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Abstract 

Mobile robot localization is one of the most important problems in robotics 

research. Localization is the process of a robot finding out its location given a map of 

its environment. Knowing its location is a necessary prerequisite for many other 

robotic tasks. A number of successful localization solutions have been proposed, 

among them, the well-known and popular Monte Carlo Localization (MCL) method. 

However, in all these methods, the robot itself does not carry a notion whether it has 

or has not been localized, and the success or failure of localization is judged by 

normally a human operator of the robot. In this paper, we put forth a novel method to 

bring consciousness to a mobile robot so that the robot can judge by itself whether it 

has been localized or not without any intervention from human operator. In addition, 

the robot is capable to notice the change between global localization and position 

tracking, hence, adjusting itself based on the status of localization. A mobile robot 

with consciousness being localized is obviously more autonomous and intelligent than 

one without.  

Keywords: single-robot, localization, Monte Carlo, belief, cluster 
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Chapter 1 

Introduction 

In order to successfully navigate a mobile robot, the robot must know where it is 

and then decide where to move. Not only a pre-requisite to many navigation tasks, but 

also a fundamental problem to make a truly autonomous robot, the robot has to 

determine its location as accurately as possible. Thus, mobile robot localization has 

been acknowledged as one of the key issues in robotics [4]. Formally, the problem of 

mobile robot localization, also known as position estimation problem, is to estimate 

the pose of a robot given the map of the environment [26]. The pose of a mobile robot 

normally is described by a two-dimensional planar coordinates augmented with its 

angular orientation (x, y, θ)’. There are two types of localization problems: local 

localization and global localization. Local localization [1, 2, 7], namely position 

tracking, calculates the current robot pose with the known initial position and heading 

direction. It is the most simple localization problem and only needs to compensate the 

error of dead-reckoning during movement. Local localization problem has been paid 

by far a plenty of attention in the literature due to the robot initial pose can be known 

as a prior. On the other hand, the global localization problem is a more challenging [6, 

8, 9]. Most accurate and efficient approaches successfully employed by local 

localization cannot handle the global localization problem. Global localization needs 

to estimate the robot’s pose without prior knowledge of its initial pose, but through 

sensors perceiving the outside physical world. These two types of localization 

problems are not absolutely isolated. Global localization and position tracking are also 

two different stages of localization which can be transformed from each other. 

A lot of localization algorithms have been proposed to date. Typical examples 

include Kalman filter [11, 12, 13, 14], Grid localization [15, 16, 17], Monte Carlo 

localization [18, 19, 20] and some hybrid approaches [30, 39]. The Kalman filter 
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technique is commonly used in local localization. The robot estimates its pose 

continuously by counterbalancing the odometric error using the sensor data. Therefore, 

if the initial pose is accurate and sensor error is small, the Kalman filter can provide 

efficient, accurate, and continuous localization result. On the other hand, Grid 

localization is widely used for the global localization. A typical approach used by grid 

localization is to compute positional probabilities of all cells in the grid. Hence, Grid 

based localization requires a large amount of computation time, and the accuracy of 

localization depends on the cell size. Another popular global localization technique is 

Monte Carlo localization (MCL). It is less computational expensive  than Grid 

localization because the probability computation is carried out only for the random 

samples, whose number if normally is much smaller than the number of cells in a gird. 

MCL often provides more accurate results than Grid localization because the samples 

can take any pose regardless of the cell size. However, the efficiency and resolution of 

MCL is lower than Kalman filter in local localization [26]. Some other hybrid 

methods take a combination of either Grid localization and a Kalman filter, or a 

Kalman filter and MCL. Utilizing merits of each method, these hybrid approaches 

improve the efficiency of localization [39].  

1.1 Motivation  

Among many localization techniques, MCL has become a popular and valuable 

tool in recent years. MCL takes a lot of obvious advantages than other localization 

techniques [59]. In contrast to Kalman filter-based techniques which only work well 

for unimodal distributions, MCL is able to represent multi-modal distributions and can 

globally localize a robot. MCL is more accurate than Grid localization with a fixed 

cell size. Moreover, it dramatically reduces amount of memory required compared to 

Grid localization and it can integrate measurements at a considerably higher frequency. 

Otherwise, easy to implement is also one of the bonus coming from MCL. The merits 

of MCL attract much attention in literature. Recently, many researchers studied how 
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to reduce the computational time of MCL, and how to increase the accuracy of pose 

estimation and deal with some inherent drawbacks of MCL, such as loss of diversity 

[20, 22, 38]. In many research papers presenting the experimental results of the MCL 

algorithms, the results are likely revealed in pictures in which the particles concentrate 

around the robot positions to show the algorithm succeeded [26, 36, 39, 40]. Using 

pictures to show the results takes certain advantage. According to the particle filter, 

the pose of one random particle does not make any sense. Only the particle set 

composed by a large number of particles approximates the correct posterior. It is hard 

to know the localization result from a data array that lists all the location and 

orientation of each particle. But showing every particle in a picture gives us an instant 

sense about the distribution of particle set. Through this way, human beings can 

quickly understand the localization is not successful when the particles are spread 

through the environment and that particles concentrate successfully means the robot is 

certain at a position. However, this information cannot be directly comprehended by 

the robot. This line of reasoning put forth an interesting question: How does the robot 

know whether it has been successfully localized? Within the framework of MCL, this 

amounts to ask if a robot knows whether the particles are concentrated. Imagine a 

robot equipped with a color camera is operating in a square room with four land marks 

at the corner, initialized with uniform distribution of particles. At the beginning, the 

mean of particles is placed at the center of the room, which is far from the robot true 

position. After the first marker detection, nearly all particles are drawn toward closing 

to the robot, so is the mean of particles. After several more detections, the particles are 

clustered around the true robot position. At this stage of localization, the robot can 

merely track its position indicated by the mean of particles. The key point of 

successful localization in this scenario is the robot can know the particles become 

clustered around the true robot position, and then start position tracking. Moreover, if 

we simply define a few different outcomes of running MCL algorithm, such as the 

robot is globally uncertain, the belief of robot is concentrated around several possible 

locations or the robot’s belief is centered on correct pose, can a robot distinguish from 
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these different localization outcomes? If the robot can know the stages changing from 

the global localization to local localization, the robot is able to choose a localization 

technique which is more accurate and efficient but may can only be used in position 

tracking, such as Kalman filter techniques, instead of the previous one, such as MCL, 

used in global localization. Therefore, according to the stages of localization, the robot 

is able to adjust itself getting efficiency.    

In recent years, most papers related to MCL focus on improving the accuracy and 

efficiency of the algorithm or extending MCL to different robot platforms, such as 

multi-robot localization. In the new probabilistic approach to collaborative multi-robot 

localization proposed by Fox and Thrun [60], after the two robots detected each other, 

the robot within highly uncertain can obtain location information from the internal 

beliefs of the other robot which is confident about its position. One measure of 

performance in their experiment is the average time that the robot takes to find out 

where it is. To determine the stop condition that robot has successful localized itself, it 

is assumed the termination is achieved if the localization error falls below 1.5 meters. 

The error is measured by averaging over the distance of all particles from a reference 

position. The reference positions are points at the robot’s trajectory estimated by 

measuring the starting position of each run and performing position tracking off-line 

using MCL. However, computing the estimation error at the reference positions to tell 

the robot has successfully localized itself takes the assumption that the true locations 

of the robot are known during localization. In fact, the ground truth for these reference 

points is not available in real time. In their method, it is simulated by a particle filter 

with very large number of particles (far more than actually needed) performing 

position tracking. Another method improving the efficiency of MCL is adapting the 

sample size in particle filters through KLD-sampling proposed by Fox [32]. The 

efficiency of particle filters is increased by a statistical approach adapting the size of 

sample sets during the estimation process. The approximation error introduced by the 

sample-based representation of the particle filter is bound by the Kullback-Leibler 
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distance. The adaptation approach chooses a small number of particles if the density 

represented by particles is centered at a small part of the navigation space, and it 

chooses a large number of particles if the localization uncertainty is high. When the 

particles converge to the robot’s current pose, the number of particles is reduced. At 

first glance, they adaptively changed the number of particles when the localization 

stage changed from global localization to position tracking. But the adaptive number 

of particles cannot offer exact information to explicitly distinguish different stages of 

localization and it is hard to say how many particles means the robot successfully 

localized itself. They focused on adjusting the number of particles in order to enhance 

the efficiency of particle filter. The distinction of different stages of localization and 

the terminating condition of particle filter are not given. In several other existing 

works [37, 38, 41], giving mobile robot consciousness about being localized in real 

time has not been paid too much attention as well. The problem of when the robot is 

considered by itself as successfully localized is not fully explored. For example, when 

the Monte Carlo Localization is applied on the robot mini-rover with low-cost IR 

sensors [40], correct localization is assumed when all the particles are contained inside 

the area covered by the robot. This approach can be only used in simulation since the 

true position of robot is also assumed to be known in real time. But knowing ground 

truth in global localization is impossible for a real robot.  

1.2 Contributions 

This thesis is only concerned on the problem of Monte Carlo localization in 

indoor environments, particularly in small-scale room with robot equipped with 

low-cost sensors. In this thesis, we propose a novel approach to notice the robot when 

the position of robot is successfully determined in global localization and help the 

robot distinguish from different stages during localization time. Our framework is 

based on Monte Carlo Localization, which maintains a set of samples to represent 

uncertainty, yet can not explicitly offer numeric probability density values itself. In 
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order to obtain the distributed information of particles from a macro view, particles 

are not only treated individually as a single point in our method, but also the 

concentrated particles are analyzed as a whole entity. Based on checking the relative 

location of particles, the robot can know whether it is in a localization stage that most 

particles are located around one point, or that the robot is still global uncertain. It 

offers a chance the robot can make a choice keeping on global localizing itself or 

starting position tracking and navigating to the target, or even adjusting itself to get 

better localization result. By analyzing how concentrated particles are, the robot can 

know the process of localization instead of that a human being stares at the screen to 

see whether the particles get together. In this way, the robot is more intelligent since it 

takes the work of human. Otherwise, our method provides an approach to express 

localization outcomes in a numerical way. The result of localization can be showed in 

pictures along with description of numeric values to explain or compare to other 

localization result. In addition, what we do is trying to bring consciousness to mobile 

robots. For human beings, a lot of everyday activity is automatically controlled, that is 

the detailed control of joints is unconscious. When we are walking under ordinary 

conditions, we don’t notice the control of lifting or dropping down feet. But when the 

environment changed or under some conditions, such as dizzy, our control of our 

actions becomes very conscious and deliberate. If a hollow confronted in front of us 

on the road while we are walking, our brain will start to intervene the action to avoid 

falling into the hollow [46]. The same situation can be viewed in mobile robots. In 

regular, Monte Carlo localization automatically helps the robot localize itself. But 

when the effect of localization reaches to a predefined level or sensors fail to return 

correct data, our approach bring consciousness to the robot that can know the change. 

For example, in position tracking, the mean of particles can tell the robot where it is. 

But if the sensors are broken when the robot is navigating, the false sensor readings 

may result particles move dispersedly. In this case, the location information obtained 

from the mean of particle set becomes incorrect. To avoid the false believing of 

location, through using our method the robot will be aware about the exception 
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occurred.  

1.3 Outline 

This remainder of the thesis is organized as follows. 

Chapter 2: Background knowledge. This chapter is focused on the materials 

that the proposed approach is based on. First, we will introduce the major stumbling 

block uncertainty in robotics and provide a comprehensive overview of probabilistic 

robotics. And then the description of basic probabilistic concepts, formal model of 

robot environment interaction and the recursive algorithm for state estimation Bayes 

filter will be given. As the Monte Carlo localization is the fundament of the proposed 

method, it is specifically emphasized later.   

Chapter 3: The combined MCL-Clustering algorithm. The proposed method, 

combined MCL-Clustering, is presented in detail in this chapter. First are the 

statement of the problem and the general description of our method, and then followed 

by which clustering algorithm is chose and how to combine it with MCL. 

Chapter 4: Implementation and experiment results. Two types of experiments 

in different environment are designed to verify the performance of the proposed 

approach. One is tracking without perception and the other is global localization. The 

detailed information of the implementation and the experimental results will be 

resolved. These experimental results will confirm how successful our proposed 

method is.    

Chapter 5: Conclusion and future work. The conclusion of the thesis is brought 

in this final chapter, and a frame of future work is presented.   
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Chapter 2 

Background Knowledge 

This chapter provides the background knowledge which the proposed method is 

based on. First, we will articulate the basic idea of probabilistic robotics, followed by 

the problem of mobile robot localization. Then, Monte Carlo localization (MCL) 

algorithm is explained since it is one of the most important probabilistic algorithms 

for mobile robot localization and also the foundation of the proposed method.    

2.1 Uncertainty in Robotics 

Robotics is the science of developing techniques for robot perceiving information 

on environment through sensors and manipulate through physical devices [26]. 

Robotics systems have become an increasingly important part of human society. 

Commonly seen robotic systems include mobile robots for the Mar exploration, 

industrial robotic arms in assembly factory and robots used for search and rescue [47]. 

These systems have successfully provided a huge number of labor-saving devices and 

have at times released humans from doing boring and dangerous jobs such as painting 

cars or checking suspicious packages in public place. If the robot can be as intelligent 

as humans, the impact would be dramatically enormous. Imagine all the cars that are 

safely travelling by themselves on the road decreasing the numbers of traffic accidents, 

automatic mobile robot groups searching lost people in desert or checking radioactive 

materials under ocean, or service robots in hospital assisting patients. To accomplish 

these real world robotic applications, robots have been challenged to be capable to 

handle a variety of uncertainties which exist in physical world.  

Several factors contribute to the robot’s uncertainty [24]. Robot environments are 

inherently unpredictable, such as office and private home which are highly dynamic 
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and particularly the uncertainty is high for proximity of people. And sensors of robot 

are short of what they can perceive. Physical mechanism limits the resolution and 

range of a sensor. Robot actuation which involves motors is also unpredictable. 

