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ABSTRACT 

Platelet aggregation is a complex process that results in side effects for patients 

with diabetes, atherosclerosis, stroke and heart attack.  Although thoroughly studied, the 

details of the aggregation cascade are not determined.  The mechanism for participation 

of protein disulfide isomerase (PDI) in platelet function has received attention in 

literature however has not been established.  In addition, heat shock protein 70 (Hsp70) 

was found on the platelet surface and was investigated for its role in platelet aggregation.  

Thymosin β4 was of interest as a potential effector in platelet aggregation.  An additional 

goal of the study was further optimization of the flow cell chamber platelet aggregation 

model. 

UV-VIS Spectrophotometric and flow cell chamber data that indicate no 

significant effect of excess platelet surface PDI, b-b’ or Hsp70 on platelet aggregation 

and adhesion.  However, Thymosin β4 has been shown to positively affect rates of platelet 

aggregation at the doses of 1-10 μg/mL. 
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Chapter 1  GENERAL INTRODUCTION 

1.1 Platelets 

1.1.1 Introduction 

Platelets are small anucleate cellular structures that exist in the blood and are 

involved in the processes of hemostasis, wound healing and atherosclerosis.  They are 

produced by mature megakaryocytes that are generated by the proliferation and 

differentiation of hematopoietic stem cells through megakaryocytic progenitors (3).  

Platelets carry out their primary function in hemostasis and wound repair, controlling 

bleeding upon vascular injury through a complex series of events.  In short, platelets are 

able to sense the vessel wall injury, adhere to the site of injury, undergo morphological 

changes that attract other platelets to the site of the injury and begin formation of a tough 

plug that halts bleeding and begins the first stages of healing.  Many bleeding disorders 

are caused by platelet dysfunction, such as Thrombocytopenia and VonWillebrands 

disease, and result in increased bleeding times or absence of clotting in patients.  These 

disorders are very difficult to treat and if handled carelessly can result in injury and death.   

 

1.1.2 Platelet Formation 

Platelets are formed by Megakaryocytes, myeloid cells that reside in the bone marrow 

but can be found in the yolk sack and fetal liver prior to the time when marrow cavities 

have formed in the bone.  Megakaryocytes develop from pluripotent human stem cells.  

The process of platelet formation, outlined in figure 1-1, begins with Megakaryocytes 

enlarging in a process known as endomitosis; which is promoted by the signaling 



Chapter 1: General Introduction 

2 

 

molecule thrombopoietin.  In endomitosis DNA is replicated up to 64 fold per cycle, and 

the nuclear envelope begins to break down.  However, normal cell replication fails to 

proceed, and is halted at anaphase B, therefore bypassing telophase and cytokinesis.  

After the nuclear envelope reforms, there is a range of 4N up to 128 N per 

megakaryocyte (4).  At the same time, the demarcation membrane system (DMS) 

matures, constituting a tubule network that associates with the plasma membrane and is 

thought to act as a reservoir for proplatelet production (5). 

The open canalicular system, an open channel system designed for α-granule 

shuttling, is also formed during the cell expansion phase, prior to proplatelet production.  

The packaging of α-granules begins at this stage of cell expansion, with VonWillebrand 

Factor (VWF), receptors and other important platelet associated proteins shuttled into the 

secretory granules from the megakaryocyte.  Other important platelet proteins such as 

fibrinogen are collected from the extracellular space via endocytosis/pinocytosis and also 

packaged into α-granules.  Platelet biogenesis begins with the creation of proplatelets, or 

long pseudopodia-like extensions of the megakaryocyte cytoplasm driven by the thick 

linear bundles of microtubules in the proplatelet shaft.  The polymerization and 

elongation of the microtubules appears to be dynein-facilitated, with the tubules growing 

both toward the body and towards the free end at which point the tubule rounds and re-

enters the shaft, giving the bulbous appearance at the free end.  One platelet will develop 

from each of these long proplatelet extensions; however, extensive end amplification 

allows bifurcation of proplatelet extensions; figure 1-1 depicts the process of platelet 

biogenesis and the extensive end amplification that can occur.  Organelles and α-granules 
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are shuttled to the proplatelet tip along the microtubules.  Over time the pseudopodial 

extensions taper, and the platelet pinches off from the megakaryocyte (2). 
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Figure 1-1 Megakaryocyte platelet biogenesis (2) 
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1.1.3 Platelet Activation 

Platelets are activated by many different agonists, and are capable of responding to 

these agonists in a relatively redundant way.  The list of physiologically relevant agonists 

includes thrombin, adeniosine diphosphate (ADP), epinephrine, calcium ionophores (A 

23187), fibrinogen, collagen and thromboxane A2 (TXA2) (6).  Upon activation by an 

agonist, platelets undergo morphological changes mediated by cytoskeletal components, 

extending filopodia from the cell and releasing dense and α-granules into the extracellular 

space.  Secreted compounds serve to further activate the platelet from which they were 

released, to attract and activate passing platelets, to initiate wound repair and to play a 

role in inflammation (7).  As platelets become activated, they adhere to the site of vessel 

injury via cell surface integrins and receptors, become sticky and irregularly shaped and 

spread across the area of attachment.  The contents of the secreted α-granules activate 

nearby platelets, causing them to become sticky and adhere to one another as well as 

those that have bound to the site of injury, forming a clot.  The release of fibrinogen and 

thrombin allows the production of fibrin monomers, which cross-link to form a mesh that 

strengthens and reinforces the clot, preventing further blood loss.  The multitude of 

signals capable of activating platelets establishes a failsafe mechanism, to ensure blood 

loss is minimal even if one or more signaling systems are impaired.   

 

1.1.4 Thrombin Activation 

Thrombin is a 36 kDa serine protease that is produced from a zymogen conversion of 

prothrombin in the coagulation cascade of activated platelets.  Thrombin converts 

fibrinogen to fibrin monomers, as mentioned before, but also elicits shape change in 
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platelets, release of platelet activators via α-granules and mobilization of P-selectin to the 

cell surface (8).  Thrombin also exerts effects on other cells, including eliciting cytokine 

production in the endothelium and acting as chemo-attractive factors for monocytes and 

lymphocytes (8).  Active thrombin exerts its effects upon cells by communicating with 

the human protease activated receptor-1 (PAR-1), cleaving it between Arg41 and Ser42 

at the N-terminus thereby exposing a new amino terminus (9).  This new N-terminus acts 

as a tethered ligand, activating itself and allowing coupling with G-protein coupled 

receptors (GPCR) such as G12/13, Gq and Gi (8), activating a milieu of intracellular 

signaling cascades such as those shown in Figure 1-2.   

 

1.1.5 Integrin Activation 

Integrin molecules are adhesion receptors that reside in the plasma membrane of 

platelets and other cells, to function as cell adhesion molecules and receptors.  They exist 

as glycosylated heterodimers composed of transmembrane α and β subunits that are non-

covalently associated; each subunit possesses a large extracellular domain, a single 

transmembrane domain and a small cytoplasmic domain. (10) 
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Figure 1-2: Downstream targets and effectors following proteolysis of PAR-1 by 

thrombin in platelet aggregation. 
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Figure 1-3. Integrin α 2b β3 extracellular domain structure and affinity states 

(10).  When in the bent conformation the integrin assumes a low affinity state; as it 

moves from the extended closed conformation to the extended open conformation, 

the affinity increases achieving the extended open conformation once bound to 

fibrinogen.  In inside-out signaling, interactions between the lower legs are 

disrupted, initiating the switchblade unfolding of the integrin. 
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Integrins usually exist in a low-affinity binding state until activated via intracellular 

signals; this is termed ‘inside-out’ activation, a key step in integrin activation during 

platelet aggregation.  As shown in figure 1-3, integrins assume many different 

conformations dependent upon the affinity state, moving through a bent conformation 

into an extended conformation with a closed headpiece, then to an extended conformation 

with an open head piece when going from lowest to highest affinity states respectively 

(11).  The α2B β3 integrin is platelet specific, and assumes the extended open 

conformation once bound to fibrinogen; the binding site for fibrinogen is a pocket loop 

that forms on the integrin head piece between the α2B β-propeller and the β3-I domain 

specificity determining loop (SDL) (12).  Inside-out signaling is initiated by activators 

(such as Talin-H) binding on the cytoplasmic face of the integrin, disrupting the 

hydrophobic and electrostatic interactions between the membrane proximal helices of the 

α2B and β3 cytoplasmic tails (13).  Disruption of the binding between the membrane 

proximal helices triggers events that transmit the signal through the transmembrane 

segments to the extracellular domain.  The exact mechanism of this signal transfer in the 

transmembrane domain is controversial; however it appears to cause disruption of the 

interactions in the extracellular domain between the lower α and β legs, further 

destabilizing the bent conformer’s headpiece-tailpiece interaction, resulting in a 

switchblade-like opening of the integrin into the extended conformation.  Recent 

evidence also suggests that extracellular domain conformational changes resulting in a 

high affinity state are dependent upon disulfide bonding pattern changes between the 

many cysteine residues in the extracellular subunits (14-15).  It has been shown that the 

exposure of free thiols is necessary for integrin binding, therefore thiol-dependent 
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ligation in α2B β3 integrin may be required for integrin adhesion to fibrinogen (16).  This 

points towards a possible role for protein disulfide isomerase (PDI) in platelet activation 

on the cell surface, though there remains controversy about whether integrins retain their 

own isomerase activity or whether an external isomerase is required. 

1.1.6 Heat Shock Protein 70 on the Platelet Surface 

Heat Shock Protein 70 (Hsp70) is a well known intracellular protein that is 

responsible for molecular chaperone function: a director of proper protein folding and 

unfolding, acting as a sensor for lethally mis-folded and aggregated proteins that can lead 

to cell death, or apoptosis.  However there is recent evidence that Hsp70 is secreted from 

cells through three possible pathways and can have extracellular functions related to 

immunity and inflammation.  These possible pathways include: secretion from an 

endolysosome; leakage from necrotic or apoptotic cells; or packaging and release in 

vesicles that bleb from the plasma membrane then lyse to release their contents (17-18). 

After finding Hsp70 in supernatant of a platelet surface ethanol wash, a 

hypothesis that Hsp70 has a role in platelet aggregation on the external surface of the cell 

was developed (unpublished data).  In the literature, Hsp70 has been investigated for its 

roles in the vasculature, with speculation that elevated levels of Hsp70 may protect 

against cardiovascular disease (19-20).  As well, Hsp 70 levels in type I diabetic patients 

have been found to be inversely associated with macro and micro-vascular complications 

(21).  In pediatric Immune Thrombocytopenic Purpura patients—an autoimmune disease 

that destroys platelets-- increased levels of plasma antibodies against Hsp70 have been 

discovered (22), and there has been some speculation that heat shock proteins alongside 

protein phosphatases have a role in platelet aggregation (23).  All of this research points 
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to a role for Hsp70 in hemostasis and thrombosis, however, what that role is has yet to be 

determined.   

