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ABSTRACT

Although presence of individual-based modelingdalegy continues to rise, to
this date, there has been little to no studiepetigtion in an evolving ecosystem
simulation. This thesis presents a new methodnmieling speciation within a
previously created individual-based evolving predg@rey ecosystem simulation. As an
alternative to the classical speciation mechanigginally implemented, k-means
clustering provides a more realistic method for glod) speciation that, among other
things, allows for species splitting, the recreatd the species tree of life, and more in-
depth analysis of speciation. This thesis intoeduthe predator-prey ecosystem
simulation with specific emphasis on the speciatrchanism. Moreover, the k-means
speciation mechanism is presented, and the imprenemnit provides, including

improved runtime performance and better modelingiolbgical theories, are provided.
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CHAPTERI

INTRODUCTION

Individual-Based Models

Individual-based modeling is a bottom-up approacsimulating the interactions
among individuals or groups of individuals, whicitends to show a strong influence of
the behaviour of individuals on the entire systdfor ecological modeling, individual-
based models (IBMs) allow for the considerationhef traits and behaviour of individual
organisms.

Whereas classical approaches to modeling ecoldgy adnore individual
behaviour and instead consider an entire ecosyasesrwhole, individual-based models
aim to “treat individuals as unique and discrettties” (Grimm, 1999). By modeling
individuals with varying ages, social ranks, anddbility, for example, the properties
of the system that the individuals represent cayinbt® emerge. This has a distinct
advantage over the classical approach, namelytibaissumptions made regarding
individual behaviour (such as the desire for fi;naed shelter) provide for a more
realistic simulation than using a state-variableleldhat may begin by calculating birth
and death rates.

The lack of explicit criteria for differentiatingebiveen classical modeling
approaches and individual-based models and the wiatignal cost associated with
individual-based modeling are frequently descriagdeasons why individual based
models may not provide a new method for modelirgagy (Uchmanski and Grimm,

1996). Those against this approach may feel tlitiolual-based models are merely a



tool for simulating very specific environments. Aabates who favour the use of
individual-based models are driven by paradigmatitivation (Grimm, 1999) where
such models may be used to formulate general ggofiecology.

The generality of individual-based modeling is mportant area of consideration.
As beneficial as a specific model may be, it igfinore worthwhile to formulate
general theories. The authors of the byakvidual-based Modeling and Ecology
(Grimm and Railsback, 2005) reserve several sexfiana discussion about the
generality of individual-based models. They desethe difficulty of creating generic
ecological models by comparing ecology to physieslividuals [of ecology] are not
atoms but living organisms" and that because “iiddial organisms have properties an
atom does not have", such as the variation betwesn and their adaptive behaviour,
aiming for generality in ecological models is munbre difficult. Despite these
reservations, there continues to be a rise in sieeofiindividual-based models (Judson,
1994).

For this thesis, | introduce our evolving predgtoey ecosystem simulation with
a focus on the definition of our behavioural moaiedl how it is used to cluster
individuals into species. Subsequent to this aurtion, | emphasize a focus on the
method in which speciation occurs in the simulagasmmy objective is to present a new
method for speciation which is not only computagibnless expensive than a previous

method but is also strongly similar to what is kmon@garding biological speciation

Modeling and Ecology

The goal of modeling is to solve problems or ansyesstions, according to

Grimm and Railsback (2005), who describe threegagts for ecological modeling.



Identifying a problem or question that needs tatdéressed or answered should be one
of the very first steps executed during the modgtirocess. Merely aiming for “realism”,
according to Grimm, is not a strong enough guigefor modeling and should not be the
reason why a modeller sets out to represent amystenvironment. Modeling an
ecological system requires constraints and rulaisréstrict our attention to the problem.
Starfield et al. (1990) provide a comprehensiveedpsgon on what they believe to be an
appropriate process for modeling. They suggestamabdeller begins by phrasing the
problem to be solved. Grimm and Railsback agregayjng, "Good science requires
good questions” (Grimm and Railsback, 2005). Dravarsimple diagram of the system
to be modeled is identified as the second phase&fi&t et al. (1990) suggest that
imagining yourself inside the system should betlimel step. "What is going on around
me?" and "What affects me, and what do | affect@'t@o questions that Grimm and
Railsback suggest a modeller asks him or herselini@ and Railsback, 2005).
Identifying the essential variables, outlining amyplifying assumptions, and attacking
the problem through the use of many small steps(geaddressing it head-on) are
suggested as the three last high-level phaseg imtdeling process (Starfield et al.,

1990).

Classical Modeling

Uchmanski and Grimm (1996) describe basic modettassical ecology as ones
that focus on an "average individual." Uncompkcklife cycles are routinely simulated
and the development, metabolism and the agingdi¥igtuals is scarcely considered in
classical modeling. "Classical models cannot take account discrete individuals,

which create local population non-uniformity thahaffect population dynamics and



ecosystem function" according to DeAngelis and M{#005) who describe
characteristics of simulations in the context ahbadassical modeling approaches and
individual-based models. Few system characterisaosbe simulated in classical
models, according to DeAngelis and Mooij, suchasaeform of implicit learning
where, for example, "a predator population coutdease its preference for certain prey
relative to other prey types" (DeAngelis and Mo2p05). However, phenotypic
characteristics occur at the individual level alassical models cannot replicate this
behaviour to the same degree that occurs in nature.

Traditional modeling techniques often use statébées, such as population
density, to describe an environment. Recognizimgdhawback, Judson (1994) alleges
that models of this type "sometimes produce dynarhat are not realistic." Even as
modellers began to add age, size, and organisreedas classical models, this
traditional approach does not produce simulatibas dccurately portray real

environments.

Pattern-Oriented Modeling

It is the belief of Grimm et al. (1996) that “ecgloal modelling should take its
orientation more from real patterns observed it Pattern-oriented modeling forces
a relationship between spatial and temporal scategirding to Grimm et al., and that a
pattern-oriented model is a tool that assists nedelo create predictions that are more
easily tested than the predictions formulated Imeomodeling techniques.

Pattern-oriented modeling is described as bottorbyu@rimm et al. (2005)
because it begins by collecting relevant informmaabout individuals, then proceeds to

formulate theories regarding the individuals' betar and finally tests the theories in a



computer simulation that allows the modeller toevles the environmental properties

that emerge. This technique forces a modeller ¢areal patterns observed in nature as an
aid during the design of a model or simulation. daer, the pattern-oriented modeling
process described by Grimm et al. (2005) unifiescbncepts of individual-based models
with the idea of modeling based on patterns. Weshod creates a model structure that
is optimal, rigorous, and realistic, while sculgtithe model into one that has an ideal
complexity.

Testing alternative theories about the behavioundi¥iduals is easier with
pattern-oriented modeling. By comparing a modsiput with the data retrieved from
real patterns observed in nature, modellers areklyuand easily able to draw
conclusions about the accuracy of the hypothesaiswiias tested.

DeAngelis and Mooij (2005) provide a small discasson how individual-based
models can be used to show the emergence of atech as the formation of swarms,
flocks, schools, herds, and other groups.

For all of these reasons, pattern-oriented moddiasybeen found to be a large
stepping stone in the direction from classical egimlal modeling to an individual-based

approach.



CHAPTER Il

REVIEW OF LITERATURE

Individual-Based Models

As one of the original milestone papers to dis¢hesarrival of a new modeling
technique, Huston et al. (1988) isolate two kegoea why classical models "violate"
theoretical ecology. Firstly, classical modelemipt to describe all individuals in an
environment with one variable. This tactic assurf@sexample, that individuals do not
vary in their behaviour or physiology, which isumflamental flaw. Secondly, Huston et
al. (1988) criticize classical models for not sahyiisolating organisms within a system.
Individuals are simulated in a way that causes edtihem to have an equal effect on
each and every other individual. However, it geaerally accepted principle that
interactions between individuals occur only betwerganisms that come into contact
with one another.

Huston et al. (1998) elaborate on the benefitsahdividual-based approach by
describing the effect of the degree to which indlisls initially vary. When trees, for
example, are at relatively similar heights to begith, they will grow naturally at the
same rate as the competition for light is an efjght. However, when the initial
variance of height is high, the result will be véew large plants and many smaller
strained individuals.

The rise of the individual-based model is discugsedudson (1994) who
provides a short analysis of the properties antlpros of individual-based models. The

degree to which an individual's life cycle will benulated, whether or not resource



dynamics are taken into account, how the size@pthpulation is represented, and the
extent of variability among individuals of the saage are described as several
classification criteria for evaluating the effeemess of an individual-based model
(Uchmanski and Grimm, 1996).

