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ABSTRACT 

 

The Dempster-Shafer (D-S) theory provides a method to combine evidence from multiple nodes 
to estimate the likelihood of an intrusion. The theory’s rule of combination gives a numerical 
method to fuse multiple pieces of information to derive a conclusion. But, D-S theory has its 
shortcomings when used in situations where evidence has significant conflict. Though the 
observers may have different values of uncertainty in the observed data, D-S theory considers the 
observers to be equally trustworthy. This thesis introduces a new method of combination based 
on D-S theory and Consensus method, that takes into consideration the reliability of evidence 
used in data fusion. The new method’s results have been compared against three other methods 
of evidence fusion to objectively analyze how they perform under Denial of Service attacks and 
Xmas tree scan attacks. 

Keywords: Dempster-Shafer, Theory of Evidence, Intrusion Detection, Multi Sensor Data 
Fusion, Consensus Operator 
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1 INTRODUCTION 

The rapid growth of the Internet and its related network infrastructure is changing computing as 
we know it. Especially in the last decade we have seen the greatest leap in wireless technology 
which has given new meaning to networking. Unlike old days where one needed a physical 
connection to connect to the Internet, these days one can connect to the Internet using a wireless 
network connection through a computer or even one’s mobile phone device. Unfortunately, 
along with the facility of wireless connectivity have come risks of malicious intrusions. Though 
intrusion detection in wired networks is a well explored subject, intrusion detection in wireless 
networks is yet to be studied to the same extent. Timely detection of intrusions in wireless 
networks and appropriate responses remain extremely important areas of research. A security 
breach can cause mission critical systems to be unavailable to end-users causing millions of 
dollars worth of damage. If the next generation of Internet and network technology is to operate 
successfully, it will require a set of tools to analyze wireless networks and detect and prevent 
intrusions. A large distributed network, particularly with facilities of wireless connectivity, 
would need multiple sensors to be able to catch intrusions of all types. Alerts may be generated 
by the sensors or the associated Intrusion Detection Systems. These alerts provide evidence, 
which has to be used for generating reliable information about intrusions, even though it is 
known that none of the sensors or intrusion detection systems are fully reliable.  

According to the Wikipedia, intrusion detection is the act of detecting actions that attempt 
to compromise the confidentiality, integrity or availability of a resource. Intrusion detection is a 
difficult process that requires security practitioners to have a deep understanding of networks and 
their functionality. Finding an accurate attack signature is extremely challenging even if we 
know the network is under attack. This is because the signature needs to be narrow enough to 
differentiate between normal legitimate traffic and attack traffic. Good intrusion detection is 
completely dependent on this property. If the attack signature is not accurate it will cause “False 
Positives” and “False Negatives”. If the intrusion detection system gives too many false 
positives, that would mean that the security practitioner who is responsible for checking the 
alerts and tracing them would waste a lot of time on false positives. On the other hand, if the 
intrusion detection system does not give an alert when there is an actual attack that would be bad 
as this means that the security practitioner is unaware that his system is under attack. Though, 
some intrusion detection systems automate some aspects of the process, the intervention of the 
security practitioner is very much required to complete the process of good intrusion detection. 
Ideally, the goal of a good intrusion detection system is to lower the false positive rate and the 
false negative rate. 

At present, completely preventing intrusions and other unauthorized actions appear 
unrealistic. Due to the rapid growth of the Internet and the vast array of possibilities it has 
opened up more and more systems that have become the target of intruders. So, it has become 
critical to detect these intrusions in a timely manner and carry out necessary preventative 
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measures to track down the attackers and discourage future attacks. There are many intrusion 
detection systems (IDS) and intrusion prevention systems (IPS) in the market today which 
facilitate in identifying intrusions and taking necessary preventative measures. New techniques 
are developed every year to make these IDS/IPS systems work more accurately and efficiently. 
One of these new techniques is to combine evidence gathered through multiple systems or access 
points to arrive at a more accurate result. The theory associated with this new technique is known 
as the Dempster-Shafer Theory of Evidence. The Dempster-Shafer theory is also known as D-S 
theory of evidence. 

Research on intrusion detection has been going on for more than two decades. However 
research on intrusion detection using the D-S theory of evidence only started after the year 2000. 
Since then researchers have published around twenty papers that try to improve the idea of data 
fusion in intrusion detection using the Dempster-Shafer theory. 

 The National Technical University of Athens (NTUA) has been one of the main 
universities that has been conducting research on intrusion detection using the D-S theory. Three 
of the leading researchers in this field are also from NTUA. Vasilis Maglaris and Basil Maglaris 
of the NTUA have both published two papers on multi sensor data fusion for Denial of Service 
(DoS) detection using the D-S theory of evidence. Christos Siaterlis of the NTUA is the only 
researcher so far to publish three papers on intrusion detection using the D-S theory. Researchers 
from the Florida International University (FIU) have also been involved in research related to D-
S theory and intrusion detection. Two of their researchers, Te-Shun Chou and Kang K. Yen have 
also published two papers each in the area.  No other researcher in this field has published more 
than one paper.  

2 DEFINITIONS AND RELATED CONCEPTS 

2.1 Dempster Shafer Theory 

The Theory of Evidence is a branch of mathematics that is concerned with using evidence to 
calculate the probability of an event. The Dempster-Shafer theory (D-S theory) is a theory of 
evidence used to combine separate pieces of evidence to calculate the probability of an event. 
The Dempster-Shafer theory was introduced in the 1960’s by Arthur Dempster [1968] and 
developed in the 1970’s by Glenn Shafer [1976]. According to Glen Shafer the D-S theory is a 
generalization of the Bayesian theory of subjective probability. 

 The Dempster-Shafer theory can be viewed as a method for reasoning under epistemic 
uncertainty. A major advantage of the Dempster-Shafer theory in an intrusion detection 
environment is its ability to combine evidence provided by different observers. These observers 
could even be completely different and located remotely from each other. Each observer could 
provide its own perceived state to a central server which will combine the evidence to determine 
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the final state of the network. The most important part of this theory is Dempster’s rule of 
combination which combines evidence from two or more sources to form inferences.  

 In the Following sub-section we shall describe some of the important definitions that are 
needed to understand this thesis. 

2.1.1 The Frame of Discernment (Θ) 

A complete (exhaustive) set describing all of the sets in the hypothesis space.  Generally, the 
frame is denoted as Θ. The elements in the frame must be mutually  exclusive. If the 
number of the elements in the set is n, then the power set (set of  all subsets of (Θ) will have 2n 

elements. 

2.1.2 BPA (Basic Probability Assignment) 

The theory of evidence assigns a belief mass to each subset of the power set. It is  a positive 
number between 0 and 1. It exists in the form of a probability value.  

If Θ is the frame of discernment, then a function, 

m: 2Θ � [0, 1] is called a BPA, whenever 

 m (∅) = 0, and 

 m (A) ≥ 0, ∀A ⊆ Θ  

 Σ m (A) = 1 and 

 A ⊆ Θ   

2.1.3 Belief (Bel) 

Given a frame of discernment Θ and a body of empirical evidence {m (B1), m (B2), m (B3)….}, 
the belief committed to A ε Θ is 

Bel (A) = Σ m (Bi) 

B ⊆ A 

Also, Bel (Θ) = 1 

2.1.4 Plausibility Function (Pl) 
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The plausibility (Pl) is the sum of all the masses of the sets B that intersect the  set of interest 
A:  

  Pl (A) = Σ m (Bi) ,  B | B ⋂ A ≠ ∅ 

 

2.1.5 Belief Range  

The interval [Bel (A), Pl (A)] is called the belief range. Plausibility (Pl) and Belief (Bel) are 
related as follows 

 Pl (A) = 1 – Bel (Ᾱ) 

 

Figure 2-1. Relationship between Plausibility and Belief 

2.1.6 Dempster’s Combination Rule 

  

The combination called the joint mass (m12) is calculated from the two sets of  masses m1 and 
m2. 

   B ⋂ C = A, Σ m1(B) m2(C)  
  m12 (A) =    -------------------------------------------  m12 (A) ≠ ∅ 
          1 - [B ⋂ C = ∅, Σ m1(B) m2(C)] 

� m12 (A) = Combined belief of the hypothesis A  
� m1 (B) = Belief committed to B as seen by the first observer  
� m2 (C) = Belief committed to C as seen by the second observer 

In this equation [B ⋂ C = ∅, Σ m1(B) m2(C)] part in the denominator is known as K.  

 K = [B ⋂ C = ∅, Σ m1(B) m2(C)] 
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K represents basic probability mass associated with conflict. K is calculated by summing the 
products of the BPA’s of all sets where the intersection is null. 

2.2 CONSENSUS OF OPINIONS AND RELATED DEFINITIONS 

The definitions in this sub section are derived from the paper “A logic for uncertain 
probabilities” by Dr. Audun Jøsang [Jøsang, 2000] and “The Consensus Operator for Combining 
Beliefs” [Jøsang, 2002]. 

2.2.1 Disbelief Function 

Let Θ be a frame of discernment, and let mΘ be a Belief Mass Assignment (BMA) (same as BPA 
or Basic Probability Assignment) on Θ. Then the disbelief function corresponding with mΘ is the 
function d: 2Θ 

� [0, 1] defined by: 

d(x) = Σ mΘ(y),  x,y ε 2Θ 

y ⋂ x = ∅ 

2.2.2 Uncertainty Function 

Let Θ be a frame of discernment, and let mΘ be a Belief Mass Assignment (BMA) on Θ. Then 
the uncertainty function corresponding with mΘ is the function u: 2Θ 

� [0, 1] defined by: 

u(x) = Σ mΘ(y),  x,y ε 2Θ 

y ⋂ x ≠ ∅ 

Total uncertainty can be expressed by assigning all the belief mass to Θ. The belief function 
corresponding to this situation is called the vacuous belief function. A BMA with zero belief 
mass assigned to Θ is called a dogmatic BMA. 
 

2.2.3 Relative Atomicity 

Let Θ be a frame of discernment, and let x,y ε 2Θ. Then for y ≠ ∅ the relative atomicity of x to y 

is the function a : 2Θ � [0, 1] defined by: 

a(x/y) = |x ⋂ y| / |y| , x,y ε 2Θ, y ≠ ∅ 
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It can be observed that x ⋂ y = ∅ � a(x/y) = 0 and that y ⊆ x � a(x/y) = 1. In all other 

cases the relative atomicity will be a value between 0 and 1. 

The relative atomicity of an atomic state to its frame of discernment, denoted by a(x/ Θ), can 
simply be written as a(x). If nothing else is specified, the relative atomicity of a state then refers 
to the frame of discernment.  
 

2.2.4 Opinion 

Let Θ be a binary frame of discernment with 2 atomic states x and ¬ x, and let mΘ be a BMA on 
Θ where b(x), d(x), u(x), and a(x) represent the belief, disbelief, uncertainty, and relative 
atomicity functions on x in 2Θ respectively. Then the opinion about x, denoted by wx, is the tuple 
defined by:  

wx ≡ (b(x), d(x), u(x), a(x)) 

2.2.5 Consensus 

 

The consensus opinion of two opinions is an opinion that reflects both opinions in a fair and 
equal way.  
 

Let Wx
A = (bx

A, dx
A, ux

A, ax
A) and Wx

B= (bx
B, dx

B, ux
B, ax

B) be opinions respectively held by 
agents A and B about the same proposition x. Let Wx

A,B = (bx
A,B, dx

A,B, ux
A,B, ax

A,B) be the 
opinion such that, K = ux

A + ux
B - ux

A ux
B. When  ux

A, ux
B � 0, the relative dogmatism between 

Wx
A  and Wx

B is defined by γ so that γ = ux
B/ ux

A. Then Wx
A,B is called the consensus between 

Wx
A and Wx

B , representing an imaginary agent [A, B]’s opinion about x, as if she represented 
both A and B.  

For K ≠ 0 

(1) bx
A,B = (bx

A ux
B + bx

B ux
A) / K 

(2) dx
A,B= (dx

A ux
B + dx

B ux
A) / K 

(3) ux
A,B = (ux

A ux
B)/K 

(4) ax
A,B = ax

B ux
A + ax

A ux
B – (ax

A + ax
B) ux

A ux
B/ ux

A + ux
B - 2ux

A ux
B 

 
� ax

A,B = (ax
A + ax

B)/2 when ux
A, ux

B = 1 
 

� bx
A = rA/rA+sA+2 

� dx
A = sA/rA+sA+2  where u ≠ 0 

� ux
A = 2/rA+sA+2 



7 
 

The parameters r  represents the amount of evidence supporting the actual event and the 
parameters s represents the amount of evidence supporting its negation.  

For K = 0 

(1) bx
A,B = γ bx

A  + bx
B  / γ + 1 

(2) dx
A,B= γ dx

A  + dx
B  / γ + 1 

(3) ux
A,B = 0 

(4) ax
A,B = γ ax

A + ax
B / γ + 1 

2.3 Denial of Service (DoS) Attack 

 
According to the Wikipedia, “a denial-of-service attack (DoS attack) or distributed denial-of-
service attack (DDoS attack) is an attempt to make a computer resource unavailable to its 
intended users.” One of the common methods of attack involves saturating the target (victim) 
machine with communication requests that it cannot process legitimate requests or it responds so 
slowly as to render itself unavailable [Denial of Service Attack, Wikipedia]. In wireless 
networks, to perform a Denial of Service Attack, one requires a high-powered network interface 
card (NIC) [Denial of Service Attack, Wikipedia]. In our research we utilized a laptop computer 
equipped with a Wireless N, NIC to perform all DoS attacks.  
 
According to [Denial of Service Attack, Wikipedia], the United States Computer Emergency 
Response Team defines symptoms of denial-of-service attacks to include: 

1. Unusually slow network performance  
2. Unavailability of a particular web site  
3. Inability to access any web site  
4. Dramatic increase in the number of spam emails received 

 
In our research we extensively use packet flooding DoS attacks that saturate the victim with 
packets. This reduces the available bandwidth in the network to do legitimate work there by 
restricting a computer resource or making it unavailable for legitimate tasks. 
 

2.4 Transmission Control Protocol (TCP) 

“The Transmission Control Protocol (TCP) is one of the core protocols of the Internet protocol 
suite” [Transmission Control Protocol, Wikipedia]. “TCP is intended for use as a highly reliable 
host-to-host protocol between hosts in packet-switched computer communication networks, and 
in interconnected systems of such networks” [RFC 793]. “TCP is a connection-oriented, end-to-
end reliable protocol designed to fit into a layered hierarchy of protocols which support multi-
network applications” [RFC 793]. Figure 5-2 shows a TCP header. As one can see from this, 8 
bits are allocated for flags. TCP based scan techniques set these flags to different values or 
combination of values in order to do the scanning. According to the Wikipedia [TCP] these flags 
are  



8 
 

1. CWR – Congestion Window Reduced (CWR) flag is set by the sending host to indicate 
that it received a TCP segment with the ECE flag set 

2. ECE (ECN-Echo) – indicate that the TCP peer is ECN capable during 3-way handshake 
3. URG – indicates that the URGent pointer field is significant 
4. ACK – indicates that the ACKnowledgment field is significant 
5. PSH – Push function 
6. RST – Reset the connection 
7. SYN – Synchronize sequence numbers 
8. FIN – No more data from sender 

 

Figure 2-2. TCP Header 

 Adapted from http://nmap.org/book/images/hdr/MJB-TCP-Header-800x564.png 

2.5  Port Scanning 

“The most common type of network probe is probably the port scan” [TEO, 2000].  “A port scan 
is a method used by intruders to discover the services running on a target machine” [TEO, 2000]. 
By simply checking whether a given port is opened or closed, an attacker can determine whether 
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to attack that machine on that specific port or not. “For example, if the intruder finds that port 
143 (the IMAP port) is open; she may proceed to find out what version of IMAP is running on 
the target machine. If the version is vulnerable, she may be able to gain super user access to the 
machine using an exploit” [TEO, 2000]. 

 Port scanning can be conducted in many ways. The most well known port scanning 
techniques are listed below [Port Scanning Techniques, Insecure.org] 

1. TCP connect scan 
2. TCP SYN scan 
3. TCP FIN scan 
4. TCP null scan 
5. TCP window scan 
6. TCP ACK scan 
7. TCP Maimon scan 
8. Xmas tree scan 
9. UDP scan  
10. IP protocol scan  
11. FTP bounce scan  
12. Idle scan 

2.5.1 Xmas Tree Scan  

The Xmas tree scan exploits a subtle loophole in the TCP RFC to differentiate between open and 
closed ports [Port scanning techniques, Insecure.org]. According to Insecure.org “If the 
[destination] port state is CLOSED, an incoming segment not containing a RST causes a RST to 
be sent in response”. According to Nmap.org, when scanning systems compliant with the TCP 
RFC text, any packet not containing SYN, RST, or ACK bits will result in a returned RST if the 
port is closed and no response at all if the port is open. According to Nmap.org as long as none 
of those bits are included, any combination of the other three (FIN, PSH, and URG) are ok. 
Nmap exploits this with the Xmas tree scan. 

 In a Xmas tree scan, if a RST packet is received, the port is considered closed. This is 
illustrated by the diagram below.  

 

Figure 2-3. Closed Port in a Xmas Scan 
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Adapted from http://www.networkuptime.com/nmap/page3-5.shtml 

A no response means it is open or filtered. The port is marked filtered if an ICMP 
unreachable error (type 3, code 1, 2, 3, 9, 10, or 13) is received. This scenario of not receiving a 
response is displayed below. 

 

 

Figure 2-4. Open or Filtered port in a Xmas Scan 

Adapted from http://www.networkuptime.com/nmap/page3-5.shtml 

According to the Wikipedia a key advantage of these scan types is that they can sneak 
through certain stateless firewalls. That makes the Xmas tree scan stealthier than a regular SYN 
scan. Xmas tree packets are not commonly present in networks and indicate a high probability of 
network reconnaissance activities [Christmas tree packet, Wikipedia]. Luckily though, intrusion 
detection products and advanced firewalls can be configured to detect these types of 
reconnaissance scans. Snort intrusion detection system will alert on a Xmas tree scan which was 
tested in our research work. 

 Since there are systems that do not follow RFC 793, some systems send RST responses to 
the probes regardless of whether the port is open or not [Port scanning techniques, Insecure.org]. 
This will result in all ports being labeled as closed. This behavior is shown by Microsoft 
Windows and many Cisco devices [Port scanning techniques, Insecure.org]. However, this scan 
will work against most UNIX based system [Port scanning techniques, Insecure.org]. Also, these 
scans can't distinguish open ports from certain filtered ones, leaving one with the response open 
or filtered [Port scanning techniques, Insecure.org].  

