacting 

conditions, as participants have been found to make kinematic adaptations in running 

mechanics in order to maintain impact shock below a tolerable threshold (Hamill et al., 

1995).  In order to specifically examine the effect of impact shocks on locally fatigued 

muscles, kinematic variables must be held constant; a feat not possible during treadmill 

running protocols.  

 The human pendulum method (Lafortune & Lake, 1995) has been shown to 

deliver controlled impacts to the heel, such as those seen in heel-toe running.  Using the 

human pendulum, LMF has been found to decrease impact transmission and cause a 

decrease in acceleration slope (AS) and peak acceleration (PA) after impact (Flynn, 

Holmes & Andrews, 2006; Duquette & Andrews, 2010a).  This is in opposition to the 

study by Christina et al. (2001), where impact conditions were not controlled.     

 Holmes and Andrews (2006) investigated the tibial response parameters (TRPs) of 

PA, AS, and time to peak acceleration (TPA) while voluntarily manipulating muscle 

activation level by varying the amount of dorsiflexion at the ankle when the heel 

impacted the force plate.  It was found that with LMF of the leg muscles, decreased 

impact transmission could be seen through a decrease in AS and PA, and an increase in 

TPA.  This is suggested to be a protective mechanism against impact shock when the 
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muscle is in a fatigued state.   The increased muscle activation through dorsiflexion is 

thought to increase ankle joint stiffness, as the prime dorsiflexion muscle (tibialis 

anterior) crosses the ankle joint.  Using a LMF protocol, Kellis and Liassou (2009) 

suggested that during fatigue, the body compensates by altering joint movement to protect 

the knee (through increased flexion) and ankle (through decreased dorsiflexion) at initial 

impact. 

 In 2010a, Duquette and Andrews controlled for dorsiflexion angle during impact, 

and again found that LMF reduced the transmission of impact forces.  This suggests that 

the muscles of the lower extremity and ankle joint may become less stiff when the 

muscles are fatigued, thereby increasing impact attenuation capability.  Whether this is a 

function of changes in the rotational stiffness of the ankle joint or of the stiffness of the 

wobbling mass of the shank, has yet to be determined.   

 Cort and Potvin (2008) modeled the individual muscle contributions to joint 

rotational stiffness (JRS) at the knee in response to a perturbation.  Using this same 

approach at the ankle, the contribution of individual muscles to JRS (MJRS) will lead to a 

total JRS value at the ankle (AJRS).  The importance of this model lies in its ability to 

quantify JRS, not only in a static state prior to perturbation, but also dynamically during 

the kinematic disturbance as well.  A potentially significant relationship between AJRS 

and tibial acceleration parameters (PA, AS, and TPA) could possibly explain whether the 

degree of ankle joint stiffness (also referred to as its „robustness‟) alters impact 

acceleration transmission prior to and after LMF.  These findings may have practical 

relevance to the kinematic adaptations that runners make in response to a change in 

surface stiffness (Boyer & Nigg, 2006; Ferris, Liang & Farley, 1999), shod versus unshod 
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conditions (Clarke, Frederick & Cooper, 1983), or alteration in stride frequency (Ferris & 

Farley, 1997).   

 Knowing individual muscle contributions to AJRS may highlight protective 

and/or compensatory mechanisms in which the human body engages to maintain safe 

accelerations to the body when impacted in a fatigued state.  Since fatigue results in a 

reduction of a muscle‟s force generating capabilities (Kent-Braun et al., 2002), it is 

thought that fatigue will in turn reduce the stiffness levels of the individual muscles that 

contribute to AJRS; this will possibly occur at varying rates, due to the different sizes and 

fibre type composition of the contributing muscles.  The varying rates of fatigue could 

result in altered kinematic adjustments by the body, which may change the impact 

acceleration transmission through the body, such as that described previously by 

Lafortune, Hennig, and Lake (1996a), Lafortune, Lake, and Hennig (1996b), McMahon et 

al. (1987), and Milliron and Cavanagh (1990).  Identifying the stabilizing potential of 

individual ankle muscles could then prove useful in injury prevention and rehabilitation, 

as strengthening treatments and training protocols could be applied to targeted muscles. 
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1.1 Statement of Purpose 

The purpose of this study is fourfold: 

i) To determine the relationship between ankle joint rotational stiffness (AJRS) and the 

tibial response parameters (TRPs) of peak acceleration (PA), time to peak acceleration 

(TPA), and acceleration slope (AS) across a range of ankle dorsiflexion angles. 

ii) To determine the effect of tibialis anterior (TA) fatigue on the relationship of AJRS 

and the TRPs, across a range of ankle dorsiflexion angles.   

iii) To quantify the relative contribution of each muscle‟s JRS (MJRS) during impact, 

before and after TA fatigue.  The MJRS will be determined for the following muscles: 

TA, lateral gastrocnemius (LG), medial gastrocnemius (MG), soleus (SOL), and fibularis 

longus (FL).  

iv) To determine if MJRS and AJRS values prior to and after fatigue will differ as a 

function of the sex of the participant. 

1.2 Statement of Hypotheses 

It is hypothesized that: 

i) AJRS will increase as the dorsiflexion angle increases.  The resulting effect at the tibia 

will be an increase in PA and AS, and a decrease in TPA, all reflecting decreased 

attenuation ability by the ankle joint.  

ii) A decrease in AJRS will occur as TA fatigues.  This decrease in AJRS will be 

associated with greater attenuation of impact shock, which will be reflected in decreases 

in PA and AS, and an increase in TPA, compared to baseline values.  
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iii) After fatigue, the contribution of the TA to AJRS will decrease, leading to an overall 

decrease in AJRS.    

iv) Males will exhibit greater MJRS and AJRS prior to and after fatigue, relative to 

females.  Also, it is thought that males will fatigue at a faster rate than females.  
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CHAPTER II 

LITERATURE REVIEW 

2.1 Impact Forces During Running 

 During heel-toe running, two impact peaks occur (Figure 1) (Cavanagh & 

Lafortune, 1980).  The first is the impact peak that occurs within 50 ms after initial 

contact (Gruber et al., 1987; Nigg, 1997) at a force between one and three times that of 

body weight (BW) (Cavanagh & Lafortune, 1980).  It is referred to as the passive impact 

peak because, although the leg muscles are active through the initial 30-50 ms of ground 

contact, they are unable to react this quickly to the increased force imposed on them 

(Bobbert, Yeadon & Nigg, 1992; Chavet, Lafortune & Gray, 1997; Nigg & Liu, 1999).  

In the short duration of the impact phase, runners do not have the opportunity to achieve 

neuromuscular control over the rotations of body segments other than by controlling the 

geometry and muscular activation levels prior to touchdown (Bobbert et al., 1992).  

 The second peak is the active force peak, so-named because of the active 

contribution of the musculoskeletal system to the impact forces (Cavanagh & Lafortune, 

1980).  It also occurs during the time period when force is being actively applied to 

propel the runner forward (Clarke et al, 1983).   
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Figure 1: Typical ground reaction force curve for heel-toe running                                            

(Modified from Cavanagh & Lafortune, 1980). 

 When the foot impacts the ground during running, an impact reaction force equal 

in magnitude but opposite in direction to the imposing foot-strike occurs; it is named the 

ground reaction force (GRF).  A shock wave is produced from the rapid deceleration of 

the lower extremity upon collision of the foot with the ground, and travels through the 

body from foot to head (Cavanagh & Lafortune, 1980; Whittle, 1999).  „Shock wave‟ is a 

term commonly used in the biomechanics literature to describe the propagation of a stress 

wave, as initiated by an impact force, through the body‟s tissues (Derrick, Hamill & 

Caldwell, 1998; Duquette & Andrews, 2010a; Flynn et al., 2004; Hamill et al., 1995; 

Holmes & Andrews, 2006; Lafortune et al., 1995, 1996a, b; McMahon et al., 1987; 

Mercer, Bates, Dufek & Hreljac, 2003; Milner, Ferber, Pollard, Hamill & Davis, 2006; 

Verbitsky, Mizrahi, Voloshin, Treiger & Isakov, 1998; Voloshin et al., 1998; Whittle, 

1999).  While it has been observed that up to 70% of runners suffer overuse injuries on an 

annual basis (Hreljac et al., 2000), there is little epidemiological evidence to support the 

foot-ground impact as the root cause. 
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 Nigg and Wakeling (2001) reviewed and summarized findings of studies 

investigating potential relationships between impact forces and injury.  Although there are 

a great number of impacts that occur over the period of a run, it is suggested that 

repetitive impact forces are not central to running injuries.  In fact, it is highlighted that a 

certain degree of repetitive loading can have a positive effect on bone tissue formation 

(Nigg & Wakeling, 2001; Wolff, van Croonenborg, Kemper, Kostense & Twisk, 1999).  

However, injury may occur when impact loading exceeds the tissue‟s tolerance, and when 

appropriate recovery is not provided.  Over longer distances, runners may function near 

the limit of the healthy loading/recovery cycle, lending speculation that impacts in a 

fatigued state may result in injury.  Although impact forces are not thought to be the sole 

cause of injuries, research also suggests a pattern related to impact forces, such that 

injury-free runners exhibit lower vertical impact-induced peak forces and maximal 

vertical loading rates than an injury-prone group (Hreljac et al., 2000; Milner et al., 

2006).  

 The rate at which the impact peak is reached is termed the loading rate, which is 

related to the frequency of the impact peak (Wakeling et al., 2001) and is thought to be an 

indicator of potential injury (Lafortune et al., 1996b; Voloshin et al., 1998).  However, 

much of the literature presents the idea that injury is due to training errors, where 

increases in mileage and intensity result in the body being unable to accommodate the 

imposed forces (Nigg, 1997).  Specific tibial response parameters (TRPs) can be 

investigated to highlight the stresses of impact accelerations on the human 

musculoskeletal system; they include peak acceleration (PA), time to peak acceleration 

(TPA) and the acceleration slope (AS) (Holmes & Andrews, 2006) (Figure 2).   
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Figure 2: Tibial response parameters of the acceleration-time graph.  Leg accelerations can be 

described in terms of the peak acceleration (PA), time to peak acceleration (TPA), and acceleration 

slope (AS). (From Holmes and Andrews, 2006) 

2.2 Impact Force Frequency Domain Considerations 

 Impact shock peaks measured in the time domain, such as in acceleration-time 

signals from skin-mounted accelerometers, offer information about the shock wave.  

However, they also include additional, often unwanted components such as accelerations 

of limb motion and noise from resonant vibrations of the accelerometer (Shorten & 

Winslow, 1992).  Examining the impact shock wave in the spectral, or frequency domain, 

via a Fourier Transformation, provides more information about the frequency content of 

the signal, such as the effect of acceleration components of muscle action and 

accelerometer noise (Shorten & Winslow, 1992).   

 The soft-tissue packages of the lower extremity have natural frequencies in the 

range of 10-60 Hz, which can depend on the activation, length, and contraction velocity 

of the major muscles involved (Wakeling & Nigg, 2001b).  It has been found that the first 

impact region (passive) of the frequency-time curve oscillates at frequencies in the range 

of 10-20 Hz (Nigg & Wakeling, 2001), while the second active region includes low 

frequency motion in the range of 5-8 Hz (Hamill et al., 1995; Shorten & Winslow, 1992).  
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The impact region creates an overlap with the natural frequency of the lower extremity 

during heel-toe running, which could possibly lead to vibrations within the soft-tissue 

packages of the leg.  However, Wakeling and Nigg (2001b) determined that although 

these ranges coincided, soft tissue vibrations are minimal during running.  This is thought 

to be due to increases in muscle activity in order to move the frequency and damping 

characteristics of the soft tissue away from those induced by the impact force (Wakeling 

et al., 2003).  In fact, altering muscle activation has been shown to change the natural 

frequency of the soft tissue packages (Pain & Challis, 2002; Wakeling & Nigg, 2003).  

Conversely, the natural frequencies of bone are rather high (200-900 Hz) and clearly lie 

outside the frequency range of the impact forces and the resulting shock wave that would 

induce resonance (Nigg & Wakeling, 2003).  

 The frequency components of these impact shock peaks are important to note due 

to the possibility of resonance being induced in the wobbling structures, should their 

natural frequencies match the frequency of the impacting force (Wakeling et al., 2003).  

Should resonance occur, the body tissues will experience excessive vibration, with 

potential damaging effects to the neuromuscular, endocrine and cardiovascular systems 

(Wakeling & Nigg, 2001b).  Although minimizing vibrations is not necessary for 

maintaining basic running mechanics (Boyer & Nigg, 2006), it is important to minimize 

stress on the soft tissue, which could lead to discomfort or increased injury risk 

(Wakeling & Nigg, 2001b).  Resonance can be avoided by changing the input signal 

characteristics or the mechanical properties of the system via muscle activation levels 

(Boyer & Nigg, 2007).    
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 Specific properties of the musculoskeletal system aid in maintaining constant 

acceleration at the head when investigating unilateral impacts (Derrick et al., 2002; 

Hamill et al., 1995; Shorten & Winslow, 1992).  Shorten and Winslow hypothesized that 

shock attenuation in the human body, is regulated by a responsive mechanism that 

maintains head shock below a sustainable threshold.  At frequencies above 6 Hz, which 

correspond to the maximum frequency at which voluntary movements occur (Winter, 

2005), the body attenuates the transmission of impact shock to the head.  At frequencies 

above 12 Hz, no significant differences are found in accelerations to the head, indicating 

that despite large increases in the impact shock magnitude of the lower extremity with 

increases in running velocity, the body appears to engage an active, responsive 

mechanism that maintains a certain allowable shock level to the head (Hamill et al., 1995; 

Shorten & Winslow, 1992).  

2.3 Leg Properties Affecting Force Transmission 

 The human musculoskeletal system plays an important role in the attenuation and 

dissipation of shock waves, such as those initiated as the foot contacts the ground during 

running (Lafortune et al., 1996a, b; Verbitsky et al., 1998).  It has been shown that by the 

time the shock wave reaches the head, its magnitude is greatly attenuated (Hamill et al., 

1995; McMahon et al., 1987; Shorten & Winslow, 1992), either actively by joint 

positioning (Bobbert et al., 1992) and muscle activity (Christina et al., 2001), or passively 

by cartilage, bone, the heel pad, and wobbling mass (Gruber et al., 1987, 1998) of the 

human leg. 
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2.3.1 Cartilage and Bone 

 Bone is the primary structure responsible for the transmission of shock waves 

through the body during running (Valiant, 1990).  Cartilage has been shown to provide 

some force attenuation capabilities by aiding in shock dissipation and protecting against 

trabecular micro-fracture (Radin et al., 1970).   

 Chu et al. (1986) determined that a disruption in articular cartilage between joints 

(at the knee) resulted in an increase in the forces transmitted upwards through the body.  

Radin et al. (1970) suggested that cancellous bone can attenuate peak forces to an equal 

or greater extent than articular cartilage, due to its relative thickness.  Very thick layers of 

relatively rigid materials can be more effective in attenuating forces than thin layers of 

very soft materials, because in a thin layer, little deformation can occur (Radin et al., 

1970).  However, due to its deformation and damping properties, cartilage is an important 

structure for decreasing the peak load transmitted during impact (Radin et al., 1970).  

 There are implications for injury when recovery between cyclic loads is not 

adequate.  Fracture has been shown to occur should the magnitude and frequency of an 

applied load damage the bone beyond its rate of remodelling (Schaffler & Jepsen, 2000).  

For example, osteoarthritis (a degenerative joint disease) is thought to be a result of 

micro-fractures of the osseous tissue caused by repetitive impact loading (Voloshin, 

1988).  As a response to impulsive loading, bone remodelling occurs which results in 

stiffening of the underlying subchondral bone and a decrease in its ability to absorb shock 

(Voloshin, 1988).  Joint pathology is associated with a decreased shock-absorbing 

capacity of that joint (Voloshin, 1988), which may expose the articular cartilage overlying 
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the bone to increased stress, ultimately resulting in the degeneration of the cartilage and 

the joint itself. 

2.3.2 Heel Pad 

 The human heel pad is comprised of uncompressed adipose tissue under the 

calcaneus, and is thought to help lower the impact force the foot experiences upon impact.  

Similar to the thickness of the foam material in the heel of most running shoes 

(Cavanagh, Valiant & Misevich, 1984), the adult male heel pad is about 18 mm thick, 

(although it is highly variable between individuals) (Gefen, Megido-Ravid & Itzchak, 

2001).  At heel strike, the calcaneus decelerates by traveling into the intermediate heel 

pad that exists between the calcaneus and the ground (Whittle, 1999).  The further the 

calcaneus is able to travel in coming to a stop, the longer it takes to arrest its motion, 

leading to decreased momentum and associated force of impact (Whittle, 1999).   

 Gefen et al. (2001) found that the in-vivo heel pad can absorb 17-19% of the 

energy initiated from heel strike.  The heel pad‟s overlying skin, composed of fat and 

tough fibrous tissues bound firmly to the underlying bone structure of the foot, 

contributes to its overall stiffness during an applied perturbation (Valiant, 1990).  While 

the heel pad has a low initial stiffness, it can deform rapidly (by about 40%) (Gefen et al, 

2001).  However, after a perturbation, the viscoelastic tissue of the heel pad takes time to 

return to its original shape (Valiant, 1990).   

2.3.3 Wobbling Mass 

 Simplified biomechanical modelling is used to measure the effect of impacts on 

the human body, such that injuries and/or discomfort may ultimately be reduced or 
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prevented.  However, traditional rigid segment biomechanical models do not account for 

soft tissue movement relative to bone that occurs during impacts (Pain & Challis, 2001; 

Yue & Mester, 2001), such as those experienced during running and landing.  Gruber et 

al. (1987) addressed this limitation by developing a „wobbling mass model‟ that 

incorporates the rotational and translational movement of soft tissues, representing the 

wobbling mass about the rigid skeleton.  The wobbling mass consists of all non-rigid 

parts of the body, including muscles, soft tissues, internal organs and fluids in the body 

that move relative to the rigid skeleton (Gruber et al, 1987; Yue & Mester, 2001).  The 

wobbling mass has been modeled as being attached to the skeletal frame via damped 

elastic connections (Gruber et al., 1998) (Figure 3). 