 

1.2 Protein Disulfide Isomerase 

 

1.2.1 Introduction 

Protein disulfide Isomerase (PDI) is a ubiquitous 58 kDa thiol-disulfide 

oxidoreductase protein found in the endoplasmic reticulum (ER) of eukaryotic cells.  It is 

a member of the thioredoxin superfamily of proteins, and is capable of disulfide exchange 

(24).  In the ER, PDI is responsible for disulfide bond breakage, formation and 

rearrangement necessary for proper protein folding (25).  Disulfide bonds are important 

for stability of protein structure and as redox responsive regulatory switches, all 

contributing to cell viability.  Although PDI is largely considered to be an ER-localized 

protein due to its c-terminal KDEL retention signal (26) it has been found in other locales 

including the surface of human platelets (27), as a non-catalytic sub-unit of prolyl 4-

hydroxylase (28) and as a subunit of the microsomal triglyceride transfer protein (29); 

however, PDI’s full contribution in all of these respects has not yet been completely 

defined. 

 

1.2.2 Domain Structure and Catalytic Activity 

PDI is a five domain protein with overall domain structure of a-b-b’-a’-c.  Each of 

the a, a’ and b, b’ domains all adopt the secondary structure of the thioredoxin fold, with 

the sequence βαβαβαββα (30).  The crystal structures of the a and b domains are shown 
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in figure 1-4, with the thioredoxin fold shown in blue.  Within the N-terminus of the 

second α-helix of the a and a’ domains are the active site motif sequences— Cys-Gly-

His-Cys—which are analogous to the thioredoxin motif sequence of –C-X-X-C – and 

constitute the independent active sites capable of thiol oxidation, reduction and 

Isomerization (31-32).  The crystal structure of PDI has been researched most recently by 

Nguyen et al. in 2008 who have discovered that the molecule forms a ‘boat’ shaped 

arrangement, rather than the ‘twisted-U’ originally reported by Tian et al in 2006, such 

that the two a domains do not necessarily face each other across the catalytic cleft as was 

previously thought; the b and b’ domains form a rigid platform from which the a and a’ 

project, with the a domain being the more flexible of the two (33-34).  As a result PDI 

appears to possess a more adaptive and flexible catalytic pocket than was originally 

thought, which is able to bind substrates of many different sizes and conformations (33, 

35).  The b and b’ domains have been characterized as protein binding domains due to 

the hydrophobic residues within these domains lining the inside of the catalytic pocket, 

and are therefore thought to be responsible for proper protein positioning next to the 

catalytic domains as they are themselves catalytically inactive (36).  The catalytic activity 

of PDI as shown in Figure 1-4, is capable of forming, breaking or isomerizing mis-paired 

disulfide bonds using redox reaction chemistry: one chemical species attains a higher 

oxidation state through the gain of electrons, while the other species is reduced and loses 

electrons. 
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Figure 1-4 The a and b domains of human PDI.  The a domain contains five-

stranded mixed b-sheets surrounded by four a-helices.  The active site motif lies 

between C36 and C39 at the N-terminus of a2. There is virtually no sequence 

similarity between the domains (32) 
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Figure 1-5 The redox-dependent activities of PDI.  By forming mixed disulfides 

with cysteine residues, PDI is able to form and break disulfide bonds producing a 

protein with free thiols, disulfide bonds or shuffled disulfide bonds 
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Free thiol groups on unpaired cysteines can be oxidized by PDI to form a disulfide bond 

between two sulfur atoms, both of which attain a -1 oxidation state as the protons are 

transferred to the PDI active site thereby reducing it to a dithiol state (37).  An interesting 

and recently discovered property of PDI is that it can exist as a dimer in solution and in 

the ER, with 9.7% of the monomer surface being buried; of this buried portion, 17% of 

the contact interface is contributed by the a domain, with the remaining domains 

contributing the balance equally (34).  This further suggests the increased flexibility of 

the a domain, possibly making it the primary mediator of the enzyme’s interaction with 

proteins of many differing sizes and conformations. 

The b domain appears to possess molecular chaperone properties as it is able to 

bind small peptides, allowing PDI to recognize and interact with proteins and co-

operating with the a and a’ domains for larger protein interactions.  These molecular 

chaperone domains allow for positioning of substrates in the active site in such a way to 

expose buried thiols or disulfide bonds, to prevent improper interactions between 

partially folded intermediates, for targeting the thiols or disulfide bonds that specifically 

need attention and for recognition of improperly folded proteins in more than one 

intermediate state (32).  The binding of proteins to PDI at one site appears to happen with 

fairly low affinity; however, the binding is multiplicative with each additional binding 

site contributing to an increase in binding affinity.  It is thought that as the proper protein 

folding and structure is established by forming proper native bonds, the protein will bind 

to fewer and fewer sites on PDI, eventually having the lowest binding affinity when 

proper native conformation is achieved.  The acidic C-domain posesses the KDEL-ER 
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retention sequence, and does not appear to contribute to the enzymatic function of the 

protein (38). 

The redox state of PDI’s active site is largely dependent on the ratio of reduced to 

oxidized glutathione ([GSH]/[GSSG]) in the compartment in which it resides (39); in the 

ER this ratio is approximately 3:1, creating a reducing environment.  The oxidation of 

PDI in the ER is thought to be due in large part to Ero1, an oxidative exchanger which 

recharges PDI by reducing flavin adenine dinucleotide (FAD) to FADH2, using molecular 

oxygen as a terminal election acceptor, thereby producing H2O as a by-product (40).  In 

vitro, PDI’s active site thiols can also be reduced or oxidized by GSH or GSSG, 

dithioltrietol (DTT) and reactive oxygen species (41). 

 

1.2.3 PDI in Platelet Aggregation 

Potential targets for PDI on the platelet cell surface include the collagen receptor and 

surface integrin α2β1 (16), and the fibrinogen receptor and integrin α2bβ3 (15).  These all 

appear to require disulfide bond exchange or re-arrangement to induce an active state 

conformation which initializes signalling pathways that subsequently activate platelet 

aggregation (42).  A proposed disulfide bond re-shuffling mechanism shown in Figure 1-

6 outlines how PDI might interact with the extracellular integrin disulfide bonds to 

initiate an active state conformation.  The α2β1 collagen receptor has been shown to form 

intra-receptor stabilizing disulfide bridges during its high affinity state (43), which 

suggests a role for a disulfide isomerase in switching the integrin to its active 

conformation.  This was corroborated by evidence that platelet adhesion to collagen was 

inhibited by the anti-PDI antibody RL-90 (16). 
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Yan et al have shown that in the α2bβ3 integrin, multiple unpaired cysteine 

residues exist in the β3 subunit which are postulated to comprise a key modulatory redox 

site for integrin activation.  The importance of the cysteine-rich domain in the integrin β3 

subunit and the possible role for PDI regulatory acitvity at this site are supported by the 

following discoveries.  The conformational changes that coincide with integrin activation 

have been mapped to the disulfide rich region of the β3 subunit (44).  Cysteine 

substitutions in the EGF-like domains of the β3 subunit were found to cause decreased 

surface expression of the integrin when double or single mutations in the EGF-like 3rd 

and 4
th

 domains were applied; additionally several different cysteine mutations in the 

EGF-3-like domain caused consitutive activity of the receptor, while disruption of the 

cys567-cys581 disulfide bond in the EGF-4-like domain caused a completely inactive 

state (45).  DTT has been shown to initiate a slow acting platelet aggregation through 

reduction of disulfide bonds (46).  Finally PDI inhibitors have been shown to attenuate 

α2bβ3 activation on the surface of the platelet (47). 
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Figure 1-6  A model of the proposed disulfide bond shuffle that occurs in 

integrins on the platelet surface.  Resting and active integrins differ in the number 

and positioning of unpaired cysteines (44). 
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1.2.4 PDI in Other Roles 

Although PDI clearly has many roles as an independent protein, it can also function 

as a subunit of other larger enzymes .  The enzyme human prolyl 4-hydroxylase acts upon 

collagen and other proteins forming 4-hydroxyprolines by hydroxylating proline residues, 

which are necessary for stabilizing the collagen triple helix (28).  The enzyme is an α2β2 

tetramer, where PDI serves as the β-subunit and one of its roles is to retain prolyl 4-

hydroxylase in the ER via the C-terminal KDEL retention signal.  PDI also acts as a 

chaperone for prolyl 4-hydroxylase by keeping the α-subunits in a nonaggregated and 

catalytically active form; this activity is unable to be mimicked by any substitute non-PDI 

chaperone proteins such as Hsp70 (48).  The same molecular chaperone activity that PDI 

contributes to prolyl 4-hydroxylase appears to also occur when it is a subunit of the 

enzyme microsomal triglyceride transfer protein.  The microsomal triglyceride transfer 

protein is a soluble ER αβ dimer protein that is required for the assembly and secretion of 

very-low-density lipoprotein from hepatic cells and chylomicrons from enterocytes.  PDI 

is the β-subunit in this protein as well, where again its role appears to include ER 

retention of the αβ dimer and maintaining the solubility and catalytic activity of the α-

subunits, but not appearing to contribute to the enzymatic activity of the dimer with its 

usual isomerase activity (49).   

PDI is also capable of denitrosating S-nitrosoglutathione and other S-nitrosylated 

compounds (RSNO) resulting in the release of nitric oxide (NO), as reported by Sliskovik 

et al in 2005.  NO is a ubiquitous signalling molecule which is especially significant in 

the cardiovascular system, where release of NO into the vasculature induces 

vasorelaxation and inhibits platelet function.  It has been suggested that there exists a role 

for PDI in catalyzing transmembrane tranfer of NO, first relieving it from an RSNO 
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source (50).  Studies on the mechanism of PDI denitrosation of S-nitrosothiols suggests 

that the cysteines in the CXXC motif of the active sites attack the RSNO substrate, 

undergoing a transnitrosation reaction and forming a nitrosyl disulfide intermediate, 

which ultimately results in release of NO leaving the PDI active site oxidized.  

Furthermore when NO levels are high, PDI is capable of accumulating NO within its 

hydrophobic domains, storing it as N2O3 (a potent nitrosating agent), thus nitrosating the 

nearest vicinal thiols within PDI and forming PDI-SNO.  In this manner PDI can act as a 

sink for NO, carrying it across the membrane where cell surface PDI denitrosates it, 

releasing it into the extracellular environment. 

