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ABSTRACT

The Dempster-Shafer (D-S) theory provides a metbhazbmbine evidence from multiple nodes
to estimate the likelihood of an intrusion. Thedhés rule of combination gives a numerical
method to fuse multiple pieces of information taide a conclusion. But, D-S theory has its
shortcomings when used in situations where eviddra® significant conflict. Though the
observers may have different values of uncertamtize observed data, D-S theory considers the
observers to be equally trustworthy. This thesisoaguces a new method of combination based
on D-S theory and Consensus method, that takescorieideration the reliability of evidence
used in data fusion. The new method’s results e compared against three other methods
of evidence fusion to objectively analyze how tipeyform under Denial of Service attacks and
Xmas tree scan attacks.

Keywords: Dempster-Shafer, Theory of Evidence, Intrusion D@, Multi Sensor Data
Fusion, Consensus Operator
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1 INTRODUCTION

The rapid growth of the Internet and its relatetivoek infrastructure is changing computing as
we know it. Especially in the last decade we haenghe greatest leap in wireless technology
which has given new meaning to networking. Unlikd days where one needed a physical
connection to connect to the Internet, these dagscan connect to the Internet using a wireless
network connection through a computer or even omedbile phone device. Unfortunately,
along with the facility of wireless connectivity V@come risks of malicious intrusions. Though
intrusion detection in wired networks is a well Bxpd subject, intrusion detection in wireless
networks is yet to be studied to the same extemhelly detection of intrusions in wireless
networks and appropriate responses remain extremglgrtant areas of research. A security
breach can cause mission critical systems to beailable to end-users causing millions of
dollars worth of damage. If the next generationndérnet and network technology is to operate
successfully, it will require a set of tools to Bza wireless networks and detect and prevent
intrusions. A large distributed network, particlyawith facilities of wireless connectivity,
would need multiple sensors to be able to catatusians of all types. Alerts may be generated
by the sensors or the associated Intrusion Dete@igstems. These alerts provide evidence,
which has to be used for generating reliable infdram about intrusions, even though it is
known that none of the sensors or intrusion deiacistems are fully reliable.

According to the Wikipedia, intrusion detectiorthe act of detecting actions that attempt
to compromise the confidentiality, integrity or dahility of a resource. Intrusion detection is a
difficult process that requires security practigesmto have a deep understanding of networks and
their functionality. Finding an accurate attacknsityire is extremely challenging even if we
know the network is under attack. This is becabgesignature needs to be narrow enough to
differentiate between normal legitimate traffic aadack traffic. Good intrusion detection is
completely dependent on this property. If the &ttsignature is not accurate it will cause “False
Positives” and “False Negatives”. If the intrusicletection system gives too many false
positives, that would mean that the security ptiacter who is responsible for checking the
alerts and tracing them would waste a lot of timefalse positives. On the other hand, if the
intrusion detection system does not give an alegmthere is an actual attack that would be bad
as this means that the security practitioner ismama that his system is under attack. Though,
some intrusion detection systems automate sometaspkethe process, the intervention of the
security practitioner is very much required to ctéetg the process of good intrusion detection.
Ideally, the goal of a good intrusion detectiontsgsis to lower the false positive rate and the
false negative rate.

At present, completely preventing intrusions antdeotunauthorized actions appear
unrealistic. Due to the rapid growth of the Intéraed the vast array of possibilities it has
opened up more and more systems that have becanrtarget of intruders. So, it has become
critical to detect these intrusions in a timely man and carry out necessary preventative



measures to track down the attackers and discodtdiges attacks. There are many intrusion
detection systems (IDS) and intrusion preventiosteys (IPS) in the market today which
facilitate in identifying intrusions and taking ressary preventative measures. New techniques
are developed every year to make these IDS/IP&megstvork more accurately and efficiently.
One of these new techniques is to combine evidgatieered through multiple systems or access
points to arrive at a more accurate result. Therthassociated with this new technique is known
as the Dempster-Shafer Theory of Evidence. The BamShafer theory is also known as D-S
theory of evidence.

Research on intrusion detection has been goingoomére than two decades. However
research on intrusion detection using the D-S thebevidence only started after the year 2000.
Since then researchers have published around tvpapigrs that try to improve the idea of data
fusion in intrusion detection using the DempsteafShtheory.

The National Technical University of Athens (NTUAJas been one of the main
universities that has been conducting researcintomsion detection using the D-S theory. Three
of the leading researchers in this field are atemfNTUA. Vasilis Maglaris and Basil Maglaris
of the NTUA have both published two papers on maétisor data fusion for Denial of Service
(DoS) detection using the D-S theory of evidenckristos Siaterlis of the NTUA is the only
researcher so far to publish three papers on intngetection using the D-S theory. Researchers
from the Florida International University (FIU) healso been involved in research related to D-
S theory and intrusion detection. Two of their egskers, Te-Shun Chou and Kang K. Yen have
also published two papers each in the area. Nerodsearcher in this field has published more
than one paper.

2 DEFINITIONS AND RELATED CONCEPTS

2.1 Dempster Shafer Theory

The Theory of Evidence is a branch of mathematies is concerned with using evidence to
calculate the probability of an event. The DempSteafer theory (D-S theory) is a theory of
evidence used to combine separate pieces of ewdencalculate the probability of an event.
The Dempster-Shafer theory was introduced in th@0’Eby Arthur Dempster [1968] and

developed in the 1970’s by Glenn Shafer [1976].0kding to Glen Shafer the D-S theory is a
generalization of the Bayesian theory of subjeqgtirebability.

The Dempster-Shafer theory can be viewed as aaudthr reasoning under epistemic
uncertainty. A major advantage of the Dempster-&hdheory in an intrusion detection
environment is its ability to combine evidence pded by different observers. These observers
could even be completely different and located tetgdfrom each other. Each observer could
provide its own perceived state to a central semhgch will combine the evidence to determine



the final state of the network. The most importpatt of this theory is Dempster’'s rule of
combination which combines evidence from two or e®ources to form inferences.

In the Following sub-section we shall describe sahthe important definitions that are
needed to understand this thesis.

2.1.1 The Frame of Discernmen®]

A complete (exhaustive) set describing all of téts $n the hypothesis space. Generally, the
frame is denoted @. The elements in the frame must be mutually ety If the
number of the elements in the set is n, then theepset (set of  all subsets @f)(will have 2'
elements.

2.1.2 BPA (Basic Probability Assignment)

The theory of evidence assigns a belief mass to ealgset of the power set. Itis a positive
number between 0 and 1. It exists in the form pfabability value.

If ® is the frame of discernment, then a function,

m: 2 [0, 1] is called a BPA, whenever
m (@) =0, and

m(A)>0,YASO

Xm(A)=1and

AcO

2.1.3 Belief (Bel)

Given a frame of discernme@tand a body of empirical evidence {m;}Bm (B,), m (Bg)....},
the belief committed to A® is

Bel (A) =X m (Bi)
BCA

Also, Bel @) =1

2.1.4 Plausibility Function (PI)



The plausibility (PI) is the sum of all the masséthe sets B that intersect the  set of interest
A:

PI(A)==m (Bi), B|BNA#Q

2.1.5 Belief Range

The interval [Bel (A), Pl (A)] is called the beliehnge. Plausibility (PI) and Belief (Bel) are
related as follows

Pl (A) = 1 — Bel A)

0 |< Uncertainty ).| }
e Bel(a) | Bel(-4) 5 |
(A i <Bel("A) 51
S PI(A) ﬁ\ '

Figure 2-1. Relationship between Plausibility and Blief

2.1.6 Dempster’'s Combination Rule

The combination called the joint mass; §jns calculated from the two sets of massesand
mo.

BnC=A,Zmi(B) my(C)
m12 (A) = mi2 (A) # &
1-[BnC=¢d, ~m4(B) mz(C)]

* my, (A) = Combined belief of the hypothesis A
= my (B) = Belief committed to B as seen by the firsserver
* my(C) = Belief committed to C as seen by the secdrs®nrer

In this equatiorfiB n C = &, £ m1(B) m2(C)] part in the denominator is known as K.

K=[BnC=g,3mi1(B) m2(C)]



K represents basic probability mass associated eatiflict. K is calculated by summing the
products of the BPA'’s of all sets where the intetisa is null.

2.2 CONSENSUS OF OPINIONS AND RELATED DEFINITIONS

The definitions in this sub section are derivednfrdhe paper “A logic for uncertain
probabilities” by Dr. Audun Jgsang [Jgsang, 200@] ‘&@he Consensus Operator for Combining
Beliefs” [Jgsang, 2002].

\2.2.1 Disbelief Function

Let ® be a frame of discernment, and le$ be a Belief Mass Assignment (BMA) (same as BPA
or Basic Probability Assignment) @ Then the disbelief function corresponding withimthe
function d: 2 > [0, 1] defined by:

d(x) = Z me(y), X,y € 20

ynx=yg

2.2.2 Uncertainty Function

Let ® be a frame of discernment, and les bre a Belief Mass Assignment (BMA) @ Then
the uncertainty function corresponding witl isithe function u: 2> [0, 1] defined by:

u(x) = Z me(y), X,y € 20

ynx+*J

Total uncertainty can be expressed by assigningheallbelief mass t®. The belief function
corresponding to this situation is called the vasubelief function. A BMA with zero belief
mass assigned ® is called a dogmatic BMA.

2.2.3 Relative Atomicity

Let © be a frame of discernment, and let x,3°. Then for y# & the relative atomicity of x to y
is the function a : 2> [0, 1] defined by:

axty) = xnyl/lyl, xy2°y+d



It can be observed thatxy = & = a(x/y) = 0 and that & x = a(x/y) = 1. In all other
cases the relative atomicity will be a value betw@eand 1.
The relative atomicity of an atomic state to i@nfie of discernment, denoted by &)/ can

simply be written as a(x). If nothing else is sfiedi the relative atomicity of a state then refers
to the frame of discernment.

2.2.4 Opinion

Let ® be a binary frame of discernment with 2 atomitesta and - x, and letgie a BMA on
® where b(x), d(x), u(x), and a(x) represent theigbeldisbelief, uncertainty, and relative
atomicity functions on x in 2respectively. Then the opinion about x, denotedviyis the tuple
defined by:

W= (b(x), d(x), u(x), a(x))

2.2.5 Consensus

The consensus opinion of two opinions is an opiniwat reflects both opinions in a fair and
equal way.

Let W = (B, d?, u?, a®) and WP= (b®, dB, u®, a®) be opinions respectively held by
agents A and B about the same proposition x. Lgt®e (b8, d*B, u™®, a®) be the
opinion such that, K =,8 + u®- ™ u,®. When *, u® > 0, the relative dogmatism between
W,* and W?is defined byy so thaty = u®/ u’. Then W*® is called the consensus between
W,* and W?, representing an imaginary agent [A, B]'s opinalout x, as if she represented
both A and B.

ForK #£0

(1)bA% = (0" u + b u) /K

(2) dXA,B: (d)(A uXB + d(B U)(A) / K

(3) u B = (U U)K

(4) aXA,B — a(B uXA + a(A UXB _ (a(A+ a(B) uXA uXB/ uXA + U(B _ ZLL(A uXB

= 3= +3al)2wheny*, uf=1
= b =rrf+s+2

« d A= SrtS2 where u 0
» u = 212



The parametensrepresents the amount of evidence supportingdtumbevent and the
parameters represents the amount of evidence supportingesiion.

ForK=0

1) b P =ybS +b® /y+1
FR v e
B)u"=0

@ arf=ya’+a’/y+1

2.3 Denial of Service (DoS) Attack

According to the Wikipedia, “a denial-of-servicdaak (DoS attack) or distributed denial-of-
service attack (DDoS attack) is an attempt to makeomputer resource unavailable to its
intended users.” One of the common methods of kaftamlves saturating the target (victim)
machine with communication requests that it capmotess legitimate requests or it responds so
slowly as to render itself unavailable [Denial oérdce Attack, Wikipedia]. In wireless
networks, to perform a Denial of Service Attackearquires a high-powered network interface
card (NIC) [Denial of Service Attack, Wikipediah bur research we utilized a laptop computer
equipped with a Wireless N, NIC to perform all DatBacks.

According to [Denial of Service Attack, Wikipediahe United States Computer Emergency
Response Team defines symptoms of denial-of-seattaeks to include:

1. Unusually slow network performance

2. Unavailability of a particular web site

3. Inability to access any web site

4. Dramatic increase in the number of spam emailsvede

In our research we extensively use packet flood$ attacks that saturate the victim with
packets. This reduces the available bandwidth enrtetwork to do legitimate work there by
restricting a computer resource or making it unawde for legitimate tasks.

2.4 Transmission Control Protocol (TCP)

“The Transmission Control Protocol (TCP) is oneta# core protocols of the Internet protocol

suite” [Transmission Control Protocol, Wikipedi&].CP is intended for use as a highly reliable
host-to-host protocol between hosts in packet-swediccomputer communication networks, and
in interconnected systems of such networks” [RFG].7aCP is a connection-oriented, end-to-

end reliable protocol designed to fit into a layketeerarchy of protocols which support multi-

network applications” [RFC 793]. Figure 5-2 show$@P header. As one can see from this, 8
bits are allocated for flags. TCP based scan tegciesi set these flags to different values or
combination of values in order to do the scannikagording to the Wikipedia [TCP] these flags

are



1. CWR - Congestion Window Reduced (CWR) flag is gethe sending host to indicate
that it received a TCP segment with the ECE fldg se
2. ECE (ECN-Echo) — indicate that the TCP peer is EE@phble during 3-way handshake
3. URG - indicates that the URGent pointer field gn#ficant
4. ACK - indicates that the ACKnowledgment field igrsficant
5. PSH — Push function
6. RST — Reset the connection
7. SYN — Synchronize sequence numbers
8. FIN — No more data from sender
Byte
otset |0 l K | B 1 3 [
0 Source Port Destination Port *
. Sequence Number
20
8 Acknowledgment Number Byles
Oifset
12 Offset Reserved CE J CE F:]Elgfé{ S F Window
16 Checksum Urgent Pointer
j & . | i | : | j & 8 | ' 8 | i & 8 | i 8 | m j & . | i | : | j & 8 | m =l
20 TCP Options (variable length, optional) g v
T L) T 1 L L) L L T T T L T L L L) T T ! L) T L L) L r —
Bi10123456?1390‘r2345l6?39§123'456?393?
= nicbie —#— Byte —#f—word >
TCP Flags Congestion Notification TCP Options ) Offset \
T — T —
lC EUAPRSE | ECN (Explicit Congestion 0 End of Options List Number of 32-bit words in
Notification). See RFC 1 No Operation (NOP, Pad) TCP header, minimum value
Congastion Window 3168 for full details, vaiid 2 Maximum segment size of 5. Multiply by 4 to get
C 0x80 Reduced (CWR) states below. 3 Window Scale byte count.
E 0x40 ECN Echo (ECE) S 4 Selective ACK ok
U 0x20 Urgent Snoa0 1 8 Timestamp RFC 793
A 0x10 Ack Ssﬂ‘rg g? g:l
P 0x08 Push Checksum Please refer to RFC 793 for
R 0x04 Reset MoGongestion 01 00 T the complete Transmission
S 0x02 Syn Mo Gongeetar 19, R0 Checksum of entire TCP Control Protocol (TCP)
F 0x01 Fin Coagastion 11 0o segment and pseudo Specification,
Rwavis Fuagonte: 11, U header (parts of IP header)
Sonder Aesponse 11 14

Figure 2-2. TCP Header

Adapted from http://nmap.org/book/images/hdr/MIBPFHeader-800x564.png
2.5 Port Scanning

“The most common type of network probe is probadbyport scan” [TEO, 2000]. “A port scan
is a method used by intruders to discover the seswviunning on a target machine” [TEO, 2000].
By simply checking whether a given port is openedlosed, an attacker can determine whether
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to attack that machine on that specific port or. filBbr example, if the intruder finds that port
143 (the IMAP port) is open; she may proceed td fant what version of IMAP is running on
the target machine. If the version is vulnerabhe siay be able to gain super user access to the
machine using an exploit” [TEO, 2000].

Port scanning can be conducted in many ways. Tost nvell known port scanning
techniques are listed below [Port Scanning Techesglnsecure.org]

TCP connect scan
TCP SYN scan
TCP FIN scan
TCP null scan
TCP window scan
TCP ACK scan
TCP Maimon scan
Xmas tree scan

. UDP scan

10.1P protocol scan
11.FTP bounce scan
12.1dle scan

©CoNOOA~WDNE

‘2.5.1 Xmas Tree Scan

The Xmas tree scan exploits a subtle loopholeenlitGP RFC to differentiate between open and
closed ports [Port scanning techniques, Insecwgl.okccording to Insecure.org “If the
[destination] port state is CLOSED, an incomingrsegt not containing a RST causes a RST to
be sent in response”. According to Nmap.org, whEamsing systems compliant with the TCP
RFC text, any packet not containing SYN, RST, orKAlGits will result in a returned RST if the
port is closed and no response at all if the mdpen. According to Nmap.org as long as none
of those bits are included, any combination of dtieer three (FIN, PSH, and URG) are ok.
Nmap exploits this with the Xmas tree scan.

In a Xmas tree scan, if a RST packet is receitteel port is considered closed. This is
illustrated by the diagram below.

—FIN, URG, PUSH + pgry 618

————RT—

Source Destination
192.168.0.8 192.168.0.7

Figure 2-3. Closed Port in a Xmas Scan



Adapted from http://www.networkuptime.com/nmap/pageshtmi

A no response means it is open or filtered. The Epomarked filtered if an ICMP
unreachable error (type 3, code 1, 2, 3, 9, 1@3)ris received. This scenario of not receiving a
response is displayed below.

Source Destination
192.168.0.8 192.168.0.7

Figure 2-4. Open or Filtered port in a Xmas Scan
Adapted from http://www.networkuptime.com/nmap/p&dgeshtmi

According to the Wikipedia a key advantage of thesan types is that they can sneak
through certain stateless firewalls. That makesXimas tree scan stealthier than a regular SYN
scan. Xmas tree packets are not commonly presergtmorks and indicate a high probability of
network reconnaissance activities [Christmas traeket, Wikipedia]. Luckily though, intrusion
detection products and advanced firewalls can befigured to detect these types of
reconnaissance scans. Snort intrusion detectideraywill alert on a Xmas tree scan which was
tested in our research work.

Since there are systems that do not follow RFG 88@e systems send RST responses to
the probes regardless of whether the port is opemiPort scanning techniques, Insecure.org].
This will result in all ports being labeled as @&ds This behavior is shown by Microsoft
Windows and many Cisco devices [Port scanning igcles, Insecure.org]. However, this scan
will work against most UNIX based system [Port s@ag techniques, Insecure.org]. Also, these
scans can't distinguish open ports from certatargd ones, leaving one with the response open
or filtered [Port scanning techniques, Insecurg.org

2.5.2 Packet Design for the Xmas Tree Scan

We shall demonstrate the packet design for a Xtres scan using CommView. As
explained earlier, a TCP packet contains certaigsflwhich should be activated to do a Xmas
tree scan. A Xmas tree scan sends a TCP packetetm@te device with the URG, PUSH, and
FIN flags set [Xmas tree scan, Networkuptime]. ‘ST'td called a Xmas tree scan because of the
alternating bits turned on and off in the flag b§@86101001), much like the lights of a Christmas
tree” [Xmas tree scan, Networkuptime]. Using Comewiwe set the TCP flags to match the
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value 00101001 which corresponds to 29 in hexana@ciThe flag structure will be displayed in
the following way in CommView.

