University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2011

Downloading Deep Web Data from Real Web Services

Chong Fu
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Fu, Chong, "Downloading Deep Web Data from Real Web Services" (2011). Electronic Theses and
Dissertations. 322.

https://scholar.uwindsor.ca/etd/322

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/322?utm_source=scholar.uwindsor.ca%2Fetd%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Downloading Deep Web Data from Real Web Services

by
Chong Fu

A Thesis
Submitted to the Faculty of Graduate Studies
through Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2011

© 2011 Chong Fu

Downloading Deep Web Data from Real Web Services

By
Chong Fu

APPROVED BY:

Dr. Kevin Li
Odette School of Business

Dr. Jessica Chen
School of Computer Science

Dr.Jianguo Lu, Advisor
School of Computer Science

Dr. Alioune Ngom, Chair of Defense
School of Computer Science

February 3, 2011

DECLARATION OF ORIGINALITY

| hereby certify that | am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

| certify that, to the best of my knowledge, my thesis does not infringe upon
anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,
quotations, or any other material from the work of other people included in my thesis,
published or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that | have included copyrighted
material that surpasses the bounds of fair dealing within the meaning of the Canada
Copyright Act, | certify that | have obtained a written permission from the copyright
owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

| declare that this is a true copy of my thesis, including any final revisions, as
approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

ABSTRACT

Data of deep web in general is stored in a database or a file system that is only
accessible via web query forms or through web service interfaces. One challenge of deep
web crawling is how to select meaningful queries to acquire data. There is substantial
research on the selection of queries, such as the approach based on the set covering
problem where greedy algorithm or its variation is used. These methods are not
extensively studied in the context of real web services, which may impose new
challenges for deep web crawling. This thesis studies several query selection methods on
Microsoft’s Bing web service, especially the impact of the ranking of the returns in real
data sources. Our results show that for unranked data sources, weighted method
performed a little better then un-weighted set covering algorithm. For ranked data

sources, document frequent estimation is necessary to harvest data more efficiently.

Keywords: deep web, set covering problem, greedy, weighted, document frequency

DEDICATION

This thesis is dedicated to my families who have supported me all the way since

the beginning of my studies with patience, understanding, and love.

Also, this thesis is dedicated to all those who helped me during my studies. If
each thing in my memory has weight, many things happened in the University of

Windsor must be selected.

ACKNOWLEDGEMENTS

I am heartily thankful to my supervisor, Dr. Jianguo Lu, who gave me critical
suggestions, honest criticisms and painstaking comments helping me to finish the
research and writing of this thesis. Without his guidance and support, this thesis would

not have been possible.

| also would like to thank my internal reader, Dr. Jessica Chen, my external

reader, Dr. Kevin Li, and my thesis committee chair, Dr. Alioune Ngom for spending

their time in reviewing this thesis and attending my thesis proposal and defence.

As well as, a special thanks to Frank Luo and Guanghui Luo with whom | built

the framework of WS-Crawler together in a course project.

Finally, I would like to show my gratitude to Yan Wang and Shaohua Wang for

their valuable advices and supports.

Vi

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY oo ii
ABSTRACT ..o s \Y%
DEDICATION ...t b e %
ACKNOWLEDGEMENTS ..o s Vi
LIST OF TABLESo IX
LIST OF FIGURES ... X

I INTRODUCTION 1

I RELATED WORK 9

2.1 INCREMENTAL APPROACH ..ot 9
2.2 SAMPLING BASED APPROACHccoiiiiiie 13
1. SET COVERING PROBLEM 16

Iv. SET COVERING ALGORITHMS 21

4.1. GREEDY ALGORITHM....cciiiiiiiiiiiee e 21
4.2. WEIGHTED ALGORITHMooiiiiiiiii e 26
4.3. RANKING PROBLEMoooiiiiiiiie e 31

V. EXPERIMENTS 35

5.1. EXPERIMENTAL ENVIRONMENTcccoiiiiiiiiieseee e 35
5.2. EVALUATION CRITERIA ..ot 39
5.3. EXPERIMENTS ..ottt 41
5.3.1 Sample Databases Creation...........cccccvviieiieiie e 41
5.3.2 Ranking Strength Observation on the Data SOUICeS..........ccccceevvevieiiieennnens 42
5.3.3 Comparison on Query Selection POIICIESccccevvviiie i 43
5.3.4 Effect of Ranking Problem on HDF ... 49