Although it is predominantly accepted that indivatbased models are providing
a new outlook on ecological modeling, an examimatibhow significant the
contributions are reveals that there is little camnrmotivation behind the movement
(Grimm, 1999). Grimm describes the use of indivichased models simply as a tool as
having "pragmatic motivation.” On the contrary,iindual-based models that are
designed to support theoretical ecology are driwetparadigmatic motivation” which he
describes as the pathway to developing generic IBMs

In more recent years, as a means of providing ia basthe development of
individual-based models, many frameworks are bdegloped. Railsback et al. (2001)
draw the concepts from complex adaptive systengaiigelines that will help "make the
design of IBMs less ad hoc." Identifying what belbavs should emerge from the model,
outlining what adaptive behaviours are to be sitegladeciding on what measures will
be used to test fitness, and determining to whigingéxndividuals are able to predict the
outcome of their behaviour are all steps that Radk (2001) suggests should be
executed during the individual-based modeling psece

Modeling tools such as ECOTALK by Baveco and Linden1992) and Baveco
and Smeulders (1994), HOBO by Lhotka (1994), ECOBIM.orek and Sonnenschein
(1998) and MOAB by Carter and Finn (1999) are a#lraples of tools that were

designed to help develop individual-based models.



In more recent years, there has some focus on lewertvironment in an IBM is
represented (Bian, 2003). How the environmentpsagented in a model, says Bian, "is
a critical part of individual-based models." Twaditional approaches for simulating the
environment are prevalent - the grid model andotiteh model. Bian (2003) analyses
the implications of using both of these technigales concludes that how the
environment is represented in an individual-basedehwill have an effect on the data
that is produced. Similarly, different schedulingthrods for individual-based models
will produce varying results (Caron-Lormier et 2008).

One of the most significant contributions to thedgtof ecological modeling is by
Grimm and Railsback (2005). Many compositions anghbject citéndividual-based
Modeling and Ecologpy Grimm and Railsback as a book that covers adbspectrum
of topics: a generic modeling process, patternatei® modeling, and individual-based
modeling. Moreover, it discusses the goals of IBiisat makes a model an IBM, and
many examples of individual-based models. It pressariramework for the design and
development of individual-based models and it ie=sechapters for the examination of
how individual-based models should be analyzedremdthe model and the data

produced by the model should be communicated aggkpted.



Table 1.

Summary of Publications on Individual-Based Models.

Author(s

Journa

Title

Contributior

Michael Houston
Donald DeAngelis,
and Wilfred Post

Olivia P. Judsol

Peter T. Hraber, Ten
Jones, and Stephanie
Forrest.

Adam Lomnicki

Ling Bian.

Broder Breckling
Ulrike Middelhoff,
and Hauke Reuter.

Geoffrey Caro-
Lormier, Roger W.
Humphry, David A.
Bohan, Cathy Hawes,
and Pernille Thorbek.

BioScience, 198

Trends in Ecolog

and Evolution,
1994.

Artificial Life,
1997.

Ecological
Modelling, 1999.

Ecological
Modelling, 2003.

Ecological
Modelling, 2006.

Ecological
Modelling, 2008.

New Conputer Models

Unify Ecological Theory.

The rise of the

individual-based model

in ecology

The Ecology of Echi

Individual-based model
and the individual-based
approach to population

ecology.

The representation of tl

environment in the
context of individual-
based modeling.

Individual-based model

as tools for ecological

theory and application:

Understanding the
emergence of

organisational properties

in ecological systems.
Asynchronous an

synchronous updating in
individual-based models.

One of the firs
milestone papers to
discuss the emerging
technique of IBMs.
Presents an analysis
generality in ecology
and its implications
for individual-based
models.

Presents a genel
individual-based
simulation model.
Presents four facto
for describing
relations between
individuals.
Analyses twc
approaches to
representing the
environments in
IBMs.

Analyzes the potentie
of IBMs and presents
a generic framework
for IBMs.

Investigates tw
approaches for
scheduling and
updating IBMs.



A Sample of Individual-Based Models

Listing and describing all existing individual-bdsmodels is not possible in a
relatively short survey such as this. Neverthelasort summary of several IBMs is
presented here with the goal of demonstrating tide wange of applications of this
modeling technique.

Fahse et al. (1998) demonstrate their protocoéftracting population
parameters from individual-based models with theafsan IBM that simulates
"nomadic birds in a heterogeneous landscape," aialsome living in parts of South
Africa. Habitat selection by stream salmonids mswdated in an individual-based model
by Railsback and Harvey (2002) and Bian (2003) asel8M that simulates salmon
growth to support her theory that how the environtme represented in an IBM will a
affect the model's results.

Individual-based models of vegetation are alsolalbd. An individual-based
model is used in by Breckling et al. (2006) to cactch risk-analysis of genetically
modified plants.

Upwards of 27 individual-based models are giveaxasnples by Grimm and
Railsback (2005). They cover an extensive arragits such as simulating the
grouping behaviour of birds and fish, the populatitynamics of social animals, the
movement and dispersal of trout, the dynamics aftgbopulations, and the evolving
traits of marine fish. However, in each of thessdels, speciation is not a critical

component.
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Biological Concept of Species

The existence of species is the well-discusseddattion inSpeciationCoyne
and Orr, 2004) in which the authors aim to answesd questions: “Are species real? If
so, what are they? Finally, why do they exist?"e Huthors consider, among other
things,The Origin of Specigsy Charles Darwin which describes the possibihgt
species are neither real nor distinct but are awstéheoretical constructs of the human
mind” designed for categorization of individualdnarguably, there is a clear distinction
between an eagle and a crow, suggests Coyne anduwhether or not this
discontinuity constitutes distinct species of biiglsp for debate.

In fact, Ridley (1996) suggests that “The fact tihaependently observing
humans see much the same species in nature dogisavwothat species are real rather
than nominal categories. The most it shows isdhdtuman brains are wired up with the
similar perceptual cluster statistic.” On the cant, a number of biologists show studies
designed to statistically identify the existencalisicrete clusters of organisms. Among
them are Neff and Smith (1978) who aimed to distisly between hybrids and parental
species of the sunfish. Mayr (1992) conductedxaansive analysis of the discontinuity
of plants in Concord Woods, Massachusetts in attéongemonstrate the existence of
discrete clusters of organisms.

The decision of the existence of species may nabbeluded simply by
experiment. Instead, it seems that the “specielsl@m” (Brookfield, 2002) is not a
scientific problem that can be solved conclusiveByookfield suggests that the notion of
species is “about choosing and consistently apglgiconvention about how we use a

word.” For us, we accept and implement the genotgfoister definition of species
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described by Mallet (1995) which is the belief thdgood species” is one that shows

genetic isolation from populations of other species

Individual-Based Models with Speciation

While the presence of individual-based modelsiooss to rise, to our
knowledge there has been very little detailed stuayhe simulation of various
speciation methods within an evolving individuakbd ecosystem. Among the few such
simulations, J. H. Holland (1995) presented Echaatiorm for modeling complex
adaptive agents that are able to collect resowdsnove to neighbouring sites.
However, both the organisms and the speciation @dstin Holland’s platform are quite
simple, and Hraber et. al (1995) have shown thabHEd not match “exactly with
guantitative predictions” when they compared thgpoudata on species diversity with
real data observed in nature.

Mamedov and Udalov (2002) recognized the fact ittty of the individual-
based modeling frameworks demand that ecologisisnepass some set of programming
skills, and consequently they developed the CENOGE8tem. Alleging that it is
flexible and requires no programming skill at Mamedov and Udalov promote
CENOCON as a framework that "generates a virtuatspcreates and populates the
space with individuals" and "manages these virtmdities to act as real components of
real ecological communities."” CENOCON limits thewber of species to 256, all of
which must be predefined in an external text fileg provides no means of representing
any kind of learning or evolution.

Another artificial life system is Avida (Adami aBtown, 1994) which, within a

2D geometry, models cells, the interactions betwbem, the breeding of cells, and their
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ability to adapt. In Avida, a genome (which thehaus refer to as a “string”) is
represented as an entirely separate piece of cohénig on its own virtual computer.
During self-replication (or reproduction), a strimgy be subject to mutations either
during or immediately after the copy method is perfed, resulting in a new string to be
placed in a nearby cell. This, the authors notetle driving force of evolutionary
change and diversity” and, in fact, is similarte evolutionary mechanism we
implement in our evolving predator-prey ecosystéfiowever, there is no explicit
speciation mechanism implemented in this simulativtoreover, not only do individuals
in Avida not move but each of them also posse$sesdme predefined fitness function
which is a large limitation of an ecological indivial-based model. Instead, this
restriction suggests that Avida is an optimizapooblem. For us, however, individual
behaviour and adaptation is governed by the vdityabf the environment in which an
individual lives. Because of the constant changngronment, as opposed to an

optimization problem, in our simulation, aftimatelyfittest individualcannot exist.
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CHAPTER III

DESIGN AND METHODOLOGY

Evolving Predator-Prey Simulation

Introduced by Dr. Gras et. al. (2009), we develoged continue to study the
results of an individual-based evolving predata@ypecosystem simulation that includes
a behaviour model using a “fuzzy cognitive map” fHGKosko, 1986). In our
simulation, complex adaptive agents (or, simplgjviduals) are either a prey or a
predator, inhabiting a world implemented a080 x 1000matrix of cells. To remove
any bias about the edges of our world, we allovh blo¢ left and right sides to wrap and
the top and bottom to wrap. This causes our wiorkdke the shape of a torus, in which
an unlimited number of prey and predators may setvin addition to prey and
predators, every cell in our world may contain saakele of grass and meat (both are
limited by an upper bound) which can be eaten kyptiey and predators, respectively.