Effects like control failure and mechanical noise bring uncertainty. Uncertainty may 

also come from the software controlling the robot. Models used in software are 

abstractions of the outside world. All models of the outside world are approximate. 

The environment can only be partially modeled. Uncertainty is further caused by 

approximations of robotic algorithms. Accuracy and response time are always the two 

sides that resist each other. Many popular robotic algorithms sacrificed accuracy in 

order to achieve speedy response. Researchers have developed a series of paradigms 

for robot design, but these frameworks are not robust enough when the robot faces 

sensor and model limitations [26]. As robots are entering into human life more closely, 

uncertainty in robots has become a major issue for designing capable real world robot 

systems.  

2.2 Probabilistic Robotics 

The probabilistic robotics is a relatively new approach to robotics which 

addresses the problem of uncertainty in robot perception and action. The core idea in 

probabilistic robotics is to use calculus of probability theory to represent uncertainty 

explicitly [24]. Unlike the previous approaches relying on a single best guess of what 

might be the case, probabilistic algorithms describe the robot and the environment 

using random variable. In particular, there are two basic models involved in 

probabilistic robotics: perception, the way sensor is processed, and action, the way 

robot behaviors. By doing so, probabilistic robotics provides a great way to 

accommodate the uncertainty that comes from most robot practice. As a result, they 

perform excellently in the face of uncertainty.  

Programming robots probabilistically has a lot of benefits and has already reached 
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a great success in the field of robotics [24]. Using techniques in probabilistic robotics, 

a robot does better and is more robust than the one that does not carry a notion of its 

own uncertainty. Largely ignoring the problem of uncertainty and assuming a full and 

accurate model of the robot and the environment can be given does not work 

appropriately. In fact, certain probabilistic approaches are nowadays the only known 

working solutions to difficult robot estimation problems, such as kidnapped robot 

problem. Additionally, probabilistic algorithms do not have strong requirements on 

the accurate models of robot and environment than many classical planning 

algorithms. And finally, probabilistic algorithms are broadly applicable to nearly 

every robot problem in practice. For instance, the driverless car Stanley, a successful 

demonstration of probabilistic robotics, build by Stanford Racing Team competed in 

and won the 2005 Defense Advanced Research Project Agency (DARPA) Grand 

Challenge, which requires each team create a fully autonomous navigated vehicle able 

to pass through the road in a given map of desert with limited time [28].  

2.2.1 State 

In probabilistic robotics, we describe the robot and environments using the notion 

of state, which can be defined as a collection of all aspects of the robot and its 

environment that can impact the future [26]. The state variables that tend to change 

over time will be called dynamic state, such as walking people around the robot. And 

the state that is not changing will be called static state, such as location of walls in 

buildings. The state also involves variables related to robot itself, such as its pose, 

velocity and so on. In this thesis, state is denoted x; the state at time t is denoted xt. 

Time defined here is discrete. That is, all states can be described at discrete time steps 

t = 0, 1, 2… . The initial state of the robot will be denoted as time t = 0. For robot 

action, the state includes variables for the configuration of the robot’s actuators. They 

might be the joint angles of revolute joints. The configuration of a robot is often 

referred to as kinematic state. And the robot velocity and velocities of its joints are 
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commonly referred to as dynamic state. The location and features of surrounding 

objects in the environment are also state variables. An object may be a chair, a box or 

a wall. Features of these objects may be their texture or color. The location of objects 

in the environment is static in this thesis. Many other variables that may impact a 

robot’s operation can be state variables as well. The list of all possible state variables 

is endless. Typical state variable used in this thesis is the robot pose that includes 

robot’s location and orientation relative to a global coordinate system. Strictly 

speaking, mobile robots have six such state variables, three for Cartesian coordinates, 

and three for angular orientation. But for robots defined in planar environments, the 

pose is usually given by three variables, two location coordinates in the plane and the 

heading direction. 

A state is called complete if the current state is the best predictor of the future 

[26]. It means the knowledge of past states, measurements, or controls do not impact 

on the prediction of the future. Temporal processes which meet the conditions are 

commonly known as Markov chains. The environment that conforms to Markov 

chains assumes that past and future data are independent if the current state xt is 

known. The notion of state completeness is mostly of theoretical importance. In 

practice, it is impossible to specify a complete state for any realistic robot system. 

However, complete state representations are often preferable to reduce the 

computational complexity. And in practice, this reduction has been found to be 

surprisingly robust enough.  

2.2.2 Robot Environment Interaction 

The environment, or world, is a dynamical system that has its own state. The 

robot can obtain information about its environment using its sensors. The robot can 

also influence its environment through its manipulating [50]. These are the two basic 

types of interactions between a robot and its environment, as shown in Figure 2.1. The 
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first one is called environment sensor measurements, by which the robot uses its 

sensors to acquire information about the state of its environment. For example, a robot 

might take a sonar scan or a laser scan to receive information about the location of 

people or desks. The result of this perceptual interaction is called a measurement, also 

called observation or perception. The second one is the control actions which actively 

assert forces on the robot’s environment. Examples of control actions are robot motion 

and the manipulation of objects. Hypothetically, the record of all past sensor 

measurements and control actions kept by a robot is often referred as the data set. 

Consistent with the two types of environment interactions, there are two different data 

streams in a robot. 

 

Figure 2.1: Robot interactions with environment. [26] 

The first stream is environment measurement data which provides information 

about a temporary state of the environment. The measurement data at time t is denoted 

zt. Usually, the robot is simply assumed taking exactly one measurement at a time. 

The notation zt1:zt2 = zt1, zt1+1, zt1+2, … , zt2 denotes the set of all measurements 

acquired from time t1 to time t2, where t1 < t2. The second one is control data which 

provides information about the change of state in the environment. In mobile robotics, 

typical examples of control data are the velocity and odometers of a robot. Odometers 

are sensors that measure the revolution of a robot’s wheels. Although odometers are 

sensors, they are usually treated as control data, as they measure the effect of a control 
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action. Control data is denoted ut. And we will denote the collection of control data by 

ut1:t2, for t1 < t2: ut1:t2 = ut1, ut1+1, ut1+2, … , ut2 . Both measurement data and control 

data play fundamental roles in a robotic system. They take place concurrently. 

Environment perception tends to increase the robot’s knowledge, as it provides 

information about the environment’s state. On the other hand, control tends to result a 

loss of knowledge due to the inherent noise in robot action.  

2.2.3 Belief 

In probabilistic robotics, the notion of belief is used to reflect the robot’s internal 

knowledge about the state of the environment [26]. The state cannot be measured 

directly. Instead, it must be inferred from the measurement data and control data. 

Probabilistic robotics represents beliefs through conditional probability distributions. 

Belief is the posterior probability distribution over state variables conditioned on the 

perception data and control data. We denote belief over the state variable xt by bel(xt), 

which is defined as bel(xt) = p(xt|z1:t, u1:t) . This posterior is the probability 

distribution over the state xt at time t, conditioned on all past measurements z1: t and 

controls u1:t . In the literature, synonyms for belief are state of knowledge and 

information state.  

2.2.4 Probabilistic Generative Laws 

The calculation of state is governed by probabilistic laws in probabilistic robotics. 

The state xt is generated from the state xt-1 by probability distribution p(xt|x0:t-1, z1:t-1, 

u1:t). The evolution of state xt is conditioned on all past states, measurements, and 

controls. According to the assumed Markov chains we mentioned above, if the state x 

is complete then it is a sufficient summary of all that happened in previous time steps. 

In particular, xt-1 is a sufficient statistic of all previous controls and measurements up 

to this time, that is, u1:t-1 and z1:t-1. Namely, in all the variables in the expression above 
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only the control ut matters if we know the state xt-1. Thus, we can obtain the following 

equation: p(xt|x0:t-1, z1:t-1, u1:t) = p(xt|xt-1, ut) . The property we used here is called 

conditional independence. It states that certain variables are independent of others if 

one knows the values of another group of variables, the conditioning variables. The 

same in calculating the probability of measurements, if xt is complete, we have an 

important conditional independence: p(zt|x0:t, z1:t-1, u1:t) = p(zt|xt) . In other words, the 

state xt is the only variable needed to predict the measurement zt. Knowledge of any 

other variable, such as controls, measurements, or even past states, does not matter. 

The two probabilities here are the core models for state estimation. The probability 

p(xt|xt-1, ut) is the state transition probability or called motion model. It specifies how 

environment state evolves over time as a function of robot controls ut and previous 

state xt-1. The probability p(zt|xt) is the measurement probability, also called 

measurement model. The measurement probability specifies the probabilistic law by 

which measurements zt are generated from the environment state xt. Figure 2.2 shows 

the evolution of states, measurements and controls, defined through these probabilities. 

The state xt at time t is stochastically dependent on the state xt-1 at time t-1 and the 

control ut. The measurement zt depends on the state xt at time t. The state transition 

probability p(xt|ut, xt-1) and the measurement probability p(zt|xt) together describe the 

dynamic system of the robot and its environment. 

 
Figure 2.2: The evolution of states, measurements and controls. [26] 

2.2.5 The Bayes Filter Algorithm 

The most general algorithm for state estimation is Bayes filter [33, 50]. It 
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calculates the posterior probability bel(xt) according to the measurement and control 

data as follows: 

bel(xt) = p(xt|z0:t, u0:t)                      (2.1) 

where xt denotes the robot pose (x, y, ߠ) at time t, z0:t = {z0, z1, … , zt} denotes the 

sensor readings up to t, and u0:t = {u0, u1, …, ut} is the control data changing the state 

of the world. The input of Bayes filter is the belief bel(xt-1) at time t-1, along with the 

most recent control ut, and the most recent measurements zt. The output is the belief 

bel(xt) at time t. The measurements of sensors and the control information are 

corrupted with noise. In order to deal with these uncertainties, Bayes filter is 

conducted in two phases: prediction phase and update phase. Each phase corresponds 

to a probability model to deal with the errors: motion model (action model) and 

measurement model (sensor model). In prediction phase, it processes the control ut by 

calculating a predicted belief ܾ݈݁(xt) over the state xt based on the prior belief at state 

xt-1 and the control ut (Equation 2.2). ܾ݈݁(xt) is the prediction of the current state 

before incorporating the measurement at time t. In measurement update phase, the 

probability that the measurement zt may have been observed is multiplied by the 

predicted belief ܾ݈݁(xt) for each hypothetical posterior state xt (Equation 2.3). The 

prediction and update phase can be represented by the following equations 

respectively: 

ܾ݈݁(xt) =  ,௧ݑ|௧ݔሺ  ௧ିଵሻbel(xt-1)dxt-1                     (2.2)ݔ

bel(xt)  = ߟp(zt|xt) ܾ݈݁(xt)                  (2.3) 

where ߟ is the normalizing constant, ሺݔ௧|ݑ௧,  ௧ିଵሻ is the motion model, andݔ

p(zt|xt) is the measurement model. The two expressions only describe a single iteration 

of the Bayes filter algorithm to explain the update rule. This update rule is applied 

recursively, calculating the belief bel(xt) from the belief bel(xt-1) calculated at the 
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former step. To calculate the posterior belief recursively, the algorithm needs an initial 

belief bel(x0) at time t = 0. In position tracking, bel(x0) is initialized with a point mass 

distribution which centers all probability mass on the correct value of x0, and assigns 

zero probability anywhere else. In global localization, bel(x0) may be initialized using 

a uniform distribution over the domain of x0. The general algorithm for Bayes filtering 

is depicted in Table 2.1.  

 

Table 2.1: The Bayes Filter. [26] 

There exists quite a variety of algorithms that are derived from the Bayes filter. 

Bayes filters are implemented in several different ways. Each one is distinct by 

different assumptions of the measurement probability, the state transition probability 

and the initial belief. No unique best approximation for computing beliefs can be 

applied for all robotics problems. Finding a suitable approximation is usually a 

challenging problem. When choosing an approximation, one has to trade off the 

computational efficiency, accuracy of the approximation and ease of implementation.   

2.3 Mobile Robot Localization  

Bayes filter offers a valuable tool for state estimation. One of the instances is the 

mobile robot localization. Mobile robot localization is the problem of determining the 

pose of a robot in a given map of the environment [57]. It is also called position 

estimation, which is a basic perceptual problem in robotics. Obviously, most robotics 

tasks require knowledge of the location of objects which are being manipulated 
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relative to the pose of the robot. Localization is also the process of establishing 

correspondence between the coordinate system of given map and the robot’s local 

coordinate system. Knowing the pose of the robot determines this coordinate 

transformation. Thus, the robot can express the location of interested objects within its 

own coordinate frame. It is a necessary pre-requisite for robot navigation. Figure 2.3 

depicts a graphical model for the single mobile robot localization problem. The 

difference between this figure and the Figure 2.2 we mentioned above in state 

evolution is the given map. The robot is given a map of its environment and its job is 

to find its position relative to the map based on the observation data and control data. 

The shaded notes indicate the values are known: the map m, the measurements z, and 

the control u. And the white notes mean the robot pose x should be inferred.  

 

Figure 2.3: Graphical model of mobile robot localization. [26] 

2.3.1 Categories of Localization Problems  

Different mobile robot localization problem comes with different localizing 

difficulty. Not every localization problem is equally hard. Roughly, the localization 

problems can be divided into four classes, according to the property of the 

environment and the initial knowledge that a robot may have relative to the given map 

[26].  

The first class is characterized by whether the knowledge of pose is available at 

the initial time to a robot. Here are two types of localization problem: local 
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localization (position tracking) and global localization. In local localization, it 

assumes the initial robot pose is known. The localization problem becomes to 

accommodate the noise in robot’s moving. It is so called because the uncertainty is 

local and confined to the region near the robot’s true position. Methods for local 

localization often assume the pose error is small. The pose uncertainty is often 

approximated by a unimodal distribution, such as Gaussian. In global localization, the 

initial pose of the robot is not given. The robot should determine its pose through 

scratch. It cannot assume boundary of the pose error. Global localization is more 

difficult than local localization. 

