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ABSTRACT 

The inferior colliculus plays a key role in auditory processing. In the current study I used 

the albino rat, Rattus norvegicus, as an animal model to investigate auditory responses in single 

neurons in the dorsomedial subdivision of the inferior colliculus (ICd). 

My results reveal that ICd neurons exhibit various temporal firing patterns and long and 

variable first spike latencies. These neurons displayed a variety of frequency-tuning curves. Both 

monotonic and non-monotonic rate-level functions were present in these neurons. ICd neurons 

displayed stimulus-specific adaptation by reducing the strength of firing during repetitive tone 

burst stimulation but restored their responses when the quality of sound was changed. Functional 

decortication changed the strength of firing in ICd neurons, suggesting these neurons were 

controlled by the auditory cortex. My results suggest that the ICd may provide a gating 

mechanism that helps the auditory system to selectively process novel sounds in the acoustic 

environment. 
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1 INTRODUCTION 

1.1 The Central Auditory System: an Overview 

Hearing is one of the most crucial sensory abilities in many mammalian species and 

permits species-specific communication. Hearing depends on both the peripheral and the central 

auditory system.  The peripheral auditory system includes the outer, middle and inner ears. The 

outer ear is stimulated by pressure waves i.e. acoustic signals. These signals enter the outer ear 

and travel through the middle ear toward the cochlea.  At the level of the cochlea these acoustic 

signals are transduced into electrical signals.  The electrical signals are then processed at several 

structures in the central auditory system (CAS) (Figure 1).  Acoustic information processed in 

the auditory system includes spectral, temporal and spatial characteristics of sounds (Fay, Popper 

and Webster, 1992). 

The CAS is organized in a hierarchical manner. Auditory information is carried by action 

potentials through the ascending pathway commencing at the auditory nerve (AN) also known as 

the 8
th

 cranial nerve. The AN is in fact considered a part of the peripheral auditory system, thus 

the first center of processing in the CAS is cochlear nucleus (CN). From here auditory neural 

signals travel through the ascending pathway and are further processed at the superior olivary 

complex (SOC), the nucleus of lateral lemniscus (NLL), the inferior colliculus (IC), the medial 

geniculate body (MGB) and finally the auditory cortex (AC).   The AC controls neural 

processing in subcortical structures using corticofugal descending projections.  
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Fig.1. The human central auditory system. A representation of all levels of auditory 

processing in the ascending pathway including: 1) Auditory nerve fiber; 2) the 

cochlear nucleus (CN); 3) the Superior Olivary Complex (SOC); 4) the Inferior 

Colliculus (IC); 5) the Medial Geniculate Body (MGB); and 6) the Auditory 

Cortex. The green lines represent projections to each center of processing. The 

oscillogram shows the place of entry for the sound stimulus. 

 

 

 

Benett Coleman & Co., 2009 
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The CN is the first relay station of the CAS. It receives inputs from the 8
th

 cranial nerve, 

the auditory nerve. The cochlear nucleus is subdivided into ventral and dorsal divisions (VCN 

and DCN, respectively). The ventral division can be further subdivided into the anterior ventral 

cochlear nucleus (AVCN), and the posterior ventral cochlear nucleus (PVCN).  Each division of 

the CN receives ascending input from the auditory nerve. Studies of the CN suggest that its 

functional importance arises from the fact that this structure receives inputs from the auditory 

nerve that preserves the topography of frequencies established in the cochlea (Osen, 1970). All 

three subdivisions of the CN contain this tonotopic organization, with low frequencies 

represented ventro-laterally and high frequencies represented dorso-medially within each 

subdivision (Sando, 1965).  The CN is involved in the generation of basic response patterns and 

emergence of parallel pathways.  Lastly, the CN receives an array of descending projections that 

arrive from higher order auditory structures providing feedback and aid in the overall complexity 

of auditory processing (Adams and Mugnaini, 1987; Kand and Conlee, 1982).  

The SOC is found ventral and medial to the CN, in the caudal portion of the pons 

(Noback, 1985). The SOC is divided into multiple subnuclei including the lateral superior 

olivary nucleus (LSO), the medial superior olivary nucleus (MSO), the nucleus of the trapezoid 

body (NTB) and the lateral and medial periolivary nuclei. The SOC maintains the tonotopic 

organization seen in the CN. The most extensively studied subdivisions of this structure are the 

LSO and MSO. In the LSO, lower frequencies are represented laterally and higher frequencies 

are represented medially following the s-shaped contour of the nucleus (Tsuchitani and 

Boudreau, 1966). Research focusing on the SOC has illustrated that it is responsible for 

construction of binaural pathways and establishment of time lines. The SOC is a complex relay 

station in the auditory pathway. It is the first place where ipsilateral and contralateral inputs are 
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combined and information related to sound location is processed. Sound localization is 

determined mainly by interaural time and intensity differences reflected in inputs to the SOC 

(Masterton, Thompson, Bechtold, and Robards, 1975; Boudreau and Tsuchitani, 1970).  

The lateral lemniscus is the primary auditory pathway in the brainstem and contains both 

ascending and descending fibers. The ascending portion extends bilaterally from the CN to the 

IC in the midbrain and contains both crossed and uncrossed fibers of the CN and SOC (Goldberg 

and Moore, 1967). The NLL is made of neurons scattered in the lateral lemniscus. This nucleus 

consists of three subnuclei, the dorsal, intermediate and ventral portions as well as axons in 

which they lie along the lateral surface of the brain stem, near the transition from the pons to the 

midbrain. The dorsal nuclei of the lateral lemniscus from either side of the brainstem are 

interconnected by a fiber tract called the commissure of Probst (Kudo, 1981). Most neurons of 

the dorsal segment of the NLL can be activated binaurally. However, most neurons from the 

ventral segment can be activated only by contralateral stimulation. Overall, the NLL adds further 

branches of segregated processing streams and additional diversity and complexity to the 

expression and role of functional stream segregation and information integration  

The inferior colliculus (IC) is a midbrain structure and is known as the hub of the 

mammalian CAS (Winer and Schreiner, 2005). Based on previous research regarding the 

function and structure of the IC as well as the pattern of projections to the IC it is suggested that 

this structure can be divided into multiple subdivisions including the central nucleus (ICc), the 

dorsal cortex (ICd) and the external nucleus (ICx) (Faye-Lund and Osen, 1985). Among the three 

subdivisions of the IC, the ICc has been studied much more thoroughly than the ICd and ICX.  

Neurons in the ICc are well characterized neuroanatomically, neurophysiologically and 

neuropharmacologically.  There is abundant knowledge about the role of ICc neurons in the 
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processing of temporal, spectral and directional response characteristics (Winer and Schreiner, 

2005). In contrast, far less is known about the function of ICd and the ICx (see section 1.3).  

The mammalian auditory thalamus, also known as the medial geniculate body (MGB), 

consists of an oval mass and exists bilaterally extending from the midbrain to the forebrain. The 

MGB provides auditory information to cortical and limbic systems for further processing. The 

MGB contains ventral, dorsal as well as medial divisions (Morest, 1964). Neurons in the ventral 

division respond primarily to acoustic stimuli, whereas the dorsal and medial divisions contain 

neurons that respond to both somatosensory and acoustic stimulation (Pickles, 1988). Research 

focusing on the ventral division of MGB has revealed that this division transmits specific 

auditory information to the primary auditory cortex (Winer, 1984). Studies involving the dorsal 

division illustrate that this part of the structure projects to association areas of the AC (Faye-

Lund, 1985; Saldana, Feliciano and Mugniani, 1996). The dorsal division may also be involved 

in maintaining and directing auditory attention (Winer, 1984). Lastly, medial division studies 

have depicted this part of the MGB as an area of course tonotopic organization or gradient 

(Rouiller, Rodgrigues-Dagaeff, Simm, de Ribaupierre Y, Villa, and de Ribaupierre F,  1989). 

This structure may also function as a multisensory arousal center (Winer, 1984).  

Lastly, the auditory cortex (AC) is found at the top of the hierarchical auditory ladder. 

The acoustic information encoded in neural signals is transmitted from the ear to the AC via the 

aforementioned CAS structures through the ascending auditory pathway. Several regions of the 

AC have been identified, including the primary AC (AI), the secondary AC (AII) and the 

association cortex. As in brain stem structures, the AC also possesses distinct tonotopic 

organization. The tonotopic organization exists in the AI of the AC with low frequencies 

represented rostrolaterally and high frequencies represented caudomedially (Merzenich and 
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Brugge, 1973). Response properties of cells in the AC are complex, showing binaural 

interactions and dependence on temporal combinations of tones. The structure and function of 

the AC will be further discussed in section 1.2. Overall, the AC is the interface between hearing 

and higher order communication and cognitive networks (Brodal 1981; Edelman, Gall and 

Cowan 1988; Popper and Fay 1992; and Fay et al. 1992). Although the AC is the highest 

structure in auditory signal processing, the information processing does not end here (Winer, 

2006). The AC also possesses neurons that provide feedback projections to lower structures. 

These corticofugal projections control auditory neural processing in lower structures (Winer, 

2006) (see also section 1.4). 

The descending auditory system starts at the AC and projects to the MGB and the 

midbrain regions, including the IC. Based on both anatomical and physiological studies a loop 

system appears to exist between the AC and these structures. Fibers also descend from the AC to 

neurons in the brainstem (Winer, 2006). 

The function of descending pathways has been studied to a lesser degree than that of the 

ascending system. Anatomical studies using anterograde and retrograde tracers have illustrated 

that corticofugal projections to the IC influence the way in which specific sets of IC neurons 

process acoustic signals (Bajo and Moore, 2005; Syka and Popelar, 1984; Suga et al., 2000; Sun 

et al., 1996; Yan and Suga 1996; Yan and Ehret, 2002). For the purpose of the current study the 

main focus of descending projections is the corticocollicular pathway. Neurophysiological 

studies have suggested that projections from the AC may modulate the processing of sounds in 

the IC through the activation of local inhibitory neural circuits (Malmierca and Merchan, 2004). 
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1.2 The Structure and Function of the Auditory Cortex 

The AC is found at the top of the hierarchy in the central auditory system. The AC is 

essential for discrimination and localization of sounds, recognition of species specific 

vocalizations, embedding of acoustical cues into the behavioural context and auditory learning 

and memory. In many mammalian species including humans, it is subdivided into the primary 

auditory cortex (AI), secondary auditory cortex (AII), and association cortex. In rats, the AC can 

be subdivided into temporal cortex area 1, 2 3 (Te1, Te2 and Te3) (Figure 2) (Malmierca and 

Merchan, 2004). Te1 is equivalent to AI, whereas a clear equivalent of Te2 and Te3 is undefined 

(Herbert et al., 1991).  AI receives its main input from the ventral division of the MGB. Research 

has shown that neurons in the AI are organized topographically based on frequency (Malmierca 

& Merchan, 2004). The AC is made up of six layers, with each layer having specific cell types 

and cell packing density. Layer I of the auditory cortex has few neurons but is rich in neuropil 

clusters.  Approximately 90% of the neurons in this layer are GABAergic, or activated by the 

GABA neurotransmitter (Winer and Larue, 1989).  The majority of layer I neurons synapse with 

apical dendrites of other layer I neurons (Winer, 1992). Layer II contains both pyramidal and 

non-pyramidal neurons (Malmierca and Merchan, 2004).  Neurons in layer II form connections 

mostly with adjacent non-primary auditory field neurons. They also form local interlaminar 

connections with neurons in layers II and III (Winer, 1992).  Layer III is made up of three types 

of pyramidal cells that are identified based on their variance in size (Malmierca and Merchan, 

2004).  This layer is comprised of complex intrinsic and extrinsic neural connections, including 

interactions with neurons in the medial geniculate body (MGB) and ipsilateral and contralateral 

auditory cortices (Winer, 1984).  Layer IV is known as the internal granule cell layer and is made 

up of almost completely non-pyramidal cells (Malmierca and Merchan, 2004).  Layer IV has 
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connections with thalamic and local cortical neurons and also receives inputs from the 

commissural system (Winer, 1992).  Layer V is known as the internal pyramidal cell layer.  

Layer V of the AC is made up of both pyramidal and non-pyramidal neurons (Malmierca and 

Merchan, 2004).  This layer forms neural connections with neurons in the ipsilateral non-primary 

auditory cortex, the contralateral AI, the MGB, the inferior colliculus (IC)  and some brain stem 

structures (Winer, 1992).  Researchers have also illustrated that layer V receives input from 

commissural and corticocortical axons, and that some of these may be GABAergic projections 

(Peterson, Prieto and Winer, 1990). Anatomical studies have shown that layer V is the source of 

abundant descending projections to the IC (Winer and Schreiner, 2005). Layer VI is made up of 

horizontal and pyramidal cells and receives input from axons arising in the medial division of the 

MGB.  Layer VI is a source of descending projections to the MGB as well as the IC (Winer and 

Schreiner, 2005; Schofield, 2009). The AC is very diverse in its neuronal population and thus is 

physiologically complex. 