vii

VI. CONCLUSION AND FUTURE WORK 52

6.1 CONCLUSIONooiiiiiiiii e 52
6.2 FUTURE WORKooiiiiiiie e 53
APPENDIX | 55
REFERENCES 60
VITA AUCTORIS 62

viii

LIST OF TABLES

TABLE 1: GREEDY ALGORITHM EXAMPLE (1) ..0iciiiiiiiieieiie et 23
TABLE 2: GREEDY ALGORITHM EXAMPLE (2)...ectiitiiitieieiie e e seesee s st sree s 24
TABLE 3: GREEDY ALGORITHM EXAMPLE (3)...ictiiieiiieieiiesieesie e siee st sree s 24
TABLE 4: GREEDY ALGORITHM EXAMPLE (4) ...eetiiieitieiiesie st nie e 24
TABLE 5: WIGHTED GREEDY ALGORITHM EXAMPLE (1) .eovveivieieeiesieesieeie e 29
TABLE 6: WIGHTED GREEDY ALGORITHM EXAMPLE (2) ...cveiviivinieniiniieieieie e 29
TABLE 7: WIGHTED GREEDY ALGORITHM EXAMPLE (3) c.vcveiviiiiriiniiniieieieie e 29
TABLE 8: DESCRIPTION OF DATA SOURCES AND SAMPLE DATABASESccvvvvvvieeeiireeennen 41
TABLE 9: PERCENTAGE OF TERMS WITHIN K ..ieutiieiiieeiieeesieeesiieeesiveeessneeessseesssneesssneesssnnss 42
TABLE 10: EXPERIMENT RECORD CHARTutvieiiieeiieeesteeesiteeesseeeessseeesssesssssessssnesssssesansens 43
TABLE 11: COMPARISON OF DF-WEIGHTED AND OTHERScocivvieiiieeiiieeesiieeesineeesnneeennneas 48
TABLE 12: COMPARISON OF GREEDY AND WEIGHTED.cccuvteiiiieiieeeiieeesieessineeesineesnneeas 49
TABLE 13: THE NUMBER OF TERMS FOR THREE DATA SOURCEScvceeiiveeiiieeesiieessieeeennneas 50

LIST OF FIGURES

FIGURE 1: A PART OF ARXIV.COM HOME PAGE .. covtuiieteee ettt e et e e e e e e e e eneeenen s 1

FIGURE 2: ACCESSING BING CONTENT BY TWO WAYS: SEARCH INTERFACE OR WEB SERVICE

... 3
FIGURE 3: HTML SEARCH FORM OF AMAZON BOOK STORE.......cccoiiuiiiieiiiieeeecitieeeeeeieeee e 5
FIGURE 4: VIRTUAL INTEGRATION — COMPARISON SHOPPINGccccvvveeeiiirireeeeitreeeeeeirreeeeaans 6
FIGURE 5: STATISTIC TABLE: DOCUMENT FREQUENCY OF TERMS......ccciuviieeiiirieeeeiireeeeenns 11
FIGURE 6: THE FRAMEWORK OF LU’S SAMPLE-BASED APPROACHcccitvreeeeiirieeeeiireeeeenns 15
FIGURE 7. FORMALIZATION OF THE QUERY SELECTION PROBLEMcccvvieeeiiiiiirieeeeeeeseennns 17
FIGURE 8 : SET-COVERING FORMALIZATION (EXAMPLE) ..c..coviiiiiiiiiiieieeee e 23
FIGURE 9: THE WHOLE PROCEDURE OF GREEDY ALGORITHMccciviiieiiiiieeeeirieeeseiireeeeenns 25
FIGURE 10 : THE WHOLE PROCEDURE IN SET COVERING VIEW (BY WEIGHTED GREEDY

AALGORITHM) ..tttk etttk bbbt bbbt bt et e st et et et bbb e e 30
FIGURE 11: A DEEP WEB SITE USUALLY SET UP A RETURN LIMITATIONccocvvrieieeeeeeeiennns 32
FIGURE 12: THE RESULTS FOR “SITE:CS.BERKELEY.EDU VAZIRANI”cccvvieiiirieeeeiiirieeeenns 35
FIGURE 13: RESPONSE PAGE FROM BING WEB SERVICEccctvteeiiitiieeeiiiieeeeeiireeeessisneeeeenns 36
FIGURE 14: THE USER INTERFACE OF OUR CRAWLER.......cuetttiieiiiiiiiirieeeeeeesssinrrreneeeeesssnnns 38
FIGURE 15: DATAFLOW DIAGRAM OF OUR CRAWLERutttiiiieeeiiiiiiiireeeeeeeesssiirrreeeeeeessennes 39
FIGURE 16: PERFORMANCE DIAGRAMS OF CS.BERKELEY.EDUccvveeeiivrieeeeiireeeesiinveeeennns 45
FIGURE 17: PERFORMANCE DIAGRAMS OF UWATERLOO.CA.......ccotttrrieeeeeeessiiinrrreneeeeesssnnnns 46
FIGURE 18: PERFORMANCE DIAGRAMS OF CTV.CA ...cocittiteeeitiieeeiitrieeeseitreeesessreeeesssseeeesnns a7
FIGURE 19: COMPARISON ON RANDOM SAMPLE TERMS AND HIGH DF TERMS 51