1.3 Flow Cell Methodology Development 

 

1.3.1 Introduction 

As previously noted, the role of platelets in hemostasis and thrombosis begins with 

adhesion to the site of vascular injury.  The current methods for assessment and 

investigation into platelet adhesion to various matrices under various conditions are not 

sufficiently reliable, are expensive and are often not physiologically relevant.  Popular 

methods include passing of blood over coverslips coated with proteins such as fibrinogen 

(51), aggregometry in spectophotometers and plate readers; the bleeding time test; 

impedence aggregometry in whole blood (52); Platelet Function Analyzers which 

measure occlusions of apparati as an indication of wound closing time (53); flow 

cytometry as a measure of platelet activation and sensititivty to agonists using 

fluorescently conjugated monoclonal antibodies (54); and measurement of secreted α-

granules and their contents in response to agonists.  Our group has sought to create a 
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reliable, inexpensive and accessable method for investigating platelet adhesion and 

aggregation in a physiologically relevant setting using teflon boundary flow chambers, 

constructed internally with a polydimethylsiloxane (PDMS) surface coated with proteins 

of interest.   

 

1.3.2 Surface Chemistry 

The PDMS surface was manipulated chemically to ensure that any proteins applied 

there would be tethered to the surface, rather than merely associated with it.  The 

otherwise inert PDMS, when subjected to plasma oxidation, possesses exposed hydroxyl 

groups on the surface.  These hydroxyl groups provide the ideal place for linker 

compounds, such as the one used in this study 5% aminopropyltrimethoxysilane 

(APTMES), to react.  The exposed amines of APTMES furthermore provide an excellent 

target for subsequent linker compounds such as the one used in this study, the amine 

reactive bis(sulfosuccinimidyl) suberate (BS3), and other linkers such as disuccinyl 

suberate (DSS).  The final compound BS3 provides the last link between the 

aformentioned covalent linkers and the protein of interest, which in this study was 

fibrinogen, but could be a variety of proteins including collagen.  The final chemical 

scheme of the immobilization of fibrinogen onto plasma oxidized PDMS is shown in 

Figure 1-7. 

This method allows investigators to pass whole blood over the PDMS surface under a 

microscope, and quantify platelet adhesion to the proteins of interest, with the ability to 

add and manipulate many variables including, but not exclusively, compounds, sheer 

stress rates, temperature and light.    
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Figure 1-7  The surface chemistry of PDMS flow cells for immobilization of 

proteins.  Plasma oxidation exposes hydroxyl groups on the PDMS surface that are 

bound by APTMES, APTMES subsequently links to BS3 which in turn binds 

fibrinogen. 
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1.4 Thymosin Beta Four 

 

1.4.1 Introduction 

The β-thymosins are small, acidic 5 kDa peptides that are ubiquitous and highly 

conserved among species.  They were originally thought to be thymic hormones, but have 

since been identified as G-actin sequestering peptides participating in cell movement and 

cytokinesis (55-56).  Thymosin β4 (Tβ4) is present in concentrations from 0.1 μM up to 

560 mM in a variety of tissues and cell types, including platelets, where its main role is to 

bind free actin, or G-actin, thereby inhibiting association with the F-actin filament (57-

58).  Specifically in platelets Tβ4 has been shown in high concentrations, with levels of 

free Tβ4 increasing after activation with thrombin corresponding to the polymerization of 

F-actin and a decrease in the levels of the Tβ4-actin complex, allowing platelets to 

change shape and to elicit their physiological response in blood clot formation (59).  Tβ4 

is also co-released with factor XIIIa (plasma transglutaminase) from platelets following 

activation with thrombin and is integrated locally into fibrinogen monomers and fibrin 

polymers within the hemostatic plug at their αC-domains (60-61).  Decreased levels of 

Tβ4 in cancer cell lines has been noted by various groups, and has led to postulated roles 

for Tβ4 in the cell cycle and immunity (62).  Sosne et al studied the effect of Tβ4 

administration on corneal epithelial wounds and found that Tβ4 is also involved in wound 

healing and cell migration, as well as possessing anti-inflammatory and anti-apoptotic 

properties (63). 

 

1.4.2 Domain Structure and Activity 
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Thymosin β4 is a peptide that is largely unstructured in water, but has a tendency to 

form α-helical structures in aqueous solutions containing fluorinated alcohols (64).  

Circular dichroism analysis has suggested that isolated Tβ4 has an average of six helical 

residues and its actin-bound form contains up to 12 helical residues (65).  Thymosin β4 

binds to actin with an equilibrium dissociation constant of KT= 1 to 2 μM (66).  Various 

molecules such as profilin and DNase 1 have shown competition with Tβ4 for binding 

free actin, some due to steric overlap, with DNase 1 able to form a ternary complex with 

Tβ4-actin (67).  Recently Yarmola et al have shed greater light on this competitive 

binding scheme and determined that at concentrations higher than 5-10 μM the prevailing 

event is non-competitive inhibition, due to the existence of ternary complexes and 

allosteric changes in actin; however there have also been reports that intra-platelet 

concentrations of Tβ4 range from 200-500 μM (57).  In order to bind G-actin, the N-

terminus of Tβ4 must adopt an α-helical conformation, exposing an important 

hydrophobic residue 
6
Met.  When 

6
Met is exposed the N-terminal binding motif 

17
LKKTETQ

23
, and possibly also 6 important N-terminal amino acids, become properly 

positioned to participate either directly or indirectly in binding the C or N-terminus of 

actin between sub-domains 3 and 1 (67-69).  Figure 1-8 depicts the actin filament 

formation process within the cell, tread milling between monomer addition on the barbed 

end by profilin and monomer disassembly on the pointed end by Tβ4.  The balance of 

these processes depends on concentrations of the regulators.  However, Tβ4 has two 

orders of magnitude higher affinity for ATP-G-actin (free) than ADP-actin which is 

contained within the polymer.  Hence, the concentration of free actin in the cytoplasm is 

the main regulator of disassembly, and the concentration of free actin is heavily 
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dependent upon the concentration of Tβ4:  once actin is sequestered by Tβ4, the Tβ4-

actin complex no longer contributes to the free actin pool.  The equilibrium is balanced as 

follows, where [TA]ss is the Tβ4-actin complex, [A]ss is free G-actin, [T] is the 

concentration of Tβ4 and KT is the equilibrium constant (66): 

[TA]SS = [T]0.[A]SS/([A]SS+KT) 

 

The role of Tβ4 appears to be vastly different on the surface of the platelet.  There has 

been much research about the effects of Tβ4 on endothelial cell migration as a 

chemoattractive factor in wound healing; also elevated levels of Tβ4 have been 

discovered around areas of blood vessel and neuronal growth (70-71).  As a result of 

these accumulated findings, there has been speculation that upon injury Tβ4 is released 

from activated platelets and inserted into the fibrin/fibrinogen matrix that forms around 

the wound in an effort to keep the local concentration of Tβ4 relatively high.  A higher 

local concentration of Tβ4 may be needed to stimulate the epithelial cell migration and 

angiogenesis necessary to close and heal the wound.  The presence of Tβ4 has also been 

associated with anti-inflammatory properties, and as such does not appear to stimulate 

macrophage migration (58).  Although these effects of Tβ4 have been researched and 

documented, the processes by which it contributes to wound healing, angiogenesis and 

platelet aggregation are not fully elucidated. 
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Figure 1-8  Tread milling process of actin, 

with addition and dissociation of actin monomers 

happening at opposite ends of the filament.  

Thymosin would act to sequester the actin 

monomers (shown in orange); permission to use 

the image acquired from the author  (1). 
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OBJECTIVES 

1. Optimize the flow cell chamber experiment: determine the cause of fibrinogen dot 

peeling and identify the most robust and effective platelet fluorescent label 

2. Investigate the effects of excess platelet surface protein on platelet aggregation—

Protein disulfide isomerase for its potential role as a cell surface oxidoreductase, 

the b-b’ subunit of protein disulfide isomerase for its potential role as a chaperone 

for the critical disulfides in the α2bβ3 integrin, and heat shock protein 70 for its 

potential role as a platelet surface chaperone protein or ATPase. 

3. Investigation into the effect of the redox state of platelet surface protein disulfide 

isomerase and the whole blood environment on platelet aggregation 

4. Investigate the effects of Thymosin β4 on platelet aggregation 
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Chapter 2 MATERIALS AND METHODS 

2.1 Materials 

Hepes (EMD); sodium chloride (ACD Chemicals Inc); Sodium phosphate dibasic 

(ACD Cehcmicals Inc); Potassium chloride (ACD Chemicals Inc); D-glucose (sigma); 

Trisodium citrate dehydrate (EMD); citric acid monohydrate (BDH Chemicals); 8 mL 

ACD Vacutainer Whole Blood Collection Tubes  (VWR); fluorescein isothiocyanate 

(Fluka); dimethyl sulfoxide (EMD); Kanamycin (Sigma); Tryptone (Sigma); Yeast 

Extract (EMD Chemicals Inc); Potassium phosphate monobasic (ACD Chemicals Inc); 

Tris-HCl (ACD Chemicals Inc); Imidazole (Sigma); Lysozyme (Sigma); DNase 1 

(Sigma); Phenylmethanesulfonyl fluoride (Sigma); Triton x100 (Sigma); 30% 

Acrylamide (Bio-Rad); Tris-(Hydroxymethyl) Aminomethane (ACP Chemicals Inc.); 

Sodium dodecyl suflate (Sigma); Ammonium persulfate (Sigma); Temed (EMD 

Chemicals Inc.); Glycine (EMD Chemicals Inc); Methanol (U.W CCC);  Glutathione 

sepharose 4B beads (GE Healthcare); Precission Protease (GE Healthcare);  HIS-Select 

Nickel Affinity Gel (Sigma); Glutathione, oxidized (Sigma); Glutathione, reduced 

(sigma);  Eosin Isothiocyanate (Fluka); EDTA (Fischer Scientific); G25 Sepharose 

(Sigma); Potassium phosphate (ACP Chemicals Inc.);  Sylgard 184 Silicone Elastomer 

Kit (A.E Blake Sales Ltd.); 3-Aminopropyl-trimethoxysilane (Aldrich); BS3 (Thermo 

Scientific); Fibrinogen (Sigma); CaCl2 (ACD Chemicals Inc); Plasma Cleaner (Harrick 

Plasma PDC-32G); pump (Reglo Digital MS 4/6, model ISM 833, Ismatec); PTFE Teflon 

sterile tubing (0.031” X 0.062”); Microscope (Zeiss); Retiga EX, cooled Mono 12 bit 

Camera (Q Imaging); Northern Eclipse Software (Empix Imaging Inc); Cuvette 

(Sarstedt); Spectrophotometer (Agilent); Thrombin (Sigma); BODIPY® FL N-(2-
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aminoethyl)maleimide (Invitrogen); 5,5’-Dithiobis(2-nitrobenzoic acid) (Sigma); sodium 

acetate (Sigma) 

 

 

2.2 Methods 

 

2.2.1 Blood Acquisition 

Blood was obtained from the arm veins of healthy volunteers and collected in blood 

collection tubes containing ACD.  The tubes were stored upright at room temperature 

until the contents were used. 