From a physiologist’s point of view auditory cortical subdivisions can be distinguished 

based upon response properties of single neurons such as characteristic frequency, spectral 

bandwidth, and latency to the first spike, binauralities, and sensitivity to amplitude and frequency 

modulation (Budinger, 2005).   AI is tonotopically organized, as indicated by topographic 

locations of neurons sharply tuned to single frequencies (Clarey, Barone and Imig, 1992).  

Studies investigating the tonotopic organization of the associative cortex suggest that neuron 

responsiveness in this area is poor and is not as well organized by frequency as AI (Schreiner 

and Cynader, 1984).  

Research focusing on temporal processing of AC neurons has demonstrated that similar 

to auditory brainstem structures, the AC can respond in various ways to the onset, sustained 
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presentation and offset of acoustic stimuli. Abeles and Goldstein (1972) studied single unit 

responses of AI neurons in cats and found four types of responses to a 100 ms tone burst. One 

type of neurons recorded generated sustained responses for the duration of the stimulus, although 

a noticeable decrease in the firing rate was present during the tone. Other types of responses 

included onset type in which a neuron responded only to the beginning of the stimulus 

presentation, and offset type in which a neuron responded only after the tone was terminated. 

The fourth type of response found was neurons that responded to both the onset and the offset of 

the tone.  

 AC neurons are especially responsive to sound with rapid changes in temporal, spectral 

and directional content.  Neural responses to these transients are often timed with great precision. 

For many AC neurons, the jitter in transient response timing can be compared to that seen in the 

CN and may even be superior to the timing seen in CN neurons (Masterton, 1993; Heil and 

Irvine, 1997). These observations suggest that preservation of information about the timing of 

transient stimulus events is an important function of the AC.  

The response of AC neurons to amplitude modulated  (AM) sounds have been studied in 

various species, using both awake and anaesthetized preparations, and employing a variety of 

periodic sounds, including tones, noise and clicks (Eggermont, 1994; Schreiner and Urbas, 1988; 

Muller-Preuss, 1986). In most cases, neurons in the AC responded poorly to stimulus 

periodicities above 10 to 30 Hz. This ability to follow rhythmic amplitude change is far more 

effective than that seen in the CN. In this case, the temporal responses of CAS neurons appear to 

fall progressively along the ascending pathway. Thus periodic responses of AC cells are 

subordinate to those of MGB and IC neurons (Eggermont 1994; Batra, Kuwada and Stanford, 

1989). Reasons for the poor responses to periodic sound amplitude changes in AC neurons are 
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not well known, but one possibility is the development of inhibitory responses after onset 

(Eggermont, 1991) which would serve to prolong minimal inter-response intervals. 

Timing of synaptic events within the AC plays a critical role in sound localization. 

Studies have shown that many neurons in the AI are sensitive to interaural phase and intensity 

differences (Benson and Teas, 1976). In a sound field, AC neurons fired more action potentials 

to sound stimuli from a contralateral earphone than from an ipsilateral one (Evans, 1968).  

As could be inferred from the presence of tonotopic organization, the vast majority of AI 

neurons are narrowly tuned to stimulus frequency. Studies using tone burst stimuli illustrated, 

that the excitatory response areas of AI cells tend to have either V-shaped or a non V-shape. 

(Winer, 1984) The V-shaped tuning curve-type cells are the most common in AI, and comprise 

roughly 70 - 75% of all neurons sampled. These neurons tend to have monotonic spike rate-

stimulus level function. The other cells with the non V-shape response areas are far less 

common. They comprise approximately 25 - 30% of AI neurons, and their firing rate-intensity 

profiles appear to be nonmonotonic, showing clear amplitude tuning. Researchers suggest that 

the response areas of the nonmonotonic type cells are likely shaped by lateral inhibition. 

Furthermore that this non-monotonic type of response seems to be more common in the AC than 

in the MGB (Young and Brownell, 1976; Winer, 1984; Shofner and Young, 1985). 

In the primary auditory field, neurons with non-monotonic firing rate-intensity profiles 

are spatially segregated from the monotonic cell types (Eggermont, 1991). They are generally 

found in areas surrounding the center of AI. This is an interesting finding because anatomical 

studies have suggested that this area encompasses the greatest concentration of GABAergic 

neurons (Hendry & Jones, 1991).  
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Monotonic and non-monotonic rate level functions (RLF) have been thoroughly 

described in the AC  of the cat, monkey, ferret, rat, and echolocating bat animal species (Brugge, 

Dubrovsky, Aitkin and Anderson, 1969; Phillips and Irvine 1981; Phillips and Irvine, 1982; 

Phillips and Orman, 1984; Phillips, Mendelson and Cynader, 1985; macaque monkey: Brugge 

and Merzenich, 1973; Pfingst, O’Connor and Miller, 1977; Pfingst and O’Connor, 1981; squirrel 

monkey: Funkenstein and Winter, 1973; ferret: Phillips, Judge and Kelly, 1988; rat Phillips and 

Kelly, 1989; mustached bat: Suga, 1977; Suga and Manabe, 1982). Non-monotonic cells that 

show greater than 50% reduction from discharge maximum in response to increasing intensity 

are less frequently encountered in the rat than in the cat AI (Phillips and Kelly, 1989). In the cat, 

there is a noticeable difference in the proportions of monotonic and nonmonotonic responses 

between the different fields of the AC. In AI (Phillips and Irvine, 1981) and in the anterior 

auditory filed (AAF) (Phillips and Irvine, 1982), the majority of cells exhibit monotonic type of 

RLF and the proportion of these cells appears similar in the two fields. In contrast, in the 

posterior auditory field (PAF) a far greater proportion of non monotonic cells exist as compared 

to AI (Phillips and Orman, 1984). This finding may reflect functional segregation as well as 

noticeable differences between tonotopic fields of the AC in the coding and processing of 

intensity information (Phillips and Orman, 1984).    
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Fig.2. The auditory cortex (AC). An illustration of the rat brain as seen from the lateral side of 

the head. The area shaded dark grey represents the rat’s auditory cortex and is subdivided into 

Te1, Te2 and Te3. A frontal brain slice taken from the AC illustrates the 6 layers of complex 

cellular structure found within the AC.   

 

 

 

 

 

 

Adapted from Malmierca and Merchan, 2004 
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1.3 The Structure and Function of the IC 

The IC is an auditory processing center at the level of the midbrain. It is a dome shaped 

structure and is one of the largest auditory nuclei in the vertebrate brain. It is an essential 

synaptic terminus before ascending inputs reach the MGB (Aitkin and Phillips 1984). The IC 

receives inputs from almost all parts of the CN (Oliver 1984, 1987), from a large portion of the 

SOC (Glendenning, Baker, Hutson and Masterton, 1992), from both sides of NLL (Saint Marie, 

Shneiderman and Stanforth, 1997), and from all areas of the AC (Winer, Larue, Diehl and Hefti, 

1998) Aside from the abundant array of extrinsic projections there are also many commissural 

(Aitkin and Phillips, 1984) and intrinsic projections (Oliver, Kuwada, Yin, Haverly and Henkely, 

1991). The IC sends descending projections to almost all brain stem nuclei which project to it 

(Huffman and Henson, 1990), and ascending projections to both sides of the MGB (Andersen, 

Roth, Aitkin and Merzenich, 1980).  Anatomical studies show that many interneurons exist in the 

IC, suggesting the presence of strong neuronal interconnections (Morest and Oliver, 1984). 

Almost all ascending or descending auditory pathways synapse in the IC (Winer and Schreiner, 

2005). The IC thus represents a site of extreme convergence of information that has been 

processed in parallel in various brain stem nuclei. 

There are three primary regions of the IC as mentioned previously (Rockel and Jones, 

1973) (Figure 3). The subdivisions of the IC are made based on anatomical features such as 

neuropil and unique sets of cell types.  The first of these is the ICc, the core of the IC that 

receives purely auditory inputs. This is a key auditory region of the midbrain, receiving 

projections arising from the lower brainstem. The ICc also sends projections to the MGB and is a 

major component in the classical (lemniscal) auditory pathway. The other two subdivisions of 

the IC are the ICx and ICd nuclei, collectively known as the pericentral nuclei. These two 
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regions are less well organized than the ICc. The ICx along with ICd surround the ICc like a belt, 

while the ICx is comprised of both auditory and somatosensory fibers (Popper and Fay, 1992). 

The ICx also includes fibers from the brachium (Geniec and Morest, 1971). Both the ICx and 

ICd nuclei contribute to the nonclassical (non-lemniscal) auditory pathway (Caird, 1991).  

Three cell types make up most of neuron composition in the IC including disk shaped, 

simple and complex stellate (Oliver et al., 1991). From a physiology point of view the 

representations of high frequencies within the IC are presented in the ventral region, whereas the 

low frequencies are presented dorsally (Merzenich and Reid, 1974). Finally, when considering 

its neural connections as well as the IC’s position spanning the auditory pathways, this structure 

has been referred to as an essential relay center, in transmitting auditory information to higher 

structures (Noback, 1985). 
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Fig.3. The inferior colliculus. A frontal section of the rat’s brain showing the inferior colliculus 

(IC) (dome shaped structure) and its subdivisions. The IC subdivisions are outlined in black. 

Dorsal cortex of the inferior colliculus (ICd, top left); Central nucleus of the inferior colliculus 

(ICc, center); External cortex of inferior colliculus (ICx, top right). (Adapted from Paxinos and 

Watson, 2007). 
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1.3.1 The Central Nucleus of Inferior Colliculus (ICc) 

The IC consists of several cytoarchitecturally distinct regions as mentioned previously, 

the most studied of which is the ICc.  The ICc as mentioned previously is part of the classical 

ascending auditory system (Morest and Oliver, 1984; Oliver et al., 1991). The ICc is exclusively 

auditory (Aitken et al. 1994) and it is essential for normal hearing (Jenkins and Masterton, 1982). 

Anatomically the ICc is identified by its fibrodendritic lamina, which is comprised of disc-

shaped neurons and the laminar plexus of afferent axons that terminate in it (Oliver, 2005). The 

ICc receives ascending input from ipsilateral and contralateral SOC, and ipsilateral and 

contralateral NLL. The ICc also receives excitatory input from anteroventral and dorsal CN. 

Neurons in a single lamina of the ICc are maximally sensitive to similar tonal frequencies. The 

ICc is a part of a tonotopically organized ascending auditory pathway to the thalamus, which 

continues to the AI.  The ICc is essential for the processing of basic features of sounds (Winer 

and Schreiner, 2005).  

Anatomical studies using large injections of tracers have illustrated that the proportion of 

labelled cells located in each source of ascending input to the IC is quite consistent both across 

studies and also across species (Bajo, Nodal, Bizley, Moore and King, 2007). However, when 

smaller injections are made, such as those made by iontophoretic pumps, of retrograde tracers 

into the ICc, the results are considerably more variable in terms of the proportions or even the 

presence of labelled cells in the different sources (Roth, Aitkin, Andersen and Merzenich, 1978; 

Brunso-Bechtold, Thompson and Masterton, 1981; Aitkin and Schuck, 1985; Maffi and Aitkin, 

1987; Ross and Pollak, 1989; Wenstrup, Mittmann and Grose, 1999; cf. Oliver, Beckius and 

Shneiderman, 1995). Some studies showed that in some cases projections from the SOC 

dominated. In the most extreme example reported, after an injection of a tracer in the lateral IC, 
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98% of the labelled cells were located in the ipsilateral medial SOC (Aitkin and Shuck, 1985). In 

general, however, it is rare that so many labelled cells are located in only one source of input. 

Another comprehensive study carried out by Osen in 1972 examined the projections from the CN 

to the IC. She used degeneration methods in the cat, and demonstrated that both the dorsal and 

ventral CN project to the contralateral IC topographically and that the terminations from these 

two subdivisions appear to overlap throughout the ICc. Across species and studies, many 

different combinations of inputs have been seen, although some are more common than others. 

Many of the functional properties of the IC have been previously described. As with 

brainstem auditory structures the IC encompasses a high degree of tonotopic organization 

(Merzenich and Reid, 1974) mostly observed in the ICc. Moreover, studies have shown that the 

IC contains a large number of neurons that yield extremely sharp tuning curves, suggesting a 

high level of frequency resolution (Aitkin, Webster, Veale and Crosby, 1975). The IC contains 

many time and spatially sensitive neurons and neurons sensitive to binaural stimulation 

(Benevento and Coleman, 1970). This sensitivity illustrated in IC neurons then suggests a role in 

sound localization (Musiek and Baran, 1986).  

Previous research examining temporal response characteristics of ICc neurons revealed 

various types of response patterns which were obtained from post stimulus time histograms 

including onset response pattern where the neuron fired at the beginning of the stimulus 

presentation only; sustained response pattern, where the neuron fired action potentials throughout 

the duration of the stimulus presentation; pauser units had a precisely timed onset peak separated 

from a lower level of sustained activity by a short period of either a marked reduction or 

complete cessation of firing; chopper units had two or more clearly defined peaks near the 

stimulus onset (Syka, Popelar, Kvasnak and Astl, 2000). 
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Research has also shown that the rate intensity functions of ICc neurons with simple 

onset response to tone burst stimuli can range from monotonic or near monotonic to extremely 

nonmonotonic (Rees and Palmer, 1988; Syka et al., 2000). The ICc neurons showed a response 

pattern to tone bursts longer than 100 – 150 ms in which an onset response is separated by a brief 

pause from a sustained discharge that continues for the duration of the tone burst (Irvine, 1992). 