B Flags: FIM-PSH LRG
e URG
ACK:D
. PSH: 1
 RST:0
L SYM: O
LFIMi1

Figure 2-5. Xmas Tree Packet with FIN PSH URG FlagSet

3 EQUIPMENT AND SOFTWARE USED IN THE EXPERIMENTS

3.1 Aruba AP-70 Sensors

According to Aruba Networks AP-70 datasheet, theubfa AP-70 is a dual-radio indoor
wireless access point capable of supporting funstiancluding WLAN access, air
monitoring/wireless intrusion detection and prewant and secure enterprise mesh across the
2.4-2.5 GHz and 5 GHz RF spectrums.” In our redetwo Aruba AP-70 sensors were used to
do intrusion detection through the RF protect isitvn detection system.

Figure 3-1. Aruba AP-70 Sensor



3.2 CommView

According to the CommView website, CommView is awwak monitor and analyzer that
provides a picture of the traffic flowing throughP& or LAN segment. In our research we will
be using CommView to construct TCP, UDP and ICMEBkpts for various attacks and create
Denial of Service (DoS) attacks using its builtpacket flooder. For creating TCP packets,
CommView provides a hex editor that provides thalify of setting each flag of a TCP packet
to the desired value. Further, CommView provideséerface to flood packets to a network at a
maximum rate of 5000 packets per second. Givermb&aa screen shot of CommView’s hex
editor. It also shows its packet flooding interfacigh parameters such as “packets per second,
packet size”.

B Send Packets via Dell Wireless 1390 WLAN Mini-Card - Packet Scheduler Miniport
5} Ethermet IT |loxoo: EERCRCE I
o Destination MAC: 00:13:46:79:E6:C1L 0xl0: 00 SC 11 11 00 00 S0 01 A5 62 CO A3 01 &F CO A%

Source MAC: D022iFR1E02:02
‘.. Ethertype: 0x0800 (2045) - IP

Oxz0: 01 6E 05 00 71 AC 03 00 01 00 41 4Z 43 44 45 46 .n.._ogo. ... ABCDEF
Ox320: 47 48 49 44 4B 4A 4C 4D 4E 4F 50 E1 52 53 54 EE  CHIJEJLMNOPQRETU
;.IP\rersion:UxU‘t(‘i) Oxd0: E& E7 E8 B3 EA Z0 Z0 20 Z0 Z0 EO E0 Z0 E0 20 Z0 TVWXYZ
. Header langth: 0x05 (5] - 20 bytes OxE0: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 Z0
+1- Type of service: (x00 () Ox&0: 20 Z0 20 20 Z0 20 20 20 20 20
Total length: 0x005C (52)
L ID: 0x1111 (4369)
. [ Flags
- Fragrnent offset; 0x0000 ()
L Time to live: 0xg0 (128)
- Pratocal: 0301 (1) - ICMP
- Chechsum: DxABEZ [42335) - comrect
. Source IP: 192,168,111
+ Drestination TP 192,168.1,110
+ L IP Cptions: Mone
= ICMP
L. Type: 0208 (8) - Echo
Lo Code: 0300 (10
i Checksurn: 0:71AC (29100) - corvect
. Identifier: 030300 (763)
' Sequence Mumber: 0x0100 (256)

wepee ]

-

b -
| Templates |
| Fake
ICMP
ICMP For DoS 111 o 110
ICMP Twpe 3 Code 2
TP
TEP Legit
UDp
1IDE for DS 111 ba 110

Packet Generator

Packets per second: :-5000 o [y 1 | timels)

¥

Figure 3-2. CommView Hex Editor
3.3 Nmap/Zenmap

According to Nmap.org, Nmap or “Network Mapper” ‘s free and open source utility for
network exploration or security auditing.” “Nmapessraw IP packets in to determine what hosts
are available on the network, what services (appto name and version) those hosts are
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offering, what operating systems (and OS versighgy are running, what type of packet
filters/firewalls are in use, and other charact&$s [Nmap]. It was designed to scan large
networks, but can work to scan single hosts al&etently Nmap added an advanced GUI
interface, called Zenmap. We have used Zenmap inegperiments to conduct Xmas tree
attacks.

“=* Ffenmap

Scan Tools Profile  Help

Target: [192.168.1.1,!'24 V| Profile: ; \r_: Scan

Zommand: inmap s -y 192,168.1.1/24|

[ Hosts ” Services ] Mmap Cukpuk -F'curts,l'Hu:usts Topology | Hosk Details | Scans

i s o |nmap-si-v192.168.1.1/24 v

W 192.165.1.103
19716811

Starting Nmap 5.00 { http: //nmap.org ) at 2009-12-02 06:25 Central |
Standard Time

ENSE: Loaded 0 scripts for scanning.
Initiating ARP Ping Scan at 0&:Z5
Scamming 103 hosts [l port/host]
Completed ARP Ping Scan at 0&6:E5, 1.7Zs elapsed (103 total hosts)
Initiating FParallel DNS resolution of 103 hosts. at 06:E5
Completad Parallel DNS resolution of 103 hoscs. at 06:E5, 0.03=s elapsed
Initiating Parallel DNS resolution of 1 host. at 06:EZ5
Completad Parallel DNE resolution of 1 host. at 0g:EE5, 0.03= elapsed
Initiating *IAS Scan at 08:E5
Scavming 192 _168.1.1 [1000 ports]
Completad XIMAS Scan at O0e:E5; 1.2&6s elapsed (1000 total ports)

'Host 192 .168.1.1 i= up (0.00= latency).
Interesting ports on 192 _168.1_1:

| Hot showm: 598 closed ports

| PORT STATE SERVICE

:Sﬂftcp cpen| filtered http

| 5431l/tep open| filtered park-agent

| MAC fiddress: 00:1E:EE:-38:27:98 (Cisco-Limksvys)

Initiating ARP Ping Bcan at 0&6:Z5
Scamming 152 hosts [l port/host]
Completed ARP Ping Scan at 0&:E25, 3.53=s elapsed (15Z total hosts)
Skipping FIMAS Scan against 192 16%.1_103 because Windows does not ! |
| support scanning your own machine (localhost) this way.
| Host 192 168.1.103 is up.
0 ports scanned on 192 _168.1.103
| | ==

Table 3-1 - Zenmap doing an Xmas Tree Scan
3.4 Snort

According to Snort.org, “Snort is an open sourcevpnek intrusion prevention and detection
system (IDS/IPS) developed by Sourcefire.” Curnenitlcombines the benefits of signature,
protocol and anomaly-based inspection and is alwideployed IDS/IPS technology. In our
research we will use a computer installed with Stwdo intrusion detection.
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AWINDOWS\system32icme

xx Canght Int—Signal
RBun time pricr to being shutdown was B6.625888 seconds

acket Wire Totals
Received:
Analy=zed: LS@A59 C29.998x>
Dropped: A CB.8a6x >
Dutstanding:

Breakdown by protocol Cincludes

ETH: 55859 180 . BE0:: >
ETHdi=c: (@.008: >
ULAM: (A .aaR: >
IPUG: (@.00E: >
IP6 EXT: CH. 808 )
IPhopts: {@. 008 >
IPedisc: CH.B8E: >
IP4: €99.872x>
IP4di=sc: (A . aee: >
TCP 6= (A.08Ax >
UDFP 6: CH.B08: )
ICHEPG - {B. 008 >
ICHP-1P: (@ .BeE: >
TCP:= (5. 8481

upp: €93.211x%>
ICHMP: C(A.B13x>
TCPdisc: Lo 55 151 el
UDPdi=zc: (@, 008 >
ICHPdis= CH.a8E:. >
FRAG: {@. 008 >
FRAG 6= (A . BEE: >
ARP: (A.928x>
EAPOL: CA. 888y
ETHLOOP = {A. 888>
CH. 808 )
{@.Q0E: >
CH. 888>
{@. 006>
(A . aee: >
(@008 >
Lo 55 151 el
(@, 008 >
CH.a8E:. >
{@.00E: >
(@ . 888>
{@. 008 >
(A .aaR: >
(@.00E: >
CH. 808 )
{@.Q0E: >
CH. 888>
{@. 006>
(A . aee: >
(A.08Ax >
(@ . 008>

Egmmmmmmmmmmmm
Gl [l

Mo

g

fary
oy

GRE IPu4:
GRE IPvb:
GRE IP6 E:
GRE PPTP:
GRE ARP:
GRE IPA:
GRE LOOP:
MPLS =
OTHER:
DISCARD:

HMERAEAAADOAGDEORDEOEDEHE O ENEDEE S -]

Figure 3-3. Snort IDS used in Intrusion Detection

3.5 RF Protect
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RF protect is a proprietary wireless intrusion deéte and prevention (WIDP) system developed
by Aruba Networks. In our research we use RF ptdteconduct intrusion detection and collect

alert data related to attacks. The AP-70 sensord geeir alerts to RF Protect’s central database
where it analyzes the data.

£ Aruba Networks - RFprotect Console : localhost

File Edit Tools Window Help

| = | - | Lo |© s "
@ [razhboard . @ Metwiork . @ Alertz . @ RF Errirorment . %*' Locate . \\; Shield . _""'_I'I Reports . Qﬁgl ==

'_ Known -S-tfa-tiﬁns_: Experts :_.;’-‘-.c;liuns PD|IC_',JEI"IfD[CE -S-ensol_s_: _Sn?nsur.f.emblétes Locations _'___Sw\;i.t.ches_:.__.;'-\u-tuma-ted-Fiepu-l-ts -Iﬁt-n-alnal-E;_;,Jsh-E 4 ’_

[ Add | = Enat # Dizable | B Delste: % Properte @

Enpert Exper... | Systerm/lzer
'/t Broadcast deauthentication Facket 3003 System 7
¥ /% Improper Broadcast Packet 3004 System Wi
[ B MetBIOS Traffic 007 System
¥ /% Clientls Not Using Encryption 1075 System
' /v AF iz zending both encrypted and unencypted data 1076 System
I /v, Clentis sending both encrypted and unencrppted data 1077 System
[ % Spunous Traffic Sent by &P 1078 Spstem
[ 2 Client Mulicast 1033 Syztem
' /v, d0MHz Channel at 2.4 GHz Detected 1089 System
I /v Greenfield operation detected 1092 Suster
# 1 Maliormed AkSOL 103 System
W % Malformed HT IE 1090 System
[ /vy ZFhone Tralfic Detected 1087 Syztem

£3 Citical "

7 £ APSSID Changs 1004 Spstem
64 & rogus AP detected 006 System
£ Unautharized Client detectad 007 Gystem
¥ £ Unautherized Ad-hae Client detected 1008 System
¥ £ Station is Operating As Unauthorized Type 1003 System
Pm Station iz Using Wweak W_EF';]V;S‘. 1074 Spstem.

[ £ Station is Using Frandam MAC Addiess 1017 Spsteri

W £ Spoofed MAC &ddress 1M System

¥ £ Deauthentication Stom WA System

J?,.’;ﬁ ASLEAP attack. 1025 Sstem

I £ &P Overlnaded 1026 Spstem V|
£ | ¥

Server; localhost |

Role: Superuser | Username: SYSDEA Last Log; Sensor Failed to-stark: 00:08:86:C4:91 .EE

Figure 3-4. RF Protect Console
3.6 Wireshark

Wireshark is a network protocol analyzer. Accorditoghe Wireshark website [Wireshark], it
has the following useful features

1. Live capture and offline analysis
2. “Live data can be read from Ethernet, IEEE 802PRP/HDLC, ATM, Bluetooth, USB,
Token Ring, Frame Relay, FDDI, and others”
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3. “Decryption support for many protocols, includigSec, ISAKMP, Kerberos, SNMPV3,
SSL/TLS, WEP, and WPA/WPA2 *
4. “Coloring rules can be applied to the packet listduick, intuitive analysis “

We used two Wireshark sensors to gather evidenedretess networks in our experiments.

& cpu_load 70 1.pcap - Wireshark

File Edit Wiew Go Capture pnalyze Statistics  Telephony Tools  Help )
Uy EEXZE Aa+soTL/[EE QRQAQE #EM »

F'i_Iter:.| |v Expression... Clear Apply

Destination Protoc deed

: : o 185 (00:
= Internst Protocol, i 8 i e b BT 5 LL1.112), psti 192, i o Lt L168.1.10
version: 4 e

Header Tlength: 20 bytes

@ Dpifferentiated services Field: 0x00 (DpscP Ox00: pefault; ECHN: 0x00)
Total Length: &5
Identification: Oxlhz4 (6%948)

el
%

Oi Frame {frame), 79 bytes [

Figure 3-5. Wireshark at work
3.7 Loadcontrol

According to http://www.codeproject.com/KB/cpp/CHldad _Control.aspx?msg=1915014 this
is a program that demonstrates how to retrievetineent CPU load percentage and set it using a
high priority thread control loop.

The program provides an interface to set the ouxt#U load as a percentage. Once it is
set the CPU load increases to the correct loadoiarg to the author of the program, “It only
fully works on single core systems.” We found ttage true and found a way to make it run on
both cores. The way it is done is, first one needsunch two instances of the program. Then
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one instance should be run on the first core ardsdtond instance on the second core of the
system. Then both threads should be given real priggity. A normal process on windows
would have priority set to normal by default. There®n shots below will make the process
clearer.

Processor Affinity

The Processor Affiniky setting controls which CPUs the process will
be allowed ko execute on,

[ Ok, ][ Cancel ]

Figure 3-6. Setting Processor Affinity 1

First thread should be run on the core CPU 0

Processor Affinity

The Processor Affinity setting controls which CPUs the process will
be allowed ko execute on,

[ K, ][ Cancel ]

Figure 3-7. Setting Processor Affinity 2

Second thread should be run on the core CPU 1
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El Windows Task Manager

File Options ‘iew  Shut Down  Help

| Applications | Processes | performance | Nebworking || Users |

Image Mame User Mame CRPU Mem Usage it |
WLTRAY EXE Agila Dissanayake an 6,040 K
rapimgr ., exe Agila Dissanayake aa 5,724 K
svchost.exe SYSTEM oo 5,445 K
WIIpEYse, exe SYSTEM ao

SErYICES, exe SYSTEM
LasdiControl exe e

End Process

msdte.exe i

WINWORD . EXE ¢  EndProcess Tree ‘
svchost.exe ¢ Debug

MicConfigSve, exe g - |
sychost.exe Il Set Priority |

SVHITPEnh-EXB £ Set Affinity. . High
explorer.exe Frer s
CneTouch.exe Aqila Dissanayake Abovehigral
ctfmon. exe Aqila Dissanayake ® Hormal
SNME. EXE SYSTEM Belowhlarmal
mgtgsvc.exe SYSTEM Lowa i
svchost.exe METWORK SERNICE pp—1 3 044
_swrhnsbewe  10CAI SFRWICE nn Ak M|
[CIshow processes from all users
Processes: 72 CPU Usage: 9% Carmmit Charge: 10080 [/ 3939M

Figure 3-8. Setting Processor Priority to Realtime

Both LoadControl processes should be given Realpinogity through the task manager.

. % LoadControl .

Desired Load;

45
ZPU Load:

Exxit

Figure 3-9. Load Control Software at Work

When we used CPU Load Control, we found that eveanmve use this tool to apply the same
load to both the cores, the load on the two comslavdiffer greatly and the average load would
not be equal to the specified value. Moreover titJCQoad goes on varying. When we start
Wireshark on a machine and another machine is isseskbnding the packets, which Wireshark
would capture and display, the CPU load on the ¢awees would come closer to the specified
value. Since we could not find any other tool, wged this tool for loading the three machines,
which were running Wireshark and Snort. This, a§ g explained later in this thesis, helped
create for our experimentation, tools, with vareat#liability. We took the specified value of the
load as the CPU load for our experimental reading.
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4 SURVEY OF DEMPSTER-SHAFER THEORY IN DATA FUSION

4.1 Theory of Evidence and Dempster-Shafer Theory inaDRusion

According to Siaterlis and Maglaris [2004] “datasifan is a process performed on multisource
data towards detection, association, correlati@ijmation and combination of several data
streams into one with a higher level of abstractind greater meaningfulness.” According to the
authors, the process of collecting information fromltiple and possibly heterogeneous sources
and combining them leads to more descriptive, iivieliand meaningful results. According to
Bass [2000], multi sensor data fusion is a rel&iveew discipline that is used to combine data
from multiple and diverse sensors and sources deroto make inferences about events,
activities and situations. Bass [2000] states thet process can be compared to the human
cognitive process where the brain fuses sensonyrirdtion from various sensory organs to
evaluate situations, make decisions and to diggetific actions. Bass [2000] and Siaterlis and
Maglaris [2004 and 2005] give several examplesystesns that use data fusion in the real
world. Bass [2000] claims data fusion is widely dige military applications such as battlefield
surveillance and tactical situation assessmentimrmbmmercial applications such as robotics,
manufacturing, remote sensing, and medical diagn&aterlis and Maglaris [2004 and 2005]
provide military systems for threat assessmentvesather forecast systems as examples of such
systems currently in use today.

The Theory of Evidence is a branch of mathemaliasis concerned with using evidence
to calculate the probability of an event. The DetapShafer theory (D-S theory) is a theory of
evidence used to combine separate pieces of ewdencalculate the probability of an event.
According to Chen and Aickelin [2006], the Demps$afer theory was introduced in the
1960’s by Arthur Dempster and developed in the 19B9 Glenn Shafer. They view the theory
as a mechanism for reasoning under epistemic w@iert According to Sentz [2002], epistemic
uncertainty is “the type of uncertainty which reésutom the lack of knowledge about a system
and is a property of the analysts performing thedyasis.” Sentz [2002] also states that epistemic
uncertainty is also known as, Subjective uncenainype B uncertainty, Reducible uncertainty,
State of Knowledge uncertainty, and Ignorance. Cduaoh Aickelin [2006] also stated that the
part of the D-S theory which is of direct relevame@nomaly detection is the Dempster’s rule of
combination. According to Siaterlis et al. [2003]3theory can be considered as an extension of
Bayesian inference. According to Shafer [2002] “Dempster-Shafer theory is based on two
ideas: the idea of obtaining degrees of beliefoioe question from subjective probabilities for a
related question, and Dempster's rule for combisungh degrees of belief when they are based
on independent items of evidence.”

According to Chen and Aickelin [2006], the Demps®@afer theory is a combination of
a theory of evidence and probable reasoning, toaked belief that an event has occurred. They
stated that the D-S theory updates and combinesgidodl beliefs to give a belief of an event
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occurring in the system as a whole. According terCand Venkataramanan [2005], in previous
approaches data has been combined using simplmtibination techniques such as averaging
or voting. They further stated that a distributattusion detection system combines data from
multiple nodes to estimate the likelihood of araeitt yet fails to take into consideration that the
observing nodes might be compromised. DempstereBhtakory takes this uncertainty into
account when making the calculations.

4.2 Data Used in Experiments

One of the important parts of an experiment isdétednine what kind of data should be used in
the experiment. Should the data be generated &tecem original dataset or should the research
make use of the already generated data? When & tamempster-Shafer data fusion, the same
guestions arose. In the research conducted sanfzst researchers decided to use an existing
dataset while some preferred to generate theiraata.

The Defense Advanced Research Projects Agency (DARPA) DDoS intrusion detection
evaluation datasets are a popular choice among mémugion detection system (IDS) testers. It
is no different when it came to testing the DempSigafer IDS models. Yu and Frincke [2005]
used the DARPA 2000 DDoS intrusion detection evadnadataset to test their model. Chou et
al. [2007 and 2008] used the DARPA KDD99 intrusidetection evaluation dataset. The
KDD99 dataset can be found at http://kdd.ics.uci/@dtabases/kddcup99/kddcup99.html. The
1998 DARPA intrusion detection evaluation data sets used by Katar [2006] for his
experiments.