 

2.2.2 Platelet Isolation and Preparation 

Whole blood was centrifuged at 400 RPM for 30 min at room temperature and 

platelet rich plasma (PRP) supernatant was decanted.  0.5 μM Prostaglandin E1 was 

added to PRP prior to centrifugation at 600 RPM for 15 min (72).  Plasma supernatant 

was removed and stored at room temperature for later use in flow chamber experiments.  

The platelet pellet was carefully removed from the surface blood pellet, re-suspended in 

Hepes-ACD buffer and subsequently centrifuged at 600 RPM and re-suspended until the 

blood pellet was removed.  Isolated platelets were stored resuspended in Hepes-ACD at 

room temperature on a nutator and used the same day.  If the platelets were to be used in 

a flow chamber experiment they were labeled with fluorescein isothiocyanate (FITC) at a 



Chapter 2: Materials and Methods 

30 

 

concentration of 48 μg/ml for 10 minutes at room temperature, washed twice with re-

suspension in Hepes-ACD  and used immediately(73).  The same procedure was used for 

platelets labeled with Bodipy®FL N-(2-aminoethyl)maleimide (Bodipy-FL) at a final 

concentration of 0.5 μM (74) and Cell Tracker Green 5-chloromethylfluorescein 

(CMFDA) at a final concentration of 2.5 μM (75).   

 

2.2.3 Cloning of Hsp70 

Cloning was performed by Tanya Marar under the supervision of Dr. Bulent Mutus 

and Dr. Sirinart Ananvoranich.  The human hsp70 gene was cloned from the pEGFP 

hsp70 plasmid into the pET21a+ vector using EcoRI and HindIII restriction enzymes.  A 

1932 bp insert was generated with a C-terminal His6tag.  The vector was transformed into 

BL21 (DE3)  pLysS E. coli. 

 

2.2.4 Protein Purification 

PDI, Hsp70 and the B-B’ domain of PDI were all purified from BL21 (DE3) E. coli.  

Glycerol stocks were thawed at room temperature and used to inoculate 50 ml of 

autoclaved terrific broth (TB) containing kanamycin at a concentration of 25 μg/mL.  

After growing overnight, 1 ml of the culture was used to inoculate an identical 1 L of TB.  

Following 3 hours of growth the OD540 was assessed and the culture was allowed to grow 

until it reached an OD of 0.4 to 0.6 was reached.  The culture was then induced with 1 

mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and centrifuged at 6000 RPM for 30 

min at 4° C.  Cells were re-suspended in lysis buffer and incubated on ice for 20 min 
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followed by sonication.  The lysate was centrifuged at 12,000 RPM for 30 min at 4°C.  

The supernatant was run over a nickel affinity column in the case of both PDI and Hsp70 

due to their His6 tags, to isolate the protein of interest.  The B-B’ protein was isolated by 

running the lysate over Glutathione Sepharose 4B beads pre-washed in water and 

equilibrated in PBS+DTT.  Precission Protease was added and incubated overnight with 

gentle agitation.  The eluate in all cases was collected in several fractions and analyzed 

by SDS-PAGE, Western blotting (except TB4) and Bradford Assay.   

2.2.5 Protein Disulfide Isomerase Preparation: oxidation, reduction and 

isomerization 

To induce oxidation purified PDI was incubated overnight with oxidized glutathione 

(GSSG) at a final concentration of 0.01 M.  The same was done to induce the reduced 

state of PDI, using reduced glutathione (GSH) at the same concentration.  To produce 

PDI in the isomerization form a ratio of 4:1 GSSG:GSH was used with a total final 

concentration of 0.01 M.  In all cases the PDI was incubated overnight at 4°C and then 

run over a G25 column to remove GSH/GSSG.  PDI activity was assessed using the Di-

Eosin-GSSG assay(DiE-GSSG) (39) and the level of activity was used as an indication of 

the level of oxidation of the PDI active site.  For verification of deposition on the platelet 

surface, redox induced PDI was labeled with eosin 5-isothiocyanate (EITC) and 

fluorescein isothiocyanate (FITC) by incubation of PDI at minimum concentration of 2 

mg/mL with 1 mg/mL EITC or FITC.  Carbonate buffer at a concentration of 0.5 M and 

pH 8.0 was used as the main solvent, and DMSO was used to initially dissolve the EITC 

and FITC.  After incubation overnight at 4°C, PDI was run over G-25 sephadex column 

and fractions were collected and subjected to Bradford Assay and fluorescence scans to 
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verify protein concentration and fluorophore viability.  Redox induced PDI was incubated 

with isolated platelets overnight at room temperature under gentle agitation.  The 

platelets were washed twice with Hepes-ACD before being used for experimental 

purposes.   

2.2.6 Spectrophotometer Turbidity Assay Experimental Procedure 

Isolated unlabeled platelets, either treated or untreated, were added to Hepes-ACD in 

an acrylic 500 μL cuvette at a final concentration of 2x10
7
 cells/mL.  The cuvette was 

placed inside the Spectrophotometer, and absorbance was read in kinetics mode every 2 

seconds at a wavelength of 595 nm.  After the first 30 seconds, the activator Thrombin 

was added (final concentration 1 unit/ml) with a curved glass instrument termed a 

‘plumper’ to enable quick, efficient addition combined with mixing.  The total final 

volume of Hepes-ACD + platelets + thrombin was 500 μL.  Two control treatments were 

utilized: one wherein Hepes-ACD was added in the place of thrombin and one wherein 

untreated platelets were used and activated by thrombin.  The aggregation was allowed to 

run to completion.   

 

2.2.7 Flow Chamber Assembly 

Sylgard 184 Silicone elastomer base was combined with silicone elastomer curing 

agent in a 10:1 ratio respectively, to create PDMS.  A glass cover slip formed the bottom 

of the chamber and was adhered to the square acrylic mold of the chamber with PDMS.  

After polymerization at 70°C for at least 25 minutes, the inside of the chamber was filled 

with more PDMS, using an acrylic and polytetrafluoroethylene (PTFE) tubing insert to 
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create a negative entrance space for blood to pass into and out of the chamber.  This was 

also allowed to cure at 70°C for at least one hour.  The acrylic insert was removed 

revealing the negative space, and the final coating of PDMS was applied to the remaining 

area of coverslip that was exposed, to create an entirely PDMS-lined chamber.  The flow 

cells were then subjected to plasma oxidation cleaning which allowed the normally inert 

silicone surface to contain exposed hydroxyl groups.  A solution of 5% APTMES in 

ethanol was applied in a small( <1µL) dot to the surface of the PDMS and allowed to 

bind for 15 minutes.  Following binding, BS3 (final concentration 0.125 mM) was added 

on top of the APTMES dot followed immediately by type 1 fibrinogen in 0.88% saline 

(final concentration 0.005 mM) on top of the BS3.  The chambers were incubated at room 

temperature for at least 10 minutes before being used in the flow experiments.   

 

2.2.8 Flow Chamber Experimental Procedure 

Prior to use, the flow chambers were blocked with a 1 M pH 8 Tris solution for 

approximately 2 minutes.  The flow cells were attached to an Ismatech pump as shown in 

the experimental set up in Figure 2-1.  Red Blood Cells (RBCs) and plasma were 

recombined in a 1:1 ratio, and isolated, labeled platelets were added at a final 

concentration of 2.5 x 10
7
 platelets/mL.  The pump was run at a speed of 2.00 mL/min, 

and the entire experiment was run for 390 seconds.  Images were taken every 10 seconds 

throughout the run with a Zeiss Microscope and Retiga EX, cooled Mono 12 bit camera 

using Northern Eclipse software.  After the 8
th

 image was taken, the platelet activator 

CaCl2 was added at a final concentration of 4.6 mM.    
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Figure 2-1 Experimental set up for platelet aggregations under flow.  The 

direction of blood flow is indicated by the arrows, and flows from the blood 

reservoir, to the flow cell chamber under the microscope, back to the pump and 

returning to the reservoir. 
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Chamber 
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2.2.9 Thymosin β4 Fibrinogen Binding Assay 

All necessary wells of a 96-well plate were filled with 50 µL of PDMS at a ratio of 

10:1, base:curing agent.  The plate was treated exactly as a flow cell, first exposing it to 

plasma oxidation then applying all necessary chemicals with an identical time course: 2 

µL of 5% APTMES in ethanol followed by 2 µL of both 2 mg/mL BS3 and 2mg/mL type 

1 fibrinogen in 0.88% saline.  Tβ4 was labeled with eosin-isothiocyanate (EITC) at a 

concentration of 10 mM in the presence of 1 M bicarbonate solution pH 8.0, at room 

temperature in the dark for 2 hours under gentle agitation.  The labeled Tβ4 was run over 

G25 column in the dark to remove unbound EITC, and subjected to Bradford Assay to 

determine protein concentration.  Before application of the labeled Tβ4, the wells were 

blocked with 1 M Tris-base; after 2 min the Tris was aspirated from the wells, and the 

various concentrations of Tβ4 were added to the wells: 0.01 µg/mL, 0.1 µg/mL, 0.5 

µg/mL, 1.0 µg/mL, 5.0 µg/mL, 10.0 µg/mL, 30.0 µg/mL, 50.0 µg/mL, 100.0 µg/mL.  

The plate was incubated under gentle agitation for 2 hours in the dark before the wells 

were washed 3 times with PBS (pH 7.0) in the dark.  The plate was read in a PerkinElmer 

Victor Multilabel Plate Reader using Workout 2.0 software. 

2.2.10 5,5’-Dithiobis(2-nitrobenzoic acid) Assay 

Plasma was isolated from whole blood by centrifugation at 400 RPM both before 

and after the flow cell chamber experiment.  A 5,5’-Dithiobis(2-nitrobenzoic acid) 

(DTNB) solution was made using 50 mM sodium acetate (NaAc), 2 mM DTNB in water.  

A DTNB working reagent was made using 50 μL of the DTNB solution, 100 μL 1 M Tris 

solution pH 8.0, and water 840 μL.  The DTNB working reagent was combined with the 
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sample at a ratio of 10:1 DTNB to plasma sample.  The solution was mixed well, then 

absorbance was read in the spectrophotometer at 412 nm.   