Rees and Palmer (1988) found a much higher proportion of monotonic rate intensity functions in 

the cat ICc when 50 ms tone bursts which would not usually elicit a sustained discharge 

components in most ICc neurons were used. 

Research concerning the auditory midbrain revealed that neurons within the ICc have 

preferred elevation and a preferred horizontal location or azimuth for biologically pertinent 

sounds (Fay et al., 1992).  Another important property of the ICc is its ability to process sounds 

within complex temporal patterns. Many neurons in the ICc respond only to frequency 

modulated sounds, and some respond only to sounds of specific durations (Fay et al., 1992). 

1.3.2 The Dorsal Cortex of Inferior Colliculus (ICd)  

 The ICd occupies the dorsomedial and caudal regions of the IC. Anatomical studies 

show that ICd neurons tend to have un-oriented axons (Oliver et al., 1991). The ICd receives 

most of its projections from the cerebral cortex (Winer et al. 1998) and its role in hearing is 

unknown however, ICd neurons do receive abundant descending projections from the AC and 

their response has been proposed to be modulated by the AC (Fay et al., 1992).  ICd receives its 

major projections bilaterally from the layer V of the AC (Bajo et al., 2007; Bajo and Moore, 

2005) While most of these projections originate from the AI, some projections to the superficial 

part of the ICd originate from the area ventrocaudal to the AI. A recent study by Schofield in 
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2009 revealed that ICd along with ICx also receive projections from layer VI of the AC.  In 

addition to the abundant projections from the AC, the ICd also receives some input from other 

structures including the MGB, the sagulum, the ipsilateral ICc and ICx, the contralateral IC, as 

well as lower auditory brainstem structures (Benson and Cant, 2008; Gonzalez-Hernandez, 

Meyer, Ferres-Torres, Castaneyra-Perdomo and del Mar Perez Degado, 1987; Malmierca, Rees, 

Le Beau and Bjaalie, 1995; Malmierca, Hernandez and Antunes,  2009; Saldaña and Merchán, 

1992; Willard and Martin 1983; Winer, Chernock, Larue and Cheung,  2002). The fact that the 

major inputs to ICd are provided by descending projections from the auditory forebrain suggests 

that this midbrain structure plays a unique role in hearing. 

Electrophysiological research has not been able to unravel any tonotopic organization in 

the ICd. Behavioural studies show that damage to the dorsal cortex affects attention and 

vigilance more severely than auditory discrimination behaviour (Jane, Masterton and Diamond, 

1965).  Some studies show that ICd neurons have broader tuning than ICc neurons (Aitkin, Tran 

and Syka, 1994).  The functional significance of these projections is poorly understood. 

ICd neurons were examined for their responses to various sounds (Aitkin et al., 1994; 

Malmierca et al., 2009; Pérez-González, Malmierca and Covey 2005; Syka et al., 2000) and 

these recordings revealed that neurons in the ICd display stimulus-specific adaptation (Aitkin et 

al., 1994; Malmierca et al., 2009; Pérez-González et al., 2005; Syka et al., 2000). These neurons 

generated strong firing in response to initial sweeps of repetitive stimulation but minimal or 

erratic firing thereafter. Responses of a neuron showing stimulus-specific adaptation could be 

restored by changes in the quality of stimulation (e.g., the frequency of a tone burst). 

Physiological research focusing on ICd neurons revealed that stimulation of the AC produced 

excitatory/inhibitory effects on ICd neurons; this observation supports previous findings that the 
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ICd receives abundant projections from the AC (Bledsoe, Shore and Guitton, 2003; Syka and 

Popelár, 1984). Although findings from these studies provided insight into the function of the 

ICd in auditory processing, these findings were based on small numbers of ICd neurons collected 

when electrodes were en route to the ICc. A better understanding of the function of the ICd is 

dependent on an examination of characteristics of auditory responses, including those of 

responses to tone bursts, using larger sample sizes. 

1.3.3 The External Cortex of Inferior Colliculus (ICx) 

The ICx is a multisensory integration center (Aitkin, Dickhaus, Schult and Zimmermann, 

1978) and the target of considerable non-auditory inputs (Morest and Oliver, 1984). The ICx is 

composed of small, medium and large cell types, the most characteristic element being large 

multipolar neurons with coarse Nissl granules.  The ICx lacks disc shaped cells (Winer and 

Schreiner, 2005).  In the cat the ICx has a fibrous outer layer I and a small – celled layer II 

(Winer and Schreiner, 2005). Layer III has not been identified in the cat. However it is present in 

the rat and receives laminated input (Oliver, 2005).  The main input of ICx comes from the 

ipsilateral ICc and the AC.  The ICx does not show tonotopic organization in contrast to the ICc.  

ICx neurons respond with long latencies compared to those of ICc and they have very broad 

tuning curves (Binns, Grant, Washington and Keating, 1992).  Researchers believe that the ICx is 

responsible for multisensory integration (Winer and Schreiner, 2005).  One study suggested that 

the ICx may also be involved in auditory novelty detection (Covey, Malmierca and Perez-

Gonzalez, 2005).  The basis for this proposition is that ICx neuron habituate during repetitive 

acoustic stimuli by reducing neural response during repetitive stimuli.   
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1.4 Current Understanding of Corticocollicular Projections 

The IC is a functionally diverse structure for auditory processing.  It has the ability to 

process various characteristics of sounds due to the fact that it receives neural projections from 

all major auditory structures, including abundant descending projections from the AC. A great 

deal of research has been carried out focusing on the projections from the AC (Winer, 2006) 

(corticofugal system see Figure 4) and their involvement in the modulation of subcortical 

structures, nevertheless the functional significance of this system is poorly understood. 

Anatomical studies have shown that there are abundant descending projections from the 

AC to the IC, and that these projections may be involved in the modulation of IC activity (Fay et 

al., 1992).  Corticofugal projections to the IC arise from layer V of the auditory cortex. 

Projections to the IC neurons originating from layer V of the AC that provide excitatory input to 

the IC are pyramidal type and are mediated by glutamate as the neurotransmitter. Anatomical 

studies revealed that there are abundant corticocollicular projections terminating in the ICx and 

ICd, but substantially less projecting to the ICc.   

Electrophysiological recordings demonstrated that manipulation of neural activity in the 

AC can modulate sensory processing in the IC (Yan and Suga, 1996; Zhang, Suga and Yan, 

1997; Jen, Chen and Sun, 1998).  Focal electrical stimulation of the auditory cortex can induce 

shifts in the frequency selectivity of neurons in the inferior colliculus (Yan and Suga, 1998; Zhou 

and Jen, 2000).  Electrical stimulation has also illustrated a shift in threshold dynamic range, and 

spatial as well as temporal response properties (Suga and Ma, 2003; Yan and Ehret, 2002; Jen et 

al., 1998).  
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Whether response of IC neurons is enhanced or suppressed by cortical stimulation is 

dependent on whether the cortical area and the IC neuron are “matched” in terms of their 

response to sounds and their characteristic frequency (CF) (Yan and Suga, 1996). Corticofugal 

activity enhances the responses of IC neurons that are matched to AC neurons, while it 

suppresses the response of non-matched IC neurons (Yan and Suga, 1996).  Within this proposal, 

corticofugal activity would help enhance and select responses to a particular auditory parameter.  

Approximately half of the rat’s IC cells responded to electrical pulses delivered to the 

cortex. Most of these cells had brief excitatory responses, and the excitatory responses preceded 

a longer lasting inhibition in some of these neurons. This inhibition suppressed spontaneous or 

sound evoked activity (Syka and Popelar, 1984).    

One previous study showed that the descending projections from the AC to the IC are in 

fact excitatory (Feliciano and Potashner, 1995). While Syka and Popelar (1984) investigated the 

response of IC neurons during cortical stimulation, other researchers found that the inactivation 

of the AC produced facilitatory as well as inhibitory effect on the IC neurons (Zhang and Suga, 

1997; Jen et al., 1998). The presence of the inhibitory effect drove researchers to propose that 

these IC neurons may be modulated by GABAergic interneurons found in the IC (Yan and Suga, 

1996).  If in fact the response is modulated by excitatory descending projections from the AC as 

well as GABAergic interneurons in the IC, this interaction is likely mediated by a feedback loop. 

This feedback loop likely involves excitatory descending projections from the AC as well as a 

local IC GABAergic interneuron that synapses with another IC neuron.  

Although the role of these corticofugal pathways is not completely understood, it is clear 

from studies of different sensory modalities that cortical feedback can dynamically adjust the 

receptive fields and filtering properties of subcortical neurons (Suga, Xiao, Ma and Ji, 2002; 
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Alitto and Usrey, 2003; Winer and Schreiner, 2005). This in turn will influence the information 

that is sent to the cortex via ascending pathways. Thus, while being at the top of a hierarchy, the 

cortex makes a significant contribution to processing at lower levels of the brain. 

While many studies investigated how ICx and ICc were modulated by neural projections 

from the cortex, corticofugal projections to the ICd are not well delineated and are poorly 

understood.  Neurophysiological studies are required to elucidate the function of the abundant 

corticofugal projections to the ICd. 
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Fig. 4.  Descending auditory projections. Arrows represent the direction of input to subcortical 

structures from the subdivisions of the AC. Te1, Te2 and Te3 represent the temporal areas 1, 2 & 

3, the three subdivisions of the rat AC. MG represents the medial geniculate body. IC represents 

the inferior colliculus. NLL represents the nucleus of lateral lemniscus. CNC represents the 

cochlear nucleus. The SOC represents the superior olivary complex. The cochlea is part of the 

peripheral auditory system. 
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1.4.1 Possible Function of Corticofugal Projections in Novelty Detection 

 

The descending projections terminating in the IC are of particular interest due to their 

profuse distribution in ICd and ICx. Perez - Gonzalez et al. (2005) demonstrated that neurons 

within the ICx habituated to repetitive stimuli, but recovered when a novel sound was presented 

(Figure 5).  Zhang and Kelly, (2005) investigated neural responses in the ICd and found that 

neuron in this subdivision of the IC also display stimulus specific adaptation (SSA) to repetitive 

sound stimulation. Abundant corticocollicular projections as well as the ability of neurons in the 

ICd and ICx to exhibit SSA to repetitive stimuli  suggests that neurons in the ICd and ICx are 

important for detecting novel sounds in the acoustic environment and this ability may be related 

to corticofugal projections.   
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Fig. 5.  Responses of two neurons in the ICx to repetitive tone burst presentations. (A) Responses 

of a neuron showing stimulus-specific adaptation. Responses were collected when tone bursts 

were presented four different sound frequencies including, 7, 10.5, 16 and 20.5 kHz.  Each dot 

represents an action potential. This neuron displayed different levels of adaptation as seen by the 

reduction of action potentials. Y-axis represents the order of repetitions of the stimulus. (B) 

Response of a non-adapting neuron. This neuron fires an action potential at the onset of a 7 kHz 

tone burst in response to each of the 100 stimulus presentations. X- Axis is in ms. Black bar 

represents duration of the stimulus.  

 

 

 

 

 

 

Adapted from Perez-Gonzalez et al, 2005 
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1.5 Objectives and Significance 

 In order to better understand the role of ICd neurons in auditory processing, I sought to 

investigate the neurophysiological responses of neurons in the albino rat ICd to various types of 

stimulus paradigms. This study also employed a new reversible inactivation approach to study 

the role and function of corticocollicular projections in auditory processing. 

Although there have been few studies that have provided suggestions regarding functions 

of ICd neurons in auditory processing, these studies were based on small numbers of ICd 

neurons collected when electrodes were en route to the ICc. A better understanding of the 

function of the ICd is dependent on an examination of characteristics of auditory responses, 

including those of responses to tone bursts, using larger sample sizes. The current study was 

therefore dedicated to the characterization of basic temporal and spectral responses in ICd 

neurons.  

 There were three main objectives for this study: 

1. To examine basic response characteristics of neurons in the ICd. 

I wanted to use various stimulus paradigms (see sound stimulation section in Materials & 

Methods and Figure 6) to study the temporal and spectral characteristics of neurons in the ICd.  

Anatomical data has shown that ICd receives major projections from layer V of the AC and an 

array of commissural connections. In contrast the major inputs to the ICc are from brain stem 

structures. Thus, I expected to see more complex response patterns and longer 1
st
 spike latencies 

as in ICd than ICc neurons. 
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The data obtained in the present study may serve beneficial for future studies focusing on 

the ICd, and may be used as a blueprint by researchers attempting to further dissect the 

mechanisms and function of neurons in the ICd.  

 

2. To examine stimulus specific adaptation in ICd neurons. 

Although stimulus specific adaptation has been studied to some degree in ICc and ICx 

neurons (Perez – Gonzalez et al., 2005), far less is known regarding the presence and function of 

this phenomenon in ICd neurons. I expect to find an abundance of neurons in the ICd that reduce 

their strengths of responses during repetitive tone burst stimulation but enhance their strengths of 

responses when a novel sound is introduced. 