2.5.2 Packet Design for the Xmas Tree Scan 

 We shall demonstrate the packet design for a Xmas tree scan using CommView. As 
explained earlier, a TCP packet contains certain flags which should be activated to do a Xmas 
tree scan. A Xmas tree scan sends a TCP packet to a remote device with the URG, PUSH, and 
FIN flags set [Xmas tree scan, Networkuptime]. “This is called a Xmas tree scan because of the 
alternating bits turned on and off in the flag byte (00101001), much like the lights of a Christmas 
tree” [Xmas tree scan, Networkuptime]. Using CommView we set the TCP flags to match the 
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value 00101001 which corresponds to 29 in hexa-decimal. The flag structure will be displayed in 
the following way in CommView. 

 

Figure 2-5. Xmas Tree Packet with FIN PSH URG Flags Set 

3 EQUIPMENT AND SOFTWARE USED IN THE EXPERIMENTS  

3.1 Aruba AP-70 Sensors 

 
According to Aruba Networks AP-70 datasheet, the “Aruba AP-70 is a dual-radio indoor 
wireless access point capable of supporting functions including WLAN access, air 
monitoring/wireless intrusion detection and prevention, and secure enterprise mesh across the 
2.4-2.5 GHz and 5 GHz RF spectrums.” In our research two Aruba AP-70 sensors were used to 
do intrusion detection through the RF protect intrusion detection system. 
 

 

Figure 3-1. Aruba AP-70 Sensor 
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3.2 CommView 

According to the CommView website, CommView is a network monitor and analyzer that 
provides a picture of the traffic flowing through a PC or LAN segment. In our research we will 
be using CommView to construct TCP, UDP and ICMP packets for various attacks and create 
Denial of Service (DoS) attacks using its built in packet flooder. For creating TCP packets, 
CommView provides a hex editor that provides the facility of setting each flag of a TCP packet 
to the desired value. Further, CommView provides an interface to flood packets to a network at a 
maximum rate of 5000 packets per second. Given below is a screen shot of CommView’s hex 
editor. It also shows its packet flooding interface with parameters such as “packets per second, 
packet size”. 

 

Figure 3-2. CommView Hex Editor 

3.3 Nmap/Zenmap 

According to Nmap.org, Nmap or “Network Mapper” “is a free and open source utility for 
network exploration or security auditing.” “Nmap uses raw IP packets in to determine what hosts 
are available on the network, what services (application name and version) those hosts are 
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offering, what operating systems (and OS versions) they are running, what type of packet 
filters/firewalls are in use, and other characteristics” [Nmap]. It was designed to scan large 
networks, but can work to scan single hosts also.” Recently Nmap added an advanced GUI 
interface, called Zenmap. We have used Zenmap in our experiments to conduct Xmas tree 
attacks. 

 

Table 3-1 - Zenmap doing an Xmas Tree Scan 

3.4 Snort 

According to Snort.org, “Snort is an open source network intrusion prevention and detection 
system (IDS/IPS) developed by Sourcefire.” Currently it combines the benefits of signature, 
protocol and anomaly-based inspection and is a widely deployed IDS/IPS technology. In our 
research we will use a computer installed with Snort to do intrusion detection. 
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Figure 3-3. Snort IDS used in Intrusion Detection 

3.5 RF Protect 
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RF protect is a proprietary wireless intrusion detection and prevention (WIDP) system developed 
by Aruba Networks. In our research we use RF protect to conduct intrusion detection and collect 
alert data related to attacks. The AP-70 sensors send their alerts to RF Protect’s central database 
where it analyzes the data. 

 

Figure 3-4. RF Protect Console 

3.6 Wireshark 

Wireshark is a network protocol analyzer. According to the Wireshark website [Wireshark], it 
has the following useful features 

1. Live capture and offline analysis 
2. “Live data can be read from Ethernet, IEEE 802.11, PPP/HDLC, ATM, Bluetooth, USB, 

Token Ring, Frame Relay, FDDI, and others”  
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3. “Decryption support for many protocols, including IPSec, ISAKMP, Kerberos, SNMPv3, 
SSL/TLS, WEP, and WPA/WPA2 “ 

4. “Coloring rules can be applied to the packet list for quick, intuitive analysis “ 

We used two Wireshark sensors to gather evidence on wireless networks in our experiments. 

 

Figure 3-5. Wireshark at work 

3.7 Loadcontrol 

According to http://www.codeproject.com/KB/cpp/CPU_Load_Control.aspx?msg=1915014 this 
is a program that demonstrates how to retrieve the current CPU load percentage and set it using a 
high priority thread control loop.  

 The program provides an interface to set the current CPU load as a percentage. Once it is 
set the CPU load increases to the correct load. According to the author of the program, “It only 
fully works on single core systems.” We found this to be true and found a way to make it run on 
both cores. The way it is done is, first one needs to launch two instances of the program. Then 
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one instance should be run on the first core and the second instance on the second core of the 
system. Then both threads should be given real time priority. A normal process on windows 
would have priority set to normal by default. The screen shots below will make the process 
clearer. 

 

Figure 3-6. Setting Processor Affinity 1 

First thread should be run on the core CPU 0  

 

Figure 3-7. Setting Processor Affinity 2 

Second thread should be run on the core CPU 1 

 



18 
 

 

Figure 3-8. Setting Processor Priority to Realtime 

Both LoadControl processes should be given Realtime priority through the task manager. 

 

Figure 3-9. Load Control Software at Work 

When we used CPU Load Control, we found that even when we use this tool to apply the same 
load to both the cores, the load on the two cores would differ greatly and the average load would 
not be equal to the specified value. Moreover the CPU load goes on varying. When we start 
Wireshark on a machine and another machine is used for sending the packets, which Wireshark 
would capture and display, the CPU load on the two cores would come closer to the specified 
value.  Since we could not find any other tool, we used this tool for loading the three machines, 
which were running Wireshark and Snort. This, as will be explained later in this thesis, helped 
create for our experimentation, tools, with variable reliability. We took the specified value of the 
load as the CPU load for our experimental reading. 
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4 SURVEY OF DEMPSTER-SHAFER THEORY IN DATA FUSION 

4.1 Theory of Evidence and Dempster-Shafer Theory in Data Fusion 

According to Siaterlis and Maglaris [2004] “data fusion is a process performed on multisource 
data towards detection, association, correlation, estimation and combination of several data 
streams into one with a higher level of abstraction and greater meaningfulness.” According to the 
authors, the process of collecting information from multiple and possibly heterogeneous sources 
and combining them leads to more descriptive, intuitive and meaningful results. According to 
Bass [2000], multi sensor data fusion is a relatively new discipline that is used to combine data 
from multiple and diverse sensors and sources in order to make inferences about events, 
activities and situations. Bass [2000] states that this process can be compared to the human 
cognitive process where the brain fuses sensory information from various sensory organs to 
evaluate situations, make decisions and to direct specific actions. Bass [2000] and Siaterlis and 
Maglaris [2004 and 2005] give several examples of systems that use data fusion in the real 
world. Bass [2000] claims data fusion is widely used in military applications such as battlefield 
surveillance and tactical situation assessment and in commercial applications such as robotics, 
manufacturing, remote sensing, and medical diagnosis. Siaterlis and Maglaris [2004 and 2005] 
provide military systems for threat assessment and weather forecast systems as examples of such 
systems currently in use today.  

 The Theory of Evidence is a branch of mathematics that is concerned with using evidence 
to calculate the probability of an event. The Dempster-Shafer theory (D-S theory) is a theory of 
evidence used to combine separate pieces of evidence to calculate the probability of an event. 
According to Chen and Aickelin [2006], the Dempster-Shafer theory was introduced in the 
1960’s by Arthur Dempster and developed in the 1970’s by Glenn Shafer. They view the theory 
as a mechanism for reasoning under epistemic uncertainty. According to Sentz [2002], epistemic 
uncertainty is “the type of uncertainty which results from the lack of knowledge about a system 
and is a property of the analysts performing the analysis.” Sentz [2002] also states that epistemic 
uncertainty is also known as, Subjective uncertainty, Type B uncertainty, Reducible uncertainty, 
State of Knowledge uncertainty, and Ignorance. Chen and Aickelin [2006] also stated that the 
part of the D-S theory which is of direct relevance to anomaly detection is the Dempster’s rule of 
combination. According to Siaterlis et al. [2003] D-S theory can be considered as an extension of 
Bayesian inference. According to Shafer [2002] “the Dempster-Shafer theory is based on two 
ideas: the idea of obtaining degrees of belief for one question from subjective probabilities for a 
related question, and Dempster's rule for combining such degrees of belief when they are based 
on independent items of evidence.” 

 According to Chen and Aickelin [2006], the Dempster-Shafer theory is a combination of 
a theory of evidence and probable reasoning, to deduce a belief that an event has occurred. They 
stated that the D-S theory updates and combines individual beliefs to give a belief of an event 
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occurring in the system as a whole. According to Chen and Venkataramanan [2005], in previous 
approaches data has been combined using simplistic combination techniques such as averaging 
or voting. They further stated that a distributed intrusion detection system combines data from 
multiple nodes to estimate the likelihood of an attack, yet fails to take into consideration that the 
observing nodes might be compromised. Dempster-Shafer theory takes this uncertainty into 
account when making the calculations.  

4.2 Data Used in Experiments 

One of the important parts of an experiment is to determine what kind of data should be used in 
the experiment. Should the data be generated to create an original dataset or should the research 
make use of the already generated data? When it came to Dempster-Shafer data fusion, the same 
questions arose. In the research conducted so far, most researchers decided to use an existing 
dataset while some preferred to generate their own data. 

The Defense Advanced Research Projects Agency (DARPA) DDoS intrusion detection 
evaluation datasets are a popular choice among many intrusion detection system (IDS) testers. It 
is no different when it came to testing the Dempster-Shafer IDS models. Yu and Frincke [2005] 
used the DARPA 2000 DDoS intrusion detection evaluation dataset to test their model. Chou et 
al. [2007 and 2008] used the DARPA KDD99 intrusion detection evaluation dataset. The 
KDD99 dataset can be found at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. The 
1998 DARPA intrusion detection evaluation data set was used by Katar [2006] for his 
experiments. 

 According to Chou et al. [2007], the DARPA KDD99 data set is made up of a large 
number of network traffic connections and each connection is represented with 41 features. 
Further, each connection had a label of either normal or the attack type. They stated that the data 
set contained 39 attack types which fall into four main categories. They are, Denial of Service 
(DoS), Probe, User to Root (U2R), and Remote to Local (R2L). The authors have reduced the 
size of the original data set by removing duplicated connections. They further modified the data 
set by replacing features represented by symbolic values and class labels by numeric values. 
Also, they normalized values of each feature to between 0 and 1 in order to offer equal 
importance among features.  

Chen and Aickelin [2006] used the Wisconsin Breast cancer dataset and the Iris data set 
[Asuncion and Newman 2007] of the University of California, Irvine (UCI) machine learning 
repository for their research. Some authors chose to generate their own data for the attacks and 
background traffic. For example, Siaterlis et al. [2003] used background traffic generated from 
more than 4000 computers in the National Technical University of Athens (NTUA) for their 
experiment. 

4.3 Frame of Discernment 
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When using Dempster-Shafer’s theory of evidence, defining the frame of discernment is of great 
importance. Most of the authors referred in this survey did not explicitly mention their frame of 
discernment. Some of them did not mention a frame of discernment at all. It can be argued that 
this is a major weakness of those particular papers.  

 Wang et al. [2004] defined their frame of discernment to be Stealthy Probe [Paulauskas 
and Garsva 2006], DDoS [Rogers 2004], Worm [http://en.wikipedia.org/wiki/Computer_worm], 
LUR (Local to User, User to Root) [Paulauskas and Garsva 2006], and Unknown. According to 
the authors, ‘Unknown’ is defined into the frame of discernment because abrupt increases of 
network traffic could be a result of a DDoS or a worm spreading or LUR or a Probe attack. The 
authors argue that in this situation, the host agent information will help to make the final decision 
as to what attack it was.      Siaterlis et al. [2003] and Siaterlis and Maglaris [2004 and 2005] 
defined their frame of discernment to be  

1. Normal 
2. SYN-flood [http://en.wikipedia.org/wiki/SYN_flood] 
3. UDP-flood [http://en.wikipedia.org/wiki/UDP_flood_attack] 
4. ICMP-flood [http://en.wikipedia.org/wiki/Ping_flood] 

 According to the authors, these states are based on a flooding attack categorization of the 
DDoS tools [Mirkovic et al. 2001] that were in use at the time they wrote their paper. Hu et al. 
[2006] defined their frame of discernment to be normal, TCP, UDP, and ICMP. Hu et al. [2006] 
were concerned with flooding attacks in their research. Chatzigiannakis et al. [2007] defined four 
states for the network. They are Normal, SYN-attack, ICMP-flood, and UDP-flood. These states 
are quite similar to what Siaterlis and Maglaris [2004 and 2005] defined for their frame of 
discernment. Siaterlis and Maglaris [2004] and Chatzigiannakis et al. [2007] conducted their 
research at the National Technical University of Athens (NTUA). 

4.4 Application of D-S in Anomaly Detection 

Anomaly detection systems work by trying to identify anomalies in an environment. In other 
words an anomaly detection system looks for what is not normal in order to detect whether an 
attack has occurred. According to Chen and Aickelin [2006] the problem with this approach is 
that user behavior changes over time and previously unseen behavior occurs for legitimate 
reasons which leads to generation of false positives in the system. The authors say that this can 
lead to a sufficiently large number of false positives forcing the administrator to ignore the alerts 
or disable the system. 

  According to Katar [2006], a majority of intrusion detection systems, based on detection 
of anomalies, adopt a single algorithm either for modeling normal behavior patterns and/or attack 
signatures which ensures a lower detection rate and increases false negative rate. 

4.4.1 Experiments of Yu and Frincke 
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Yu and Frincke [2005] state that modern intrusion detection systems often use alerts from 
different sources to determine how to respond to an attack. According to the authors, alerts from 
different sources should not be treated equally. They argue that information provided by remote 
sensors and analyzers should be considered less trustworthy than that provided by local sensors 
and analyzers. They also state that identical sensors and analyzers installed at different locations 
may have different detection capabilities because the raw events captured by these sensors are 
different. Further, different kinds of sensors and analyzers which detect the same type of attack 
may do so with a different level of accuracy.  

In their research the authors addressed the fact that all observers cannot be trusted equally 
and a given observer may have different effectiveness in identifying individual misuse types by 
extending the D-S theory to incorporate a weighted view of evidence. In other words, the authors 
proposed to improve and assess alert accuracy by incorporating a weight component to each 
observer to reflect how much trust they place on each observer. For this purpose they proposed a 
modified D-S combination rule. The new D-S combination rule has exponents as weights for 
each observer. This new theory is called the Extended Dempster-Shafer Theory. The new 
combination rule is given below. 

    B ⋂ C = A, Σ [m1(B)]w1[m2(C)]w2  
  m12 (A) =    --------------------------------------------------  
          1 - [B ⋂ C = ∅, Σ [m1(B)] w1[m2(C)] w2] 

 

� m12 (A) = Combined belief of the hypothesis A  

� m1 (B) = Belief committed to B as seen by the first observer  

� m2 (C) = Belief committed to C as seen by the second observer 

� Where wi is the weight for the ith observer. When w1 = w2 = 1, is reduced to the 
basic D-S combining rule. 

According to the authors, in their system they estimated the weights based on the 
Maximum Entropy principle [Berger et al. 1996; Rosenfeld 1996) and the Minimum Mean 
Square Error (MMSE) criteria. 

Yu and Frincke [2005] performed experiments using two DARPA 2000 DDoS intrusion 
detection evaluation data sets. According to the authors, both datasets include network data from 
both the demilitarized zone (DMZ) and the inside part of the evaluation network. They stated 
that they used RealSecure Network Sensor 6.0 with maximum coverage policy in their 
experiments.  
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The authors stated that the extended D-S further increases the detection rate while 
keeping false positive rate low. They also pointed out that when using the basic D-S combination 
algorithm, the detection rate decreases relatively to the extended D-S. According to them, the 
extended D-S algorithm provides 30% more accuracy. Also, they have compared their method 
with Hidden Colored Petri Net (HCPN) based alert analysis component. They stated “Our initial 
evaluations on the DARPA IDS evaluation data set show that our alert fusion algorithm can 
improve alert quality over those from Hidden Colored Petri-Net (HCPN) based alert correlation 
components installed at the demilitarized zone (DMZ) and inside network sites. Due to alert 
confidence fusion in our example, the detection rate rises from75% to 93.8%, without adversely 
affecting the false positive rate” Yu and Frincke [2005]. 

     The authors claim that their “alert confidence fusion model can potentially resolve 
contradictory information reported by different analyzers, and further improve the detection rate 
and reduce the false positive rate.” They state that their approach has the ability to quantify 
relative confidence in different alerts. 

4.4.2 Experiments of Chen and Aickelin 

Chen and Aickelin [2006] have constructed a Dempster-Shafer based anomaly detection system 
using the Java 2 platform. First they use the Wisconsin Breast Cancer Dataset (WBCD) to 
perform their experiment. According to the authors, the WBCD is used for two reasons. One 
reason is that they can compare the performance of other algorithms to their approach. The other 
is to “investigate if it is possible to achieve good results by combining multiple features using D-
S, without excessive manual intervention or domain knowledge based parameter tuning.” 
Secondly, Chen and Aickelin [2006] have used the Iris plant dataset [Asuncion and Newman 
2007] for their experiments. According to the authors the Iris dataset was chosen because it 
contains fewer features and more classes than the WBCD. By using this they can confirm 
whether D-S can work on problems with fewer features and more classes. Thirdly, they 
conducted an experiment using an e-mail dataset which was created using a week’s worth of e-
mails (90 e-mails) from a user’s sent box with outgoing e-mails (42 e-mails) sent by a computer 
infected with the netsky-d worm. The aim of the experiment was to detect the 42 infected e-
mails. They used D-S to combine features of the e-mails to detect the worm infected e-mails. 

 Their anomaly detection system utilizes a training process to derive thresholds from the 
training data, and classifies an event as normal or abnormal. According to Chen and Aickelin 
[2006], the basic probability assignment (BPA) functions are made based on these thresholds to 
assign mass values. In their experiment, first they process data from various sources and send 
them to corresponding BPA functions. Then, mass values for each hypothesis are generated by 
these functions which are then sent to the D-S combination component. The D-S combination 
component combines all mass values using Dempster’s rule of combination and generates the 
overall mass values for each hypothesis. 
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 The authors claimed that their experimental results show that they were able to 
successfully classify a standard dataset by combining multiple features for WBCD using the D-S 
method. According to them, the experimental results with the Iris dataset [Asuncion and 
Newman 2007] show that D-S can be used for problems with more than two classes, with fewer 
features. They also claimed experiments with the e-mail dataset show that D-S method works 
successfully for anomaly detection by combining beliefs from multiple sources. 