At the initial time step, grass is randomly distitiésd throughout the world and
there is no meat available for the predators to @éten a predator kills a prey, meat is
added to the corresponding cell and is made avaitaleat by the same or surrounding

predators.

Individuals and the Behaviour Model

Individuals in our simulation make decisions basedheir behavioural model
which is represented by an FCM. Our implementatiba fuzzy cognitive map
combines the concepts of a directed graph (Axelt8d@g), fuzzy logic (Kosko, 1986),

external information (Tisseau, 2001), and learrfifigseau et al., 2006). Although
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FCMs have been used to model the behaviour of ishgials, to our knowledge they have
never been used in an evolutionary system as camagleurs. In fact, in addition to
being a mechanism for decision making, the FCNhésltasis for our evolutionary
platform, and is also the object we use to clusidividuals into species.

In our simulation, an FCM is a directed graph t@itains a set of nodes,
where each nod€;, is a concept and a set of eddgsyvhere each edgk; represents
the influence of concefl; on concepC;. Every edge i has a weighty, such that a
positive value corresponds to an excitation caligeahe concept onto another, and a
negative value corresponds to an inhibition. Agestljj, may exist with weight 0 which
represents the lack of influence of conc€povn C;. Moreover, an activation leve, is
associated with every conceépt Thus, with this implementation, our FCM alloves f
the representation of concepts that may be updsted individual's perception about
the world around it, such as the distance to netirdyds, foe, and food, and allows for
the computation of a decision of action for theragkepending on its perceptions and its
internal states. The matrix of all the weiglttg, which describes unambiguously the

behavioural model of an agent, is considered insouulation to be the agent’s genome.

FCM as an Agent’s Genome

Recall that every individual in the simulation higsown FCM and it is within
every FCM that we define an individual's concepfsyhich there are three kinds:
sensitive (perceptions about their environmentgrimal (levels of emotion), and motor
concepts (physical actions). Using fuzzy logicjratividual’s perceptions about the
world in which it lives influences its internal sgive concepts. Afterwards, the

activation levels of the individual’s motor concgptre the driving force behind deciding
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on an action to perform. The degree to which ttima is performed is dependent upon
the level of activation following some defuzzifizat of the value itself.

Consider, for example, a very simple FCM which ddu used to model an
individual’s perception about its distance to a fodaturally, being close to a foe could
largely increase the individual’s internal conceptear which, in turn, may affect that
individual’s desire to evade from its current lagat A diagram of this FCM is below
(figure 1) where it can be seen that as the seasitincept “foeClose” increases, so does
the level of “fear” by a value of 1. As one migixpect, the sensitive concept “foeFar”
has a negative influence on the internal levelfeat” and an increase in the individual’s

level of “fear” will also increase the individualtesire to “escape”.

- +1

N +1

| — QL
@ _1

Figure 1. Simple example of a Fuzzy Cognitive Map.

foeClose

This simple example could be made more complichyeadding a positive self-
loop from the concept “fear” to itself. This addsthe model a degree of paranoia or
stress such that an individual’s level of “fear’tiate stept; will influence the
individual's level of fear at time stdp The corresponding matrix of edgésfor the

FCM in figure 1 is given below.
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Table 2.

Matrix of Edges, L, for the Sample Fuzzy Cognititap (Figure 1).

o 1 2 3
0O |0 [0 | +1] 0
1 /0 |0 |-1]0
2 |0 |0 |0 ]| +1
3 |10 |0 0

Recall thal represents the set of edges present in an in@div&deCM and that
the edges i describe the influence of one concept on anothes. on this set that we
implement evolution, in that we allow for the enemge, disappearance, and variation of
weights of existing edges to occur at the pointlaith an individual is born. The
learning process for us, then, occurs during thié loif a prey or predator.

A newly created individual inherits a recombinat@frthe genomic material of its
parents and with this recombination also exist9thesibility of mutation. To model the
crossover mechanism, edges are transmitted blobkolei from one parent to its
offspring. More precisely, for each concept, thédcinherits all incident edges on this
concept from one parent.

With some small probability, a new edge may appearveen conce; andC;
in the FCM of the newly created individual. Ifshkedge has some positive influence on
the individual's behaviour, it is a representatodra “fitter” individual. We can observe
during the course of the simulation new edges appgaxisting edges disappearing,
and existing edges varying in weights within theM&f individuals. In fact, because
we begin the simulation with every prey having shene FCM and every predator having

the same FCM, we can study the evolutionary digtafiendividuals at time step 10,000,
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for example, from the beginning of the simulatiow abserve how similar or dissimilar
the FCMs are among the prey population. Afterthl} is, indeed, the goal here — we
aim to measure the genetic similarity and dissintyamong individuals and among

species during the course of the simulation.

Measuring Genetic Similarity

Suppose, for example, that there are two prey iddals,P; andP;, living in the
world at timet. Recall that when each of these prey were cretitey inherited a
recombination of the genome of their parents — wime possibility of mutation — and
that this genome represents the sensitive, inteaindl motor concepts for the individual.

We define a distance functiod(FCM;, FCM,), which computes and returns the
numerical distance between two FCMsg,andF,, which is a sum of the distances
between the weights of matching edgek;iandL,, the edge matrices fén, andF,,
respectively. For us, this arithmetic distance leetwtwo FCMs, or two genomes, is a
kind of representation of genetic distance. Wethsecomputation ofjeneticdistance
between two individuals as a method of clustermdividuals intosimilar groups which
represent species. Thus, our simulation embogeseas as a set of individuals sharing
similar genomes&nd how we cluster individuals into groups is wivatdefine as our
mechanism for speciation.

We also define an FCM for each species — the aedfaiv of the individuals
contained within that species. Referring to tlisdspecies centre”, like any other FCM,
we are able to apply our distance functib(F-CM;, FCM,), and use this genetic distance

to compare the genetic similarity and dissimilagfyspecies.
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Classical Speciation Mechanism

In the original implementation, our simulation usedasic mechanism for
speciation, called our classical speciation mod#@l every newborn prey or predator, the
numerical distance (a representation of a genedtartce) between the newborn’s FCM
and the FCMs of every existing species was caledlatf the distance to the closest
existing species was below a predefined threshmolda simulation’s parameters file, the
newborn was assigned to that existing specieser@tbe, a new specieS,was created
with the newborn as its only member. In subseqtiem steps, existing individuals may
switch to specieSif the genetic distance between the individual Siglsmaller than the
genetic distance between the individual and itseturspecies. This implementation
caused several limitations.

Our classical speciation created a rigid rule évary new species had an initial
size (humber of members) of 1. It does not modebidsic principle of speciation — that
every new species is the result of a splittingroéaisting species. Indeed, “most
biologists agree that discrete clusters [of orgasjsxist” (Coyne and Orr, 2004) and
that these clusters form discrete, or near-discspiecies. This phenomenon is observed
in our 2-means speciation method.

In addition to this limitation, we were not ablertxreate a well-structured tree of
life for species. Because our simulation allowstlfe rare occurrence of interbreeding, a
newborn N, may have parents from two different spec&sndS,. If the newborn
individual forms a new specieS;, then specieS; will have two parents. With this
design, we were not able to extract from our ddtaeof life that could represent any

kind of species splitting.
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Our classical method for speciation was one ofhtbst computationally
expensive parts of the simulation. For all induatk, the distanc®, between their
FCM and the FCMs of every existing species wasutatied. Moreover, the new map of
every species was recalculated. Suppose thei, gney andS, prey species during
time step i Then, in our classical speciation mechanismgctreplexity of determining
the existence of new prey specie®{®:S;). This is repeated for checking the
emergence of new predator species, resulting ondmed complexity oO(NiS; +
NoS), whereN; is the number of predators during tim@nd$; is the number of existing

predator species during time step

K-Means Clustering for Speciation

As an alternative mechanism for clustering indialduntosimilar groups, we
implemented a k-means clustering technique desigmatlow for (1) the splitting of an
existing specieSinto S; andS,, and (2) the clustering of individuals that inlitfa
belonged t&into one of eitheGor § (thus, more specifically, a 2-means clustering
algorithm).

In this new implementation, every newborn indivigluig which is created as the
result of reproduction between individuddsandl,, is added to the closer §f or S, the
species of; andl,, respectively. This is accomplished by calculatimd comparing the
distance DI, S) and D(3, $). The species that is more genetically simildg tgains
the addition ol; as a member. Speciation then occurs later asasiegepnethod executed
within the same time step of the simulation.

Our speciation method begins by finding the indinabin a specieSwith the

greatest distance from the species’ FCM. If thigatice is greater than a predefined
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threshold for speciation, 2-means clustering isquered. Otherwise, speci€&remains
unchanged. If clustering is to be performed, tway 8pecies are created — one centered
around a random individual B denoted,, and another centered around the individual
in S that is farthest from, denoted;. Subsequently, all remaining individualsSrare
added to one of the two new species — whichevaiapéhe individual is more
genetically similar. After recalculating the neWM s for the two new species, the
process of clustering is repeated for convergence.