The data presented in this study combined with that obtained in other studies focusing on 

the ICc and ICx may serve as the foundation for future research in this field and may contribute 

to the understanding of SSA, its mechanism and its potential involvement in central auditory 

processing disorders. 

 

3. To examine how the auditory cortex controls responses to sound in ICd neurons. 

To determine the function of corticofugal projections in ICd neurons, I used a reversible 

inactivation technique (Horel, Lomber, and Payne, 1999) (Figure 7). This technique allowed me 

to inactivate cortical activity during the presentation of each stimulus paradigm and thus study 

how the auditory cortex controls neurons in the ICd. I expected that cooling the AC would 

change responses in ICd neurons. 
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Fig. 6.   Two stimulus paradigms. The above two stimulus sequences were used for the 

stimulation of ICd neurons. Each color represents a different frequency and Sn represents 

the sequence number. A repetitive block was comprised of 20 tone bursts with one fixed 

frequency. Multiple blocks were presented at ascending frequency values. A randomized 

sequence was made up of a pre-set number of tone bursts with different frequencies. Within 

a sequence, each frequency was used only once.  A total of 20 sequences were generated at 

different randomized orders of frequencies. 
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Fig. 7.  An illustration of a cooling system. This system uses chilled methanol to cool the surface 

of the AC. (j) is attached to a cryoloop made up of hypodermic stainless steel tubing that is 

placed on the surface of the cortex. A microthermocouple is attached to the cryoloop and allows 

for the measurement of AC surface temperature by the thermometer.  

 

 

 

 

Adapted from Horel et al. 1999 
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The present study is the first to investigate the role of descending projections in the central 

auditory system using a reversible inactivation technique. Though the data collected is 

preliminary, this technique serves extremely efficient and useful for the investigation of 

descending projections and their role in SSA. This technique may serve valuable in future 

investigations of descending projections, due to the fact that its effects are reversible and the 

recovery time is quite brief. 
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2 MATERIALS & METHODS 

2.1 Animal Preparation 

Experiments were conducted on 36 male adult Wistar albino rats (Rattus norvegicus) 

(250-450 g) obtained from Charles River Canada Inc., St. Constant, Quebec. Surgical 

anaesthesia was induced initially by combined injection of ketamine hydrochloride (75 mg/kg, 

i.m.) and xylazine hydrochloride (10 mg/kg, i.m). Supplemental injections of ketamine 

hydrochloride (25 mg/kg, i.m.) and xylazine hydrochloride (3.3 mg/kg, i.m) were made as 

needed throughout the course of an experiment to maintain a state of areflexia. 

A midline incision was made in the scalp, the skin and muscles were retracted laterally 

and a small craniotomy was made over the left side of the parietal lobe as well as over the left 

temporal lobe to permit insertion of an electrode into the ICd as well as to permit surface cooling 

of the AC respectively. Small bone screws were placed in the skull and fixed to a stainless steel 

rod with dental acrylic. The rod was attached to a stereotaxic instrument (Kopf Instruments, 

Tujunga, California) to hold the head firmly in place while leaving the external ear canals free 

for insertion of earphone drivers. Recordings were made with the rats inside a single-wall sound-

attenuated booth (Eckel Industries, Morrisburg, Ontario). 

All procedures were approved by the University of Windsor Animal Care Committee and 

were in accordance with the guidelines of the Canadian Council on Animal Care. 
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2.2 Cooling Technique 

 The cooling technique was first instituted by Horel et. al. (1999) and is a reversible 

inactivation technique required to decrease neural activity of neurons for study of 

neurophysiology. This method utilizes chilled methanol pumped through plastic tubing attached 

to a stainless steel cryoloop placed on the brain surface (see Figure 7). The cryoloop was 

fashioned from 23 gauge stainless steel hypodermic tubing (Horel et al., 1999) and was shaped to 

conform to the shape of the AC. Attached in between the separations of the loop was a 

microthermocouple that permitted the measurement of the temperature of cortical activity before, 

during and after cooling.   

Preceding the craniotomy over the AC, the dura mater was removed and the cryoloop 

was placed in contact with the cortical surface. Respiration rate was visually monitored, and 

atropine sulphate (0.08ml/kg, I.m.) was administered every 4 hours to reduce bronchial 

secretions. Internal body temperature was also monitored and maintained at approximately 37˚C 

for the duration of the experiment using a Homeothermic Blanket Control unit (Harvard 

Apparatus).  
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2.3 Sound Stimulation 

Acoustic waveforms were generated digitally using a system 3 real-time signal 

processing system (Tucker-Davis Technologies (TDT), Alachua, Florida) including two RX6 

multifunction processors and one SA1 power amplifier that was controlled by a desktop 

computer running OpenEx software. Sounds were generated using a pair of TDT CF1 closed-

field speakers with each one connected to a piece of tygon tubing that is inserted into the rat’s 

external meatus. 

Sounds used in the present study included monaural noise bursts and tone bursts. These 

sounds had a100 ms duration and 10 ms rise/fall times. Monaural noise bursts and tone bursts 

presented to the ear contralateral to the recording site were used as search stimuli. Tone-bursts 

presented to the contralateral ear were used in the examination of a single neuron’s temporal and 

spectral response characteristics. Contralateral tone bursts were also used to form two types of 

trains respectively named repetitive blocks and randomized sequences (see “Recording 

procedure” for more details) in the study of stimulus-specific adaptation (SSA) of an auditory 

neuron.  

The sound-generating system was calibrated over a frequency range of 1 – 20 kHz using 

a condenser microphone (ACO Pacific 7017). The acoustic response of the closed-field speakers 

was adjusted to provide a constant sound pressure over the range from 100 Hz to 12 kHz. 
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2.4 Recording electrodes and neural signal acquisition 

 

A single barrel glass micropipette was used to record action potentials from single 

neurons in the ICd. The tip of the pipette was 1.5-2.0 m in diameter. The electrode was filled 

with 3 M potassium chloride. The electrode was driven by a model 2660 micropositioner (Kopf, 

Tujunga, California) into the ICd. 

Neural activity registered by a micropipette was amplified by a 2400A preamplifier 

(Dagan, Minneapolis, Minnesota) and monitored audio-visually. Neural responses were digitized 

and sampled using the TDT system 3 real-time signal processing system. The occurrence times 

of spikes were recorded with a resolution of 40 sec, stored on a computer, and processed later 

with standard database and graphics software. 
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2.5 Recording Procedure 

 

Auditory responses were recorded from single neurons in the ICd on the left side of the 

brain. The ICd was approached with the electrode and the micromanipulator in a plane 

perpendicular to the horizontal plane and 45 relative to the mid-sagittal plane. The electrode 

was pitched backward and toward the mid-sagittal plane with a 45 angle relative to a horizontal 

plane. With reference to the lambda, the electrode was moved caudally by 0.7-1.1 mm and along 

the axis perpendicular to the electrode within the electrode/micromanipulator plane by 3.2-3.6 

mm. The electrode was lowered into the brain to a depth between 2.7 mm to 5.5 mm while 

responses to noise bursts or tone bursts presented to the right ear were monitored. 

Single unit activity was recognized as spikes with constant waveform and amplitude. A 

discrimination window was used to isolate spikes from background activity. A threshold bar was 

also used to discriminate between responses to auditory stimuli versus spontaneous activity. 

After an auditory neuron had been identified, monaural tone bursts were presented to the right 

ear at various frequencies and intensities to determine the neuron’s frequency-tuning curve and 

the characteristic frequency (CF, the frequency at which a neuron showed the lowest threshold). 

A threshold was defined as the lowest stimulus level at which a neuron generated acoustically 

driven spikes in at least 2 consecutive trials of 10 tone burst presentations with similar temporal 

firing patterns. 

Monaural tone bursts at the neuron's CF and at various sound-pressure levels were then 

used to determine a rate-level function and the temporal firing pattern of the neuron. Sounds 

were presented 20 times at a rate of once per second to generate summed neural responses for 
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examining spectral and temporal characteristics of responses to tone bursts as well as for 

generating rate-level functions. 

For neurons in the ICd, two types of tone burst trains were used to examine stimulus-

specific adaptation (see Figure 6). The first type was named as repetitive blocks and was 

constructed by using a chosen number (typically 7) of blocks, each of which consisted of 20 

repetitive presentations of a tone burst. Tone bursts in different blocks had different frequencies 

but identical temporal characteristics including a fixed duration of 100 ms and rise/fall times of 

10 ms The set of frequencies used in the train of blocks covered the frequency response area of a 

neuron and included the CF of the neuron. There were equal numbers of frequencies higher and 

lower than the CF. Logarithmic differences between two consecutive frequencies were equal. 

Tone burst blocks in the train were presented at an ascending sequence of frequencies. The 

second tone burst train was named as randomized sequences and was constructed by using 20 

tone burst sequences, each of which consisted of the same set of tone bursts as used in the train 

of repetitive blocks. These tone bursts were presented at different randomized orders in different 

sequences. For both trains, the inter-stimulus interval between any two consecutive tone bursts 

was 1 sec. Tone bursts were presented at a level of 10 dB above the threshold at the neuron’s CF. 

Responses to the two trains of tone bursts were compared and the degree of stimulus specific 

adaptation was studied. 
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2.6 Data Analysis 

 

For each ICd neuron, I used a dot-raster histogram and a post-stimulus time histogram 

(PSTH) to display the temporal characteristics of firing elicited by a contralaterally-presented 

tone burst. A dot raster histogram illustrates the timing of action potentials generated by each 

sweep of tone bursts. Each dot on the histogram represents an action potential (see Figure 8 for 

example). A PSTH illustrates the temporal change in the firing strength of a neuron over the 

duration of the stimulus. These histograms were created by using responses evoked by 20 

presentations of the sound. Temporal characteristics of neurons were also examined by 

calculating the average first spike latency and the standard deviation of the first spike latencies of 

responses to the 20 tone-burst presentations.  

Frequency tuning curves were generated to display the threshold of response to a tone 

burst at each frequency. The characteristic frequency of a neuron, i.e. the frequency at which the 

neuron displayed minimum threshold, was noted by using the frequency-tuning curve.  

Iso-intensity curves were generated for the study of the spectral response characteristics 

of ICd neurons. The iso-intensity curves were generated by using responses obtained over a wide 

range of frequencies at the same intensity. The total number of action potentials elicited by 20 

sweeps of a tone burst was obtained at each frequency. The iso-intensity curve generated for 

each neuron allowed me to examine supra-threshold responses of neurons. The frequency at 

which the neuron fired at with the maximum response, also known as best frequency (BF), was 

noted by using the iso-intensity curve. 

Finally, to further investigate the basic response characteristics of ICd neurons I used a 

rate-level function (RLF). This type of plot was generated using one fixed frequency (the CF) 
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and a wide range of intensities. A RLF gives an indication of a neurons preference for a specific 

intensity.  RLFs were classified into two categories. A monotonic RLF shows that a neuron 

exhibits an increase in response with increase in intensity to a saturated level of response. A non-

monotonic RLF shows a neurons ability to favour a narrow range of intensities. A neuron 

exhibiting this type of response displays an increase in intensity to a peak, and a further increase 

in intensity causes a decrease in response.  

Previous research focusing on ICd and ICx neurons, demonstrated that these neurons 

exhibit adaptation to repetitive blocks of stimulation. Once all ICd neurons were obtained, an 

adaptation index (AI) was calculated using the response of a neuron to repetitive blocks of 

stimulation over the course of 20 sweeps:  

AI = (# of AP (first 10) - # of AP (last 10))/ (# of AP (first 10) + # of AP (last 10)) 

The adaptation index was generated using the number of action potentials of a response 

for the first 10 sweeps versus the last 10 sweeps of stimulation. The formula resulted in an AI 

between -1 and +1, with the positive numbers indicating adaptation to repetitive blocks of 

stimulation and negative numbers indicating sensitization over the course of the 20 sweeps of 

stimulation.  

 Responses to trains of repetitive blocks and randomized blocks were used to study 

stimulus-specific adaptation in ICd neurons. For this purpose, two iso-intensity curves were 

constructed respectively using responses elicited by a train of repetitive blocks and a train of 

randomized sequences. For randomized sequences the responses to tone bursts at the same 

frequency were summed. Cumulative responses at all frequencies were used to create an iso-

intensity curve.  
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To examine an ICd neuron’s ability to detect novel stimuli, I used two stimulus-specific 

adaptation indices. I used the peak response index SSAP to investigate the difference between 

peak responses of neurons to repetitive versus randomized stimulation. 

SSAP = (PRand - PRep)/ (PRand + PRep) 

Where PRand is the peak response of the iso-intensity curve obtained by using randomized 

sequences. PRep is the peak response of the iso-intensity curve obtained by using repetitive 

blocks. 

An index was also calculated for each neuron using the area under the iso-intensity curve 

(SSAA).  

SSAA= (ARand - ARep)/ (ARand + ARep) 

 Where ARand is the area below the iso-intensity curve obtained by using randomized 

sequences. ARep is the area below the iso-intensity curve obtained by using repetitive blocks.  