 The authors claimed that combining features using D-S improves accuracy. Also, they 
claimed that a few badly chosen features do not negatively influence the results, as long as most 
chosen features are suitable. Therefore they stated that D-S is ideal for solving real-world 
intrusion detection problems. Also, they claimed that the results of the Iris dataset prove that D-S 
can be used for problems with more than two classes, with fewer features. By successfully 
detecting e-mail worms through experiments, they claimed that the D-S method works 
successfully for anomaly detection by combining multiple sources. 

 The authors concluded that based on their results, D-S can be a good method for network 
security problems with multiple features (various data sources) and two or more classes.  They 
also stated that the initial feature selection influences overall performance as with any other 
classification algorithm. Further, D-S approach works in cases where some feature values are 
missing which they say is very likely to happen in real world network security scenarios. Chen 
and Aickelin stated “our continuing aim is to find out how D-S based algorithms can be used 
more effectively for the purpose of anomaly detection within the domain of network security.” 

4.4.3 Experiments of Chatzigiannakis et al 

Chatzigiannakis et al [2007] conducted their experiments at the National Technical University of 
Athens (NTUA). They addressed the problem of discovering anomalies in a large-scale network 
based on the data fusion of heterogeneous monitors. The authors built their work partially on the 
data fusion algorithms presented by Hall [1992].  

They monitored the link between National Technical University of Athens (NTUA) and 
the Greek Research and Technology Network (GRNET) which connects the university with the 
Internet. The authors claim that this link has an average traffic of 700-800 Mbits/sec and that it 
contains a rich network traffic mix that consists of standard web traffic, mail, FTP and p2p 
traffic.  

  According to the authors, two anomaly detection techniques, namely Dempster-Shafer 
and Multi-Metric-Multi-Link (M3L), were evaluated and compared under various attack 
scenarios. The authors performed a SYN-attack from GRNET using the TFN2K DoS tool on the 
target which was in the NTUA network. The attack was done by sending IP spoofed TCP SYN 
packets. According to the authors ICMP-flood and UDP-flood attacks were injected manually 
into the network traces of the collected data. 
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The D-S algorithm correctly detected an ICMP flood when attack packets correspond to 
5% of the background traffic. For a SYN attack, when attack packets correspond to 2% of 
background traffic, the D-S algorithm erroneously concluded that the network is normal. 
However, their research showed that when attack packets correspond to 20% of background 
traffic, the D-S algorithms correctly detects the SYN attack state. When attack packets 
correspond to 20% of total traffic in an ICMP flood attack, the M3L algorithm fails to detect the 
attack. According to the authors M3L fails to detect the attack because the selection of metrics is 
inappropriate (metrics utilized are uncorrelated) so the algorithm fails to create a precise model 
of the network. For a SYN attack which consists of packets corresponding to 2% of background 
traffic, the M3L algorithm correctly detects the attack. 

 According to the authors, the differences in the performance of the algorithms lie in the 
correlation of the metrics used. They stated that the D-S theory of evidence performs well on the 
detection of attacks that can be sensed by uncorrelated metrics. The explanation they give for this 
is that it is because the D-S theory requires the evidence originating from different sensors to be 
independent. According to the authors, M3L requires the metrics fed into the fusion algorithm 
present some degree of correlation. “The method models traffic patterns and interrelations by 
extracting the eigenvectors from the correlation matrix of a sample data set. If there is no 
correlation among the utilized metrics then the model is not efficient.”  The authors stated that 
“Metrics such as TCP SYN packets, TCP FIN packets, TCP in flows and TCP out flows are 
highly correlated and should be utilized in M3L, whereas the combination of UDP in/out 
packets, ICMP in/out packets, TCP in/out packets are uncorrelated and should be used in D-S.” 
According to the authors, “attacks that involve alteration in the percentage of UDP packets in 
traffic composition such as UDP flooding are better detected by the D-S method.” Further, 
“attacks such as SYN attacks, worms spreading, port scanning which affect the proportion of 
correlated metrics such as TCP in/out, SYN/FIN packets and TCP in/out flows are better 
detected with M3L.” Also, the authors derive an important result from their study and numerical 
results. That is, the conditions under which the two algorithms operate efficiently are 
complementary, and therefore could be used effectively in an integrated way to detect a wide 
range of possible attacks. 

Chatzigiannakis et al. [2007] studied the problem of discovering anomalies in a large-
scale network based on the data fusion of heterogeneous monitors. They studied two different 
anomaly detection techniques, one based on the D-S theory of evidence and the other based on 
Principal Component Analysis. They evaluated the two algorithms via emulation and simulation, 
and the numerical results showed that the conditions under which they operate efficiently are 
complementary. So, they came to the conclusion that they should be used effectively in an 
integrated way to detect a wide range of attacks. Also, they claimed timely and proactive 
detection of network anomalies is a prerequisite for the operational and functional effectiveness 
of secure networks because of the explosive growth of the global Internet and electronic 
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commerce infrastructures. They further claimed without well designed tools for the management 
of future networks, it will be hard to dynamically and reliably identify network anomalies. 

The major contributions of the papers discussed in this section are summarized below.   

Year Paper Major Contribution 

2005 Alert confidence fusion 
in intrusion detection 
systems with extended 
Dempster-Shafer 
theory. 

[Yu and Frincke] 

Extended the D-S theory to incorporate weights to different 
observers to reflect that every observer cannot be trusted 
equally. By doing so they gave birth to the Extended D-S 
theory. 

Showed how to improve and assess alert accuracy by 
incorporating an algorithm based on the exponentially 
weighted Dempster-Shafer theory of Evidence. This was 
the first time the extended D-S was used in intrusion 
detection. 

Showed through experiments that extended D-S is 30% 
more accurate when it comes to detection accuracy than the 
basic D-S. 

2006 Dempster-Shafer for 
Anomaly Detection. 

[Chen and Aickelin] 

Showed by experiments that one is able to successfully 
classify a standard dataset by combining multiple features 
for the WBCD (Wisconsin Breast Cancer Dataset) using 
the D-S method. 

Showed through experiments with the Iris dataset that D-S 
can be used for problems with more than two classes, with 
fewer features. 

Showed through experiments with the e-mail dataset that 
D-S method works successfully for anomaly detection by 
combining beliefs from multiple sources. 

2007 Data fusion algorithms 
for network anomaly 
detection: classification 
and evaluation. 

[Chatzigiannakis et al] 

Compared two anomaly detection techniques, Dempster-
Shafer and Multi-Metric-Link (M3L) under various attack 
scenarios. 

Showed that M3L fails to detect attacks whose metrics 
utilized are uncorrelated which cause the algorithm not to 
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create a precise model of the network. 

Showed that D-S theory of evidence performs well on the 
detection of attacks that can be sensed by uncorrelated 
metrics. 

Showed that the conditions under which the two algorithms 
operate efficiently are complementary, which makes it 
better to use them in an integrated environment. 

4.5 Application of D-S to Detect DoS and DDoS Attacks 

4.5.1 Experiments of Siaterlis et al. of the NTUA 

Various experiments have been conducted to study the use of D-S theory to detect DoS and 
DDoS attacks. Some of the major research in this area has taken place at the National Technical 
University of Athens (NTUA). Siaterlis et al [2003], Siaterlis and Maglaris [2004] and 
Chatzigiannakis et al [2007] have conducted their experiments related to DoS attacks and D-S 
theory at the NTUA. Vasilis Maglaris and Basil Maglaris of the NTUA have both published two 
papers on multi sensor data fusion for Denial of Service (DoS) detection using the D-S theory of 
evidence. Christos Siaterlis of the NTUA is the only researcher so far to publish 3 papers on 
intrusion detection using the D-S theory. 

 Siaterlis et al. [2003], addressed the problem of detecting distributed denial of service 
attacks (DDoS) “on high bandwidth links that can sustain the flooded packets without severe 
congestion.” According to the authors, DDoS attacks have been the focus of the research 
community in the last few years but still remain an open problem. They stated that many DDoS 
prevention techniques like Ingress and RPF filtering have been proposed in the literature and 
implemented by router vendors but they were not able to lessen the problem. The authors say 
that when they refer to DDoS, they refer to packet flooding attacks not logical DoS attacks that 
exploit application vulnerabilities. Also, they do not require the attackers to be truly distributed 
in the network topology in their DoS attacks. Their research consists of developing a framework 
for DDoS detection engine using the Dempster-Shafer’s “Theory of Evidence”. 

 According to Siaterlis and Maglaris [2004] and Siaterlis and Maglaris [2005] “The 
Internet” can be compared to an essential utility such as electricity or telephone access. They say 
that even a short downtime of the Internet could cause grave financial damages. According to 
them DDoS is one of the main reasons for Internet cutoffs. Siaterlis and Maglaris provide several 
examples to prove their reasoning including a DDoS attack against one of the largest anti-spam 
black-list companies, and another DDoS against the “Al-Jazeera” news network and another 
against the root name servers. According to them, in a DoS attack the bandwidth, near the victim, 
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has already been consumed. Therefore, techniques such as firewall filtering, rate limiting, route 
blackholes, are not effective countermeasures for such an attack. They argue that IP traceback, IP 
pushback, are ineffective (to move the countermeasure near the source of the attack) because 
automated large scale cooperation is difficult in a diverse networked world like the Internet. 
Other techniques such as Ingress filtering, RPF filtering, are only helpful to discourage the 
attacker because they make the traceback easier. They argue that the only reliable solution to 
DoS mitigation is to have a solid DoS detection mechanism. According to the authors, the 
custom detection methods that are being used by network engineers are weak as they utilize 
thresholds on single metrics. Therefore, they utilize a data fusion algorithm based on the “Theory 
of Evidence” to combine output of several sensors to detect attempted DoS attacks. 

4.5.1.1 Data Fusion Architecture 

According to Siaterlis et al. [2003] a data fusion architecture consists of the following main 
stages. 

1. Data Collection – Data is detected and collected through various sensors  
 

2. Data Alignment & Association – Since data is collected through various sensors, they 
may exhibit differences in time, space or measurement. These will be aligned properly at 
this stage. 

 
3. State Estimation – A data fusion algorithm estimates the state based on the knowledge 

gathered through sensors. 
 

4. Attribute classification & Identification - In this phase the different targets and events 
that are being monitored are identified. 

 
5. Situation Assessment – Based on the results of the previous 2 stages, the overall status of 

the system is determined. This is the highest level of information fusion. 

4.5.1.2 Data Fusion Models 

According to Siaterlis et al. there are 3 kinds of data fusion models. 

1. Physical Models 
 

2. Parametric Classification 
a. Bayesian Inference Model 
b. Dempster Shaffer Theory of Evidence 
c. Adaptive Neural Nets 
d. Voting Methods 

 
3. Cognitive Algorithms 

a. Expert Systems 
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b. Fuzzy set theory  

 An example of a physical model is the Kalman filter which provides a solution to 
minimize the mean square error between the true state of the system and the estimate of the state. 
Siaterlis et al. states that the Kalman filter requires the knowledge of the state transition matrix 
and the measurements are corrupted by white zero mean noise with known covariance matrix. 
They also state network behavior has not yet been successfully modeled; therefore such a 
system’s usability is questionable. Siaterlis et al. state that adaptive neural nets have been used in 
the context of intrusion detection but it requires training data that will be representative of the 
normal traffic data, which is extremely hard to gather or generate. Voting is one of the simplest 
and intuitive methods for fusion models. According to Siaterlis et al. each sensor’s data serves as 
a vote in a democracy where the fused declaration is the declaration of the majority. They state 
that this method is useful when a priori statistics are not known. According to Siaterlis et al. 
there are also variation of the voting system that include, weighted voting systems and use of 
intermediate decision on a decision tree. The authors stated that the underlying theory in expert 
systems is “First Order Logic”. The drawback with first order logic is that it cannot model the 
whole spectrum between belief and disbelief in a statement but uses a plain true or false 
approach instead. They state that fuzzy logic has many common elements with Theory of 
evidence. 

 After reviewing all the above mentioned methods they have concluded that Dempster-
Shafer’s theory of evidence needs further investigation. They stated that “there is a clear need to 
utilize information from multiple heterogeneous sources with different sensitivity, reliability and 
false alarm rates.” The authors considered the Dempster-Shafer approach as an extension of the 
Bayesian inference.  

4.5.1.3 DDoS Detection Engine and the Early Research 

Siaterlis et al. [2003] built a prototype for a DDoS detection engine that uses the Dempster-
Shafer theory of Evidence for their experiment. According to them this “might aid network 
administrators to monitor their network more efficiently and with small set up cost.” They 
evaluated the D-S detection engine prototype in the National Technical University of Athens 
(NTUA). According to the authors, related experiments were carried out over several days 
during regular business hours with background traffic generated from more than 4000 computers 
in the campus. The authors hosted the victim inside the campus network while the attacker was 
outside the campus network. The attacker was connected to a fast Ethernet interface to simulate 
the aggregation of traffic from several attacking hosts. The authors claimed that their DDoS 
detection engine can maintain a low false positive alarm rate with a reasonable effort from the 
network administrator.  

 The authors stated that their architecture is made up of several distributed and 
collaborating sensors which share their beliefs about the network’s true state. By the true state of 
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the network, they mean whether the network is under attack or not. The authors view the 
“network as a system with stochastic behavior without assuming any underlying functional 
model.” The attempt to determine the unknown system state is based on knowledge reported by 
sensors that may have acquired their evidence based on totally different criteria. They have 
implemented a system that fuses the knowledge collected from the reports of various sensors, in 
order to infer the state of the monitored network. Their architecture consists of the following two 
sensor types.  

(1) A preprocessor plug-in for Snort – They collected data from incoming and outgoing TCP, 
TCP SYN, TCP FIN, UDP, ICMP packet rates and their corresponding share of the link 
utilization. 

(2) A SNMP data collector and analyzer stored the data in round robin databases using the 
RRDtool. They calculated the bytes/sec, packets/sec ratios and active flow numbers 
based on Cisco’s Netflow [22]. 

4.5.1.4 Sensor Functionality 

The authors stated that the sensors can express beliefs about the network state after the right 
configuration and fine tuning and that their detection principle differs from many of the existing 
detection techniques which are focused on a single metric. 

 They have introduced a sensor that monitor the number of active flows seen by a router. 
A flow is defined as a unique set of 5 characteristics that include (protocol, source IP, source 
port, destination IP, and destination port). According to the authors, in the presence of a spoofed 
attack the number of active flows rises. Further, in the presence of a flooding attack the number 
of transports that are not completed (with TCP FIN or RST) is high. These flows fill up the cache 
without being removed gracefully. The reason for including this metric, the authors state is that it 
will give a good indication of a spoofed attack even though it cannot give an insight into the 
exact attack type. The sensor in this case states its belief in the hypothesis, H = {SYN-flood, 
UDP-flood, ICMP-flood}. 

  The authors have built basic probability assignments (BPA’s) that match measured values 
to beliefs about the true system state. They have defined their frame of discernment to be Θ = 
{Normal, TCP SYN Attack, UDP BWDTH Attack, and ICMP BDWDTH Attack}. The authors 
have defined a way to assign BPA’s in the following manner. For example, if the sensor 
measures a high value for the ratio 

Incoming UDP bytes/sec 
------------------------------ 
Outgoing UDP bytes/sec 

 Then the sensor states its increased belief in a UDP attack state. The sensors then take the 
following steps to calculate the BPA’s  
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1. Assigns a value m(H) ε [0,1] 
2. Assigns a value to the set ￢H, to express the refuting evidence of the hypothesis H, so 

m(￢H) ε [0,1]. 
3. Assigns a value to the set Θ to express ignorance of the sensor and the possibility that it 

might be erroneous. m(Θ) ε [0, 1]. 

 According to the authors, m(H) + m(￢H) + m(Θ) = 1. The sensors calculate the 

corresponding BPA’s and transfer the data to the fusion node which has the DS inference engine. 
The DS inference engine calculates the belief intervals for each member of the frame of 
discernment. These belief intervals are then graphically represented and the interpretations of the 
results are left to the network admin.  

4.5.1.5 Later Research 

In 2004, Siaterlis and Maglaris published another paper based on intrusion detection using D-S 
theory of evidence. The work done is continued from where they left off in Siaterlis and 
Maglaris [2003]. In this work, they have changed the frame of discernment from Θ = {Normal, 
TCP SYN Attack, UDP BWDTH Attack, and ICMP BDWDTH Attack} to Θ = {Normal, SYN 
flood, UDP flood, and ICMP flood}. 

 In 2005, Christos Siaterlis published another paper with Vasilis Maglaris that extended 
the work from Siaterlis and Maglaris [2004]. According to them, the 2005 paper discusses how 
to automate the process of tuning the sensors while taking advantage of expert knowledge. Also, 
they discussed the combination of different metrics to enhance detection performance compared 
to the use of a single metric. Further they compared the D-S approach with the use of an 
Artificial Neural Network (ANN) when it comes to data fusion.  

 Unlike in the previous two papers, Siaterlis and Maglaris [2005] go into much more 
detail as to how their system operates. They stated their customized Netflow collector gathers 
flows that are exported by the router and calculates the number of flows with lifetime shorter 
than 10ms according to the flow generation rate. According to the authors, though this metric 
does not give an indication of exact attack type, it is a good indication of spoofed or a highly 
distributed attack. 

 The authors stated that in the early stages of their work, the sensors were required to be 
manually configured to express beliefs about the network state by translating the measurements 
to basic probability assignments (BPA). Later on they have used a supervised learning approach 
and inserted a neural network at the sensor level to ease the administrator from having to 
configure the sensor manually. They have further given a formula they used in the neural node to 
calculate the BPA’s automatically. It is given below.  

� m(H) = x , if m(Θ) + x < 1 
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� m(H) = 1 – m(Θ), otherwise 
and 

� m(￢H) = 1-x-m(Θ), if m(Θ) + x < 1 
� m(￢H) = 0, otherwise 

Where x is the sensor output. 

 
 These BPA’s are then transferred to the D-S engine. The D-S engine then fuses the 
information using the Dempster’s rule of combination to calculate the belief intervals for each 
member of the frame of discernment. Then, the attacks are detected by the output of the belief of 
individual attack states. As an example they state, 

� UDP Alert = true, if Bel({UDP-flood}) > 0.5; and 
� UDP Alert = false, otherwise 

 The authors have compared their data fusion approach to Artificial Neural Network 
(ANN) data fusion approach. They stated “If we feed the detection metrics directly into an ANN, 
like the feed-forward Multi Layer Perceptron (MLP) network, we can teach it to classify the 
network state in elements of the same set {NORMAL, SYN-flood, UDP-flood, ICMP-flood}.” 
They have used the Levenberg-Marquardt back propagation algorithm for training because of its 
speed. They have performed many tests which included changing the number of neurons in the 
hidden layer. Their results have indicated that compared to ANN, D-S produces fewer false 
positives. Also, they stated that apart from the above comparison, in the D-S system they can 
incorporate human expertise which is an added advantage. What they meant by this was that they 
can define which attack states each sensor is sensitive to using their expertise. 