The second class is characterized by the environment. Environments can be static 

or dynamic. In static environment, only the robot moves. That is, the only state cared 

about is the pose of the robot. All other objects in the environments stay at the same 

location forever. In dynamic environments, other than the robot, the location or 

configuration of objects changes over time, such as people, daylight, movable 

furniture, or dogs. Clearly, most real environments are dynamic, with state changes 

occurring in a different flavor. Localization in dynamic environments is more difficult 

than localization in static ones.  

The third class that characterizes different localization problems is based on the 

fact whether or not the localization algorithm controls the motion of the robot: passive 

localization and active localization. In passive localization, the localization module 

only works as an observer on the robot. The control of the robot does not include 

facilitating localization. The robot might move randomly or do its own jobs. Active 

localization algorithms control the robot aimed to minimize the localization error or 

the costs that risk a poorly localized robot moving into dangerous place. Active 

approaches to localization problem usually have much better localization results than 

passive ones, such as coastal navigation.  
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The last class of the localization problem is characterized by the number of robots 

included: single-robot localization and multi-robot localization. Single-robot 

localization is the most commonly studied one. Dealing with a single robot only, all 

data only needs to be collected on a single robot platform, and no communication 

issue comes in this problem. The multi-robot localization problem is brought by a 

group of robots. The issue of multi-robot localization arises from the representation of 

beliefs and the nature of the communication between them.  

The most important characteristics of the mobile robot localization problem are 

covered in these four categories. In this thesis, we deal with local and global 

localization of passive, single robot in static environments.  

2.3.2 Map Representation 

Mobile robot localization problem assumes that the robot was given a map in 

advance. In quite a few real world applications, maps are often available as a priori or 

can be constructed by hand. The map specifies the environment in which 

measurements are generated. Formally, a map m is a list of objects in the environment 

with their properties [26]: 

M = {m1, m2, … , mN},                          (2.4) 

where N is the total number of objects in the environment, and each mn with 1 <= 

n <= N specifies a property.  Maps are usually divided into two types, known as 

feature-based and location-based [26]. In feature-based maps, n is a feature index. The 

value of mn specifies the location of the feature in the map coordinate system. In 

location-based maps, the index n contains a specific location. Location-based maps 

contain information for any location, no matter whether or not there is an object there. 

This is quite different in feature-based maps. Feature-based maps only specify the 

locations of the objects contained in the map. The two kind maps are showed in Figure 
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2.4. The left one is a location-based map. The black area indicates the location is 

occupied and the white area is free space. The right one is a feature-based map 

including line features, point features and arc features.  

 

Figure 2.4: Example maps used for robot localization. (a) Location based map and (b) 
feature based map. [59, 77] 

2.3.3 Related Works 

To address the problem of mobile robot localization, researchers have developed 

a lot of techniques in the field of mobile robot. In probabilistic robotics, localization 

algorithms are variant implementations of the Bayes filter. The major algorithms are 

Kalman filter-based localization, Multi-hypothesis tracking filter, Grid localization 

and Monte Carlo Localization [26]. We will introduce the first three in this section, 

and Monte Carlo Localization will be focused at the next section.  

The basic idea of Kalman filter is the beliefs of state are represented by 

multivariate Gaussian distributions. Namely, at time t, the probability over the state x 

is characterized by the mean ut and the covariance Σ. Kalman filter has a crucial 

assumption that the state transition probability p(xt|ut, xt-1), the measurement 

probability p(zt|xt) must be linear functions in the arguments with Gaussian noise 

added and the initial belief bel(x0) must be normally distributed. To relax these 

linearity assumptions, extended Kalman filter localization and unscented Kalman filter 

localization were introduced [62]. In both of them, uncertainty in tracking is 
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represented by unimodal Gaussian. EKF uses Taylor series expansion to linearize the 

transformation of a Gaussian, but UKF uses a weighted statistical linear regression 

process. They are efficient and robust for position tracking problems, but not 

applicable to global localization problems. To overcome the difficulties of Kalman 

filter, Multi-hypothesis tracking filter represents a belief of location by multiple 

Gaussians, which is mixture of normal distributions [6, 63]. It can solve the global 

localization problem, at the cost of increased computational complexity.  

The grid localization approximates the posterior using a histogram filter over a 

grid decomposition of the pose space. Histogram filters decompose the state space 

into many regions and represent the posterior for each region by a single probability 

value which is given by piecewise constant functions [65]. We need trade off accuracy 

and computational efficiency when decomposing a continuous state space into 

multidimensional grids. The decomposition of state space into a large number of grid 

cells means much smaller approximation errors. But it will suffer the expense of 

increased computational complexity. The grid localization can also solve the global 

localization problem and handle non Gaussian probability distribution.  

2.3.4 Monte Carlo Localization 

Monte Carlo Localization (MCL) is an implementation of Bayes filter as well. 

Other than representing the probability density function itself analytically, MCL 

represents beliefs of state by maintaining a set of samples that are stochastically 

sampled [59]. The filter used in MCL representing posteriors by finitely many 

samples is known as particle filter. It can represent a much broader space of 

distributions than Gaussians and can model nonlinear transformations of random 

variables [67]. Before the description of Monte Carlo Localization, we will go through 

the particle filter used in MCL algorithm at first.  
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The particle filter used in MCL represents the posterior distribution p(xt|z0:t, u0:t) 

by a set of random samples drawn from this distribution. Each particle, which is a 

sample of the posterior distribution, represents a possible state to be estimated at time 

t. In other words, a particle is a hypothesis indicating what the true world state might 

be at time t. The number of particles is often a large number to reduce the 

approximation error in practice. The input of particle filter is the particle set xt-1, along 

with the most recent control ut and the most recent measurement zt.  Three steps 

constitute the core of particle filter: sampling, importance weighting and resampling 

[66]. In sampling, a hypothetical sample set X’t is generated based on the probability 

p(xt|ut, xt-1) and the previous sample set Xt-1 distributed by bel(Xt-1). This step involves 

sampling from the state transition distribution p(xt|xt-1, ut). The obtained set of 

particles is the filter’s representation of the predicted belief. Then, in importance 

weighting, the importance factor ߱௧
ሺሻ  is calculated for each particle using the 

probability of the measurement zt under the particle xt: 

߱௧
ሺሻ =ߟp(zt|xt

(i))                         (2.5) 

where ߟ is the normalizing constant and p(zt|xt) is the measurement probability. 

The weights are used to incorporate the measurement zt into the particle set. In 

resampling, the probability of drawing each particle is given by its importance weight. 

The particles which have a high likelihood associated with them are selected with 

higher probability, and in doing so the new sample set Xt is randomly chosen from X’t 

according to the distribution defined by importance factor ߱௧
ሺሻ: 

Xt = {ݔ௧
ሺሻ|݅ ൌ 1 … ௧ݔ}  ~  {ܰ

ᇱሺሻ, ߱௧
ሺሻ}               (2.6) 

By incorporating the importance weights into the resampling process, the 

distribution of particles change from predicted belief to the posterior belief. More 

important are the particles with lower importance weights tend to be not contained in 

final particle set Xt. To initialize the filter, we start at time t = 0 with a uniform 
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distributed sample set and the importance factor ߱௧
ሺሻ is initialized to 1/N. Through 

recursive computing the three steps, the particles converge to the pose with highest 

probability. 

There are several advantages of using particle approximation [59]. In the original 

form of Kalman filter, it does not correctly cope with non Gaussian or non linear 

motion and measurement models, which is unable to recover from position tracking 

failures. And Kalman filter cannot handle multi-modal densities which are often 

encountered during global localization. Although these limitations can be 

accommodated using Extended Kalman filter, most of these difficulties derive from 

the restricted Gaussian density assumption inherent in the Kalman filter. On the other 

hand, particle approximation is not bound to certain limited parametric subset of 

distributions. It is able to represent multi-modal distributions and thus MCL can 

globally localize a robot. It dramatically reduces amount of memory required 

compared to grid localization, as particle filter only focus on the particles representing 

the possible poses of robot instead of keeping all the grids status in the pose space. In 

addition, it can integrate measurement at a considerably higher frequency which 

benefits the robot fast localization. Also, particle filter is easy to implement.  

MCL is an algorithm that particle filter is applied to estimate posteriors over robot 

poses in the problem of mobile robot localization. The state transition probability 

p(xt|xt-1, ut) and probabilistic models of sensor measurements p(zt|xt) in particle filter 

correspond to the motion model and measurement model in mobile robot localization 

respectively. Motion model describes the kinematic states that a robot assumes when 

executing the motion command ut and xt-1. Measurement model describe the formation 

process by which sensor measurements are generated. Table 2.2 is the basic MCL 

algorithm written in pseudocode, which can be obtained directly by substituting the 

appropriate probabilistic motion and measurement models into the algorithm particle 

filter.  
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Table 2.2: Monte Carlo Localization. [59] 

MCL takes the previous belief of state xt-1, control measurement ut, observation zt 

and the given map m as input. Line 4 is the step that involves sampling from the 

motion model, using particles from present belief as beginning. The measurement 

model is then used in line 5 in order to calculate the importance weight of that particle. 

The weight for each particle is normalized from line 9 to line 11. Line 12 to line 15 is 

the process of resampling for MCL algorithm. Finally, it returns the updated particle 

set at time t. The initial belief bel(x0) is represented by the set of samples at the 

beginning. In global mobile robot localization, it is obtained by randomly drawing M 

such particles from the uniform distribution over the robot poses space, and assigning 

the equal importance weight M-1 to each particle. As we mentioned, MCL is a 

recursive algorithm. But there is no stop condition indicated in MCL itself. Usually, it 

exists during the robot's whole life. 

Figure 2.5 shows an experiment example of MCL, in which a robot operating in 

an office environment of size 54m x 18m [26]. The robot is equipped with laser range 

finders and given a map of the environment. In Figure 2.5(a), after moving nearly 5m, 

the robot is still globally uncertain about its position and the particles are spread 
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uniformly through major parts of the free space. Even as the robot reaches the upper 

left corner of the map in Figure 2.5(b), its belief is still concentrated around four 

possible locations due to the symmetry of the environment. Finally, after moving 

nearly 55m, Figure 2.5(c) shows the ambiguity is resolved and the robot knows where 

it is. The most of samples are concentrated nearby the robot’s true position.  

 
Figure 2.5: Example of Monte Carlo localization. (a) After the robot moves 5m. (b) 

The robot reaches the upper left corner. (c) After the robot moves approximately 55m. 
[26] 
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Chapter 3 

The Combined MCL-Clustering Algorithm 

3.1 Motivation of Our Method 

Many important works on MCL were proposed in recent years [19, 20, 36, 38]. 

Most of them focus on improving the accuracy and efficiency of the localization 

algorithm. In 2003, in order to improve the efficiency of MCL, the method adapting 

the size of particle set during localization was proposed [32]. The key idea is to bind 

the approximation error of the particle filter measured by the Kullback-Leibler 

distance. It uses a small number of particles if the distribution of particles is unimodal, 

and uses a large number of particles if the samples represent a multimodal sample 

distribution. In 2004, another paper titled “Real-time particle filters” was published 

[41]. It addressed the problem that sensor information arrives at a higher rate than the 

update rate of the filter. It represents posteriors as mixtures of particle sets, where each 

mixture component integrates one observation of all sensors arriving during a filter 

update. What’s more, other topics related to MCL include many vision-based Monte 

Carlo localization methods or several updated Monte Carlo localization approaches 

that run faster and can offer more accurate results. At the same time, MCL was tested 

in various environments on different robot platforms. In most of these papers, the 

effectiveness of proposed methods are normally shown using pictures. In the picture, 

the particles concentrate around the robot position to demonstrate that the algorithm is 

successful. For example, Figure 3.1 shows the particle set of the robot Robin when it 

passes the corridor and another robot Marian is operating in the room adjacent to the 

corridor [60]. The tow pictures (in Figure 3.1) demonstrate the detection of Marian 

helped the robot Robin successfully localized itself, as the distribution of particle set 

representing belief of Robin changes from high uncertain to very confident in a certain 

position. However, it is important to note that the robot does not know whether it is 
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localized. Here comes an important question: How does the robot know it has 

successfully localized itself? 

 

Figure 3.1: An example of two stages in MCL. (a) Global uncertain and (b) confident 
in a certain position [60] 

3.2 The Proposed Method 

3.2.1 Problem Statement 

For a long time, humans want to make robots intelligent as humans. One of the 

most primitive mental activities of humans is clustering [34], which is used to handle 

the huge amount of information we receive every day. For robots, dealing with each 

individual particle as a specific piece of information would be not enough. We can do 

the same clustering thing within MCL framework. Through checking clustering 

information of particle set, the robot can know whether it is localized. Figure 3.2 

shows two pictures of localization stages in which the robot true position is 

represented by the large red cycle. Human beings can easily understand the 

localization is not ready in Figure 3.2(a), and in Figure 3.2(b) it shows particles 

concentrated successfully around the true position of the robot. But this information 

cannot be directly perceived by robots. It should be inferred from the distribution of 

the particles. Through observing pictures in which different localization outcomes are 

shown, we plan to bring consciousness to the robot make it have the same 

understanding of localization outcomes as humans. The robot will notice whether it 

has localized inferred from the distribution of particles.  
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Figure 3.2: An example of two stages in MCL. (a) Global uncertain and (b) confident 
in a certain position. 

3.2.2 Stages of Localization 

Within MCL, the concept stages of localization in our method is referred as the 

different distributions of particle set which have significant characteristics that can be 

distinguished from each other. As we mentioned above, global localization and 

position tracking are two typical stages of localization. Usually, humans get the sense 

of localization stages from pictures in which the distribution of particle set are shown. 

Six pictures in Figure 3.3 illustrate the possible cases of particle distribution in MCL. 