For both SSA indices, an arbitrary criterion was used to classify neurons that I recorded. 

Those neurons with an SSA index smaller than 0.2 were categorized as non – SSA neurons. 

Neurons with an SSA index above 0.2 were classified as SSA neurons. Equal responses to 

randomized blocks and repetitive blocks result in an SSA index value of 0.  
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3 RESULTS 

Thirty six rats were used for the present study. In these rats, 36 of all the neurons 

recorded from, were used for analysis of basic response characteristics to contralaterally 

presented tone bursts in the ICd.  In all these neurons, I examined stimulus-specific adaptation by 

comparing responses to trains of repetitive sequences with those to randomized blocks. In 12 out 

of 36 neurons, I also investigated how corticofugal projections control the responses of ICd 

neurons by reversibly inactivating neurons in the AC. 

3.1 Spontaneous activity 

The level of spontaneous activity was typically low for ICd neurons. Fifteen of the 36 

ICd neurons did not display any spontaneous firing. Thirty one of the 36 ICd neurons had 

spontaneous firing rates lower than 1.5 spikes/sec; inclusive of neurons with no spontaneous 

activity. The median of spontaneous firing rate for the entire sample of ICd neurons was 0.2 

spikes/sec, while the mean was 1.1 spikes/sec. The level of spontaneous firing in ICd neurons 

was similar to that in ICc neurons (Syka et al., 2000).  

3.2 Responses of ICd neurons to tone bursts 

 In response to a contralateral tone burst with a100 ms duration and 10 ms rise/fall times, 

a neuron in the ICd generated one or multiple action potentials. For all neurons that I recorded 

except one, these action potentials occurred either at the onset (19 of 36 neurons) or over the 

entire duration (16 of 36 neurons) of the tone burst. One of the 36 ICd neurons generated action 

potentials immediately after the offset of the tone burst in addition to those fired at the onset of 

the sound. Figure 8 displays the response of an ICd neuron to repetitive tone burst presentation. 
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Tone bursts were presented at the neurons CF (1.5 kHz) and 10 dB above its threshold at CF (73 

dB SPL). Figure 8A is a dot-raster histogram showing the occurrence times of action potentials 

generated by the neuron. It is noted that in response to each tone burst presentations, the neuron 

generated action potentials after a short time delay (i.e., the latency) and firing sustained the 

duration of the tone burst.  Across 20 presentations of tone bursts, variations were observed in 

the time delay before the first action potential was generated. Figure 8B is a post-stimulus time 

histogram (PSTH) based on action potentials generated during the 20 tone burst presentations. 

This figure shows the overall temporal distribution of action potentials over the duration of the 

tone burst. This ICd neuron generated relatively stronger transient firing with a primary-like 

firing pattern, at the onset of the sound. The firing strength was reduced to a sustained level 

afterwards. This temporal change in firing strength is typical for neurons with “primary-like” 

firing pattern (See section 3.3).  



43 
 

 

Fig. 8. Dot raster and Post stimulus time histogram. The above illustration is an 

example of a dot raster histogram (A) and a post stimulus time histogram (PSTH) 

(B). The dot raster histogram illustrates action potentials generated by a neuron in 

response to each of the 20 presentations of tone bursts (black dots). Each dot 

indicates one action potential with the abscissa representing the occurrence time of 

the action potential.  The black bar on the x-axis represents the duration of the 

stimulus. The PSTH illustrates cumulative numbers of spikes generated by the same 

neuron as in A over 20 presentations of tone bursts. Bin width for generating the 

histogram was 5 ms. The horizontal bar underneath the figure shows the duration of a 

tone burst presentation. 
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3.3 Temporal firing patterns in response to monaural tone bursts 

For each ICd neuron studied, I examined the PSTHs for the response elicited by a 100 ms 

tone burst presented at a neuron’s CF and 10 dB above its MT. The PSTHs displayed by ICd 

neurons were categorized into three different types including onset, sustained, and on-off (Figure 

9). Neurons with onset responses had a brief period of firing at the onset of a tone burst with no 

additional sound-driven action potentials for the duration of the stimulus. These responses fell 

into three subcategories: phasic, in which only one or two action potentials occurred after the 

onset of a tone burst; phasic burst, in which several action potentials were evoked after the onset 

of the tone burst; and fast adapting, in which strong transient action potentials at the onset of the 

stimulus presentation were followed by a reduced response that sustained for more than 50 ms 

but not the total 100 ms duration. Neurons with sustained responses had a discharge of spikes 

both at the onset and for the remainder of the tone burst. These responses fell into three 

subcategories: primary-like, in which a neuron fired in a continuous fashion throughout the entire 

duration of the stimulus; pauser, in which continuous late firing was separated from transient 

early firing by a brief pause; and build-up response, in which a neuron generated a continuous 

increase in firing till the end of the stimulus only after an initial silent period of at least 20 ms. 

Finally, neurons classified as the on-off type fired action potentials at the onset of the stimulus as 

well as immediately after the offset of the stimulus. The numbers of ICd neurons showing 

different temporal firing patterns are illustrated in Figure 9. 
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Fig. 9. A, B and C represent the major categories of temporal firing patterns displayed by ICd 

neurons. Responses are shown as post stimulus time histograms (PSTHs) representing the total 

number of spikes in 5 ms time bins, during and after presentation of a 100 ms tone burst. Spike 

numbers are based on a 20 tone presentations. Duration of stimulus presentation is indicated by 

the black horizontal bar below the x-axis of each histogram.  

 

  

0 100 200 300 400 500
0

10

20
#

 o
f S

p
ik

e
s

Time (ms)

0 100 200 300 400 500
0

5

10

#
 o

f S
p

ik
e

s

Time (ms)

0 100 200 300 400 500
0

25

50

#
 o

f S
p

ik
e

s

Time (ms)

Primary -like (n=13)

Phasic burst (n=10)

0 100 200 300 400 500
0

8

16

#
 o

f S
p

ik
e

s

Time (ms)

Pauser (n=2)

0 100 200 300 400 500
0

8

16

#
 o

f s
p

ik
e

s

Time (ms)

Fast adapting (n=6)

0 100 200 300 400 500
0

8

16

#
 o

f S
p

ik
e

s

Time (ms)

On-off (n=1)

0 100 200 300 400 500
0

10

20

#
 o

f S
p

ik
e

s

Time (ms)

Build-up (n=1)

Phasic (n=3)

(A) Onset Firing Patterns

(B) Sustained Fir ing Patterns

(C) On-Off Firing Pattern



46 
 

As an important temporal response characteristic, the time of occurrence of the first spike 

was analyzed in each ICd neuron (Figure 10). This figure illustrates the mean first-spike latency 

of responses elicited by 20 presentations of a contralateral tone burst at a neuron’s CF and 10 dB 

above its MT. Mean first spike latency was measured in ms and plotted as a bar graph in Figure 

10A. A comparison of the mean first spike latencies between onset and sustained neurons is 

indicated in Figure 10B.  

Overall, for the total number of ICd neurons examined the first spike latencies ranged 

from 15.0 to 74.1 ms (A). Neurons in ICd show a wide range of mean first spike latencies even 

when they have similar CFs. Thus, no significant correlation was found between the mean first-

spike latency and the CF of the neuron. For the subset of onset neurons (B), the first-spike 

latencies ranged from 25.5 to 51.5 ms (mean=33.7; median=32.3). For sustained neurons (B), the 

mean first spike latencies ranged from 15.0 to 74.1 ms (mean=42.6; median=42.4). The 

distributions of first spike latencies for these two groups of neurons were statistically different 

(Kolmogorov-Smirnov test, p<0.05). 
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Fig. 10. Mean first spike latencies in ICd neurons. The mean first spike 

latency of all ICd neurons is illustrated in A. The abscissa represents the 

mean first spike latency of ICd neurons in ms. The range of first spike 

latencies in all ICd neurons varied from 15.0 - 74.1 ms. Most neurons 

responded with a latency in a range between 30 and 40 ms. Onset neurons 

shown here as white bars (B), displayed a narrower range of first spike 

latencies varying from 25.5 - 51.5 ms. Sustained neurons shown as black 

bars (B), exhibited a broader first spike latency range from 15.0 - 74.1 ms. 

The values obtained here are based on responses elicited by 20 presentations 

of a tone burst at CF and 10 dB above threshold.  
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The occurrence time of the first spike varied from one presentation of a tone burst to the 

next. The magnitude of this jitter in the first spike latency was examined by calculating the 

standard deviation of the latencies of the first spikes elicited by 20 presentations of a tone burst 

at a neuron’s CF and 10 dB above its MT (Figure 11). The overall magnitudes of jitter ranged 

from 0.6 to 28.5 ms in the total of 36 ICd neurons with a mean of 7.9 and a median of 6.3 (Figure 

11A). Most ICd neurons responded with a relatively small jitter of less than 5.0 ms.   

For 19 neurons with onset responses, magnitudes of jitter were within a range from 0.6 to 

14.7 ms with a mean of 6.0 ms and a median of 5.3 ms. For 16 neurons with sustained responses, 

magnitudes of jitter ranged from 1.1 to 28.5 ms with a mean of 9.9 ms and a median of 7.0 ms 

(Figure 11B). On average, neurons with onset and sustained responses however, showed no 

statistical difference in jitter of the first spike latency (Kolmogorov-Smirnov Test, p=0.583).  
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Fig.11.   Representation of the degree of jitter in first spike latency in ICd neurons. The 

range of jitter in ICd neurons varies from 0.6 – 28.5 ms (A). Mean: 7.9 ms, Median: 5.7 

ms. Onset neurons illustrated by unfilled bars, sustained neurons displayed by black 

bars (B). Most onset neurons display a short jitter at approximately 1.0 ms with a mean 

of 6.0 ms. Majority of sustained neurons exhibit a jitter at 2.5msec with a mean of 9.9 

ms, Komogorov-Smmirnov Test: p=0.583. Jitter is expressed as the standard deviation 

(STD) of first spike latencies of responses to 20 tone burst presentations for each ICd 

cell.  
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3.4 Frequency-tuning characteristics 

For each neuron, I determined a characteristic frequency (CF) (i.e. the frequency at which 

a neuron showed lowest threshold for responses to tone bursts). The CFs were distributed from 1 

to 11 kHz. For each neuron, I also examined minimum threshold (MT) to the tone bursts. The 

MT ranged from 0 to 73 dB SPL. The CFs and thresholds at CF are plotted in figure 12 together 

with the rat’s behaviorally determined auditory sensitivity curve (Kelly and Masterton, 1977).  

The abscissa and ordinate of each data point represent the CF and MT from an individual ICd 

neuron. The CFs and MTs of ICd neurons fall into the area defined by the rat’s behaviorally 

determined audiogram.   

Frequency-tuning curves were determined in 36 ICd neurons. These frequency tuning 

curves included V/U -shaped (n=27), multi-peaked tuning curves, including W-shaped (n=8) and 

other complex shapes (n=1). Examples of different types of FTCs are illustrated in Figure 13. 

ICd neurons display a variety of FTCs all of which exhibit differences in sharpness of 

tuning. Sharpness of tuning was reflected as quality factor at 10dB above the MT.   

Q10 = CF/BW10  

In which Q10 stands for quality factor at 10dB above minimum threshold. CF stands for 

the center frequency of a neuron and BW10 stands for the bandwidth of a frequency tuning curve 

at 10dB above minimum threshold. Overall, ICd neurons exhibited a broad range of Q10 values 

from 0 – 11 with a mean of 3.78  kHz and a median of 3.03 (Fig. 14). Many neurons displayed 

Q10 values of approximately 2. According to the data obtained, ICd neurons have no particular 

distribution patterns in reference to the sharpness of tuning. Neurons with similar CFs could 

show either broad tuning (small Q10 values) or narrow tuning curves (large Q10 value). 
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An iso-intensity curve was generated by recording responses to tone bursts at a wide 

range of frequency with a fixed intensity (usually 10 dB above MT). Figure 15 is an example of 

an iso-intensity curve from one ICd neuron (A). At 10dB above MT, this neuron generated the 

strongest response when the frequency of a tone burst was 2.2  kHz.  The FTC of the same 

neuron was generated and displayed a V-shaped curve (B). The FTC indicates that the CF was 

3.5  kHz and the MT is 52 dB SPL. For this neuron, the best frequency for generating the 

strongest response was different from the CF. The BF is the best response of the neuron at a 

particular frequency, while CF is the best response at the lowest possible threshold. For many 

neurons in my study, the best frequency and the characteristic frequency were in fact the same.  
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Fig. 12.  Excitatory thresholds at characteristic frequency (CF) for ICd 

neurons plotted together with the rat’s behavioral audiogram illustrated 

by the solid line. Each filled square represents results from one individual 

neuron. At each sound frequency there was a wide range of thresholds for 

different neurons. 
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Fig. 13. Frequency tuning curves of representative neurons in the ICd. Tuning curve 

examples found in ICd neurons included V/U-shaped, W-shaped and complex. The top left 

panel illustrates a V-shaped neuron. The top right panel is a V/U-shaped neuron with a CF 

close to 10 kHz and an FTC that is more symmetrical than that seen on the top left side. 