 Siaterlis and Maglaris [2005] stated that implementing their ideas into an operational 
network could be a task of significant difficulty, but it may offer many advantages if done 
successfully. The advantages include, 

1. Sensors can provide both supportive and refuting evidence of an attack. 
Therefore, different sensors can lower or raise the combined belief of an attack 
state. 

2. Each sensor can contribute information at its own level of detail. This enables the 
use of metrics such as CPU utilization of routers that are not specific to attack 
type. 

3. No need to assume the probability of the network being in a specific state. Just 
need to express the belief that an observed event supports a state. 

4. Multiple data sources can be used to increase the confidence in the estimation. 
5. Can incorporate knowledge from sensors that are based on different detection 

algorithms. 
6. Can activate detection algorithms on demand to refine the beliefs. 
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 They also point out that knowledge based systems can only be as good as their source 
from which they acquire knowledge. Also, they state that their system cannot handle multiple 
simultaneous attacks because mutual exclusivity of system states is assumed. 

4.5.2 Experiments of Hu et al. 

According to the Hu et al. [2006], when it comes to implementing network security management, 
multi-sensor data fusion faces a lot of problems. For example, there is no appropriate physical 
model to describe a network. They stated that the state transition matrix for a network is hard to 
acquire and a network’s behavior has not yet been successfully modeled. Also, they state that a 
physical model such as the Kalman Filter is limited in use and using it to predict traffic is a 
tradeoff between accuracy and efficiency. Cognitive algorithms have good adaptability but need 
a lot of training data, which they state is hard to capture in a real network. So, in their 
experiments they have used the D-S theory of evidence to make uncertainty inferences because it 
does not require state transition matrices or training data.  

 According to the authors, an improved detection engine has been introduced in this paper. 
They also introduce “Detection Uncertainty” to describe the fuzzy problem which cannot be 
avoided in the detection and merges identity inference and intrusion detection. They defined 
detection uncertainty to be the sum of subject uncertainty and objective uncertainty. 

 Detection Uncertainty = Subjective Uncertainty + Objective Uncertainty 

 The uncertainty that arises because of the selected detection metrics and sensor specific 
techniques was defined as Subjective Uncertainty. The uncertainty that arises because of the 
experimental environment was defined as Objective Uncertainty. According to the authors once 
the sensors are completely setup, Subjective Uncertainty will not change. Also, they stated that 
because of the difference of detection techniques and metrics, different sensors have different 
Subjective Uncertainties. 

According to the authors, the experiments were carried out in a small scale LAN. They 
have used LibPcap based sensors to poll the network and assign appropriate mass/belief values to 
the current state of the network. LibPcap is a system-independent interface for user-level packet 
capture. It can be downloaded from http://sourceforge.net/projects/libpcap/. 

 The authors stated that they put more emphasize on the accuracy of the simulation than 
doing it on real time. Therefore, they have conducted an off-line simulation. They used a 
MySQL database to store the data (evidence) captured through sensors. MySQL is a popular 
open source database which can be downloaded from http://www.mysql.com/. An ICMP 
flooding attack was used to attack the victim. The authors utilized two sensors in the simulation 
to sample and assign probabilities to the current state of the network. 
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 The authors stated that the experimental results showed the combination of evidence has 
improved the detection accuracy. Also, they stated that “the assignment of basic probability 
assignments after combination is much more accurate and makes the discernment range smaller.” 
According to the authors, the independence of experimental environment reduces some 
interference of background flow, and guarantees the effect of the experiment. They have 
admitted that this is not the case in reality.  

 The authors claimed the next generation network management systems and intrusion 
detection systems will be "Cyberspace Situational Awareness" systems that will support multi-
sensor data fusion. They further claimed that the D-S theory can be successfully used to identify 
and detect cyberspace intrusions and locate the risks through multi sensor data fusion. 

     The major contributions of the papers discussed in this section are summarized below.  

Year Paper Major Contribution 

2003 A novel approach for a 
distributed denial of service 
detection engine 

[Siaterlis et al.] 

Built a prototype for a DDoS detection engine 
that uses the Dempster-Shafer theory of 
Evidence for their experiment 

The authors claim that their DDoS detection 
engine can maintain a low false positive alarm 
rate with a reasonable effort from the network 
administrator. 

2004 Towards multisensor data 
fusion for DoS detection 

[Siaterlis and Maglaris] 

Showed through experiments that even if one 
sensor fails to detect an outgoing attack, 
combined knowledge gathered from other 
sensors indicate the increased belief on an 
attack state clearly. 

2005 One step ahead to 
multisensor data fusion for 
DDoS detection 

[Siaterlis and Maglaris] 

Discusses how to automate the sensor tuning 
process by taking advantage of expert 
knowledge. 

 

Discussed the combination of different metrics 
to enhance detection performance compared to 
the use of a single metric. 



35 
 

Compared the D-S approach with the use of an 
Artificial Neural Network (ANN) when it 
comes to data fusion. 

Showed by experiments that compared to 
ANN, D-S produces fewer false positives. 

2006 Intrusion Detection Engine 
Based on Dempster-Shafer's 
Theory of Evidence. 

Showed by experiments that the assignment of 
basic probability assignments after 
combination is much more accurate and makes 
the discernment range smaller. 

4.6 Advantages of Using D-S Theory 

The research reviewed in this chapter has shown that the use of the D-S theory has certain 
advantages.  

 According to Siaterlis et al. [2003], and Siaterlis and Maglaris [2004 and 2005], the D-S 
approach has significant advantages over the Bayesian approach. They stated that in contrast to 
the Bayesian approach where one can only assign probabilities to single elements of the frame of 
discernment (Θ), the D-S theory can assign probabilities to the states (elements) of the power set 
of Θ. Another advantage according to the authors is that D-S theory calculates the probability of 
the evidence supporting a hypothesis rather than calculating the probability of the hypothesis 
itself unlike the traditional probabilistic approach. Also, they say that D-S theory has a definite 
advantage in a vague and unknown environment.  

 According to Chen and Venkataramanan [2005] the D-S theory of evidence provides a 
mathematical way to combine evidence from multiple observers without the need to know about 
a priori or conditional probabilities as in the Bayesian approach. 

 According to Chen and Aickelin [2006], D-S theory is very well suited for anomaly 
detection because it does not require any priori knowledge. Another advantage of D-S according 
to Chen and Aickelin is that it can express a value of ignorance, giving information on the 
uncertainty of a situation. They stated that Bayesian inference requires a priori knowledge and 
does not allow allocating probability to ignorance. So, the authors stated that, in their opinion, 
Bayesian approach is not always suitable for anomaly detection because prior knowledge may 
not always be available. Especially, when the aim of anomaly detection is to discover previously 
unseen attacks, then a system that relies on existing knowledge cannot be used.    

 According to Chatzigiannakis et al. [2007] the D-S theory of evidence has a clear 
advantage in an unknown environment when compared to inference processes like first order 
logic that assume complete and consistent knowledge. They also stated that the D-S theory has 
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an advantage when compared with probability theory which requires knowledge in terms of 
probability distributions. 

4.7 Disadvantages of Using D-S Theory 

The research reviewed in this chapter has also shown that the use of D-S theory has certain 
disadvantages associated with it. They are mentioned below. 

 According to Siaterlis et al. [2003], Siaterlis and Maglaris [2004 and 2005], and 
Chatzigiannakis et al. [2007] the main disadvantage of the D-S theory is the assumption it makes 
saying that the evidence is statistically independent from each other. Since sources of 
information are often linked with some sort of dependence in real life situations, this assumption 
does not always hold true. Also, in Siaterlis et al. [2003] framework, they pointed out that the 
system’s inability to detect multiple simultaneous attacks was because D-S theory assumed a 
mutually exclusive set of system states. 

 According to Chen and Aickelin [2006], D-S has two major problems associated with it. 
One they say is the computational complexity associated with D-S. The other is the conflicting 
beliefs management. According to them the computational complexity of D-S increases 
exponentially with the number of elements in the frame of discernment (Θ). If there are n 
elements in Θ, there will be up to 2n-1 focal elements for the mass function. Further the 
combination of two mass functions needs the computation of up to 2n intersections.  

5 WEAKNESSES OF THE EXISTING METHODS 

Our research is mainly based on the work of Siaterlis and Maglaris [2004 and 2005] and Yu and 
Frincke [2005]. Therefore, we will explain the weaknesses we saw in their methods in this 
section. 

5.1 Weakness’ of the Method Used by Siaterlis and Maglaris 

Siaterlis and Maglaris used two sensor types in their research. 

(1) Snort preprocessor plug-in 

(2) Netflow collector 

Though they used two sensor types, they treated all sensor data as equally reliable. Even If 
the sensors were identical their detection accuracy could depend on the environment. If the 
sensors are different, there is a good chance their detection capabilities could differ even in the 
same environment. This is more clearly explained in the following section. 

5.2 Reliability of Evidence in Fusion 
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The D-S theory of evidence considers all evidence to be of the same importance and reliability. 
According to Yu and Frincke [2005] in a distributed environment this does not hold true. One of 
the reasons is that remote sensors and analyzers are considered less trustworthy than local 
sensors [Yu and Frincke, 2005]. Further, if the sensors used are different it is not wise to assume 
they all behave the same way. It is obvious that different sensors would have different detecting 
capabilities for different attacks. Assuming all sensors behave the same way could lead to 
incorrect conclusions after combination. We demonstrate this through an example. For 
simplicity, we shall use evidence from just two sensors only.  

Example with two sensors: 

  Sensor 1 

Sensor2 Attack  Mac Spoof DoS Xmas Tree 

  Mass (M) 0.99 .01 0 
Mac Spoof (MS) 0 0 0 0 
DoS (D) 0.01 0.0099 0.0001 0 
Xmas Tree (XT) 0.99 0.9801 0.0099 0 

 

1. To calculate the combined basic probability assignment (BPA) for a particular cell, multiply 
the mass values from the relevant column and row. 

For example, to calculate the combined BPA for the cell that has the red value  

M(MS) * M(MS) = 0.99 * 0 = 0 

According to the Dempster 's Combination Rule  

   B ⋂ C = A, Σ m1(B) m2(C)  
  m12 (A) =    -------------------------------------------  m12 (A) ≠ ∅ 
          1 - [B ⋂ C = ∅, Σ m1(B) m2(C)] 

 The combination called the joint mass (m12) is calculated from the two sets of  masses 
m1 and m2. m1(B) and m2(C) are evidence supporting hypothesis B and C respectively as 
observed by the two observers. In our example Sensor 1 and Sensor 2 are our observers. Both 
have two sets of masses corresponding to each attack. Sensor 1 has a mass set (m1) and sensor 2 

has a mass set (m2). In this equation [B ⋂ C = ∅, Σ m1(B) m2(C)] part in the denominator is 

known as K.  

 K = [B ⋂ C = ∅, Σ m1(B) m2(C)] 
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K represents basic probability mass associated with conflict. K is calculated by summing 
the products of the BPA’s of all sets where the intersection is null. In the above example to 
calculate the combined probability that the attack is a DoS attack, first we need to calculate K. 
To calculate K we need to sum up three cells that contribute to conflict represented by empty 
intersections. 

K = (0.99) (0.01) + (0.99) (0.01) + (0.99) (0.99) = 0.9999 

The only non-zero value where the intersection is non-empty that yields a DoS attack has 
the value 0.0001. Therefore, using the Dempster’s combination rule we can calculate the joint 
mass, which is 

m12 (DoS) = (0.01) (0.01) / (1 – 0.9999) = 1  

Though there is highly conflicting evidence, the basic probability assignment for a DoS 
attack is 1. This corresponds to Bel (DoS) = 1, which means it was a DoS attack with no 
uncertainty. The reason for this is the normalization of the masses to exclude those associated 
with conflict. This is one of the weaknesses of D-S theory of evidence. It gives incorrect results 
when used in circumstances where there is significant conflict. But, in cases where we know for 
certain that evidence is less reliable, by assigning a reliability factor to the evidence we can 
improve the accuracy of our combination. 

For example, consider the same example, but with a reliability factor taken into 
consideration. Assume that Sensor 1 has a reliability of 25% and Sensor 2 has reliability of 95%. 
Now do the same calculation to find the combined probability for a DoS attack. 

  Sensor 1 

Sensor2 Attack  Mac Spoof DoS Xmas Tree 
  Mass (M) 0.99 * 0.25 = 

0.2475 
.01 * 0.25 = 
0.0025 

0 * 0.25 = 0 

Mac Spoof 
(MS) 

0 * 0.95 = 0 0 0 0 

DoS (D) 0.01 * 0.95 = 
0.0095 

0.00235125 0.00002375 0 

Xmas Tree 
(XT) 

0.99 * 0.95 = 
0.9405 

0.23277375 0.00235125 0 

K = 0.00235125 + 0.00235125 + 0.23277375= 0.23747625 

m12 (DoS) = 0.00002375 / (1 – 0.23747625) = 0.00002375 / 0.76252375 = 0.00003114657 

As one can see, now the probability of a DoS attack is almost zero. This is one of the cases 
where we assigned 25% accuracy to one sensor and 95% accuracy to the 2nd sensor. By doing 
so, we essentially negated the unreliability of that sensor in the combining process. The D-S 
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theory does not provide this functionality; therefore this could be an improvement to increase the 
accuracy of intrusion detection. 

5.3 Why Do We Need to Consider Reliability of Evidence? 

Dempster’s rule requires all belief sources to be reliable [Josang, 2002]. Also Josang [2002] 
stated that “The consensus operator does not make any assumption about reliability of the belief 
sources, but does of course not escape the ‘garbage in, garbage out’ principle.” Wrong 
information is essentially evidence that is not accurate. More often than not, inaccurate evidence 
is given by unreliable sources. 
 
 In a perfect world one might find perfect or totally reliable observers. There are a variety 
of network sensors that can be used to monitor the wireless networks today. At a high level, they 
might perform the same task of “monitoring radio frequency signals”. They might even see the 
same data flowing through the air. Of course it is still possible, that some are more powerful than 
others, which results in the ability of powerful sensors seeing more data in a wide range. 
Moreover it is likely that the way they process their data is very different. As data analysis is 
done through some code, and this code may have been written by totally different individuals, it 
is likely, they used different methods to achieve the same task. Therefore, each sensor is unique. 
Hence some sensors might be better at detecting certain attacks better than the others. In other 
words, if we use two different sensors to detect the same attack they may do so with different 
values of accuracy for the given attack. Some sensors might not detect a certain type of attack at 
all. As an example for this from our research, the AP-70 sensors combined with RF protect does 
not detect a Xmas tree scan while Snort detects it. Completely ignoring a sensor’s capability in a 
distributed intrusion detection environment cannot make intrusion detection better. By taking 
into consideration that a sensor has a certain reliability value for a given attack will increase the 
likelihood of detecting the given attack.  
 
 In our research, to simulate the reliability of a sensor we use CPU load of a sensor as a 
factor that alters reliability in a controlled way. This is done in this research, so that we can show 
how reliability affects a sensor’s detection capability in a controlled environment. More details 
of how the actual experiment was carried out will be provided in a later chapter. 

5.4 Weakness’ of the Method Used by Yu and Frincke 

Yu and Frincke conducted their research using two RealSecure network sensors. One of the 
goals of their research is to show that even identical sensors could have different detection 
capabilities depending on their location. They introduced an exponentially weighted D-S theory 
to combine evidence which takes into account different locations sensors are located and their 
accuracy based on the location. However, Yu and Frincke only used one sensor type to conduct 
their research. In our view, to fully utilize the power of the D-S theory one needs to use a diverse 
set of sensors and combine the evidence. This way, one can detect a varied set of attacks that is 
very hard to detect with a single type of sensor. 

We feel that our experiments have uncovered a weakness in the exponentially weighted 
D-S combination rule of Yu and Frincke. We shall show this error through the following 
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example. Yu and Frincke’s exponentially weighted D-S combination rule is given below  
  

B ⋂ C = A, Σ [m1(B)]w1[m2(C)]w2  
  m12 (A) =    ---------------------------------------------------- 
          1 - [B ⋂ C = ∅, Σ [m1(B)] w1[m2(C)] w2] 

The weakness shows up when w1 and w2 have values close to zero. For example, raising 
0.95 to the power of 0.1 would result in 0.9948. As a matter of fact, raising any value from (0 to 
1) to a positive exponent that is less than one (greater than zero) would result in a value that is 
greater than the original value. In certain cases, this could result in getting negative values for an 
attack state. This will have an effect in the calculation of K in the combination process that will 
cause it to be greater than one. This will cause the denominator of the equation to be a negative 
number, which causes the eventual combined value to be negative. When combining multiple 
sensors this negative value will adversely affect the end result. 

We shall show the example calculations for the exponentially weighted D-S combination 
rule, when more than two sensors are used in the experiment. In the first step, the observations 
from the first two sensors are combined with Yu and Frincke’s Extended D-S fusion. In the 
second step the results of the first step is combined with the evidence from the third sensor. In 
the third step, the results of the second step are combined with the evidence from the fourth 
sensor. In the fourth step the results of the third step are combined with the fifth sensor.  
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Yu and Frincke

Step 1

Sensor AP70-1 Attack Xmas ¬ Xmas U

AP70-2 Attack Reliability 1 1 1

Mass 0 0.333333 0.666667

Xmas 0 1 0 0 0

¬ Xmas 0.5 1 0 0.166667 0.333333

U 0.5 1 0 0.166667 0.333333

Step 2

Sensor AP70-Combined Attack Xmas ¬ Xmas U

AP70-2 Attack Reliability 1 1 1

Mass 0 0.666667 0.333333

Xmas 0.535714 0.8458 0 0.393224 0.196612

¬ Xmas 0.392857 0.8458 0 0.302491 0.151245

U 0.071429 0.8458 0 0.071534 0.035767

Step 3

Sensor Step 2 Combined Result Attack Xmas ¬ Xmas U

AP70-2 Attack Reliability 1 1 1

Mass 0.324028 0.865675 0.058946

Xmas 0.769231 0.8457 0.25955 0.693415 0.047216

¬ Xmas 0.192308 0.8457 0.080363 0.214699 0.014619

U 0.038462 0.8457 0.020603 0.055044 0.003748

Step 4

Sensor Step 3 Combined Result Attack Xmas ¬ Xmas U

AP70-2 Attack Reliability 1 1 1

Mass 1.447118 1.257011 0.016568

Xmas 0.769231 0.8439 1.159704 1.007354 0.013278

¬ Xmas 0.192308 0.8439 0.359972 0.312683 0.004121

U 0.038462 0.8439 0.092557 0.080398 0.00106

Step 1

K = 0

m12(Xmas) 0

m12(¬Xmas) 0.666667

M(U)= 0.333333

Step 2

K = 0.393224

m12(Xmas) 0.324028

m12(¬Xmas) 0.865675

M(U)= 0.058946

Step 3

K = 0.773778

m12(Xmas) 1.447118

m12(¬Xmas) 1.257011

M(U)= 0.016568

Step 4

K = 1.367326

m12(Xmas) -3.44527

m12(¬Xmas) -1.081332

M(U)= -0.002885  
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As one can see from the above example, combination through Yu and Frincke’s method in 
certain cases results in negative numbers for probability values. This is clearly noticeable when 
there are more than two sensors involved in the combination. Also, they do not explicitly define 
what happens in the special case when both the weight and the mass is zero. This special case 
would require zero be raised to zero power. This could have a different meaning, depending on 
the context, according to the exponentiation article in Wikipedia that discusses “Zero to the zero 
power”. 