After the 2-means clustering is completed, two spe@cies exisg andS,,
whose members are a subset of the original menalb&4t is at this point in the
speciation method that the closeiSpor S; to the original specieSinherits the
properties of speci€§ such as the species ID and the ID of its paneextises. Thus, one
of the new species will continue to represent thgial species while the other will
represent a split off of the original species. &mmmple, species number 15 (with 3,000
members) may split into species number 15 (now &iH00 members) and species
number 20 (new species with 500 members).

The first part of our 2-means prey speciation idé¢termine whether or not
clustering should take place. For each prey spe8iand for every individual, within
S the distanc®(I.FCM, S.FCM)is calculated. Clearly, this iterates over the hanof
prey species and the number of prey in each speaidsch is a complete subset of the
total number of prey in the entire world. Thusstpart of our 2-means prey speciation
takesO(N,) time, whereN; is the total number of existing prey.

If the largest distance between an individuagiand the centre @&, is greater

than a threshold, an individual $is randomly selectedthis isO(k) time, wherek is a
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constant. Immediately afterward, the furthestvidiial from the randomly selected
individual is selected. This tak€XNs)) time, whereNs;is the size of specié&k The
creation of two new specieS; andS,, centered on the two chosen individual§itakes
constant time. 2-mean speciation iterates a pireetbhumber of times (8 was used for
the results discussed in this paper). Subsequéhistcall remaining individuals in the
current speciesg, are grouped into one of the two new spe@er S,. This grouping
takesO(|S] - 2), or more simplyO(|S)|).

If we consider that there aRy prey in specie§; and that the size of the matitix
in each prey isy x my, then the recalculation of the FCM for spec&gsas complexity
O(P1n1my). This, combined with the recalculation of the niapspeciesS, creates a
total complexity ofO(P1n;my + Piznomy), whereP;; is the number of prey in specigs
andn, x m, is the size of the matrix for each of the prey in speciSs. However,
because the size bfis constant throughout the simulation, this comipyecan be
reduced t@ (P + Pj2) or, more simplyQ(Nsj). This is the most computationally
expensive part of our 2-means speciation.

The remainder of our 2-means speciation mecharises, 19-32, is responsible for
assigning a new species ID to eitgror S, — whichever species is further from the
original species§. This take®(k) time, wherek is a constant.

The overall complexity is then:

ky K,
O(Nl +N2) +Z Pil + Piz + Z Pdil + Pdiz
i=1 i=1
Such thalN; is the total number of prei; is the total number of predatoks,is

the number of prey species for which splitting asckp is the number of predator

22



species for which splitting occu®y andPj; is the number of prey in the splitting
species an&d; andPd; is the number of predators in the splitting predapecies.
The above equation is smaller tla(\,S; + N»Sy), which is the complexity of
our classical speciation mechanism. As the twossara smaller tha®(N; + Ny),
simply because the process of speciation is orpliegpto a subset of the existing
species, the total complexity can be reduced (s, + Ny).
The algorithm for our 2-mean prey speciation metbanl be found below.

For each prey species S,
Find the individual, I, with the greatest dista from S.FCM
grDst <- D(.FCM, S.FCM)
If (grDst > Ts) Then // Where Ts is a predefirihreshold for speciation

1

2

3

4

5. Ir <- random individual in S
6 If <- furthest individual in S from Ir

7 S1 <- new species centered around Ir

8 S2 <- new species centered around If

9 Fori=0to Tc // Repeat clustering for cergence
10. For each prey, P, in S !=Ir or If

11. dstl <- D(P.FCM, S1.FCM)

12. dst2 <- D(P.FCM, S2.FCM)

1The concepts are easily applied to predator specia
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13.
14.
15.
16.
17.
18.
19.
20.
22.
23.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

If (dstl < dst2) Then
InsertMember(P, S1)
Else
InsertMember(p, S2)
End If
End For
Recalculate the FCMs of S1 and S2
End For
dstl <- D(S.FCM, S1.FMC)
dst2 <- D(S.FCM, S2.FCM)
If (dstl < dst2) Then
Sl.id <- S.id
S2.id <- next available prey species id
Sl.parent <- S.parent
S2.parent <- S.id
Else
S1.id <- next available prey species id
S2.id <- S.id
Sl.parent <- S.id
S2.parent <- S.parent
End If
Remove S from the list of prey species
Add S1 and S2 to the list of prey species
End If
End For
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CHAPTER IV

ANALYSISOF RESULTS

Performance

Recall that every execution of our simulation &ks input a set of parameters.
Among other things, the parameters are designatlae the system to reach a level of
stabilization between the fluctuation numbers @yppredators, grass, and meat.
Stabilization is not achieved immediately; in fatts not unusual for the simulation to
spend the first 3,000 time steps achieving statiitn. Keeping this in mind, and
keeping in mind the fact that our simulation haslebnitive end, once the system has
reached stabilisation, the length of each execusi@mtirely dependent upon our needs.
It is natural to say, “The more data the bettdddwever, this may be unrealistic as a
single time step in our simulation could requireragch as 100 MB of storage space,
resulting in a single run of 20,000 time steps meg a total of 2 TB.

A random sample of 5 time steps for classical igpen and 5 time steps for 2-
mean speciation in which 1, 5, 10, 15, 20, andr2y ppecies existed are taken.
Rounded to the nearest second, the table belowtdeape length of time needed to

complete the prey speciation method.
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Table 3.
The Length of Time Needed to Complete Prey Spatiati

Number of Prey Species

Sample # 1 5 10 15 20 25

e 1 1s. 4s. Os. 10s. 50s. 65s.
S % 2 1s. 4s. 9s. 13s. 48s. 65s.
@ S 3 1s. 3s. 10s. 15s. 49s. 64s.
O (% 4 1s. 3s. 10s. 11s. 49s. 65s.
5 1s. 3s. 11s. 11s. 50s. 62s.

1 Os. 3s. 2s. 3s. 4s, 3s.

S 2 Os. 1s. 2s. 3s. 4s. 4s.
= 3 0s. 1s. 2s. 3s. 4s. 9s.
] 4 1s. 1s. 3s. 3s. 5s. 4s.
N0 5 1s. 1s. 2s. 4s. 3s, 3s.

Clearly, very little time savings occurs when thare just a few prey species. In
fact, it seems that the largest time savings ise@eld when there are 10 or more living
prey species — which is the norm for any givenatithe simulation.

Although table 3 depicts large time savings foming the prey speciation
method, because of the variability in runs of timeusation, it would be inaccurate to
conclude that a run of the simulation using the€xmspeciation mechanism costs 1/10
of the time needed for a run using the classicatigion mechanism, simply because
speciation is just one computation among manydbeitirs during a single time step of
the simulation.

Every run of the simulation discussed in this ihess executed on the Shared
Hierarchical Academic Research Computer NetworkABBNET: www.sharcnet.ca)
which provides to Canadian academic institutiohgga-performance computing

infrastructure. More specifically, these resulesgvproduced using the Narwhal cluster
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hosted by the University of Guelph, which providesrs with a 4-core CPU and 8.0 GB

of memory.

Simulation Runs

Reference is made throughout this thesis to skxara of the simulation. These
runs are illustrated in the following table, listeelest to oldest by speciation
mechanism.

Table 4.

Runs of the Simulation Using Both Speciation Method

Speciation Length of the
Mechanism Time Steps Run (days)

Run 1 2-Mean 3,238 6

Run 2 2-Mean 9,541 15

Run 3 2-Mean 8,558 16

Run 4 2-Mean 8,245 13

Run 5 2-Mean 12,615 22

Run 6 2-Mean 13,762 26

Run 7 2-Mean 33,641 32

Run 8 Classical 10,323 34

Run 9 Classical 5,632 24

Run 10 Classical 5,189 25

Run 11 Classical 8,168 28

Run 12 Classical 4,292 18

Run 13  Classical 4,276 15

Computing the average number of time steps coexbletrr both speciation
methods reveals that when using the 2-mean spatiatechanism, the simulation is able
to produce approximately 643 time steps per dayenahrun with our classical speciation
mechanism is able to produce just 258 time stepdae This represents a runtime

performance improvement of 248.8%.
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Run number 4 produced an abnormally large popuragize for both prey and
predators (as many as 347,472 prey, for exampitepaced with 166,943 prey during run
number 2 — the run which produced the second higimsunt of individuals). This run
of the simulation was discarded and not considereahy of the data — averages or

otherwise — presented in this thesis.

Continuity of Evolution and Discontinuity of Spesie

It is widely understood that, with the exceptidracsudden environmental or
mutational change, evolution is a continuous preeesl that “a species is a single
lineage of ancestral descendent populations ongge, which maintains its identity
from other such lineages and which has its ownwianary tendencies and historical
fate” (Wiley, 1978). Wiley continues to promotesthelief by saying that “Separate
evolutionary lineages (species) must be reprodelgtigolated from one another.”
Although we simulate evolution in a continuous wayimitation of our simulation is
that we are unable to represent the creation aiepas being part of the continuity of
evolution. The reason for this is simple; at saimme step, an evaluation of the genetic
similarity and dissimilarity of individuals in a spies must be performed and if the
degree of dissimilarity exceeds a predefined tholesfor speciation, we make the
decision to create a new species at that exact moméme. Nevertheless, the whole
process is still continuous and all of the interragisteps, including partial speciation
and sister species with hybridization events, Gaonliserved through the process of our

simulation.
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Numbers of Individuals and Species

The average number of prey and predator indivgltalthe first 10,000 time
steps of six runs of the simulation using 2-meastition is shown in figure 2. The

same averages but rather from runs using classpealation is shown in figure 3.
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Figure 2. The average number of prey and pred&iorsins using 2-mean speciation.
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Figure 3. The average number of prey and predé&orsins using classical speciation.
On average, runs of the simulation using the abkmethod for speciation

produced larger population sizes for both preymedators. Consequently, classical
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speciation produced more prey and predator speéiss, it appears that there is less
fluctuation in the number of individuals when usthg 2-mean speciation mechanism,
which leads to a more stable system.