2.2.11 Data Analysis 

Spectrophotometric data was analyzed by determining the initial rate of 

aggregation as the slope of the line of the initial aggregation curve, between more than 4 

points.  Data from aggregations under flow were analyzed using the Northern Eclipse 

software.  A rectangular trace with area 12,375 pixels was used consistently for all 

movies taken.  The number of platelets bound and total fluorescence of the area within 

the rectangle were counted.  All data were pooled and the Y for each image (where 

Y=fluorescence value) was subtracted from the Yfinal to calculate the difference in total 

fluorescence across all images per movie.  The natural Ln of the difference produced a 

plot with the slope equaling the rate constant.  The rate constant was used to produce a 

theoretical curve using the equation: 

Y=Yfinal x (1- 1
(-1 x rate constant x time)

) 

The rate constant of the theoretical curves was adjusted until the theoretical curve fit 

the actual curve +/- 0.002.  This was done for each movie individually.  Statistical 

significance was determined using the T-test with p<0.05. 
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Chapter 3 RESULTS 

3.1 Flow Cell Methodology 

 

3.1.1 Optimizing the Surface Chemistry 

 

Initially when beginning the use of the flow cell chambers, a previous protocol was 

used that included the use of 100% APTMES on the activated PDMS surface.  Upon 

closer examination of the immobilized fibrinogen ‘dot’ following blocking with Tris, a 

peeling effect was noted.  A peeling or cracking of the immobilized fibrinogen surface is 

undesirable because it results in uneven platelet adhesion and the cracked surface can 

become loose and peel away during flow.  Both of these occurrences resulted in 

unreliable platelet adhesion measurements.  The following steps were taken to optimize 

the surface preparation to prevent the peeling effect from happening.  First, the effect of 

the 1 M Tris-blocking agent on the immobilized fibrinogen was investigated using all of 

the following as blocking agents: 1 M bovine serum albumin (BSA), 1 M glycine, 1 M 

Tris and water.  The images in figure 3-1 of the fibrinogen ‘dots’ following blocking 

demonstrate that it is not the 1 M Tris which is causing the peeling of the immobilized 

fibrinogen dots, as they all continue to peel under the different blocking conditions. 
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Figure 3-1 Variations in blocking agents do not affect fibrinogen dot peeling; the 

same extent of peeling is apparent for each type of blocking agent used, indicating 

the cause of peeling is not the process of blocking. 
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The next step undertaken to investigate the cause of the peeling effect was the surface 

chemistry responsible for tethering fibrinogen to the PDMS.  Simultaneously, both the 

length of exposure in the plasma oxidation chamber and the percent volume of APTMES 

were varied.  APTMES is soluble in ethanol, and the following percent volumes of 

APTMES in ethanol were used: 5%, 10%, 20%, and 50%.  The length of exposure times 

in the plasma cleaner were varied as follows: 0 seconds, 20 seconds, 60 seconds (Fig 3-

2); changing the length of exposure in the plasma cleaner effects the surface chemistry of 

the PDMS in the number of exposed functional groups. 

The images in Fig 3-2 display the peeling effect that occurs at APTMES 

percentages above 5%, with increasing severity as the %APTMES in ethanol increases 

(white arrows indicate sights of peeling).  Upon visual inspection it is very clear that the 

preferred percent volume of APTMES in ethanol for use as a linker to immobilize 

fibrinogen on the surface of PDMS is 5%, as this percentage did not produce the peeling 

effect at any duration of plasma cleaning.  It appeared that both the 60 second and 20 

second plasma cleaning at 5% were effective; so the length of time used in experiments 

thereafter was 60 seconds due to the distinct border it produced. The 0 second exposure 

time appeared to produce a resilient fibrinogen dot, however the web-like extensions 

around the perimeter of each dot did not produce a distinct boundary, and it is not clear 

how this web would affect platelet adhesion or dynamics within the flow cell. 
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Figure 3-2 Images of FITC-fibrinogen immobilized on the surface of PDMS 

using varying lengths of plasma oxidation and varying percent volumes of APTMES 

in ethanol.  The best combination of time in plasma oxidation and percent volume of 

APTMES in ethanol was 60 second and 5% because it produced no peeling and a 

distinct edge. 
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3.1.2 Labeling Platelets for Use in Flow Cell Experiments 

Throughout the development of this technique, more than one compound has been 

assessed for efficiency, compatibility and an absence of interference with the cellular 

processes involved in platelet aggregation.  Cell Tracker Green CMFDA dye was utilized 

to label isolated platelets, as the literature on the compound states that it does not 

adversely affect the processes involved in platelet aggregation.  CMFDA has been 

previously shown to interact with intracellular thiols following free diffusion across the 

plasma membrane and transformation by esterases into a cell-impermeant fluorescent 

thioether dye (76).  Baker et al. displayed the use of CMFDA in platelets for flow 

cytometry experiments, and claimed that the compound had no adverse effects on platelet 

aggregation processes (75); however, the opposite was observed when CMFDA was used 

in flow cell chamber experiments.  Although platelet fluorescence was robust and long 

lasting, CMFDA appeared to stunt the ability of the platelets to adhere to immobilized 

fibrinogen.  In figure 3-3 total adhesion, as a function of total fluorescence numbers, of 

platelets labeled with CMFDA was much lower than total adhesion of platelets labeled 

with Bodipy-FL . In figure 3-4 movie images taken from FITC and CMFDA labeled 

platelets shows the markedly reduced adhesion of platelets labeled with CMFDA dye. 
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Figure 3-3 A comparison of the adhesion curves for platelets in flow cell 

chamber experiments run over immobilized fibrinogen.  Platelets labeled with Cell 

Tracker Green CMFDA dye show inhibited ability to bind fibrinogen. 
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Figure 3-4 A comparison of images taken of the PDMS surface over the time 

course of a flow cell chamber experiment.  Platelets labeled with CMFDA dye show 

markedly reduced ability to adhere to immobilized fibrinogen, while platelets 

labeled with FITC do not (time measured in seconds). 
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Although Bodipy-FL was used as a standard against which to compare the 

effectiveness of the CMFDA dye, it is not without its own complications.  Bodipy-FL has 

been shown to be thiol reactive on the exofacial surface of the cell (77), which potentially 

interferes with integrin-mediated fibrinogen binding which, as previously discussed, has 

been shown to involve thiol disulfide bond shuffling.  Thus, in an attempt to use a dye 

that is not thiol reactive on the extracellular or intracellular face, amine directed FITC 

was utilized.  Unfortunately, FITC did not prove to be an effective solution for the 

platelet labeling problem.  Upon initiation of the flow cell chamber experiment 

fluorescent light is shone at the sample every 10 seconds as it flows past the light source 

and microscope field of view.  As a result, those platelets that adhere to the immobilized 

fibrinogen receive a dose of fluorescent light every 10 seconds from the time they adhere 

until the end of the run lasting a total of 390 seconds.  Photobleaching due to exposure to 

fluorescent light was observed for FITC labeled platelets over the time course of the flow 

cell chamber experiment, shown in figure 3-5, that makes accurate platelet adhesion 

measurements impossible. 

As a result of these investigations Bodipy-FL is the most effective platelet label 

for use in flow cell chamber experiments. 
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Figure 3-5  Photobleaching of platelets labeled with FITC compared to platelets 

labeled with Bodipy-FL.  Over the time-course of the flow cell chamber experiment, 

it is clear that Bodipy-FL labeled platelets are able to reflect the increase in platelet 

adhesion, while the steady decline in fluorescence seen in FITC labeled platelets 

indicates a photobleaching effect of platelets adhered to immobilized fibrinogen 

(photobleaching shown as a percent of the adhesion value at the time decay begins; 

n=4).   
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3.2 Excess platelet surface proteins 

In this study three proteins were assessed for their role and effects in platelet 

aggregation at the level of the cell surface: PDI, b-b’ subunit of PDI and Hsp70.  This 

analysis was done using a variety of techniques, one of which was turbidity assays 

performed by evaluating the extent of aggregation of platelets suspended in a cuvette as a 

measure of the decrease in turbidity within the cuvette over time.  The second technique 

used to assess the effect of excess surface proteins on platelet aggregation was the flow 

cell chamber experiment, which allows the specific targeting of the protein of interest’s 

role in the α2Bβ3 integrin mediated platelet aggregation pathway.  To deposit each protein 

in excess onto the surface of the platelet the law of mass action was utilized, and a high 

concentration of protein in solution was added to isolated platelets in suspension, tipping 

the equilibrium and causing deposition of protein on the platelet surface.  Excess surface 

protein was verified by subjecting treated platelets to a 5% isopropanol wash; SDS-

PAGE analysis of the wash supernatant (Fig 3-6) revealed more intense bands of the 

proteins of interest in treated platelets than in the native platelet isopropanol wash.   
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Figure 3-6  Platelets treated with excess protein of interest were subjected to a 

5% isopropanol wash, and the wash was subjected to SDS-PAGE.  The grey squares 

indicate where the law of mass action was successful in depositing excess amounts of 

protein onto the surface of the platelet.  Using densitometery measurements in 

ImageJ the area under the curve was calculated to be (in order from left to right) 

1276, 1156, 2191, 1229, 2741 and zero. 
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3.2.1 Investigation into the role of excess PDI on the platelet surface 

There are many studies that assess the effect of PDI in platelet aggregation using 

RL90 anti-PDI antibody, the PDI inhibitor bacitracin and other competing substrates 

(47), all of which verify reliably that PDI has a role in platelet aggregation.  The question 

that still remains unanswered is, what role PDI plays and in what pathway it participates 

in the complex aggregation process.  In an attempt to further elucidate the role PDI is 

playing in platelet aggregation, excess PDI was deposited onto the surface of platelets via 

mass action to approach the investigation of PDI’s role in platelet aggregation from a 

different angle.  If PDI plays a role in a rate limiting step of the aggregation pathway, 

increasing platelet surface PDI would cause increased rates of aggregation which were 

assessed by both turbidity assays on the UV-VIS Spectrometer and platelet adhesions 

studied in the flow cell chamber experiments.  Furthermore, by applying excess surface 

PDI to platelets in the flow cell chamber experiments, the potential role of PDI in the 

α2Bβ3 integrin mediated aggregation pathway will become clearer.  PDI was deposited on 

to the surface of the platelet via mass action, and the presence of PDI on the surface was 

verified by imaging of labeled PDI on the surface (Fig 3-7).  The effective labeling of 

PDI was verified by a fluorescence wavelength scan shown in figure 3-8, showing a peak 

at 540 nm with excitation at 520 nm for EITC labeled platelets (i), and a peak at 520nm 

with excitation at 488 nm for FITC labeled platelets (ii).  In addition to the effects of the 

mere presence of PDI, the redox state of the deposited PDI was also investigated:  PDI 

was induced into a reduced, oxidized or isomerization state and then incubated with 

isolated platelets.  
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Figure 3-7  Verification of Mass Action deposition of redox modified or native 

state PDI onto the surface of isolated platelets.  PDI is labeled with FITC (green) 

and EITC (red); the uniform colour verifies deposition onto the entire surface of the 

platelet. 
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Figure 3-8  Fluorescence scan of i) EITC and ii) FITC labeled PDI, verifying the 

presence and fluorescence of the bound fluorophore 
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To verify the redox state of PDI, the Di-Eosin-GSSG assay (39) was utilized and the 

results are shown in figure 3-9.  Oxidized PDI will not cleave Di-Eosin-GSSG and 

therefore will not produce an appreciable increase in emission fluorescence at 540 nm, 

however in a fully reduced state PDI will display very fast cleavage of Di-Eosin-GSSG 

and produce a large spike in emission.  Hence, the ability to cleave GSSG is seen as a 

representation of oxidation state of the PDI molecule. 