 
Figure 3: The three-linked model with wobbling mass.  The wobbling mass has been modeled as 

being attached to the skeletal frame via damped elastic connections, where ‘r’ is the radius of the axis 

of rotation, ‘φ’ is the joint angle, and ‘FG’ is the ground reaction force.                                                                                                                        

(From Gruber et al., 1998) 
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 During the first 10-30 ms after the foot impacts the ground, the soft tissues wobble 

in a complex damped manner for one to three oscillations (Gruber et al., 1998; Wakeling 

& Nigg, 2001a).  While the wobbling mass is able to reduce the transmissibility of the 

impact shock wave (Yue & Mester, 2001), the response after the initial impact phase (~30 

ms), as measured by accelerations at the knee, differs very little between the rigid 

skeleton and the wobbling mass (Gruber et al., 1998).  Gerritsen et al. (1995) determined 

that a rigid model can overestimate the impact force peak by as much as 26% when 

compared to a musculoskeletal model that incorporates wobbling masses.  In addition, 

they found that loading rate increased by 155% for a rigid-only model, suggesting that 

using a rigid segment only model is not acceptable for studying impacts.  

2.4 Mechanisms Affecting Force Transmission 

2.4.1 Knee Angle 

 Eccentric contraction during joint flexion is a mechanism by which the body 

absorbs impact energy following impact (Derrick et al., 1998).  Active shock attenuation 

through eccentric muscle action is thought to be far more significant than the passive 

shock dissipating mechanisms of soft tissue and bone (Mizrahi & Susak, 1982).  

 Knee angle at impact has been found to be a highly effective regulator of shock 

transmission through the body.  Milliron and Cavanagh (1990) introduced the term 

cushioning flexion to represent the role of knee flexion in attenuating impact forces.  

Increased knee flexion at ground contact has been found to result in decreased effective 

axial stiffness of the body (Lafortune et al., 1996b), leading to overall improved shock 

attenuation.  In support of this, Gerritsen et al. (1995) used a direct dynamics approach to 

simulate the impact phase in heel-toe running, and found that more extended knee 
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postures at touchdown resulted in an increase of 68 N per degree of change in leg angle.  

However, exaggerated knee flexion, described by McMahon et al. (1987) as groucho 

running, comes at an increased physiological cost of 25% more oxygen consumption per 

5 degrees change in knee angle in midstance (McMahon et al., 1987), despite the fact that 

it results in reduced shank and ankle shock exposure (Lafortune et al., 1996b). 

2.4.2 Ankle Angle 

 Upon impact in heel-toe running, a quick plantarflexion movement occurs that 

causes rapid lengthening of the tibialis anterior (TA) in preparation for the eccentric 

absorption of the impact force (Gerritsen et al., 1995).  Eccentric absorption occurs 

through the relative lengthening of the TA in response to shortening of the plantarflexors.  

In their lower extremity simulation, Gerritsen et al. (1995) determined that for every 

degree of increased plantarflexion at heel contact, impact force increased by 85 N.  

Therefore, a decreased ability to perform dorsiflexion, such as in fatigue, is associated 

with decreased energy absorption and larger impact peak forces (Gerritsen et al., 1995).  

2.4.3 Muscle Tuning 

 Wakeling et al. (2001) defined muscle tuning as “the alteration of the mechanical 

properties of the leg due to changes in muscle activity, irrespective of any motion that 

occurs in the joints” (p. 1316).  These changes are present in muscle activation patterns 

with respect to the timing, intensity and frequency content of the EMG signal during the 

50 ms prior to and after heel strike.  Due to the fact that the impact phase is very short 

(~50 ms), a runner is said to change muscle activity in anticipation of the next impact.   
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 Impact forces are described as input signals that initiate vibrations of soft tissue 

compartments associated with major muscle groups (Nigg & Wakeling, 2001).  The body 

tries to minimize these vibrations by changing the mechanical properties of the soft tissue 

compartments via a mechanical coupling strategy between rigid and wobbling masses 

(Nigg & Liu, 1999).  This coupling strategy is thought to minimize soft tissue vibrations 

experienced upon impact by changing the leg‟s natural frequency and damping 

characteristics (Wakeling et al., 2003).  It is suggested that muscle activity increases as 

the frequency of the input signal approaches the natural frequency of the soft tissue 

compartment (Wakeling et al., 2003).   

2.5 Stiffness and Running 

 Runners analyze feedback from a variety of environmental factors to find an 

optimal tradeoff between safety and performance.  The dominant factor in determining 

the amount of shock the body experiences is the apparent stiffness of the leg upon impact 

(McMahon et al., 1987).  Researchers agree that the magnitude of leg stiffness is adjusted 

to accommodate changes in impact conditions to maintain the level of intensity of the 

shock wave that is allowed to reach the head (Farley & Morgenroth, 1999; Ferris & 

Farley, 1997; Hamill et al., 1995; Shorten & Winslow, 1992).  

2.5.1 Defining Stiffness 

 Traditionally, stiffness has been defined in physics as a property of a deformable 

body that, under the influence of external forces, can store elastic energy; in the absence 

of external force, it will maintain a constant shape (Latash & Zatsiorsky, 1993).  Muscles 

and joints in the human body do not function in this way, yet they can still generate a 
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measure of stiffness if elastic energy can be stored and deformation can take place 

(Latash & Zatsiorsky, 1993). 

 Stiffness can be described at the single muscle fibre level or by modeling the 

entire body as a mass and spring system (Butler, Crowell & Davis, 2003).  Because the 

human body does not necessarily store elastic energy as would a spring, the traditional 

definition of stiffness cannot be applied.  Latash and Zatsiorsky (1993) proposed a 

definition for „quasi-stiffness‟, whereby requirements for the system being at equilibrium 

and the time course of displacement can both be disregarded.   It is in the context of 

„quasi-stiffness‟, calculated as a ratio of force applied to displace the limb (through leg 

compression upon impact) or rotation of the joint, that stiffness will be regarded in this 

document.   

 It is suggested that studies should clearly state their notion of stiffness, and to 

what extent the results are influenced by the system‟s properties or by the experimental 

procedure of obtaining a stiffness value.  Since the literature presents many other 

definitions for stiffness and ways to quantify it, clarification of terms should be made in 

order to compare data across studies. 

2.5.2 Stiffness vs. Stability 

 In order to quantify the amount of stiffness a joint experiences, it is important to 

clarify defining aspects related to joint stiffness and stability.  Reeves, Narendra and 

Cholewicki (2007) reviewed the concept of stability as it relates to spine biomechanics in 

order to standardize the terms used in the literature.  Although the review was specified 

for spine biomechanics, applying a common set of terms to all joints would be useful for 

future research.  Reeves et al. (2007) suggest that the stability of an object is absolute, 
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being either stable or not; it is either static, and in equilibrium, or dynamic and changing 

with time.  The quantifiable amount of stability a joint can incur is described as its 

„robustness‟ (Reeves et al., 2007).  Robustness defines how well a system can deal with a 

disturbance; as such, a system that is stiffer is considered more robust than one that is less 

stiff.  Increasing the degree of robustness occurs through increased muscle activation of 

the individual muscles that are contributing to the JRS.  This will vary based on the joint 

position, as the musculature required to hold the joint in place must adapt to new 

positions by changing activation levels.  In addition, the ankle gets its stability from the 

shape of the joints and support from ligaments and other deep muscles.   

2.5.3 Calculating Stiffness  

 The whole leg (from hip to foot) is often represented as a spring supporting the 

mass of the body in a mass-spring model (Figure 4).  Conceptually, this model 

demonstrates how, after the foot contacts the ground, joint motion at the ankle, knee and 

hip lowers the body‟s centre of mass (COM), which represents absorption and 

compression of the spring (representing the leg).  Limb extension is represented by recoil 

of the spring (Ferris & Farley, 1997).  The stiffness of the whole leg spring then 

represents the average stiffness of the overall musculoskeletal system of the whole leg 

during the ground contact phase (Ferris & Farley, 1997; McMahon & Cheng, 1990).   
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Figure 4: The whole leg is often represented as a spring supporting the body’s mass (m), allowing for 

the vertical stiffness of the whole leg (k) to be calculated at ground contact when the leg is oriented 

vertically. Vertical stiffness of the whole leg can be calculated by dividing maximum vertical force by 

the maximum vertical displacement of the body’s centre of mass (Fmax/Δy).                                        

(Adapted from Butler et al., 2003) 

 Vertical stiffness (k) is the simplest measure of the entire body‟s axial stiffness 

value.  According to Butler et al. (2003), it can be calculated by dividing maximum 

vertical force, obtained from a force plate, by the maximum vertical displacement of the 

whole body COM (Δy), obtained through the double integration of the vertical 

acceleration.  Lower leg (between knee and ankle) stiffness is calculated in a similar 

manner; however, leg length and leg landing angle are incorporated and maximum 

vertical displacement of the COM of the leg when it reaches its lowest point, i.e. the 

middle of the stance phase, is used (McMahon & Cheng, 1990) (Figure 5).  
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Figure 5: Model for calculating lower leg stiffness when impacting the ground in a non-vertical 

position. Using the mass-spring system, leg length (LO) and landing angle (ӨO) allows for calculation 

of lower leg stiffness using the vertical displacement of the body’s centre of mass (Δy).                                      

(From Butler et al., 2003) 

 Whole leg stiffness is often measured during a hopping protocol, as impacts of 

similar magnitude to running can be achieved at landing (Farley & Morgenroth, 1999; 

Ferris & Farley, 1997).  During hopping, whole leg stiffness accommodates differences in 

surface stiffness primarily by modulating ankle stiffness, and secondarily by modulating 

knee angle at touchdown (Farley, Houdijk, van Strien & Louie, 1998; Farley & 

Morgenroth, 1999).  In contrast, it has been found that as running speed increases, ankle 

joint stiffness remains constant and knee joint stiffness increases, suggesting that knee 

joint stiffness regulates whole leg stiffness during running (Gunther & Blickhan, 2002; 

Kuitenen, Komi & Kyrolainen, 2002; Stefanyshyn & Nigg, 1998).  A possible reason for 

this difference is due to the foot strike pattern during landing.  In forefoot landings, such 

as those associated with hopping, the knee is stiffer than the ankle (Farley et al, 1998; 

Hamill, Derrick & McClay, 2000) and there is greater ankle flexion range (Mizrahi & 
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Susak, 1982).  Rearfoot landings, such as those typically associated with running, have 

demonstrated a stiffer ankle than knee (Hamill et al., 2000).   

2.5.4 Joint Rotational Stiffness  

 Joint rotational stiffness (JRS), or joint torsional stiffness, is considered the 

rotational correlate to vertical and linear stiffness; it is a reflection of how much an angle 

changes in response to an applied moment about the joint (Farley et al., 1998; Kuitunen et 

al., 2002; Milner et al., 2006) (Figure 6).  JRS is difficult to quantify in the hip, knee and 

ankle joints due to the presence of multiple biarticular muscles crossing the joints.  These 

muscles are important in leg stabilization and optimally maintaining leg stiffness 

(Nichols, 1987).  The presence of biarticular muscles, however, creates a complex 

situation, as muscles are not able to work in isolation across an individual joint (Latash & 

Zatsiorsky, 1993).   

 

Figure 6: Sagittal plane ankle joint stiffness.  Torsional stiffness (Ktors) is calculated as the slope of the 

line through the moment-angle curve from the point of maximum knee flexion to maximum knee 

extension moment.                                                                                                                                                     

(From Butler et al., 2003) 
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 Joint stiffness is achieved by the contribution of individual muscles that cross the 

joint and their level of muscle activation, such that co-contraction of agonist and 

antagonist muscles is the main mechanism of stiffness control of a joint (Nichols, 1987).  

As the muscles that cross a joint generate more force, the joint is said to increase in 

stiffness, and undergo smaller angular displacement when a perturbation, such as a 

running impact, is applied.  In running, muscle activity prior to landing is responsible for 

generating adequate joint stiffness, leg geometry and pre-activity for a safe landing (Nigg, 

1997).     

 Since peak force has been shown to increase along a more rigid, stiffer segment 

(Pain & Challis, 2002), it is speculated that an increase in muscular co-activation is 

associated with an increase in joint stiffness, thereby increasing impact forces.  It has 

been proposed that changes in joint stiffness may be the reason for changes in muscle pre-

activation and may explain the surprising results of many studies which have not found 

differences in impact force magnitude for different shoe or surface interventions (Boyer 

& Nigg, 2007).    

2.5.5 Passive Muscle Stiffness 

 Passive muscle stiffness is regulated by the number of cross-bridges that form 

spontaneously when a muscle is not in contraction (Hill, 1968).  When a passive muscle 

exceeds its resting length, tension is generated by the parallel elastic component (PEC), 

that is, resistance is provided by the muscle membrane, lying parallel to the muscle fibre 

(Winter, 2005).  The PEC is responsible for muscle stiffness when contractile components 

do not generate force.  Passive stiffness is regulated by muscle mass, as greater muscle 

mass would imply a greater number of cross-bridges available for spontaneous 
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reattachment.  Additionally, greater muscle mass would incorporate a larger volume of 

passive connective tissues, components which contribute to passive stiffness (Winter, 

2005).   

2.5.6 Passive Joint Stiffness 

 Passive joint stiffness can be determined when all muscles crossing the joint are 

relaxed (Latash & Zatsiorsky, 1993).  However, even at rest, the muscles acting around a 

joint are usually slightly stretched and generate a certain tension due to antagonistic 

muscle activity (Latash & Zatsiorsky, 1993).  Gajdosik, Vander Linden, McNair, 

Williams and Riggin (2005) evaluated passive stiffness using an isokinetic dynamometer 

to measure passive resistance torque through a range of motion while participants did not 

actively resist; this is verified by the absence of muscle activity in EMG (Milliron & 

Cavanagh, 1990).  Passive joint stiffness was then calculated as the ratio of passive 

resistance torque to angular displacement.  Milliron and Cavanagh (1990) suggest that 

participants with tighter calf musculature, as a function of muscle and tendon stiffness, 

exhibit less range of motion in dorsiflexion than those who are more flexible.   

2.5.7 Muscle Stiffness, Injury, and Performance 

 The literature supports the concept of optimizing performance and injury through 

lower extremity stiffness regulation.  It appears that increased stiffness is beneficial to 

performance by improving the ability to efficiently store elastic potential energy through 

eccentric loading of the stretch-shortening cycle (Kubo et al., 2000).  Adequate muscle 

stiffness is required to physically stop the downward progression of the body at impact.  

Inadequate muscle stiffness could potentially lead to a fall in extreme cases (Butler et al., 
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2003).  Too little stiffness may also allow for excessive joint motion, leading to soft tissue 

injury (Granata et al., 2002).     

 McMahon et al. (1987) describe greater rates of oxygen consumption with 

increased compliance of the lower extremity.  Gunther and Blickhan (2002) also suggest 

that a compromise between metabolic effort and material stress limitations dictate leg 

geometry and JRS at impact.  It is suggested that an optimal stiffness level will balance 

the injury potential of stiff-legged running with the injury potential and reduced economy 

of high muscular loads in compliant running (Dutto & Smith, 2002; Kuitunen et al., 2002; 

McMahon & Cheng, 1990; Stefanyshyn & Nigg, 1998).  

 It has been found that vertical and joint stiffness increase with running speed 

(Gunther & Blickhan, 2002; Kuitunen et al., 2002).  It is thought that as the velocity of 

activity increases, an increase in leg stiffness is necessary to resist collapse of the leg 

during landing and allow for maximum energy return for propulsion (Granata et al., 

2002).  Generally, it has been found that as the physical demands of the activity increases, 

leg stiffness also increases (Kuitenen et al., 2002; Stefanyshyn & Nigg, 1998).  

2.6 Fatigue  

 Fatigue may be an important factor in the development of running injuries as it 

has been shown to decrease the ability of the musculoskeletal system to dissipate and 

attenuate impact shock (Mizrahi et al., 2000a; Verbitsky et al., 1998; Voloshin et al., 

1998).  Therefore, it is important to investigate the adjustments the body makes to protect 

itself from external forces in a fatigued state.  Experimentally, the protocol for inducing 

fatigue may play a role in the measured response.  The shock attenuation capability of the 

fatigued human shank has produced different results depending on the fatiguing protocol 
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being used.  Some researchers have used localized muscle fatigue (LMF), while others 

have used overall cardiovascular whole body fatigue (WBF).  Individual differences in 

kinematic strategies in response to fatigue (e.g. an increase in step length with fatigue, an 

increased maximal knee flexion angle during swing, and an increased maximal thigh 

angle during hip flexion) may influence responses as well (Williams, Snow & Agruss, 

1991).  

2.6.1 Whole Body Fatigue 

 Whole body fatigue, such as that achieved through treadmill running protocols, is 

physiologically determined by a decrease in pressure of end tidal carbon dioxide pressure 

(PETCO2) (Mizrahi et al., 2000a; Mizrahi, Verbitsky, Isakov & Daily, 2000b; Verbitsky 

et al., 1998; Voloshin et al., 1998).  The use of PETCO2 as a measure of fatigue 

represents the deterioration of muscle activity that is likened to running in a fatigued 

state.  A decrease in PETCO2 is due to the development of metabolic acidosis induced by 

exercise and is associated with a decrease in performance (Mizrahi et al., 2000a, b; 

Verbitsky et al., 2000b; Voloshin et al., 1998).  This is commonly known as lactic acid 

production and signifies exceeding the anaerobic threshold.   