According to Chou et al. [2007], the DARPA KDD9atd set is made up of a large
number of network traffic connections and each eation is represented with 41 features.
Further, each connection had a label of either abonthe attack type. They stated that the data
set contained 39 attack types which fall into fowain categories. They are, Denial of Service
(DoS), Probe, User to Root (U2R), and Remote tcalL@R2L). The authors have reduced the
size of the original data set by removing duplidatennections. They further modified the data
set by replacing features represented by symbaligeg and class labels by numeric values.
Also, they normalized values of each feature tovbeh O and 1 in order to offer equal
importance among features.

Chen and Aickelin [2006] used the Wisconsin Breasicer dataset and the Iris data set
[Asuncion and Newman 2007] of the University of i@ahia, Irvine (UCI) machine learning
repository for their research. Some authors choggeherate their own data for the attacks and
background traffic. For example, Siaterlis et 20Q3] used background traffic generated from
more than 4000 computers in the National Technif@versity of Athens (NTUA) for their
experiment.

4.3 Frame of Discernment
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When using Dempster-Shafer’s theory of evidencénidg the frame of discernment is of great
importance. Most of the authors referred in thisvey did not explicitly mention their frame of
discernment. Some of them did not mention a fralgisternment at all. It can be argued that
this is a major weakness of those particular papers

Wang et al. [2004] defined their frame of disceeminto be Stealthy Probe [Paulauskas
and Garsva 2006], DDoS [Rogers 2004], Worm [hep:ikipedia.org/wiki/Computer_worm],
LUR (Local to User, User to Root) [Paulauskas amasta 2006], and Unknown. According to
the authors, ‘Unknown’ is defined into the framedi$cernment because abrupt increases of
network traffic could be a result of a DDoS or armaspreading or LUR or a Probe attack. The
authors argue that in this situation, the host tiggarmation will help to make the final decision
as to what attack it was. Siaterlis et al.OJ0and Siaterlis and Maglaris [2004 and 2005]
defined their frame of discernment to be

Normal

SYN-flood [http://en.wikipedia.org/wiki/SYN_flood]
UDP-flood [http://en.wikipedia.org/wiki/UDP_floodttack]
ICMP-flood [http://en.wikipedia.org/wiki/Ping_flodd

PwnhE

According to the authors, these states are basedflooding attack categorization of the
DDoS tools [Mirkovic et al. 2001] that were in usethe time they wrote their paper. Hu et al.
[2006] defined their frame of discernment to benmaly TCP, UDP, and ICMP. Hu et al. [2006]
were concerned with flooding attacks in their reskaChatzigiannakis et al. [2007] defined four
states for the network. They are Normal, SYN-att&CMP-flood, and UDP-flood. These states
are quite similar to what Siaterlis and Maglari®(G2 and 2005] defined for their frame of
discernment. Siaterlis and Maglaris [2004] and @annakis et al. [2007] conducted their
research at the National Technical University digkts (NTUA).

4.4 Application of D-S in Anomaly Detection

Anomaly detection systems work by trying to idgnt#nomalies in an environment. In other
words an anomaly detection system looks for whatotsnormal in order to detect whether an
attack has occurred. According to Chen and Aickgl06] the problem with this approach is
that user behavior changes over time and previousseen behavior occurs for legitimate
reasons which leads to generation of false positinghe system. The authors say that this can
lead to a sufficiently large number of false pagt forcing the administrator to ignore the alerts
or disable the system.

According to Katar [2006], a majority of intrusiaetection systems, based on detection
of anomalies, adopt a single algorithm either fodaling normal behavior patterns and/or attack
signatures which ensures a lower detection rateramédases false negative rate.

4.4.1 Experiments of Yu and Frincke
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Yu and Frincke [2005] state that modern intrusigtedtion systems often use alerts from
different sources to determine how to respond tattatk. According to the authors, alerts from
different sources should not be treated equallgyTdrgue that information provided by remote
sensors and analyzers should be considered ledw/drthy than that provided by local sensors
and analyzers. They also state that identical seresw analyzers installed at different locations
may have different detection capabilities becahgeraw events captured by these sensors are
different. Further, different kinds of sensors amalyzers which detect the same type of attack
may do so with a different level of accuracy.

In their research the authors addressed the fatathobservers cannot be trusted equally
and a given observer may have different effectigene identifying individual misuse types by
extending the D-S theory to incorporate a weighied of evidence. In other words, the authors
proposed to improve and assess alert accuracy doyporating a weight component to each
observer to reflect how much trust they place aheadserver. For this purpose they proposed a
modified D-S combination rule. The new D-S combmatrule has exponents as weights for
each observer. This new theory is called the ExddnBempster-Shafer Theory. The new
combination rule is given below.

BnC=A, Z [m1(B)]w1m2(C)]"2

m12 (A) =
1-[BnC=¢g,Z[mi(B)]¥1[m2(C)] W]

* my2 (A) = Combined belief of the hypothesis A
» my (B) = Belief committed to B as seen by the firsserver
= my(C) = Belief committed to C as seen by the secdistrver

= Where wis the weight for the"iobserver. When w= w, = 1, is reduced to the
basic D-S combining rule.

According to the authors, in their system theyneated the weights based on the
Maximum Entropy principle [Berger et al. 1996; Roftd 1996) and the Minimum Mean
Square Error (MMSE) criteria.

Yu and Frincke [2005] performed experiments using DARPA 2000 DDoS intrusion
detection evaluation data sets. According to thibas, both datasets include network data from
both the demilitarized zone (DMZ) and the insidet pd the evaluation network. They stated
that they used RealSecure Network Sensor 6.0 wigximum coverage policy in their
experiments.
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The authors stated that the extended D-S furthere@ases the detection rate while
keeping false positive rate low. They also poirgatithat when using the basic D-S combination
algorithm, the detection rate decreases relatit@lthe extended D-S. According to them, the
extended D-S algorithm provides 30% more accuratso, they have compared their method
with Hidden Colored Petri Net (HCPN) based aledlgsis component. They stated “Our initial
evaluations on the DARPA IDS evaluation data sewskhat our alert fusion algorithm can
improve alert quality over those from Hidden Cotbfeetri-Net (HCPN) based alert correlation
components installed at the demilitarized zone (DMAd inside network sites. Due to alert
confidence fusion in our example, the detectioe reges from75% to 93.8%, without adversely
affecting the false positive rate” Yu and Frinck@(5].

The authors claim that their “alert confiderfasion model can potentially resolve
contradictory information reported by different bizars, and further improve the detection rate
and reduce the false positive rate.” They staté tiair approach has the ability to quantify
relative confidence in different alerts.

4.4.2 Experiments of Chen and Aickelin

Chen and Aickelin [2006] have constructed a DenmgSteafer based anomaly detection system
using the Java 2 platform. First they use the Wisto Breast Cancer Dataset (WBCD) to
perform their experiment. According to the authdheg WBCD is used for two reasons. One
reason is that they can compare the performanogéhef algorithms to their approach. The other
is to “investigate if it is possible to achieve daesults by combining multiple features using D-
S, without excessive manual intervention or domhanmowledge based parameter tuning.”
Secondly, Chen and Aickelin [2006] have used tie ptant dataset [Asuncion and Newman
2007] for their experiments. According to the auwshthe Iris dataset was chosen because it
contains fewer features and more classes than tBEDV By using this they can confirm
whether D-S can work on problems with fewer featusnd more classes. Thirdly, they
conducted an experiment using an e-mail datasethwhias created using a week’s worth of e-
mails (90 e-mails) from a user’s sent box with airig e-mails (42 e-mails) sent by a computer
infected with the netsky-d worm. The aim of the exxment was to detect the 42 infected e-
mails. They used D-S to combine features of theadsno detect the worm infected e-mails.

Their anomaly detection system utilizes a trainimgcess to derive thresholds from the
training data, and classifies an event as normalboiormal. According to Chen and Aickelin
[2006], the basic probability assignment (BPA) fuoies are made based on these thresholds to
assign mass values. In their experiment, first thecess data from various sources and send
them to corresponding BPA functions. Then, massesfor each hypothesis are generated by
these functions which are then sent to the D-S awatibn component. The D-S combination
component combines all mass values using Dempstdesof combination and generates the
overall mass values for each hypothesis.
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The authors claimed that their experimental resglhow that they were able to
successfully classify a standard dataset by comdpimiultiple features for WBCD using the D-S
method. According to them, the experimental resultth the Iris dataset [Asuncion and
Newman 2007] show that D-S can be used for problsitte more than two classes, with fewer
features. They also claimed experiments with thead-dataset show that D-S method works
successfully for anomaly detection by combiningddslfrom multiple sources.

The authors claimed that combining features u§rg improves accuracy. Also, they
claimed that a few badly chosen features do noatiegly influence the results, as long as most
chosen features are suitable. Therefore they stduaid D-S is ideal for solving real-world
intrusion detection problems. Also, they claimedtttihe results of the Iris dataset prove that D-S
can be used for problems with more than two classéh fewer features. By successfully
detecting e-mail worms through experiments, theginobéd that the D-S method works
successfully for anomaly detection by combining tiplé sources.

The authors concluded that based on their redd& ,can be a good method for network
security problems with multiple features (variowalsources) and two or more classes. They
also stated that the initial feature selectionuefices overall performance as with any other
classification algorithm. Further, D-S approach keom cases where some feature values are
missing which they say is very likely to happerraal world network security scenarios. Chen
and Aickelin stated “our continuing aim is to fiedit how D-S based algorithms can be used
more effectively for the purpose of anomaly detativithin the domain of network security.”

‘4.4.3 Experiments of Chatzigiannakis et al

Chatzigiannakis et al [2007] conducted their expenits at the National Technical University of
Athens (NTUA). They addressed the problem of disciogg anomalies in a large-scale network
based on the data fusion of heterogeneous monithesauthors built their work partially on the
data fusion algorithms presented by Hall [1992].

They monitored the link between National Technidalversity of Athens (NTUA) and
the Greek Research and Technology Network (GRNEJighwconnects the university with the
Internet. The authors claim that this link has aerage traffic of 700-800 Mbits/sec and that it
contains a rich network traffic mix that consisfsstandard web traffic, mail, FTP and p2p
traffic.

According to the authors, two anomaly detectiechhiques, namely Dempster-Shafer
and Multi-Metric-Multi-Link (M3L), were evaluated nal compared under various attack
scenarios. The authors performed a SYN-attack fBR®NET using the TFN2K DoS tool on the
target which was in the NTUA network. The attacksvdmne by sending IP spoofed TCP SYN
packets. According to the authors ICMP-flood andRJilbod attacks were injected manually
into the network traces of the collected data.
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The D-S algorithm correctly detected an ICMP flagden attack packets correspond to
5% of the background traffic. For a SYN attack, whatack packets correspond to 2% of
background traffic, the D-S algorithm erroneoushpnduded that the network is normal.
However, their research showed that when attackgtaccorrespond to 20% of background
traffic, the D-S algorithms correctly detects th&Ns attack state. When attack packets
correspond to 20% of total traffic in an ICMP floattack, the M3L algorithm fails to detect the
attack. According to the authors M3L fails to détdwe attack because the selection of metrics is
inappropriate (metrics utilized are uncorrelatenXtge algorithm fails to create a precise model
of the network. For a SYN attack which consistpatkets corresponding to 2% of background
traffic, the M3L algorithm correctly detects theéaak.

According to the authors, the differences in tbeefgrmance of the algorithms lie in the
correlation of the metrics used. They stated thatD-S theory of evidence performs well on the
detection of attacks that can be sensed by unetetemetrics. The explanation they give for this
is that it is because the D-S theory requires th@eace originating from different sensors to be
independent. According to the authors, M3L requthes metrics fed into the fusion algorithm
present some degree of correlation. “The methodetsonlaffic patterns and interrelations by
extracting the eigenvectors from the correlationtrimaof a sample data set. If there is no
correlation among the utilized metrics then the atod not efficient.” The authors stated that
“Metrics such as TCP SYN packets, TCP FIN packé@GP in flows and TCP out flows are
highly correlated and should be utilized in M3L, embas the combination of UDP in/out
packets, ICMP in/out packets, TCP in/out packetsuacorrelated and should be used in D-S.”
According to the authors, “attacks that involvesddtion in the percentage of UDP packets in
traffic composition such as UDP flooding are betfletected by the D-S method.” Further,
“attacks such as SYN attacks, worms spreading, sahning which affect the proportion of
correlated metrics such as TCP in/fout, SYN/FIN p&skand TCP in/out flows are better
detected with M3L.” Also, the authors derive an artant result from their study and numerical
results. That is, the conditions under which theo talgorithms operate efficiently are
complementary, and therefore could be used effegtin an integrated way to detect a wide
range of possible attacks.

Chatzigiannakis et al. [2007] studied the problendiscovering anomalies in a large-
scale network based on the data fusion of hetesmgenmonitors. They studied two different
anomaly detection techniques, one based on thel2@y of evidence and the other based on
Principal Component Analysis. They evaluated the &lgorithms via emulation and simulation,
and the numerical results showed that the conditiamder which they operate efficiently are
complementary. So, they came to the conclusion tti@y should be used effectively in an
integrated way to detect a wide range of attacksoAthey claimed timely and proactive
detection of network anomalies is a prerequisitetlie operational and functional effectiveness
of secure networks because of the explosive gravftithe global Internet and electronic
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commerce infrastructures. They further claimed wauthwell designed tools for the management
of future networks, it will be hard to dynamicalind reliably identify network anomalies.

The major contributions of the papers discussetigisection are summarized below.

Year Paper Major Contribution
2005 Alert confidence fusiopExtended the D-S theory to incorporate weightsfferegnt
in intrusion detection observers to reflect that every observer cannatusted
systems with extendedequally. By doing so they gave birth to the ExtehBeS
Dempster-Shafer theory.
theory. .
Showed how to improve and assess alert accuracy by
[Yu and Frincke] incorporating an algorithm based on the expondwytial
weighted Dempster-Shafer theory of Evidence. Tlds w
the first time the extended D-S was used in intnusi
detection.
Showed through experiments that extended D-S is 30%
more accurate when it comes to detection accutrenythe
basic D-S.
2006 Dempster-Shafer  foiShowed by experiments that one is able to sucdissfu
Anomaly Detection. classify a standard dataset by combining multipletdres
_ . for the WBCD (Wisconsin Breast Cancer Dataset) gisin
[Chen and Aickelin] the D-S method.
Showed through experiments with the Iris datasat DS
can be used for problems with more than two clasgiis
fewer features.
Showed through experiments with the e-mail datésat
D-S method works successfully for anomaly detechgr
combining beliefs from multiple sources.
2007 Data fusion algorithmsCompared two anomaly detection techniques, Dempster

for network anomaly
detection: classificatio
and evaluation.

[Chatzigiannakis et al]

Shafer and Multi-Metric-Link (M3L) under varioustatk
nscenarios.

Showed that M3L fails to detect attacks whose &
utilized are uncorrelated which cause the algoritiohto

tri
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create a precise model of the network.

Showed that D-S theory of evidence performs weltlon
detection of attacks that can be sensed by unetecs
metrics.

Showed that the conditions under which the two ritlgms
operate efficiently are complementary, which makes
better to use them in an integrated environment.

4.5 Application of D-S to Detect DoS and DDoS Attacks

4.5.1 Experiments of Siaterlis et al. of the NTUA

Various experiments have been conducted to stuelyuie of D-S theory to detect DoS and
DDoS attacks. Some of the major research in tida has taken place at the National Technical
University of Athens (NTUA). Siaterlis et al [2003Biaterlis and Maglaris [2004] and
Chatzigiannakis et al [2007] have conducted thepgeements related to DoS attacks and D-S
theory at the NTUA. Vasilis Maglaris and Basil Mag$ of the NTUA have both published two
papers on multi sensor data fusion for Denial o¥/i8e (DoS) detection using the D-S theory of
evidence. Christos Siaterlis of the NTUA is theyorgsearcher so far to publish 3 papers on
intrusion detection using the D-S theory.

Siaterlis et al. [2003], addressed the problendetecting distributed denial of service
attacks (DDoS) “on high bandwidth links that carstain the flooded packets without severe
congestion.” According to the authors, DDoS attabkwe been the focus of the research
community in the last few years but still remainagen problem. They stated that many DDoS
prevention techniques like Ingress and RPF filgefitave been proposed in the literature and
implemented by router vendors but they were no¢ abllessen the problem. The authors say
that when they refer to DDoS, they refer to padlkmiding attacks not logical DoS attacks that
exploit application vulnerabilities. Also, they dot require the attackers to be truly distributed
in the network topology in their DoS attacks. Thesearch consists of developing a framework
for DDoS detection engine using the Dempster-Steféheory of Evidence”.

According to Siaterlis and Maglaris [2004] and t&ibs and Maglaris [2005] “The
Internet” can be compared to an essential utilitshsas electricity or telephone access. They say
that even a short downtime of the Internet couldseagrave financial damages. According to
them DDoS is one of the main reasons for Interogifts. Siaterlis and Maglaris provide several
examples to prove their reasoning including a DRtSck against one of the largest anti-spam
black-list companies, and another DDoS against“#telazeera” news network and another
against the root name servers. According to thera,DoS attack the bandwidth, near the victim,
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has already been consumed. Therefore, techniqubsasufirewall filtering, rate limiting, route
blackholes, are not effective countermeasuresuc an attack. They argue that IP traceback, IP
pushback, are ineffective (to move the countermeasear the source of the attack) because
automated large scale cooperation is difficult inlieerse networked world like the Internet.
Other techniques such as Ingress filtering, RPteriilg, are only helpful to discourage the
attacker because they make the traceback easiey. drigue that the only reliable solution to
DoS mitigation is to have a solid DoS detection n@mism. According to the authors, the
custom detection methods that are being used hyonletengineers are weak as they utilize
thresholds on single metrics. Therefore, theyadih data fusion algorithm based on the “Theory
of Evidence” to combine output of several sensometect attempted DoS attacks.

24.5.1.1 Data Fusion Architecture

According to Siaterlis et al. [2003] a data fusiarchitecture consists of the following main
stages.

1. Data Collection — Data is detected and collectedudh various sensors

2. Data Alignment & Association — Since data is cdkecthrough various sensors, they
may exhibit differences in time, space or measurgémihese will be aligned properly at
this stage.

3. State Estimation — A data fusion algorithm estiradtee state based on the knowledge
gathered through sensors.

4. Attribute classification & Identification - In thiphase the different targets and events
that are being monitored are identified.

5. Situation Assessment — Based on the results giréh@ous 2 stages, the overall status of
the system is determined. This is the highest lef/giformation fusion.

24.5.1.2 Data Fusion Models
According to Siaterlis et al. there are 3 kindslafa fusion models.

1. Physical Models

2. Parametric Classification
a. Bayesian Inference Model
b. Dempster Shaffer Theory of Evidence
c. Adaptive Neural Nets
d. Voting Methods

3. Cognitive Algorithms
a. Expert Systems
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b. Fuzzy set theory

An example of a physical model is the Kalman filtehich provides a solution to
minimize the mean square error between the true sfahe system and the estimate of the state.
Siaterlis et al. states that the Kalman filter ieggithe knowledge of the state transition matrix
and the measurements are corrupted by white zeam meise with known covariance matrix.
They also state network behavior has not yet bemtessfully modeled; therefore such a
system’s usability is questionable. Siaterlis estdte that adaptive neural nets have been used in
the context of intrusion detection but it requitesining data that will be representative of the
normal traffic data, which is extremely hard tohgator generate. Voting is one of the simplest
and intuitive methods for fusion models. AccordindgSiaterlis et al. each sensor’'s data serves as
a vote in a democracy where the fused declaratidhd declaration of the majority. They state
that this method is useful when a priori statiséace not known. According to Siaterlis et al.
there are also variation of the voting system thalude, weighted voting systems and use of
intermediate decision on a decision tree. The asthtated that the underlying theory in expert
systems is “First Order Logic”. The drawback witrstf order logic is that it cannot model the
whole spectrum between belief and disbelief in @eshent but uses a plain true or false
approach instead. They state that fuzzy logic hasymcommon elements with Theory of
evidence.