6 OUR RESEARCH AND PROPOSED IMPROVEMENTS 

In our research we have addressed the weaknesses of the existing methods and tried to improve 
them. The proposed method will make additional adjustments the way probabilities are 
calculated to make intrusion detection more accurate. Also, five network sensors that fall into 
three diverse categories will be used to conduct intrusion detection. This will give us the 
capability to cover a broader spectrum of attacks in the research.  

6.1 Intrusion Detection in Wireless Networks 

In our research we have chosen to apply the D-S theory of evidence to combine information 
about intrusion detection from multiple sensors in wireless networks.  

     These days, wireless networks have become common in work places and homes. As wireless 
networks are being widely used, it is important that we take necessary precautions against 
intrusions into these networks. Though wired networks still exist, more often than not they co-
exist with wireless networks. In wireless networks, a sensor may be able to access only a sub-set 
of the total number of packets. Hence the reliability of conclusions, reached by each sender may 
not be the same. Hence the application of D-S theory to detect intrusions in wireless networks 
may be of great value. However to the best of our knowledge,  the D-S theory has not yet been 
applied to conduct intrusion detection in wireless networks.  

6.2 Increased Number of Sensors 

     A major feature of the D-S theory of evidence is its ability to combine evidence in a 
distributed intrusion detection environment. Further it is able to combine evidence provided by 
multiple sensors. We found through our studies that researchers tend to utilize only two sensors 
which is the minimum required for data fusion. As increased number of sensors could give more 
evidence, in essence more knowledge about a network in question, we have utilized five sensors 
in our research. Data fusion involving more than two sensors is achieved by generalizing the 
Dempster’s combination rule by iteration. For example, if we have already fused two sensors S1 
and S2, we can take that result and treat it as a result from a single sensor and fuse it with sensor 
S3. By extension, we are able to combine any number of sensors. 
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6.3 Sensor Diversity Increased 

One of the major advantages of the D-S theory of evidence is that it can combine evidence from 
a heterogeneous pool of observers. Unfortunately research in the field indicates this potential 
advantage has not been fully utilized. Siaterlis and Maglaris used two sensor types. Yu and 
Frincke only used one sensor type. Our study of the past material indicated that more than 95% 
of other researchers in the field also conducted research using only a single sensor type.  

Our research examines the effects of having more than one intrusion detection system, 
and more than one sensor type in an IDS environment. Today, any large distributed network has 
to cater to both wired as well as wireless end-terminals. In such an environment, a single ID 
system may not be an effective solution to guard against potential attackers. Multiple ID systems 
and wireless and wired sensor systems generate alerts. A concatenation of all alerts can lead to a 
larger number of false positives. However, if we understand the environment and the 
characteristics of the sensors and the IDSs, the fusion of alerts from a variety of sources can 
reduce the number of false positives and false negatives and increase the number of true 
positives. 

Our research includes the following sensors and IDSs to do intrusion detection. 

1. Aruba AP-70 Sensors (2 sensors) and RF Protect distributed IDS 
2. Snort sensor (1) using the Snort IDS 
3. Wireshark sensors (2) 

6.4 Progressively Evolving Reliability Factor (PERF) 

To take into account the reliability of evidence we introduce a reliability coefficient known as Ri. 
Its value lies between zero and one. One corresponds to totally reliable evidence from the sensor 
or IDS for the type of attack, under consideration, and zero corresponds to totally unreliable. 

Ri І 0 ≤ Ri ≤ 1 

 Instead of taking reliability for a sensor it can be broken down into reliability for each 
attack for a given sensor. This is because a sensor may detect a certain attack at certain reliability 
and another attack at a different reliability. For example, in our research we noticed that AP-70 
sensors do not detect a Xmas tree scan. Hence instead of giving the AP-70 sensor with a 
reliability value, it could be differentiated down into each attack. We, therefore, assign a 
reliability value for a specific attack for a specific sensor.  

 In an environment of a very high load of normal packets, a computing system, having the 
sensor or the IDS, may be overwhelmed by the large processing required by the packets and it 
may not be able to process the attack packets. On the other hand, when the load of normal 
packets is less, it may be able to recognize the attack packets fast. To take into account such 
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situations, in our system, this coefficient (Ri) need not stay fixed throughout the intrusion 
detection period. In a real intrusion detection environment, this would mean updating reliability 
values periodically to reflect newly discovered evidence and the accuracy of the sensors 
detecting a given attack. If an attack was discovered (true positive) and one of the sensors failed 
to detect it, the security practitioner can lower the reliability value for the attack in question in 
the particular sensor. How much the value is decreased will be determined by the security 
practitioner according to available data. In other words, once the security practitioner determines 
that a sensor has given a false positive or a false negative she can decrease the sensor’s reliability 
coefficient for a given attack by a certain factor which could be calculated by determining its 
current observed correctness for the given attack state. Likewise she can increase the reliability 
coefficient by a certain factor when it gives a true positive for a given attack state up to a 
maximum value of one corresponding to totally reliable. Therefore, instead of using a constant 
value, we can use a variable (Ri) that evolves during the experiment progressively. 

 In our research, this will be simulated by varying the CPU load of a sensor. It will be 
shown in a later section that when the CPU load is increased sensor reliability decreases and vice 
versa. 

6.5 New Method of Basic Probability Assignment (Mass Calculation) 

Our research of the field indicated that there is no well defined way to calculate belief masses in 
the Dempster Shafer theory. Also, there is no well defined way to calculate the uncertainty or the 
unknown state of a system. Most researchers do not define how the masses were calculated and 
just state the values of the masses. We adapted a method used by Jøsang [2000] to calculate the 
belief masses. Using this method, we shall show how the masses are calculated. For this 
example, assume that we are considering a Xmas tree attack. So our frame of discernment 
consists of (Xmas, ¬Xmas, Unknown). So, first we need to calculate the masses of these states 
for each sensor before we do the fusion. In our research we have done the mass calculation the 
following way, 

� M (Xmas) = r / r + s +2 
� M (¬Xmas) = s / r + s + 2  When (U)ncertainty ≠ 0 
� M (Unknown) = 2 / r + s + 2 

r – Positive evidence, s – Negative evidence 

Jøsang [2000] justifies this way of calculation in his paper “A logic for uncertain probabilities”. 
There are a couple of reasons why this method is suitable to be used in our research. Using the 
Xmas attack as an example, we shall explain the reasons: 
 

1. M (Xmas) needs to increase when r (positive evidence) increases 
2. M (¬Xmas) needs to increase when s (negative evidence) increases 
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3. M (Unknown) needs to decrease when r + s (the amount of positive and negative 
evidence, or in other words total available evidence) increases  

 
This makes perfect sense because as the amount of evidence increases, we get to know more and 
more, eliminating the need for mass to be assigned to uncertainty. Mathematically speaking for 
uncertainty to be zero it will require that we have an infinite amount of evidence. These can be 
graphically represented as follows. 
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Figure 6-1. M(Xmas) is an increasing Function of R 
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Figure 6-2. M (¬Xmas)   is an increasing Function of S 
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6.6 New Rule of Combination 
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In our research we addressed some weaknesses of Siaterlis and Maglaris and Yu and Frincke. 
Siaterlis and Maglaris considered all sensors in their research environment to be equally reliable 
for detecting denial of service attacks. Actually, this is assumed by the Dempster’s combination 
rule because it considers all evidence to be of the same importance. In a distributed environment 
this does not hold true as explained earlier.  

B ⋂ C = A, Σ R1 m1(B) R2 m2(C)  

  m12 (A) =    --------------------------------------------------- 

          1 - [B ⋂ C = ∅, Σ R1 m1(B) R2 m2(C)] 

     Where, 

� m12 (A) = Combined belief of the hypothesis A 
� m1(B) = Belief committed to hypothesis B as seen by the first sensor 
� m2(C) = Belief committed to hypothesis C as seen by the second sensor 
� R1 = Reliability of Sensor 1 (Progressively evolving values) 
� R2 = Reliability of Sensor 2 (Progressively evolving values) 

 

 As shown earlier, Yu and Frincke’s exponential combination rule can run into potential 
problems (negative values) when combining evidence. Wu et al. [2002] also proposed a 
combination rule that uses weights proportionally for a purpose other than intrusion detection. 
However their method is different from ours as their method does not produce combination 
weights that add up to 1 (def. 5.1.2). Our method of combination which uses PERF D-S 
combination rule will guarantee there will be no negative values. Hence every mass value will be 
between zero and one [0, 1], multiplying it by a positive reliability factor which is also between 
zero and one [0, 1], will always result in a positive value that is less than or equal to one. Hence 
no negative values are possible for a given attack state. Therefore, the calculated K value is 
guaranteed to be a positive number less than one.  Also, it will ensure that combination weights 
will add up to 1 as in definition 5.1.2.  How it achieves the combined weights to be 1 will be 
shown in a later section.  

 We shall show the PERF D-S combination rule in practice with the same values we used 
to show the error in Yu and Frincke’s method.   
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PERF D-S COMBINATION

Step 1

Sensor AP70-1 Attack Xmas ¬ Xmas U

AP70-2 Attack Reliability 1 1 1

Mass 0 0.333333 0.666667

Xmas 0 1 0 0 0

¬ Xmas 0.5 1 0 0.166667 0.333333

U 0.5 1 0 0.166667 0.333333

Step 2

Sensor AP70-Combined Attack Xmas ¬ Xmas U

Snort Attack Reliability 1 1 1

Mass 0 0.666667 0.333333

Xmas 0.5357143 0.8458 0 0.302071 0.151036

¬ Xmas 0.3928571 0.8458 0 0.221519 0.11076

U 0.0714286 0.8458 0 0.040276 0.020138

Step 3

Sensor Step 2 Combined Result Attack Xmas ¬ Xmas U

Wireshark ADAttack Reliability 1 1 1

Mass 0.216406 0.533801 0.249794

Xmas 0.7692308 0.8457 0.14078 0.347258 0.1625

¬ Xmas 0.1923077 0.8457 0.035195 0.086814 0.040625

U 0.0384615 0.8457 0.007039 0.017363 0.008125

Step 4

Sensor Step 3 Combined Result Attack Xmas ¬ Xmas U

Wireshark DulAttack Reliability 1 1 1

Mass 0.502504 0.23448 0.263016

Xmas 0.7692308 0.8439 0.326202 0.152214 0.170738

¬ Xmas 0.1923077 0.8439 0.081551 0.038053 0.042685

U 0.0384615 0.8439 0.01631 0.007611 0.008537

 



49 
 

Step 1

K = 0

m12(Xmas) 0

m12(¬Xmas) 0.666667

M(U)= 0.333333

Step 2

K = 0.302071

m12(Xmas) 0.216406

m12(¬Xmas) 0.533801

M(U)= 0.249794

Step 3

K = 0.382453

m12(Xmas) 0.502504

m12(¬Xmas) 0.23448

M(U)= 0.263016

Step 4

K = 0.233764

m12(Xmas) 0.669833

m12(¬Xmas) 0.115302

M(U)= 0.214865  

As one can see, the results produced for the same values as in Yu and Frincke’s method are 
within the valid range of probability values. We shall provide fusion results, based on measured 
values of r and s in a later section. 

7 PERF D-S CALCULATION 

In this section we shall show how Progressively Evolving Reliability Factor (PERF) D-S 
calculations are carried out. 

7.1 Evidence Gathering  

We begin with the process of evidence gathering by mounting two types of attacks by using a 
test-bed in the laboratory.  

1. DoS Attack 
2. Xmas Tree Scan 

More details about these attacks can be found in sections 5.3 and 5.6. First we carried out 
DoS attacks and gathered the required evidence from them. The DoS attacks were carried out 
using the CommView tool, described in section 6.2, to flood the victim with packets. Once the 
attack finishes, we record the evidence from all the five sensors. More specifically, we take from 
each sensor anything that supports the believed attack state or anything that refutes the attack 
state. In this research we denote,  

� r = positive evidence 
� s = negative evidence 

This is quite similar to Jøsang [2000]. For any positive evidence, r will be incremented 
and for any negative evidence s will be incremented. By how much r or s will be incremented 
will depend on many factors. We defined these guidelines for our research as in the following 
tables, since no such guidelines exist in the literature. We found that by using the guidelines, the 
belief mass, in each case, provided a value, which when combined with others, generated the 
correct results for the cases of an attack for both the attacks. 

RF Protect Evidence (DoS) r s 
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For every totally favorable alert 5 points  
For every totally unfavorable alert  5 points 
For every partially favorable alert 1 points  
For every partially unfavorable alert  1 points 
   
   

Table 7-1. Point Assignment for RF Protect Evidence in a DoS attack 

Snort Evidence (DoS) r s 

For every totally favorable alert 5 points  
For every totally unfavorable alert  5 points 
For every partially favorable alert 1 points  
For every partially unfavorable alert  1 points 
For every 4000 packets captured in a DoS attack 1 point  
   
   

Table 7-2. Point Assignment for Snort in a DoS attack 

Wireshark Evidence (DoS) r s 

   
For every 4000 packets captured in a DoS attack  1 point  
For other packets (packets that are used to attack the victim is not 

considered in this case) indicating no attack state, consider the 

amount of packets and assign a subjective value to S – the reason 

being if we find packets that we don’t expect to be there, that 

shows the network could possibly be in another non-attack state 

 1 point 

For every two packets indicating an attack state, such as ICMP 

Destination Unreachable (Wireshark filter for finding this is 

icmp.type == 3 && icmp.code == 3) 

1 point  

Table 7-3.  Point Assignment for Wireshark in a DoS attack 

RF Protect Evidence (Xmas) r s 

   
For every totally favorable alert 5 points  
For every totally unfavorable alert  5 points 
For every partially favorable alert 1 points  
For every partially unfavorable alert  1 points 
   
   

Table 7-4. Point Assignment for RF Protect Evidence in a Xmas attack 
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Snort Evidence (Xmas) r s 

For every totally favorable alert 5 points  
For every totally unfavorable alert  5 points 
For every partially favorable alert 1 points  
For every partially unfavorable alert  1 points 
For every 4000 packets captured indicating no attack state  1 point 
   
   

Table 7-5. Point Assignment for Snort in a Xmas attack 

Wireshark Evidence (Xmas) r s 

   
For every 50 Xmas packets captured  

Wireshark Filter used to select Xmas packets is 

(tcp.flags.urg == 1 && tcp.flags.push == 1 && tcp.flags.fin == 1) 

1 point  

For every 4000 packets captured indicating no attack state  1 point 
An Xmas scan is preceded by scanning the network for available 

hosts (who has) using the ARP protocol, if this phase is present in 

the evidence (stage before Xmas packets are sent) 

2 points  

   

Table 7-6. Point Assignment for Wireshark in a Xmas attack 

For a higher bandwidth network, that has high traffic for a very long period, one may take the 
number of packets in each of the above cases as a larger value. In our test-bed, we chose to 
increment ‘s’ by 1 point for 4000 packets indicating no attack state. 

7.2 Belief Mass Calculation and Combination 

Once the evidence is gathered and points assigned accordingly, we can calculate the belief 
masses for each state. In our research the belief mass was calculated in the following way. The 
data given below is for a single sensor that gathered data in a Xmas tree scan. 

r s M(Xmas) M(¬Xmas) (U)nknown 

4 1 0.5714286 0.1428571 0.285714286 

M (Xmas) = r/r+s+2 

M (¬Xmas) = s/r+s+2  When U ≠ 0 

U = 2/r+s+2 

Also, it is required that  
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 M (Xmas) + M (¬Xmas) + U = 1 

We adapted this method of calculation from Jøsang [2000]. The Dempster-Shafer theory 
does not explicitly define a way to calculate basic probability assignment (BPA). We shall show 
a complete fusion example through PERF D-S below. In this example, we assume that all 
sensors are totally reliable and hence their reliability is 1. We shall later show the same example 
with the same evidence but with different reliability values. 

First the evidence gathered from 5 sensors is analyzed and belief masses are calculated as 
follows. 

r
A

s
A

M ( X m a s ) M ( ¬ X m a s ) ( U ) n k n o w n

0 4 0 0 . 6 6 6 6 6 6 7 0 . 3 3 3 3 3 3 3 3 3

r
B

s
B

M ( X m a s ) M ( ¬ X m a s ) ( U ) n k n o w n

0 4 0 0 . 6 6 6 6 6 6 7 0 . 3 3 3 3 3 3 3 3 3  

Table 7-7. Evidence from AP-70 Sensors 

r
D

s
D

M (X m a s ) M (¬ X m a s ) (U )n k n o w n

15 5 0.6818182 0.2272727 0.090909091  

Table 7-8. Evidence from Snort Sensor 

r
D

s
D

M ( X m a s ) M ( ¬ X m a s ) ( U ) n k n o w n

2 2 4 0 . 7 8 5 7 1 4 3 0 . 1 4 2 8 5 7 1 0 . 0 7 1 4 2 8 5 7 1  

Table 7-9. Evidence from Wireshark Sensor (1) 

r
D

s
D

M ( X m a s ) M ( ¬ X m a s ) ( U ) n k n o w n

2 2 4 0 . 7 8 5 7 1 4 3 0 . 1 4 2 8 5 7 1 0 . 0 7 1 4 2 8 5 7 1  

Table 7-10. Evidence from Wireshark Sensor (2) 

After belief mass assignment, we do the combination of these masses to form a more 
informed decision. Since there are 5 sensors, we need to perform 4 fusions. First data from two 
AP-70 sensors are fused; the result of that combination is then fused with evidence from the 
Snort sensor. That result would be fused with Wireshark sensor 1 and the resulting values would 
be fused with Wireshark sensor 2. The steps are shown in table 10-11. 
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PERF D-S COMBINATION

Step 1

Sensor AP70-1 Attack Xmas ¬ Xmas U

AP70-2 Attack Reliability 1 1 1

Mass 0 0.6666667 0.333333

Xmas 0 1 0 0 0

¬ Xmas 0.666667 1 0 0.4444444 0.222222

U 0.333333 1 0 0.2222222 0.111111

Step 2

Sensor AP70-Combined Attack Xmas ¬ Xmas U

Snort Attack Reliability 1 1 1

Mass 0 0.8888889 0.111111

Xmas 0.681818 1 0 0.6060606 0.075758

¬ Xmas 0.227273 1 0 0.2020202 0.025253

U 0.090909 1 0 0.0808081 0.010101

Step 3

Sensor Step 2 Combined Result Attack Xmas ¬ Xmas U

Wireshark AD Attack Reliability 1 1 1

Mass 0.192308 0.7820513 0.025641

Xmas 0.785714 1 0.151099 0.6144689 0.020147

¬ Xmas 0.142857 1 0.027473 0.1117216 0.003663

U 0.071429 1 0.013736 0.0558608 0.001832

Step 4

Sensor Step 3 Combined Result Attack Xmas ¬ Xmas U

Wireshark Dul Attack Reliability 1 1 1

Mass 0.516624 0.4782609 0.005115

Xmas 0.785714 1 0.405919 0.3757764 0.004019

¬ Xmas 0.142857 1 0.073803 0.068323 0.000731

U 0.071429 1 0.036902 0.0341615 0.000365

 

Table 7-11. Example: PERF D-S Combination for a Xmas Tree Scan with Sensors, 
assumed to be Totally Reliable 
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Step 1

K = 0

m12(Xmas) 0

m12(¬Xmas) 0.888888889

M(U)= 0.111111111   

Step 2

K = 0.606060606

m12(Xmas) 0.192307692

m12(¬Xmas) 0.782051282

M(U)= 0.025641026   

Step 3

K = 0.641941392

m12(Xmas) 0.516624041

m12(¬Xmas) 0.47826087

M(U)= 0.00511509  

  

Step 4

K = 0.449579832

m12(Xmas) 0.811815466

m12(¬Xmas) 0.187520743

M(U)= 0.00066379  

The final result is the mass assigned to the state M (Xmas) indicating the likelihood of a 
Xmas tree scan which is 0.8118 or 81.18%. The mass assigned to the state M(¬Xmas) is 0.1875 
or 18.75%. The value of uncertainty is 0.0006637 or 0.066%.  