 As WBF is induced, the human musculoskeletal system is less capable of 

attenuating heel-strike induced shock waves (Christina et al., 2001; Mercer et al., 2003; 

Mizrahi et al., 2000a, 2000b; Verbitsky et al., 1998; Voloshin et al., 1998).  Increases in 

loading rate (Mizrahi et al., 2000a) and acceleration values at the knee (Mizrahi et al., 

2000a, 2000b; Verbitsky et al., 2000b; Voloshin et al., 1998) indicate a decreased ability 

of the leg muscles to attenuate the impact loading and accelerations when experiencing 

WBF.  More specifically, Mizrahi et al. (2000a) found an imbalance in the rate of fatigue 
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of the shank muscles, with the average integrated EMG (iEMG) and the mean power 

frequency (MPF) of the TA significantly decreasing through the running protocol.  The 

gastrocnemius iEMG did not change, while its MPF increased, indicating that the muscle 

activity of the gastrocnemius increases as the TA fatigues.  An increase in MPF, while 

maintaining a constant iEMG, is suggested to be due to an enhanced firing rate of the 

working motor units.   The decrease in MPF and iEMG in the TA suggests that activity of 

this muscle is reduced due to fatigue.  This is thought to have implications for injury, as 

excessive bending stresses to the tibia could occur due to the loading imbalance (Mizrahi 

et al., 2000a).  

 Biomechanically, treadmill-induced fatigue has been associated with a decrease in 

stride rate, an increase in knee angle at foot strike, and an increase in hip excursion angle 

(Mizrahi et al., 2000b).  These kinematic changes have been found to be associated with 

higher impact accelerations, likely because knee angle affects impact attenuation via 

manipulation of the leg‟s vertical stiffness (McMahon et al., 1987).  Mercer et al. (2003) 

suggest that when muscles are fatigued, bone and other structures are left to dissipate 

impact shock, and are placed under more stress during impact; this is subsequently 

thought to lead to an increased chance of injury to the musculoskeletal system (Verbitsky 

et al., 1998; Voloshin et al., 1998).  

2.6.2 Localized Muscle Fatigue 

 While WBF has been shown to decrease the shock attenuation capabilities of the 

body, the associated fatiguing protocol does not necessarily result in fatigue of the 

individual muscles of the leg (Mizrahi et al., 2000a).  Locally fatigued muscle has been 

shown to exhibit an increase in shock attenuation capabilities (Flynn et al., 2004; Holmes 
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& Andrews, 2006).  According to Winter (2005), muscle fatigue is associated with a 

decrease in tension; if the muscle is less stiff, a more compliant lower extremity contacts 

the ground to attenuate force.  This results in reduced PA and AS values (Duquette and 

Andrews, 2010a; Flynn et al., 2004; Holmes & Andrews, 2006).   

 Some researchers have found that LMF has led to increases in impact forces 

(Christina et al., 2001) and impact accelerations measured at the distal aspect of the tibia 

(Teramoto, Dufek & Mercer, 2006).  However, both of these aforementioned studies had 

runners being tested on a treadmill, which may have led to kinematic adaptations in 

response to fatigue.  A decrease in force production with the onset of fatigue (Kent-Braun 

et al., 2002) is thought to be associated with an inability of the leg system to maintain its 

stiffness level (Dutto & Smith, 2002).  Because of the link between leg stiffness and 

mechanical behaviour of the lower extremity (McMahon et al., 1987), it is speculated that 

the stiffness properties of the leg system may become altered as the system fatigues.  In 

order to specifically examine the effect of impact shocks on locally fatigued muscles, 

kinematic variables must be held constant, which is not possible during treadmill running 

protocols.  

 In experiments involving exhaustive running, a decrease in dorsiflexion at heel 

contact has been noted (Dutto, Levy, Lee, Sidthalaw & Smith, 1997).  It is speculated that 

the inability to sustain initial dorsiflexion is likely a result of the smaller physiological 

cross-sectional area (PCSA) of the TA in comparison to the plantarflexors.  As previously 

mentioned, a decreased ability to dorsiflex with fatigue would result in a decreased ability 

of the TA to eccentrically absorb impact energy (Gerritsen et al., 1995).   
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 Duquette and Andrews (2010a) investigated the effect of dorsiflexion angle on 

tibial response during localized fatigue of the shank.  Isometrically-induced LMF of the 

TA led to a reduction in such tibial parameters as PA and AS, as well as an increase in 

TPA, regardless of ankle angle.  It is thought that the reduced stiffness of the wobbling 

mass, as a function of localized fatigue, or that a reduced AJRS contribute to the 

dampening of the shock wave caused by impact.  This concept is supported by research 

by Pain and Challis (2002), who determined that a softer structure (i.e. wobbling mass) 

attenuates more impact force than a rigid structure.  Since the differences in the TRPs by 

Duquette and Andrews (2010a) were seen between the fatigued and non-fatigued states 

while at the same joint angle, it is suggested that ankle angle alone does not entirely 

account for the differences seen in tibial response during LMF of the dorsiflexors.  

2.7 The Human Pendulum 

 The human pendulum apparatus allows for the examination of the response of the 

lower limb to an impact orientation similar to that experienced during running (Lafortune 

& Lake, 1995).  This method is characterized by the participant lying supine on a 

lightweight bed, with one leg extended over the edge of the bed closest to the impacting 

wall where a force plate is vertically mounted (Figure 7).  Participants are required to 

resist the motion of the pendulum that is moving at a velocity that mimics impact velocity 

during heel-strike.  At the moment of impact of the heel with the wall, the pendulum is at 

its lowest point and travelling horizontally (Lafortune & Lake, 1995).  
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Figure 7. The human pendulum apparatus.  Isolated heel impacts can be delivered at similar 

magnitudes and velocities as those in running.                                                                                      

(From Lafortune & Lake, 1995) 

2.7.1 Leg Geometry at Impact   

 Some previous studies have used a straight-legged impact to minimize the 

cushioning effect introduced by knee flexion (Duquette & Andrews, 2010a; Flynn et al., 

2004; Fong, Hong & Li, 2007; Holmes & Andrews, 2006; Lafortune & Lake, 1995; 

Schinkel-Ivy, Burkhart & Andrews, 2010 in press) in addition to eliminating the effect 

that a changing knee angle has on proximal and distal joint kinematics, leg muscular 

activity and impact loading severity.  Admittedly, this orientation reduces the outcome‟s 

relevance to running; however, it can eliminate certain external and inter-participant 

sources of variability in kinematic adaptations. 

2.7.2 Impact Intensity 

 The magnitudes of impact forces are dependent on the velocity and leg geometry 

at impact.  Investigators have used horizontal impact velocities in the range of 3.57-4.08  

ms
-1

, with an average velocity of 3.83 ms
-1

 (7 minute miles), as a standard in distance 
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running studies (Milliron & Cavanagh, 1990).  Different impact velocities can be 

achieved using the pendulum apparatus by releasing the bed from various distances away 

from the force plate.  For example, an impact velocity of 1.15 ms
-1

 has been achieved by 

pulling straight-legged participants a distance of 0.71 m away from the force plate; initial 

conditions which emulate heel-strike impacts when running at a horizontal velocity of 3.6 

ms
-1

 (Cavanagh et al., 1984).   

2.7.3 Validity of the Human Pendulum Method  

 The magnitude of the impact force at foot strike depends upon leg geometry, 

impact velocity, and the material properties of the surface, the shoe sole and the human 

heel (Whittle, 1999).  Due to the many cofounding kinematic adaptations that are 

possible, isolation and manipulation of these mechanical inputs are difficult to assess 

(Lake & Lafortune, 1998).  It is therefore imperative to systematically control and change 

the mechanical inputs to the body.  It has been suggested that once factors have been 

established in a controlled manner, experimentation in a more realistic locomotor manner 

can then be explored (Lake & Lafortune, 1998).   

 In addition, muscles are used to both move limbs and provide joint stiffness 

required for a locomotor task, making it difficult to determine which tasks are 

contributing to the EMG signal.  By supporting the leg, muscle motion can be attributed 

to the joint stiffness required to withstand the impact, in addition to that necessary to 

minimize soft tissue vibrations (Wakeling et al., 2001).   

 To further support the validity of using the human pendulum, force and 

acceleration curves generated from pendulum impacts to a wall-mounted force plate have 

been shown to display similar characteristics to those exhibited during running (Figure 8).  
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For example, PA and TPA on a pendulum were 6.4 (0.7) g and 16.1 (3) ms, respectively, 

which fall close to acceptable ranges presented by multiple running studies (Cavanagh & 

Lafortune, 1980; Munro, Miller & Fuglevand, 1987; Nigg, 1997; Valiant, 1990).   

         

Figure 8. Comparison of a ground reaction force (GRF) achieved during running with a wall reaction 

force curve achieved during a human pendulum impact.  Participant mean wall reaction force curve 

(solid line) is compared with a typical GRF curve (dotted line).                                                            

(Lafortune & Lake, 1995) 

2.7.4 Limitations of the Human Pendulum Method 

 Due to the horizontal orientation of the pendulum at impact, the human pendulum 

approach is limited to measuring the body‟s resultant axial component (along the length 

of the tibia) of reaction force (Lafortune & Lake, 1995).  However, Cavanagh and 

Lafortune (1980) have shown that in running, the vertical component that acts along the 

axial component of the leg accounts for more than 95% of the initial impact peak force, 

making the axial component a fair representation of what is transmitted to the body 

during impact.  

 In addition, the human pendulum fails to allow the body‟s natural response that 

would typically occur during a running impact.  Increased knee flexion has been shown to 

decrease the transmission of running impacts upwards through the body (Derrick 2004; 
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McMahon et al., 1987); thus, by having the leg oriented in a straight-legged locked knee 

position, the human pendulum method limits one of the body‟s major natural mechanisms 

for shock dissipation.   

2.8 Instrumentation 

2.8.1 Measuring Shank Acceleration 

 Shock waves initiated during running induce bone vibration that can be quantified 

using accelerometers.  Hennig, Milani, and Lafortune (1993) reported that vertical ground 

reaction force (vGRF) loading rates were significantly and positively correlated to PA 

during running, suggesting that as tibial shock increases, so does loading rate.  Clarke et 

al. (1983) explained that the measurement of accelerations can imply stress levels through 

the musculoskeletal system.   

 Acceleration of the shank has been measured using bone-mounted (Lafortune, 

Henning & Valiant, 1995) or preloaded skin-mounted accelerometers (Flynn et al., 2004; 

Hamill et al., 1995; Holmes & Andrews, 2006; Lafortune et al.; Mizrahi et al., 2000a, 

2000b; Verbitsky et al., 1998; Voloshin et al., 1998).  Bone-mounted accelerometers 

provide an accurate measure of the tibial shock that travels along the skeletal system of 

the body, but are invasive as they require implantation of the device into the bone.  As an 

alternative, skin-mounted transducers have been found to measure bone vibrations fairly 

accurately, when little soft tissue exists between the bone and skin (Valiant, 1990).  

Cavanagh and Lafortune (1980) have shown that the axial tibial component of impact 

shock accounts for more than 95% of the initial impact peak force.  Due to the fact that 

the resultant GRF in running acts along the shank during initial loading (Bobbert et al., 
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1992), investigating tibial acceleration along the shank allows for a good representation 

of the transmission of shock.  

 Skin-mounted accelerometers are limited by the low frequency response of 

accelerometer attachments; specifically, resonant vibrations of the accelerometer and limb 

motion contribute to gain or attenuation of the peak impact shock values in the 

acceleration-time domain (Shorten & Winslow, 1992).  However, spectral analysis has 

been shown to separate spectral peaks due to limb motion and attachment resonance from 

impact shock waves (Shorten & Winslow, 1992).  Care must be taken with skin-mounted 

accelerometers because they have been shown to overestimate peak accelerations to a 

degree, depending on the mass of the accelerometer and the firmness and location of the 

attachment (Valiant, 1990).  Movement of the soft tissue between the accelerometer and 

the tibia can be minimized by using a low-mass accelerometer and preloading it (i.e. a 

normal force is applied to the accelerometer via a strap affixed around the segment) to the 

skin surface (Flynn et al., 2004; Holmes & Andrews, 2006; Valiant et al., 1987).   

2.8.2 Electromyography (EMG) 

 In the current study, surface EMG (sEMG) of the musculature surrounding the 

ankle was used in order to determine the contribution of the superficial muscles to the 

AJRS.  sEMG was used to gain information from the following superficial muscles: 

tibialis anterior (TA), fibularis longus (FL), lateral gastrocnemius (LG), medial 

gastrocnemius (MG), and soleus (SOL).   
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Figure 9. Superficial musculature of the shank contributing to ankle joint rotational stiffness. 

2.9 Sex Differences 

 It has been reported that female runners are twice as likely to sustain common 

running injuries such as patellofemoral pain syndrome, iliotibial band friction syndrome, 

and tibial stress fractures, compared to their male counterparts (Taunton, Ryan, Clement, 

McKenzie, Lloyd-Smith & Zumbo, 2002).  In addition, Ferber, McClay Davis, and 

Williams (2003) determined that female recreational runners exhibit significantly 

different lower extremity mechanics in the frontal and transverse planes at the hip and 

knee during running compared to male recreational runners.  Although the 

aforementioned injuries and biomechanical variables will not be investigated, it is 

worthwhile to note that for some unknown reason, female runners may be more 

predisposed to injury.   

2.9.1 Stiffness 

 Greater structural musculotendinous stiffness, due to tendon stiffness and muscle 

architecture, has been identified in males compared to females, with researchers 
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attributing sex differences to anthropometrics.  It is thought that increased structural 

stiffness in males is due to their increased muscle volume and mass, as greater force 

output and PCSA have been observed in males compared to females, for muscles of the 

lower extremities (Staron et al., 2000).  Greater force capacity as a function of greater 

muscle mass likely plays an important role in the active resistive capabilities of the 

musculotendinous unit.  However, in a study by Blackburn et al. (2006), it was found that 

greater values for structural stiffness and material modulus (ratio of stress to strain) occur 

in males in comparison to females, independent of anthropometric factors. 

 Granata et al. (2002) examined leg stiffness in males and females during a 

hopping task at controlled and preferred frequencies.  During both the controlled and 

preferred frequency hopping task trials, they found a relationship between body mass and 

leg stiffness, as the male participants had to generate greater leg stiffness to „drive‟ their 

greater body mass at the same frequency as the lighter female participants.  This indicates 

that male musculature may be more effective at resisting changes in its length, and may 

therefore potentially result in greater joint stability.   

2.9.2 Fatigue  

 Kent-Braun et al. (2002) found that isometric fatigue rates of the TA muscle did 

not differ between sexes.  However, they found that men exhibited a greater dependence 

on anaerobic pathways (non-oxidative sources) for ATP, as indicated by higher 

intracellular concentrations of inorganic phosphate and hydrogen phosphates.   It is 

suggested that males exhibit larger absolute forces generated from larger muscle mass; 

according to Hicks, Kent-Braun, & Ditor (2001), this would consequently increase 
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metabolic demand, leading to a shorter time to fatigue in males when the same relative 

force (as a percentage of maximal force) was exerted.   

 While investigating sustained isometric fatigue of the elbow flexors at mild to 

moderate intensities (20% of the participant‟s maximum voluntary exertion (MVE)), 

Hunter and Enoka (2001) found that females were able to exhibit longer endurance times 

over their male counterparts.  Females were able to sustain their endurance times 118% 

longer than males.  This study also found that endurance time was inversely related to 

absolute force, whereby enhanced rate of motor unit recruitment (and thus increased 

EMG) was shown as the target force increased.  The difference in endurance time, as 

demonstrated by increased EMG activity, shows that stronger individuals (males) have 

shorter endurance times.  

2.10 Joint Rotational Stiffness Model 

 A model by Cort and Potvin (2008) allows for the quantification of the relative 

contributions of individual muscles surrounding a joint to its joint rotational stiffness 

(JRS), and can be applied to the ankle to determine ankle JRS (AJRS).  Analyzing JRS 

provides understanding of the changes that occur in musculature surrounding a joint in 

various situations, such as with the progression of fatigue or during a perturbation.  While 

joint systems have typically been examined in static states pre- and post-perturbation, this 

model provides knowledge about individual muscle contributions to JRS prior to and 

during a perturbation, which can be delivered via controlled impacts to the lower 

extremity. 

 The rotational stiffness of a joint is its resistance to angular motion and is 

determined by the change in moment (ΔMo) divided by the change in angular 
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displacement (ΔѲ).  To calculate JRS, muscle length and moment data are typically 

derived from kinematic data using inverse dynamics.  However, the model by Cort and 

Potvin (2008) describes a forward dynamics approach to determine individual muscle 

contributions to joint stability in a static and dynamic context.  This model is based on a 

simplified equation by Potvin and Brown (2005) that uses the energy approach (as 

opposed to the moment approach) to determine the individual muscle contributions to a 

joint‟s mechanical stability, based on EMG data and changes in joint position.  Also, the 

use of the anatomical muscle origin and insertion data of the lower extremity, as well as 

the three-dimensional path of the muscle movement put forth by Delp et al. (1990), is 

used for calculating changes in muscle lengths and velocities during a perturbation.  The 

model by Cort and Potvin (2008) allows individual muscle contributions to be quantified 

through individual muscle JRS (MJRS) values, which are calculated for each muscle 

crossing a joint, as well as an overall JRS value for the joint.  JRS is then determined by 

summing the contribution of each individual muscle‟s MJRS.   

2.11 Summary: Literature Review  

 Running presents an opportunity for injury, although the causes of running-related 

injuries are not fully understood.  In running, the foot impacts the ground, which initiates 

a shock wave that travels through the human musculoskeletal system and is thought to 

have a positive relationship with injury (Buckwalter & Lane, 1997; Cole et al., 1995).  

The shock wave can be represented by an acceleration waveform (Hennig et al., 1993), 

whose characteristics (e.g. PA, TPA, and AS) have been investigated in terms of their 

potential relationship with injury (Milner et al., 2006).   
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 The body dissipates impact forces, such as those incurred in running, through 

changes in joint angle (Derrick et al., 2002) and LMF (Christina et al., 2001).  When 

impact conditions are controlled, such as with the human pendulum apparatus (Flynn et 

al., 2004; Holmes & Andrews, 2006; Duquette & Andrews, 2010a), it has been found that 

LMF of the TA helps dissipate the impact shock.  In fact, even when holding all joints 

constant in a non-fatigue and a LMF protocol involving the TA, Duquette & Andrews 

(2010a) found an increased ability of the leg to dissipate shock in the fatigued condition.  