After reviewing all the above mentioned methodsythave concluded that Dempster-
Shafer’s theory of evidence needs further investigaThey stated that “there is a clear need to
utilize information from multiple heterogeneous sms with different sensitivity, reliability and
false alarm rates.” The authors considered the Bamshafer approach as an extension of the
Bayesian inference.

24.5.1.3 DDoS Detection Engine and the Early Research

Siaterlis et al. [2003] built a prototype for a D®aletection engine that uses the Dempster-
Shafer theory of Evidence for their experiment. dwding to them this “might aid network
administrators to monitor their network more e#iaily and with small set up cost.” They
evaluated the D-S detection engine prototype inNlh&onal Technical University of Athens
(NTUA). According to the authors, related experitsemere carried out over several days
during regular business hours with backgrounditrgénerated from more than 4000 computers
in the campus. The authors hosted the victim ingidecampus network while the attacker was
outside the campus network. The attacker was coethéc a fast Ethernet interface to simulate
the aggregation of traffic from several attackingsts. The authors claimed that their DDoS
detection engine can maintain a low false posiéilegm rate with a reasonable effort from the
network administrator.

The authors stated that their architecture is mageof several distributed and
collaborating sensors which share their beliefaiabee network’s true state. By the true state of
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the network, they mean whether the network is urateack or not. The authors view the
“network as a system with stochastic behavior withassuming any underlying functional
model.” The attempt to determine the unknown systtate is based on knowledge reported by
sensors that may have acquired their evidence basetally different criteria. They have
implemented a system that fuses the knowledgeatetlefrom the reports of various sensors, in
order to infer the state of the monitored netwditkeir architecture consists of the following two
sensor types.

(1) A preprocessor plug-in for Snort — They collectadadrom incoming and outgoing TCP,
TCP SYN, TCP FIN, UDP, ICMP packet rates and themresponding share of the link
utilization.

(2) A SNMP data collector and analyzer stored the dataund robin databases using the
RRDtool. They calculated the bytes/sec, packetsfatos and active flow numbers
based on Cisco’s Netflow [22].

24.5.1.4 Sensor Functionality

The authors stated that the sensors can expresésbabout the network state after the right
configuration and fine tuning and that their dateciprinciple differs from many of the existing
detection techniques which are focused on a simgieic.

They have introduced a sensor that monitor thebeurof active flows seen by a router.
A flow is defined as a unique set of 5 charactiessthat include (protocol, source IP, source
port, destination IP, and destination port). Acaogdo the authors, in the presence of a spoofed
attack the number of active flows rises. Furtherthe presence of a flooding attack the number
of transports that are not completed (with TCP BINRST) is high. These flows fill up the cache
without being removed gracefully. The reason fatuding this metric, the authors state is that it
will give a good indication of a spoofed attack ewaough it cannot give an insight into the
exact attack type. The sensor in this case sttgdselief in the hypothesis, H = {SYN-flood,
UDP-flood, ICMP-flood}.

The authors have built basic probability assigm®¢éBPA’s) that match measured values
to beliefs about the true system state. They hamet their frame of discernment to Be=
{Normal, TCP SYN Attack, UDP BWDTH Attack, and ICMBDWDTH Attack}. The authors
have defined a way to assign BPA'’s in the followinm@anner. For example, if the sensor
measures a high value for the ratio

Incoming UDP bytes/sec

Outgoing UDP bytes/sec

Then the sensor states its increased belief iDB bktack state. The sensors then take the
following steps to calculate the BPA’s
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=

Assigns a value m(H)[0,1]

2. Assigns a value to the setH, to express the refuting evidence of the hypashEs so
m(—H) ¢ [0,1].

3. Assigns a value to the s@tto express ignorance of the sensor and the pbistbat it

might be erroneous. 1®] ¢ [0, 1].

According to the authors, m(H) + m(H) + m@®) = 1. The sensors calculate the
corresponding BPA'’s and transfer the data to tsefunode which has the DS inference engine.
The DS inference engine calculates the belief waler for each member of the frame of
discernment. These belief intervals are then gcagplgirepresented and the interpretations of the
results are left to the network admin.

24.5.1.5 Later Research

In 2004, Siaterlis and Maglaris published anothepgs based on intrusion detection using D-S
theory of evidence. The work done is continued frasmere they left off in Siaterlis and
Maglaris [2003]. In this work, they have changed ttame of discernment fro® = {Normal,
TCP SYN Attack, UDP BWDTH Attack, and ICMP BDWDTHttack} to ® = {Normal, SYN
flood, UDP flood, and ICMP flood}.

In 2005, Christos Siaterlis published another papéh Vasilis Maglaris that extended
the work from Siaterlis and Maglaris [2004]. Accimgl to them, the 2005 paper discusses how
to automate the process of tuning the sensors waklag advantage of expert knowledge. Also,
they discussed the combination of different metticenhance detection performance compared
to the use of a single metric. Further they conmgbaiee D-S approach with the use of an
Artificial Neural Network (ANN) when it comes to @afusion.

Unlike in the previous two papers, Siaterlis andgMris [2005] go into much more
detail as to how their system operates. They sttiteild customized Netflow collector gathers
flows that are exported by the router and calcsléite number of flows with lifetime shorter
than 10ms according to the flow generation ratecofding to the authors, though this metric
does not give an indication of exact attack typés ia good indication of spoofed or a highly
distributed attack.

The authors stated that in the early stages af Wazk, the sensors were required to be
manually configured to express beliefs about thevoek state by translating the measurements
to basic probability assignments (BPA). Later osythave used a supervised learning approach
and inserted a neural network at the sensor lavedase the administrator from having to
configure the sensor manually. They have furtheemjia formula they used in the neural node to
calculate the BPA’s automatically. It is given belo

= mH)=x,ifm@)+x<1
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= m(H)=1-m(0O), otherwise

and
* m(~H)=1-x-m(0), ifm®) +x<1
= m(~H)=0, otherwise

Where x is the sensor output.

These BPA'’s are then transferred to the D-S endite D-S engine then fuses the
information using the Dempster’s rule of combinatio calculate the belief intervals for each
member of the frame of discernment. Then, the ledtace detected by the output of the belief of
individual attack states. As an example they state,

= UDP Alert = true, if Bel({UDP-flood}) > 0.5; and
=  UDP Alert = false, otherwise

The authors have compared their data fusion approa Artificial Neural Network
(ANN) data fusion approach. They stated “If we féleel detection metrics directly into an ANN,
like the feed-forward Multi Layer Perceptron (MLRgtwork, we can teach it to classify the
network state in elements of the same set {NORMBKN-flood, UDP-flood, ICMP-flood}.”
They have used the Levenberg-Marquardt back prdijpagalgorithm for training because of its
speed. They have performed many tests which indleti@nging the number of neurons in the
hidden layer. Their results have indicated that mamed to ANN, D-S produces fewer false
positives. Also, they stated that apart from thevabcomparison, in the D-S system they can
incorporate human expertise which is an added ddganWhat they meant by this was that they
can define which attack states each sensor istsentsl using their expertise.

Siaterlis and Maglaris [2005] stated that impletimgn their ideas into an operational
network could be a task of significant difficultiput it may offer many advantages if done
successfully. The advantages include,

1. Sensors can provide both supportive and refutingleece of an attack.
Therefore, different sensors can lower or raisecthrabined belief of an attack
State.

2. Each sensor can contribute information at its oswell of detail. This enables the
use of metrics such as CPU utilization of routésat tare not specific to attack
type.

3. No need to assume the probability of the netwotkd@ a specific state. Just
need to express the belief that an observed euppbsts a state.

4. Multiple data sources can be used to increasedhdence in the estimation.

5. Can incorporate knowledge from sensors that aredbas different detection
algorithms.

6. Can activate detection algorithms on demand toedfe beliefs.
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They also point out that knowledge based systeansonly be as good as their source
from which they acquire knowledge. Also, they stidiat their system cannot handle multiple
simultaneous attacks because mutual exclusivigystem states is assumed.

4.5.2 Experiments of Hu et al.

According to the Hu et al. [2006], when it comesniplementing network security management,
multi-sensor data fusion faces a lot of problents. €&ample, there is no appropriate physical
model to describe a network. They stated that thie sransition matrix for a network is hard to
acquire and a network’s behavior has not yet beenessfully modeled. Also, they state that a
physical model such as the Kalman Filter is limiteduse and using it to predict traffic is a
tradeoff between accuracy and efficiency. Cognitilgorithms have good adaptability but need
a lot of training data, which they state is hardcapture in a real network. So, in their
experiments they have used the D-S theory of evielém make uncertainty inferences because it
does not require state transition matrices or itngidata.

According to the authors, an improved detectiogirmhas been introduced in this paper.
They also introduce “Detection Uncertainty” to d#se the fuzzy problem which cannot be
avoided in the detection and merges identity infeeeand intrusion detection. They defined
detection uncertainty to be the sum of subject tiag#y and objective uncertainty.

Detection Uncertainty = Subjective Uncertainty bj€xtive Uncertainty

The uncertainty that arises because of the sele#tection metrics and sensor specific
techniqgues was defined as Subjective Uncertainke @incertainty that arises because of the
experimental environment was defined as Objectimeddainty. According to the authors once
the sensors are completely setup, Subjective Usiagytwill not change. Also, they stated that
because of the difference of detection techniques raetrics, different sensors have different
Subjective Uncertainties.

According to the authors, the experiments wereiedmut in a small scale LAN. They
have used LibPcap based sensors to poll the netavatlassign appropriate mass/belief values to
the current state of the network. LibPcap is aesysindependent interface for user-level packet
capture. It can be downloaded from http://souragdaret/projects/libpcap/.

The authors stated that they put more emphasizbeoaccuracy of the simulation than
doing it on real time. Therefore, they have conddcan off-line simulation. They used a
MySQL database to store the data (evidence) captilm®ugh sensors. MySQL is a popular
open source database which can be downloaded frito//Amww.mysqgl.com/. An ICMP
flooding attack was used to attack the victim. Blaéhors utilized two sensors in the simulation
to sample and assign probabilities to the currete of the network.
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The authors stated that the experimental reshtisred the combination of evidence has
improved the detection accuracy. Also, they stateat “the assignment of basic probability
assignments after combination is much more accaradenakes the discernment range smaller.”
According to the authors, the independence of emmtal environment reduces some
interference of background flow, and guarantees dffect of the experiment. They have
admitted that this is not the case in reality.

The authors claimed the next generation networkagament systems and intrusion
detection systems will be "Cyberspace Situationabreness” systems that will support multi-
sensor data fusion. They further claimed that th& theory can be successfully used to identify
and detect cyberspace intrusions and locate tke thisough multi sensor data fusion.

The major contributions of the papers discd$sehis section are summarized below.

Year Paper Major Contribution

2003 A novel approach for |aBuilt a prototype for a DDoS detection engine
distributed denial of servicethat uses the Dempster-Shafer theory| of
detection engine Evidence for their experiment

[Siaterlis et al.] The authors claim that their DDoS detectjon
engine can maintain a low false positive alarm
rate with a reasonable effort from the netwprk
administrator.

2004 Towards multisensor dat&howed through experiments that even if pne
fusion for DoS detection sensor fails to detect an outgoing attack,
combined knowledge gathered from other
sensors indicate the increased belief on| an
attack state clearly.

[Siaterlis and Maglaris]

2005 One step ahead t@iscusses how to automate the sensor tuping
multisensor data fusion farprocess by taking advantage of expert
DDoS detection knowledge.

[Siaterlis and Maglaris]

Discussed the combination of different metrics
to enhance detection performance compared to
the use of a single metric.
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Compared the D-S approach with the use of an
Artificial Neural Network (ANN) when it
comes to data fusion.

Showed by experiments that compared to
ANN, D-S produces fewer false positives.

2006 Intrusion Detection EngineShowed by experiments that the assignment of
Based on Dempster-Shafer'basic probability assignments after

Theory of Evidence. combination is much more accurate and makes
the discernment range smaller.

4.6 Advantages of Using D-S Theory

The research reviewed in this chapter has showntltleause of the D-S theory has certain
advantages.

According to Siaterlis et al. [2003], and Siatedind Maglaris [2004 and 2005], the D-S
approach has significant advantages over the Bayegproach. They stated that in contrast to
the Bayesian approach where one can only assidrabitdies to single elements of the frame of
discernment®), the D-S theory can assign probabilities to tiages (elements) of the power set
of ®. Another advantage according to the authors is@ka theory calculates the probability of
the evidence supporting a hypothesis rather théouleéing the probability of the hypothesis
itself unlike the traditional probabilistic apprdadlso, they say that D-S theory has a definite
advantage in a vague and unknown environment.

According to Chen and Venkataramanan [2005] th® txeory of evidence provides a
mathematical way to combine evidence from multgddservers without the need to know about
a priori or conditional probabilities as in the Bajan approach.

According to Chen and Aickelin [2006], D-S theasyvery well suited for anomaly
detection because it does not require any priasiltedge. Another advantage of D-S according
to Chen and Aickelin is that it can express a valfiegnorance, giving information on the
uncertainty of a situation. They stated that Baamesnference requires a priori knowledge and
does not allow allocating probability to ignoran&a, the authors stated that, in their opinion,
Bayesian approach is not always suitable for angpmatection because prior knowledge may
not always be available. Especially, when the aimnomaly detection is to discover previously
unseen attacks, then a system that relies onmxistiowledge cannot be used.

According to Chatzigiannakis et al. [2007] the Dd&ory of evidence has a clear
advantage in an unknown environment when comparddférence processes like first order
logic that assume complete and consistent knowletligey also stated that the D-S theory has
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an advantage when compared with probability thaghych requires knowledge in terms of
probability distributions.

4.7 Disadvantages of Using D-S Theory

The research reviewed in this chapter has also shbat the use of D-S theory has certain
disadvantages associated with it. They are merdibeéow.

According to Siaterlis et al. [2003], SiaterlisdamMaglaris [2004 and 2005], and
Chatzigiannakis et al. [2007] the main disadvantafghe D-S theory is the assumption it makes
saying that the evidence is statistically indepabhd&om each other. Since sources of
information are often linked with some sort of degence in real life situations, this assumption
does not always hold true. Also, in Siaterlis et[2003] framework, they pointed out that the
system’s inability to detect multiple simultanecattacks was because D-S theory assumed a
mutually exclusive set of system states.

According to Chen and Aickelin [2006], D-S has tmajor problems associated with it.
One they say is the computational complexity asgediwith D-S. The other is the conflicting
beliefs management. According to them the compriati complexity of D-S increases
exponentially with the number of elements in thanfe of discernment®). If there are n
elements in®, there will be up to 21 focal elements for the mass function. Furthex th
combination of two mass functions needs the contiputaf up to 2 intersections.

5 WEAKNESSES OF THE EXISTING METHODS

Our research is mainly based on the work of Siatarild Maglaris [2004 and 2005] and Yu and
Frincke [2005]. Therefore, we will explain the weakses we saw in their methods in this
section.

5.1 Weakness’ of the Method Used by Siaterlis and Magla

Siaterlis and Maglaris used two sensor types iit theearch.
(1) Snort preprocessor plug-in
(2) Netflow collector

Though they used two sensor types, they treateskaBor data as equally reliable. Even If
the sensors were identical their detection accu@myd depend on the environment. If the
sensors are different, there is a good chance degaction capabilities could differ even in the
same environment. This is more clearly explainethéfollowing section.

5.2 Reliability of Evidence in Fusion
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The D-S theory of evidence considers all evidencket of the same importance and reliability.
According to Yu and Frincke [2005] in a distributedvironment this does not hold true. One of
the reasons is that remote sensors and analyzersoasidered less trustworthy than local
sensors [Yu and Frincke, 2005]. Further, if thesses used are different it is not wise to assume
they all behave the same way. It is obvious thif¢mint sensors would have different detecting
capabilities for different attacks. Assuming alihsers behave the same way could lead to
incorrect conclusions after combination. We demast this through an example. For
simplicity, we shall use evidence from just two sans only.

Example with two sensors:

Sensor 1
Sensor?2 Attack Mac Spoof | DoS Xmas Tree
Mass (M) | 0.99 .01 0
Mac Spoof (MS)| 0 0 0 0
DoS (D) 0.01 0.0099 0.0001 0
Xmas Tree (XT) | 0.99 0.9801 0.0099 0

1. To calculate the combined basic probability grasient (BPA) for a particular cell, multiply
the mass values from the relevant column and row.

For example, to calculate the combined BPA fordiléthat has the red value
M(MS) * M(MS) =0.99*0=0

According to the Dempster 's Combination Rule

BnC=A,Zmi(B) m(C)

m12 (A) = m12 (A) * &

1-[BnC=¢g, Z mi(B) mxC)]
The combination called the joint mass §ms calculated from the two sets of  masses
m; and m. m(B) and m(C) are evidence supporting hypothesis B and Cectsely as

observed by the two observers. In our example $ehsmd Sensor 2 are our observers. Both
have two sets of masses corresponding to eactkaBaosor 1 has a mass set)(and sensor 2

has a mass set gnIn this equatioiB n C = &, £ m1(B) m2(C)] part in the denominator is
known as K.

K=[BNC =2, % my(B) myC)]
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K represents basic probability mass associated auittflict. K is calculated by summing
the products of the BPA'’s of all sets where thensgction is null. In the above example to
calculate the combined probability that the atteck DoS attack, first we need to calculate K.
To calculate K we need to sum up three cells tbatribute to conflict represented by empty
intersections.

K = (0.99) (0.01) + (0.99) (0.01) + (0.99) (0.99P:9999

The only non-zero value where the intersectiorois-empty that yields a DoS attack has
the value 0.0001. Therefore, using the Dempstatahination rule we can calculate the joint
mass, which is

my2 (DOS) = (0.01) (0.01) / (1 — 0.9999) = 1

Though there is highly conflicting evidence, thesibgprobability assignment for a DoS
attack is 1. This corresponds to Bel (DoS) = 1,awvhmeans it was a DoS attack with no
uncertainty. The reason for this is the normal@atdof the masses to exclude those associated
with conflict. This is one of the weaknesses of Eh&ory of evidence. It gives incorrect results
when used in circumstances where there is significanflict. But, in cases where we know for
certain that evidence is less reliable, by assmrreliability factor to the evidence we can
improve the accuracy of our combination.

For example, consider the same example, but witkel@bility factor taken into
consideration. Assume that Sensor 1 has a retyabili25% and Sensor 2 has reliability of 95%.
Now do the same calculation to find the combineabpbility for a DoS attack.