Now we consider the same example but with different reliabilities for the sensors. By 
using reliability we can negate the effect of evidence that has a larger likelihood of being false. If 
we know that evidence from a certain sensor/s is erroneous or incorrect to a certain degree, we 
can reduce the effect of that evidence by using the reliability of that sensor. In the real world, 
reliability of a sensor can be calculated through historical data available and other knowledge 
available about the sensor’s performance. Any manufacturer of IDS systems will specify the kind 
of attacks the IDS detects. Depending on that knowledge one can adjust the reliability of that 
sensor for a certain attack. We shall give an example that uses the same data as the earlier 
example but with different reliabilities for the sensors. First, the modified reliabilities are given 
for the 5 sensors as below: 

R e l iab i l i ty V alu e

A P -70 -  1 1

A P -70 -  2 1

S n o rt 0.95

W ire sh ark  A D 0.97

W ire sh ark  D u l 0.93  

Now, what we expect from the results is M(Xmas) state which is less than 81.18%. The 
reason being, 3 of the sensors that provided support to the Xmas state have reliability values that 
are less than the first example. Also the AP-70 sensors have unmodified reliability values in this 
example. Hence their negative evidence will not make a difference as compared to last example. 
Now, let’s take a look at the combination of evidence with the same evidence as before. 
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PERF D-S COMBINATION

Step 1

Sensor AP70-1 Attack Xmas ¬ Xmas U

AP70-2 Attack Reliability 1 1 1

Mass 0 0.6666667 0.333333

Xmas 0 1 0 0 0

¬ Xmas 0.666667 1 0 0.4444444 0.222222

U 0.333333 1 0 0.2222222 0.111111

Step 2

Sensor AP70-Combined Attack Xmas ¬ Xmas U

Snort Attack Reliability 1 1 1

Mass 0 0.8888889 0.111111

Xmas 0.681818 0.95 0 0.5757576 0.07197

¬ Xmas 0.227273 0.95 0 0.1919192 0.02399

U 0.090909 0.95 0 0.0767677 0.009596

Step 3

Sensor Step 2 Combined Result Attack Xmas ¬ Xmas U

Wireshark AD Attack Reliability 1 1 1

Mass 0.169643 0.689881 0.140476

Xmas 0.785714 0.97 0.129292 0.5257878 0.107063

¬ Xmas 0.142857 0.97 0.023508 0.0955978 0.019466

U 0.071429 0.97 0.011754 0.0477989 0.009733

Step 4

Sensor Step 3 Combined Result Attack Xmas ¬ Xmas U

Wireshark Dul Attack Reliability 1 1 1

Mass 0.550491 0.3613513 0.088158

Xmas 0.785714 0.93 0.402252 0.2640446 0.064418

¬ Xmas 0.142857 0.93 0.073137 0.0480081 0.011712

U 0.071429 0.93 0.036568 0.0240041 0.005856

 

Table 7-12.  Example PERF D-S Combination for a Xmas tree scan with 3 sensors having 
reduced reliability 
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Step 1

K = 0

m12(Xmas) 0

m12(¬Xmas) 0.888888889

M(U)= 0.111111111

Step 2

K = 0.575757576

m12(Xmas) 0.169642857

m12(¬Xmas) 0.689880952

M(U)= 0.14047619

Step 3

K = 0.549295493

m12(Xmas) 0.550491153

m12(¬Xmas) 0.361351324

M(U)= 0.088157524  

Step 4

K = 0.337181256

m12(Xmas) 0.75923932

m12(¬Xmas) 0.12631585

M(U)= 0.11444483  

The value of M (Xmas) = 75.92% which is less than what we got with total reliability which was 
81.18%. This is what we expected by lowering the reliability of the sensors. One of the 
shortcomings of using a reliability factor is that the total of m12(Xmas) + m12(¬Xmas) + U does 
not equal one after combination. This is because reliability is usually less than 1 for sensors. This 
is the case in every combination when you consider reliability. In the regular Dempster-Shafer 
theory, combined mass is calculated as follows. 

m12(Xmas) = [(m1(Xmas).m2(Xmas) + m1(Xmas).m2(U) + m2(Xmas).m1(U))] / 1 - K   
 
m12(¬Xmas) = (m1(¬Xmas).m2(¬Xmas) + m1(¬Xmas).m2(U) + m2(¬Xmas).m1(U)) / / 1 - K   
 
m12(U) =   m1(U).m2(U) / / 1 - K   

K = (m1(Xmas).m2(¬Xmas) +m1(¬Xmas).m2(Xmas)) 

In our method (PERF), we do the calculations as follows. 

m12(Xmas) = [(R1.m1(Xmas). R2.m2(Xmas) + R1.m1(Xmas). R2.m2(U) + R2.m2(Xmas). 

R1.m1(U))] / (1 – K)   

 

m12(¬Xmas) = (R1.m1(¬Xmas). R2.m2(¬Xmas) + R1.m1(¬Xmas). R2.m2(U) + R2.m2(¬Xmas). 

R1.m1(U)) / / (1 – K)   

 
m12(U) =   1 – [m12(Xmas) + m12(¬Xmas)] 
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K = (R1.m1(Xmas). R2.m2(¬Xmas) + R1.m1(¬Xmas). R2.m2(Xmas)) 

When reliability is 1 (totally reliable) for all sensors, the two sets of formulae become the same. 

Dempster-Shafer 

� m12(U) =   m1(U).m2(U) / / (1 – K)   

PERF 

� m12(U) =   1 – [m12(Xmas) + m12(¬Xmas)]  

But, when taking reliability into consideration, they are not equal. In other words PERF’s  

m12(Xmas) + m12(¬Xmas) + U ≠ 1  when reliability is less than 1 

In PERF, we select the value of m12(U) in such a  way that the total will add up to 1. This way is 
logical, because when reliability is taken into consideration, what we lose from the actual mass 
can be attributed to uncertainty. Yu and Frincke’s method does not address this fact in their 
method.  Hence, in their method, 

m12(Xmas) + m12(¬Xmas) + U ≠ 1 when reliability is less than 1 

This is one of the reasons, the Yu and Frincke’s method starts showing a weakness in some 
cases. 

8 EXPERIMENTS AND ANALYSIS 

All the experiments were conducted using 5 wireless sensors and one attacker and one victim. A 
summary of the sensors and computers and wireless routers used are given below with the 
specifications of the CPU and random access memory (RAM). 

Sensor/Computer CPU RAM

Linksys WRT310N Router

Attacker Core 2 Duo 2.0 Ghz 4GB DDR2

Victim Pentium D 2GB DDR2

Snort Core 2 Duo 1.6 Ghz 2GB DDR2

Wireshark AD Core 2 Duo 1.6 Ghz 2GB DDR2

Wireshark Dul Pentium 4 2.8 Ghz 512 MB DDR 

RF Protect Pentium 4 256 MB RDRAM

AP-70 - 1 (Connects to RF Protect)

AP-70 - 2 (Connects to RF Protect)  

Table 8-1.  Computers, Router and Sensors used in the Experiment 
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The sensor setup and computer setup used in the experiment are given in the following diagram. 

 

Figure 8-1. Setup of the test-bed (Sensors, Computers and Router) 

8.1 Reliability of Sensors and CPU Utilization in DoS Experiments 

Since PERF adds the idea of reliability in fusion, we needed sensors, for which the 
reliability could be adjusted. In the experimental setting, we needed a way to simulate the 
reliability of a sensor. Therefore we introduced CPU load as a parameter. In this section we shall 
show that when the CPU load increases the reliability of a software sensor, decreases. Utilizing 
that fact, we conducted several experiments with various CPU loads.  
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In this thesis, to obtain a variable reliability factor for the sensors, we define the reliability of a 
sensor as a function of the CPU load of the sensor. In other words by modifying the CPU load of 
a sensor, the reliability of a sensor will be increased or decreased.  We conducted several 
experiments. The end results of the experiments proved that when the CPU load is increased the 
reliability of a sensor decreases. In the experimental setting, we were able to successfully modify 
the CPU load of the Wireshark sensors and the Snort sensor. The AP-70 sensor’s reliability was 
left untouched as we did not find a practical way of loading the AP-70 sensors with CPU loading 
software that can be measured in an experimental setting. The AP-70’s are hardware devices 
specializing in wireless monitoring whereas Wireshark and Snort are software devices, installed 
on actual computers that monitored the airwaves in promiscuous mode. 

 The metric used to measure the reliability of a sensor was the number of packets a sensor 
captured under a certain CPU load. By sending constant sized packets at a constant speed 
throughout the experiment, one can observe how many packets each sensor captures. Conducting 
the same experiment at varying CPU loads in the sensors, one can observe how the CPU load 
affects the packet capturing ratio of the sensor. Using this one can determine how reliable a 
sensor is under different CPU loads. 

 Several packet flooding experiments were conducted to observe the reliability of a sensor 
with varying CPU loads. In this section only the average values obtained from 30 experiments 
with different CPU loads are provided.  

First we carried out the experiment without modifying the CPU load. The CPU load, in 
this case, is the normal CPU load when just the sensor software is running with the operating 
system, with no other load. Then CPU load was increased gradually up to 90% of the CPU 
power utilized at the end. CPU load was varied from 30% to 50%, 70% and 90% of the total 
CPU power.  

In each of the five cases, the experiments consisted of sending a flood of packets. The 
same experiment was repeated 6 times and the average value was selected as the reliability of the 
sensor. The attacker fired the packets at 5000 packets per second at the victim while the sensors 
were sniffing the network in promiscuous mode.  

The results below give the averages of these 30 experiments at different CPU utilization 
levels.  
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CPU 

Utilizatio

n - Snort 

AD

CPU 

Utilization - 

Wireshark 

Dul

CPU 

Utilization - 

Wireshark 

AD

Packet 

Rate

per 

second

Packet 

Size

 in 

Bytes

AVG # of 

Captured 

Packets AD 

Snort

AVG 

Percentage 

Captured from 

Total - Snort AD

AVG # of 

Captured

 Packets Dul

 Wireshark

AVG Percentage 

Captured from 

Total - 

Wireshark Dul

AVG # of 

Captured 

Packets AD

 Wireshark

AVG Percentage 

Captured from 

Total - 

Wireshark AD

AVG 

Total 

Packets 

Sent

No Extra 

Load

No Extra 

Load

No Extra 

Load 5000 250 9596 22.86% 9579 22.82% 9593 22.86% 41967

30% 30% 30% 5000 250 9449 21.94% 9407 21.84% 9459 21.96% 43067

50% 50% 50% 5000 250 9269 21.28% 9180 21.08% 9269 21.28% 43550

70% 70% 70% 5000 250 8848 20.22% 8728 19.94% 8848 20.22% 43767

90% 90% 90% 5000 250 6676 15.56% 6564 15.30% 6672 15.55% 42900

 

Table 8-2 Reliability Values (Averages) from 30 experiments 

  

The above table displays the average percentage of packets captured at various CPU utilizations during high speed packet floods of 
5000 packets per second. The average was taken from a total of 30 experiments (6 each at a given CPU utilization). The data are for 2 
Wireshark sensors and one Snort sensor sniffing the network in promiscuous mode. 
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Figure 8-2. Average Percentage of packets captured at various CPU Utilizations 
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AVG % 

Packet 

Difference 

from First

Relative 

Reliability of 

Snort AD

Wireshark Dul, 

AVG % of Packet 

Difference from 

First

Relative 

Reliability of 

Wireshark Dul

AVG % of 

Packet 

Difference from 

First

Relative 

Reliability of 

Wireshark 

AD

0.00% 100% 0.00% 100% 0.00% 100%

-0.92% 99.08% -0.98% 99.02% -0.90% 99.10%

-1.58% 98.42% -1.75% 98.25% -1.58% 98.42%

-2.65% 97.35% -2.88% 97.12% -2.64% 97.36%

-7.30% 92.70% -7.52% 92.48% -7.31% 92.69%

 

Table 8-3. Average Relative Reliability of Sensors 

Instead of assigning absolute reliability values to the sensors, we calculated them on a relative basis. Therefore, at the start without any 
CPU loading software, the sensors were given a total (100%) reliability. As the experiment progressed, different readings were taken 
at varying CPU loads. First, when there is no extra load on the CPU, we calculate the captured packet percentage by 

� Captured Packet Percentage = Number of captured packets / Number of sent packets 

We do this procedure for every experiment at varying CPU loads. Then, at each experiment we calculate the percentage difference 
from the beginning of the experiment. Through this procedure we calculate the relative reliability of a sensor at a given CPU load. 
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Figure 8-3. Average Relative Reliability of Sensors with increasing CPU Utilizations 
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The experimental results clearly showed that a sensor captures fewer packets when the CPU load 
is increased. Therefore, by increasing the CPU utilization of a sensor, the reliability of a specific 
sensor can be decreased by a certain factor. The speed of 5000 packets per second was chosen 
because it was the maximum allowed by the CommView software, which we have used to flood 
packets. 

8.2 Reliability of Sensors and CPU Utilization in Xmas Tree Experiments 

To test the reliability of sensors under a Xmas tree attack, we conducted another set of 
experiments. In this experiment, the attacker conducts a series of Xmas tree scans on the network 
using the Zenmap network scanner under varying CPU loads. More details about Xmas tree 
attacks and Zenmap can be found in section 5.6. First the attacker does the Xmas scan with no 
CPU loading software. Also, the attacker fires packets at 500 packets per second toward the 
victim, so that the Xmas scan becomes less obvious. As a Xmas does not use a large number of 
packets for a total scan, by having the extra packet stream, it creates a real network environment 
by having other packets flowing through the network. The reliability calculations in the Xmas 
scans are done in a manner similar to that for DoS attack. We conducted 5 Xmas tree scans at 
Normal, 30%, 50%, 70%, 90% CPU loads and repeated it for 5 times for a total of 25 Xmas tree 
scans and calculated the average reliability of a sensor during a Xmas tree scan. The results were 
as follows. 
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CPU 

Utilizatio

n - Snort 

AD

CPU 

Utilization - 

Wireshark 

Dul

CPU 

Utilization - 

Wireshark 

AD

Packet 

Rate

per 

second

Packet 

Size

 in Bytes

AVG # of 

Captured 

Packets 

AD Snort

AVG 

Percentage 

Captured from 

Total - Snort AD

AVG # of 

Captured

 Packets Dul

 Wireshark

AVG Percentage 

Captured from 

Total - 

Wireshark Dul

AVG # of 

Captured 

Packets AD

 Wireshark

AVG Percentage 

Captured from 

Total - 

Wireshark AD

AVG 

CommVie

w Packets 

Sent

AVG 

Zenmap 

Packets 

Sent

AVG 

Total 

Packets 

Sent

No Extra 

Load

No Extra 

Load

No Extra 

Load 500 250 55470 83.14% 55409 83.04% 55473 83.14% 60100 6622 66722

30% 30% 30% 500 250 52705 79.92% 52635 79.81% 52707 79.92% 59320 6629 65949

50% 50% 50% 500 250 46751 76.17% 46689 76.06% 46754 76.17% 54800 6581 61381

70% 70% 70% 500 250 41796 70.92% 41722 70.80% 41795 70.92% 52360 6571 58931

90% 90% 90% 500 250 40775 67.71% 40608 67.43% 40776 67.71% 53600 6618 60218

 

Table 8-4. Average packets captured at various CPU Utilizations in Xmas tree scans 

The above table displays the average percentage of packets captured at various CPU utilizations during Xmas tree scans. The average 
was taken from a total of 25 experiments (5 each at a given CPU utilization). The data are for 2 Wireshark sensors and one Snort 
sensor sniffing the network in promiscuous mode. 
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Figure 8-4. Average Percentage of packets captured with various CPU Utilizations in 25 Xmas tree scans 
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Snort AD, 

AVG % Packet 

Difference 

from First

Relative 

Reliabilit

y of 

Snort AD

Wireshark Dul, 

AVG % of Packet 

Difference from 

First

Relative 

Reliability of 

Wireshark 

Dul

Wireshark AD, 

AVG % of Packet 

Difference from 

First

Relative 

Reliability of 

Wireshark 

AD

0.00% 100% 0.00% 100% 0.00% 100%

-3.22% 96.78% -3.23% 96.77% -3.22% 96.78%

-6.97% 93.03% -6.98% 93.02% -6.97% 93.03%

-12.21% 87.79% -12.25% 87.75% -12.22% 87.78%

-15.42% 84.58% -15.61% 84.39% -15.43% 84.57%

 

Table 8-5. Relative reliabilities with varying CPU Utilizations in Xmas tree scans 

Instead of assigning absolute reliability values to the sensors, we calculated them on a relative 
basis. Therefore, at the start without any CPU loading software, the sensors were given a total 
(100%) reliability. As the experiment progressed, different readings were taken at varying CPU 
loads. First, when there is no extra load on the CPU, we calculated the captured packet 
percentage by 

� Captured Packet Percentage = Number of captured packets / (Number of sent packets 
generated by Commview + packets, sent by Zenmap) 

Notice, that in this calculation we add both Commview packets and Zenmap packets to the total, 
unlike last time where we only added Commview packets. We do this procedure for every 
experiment at varying CPU loads. Then, at each experiment we calculate the percentage 
difference from the beginning of the experiment. Through this procedure we calculate the 
relative reliability of a sensor at a given CPU load during Xmas tree attacks. 
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Figure 8-5. Average Relative Reliability of Sensors with Various CPU Utilizations in 25 
Xmas Tree Scans 

The experimental results clearly showed that a sensor captures fewer packets when the CPU load 
is increased during a Xmas tree attack. But, the actual percentage of packets captured during 
Xmas tree attacks were greater than the percentage of packets captured at the same CPU load in 
DoS attacks. The reason being that we only send packets at 500 packets per second during the 
Xmas tree attack while during the DoS attack we sent packets at 5000 packets per second. 
However the relative reliability of sensors during Xmas tree attacks decreased compared with 
DoS attacks. A possible reason for this could be because our Xmas tree scans lasted longer than 
DoS attacks.  