Also seen above, in the middle left panel is a W-shaped FTC, with two peaks at 

approximately similar thresholds, while on the right hand side a different W-shaped FTC 

has peaks at different thresholds. On the bottom left hand panel, this neuron displays a 

complex FTC with multiple peaks and all at different thresholds. FTCs generated from 5 

different ICd neurons. 
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Fig. 14. Bar graph illustrating Q10 values derived from ICd neuron 

responses. Q10 is a measure of the neuron’s CF in proportion to the tuning 

curve bandwidth 10dB above MT. Most ICd neurons display a Q10 value of 

approximately 2.0. The range of Q10 values varies from 0 to 11. Overall, 

the majority of ICd neurons exhibit Q10 values under 6.  
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Fig. 15. Illustrated in figure A is an iso-intensity curve of a representative 

neuron in the ICd obtained at 10 dB above MT.  This neuron has a best frequency 

(BF) at which it fired most APs of 2.2 kHz. Below 1 kHz this neuron did not 

respond. At frequencies above its BF the neuron drastically decreases its response. 

A frequency tuning curve of the same neuron is displayed in B here exhibiting a 

V-shaped FTC. The CF of this neuron is different than its BF. The CF for this 

neuron is 3.5 kHz and displays a narrow tuning curve. 
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3.5 Level dependence of responses to monaural tone bursts 

The firing rate of an ICd neuron was dependent on stimulus intensity. At 10 dB above 

MT at the neurons CF, ICd neurons displayed firing strengths between 0.35 and 31.55 

spikes/sweep (Figure 16). The majority of neurons exhibited low firing rates of approximately 2 

spikes/sweep. However, some neurons also displayed firing rates above 8 spikes/sweep, with a 

few displaying extremely high firing rates of approximately 30 spikes/sweep. Overall, based on 

the data obtained, ICd neurons tend to exhibit low firing rates.  

For 9 of 14 ICd neurons, an increase in sound-pressure level resulted in a monotonic 

increase in firing strength. Two representative neurons displaying monotonic rate level functions 

are illustrated in Figure 17A. On the left panel the ICd neuron displayed a dynamic range of 

approximately 60 to 80 dB SPL the firing saturated at around 3 spikes/sweep when stimulus 

intensity was above 80dB SPL. The ICd neuron on the right panel however, showed a dynamic 

range of approximately 67 – 90 dB SPL. For this neuron the strength of firing saturated at a rate 

of around 4 spikes/sweep when stimulus intensity was above 90dB SPL.   

The remaining 5 ICd neurons displayed non-monotonic rate-level functions (Figure 17B). 

This example illustrates an ICd neuron whose firing rate increased with intensity when the 

intensity was below 45dB SPL. A peak firing rate of approximately 3 spikes/sweep was reached 

at an intensity of approximately 45 dB SPL. The firing rate decreased when the intensity was 

above 45 dB SPL and appeared to continue a steady decrease at approximately 55 dB SPL. 
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Fig. 16.     Firing rates at CF and 10 dB above MT in ICd neurons. The 

majority of ICd neurons exhibit firing rates below 8 spikes/sweep, with 

most neurons displaying firing rates of 2 spikes/sweep. Only two neurons 

displayed higher firing rates of approximately 30 spikes/sweep. The mean 

firing rate for ICd neurons was 3.43 spikes/sweep. Median for firing rate 

of ICd neurons was 1.83 spikes/sweep.  
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Fig. 17. Two representative neurons illustrated in (A) show a monotonic rate level 

function. The ICd neuron displayed in the top left panel exhibits a dynamic range of 

approximately 60 – 80 dB SPL with a peak firing rate of approximately 3 spikes/sweep. 

The neuron in the top right panel shows a dynamic range of approximately 67 – 90 dB 

SPL with a peak firing rate of approximately 4 spikes/sweep. Neuron illustrated in (B) 

shows a non-monotonic rate level function. This ICd neuron exhibits an increase in 

firing rate at an intensity of 30 dB SPL and a firing rate of 1.5 spikes/sweep reaching a 

peak firing rate of 3 spikes/sweep at an intensity of 45 dB SPL. After this the response 

decreases and remains steady at a rate of 1.5 spikes/sweep and an intensity of 

approximately 55 dB SPL. Responses were recorded at a neurons CF and a wide range 

of intensities. 
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3.6 Stimulus-specific adaptation 

 

During repetitive tone burst stimulation, the number of action potentials generated by an 

ICd neuron was different from one sweep of stimulus presentation to the next. In some cases, this 

difference reflected a random variation in the firing strength of a neuron. For example, the 

neuron in the lower right panel of Figure 18 displayed a fast adapting temporal firing pattern. 

This neuron generated a different number of spikes across 20 presentations of tone bursts. 

However, no systematic increase or reduction was found during repetitive tone burst 

presentations. For other ICd neurons a reduction in the number of spikes was found during 

repetitive tone burst presentations. These neurons displayed strong firing in response to the first 

few repetitive tone bursts but weaker or erratic firing thereafter. For the two examples shown in 

top panels of Figure 18, the number of spikes elicited by the first 10 sweeps of a tone burst and 

that elicited by the last 10 sweeps were different. Strong firing was generated during the initial 

presentations of the tone burst. I used an adaptation index (AI) to describe quantitatively the 

degree of reduction in firing during repetitive stimulation. The AI was calculated using the areas 

below two iso-intensity curves:  

AI = (# of AP (first 10) - # of AP (last 10))/ (# of AP (first 10) + # of AP (last 10)) 

 For the neurons in the upper panels of Figure 18 the adaptation index was 0.625 and 

0.429. For the neuron in the lower right panel, the adaptation index was close to 0. However, 

when looking at the bottom two neurons the difference between the first 10 sweeps vs. the last 10 

sweeps was virtually identical, although a variation was observed among individual sweeps.  

Figure 19 shows the distribution of adaptation indices for the entire population of 36 

neurons. The range of AI values fell between -0.3 and 0.7. The majority of ICd neurons were 
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distributed toward positive values of at least 0.1 or higher and show adaptation to repetitive 

blocks of stimulation. Statistical analysis confirmed this trend (Binomial distribution, p < 0.05). 

This data suggests that ICd neurons show a reduction in response over 20 sweeps of tone burst 

stimulation. 
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Fig. 18.  Dot raster histograms for four representative ICd neurons. Each dot represents an action 

potential. The two neurons in the upper panels display apparent adaptation to repetitive blocks, 

while the two neurons in the lower panels display low degree of adaptation for the same stimulus 

paradigm.  An adaptation index is stated below each unit ID.  The dot raster histograms were 

generated using responses of neurons over 20 sweeps at a neurons CF and 10dB above MT. 

Vertical dashed lines represent the duration of a single tone burst sweep. 
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Fig. 19. Adaptation index (AI) values for units recorded in the ICd. The 

AI is based on the number of spikes for the first 10 vs. the last 10 sweeps 

of tone bursts, presented at a neuron’s CF and 10 dB above MT. ICd 

neuron adaptation indices ranged from approximately -0.3 to 0.7. The 

majority of ICd neurons display indices above 0 (Binomial distribution (p< 

0.05)). Dashed line represents the range of -0.2 < AI < 0.2.. The dotted line 

represents point 0.  
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In order to study whether the adaptation displayed by ICd neurons was a passive fatigue 

related adaptation or an active stimulus specific adaptation I recorded responses to randomized 

sequences as well as repetitive blocks. Two iso-intensity curves were compared for all ICd 

neurons. Figure 20 compares the responses to two types of stimuli in four neurons. For the two 

neurons in the lower panels the responses were very similar for both two stimulus conditions. 

These two neurons did not display stimulus specific adaptation. In contrast, for the two neurons 

in the upper panels of Figure 20, responses to randomized sequences were substantially higher 

than those to repetitive blocks. The fact that repetitive blocks elicited weaker responses while 

randomized sequences generated stronger responses suggest that these neurons display stimulus 

specific adaption.  
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Fig. 20.   Iso-intensity curves of four representative ICd neurons. Illustrations showing 

response of neurons to randomized versus repetitive sequences. White unfilled circles 

represent responses to randomized sequence, while the filled circles represent responses 

to repetitive sequences. Top two neurons displayed SSA with an adaptation index of 

above 0.2. B displays a drastic difference in spike count during randomized stimulation 

(approx. 8 spikes/sweep) vs. during repetitive stimulation (2 spikes/sweep). The lower 

two panels (C and D) did not display SSA, and spike numbers were almost identical 

between responses obtained using the two different stimulus paradigms.  
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Two indices were used to describe the degree of SSA quantitatively. The peak response 

index SSAP was used to examine the difference between peak responses of neurons to repetitive 

versus randomized stimulation.  

SSAP = (PRand - PRep)/ (PRand + PRep) 

Where PRand is the peak response of the iso-intensity curve obtained by using randomized 

sequences. PRep is the peak response of the iso-intensity curve obtained by using repetitive 

blocks. The peak values obtained under the two stimulus conditions were compared in Figure 

21A. Those neurons whose responses fall below the diagonal line are neurons that prefer 

randomized sequences, while those above the diagonal line prefer repetitive blocks of 

stimulation. SSA indices were generated for the peak responses for all ICd neurons and were 

illustrated in Figure 21B. The SSA indices were distributed toward positive values. This suggests 

that most ICd neurons prefer randomized sequences. Our data indicate that ICd neurons show 

stimulus-specific adaptation (Binomial distribution, p<0.05).  

An index was also calculated for each neuron using the area under the iso-intensity curve 

(SSAA).  

SSAA= (ARand - ARep)/ (ARand + ARep) 

 Where ARand is the area below the iso-intensity curve obtained by using randomized 

sequences. ARep is the area below the iso-intensity curve obtained by using repetitive blocks. In 

Figure 22A group results exhibit that most ICd neurons favor randomized sequences and 

generate higher numbers of spikes as compared to repetitive blocks of stimulation. Figure 22B 

shows that the distribution of the SSA index of ICd neurons is skewed toward positive values. 

The overall range of indices varies from -0.4 to 0.7; although, the majority of the population is 
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made up of index values of above 0.1 (Binomial distribution, p<0.05). My data supports the fact 

that ICd neurons show stimulus-specific adaptation. 

Stimulus specific adaption was further analyzed for the two groups of neurons with onset 

and sustained responses.  I found that most of the ICd neurons displaying SSA exhibited onset 

firing patterns. For the 14 neurons with an SSAA larger then 0.2, 11 (or 79%) displayed onset 

responses. Only three of the 14 neurons (or 21%) displayed a sustained firing pattern. In contrast, 

the majority (67%) of non-SSA neurons displayed sustained firing patterns Only 33% of the non-

SSA neurons displayed onset firing patterns (Figure 23).  
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Fig. 21. Comparison of group results for peak responses evoked by repetitive blocks 

versus randomized sequences. Each open circle represents responses from a single ICd 

neuron (A). Most of the points fall below the curve and prefer randomized sequences. 

Illustration of SSA index for peak response of all ICd neurons (B). Overall 

distribution is skewed toward positive values (Binomial distribution, (p<0.05)). Peak 

response ranges from -0.3 to 0.7. Most neurons display index values above 0.1. 

Dashed line represents range of -0.2 < SSAP < 0.2. Dotted line represents point 0. 
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Fig. 22.   Comparison between total responses under iso-intensity curve obtained using repetitive 

blocks and randomized sequences. Each unfilled circle represents responses from a single ICd 

neuron (A). Most data points are below the diagonal line, indicating stronger responses to 

randomized blocks than to repetitive blocks. In B, the total response index for SSA index based 

on total responses under iso-intensity curve in ICd neurons is illustrated. Index values range 

between -0.4 to 0.7. Majority of neurons display index values above 0.1 Most neurons display 

positive SSA index values (Binomial distribution, (p<0.05)).  Dashed lines represent the range of 

-0.2 < SSAA < 0.2. Dotted line represents point 0. 
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Fig. 23.  An illustration showing that neurons with SSA vs. non-SSA have 

different temporal firing patterns. The two left columns represent the SSA 

neurons. The two right columns represent the non-SSA neurons. The white bars 

represent onset neurons. The black bars represent sustained neurons. The ordinate 

represents the number of neurons displaying the SSA vs. non-SSA.  
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3.7 Cortical modulation of ICd neurons 

The effect of suppressing cortical neural activity on responses of ICd neurons was studied 

on a total of 12 ICd neurons.  A reversible cooling method was used to inactivate AC neurons. 

The neuron in Figure 24 displays an increase in firing during cortical cooling. Dot raster 

histograms and PSTHs demonstrate the neurons change in spike number (Figure 24A). No 

change in temporal firing pattern was observed for this neuron between the three different 

treatment conditions. The iso-intensity curve shown in Figure 24B verifies the change in spike 

numbers for this representative ICd neuron.  

The ICd neuron in Figure 25 demonstrated a decrease in response during cortical cooling. 

Figure 25A shows a change in spike numbers when cooling the AC. However, no recovery data 

was present to compare these results thus the observation is inconclusive. Figure 25B is an iso-

intensity curve displaying the drastic reduction in spike numbers during the cooling condition. 