It is largely understood (Devaurs and Gras, 20bh@d)described by fisher’s log
series (Fisher et al., 1943) that there existsamgtcorrelation between the size of a
population and the number of existing species.s phienomena is predominant in our
simulation as the cross-correlation between thebmurof prey and the number of prey
species can be as high as 0.66.

Figures 4 and 5 depict the average number of @neypredator species for 2-

mean speciation and classical speciation, resgbgtiv
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Figure 4. The average number of prey and predgiecies for runs using 2-mean

speciation.
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Figure 5. The average number of prey and predaecies for runs using classical
speciation.
These averages are summarized in table 5.
Table 5.
Average Numbers of Individuals and Species Usirth Bpeciation Methods with

Standard Deviations shown in Parentheses.

2-Mean Speciation Classical Speciation
Avg. No. of Prey 114,857 (SD = 17,760) 144,629 06,404)
Avg. No. of Predators 11,683 (SD = 5,628) 24,148 £3,890)
Avg. No. of Prey Species 23 (SD =5) 33 (SD =14
Avg. No. of Predator Species 15 (SD =4) 18 (S¥ 1

The simulation appears to spend approximatelyitee3,000 time steps
achieving equilibrium. Following this stage, oasults show stabled curves for the
number of prey and the number of prey speciesr@@). Although the simulation is a

large, complex, and evolving system, and althoughynof the data series show
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oscillations with high amplitude, there is a straogrelation between many of the
dependent properties (figure 6).

In our classical speciation method, on averagesithealation produced a second
prey species during time step 357. The 2-meanaip@t method created a second prey
species much later, indeed, on average, duringstep438. It can be observed in figure
5 that classical speciation for prey species ocamsverage, very frequently near the
beginning of the simulation before stabilizing arduB83 prey species. This behaviour is
not seen when using our 2-mean speciation. Insgatkan prey speciation occurs
gradually towards stabilization around 23 prey ggec

When speaking about the size of a species (thetigygahmembers), it is more
useful to use relative sizes by comparing the ayesize of a species per time stgpo
the total quantity of individuals during The average prey species size during 2-mean
speciation was just 5.85%. The average prey spsde during classical speciation was
9.19% of the total population size of the prey,ahhis 157% larger than that of 2-mean
speciation. This degree of difference demonstiigsthe 2-means speciation
mechanism produced, on average, prey species tiesisiae relative to the quantity of
prey individuals. According to Devaurs and Gra@l(®), who discusses species
abundance, we would expect to observe this exastghenon. Indeed, it is “widely
observed by ecologists that species are far franglegually abundant” (Fisher et al.,
1943). Instead, more species are represented evitbrfindividuals.

Classical speciation produced a maximum of 24 hdj\prey species (time step
688 during run number 12) and 78 living predatacips (at time step 2860 of run

number 13). 2-mean speciation produced a maxinfudB bving prey species (at time
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step 773 of run number 5), which is quite less tinam of our classical speciation.
Similarly, 2-means speciation produced a maximufustf48 living predator species (at
time step 5,572 of run number 2), which is also Imsmaller than the number of predator
species created by our classical speciation metfibése measurements are summarized
in table 6.

Table 6.

Basic Statistics of Both Speciation Methods

Classica 2-Mean
Speciation Speciation
Avg. time step for first prey speciation ev 357 43¢
Avg. time step for first predator speciation e1  40¢€ 53t
Max. number of living prey speci 247 63
Max. number of living predator spec 78 48

Figure 6 demonstrates the dependency betweenelgeapd prey species data
series presented in figure 2. This dependency éas Wwidely discussed and is the basic
principle of Fisher’s log series (Fisher et al.432P— a species abundance distribution
model which describes the dependent relationshHipdsn the size of a community and
the total number of species within the community.

Computing the cross-correlation function betweea tlata series is a method for
measuring the similarity of two waveforms whichaaknto consideration temporal
differences between the two series. The resulfusmetion that returns values between -1
and +1, such that a high positive cross-correldbemveen two data series at a shift of
distanced suggests that as one series increases or degreaskes the othertime

steps later. We use this measurement for crogsiabon to show the dependency
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between the number of prey and the number of gregiss at possible distance shifts of
-500 to +500. The resulting function describesu®iat what shift the two data series —
prey and prey species — are most correlated. 8hdts are revealed in figure 6 which
shows a strong positive correlation between thebmirof prey and the number of prey
species, with the highest correlation value of @Z8urring at time step 25. This
suggests that, as the quantity of prey individuaiseases, so does the quantity of prey

species approximately 25 time steps later.

Prey - Prey Species

Correlation

-600 -400 -200 a 200 400 &00d

Shift

Figure 6. Cross-correlation between the number of preymeg species.

Species Spatial Distribution

By design, the speciation mechanism used in thelation has no direct
consequence on the spatial patterns and spatiabdison of species in the environment.
As a consequence, regardless of the speciationanesch used — classical or 2-mean —
the shapes and positions of species is similar.

Figure 7 depicts the locations of predator indial$ (white dots) and prey
individuals (coloured dots, such that all preyhie same species are represented using the
same colour) for run number 2 of the simulatiomgs2-mean speciation. Using the

same colour scheme (white dots for predators almliez dots for prey), figure 8
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depicts the locations of prey and predators formumber 8, a run which used our

classical method for speciation.

Figure 7. Visualizing the locations of individuals (2-mearesjation).

Figure 8. Visualizing the locations of individuals (clasdisaeciation).

It can be seen that the predators strongly bdhdeprey and influence the
direction in which they move. What are interestimg the strong spiral wave patterns

that form from the initially tightly packed group$ prey and prey species. Consider, for
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example, prey species 46 (from run number 2; udingean speciation) which, during
time step 4500, demonstrates a small spiral stap@rig. Ninety-nine time steps later,
the same prey species has now taken the shapmawdétalarger and prominent spiral

wave (figure 9).

Figure 9. Locations of individuals in time step 4500 (left)d 4599 (right).

In fact, strong and robust spiral waves are a comphenomena among complex
and dynamic biological systems (Rohani et al., J9%&lf-organized spiral patterns have
been seen not only within chemical reactions bet aimong populations of bacteria
(Rohani et al., 1997) and snowshoe hares in Nort@anada (Bascompte et al., 1997).

The phenomenon is predominant throughout the simoaola

Species’ Sizes

We refer tosizehere in two ways: (1) thezeof a specie$is the number of
individuals inS and (2) thespatial sizeof a specieS as the average of the pairwise
physical distances in the world between the indiald inS. Our definition of a species’

spatial size allows us to comparatively measureatheunt of space in the world that a

Species occupies.
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Consider, for example, run number 8 — the mostrteexecution of the
simulation using classical speciation. The spaiigds of prey species for the first 10,000
time steps of this run are depicted in figure TDere is a great deal of variability among
the spatial sizes of prey species during the coofrids run. In fact, the standard

deviation of the average spatial size of prey sggeduring this run is 68.323.
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Figure 10. Average spatial size of prey species during numlver 8 (classical

speciation).

The average spatial size of prey species duringhtumber 2 — a run using 2-
mean speciation — is shown in figure 11. CledHgre is a large reduction in the amount
of variability among the spatial sizes of prey speduring this run. This suggests that
2-mean speciation outperforms classical speciattoa clustering mechanism. The
standard deviation of the average spatial sizeef ppecies during this run was just

37.77.
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Figure 11. Average spatial size of prey species during runlvem2 (2-mean speciation).

Species Splitting

Recall that unlike our classical speciation med@ranour 2-means speciation
allows for the splitting of an existing spectesito SandS,;, such that the individuals
contained withir, are a subset of the individuals originally congainnS.

Dendroscope, bioinformatics software that is usedgualize phylogenetic trees,
was used to produce figure 12 — the recreatioh@ptey species tree of life at time step
6300 run number 2 — a run using our 2-mean speniatechanism. The length of a
branch represents a distance in time proportiantié generation number in which the
speciation event occurred. As a result, it casd®n that the frequency of speciation
events is higher near the beginning of the simohatprior to the environment reaching a
level of stabilization. The complete, enlargedsian of the prey species tree of life for

run number 2 can be seen in Appendix A.

38



Figure 12. Complete prey species tree of life at time stépO6of run number 2.

Figure 13 demonstrates a very small subset ofrtheegorey species tree of life
produced from run number 6. The prey species nucdrebe seen at the end of every
branch while the number in brackets representdhathatime step the species splitting

occurred.