In Figure 3.3(a), particles are full filled in the whole free space. The robot totally has 

no idea where it is. After the robot got its first sensor reading of wall in the 

environment, the particles are spread around the wall (Figure 3.3(b)). Then, with the 

localization kept on, the particles may be concentrated in one major part with a little 

noise (Figure 3.3(c)) or get into several large parts (Figure 3.3(d, e)). Along with 

several times the robot got detection, the ambiguity is decreased. Finally, particles are 

centered in one part (Figure 3.3(f)). In literature, no strict definition of localization 

stages was proposed and even no researchers paid attention to. We simply describe the 

stages of localization here to give a common sense.  
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Figure 3.3: An example of six stages in MCL. (a) Uniform distribution of particles. (b) 
Particles are spread around the wall. (c) Particles are concentrated in one major part 
with a little noise. (d, e) Particle set splits into several large parts. (f) Particles are 

centered in one position. 

3.2.3 Description of Proposed Method 

Our framework is based on Monte Carlo Localization, which is combined with a 

clustering algorithm. Although MCL is a recursive robot localization algorithm, it 

does not have a terminate condition to stop the recursive process and there is no way 

to notify the robot stages of localization. To offset the shortcomings of MCL, in our 

proposed method, the distribution of the particle set is analyzed by sending to the 

clustering part. Then, the clustered particle set is further used to extract information. 

In order to describe the stages of localization, three characteristic variables are 

calculated respectively. They are  

1. nc , the number of clusters,  

2. nmax , the number of particles in the cluster which has the maximum number of 

particles compared to other clusters, and  

3. pmax, the percentage of nmax in the current whole set of particles.  
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The number of clusters nc indicates how many clusters the particle set has. That is 

how many areas the particles spread at. Both of the nmax and pmax refer to the size of a 

cluster. But the third characteristic variable, the percentage pmax , is more general than 

nmax as the meaning of nmax depends on the size of particle set. Usually, pmax is used as 

a major indicator to distinct the stages of localization. For instance, when the pmax 

exceeds a predefined threshold, the robot will believe the particles are well 

congregated. The first one, current number of clusters nc is used as a secondary 

indicator of the stages of localization. For example, if the clustered particle set has two 

large percentages p1 and p2, corresponding to the size of cluster one and cluster two, 

one is 53% and the other one is 45%. And the number of clusters nc is 3, indicating 

that 3 clusters exist. So, based on these analyses, the robot can infer it may be at two 

possible areas that the two large groups of particles represent and the rest of particles 

are very likely the noise.  

3.3 Selection of Appropriate Cluster Algorithm 

3.3.1 Introduction of Clustering 

Clustering is a subfield of pattern recognition whose goal is the classification of 

objects into a number of categories or classes [34]. The objects can be images or hand 

writing characters or any type of measurements that need to be classified. In pattern 

recognition, one kind of clustering is known as unsupervised learning or learning 

without a teacher, as the class labeling of the patterns to be classified is not given as 

prior. Clustering allows us to uncover the similarities or differences among patterns, 

then to draw useful conclusions. The idea of clustering has been applied in many 

fields, such as life science, social science, medical science, earth science, and 

engineering. The definition of clustering is based on the definition of a single cluster. 

In literature, the clusters are described as “continuous regions of this space containing 

a relatively high density of points, separated from other high density regions by 
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regions of relatively low density of points.” [68] Clusters described in this way are 

very close to the visual perception of the scenes in MCL. Particles may concentrate at 

a few different locations of the map after the robot moved a short time perceiving 

outside word in an indoor environment. Here, we give a simple idea of what clustering 

is. We define it as the partition of a data set  

X = {x1, x2, …, xn},                          (3.1) 

where X is a set of vectors constituted by n vectors xi. The set X includes a group 

of vectors, into m small sets (clusters Ci), 

C1, …, Cm, 

if the following conditions are met: 

Ci ≠ Φ, i=1, …, m;  ୀଵ
 Ci = X;  Ci ת Cj = Φ, I ≠ j, i, j = 1, .., m [34]  

That is, at least there exists one cluster; all clusters constitute the whole data set 

and no vector belongs to two different clusters. Clearly, the vectors in the data set 

contained in the same cluster Ci are more “similar” to each other and less “similar” to 

the vectors of the other clusters. The definition of “similar” and “dissimilar” will be 

given in next section.  

3.3.2 Proximity Measures and Representatives 

This section talks about the definitions concerning measures between vectors and 

the measures between clusters. The first type measures are defined as proximity 

measures. Proximity measure quantifies how “similar” or “dissimilar” two vectors are. 

We choose Euclidean distance d(x,y) = ∑ ඥሺݔെݕሻଶ   between vectors as our 

proximity measures which is a dissimilarity measure d described as a function as 

follows: 

d: X x X -> R                        (3.2) 
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where R is the set of real numbers and X is the data set, such that 

݀ א ܴ: െ∞ ൏ ݀  ݀ሺݔ, ሻݕ ൏ ∞,   ݔ, ݕ א ܺ           (3.3) 

d(x, x) = d0,  ݔ א ܺ                     (3.4) 

      and        

  d(x, y) = d(y, x),   ݔ, ݕ א ܺ                (3.5) 

Equivalences (3.3) and (3.4) indicate that there is a minimum dissimilarity level 

value d0 when the measure of dissimilarity is between the vectors itself. Equivalence 

(3.5) means the dissimilarity measure between vectors is independent of the order. 

The similarity measure on X is defined as nearly the same way, in which the only 

difference is ݏ א ܴ: െ∞ ൏ ,ݔሺݏ ሻݕ  ݏ ൏ ∞,   ݔ, ݕ א ܺ . No doubt Euclidean 

distance is a dissimilarity measure on X, with d0 = 0; the distance of a vector from 

itself is equal to 0, and it is easy to say that d(x, y) = d(y, x).  

In many clustering algorithms, a vector x assigned to a cluster C takes into 

account the proximity measure between x and C, namely g(x, C). Many ways can be 

used for the definition of g(x, C). One of them is that C is equipped with a 

representative and the proximity between x and C is measured as the proximity 

between x and the representative of C. Several types of representatives have been used 

in the literature, such as point representatives (Figure 3.4(a)), hyperlane 

representatives (Figure 3.4(b)) and hyperspherical representatives (Figure 3.4(c)). 

Among them, point representatives are suitable for compact clusters (Figure 3.4(a)), 

which correspond to the scene that we always see from the show of the distribution of 

particles in MCL on screen.  
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Figure 3.4: Several types of representatives for different clusters: (a) Point 

representative for compact cluster;(b) Hyperplane representatives for clusters of linear 
shape;(c) Hyperspherical representatives for clusters of hyperspherical shape. [34] 

The mean point is used as the representative of a cluster in this thesis: 

mp = ଵ


∑ ܺ௫א                          (3.6) 

where np is the cardinality of C. It is the most common choice when point 

representatives are employed and when dealing with data of a continuous space. 

3.3.3 Categories of Clustering Algorithms 

After adopting an appropriate proximity measure and criterion for clustering, a 

specific algorithmic scheme need be chosen to unravel the clustering structure of the 

data set. A clustering algorithm is a learning procedure that tries to identify the 

specific characteristics of the clusters underlying the data set. A lot of clustering 

algorithms have been used in many different fields. The major clustering algorithms 

include sequential algorithms, hierarchical clustering algorithms, clustering algorithms 

based on cost function optimization and others [72]. As we need calculate the clusters 

in real time and probabilistic robotics have been criticized by computation complexity, 

the speed of the clustering algorithm is the most important reason we consider. 

The sequential algorithms are fast methods and quite straightforward. In most of 

them, all the feature vectors are inputted to the algorithm once. These methods usually 

produce compact and hyperspherically shaped clusters, depending on the proximity 
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measure used. One of the sequential algorithms is chosen to calculate the clusters in 

our proposed method because of its fast speed. We will focus more on this clustering 

algorithm later. Compared to the sequential algorithms, the hierarchical clustering 

algorithms produce a hierarchy of nested clustering instead of a single clustering. The 

total number of operations required by these clustering algorithms is proportional to 

O(N3), which is a huge computation burden. Even efficient computational schemes for 

hierarchical clustering are employed, this cannot become less than O(N2). And the 

clustering algorithms based on cost function optimization evaluate a clustering by a 

cost function. They terminate when an optimum of the cost function is achieved. This 

category of clustering is computationally very demanding and usually the number of 

clusters is kept fixed. It offends the rule our method needs the clusters is evolving 

along with localization time.  

3.4 The Appropriate Clustering Algorithm: BSAS 

Here, we focus on a basic sequential algorithmic scheme (BSAS) for clustering, 

which is employed in our proposed method. All clustering algorithms in this 

sequential category share the same attributes. For example, all the vectors are 

presented to the algorithm only once. The number of cluster is not known as a prior. In 

fact, new clusters are created as the algorithm evolves. The core idea of the BSAS is 

the following: As each new sample is considered, it is either assigned to an existing 

cluster or assigned to a newly created cluster, depending on its distance from the 

already formed ones. The user-defined parameter required by the algorithmic scheme 

is the threshold of dissimilarity ߠ. Let m be the number of clusters that the algorithm 

has created up to now, and then the algorithmic scheme can be stated as (Table 3.1): 
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Table 3.1: The Basic Sequential Algorithmic Scheme (BSAS). [34] 

BSAS takes the data set ܺ  that need to be clustered and the threshold of 

dissimilarity ߠ as input. Line 1 and 2 initialize the first cluster including the first 

vector x1. Line 3 to line 12 is a large for loop going through the rest of the data. Line 4 

calculates dissimilarity measures between current vector and every cluster to find a 

minimum one. From line 5 to line 11, if the minimum measure is larger than ߠ, a new 

cluster that contains current vector will be created. Otherwise, the considered vector 

will be assigned to the existing cluster which has a minimum dissimilarity measure to 

it. Other than dissimilarity measure, different choices of d(x, C) may lead to different 

algorithms. And when C is represented by a single vector, d(x, C) becomes d(x, C) = 

d(x, mc) where mc is the representative of C. In the case in which the mean vector is 

used as a representative, the updating may take place in an iterative fashion, that is, 

݉ೖ
௪ = (݊ೖ

ௗ כ ݉ೖ
ௗ  + x)/  ݊ೖ

௪ , where ݊ೖ
௪ is the cardinality of Ck after the 

assignment of x to it and ݉ೖ
௪ is the representative of Ck after the assignment of x to 

it.  

The BSAS scheme can be used with similarity instead of dissimilarity measures 

with appropriate modification; that is, the min operator is replaced by max. BSAS, 
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with point cluster representatives, favors compact clusters. Thus, it is not 

recommended if there is strong evidence that other types of clusters are present. No 

doubt, MCL, which always produces compact clusters, does not have this trouble. The 

BSAS algorithm performs a single pass on the entire data set, X. During each iteration, 

the distance of the vector currently considered from each of the clusters produced so 

far is computed. Because the final number of clusters m is expected to be much 

smaller than N, the time complexity of BSAS is O(N). Such fast computation time is 

the major reason that BSAS is chosen aside from other clustering algorithms.  

Tow unfavorable facts matter the result of BSAS [70]. It is easy to notice that the 

order in which the vectors are presented to the BSAS plays an important role in the 

clustering results. Different presentation ordering may lead to totally different 

clustering results. The number of clusters and the clusters themselves may differ. 

Another important factor affecting the result of the clustering algorithm is the choice 

of the threshold. This value directly affects the number of clusters formed by BSAS. If 

the threshold is too small, unnecessary clusters will be created. On the other hand, if 

the threshold is too large a smaller number than appropriate number of clusters will be 

created. In both cases, the number of clusters that best fits the data set is missed. The 

threshold depends on the interpretation the expert or the experiment experience gives.  

To reduce the effects of the above two factors, many modifications of BSAS are 

proposed. One is that the vectors of X have to be presented twice to the algorithm [71]. 

The algorithmic scheme consists of two phases. The first phase involves the 

determination of clusters, assigning some of the vectors to them. During the second 

phase, the unassigned vectors are presented for a second time to the algorithm and 

assigned to the appropriate cluster. Another modified BSAS employs two thresholds, 

which defines a “gray” region [70]. If the dissimilarity level d(x, C) of a vector x from 

its closest cluster C is less than ߆ଵ, x is assigned to C. If d(x, C) > ߆ଶ, a new cluster 

is formed and x is placed in it. Otherwise, when the dissimilarity level d(x, C) drops in 
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this region [ ߆ଵ,  ଶ], there exists uncertainty and the assignment of x to a cluster will߆

take place at a later stage. However, all the modifications suffer increased 

computational complexity. Based on our experiments, the basic sequential algorithmic 

scheme is robust enough to get the solution we want. Therefore, only BSAS is adopted 

in the thesis.  

3.5 Details of Proposed Method  

After introducing specific clustering algorithm, proximity measures and 

representatives, now we present the proposed method, the combined MCL-Clustering 

algorithm. A pseudocode description of the MCL-Clustering is summarized in Table 

3.2. It is clear that the input of the algorithm is almost the same as MCL, including the 

previous state particles Xt-1, the motion ut-1 and observation zt. In fact, the first step of 

the algorithm is regular MCL to localize the robot. Other than the parameters relative 

to MCL, the total number of current particles ntotal and an additional criteria θ for 

clustering are kept for clustering part. Criterion θ is used as the threshold in BSAS to 

determine whether a particle belongs to an existing cluster or is assigned to a newly 

created cluster. And the total number of current particles ntotal is used to compute pmax. 

Starting from the second step, extra process of particle set is affiliated. At first, we 

take the resampled particle set Xt and the criterion θ as input of the basic sequential 

algorithmic scheme to obtain a clustered particle set Ct . Then, by analyzing the 

clustered particle set Ct , we calculate the number of clusters nc , the number of 

particles in the cluster which has the maximum number of particles compared to other 

clusters nmax, and the percentage of nmax in the current whole set of particles pmax. The 

variable nmax is an intermediate variable used to calculate pmax at step 5 which is 

relative to the total number of current particles. If the particle size is not kept fixed, 

the value of nmax does not make sense. As we suggested before, pmax is used as a major 

indicator. At step 6 of the algorithm (Table 3.2), when pmax exceeds a predefined 

maximum allowable percentage q, the robot can start doing other jobs or stop to 
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indicate localization is successfully completed. The nc, current number of clusters, is a 

secondary indicator. To explain the outcome of localization, it is suggested that all of 

the variables pmax, nc and even θ are shown along with pictures of the distribution of 

the particle set. Choosing one of pmax and nc or both of them to facilitate the robot 

relies on the specific environment and robot platform. The explanation of choice may 

be given by experts or a lot of previous experience.  