8.3 DoS Attack Experiments and Analysis 

The experimental setup for DoS attacks consisted of 2 AP-70 sensors, 2 Wireshark sensors, 1 
Snort sensor, an attacker machine and a victim machine. The attacker flooded the victim with 
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high speed packet streams for a continuous period using 5000 packets per second (maximum 
allowed by CommView) packet streams using CommView. The Experimental setup is given 
below. 

 

Figure 8-6. DoS Attack Setup 
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Figure 8-7. CommView Software Configured to Flood Packets at 5000 Packets per Second 

30 Denial of Service (DoS) attacks were conducted at CPU utilizations, (normal, 30%, 50%, 
70%, and 90%). After each attack, evidence was gathered. This evidence was used for basic 
probability assignment and evidence fusion. We used 4 different methods of evidence 
combination. Namely they were, 

1. PERF D-S (Our method) 
2. Consensus (by Dr. Audun Jøsang) 
3. Yu and Frincke’s method 
4. Dempster-Shafer Theory 

After gathering data and calculating basic probability assignments, they were fused as described 
earlier. First we fuse two sensors and use the result as one from a single sensor and fuse that with 
the next sensor. We get the final combination result after fusing the 5 sensors. The results at each 
reliability level have been calculated. Since 4 methods of fusion are used, we compared them. 
Given below are the results of the experiments. The detailed calculations of fusion and basic 
probability mass calculation are given in the technical report 09-027, School of Computer 
Science, University of Windsor. 
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CPU Load PERF Consensus Yu and Frincke Regular D-S

Normal 96.65% 76.00% 96.65% 96.65%

30% 95.39% 75.86% 100.69% 97.12%

50% 93.14% 73.08% 103.26% 96.19%

70% 89.26% 71.43% 110.85% 96.06%

90% 83.96% 74.07% 135.23% 96.60%

Normal 97.43% 78.57% 97.43% 97.43%

30% 94.01% 73.08% 99.38% 95.74%

50% 93.52% 73.33% 104.49% 96.91%

70% 92.01% 76.00% 108.91% 97.38%

90% 81.30% 70.37% 138.04% 94.89%

Normal 95.50% 73.91% 95.50% 95.50%

30% 95.81% 78.26% 99.93% 97.42%

50% 93.90% 75.00% 104.99% 97.29%

70% 87.79% 69.57% 105.73% 93.27%

90% 81.30% 70.37% 138.04% 94.89%

Normal 98.54% 79.31% 98.54% 98.54%

30% 92.70% 73.91% 97.84% 94.36%

50% 91.72% 70.97% 102.73% 94.82%

70% 88.68% 70.37% 110.59% 95.43%

90% 81.91% 71.43% 137.06% 95.59%

Normal 96.64% 78.26% 96.64% 96.64%

30% 94.45% 73.33% 100.02% 96.20%

50% 91.68% 71.43% 102.11% 94.75%

70% 88.85% 70.37% 106.99% 94.20%

90% 79.41% 69.57% 131.67% 92.49%

Normal 99.13% 84.62% 99.13% 99.13%

30% 92.68% 73.91% 97.49% 94.36%

50% 92.13% 72.00% 102.61% 95.42%

70% 90.18% 73.08% 109.52% 96.91%

90% 84.12% 78.26% 133.00% 97.66%

Comparative Results for m12(DoS)

 

Table 8-6. Comparative Results of the 4 Combination Methods in 30 DoS Attacks



72 
 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

D

o

S

A

t

t

a

c

k

P

r

o

b

a

b

i

l

i

t

y

CPU Utilization

DoS attack probability

PERF

Consensus

Yu and Frincke

Regular D-S

 

Figure 8-8. DoS Attack Probability After Combination for 30 DoS Attacks
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Figure 8-9. DoS Attack Probability After Combination Excluding Yu and Frincke’s method for 30 DoS Attacks 
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It was quite evident from the results that Yu and Frincke’s exponential combination rule did not 
fare well with 5 sensors. After 2 combinations, Yu and Frincke’s exponential method started 
giving probability values exceeding 100% for the attack state. Yu and Frincke’s method seemed 
to have a maximizing effect of the actual situation.  

 As for Consensus method, it seemed to provide reasonable results with the given 
evidence. In our DoS attack scenario since we decreased the reliability of the sensors gradually 
there seemed to be a gradual decrease of evidence gathered, that affected the outcome of the final 
result. Especially, in a DoS attack scenario we paid special attention to the number of packets 
received at various CPU Utilization levels. When the CPU utilization is increased we receive 
slightly less number of packets as compared with the case of lower CPU utilization stage. Hence 
we detected a slight decrease in the combination results in successive stages of the experiment. 
The Consensus method does not have a way to account for the decrease in reliability of sensors. 
Therefore, the decrease in Consensus was small compared to that in PERF. 

 Dempster-Shafer also lacked the capability to take into account the reliability of sensors. 
Hence the values of fusion, obtained by using D-S method, provided slightly higher estimates for 
the attack states compared with the values obtained through Consensus and PERF. D-S 
combination showed a slight decrease but the decrease was smaller than that for Consensus and 
PERF. This is because D-S theory always tries to give high positive results when the evidence is 
positive (and extremely negative results under negative evidence). 

 PERF showed results as expected. Thus we found that the feature of considering 
reliability of sensors in PERF gives better results. Moreover this eliminates the problem 
encountered by Yu and Frincke’s exponential D-S, as explained in section 8.4.   All the 3 
methods of combination except Yu and Frincke’s method provided probability values that are 
within the valid range of 0% to 100%. 
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CPU Load AVG PERF AVG Consensus AVG Yu and Frincke AVG Regular D-S

Normal 97.31% 78.45% 97.31% 97.31%

30% 94.17% 74.73% 99.22% 95.87%

50% 92.68% 72.63% 103.37% 95.90%

70% 89.46% 71.80% 108.76% 95.54%

90% 82.00% 72.34% 135.51% 95.35%

Comparative Results for m12(DoS)

 

Table 8-7. Average Results from the Combination of Evidence from the 30 DoS attacks 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

Normal 30% 50% 70% 90%

D

o

S

A

t

t

a

c

k

P

r

o

b

a

b

i

l

i

t

y

CPU Utilization

Average Probability of a DoS Attack

AVG PERF

AVG Consensus

AVG Yu and Frincke

AVG Regular D-S

 

Figure 8-10. Average Probability of 30 DoS attacks at various CPU Utilizations 

As can be seen from the above graphs, it is clear that all the methods except Yu and 
Frincke’s method, on an average, had a decreasing value of probability of attack as the CPU load 
was increased. PERF had a slightly bigger decrease due to its consideration of reliability of 
evidence in fusion. Also, unlike the other methods, when the reliability of sensors decreased, the 
uncertainty in the combined state or m12(U) increased. This is clearly shown from the following 
data. 
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CPU Load PERF D-S Consensus Yu and Frincke Regular D-S

Normal 0.66% 8.00% 0.66% 0.66%

30% 1.92% 6.90% 0.40% 0.38%

50% 3.33% 7.69% 0.63% 0.56%

70% 5.61% 7.14% 0.53% 0.44%

90% 11.95% 7.41% 0.80% 0.50%

Normal 0.51% 7.14% 0.51% 0.51%

30% 2.13% 7.69% 0.59% 0.56%

50% 3.29% 6.67% 0.38% 0.34%

70% 5.19% 8.00% 0.60% 0.52%

90% 12.85% 7.41% 0.81% 0.50%

Normal 1.00% 8.70% 1.00% 1.00%

30% 2.25% 8.70% 0.80% 0.76%

50% 3.32% 7.14% 0.44% 0.40%

70% 5.86% 8.70% 1.18% 1.00%

90% 12.85% 7.41% 0.81% 0.50%

Normal 0.29% 6.90% 0.29% 0.29%

30% 2.66% 8.70% 1.18% 1.11%

50% 3.27% 6.45% 0.43% 0.38%

70% 5.68% 7.41% 0.61% 0.51%

90% 12.72% 7.14% 0.70% 0.44%

Normal 1.00% 8.70% 1.00% 1.00%

30% 1.96% 6.67% 0.40% 0.38%

50% 3.38% 7.14% 0.58% 0.52%

70% 5.47% 7.41% 0.68% 0.57%

90% 13.35% 8.70% 1.58% 0.99%

Normal 0.39% 7.69% 0.39% 0.39%

30% 2.67% 8.70% 1.17% 1.11%

50% 3.61% 8.00% 0.75% 0.68%

70% 5.61% 7.69% 0.60% 0.52%

90% 12.44% 8.70% 1.05% 0.69%

Comparative Results for m12(U) in DoS Attacks

 

Table 8-8. Comparative Results for m12(Uncertainty) During 30 DoS Attacks
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Figure 8-11. . Combined Uncertainty in 30 DoS Attacks 
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CPU Load AVG PERF AVG Consensus AVG Yu and Frincke AVG Regular D-S

Normal 0.64% 7.85% 0.64% 0.64%

30% 2.27% 7.89% 0.76% 0.72%

50% 3.37% 7.18% 0.53% 0.48%

70% 5.57% 7.72% 0.70% 0.59%

90% 12.69% 7.79% 0.96% 0.61%

Averages of Combined Uncertainties

 

Table 8-9. Averages of Combined Uncertainties in 30 DoS Attacks 
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Figure 8-12. Average Combined Uncertainty with CPU Utilization for 30 DoS Attacks 
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Figure 8-13. Average Combined Uncertainty with CPU Utilization for 30 DoS Attacks 

Experimental results clearly indicated that when the reliability decreases, the PERF 
combination assigns more mass to the unknown state.  Although, other methods showed 
decreases of uncertainty for the combined state it was not consistent with the given reliability. 
Consensus and Dempster-Shafer do not have any way of handling reliability. The results given 
by PERF are fairer because when the reliability of evidence decreases, the uncertainty of 
evidence should increase. This in turn results in having a higher value for the combined 
uncertainty of the sensors. No other method successfully handled uncertainty with decreasing 
reliability. 

8.4 Xmas Tree Scan Experiments and Analysis   

The experimental setup for Xmas tree scans were similar to that of DoS attacks. The Xmas scans 
were conducted using Zenmap (graphical user interface of Nmap). Also, packets were sent to the 
victim at 500 packets per second using CommView. If we conducted Xmas scans without 
background traffic, it would be too easy to detect. Further, these extra packets would mean that 
the network sensors have more work to do and catch the normal packets and the Xmas packets. 
This decreases the chance of capturing the Xmas packets. Moreover this normal packet stream 



80 
 

would act as negative evidence, indicating some state other that the Xmas attack state in 
evidence fusion. 

A total of 30 Xmas scans were conducted during the experiment with CPU utilizations 
varying from (normal, 30%, 50%, 70%, and 90%). The gathered evidence was used to calculate 
the basic probability assignments as before. As in the DoS research we used 4 different methods 
of evidence combination to fuse the gathered evidence. The Xmas tree scans were conducted as 
described earlier in the definitions section. The results are compared side by side to see which 
method performs the best. Given below are the results of the experiments. 
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CPU Load PERF Consensus Yu and Frincke Regular D-S

Normal 90.39% 74.05% 90.39% 90.39%

30% 80.47% 72.48% 115.66% 84.97%

50% 75.59% 71.43% 174.72% 84.92%

70% 73.40% 74.81% 723.44% 89.46%

90% 69.39% 74.24% -728.75% 88.68%

Normal 90.59% 74.03% 90.59% 90.59%

30% 78.01% 72.85% 128.45% 80.82%

50% 75.68% 72.39% 213.02% 83.86%

70% 72.22% 73.48% 505.04% 88.18%

90% 66.98% 72.52% -344.53% 84.22%

Normal 89.14% 73.68% 89.14% 89.14%

30% 85.21% 74.48% 114.08% 90.40%

50% 79.43% 73.97% 164.44% 89.74%

70% 70.76% 73.08% 4460.71% 85.26%

90% 68.45% 73.95% -1191.03% 87.07%

Normal 93.63% 74.84% 93.63% 93.63%

30% 87.04% 74.17% 110.96% 92.49%

50% 77.90% 73.83% 193.48% 87.25%

70% 71.96% 73.57% 519.37% 87.92%

90% 69.44% 74.82% -879.86% 89.15%

Normal 95.49% 75.00% 95.49% 95.49%

30% 88.28% 75.00% 110.85% 93.79%

50% 79.93% 75.34% 187.37% 89.64%

70% 73.83% 75.18% 428.74% 90.24%

90% 71.56% 75.91% 978.27% 92.33%

Normal 92.19% 74.84% 92.19% 92.19%

30% 85.64% 74.52% 113.51% 90.97%

50% 81.55% 75.66% 155.04% 92.35%

70% 71.15% 73.24% 1206.43% 86.60%

90% 66.93% 72.66% -385.41% 84.64%

Comparative Results for m12(Xmas)

 

Table 8-10. Comparative Results of the 4 Combination Methods in 30 Xmas Tree Scans 
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Figure 8-14. Comparative Results of the 4 Combination Methods in 30 Xmas Tree Scans 
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Figure 8-15. Comparative Results of the Combination Methods in 30 Xmas Tree Scans excluding Yu and Frincke’s method 
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As in the DoS attack experiments Yu and Frincke’s exponential combination rule did not fare 
well in an environment with 5 sensors. The only stage where it gave results that are in the correct 
range is when the reliability of sensors were taken as 1 or totally reliable. In all other stages of 
CPU utilizations (30%, 50%, 70%, 90%) Yu and Frincke’s exponential method gave probability 
values exceeding 100% for the attack state or values below 0% (negative values). In the actual 
combination Yu and Frincke’s method gave values within the correct probability range until the 
2nd or 3rd stage of the fusion (3 or 4 sensors fused). But, the last two stages of fusion always gave 
results that are not within the valid range of probabilities when reliability was used as an 
exponent.  

 As for the Consensus method, it seemed to provide reasonable results with the given 
evidence. The average results from the combination results indicated that the combined 
probability values for the attack varied about 2% points during the 5 different CPU utilization 
levels. The little variation can be explained as follows. During the Xmas tree scan using Zenmap, 
we also flooded the victim with UDP packets at 500 packets per second. In a Xmas tree scan we 
considered Xmas tree packets as positive evidence or evidence supporting a Xmas scan state in 
the network. But, the UDP packets were considered as negative evidence refuting the Xmas 
state. When the CPU utilization was increased, less number of Xmas packets as well as UDP 
packets were captured. Or in other words it caused a decrease of both the positive and negative 
evidence. Hence the results obtained by Consensus method did not change by more than 2% 
points. Consensus method did not have a way to account for the decrease in reliability in sensors. 
Therefore, the decreases in Consensus’ combined results were small compared to PERF. 

 Dempster-Shafer fusion provided slightly higher estimates for the attack states compared 
with Consensus and PERF. This is because D-S theory always tries to give high positive results 
when the evidence is positive (and extremely negative results under negative evidence). It also 
lacked the capability to take into account the reliability of sensors. D-S combination showed a 
decrease for the probability of the attack state when the reliability of sensors decreased. But, this 
decrease was small, about 1% point for each CPU Utilization level.    

PERF combination results indicated that the probability of a Xmas attack decreased with 
increasing CPU utilization. This is what the result should be, as the better results were obtained 
since PERF had a way to take care of reliability of sensors in a multi sensor environment. 
Moreover it did not encounter problems faced by Yu and Frincke’s exponential D-S. Also, unlike 
the other methods, when the reliability of sensors decreased, the uncertainty in the combined 
state or m12(U) increased. This is clearly shown from the following data. 
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CPU Load PERF D-S Consensus Yu and FrinckeRegular D-S

Normal 0.01% 1.27% 0.01% 0.01%

30% 5.42% 1.34% 0.03% 0.01%

50% 10.88% 1.50% 0.08% 0.02%

70% 16.98% 1.53% 0.40% 0.02%

90% 20.97% 1.52% -0.51% 0.02%

Normal 0.01% 1.30% 0.01% 0.01%

30% 5.73% 1.32% 0.03% 0.01%

50% 10.99% 1.49% 0.09% 0.02%

70% 17.17% 1.52% 0.32% 0.02%

90% 21.49% 1.53% -0.29% 0.02%

Normal 0.01% 1.32% 0.01% 0.01%

30% 5.03% 1.38% 0.03% 0.02%

50% 10.33% 1.37% 0.05% 0.02%

70% 17.49% 1.54% 2.94% 0.02%

90% 21.21% 1.68% -1.38% 0.03%

Normal 0.01% 1.26% 0.01% 0.01%

30% 4.84% 1.32% 0.02% 0.01%

50% 10.59% 1.34% 0.06% 0.01%

70% 17.18% 1.43% 0.29% 0.02%

90% 20.90% 1.44% -0.55% 0.02%

Normal 0.01% 1.28% 0.01% 0.01%

30% 4.73% 1.28% 0.02% 0.01%

50% 10.32% 1.37% 0.05% 0.01%

70% 16.84% 1.46% 0.24% 0.02%

90% 20.40% 1.46% 0.62% 0.02%

Normal 0.01% 1.26% 0.01% 0.01%

30% 4.97% 1.27% 0.02% 0.01%

50% 9.99% 1.32% 0.04% 0.01%

70% 17.34% 1.41% 0.59% 0.02%

90% 21.48% 1.56% -0.34% 0.02%

Comparative Results for m12(U) in Xmas Tree Scans

 

Table 8-11. Comparative Results for m12(U) During 30 Xmas Tree Scans
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Figure 8-16. - Combined Uncertainty in 30 Xmas Tree Scans 
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CPU Load AVG PERF AVG ConsensusAVG Yu and FrinckeAVG Regular D-S

Normal 0.01% 1.28% 0.01% 0.01%

30% 5.12% 1.32% 0.02% 0.01%

50% 10.52% 1.40% 0.06% 0.02%

70% 17.17% 1.48% 0.80% 0.02%

90% 21.08% 1.53% -0.41% 0.02%

Averages of Combined Uncertainties

 

Table 8-12. Averages of Combined Uncertainties in 30 Xmas Tree Scans 
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Figure 8-17. Average Combined Uncertainty with CPU Utilization for 30 Xmas Tree Scans 

 This is what should happen in reality. When the reliability of sensors decreases, simply 
decreasing the attack state and increasing the not attack state is not enough. Instead PERF after 
calculating the attack state, increases the combined uncertainty that was caused by unreliable 
data. This makes sense because by providing us with unreliable data, the sensors increase the 
data related to uncertainty. 
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 All the 3 methods of combination, except Yu and Frincke’s method, provided probability 
values that are within the valid range of 0% to 100% for the m12(Xmas) state. Also, the following 
data clearly indicates that the PERF combination worked out a lower probability of attack state 
when reliability of sensors decreased.  