 

3.2.1.1 Turbidity Assay 

To analyze the effect of excess PDI of various oxidation states on the aggregation 

rates of isolated platelets, turbidity experiments on the UV-VIS spectrometer were used 

to measure platelet aggregation.  Figure 3-10 shows the combined results from all redox 

modified PDI platelet aggregations over different days using a variety of blood donors.  

The results from the turbidity assay aggregations imply that excess surface PDI had no 

significant effect on the initial rates of platelet aggregation, nor did the oxidation state of 

excess surface PDI appear to have any effect.  From this general measure of platelet 

aggregation, PDI does not play a role in a rate limiting redox-dependent stage of the 

platelet aggregation pathway. 
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Figure 3-9 Verification of redox state of PDI by the Di-Eosin-GSSG Assay (@540 

nm).  Reduced PDI cleaves Di-Eosin at the GSSG disulfide, causing an increase in 

fluorescence.  Oxidized PDI does not cleave the disulfides, thereby not producing an 

appreciable increase in fluorescence. Arrow indicates point at which PDI was 

added. 
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Figure 3-10 Initial rates of aggregation of isolated platelets incubated with PDI 

in various redox states; activated with 1 unit/mL thrombin, there is no significant 

difference in initial rates of aggregation between any of the treatments (n=31) 
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3.2.1.2 Aggregations Under Flow 

To confirm the results seen in the spectrophotometer, platelet adhesion studies were 

done using flow cell chambers and whole blood utilizing the various treatments of PDI.  

Isolated platelets were either incubated with native PDI, oxidized PDI, reduced PDI or 

left in an untreated state, then recombined with whole blood to perform the experiment.  

The result of incubating isolated platelets with excess PDI at a concentration of 1 μM is 

shown in Fig 3-11.  The results imply that incubating isolated platelets with excess PDI 

of native redox state had no influence on rates of adhesion of platelets to immobilized 

fibrinogen under flow conditions.  This implication was confirmed by the theoretical total 

aggregation curves from the same experiment, wherein platelets treated with excess PDI 

achieved lower total aggregation than untreated platelets (Fig 3-12). 

To verify the lack of effects on aggregation by redox induced PDI in the turbidity 

assays, the flow cell chamber experiment was utilized.  For this investigation, three 

approaches were attempted: first, only reduced glutathione (GSH) or oxidized glutathione 

(GSSG) at concentrations of 7.2 mM and 0.72 mM respectively were added to the whole 

blood preparation 2 minutes before beginning the flow; second, isolated platelets were 

pre-incubated with redox-induced PDI prior to mixing with whole blood preparation; 

lastly, a combination of the two approaches was utilized with both pre-incubated platelets 

and GSH/GSSG added directly into the whole blood preparation.  In all cases the results 

were inconclusive, with no statistical difference apparent between any of the treatment 

states (Fig 3-13).   
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Figure 3-11 Average kinetics of platelet adhesion to immobilized fibrinogen 

under flow.  Isolated platelets were pre-treated with or without excess PDI (1 μM).  

There is no significant difference between adhesion rates with or without excess PDI 

(n=3). 
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Figure 3-12  Total theoretical aggregation curves depicting platelet adhesion to 

immobilized fibrinogen under flow.  Theoretical curves are constructed based on the 

initial rates of adhesion for each trial (n=3). 
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Figure 3-13 Kinetics of platelet adhesion to immobilized fibrinogen under flow 

when treated with reduced or oxidized PDI, GSH or GSSG.  It was determined that 

there is no statistical difference between any of the treatment states. 
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In order to verify that the induced oxidation state in the flow cell chamber remains 

oxidized or reduced respectively throughout the entire experiment, plasma was isolated 

from the blood preparation and the concentration of free thiols was determined by 5,5'-

Dithio-bis (2-nitrobenzoic acid) (DTNB) Assay.  The DTNB assay confirmed that the 

induced redox state of the flow cell chamber preparation persists throughout the 

experiment (Fig 3-14).   
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Figure 3-14 Concentration of free thiols in post flow plasma as a percent of the 

pre-experiment thiol concentration.  The measured thiol concentration in plasma 

from the oxidized and reduced trials verifies that the redox state of the flow cell 

chamber environment remained oxidized and reduced respectively throughout the 

experiment.   
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3.2.2 Investigation into the role of excess b-b’ subunit of PDI on the platelet 

surface  

The b-b’ subunits of PDI were of interest as possibly being the main effectors of 

PDI’s documented augmentation of platelet aggregation.  Since these subunits are 

responsible for proper protein positioning in the PDI catalytic cleft, there was speculation 

that they could exert a chaperone activity on platelet surface integrins, holding the α2Bβ3 

integrin in such a way to enable intrinsic disulfide isomerase activity (14) or 

isomerization by glutathione (78).   

3.2.2.1 Turbidity Assay 

Isolated platelets were activated with 1 unit/mL thrombin and aggregation was 

measured in the UV-VIS Spectrophotometer as a function of the change in turbidity of 

the sample.  Initial rates of aggregation were compared between platelets treated with or 

without the b-b’ subunits of PDI.  Figure 3-15 shows the initial rates of aggregation 

between those platelets treated with b-b’ and those left untreated are not significantly 

different; as a result the b-b’ subunit of PDI does not appear to have its own chaperone 

function on the surface of platelets to potentiate aggregation. 
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Figure 3-15 Initial rates of platelet aggregation following uncubation with 1 μM 

b-b'.  No statistical diffrence in the initial rates of aggregation was found between 

control and b-b' treated platelets (activated by thrombin (1 U/mL)) 
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3.2.2.3 Aggregations Under Flow 

To verify the effect of excess b-b’ on the platelet surface in a physiologically 

relevant setting, isolated labeled platelets were re-introduced into whole blood and 

pumped over flow cell chambers containing immobilized fibrinogen.  Following 

activation with calcium (4.6 mM), rates of adhesion are measured for all treatments (Fig 

3-16).  The turbidity assay results are confirmed by the more physiologically relevant 

flow cell chamber experiments and the chaperone-like role of the b-b’ subunit of PDI in 

platelet aggregation is unsupported.   
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Figure 3-16  Average kinetics of b-b' treated platelet adhesion to immobilized 

fibrinogen under flow.  There is no statistical difference found between treated and 

untreated platelets (n=5). 
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3.2.3 Hsp70 and its effects on platelet aggregation 

 

 

During routine ethanol wash of the platelet surface, Hsp70 was identified on SDS-

PAGE and Western blot (Fig 3-17); this was later confirmed by Suzanne Durocher in the 

Mutus Lab using gold nanoparticles to pull proteins off of the platelet surface 

(unpublished data). 

 

3.2.3.1 The Effect of Hsp70 on platelet aggregation and adhesion under flow 

conditions 

 

To test the potential role of cell surface Hsp70 in platelet aggregation, isolated 

platelets were incubated with Hsp70 prior to use in flow cell chamber experiments, much 

like the procedure used for PDI and the b-b’ subunit.  In addition, Hsp70 was added 

directly into the whole blood preparation prior to commencement of the flow cell 

chamber experiment.  In both cases the results were the same, with Hsp70 treated 

platelets having no significant difference in initial rates of adhesion from native platelets 

(Fig 3-18).  Figure 3-19 shows the images captured from various time points during the 

flow cell chamber experiment with excess Hsp70 on the surface of the platelet, 

confirming that there was no significant difference in platelet adhesion when excess 

Hsp70 was present on the platelet surface.  



Chapter 3: Results 

65 

 

 

Figure 3-17  SDS-PAGE and western blot analysis of isolated platelet ethanol 

wash, identifying Hsp70 on the surface of the isolated platelet. 
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Figure 3-18 Kinetics of Hsp70 treated platelet adhesion to immobilized 

fibrinogen by activated platelets.  No difference was found between Hsp70 treated 

and untreated platelets. 
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Figure 3-19 Images from a flow cell chamber experiment depicting the 

progression of adhesion of Bodipy-FL labeled platelets to immobilized fibrinogen, 

when pre-treated with Hsp70 or left in their native state. 
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3.3 Thymosin Beta Four 

 

The effect of Tβ4 on platelet aggregation is a question that holds much promise and 

potential.  Tβ4 has been revealed to possess remarkable healing powers on the skin and 

eye (58, 63), however a hypothesis was developed implicating elevated levels of Tβ4 in 

diabetics and linking that to the elevated frequency of thrombotic events in persons with 

diabetes.  The turbidity assay and flow cell chamber experiment were implemented to test 

the effect of varying doses of Tβ4 on platelet aggregation and adhesion.   

 

3.3.1 Turbidity Assay 

 

Initially the effect of Tβ4 on platelet aggregation was assessed using turbidity assays 

in the UV-VIS Spectrophotometer.  At varying physiologically relevant doses of Tβ4 (1 

µg/mL to 100 µg/mL) the extent and initial rate of platelet aggregation was assessed as a 

function of decreased absorbance.  Figure 3-20 shows that Tβ4 influenced platelet 

aggregation at some doses, while having no effect at other doses.  At 1 µg/mL Tβ4 

appeared to slightly increase the initial rate of aggregation, however at 5 µg/mL and 10 

µg/mL there was a significant increase in initial rate of platelet aggregation over control.  