The combined MCL-Clustering algorithm 

1.             Xt = MCL(Xt-1, ut, zt) 

2.            Ct = BSAS(Xt ,θ)         //clustered particle set 

    //number of clusters in clustered particle set 

3.             nc = numberOfClusters(Ct)   

// the number of particles in the cluster which has the maximum 

number of particles compared to other clusters  

4.             nmax = maxParticleNumbers(Ct) 

// the percentage of nmax in the current whole set of particles, ntotal 

is the number of current particles 

5.             pmax = nmax/ntotal          

6.             if ( pmax > q)    

                    stop to indicate localization is successful 

completed or start doing other jobs 

7.              Return Xt, Ct, nc, nmax, pmax 

Table 3.2: The combined MCL-Clustering algorithm. 
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Chapter 4 

Implementation and Experiment Results 

The implementation of our proposed method and experiment results are described 

in this chapter. The implementation will be presented at first, covering hardware 

platform and its setup, programming environment and MCL algorithm implemented 

on iRobot Create. Then we will present the experimental results.  

4.1 Implementation Details 

4.1.1 Hardware Platform 

The hardware platform we used to test the performance of our method is the robot 

called Create. Create is an autonomous mobile robot for educators and developers 

built by iRobot Corporation [80]. iRobot has made some of the world’s most 

important robots. Today, iRobot has grown to a $307 million public company that 

employs more than 400 of the robot industry’s top professionals, including mechanical, 

electrical and software engineers and related support staff. iRobot Create is a complete 

robot development kit which allows us to program the robot without having to worry 

about mechanical assembly and low-level code. Create is a low-cost robot available 

for research and education. The premium development package which includes Create 

programming robot, command module, advanced power battery system, virtual walls, 

standard remote and self charging home base with fast charger only costs $299. Create 

is derived from another iRobot cleaning robot called Roomba, but without the vacuum 

cleaning brushes. Nowadays, Roomba is widely used for cleaning floors in homes and 

businesses. The platform has been proved as a low cost robot available for research 

and education.  
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Although Create provides a convenient programming interface for controling the 

robot without knowing the details inside the Create, knowing how it actually works 

can help diagnose problems encountered in experiments. Create is organized in three 

sections: 

Sensor front: Nearly all of the sensors, such as bump, wall, cliff sensors, and 

home base contacts, are at the front of the robot. The Create is designed to always 

travel forward, so all the most sensitive sensors are mounted on the movable front 

bumper. This movable bumper provides a mechanical way to measure contact and 

absorbs shock to minimize damage.  

Motor middle: The main drive motors and battery are all in the center. This part 

gives the Create ability of moving and offers the power for long last motion. It is very 

close to the center of its body.  

Cargo bay: An importance connector is located in the front middle of the cargo 

bay. It makes extension to attach other peripheral devices such as additional sensors, 

light, or motors to the Create easy. It can also be used to connect Create to a laptop. 

The free space of cargo bay can be used to add a payload to the back portion of the 

robot, changing the center of gravity of the robot.  

A robot without any sensor is just a fancy toy. The Create has a wide variety of 

sensors for navigating, which mainly include mechanical bump sensors, infrared wall 

sensors. In particular, for detecting dangerous conditions, it also has infrared cliff 

detectors and wheel drop sensors. When Create detects being hanged in the air, the 

wheels will pause. Details of major sensors are described below. 

Bump sensors: Create has two bump sensors on the front. The spring-based front 

bumper moves to trigger one or both of these sensors. Each is implemented as an 
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optical interrupter, which senses the absence of light and changes an electrical signal.  

Infrared Sensors: All six infrared sensors are on the front bumper. Four of them 

are the cliff sensors and facing down, and another one to the right is the wall sensor. 

These five sensors have LED emitters inside, looking for the reflected light of the 

LED’s. Cliff sensors are looking for light reflected from the floor and wall sensor is 

looking for light reflected from a wall. The last infrared sensor is the one for remote 

control, virtual wall and docking station. It looks like a small round plastic button at 

the 12 o’clock position on the head of Create.  

Internal Sensors: The internal wheel encode sensors and wheel drop sensors are 

most commonly used. The wheel encode sensors will be discussed shortly. The wheel 

drop sensors are equivalent to cliff detection. They detect when the wheels have 

extended down, indicating that the Create is in some dire situation. Moreover, there 

are several internal sensors for power measurement, since power is so important in a 

robotic system. They are useful for estimating and presenting capacity of the battery.  

The wheel encode sensors offer odometry data such as the distance and angle 

travelled which represent the controls in the odometry motion model. Details of 

odometry motion model used for the experiments will be described later. The distance 

is obtained from the optical interrupter sensor on the wheels. The value comes from 

counting the number of beam interruptions caused from the toothed interrupter disc. 

The angle value comes from an odometrical difference way. Create has a distance 

sensor on each wheel, and the angle value in the sensor data is the difference traveled 

by each wheel. This difference describes a rotation around the center point between 

the two wheels. The distance and angle together describe the path Create travels. 

Reading them periodically enables us to build up the complete path travelled by 

connecting path segments that each reading represents.  
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Another important device of Create that cannot be ignored is the BAM wireless 

accessory. BAM Wireless Accessory provides Bluetooth capabilities to Create. It 

allows us to connect and communicate with Creative using any Bluetooth enabled 

device, such as laptop. It’s the most flexible method of communication, allowing a 

range up to 100 meters and connection quality over distance drops slowly.  

4.1.2 Programming Environment 

The Create Open Interface (OI) consists of an electronic interface and a software 

interface for controlling Create’s behavior and reading its sensors. The electronic 

interface includes a 7 bin Mini-DIN connector and a DB-25 connector in the Cargo 

Bay for connecting hardware and electronic for sensors and actuators such as a robotic 

arm or light sensor to Create. The software interface lets us manipulate Create’s 

behavior and read its sensors through a series of commands including mode 

commands, actuator commands, song commands, demo commands, and sensor 

commands that we send to Create’s serial port via a PC or microcontroller that is 

connected to the Mini-DIN connector or Cargo Bay Connector.  

The Cargo Bay Connector, located in the front middle of the cargo bay, contains 

25 pins that we can use to attach electronics for peripheral devices such as additional 

sensors. The Cargo Bay Connector provides four digital inputs, an analog input, three 

digital outputs, three high-current low side driver outputs, a charging indicator, a 

power toggle input, serial Tx and Rx, a 5V reference, battery ground and battery 

voltage.  

The Create OI has four operating modes: Off, Passive, Safe, and Full. After a 

battery change or when is first supplied, the OI is in “off” mode. Once it receives the 

Start command, we can enter into any one of the four operating modes by sending a 

mode command to the OI. We can also switch between operating modes at any time 
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by sending a command to the OI for the operating mode that we want to use.  

Passive Mode: Upon sending the Start command, the OI enters into Passive mode. 

When the OI is in Passive mode, we can request and receive sensor data using any of 

the sensors command, but we cannot change the current command parameters for the 

actuators. To change how one of the actuators operates, we must switch from Passive 

mode to Full mode or Safe mode.  

Safe Mode: When we send a Safe command to the OI, Create enters into Safe 

mode. Safe mode gives us full control of Create, with the exception of the following 

safety-related conditions: detection of a cliff and a wheel drop, or charger plugged in 

and powered. Create stops all motors and reverts to the Passive mode when one of the 

above safety-related conditions occur while the OI is in Safe mode.  

Full Mode: When we send a Full command to the OI, Create enters into Full 

mode. Full mode gives us complete control over Create, all of its actuators, and all of 

the safety-related conditions that are restricted when the OI is in Safe mode, as Full 

mode shuts off the cliff, wheel-drop and internal charger safety features. To put the OI 

back into Safe mode, we must send the Safe command.  

Figure 4.1 illustrates the relationships between each states and how to transfer 

from one to another.  
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Figure 4.1: Create ROI state. [25] 

An encapsulation of the Create OI binary commands into a more easy-to-use Java 

class is the RoombaComm API. Although it is designed for robot Roomba, it works 

very well with Create. When first experimenting with the Create OI, it’s common to 

use some sort of a serial terminal program that can send binary sequences to try out 

various Create OI commands. However, this quickly gets tiresome. It would be a lot 

easier if there was a library to codify the exact recipe needed to make something work. 

The RoombaComm API is just such an encapsulation of the Create OI binary 

commands into a more easy-to-use Java class. The other main benefit is how the 

Create OI commands are then used as “primitives” to create more complex behaviors.  

The programming language and environment called Processing we used to code 

and run our program is free and open source for people who want to write graphical 

programs quickly. Processing allows us to write simple 2D interface enables 

visualization of all the Create’s local sensing. Processing supports RoombaComm API 

and all Java Class. Processing is implemented in Java. The Processing language is 

really no different from Java at all; it just removes the visible overhead and 

complexity from Java. So Processing is a Java IDE of sorts, albeit a simplified and 

specialized one. It enables us to write quick graphical code sketches that respond to 

user input. The process has been streamlined and made transparent to the user. Its 

sketching metaphor and helper functions enable us to try out ideas fast. Its direct 
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approach to painting on the screen is attractive. And it’s a good tool for beginning 

programmers due to its simplified environment and language. Processing is a great 

environment for getting coding ideas up and running fast, especially if an animated 

graphics component is included. It’s pretty easy to use the full Java class library or 

wrap up any other Java class into a Processing library.  

4.1.3 Implementations of MCL 

As we mentioned in chapter 2, in probabilistic robotics, the two basic models in 

mobile robot localization, which correspond to perception and action, are 

measurement model and motion model, respectively. We will describe the 

implementations of them and the resampling algorithm we used in detail below.  

 (a) Motion Model 

Within the framework of MCL, motion model corresponds to the step sampling 

from the state transition distribution p(xt|ut, xt-1), which generates a hypothetical state 

xt based on the particle set xt-1 and the control ut. The motion model plays an essential 

role in the prediction step of MCL. The robot motion of probabilistic robotics 

conforms to the fact that the outcome of a control is uncertain, because of the control 

noise or unmodeled effects. Thus, the outcome of a control will be represented by a 

posterior probability.  

The robot motion, formally kinematics, is the calculating of the effect of control 

actions on the configuration of a robot [74]. The configuration of a mobile robot is 

commonly described by three variables in planar environments, referred as pose (x, y, 

θ). The pose without orientation is robot’s location. The probabilistic kinematic model, 

or motion model, plays the role of the state transition model p(xt|ut, xt-1) in mobile 

robotics. The xt and xt-1 are both robot poses and ut is a motion command. This model 

describes the posterior distribution over states of kinematic when then motion 
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command ut is executed at xt-1. Figure 4.2 shows two examples of kinematic model for 

a mobile robot controlled in a planar environment with the robot’s pose initialed as xt-1. 

The shaded area shows the distribution p(xt|ut, xt-1): the darker a pose, the more likely 

it is. In Figure 4.2(a), the robot moves forward some distance, with the increased 

translational and rotational error as indicated. Figure 4.2(b) shows the outcome of a 

more complicated motion command, which results to a larger spread of uncertainty.  

 
Figure 4.2: Probabilistic generation of robot kinematic. (a) A path of moving forward. 
(b) A path of more complicated motion command. The darker an area, the more likely 

robot is. [24] 

There are two common probabilistic motion models for mobile robots: velocity 

motion model and odometry motion model [26]. Velocity motion model assumes we 

control a robot through two velocities, a rotational and a translational velocity and 

odometry motion model assumes we have access to odometry information, which is 

commonly obtained by integrating wheel encoder information. Velocity motion model 

calculates the probability p(xt|ut, xt-1) of being at xt after executing the control xt at the 

state xt-1. It assumes that the control is carried out for the fixed short time duration Δt. 

Odometry motion model is the one used in our proposed method.  

The odometry information consists of the distance a robot passed and the angle a 

robot rotated. Most of the commercial robots provide odometry using kinematic 

information. Create has wheel encoders to obtain odomety information. Moreover, we 

can get the odometry reading of Create through the Open Interface. Strictly speaking, 

odometry information is sensor measurement, not control. However, in robotics, 

odometry is normally considered as controls. Practical experience suggests that 
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odometry is usually more accurate than velocity. In odometry model, the robot motion 

in the time interval [t-1, t] is approximated by a rotation, followed by a translation and 

a second rotation (Showed in Figure 4.3). Both the turns and translation suffer noisy 

such as drift and slippage. These three steps are calculated together with motion error.  

 

Figure 4.3: Odometry model. [26] 

The details of the odometry motion model used in our experiments are showed in 

Table 4.1. The algorithm sample_motion_model_odometry accepts an initial pose xt-1 

and an odometry reading ut as input, and outputs the predicted pose xt distributed 

according to the state transition probability p(xt|ut, xt-1). Sample based means it uses 

particles to represent robot pose. Each particle is randomly guessed representing a 

likely pose of robot. And the particles move based on the odometry information. 

Unfortunately, in reality, the robot motion is not perfect and accurate. If the command 

dictates the robot go straight, it probably goes through a curve. Therefore noises need 

to be simulated. Noise is modeled by a normal distribution with zero-centered random 

variables with finite variance. We have four robot-specific error parameters. From line 

5 to line 7, we calculate the motion that the control indicates at first, and then add 

noisy. The sample function return a random number based on the normal distribution. 