1
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[385]
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Figure 13. Subset of prey species tree of life of run nuntbesing 2-mean speciation.
We use this sample tree to demonstrate the sglittiprey species 26 into
species 26 and species 81 (at time step 1036)indptime step 1586, prey species 81

splits into species 81 and 105. This splitting barseen in figure 14, which displays
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graphs for the spatial sizes of prey species 26a8d 105. It can be seen that prey
species 26 emerges during time step 442 (figure TAjs prey species experiences a
drop in its spatial size during time step 1036 wheplits into prey species 81 (figure
14). Similarly, prey species 81 experiences alaimdirop in its spatial size when it splits
into prey species 105 during time step 1586 (fidis#e
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o 300-
g 20 W
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Figure 14. Spatial sizes of prey species 26, 81, and 10Hgluun number 6.

Therefore, with the new 2-means speciation mechange have the ability to
make a much more in-depth analysis of the histbtii@speciation events and correlate
them with useful large scale qualitative and quatitie measures associated with each
species. For example, we may deduce from figureviith illustrates the spatial sizes
of species 26, species 28 (which split from spe2&sand species 105 (which split from
species 28), that there is a correlation betweespiatial distances and genetic distances
between individuals in a species. This gives agrotriteria with which we may

compare our speciation methods.
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Physical vs. Genetic Distance

Introduced in 1943 by Sewall Wright, “Isolation Bistance” is a biological
theory that suggests a positive correlation betvwdsssical distances and genetic
differences. Subsequent authors, including Kinaumé Weiss (1964), Nagylaki (1976),
and Slatkin (2007) have continued to study thisyphgenon, the last of which
demonstrated that on samples of genes from twolabgas, it is possible to identify
isolation by distance.

For every pair of individuals in a speci€l, I,), measuring the physical distance
and genetic distance betwedgrandl, demonstrates some evidence of isolation by
distance. Depicted in figures 15 and 16, for spmesy species, it can be seen that as the
physical distance between two individudisandl,, increases (the x-axis), so does the
genetic distance betweénandl, (the y-axis). For others, however, this correlatis

not as evident (figure 17).

3.11%2
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Figure 15. Physical and genetic distance between individnatpecies 141.
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Figure 16. Physical and genetic distance between individnatpecies 92.

Prey species 141, which contained 1,692 individud@monstrates a strong
relationship between the physical distance betveggair of individuals and the genetic
distance between the same pair of individuals.th&gphysical distance increases along
the x-axis, the genetic distance appears to inerakasg the y-axis. This suggests that
two individuals within this species which are plogdly separated by a large distance are
also likely to be genetically separated by a lafigéance.

Prey species 92, which contained 2,104 individaathis time, shows a similar
pattern. Although there is little evidence of &an by distance among all pairs
individuals in the species, there is evidence oiegie differences among the two clusters
of individuals in species 92 which are physicaiglated from each other (figure 16).
Particularly interesting, prey species 11 (the sidiging prey species during time step
3075) demonstrates some genetic isolation amongdigls in the species (figure 17).

Measuring the correlation coefficient between thgsgical distance and genetic distance
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between individuals in prey species 11 revealsedfictent of 0.2768 — small, yet still a

positive correlation.
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Figure 17. Physical and genetic distance between individnaspecies 11.

Similar to measuring the correlation between thalmer of prey and prey
species, cross-correlation can be used to quahgfgependency between physical
distance and genetic distance among pairs of iddals in a species. The calculations
for such a statistic for the three species disauabeve is as follows: for species 141, the
correlation coefficient measured at 0.4551, forcgme92 it was 0.5745, and for species
11, it was 0.2768 which, although small, shows sitp@ correlation between physical
and genetic distance.

Visualizing the physical location of individualsthin the world helps us to
further identify a relationship between the phykliceation of individuals and their

genetic similarity.
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Figure 18. Locations of individuals in prey species 286 dgriime step 4546 of run

number 3.

600

250 200 350 400 450 500 550

Figure 19. Locations of individuals in prey species 286 ¢k)aand 425 (grey) during

time step 4547 of run number 3.

Figure 18 depicts the locations of individuals,hwitthe world 0fL000 x 1000
cells, belonging to prey speci286 during time ste@5460f run number 3. Immediately
following this time step, prey speci286 splits into a new prey specie®5. It can be
seen in figure 19 that the new clusters of genkgtisanilar individuals, which form the
new prey species, are also physically located eaeln other. These diagrams further
illustrate the belief that there exists a strorigtienship between the physical location of

individuals and the genetic distance between thRecall that in order for a set of
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individuals to be clustered together into a newcsss they must genetically similar to
each other, and to an individual in the parent iggebat was genetically dissimilar from
the parent species. For this reason, it is kndwahthe FCMs of the individuals forming
the new species must blseto each other in the world of all possible FCMafter all,

the individuals are genetically similar. Furthemmdt can be clearly seen in figure 19
that the individuals forming the new species argspially located near each other. Thus,
it may be concluded that the there exists a redatigp between an individual’s physical
distance to all other members in the species amththividual’s genetic distance to all

other members in the species.

Frequency of Interbreeding

Recall that a “good species” is one that showstiersolation. However, due to
design, the boundaries of our species are nohdtsind interbreeding is neither forced
nor forbidden. Interbreeding between two individuaf two different species is possible
provided that all requirements for reproductionraet (these same requirements,
including being physically near each other, wantmgeproduce with each other, and
being genetically similar, apply to any reproduet&vent — not just to interbreeding).

Figure 20 depicts the frequency of interbreedivenés for both speciation
mechanisms during run number 3 (for 2-mean speaptand run number 8 (for
classical speciation). The y-axis is the raticntérbreeding events to the total number of
reproduction events that occurred during that te@. For example, near the beginning
of the simulation when there are just a few newcsgseemerging and when there has
been very little genetic diversity, there is a haglgree of interbreeding (as much as 35%

for classical speciation, for example). There app¢o be a stabilization reached for both
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speciation mechanisms after time step 1000 whemahability of the frequency of
interbreeding converges to an average of approein&t40% for 2-mean speciation and

5.35% for classical speciation.
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Figure 20. Frequency of interbreeding for both speciation naatdms during run

number 3.

Figure 21 displays the frequency of interbreedivgnés between a pair of
individuals in two different species during timestt300 of run number 3. For example,
during this time step, there were 620 interbree@éwents between an individual in
species 96 and an individual in species 106 (thndest bar in figure 21), which are, in
fact, direct descendent species from the samenatigarent species — prey species
number 70. Moreover, prey species 96 and preyiep@06 are relatively close to each
other on the prey species tree of life (a subsethoth is shown in figure 22).

This phenomenon is also visible between prey spedd® and 111, which not
only demonstrate the second highest amount ofdrgeding events, but are also direct

descendents of the same original parent speciesy-species number 87. A different
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subset of the entire prey species tree of life destrates the relationship between these
descendent species — number 87, 110, and 111gfR&f})r

It is clear that the highest frequencies of intedaling occur between species
sharing a common ancestor. However, because békgaparation, it is not always
guaranteed that related species will experiendgradegree of interbreeding. Consider,
for example, species 117 and 118 which containZ2ghd 14,552 prey, respectively (or
7.02% and 7.97% of the entire prey population, @éespely). These two species are
among the largest living prey species during tine tstep and yet, due to physical
separation in the world, they exhibit the lowesgirency of interbreeding.
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Figure 21. Frequency of interbreeding between species duimnmg step 6300 of run

number 3.
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Figure 22. Subset of the prey species tree of life at timp 6&00 of run number 3.
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Figure 23. Subset of the prey species tree of life at titep $300 of run number 3.

Intra- and Inter-Cluster Distances

Calculating intra- and inter-cluster distancesns method of illustrating and
measuring “compactness” of cluster of FCMs. Thiusse distances can be used to
reveal how genetically similar individuals are isiagle species and also how genetically
dissimilar two species are in the world. Howewar previously explained, because our
classical speciation method is not designed tavality species splitting, this
measurement of cluster compactness before andsagkeres’ splitting can only be used

with data from our 2-mean speciation method.
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Immediately before the splitting of a spec&®such as species 286 in run number
2; figure 24), there is a high value for intra-¢krsdistance. This reflects the fact that
there is at least one pair of individuals wit&ink andl,, such that the genetic distance
between them exceeds our predefined thresholdggmiation. For prey species 286, the
largest genetic distance between every individodltae center of the species is 2.91041.
Moreover, there exists a pair of individuals in@ps 286 such that the genetic distance
between the two individuals is 6.12 — the greatéstvery pair of individuals in the

species.

2.91041

/

o

Figure 24. The compactness of prey species 286 during tiepe4546 of run number 2.

Figure 25. The compactness of prey species 286 (left) abdd@ht) during time step

4547 after splitting of run number 2.
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Subsequent to prey species 286 splitting, as sekguire 25, the largest genetic
distance from every individual and the center ef$pecies has reduced to 1.8744. In
addition, the greatest distance between everygbamdividuals has reduced to 4.11. The
new species, species number 425, is even more @bmphe greatest distance from an
individual in species 425 to the centre of sped&s is just 1.3886 and the largest
distance between every pair of individuals in sped?25 is 3.2. These results suggest
that immediately after a speci&}, splits intoS;+; andS+1, the two new species are
more compact than the predecessor parent spedi®over, the genetic distance
between the centres of species 286 and species 225153 and the genetic distance
between the closest pair of individuals, such tmet individual is from species 286 and
the other is from species 425, is 1.6968. Thisats/genetic separation among the two

species post-split.