As the concentration of Tβ4 continued to increase, the positive effect on rate of 

aggregation diminished, and by 50 µg/mL the initial rates of aggregation were back to 

control levels.   
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Figure 3-20 Initial rates of aggregation of platelets treated with varying doses of 

TB4 in the turbidity assay (* = significant difference when P< 0.05; n=5) 
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3.3.2 The effect of Tβ4 on platelet adhesion under flow conditions 

 

To investigate the effects of Tβ4 on platelet aggregation in a more physiologically 

relevant experimental setting, Tβ4 was added at varying doses to the whole blood 

preparation prior to the onset of the flow cell chamber experiment.  In the flow cell 

chamber experiment, the same positive effect on platelet aggregation was seen in figure 

3-21 for Tβ4 doses of 1 µg/mL and 5 µg/mL; however, the 10 µg/mL dose did not appear 

to have the same effect as it did in the turbidity assay.  As observed previously, as the 

dose of Tβ4 increased above 10 µg/mL, the positive effect on platelet aggregation 

diminished back toward control levels. 
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Figure 3-21 Kinetics of platelet adhesion to immobilized fibrinogen under flow 

conditions at varying doses of TB4 (n=3) 

 

  

100

150

200

250

300

350

400

0 20 40 60 80 100 120

v o
(#

 o
f 

p
la

te
le

ts
 a

d
h

e
re

d
 t

o
 f

ib
ri

n
o

ge
n

/m
in

) 
as

 
%

 o
f 

co
n

tr
o

l

[Tβ4] (µg/mL)



Chapter 3: Results 

72 

 

3.3.3 Fibrinogen Binding of Tβ4 

 

Since the main platelet activation pathway targeted by the flow cell chamber 

experiments is the α2Bβ3 integrin pathway, which acts as a fibrinogen binding receptor 

(79), Tβ4 was tested to determine whether it was diminishing platelet aggregation at high 

doses by binding to fibrinogen, thereby preventing platelet adhesion.  Figure 3-22 shows 

the curve of FITC labeled Tβ4 binding to PDMS immobilized fibrinogen in a 96 well 

plate.  As the concentration of Tβ4 increases beyond 30 µg/mL, the binding of Tβ4 to 

fibrinogen begins to diminish as well; this points to Tβ4 not as an inhibitor of platelet 

aggregation at high concentrations, but rather as a switch acting to potentiate platelet 

aggregation rates at intermediate doses, while releasing from fibrinogen at high doses and 

allowing aggregation to occur at normal levels. 

The effect of Tβ4-fibrinogen binding on platelet aggregation was investigated in 

the spectrophotometer to confirm the hypothesis that intermediate doses of Tβ4 caused 

elevated initial rates of platelet aggregation.  Figure 3-23 shows the initial rates of 

aggregation as a percentage of control, and clearly shows that at the Tβ4 concentrations 

between 1 µg/mL and 10 µg/mL with fibrinogen present the rates of aggregation were 

lower than those without fibrinogen present; however at 30 µg/mL and 50 µg/mL the 

initial rates of aggregation converge.  Therefore it appeared that Tβ4 bound to free 

fibrinogen in the cuvette at intermediate doses, preventing the previously seen peak in 

initial rates of aggregation at 5 µg/mL.  When fibrinogen was immobilized in the flow 

cell chamber experiment, or absent in the cuvette, free Tβ4 was available for interaction 

with the platelet and augmentation of adhesion and aggregation.  
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Figure 3-22 Tβ4- fibrinogen binding curve.  Fibrinogen was immobilized on 

PDMS in a 96-well plate while EITC labeled Tβ4 was added at varying doses.  The 

resultant binding curve displays a relationship akin to first order kinetics, excepting 

the decrease in binding that occurs above [TB4] of 30 μg/mL (n=4). 
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Figure 3-23 Initial rates of aggregation of platelets in a turbidity assay shown as 

a percent of control.  Platelet aggregation was measured in the presence or absence 

or TB4 and fibrinogen. A peak at [TB4] 5 ug/mL correlates with the strong binding 

seen in the TB4-fibrinogen binding curve; in the presence of fibrinogen this peak in 

aggregation disappears (n=4).   
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Chapter 4 DISCUSSION 

4.1 Flow Cell Methodology Development 

 

In this study, the development of the flow cell chamber methodology was a focus in 

order to establish the method as a reliable and efficient tool for evaluating platelet 

adhesion under many conditions.  The eventual goal is to use the method diagnostically 

to assess platelet adhesion and aggregation in persons with bleeding disorders to 

determine the exact receptor, signaling molecule or pathway that is responsible for the 

problem.  Some difficulties encountered while working extensively with this method 

include bound platelet imaging problems; continuity of results between runs, between 

sessions and between blood sources; cracking and peeling of immobilized fibrinogen on 

PDMS causing unreliable adhesion counts; and clogging of the flow cell apparatus during 

runs.  The issue of bound platelet imaging is a difficult one to solve, mainly because the 

problem is that those platelets passing by the field of view at the moment the image is 

captured may not be stuck to the PDMS.  As a result the platelet adhesion count may be 

confounded by those platelets floating above the PDMS surface that are also captured in 

the image.  Although the flow rate is constant, this does not necessarily mean that the 

number of platelets passing by the field of view every second is the same—bubbles and 

currents that form in the chamber cause surges of platelet numbers at random times.  The 

ideal solution would be to find or make a fluorophore that becomes fluorescent after 

platelet adhesion to the protein matrix takes place; this is a very challenging concept, but 

perhaps enough knowledge about the receptor utilized to bind to the protein matrix, and 
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careful targeted labeling of that receptor, could allow this concept to be realized.  

Naturally if only bound platelets are emitting light, any issue with unbound platelets 

confounding fluorescent measurements would be eliminated.  Of the fluorescent labels 

assessed in this study, the most efficient and effective dye that does not display any 

inhibitory effects on platelet aggregation or fibrinogen-mediated platelet adhesion, is the 

Bodipy-FL fluorescent dye.  Although it is an exofacial thiol targeted dye, it appears that 

the thiols within the α2B β3, which are necessary for proper inside-out signaling to 

commence, are unaffected by this dye.   

The issue of continuity of results is a frustrating problem and although the trends 

are similar, the raw platelet adhesion numbers are always different from experiment to 

experiment, and sometimes can vary widely.  The same can be said for trials done within 

one experiment, with variations in the total adhesion numbers unexplainable by any of 

the methodology used in the experiment, as each trial is treated exactly the same as the 

one before and the one following, with controlled cell counts.  So although trends can be 

teased out, the error bars prevent significant statistical analysis of the data.  A potential 

solution to this problem remains evasive, as the only possible source of the problem 

would appear to be the methodology; however with each and every trial treated exactly 

the same, it becomes difficult to pinpoint the cause of this issue. 

The clogging of the flow cell apparatus is an indicator of both success and 

problems.  It indicates success because of the physiological relevance of the thrombosis 

occurring within the tubes, confirming that this method is very close to the process within 

the vessels of the body.  However, continuous clogging of the apparatus wastes blood and 

plasma stores, and it makes that chamber and that trial a waste as well.  Sometimes a 
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manipulation of a variable substantially increases platelet aggregability, but it leads to 

clogging of the apparatus before fibrinogen binding can be quantified.  Perhaps the small 

volume of blood that is continuously circulated causes thrombosis at such an elevated and 

perpetuated level upon addition of the calcium, that aggregation and thrombus formation 

occurs out of normal physiological levels.  Ideally a larger blood volume would be 

circulated, which requires access to very large volumes of fresh blood to allow for the 

number of trials that will be necessary to satisfy error.  Perhaps even direct circulation 

from a sedated animal to the chamber would provide the most physiologically relevant 

results. 

The issue of cracking and peeling of the immobilized fibrinogen dot was solvable, 

and the results are displayed in section 3.1.1.  Visually, it appeared that at concentrations 

of APTMES in ethanol higher than 5%, a dome-like APTMES dot formed.  With a dome 

shape, addition of any liquid substance at the apex of the dome—such as fibrinogen and 

BS3--resulted in gravitational movement of the liquid down the sides of the dome and 

deposition in a ring surrounding the dome.  Some fibrinogen became bound to BS3 on the 

surface of the APTMES dome, however the APTMES at the apex of the dome must not 

have covalently linked to the exposed functional groups on the surface of the PDMS due 

to simple distance restrictions.  Therefore, the lack of covalent bonds between PDMS and 

the apex of the APTMES dome resulted in cracking and peeling of the dome upon 

addition of sheer stress.  At APTMES concentrations of 5% or lower, the dome shape did 

not form—a spreading effect took place when the APTMES was applied to the surface of 

the PDMS.  The high ethanol content reduced the surface tension of the APTMES 

component, allowing the rapid spreading to occur and eliminating the production of a 
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‘dome; ethanol evaporated from the surface of the PDMS, leaving the PDMS-APTMES 

complex behind.  The downfall to this approach is that the area coated with fibrinogen is 

large: usually this area is larger than the field of view at 5x magnification, and as a result 

seeing platelet adhesion to the entire fibrinogen-coated area is not possible.   

 

4.2 Surface deposition of b-b’, PDI and Hsp70 and their effect on platelet 

aggregation 

 

In this study the effects of excess surface PDI, Hsp70 and the b-b’ subunit of PDI 

were investigated.  Excess surface protein was deposited on the platelet exofacial 

membrane through mass action deposition, and was verified by fluorescence microscopy.  

Experiments were performed on the treated platelets in the UV-VIS Spectrometer and on 

flow cell chamber apparatus, to determine if the excess surface protein had an effect on 

initial rates and extent of platelet aggregation.  There remains some question as to 

whether depositing excess protein on the surface of a cell should potentiate the 

aggregation response or not; it has been documented in the literature that PDI has an 

effect on platelet aggregation (47), and yet excess surface PDI did not cause significantly 

faster platelet aggregation.  So, perhaps more protein did not equate to a faster response, 

possibly due to the rate limiting step of the platelet reaction being upstream of the surface 

protein.  Given the increased levels of surface protein verified in figure 3-2, it follows 

that the excess protein was not internalized or cleaved; however, it is also possible that 

although the protein had been effectively deposited on the surface of the protein, that it 

was not being integrated into the network of effectors on the platelet surface that work 
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together and with synchronicity in order to realize the platelet reaction of aggregation and 

adhesion.  To combat these issues in the future it would be ideal to find ways of treating 

platelets to instigate upregulation of the proteins of interest, thereby making them 

completely native to the cell and integrated into the complex aggregation pathway.  