The α1 and α2 are rotation error which works on rotation. The α3 and α4 are 

translation error which works on translation [26].  
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Table 4.1: Sample base odometry motion model algorithm. [26] 

 

Figure 4.4: Sampling from the odometry motion model. (a) With moderate error 
parameters. (b) With small angular error but large translational error. (c) With large 

angular and small translational error. [26] 

Here are two examples of odometry motion model implementation. In Figure 4.4, 

it uses 500 particles. Figure 4.4(a) is a normal one. Figure 4.4(b) is with large 

translation error but small rotation error and Figure 4.4(c) is with large rotation error 

but small translation error. The effects of different translation and rotation settings are 

showed. Another example (Figure 4.5) is a picture for a non-sensing robot [61]. The 

solid line displays the robot control information, and the particles represent the robot’s 

belief at different location on time. The robot starts with the all particles concentrated. 

It illustrates how the uncertainty grows as the robot moves. If a robot cannot get 

information from outside environment, it’s going to be lost quickly. The particles are 

spread across an increasingly large space.  
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Figure 4.5: Sampling approximation of the position belief for a non-sensing robot. 
[61] 

 (b) Measurement Model 

Another important model in probabilistic robotics is the measurement model. The 

probabilistic models of sensor measurements p(zt|xt) are essential for the measurement 

update step in MCL. Measurement models describe the formation process by which 

sensor measurements are generated in physical world. Today’s robots use a variety of 

different sensors, such as tactile sensors, range sensors, or cameras. Probabilistic 

robotics explicitly models the inherent uncertainty in sensor measurements. Create has 

bumper sensors and infrared sensors. The bumper sensors return feedbacks only when 

they detect a hard surface. The sensors equipped on Create for detecting the external 

environment are really limited. In our experiment, the positive return from bump 

sensors means that Create touches the wall. Then, high weight will be assigned to the 

particles which are around the wall, and low weight will be given to the rest of 

particles. The weighted particles are forward to the next step importance sampling.  

 (c) Resampling 

Another important component of MCL is known as resampling or importance 

sampling. In our experiment, the algorithm low variance sampling is chose for 

resampling. The basic idea of low variance sampler includes a sequential stochastic 

process. Instead of choosing M random numbers and selecting those particles that 
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correspond to these random numbers, this algorithm computes a single random 

number and selects samples according to this number but still with a probability 

proportional to the sample weight [26]. The algorithm showed in table 4.2 selects 

particles by repeatedly adding the fixed amount M-1 to r and by choosing the particle 

that corresponds to the resulting number. The while loop at step 8 stops when i is the 

index of the particle such that the corresponding sum of weights exceeds U. Then the 

particle is selected. The low variance sampler is very efficient. It has a complexity of 

O(N).  

 

Table: 4.2: Low variance sampler for particle filter. [26] 

4.2 Experimental Results 

The performance of our method is tested on both real and simulated robots. The 

goal of the experiments is to verify that: If the robot is lost or successfully localize 

itself according to the distribution of the particles showed on screen, the robot can 

understand the changing stages of localization indicated by the distribution of the 

particles nearly as well as people.  

In both the real robots experiment and simulation, we track three important 

characteristic variables, namely, (1) the number of cluster nc, (2) the number of 

particles in the cluster which has the maximum number of particles nmax, and (3) the 

percentage of nmax in the current whole set of particles pmax.  
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4.2.1 Experiments Using Real Robots 

The experimental results performed on the real robot Create is presented in this 

section. To demonstrate the robot has consciousness about being lost or localized, we 

designed two types of experiments. In the first experiment we test the case of tracking 

the robot without receiving sensor readings, in which the robot will be aware of being 

lost. The second experiment is for global localization, in which the robot will be aware 

of being localized. The purpose of these experiments is that the robot can have 

consciousness about the changing stages of Monte Carlo Localization. As a result, we 

will see that in tracking without perception the robot is going to stop when a large 

number of dispersed particles are seen on screen. And in global localization, the robot 

will stop to show it is successfully localized when the particles are centered on the 

robot position and give the location and orientation according to the cluster that 

includes the maximum number of particles.  

 (a) Tracking without Sensor Readings 

Tracking without sensor readings was tested by placing Create in a field of 

152.5x152.5cm around with wall. During tracking, the robot is not allowed to get any 

sensor reading. It drives in a square whose sides have length 80cm. At time 19s, the 

robot stopped as it found itself with high uncertainty in Figure 4.6(f). In this test, the 

number of particles is initialized as 1000 and the criterion of clustering θ is set to 

17cm which is the same as the radius of the robot. Criterion θ is a threshold used in 

BSAS to determine whether a particle belongs to an existing cluster or is assigned to a 

newly created cluster. Therefore, the cover area of particles assigned to the same 

cluster will be a circle which has the same size as the robot. Another parameter need 

to be set as priori is the threshold q of pmax that indicates the robot is lost. We set it to 

20% of current number of total particles, which means if the number of particles in the 

largest cluster is lower than 20% of the total particle size, the robot will believe it has 

lost. Here, the “large” or “small” cluster is decided by the number of particles a cluster 
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contains. The criterion θ and the threshold q are set according to our previous 

experience of working with Create. There is no definite answer about which is the 

perfect setting for these parameters.  

 

Figure 4.6: The robot true pose and distribution of particles during experiment 
tracking without sensor readings at time (a) 0s, (b) 5s, (c) 7s, (d) 8s, (e) 15s, (f) 19s. 

 

Figure 4.7: The plots of corresponding (a) number of clusters nc and (b) the 
percentage of nmax in the current whole set of particles pmax . 
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The value of nc, nmax, pmax at time 0s, 

5s, 7s, 8s, 15s, 19s 
0s 5s 7s 8s 15s 19s 

Number of clusters: nc 1 1 3 3 11 14 

Number of particles in the cluster 

with the maximum number: nmax 
1000 1000 551 551 296 184 

Percentage of nmax in the current 

whole set of particles pmax 
1.0 1.0 0.551 0.551 0.296 0.185 

Table 4.3: The value of nc, nmax, pmax at time 0s, 5s, 7s, 8s, 15s, 19s. 

Figure 4.6 shows the robot true pose and the distribution of the particles at time 0s 

(a), 5s (b), 7s (c), 8s (d), 15s (e), 19s (f). In each subfigure, the left picture shows the 

robot true pose and the right picture is the distribution of the particles at the same time. 

The plots of two corresponding characteristic variables, number of clusters nc and the 

percentage of nmax in the current whole set of particles pmax , are showed in Figure 4.7. 

nmax is the number of particles in the cluster which has the maximum number of 

particles. Table 4.3 lists the value of nc, nmax and pmax at time 0s, 5s, 7s, 8s, 15s, 19s in 

each column. During time 0s to 5s, the particles are concentrated around the robot in 

one cluster. However, starting from time 5s with increasing uncertainty, the number of 

clusters nc goes up monotonously, and the percentage pmax goes down very quickly. 

The Create started first rotation at time 7s and finished it at time 8s. The curve of pmax 

stops going down during this time. The same case occurred at time 15s. When the 

robot gets close to the left down corner, the particles are spread around a large area. At 

this moment, pmax goes down to 0.185 which is lower than the threshold 20%. 

Therefore, the robot stops as it has been lost. This experiment illustrates the robot can 

understand the case that particles are spread across an increasingly large area when 

uncertainty grows as the robot moves.  

 (b) Global Localization  

Global localization is performed in a 152.5x122cm field. Figure 4.8 illustrates our 

combined MCL-Clustering method in the experiment. Shown there is a sequence of 

particle sets during global localization of the robot Create with only bump sensor used. 
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Sensor measurements correspond to the detection of the walls placed around the field. 

Even though, Create demonstrates its ability localizing itself from scratch without 

knowledge of its starting location. The algorithm described in Table 3.4 is used to 

determine whether the robot has successfully localized itself. The path of robot is set 

to turn right 120° if the left bump sensor give a positive response and turn left 120° if 

the right bump sensor give a positive response, and move forward otherwise. The 

robot path setting is based on our previous work with Create. Different path setting 

will not affect the result of our method. In this particular experiment, the algorithm is 

initialized by drawing 2000 particles from a uniform probability density. But the 

number of particles is not kept fixed from beginning to the end. Each particle 

represents a possible location and orientation of the center of Create. Considering the 

radius of Create, between the area that particles can survive and the wall, there exists 

blank space. If the particle moves outside the area, it will be removed. After each time 

of resampling, we add two times particles around the particles that have high weight 

than the particles added around the particles that have low weight. With newly added 

particles, the particles size gets back to almost 2000. The two user defined variables 

are set as follows. The first one, criterion of the clustering θ, is set as the same as the 

radius of Create. That is the cover area of particles included in the same cluster will be 

a circle as the same size as Create. Another predefined variable, the threshold q that 

decides the maximum allowable value of pmax, is set to 75% of current number of total 

particles, which means if a cluster includes particles more than 75% of current number 

of total particles, the robot will believe the particles are concentrated and stop to 

indicate localization is successfully completed.  
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Figure 4.8: The robot true pose and distribution of particles during experiment global 
localization at time (a) 0s, (b) 14s, (c) 23s, (d) 28s, (e) 32s, (f) 92s, (g) 125s, (h) 128s. 

 

Figure 4.9: The plots of corresponding (a) number of clusters nc and (b) the 
percentage of nmax in the current whole set of particles pmax . 
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The value of nc, nmax, pmax at time 0s, 

14s, 23s, 28s, 32s, 92s, 125s, 128s 
0s 14s 23s 28s 32s 92s 125s 128s 

Number of clusters: nc 28 26 15 12 9 9 6 5 

Number of particles in the cluster with 

the maximum number: nmax 
111 23 87 349 34 1295 632 1109 

Percentage of nmax in the current whole 

set of particles pmax 
0.055 0.082 0.401 0.257 0.382 0.665 0.542 0.776

Table 4.4: The value of nc, nmax, pmax at time 0s, 14s, 23s, 28s, 32s, 92s, 125s, 128s. 

The distribution of particles at different times is analyzed below. Figure 4.8 

shows the pose of robot and the distribution of particles at time 0s (a), 14s (b), 23s (c), 

28s (d), 32s (e), 92s (f), 125s (g), and 128s (h). In each subfigure, the left picture 

shows the robot true pose and the right picture is the distribution of the particles at the 

same time. The plots of two corresponding characteristic variables, number of clusters 

nc and the percentage of nmax in the current whole set of particles pmax , are showed in 

Figure 4.9. Table 4.4 lists the value of nc, nmax and pmax at time 0s, 14s, 23s, 28s, 32s, 

92s, 125s, 128s in each column. At time 14s in Figure 4.8(b), after the robot got its 

second detection of the wall, most particles are concentrated around the wall, but still 

a few noisy particles are at other area of the room. At this time, the percentage pmax 

starts going up and the cluster number nc starts going down (Figure 4.9). The time 23s 

is the time robot got its third detection of the wall. Several regions with concentrated 

density of particles appeared (Figure 4.8(c)). The distribution of the particles 

corresponds to the local maxima of pmax at time 23s in Figure 4.9(b). Environment 

perception provides information for localization, so it tends to increase the robot’s 

knowledge. On the other hand, the motion tends to reduce the knowledge due to the 

inherent noise in robot actuation. When the robot is moving before or after touching 

the wall, the motion uncertainty is increasing. After a short time moving without 

detection, at time 28s, a local minimum of pmax occurs. But when the robot had its 

fourth detection of the wall, the pmax goes up back (Figure 4.9(b)). After that, the robot 

goes through a period of fluctuating time. The detection of wall increases pmax and the 

motion introduces a loss of pmax. Until the time 92s, after the robot touched the wall at 
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upper right corner (Figure 4.8(f)), most particles are centered at the upper right corner 

which is very closed to the robot true location. The percentage pmax goes up to a new 

level. At time 125s, the robot got its last detection of wall (Figure 4.8(g)). Finally, at 

time 128s, pmax goes to 0.7755 which exceeds the predefined threshold 75%. So, the 

robot thought it had found itself and then stopped. The big circle in Figure 4.8(h) 

illustrates the location and orientation of the largest cluster in the particle set. It 

corresponds to the true robot pose very well. The Error distance is measured between 

the robot true position and the pose of representative of the largest cluster. The 

difference on coordinates x is 1.53cm, y is 0.65cm and on heading direction θ is 9.36°. 

In our reiterative running of the experiment, we found that MCL may fail a few times. 

It results our method indicate a false position to the robot. Details and handling of this 

problem will be discussed after the section of experimental results. The result of each 

time running our experiment are still robust to demonstrate the ability of our method 

telling robot whether the localization is successfully achieved.  

4.2.2 Simulation Results 

We have tested the performance of the implemented MCL-Clustering algorithm 

by simulation. Two cases are simulated. One is tracking without perception and the 

other is global localization. The simulated robot is a Roomba like robot which is 

low-cost robot with uncertainty of motion nearly 35% in distance and 25% in angle 

[35]. However, simulating a robot with such uncertainty of motion and using only 

tactile sensing of the robot we were able to implement and demonstrate successful 

global localization and the robot will stop after it thinks it localize well.  

 (a) Tracking without Sensor Readings 

The simulation of tracking without sensor readings was performed by placing 

robot in a field of 624x528pixel. During tracking, the path of the simulated robot is 

not allowed to touch the wall. The robot drives in a rectangle which has length 424 
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pixels and width 180 pixels. At time 9s, the robot stopped as it found itself with high 

uncertainty in Figure 4.10(f). In this test, the number of particles is initialized as 300 

and the threshold of the clustering θ is set to 60 pixels which is three times than the 

radius of the robot, 20 pixels. Another parameter need to be defined as priori is the 

threshold q of pmax that indicates the robot is lost. We set it to 20% of current total 

particles, which means if number of particles in the largest cluster is lower than 20% 

of the total particle size, the robot will believe it has lost. 

 

Figure 4.10: The simulated robot pose and distribution of particles during 
experiment tracking without sensor readings at time (a) 0s, (b) 2s, (c) 5s, (d) 7s, 

(e) 8s, (f) 9s. 
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Figure 4.11: The plots of corresponding (a) number of clusters nc , (b) the number of 
particles in the largest cluster nmax, (c) the percentage of nmax in the current whole set 

of particles pmax, and (d) the Error distance. 