This finding suggests that there is a change in the stiffness of the wobbling masses about 

the shank, or perhaps changes in the rotational stiffness of the ankle joint, when TA 

fatigues.   

 Knowing how individual muscles contribute to AJRS may highlight protective 

and/or compensatory mechanisms in which the human body engages to maintain safe 

acceleration levels when impacted in a fatigued state.  Identifying the stabilizing potential 

of individual ankle muscles in a dynamic context could prove useful in rehabilitation.  

By knowing which muscles are most important in maintaining joint stability during 

impact, strengthening of the identified muscles that experience excessive fatigue may 

help prevent ankle injuries that may occur as a result of decreased AJRS.      
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CHAPTER III 

METHODOLOGY 

3.1 Participants 

 Thirty (15 female, 15 male) recreational runners in the age range of 17-30 years 

were recruited from the university and running communities (see Table 3 in Results for 

specific participant details).  Four participants were later removed from the study, as their 

data were consistent outliers, which resulted in a sample of 26 runners (11 female, 15 

male).  Participants were free from lower limb injury and other conditions that would 

limit their participation, as outlined in a General Health Questionnaire (GHQ) (Appendix 

A). 

 „Recreational‟ individuals were defined as those engaged in weekly running 

mileage of 20-50 km.  Using participants who were routinely exposed to repetitive impact 

forces ensured their safety when exposed to the pendulum impacts.     

 Participants‟ age, sex, height, weight, and anthropometric measurements of the 

foot were recorded, and activity level confirmed by noting the participant‟s weekly 

running mileage.  Anyone who answered „yes‟ to any of the GHQ questions were 

excluded from the study.  In addition, participants did not engage in impact activities in 

the 24 hours prior to data collection, as residual fatigue effects could have potentially 

influenced muscular contributions to AJRS.  Participants were informed of the study‟s 

procedures and signed an informed consent form, as approved by the University of 

Windsor‟s Research Ethics Board (REB).    
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3.2 Experimental Equipment 

3.2.1 Human Pendulum  

 A human pendulum apparatus similar to that used by Flynn et al. (2004) and 

Holmes and Andrews (2006) was used in the study.  The pendulum consisted of a 

rectangular frame (190.5 cm x 52.5 cm) constructed from 3.5 cm diameter steel pipe.  A 

stiff canvas sheet (176.5 cm x 41 cm) was attached to the frame by nylon rope, which in 

turn strengthened the structure.  The pendulum was then suspended from the ceiling at 

each of the four corners of the frame by aircraft cable and tensioners, making the 

pendulum height adjustable (Figure 10a).  The total mass of the frame and suspension 

apparatus was approximately13 kg. 

 Participants lay supine on the pendulum with the joint space of the right knee 

aligned with the leading edge of the pendulum frame (leg completely extended).  The 

impacting leg was secured using a nylon strap positioned just proximal to the knee, while 

another nylon strap was placed over the hips, securing them to the pendulum firmly 

(Figure 10b) to prevent any appreciable movement of the body relative to the pendulum 

during impact.  The left leg was flexed in order to prevent any contact with the force plate 

(see Section 3.2.2) at impact.    

 A sheet of ethylene and vinyl acetate (EVA) foam was placed over the force plate 

to simulate the effect of a shod impact condition while maintaining full ankle range of 

motion.  Most running shoe midsoles are made from EVA foam, with a durometer rating 

in the range of 40 Asker C (soft) to 60 Asker C (hard) (Lafortune et al., 1996a; MacLean, 

Davis & Hamill, 2009).  A 9 mm thick sheet of approximately 55 Asker C (medium) was 
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used (EvaLite EVA 35 Shore A Durometer, National Shoe, Scarborough, Ontario, 

Canada).  This thickness was used as it is a standard thickness manufactured by EvaLite.   

(a)  

(b)  

Figure 10. (a) Human pendulum apparatus in its rest position, suspended from the ceiling,               

(b) Participant instrumented in human pendulum.  The participant’s orientation represents the 0% 

maximum dorsiflexion angle of the ankle joint (see Section 3.4.2) 

3.2.2 Force Plate 

 A force plate (AMTI-OR6-6-1000, A-Tech Instruments Ltd., Scarborough, ON, 

Canada, natural frequency of 1000 Hz) was used to measure impact forces; it was 
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vertically mounted to the wall, so that it faced the incoming pendulum and was 

perpendicular to the floor.  The plate was rigidly secured to a steel grid frame 

incorporated into the structure of the building itself (Figure 11).  The grid was designed 

so that the force plate could be moved to accommodate different impacting heights and 

alignments, although the position of the plate remained constant in the study.   

 

Figure 11. Steel grid incorporated into the building’s wall to which the force plate was vertically 

mounted. 

3.2.3 Velocity Transducer 

 A consistent impact velocity between 1.00-1.15 ms (Flynn et al., 2004; Holmes & 

Andrews, 2006) was required to control impact conditions.  Velocity of the pendulum 

was monitored by a linear velocity/displacement transducer (Celesco DV301, Don Mills, 

ON, Canada), which was attached to its trailing edge.  The velocity transducer is a 

permanent magnet generator that will have essentially instantaneous response to any 

pulling force that does not break the cable that is turning it.   
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3.2.4 Accelerometer 

 A custom made surface mounted tri-axial accelerometer (two accelerometer chips 

MMA1213D and MMA3201D, Freescale Semiconductor Inc., Ottawa, ON, Canada; 

frequency response range of +/- 50 G and +/- 40 G, respectively), was used to measure 

acceleration of the shank.  The accelerometer was attached directly to the skin with 

double sided tape on the medial aspect of the tibial tuberosity.  It was oriented such that 

the x-axis was parallel to the long axis of the tibia, which was the only channel analyzed.  

A knee strap (Tensor Brand, Oakville, ON, Canada) was then used to preload the 

accelerometer with a force of approximately 45 N (Flynn et al., 2004; Holmes & 

Andrews, 2006) (Figure 12).   

3.2.5 Electrogoniometers 

 Two electrogoniometers (Biometrics SG110, Biometrics Ltd., Gwent, UK) were 

used to monitor joint angle over time; they were attached to clean, shaven skin across the 

knee and ankle joints using double sided tape (Figure 12).  The electrogoniometers were 

attached to the lateral aspect of the ankle and medial aspect of knee joint of the right limb, 

in order to avoid other instrumentation.  At the ankle, the fixed end-block of the 

electrogoniometer was placed in parallel to the fibula, while the telescopic block was 

placed in parallel to the fifth metatarsal.  At the knee, the telescopic block was placed in 

parallel to an imaginary line between the medial condyle of the tibia and the medial 

malleolus, while the fixed end-block was placed in parallel to an imaginary line between 

the medial condyle of the femur and the inseam of the leg.  The electrogoniometer affixed 

to the knee was used to measure the amount of knee angular movement resulting from 

impact.     



48 

 

 

Figure 12: Electrogoniometer and accelerometer placement.  Two electrogoniometers, one on the 

medial side at the knee joint and the other on the lateral side at the ankle joint, were applied to 

monitor joint angles.  An accelerometer was attached to the medial aspect of the tibial tuberosity.  

The Velcro® strap used to preload the accelerometer is not seen in the diagram. 

3.2.6 Electromyography (EMG) 

Surface electromyography (sEMG) recordings were taken from the following 

muscles that cross the ankle joint: tibialis anterior (TA), fibularis longus (FL), lateral 

gastrocnemius (LG), medial gastrocnemius (MG), and soleus (SOL).  Two Kendall 

bipolar disposable Ag/AgCl surface electrodes (23 mm x 33 mm: Tyco Healthcare, 

Chicopee, MA) were placed over the belly of each the aforementioned muscles, oriented 

parallel to the muscle fibres, with an inter-electrode distance of 2 cm (SENIAM, 1996).  

A ground electrode was placed over the surface of the patella (Figure 13a).  To secure 

connecting wires and electrodes, a Hypafix dressing retention sheet (100 mm x 100 mm: 

BSN Medical, Hamburg, Germany) was applied over each set of electrodes.    
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(a)  (b)  

(c)  

Figure 13: Electromyography (EMG) electrode placement.  Electrodes were placed on the following 

muscles: tibialis anterior (TA), fibularis longus (FL), lateral gastrocnemius (LG), medial 

gastrocnemius (MG), and soleus (SOL). Figure 13a, b and c depict anterior, lateral, and posterior 

views, respectively. 

3.3 Data Acquisition 

 Custom designed LabVIEW® software (Version 8.6, National Instruments, 

Austin, Texas) was used to acquire and process all collected data.  All data were sampled 

at 4096 Hz.  Raw data were output to Microsoft Excel 2007® files to be analyzed.   

 During the MVE trials, sEMG data were filtered online by full-wave rectification 

and then low pass filtered using a 2
nd

 order Butterworth filter with a frequency cut-off of 

1.5 Hz, and then normalized to each participant‟s maximal voluntary exertion (see 

Section 3.4.1).  This provided a filtered value for the MVE trials to which sEMG data 

would be compared.   
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 In the fatigue protocol (see Section 3.4.4), Mean Power Frequency (MPF) of the 

TA EMG was monitored in real time to indicate to the investigator when fatigue had been 

achieved.  To do so, a Fast Fourier Transform Function was used to obtain the frequency 

characteristics of the signal, which was updated every second.  The data were output to 

Microsoft Excel 2007® files to determine the time to fatigue (TTF) and change in the 

MPF over the fatigue protocol.  

3.4 Procedure 

 Data collection was completed in one session, and is summarized in Figure 14.  

Participants were briefed on the purpose of the study and were required to read and sign 

the „GHQ‟ (Appendix A) and the „Consent to Participate in Research‟ form (Appendix B) 

approved by the University of Windsor‟s Research Ethics Board (Appendix C).  

Participant-specific information, including age, sex, and weekly mileage was recorded.  

Anthropometric measurements, including participant height, mass, and length of the foot 

segment were also taken.  Foot segment length was taken from the centre of the lateral 

malleolus to the centre of the head of the second metatarsal.  A digital picture of the 

participant‟s right leg was taken against a ruler which was positioned in the same plane; 

digitization of the picture provided coordinates to estimate the inertial components of the 

leg required for the JRS model (see Section 3.5) (Cort & Potvin, 2008).  
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Figure 14. Flow diagram illustrating the experimental protocol.  Abbreviations from the diagram are 

as follows: research ethics board (REB), general health questionnaire (GHQ), maximum voluntary 

exertion (MVE), lateral gastrocnemius (LG), medial gastrocnemius (MG), soleus (SOL), fibularis 

longus (FL), tibialis anterior (TA), range of motion (ROM), and maximum dorsiflexion angle (MDA). 

REB 

GHQ 

Participant information 

Anthropometrics 

Shave & clean skin 

Electrode placement 

Noise trial 

Obtain MVE: LG/MG/SOL 

Participant setup in pendulum apparatus 

Obtain MVE: FL, TA 

Adequate rest period 

Mount accelerometer 

Mount electrogoniometers 

Zeroing of entire system 

Determine ankle dorsiflexion ROM 

Test impacts 

0%, 20%, 40%, 60% of MDA: 

 3 impacts at each level 

Isometric fatigue protocol 

0%, 20%, 40%, 60% of MDA:  

3 impacts at each level 

Equipment removal 
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3.4.1 Measuring Maximum Voluntary Exertion (MVE) 

 sEMG of the superficial muscles that cross the ankle joint was recorded 

throughout the impact trial to quantify muscular electrical activity.  In preparation for 

electrode placement, areas of skin were shaved (if needed) and then cleaned with an 

isopropyl alcohol pad.  Electrodes were placed on the skin overlying the TA, FL, LG, 

MG, and SOL muscles of the right (dominant) leg.  Prior to taking MVEs, participants 

were placed in a relaxed position so that baseline muscle activity could be collected.  

 A measure of MVE for each muscle was taken in order to normalize the sEMG 

data generated during the impacting conditions.  Participants were asked to exert a 

maximal contraction against dynamic resistance by ramping up the force exerted and 

attempting to hold it for three seconds, and then releasing.  Dynamic resistance allowed 

the participant to exert maximal force by finding the optimal muscle length through the 

muscle‟s natural range of motion (ROM).  Three trials for each MVE were taken, and 

adequate rest of about one to two minutes (adequate rest was confirmed by the 

participant) was given between trials.  Verbal encouragement was given to participants to 

motivate them to contract maximally.  The maximal EMG amplitude achieved during the 

three trials was used to represent the MVE.   

 The MVEs for the gastrocnemius and soleus muscles were taken while the 

participant was in a standing position.  The LG, MG, and SOL muscles are often grouped 

together under the name of „triceps surae‟ due to their similar function of plantarflexion.  

First, the participants were asked to do a standing calf raise in order to demonstrate the 

location of the muscle belly.  Electrodes were then placed on the muscle belly of the LG 

and MG.  Secondly, the muscle belly of the SOL was determined by having the 
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participant plantarflex while sitting on the floor with the knee bent at 90⁰.  The electrodes 

for the SOL were placed on the medial aspect of the SOL, distal to the LG (Figure 13c).  

Once electrodes were in place, the participant stood on a wood platform, where two straps 

of 5 cm wide nylon webbing were secured to a wood platform under the participant‟s feet, 

and placed over the participants‟ shoulders (Figure 15).  The straps were adjustable and 

were tightened down so that the participant could stand in an upright position with 

minimal flexion.  To limit shoulder contribution to vertical force production, participants‟ 

arms were folded across their chest while they maximally plantarflexed both feet at the 

ankles against the resistance of the shoulder straps, and held the contraction for three 

seconds.  The shoulder straps had two additional adjustable straps across both the chest 

and back that ensured the straps going over the shoulders did not slip off laterally.    

 

Figure 15: Maximum voluntary exertion (MVE) of the triceps surae group (lateral gastrocnemius 

(LG), medial gastrocnemius (MG), and soleus (SOL)) was taken by having the participant maximally 

plantarflex by performing a standing calf raise against padded shoulder straps.  
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 Electrode location for the FL was determined by having the participant plantarflex 

and evert, while following the landmark of the muscle‟s origin (the head of the fibula) to 

the muscle belly (Figure 13a).  Prior to obtaining the MVE of the FL, the participant was 

positioned in the pendulum apparatus (see Section 3.2.1).  While lying supine on the 

pendulum (Figure 10b), manual resistance was provided by the investigator‟s assistant 

(Figure 16).  Using their hands, the assistant resisted the eversion and plantarflexion 

movement caused by the FL muscle when the participants contracted.     

 

Figure 16: The maximum voluntary exertion (MVE) of the fibularis longus (FL) was taken with the 

participant lying supine on the human pendulum apparatus.  Manual resistance was provided by the 

investigator to prevent eversion and plantarflexion. 

 The MVE of the TA was taken against manual resistance, provided by the 

assistant (Figure 17).  While lying supine on the pendulum apparatus (Figure 10), the 
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assistant applied resistance to the dorsal surface of the foot with their left hand (the right 

hand supported the participant‟s heel), while the participant contracted against it. 

 

Figure 17. The maximum voluntary exertion (MVE) of the tibialis anterior (TA) was taken against 

unilateral manual resistance, whereby the foot was allowed to move against the resistance provided 

by the investigator. 

3.4.2 Electrogoniometer and Accelerometer Setup 

 While lying supine on the pendulum apparatus, the electrogoniometers were 

mounted (as described in Section 3.2.5), and zeroed as the participant remained still with 

the leg extended in the impact position.  Dorsiflexion range of motion (ROM) of the ankle 

joint was then assessed.  Baseline (zero dorsiflexion) was considered the neutral position 

where the ankle was flexed just enough for the plantar aspect of the foot to touch the 

force plate softly.  While still lying supine on the pendulum apparatus, maximum 

dorsiflexion angle (MDA) (100%) was determined as the maximum angle that could be 

generated during voluntary dorsiflexion.  Three trials were performed and the greatest 
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angle achieved was taken as the MDA, a value from which subsequent target dorsiflexion 

angles were calculated.   

 Participants were then familiarized with the target ankle angles that were required 

to be achieved during the impacts (see section 3.5.3).  The target ankle angle was 

displayed on a computer monitor (Figure 18) in the participants‟ field of view during each 

trial and was monitored throughout the impact.  Participants were required to maintain 

0%, 20%, 40%, and 60% of their MDA by aligning arrows representing their actual ankle 

angle and the target ankle angle on the computer monitor.   

 

Figure 18. The target ankle angle was displayed on a computer monitor in the participants’ field of 

view during each trial and was monitored throughout the impact.  Participants were required to 

maintain 0%, 20%, 40%, and 60% of their maximum dorsiflexion by aligning the arrows 

represented on the computer monitor.  

3.4.3 Impacts 

 Participants were instructed to lay supine on the pendulum apparatus with their 

right leg extended straight over the edge of the pendulum and their heel in slight contact 

with the force plate when the pendulum was at rest (Figure 10b).  The pendulum was 

pulled back from the wall and released during several test trials in order to determine the 

pull-back distance required for each participant that would result in a target velocity  of 

between 1.00 ms
-1 

and 1.15 ms
-1

 and impact force of between 1.8 and 2.8 times BW to be 
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obtained (Flynn et al., 2004; Holmes & Andrews, 2006).  The practice trials also helped 

to familiarize participants with the procedure and allowed the participants to achieve the 

muscle tuning effect (see section 2.4.3) in anticipation of the controlled impacts over the 

course of the session.  Once impact conditions were determined, all transducers in system 

were zeroed with the participant and pendulum at rest.  The force plate was zeroed by 

having the assistant hold the participant‟s foot in its rest position, just off the surface of 

the force plate. 

Data collection was triggered manually by the investigator following an auditory 

queue presented by the data collection program.  After the queue, the pendulum was 

released by the assistant.  Data were recorded for a total of two seconds, which included 

the pendulum‟s swing phase (pre-impact), during the heel impact with the force plate (at 

impact), and after impact with the force plate (post-impact).  When swung into the force 

plate, the participants were instructed to resist the forward motion of the pendulum at 

impact in order to maintain the impacting leg geometry.  This was similar to what a 

runner would do during the heel-strike phase of running.   