Furthermore, as many researchers have done in the past (47, 80-81), utilizing specific 

receptor antagonists to block or alter the proteins of interest would be another way to 

confirm the real-time effect of the protein of interest on platelet aggregation and 

adhesion.  While none of the effects of excess surface protein on platelet aggregation 

were statistically significant, the trends do reliably exist.  To be conclusive with these 

results smaller error bars would be required, and the ideas and suggestions outlined in 

section 4.1 would certainly help towards making that objective possible.  Additionally, 

due to the highly sensitive nature of platelets, very strict use of only one individual’s 

platelets taken at the same time of day, using the platelets the same length of time after 

being drawn, and doing enough trials at a time to be able to deduce statistically reliable 

results from one day’s experiments, would also help to reduce the error bars.   

 

4.3 Thymosin β4 

 

In this study, Tβ4 was investigated to determine if elevated levels caused increased 

rates of platelet aggregation and adhesion.  In the clinical setting patients with diabetes 

mellitus have been shown to suffer from clotting in the extremities causing lower body 

circulation problems, sometimes even resulting in foot or leg amputation.  Working with 

a hypothesis that elevated blood levels of Tβ4 could be contributing to the higher clotting 
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potential of diabetics, the presence of excess levels of Tβ4 was evaluated for effects on 

platelet aggregation in both the turbidity assays on the UV-VIS Spectrophotometer, and 

the whole blood flow cell chamber experiments.  In both cases, Tβ4 produced measurable 

results on platelet aggregation, with the most significant potentiating effects on platelet 

aggregation seen at 5 µg/mL; at much higher doses of Tβ4, the trend of potentiation 

disappeared.  To elucidate what could possibly be causing the trend to rise at intermediate 

levels of Tβ4 but diminish at higher levels of Tβ4, the relationship of Tβ4 with fibrinogen 

was analyzed.  Thymosin β4 was found to bind to PDMS-immobilized fibrinogen with a 

relationship akin to first-order kinetics (figure 3-22); as a result there was a direct 

relationship between the amount of Tβ4-fibrinogen binding and the concentration of Tβ4 

up to saturation at 30 µg/mL, with an estimated dissociation constant (Kd) of 25 nM.  

Beyond that saturation point, the extent of fibrinogen binding began to decrease, 

implying that beyond the saturation point Tβ4 was off-loading from fibrinogen.  This 

corroborates the trend seen in the turbidity and flow cell chamber data, where at 

intermediate concentrations of Tβ4 the effect on rate of platelet aggregation/adhesion was 

potentiating, however at higher concentrations of Tβ4 the effect on rate of platelet 

aggregation/adhesion was almost absent, resulting in rate levels very close to control.  To 

further corroborate this finding, platelet aggregations were performed in the UV-VIS 

Spectrophotometer with or without fibrinogen present, at varying doses of Tβ4.  A very 

intriguing trend was produced in this experiment: at lower doses of Tβ4, the peak in rate 

of platelet aggregation at 5 µg/mL disappeared with fibrinogen present, but the peak was 

present in the absence of fibrinogen.  Beyond Tβ4.concentrations of 10 µg/mL the rates of 

aggregation began to mirror each other, with rates in the presence of fibrinogen 
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approximately 5% lower than rates in the absence of fibrinogen.  Knowing that Tβ4 binds 

fibrinogen most effectively between the concentrations of 5 and 30 µg/mL and taking 

into account the very narrow Kd of 25 nM, it is probable that free fibrinogen and free 

Tβ4.were interacting in the cuvette above the [Tβ4] of 5 µg/mL, therefore sequestering it 

and preventing it from potentiating platelet aggregation.  However, at [Tβ4] of 10 µg/mL 

and above, the difference between the initial rates of platelet aggregation in the presence 

or absence of fibrinogen get sequentially smaller.  So, why does the binding strength in 

the cuvette appear to weaken at 10 µg/mL, while in the 96-well plate the binding strength 

appears to remain resilient until beyond 30µg/mL?  One consideration to make is that 

upon exposure to thrombin, platelets release Tβ4 in quantities of up to 6 fg/cell (61).  The 

concentration of Tβ4.indicated by the x-axis (figure 3-23) accounts for only the peptide 

added by experimental methods, not for any Tβ4.that may have been released by platelets.  

As a result, the concentration of Tβ4 may be higher than indicated on the x-axis when 

administered Tβ4 is taken into account in addition with Tβ4 released from platelets.  

Another possibility is that free fibrinogen binds Tβ4 with different dynamics than 

immobilized fibrinogen due to a difference in steric constraints placed on fibrinogen 

while it is immobilized.  Thus, fibrinogen may potentially become saturated at lower Tβ4 

concentrations when free in solution.  The well known actin binding domain LKKTETQ 

(82) does not have a clear binding sequence on fibrinogen, however in figure 4-1 are 

areas of consensus sequence between fibrinogen and Tβ4 where potential non-covalent 

interactions between fibrinogen and Tβ4 could occur. 
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Figure 4-1 Consensus sequences between fibrinogen and Tβ4 that may produce a 

binding site for Tβ4 on fibrinogen (images acquired from NCBI MMDB (83)) 
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However, Huff et al in 2002 identified covalent bond formation between Tβ4 and 

fibrinogen in the presence of tissue transglutaminase—which is co-released with Tβ4--

and suggest this as a mechanism to retain Tβ4 near the site of release (61).  Fixing Tβ4 

near the site of injury would theoretically make it available for participating in wound 

repair and healing, as the previously mentioned wound healing powers of Tβ4 are well 

documented.  It was further determined that the covalent bonds between fibrinogen and 

Tβ4 were isopeptide bonds formed between reactive Gln and Lys residues in both the α 

and γ chains of fibrinogen, with the most likely incorporation within the Aα392-610 

region of the fibrinogen αC domains (60).  Makogonenko et al., using concentrations 

higher than those utilized in this study, found that fibrinogen and Tβ4 do not form non-

covalent interactions in the absence of transglutaminase.  Interestingly this is not 

completely contradictory to the results outlined in this thesis, as at concentrations above 

30 µg/mL the binding relationship between fibrinogen and Tβ4 has been shown to trend 

back towards control levels; therefore it would be expected that at a concentration of 150 

µg/mL, as used in the Makogonenko paper, the interaction between fibrinogen and Tβ4 

would be relatively low.  When the Tβ4-fibrinogen binding curve is extrapolated to 

include a Tβ4 concentration of 150 μg/mL, it becomes clear that at 150 μg/mL 

concentration of Tβ4 the relative binding occurring between Tβ4 and fibrinogen is very 

close to the binding which occurs at very low (0.1 μg/mL) concentrations of Tβ4.  Hence, 

the Makogonenko finding, suggesting that fibrinogen and Tβ4 do not have noncovalent 

interactions, does not encompass the physiological range of Tβ4 concentrations utilized in 

this study; furthermore, the most important Tβ4 concentration range—around 5 μg/mL—

is not addressed at all.  Incorporating these results and the theories expressed in the 
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Makogonenko and Huff papers, the following hypothesis has been developed.  Upon 

initial platelet activation with thrombin Tβ4 is released, associating with the platelet 

surface and potentiating platelet aggregation.  At this point, since transglutaminase is co-

released with Tβ4, there is the potential for Tβ4 bonds with fibrinogen being formed, in a 

concentration-dependent manner according to Makogonenko et al.  Initially, the 

fibrinogen-Tβ4 binding would be relatively low as the concentration of Tβ4 would 

initially be low.  At this time, Tβ4 would be available to interact with the platelet surface, 

thereby potentiating platelet aggregation.  As more platelets become activated and the 

thrombus grows, the Tβ4 concentration would increase, with the proportion of the 

fibrinogen-Tβ4 bound complex subsequently growing.   Logically, the more clotting and 

platelet activation that occurs, the higher the Tβ4 concentration, and the more Tβ4 will be 

covalently bound to fibrinogen.  Thus, as the thrombotic event proceeds the body has 

essentially created not only a matrix which can keep Tβ4 at the site of injury for the 

purpose of wound repair, but a sink that in essence sequesters Tβ4 from the platelet 

surface, removing the potentiation signal.  By removing the potentiation signal, the body 

is preventing just one of the signals that would otherwise instigate an uncontrolled 

thrombotic event.  Clearly Tβ4 is not the only signaling molecule utilized for potentiation 

of the platelet aggregation reaction, so there are other components within the body that 

contribute to the down-regulation of the aggregation response after the bleeding at the 

site of injury has been stopped.  However, it appears that the sequestration of Tβ4 by 

tissue transglutaminase and fibrinogen may be one of those processes participating in this 

cascade.  For diabetic patients, slightly elevated levels of Tβ4 in platelets or in the blood 

could contribute to the increased propensity for thromboses, while high doses of Tβ4 
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could represent a potential therapy for treatment of the thrombotic side effects of diabetes 

and other illnesses such as cardiovascular disease and atherosclerosis. 

4.4 Future Directions 

 

For future directions of this study, the most significant and important ones are as 

follows: further development of the flow cell chamber experimental method, and further 

investigation into Tβ4 as a factor in thrombotic symptoms of diabetes, and possibly as a 

thrombotic inhibitor at high concentrations.  To expand the experimental method of flow 

cell chamber experiments, the problems previously discussed in this study must be solved 

including the imaging of bound platelets, continuity of results from trial to trial and 

experiment to experiment, as well as implementing a technique to prevent the system 

from clogging and wasting valuable materials.  As previously mentioned the most ideal 

solution to the problem of imaging bound platelets—while avoiding unbound platelets 

flowing above the PDMS surface—is developing a labeling technique that only allows 

platelets to become fluorescent once they have bound to fibrinogen on the PDMS surface.  

To prevent the system from clogging, it might be effective to use a larger blood source to 

prevent blood and the platelets therein from continuously being exposed to the stresses 

within the tube system, as in the current experimental set up.  With a larger blood volume 

to pull from, platelets and red blood cells returning to the blood pool would theoretically 

have a longer wait time before being sucked back into the tube system, thus 

administering less stress per cell. 
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 Further investigation into Tβ4 as a potential culprit in diabetic thromboses would 

require analysis of diabetic patients and their Tβ4 levels, along with comparisons between 

the effects of Tβ4 administration effects on diabetic platelets and compared to control 

platelets.  Extending the study of Tβ4 as an anti-thrombotic compound at high 

concentrations of administration would require studying the concept in animal models, 

inducing thrombotic events and measuring their severity at varying doses of Tβ4.  

Furthermore, to confirm the location of the binding pocket on fibrinogen for Tβ4, 

mutational studies would need to be conducted altering amino acids within the proposed 

binding pocket and measuring the effect of those mutations on Tβ4 binding.  Once the 

binding pocket for Tβ4 could be verified, further research would be needed to elucidate 

the pathway including Tβ4 as an effector in platelet aggregation, and how fibrinogen 

plays a role in this pathway.   
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