Genetic Drift

Genetic drift among species can be demonstrated tis¢ measurement of inter-
and intra-cluster distances. Consider, for exappiey species 15 which, during time
step 3010 of run number 3, split into prey spe8iés At this time, the distance between
the centers of species 15 and 37 is 1.93201 -aaval small value which indicates that
these two species are genetically very similaegault we would expect as species 37 had
just split from species 15). Moreover, there ex&pair of individuals — one from
species 15 and the other from species 37 — whizlgemetically quite similar (a genetic
distance of 1.14725 between them). One thousamaldteps later, the distance between
the centres of prey species 15 and prey specieas8ifhcreased to 4.27654 — an increase

of more than 220%. In addition, the pair of indials from both species which are more
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genetically similar than any other pair of indivadsi is separated by a genetic distance of
3.57179. This is strong evidence of genetic theftween two species which were once

genetically very similar. These genetic distarexessummarized in the following table.

Table 7.
Genetic distance between prey species 15 and 3i@gdurn number 3 using 2-mean
speciation.

Time ste|
301( 4081

Genetic distance betwe

centers 1.93201 4.27654

Genetic distance betwe:
_ o 1.14725 3.57179
furthest pair of individuals
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CHAPTER V

CONCLUSIONSAND RECOMMENDATIONS

Conclusions

This thesis presents a new mechanism for speciatiplemented within an
individual-based evolving predator-prey ecosystenmukation. Not only does the 2-
mean speciation mechanism have a reduced comp(ign compared to the classical
speciation mechanism which, in turn, reduces théme performance), it also more
accurately models what we understand regardin@gicdl speciation. That is, rather
than create a new species centered initially ar@usidgle individual — as seen in
classical speciation — 2-mean speciation allowsHersplitting of an existing species,
such that a subset of the original individualSmow belong to the newly created
speciesS,. This significant modification is more biologibalelevant and also allows us
to perform further rigorous studies on speciatinoluding studying the effect of species
splitting on spatial sizes of species, intra- ardri-cluster genetic distances, and genetic
drift between a parent and a child species.

It was concluded that the chosen mechanism of ap@cihas little to no effect on
the population sizes of prey and predators, andtineber of prey species and predator
species. The degree of variability among the patpan size is due to some amount of
randomness in the simulation and its complex amdth behaviour (Farahani et al.,
2010), and the number of existing species at avgngiime during the simulation is

largely dependent on the size of the prey and poeg@pulations.

52



Species distribution and spatial patterns wereistuand the phenomenon of
spiral waves, as seen previously in other systertis &s chemical reactions, populations
of bacteria, and populations of the Canadian snoe$iare, were evident. These spatial
patterns emerged as a natural result of our syatehwere not forced by design.

Further analysis revealed a strong correlatiorumnsimulation between the
physical location of individuals within a specieslaheir genetic distance to other
individuals in the same species.

The frequency of interbreeding was examined anevigaled that species sharing
a common ancestor, when able to (i.e. they areigdifjslocated near each other),
demonstrate a much higher frequency of interbrepelrents than observed between

species which are genetically distant from eaclkeroth

Recommendations

There are great deals of other studies on spegitited can be performed.
Understanding population sizes, species splittimg relationship between physical and
genetic distances, the frequencies of interbreednigi- and inter-cluster genetic
distances, and genetic drift will be even more geasgy if it is decided to study invasive
species and the effect on speciation when obstaokeadded into the environment, the
latter of which is currently being studied by aleabue.

Further analysis on the genetic similarity andidigarity between closely related
species can be performed. Specific emphasis m&ycheed on comparing the actual
FCM of two sister species, studying specificallg #mergence and disappearance of
edges in their respective FCMs, and understandimgihfluential each edge in their

respective FCM is on the length of time that egmdcies exists. This study, then, would
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focus a great deal on the details within each FOMtonly on the edges themselves but
also on the variation of weights within the FCMand aim to understand in more detail
how the FCMs of individuals in a species leadsighér-level species behaviour.

Finally, additional studies may be performed tantifg or dismiss the existence
of co-evolution between prey and predator specldss examination would require
identifying a prey species, for example, whichnstlee evolutionary path towards
speciation and following it during the course o 8imulation. Questions that could be
answered include: how long after a prey specidtsgjibes a nearby predator species
split? What is the genetic drift between the paesrt newly created prey species? Does
a nearby predator species which also undergoesasipaecdemonstrate similar genetic
drift? And, what is the relationship between thevFaf a prey species and the FCM of a

nearby predator species?
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APPENDICES

APPENDIX A

Complete Prey Species Tree of Life at Generatid@063
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APPENDIX B

Simulation Parameters

Below lists the input simulation parameters whiatrevused to produce the data

discussed within this thesis.

Parameter Value Parameter Value Parameter Value
Width 1000  MinArc 0.075 EnergyPred 1000
Height 1000  InitNbPrey 13000SpeedPrey 6
ProbaGrass 0.187 InitNbPredator 350 SpeedPred 11
ProbaGrowGrass 0.002®istanceSpeciesPreyl.5 VisionPrey 20
ValueGrass 250 DistanceSpeciesPréd3 VisionPred 25
ValuePrey 500 DistanceMin 0.1 StateBirthPrey 30
MaxGrass 8 AgeMaxPrey 46 StateBirthPred 40
SpeedGrowGrass0.5 AgeMaxPred 42 nbSensProie 12
MaxMeat 8 AgeReprodPrey 6 nbConceptsProie 7
ProbaMut 0.005 ClusterPrey 10 nbMoteurFixProie 3
ProbaMutLow 0.001 ClusterPredator 3 nbSensPredateur 12
PercentMut 0.15 RayonCluster 5 nbConceptsPredateur
PercentMutHigh 0.2 EnergyPrey 650 nbMoteurDepPeaatd
nbMoteurFixPredateur 3
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APPENDIX C

Initial Fuzzy Cognitive Map for Prey

§ . 5 & g8 . 8 o
s 5 &8 5 £ 5 = %t T 8 -

s £ 5 £ 3% % £ 8 & g 8§ , & 3B

Q = I o I 0 c ® I @ ) = o] <] £

4 0 0 0.1 0 -1 1 0 0 0 0 0 g q
-4 0 0 0 0 0.5 0p O 0 0 0 0 [¢
0 0.5 0 -0.1 0.1 0.5 05 O 0 0 g [¢ D D
0 0 -04 | 0.z -0.2 | -0.7 | 0.7 0 0 0 0 0 0 0

0 0 0.5 -0.1 0.1 0.5 05 O 0 0 0 [0 DO

0 0 -04 0.2 -0.2 -0pb O 0 0 0 0 g q 00

04| 4 -1.5 0 0 2.2 2.7 0 0 0 0 0 0 g [¢
0 -1 15 0.2 -0.2 115 -1 0 0 0 0 0 [0 00

0 0.2l O -0.3 0.3 1.1 -1 0 0 0 0 g 2.6 0 0

0 0.2 0 1 -1 1.1 1.1 0 0 0 0 0 -4 0 [0
0 0 0 -04 04 0.b -5 0 [0 [0 q D 1.5 0

0 0 0.5 0.3 -083 0|8 0 0 0 g q 0 -4 0

05/ O 0 0 0 0 0 3.5 -0{8 -1 0B -] -1 -1 ¢

0 0.3 0 0 0 0 0 -0. 2.1 07 0J7 0.5 4 8.0
0 0 0.2 0 0 0 0 -02 |0 1.5 0.t -0.3|-04] 3 0

0 0 0 0.1 0 0 0 -0 0.b 0 15 2-0-03| -02] O

0 0 0 0 0.1 0 0 0 05 -03 -12 0.2 D.8.2 0

0 0 0 0 0 0 0 -0. -0(8 -02 -2 15 8 Q. 0.7 0

0 0 0 0 0 0 0 0.4 1 0. 2 1.2 0.7 0.7 D
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9
0 0 0 0 0 0 0 0 0 0 0 0 0 a 0.6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 03
0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 -0.3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.2

57



PreyClose
PreyFar
FoodClose
FoodFa
FriendClose
FriendFar
EnergyLow
EnergyHigh
FoodLocalHigl
FoodLocalLow
PartnerLocalYes
PartnerLocalNo
ChaseAway
Hunger
SearchLeave
Curiosity
Sedentary
Satisfaction
Nuisance
SearchPrey
SearchFood
Socialize
Exploration
Wait

Eat

Reproduce

APPENDIX D

Initial Fuzzy Cognitive Map for Predators

g 3 _ o w 8 S .