The filled squares in this example represent the neuron pre cooling while the filled circles 

illustrate the neurons response during cooling. Data regarding post cooling conditions for this 

neuron was not obtained.  
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Figure 24. (A) An ICd neuron showing an increase in response during cortical cooling. Dot 

raster histograms and PSTHs of a representative ICd neuron pre-cooling, during cooling and post 

cooling. A change in spike numbers is evident during cooling when compared to the other two 

treatments (B). Iso-intensity curves of the same neuron obtained before, during and after cooling. 

The filled squares represent the neuron’s response before cooling. The filled circles represent the 

neuron’s response during cooling. The open square represents the neuron’s response post 

cooling. Note the change in peak number of spikes during the cooling condition. The arrowhead 

in (B) indicates that the dot raster histograms and PSTHs were obtained at the best frequency of 

iso-intensity curves. 
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Figure 25.   An ICd neuron showing a reduction in response during cooling conditions. Dot raster 

histogram and PSTH showing the change in spike numbers for pre and during cooling conditions 

(A). Iso-intensity curve portraying the change for each condition, filled squares representing the 

pre-cooling period of recording, while the filled circles represent the period of recording during 

cooling (B). No recovery data was collected for this neuron. Note drastic change in spike 

numbers during the cooling condition. Arrowhead in (B) indicating the plots were generated 

using the BF of this neuron. 
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3.8 Summary of Results 

Objective 1 – Classification of ICd neurons 

 3 categories of neurons classified in ICd 

o Onset 

 Phasic 

 Phasic Burst 

 Fast Adapting 

o Sustained 

 Primary Like 

 Pauser 

 Late 

o On/Off 

 ICd neurons demonstrate stimulus intensity sensitivity 

o Most neurons examined show monotonic RLFs 

Objective 2 – Studying SSA in ICd neurons 

 ICd neurons show SSA to repetitive tone burst stimuli 

 ICd neurons almost always fire action potentials to a randomized tone burst stimulus 

 

Objective 3 – Corticofugal modulation of ICd neurons, using a reversible inactivation 

method. 

 Most neurons examined show increase in spike numbers during cooling conditions 

 Few neurons show a reduction in response during cooling. 

 Preliminary data, thus results are inconclusive. 
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4 DISCUSSION 

4.1 Temporal Response Characteristics in ICd Neurons 

Temporal firing patterns of auditory neurons in response to tone burst stimulation is an 

important reflection of the way in which auditory information is encoded and processed. Neurons 

in the rat’s ICd exhibit a diversity of temporal firing patterns. Some of these firing patterns are 

similar to those reported for the central nucleus and the external cortex of the IC subdivisions. 

My results indicate that there are three major categories of firing patterns in the ICd of the rat. 

Over half of the neurons (53%) demonstrated onset firing including phasic, phasic burst, and fast 

adapting response patterns. Other neurons (44%) exhibited a sustained firing including primary 

like, pauser and late response patterns. A small number of neurons (3%) exhibited on/off type of 

response pattern.  

  

4.1.1 Onset response patterns 

 

Neurons with onset firing patterns may play a role in the detection of onset of sounds. 

One type of neuron with an onset response fired one or two action potentials at the onset of a 

tone burst and such a neuron was named as phasic type.  Another type of neuron with onset 

response exhibited a few action potentials at the stimulus onset and was named phasic burst type. 

Another type displayed a response for a brief period of about 50 ms of a100 ms stimulus 

duration; this type of onset neuron was named as a fast adapting type. The differences observed 

in the firing pattern of onset neurons could be attributed to several factors. One important factor 

is the interplay between excitation and inhibition. An initial excitation followed by inhibition 

could lead to an onset firing pattern. Another possibility is that neurons showing onset responses 
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may be driven by inputs that had an onset discharge pattern. Yet another possibility is that the 

response pattern may be a consequence of the membrane properties of the ICd neurons (Sun and 

Wu, 2009; Sivaramakrishnan and Oliver, 2001; Syka et al., 2000). 

Different neurons with onset responses may play different roles in processing complex 

stimuli. When presented with two successive tone bursts, onset neurons that mirror an onset 

temporal characteristic of an input or even those that acquire their response as a result of intrinsic 

membrane properties may respond well to both tone bursts even when the time between them is 

short. This is because neurons in lower auditory centers show little suppression to the lagging 

tone (Fitzpatrick, Kuwada, Batra and Trahiotis, 1995; Parham, Zhao and Kim, 1996). In contrast, 

onset neurons that reflect an inhibitory input would be expected to respond weakly to the second 

tone burst at short interstimulus intervals. Such a population of neurons with slow recovery times 

has been previously observed in IC neurons (Yin, 1994; Fitzpatrick et al., 1995). 

It is important to study the response of neurons to paired tone burst stimuli. Paired tone 

bursts can generate neural responses exhibiting adaptation. Neurons can have strong responses to 

an initial sound presentation, but little or no firing thereafter. The degree of adaptation and the 

time for which it lasted depended on the stimulus parameters. Therefore, the study of responses 

to paired tone burst stimuli may provide insight into the neural mechanisms responsible for 

stimulus specific adaptations. 

 

4.1.2 Sustained response patterns 

 

The second category of temporal firing found in ICd neurons was the sustained firing 

pattern. The sustained firing pattern may provide information regarding the duration of the input
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signal. Neurons with sustained responses had a discharge of spikes both at the onset and for the 

remaining of the stimulus duration. These responses fell into three subcategories: primary-like, in 

which a neuron fired in a continuous fashion throughout the entire duration of the stimulus; the 

majority of sustained type of neurons in the ICd exhibited this type of response.  Pauser 

displayed continuous late firing which was separated from transient early firing by a brief pause. 

The brief pause within this type of response may be created by inhibitory input. Finally build-up: 

this was the type of response where the neuron generated a continuous increase in firing until the 

end of the stimulus, only after an initial silent period of at least 40 ms.   

The sustained firing patterns observed in ICd are similar to those seen in other 

subdivisions of the IC. Sustained discharge pattern can be generated in a few possible ways. One 

theory is that the response type may be a consequence of the intrinsic membrane properties of a 

neuron.  Sivaramakrishnan and Oliver (2001) examined intrinsic membrane properties of ICc 

neurons in brain slices preparations of the rat and suggested that sustained temporal firing pattern 

is determined by delayed rectifying 4-AP-sensitive K
+
 currents that cause sustained firing during 

an excitatory stimulus.  

Another possibility is that the response type can reflect the interplay of excitatory and 

inhibitory inputs. In the ICd, while excitatory inputs are likely mediated by glutamate, the 

inhibitory inputs are likely mediated by GABA and glycine. Both GABA and glycine 

neurotransmitters have been found to influence responses in ICd and ICc neurons (Oliver, 

Winder, Beckius and Saint Marie, 1994; Sun and Wu, 2009).  Further experiments will be 

necessary to determine the extent to which each of these factors contributes to the sustained 

response of ICd neurons. 
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4.1.3 On/Off Response Patterns 

On/Off temporal firing patterns exhibit action potentials at the onset as well as shortly 

after the end of the stimulus presentations. In the current study only 3% of neurons displayed this 

type of temporal firing pattern. The relatively low percentage of neurons showing On-off firing 

pattern could be attributed to the present study. The offset response displayed by ICd neurons 

may be due to an intrinsic mechanism such as rebound from inhibition, or a result from offset 

excitation via an ascending input (Casseday, Ehrlich and Covey, 1994). The idea that extrinsic 

offset excitation is absent in some cells is supported by intracellular recordings showing that the 

size of the inward current that is correlated with stimulus offset decreases as stimulus duration 

increases. That is, when inhibition has more time to decay before sound offset, the inward 

current at sound offset is smaller (Covey, Kauer and Casseday, 1996). 

 

4.1.4 First spike latencies in ICd neurons 

 

In the past, studies have illustrated latencies of higher structures to be generally longer 

and broader than those of lower CAS nuclei (Heil & Irvine, 1997). Research concerning higher 

CAS structures such as the AC has illustrated that the primary AC fibers have exhibited latencies 

with variable range however, the majority of neurons exhibited latencies of less than 20 ms 

(Phillips and Irvine, 1982). Previous studies examining the range of first spike latencies of  IC 

neurons demonstrated that the range is very large and varies anywhere from 5 – 50 ms (Kitzes, 

Farley and Starr, 1978; Harrison and Palmer, 1984; Park and Pollak, 1993; Klug, Khan, Burger, 

Bauer, Hurley, Yang, Grothe, Halvorsen and Park, 2000; Fuzessery, Wenstrup, Hall and Leroy, 

2003).  A study by Syka et al., 2000, examined latency response in all subdivisions of the guinea 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=18621102#R23
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=18621102#R23
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=18621102#R19
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=18621102#R38
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=18621102#R24
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=18621102#R24
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=18621102#R14
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pig IC and revealed that a variation in first spike latency was observed more so in the ICd and 

ICx, which ranged anywhere from 6 to 70 ms. Whereas, in the ICc the latency values were 

uniformly distributed in individual frequency bands and were much shorter than those revealed 

by ICd and ICx neurons (Syka et al., 2000). 

In agreement with results by Syka et al (2000), our research exhibited that ICd neurons 

exhibiting a wide range of first spike latencies anywhere from 15.0 – 74.1 ms. The fact that these 

two subdivisions receive mostly descending input is a plausible explanation for the observation 

of longer latencies. Neurons with onset and sustained types of temporal responses have different 

first spike latencies. Onset neurons displayed shorter first spike latencies with a mean of 33.8 ms, 

while sustained neurons displayed longer first spike latencies with a mean of 42.6 ms. These 

observations may be attributed to the pattern of connectivity of the different subdivisions of the 

IC. For example, ICd receives abundant input from the AC, and to a lesser extent some input 

from ICc. The difference in the first spike latencies suggest that neurons with onset firing 

patterns might receive major inputs from the ICc while those with sustained firing patterns might 

receive major inputs from the cortex.  

Several other mechanisms may contribute to long response latencies in the ICd. One 

possibility is the involvement of NMDA receptors (NMDARs). Previous research has shown 

evidence of the NMDA receptors playing a role in temporal integration and alter timing of neural 

discharges (Binns, 1999; Kelly and Zhang, 2002). NMDARs have been shown to contribute to 

both onset responses as well as later responses in IC neurons acting independently of AMPA 

receptors (Sanchez, Gans and Wenstrup, 2007; Zhang and Kelly, 2001). As NMDARs have 

slower time courses for activation/deactivation, the involvement of these receptors may result in 

longer response latencies.  

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=18621102#R4
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=18621102#R22
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=18621102#R44


79 
 

Another possible mechanism which may explain the relatively long first spike latencies in 

the IC is inhibition. A few studies have suggested that longer latencies are created in part by fast 

inhibitory inputs that precede excitation (Park and Pollak, 1993; Casseday and Covey, 1995; 

Covey et al., 1996). A study done by Park and Pollak in 1993 in the IC of the mustached bat, 

demonstrated that blocking inhibition can reduce response latencies up to 20 ms. It has also been 

suggested that the large changes exhibited in such a case are in part due to the conversion of 

response patterns in IC neurons from “off” to “on” discharges. In contrast, much more modest 

changes in response latencies (<4 ms) have been reported in other studies (Johnson, 1993; 

Casseday and Covey, 1995; Lu, Jen and Zheng, 1997; Fuzessery et al., 2003). The inhibitory 

neurotransmitters contributing to longer latency values in the ICd may include GABA. Research 

utilizing bicuculline, a GABAA antagonist revealed that application of this drug shortened 

latency in about half of the cells examined (Park and Pollak, 1993). 

The long first spike latencies in the ICd may also be because of the fact that there are 

intrinsic connections within the IC (Saldaña and Merchán, 1992). In addition to intrinsic 

innervations, the ICd receives many descending projections from the AC (Diamond, Jones and 

Powel, 1969; Andersen, Roth, Aitkin and Merzenich, 1980; Druga and Syka 1984; Faye-Lund 

1985; Syka, Popelar, Druga and Vlkova, 1988; Druga, Syka and Rajkowska, 1997). It is possible 

that long response latencies in the ICd are produced by long feedback loops running through 

corticotectal pathways. In addition, the inhibitory influences of descending fibers on IC neurons 

have been demonstrated in studies using electrical stimulation of the AC (Syka and Popelár, 

1984; Torterolo, Zurita, Pedemonte and Velluti, 1998). 

ICd neurons display relatively large magnitude in jitter. Jitter is the deviation in or 

displacement of some aspect of the first spike from one sweep to the next. This large variation in 
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jitter seen in ICd neurons may be due to the presence of spontaneous activity. A large magnitude 

in jitter suggests low temporal precision in these neurons. One study investigating the presence 

of jitter in the ICc revealed that these neurons have a much lower level and thus higher temporal 

precision as oppose to that seen in ICd neurons (Zhang, unpublished results). This finding 

suggests that the difference seen in the degree of jitter between the ICc and ICd may be due to 

the differences in input that they each receive.  Neurons in ICd also showed differences among 

jitter of onset and sustained type of responses, though the difference between the two was not 

statistically significant. 