Participants were impacted three times at each of the dorsiflexion angles (0%, 

20%, 40%, and 60% of MDA), with the trials presented in a randomized order.  A 

fatiguing protocol then took place (see Section 3.5.4), after which participants were 

impacted three more times at each dorsiflexion angle (0%, 20%, 40%, and 60% of MDA).  

The order of these trials was also randomized. 

3.4.4 Local Muscle Fatigue 

 A localized muscle fatigue (LMF) protocol was used to induce fatigue in the 

primary dorsiflexor, tibialis anterior (TA).  The fatigue apparatus, which consisted of a 
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resistive rubber band with a hook at each end, was stretched between steel eyebolts 

anchored in a wooden support structure, which was attached to the steel impact frame 

(Figure 19).  The pendulum was held steady by the assistant with the participant‟s foot 

placed flat against the force plate such that the forefoot was located under the rubber 

band.  The participant was instructed to dorsiflex against this resistance at a level of 50% 

of their MVE, until fatigued.  The level of muscle activity was monitored by the 

participant on a video monitor placed in their visual field.  

(a) (b)  
Figure 19. The fatigue apparatus, which consisted of a resistive rubber band with a hook at each end, 

was attached to the steel grid.  Local muscle fatigue (LMF) of the tibialis anterior (TA) was achieved 

through isometric dorsiflexion against the rubber band. 

 During the fatiguing condition, the frequency and amplitude of the TA‟s EMG 

signal were monitored online by the investigator.  A decrease in MPF of at least 15% has 

been shown to be indicative of fatigue (Ament, Bonga, Hof & Verkerke, 1993); however, 

previous studies in our lab employing this measure have found drops much greater than 

15% during this protocol (Flynn et al., 2004; Holmes & Andrews, 2006).  Fatigue was 

also indicated by the inability of participants to maintain 50% MVE, and by muscle 

trembling and an inability to maintain ankle joint angle (Holmes & Andrews, 2006).  A 

Fast Fourier Transform Function was used to obtain the frequency characteristics of the 

signal, and the MPF was assessed in real time and presented visually to the investigator 
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on a computer monitor.  The drop in MPF was later calculated using a four-point moving 

average of the start and end values of MPF.  When fatigue was achieved, the fatigue 

apparatus was removed as quickly as possible (within ten seconds) from the pendulum 

apparatus and the fatigued impacts were performed.  

3.5 Data Analysis 

 Custom designed LabVIEW® software (Version 8.6, National Instruments, 

Austin, Texas) was used to acquire and process all collected data, and then raw data were 

output to Microsoft Excel 2007® files to be manipulated.  The cutoff frequency for each 

transducer (Table 1) was determined by performing residual analyses by hand (Winter, 

2005) between the filtered and unfiltered signals over a range of cutoff frequencies.   

 Table 1. Filtering specifications used during analysis. 

Transducer Filter Used Cutoff frequency 

(Hz) 

Force plate 4
th
 order Butterworth 115 

Velocity transducer 4
th
 order Butterworth 25 

Accelerometer 4
th
 order Butterworth 125 

Electrogoniometer   Critically damped 5 

EMG 2
nd

 order Butterworth  2.5 

 

Ankle angle at impact rarely matched the target angle exactly.  The amount of 

permissible variation around the target was determined by first plotting the difference 

between the target and actual ankle angle at impact.  It was then estimated, and confirmed 

by counting a significant number of trials, that a variation within 10% of target 

dorsiflexion angle would be used to indicate a „good‟ trial.  The criterion for selecting this 

amount of variation was based on having at least two, if not all three trials, available to 

use for analysis.  
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Knee angle was recorded to ensure that the leg remained straight during impact.  

The knee flexion angle in response to impact (or change in knee joint angle) was 

quantified as the difference between the knee angle at impact and the peak deflection of 

the knee angle curve following impact.    

A custom LabVIEW® program was written to detect the point at which impact 

occurred in the force plate and accelerometer signals. Each signal was visually checked to 

verify the accuracy of impact determination by the program.  The following dependent 

variables were then manually extracted from the filtered curves using Microsoft Excel 

2007®: peak force, velocity at impact, ankle angle at impact, change in knee angle, PA, 

TPA, and AS, and placed in a spreadsheet to prepare for statistical analysis.  

 To determine the percent drop in TA mean power frequency (MPF), as a measure 

of fatigue, the MPF signal was graphed using Microsoft Excel 2007®, and a linear trend 

line was applied through the data that demonstrated a decrease in MPF.  The equation of 

the line was used to determine the start and end values for the MPF signal.  The y-

intercept was used as the MPF start value, while the x-value was calculated using the 

sample point at which the MPF stopped decreasing.  This sample point was selected 

visually as the point on the line graph at which MPF stopped decreasing.  The point of 

interest was then confirmed by scanning the data set to determine the exact point in time 

at which MPF stopped decreasing.  The difference between these points was used to 

calculate the percent drop in MPF.   

The scaled photograph of each participant‟s leg was digitized.  Digitization points 

were applied in Microsoft Powerpoint 2007®, saved in the „.gif‟ format, and opened in  
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Windows Vista Paint Application®.  Using the drawing tool, coordinates were 

given when the tip was at the centre of the digitization point.  Coordinates were converted 

from pixels to metres using a scale ruler taken in the photograph (Figure 20).  This 

digitization allowed coordinates for the heel, toe (TTIP), ankle joint centre (AJC), and 

knee joint centre (KJC) to be determined, which were then input into the model (see 

below) as anthropometric factors.  Coordinates for the centre of mass (COM) and radius 

of gyration (ROG) were calculated, based on de Leva‟s (1996) adjusted segment 

parameters. 

 

Figure 20. Free body diagram of the foot, oriented as the participant is lying on the pendulum in the 

supine position.  Forces other than joint reaction forces on the leg (FAx, FAy) are not included, as the 

leg is assumed not to move.  Coordinates for the knee joint centre (KJC), ankle joint centre (AJC), 

and toe (TTIP) were determined by digitization, while the centre of mass (COM) and radius of 

gyration were calculated using de Leva’s (1996) segment parameters.  The force applied by the 

perturbation (Fapp) and the combined forces of the muscles crossing the ankle joint (Fmuscle not shown) 

contribute to the moment about the ankle (MoAnkle), which represent both the joint reaction moment 

and the EMG-derived moment, after the perturbation.  

The sEMG data were filtered using LabVIEW® software, and the mean EMG 

value of each of the three time periods of interest (see below) were placed in a Microsoft 

Excel 2007® spreadsheet to prepare for statistical analysis.  
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Joint rotational stiffness of the ankle (AJRS) was obtained from the JRS model by 

Cort and Potvin (2008) (Figure 21).  Custom LabVIEW® software provided the 

necessary calculations to determine the individual muscle contributions to JRS (MRJS), 

which when summed, provided the AJRS in the sagittal plane.   

 

Figure 21. Flow diagram illustrating the model from which ankle joint rotational stiffness (AJRS) 

was obtained. Abbreviations from the diagram are as follows: physiological cross-sectional area 

(PCSA), moment arm (MA), muscle length (ℓmusc), EMG-driven moment (MoEMG), joint reaction 

moment (MoJtRxn), electromechanical delay (EMD), ankle joint centre (AJC), knee joint centre (KJC), 

centre of mass (COM), distance from ankle to COM (d), distance from ankle to radius of gyration (r), 

joint rotational stiffness (JRS), and individual muscle JRS (MJRS).                                                                                                                 

(Adapted from Cort & Potvin, 2008) 

The first part of the model, which consisted of the „Leg Skeleton Model,‟ used the 

linked-segment model of the human lower extremity and origin and insertion coordinate 

data of the muscles and tendons of the lower extremity, as defined by Delp et al. (1990). 
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Muscles included in the full Delp et al. (1990) model consisted of those in the anterior 

compartment of the leg: TA, extensor digitorum longus (EDL), extensor hallucis longus 

(EHL), and fibularis tertius (FT), the posterior compartment of the leg: LG, MG, SOL, 

and the lateral component of the leg: FL and fibularis brevis (FB).  Because of their 

common peroneal innervation, and thus common nervous drive, the EMG of the TA was 

used for the EDL and EHL in the model.  However, the model outputs indicated that 

neither the EDL nor the EHL contributed significantly to the AJRS.  The FB and FL share 

a common innervation (superficial fibular nerve), while the FT has a different innervation 

(deep fibular nerve).  The EMG activity of the FB was thus taken from the most lateral of 

the three muscles, the FL, while no EMG data were available for the FT.  Results of the 

model also indicated that the FB did not contribute significantly. The Delp et al. (1990) 

model provided the lines of action of the musculotendonous structures in relation to the 

joints of the lower extremity.  It also allowed changes in musculoskeletal geometry to be 

biomechanically assessed, as musculoskeletal geometry determined the length of the 

musculotendinous unit (i.e. distance from origin to insertion).  The inputs to the Leg 

Skeleton Model allowed muscle lengths (ℓmusc) and moment arms (MA) of the muscles 

crossing the ankle joint to be calculated. 

 The external moment calculation required the joint angle time history as input, 

which was double differentiated using the central difference method, and then filtered, to 

produce the angular acceleration (α) of the foot about the COM.  The moment of inertia 

(Iankle) of the foot about the ankle, based on de Leva‟s (1996) segment inertia parameters, 

was then used with the angular acceleration to calculate the external moment (Mo = I*α).  

Due to the straight-legged orientation of the human pendulum, the knee joint was 
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assumed to be stationary at impact, and thus any slight motion of the knee that was 

measured by the other electroniometer was not incorporated into the model.  Once 

acceleration due to gravity was incorporated, the calculation dictated force production and 

the resulting required moment about a joint (MoJtRxn). 

 Using the calculated ℓmusc and MA data, the processed EMG data from the 

muscles crossing the ankle, and the muscle physiological cross-sectional area (PCSA) and 

pennation angle corrections (Delp et al., 1990), the „EMG to Force Model‟ provided an 

EMG-based moment (MoEMG) and the instantaneous MJRS values for each muscle, which 

when summed produces the AJRS.  PCSA is the area of a transverse section of muscle 

and reflects its ability to generate muscle force.  The pennation angle dictates the line of 

action and direction in which a muscle generates force, and must be accounted for when 

describing force output of a muscle.  Typically, a greater pennation angle results in a 

greater PCSA, and therefore higher force production.  The MoEMG curve was calculated, 

which then allowed a comparison between the internal and external joint moments.  The 

MoEMG counteracted the MoJtRxn, as shown by the muscles crossing the ankle joint (Figure 

9), creating a moment equal in magnitude and opposite in direction to that generated by 

the joint reaction to external factors.  The goal of this step was to match the MoEMG to the 

MoJtRxn curve to show that the moment achieved internally (MoEMG) matched what was 

being seen externally (MoJtRxn) (Figure 22).  
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Figure 22. A typical trial of where the EMG-based moment (MoEMG) was matched to the joint 

reaction moment (MoJtRxn) curve using gain factors for both magnitude and in time.  An average gain 

factor for each participant was used to match the magnitude of the two curves, while an individual 

gain factor was used to match the temporal aspect of the two curves.  Baseline (BL), pre-impact 

(PRE) and post-impact (POST) time periods are labeled.  

In order to compare the MoEMG and MoJtRxn curves, the MoEMG had to be gained  

(the application of an average ratio of the signal output to the signal input) both in time 

and magnitude to match the MoJtRxn curve as closely as possible.  The MoEMG was treated 

with an electromechanical delay (EMD) factor in order to align the two curves in time.  

EMD is the delay between the brain‟s signal for the muscle to contract and the 

development of muscle tension and is known to vary between different muscles.  The 

EMG to Force Model (Figure 21) incorporated nine different muscles, crossing the ankle 

joint, each with its own EMD.  Due to the varying contributions of each muscle across 

ankle angles and fatigue conditions, the EMD changed with each trial.  Correlation 
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analysis revealed that using an individual EMD for each trial (r = 0.60 (0.13)) provided a 

better representation of the matching of the MoEMG and MoJtRxn curves than using a mean 

EMD for all trials (r = 0.36 (0.23)) of a participant.  The MoEMG curve was also treated 

with a gain factor to match its magnitude to that of the MoJtRxn curve as closely as 

possible.  An average gain factor for each participant was used in this case (as a function 

of PCSA), because the gain factor is based on the maximum output of tension possible for 

the muscles involved, which is a constant value within a person.   

The pendulum impacts controlled many aspects of the applied perturbation, 

including joint orientation, velocity, and force of impact.  However, the ability of the 

participant to maintain the same joint position and muscle activation for every trial, as 

instructed, was limited.  When comparing the MoEMG to the MoJtRxn curves in the EMG to 

Force Model, it was obvious that some participants were not capable of activating their 

leg musculature in the same way for every impact.  This in turn led to inconsistency in 

terms of how the MoEMG and MoJtRxn curves matched in time and amplitude.  For this 

reason, one trial was chosen as a best representation of the MoEMG matching the MoJtRxn 

in order to generate one JRS value during each time period for every combination of 

fatigue and ankle angle conditions. 

 After filtering, the data were clipped into 400 ms intervals and normalized to the 

time of impact.  This was done to decrease the time needed to process the signals.  After 

the data were run through the model, they were then trimmed into the three time periods 

of interest surrounding impact (totaling 250 ms): -150 ms to -50 ms (baseline), -50 ms to 

0 ms, or impact (pre-activation), and 0 ms to +100 ms (post-impact).  These windows 

were chosen because 50 ms prior to impact has been shown to be the period where pre-
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activation, or muscle tuning, occurs (Wakeling et al., 2001), and 100 ms after impact was 

the average period of time for the tibial acceleration waveform to return to baseline.  

After the temporal gain was calculated to account for EMD using the entire curve, data 

were output based on the 250 ms samples of interest, and an appropriate gain factor was 

assigned to match the MoEMG to the MoJtRxn curve both in time and magnitude.  Resulting 

MJRS and AJRS outputs were used for statistical analysis.  

 There were three other dependent variables that were obtained from the 

accelerometer data, which enabled the relationship between the ankle JRS (AJRS) and 

tibial response during impact to be quantified.  The measures of peak acceleration (PA), 

time to peak acceleration (TPA), and acceleration slope (AS) were obtained, using 

LabVIEW® software, from the shank acceleration waveform.  AS was measured from the 

linear portion of the acceleration waveform, recorded by the accelerometer at the tibial 

tuberosity, between 30%-70% of the rise in the amplitude between onset and peak 

acceleration (Duquette and Andrews, 2010a, b; Holmes &Andrews, 2006) (Figure 2). 

3.6 Study Design 

 The dependent variables for this study were: peak acceleration (PA), time to peak 

acceleration (TPA), acceleration slope (AS), each individual muscles‟ contribution to JRS 

(MJRS), including LG, MG, SOL, FL, and TA, and the AJRS (calculated as the sum of 

the MJRS values).  There was one between-participant variable (sex), consisting of two 

levels (female and male) and two within-participant variables: fatigue level (non-fatigue 

and fatigue) and dorsiflexion angle (0%, 20%, 40%, and 60% MDA).  The study design is 

illustrated in Table 2. 
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Table 2. Study design consists of one between-participant variable (sex: female/male) and two within- 

participant variables (fatigue: non-fatigue/fatigue and dorsiflexion angle: 0%, 20%, 40%, and 60% 

of maximum dorsiflexion angle (MDA)). 

 Within-Participant Variables: 

Fatigue (Non-Fatigue/Fatigue) 

Dorsiflexion Angle (% Maximum Dorsiflexion Angle) 

Non-Fatigue Fatigue 

Dorsiflexion Angle Dorsiflexion Angle 

Between-Participant 

Variable: Sex (M/F) 
0% 20% 40% 60% 0% 20% 40% 60% 

Female         

Male         

3.7 Statistical Analysis 

Independent t-tests for age, height, mass, body mass index (BMI), foot segment 

length, maximum dorsiflexion angle (MDA) and weekly mileage were performed to 

determine if there were any differences in participant details between the sexes.   

 Impact trials were considered acceptable if the ankle angle at impact was within 

10% of the target angle.  Trials were excluded from analysis if they were found to be 

more than two standard deviations from the group mean value for ankle angle across all 

trials under the specific experimental condition.   Missing data were filled by group mean 

substitution.   

 The value of PA, AS, and TPA associated with the trial selected in the JRS model 

was used for all analyses of tibial response variables.  A repeated measures ANOVA (2 x 

2 x 4: sex x fatigue level x ankle angle) was performed to detect any significant 

differences.   The same repeated measures ANOVA was used to analyze knee angle data.  

The value of EMG for the LG, MG, SOL, FL, and TA associated with the trial selected in 

the JRS model was used to analyze the muscle activation in three time periods around the 

impact (baseline, pre-impact and post-impact).  A mixed ANOVA (2 x 2 x 3 x 4: sex x 

fatigue level x time period x ankle angle) was performed to detect any significant 
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differences.  The same design was used to analyze AJRS and MJRS for each muscle.  

Alpha (α) was set at 0.05 for all comparisons.  Any interactions arising from the ANOVA 

tests had to account for at least 1% of the total variance to be included in further analyses 

(Keppel, 1982).  Tukey‟s HSD post hoc tests were performed on significant main effects 

and interactions. 

 Pearson product-moment correlations were performed between the overall AJRS 

values at baseline (-150 ms to -50 ms), pre-impact (-50 ms to impact), and after impact 

(impact to 100 ms), with each TRP (PA, AS, and TPA), to determine the magnitude and 

direction of the relationship between these variables as dorsiflexion angle increased.  

Relationships were classified according to the guidelines suggested by Cohen (1988) 

(Table 3).  The correlation coefficient obtained was then squared (r
2
=coefficient of 

determination) to quantify the amount of variance shared between the variables.  This was 

performed separately for both the non-fatigue and fatigue conditions and for both male 

and female participants.  In addition, correlation coefficients were calculated across time 

periods, while collapsing both across sex and then across fatigue.   

Table 3. Relationship classification based on correlation coefficient magnitude (effect size).  (Cohen, 

1988). 