The value of nc, nmax, pmax and error 

distance at time 0s, 2s, 5s, 7s, 8s, 9s 
0s 2s 5s 7s 8s 9s 

Number of clusters: nc 1 1 5 10 12 14 

Number of particles in the cluster 

with the maximum number: nmax 
300 300 126 80 68 50 

Percentage of nmax in the current 

whole set of particles pmax 
1.0 1.0 0.42 0.268 0.233 0.171 

Error distance [pixel] 1.0 2.88 6.3 16.9 23.9 26.3 

Table 4.5: The value of nc, nmax, pmax and error distance at time 0s, 2s, 5s, 7s, 8s, 9s. 

Figure 4.10 shows the pose of robot and the distribution of particles at time (a) 0s, 

(b) 2s, (c) 5s, (d) 7s, (e) 8s, (f) 9s. In each subfigure, the large red cycle indicates the 

pose of the simulated robot. The plots of three corresponding characteristic variables, 

number of clusters nc, the number of particles in the largest cluster nmax, the 
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percentage of nmax in the current whole set of particles pmax , and the error distance are 

showed in Figure 4.11. The Error distance is measured between the robot true position 

and the pose of representative of the largest cluster. As the simulated robot can offer 

the robot true position during localization, we can track the error distance in real time. 

Table 4.5 lists the value of nc, nmax, pmax and error distance at time 0s, 2s, 5s, 7s, 8s, 9s 

in each column. At time 2s, the particles are aggregated around the robot in one 

cluster (Figure 4.10(b)). However, starting from time 2s with increased uncertainty, 

the number of clusters nc and error distance goes up monotonously, but nmax and pmax 

goes down nearly linearly (Figure 4.11). Finally, pmax goes down to 0.171 which is 

lower than the threshold 20%. Therefore, the robot stops as it has been lost. During 

tracking, the increased error distance illustrates the uncertainty grows as the robot 

moves and the experimental result demonstrates the proposed method can offer a 

safety mechanism in case of the robot cannot get any sensor reading from outside 

world.  

(b) Global Localization  

Global localization is simulated in an area similar with the one used in [35] 

(Figure 4.12). It consists of an upper square 260x180pixel and a down square 

420x330pixel. The robot moves with the initial position unknown and turns right 120° 

when it touches the wall. The same as above, the robot path setting is based on our 

previous work with Roomba. Different path setting will not affect the result of our 

method. In this test, the number of particles is initialized as 1000 and the criterion of 

the clustering θ is set as the same as the above trial, 60pixel. The threshold q is set to 

80% of current total particles, which means if a cluster has particles over 80% of total, 

the robot will believe the particles are concentrated and stop to indicate localization is 

successfully completed.  
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Figure 4.12: The simulated robot pose and distribution of particles during experiment 
global localization at time (a) 0s, (b) 3s, (c) 44s, (d) 47s, (e) 48s, (f) 50s, (g) 66s, (h) 

79s, (i) 82s. 

 

Figure 4.13: The plots of corresponding (a) number of clusters nc , (b) the number of 
particles in the largest cluster nmax, (c) the percentage of nmax in the current whole set 

of particles pmax, and (d) the Error distance. 
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The value of nc, nmax, pmax and 

error distance at time 0s, 3s, 

44s, 47s, 48s, 50s, 66s, 79s, 82s. 

0s 3s 44s 47s 48s 50s 66s 79s 82s 

Number of clusters: nc 29 32 7 5 7 6 13 6 3 

Number of particles in the 

cluster with the maximum 

number: nmax 

59 39 84 451 239 444 210 347 889 

Percentage of nmax in the 

current whole set of 

particles pmax 

0.059 0.072 0.583 0.502 0.288 0.478 0.277 0.401 0.937

Error distance [pixel] 61.97 175.3 28.62 23.9 24.52 35.31 14.8 38.11 17.63

Table 4.6: The value of nc, nmax, pmax and error distance at time 0s, 3s, 44s, 47s, 48s, 
50s, 66s, 79s, 82s. 

Figure 4.12 shows the pose of robot and the distributions of particles at time (a) 

0s, (b) 3s, (c) 44s, (d) 47s, (e) 48s, (f) 50s, (g) 66s, (h) 79s, (i) 82s. In each subfigure, 

the large red cycle indicates the pose of the simulated robot. The plots of three 

corresponding characteristic variables, number of clusters nc, the number of particles 

in the largest cluster nmax, the percentage of nmax in the current whole set of particles 

pmax , and the error distance are showed in Figure 4.13. The Error distance is also 

measured between the robot true position and the pose of representative of the largest 

cluster. Table 4.6 lists the value of nc, nmax, pmax and error distance at time 0s, 3s, 44s, 

47s, 48s, 50s, 66s, 79s, 82s in each column. At 0s, particles are full filled the whole 

down area. The robot starts with the initial position unknown but assumed at down 

(Figure 4.12(a)). At 3s, the robot touches a wall and particles concentrate beside the 

wall too (Figure 4.12(b)). Because the robot only knows it is beside a wall, the 

particles are around all sides of the wall. This time, the number of clusters nc is high 

and pmax is low. Starting from 44s, after the robot touches the upper wall, the most 

likely pose is very close to robot’s position (Figure 4.12(c)). But, while the robot’s 

moving, the motion uncertainty increases. Corresponding to Figure 4.13, during this 

time, nc increases and pmax decreases. The trend of these two characteristic variables is 

the same after the robot touches a wall at 50s (Figure 4.12(f)). As the robot always 

gets a measurement when it touches a wall and then quickly lost while moving, the 
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plots of characteristic variables are like wave shown in Figure 4.13. At 66s (Figure 

4.12(g)), the robot nearly lost itself again and pmax goes to a local minimum. Finally, at 

82s, after the perceiving at the upper-right corner, the robot found where it is and 

stopped (Figure 4.12(i)). The final number of clusters nc is 3 and pmax goes to 0.9368. 

The error distance at this moment is 17.63pixel on screen. It’s very small compared to 

the environment and even smaller than the robot’s radius 20pixel. The result of our 

simulation demonstrates the ability of our method telling robot whether the 

localization is successfully achieved. 

4.3 Discussion of Orientation  

In our proposed method, the proximate measure for clustering particles is 

calculated as the Euclidean distance between two particles. The distance includes tow 

dimension Cartesian coordinates (x, y). However, the robot pose is described by a 

vector of three dimensions (x, y, θ). The assumption that the particles in the same 

cluster will rarely have different orientation is made in our method. We will analyze 

the feasibility of this assumption in this section.  

If we have two sets of particles at the same location, the orientation of one set 

corresponds to the direction of the robot and the orientation of other set points to 

another bearing. While the robot is moving forward, the two sets of particles will 

move according to its original heading. After the measure step of MCL, obviously the 

particle set with incorrect heading will be given low weight and gradually disappear. 

The resampling step is a probabilistic implementation of the Darwinian idea of 

survival of the fittest. Through many times selection, only the particles have the same 

orientation as the robot can survive. Our experiments support this observation as well.  

In fact, if needed, the orientation can be the third dimension easily added to the 

current approach. All we need to do is changing the distance calculation expression. 
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Since the unit of the orientation and the location are different, the range of the 

orientation value should be adjusted to the same order as the location.  

4.4 Limitation of MCL in the Experiment 

An important question of MCL is how many particles should be used for a 

specific localization problem. Unfortunately, there is no perfect answer to this 

question. We just know the quality of the particle based representation increases with 

the number of particles. But, even with a large number of particles, it may happen that 

there are no particles in the vicinity of the robot correct position. This problem is 

known as the particles deprivation problem [26]. Due to this inherent fault, MCL may 

fail during localization. Especially in a symmetric environment, it is possible that the 

particles get together at the other side instead of the true position of the robot (Figure 

4.14). If this case happens, it’s dangerous for our proposed method as the robot will 

take the false position as its belief. It is the same as the robot is kidnapped. Our 

method cannot handle this inherent problem of MCL. Therefore, when using the 

combined MCL-Clustering to help robot know whether it is successfully localized, it 

is suggested to make sure the failure of MCL will not occur or the characteristic 

variables are only used as description of localization outcomes along with pictures in 

which the distribution of the particles are shown. In future work, we will try to check 

the measurement probability used in the algorithm Augmented_MCL[61] to verify 

whether the particles are concentrated around the robot true pose. 
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Figure 4.14: The case MCL fails. 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

Monte Carlo Localization estimates the robot pose by randomly drawing particles 

according to state transition probability and update state through measurement 

probability. Most existing approaches focus on the accuracy and efficiency of MCL. 

However, as a recursive state estimation algorithm, no stop condition is presented in 

the MCL algorithm when a robot has successfully localized itself. In this thesis, we 

develop a combined MCL-Clustering algorithm that brings consciousness to the robot 

being localized or lost. It notices the robot when the position of robot is successfully 

determined in global localization and helps the robot distinguish from different stages 

during localization time. By analyzing how many clusters the particle set has and how 

many particles are included in each cluster, the robot may know whether it is 

successfully localized or not instead of that a human being stares at the screen 

observing the distribution of the particles. After comparing many different clustering 

algorithms, we demonstrate the Basic Sequential Algorithm Schema is appropriate for 

clustering the particle set in real time. Otherwise, our method provides an approach to 

express localization outcomes in a numerical way. The outcome of localization can be 

explained in pictures along with the corresponding values of the characteristic 

variables of our method. Experimental results, performed in both real and simulated 

environments, show that our approach can notice the robot whether the uncertainty is 

increased over threshold during tracking, or tell the robot if the global localization is 

completed.   
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5.2 Future Work 

In future work, we will help the robot verify the failure case as a kidnapped 

problem and recover from it. In addition, the topics about selection of proximity 

measure, selection of the clustering algorithm and active localization can be discussed 

from current approach as well.  

Failure of MCL: One problem of our current method comes from the inherent 

limitation of MCL. It is known as the particle deprivation problem. Even with a large 

number of particles, it may happen that there are no particles around the correct state. 

Currently, our method cannot verify and make sure the final particles in the cluster are 

close to the robot true pose. If the particle deprivation occurs, the robot will believe it 

in an incorrect location. For future work, the robot may assume it at the final cluster 

place and then do more measurements to verify if the state showed by particles is 

correct.  

Orientation: We have discussed including the orientation in Euclidean distance 

is not necessary in most cases. In our method, the orientation of the robot is not 

considered without loss correctness of the result while reducing the computation 

complexity. However, in a very strong symmetry environment (a square room), two 

particle set with different orientation can cross at one point, forming a cluster that has 

two headings. In this case, the orientation can be added as one dimension when 

computing the proximity measure or the robot can stay at this undetermined location 

and perceive the outside world in order to decide which direction is the heading.  

Clustering algorithm: Considering the computing complexity, the Basic 

Sequential Algorithmic Scheme was chosen as the clustering algorithm. One 

limitation of BSAS is the clustering results may be affected by the order that the 

vectors are presented in. Although the impact of order is not prominent in our 
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experiment, the different presented ordering indeed leads to different clustering results.  

And as one of the clustering algorithms, the choice of threshold always depends on the 

platform of robot and the navigated environment. It only can be explained by 

experienced experts, no established uniform threshold for all cases.  

Active localization: The localization described in our approach is totally passive. 

The information of clustered particles is merely exploited for telling the robot being 

localized or lost, not aimed at speeding up the robot localization. The robot is 

controlled through a preset movement method, and the robot’s navigation does not 

facilitate the localization process. Therefore, one objective for future research is to 

control the robot so as to minimize the localization uncertainty by setting movements 

increasing the percentage pmax in our method.     

Although limitation exists, our method does bring consciousness to the robot 

being localized or lost. By doing so, the robot can know the stages of localization, 

assisting the decision making of the robot.  

 

  



69 

 

Bibliography 

[1] I.J. Cox. Blanche-an experiment in guidance and navigation of an autonomous 
robot vehicle. IEEE Transactions on Robotics and Automation 7: 193-204, 1991. 

 
[2] L. Feng, J. Borenstein and H.R. Everett. “Where am I?” Sensors and methods for 

autonomous mobile robot positioning. Technical Report UM-MEAM-94-12, 
University of Michigan, Ann Arbor, MI, 1994. 

 
[3] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in 

dynamic environments. Journal of Artificial Intelligence Research, 11:391–427, 
1999. 

 
[4] J.S. Gutmann, W. Burgard, D. Fox and K. Konolige. An experimental comparison 

of localization methods. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots 
and Systems (IROS). 2002. 

 
[5] R.G. Simmons and S. Koenig. Probabilistic robot navigation in partially 

observable environments. In Proc. of the International Joint Conference on 
Artificial Intelligence (IJCAI), 1995. 

 
[6] P. Jensfelt and S. Kristensen. Active global localisation for a mobile robot using 

multiple hypothesis tracking. In Proceedings of the IJCAI Workshop on 
Reasoning with Uncertainty in Robot Navigation, pages 13–22, Stockholm, 
Sweden, 1999.   

 
[7] P. Jensfelt and H.I. Christensen. Pose tracking using laser scanning and 

minimalistic environmental models. IEEE Transactions on Robotics and 
Automation 17:138-147, 2001. 

 
[8] D. Caltabiano, G. Muscato and S. Sessa. A new global localization algorithm 

based feature extraction and particle filter. Control and Automation, 2006. MED 
'06. 14th Mediterranean Conference on 28-30, pp 1-6, June 2006.  

 
[9] H. Fang, M. Yang and R. Yang. Ground Texture Matching based Global 

Localization for Intelligent Vehicles in Urban Environment. Proc. of the 2007 
IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, June 2007. 

 
[10] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by tracking     

geometric beacons. IEEE Transactions on Robotics and Automation 7:376-382. 
1991. 

 



70 

 

[11] S. Kwon, K.W. Yang and S. Park. An Effective Kalman Filter Localization 
Method for Mobile Robots. Intelligent Robots and Systems, 2006 IEEE/RSJ 
International Conference on, pp 1524-1529, Oct. 2006.  