Sensor 1
Sensor2 | Attack Mac Spoof DoS Xmas Tree
Mass (M) 099*0.25= |.01*0.25= 0*0.25=0
0.2475 0.0025

Mac Spoof [0*0.95=0 0 0 0

(MS)

DoS (D) 0.01 *0.95 = | 0.00235125 0.00002375 0
0.0095

Xmas Tree | 0.99 *0.95 = | 0.23277375 0.00235125 0

(XT) 0.9405

K =0.00235125 + 0.00235125 + 0.23277375= 0.2378762
my2 (DoS) = 0.00002375 / (1 — 0.23747625) = 0.0000237.36252375 = 0.00003114657

As one can see, now the probability of a DoS atiacklmost zero. This is one of the cases
where we assigned 25% accuracy to one sensor &bdaBéuracy to the 2nd sensor. By doing
so, we essentially negated the unreliability oft tansor in the combining process. The D-S
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theory does not provide this functionality; therefthis could be an improvement to increase the
accuracy of intrusion detection.

5.3 Why Do We Need to Consider Reliability of Evidence?

Dempster’s rule requires all belief sources to éélle [Josang, 2002]. Also Josang [2002]
stated that “The consensus operator does not mmgkassumption about reliability of the belief
sources, but does of course not escape the ‘garbaggarbage out’ principle.” Wrong
information is essentially evidence that is notumate. More often than not, inaccurate evidence
is given by unreliable sources.

In a perfect world one might find perfect or tbtakliable observers. There are a variety
of network sensors that can be used to monitomihedess networks today. At a high level, they
might perform the same task of “monitoring radieguency signals”. They might even see the
same data flowing through the air. Of course gt possible, that some are more powerful than
others, which results in the ability of powerfulnsers seeing more data in a wide range.
Moreover it is likely that the way they processithdata is very different. As data analysis is
done through some code, and this code may havevdten by totally different individuals, it
is likely, they used different methods to achidve same task. Therefore, each sensor is unique.
Hence some sensors might be better at detectingircettacks better than the others. In other
words, if we use two different sensors to deteetdhme attack they may do so with different
values of accuracy for the given attack. Some ssmaght not detect a certain type of attack at
all. As an example for this from our research, Ale70 sensors combined with RF protect does
not detect a Xmas tree scan while Snort detec®oimpletely ignoring a sensor’s capability in a
distributed intrusion detection environment canmatke intrusion detection better. By taking
into consideration that a sensor has a certaiahiéty value for a given attack will increase the
likelihood of detecting the given attack.

In our research, to simulate the reliability o$ensor we use CPU load of a sensor as a
factor that alters reliability in a controlled wahhis is done in this research, so that we can show
how reliability affects a sensor’s detection capgbin a controlled environment. More details
of how the actual experiment was carried out wellgoovided in a later chapter.

5.4 Weakness’ of the Method Used by Yu and Frincke

Yu and Frincke conducted their research using twal&ecure network sensors. One of the
goals of their research is to show that even idahtsensors could have different detection
capabilities depending on their location. Theyadtrced an exponentially weighted D-S theory
to combine evidence which takes into account dfiérocations sensors are located and their
accuracy based on the location. However, Yu andcke only used one sensor type to conduct
their research. In our view, to fully utilize thewer of the D-S theory one needs to use a diverse
set of sensors and combine the evidence. This arag/can detect a varied set of attacks that is
very hard to detect with a single type of sensor.

We feel that our experiments have uncovered a wesskim the exponentially weighted
D-S combination rule of Yu and Frincke. We shalbwhthis error through the following
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example. Yu and Frincke’s exponentially weighte& Bembination rule is given below

BnC=A,Z[mi(B)]"![mz(C)]w2

m12 (A) =
1-[BnC=0,2[mi(B)] *I[mz(C)] *]

The weakness shows up whepand w have values close to zero. For example, raising
0.95 to the power of 0.1 would result in 0.9948.aAmatter of fact, raising any value from (0 to
1) to a positive exponent that is less than oneafgr than zero) would result in a value that is
greater than the original value. In certain cad@s,could result in getting negative values for an
attack state. This will have an effect in the ckltian of K in the combination process that will
cause it to be greater than one. This will causedénominator of the equation to be a negative
number, which causes the eventual combined valugetoegative. When combining multiple
sensors this negative value will adversely affeeténd result.

We shall show the example calculations for the exptially weighted D-S combination
rule, when more than two sensors are used in therement. In the first step, the observations
from the first two sensors are combined with Yu d&mthcke’s Extended D-S fusion. In the
second step the results of the first step is coatbinith the evidence from the third sensor. In
the third step, the results of the second stepcamebined with the evidence from the fourth
sensor. In the fourth step the results of the thiegh are combined with the fifth sensor.
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Yu and Frincke

Step 1
Sensor |AP70-1 Attack Xmas -Xmas U
AP70-2 |Attack Reliability 1 1 1
Mass 0| 0.333333| 0.666667,
Xmas 0 1 0 0 0
- Xmas 0.5 1 0 0.166667 O
U 0.5 1 0 0.166667 O
Step 2
Sensor |AP70-Combined Attack Xmas -Xmas U
AP70-2 |Attack Reliability 1 1 1
Mass 0| 0.666667| 0.333333
Xmas 0.535714 L 0.393224 0.196612
- Xmas 0.392857 b 0.302491 0.151245
U 0.071429 b 0.071534 0.035767
Step 3
Sensor |Step 2 Combined Result |Attack Xmas -Xmas U
AP70-2 |Attack Reliability 1 1 1
Mass 0.324028| 0.865675| 0.058946
Xmas (/PR i| IOR7LY) - 0.25955 | 0.693415 | 0.047216
- Xmas (O CpR]of] IOR-75Y] | 0.080363 | 0.214699 | 0.014619
U (ONoR}:Z 1oyl OR:75Y/  0.020603 | 0.055044 | 0.003748
Step 4
Sensor |Step 3 Combined Result |Attack Xmas -Xmas U
AP70-2 |Attack Reliability 1 1 1
Mass 1.447118| 1.257011| 0.016568
Xmas (Oy/SpR i R 1.159704 | 1.007354 | 0.013278
- Xmas (O CpRlof] IOR=7ele] | 0.359972 | 0.312683 | 0.004121
U (ONoR}:%Toy] IOR=7 8] | 0.092557 | 0.080398 | 0.00106
Step 1 Step 2 Step 3 Step 4
K = 0 K= 0.393224  _ 0.773778 K= 1.367326
my,(Xmas) 0 M(Xmas)  0.324028 m ,(Xmas) = 1.447118 myy(Xmas)  -3.44527
mq>(-Xmas) 0.666667 mi,(-Xmas) 0.865675 mi,(-Xmas) 1.257011 my,(-Xmas) -1.081332
M(U)= 0.333333 M(U)= 0.058946 M(U)= 0.016568 M(U)= -0.002885
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As one can see from the above example, combindtimugh Yu and Frincke’s method in
certain cases results in negative numbers for jibtyavalues. This is clearly noticeable when
there are more than two sensors involved in thebaoation. Also, they do not explicitly define
what happens in the special case when both thehtvaigd the mass is zero. This special case
would require zero be raised to zero power. Thidgcchave a different meaning, depending on
the context, according to the exponentiation atiol Wikipedia that discusses “Zero to the zero
power”.

6 OUR RESEARCH AND PROPOSED IMPROVEMENTS

In our research we have addressed the weaknesties efisting methods and tried to improve
them. The proposed method will make additional stdpents the way probabilities are
calculated to make intrusion detection more aceurAtso, five network sensors that fall into
three diverse categories will be used to condutusion detection. This will give us the
capability to cover a broader spectrum of attankfie research.

6.1 Intrusion Detection in Wireless Networks

In our research we have chosen to apply the D-8ryhef evidence to combine information
about intrusion detection from multiple sensorsvireless networks.

These days, wireless networks have become oconimwork places and homes. As wireless
networks are being widely used, it is importantt thee take necessary precautions against
intrusions into these networks. Though wired neksastill exist, more often than not they co-
exist with wireless networks. In wireless networksensor may be able to access only a sub-set
of the total number of packets. Hence the religbdf conclusions, reached by each sender may
not be the same. Hence the application of D-S themidetect intrusions in wireless networks
may be of great value. However to the best of auvKedge, the D-S theory has not yet been
applied to conduct intrusion detection in wirelassworks.

6.2 Increased Number of Sensors

A major feature of the D-S theory of evidenseits ability to combine evidence in a
distributed intrusion detection environment. Furtiiés able to combine evidence provided by
multiple sensors. We found through our studies tbés¢archers tend to utilize only two sensors
which is the minimum required for data fusion. Asreased number of sensors could give more
evidence, in essence more knowledge about a netwayliestion, we have utilized five sensors
in our research. Data fusion involving more tham tsensors is achieved by generalizing the
Dempster’'s combination rule by iteration. For exéng we have already fused two sensors S1
and S2, we can take that result and treat it @saltrfrom a single sensor and fuse it with sensor
S3. By extension, we are able to combine any numbsensors.
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6.3 Sensor Diversity Increased

One of the major advantages of the D-S theory @femce is that it can combine evidence from
a heterogeneous pool of observers. Unfortunatedgareh in the field indicates this potential
advantage has not been fully utilized. Siaterlisl &faglaris used two sensor types. Yu and
Frincke only used one sensor type. Our study ofptet material indicated that more than 95%
of other researchers in the field also conductedaeh using only a single sensor type.

Our research examines the effects of having maae tne intrusion detection system,
and more than one sensor type in an IDS environmeaay, any large distributed network has
to cater to both wired as well as wireless end-tesin. In such an environment, a single ID
system may not be an effective solution to guaadresg potential attackers. Multiple ID systems
and wireless and wired sensor systems generats.aleconcatenation of all alerts can lead to a
larger number of false positives. However, if wederstand the environment and the
characteristics of the sensors and the IDSs, te®rfuof alerts from a variety of sources can
reduce the number of false positives and false thegaand increase the number of true
positives.

Our research includes the following sensors anas@Slo intrusion detection.

1. Aruba AP-70 Sensors (2 sensors) and RF Proteciodistd IDS
2. Snort sensor (1) using the Snort IDS
3. Wireshark sensors (2)

6.4 Progressively Evolving Reliability Factor (PERF)

To take into account the reliability of evidence mweoduce a reliability coefficient known as. R
Its value lies between zero and one. One corresptntbtally reliable evidence from the sensor
or IDS for the type of attack, under consideratamd zero corresponds to totally unreliable.

Ril0<Ris1

Instead of taking reliability for a sensor it che broken down into reliability for each
attack for a given sensor. This is because a senggpidetect a certain attack at certain reliability
and another attack at a different reliability. Example, in our research we noticed that AP-70
sensors do not detect a Xmas tree scan. Henceadnstie giving the AP-70 sensor with a
reliability value, it could be differentiated dowinto each attack. We, therefore, assign a
reliability value for a specific attack for a specsensor.

In an environment of a very high load of normatigs, a computing system, having the
sensor or the IDS, may be overwhelmed by the largeessing required by the packets and it
may not be able to process the attack packets.h®rother hand, when the load of normal
packets is less, it may be able to recognize ttexlapackets fast. To take into account such
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situations, in our system, this coefficient;)(Reed not stay fixed throughout the intrusion
detection period. In a real intrusion detectioniemnment, this would mean updating reliability
values periodically to reflect newly discovered dmnce and the accuracy of the sensors
detecting a given attack. If an attack was disceddtrue positive) and one of the sensors failed
to detect it, the security practitioner can lowee teliability value for the attack in question in
the particular sensor. How much the value is dee@awill be determined by the security
practitioner according to available data. In oterds, once the security practitioner determines
that a sensor has given a false positive or a fagative she can decrease the sensor’s reliability
coefficient for a given attack by a certain factdnich could be calculated by determining its
current observed correctness for the given atttatle.sLikewise she can increase the reliability
coefficient by a certain factor when it gives aetrpositive for a given attack state up to a
maximum value of one corresponding to totally tdka Therefore, instead of using a constant
value, we can use a variablg)(Rat evolves during the experiment progressively.

In our research, this will be simulated by varyihg CPU load of a sensor. It will be
shown in a later section that when the CPU loadadseased sensor reliability decreases and vice
versa.

6.5 New Method of Basic Probability Assignment (Masslc@dation)

Our research of the field indicated that thereasmell defined way to calculate belief masses in
the Dempster Shafer theory. Also, there is no defined way to calculate the uncertainty or the
unknown state of a system. Most researchers ddefote how the masses were calculated and
just state the values of the masses. We adaptestteochused by Jgsang [2000] to calculate the
belief masses. Using this method, we shall show Hllogv masses are calculated. For this
example, assume that we are considering a Xmasattaek. So our frame of discernment
consists of (Xmas, -Xmas, Unknown). So, first wedéo calculate the masses of these states
for each sensor before we do the fusion. In ouzareh we have done the mass calculation the
following way,

» M(Xmas)=r/r+s+2
* M(=Xmas)=s/r+s+2 When (U)ncertaigty
= M (Unknown)=2/r+s+2

r — Positive evidence, s — Negative evidence

Jasang [2000] justifies this way of calculatiorhia paper “A logic for uncertain probabilities”.
There are a couple of reasons why this methodiialde to be used in our research. Using the
Xmas attack as an example, we shall explain theoresa

1. M (Xmas) needs to increase when r (positive evidgmcreases
2. M (-Xmas) needs to increase when s (negative egg)ancreases
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3. M (Unknown) needs to decrease when r + s (the atrafypositive and negative
evidence, or in other words total available eviggnocreases

This makes perfect sense because as the amowitlehee increases, we get to know more and
more, eliminating the need for mass to be assignathcertainty. Mathematically speaking for
uncertainty to be zero it will require that we haueinfinite amount of evidence. These can be
graphically represented as follows.

M(Xmas), while s is constant

1.2

@==\|(Xmas)
==\ (-Xmas)
=== (U)nknown
Total

w v o 2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

R

Figure 6-1. M(Xmas) is an increasing Function of R
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M(-Xmas), while r is constant

1.2

M

: =M (Xmas)

s === \I(-Xmas)
=== (U)nknown
= Total

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

S

Figure 6-2. M (-Xmas) is an increasing FunctionfdS

U decreasingwhen r + s is increasing

w onw o Z

I‘ == (U)nknown
=lr=Total

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58

R+S

Figure 6-3. U is a decreasing Function of (R + S)

6.6 New Rule of Combination
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In our research we addressed some weaknessestefliSiand Maglaris and Yu and Frincke.
Siaterlis and Maglaris considered all sensors éir tesearch environment to be equally reliable
for detecting denial of service attacks. Actuallys is assumed by the Dempster's combination
rule because it considers all evidence to be os#me importance. In a distributed environment
this does not hold true as explained earlier.

BnC=A, ~RimiB) R my(C)

m12 (A) =

1-[BnC =@, Rimi(B) Rz my(C)]

Where,

= m2 (A) = Combined belief of the hypothesis A

= my(B) = Belief committed to hypothesis B as seenhwyftrst sensor

= my(C) = Belief committed to hypothesis C as seenhigysecond sensor
» R; = Reliability of Sensor 1 (Progressively evolvivejues)

R, = Reliability of Sensor 2 (Progressively evolvivajues)

As shown earlier, Yu and Frincke’s exponential bomation rule can run into potential
problems (negative values) when combining evidentfe. et al. [2002] also proposed a
combination rule that uses weights proportionatly & purpose other than intrusion detection.
However their method is different from ours as itheethod does not produce combination
weights that add up to 1 (def. 5.1.2). Our methédcambination which uses PERF D-S
combination rule will guarantee there will be n@atve values. Hence every mass value will be
between zero and one [0, 1], multiplying it by asitige reliability factor which is also between
zero and one [0, 1], will always result in a pagtvalue that is less than or equal to one. Hence
no negative values are possible for a given attdate. Therefore, the calculated K value is
guaranteed to be a positive number less than éisn, it will ensure that combination weights
will add up to 1 as in definition 5.1.2. How ithaeves the combined weights to be 1 will be
shown in a later section.

We shall show the PERF D-S combination rule ircfica with the same values we used
to show the error in Yu and Frincke’s method.
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Step 1

Step 2

Step 3

Step 4

PERF D-S COMBINATION

Sensor |AP70-1 Attack Xmas -Xmas U
AP70-2 |Attack Reliability 1 1 1
Mass 0| 0.333333| 0.666667
Xmas 0 0] (0] (0]
- Xmas 0.5 0 0.166667 0.333333
U 0.5 0 0.166667 0.333333
Sensor |AP70-Combined Attack Xmas -Xmas (U
Snort Attack Reliability 1 1 1
Mass 0| 0.666667| 0.333333
Xmas 0.5357143 0 0.302071 0.151036
- Xmas 0.3928571 0 0.221519 0.11076
U 0.0714286 0 0.040276 0.020138
Sensor [Step 2 Combined Result  [Attack Xmas -Xmas [U
Wiresharl Attack Reliability 1 1 1
Mass 0.216406| 0.533801| 0.249794
Xmas 0.7692308 Ry, 0.14078 0.347258
- Xmas 0.1923077 OR:75y]  0.035195 0.086814
U 0.0384615 (0R:%5y/ 0.007039 0.017363
Sensor [Step 3 Combined Result [Attack Xmas -Xmas |[U
Wiresharl Attack Reliability 1 1 1
Mass 0.502504| 0.23448| 0.263016
Xmas 0.7692308 OR:ZEls 0.326202 0.152214 0.170738
- Xmas 0.1923077 o7kl 0.081551 0.038053 0.042685
U 0.0384615 Of:Zel] 0.01631 0.007611 0.008537
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Jion Step 2 Step 3 Step 4

K= 0y- 0.302071 K = 0.382453 K = 0.233764
0 mp(Xmas)  0.216406 my,(Xmas)  0.502504 mi,(Xmas)  0.669833
My(-Xmas) 0.666667 m.,(-Xmas) 0.533801 my,(-Xmas)  0.23448 my,(-Xmas) 0.115302
M(U)= 0.333333 M(U)= 0.249794 M(U)= 0.263016 M(U)= 0.214865

m1;(Xmas)

As one can see, the results produced for the safnessas in Yu and Frincke’s method are
within the valid range of probability values. Wealllprovide fusion results, based on measured
values of r and s in a later section.

7 PERF D-S CALCULATION

In this section we shall show how Progressivelyl#ng Reliability Factor (PERF) D-S
calculations are carried out.

7.1 Evidence Gathering

We begin with the process of evidence gatheringnbyinting two types of attacks by using a
test-bed in the laboratory.