CPU Load AVG PERF AVG Consensus AVG Yu and Frincke AVG Regular D-S

Normal 91.90% 74.41% 91.90% 91.90%

30% 84.11% 73.92% 115.59% 88.91%

50% 78.34% 73.77% 181.35% 87.96%

70% 72.22% 73.89% 1307.29% 87.94%

90% 68.79% 74.02% -425.22% 87.68%

Comparative Result for m12(Xmas)

 

Table 8-13.  Average Probabilities for m12(Xmas) from the Combination of Evidence from 
30 Xmas Tree Scans 
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Figure 8-18. Average Probability of 30 Xmas Attacks at Various CPU Utilizations 
Excluding Yu and Frincke 
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Figure 8-19. Average Probability of 30 Xmas attacks at various CPU Utilizations Excluding 
Yu and Frincke 
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9 CONCLUSION 

In this thesis we have introduced a new evidence combination method called PERF D-S that 
takes the reliability of evidence into consideration. Further we adapted a technique used by 
Jøsang [2000] to calculate the basic probability assignments in a logical way. We conducted over 
a hundred experiments in a wireless network to mount two different types of attacks. Intrusion 
detection in wireless networks and fusing evidence based on the Dempster-Shafer theory, to the 
best of our knowledge, has not been studied by any other researcher. Moreover other researchers 
had only utilized a couple of sensors. We have used five sensors, belonging to three different 
categories. The diversity of the sensors helped to increase the number of attacks that can be 
covered by intrusion detection in a multi-sensor data fusion environment. By using two attack 
types, we showed that even when a certain type of sensor fails to detect an attack another sensor 
will detect it and give an alert, thereby improving the range of attacks covered by the IDS.  In a 
wireless environment, using a diverse set of sensors should increase the accuracy of intrusion 
detection. Moreover Yu and Frincke’s method showed inconsistent results, when the number of 
sensors increased beyond two.  

 In an environment where multiple sensors that are different from each other are utilized, 
the evidence from all sensors should not be treated equally. In our research we introduced 
reliability of evidence as a factor.  In any large network, intrusion detection sensors will have 
inherent reliabilities, depending on what kind of attacks they can detect and which ones they 
cannot detect. Every IDS has a particular average value of False Positive value and a False 
Negative value. Moreover the performance of IDSs and sensors can become less reliable in the 
presence of high traffic. The reliability factor that we have introduced should be modulated 
depending on historical performance of the sensor. If we know that a sensor performed at an 
80% accuracy level for a certain attack over the previous attack, we can utilize that factor when 
fusing evidence.   

 We compared the results of our method with the results of Consensus Operator, the 
Dempster-Shafer Theory, Yu and Frincke’s exponential method. Yu and Frincke’s exponential 
combination rule produced negative probability values and probability values exceeding 100% 
when more than two sensors were fused. Using reliability as an exponent seemed to be the cause 
of the problem. Our way of using a progressive reliability factor took care of the problem. 
Combined with the way of calculating basic probability assignments using Jøsang [2000] 
method, uncertainty decreases as the amount of evidence increases, if PERF is used. In other 
words, when PERF is used and when the amount of positive or negative evidence increases, 
uncertainty decreases. 

 The results of combining using PERF seemed to be encouraging for the attacks we 
covered in our research. Since both Dempster-Shafer and Consensus did not have a way of 
handling reliability, our method was the only one that showed a decrease that is consistent with 
the given reliability in the combined state of the attacks when reliability was decreased. 
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 The open area of further research is to test PERF’s performance under more attack 
scenarios. Tests of PERF in production wireless networks can provide confidence for using 
PERF more widely.
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APPENDIX A 

A.1. E-mail Communication with Aruba Networks about Configuring AP-70 Sensors 

On Fri, 13 Feb 2009 13:41:52 -0800 "Senthil Kumaran" wrote:  
> Hi Aqila,   
>  
> Thank you for calling Aruba Networks Technical Support.  
>  
>  
> The ticket number for your reference is T-48725 and you are speaking to  
> Engineer Sindhu Kizhakeel who is CC'ed on this e-mail. By the way, if  
> you prefer a certain type of communication method over another, i.e.,  
> email over phone, etc, please let us know as well.  
>  
>  
> Also for all controller and/or Aruba OS related queries, please be  
> prepared to provide the controllers' tar.logs as these are most commonly  
> used in troubleshooting a high percentage of all issues - your assigned  
> engineer will confirm this as a requirement. For instructions on  
> extracting logs from! the controller, please visit our Knowledge Base  
> website for Answer ID 44  
> > dp.php?p_faqid=44> .  
>  
>  
> For better service regarding this ticket, please include the ticket  
> number in all further communication.  
>  
> Regards,  
> --  
> Senthil Kumaran  
> Customer Support Executive | Global Support Center  
> Aruba Networks Inc. 

 

From:  "Sindhu Kizhakeel" <skizhakeel@arubanetworks.com>  

Subject: RE: Need assitance the provisioning AP / Ticket # T-48725 Date: Fri, 13 Feb 2009 15:42:45 -0800  

To: "Dissanayake Aqila" <dissanaa@uwindsor.ca>  

Cc: "Bhavik Kiri" <bhavik@arubanetworks.com>, "Bipin Babu" <bipin@arubanetworks.com>, "Joshua Simon" 
<jsimon@arubanetworks.com>, "Preethi Devarajan" <pdevarajan@arubanetworks.com>, "Jagan Smile" 
<jsmile@arubanetworks.com> 

Hi Aqila, 
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As informed earlier we need to use a splitter cable and go to the boot prompt of the ap. 

  

Apboot>purge 

Apboot>save 

  

The above mentioned steps is to remove the parameters like ip address which is already configured on the ap.Once 
this is done please follow the steps below 

Apboot>setenv ipaddr 192.168.1.10 

Apboot>setenv netmask 255.255.255.0 

Apboot>setenv gatewayip 192.168.1.50 

Apboot>setenv master 172.160.10.10 

Apboot>setenv serverip 172.160.10.10 

Apboot>save 

Apboot>Reset 

Apboot>boot. 

  

The ip address that I have specified here is just for an example you can add accordingly. Important thing that you 
have note here is the master and the server ip that has to be entered must be the RF protect server’s ip address. 

  

Kindly let me know if you have any further queries. 

  

 Regards, 

Sindhu Kizhakeel 

Network engineer 

Customer Advocacy Team  

Aruba Networks Inc. 
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From: Dissanayake Aqila [mailto:dissanaa@uwindsor.ca]  

Sent: Tuesday, March 03, 2009 3:32 PM 
To: Sindhu Kizhakeel 

Subject: Re: T-48725 

  

Hi Sindhu, 

We still haven't been able to connect to the AP-70. We have ordered an Aruba Serial Breakout 
Adapter, and is awaiting it's arrival. Once it arrives, we'll try again and let you know. Thanks, 

Aqila. 

On Tue, 3 Mar 2009 15:25:14 -0800 "Sindhu Kizhakeel" wrote:  
> Hi Aqila,  

 

From: Sindhu Kizhakeel  

Sent: Friday, March 06, 2009 4:48 PM 

To: 'Dissanayake Aqila' 
Cc: Sriram Subramanian (Support); Preethi Devarajan; Ravi Kumar Gollapudi 

Subject: RE: T-48725 

  

Hi Aqila, 

  

As per the conversation with my colleague Sriram iam sending the documents. Please do let us know if you have 
any further queries. 

  

  

 Regards, 

Sindhu Kizhakeel 

Network engineer 

Customer Advocacy Team  

Aruba Networks Inc. 
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From:  "Sindhu Kizhakeel" <skizhakeel@arubanetworks.com> 

Subject: RE: T-48725 

Date: Fri, 6 Mar 2009 16:56:21 -0800 

To: "Dissanayake Aqila" <dissanaa@uwindsor.ca> 

Cc: 
"Sriram Subramanian \(Support\)" <srirams@arubanetworks.com>, "Preethi 
Devarajan" <pdevarajan@arubanetworks.com>, "Ravi Kumar Gollapudi" 
<rkgollapudi@arubanetworks.com> 

 

 
 

 
Hi Aqila, 

  

Here is another document. Please log into to https://iris.arubanetworks.com and enter the code 

mentioned below. You will get the file. since it is above 12 mb I am not able to send the email and 

hence giving the access code below. 

  

96a03a7f7601e288d5b75da2ff6f2cb9 

  

Do let me know if you find any difficulties in accessing the file. 

  

 Regards, 

Sindhu Kizhakeel 

Network engineer 

Customer Advocacy Team  

Aruba Networks Inc. 
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From:  "Sriram Subramanian \(Support\)" <srirams@arubanetworks.com> 

Subject: RE: T-48725 

Date: Fri, 6 Mar 2009 19:24:32 -0800 

To: "Dissanayake Aqila" <dissanaa@uwindsor.ca> 

Cc: 
"Preethi Devarajan" <pdevarajan@arubanetworks.com>, "Ravi Kumar Gollapudi" 
<rkgollapudi@arubanetworks.com> 

 

 
 

Aqila , 

  

Please let me know if you have any issues on the firmware upgrade or installation on the RF Protect 
server . 

  

  

Thanks  

Sriram Subramanian 

Network Engineer, Customer Advocacy Team  

Aruba Networks Inc.  

From: Dissanayake Aqila [mailto:dissanaa@uwindsor.ca]  
Sent: Wednesday, March 11, 2009 7:35 AM 

To: Sindhu Kizhakeel 

Subject: Re: T-48725 

  

Hi Sindhu, 

After downloading and installing the software, I'm still unable to connect to the AP-70. I e-
mailed the following message to Sriram on the 7th of march but haven't got a reply yet. If you 
could look into that it'll be great. Thanks. 

Aqila. 

Hi Sriram, 

After installing the new server version I get the following error when trying to start up the RF 
protect client. "Database version does not match this console. Please use the correct version of 
the console. The client version we have is 5.0.6 of RF Protect. Is it possible to obtain the newer 
version of client? Please let me know. Thank you.  
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From:  "Sindhu Kizhakeel" <skizhakeel@arubanetworks.com> 

Subject: RE: T-48725 

Date: Thu, 12 Mar 2009 12:59:49 -0700 

To: "Dissanayake Aqila" <dissanaa@uwindsor.ca> 

Cc: 
"Sriram Subramanian \(Support\)" <srirams@arubanetworks.com>, "Preethi 
Devarajan" <pdevarajan@arubanetworks.com>, "Ravi Kumar Gollapudi" 
<rkgollapudi@arubanetworks.com> 

 

 
 

Hi Aqila, 

  

Please find the access code  for installing the 6.7 code version on the Rf protect client. Please log on to 
https://iris.arubanetworks.com and enter the access code 

3affc750267ad93b739917f9364ffd67  

and you can get the file. Install the software on the console and please let me know how it goes. 

  

 Regards, 

Sindhu Kizhakeel 

Network engineer 

Customer Advocacy Team  

Aruba Networks Inc. 

 

From: Dissanayake Aqila [mailto:dissanaa@uwindsor.ca]  

Sent: Friday, March 13, 2009 3:31 PM 

To: Sindhu Kizhakeel 
Subject: Re: T-48725 

  

Hi Sindhu, 

I was able to download the software successfully. I will let you know whether we are able to 
connect to the sensors with the new software. Thank you for your help. 

Aqila. 
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From: Dissanayake Aqila [mailto:dissanaa@uwindsor.ca]  

Sent: Sunday, March 15, 2009 3:29 PM 
To: Sindhu Kizhakeel 

Subject: Re: T-48725 

  

Hi Sindhu, 

We are still having problems configuring the AP-70 sensors. We have installed the new software 
(both client and server). The problem is when we try to run the commands to configure the AP-
70 through Hyperterminal, the sensor doesn't restart properly and errors out. I was wondering 
whether there's a way for you to remotely assist us in this configuration. (Initial Configuration). 
We can successfully connect to the boot> prompt in the AP, but once we set the RF Protect 
Servers IP address in the AP and restart, it errors out. Let me know what we can do about this. 
Thank you. 

Aqila. 

 

On Mon, 16 Mar 2009 12:47:35 -0700 "Sindhu Kizhakeel" wrote:  
> Hi Aqila,  
>  
>  
>  
> Kindly send me the error message you are getting on the screen or please  
> send the screen shot of the error message.  
>  
>  
>  
> Regards,  
>  
> Sindhu Kizhakeel  
>  
> Network engineer  
>  
> Customer Advocacy Team  
>  
> Aruba Networks Inc. 
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From: Dissanayake Aqila [mailto:dissanaa@uwindsor.ca]  

Sent: Monday, March 16, 2009 3:19 PM 
To: Sindhu Kizhakeel 

Subject: Re: T-48725 

  

Hi Sindhu,  

I have attached 2 screenshots of the error.  

Thanks, 

Aqila. 

 

Hi Aqila, 

  

Please give me your convenient time so that I can call you 

  

 Regards, 

Sindhu Kizhakeel 

Network engineer 

Customer Advocacy Team  

Aruba Networks Inc. 

 

From: Dissanayake Aqila [mailto:dissanaa@uwindsor.ca]  

Sent: Tuesday, March 17, 2009 1:33 PM 

To: Sindhu Kizhakeel 

Subject: Re: T-48725 

  

Hi Sindhu, 

How about 2 p.m central time on Thursday? 
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Thanks, 

Aqila. 

On Tue, 17 Mar 2009 12:36:12 -0700 "Sindhu Kizhakeel" wrote:  
> Hi Aqila,  
>  
>  
>  
> Let me give you a call on Thursday then. Please let me know your  
> convenient time so that I can call you accordingly.  
>  
>  
>  
> Regards,  
>  
> Sindhu Kizhakeel  
>  

 

From:  "Sindhu Kizhakeel" <skizhakeel@arubanetworks.com>  

Subject: RE: T-48725 Date: Tue, 17 Mar 2009 13:46:50 -0700 

 To: "Dissanayake Aqila" <dissanaa@uwindsor.ca> 

Aqila, 

  

Sure, 

I will give you a call at that time. Meanwhile you can try this command and let me know if there is any change. 

  

Apboot>tftp boot 

Apboot>setenv master <ip address of master > 

Apboot>setenv serverip <ip address of the server> 

Apboot>save 

Apboot>reset 

Apboot>boot 
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Regards, 

Sindhu Kizhakeel 

Network engineer 

Customer Advocacy Team  

Aruba Networks Inc. 

 

From:  "Sindhu Kizhakeel" <skizhakeel@arubanetworks.com>  

Subject: RE: T-48725  

Date: Mon, 23 Mar 2009 16:33:03 -0700  

To: "Dissanayake Aqila" dissanaa@uwindsor.ca 

 

 

Hi Aqila, 

 

Try the Earlier command that I had given you and if that shows the same error message then please try this and 
please let me know the status after you try that. 

 

Apboot>setenv ipaddr <ipaddress> 

Apboot>setenv netmask <mask> 

Apboot>setenv gatewayip <gateway ip> 

Apboot>setenv serverip<system ip> 

Apboot>setenv master <master ip address> 

Apboot>save 

Apboot>reset 

Apboot>boot 

Now try pinging the tftp server from the ap boot prompt and please check if you are able to ping.If you are able to 
ping Then try the below command and please let me know if there is any change 
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Apboot>setenv bootcmd tftpboot 

Apboot>save 

Apboot>boot 

Regards 

Sindhu 

 

From:  Dissanayake Aqila [mailto:dissanaa@uwindsor.ca]  
Sent: Tuesday, March 24, 2009 10:58 AM 
To: Sindhu Kizhakeel 
Subject: Re: T-48725 

  

Hi Sindhu, 

I will try and out the new commands and let you know. (I will most probably try them out on 
coming friday). I have a couple of questions regarding the commands. 

1.) When you say "Now try pinging the tftp server from the ap boot prompt " do you mean to 
ping the computer where RF Protect Server is installed from the boot prompt of the sensor? 

2.) In the command sequence 

Apboot>setenv ipaddr  
>  
> Apboot>setenv netmask  
>  
> Apboot>setenv gatewayip  
>  
> Apboot>setenv serverip  
>  
> Apboot>setenv master  
>  
> Apboot>save  
>  
> Apboot>reset  
>  
> Apboot>boot  

After the save step, you say to reset and then boot, when I type reset this will actually boot the 
sensor, typing boot again will boot the sensor again. Is this correct? Or does reset s! erve a 
different purpose? Let me know. 
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Thanks, 

Aqila. 

 

 

From:  "Sindhu Kizhakeel" <skizhakeel@arubanetworks.com> 

Subject: RE: T-48725 

Date: Tue, 24 Mar 2009 11:04:48 -0700 

To: "Dissanayake Aqila" <dissanaa@uwindsor.ca> 
 

 
 

Aqila, 

  

You are correct. 

1.Ping the computer where rf protect server is installed from the boot prompt of the sensor. 

  

2.If Reset command is booting the sensor then that serves the purpose. You can just run the 
command ‘reset’. 

  

Do Let me know once you try these steps. 

  

Regards 

Sindhu 

 

 

From: Dissanayake Aqila [mailto:dissanaa@uwindsor.ca]  

Sent: Friday, March 27, 2009 3:27 PM 

To: Sindhu Kizhakeel 

Subject: Re: T-48725 
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Hi Sindhu, 

Now we are able to successfully connect to both sensors through RF Protect. We didn't do 
anything different. I basically connected the AP-70 sensors directly to the router (after they were 
configured to point to the RF Protect Server). No TFTP Boot was required, and when we tried 
tftp boot it failed. Thanks your help with this matter. One thing I noticed was that the sensors act 
differently each time we boot them up. Somehow now RF Protect can detect them, and that's 
good. 

Aqila.  

 

From:  "Sindhu Kizhakeel" skizhakeel@arubanetworks.com 

 Subject: RE: T-48725 Date: Fri, 27 Mar 2009 16:50:58 -0700  

To: "Dissanayake Aqila" dissanaa@uwindsor.ca 

 

Oh that’s nice to know Aqila. May I have the status of this ticket as closed since everything is working 
now. please let me know 

  

 Regards, 

Sindhu Kizhakeel 

Network engineer 

Customer Advocacy Team  

Aruba Networks Inc. 
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