 

4.1.5 Frequency tuning curves (FTCs) 

The present study provides information regarding the various types of frequency tuning 

curves in ICd neurons of the albino rat. The neurons in the ICd of the rat exhibited a wide range 

of CFs and illustrated response thresholds covering most of the rat’s audible range. The neuron’s 

in ICd display at least four types of FTC curves including, V-shaped, U-shaped, W-shaped and 

complex (see Zhang & Kelly, 2006 for classifications).  

One possible conclusion that can be drawn from our data is that FTC types in the ICd do 

not follow any particular trends, and a variety of shapes exist with a broad range of variability 

across the entire frequency range. This finding suggests that the commonly found V-shaped FTC 

discovered in responses of the auditory nerve may in some cases be maintained in higher 

auditory nuclei, but in many other cases it may be shaped to various degrees by combinations of 

excitatory and inhibitory inputs as suggested in previous studies (Yang, Pollak and Resler, 1992; 

LeBeau, Malmierca and Rees, 2001). 
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The FTC types that I found in ICd neurons of the rat are very similar to those previously 

described in the ICc of other mammals such as the guinea-pig (LeBeau et al., 2001), mouse 

(Egorova, Ehret, Vartanian and Esser, 2001), and cat (Ehret and Merzenich, 1988; 

Ramachandran, Davis and May, 1999) although the percentage of the various types differs across 

species (V-shaped: 69% in rat, 84% in guinea-pig, 66% in mouse, 12% in cat; non-V-shaped: 

29% in rat, 16% in guinea-pig, 34% in mouse; 88% in cat). These differences may be explained, 

at least in part, by the fact that different authors used different classification methods. For 

example, all of my different classifications of FTCs were identified as such based on the Zhang 

and Kelly, 2006 classification method. These differences likely result in minor variations. Other 

factors such as anaesthetic may also affect results regarding frequency tuning characteristics. It 

has been ascertained that various anaesthetic regimens may reduce or even abolish the amount of 

inhibition in response areas (Evans and Nelson, 1973). The differences observed between studies 

may be attributed to the method in which the breadth of tuning was measured, and how the 

boundaries between FTCs classes were determined. 

 

4.1.6 The Quality Factor of ICd neurons 

The quality factor (Q10) at 10 dB above MT describes the neurons narrowness in tuning. 

The present study demonstrated that the ICd neurons had Q10 values in a wide range with a 

mean of 3.78. My results suggest that while some neurons in the ICd are broadly tuned, others 

are narrowly tuned to single frequency range. My results partially agree with those obtained by 

an early study indicating that neurons in the ICd were broadly tuned (Syka et al., 2000). Testing 

tuning width of ICd neurons at higher intensities such as 20 dB or 40 dB above MT may provide 

further information regarding the tuning of these neurons, as integration between excitation and 
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inhibition at higher stimulus levels can be influenced by additional mechanisms that are not 

activated at lower levels. 

 

4. 1.7 Rate Level Functions of ICd neurons 

Neurons in ICd display rate level functions (RLFs) similar to those seen in the other IC 

subdivisions. The present study illustrated that the majority of ICd neurons (64%) exhibited 

monotonic RLFs. These neurons display an increase in response with stimulus intensity and 

eventually reach a saturation point. The majority of the monotonic neurons found in the ICd were 

the onset firing pattern type. Non-monotonic RLFs were present in ICd neurons at a lesser extent 

(36%). Neurons with non-monotonic RLFs increased their response with stimulus intensity up to 

a specific sound pressure level. These neurons reduce the strength of firing at even higher 

stimulus intensities. Neurons with non-monotonic RLFs can have onset and sustained types of 

response patterns.  

The percentage of neurons showing non-monotonic RLFs is different among different 

auditory structures and different subdivisions of the IC. A study by Rees and Palmer in 1988, 

examined RLFs in the ICc of guinea pigs using contralateral monaural stimulation and found that 

the percentage of non-monotonic RLFs in this subdivision was low at approximately 24%. In 

contrast, Semple and Kitzes in 1985 reported a larger proportion of units with non-monotonic 

RLFs in response to ipsilateral (41%) versus contralateral stimulation (28%). It seems possible 

that the number of non-monotonic RLFs during binaural or free-field stimulation would be 

higher than the number of such units during monaural contralateral stimulation. A study about 

the response characteristics of neurons in the three subdivisions of the IC found that the number 

of non-monotonic RLFs was greater in the ICc (41%) than in the ICd (28%) or ICx (31%) in 
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response to white noise stimuli (Syka et al., 2000). Similar results were obtained by Palombi and 

Caspary in 1996 in young adult Fischer rats where the percentage of non-monotonic RLFs was 

higher (48.3%) in ICc neurons and to a lesser extent only 25.3% in ICx neurons. Studies carried 

out in the cat revealed similar proportions where they found 41% in the ICc neurons and 21–24% 

in the ICd or ICx, neurons (Aitkin et al., 1994).  

It has been demonstrated previously that the number of spikes in response to sound depends 

on the excitatory/inhibitory interactions of individual neurons. It has been revealed in the ICc 

that iontophoretic application of GABA or glycine decreased the firing rate whereas the 

application of their antagonists, bicuculline and strychnine, increased the firing rate and 

selectively blocked the firing reduction at the high intensities observed during non-monotonic 

RLFs (Faingold, Hoffmann and Caspary, 1989; Faingold, Boersma-Anderson and Caspary, 

1991; Le Beau et al., 1996; Fuzessery and Hall, 1996; Palombi and Caspary, 1996). It has yet to 

be determined whether the RLFs in the ICd are also shaped by local inhibitory 

neurotransmission. 

The presence of non-monotonic RLFs may also be related to anaesthesia. Bock, Webster and 

Aitkin (1972) reported that in non-anaesthetized animals most of the units in the IC had 

monotonic RLFs. Non-monotonic RLFs have been commonly found in neurons in the auditory 

centers of unanesthetized animals (Aitkin and Prain, 1974; Brugge and Merzenich, 1973; Young 

and Brownell, 1976). These results seem to suggest that non-monotonicity in RLF is not 

necessarily dependent on anaesthesia. Further experiments are needed to determine the role of 

anesthesia in the creation of non-monotonic RLFs.  

The results obtained in my study are consistent with previous investigations of RLFs in the 

other IC subdivisions (Semple and Kitzes, 1985; Rees and Palmer, 1988; Syka et al., 2000). The 
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majority of ICd neurons tested displayed monotonic RLFs, with non-monotonic RLFs existing at 

a much lesser degree. However, the presence of non-monotonic RLFs in the ICd may suggest 

that this structure is involved in encoding intensity. 
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4.2 Stimulus Specific Adaptation in ICd neurons  

 

Stimulus specific adaptation (SSA) is likely an active mechanism used for detecting 

novel sounds. The structural and physiological basis of this phenomenon is yet to be determined. 

It is likely that in order for novelty response to occur, the nervous system must register and retain 

information about the history of stimulation. The duration of sensory memory ability in primates 

has been estimated to be in the order of few seconds (Javit, Steinschneider, Schroeder, Vaughan 

&Arezzo, 1994; Naatanen & Escera, 2000). Our observation that ICd units show SSA in 

response to repetitive stimuli presented at interstimulus intervals of one second is consistent with 

this time scale.  

In the present study I found that ICd units appeared to show SSA to a repetitive stimulus 

pattern. Changes of acoustic parameters such as amplitude or frequency were sufficient to 

reactivate neurons showing SSA.    

My results suggest that not only do neurons in the ICd possess relatively complex 

computational capacities than that seen in neurons at lower levels of auditory processing, but 

also that the response may be modulated by an interplay of inhibitory/excitatory projections. ICd 

is a region that in the rat receives dense innervation from the AC (Herbert, Aschoff and Ostwald, 

1991; Saldana, Feliciano and Mugnaini, 1996). This pattern of connectivity raises the possibility 

that descending projections from cortical neurons synapsing with ICd neurons are specialized to 

respond to novel stimuli and may contribute to the responses of novelty detection in the IC.  

Thus, SSA could be inherited from neurons in the AC that provide inputs to the ICd.  In this 

case, it is expected that ICd neurons have longer latencies than those in the AC. SSA could also 

be created locally in the ICd, in which case local inhibitory neural circuits are required. 
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Activation of local inhibitory interneurons could interact with excitatory inputs provided by 

corticofugal descending projections and reduce responses during repetitive tone burst 

presentations. Studies using electrical stimulation to activate the auditory cortex (Syka and 

Popelár, 1984) suggested that the IC activity could be modulated by a brief period of excitation 

due to glutamatergic projections (from the auditory cortex) followed by a long lasting inhibition 

produced presumably by local inhibitory interneurons. Pharmacological experiments are required 

to determine whether SSA displayed by neurons in the ICd is shaped by corticofugal projections 

through feedback loops within the IC or intrinsic properties of ICd neurons or other factors.  
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4.3 Corticofugal projections and their role in the modulation of ICd 

neurons 

 A reversible inactivation technique was used in the present study to inhibit the 

corticofugal input to neurons in ICd.  I have shown that unilateral deactivation of the AC by 

cooling induces a change in spike numbers of ICd neurons during tone burst stimulation. Out of 

the twelve neurons obtained to date for this project, seven exhibited an increase in spike numbers 

during the cooling condition, while five neurons displayed a reduction in response. Most of the 

twelve neurons analyzed, did not exhibit strong adaptation responses before cooling, thus 

examining the role of descending projections in SSA neurons was really difficult.  

The fact that a change in response was displayed by ICd neurons during the cooling 

condition can be attributed to the excitatory/inhibitory nature of corticofugal projections. An 

increase in response indicates the involvement of local inhibitory neural circuits within the IC 

controlling the response exhibited by ICd neurons (Figure 24). In contrast, the reduction in 

response would suggest that there is direct excitatory innervation of ICd neurons by the AC. 

It has long been known that layer V of the AC sends abundant descending projections to 

both the ICx and ICd (Winer, 2002) Anatomical research has also suggested that the descending 

projections from the AC to the IC are in fact excitatory. Acoustic stimulation activates neurons in 

the AC. The AC then sends excitatory inputs to the ICd. Inhibitory interneurons within the ICd 

are excited by corticofugal projections and may provide input to other neurons within the ICd. 

Therefore it is likely that if the AC is cooled, some neurons in the ICd can increase their firing. 

In the small group of ICd neurons exhibiting a reduction in spike numbers, the likely input to 

these ICd neurons is a direct excitatory one from neurons in the AC. As the results in the present 
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study related to cortical cooling are quite preliminary this mechanism of corticofugal projections 

and their function in processing of sound stimuli in ICd neurons is still quite speculative.  
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5 CONCLUSIONS 

 

This study represents a comprehensive analysis of responses of single neurons in the ICd 

of the albino rat. I have demonstrated that a variation of temporal firing patterns exists within 

this structure. Neurons have a broad range of first spike latencies and latency jitters. I also 

presented data illustrating ICd neurons display various FTC categories and tuning widths. These 

data may be utilized for further study of temporal and spectral characteristics when further 

dissecting the mechanism and functions of neurons in the ICd. 

Another finding in the present study is the presence of SSA neurons in ICd.  These 

neurons exhibited a decrease in response when utilizing repetitive blocks of stimulation. 

However, their response was recovered when some stimulus parameter was changed. The 

knowledge regarding this phenomenon in ICd neurons is quite scarce, thus the present study 

provides generous contribution to SSA and their tentative function in central auditory processing. 

Corticofugal projections were also studied using a reversible inactivation technique. The 

use of this method for future study of neurons in ICd and their function in auditory processing 

may prove valuable. Furthermore, even though the data were quite preliminary and the data set 

was small, one possible conclusion was that a feedback loop exists between the AC and IC 

which may explain the changes seen in the majority of ICd neurons studied.  

The data obtained in this study serve as a baseline for future investigations focusing on 

ICd neurons.  This data may be used for comparative purposes in pathology-related studies such 

as age-related hearing loss, tinnitus, audiogenic seizures or other central auditory processing 

disorders. 
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APPENDIX A: EQUIPMENT USED 

 

2400A Preamplifier, Dagan, Minneapolis, Minnesota. 

2660 Model Micropositioner, Kopf Instruments, Tujunga, California. 

CF1 Closed field speakers, Tucker-Davis Technologies (TDT), Alachua, Florida. 

Condenser microphone, ACO Pacific 7017, Belmont, California. 

Homeothermic Blanket Control unit, Harvard Apparatus, Holliston, Massachusetts. 

RX6 Processor, Tucker-Davis Technologies (TDT), Alachua, Florida. 

SA1 Power Amplifier, Tucker-Davis Technologies (TDT), Alachua, Florida. 

Stereotaxic Instrument: Kopf Instruments, Tujunga, California. 

Single-wall sound-attenuated chamber ,Eckel Industries, Morrisburg, Ontario. 
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APPENDIX B: CHEMICALS USED 

 

Atropine sulphate, 0.08ml/kg, injected intramuscularly (i.m).  

Euthanyl, Pentobarbital Sodium, MW = 248.254 g/mol. 

Ketamine hydrochloride, 75 mg/kg, (i.m). 

Potassium Chloride, 3M, MW = 74.55g/mol. 

Xylazine hydrochloride, 10 mg/kg, (i.m). 
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