0.7 0 0 -0.1 0 0.5 -0. 0 0 0 0 0 0 0 q
-0.5 0.7 0.1 0.4 -0.4 -0.5 0.5 0 0 0 0 ao 0

-0.5 0.7 0 -0.1 0.1 0.5 -0 0 0 0 0 0 gqo 0
0.8 -0.2 0.1 0.2 -0.2 -0.6 0.€ 0 0 0 0 0 0

0 0 0.7 0 0 0.4 -0. 0 0 0 0 0 0 0 0
0 0 -0.5 0.3 -0.3 -04 0.4 0 0 0 0 0 0 0/ 0]

3.5 5 -1.2 0 0.2 -1.5 1.5 0 0 0 0 0 0 0 0
-2 -3 1.4 0.3 -0.3 1 -1 0 0 0 0 0 0 0 0
-1.5 0.2 -0.2 -0.3 0.2 1 -1 0 0 0 4 0 0

1.7 0 0.2 1 -1 -1 1 0 0 0 0 0 -5 0 0
-0.3 0 0 -0.4 0.4 0.§ -0 0 0 0 0 O 0 2 0

0.3 0 0.5 0.3 -0. -0.8 0. 0 0 0 0 0 0 -5 0

0.2 0 0 0 0 0 0 1.5 -0. -0 0.3 -0.4 g -04 0

0 0.3 0 0 0 0 0 1.5 2.5 -1.p 0. -0.4 315 8-00

0 0 0.2 0 0 0 0 -0.8 -0 1) 013 -0.9.6 3 0
0 0 0 0.1 0 0 0 3 2 0.2 1.5 04 -0.3 -0.2 0

0 0 0 0 0.1 0 0 -0.8 -0, -0 -1.5 04 .3 Q 0.2 0

0 0 0 0 0 0 0 -0.§ -0. -0, -1(8 1 8 0] 0.8 0

0 0 0 0 0 0 0 1 0.8 0.2 2 -1 -0.6 -0.8 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|9
0 0 0 0 0 0 0 0 0 0 0 0 0.7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5
0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 -0.p
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.

58



REFERENCES

Adami, C., Brown, C.T. (1994). Evolutionary Leargim the 2D Artificial Life System,
Avida. Artificial Life, 377-381.

Axelrod, R. (1976)Structure of decisiarPrinceton, NJ: Princeton University Press.
Baveco, J. M. and Lindeman, R. (1992). An Objeatrded Tool for Individual Oriented
Simulation: Host-parasitoid System Applicati&tol. Model.61, 267-286.

Baveco, J. M. and Smeulders, A. M. W. (1994). Ofsjéar Simulation: Smaltalk and
Ecology.Simulation 62, 42-57.

Bian, L. (2003). The Representation of the Envirentrin the Context of Individual-
based Modelingecological Modelling 159, 279-296.

Breckling, B., Middelho, U. and Reuter, H. (200B)dividual-based Models as Tools for
Ecological Theory and Application: Understanding Emergence of
Organizational Properties in Ecological SysteBmlogical Modelling194, 102-
113.

Brookfield, J. (2002). Review of Genes, Categorasl Species by Jody Hegenet.
Res, 79, 107-108.

Caron-Lormier, G., Humphry, R. W., Bohan, D. A. wé&s, C. and Thorbek, P. (2008).
Asynchronous and Synchronous Updating in Indivicheded Model€=cological
Modelling 212, 522-527.

Carter, J. and Finn, J. T. (1999). Moab: a SpatiXplicit, Individual-based System for
Creating Animal Foraging ModelEcol. Model, 119, 29-41.

Coyne, J.A. and H.A. Orr. (2008 peciation Sinauer Associates Inc., Sunderland, MA.

59



DeAngelis, D. and Mooij, W. M. (2005). Individuakbed Modeling of Ecological and
Evolutionary Processe8nnu. Rev. Ecol. Evol. Sys36, 147-168.

Devaurs, D. and R. Gras. (2010). Species AbundBatterns in an Ecosystem
Simulation Studied through Fisher’s Logseri®snulation Modelling Practice
and Theory100-123.

Fahse, L., Wissel, C. and Grimm, V. (1998). RedamgiClassical and lindividual-based
Approaches in Theoretical Population Ecology: AtBcol for Extracting
Population Parameters from Individual-based Modeie American Naturalist,
152, 838-852.

Farahani, Y. Majdabadi, A. Golestani, and R. G(2810). Complexity and Chaos
Analysis of a Predator-Prey Ecosystem Simulafidre Second International
Conference on Advanced Cognitive Technologies gpiications.

Fisher, R. A., Corbet, A. S., Williams, C. B. (194Bhe Relation Between the Number
of Species and the Number of Individuals in a Ram&ample of an Animal
PopulationThe Journal of Animal Ecology2-58.

Grimm, V. (1999). Ten Years of Individual-baseddétng in Ecology: What Have We
Learned and What Could We Learn in the FutuEe®logical Modelling 115,
129-148.

Grimm, V., Frank, K., Jeltsch, F., Brandl, R., Ucmaki, J. and Wissel, C. (1996).
Pattern-oriented Modelling in Population Ecolo@ie Science of the Total
Environment186, 151-166.

Grimm, V. and Railsback, S. F. (2005)dividual-based Modeling and Ecolagy

Princeton University Press.

60



Holland, J.H. (1995)Hidden order: How adaptation builds complexiddison-Wesley,
Reading, MA.

Hraber, P. T., Jones, T. and Forrest, S. (1997 .Htology of EchaArtificial Life, 3,
165-190.

Huston, M., DeAngelis, D. and Post, W. (1988). Neemputer Models Unify
Ecological TheoryBioSciencg38(10), 682-691.

Judson, O. P. (1994). The Rise of the IndividuadobModel in EcologyTrends in
Ecology and Evolutior9(1), 9-14.

Kosko, B. (1986). Fuzzy Cognitive Magsaternational J. of Man-Machine Studig65—
75.

Lhotka, L. (1994). Implementation of Individual-ented Models in Aquatic Ecology.
Ecol. Model, 74, 47-62.

Lorek, H. and Sonnenschein, M. (1998). Object QeersSupport for Modeling and
Simulation of Individual-oriented Ecological Modelscol. Model, 108, 77-96.

Mallet, J. (1995). A Species Definition for the Mod SynthesisTrends in Ecology and
Evolution 10(7), 294-299.

Mamedov, A. and Udalov, S. (2002). A Computer TiodDevelop Individual-based
Models for Simulation of Population InteractioEsological Modelling,147, 53-
68.

Mayr, E. (1992). A Local Flora and the Biologi&pecies ConcepAm. J. Bot.79,
222-238.

Neff, N. A. and G. R. Smith. (1978). MultivariatenAlysis of Hybrid FishesSyste. Zoo)

28, 176-196.

61



Pejman Rohani, Timothy J. Lewis, Daniel Grunbaumaegine D. Ruxton (1997). Spatial
Self-organization in Ecology: Pretty Patterns obBst Reality?Trends Ecol.
Evol, 12, 70-72.

Railsback, S. F. and Harvey, B. C. (2002). Analgéislabitat-selection Rules Using an
Individual-based ModeEcology 83(7), 1817-1830.

Railsback, S. F., Lamberson, R. H., Harvey, B.r@l Buy, W. E. (1999). Movement
Rules for Spatially Explicit Individual-based Modeif Stream FistEcological
Modelling, 123, 73-89.

Ridley, M. (1996) Evolution Second Edition. Blackwell Scientific Publicatioi@xford,
UK.

Slatkin, M. (2007). Isolation by Distance in Egorium and Non-Equilibrium
PopulationEvolution 54, 1606—-1613.

Starfield, A., Smith, K. A. and Bleloch, A. L. (199 How to Model It: Problem Solving
for the Computer Age, McGraw-Hill.

Tisseau, J. (2001). Réalité virtuelle—Autonomieimiuo. Unpublished habilitation &
diriger les recherché dissertatipbiniversity of Rennes, France.

Tisseau, J., Parenthoén, M., Buche, C., & Reigie(2006) Comportements perceptifs
dacteurs virtuels autonomes. Une application auxescognitives floueRkevue
des Sciences et Technologies dafbrmation, Série Techniques et Sciences
Informatique, 24(10), 1259-1293.

Uchmanski, J. and Grimm, V. (1996). Individual-bd8&odelling in Wcology: What

Makes the DifferencePrends in Ecology and Evolutiph1(10), 437-441.

62



Wiley, E. O. (1978). The Evolutionary Species Cqideeconsideredyst. Zoal 27,

17-26.

63



VITA AUCTORIS

Mr. Adam Aspinall was born in Sudbury, Ontario @85. He attended Harrow
District High School from 1999 to 2003 where, darthe course of his last year, he was
voted Valedictorian of his graduating class.

In 2003, Adam attended the University of Windsod &n2008 he graduated with
distinction from the H.B.Sc. Computer Informatiops§&ms program. He co-authored a
publication in Artificial Life in 2009 and was reatty published by Springer in the
Lecture Notes in Computer Science for his contrdsuto the International Conference
on Active Media Technology 2010.

Adam is currently a candidate for the Master’'s degn Computer Science at the

University of Windsor.

64



	K-Means Clustering as a Speciation Mechanism within an Individual-Based Evolving Predator-Prey Ecosystem Simulation
	Recommended Citation

	/var/tmp/StampPDF/7fLRWzktI1/tmp.1351257124.pdf.B5n3r