1. DoS Attack
2. Xmas Tree Scan

More details about these attacks can be foundatioses 5.3 and 5.6. First we carried out
DoS attacks and gathered the required evidence tinem. The DoS attacks were carried out
using the CommView tool, described in section @Z2flood the victim with packets. Once the
attack finishes, we record the evidence from alfthhe sensors. More specifically, we take from
each sensor anything that supports the believedlkatitate or anything that refutes the attack
state. In this research we denote,

» 1 = positive evidence
* s =negative evidence

This is quite similar to Jgsang [2000]. For anyifpas evidence, r will be incremented
and for any negative evidence s will be incremenBydhow much r or s will be incremented
will depend on many factors. We defined these dunde for our research as in the following
tables, since no such guidelines exist in theditee. We found that by using the guidelines, the
belief mass, in each case, provided a value, whicen combined with others, generated the
correct results for the cases of an attack for Huthattacks.

| RF Protect Evidence (DoS) | r | S |
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For every totally favorable alert

5 points

For every totally unfavorable alert

5 points

For every partially favorable alert

1 points

For every partially unfavorable alert

1 points

Table 7-1. Point Assignment for RF Protect Evidencen a DoS attack

Snort Evidence (DoS)

r

For every totally favorable alert

5 points

For every totally unfavorable alert

5 points

For every partially favorable alert

1 points

For every partially unfavorable alert

1 points

For every 4000 packets captured in a DoS attack

1 point

Table 7-2. Point Assignment for Snort in a DoS atizk

Wireshark Evidence (DoS)

For every 4000 packets captured in a DoS attack

1 point

For other packets (packets that are used to attack the victim is not
considered in this case) indicating no attack state, consider the
amount of packets and assign a subjective value to S - the reason
being if we find packets that we don’t expect to be there, that
shows the network could possibly be in another non-attack state

1 point

For every two packets indicating an attack state, such as ICMP
Destination Unreachable (Wireshark filter for finding this is
icmp.type == 3 && icmp.code == 3)

1 point

Table 7-3. Point Assignment for Wireshark in a Do&ttack

RF Protect Evidence (Xmas)

For every totally favorable alert

5 points

For every totally unfavorable alert

5 points

For every partially favorable alert

1 points

For every partially unfavorable alert

1 points

Table 7-4. Point Assignment for RF Protect Evidencen a Xmas attack
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Snort Evidence (Xmas) r S

For every totally favorable alert 5 points

For every totally unfavorable alert 5 points
For every partially favorable alert 1 points

For every partially unfavorable alert 1 points
For every 4000 packets captured indicating no attack state 1 point

Table 7-5. Point Assignment for Snort in a Xmas a#ick

Wireshark Evidence (Xmas) r s

For every 50 Xmas packets captured 1 point
Wireshark Filter used to select Xmas packets is
(tcp.flags.urg == 1 && tcp.flags.push == 1 && tcp.flags.fin == 1)

For every 4000 packets captured indicating no attack state 1 point

An Xmas scan is preceded by scanning the network for available | 2 points
hosts (who has) using the ARP protocol, if this phase is present in
the evidence (stage before Xmas packets are sent)

Table 7-6. Point Assignment for Wireshark in a Xmasattack

For a higher bandwidth network, that has high icdir a very long period, one may take the
number of packets in each of the above cases amerlvalue. In our test-bed, we chose to
increment ‘s’ by 1 point for 4000 packets indicgtimo attack state.

7.2 Belief Mass Calculation and Combination

Once the evidence is gathered and points assigoeardingly, we can calculate the belief
masses for each state. In our research the betise$ mas calculated in the following way. The
data given below is for a single sensor that gathéata in a Xmas tree scan.

M(-=Xmas) (U)nknown

r S
4 1

M (Xmas) =r/r+s+2

0.1428571

M (-Xmas) =S/r+s+2 When U# 0
U=2/r+s+2

Also, it is required that
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M (Xmas) + M £Xmas) + U =1

We adapted this method of calculation from Jgs@00(]. The Dempster-Shafer theory
does not explicitly define a way to calculate basiabability assignment (BPA). We shall show
a complete fusion example through PERF D-S belowthis example, we assume that all
sensors are totally reliable and hence their ridifialis 1. We shall later show the same example
with the same evidence but with different relidiilralues.

First the evidence gathered from 5 sensors is aedlgnd belief masses are calculated as
follows.

rA SA M(-Xmas) (U)nknown
0 4 0.6666667

B B

r S M (-Xmas) (U)nknown
0 4 0.6666667

Table 7-7. Evidence from AP-70 Sensors

D D
r S

15 5

M(-Xmas) (U)nknown
0.2272727

Table 7-8. Evidence from Snort Sensor

D D
r S

22 4

M(-Xmas) (U)nknown
0.1428571

Table 7-9. Evidence from Wireshark Sensor (1)

D D
r S

22 4

M(-Xmas) (U)nknown
0.1428571

Table 7-10. Evidence from Wireshark Sensor (2)

After belief mass assignment, we do the combinatibthese masses to form a more
informed decision. Since there are 5 sensors, wd e perform 4 fusions. First data from two
AP-70 sensors are fused; the result of that cortibmas then fused with evidence from the
Snort sensor. That result would be fused with Wiaek sensor 1 and the resulting values would
be fused with Wireshark sensor 2. The steps amersiotable 10-11.
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PERF D-S COMBINATION

Step 1
Sensor AP70-1 Attack Xmas - Xmas u
AP70-2 Attack Reliability 1 1 1
Mass 0[ 0.6666667( 0.333333
Xmas 0 0] 0] 0]
- Xmas 0.666667 0/0.4444444 1 0.222222
u 0.333333 0 0.2222222 0.111111
Step 2
Sensor AP70-Combined Attack Xmas - Xmas u
Snort Attack Reliability 1 1 1
Mass 0[ 0.8888889( 0.111111
Xmas 0.681818 0 0.6060606 0.075758
- Xmas 0.227273 0 0.2020202 0.025253
U 0.090909 0 0.0808081 0.010101
Step 3
Sensor Step 2 Combined Result  |Attack Xmas - Xmas u
Wireshark AD |Attack Reliability 1 1 1
Mass 0.192308| 0.7820513| 0.025641,
Xmas 0.785714 ¥l 0.151099 0.6144689 0.020147
- Xmas 0.142857 il 0.027473 0.1117216 0.003663
U 0.071429 ¥l 0.013736 0.0558608 0.001832
Step 4
Sensor Step 3 Combined Result  |Attack Xmas - Xmas u
Wireshark Dul |Attack Reliability 1 1 1
Mass 0.516624( 0.4782609| 0.005115,
Xmas 0.785714 il 0.405919 0.3757764
- Xmas 0.142857 ¥l 0.073803 0.068323
U 0.071429 il 0.036902 0.0341615

Table 7-11. Example: PERF D-S Combination for a Xms& Tree Scan with Sensors,
assumed to be Totally Reliable



Step 1 Step 2 Step 3

K= 0 K= 0.606060606 K = 0.641941392
mi,(Xmas) 0 my,(Xmas) 0.192307692 m;,(Xmas) 0.516624041
miy(-Xmas)  0.888888889 . (-Xmas)  0.782051282 mj,(-Xmas) 0.47826087
M(U)= 0.111111111 M(U)= 0.025641026 M(U)= 0.00511509
Step 4

K= 0.449579832

mi,(Xmas) 0.811815466

mi,(-Xmas) 0.187520743

M(U)= 0.00066379

The final result is the mass assigned to the $fa€mas) indicating the likelihood of a
Xmas tree scan which is 0.8118 or 81.18%. The rassigned to the state M(-Xmas) is 0.1875
or 18.75%. The value of uncertainty is 0.0006630.666%.

Now we consider the same example but with differefiibilities for the sensors. By
using reliability we can negate the effect of evicke that has a larger likelihood of being false. If
we know that evidence from a certain sensor/srisnepus or incorrect to a certain degree, we
can reduce the effect of that evidence by usingr¢hability of that sensor. In the real world,
reliability of a sensor can be calculated througgtdnical data available and other knowledge
available about the sensor’s performance. Any natufer of IDS systems will specify the kind
of attacks the IDS detects. Depending on that keadgeé one can adjust the reliability of that
sensor for a certain attack. We shall give an e)artipat uses the same data as the earlier
example but with different reliabilities for thernsors. First, the modified reliabilities are given
for the 5 sensors as below:

Reliability Value

AP-70-1 1
AP-70-2 1
Snort 0.95
Wireshark AD 0.97
Wireshark Dul 0.93

Now, what we expect from the results is M(Xmasjestahich is less than 81.18%. The
reason being, 3 of the sensors that provided suppdine Xmas state have reliability values that
are less than the first example. Also the AP-7&Ggenhave unmodified reliability values in this
example. Hence their negative evidence will not enaldifference as compared to last example.
Now, let’s take a look at the combination of evidemvith the same evidence as before.
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PERF D-S COMBINATION

Step 1
Sensor AP70-1 Attack Xmas - Xmas u
AP70-2 Attack Reliability 1 1 1
Mass 0[ 0.6666667| 0.333333
Xmas 0 0 0 0]
- Xmas 0.666667 0 0.4444444 0.222222
u 0.333333 0 0.2222222 0.111111
Step 2
Sensor AP70-Combined Attack Xmas - Xmas u
Snort Attack Reliability 1 1 1
Mass 0[ 0.8888889| 0.111111
Xmas 0.681818 ! 0 0.5757576  0.07197
- Xmas 0.227273 ! 0 0.1919192  0.02399
U 0.090909 ! 0 0.0767677 0.009596
Step 3
Sensor Step 2 Combined Result  |Attack Xmas - Xmas u
Wireshark AD [Attack Reliability 1 1 1
Mass 0.169643| 0.689881| 0.140476
Xmas 0.785714 Ky 0.129292 0.5257878 0.107063
- Xmas 0.142857 ()XY 0.023508 0.0955978 0.019466
U 0.071429 (0] 0.011754 0.0477989 0.009733
Step 4
Sensor Step 3 Combined Result  |Attack Xmas - Xmas u
Wireshark Dul [Attack Reliability 1 1 1
Mass 0.550491| 0.3613513| 0.088158
Xmas 0.785714 ()A°E] 0.402252 0.2640446 0.064418
- Xmas 0.142857 (lA°E] 0.073137 0.0480081 0.011712
U 0.071429 (I°E] 0.036568 0.0240041 0.005856

Table 7-12. Example PERF D-S Combination for a Xnmmtree scan with 3 sensors having
reduced reliability
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Step 1 Step 2 Step 3

K= OK= 0.575757576 K = 0.549295493
my,(Xmas) 0 m,,(Xmas) 0.169642857 m,,(Xmas) 0.550491153
myp(-Xmas)  0.888888889 1y, . (-Xmas)  0.689880952 m,,(-Xmas)  0.361351324
M(U)= 0.111111111 Mm(U)= 0.14047619 M(U)= 0.088157524
Step 4

K= 0.337181256

my,(Xmas) 0.75923932

my,(—-Xmas) 0.12631585

M(U)= 0.11444483

The value of M (Xmas) = 75.92% which is less thdratwve got with total reliability which was
81.18%. This is what we expected by lowering thkabdity of the sensors. One of the
shortcomings of using a reliability factor is thhé total of my(Xmas) + my(-=Xmas) + U does
not equal one after combination. This is becaulsgbibty is usually less than 1 for sensors. This
is the case in every combination when you considibility. In the regular Dempster-Shafer
theory, combined mass is calculated as follows.

myz(Xmas) = [(m(Xmas).m(Xmas) + m(Xmas).m(U) + my(Xmas).m(U))] / 1 - K
myz(-Xmas) = (m(-Xmas).m(-Xmas) + m(-Xmas).m(U) + my(-Xmas).m(U))//1-K

mz(U) = my(U).my(U) //1-K
K = (my(Xmas).m(-Xmas) +m(-Xmas).m(Xmas))

In our method (PERF), we do the calculations deid.

mpx(Xmas) = [R1.m(Xmas).Rz.mpx(Xmas) +R1.my(Xmas).R2.nmp(U) + R2.nmp(Xmas).
Ri.my(U))]/ (1 - K)

mMpx(-Xmas) = R1.my(=Xmas).Rz.mp(-Xmas) +R1.my(=Xmas).R2.my(U) + Ra.my(=-Xmas).
Ri.m(U)) // (1 - K)

mix(U) = 1 —[mz(Xmas) + my(-=Xmas)]
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K = (R1.my(Xmas).Rz.my(=-Xmas) +R1.my(=Xmas).R2.my(Xmas))

When reliability is 1 (totally reliable) for all ssors, the two sets of formulae become the same.
Dempster-Shafer

= mpU) = my(U).my(U)//(1-K)
PERF

= mpU) = 1-[my(Xmas) + my(-Xmas)]
But, when taking reliability into considerationgthare not equal. In other words PERF’s
mpz(Xmas) + my(-Xmas) + U# 1 when reliability is less than 1

In PERF, we select the value ofAJ) in such a way that the total will add up torhis way is
logical, because when reliability is taken into sidleration, what we lose from the actual mass
can be attributed to uncertainty. Yu and Frinckasthod does not address this fact in their
method. Hence, in their method,

mi(Xmas) + my(-Xmas) + U# 1 when reliability is less than 1

This is one of the reasons, the Yu and Frincke’shotk starts showing a weakness in some
cases.

8 EXPERIMENTS AND ANALYSIS

All the experiments were conducted using 5 wiretesssors and one attacker and one victim. A
summary of the sensors and computers and wiredessrs used are given below with the
specifications of the CPU and random access me(Rukiv).

Sensor/Computer CPU RAM

Linksys WRT310N Router

Attacker Core 2 Duo 2.0 Ghz |4GB DDR2
Victim Pentium D 2GB DDR2
Snort Core 2 Duo 1.6 Ghz |2GB DDR2
Wireshark AD Core 2 Duo 1.6 Ghz |2GB DDR2
Wireshark Dul Pentium 4 2.8 Ghz {512 MB DDR

RF Protect Pentium 4 256 MB RDRAM
AP-70- 1 (Connects to RF Protect)

AP-70- 2 (Connects to RF Protect)

Table 8-1. Computers, Router and Sensors used ihg Experiment
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The sensor setup and computer setup used in tlegieent are given in the following diagram.

AP-T0- 1 | =

Attcker

Wireshark Dul

Linksys WRT310M

RF Protect

Ethernet connection

Wireless connection

Figure 8-1. Setup of the test-bed (Sensors, Computeand Router)
8.1 Reliability of Sensors and CPU Utilization in DoXferiments

Since PERF adds the idea of reliability in fusiove needed sensors, for which the
reliability could be adjusted. In the experimensaiting, we needed a way to simulate the
reliability of a sensor. Therefore we introducedddBad as a parameter. In this section we shall
show that when the CPU load increases the religlafi a software sensor, decreases. Utilizing
that fact, we conducted several experiments witfoua CPU loads.
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In this thesis, to obtain a variable reliabilityctar for the sensors, we define the reliabilityaof
sensor as a function of the CPU load of the semsather words by modifying the CPU load of
a sensor, the reliability of a sensor will be imsed or decreased. We conducted several
experiments. The end results of the experimentgegrthat when the CPU load is increased the
reliability of a sensor decreases. In the expertalesetting, we were able to successfully modify
the CPU load of the Wireshark sensors and the Seoor. The AP-70 sensor’s reliability was
left untouched as we did not find a practical wajoading the AP-70 sensors with CPU loading
software that can be measured in an experimentishggeThe AP-70’s are hardware devices
specializing in wireless monitoring whereas Wirekhend Snort are software devices, installed
on actual computers that monitored the airwavgsomiscuous mode.

The metric used to measure the reliability of @sse was the number of packets a sensor
captured under a certain CPU load. By sending eohstized packets at a constant speed
throughout the experiment, one can observe how rpaolets each sensor captures. Conducting
the same experiment at varying CPU loads in themsnone can observe how the CPU load
affects the packet capturing ratio of the sens@ing this one can determine how reliable a
sensor is under different CPU loads.

Several packet flooding experiments were conduitexbserve the reliability of a sensor
with varying CPU loads. In this section only theeege values obtained from 30 experiments
with different CPU loads are provided.

First we carried out the experiment without modityithe CPU load. The CPU load, in
this case, is the normal CPU load when just themesoftware is running with the operating
system, with no other load. Then CPU load was ss®d gradually up to 90% of the CPU
power utilized at the end. CPU load was varied fi@dfbo to 50%, 70% and 90% of the total
CPU power.

In each of the five cases, the experiments combkistesending a flood of packets. The
same experiment was repeated 6 times and the aveaige was selected as the reliability of the
sensor. The attacker fired the packets at 5000gtsigder second at the victim while the sensors
were sniffing the network in promiscuous mode.

The results below give the averages of these 3@rarpnts at different CPU utilization
levels.
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CPU CPU CPU Packet Packet |AVG# of AVG Percentage E\cE:Xo;il AVG Percentage AVG
Utilizatio |Utilization - |Utilization - [ ;%= Size Captured Percentage Captured from [ecla [l Captured from |Total
n-Snort |Wireshark |Wireshark [::¢ in Packets AD  [eclsidi[g=Rigelii| Packets Dul IeI=]E Packets AD |11 Packets
AD Dul AD Bytes [Snort Total = Snort AD KW El el Wireshark Dul RWIEH Elid MViresSharkVADSS Sent

250 22.86% 9579 22.82% 9593 22.86%

No Extra |[No Extra No Extra

Load Load Load
30% 30% 30% 250 21.94% 9407 21.84% 21.96%
50% 50% 50% 250 21.28% 21.08% 21.28%
70% 70% 70% 250 20.22% 19.94% 20.22%
90% 90% 90% 250 15.56% 15.30% 15.55%

Table 8-2 Reliability Values (Averages) from 30 exgriments

The above table displays the average percentagaabiets captured at various CPU utilizations duhiiglh speed packet floods of
5000 packets per second. The average was takeraftotal of 30 experiments (6 each at a given CHlization). The data are for 2
Wireshark sensors and one Snort sensor sniffingehgork in promiscuous mode.
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200 Percentage of Packets Captured with various CPU Utilizations (Averages)
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 AVG Percentage Captured from Total - Wireshark AD

CPU Utilization

Figure 8-2. Average Percentage of packets captured various CPU Utilizations
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AVG % Wireshark Dul, AVG % of Relative
Packet Relative AVG % of Packet |Relative Packet Reliability of
Difference [Reliability of |Difference from |Reliability of |Difference from|Wireshark
from First |Snort AD First Wireshark Dul |First AD
0.00% 100% 0.00% 100% 0.00% 100%
-0.92% 99.08% -0.98% 99.02% -0.90% 99.10%
-1.58% 98.42% -1.75% 98.25% -1.58% 98.42%
-2.65% 97.35% -2.88% 97.12% -2.64% 97.36%
-7.30% 92.70% -7.52% 92.48% -7.31% 92.69%

Table 8-3. Average Relative Reliability of Sensors

Instead of assigning absolute reliability valuethi® sensors, we calculated them on a relativesba@kerefore, at the start without any
CPU loading software, the sensors were given & {bd@%) reliability. As the experiment progresseéifferent readings were taken
at varying CPU loads. First, when there is no eliaal on the CPU, we calculate the captured pguketntage by

= Captured Packet Percentage = Number of capturdeisacNumber of sent packets

We do this procedure for every experiment at vayyi#U loads. Then, at each experiment we calcthatpercentage difference
from the beginning of the experiment. Through finscedure we calculate the relative reliabilityacdensor at a given CPU load.
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Figure 8-3. Average Relative Reliability of Sensorw/ith increasing CPU Utilizations
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The experimental results clearly showed that asereptures fewer packets when the CPU load
is increased. Therefore, by increasing the CPUkatibn of a sensor, the reliability of a specific
sensor can be decreased by a certain factor. Tédedsgf 5000 packets per second was chosen
because it was the maximum allowed by the Comm\4eftware, which we have used to flood
packets.