Relationship 

Classification 

Negative Positive 

None -0.09 to 0.0 0.00 to 0.09 

Small -0.3 to -0.1 0.1 to 0.3 

Medium -0.5 to -0.3 0.3 to 0.5 

Large -1.0 to -0.5 0.5 to 1.0 
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CHAPTER IV 

RESULTS 

4.1 Participant Details 

Male and female participants differed on average in three of the eight personal 

variables evaluated.  Male participants (n=15) had significantly greater body mass [t (24) 

= -4.071, p < 0.05], height [t (24) = -3.879, p < 0.05], and foot length [t (24) = -3.066, p < 

0.05] than females (n=11).  The groups were statistically similar for all other personal 

variables (Table 4).   

Table 4. Mean (SD) participant details (n = 26). * p < 0.05 

Sex 
# of 

participants 

Age 

(years) 

Mass 

(kg) 

Height 

(m) 

Body 

Mass 

Index 

(kg/m
2
) 

Foot 

segment 

length 

(cm) 

km run 

per week 

(km/wk) 

Max 

dorsi-

flexion 

(deg) 

Female 11 
22.0 

(2.9) 

57.0* 

(6.3) 

1.66* 

(0.05) 

20.6 

(1.9) 

14.8* 

(0.7) 

38.0 

(12.9) 

15.6 

(2.9) 

Male 15 
23.3 

(3.4) 

66.6* 

(5.7) 

1.76* 

(0.07) 

21.5 

(1.6) 

15.7* 

(0.8) 

33.7 

(13.2) 

17.1 

(3.8) 

Overall 26 
22.7 

(3.2) 

62.5 

(7.6) 

1.72 

(0.08) 

21.1 

(1.7) 

15.3 

(0.9) 

35.5 

(13.0) 

16.5 

(3.4) 

 

4.2 Impact Parameters 

Impact force and velocity were controlled to create impact conditions that were as 

similar as possible across participants.   Mean (SD) impact force for all participants was 

2.2 (0.3) times body weight (BW), falling within the target range of 1.8 – 2.8 BW.   The 

mean (SD) impact velocity was 1.03 (0.04) ms
-1

.  Only two participants had mean impact 

velocities (0.97 (0.01) ms
-1 

and 0.96 (0.02) ms
-1

) that fell outside the target range of 

between1.00 ms
-1 

and 1.15 ms
-1

.    
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Participants were generally able to successfully impact the force plate within 10% 

of the target ankle angle, with only two participants missing data for two trials each over 

the entire study sample.  These missing data were given the group mean value for the 

corresponding condition.  Ankle angle at impact varied between participants as a percent 

of their maximum dorsiflexion angle (MDA).  A significant main effect for ankle angle 

[F (3, 75) = 477.242, p < 0.05] indicated that a 20% increase in targeted dorsiflexion 

angle corresponded with an increase in actual ankle angle between 2.0 degrees and 4.4 

degrees across participants (Figure 23).   

 

Figure 23. Mean (SD) ankle angle as a function of targeted dorsiflexion angle (% of maximum 

dorsiflexion angle).  Mean ankle angles at all target angles were found to be significantly different 

from one another (n = 26). * p < 0.05 
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(1.9) degrees across participants at impact.  No significant differences for knee angle 

were revealed between male and females participants, therefore, the knee angle data were 

collapsed across sex.  No significant main effects were found for either fatigue or ankle 

angle.   

4.3 Tibial Response 

In the current study, no significant main effects of sex were found for tibial 

response variables (PA, TPA, AS).  Therefore, tibial response variables were collapsed 

across sex, and a 2-way repeated measures ANOVA (2 x 4: fatigue x ankle angle) was 

performed for each dependent variable. 

4.3.1 Peak Acceleration (PA) 

A significant main effect was revealed for ankle angle at impact [F (3, 75) = 

6.139, p < 0.05], such that PA was generally found to decrease as dorsiflexion angle 

increased (Figure 24).  
  * 



73 

 

 

Figure 24. Mean (SD) peak acceleration as a function of targeted dorsiflexion angle (% of maximum 

dorsiflexion angle) (n = 26).  * p < 0.05 

4.3.2 Time to Peak Acceleration (TPA) 

Mean TPA values did not vary significantly across ankle angles and between the 

fatigue conditions.  The range of values for TPA was 15.8 – 20.3 ms across conditions.  

No significant main effects or interactions were revealed.  

4.3.3 Acceleration Slope (AS) 

Similar to TPA, no significant main effects or interactions were revealed for AS 

values across all levels of ankle angle or between fatigue conditions.  The range of values 

for AS was 857 – 1243 g/s across conditions.   
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4.4 Fatigue 

4.4.1 Time to Fatigue and Mean Power Frequency 

No significant differences were found between sexes for TTF or MPF values.  The 

overall mean TTF across all participants was 57.6 (14.0) seconds and the average percent 

drop in MPF was 26.1 (6.9) percent (Table 5).  One participant was removed from this 

analysis because his z-score for percent drop in MPF was 2.74 standard deviations below 

the mean.  Although he only displayed a 2.7% drop in MPF, his TTF was 71.2 seconds 

and he exhibited all other signs of fatigue.  The MPF trace for this participant was highly 

variable and an initial stable baseline could not be established.  Consequently, the percent 

drop in MPF could not be determined.  The overall average EMG data for TA across all 

ankle angles of this participant was slightly higher (25.7 (12.4) % MVE) than the average 

of all other participants (16.5 (9.7) % MVE), but was not outlying; they were therefore 

not removed from further EMG analyses.  

Table 5. Mean (SD) values for TTF and MPF (n = 25). 

Sex # of participants TTF (seconds) Drop in MPF (%) 

Female 11 62.9 (11.7) 25.1 (5.7) 

Male 14 53.5 (14.7) 26.9 (7.9) 

Overall 25 57.6 (14.0) 26.1 (6.9) 

 

4.5 Electromyography (EMG)  

Significant main effects of sex, time period, fatigue, and ankle angle at impact on 

EMG were revealed from the statistical analysis.  Main effects were subjected to post-hoc 

analysis, as none of the following interactions accounted for at least 1% of the variance: 

TA (time and ankle angle [F(6,144) = 18.673, p < 0.05 (ω2
 = 0.006)]), LG (ankle angle 

and sex [F(3,72) = 3.625, p < 0.05 (ω2 
= 0.0009)], time and ankle angle [F(6,144) = 
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3.913, p < 0.05 (ω2
 = 0.002)]), SOL (time and ankle angle [F(6,144) = 2.883, p < 0.05 (ω2

 

= 0.002)]), FL (time and ankle angle [F(6,144) = 14.669, p < 0.05 (ω2
 = 0.005)], and 

fatigue and ankle angle [F(3,72) = 2.935, p < 0.05 (ω2
 = 0.001)]).   

4.5.1 Main Effect of Sex 

The mean EMG over all time periods was greater for females than for males for 

all muscles evaluated, but differences between the sexes were only significant for two 

muscles, LG [F(1,24) = 15.183, p < 0.05] and FL [F(1,24) = 18.884, p < 0.05] (Figure 

25).  The percent difference in EMG for the LG and FL was 52.1% and 53.5% greater for 

females than for males, respectively. 

 

 

Figure 25. Main effect of sex for EMG (n = 26). * p < 0.05 
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4.5.2 Main Effect of Time Period 

 The mean EMG increased for all muscles between baseline and pre-impact 

periods on average, but significant main effects for time period were only found for the 

TA [F(2,48) = 10.275, p < 0.05], LG [F(2,48) = 6.817, p < 0.05], MG [F(2,48) = 4.960, p 

< 0.05], and SOL [F(2,48) = 7.057, p < 0.05] (Figure 26).  Muscle activation of the 

plantarflexors increased significantly by a percent difference of 10.8% for the LG, 31.8% 

for the MG, and 22.6% for the SOL, but not for TA (dorsiflexor) between the baseline 

and pre-impact periods.  Significant decreases were seen compared to post-impact for the 

TA between both the baseline (11.1 % difference) and pre-impact (17.5 % difference).  

Between the baseline and post-impact conditions, significant increases in mean EMG 

were seen for the LG (11.6 % difference) and SOL (27.2 % difference).  

 
 

Figure 26. Main effect of time period for EMG. Average EMG was measured for each muscle at 

baseline (BL), pre-impact (PRE), and post-impact (POST) intervals (n = 26).  * p < 0.05 
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4.5.3 Main Effect of Fatigue 

 After the fatigue protocol, the mean EMG amplitude decreased for all muscles.  

However, significant decreases were only seen for TA [F(1,24) = 13.016, p < 0.05], SOL 

[F(1,24) = 7.455, p < 0.05], and FL [F(1,24) = 10.197, p < 0.05] (Figure 27).  EMG 

activity decreased by a percent difference of 18.5%, 11.7%, and 10.7% for TA, SOL and 

FL, respectively.   

 

Figure 27. Main effect of fatigue for EMG. Average EMG was measured for each muscle in the non-

fatigue (NF) and fatigue (F) conditions (n = 26). * p < 0.05 
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angle increased between the following pairs: 0%/40%, 0%/60%, 20%/40%, 20%/60%, 

40%/60%.  The LG exhibited an increase in EMG activity from 0% to 40% MDA (4.8% 

difference) and 0% to 60% MDA (6.4% difference).   Also, the % MVE for the MG 

decreased by 35.6% between 0% and 40% MDA.  Overall, main effects for ankle angle 

were revealed for the TA [F(3,72) = 89.547, p < 0.05], MG [F(3,72) = 5.387, p < 0.05], 

SOL [F(3,72) = 2.811, p < 0.05], and FL [F(3,72) = 24.143, p < 0.05] (Figure 28).    

 

Figure 28. Main effect of ankle angle for EMG. Average EMG was measured for each muscle at 0%, 

20%, 40%, and 60% of maximum dorsiflexion angle (n = 26). * p < 0.05 
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effects or interactions for sex, time, fatigue, and ankle angle took place.  A significant 

interaction that accounted for more than 1% of the variance (ω
2
 > 0.01)

 
 in JRS was found 

for time and ankle angle for the TA [F(6,144) = 26.503, p < 0.05 (ω
2
 = 0.02)].  Because 

time and ankle angle were incorporated into a higher-order interaction, post-hoc analysis 

was not performed on their main effects (see below).  Additional interactions were found 

for time and ankle angle for the following muscles: LG [F(6,144) = 5.495, p < 0.05(ω
2
 = 

0.003)], MG [F(6,144) = 8.305, p < 0.05 (ω
2
 = 0.002)], SOL [F(6,144) = 9.024, p < 0.05 

(ω
2
 = 0.002)], and FL [F(6,144) = 8.597, p < 0.05 (ω

2
 = 0.003)], and for time and fatigue 

for the MG [F(2,48) = 3.876, p < 0.05 (ω
2
 = 0.0003)], however these interactions did not 

account for more than 1% of the variance, and thus were not subjected to post-hoc testing. 

 

Figure 29. Changes in muscle joint rotational stiffness (MJRS) and ankle joint rotational stiffness 

(AJRS) with time.  Note that the FL and LG appear very close together in the figure, but are 

distinguished by a thin solid line and a large dashed line.  Baseline (BL), pre-impact (PRE) and post-

impact (POST) time periods are labeled.    

0

2

4

6

8

10

12

14

16

18

2

1
8

3
4

5
0

6
6

8
2

9
8

1
1

4

1
3

0

1
4

6

1
6

2

1
7

8

1
9

4

2
1

0

2
2

6

2
4

2

2
5

8

2
7

4

2
9

0

3
0

6

3
2

2

3
3

8

3
5

4

3
7

0

J
R

S
 (

N
m

/r
a

d
)

Time (ms)

Total AJRS

MG MJRS

LG MJRS

TA MJRS

SOL MJRS

FL MJRS

BL PRE POST



80 

 

4.6.1 Main Effect of Sex 

No significant differences in mean MJRS were found between sexes for the 

muscles investigated. 

4.6.2 Main Effect of Fatigue 

 Main effects for fatigue were revealed only for the TA [F(1,24) = 5.440, p < 0.05] 

and the LG [F(1,24) = 5.176, p < 0.05] (Figure 30).  After the fatigue protocol, the mean 

MJRS of the TA significantly decreased by a percent difference of 9.4%, while the MJRS 

of the LG increased by a percent difference of 6.0%.   

 

Figure 30. Main effect of fatigue for MJRS. Average MJRS was measured for each muscle in the non-

fatigue (NF) and fatigue (F) conditions (n = 26). * p < 0.05 
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for the baseline and pre-impact time periods, but at a slower rate for the post-impact 

period (Figure 31).    

 

Figure 31. MJRS interaction between time period and ankle angle for the tibialis anterior (TA).  

Average MJRS was measured for all muscles at baseline (BL), pre-impact (PRE), and post-impact 

(POST) intervals across 0%, 20%, 40%, and 60% of maximum dorsiflexion angle (MDA).  All 

comparisons are significantly different (p < 0.05) except for the following % of maximum dorsiflexion 

pairs: 0% MDA BL/POST and 20% MDA POST/PRE (n = 26). 

4.7 Ankle Joint Rotational Stiffness (AJRS) 

Significant main effects of sex, time period, and fatigue on AJRS were revealed 

from the statistical analysis.  Significant interactions were revealed for time and fatigue 

[F(2,48) = 3.887, p < 0.05 (ω
2
 = 0.0003)] and time and ankle angle [F(6,144) = 2.594, p < 

0.05 (ω
2
 = 0.001)].  However, since neither of the interactions accounted for at least 1% 

of the variance, all main effects were subjected to post-hoc analysis. 
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A main effect was seen for sex [F(1,24) = 4.829, p < 0.05], with the mean overall 

AJRS for males being 35.5% greater than females (Figure 32).   A significant main effect 

for time was also found [F(2,48) = 25.254, p < 0.05], with AJRS increasing by 20.8% on 

average from baseline to pre-impact (Figure 33).  Lastly, a main effect for fatigue was 

revealed [F(1,24) = 6.038, p < 0.05], with mean AJRS decreasing by 7.5% on average 

after the fatigue protocol (Figure 34).  

 
 

Figure 32. Main effect of sex for ankle joint rotational stiffness (AJRS) (n = 26). * p < 0.05 
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Figure 33. Main effect of time period for ankle joint rotational stiffness (AJRS). AJRS was measured 

at baseline (BL), pre-impact (PRE), and post-impact (POST) intervals (n = 26). * p < 0.05 

 
 

Figure 34. Main effect of fatigue for ankle joint rotational stiffness (AJRS). AJRS was measured in 

the non-fatigue (NF) and fatigue (F) conditions (n = 26). * p < 0.05 
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4.7.1 AJRS-Tibial Response Parameter Relationship  

Pearson product-moment correlation coefficient (r) and coefficient of 

determination (r
2
) calculations were performed between the AJRS and TRPs (PA, TPA, 

and AS) across the range of dorsiflexion angles for each of the sexes (male and female) 

and fatigue conditions (non-fatigue and fatigue) for the three time periods of interest 

(Tables 6-8).  Significant correlations were seen for five of 36 conditions.  When 

collapsed across fatigue and sex, no evident trends were revealed across the TRPs, thus 

the coefficients are not presented or described here. 

During the pre-impact time period, both positive and negative relationships were 

revealed, and thus no consistent trend between PA and AJRS was found (Table 6).  By 

contrast, during the post-impact phase, the relationship between PA and AJRS was 

consistently positive and strong, with a near-large effect size (>0.466) found for all 

conditions.  

Table 6. Correlation coefficients and coefficients of determination between peak acceleration (PA) 

and ankle joint rotational stiffness (AJRS) collapsed across a range of 0% to 60% of maximum 

dorsiflexion angle (n = 26). * p < 0.05 

 Correlation Coefficient (r) Coefficient of Determination (r
2
) 

Condition Time Period Time Period 

Fatigue Sex Baseline Pre-

Impact 

Post-

Impact 

Baseline Pre-

Impact 

Post-

Impact 

Non-fatigue Female -0.598 -0.858 0.682 0.357 0.736 0.466 

 Male -0.852 0.417 0.831 0.727 0.174 0.691 

Fatigue Female 0.605 0.985* 0.997* 0.366 0.970 0.994 

 Male -0.461 -0.259 0.801 0.213 0.067 0.642 

 

 The relationship between TPA and AJRS showed more consistent trends in terms 

of direction (Table 7).  At baseline, an overall negative relationship between TPA and 

AJRS can be seen, with a large effect size for three of the four conditions.  During the 
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pre-impact period, a small to medium effect size, along with a nearly consistent negative 

relationship, was revealed between TPA and AJRS.   

Table 7. Correlation coefficient and coefficients of determination between time to peak acceleration 

(TPA) and ankle joint rotational stiffness (AJRS) collapsed across a range of 0% to 60% of maximum 

dorsiflexion angle  (n = 26). * p < 0.05 

 Correlation Coefficient (r) Coefficient of Determination (r
2
) 

Condition Time Period Time Period 

Fatigue Sex Baseline Pre-

Impact 

Post-

Impact 

Baseline Pre-

Impact 

Post-

Impact 

Non-fatigue Female -0.203 -0.584 0.599 0.041 0.341 0.359 

 Male -0.977* 0.118 0.570 0.954 0.014 0.325 

Fatigue Female -0.993* -0.419 -0.580 0.985 0.175 0.337 

 Male -0.890 -0.793 0.265 0.793 0.630 0.070 

 

During the pre-impact and post-impact periods, AS and AJRS demonstrated a 

positive relationship for seven of the eight conditions analyzed (Table 8).  A small effect 

size was generally seen during the pre-impact period, while a medium to large effect size 

was revealed during the post-impact period.   