 
[12] T.H. Cong, Y.J. Kim and M. Lim. Hybrid Extended Kalman Filter-based 

localization with a highly accurate odometry model of a mobile robot. Control, 
Automation and Systems, 2008. ICCAS 2008. International Conference on 14-17 
Oct. 2008 Page(s):738 – 743. 

 
[13] F. Kong, Y. Chen, J. Xie, G. Zhang and Zude Zhou. Mobile Robot Localization 

Based on Extended Kalman Filter. Intelligent Control and Automation, 2006. 
WCICA 2006. The Sixth World Congress on Volume 2, Page(s):9242 – 9246. 

 
[14] C. Takenga, T. Peng and K. Kyamakya. Post-processing of Fingerprint 

Localization using Kalman Filter and Map-matching Techniques. Advanced 
Communication Technology, The 9th International Conference on Volume 
3, 12-14 Feb. 2007 Page(s):2029 – 2034. 

 
[15] A.C. Schultz and W. Adams. Continuous localization using evidence grids. 

Robotics and Automation, 1998. Proceedings. 1998 IEEE International 
Conference on Volume 4, 16-20 May 1998 Page(s):2833 - 2839 vol.4. 

 
[16] A Howard, M.J. Mataric and G.S. Sukhatme. Cooperative relative localization for 

mobile robot teams: An ego-centric approach. In Proc. of The naval Reasearch 
Laboratory Workshop on Multi-Robot Systems, Washington, D.C. 2003. 

 
[17] W. Burgard, A.B. Cremers, D. Fox, D. Hahnel, G. Lakemeyer, D. Schulz, W. 

Steiner and S. Thrun. Experiences with an interactive museum tour-guide robot. 
Artificial Intelligence 114:3-55, 1999. 

 
[18] T. Rofer and M. Jungel. Vision-Based Fast and Reactive Monte-Carlo 

Localization. Proc. of the 2003 IEEE International Conference on Robotics & 
Automation, Taipei, Taiwan, September, 2003. 

 
[19] J. Liu, K. Yuan, W. Zou, and Q. Yang. Monte Carlo Multi-Robot Localization 

Based on Grid Cells and Characteristic particles. Proceedings of the 2005 
IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 
Monterey, California, USA, 24-28, July, 2005. 

 
[20] X. Ma, X. Dai and W. Shang. Vision-based Extended Monte Carlo Localization 

for Mobile Robot. Proc. of the IEEE International Conference on Mechatronics & 
Automation, Niagara Falls, Canada, 2005. 

 
[21] S. Lenser and M. Veloso. Resetting Localization for Poorly Modeled Mobile 



71 

 

Robots. Proc. of the 2000 IEEE International Conference on Robotics & 
Automation, San Francisco, CA, April 2000. 

 
[22] R. Ueda, T. Fukase, Y. Kobayashi, T. Arai, H. Yuasa and J. Ota. Uniform Monte 

Carlo Localization - Fast and Robust Self-localization Method for Mobile Robots. 
Proc. of the 2002 IEEE International Conference on Robotics & Automation 
Washington, DC, May 2002. 

 
[23] L. Armesto, J. Tornero and L. Domenech. Improving Self-Localization of Mobile 

Robots Based on Asynchronous Monte-Carlo Localization Method. Emerging 
Technologies and Factory Automation, 2006. ETFA '06. IEEE Conference on 
Volume , Issue , 20-22 Sept. 2006 Page(s):1028 – 1035. 

 
[24] S. Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52-57, 2002. 
 
[25] T. E. Kurt. 2006. Hacking Roomba. WILEY Press. 
 
[26] S. Thrun, W. Burgard, and D. Fox. 2005. Probabilistic Robotics. MIT Press. 
 
[27] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization for 

mobile robots. Artificial Intelligence, 128(1-2):99–141. 
 
[28] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, 

J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. 
Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. 
Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. 
Ettinger, A. Kaehler, A. Ne-fian, and P. Mahoney. Stanley, the robot that won the 
DARPA Grand Challenge. Journal of Field Robotics, Forthcoming. 

 
[29] B. Tribelhorn, and Z. Dodds. Envisioning the Roomba as AI Resource: A 

Classroom and Laboratory Evaluation. In Proc. AAAI Spring Symposium, 2007. 
 
[30] A Gasparri, S. Panzieri, F. Pascucci and G. Ulivi, A Hybrid Active Global 

Localization Algorithm for Mobile Robots. International Conference on Robotics 
and Automation, Roma, Italy, 10-14 April 2007. 

 
[31] D. Fox, W. Burgard, and S. Thrun. Active markov localization for mobile robots. 

Robotics and Autonomous System, vol. 25, pp. 195-207, 1998. 
 
[32] D. Fox, Adapting the Sample Size in Particle Filters Through KLD-Sampling. The 

International Journal of Robotics Research, Vol. 22, No. 12, pp. 985-1003, 2003. 
 
[33] Richard O. Duda, Peter E. Hart and David G. Stork, Pattern Classification. Wiley, 

2001. 



72 

 

 
[34] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic Press, 2006. 
 
[35] B. Tribelhorn and Z. Dodds, Evaluating the Roomba: A low-cost, ubiquitous 

platform for robotics research and education. IEEE International Conference on 
Robotics and Automation, 2007. 

 
[36] R. Barea, E. Lopez, L.M. Bergasa, S. Alvarez and M. Ocana. Detection Model in 

Collaborative Multi-Robot Monte Carlo Localization. Proc. of the IEEE 
Workshop on Distributed Intelligent Systems: Collective Intelligence and Its 
Applications (DIS’ 06), 2006. 

 
[37] P. Heinemann, J. Haase and A. Zell. A Combined Monte-Carlo Localization and 

Tracking Algorithm for RoboCup. Proc. of the 2006 IEEE/RSJ International 
Conference on Intelligent Robots and Systems, Beijing, China, 2006. 

 
[38] G. Cen, H. Nakamoto, N. Matsuhira and I. Hagiwara. Effective Application of 

Monte Carlo Localization for Service Robot. Proc. of the 2007 IEEE/RSJ 
International Conference on Intelligent Robots and Systems, San Diego, CA, 
USA, 2007. 

 
[39] X. Zhang, X. Chen, J. Li and X. Li. Vision-based Monte Carlo – Kalman 

Localization in a Known Dynamic Environment. Control. Automation, Robotics 
and Vision, 2006. ICARCV 06. 9th International Conference on Volume, Issue, 5-8 
Dec. 2006 Page(s):1 – 7. 

 
[40] F. Abrate, B. Bona and M. Indri. Monte Carlo Localization of mini-rovers with 

low-cost IR sensors. Advanced intelligent mechatronics, 2007 ieee/asme 
international conference on Volume, Issue, 4-7 Sept. 2007 Page(s):1 – 6. 

 
[41] C. Kwok, D. Fox and M. Meila. Real-time Particle Filters. In Advances in Neural 

Information Processing Systems 15, 2002. 
 
[42] A R. Vahdat, N. N. Ashrafoddin and S. S. Ghidary. Mobile Robot Global 

Localization using Differential Evolution and Particle Swarm Optimization. IEEE 
Congress on Evolutionary Computation 2007: 1527-1534. 

 
[43] T. Kwon, J. Yang, J. Song and W. Chung. Efficiency Improvement in Monte Carlo 

Localization through Topological Information. Proc. of the 2006 IEEE/RSJ 
International Conference on Intelligent Robots and Systems, Beijing, China, 
2006. 

 



73 

 

[44] A Rauber, J. Paralic and E. Pampalk. Empirical Evaluation of Clustering 
Algorithms. Journal of Information and Organizational Sciences, vol. 24, pp. 
2000, 2000. 

 
[45] J. R. Searle. Minds, brains, and programs. Behavioral and Brain Science 3(3): 

417-457, 1980.  
 
[46] B. J. MacLennan. Consciousness in robots: the hard problem and some less hard 

problems. Robot and Human Communication (ROMAN), IEEE International 
Workshop on, pp. 434- 439, Aug, 2005. 

 
[47] M. S. Lavine, D. Voss and R. Coontz. A Robotic Future. Magazine Science, Vol. 

318, pp. 1083, 2007. 
 
[48] F. L. Lewis, M. Fitzgerald and K. Liu. Robotics. ACM Computing Surveys, Vol. 

28, No. 1, March 1996. 
 
[49] E. Garcia, M.A. Jimenez, P.G. De Santos and M. Armada. The evolution of 

robotics research. Robotics & Automation Magazine, IEEE Volume 14,  Issue 
1,  March 2007 Page(s):90 – 103. 

 
[50] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Englewood 

Cliffs, NJ: Prentice Hall, 2002. 
 
[51] M.H. Degroot. Probability and Statistics. Reading, MA: Addison-Wesley. 1975. 
 
[52] K. Subrahmaniam. A Primer In Probability. New York, NY: M. Dekker. 1979. 
 
[53] G.C. Casella and R.L. Berger. Statistic Inference. Pacific Grove, CA: 

Wadsworth& Brooks. 1990. 
 
[54] M.A. Tanner. Tools for Statistical Inference. New York: Springer Verlag. 3rd 

edition. 1996. 
 
[55] L. Devroye, L. Gyorfi and G. Lugosi. A Probabislistic Theory of Pattern 

Recognition. New York, NY: Springer-Verlag. 1996. 
 
[56] R.O. Duda, P.E. Hart and D. Stock. Pattern classification and scene analysis (2nd 

edition). New York: John Wiley and Sons. 2000. 
 
[57] W. Burgard, A. Derr, D. Fox, and A.B. Cremers. Integrating global position 

estimation and position tracking for mobile robots: The dynamic markov 
localization approach. In Proc. of the IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS’98), 1998. 



74 

 

 
[58] W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating the absolute position 

of a mobile robot using position probability grids. In Proceedings of the 
Thirteenth National Conference on Artificial Intelligence, Menlo Park, August 
1996. AAAI, AAAI Press/MIT Press. 

 
[59] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo Localization for 

Mobile Robots. IEEE International Conference on Robotics and Automation 
(ICRA), 1999. 

 
[60] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic approach to 

collaborative multi-robot localization. Autonomous Robots on Heterogeneous 
Multi-Robot System, vol. 8, no. 3, pp. 325–344, June 2000. 

 
[61] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo Localization: 

Efficient Position Estimation for Mobile Robots. Proc. of the Sixteenth National 
Conference on Artificial Intelligence (AAAI’99). 1999. 

 
[62] R. van der Merwe. Sigma-Point Kalman Filters for Probabilistic Inference in 

Dynamic State-Space Models. PhD thesis, OGI School of Science & Engineering. 
2004. 

 
[63] I.J. Cox, and J.J Leonard. Modeling a dynamic environment using a Bayesian 

multiple hypothesis approach. Artificial Intelligence 66:311-344. 1994. 
 
[64] A Nourbakhsh, R. Powers and S. Birchfield. DERVISH an office-navigating robot. 

AI Magazine 16. 1995. 
 
[65] D.W. Scott. Multivariate density estimation: theory, practice, and visualization. 

John Wiley and Sons, Inc. 1992. 
 
[66] A Doucet, J.F.G de Freitas and N.J. Gordon. Sequential Monte Carlo Methods In 

Practice. New York: Springer Verlag. 2001. 
 
[67] R.Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley and Sons, 

Inc. 1981. 
 
[68] B. Everitt, S. Landau and M. Leesse Cluster Analysis. Arnold, 2001. 
 
[69] J.J Amador. Sequential clustering by statistical methodology. Pattern Recognition 

Letters, Vol. 26, pp. 2152-2163, 2005. 
 
[70] P. Trahanias and E. Scordalakis. An efficient sequential clustering method. 

Pattern Recognition, Vol. 22(4), pp. 449-453, 1989. 



75 

 

 
[71] A Juan and E. Vidal. Comparison of four initialization techniques for the 

k-medians clustering algorithm. Proc. of Joint IAPR International Workshops 
SSPR2000 and SPR2000, Lecture Notes in Computer Science, Vol 1876, pp. 
842-852, Springer Verlag, Alacant, Sept. 2000. 

 
[72] P. Berkhin. Survey of clustering data mining techniques. Technical Report, Accrue 

Software Inc. 2002. 
 
[73] R.L. Mantaras and J. Aguilar-Martin. Self-learning pattern classification using a 

sequential clustering technique. Pattern Recognition, Vol. 18(3/4), pp. 271-277, 
1985. 

 
[74] I.J. Cox and G.T. Wilfong. Autonomous Robot Vehicles. Springer Verlag. 1990. 
 
[75] R. Murphy. Introduction to AI Robotics. Cambridge, MA: MIT Press. 2000. 
 
[76] D. KortenKamp, R.P. Bonasso and R. Murphy. Artificial Intelligence and Mobile 

Robots: Case Studies of Successful Robot Systems. Cambridge, MA: MIT/AAAI 
Press. 1998. 
 

[77] S. Lee, D. Cho, W. Chung, J.H. Lim and C.U. Kang. Feature Based Map Building 
Using Sparse Sonar Data. Intelligent Robots and Systems, 2005. (IROS 2005). 
2005 IEEE/RSJ International Conference on Volume , Issue , 2-6 Aug. 2005 
Page(s): 1648 – 1652 

 
[78] URL: http://www.processing.org/ 
 
[79] URL: http://www.darpa.mil/grandchallenge05/ 
 
[80] URL: http://www.irobot.com/ 
 

 

 



76 

 

VITA AUCTORIS 

 
NAME  Jingxi Chen   

PLACE OF BIRTH  Changsha, China  

YEAR OF BIRTH  1984  

EDUCATION  School of Software Engineering  

 Huazhong University of Science and 

Technology  

 Wuhan, China  

 2003 – 2007 B.Eng.  

  

 School of Computer Science  

 University of Windsor  

 Windsor, Ontario, Canada  

 2007 – 2009 M. Sc.  

 


	Bring Consciousness to Mobile Robot Being Localized
	Recommended Citation

	Microsoft Word - Thesis_Jingxi_Chen