8.2 Reliability of Sensors and CPU Utilization in Xm#&see Experiments

To test the reliability of sensors under a Xmas tedtack, we conducted another set of
experiments. In this experiment, the attacker coteda series of Xmas tree scans on the network
using the Zenmap network scanner under varying @flds. More details about Xmas tree
attacks and Zenmap can be found in section 5.6t #ie attacker does the Xmas scan with no
CPU loading software. Also, the attacker fires paskat 500 packets per second toward the
victim, so that the Xmas scan becomes less obvisis Xmas does not use a large number of
packets for a total scan, by having the extra pastkeam, it creates a real network environment
by having other packets flowing through the netwdrke reliability calculations in the Xmas
scans are done in a manner similar to that for Biw& k. We conducted 5 Xmas tree scans at
Normal, 30%, 50%, 70%, 90% CPU loads and repeated b times for a total of 25 Xmas tree
scans and calculated the average reliability afressr during a Xmas tree scan. The results were
as follows.
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CPU CPU CPU
Utilizatio |Utilization {Utilization
n - Snort |Wireshark |Wireshark
AD Dul AD
No Extra |No Extra No Extra
Load Load Load
30% 30% 30%
50% 50% 50%
70% 70% 70%
90% 90% 90%

it |Packet
per Size
S=soiie | in Bytes

AVG # of
Captured
Packets

A ilelsdl Total = Snort AD

250 55470
250 52705
250 46751
250 41796
250 40775

AVG
Percentage
Captured from | IEEILE ]
Wireshark

83.14% 55409

]
79.92%

76.17% 46689
70.92% 41722

67.71%
|

NI EN AV G # of
Captured from  [e=]e}d8I¢:Le!
Total - Packets AD
VWHESLZEILSIIRS Wireshark

83.04% 55473

[
79.81%

76.06%
70.80%
]

67.43%
|

Table 8-4. Average packets captured at various CPULtilizations in Xmas tree scans

AVG Percentage
Captured from
Total -
Wireshark AD

]

|
79.92% | 59320
76.17%

70.92%

67.71%

AVG AVG
Zenmap Total
Packets | Packets
Sent Sent

The above table displays the average percentagactets captured at various CPU utilizations dukntas tree scans. The average
was taken from a total of 25 experiments (5 each given CPU utilization). The data are for 2 Witk sensors and one Snort
sensor sniffing the network in promiscuous mode.
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Percentage of Packets Captured with various CPU
Utilizations (Averages)
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Figure 8-4. Average Percentage of packets capturedth various CPU Utilizations in 25 Xmas tree scans
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Snort AD, Relative |Wireshark Dul, [Relative Wireshark AD, [Relative
AVG % Packet [Reliabilit [AVG % of Packet |Reliability of [AVG % of Packet |Reliability of
Difference y of Difference from |Wireshark |Difference from |Wireshark
from First Snort AD [First Dul First AD
0.00% 100% 0.00% 100% 0.00% 100%
-3.22%| 96.78% -3.23% 96.77% -3.22% 96.78%
-6.97%| 93.03% -6.98% 93.02% -6.97% 93.03%
-12.21%| 87.79% -12.25% 87.75% -12.22% 87.78%
-15.42%| 84.58% -15.61% 84.39% -15.43% 84.57%

Table 8-5. Relative reliabilities with varying CPUUtilizations in Xmas tree scans

Instead of assigning absolute reliability valueghe sensors, we calculated them on a relative
basis. Therefore, at the start without any CPU iluadoftware, the sensors were given a total
(100%) reliability. As the experiment progresseffedent readings were taken at varying CPU

loads. First, when there is no extra load on théJCRe calculated the captured packet

percentage by

Captured Packet Percentage = Number of captureketsat (Number of sent packets
generated by Commview + packets, sent by Zenmap)

Notice, that in this calculation we add both Comemvipackets and Zenmap packets to the total,
unlike last time where we only added Commview p&k®/e do this procedure for every

experiment at varying CPU loads. Then, at each raxpat we calculate the percentage

difference from the beginning of the experimentroligh this procedure we calculate the

relative reliability of a sensor at a given CPUdahuring Xmas tree attacks.
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Relative Reliability of Sensors with various CPU
Utilizations (Averages)
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Figure 8-5. Average Relative Reliability of Sensorwith Various CPU Utilizations in 25
Xmas Tree Scans

The experimental results clearly showed that asereptures fewer packets when the CPU load
is increased during a Xmas tree attack. But, tligahg@ercentage of packets captured during
Xmas tree attacks were greater than the perceofgggckets captured at the same CPU load in
DoS attacks. The reason being that we only senllepmat 500 packets per second during the
Xmas tree attack while during the DoS attack wet gatkets at 5000 packets per second.
However the relative reliability of sensors durikgas tree attacks decreased compared with
DoS attacks. A possible reason for this could bEmbse our Xmas tree scans lasted longer than
DoS attacks.

8.3 DoS Attack Experiments and Analysis

The experimental setup for DoS attacks consiste’d AP-70 sensors, 2 Wireshark sensors, 1
Snort sensor, an attacker machine and a victim macfihe attacker flooded the victim with
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high speed packet streams for a continuous persigb000 packets per second (maximum
allowed by CommView) packet streams using CommVigéWwe Experimental setup is given

below.

Packet Flood
5000 packebs
= ¢ e ——— L
=.jr ROt L
ik % 8
AP-TD-1 AR Z o

Ethernet Connection

Figure 8-6. DoS Attack Setup
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Figure 8-7. CommView Software Configured to Flood Bckets at 5000 Packets per Second

30 Denial of Service (DoS) attacks were conducte@RU utilizations, (normal, 30%, 50%,
70%, and 90%). After each attack, evidence wasegath This evidence was used for basic
probability assignment and evidence fusion. We udedlifferent methods of evidence
combination. Namely they were,

PERF D-S (Our method)
Consensus (by Dr. Audun Jgsang)
Yu and Frincke’s method
Dempster-Shafer Theory

PN pE

After gathering data and calculating basic proligbéssignments, they were fused as described
earlier. First we fuse two sensors and use thdtraswne from a single sensor and fuse that with
the next sensor. We get the final combination tesfteer fusing the 5 sensors. The results at each
reliability level have been calculated. Since 4 hods of fusion are used, we compared them.
Given below are the results of the experiments. déiled calculations of fusion and basic
probability mass calculation are given in the tecainreport 09-027, School of Computer
Science, University of Windsor.
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Comparative Results for;aiDoS)

CPU Load Jiz=:z Consensus Yu and Frincke | Regular D-S

Normal 96.65% 76.00% 96.65% 96.65%
30% 95.39% 75.86% 100.69% 97.12%
50% 93.14% 73.08% 103.26% 96.19%
70% 89.26% 71.43% 110.85% 96.06%
90% 83.96% 74.07% 135.23% 96.60%

Normal 97.43% 78.57% 97.43% 97.43%
30% 94.01% 73.08% 99.38% 95.74%
50% 93.52% 73.33% 104.49% 96.91%
70% 92.01% 76.00% 108.91% 97.38%
90% 81.30% 70.37% 138.04% 94.89%

Normal 95.50% 73.91% 95.50% 95.50%
30% 95.81% 78.26% 99.93% 97.42%
50% 93.90% 75.00% 104.99% 97.29%
70% 87.79% 69.57% 105.73% 93.27%
90% 81.30% 70.37% 138.04% 94.89%

Normal 98.54% 79.31% 98.54% 98.54%
30% 92.70% 73.91% 97.84% 94.36%
50% 91.72% 70.97% 102.73% 94.82%
70% 88.68% 70.37% 110.59% 95.43%
90% 81.91% 71.43% 137.06% 95.59%

Normal 96.64% 78.26% 96.64% 96.64%
30% 94.45% 73.33% 100.02% 96.20%
50% 91.68% 71.43% 102.11% 94.75%
70% 88.85% 70.37% 106.99% 94.20%
90% 79.41% 69.57% 131.67% 92.49%

Normal 99.13% 84.62% 99.13% 99.13%
30% 92.68% 73.91% 97.49% 94.36%
50% 92.13% 72.00% 102.61% 95.42%
70% 90.18% 73.08% 109.52% 96.91%

90% 84.12% 78.26% 133.00% 97.66%

Table 8-6. Comparative Results of the 4 CombinatioMethods in 30 DoS Attacks
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DoS attack probability
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Figure 8-8. DoS Attack Probability After Combination for 30 DoS Attacks
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DoS attack probability
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Figure 8-9. DoS Attack Probability After Combination Excluding Yu and Frincke’s method for 30 DoS Attzks
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It was quite evident from the results that Yu amishdke’s exponential combination rule did not

fare well with 5 sensors. After 2 combinations, &d Frincke’s exponential method started
giving probability values exceeding 100% for theaek state. Yu and Frincke’s method seemed
to have a maximizing effect of the actual situation

As for Consensus method, it seemed to provideonsdde results with the given
evidence. In our DoS attack scenario since we dserkthe reliability of the sensors gradually
there seemed to be a gradual decrease of evidatioergd, that affected the outcome of the final
result. Especially, in a DoS attack scenario wel ggiecial attention to the number of packets
received at various CPU Ultilization levels. Whee tBPU utilization is increased we receive
slightly less number of packets as compared wighctise of lower CPU utilization stage. Hence
we detected a slight decrease in the combinatisultsein successive stages of the experiment.
The Consensus method does not have a way to ackmuuhe decrease in reliability of sensors.
Therefore, the decrease in Consensus was smallacethfo that in PERF.

Dempster-Shafer also lacked the capability to tak@account the reliability of sensors.
Hence the values of fusion, obtained by using Deshiod, provided slightly higher estimates for
the attack states compared with the values obtatheough Consensus and PERF. D-S
combination showed a slight decrease but the deereas smaller than that for Consensus and
PERF. This is because D-S theory always triesue figh positive results when the evidence is
positive (and extremely negative results under tregavidence).

PERF showed results as expected. Thus we found thiea feature of considering
reliability of sensors in PERF gives better resultdoreover this eliminates the problem
encountered by Yu and Frincke’s exponential D-$xgdained in section 8.4. All  the 3
methods of combination except Yu and Frincke’s métprovided probability values that are
within the valid range of 0% to 100%.
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Comparative Results for,aiDoS)
CPU Load pa\VAier =545 AVG Consensus [AVG Yu and Frincke | AVG Regular D-S

Normal 97.31% 78.45% 97.31% 97.31%
94.17% 74.73% 99.22% 95.87%
92.68% 72.63% 103.37% 95.90%
89.46% 71.80% 108.76% 95.54%
82.00% 72.34% 135.51% 95.35%

Table 8-7. Average Results from the Combination dEvidence from the 30 DoS attacks

Average Probability of a DoS Attack

160.00%

o

o

140.00%

w

120.00%

100.00%

= 060 O + + D>

80.00% - M AVG PERF
B AVG Consensus
M AVG Yu and Frincke

60.00% - B AVG Regular D-S

40.00% -

20.00%

< * = — — T o0 T 0 = T

0.00% -

Normal 30% 50% 70% 90%

CPU Utilization

Figure 8-10. Average Probability of 30 DoS attackat various CPU Utilizations

As can be seen from the above graphs, it is cleatr dll the methods except Yu and
Frincke’s method, on an average, had a decreasilog wf probability of attack as the CPU load
was increased. PERF had a slightly bigger decrdaseto its consideration of reliability of
evidence in fusion. Also, unlike the other methaalisen the reliability of sensors decreased, the
uncertainty in the combined state orx(W) increased. This is clearly shown from the faliiog
data.
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Comparative Results for;ajU) in DoS Attacks
CPU Load Consensus Yu and Frincke | Regular D-S

Normal 0.66% 8.00% 0.66% 0.66%
1.92% 6.90% 0.40% 0.38%
3.33% 7.69% 0.63% 0.56%

5.61% 7.14% 0.53% 0.44%
11.95% 7.41% 0.80% 0.50%

Normal 0.51% 7.14% 0.51% 0.51%
2.13% 7.69% 0.59% 0.56%

3.29% 6.67% 0.38% 0.34%

5.19% 8.00% 0.60% 0.52%

12.85% 7.41% 0.81% 0.50%

Normal 1.00% 8.70% 1.00% 1.00%
2.25% 8.70% 0.80% 0.76%

3.32% 7.14% 0.44% 0.40%

5.86% 8.70% 1.18% 1.00%

12.85% 7.41% 0.81% 0.50%

Normal 0.29% 6.90% 0.29% 0.29%
2.66% 8.70% 1.18% I I 7

3.27% 6.45% 0.43% 0.38%

5.68% 7.41% 0.61% 0.51%

12.72% 7.14% 0.70% 0.44%

Normal 1.00% 8.70% 1.00% 1.00%
1.96% 6.67% 0.40% 0.38%

3.38% 7.14% 0.58% 0.52%

5.47% 7.41% 0.68% 0.57%

13.35% 8.70% 1.58% 0.99%

Normal 0.39% 7.69% 0.39% 0.39%
2.67% 8.70% 1.17% I B 7

3.61% 8.00% 0.75% 0.68%

5.61% 7.69% 0.60% 0.52%

12.44% 8.70% 1.05% 0.69%

Table 8-8. Comparative Results for m12(Uncertaintypuring 30 DoS Attacks
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m, (Uncertainty) in DoS Attacks
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Figure 8-11. . Combined Uncertainty in 30 DoS Atteks
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Averages of Combined Uncertainties

CPU Load

AV G PERF

Normal

0.64%

2.27%

3.37%

5.57%

12.69%

Table 8-9. Averages of Combined Uncertainties in 3DoS Attacks

AVG Consensus AVG Yu and Frincke  AVG Regular D-S

7.85%
7.89%
7.18%
7.72%
7.79%

0.64%
0.76%
0.53%
0.70%
0.96%

0.64%
0.72%
0.48%
0.59%
0.61%

Probability of m,,(U)

14.00%
p 12.00%
r
o 10.00%
b
a  8.00%
b M AVG PERF
i 6.00% B AVG Consensus
| M AVG Yu and Frincke
tl 4.00% B AVG Regular D-S
Y 2.00%

0.00% -
Normal 30% 50% 70% 90%
CPU Utilization
Figure 8-12. Average Combined Uncertainty with CPWtilization for 30 DoS Attacks
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Figure 8-13. Average Combined Uncertainty with CPWtilization for 30 DoS Attacks

Experimental results clearly indicated that whee tieliability decreases, the PERF
combination assigns more mass to the unknown staéhough, other methods showed
decreases of uncertainty for the combined stateag not consistent with the given reliability.
Consensus and Dempster-Shafer do not have any fagndling reliability. The results given
by PERF are fairer because when the reliabilityeefdence decreases, the uncertainty of
evidence should increase. This in turn results awilg a higher value for the combined
uncertainty of the sensors. No other method sufidgséiandled uncertainty with decreasing
reliability.

8.4 Xmas Tree Scan Experiments and Analysis

The experimental setup for Xmas tree scans wergssita that of DoS attacks. The Xmas scans
were conducted using Zenmap (graphical user irderéd Nmap). Also, packets were sent to the
victim at 500 packets per second using CommViewwdf conducted Xmas scans without
background traffic, it would be too easy to deté&airther, these extra packets would mean that
the network sensors have more work to do and datmormal packets and the Xmas packets.
This decreases the chance of capturing the Xmaesefgadvoreover this normal packet stream
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would act as negative evidence, indicating somée stéher that the Xmas attack state in
evidence fusion.

A total of 30 Xmas scans were conducted duringetkgeriment with CPU utilizations
varying from (normal, 30%, 50%, 70%, and 90%). Bha¢hered evidence was used to calculate
the basic probability assignments as before. AkenDoS research we used 4 different methods
of evidence combination to fuse the gathered ewi@ehe Xmas tree scans were conducted as
described earlier in the definitions section. Thsuits are compared side by side to see which
method performs the best. Given below are the tesfithe experiments.
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Comparative Results for;gXmas)

CPU Load Jiz=;i5

Normal 90.39%
o) | 80.47%
07 | 75.59%
s | 73.40%
90% 69.39%

Normal 90.59%
oy 78.01%
Gl0b7y - 75.68%
Uerys - 72.22%
Sy | 66.98%

Normal 89.14%
oy 85.21%
Sy | 79.43%
70% VAV
Sy | 68.45%

Normal 93.63%
)| 87.04%
S0 | 77.90%
g | 71.96%
=S[00 | 69.44%

Normal 95.49%
oy 88.28%
50% VSRRV
70% Ve EEYS
P | 71.56%

Normal 92.19%
i) | 85.64%
107 | 81.55%
Xy | 71.15%

04 | 66.93%

74.05%
72.48%
71.43%
74.81%
74.24%

74.03%
72.85%
72.39%
73.48%
72.52%

73.68%
74.48%
73.97%
73.08%
73.95%

74.84%
74.17%
73.83%
73.57%
74.82%

75.00%
75.00%
75.34%
75.18%
75.91%

74.84%
74.52%
75.66%
73.24%
72.66%

Consensus Yu and Frincke | Regular D-S

90.39% 90.39%
115.66% 84.97%
174.72% 84.92%
723.44% 89.46%

-728.75% 88.68%

90.59% 90.59%
128.45% 80.82%
213.02% 83.86%
505.04% 88.18%

-344.53% 84.22%

89.14% 89.14%
114.08% 90.40%
164.44% 89.74%

4460.71% 85.26%
-1191.03% 87.07%

93.63% 93.63%
110.96% 92.49%
193.48% 87.25%
519.37% 87.92%

-879.86% 89.15%

95.49% 95.49%
110.85% 93.79%
187.37% 89.64%
428.74% 90.24%
978.27% 92.33%

92.19% 92.19%
113.51% 90.97%
155.04% 92.35%

1206.43% 86.60%
-385.41% 84.64%

Table 8-10. Comparative Results of the 4 CombinatioMethods in 30 Xmas Tree Scans
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Xmas Attack Probability
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Figure 8-14. Comparative Results of the 4 Combinatn Methods in 30 Xmas Tree Scans
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Xmas Attack Probability
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Figure 8-15. Comparative Results of the CombinatioMethods in 30 Xmas Tree Scans excluding Yu and Frcke’s method
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As in the DoS attack experiments Yu and Frinckegsomential combination rule did not fare
well in an environment with 5 sensors. The onlgstahere it gave results that are in the correct
range is when the reliability of sensors were takerl or totally reliable. In all other stages of
CPU utilizations (30%, 50%, 70%, 90%) Yu and Frieiskexponential method gave probability
values exceeding 100% for the attack state or gababow 0% (negative values). In the actual
combination Yu and Frincke’s method gave value$iwithe correct probability range until the
2" or 39 stage of the fusion (3 or 4 sensors fused). Bet)dst two stages of fusion always gave
results that are not within the valid range of @obties when reliability was used as an
exponent.

As for the Consensus method, it seemed to proredsonable results with the given
evidence. The average results from the combinatesults indicated that the combined
probability values for the attack varied about 2&tnps during the 5 different CPU utilization
levels. The little variation can be explained dkfes. During the Xmas tree scan using Zenmap,
we also flooded the victim with UDP packets at p@@kets per second. In a Xmas tree scan we
considered Xmas tree packets as positive evidenegidence supporting a Xmas scan state in
the network. But, the UDP packets were considesedhegative evidence refuting the Xmas
state. When the CPU utilization was increased, tesaber of Xmas packets as well as UDP
packets were captured. Or in other words it caasddcrease of both the positive and negative
evidence. Hence the results obtained by Consenstisoth did not change by more than 2%
points. Consensus method did not have a way tcuatdor the decrease in reliability in sensors.
Therefore, the decreases in Consensus’ combinallgegere small compared to PERF.

Dempster-Shafer fusion provided slightly higheireates for the attack states compared
with Consensus and PERF. This is because D-S tlaways tries to give high positive results
when the evidence is positive (and extremely negatesults under negative evidence). It also
lacked the capability to take into account theatglity of sensors. D-S combination showed a
decrease for the probability of the attack staterwthe reliability of sensors decreased. But, this
decrease was small, about 1% point for each CPlizz&tton level.

PERF combination results indicated that the prdigluf a Xmas attack decreased with
increasing CPU utilization. This is what the reslilibuld be, as the better results were obtained
since PERF had a way to take care of reliabilitysefsors in a multi sensor environment.
Moreover it did not encounter problems faced bya¥id Frincke’'s exponential D-S. Also, unlike
the other methods, when the reliability of senstesreased, the uncertainty in the combined
state or np(U) increased. This is clearly shown from the follog data.