Table 8. Correlation coefficients and coefficients of determination between acceleration slope (AS) 

and ankle joint rotational stiffness (AJRS) collapsed across a range of 0% to 60% of maximum 

dorsiflexion angle  (n = 26). * p < 0.05 

 Correlation Coefficient (r) Coefficient of Determination (r
2
) 

Condition Time Period Time Period 

Fatigue Sex Baseline Pre-

Impact 

Post-

Impact 

Baseline Pre-

Impact 

Post-

Impact 

Non-fatigue Female -0.369 -0.706 0.626 0.136 0.499 0.392 

 Male -0.824 0.137 0.709 0.678 0.019 0.502 

Fatigue Female 0.991* 0.457 0.615 0.982 0.209 0.378 

 Male -0.104 0.074 0.913 0.011 0.005 0.834 
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CHAPTER V 

DISCUSSION 

5.1 Participant Details 

As expected, male participants exhibited significantly greater body mass, height 

and foot length values than females.  Otherwise, groups were statistically similar for all 

personal variables.   Because of the special criterion for this study (i.e. specific running 

distance per week, which resulted in a physically fit population), it is not surprising that 

participants had similar average values for body mass index (BMI) and weekly running 

distance.  

5.2 Impact Parameters 

The magnitudes of the impact forces (2.2 (0.3) BW) and impact velocities (1.03 

(0.04) ms
-1

) experienced by participants were similar to the values presented by previous 

researchers.  This was expected, given that the same protocol and impact parameter 

targets were utilized in this study (Duquette & Andrews, 2010a; Flynn et al., 2004; 

Holmes & Andrews, 2006; Schinkel-Ivy et al., 2010 in press).    

It has been assumed in past studies that employing a straight-legged orientation 

using a human pendulum restricts the knee from flexion during the impact, due to the 

restrained nature of the apparatus (Duquette & Andrews, 2010a; Flynn et al., 2004; 

Holmes & Andrews, 2006; Schinkel-Ivy et al., 2010 in press).   Knee joint motion was 

limited to an average value of 4.6 (1.9) degrees across all participants and conditions in 

the current study.   This finding shows that the human body will work against physical 

restraint to cushion itself from impact by way of changing the joint orientation (Derrick, 
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2004; Gerritsen et al., 1995; McMahon et al., 1987; Milliron & Cavanagh, 1990).  Given 

the other limitations of the human pendulum (see 2.7.4), and the resolution of the 

electrogoniometer, this relatively small amount of knee flexion is not functionally 

significant in the opinion of the researcher.   

5.3 Tibial Response Parameters (TRPs) 

No sex differences were found for the TRPs.  Although height, mass and foot 

segment lengths were statistically different between the sexes, the participants in this 

study had similar somatotypes and BMI values given the population drawn from.  

However, because body composition was not assessed, it cannot be employed as a reason 

for the similar findings.   

A sheet of ethylene and vinyl acetate (EVA) foam was placed over the force plate 

to simulate the effect of a shod impact condition while maintaining full ankle range of 

motion.  The EVA foam sheet was similar in density to that of a running shoe and acted 

to dampen the impact forces and resulting tibial acceleration values through greater 

deformation of the surface at impact.  Because of the dampened impact, the PA and AS 

values from this study were at the lower end of the range of those previously seen during 

a similar protocol (e.g. Lafortune et al., 1996a), while values for TPA were greater than 

those seen in previous studies as it took longer for the peak acceleration to reach the 

proximal tibia (Table 9). 
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Table 9.  Comparison of the means (SD) of the tibial response parameters in the current study with 

previously reported results. † = Use of time instead of amplitude to calculate acceleration slope. 

Reference Peak Acceleration 

(g) 

Time to Peak 

Acceleration 

(ms) 

Acceleration Slope 

(g/s) 

 NF F NF F NF F 

Current Study 
10.0 (2.0) -

11.5 (2.1) 

10.4 (1.8) - 

11.8 (1.8) 

16.8 (4.0) - 

18.4 (6.6) 

16.8 (4.2) - 

18.1 (5.3) 

879 (274) - 

1106 (408) 

970 (320) - 

1111 (399) 

Duquette & 

Andrews (2010a) 

10.9 (2.5) - 

13.7 (2.4) 

9.5 (2.4) - 

11.8 (3.5) 

9.8 (1.7) - 

10.9 (1.1) 

10.5 (1.4) - 

11.5 (1.8) 

1313 (528) - 

1764 (355)† 

1081 (332) - 

1307 (538)† 

Schinkel-Ivy et al. 

(2010) 

Overall % body fat 

10 (2) - 

10 (4) 
--- 

14 (0.3) - 

14 (0.4) 
--- 

1374 (767) - 

2205 (1003) 
--- 

Holmes & Andrews 

(2006) 

Session 1 

12.1 (1.4) 9.6 (1.7) 9.0 (2.2) 9.4 (2.7) 1703 (549) 1423 (679) 

Holmes & Andrews 

(2006) 

Session 2 

12.7 (1.7) 13.0 (1.8) 8.4 (1.9) 8.9 (2.0) 2095 (801) 1790 (757) 

Flynn et al. (2004) 

Session 1 
13.3 (3.7) 12.1 (3.1) 10.1 (5.0) 10.9 (6.0) 

3067 

(1488)† 

2416 

(1363)† 

Flynn et al. (2004) 

Session 2 

13.2 

(4.5) 

12.0 

(3.5) 

9.7 

(2.0) 

10.2 

(4.0) 

2843 

(1883)† 

2589 

(1759)† 

Lafortune et al. 

(1995) 

6.4 

(0.7) 
--- 

16.1 

(3.0) 
--- 

671 

(220) 
--- 

 

5.3.1 Peak Acceleration (PA) 

Significant decreases were seen in PA as dorsiflexion angle increased.  This result 

was also seen by Duquette and Andrews (2010a); however, no suggestions were offered 

to explain this unexpected trend.  It is thought that altered joint orientation at the ankle 

may explain the reduced PA values in the current study, as it has been found that changes 

in joint orientation affect the transmission of forces through the upper limbs (Burkhart & 

Andrews, 2010; Wake, Hashizume, Nishida, Inoue & Nagayama, 2004).  In addition, 

bone is the primary structure responsible for the transmission of shock waves through the 

body during running (Valiant, 1990), so changes in joint orientation are thought to 

influence force transmission to a major extent. 
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The ankle joint is a hinge joint formed by the articulation of the distal ends of the 

tibia (medial malleolus) and fibula (lateral malleolus) and the talus.  In a standing posture, 

the ankle is oriented with the foot being at 90⁰ to the leg (corresponding to 0% of MDA in 

the current study).  As the dorsiflexion angle increases, there is reduced bony contact 

between these ankle bones.  Less contact between the bones would result in a decreased 

ability of the ankle joint to transmit the shock wave, ultimately resulting in reduced PA at 

the knee.  In support of this concept, when investigating the influence of knee angle on 

the transmission of accelerations through the leg, Potthast, Bruggemann, Lundberg and 

Arndt (2010) found that a more extended knee posture allowed for more bony contact at 

the articulation of the tibia and femur, which consequently led to increased acceleration 

values across the knee joint.    

Studies that employed running shoes or a covered force plate reported overall 

decreased PA values with softer impacting interfaces, which resulted from the force of 

impact being applied over a greater period of time during the deformation of the foam 

(Gerritsen et al., 1995; Lafortune et al., 1996a; Ly et al., 2010).  The results of the current 

study agree with these previous studies in this regard.   

5.3.2 Time to Peak Acceleration (TPA) 

TPA was not significantly altered as a function of the changes in ankle angle or 

fatigue level.  Overall, values for TPA were longer than those typically found in the 

literature; however, in agreement with the current study, Lafortune et al. (1996a) found 

that softer interfaces resulted in longer TPA.  Longer TPAs are consistent with the impact 

force being spread out over a longer amount of time as a result of the EVA foam used in 

the current study.   
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5.3.3 Acceleration Slope (AS) 

Overall, values of AS were at the lower end of the range of those previously found 

in the literature (Table 9).  AS represents the rate of change of acceleration, and is 

associated with how quickly PA is reached.  A greater mean TPA was seen in the current 

study compared to previous work (Table 9), due in part to the EVA foam interface.  It is 

important to note that AS was calculated as the slope of the linear portion of the 

acceleration waveform between 30% and 70% of PA.  Duquette & Andrews (2010b) 

showed that calculating AS based on amplitude instead of the time interval can result in 

AS values that are larger in magnitude.  Therefore, it is important to specify the method 

used for calculating AS so that comparisons between studies are facilitated.  

5.4 Fatigue 

5.4.1 Time to Fatigue and Mean Power Frequency 

The fatiguing protocol used in this study allowed a relationship between MPF and 

fatigue to be established.  MPF was shown to decrease by 26% on average in the current 

study.  Comparable decreases in MPF following similar localized muscle fatigue (LMF) 

protocols have been previously reported in the literature (Duquette & Andrews, 2010a; 

Flynn et al., 2004; Holmes & Andrews, 2006).  In addition, other indicators of fatigue 

were noted including visible changes in ankle joint angle, muscle trembling, groaning, 

and facial expressions of great discomfort.   

Although not statistically significant, female participants had longer TTFs than 

male participants (62.9 (11.7) s vs. 53.5 (14.7) s).  Hunter and Enoka (2001) found that 

females were able to exhibit longer endurance times (by 118%) over their male 
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counterparts; a difference that was replicated exactly in the current study.  EMG activity 

of all muscles evaluated was also found to be greater for females in both of these studies.  

The study by Hunter and Enoka (2001) found that endurance time was inversely related to 

absolute force, and in order to sustain a target force, an increased rate of motor unit 

recruitment was required.  Females have greater endurance times because of their 

decreased muscle mass and inability to generate as much absolute force as compared to 

their stronger male counterparts, who have shorter endurance times. 

5.4.2 Tibial Response to Fatigue 

LMF induced in the TA did not result in the same tibial response as previously 

seen in the literature, as past studies involving LMF have shown decreases in AS with 

fatigue (Table 8).  The results of the current study indicated that the tibial impact 

parameters tested were not significantly different between the non-fatigue and fatigue 

conditions.  Coventry et al. (2006) had similar results in a single-leg impact study, where 

a fatigued leg did not attenuate impact shock waves to a greater extent than a non-

fatigued leg.  Their study, however, used drop landings whereby the ankle, knee and hip 

joint angles could be altered to decrease the overall stiffness of the whole leg (see Section 

2.5.2).  The effect of LMF has typically been found to result in decreased PA, increased 

TPA and decreased AS values (Flynn et al., 2004; Holmes & Andrews, 2006), even when 

controlling for ankle angle (Duquette & Andrews, 2010a).  In the current study, no such 

trends between non-fatigue and fatigue conditions were found, however a couple of 

reasons should be considered.   

The lack of difference between the non-fatigue and fatigue conditions could first  

be due to the fact that the aforementioned studies used various populations of participants 
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including younger and older adults (Flynn et al., 2004) and those that were described as 

right-leg dominant, and healthy (Duquette & Andrews, 2010a; Holmes & Andrews, 

2006).  It is proposed that, since recreationally trained runners were used in this study, 

perhaps the effect of running training influenced the fatigue response of the tibia to 

impacts in a different way than previously studied populations.  It has been hypothesized 

(Flynn et al., 2004; Holmes & Andrews, 2006) that a decrease in PA and AS and an 

increase in TPA are due to increased shock dissipation capabilities of the TA in a fatigued 

state.  In the current study, although it was not found to be statistically significant, the 

MJRS of the plantarflexors (LG, MG, and SOL) were found, on average, to increase after 

the fatigue protocol.  The plantarflexors are a very large muscle group relative to the 

dorsiflexor action of the TA, and even a non-significant increase in MJRS from the 

plantarflexors may have been enough to compensate for the reduced MJRS and force- 

generating capability of the TA after fatigue.   This would suggest that the ability of the 

plantarflexor group to compensate for the shock-dissipating effect of a fatigued TA 

during fatigued running is a strategy to maintain AJRS used by recreational runners.   It is 

proposed that the AJRS has a significant role in determining shock propagation up the 

leg.  The idea of maintaining AJRS is proposed to balance the stiffness requirements for 

preventing injury (i.e. maintaining a safe ankle range of motion) and improving 

running/jumping performance (i.e. a stiffer joint will return more energy and allow for 

faster running/higher jumping) (Kubo et al., 2000).   

Another possible reason for why no apparent fatigue effects were found is that 

fatigue was not experienced during all impacts in the fatigue condition.  On average, 

participants were subjected to approximately 16 impact trials in the fatigued condition 
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after the fatiguing protocol in order to get 12 trials that had impact parameters (impact 

force and velocity) that fell within the proscribed ranges.  Although participants had to 

dorsiflex during most of these impacts, which would help to extend the fatigue effect after 

the fatiguing protocol, the fatigue effect may have diminished in some participants due to 

the length of time taken to complete these trials.  The training of the population studied 

may have also provided them with the ability to recover from fatigue at a faster rate than 

the previously studied populations.  This could be why no significant changes between 

fatigue conditions were found for the tibial acceleration parameters in the current study.  

To verify this, future work should investigate the effect of LMF on tibial response to 

isolated impacts in trained vs. untrained populations.  To ensure that fatigue actually 

decreased over this time period, MPF could be monitored in the fatigued state.   

5.5 Electromyography (EMG)  

5.5.1 Main Effect of Sex 

Female participants exhibited greater mean EMG values than male participants for 

all muscles investigated.  On average, females have less muscle mass than males, which 

would result in less muscle force contributing to the ankle joint rotational stiffness 

(AJRS).  If a minimum AJRS (as an absolute or relative value) is required to prevent 

injury, then it is a logical finding that females would have to exhibit greater % MVE to 

generate enough force to obtain the same AJRS values as men, due to their smaller 

musculature.  Of the five muscle groups investigated, it was found that the LG and FL 

muscles were the only muscles that differed significantly between sexes.  The percent 
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difference in % MVE was more than 50% greater for females than males for both of these 

muscles.   

5.5.2 Main Effect of Time Period 

 EMG activity increased from baseline to pre-impact for all muscles monitored. 

However, this increase was only significant for the plantarflexors of the superficial 

posterior compartment of the leg (LG, MG and SOL).  The increase in EMG activity prior 

to impact suggests that the muscles of the lower extremity are experiencing pre-

activation, or muscle tuning (Wakeling et al. 2003; Wakeling & Nigg, 2001b; Wakeling 

et al., 2001), in anticipation of the impact.  The TA (dorsiflexor) did not exhibit the 

muscle tuning effect, which could be due to its voluntary involvement in maintaining a 

target dorsiflexion angle prior to impact.   

5.5.3 Main Effect of Fatigue 

 Decreases in EMG were seen for all muscles after the fatigue protocol, however 

significant decreases were revealed only for the TA, FL, and SOL.  Since the TA is the 

primary dorsiflexor, after the fatigue protocol it would have been less capable of firing at 

the same rate as pre-fatigue (Winter, 2005).  Also, the FL appeared to be activated to a 

high % MVE during dorsiflexion.  It may be that FL was activated this extent to prevent 

inversion of the foot during dorsiflexion at impact.  SOL may have demonstrated a 

reduction in EMG after the fatigue protocol because during the fatiguing it may have been 

co-contracting in order to serve as a stabilizing muscle against the TA contraction. 
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5.5.4 Main Effect of Ankle Angle at Impact  

 The EMG of the TA and FL increased for every increase in targeted dorsiflexion 

angle.  In order to increase the % of MDA, the TA was required to increase its activation 

to produce dorsiflexion (TA) at the ankle.  The TA is the primary dorsiflexor, and thus an 

increase in % MVE with each 20% increase in MDA is expected.  The FL exhibited an 

increase in % MVE with increased dorsiflexion as well.  This is probably due to the 

eversion action that was observed to prevent inversion of the foot during dorsiflexion at 

impact. 

5.6 Individual Muscles’ Contribution to Joint Rotational Stiffness (MJRS) 

5.6.1 Main Effect of Sex 

No significant differences in MJRS were found between the sexes for the muscles 

investigated.  Thus, the muscles that contributed to AJRS, contributed in the same 

proportions regardless of sex. 

5.6.2 Main Effect of Fatigue 

 After fatiguing the TA, its contribution to AJRS significantly decreased by 9.4%.  

In contrast, the MJRS of the LG significantly increased by 6.0% after fatigue.  Given this 

apparent tradeoff, it may be that the two muscles were working together to balance each 

other‟s contributions, in order to maintain a consistent level of AJRS.  A minimum 

amount of AJRS may be required to prevent damage to the ankle joint at impact.  The 

MG, SOL and FL also remained consistent in their contributions to AJRS, supporting the 

notion that there may be an optimal amount of AJRS that must be maintained as an injury 

prevention strategy.  
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5.6.3 Time Period-Ankle Angle Interaction for Tibialis Anterior 

 A significant interaction was revealed between time period and ankle angle for the 

TA.  During the baseline and pre-impact periods, the MJRS of the TA increased in a 

similar manner, while during the post-impact period the MJRS of the TA increased at a 

slower rate.  Even though there was a similar trend in increasing the TA MJRS with ankle 

angle for all time periods, this interaction suggests that after the impact, the TA 

contributed less to the AJRS, compared to the baseline and pre-impact time periods.   

The current study was not particularly interested in the post-impact reaction of the 

ankle to impact and did not have participants control their ankle angle after the heel 

impact.  This lack of control over ankle angle after impact could have lead to differences 

in AJRS after impact.  Therefore, this interaction was not functionally relevant to the 

current analysis.   

5.7 Ankle Joint Rotational Stiffness (AJRS) 

Overall, the AJRS for males was 35.5% higher than for females.  It was 

hypothesized (Hypothesis 4) that males would exhibit greater MJRS and AJRS prior to 

and after fatigue, compared to females.  Although MJRS of the individual muscles 

investigated (as a percent contribution to AJRS) did not differ between the sexes, males 

were found to have significantly greater overall AJRS values than females.  No 

significant interaction was found for sex and fatigue, nor did the TTF differ significantly 

between the sexes, indicating that males and females fatigued at similar rates.  