84



Comparative Results forau) in Xmas Tree Scans
CPU Load PERF D-S Consensus Yu and Frinck Regular D-S

Normal 0.01% 1.27% 0.01% 0.01%
5.42% 1.34% 0.03% 0.01%

10.88% 1.50% 0.08% 0.02%

16.98% 1.53% 0.40% 0.02%

20.97% 1.52% -0.51% 0.02%

Normal 0.01% 1.30% 0.01% 0.01%
5.73% 1.32% 0.03% 0.01%

10.99% 1.49% 0.09% 0.02%

17.17% 1.52% 0.32% 0.02%

21.49% 1.53% -0.29% 0.02%

Normal 0.01% 1.32% 0.01% 0.01%
5.03% 1.38% 0.03% 0.02%

10.33% 1.37% 0.05% 0.02%

17.49% 1.54% 2.94% 0.02%

21.21% 1.68% -1.38% 0.03%

Normal 0.01% 1.26% 0.01% 0.01%
4.84% 1.32% 0.02% 0.01%

10.59% 1.34% 0.06% 0.01%

17.18% 1.43% 0.29% 0.02%

20.90% 1.44% -0.55% 0.02%

Normal 0.01% 1.28% 0.01% 0.01%
4.73% 1.28% 0.02% 0.01%

10.32% 1.37% 0.05% 0.01%

16.84% 1.46% 0.24% 0.02%

20.40% 1.46% 0.62% 0.02%

Normal 0.01% 1.26% 0.01% 0.01%
4.97% 1.27% 0.02% 0.01%

9.99% 1.32% 0.04% 0.01%

17.34% 1.41% 0.59% 0.02%

21.48% 1.56% -0.34% 0.02%

Table 8-11. Comparative Results for npy(U) During 30 Xmas Tree Scans
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m,, (Uncertainty) in Xmas Tree Scans
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Figure 8-16. - Combined Uncertainty in 30 Xmas Tre&cans
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Averages of Combined Uncertainties

CPU Load

AVG PERF AV G Consensu AVG Yu and Frit AVG Regular D-S

Normal

0.01%

5.12%

10.52%

17.17%

21.08%

Table 8-12. Averages of Combined Uncertainties in03Xmas Tree Scans
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Figure 8-17. Average Combined Uncertainty with CPWtilization for 30 Xmas Tree Scans

This is what should happen in reality. When tHeabdity of sensors decreases, simply
decreasing the attack state and increasing thattamk state is not enough. Instead PERF after
calculating the attack state, increases the cordbumeertainty that was caused by unreliable
data. This makes sense because by providing usunithliable data, the sensors increase the
data related to uncertainty.
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All the 3 methods of combination, except Yu anth&ke’s method, provided probability
values that are within the valid range of 0% to%0@r the m,(Xmas) state. Also, the following
data clearly indicates that the PERF combinationkea out a lower probability of attack state
when reliability of sensors decreased.

Comparative Result for 3(Xmas)
CPU Load AVG PERF AVG Consensus AVG Yu and Frincke | AVG Regular D-S

Normal 91.90% 74.41% 91.90% 91.90%

84.11% 73.92% 115.59% 88.91%

78.34% 73.77% 181.35% 87.96%
72.22% 73.89% 1307.29% 87.94%
68.79% 74.02% -425.22% 87.68%

Table 8-13. Average Probabilities for nip(Xmas) from the Combination of Evidence from
30 Xmas Tree Scans

Average Xmas Attack Probability
100.00%
R e —
X P 80.00%
mr O— — ‘:X<.~—-
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o 0
c t
k y 20.00%
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0.00% : : . . .
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CPU Utilization

Figure 8-18. Average Probability of 30 Xmas Attackst Various CPU Utilizations
Excluding Yu and Frincke
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9 CONCLUSION

In this thesis we have introduced a new evidencrbamation method called PERF D-S that
takes the reliability of evidence into consideratid-urther we adapted a technique used by
Jesang [2000] to calculate the basic probability g@sients in a logical way. We conducted over
a hundred experiments in a wireless network to mowa different types of attacks. Intrusion
detection in wireless networks and fusing evidemaged on the Dempster-Shafer theory, to the
best of our knowledge, has not been studied byo#tmgr researcher. Moreover other researchers
had only utilized a couple of sensors. We have udsedsensors, belonging to three different
categories. The diversity of the sensors helpethdcease the number of attacks that can be
covered by intrusion detection in a multi-sensaladasion environment. By using two attack
types, we showed that even when a certain typemda fails to detect an attack another sensor
will detect it and give an alert, thereby improviting range of attacks covered by the IDS. In a
wireless environment, using a diverse set of sensbould increase the accuracy of intrusion
detection. Moreover Yu and Frincke’s method showednsistent results, when the number of
sensors increased beyond two.

In an environment where multiple sensors thatd#fferent from each other are utilized,
the evidence from all sensors should not be treatpdhlly. In our research we introduced
reliability of evidence as a factor. In any langetwork, intrusion detection sensors will have
inherent reliabilities, depending on what kind d¢taeks they can detect and which ones they
cannot detect. Every IDS has a particular averagaevof False Positive value and a False
Negative value. Moreover the performance of IDS$ sensors can become less reliable in the
presence of high traffic. The reliability factorathwe have introduced should be modulated
depending on historical performance of the sendore know that a sensor performed at an
80% accuracy level for a certain attack over thevijous attack, we can utilize that factor when
fusing evidence.

We compared the results of our method with thellteof Consensus Operator, the
Dempster-Shafer Theory, Yu and Frincke’s exponéntiethod. Yu and Frincke’s exponential
combination rule produced negative probability eslwand probability values exceeding 100%
when more than two sensors were fused. Using ikfyahs an exponent seemed to be the cause
of the problem. Our way of using a progressiveatslity factor took care of the problem.
Combined with the way of calculating basic prob@pilassignments using Jgsang [2000]
method, uncertainty decreases as the amount oémsedincreases, if PERF is used. In other
words, when PERF is used and when the amount ofiym®r negative evidence increases,
uncertainty decreases.

The results of combining using PERF seemed to nmwraging for the attacks we
covered in our research. Since both Dempster-Staafdr Consensus did not have a way of
handling reliability, our method was the only ohattshowed a decrease that is consistent with
the given reliability in the combined state of Hteacks when reliability was decreased.
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The open area of further research is to test PERErformance under more attack
scenarios. Tests of PERF in production wirelessvoids can provide confidence for using
PERF more widely.
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APPENDIX A

A.l. E-mail Communication with Aruba Networks abdtibnfiguring AP-70 Sensols

On Fri, 13 Feb 2009 13:41:52 -0800 "Senthil Kumérarote:

> Hi Aqgila,

>

> Thank you for calling Aruba Networks Technicalp$ort.

>

>

> The ticket number for your reference is T-48788 gou are speaking to
> Engineer Sindhu Kizhakeel who is CC'ed on thisak By the way, if
> you prefer a certain type of communication metbeer another, i.e.,
> email over phone, etc, please let us know as well

>

>

> Also for all controller and/or Aruba OS relategegies, please be

> prepared to provide the controllers' tar.logthase are most commonly
> used in troubleshooting a high percentage désiles - your assigned
> engineer will confirm this as a requirement. F@tructions on

> extracting logs from! the controller, please tvigir Knowledge Base
> website for Answer ID 44

> > dp.php?p_faqid=44> .

>

>

> For better service regarding this ticket, pldastide the ticket

> number in all further communication.

>

> Regards,

> -

> Senthil Kumaran

> Customer Support Executive | Global Support Gente

> Aruba Networks Inc.

From: "Sindhu Kizhakeel" <skizhakeel@arubanetworks.com>
Subject: RE: Need assitance the provisioning AP / Tick&t48725Date: Fri, 13 Feb 2009 15:42:45 -0800
To: "Dissanayake Agila" <dissanaa@uwindsor.ca>

Cc: "Bhavik Kiri" <bhavik@arubanetworks.com>, "BipiraBu" <bipin@arubanetworks.com>, "Joshua Simon"
<jsimon@arubanetworks.com>, "Preethi Devarajan’espdajan@arubanetworks.com>, "Jagan Smile"
<jsmile@arubanetworks.com>

Hi Aqila,
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As informed earlier we need to use a splitter cableé go to the boot prompt of the ap.

Apboot>purge

Apboot>save

The above mentioned steps is to remove the parasridte ip address which is already configuredtomap.Once
this is done please follow the steps below

Apboot>setenv ipaddr 192.168.1.10
Apboot>setenv netmask 255.255.255.0
Apboot>setenv gatewayip 192.168.1.50
Apboot>setenv master 172.160.10.10
Apboot>setenv serverip 172.160.10.10
Apboot>save

Apboot>Reset

Apboot>boot.

The ip address that | have specified here is prsafi example you can add accordingly. Importangtthat you
have note here is the master and the server ih#izato be entered must be the RF protect serpeaddress.

Kindly let me know if you have any further queries.

Regards,

Sindhu Kizhakeel
Network engineer
Customer Advocacy Team

Aruba Networks Inc.
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From: Dissanayake Agila [mailto:dissanaa@uwindsor.ca]
Sent: Tuesday, March 03, 2009 3:32 PM

To: Sindhu Kizhakeel

Subject: Re: T-48725

Hi Sindhu,

We still haven't been able to connect to the APYW8.have ordered an Aruba Serial Breakout
Adapter, and is awaiting it's arrival. Once it aes, we'll try again and let you know. Thanks,

Aqila.

On Tue, 3 Mar 2009 15:25:14 -0800 "Sindhu Kizhakeabte:
> Hi Aqila,

From: Sindhu Kizhakeel

Sent: Friday, March 06, 2009 4:48 PM

To: 'Dissanayake Agila'

Cc: Sriram Subramanian (Support); Preethi Devarajan; Ravi Kumar Gollapudi
Subject: RE: T-48725

Hi Aqila,

As per the conversation with my colleague Sriram &nding the documents. Please do let us knoouifwave
any further queries.

Regards,

Sindhu Kizhakeel

Network engineer
Customer Advocacy Team

Aruba Networks Inc.
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From: "Sindhu Kizhakeel" <skizhakeel@arubanetworks.com>
Subject: RE: T-48725
Date: Fri, 6 Mar 2009 16:56:21 -0800

To: "Dissanayake Agila" <dissanaa@uwindsor.ca>
"Sriram Subramanian \(Support\)" <srirams@arubaogts.com>, "Preethi
Cc: Devarajan" <pdevarajan@arubanetworks.com>, "Ram#&uGollapudi"”

<rkgollapudi@arubanetworks.com>

Hi Aqila,

Here is another document. Please log into to https://iris.arubanetworks.com and enter the code
mentioned below. You will get the file. since it is above 12 mb | am not able to send the email and
hence giving the access code below.

96a03a7f7601e288d5b75da2ff6f2cb9

Do let me know if you find any difficulties in accessing the file.

Regards,

Sindhu Kizhakeel
Network engineer
Customer Advocacy Team

Aruba Networks Inc.
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From: "Sriram Subramanian \(Support\)" <srirams@arubaagg.com>
Subject: RE: T-48725

Date:  Fri, 6 Mar 2009 19:24:32 -0800

To: "Dissanayake Agila" <dissanaa@uwindsor.ca>

"Preethi Devarajan" <pdevarajan@arubanetworks.cdRayi Kumar Gollapudi
<rkgollapudi@arubanetworks.com>

Cc:

Aqila ,

Please let me know if you have any issues on the firmware upgrade or installation on the RF Protect
server .

Thanks

Stiram Subramanian

Network Engineer, Customer Advocacy Team

Aruba Networks Inc.

From: Dissanayake Agila [mailto:dissanaa@uwindsor.ca]
Sent: Wednesday, March 11, 2009 7:35 AM

To: Sindhu Kizhakeel
Subject: Re: T-48725

Hi Sindhu,

After downloading and installing the software, btiil unable to connect to the AP-70. | e-
mailed the following message to Sriram on the Ttimarch but haven't got a reply yet. If you
could look into that it'll be great. Thanks.

Aqila.

Hi Sriram,

After installing the new server version | get tbdwing error when trying to start up the RF
protect client. "Database version does not matishciinsole. Please use the correct version of

the console. The client version we have is 5.0.BEProtect. Is it possible to obtain the newer
version of client? Please let me know. Thank you.
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From: "Sindhu Kizhakeel" <skizhakeel@arubanetworks.com>
Subject: RE: T-48725
Date: Thu, 12 Mar 2009 12:59:49 -0700

To: "Dissanayake Agila" <dissanaa@uwindsor.ca>
"Sriram Subramanian \(Support\)" <srirams@arubaogts.com>, "Preethi
Cc: Devarajan" <pdevarajan@arubanetworks.com>, "Ram#&uGollapudi"”

<rkgollapudi@arubanetworks.com>

Hi Aqila,

Please find the access code for installing thee6dé version on the Rf protect client. Pleaseoiogo
https://iris.arubanetworks.coemd enter the access code

3affc750267ad93b739917f9364ffd67

and you can get the file. Install the softwarelom¢onsole and please let me know how it goes.

Regards,

Sindhu Kizhakeel
Network engineer
Customer Advocacy Team

Aruba Networks Inc.

From: Dissanayake Agila [mailto:dissanaa@uwindsor.ca]
Sent: Friday, March 13, 2009 3:31 PM

To: Sindhu Kizhakeel

Subject: Re: T-48725

Hi Sindhu,

| was able to download the software successfullyillllet you know whether we are able to
connect to the sensors with the new software. Tlyankfor your help.

Aqila.
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From: Dissanayake Agila [mailto:dissanaa@uwindsor.ca]
Sent: Sunday, March 15, 2009 3:29 PM

To: Sindhu Kizhakeel

Subject: Re: T-48725

Hi Sindhu,

We are still having problems configuring the APséhsors. We have installed the new software
(both client and server). The problem is when wedrrun the commands to configure the AP-
70 through Hyperterminal, the sensor doesn't regtaperly and errors out. | was wondering
whether there's a way for you to remotely assishuisis configuration. (Initial Configuration).
We can successfully connect to the boot> promgténAP, but once we set the RF Protect
Servers IP address in the AP and restart, it ecatsLet me know what we can do about this.
Thank you.

Aqila.

On Mon, 16 Mar 2009 12:47:35 -0700 "Sindhu Kizhdkeeote:
> Hi Aqgila,

>

>

>

> Kindly send me the error message you are gettintdpe screen or please
> send the screen shot of the error message.

>

>

>

> Regards,

>

> Sindhu Kizhakeel

>

> Network engineer

>

> Customer Advocacy Team

>

> Aruba Networks Inc.
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From: Dissanayake Agila [mailto:dissanaa@uwindsor.ca]
Sent: Monday, March 16, 2009 3:19 PM

To: Sindhu Kizhakeel

Subject: Re: T-48725

Hi Sindhu,
| have attached 2 screenshots of the error.
Thanks,

Aqila.

Hi Aqila,

Please give me your convenient time so that | can call you

Regards,

Sindhu Kizhakeel
Network engineer
Customer Advocacy Team

Aruba Networks Inc.

From: Dissanayake Agila [mailto:dissanaa@uwindsor.ca]
Sent: Tuesday, March 17, 2009 1:33 PM

To: Sindhu Kizhakeel

Subject: Re: T-48725

Hi Sindhu,

How about 2 p.m central time on Thursday?
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Thanks,

Aqila.

On Tue, 17 Mar 2009 12:36:12 -0700 "Sindhu Kizh#keeote:
> Hi Aqila,

>

>

>

> Let me give you a call on Thursday then. Pleasenk know your
> convenient time so that I can call you according|

>

>

>

> Regards,
>

> Sindhu Kizhakeel
>

From: "Sindhu Kizhakeel" <skizhakeel@arubanetworks.com>
Subject: RE: T-4872%Date: Tue, 17 Mar 2009 13:46:50 -0700
To: "Dissanayake Agila" <dissanaa@uwindsor.ca>

Aqila,

Sure,

I will give you a call at that time. Meanwhile y@an try this command and let me know if there i @mange.

Apboot>tftp boot

Apboot>setenv master <ip address of master >
Apboot>setenv serverip <ip address of the server>
Apboot>save

Apboot>reset

Apboot>boot
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Regards,

Sindhu Kizhakeel

Network engineer
Customer Advocacy Team

Aruba Networks Inc.

From: "Sindhu Kizhakeel" <skizhakeel@arubanetworks.com>
Subject: RE: T-48725
Date: Mon, 23 Mar 2009 16:33:03 -0700

To: "Dissanayake Agilatlissanaa@uwindsor.ca

Hi Aqila,

Try the Earlier command that | had given you artthat shows the same error message then pleathéstand
please let me know the status after you try that.

Apboot>setenv ipaddr <ipaddress>
Apboot>setenv netmask <mask>
Apboot>setenv gatewayip <gateway ip>
Apboot>setenv serverip<system ip>
Apboot>setenv master <master ip address>
Apboot>save

Apboot>reset

Apboot>boot

Now try pinging the tftp server from the ap boodmipt and please check if you are able to ping.if gee able to
ping Then try the below command and please let nosvkf there is any change
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Apboot>setenv bootcmd tftpboot
Apboot>save

Apboot>boot

Regards

Sindhu

From: Dissanayake Agila [mailto:dissanaa@uwindsor.ca]
Sent: Tuesday, March 24, 2009 10:58 AM

To: Sindhu Kizhakeel

Subject: Re: T-48725

Hi Sindhu,

I will try and out the new commands and let youwn@ will most probably try them out on
coming friday). | have a couple of questions regaydhe commands.

1.) When you say "Now try pinging the tftp serveamh the ap boot prompt " do you mean to
ping the computer where RF Protect Server is ilestdtom the boot prompt of the sensor?

2.) In the command sequence

Apboot>setenv ipaddr

Z Apboot>setenv netmask
Z Apboot>setenv gatewayip
Z Apboot>setenv serverip

Z Apboot>setenv master

Z Apboot>save

>

> Apboot>reset

z Apboot>boot

After the save step, you say to reset and then bdwn | type reset this will actually boot the

sensor, typing boot again will boot the sensorragdaithis correct? Or does reset s! erve a
different purpose? Let me know.
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Thanks,

Aqila.

From: "Sindhu Kizhakeel" <skizhakeel@arubanetworks.com>
Subject:  RE: T-48725
Date: Tue, 24 Mar 2009 11:04:48 -0700

To: "Dissanayake Aqila" <dissanaa@uwindsor.ca>

Aqila,

You are correct.

1.Ping the computer where rf protect server isaitext from the boot prompt of the sensor.

2.1f Reset command is booting the sensor thensiiraes the purpose. You can just run the
command ‘reset’.

Do Let me know once you try these steps.

Regards

Sindhu

From: Dissanayake Agila [mailto:dissanaa@uwindsor.ca]
Sent: Friday, March 27, 2009 3:27 PM

To: Sindhu Kizhakeel

Subject: Re: T-48725
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Hi Sindhu,

Now we are able to successfully connect to bots@sthrough RF Protect. We didn't do
anything different. | basically connected the APsé@isors directly to the router (after they were
configured to point to the RF Protect Server). NG P Boot was required, and when we tried
tftp boot it failed. Thanks your help with this et One thing | noticed was that the sensors act
differently each time we boot them up. Somehow RIProtect can detect them, and that's
good.

Aqila.

From: "Sindhu Kizhakeel'skizhakeel@arubanetworks.com

Subject: RE: T-4872%Date: Fri, 27 Mar 2009 16:50:58 -0700

To: "Dissanayake Agilatlissanaa@uwindsor.ca

Oh that’s nice to know Agila. May | have the status of this ticket as closed since everything is working
now. please let me know

Regards,

Sindhu Kizhakeel
Network engineer
Customer Advocacy Team

Aruba Networks Inc.
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