Increased EMG activity in females resulted in increased active stiffness of the leg 

muscles.  The increased muscle activity in females might have helped to compensate for 

their lower muscle mass, although muscle mass was not quantified in the current study.  
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Greater force output and PCSA have been observed in males compared to females for 

muscles of the lower extremities (Staron et al., 2000).  Therefore, the greater force 

capacity as a function of greater muscle mass likely plays an important role in the active 

resistive capabilities of the musculotendinous unit.  Because participants were not 

matched for muscle mass in this study, it would not be possible to comment on any sex 

differences found for structural stiffness.  Blackburn et al. (2006) found differences in the 

structural stiffness values of the triceps surae muscles (SOL, MG, and LG) between 

sexes, while controlling for anthropometric measurements.  In order to determine if sex 

differences do exist, male and female participants would have to have the same PCSA for 

the muscles crossing the ankle joint, in addition to other similar anthropometric 

measurements.   

 It was found that AJRS increased significantly between baseline and pre-impact 

and between baseline and post-impact.  An increase in AJRS prior to impact supports the 

idea that the muscles of the leg are tuned in response to the impending impact (Wakeling 

et al. 2003; Wakeling & Nigg, 2001b; Wakeling et al., 2001).  Also, it supports the idea 

that the ankle joint must have a minimum amount of AJRS to optimize joint stability and 

prevent injury at impact (Butler et al., 2003; Granata et al., 2002; McMahon & Cheng, 

1990).   

 It was hypothesized (Hypothesis 3) that AJRS would decrease when TA was 

fatigued.  This was supported by the results, as AJRS decreased by 7.5% on average.  

With the onset of fatigue, the force-generating capacity of a muscle is reduced (Kent-

Braun et al., 2002), and thus, the muscles contributing to AJRS would have reduced their 

ability to maintain the AJRS established in the non-fatigue state.  This may have 
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implications in terms of the susceptibility to injury, as the ankle joint appears to be less 

stable in a fatigued state.   

 The force plate used in the current study was covered with a sheet of EVA foam 

similar to that used in running shoe construction.  Researchers agree that leg stiffness is 

adjusted to the impacting conditions, in order to maintain the intensity of the shock wave 

that is allowed to reach the head (Farley & Morgenroth, 1999; Ferris & Farley, 1997; 

Hamill et al., 1995; Shorten & Winslow, 1992).  Consistent with this conclusion, it is 

likely that, if the current study was replicated without foam covering the force plate, the 

magnitudes of the AJRS achieved in absolute terms may not coincide with those 

presented herein. 

5.7.1 AJRS-Tibial Response Parameter Relationship  

It was hypothesized (Hypothesis 1) that there would be a positive relationship 

between AJRS and PA and AS, but a negative relationship with TPA.  The strongest 

relationships between AJRS and the TRPs were expected to be during the pre-impact and 

post-impact time periods, as it is during these times that muscles are preparing themselves 

for the impact and attempting to control their recovery from the impact.  However, based 

on the correlational analyses, a specific time period did not appear to yield the expected 

relationship more consistently than any other.   

Generally speaking, the hypothesized relationships could be seen for all of the 

TRPs, however the time period in which these relationships occurred were not consistent.  

Post-impact, a large effect size for nearly all conditions suggests that after impact, 

increased AJRS is associated with an increase in PA.  It was hypothesized (Hypothesis 1) 

that an increase in AJRS would be positively correlated with PA as dorsiflexion angles 
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increased, because the shock wave would be travelling up a more rigid structure caused 

by the increased TA activation (Pain & Challis, 2002).  During both the baseline and pre-

impact periods, the hypothesized negative relationship (Hypothesis 1) between TPA and 

AJRS was revealed for seven of the eight conditions across fatigue and sex.  As 

hypothesized (Hypothesis 1), a positive relationship between AS and AJRS was revealed 

for the pre-impact and post-impact periods.   

Contrary to past studies (Flynn et al., 2004; Holmes & Andrews, 2006; Duquette 

& Andrews, 2010a), the current study did not find that the fatiguing of the TA resulted in 

an increased ability of the leg to attenuate impact shock.  Thus, the relationship between 

AJRS and the TRPs before and after fatigue could not be analyzed as hypothesized 

(Hypothesis 2). 

5.8 Functional Significance and Application 

 The current study investigated the effect of AJRS and LMF on TRPs across a 

range of ankle angles.  The human body appears to compensate for fatigue to protect the 

joints at impact, which would practically relate to the later phases of running.  An optimal 

level of stiffness has been suggested to exist to balance performance enhancement 

characteristic of increased stiffness (Granata et al., 2002; Kubo et al., 2000) with the 

injury potential (Butler et al., 2003; Granata et al., 2002; McMahon & Cheng, 1990) and 

reduced economy (Dutto & Smith, 2002; Kuitunen et al., 2002; McMahon & Cheng, 

1990; Stefanyshyn & Nigg, 1998) associated with too little stiffness.   

 The current study suggested that when the TA muscle was fatigued and decreased 

its muscle activity and subsequent contribution to AJRS, other leg muscles compensated 

to some degree by increasing their muscle activity.  This strategy could have implications 
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for runners, as injury to any of the leg muscles could seriously affect ankle stability and 

the ability of muscles surrounding the ankle to compensate for altered fatigue states and 

ankle angles.  By identifying the stabilizing potential of individual ankle muscles, 

applications could prove useful in injury prevention and rehabilitation, as strengthening 

treatment and training protocols can be applied to targeted muscles. 

5.9 Limitations and Future Directions 

 The human pendulum method has certain limitations in replicating a running 

impact, as previously described (Section 2.7.4).  Most notably, the horizontal orientation 

and constrained nature of the pendulum reduces the relevance of the results to running.  

However, this method of impact delivery can limit certain external and inter-participant 

sources of variability in kinematic adaptations.  Because the body was restricted from 

responding to impact by changing joint angles (Derrick, 2004; Gerritsen et al., 1995; 

McMahon et al., 1987; Milliron & Cavanagh, 1990), the shock experienced by the body 

may not have been entirely representative of what occurs during running impacts. 

Consequently, if the impact was not entirely representative of running, then relating the 

AJRS to what might be experienced during running lacks some relevance as well.  In 

addition, the fatigue protocol used in this study is not completely representative of the 

fatigue incurred in running.  In this study, fatigue was incurred through an isometric 

contraction at 50 percent of a maximum exertion, and only for a relatively short time.  In 

long distance running, or jogging, fatigue occurs over a longer time interval, and the TA 

is working at a lower percentage of maximum exertion.  Thus, directly applying the 

results of the LMF protocol used in this study to running should be done with some 

consideration.  Regardless of these limitations, it was the goal of the current study to 
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investigate whether the AJRS played a role in describing the effect of fatigue on TRPs, 

while controlling for the effect that ankle angle has on tibial response to impact.  The use 

of a human pendulum to deliver the impacts allowed for kinematic variables to be 

controlled, which is not possible during treadmill running.   

Although the human pendulum method allows for very good control over impact 

conditions, the way in which participants impacted the force plate was not consistent.  

Some participants were observed to consistently „slap‟ their forefoot forward towards the 

force plate after heel contact, while others consistently kept their ankle in a rigid, 

dorsiflexed position after the heel contacted the plate.  The variability with which 

participants struck the plate would have created variability in muscle activation patterns 

and the moment curves produced.  In addition, the small amount of knee flexion 

measured in this study during impact would help to absorb some of the shock wave being 

transmitted through the leg.  Future research using the human pendulum should consider 

controlling, to a greater extent, the postures of the foot and knee at impact.  

Surface EMG (sEMG) is a measure of the activity of a muscle that reaches the 

electrodes that are placed over the muscle. The JRS model employed in this study uses 

the relationship between muscle activity and force output in order to estimate the internal 

EMG moment (MoEMG), to which the external reaction moment (MoJtRxn) is compared.  

The EMG signal is the result of many physiological, anatomical and technical factors that 

cannot all be controlled entirely.  Therefore, EMG only provides an estimate of the force 

produced in the muscle.   

The model used in this study was also limited in terms of its applicability to the 

population being evaluated.  For example, the model used herein was based on 
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anthropometric measurements from cadavers (Delp et al., 1990).  Cadaveric tissues do not 

respond the same way as living tissues and are typically from older populations.  

Consequently, the use of the anatomical muscle origin and insertion data of the lower 

extremity, as well as the three-dimensional path of the muscle movement put forth by 

Delp et al. (1990), could lead to inaccurate values being calculated for the changes in 

muscle lengths and velocities during a perturbation.  Thus, some aspects of the structural 

model are not representative of the young, active sample studied here.   

There were a few other limitations associated with using the JRS model for the 

leg.  The goal of the model is to match the EMG-based moment (MoEMG), as determined 

by the model, to the external joint reaction moment (MoJtRxn) to an applied perturbation, 

as measured by kinematic values.  When modeling the MoEMG, it was apparent that not 

enough EMG data were taken from dorsiflexor muscles, in order to match the MoJtRxn that 

was calculated using kinematic measurements.  The result of this limitation is that the 

gain factor applied to the MoEMG may not have been as accurate as it could have been. 

Only one trial per impact condition was used in the analysis, even though three 

were collected.  This was because some participants were not capable of activating their 

leg musculature consistently for every impact, resulting in a number of incomplete data 

sets. Therefore, the decision was made to analyze only one representative trial within a 

condition in order to increase the number of participants evaluated in the study.   

Although important to maintain the sample size, this reduced the variability of the data, 

and possibility the generalizability of the results.  The impact that this had on the final 

results is thought to be small, given that an analysis involving the calculation of the 

average coefficient of variability (CV=SD/mean*100) was performed on the ankle angle 
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(CV = 14.2%), TRP (CVPA = 8.5%, CVTPA = 7.1%, CVAS = 16.0%), impact parameter 

(CVimpact force = 4.3%, CVimpact velocity = 1.2%), and EMG (CV = 16.4%) data prior to the 

selection of representative trials based on the JRS model output.  The CV values 

calculated for these variables are relatively small in general, indicating that in this study 

taking only one trial is acceptable.    
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CHAPTER VI 

CONCLUSIONS 

Based on the results of the current study, the following conclusions can be made: 

 Consistent relationships between the tibial response parameters (TRPs) and AJRS 

were found for some of the time periods, although the effect size ranged from 

small to large.  Thus, a positive relationship exists between AJRS and PA, as well 

as AJRS and AS.  A negative relationship exists between AJRS and TPA.   

 The soleus (SOL) muscle was the single greatest contributor to AJRS (of the 

individual muscles studied), regardless of the fatigue condition or participant sex.   

 Males exhibited greater AJRS values than females, due to their increased muscle 

mass (assumed and not measured).   

 AJRS decreased following fatigue.  However, because fatigue did not impose the 

expected effect on the TRPs, their relationship with AJRS could not be 

investigated as a function of fatigue. 

 It is proposed that an optimal amount of AJRS is needed when regulating the 

transmission of impact shock.   In addition, it appears that the ankle joint requires 

a minimum amount of AJRS to optimize joint stability and possibly to prevent 

injury resulting from impact.  Changes in muscle contributions to AJRS that were 

observed may be a way of altering shock propagation through the leg in situations 

where changes to segment and joint positions have been restricted (e.g. when 

using the human pendulum). 
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APPENDIX A 

General Health Questionnaire (GHQ) 

Please answer the following questions. 

1. Have you had any prior surgeries to your feet, legs, or back? 

  [ ] YES  [ ] NO 

2. Do you suffer from constant soreness in your feet, legs, or lower back? 

 [ ] YES  [ ] NO 

3. Have you had any recent trauma (spring, strain, major bruising, stitches, etc.) to 

your feet, legs, or lower back? 

 

  [ ] YES  [ ] NO 

4. Do you suffer from arthritis or any congenital abnormalities concerning your feet, 

legs, or lower back? 

 

  [ ] YES  [ ] NO 

5. Do you have any current health conditions that may exclude you from this study 

(i.e. high blood pressure, pregnancy)? 

 

  [ ] YES  [ ] NO 

Please note that this questionnaire will be kept confidential.  If you answered ‘YES’ 

to any of these questions, or if you do not wish to disclose this information, it is your 

right to not answer or withdraw from the study. 
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APPENDIX B 

 

 

 CONSENT TO PARTICIPATE IN RESEARCH 

Title of Study: The Effect of Ankle Joint Rotational Stiffness and Localized Muscle Fatigue on Tibial 

Response During Impact 

You are asked to participate in a research study conducted by Nikki Nolte and Dr. David Andrews, from 

the Department of Kinesiology at the University of Windsor.  The results will be contributed to a master’s 

thesis project.  Funding for this work is provided by NSERC. 

If you have any questions or concerns about the research, please feel to contact Nikki Nolte (519-253-3000 

x2468; nolte@uwindsor.ca); or Dr. David Andrews, Associate Professor, Department of Kinesiology, 

University of Windsor (519-253-3000 x2451; Room 120 Human Kinetics Building; dandrews@uwindsor.ca). 

PURPOSE OF THE STUDY 
The primary purpose of the proposed project is to investigate the relationship between the ankle joint 

rotational stiffness (AJRS) and the shock attenuating ability of the leg upon impacts that are similar in 

magnitude to those seen during running.  

PROCEDURES 
If you volunteer to participate in this study, we would ask you to do the following things: 

 To participate in one testing session, approximately 60-75 minutes in length, in the Biomechanics 
and Ergonomics Laboratory on the second floor in the Human Kinetics Building.  Measurements of 
your weight and height will be recorded during the data collection session, as well as your age and 
weekly running mileage.   

 Your foot length will also be taken using a flexible tape measure.  General health questions will be 
asked to ensure that you have no leg or back injuries or pain that might put you at additional risk 
during the study.  

 Impacts of a magnitude similar to those found during running will be applied to the heel of your right 
foot while you lie on your back on a human pendulum (a lightweight structure similar to a cot, 
suspended from the ceiling by cables).  You will be secured to the apparatus with straps to prevent 
any unwanted movement during testing.  Your foot will be impacted into a wall mounted force 
platform three times at four different ankle angles.   

 Your knee and ankle angles will be monitored using an electrogoniometer that will be attached to 
the skin on the outer side of your knee joint and inner side of your ankle joint using double sided 
tape.  You will be asked to hold the required ankle angle, which will be presented to you on a 
computer screen in your field of view, as you lie on the pendulum.   

 An accelerometer will be placed just below your knee and will be held in place with an elastic strap 
to prevent any movement relative to the underlying skin. 

 Surface electromyography electrodes will be applied to the following muscles: tibialis anterior, 
fibularis longus, medial gastrocnemius, lateral gastrocnemius, and soleus, to monitor each muscle’s 
electrical activity.  Electrodes and accompanying wires will be secured using a cloth-like adhesive 
bandage to prevent any unwanted wire movement.  

 Your tibialis anterior will be fatigued.  This will be done by having you dorsiflex against a provided 
resistance until you are fatigued.  Additional impacts similar to before fatigue will be applied in the 
fatigued state.  
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POTENTIAL RISKS AND DISCOMFORTS 
The impacts that you will experience in this study will be comparable to those encountered during running 

and have been studied in a number of similar projects in the past, without incident.  You may experience 

some mild tenderness in the heel following the testing session; however, this tenderness generally does not 

last longer than a day. Should you require it, you may apply ice to the affected area to help alleviate any 

discomfort you may be experiencing.  If further medical attention is required, you may contact the Green 

Shield Clinic at 519-253-3000 ext. 2426 or Student Health Services at 519-973-7002.  

Minor redness of the skin may occur in the areas located underneath the accelerometer and EMG 

electrodes, which generally disappears within a day following the testing session. 

POTENTIAL BENEFITS TO PARTICIPANTS AND/OR TO SOCIETY 
You will learn about how a biomechanics research study is conducted in the Department of Kinesiology.  

This study considers the response of the leg to impacts similar to running, at a range of dorsiflexion angles.  

Data collected from this study may be used in future studies that model the leg during impacts similar to 

running.  

PAYMENT FOR PARTICIPATION 
You will receive a complimentary Kinesiology Research t-shirt as compensation for your participation. 

CONFIDENTIALITY 
Any information that is obtained in connection with this study and that can be identified with you will remain 

confidential and will be disclosed only with your permission. 

All data from your trials will be number or letter coded so that a third party would be unable to identify 

individual results.  Only the investigators working on the project will have access to the codes associated 

with your trials.  Computer files will be kept on secured computers.   

PARTICIPATION AND WITHDRAWAL 
You can choose whether to be in this study or not.  If you volunteer to be in this study, you may withdraw at 

any time without consequences of any kind.  You may also refuse to answer any questions you don’t want to 

answer and still remain in the study.  The investigator may withdraw you from this research if circumstances 

arise which warrant doing so. 

FEEDBACK OF THE RESULTS OF THIS STUDY TO THE PARTICIPANTS 
Should you desire feedback regarding the results of the study, you may access a summary of the results on 

the University of Windsor Research Ethics Board (REB) website at: 

Web address: www.uwindsor.ca/reb 

Date when results are available: December 31, 2010 

SUBSEQUENT USE OF DATA 
These data may be used in subsequent studies. 

Do you give consent for the subsequent use of the data from this study?   

RIGHTS OF RESEARCH PARTICIPANTS 
You may withdraw your consent at any time and discontinue participation without penalty. If you have 

questions regarding your rights as a research participant, contact:  Research Ethics Coordinator, University 

of Windsor, Windsor, Ontario, N9B 3P4; Telephone: 519-253-3000, ext. 3948; e-mail: ethics@uwindsor.ca 

 

 

http://www.uwindsor.ca/reb
mailto:ethics@uwindsor.ca
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SIGNATURE OF RESEARCH PARTICIPANT/LEGAL REPRESENTATIVE 
I understand the information provided for the study The Effect of Ankle Joint Rotational Stiffness and 

Localized Muscle Fatigue on Tibial Response During Impact as described herein.  My questions have 

been answered to my satisfaction, and I agree to participate in this study.  I have been given a copy of this 

form. 

______________________________________ 

Name of Participant 

______________________________________   ___________________ 

Signature of Participant       Date 

SIGNATURE OF INVESTIGATOR 
These are the terms under which I will conduct research. 

_____________________________________   ____________________ 

Signature of Investigator      Date 
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EDUCATION   Sandwich Secondary School 

LaSalle, Ontario 

    1999-2003 

 

    University of Windsor 

Windsor, Ontario 

    2003-2007 BHK (Honours Movement Science) 
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