CHAPTER |

INTRODUCTION

The Deep Web [4] data refer to the content that is dynamically generated from
databases or file systems. The information served on the Deep Web is accessible through
query interfaces such as html forms or web services. Many organizations, such as
“Arxiv.org”, “Bing.com” or “Amazon.com”, provide web service interfaces to access
their deep web data. Since data are hidden behind query interfaces, the deep web are also
called as the Hidden Web [7] [10] or invisible web [10]. The figure below is a part of the
home page of “Arxiv.org”. This website provides a large number of academic documents.
In most cases, users look for the document that they want by using the html query form at

the top.

Cornell University
Library

arXiv.org
I

Open access 1o 605,932 e-prints in Physics, Mathematics, Computer Science, Quantitative Biology. Quantitative Finance and Statistics

Subject search and browse: Physics - [seaich | [Fom imedace | [Catchup

5 Mar 2010: New ion System and announcement schedule changes

W Sub
21 Jan 2010: Collaborative SUpport pian announced
8 Apr 2009 Added public author identifiers, Facebook interaction, ysrzicles widgel. and personal Atom feeds
See cumulative "What's New” pages
Robats Beware: indiscriminate automated downioads from this site are not permitied

Figure 1: A part of Arxiv.org home page

The deep web often contains a large amount of documents which are often of high
quality and value to users. Since there are no static links to those deep web documents,
deep web content is beyond the reach of traditional search engines [5]. In order to access

such content, users have to type in one or several keywords in the html forms and submit

the query. According to the research [4], the content of deep web is about 500 times
greater than that visible to conventional search engines. Hence how to utilize the deep

web content becomes a major challenge within the information retrieval community.

The thesis focuses on the task of downloading the deep web data from real web
services. We have developed a web-service crawler named “WS Crawler”, implemented
and experimented with four query selection algorithms for deep web crawling. Our
objective is to evaluate their efficiency for retrieving data from different real data sources

via web service.

In order to share their data to users, some deep web sites provide web service for
client application to access their online databases. Web service is a technology that
enables application-to-application interaction over the network — regardless of platform,
language, or data formats. By exposing web APIs (Application Programming Interfaces)
on the network, functionalities of web service can be activated using HTTP requests.
Through these APIs, client application can access remote content. Advantages of using
web services include: no need to fill html query form and no need to extract relevant data

from html result page.

o,

/—Servera ~

Data Source
Bing.com

Search Application [«
Servers Progrigm Web Service
4

- J

Clh <.
Ve lients

Search Interface Application
E A
%Type in keyword
Select keyword from local data|source
O
T

Dictionary

User 1 User 2

Figure 2: Accessing Bing content by two ways: search interface or web service

Deep web content in general is stored in a database. By the type of the database,
they can be categorized either as an unstructured (textual) database or as a structured
database [24]. An unstructured database is a site that mainly contains plain-text
documents (e.g., legal documents). In contrast, a structured database is a site that often
contains relational data, such as an online book store that may have multiple fields such
as title, author, and ISBN etc. For a textual database, the search interface usually provides
a simple keyword textbox. Conversely, the interface to a structured database may allow
the users to submit multiple attributes (e.g., searching cars by company name, brand, or
the year of production). The interface may contain a combination of text box, radio

button, dropdown menu etc.

Textual database mainly contains plain-text documents, such as papers, law
documents, and news articles etc. Html query form of a textual database usually only
provides a single textbox to fill in keywords, as shown in Figure 1. It is an html search
form from arXiv.org. The arXiv database is textual. It contains about 500,000 papers.
Structured database mainly contains relational data, such as on line store database. Html

query form of structure database often provides multiple textboxes to fill in keywords.

Books Search

Keywords

Author

Title

Condition
All Conditions ~

Format
All Formats -

Binding

All Bindings -

st

Language

Publish
HEisner All Languages -

Pub. Date Manth Year

Subject AllDates -

All Subjects v
Sort Results by:
Relevance -

| Search |

Figure 3: Html Search Form of Amazon Book Store

Here is an example from Amazon on line book store. You can search a book by

author, title, or ISBN etc. Our research is related to textual database.

With millions of databases connected to the internet, we cannot ignore data
hidden behind search interface. To utilize deep web content, virtual integration and

surfacing are the two main applications.

The virtual integration approach [9] [25] is to provide a uniform interface to
access a specific kind of data from different deep web sources. To build such an
application, we need to identify the domain (e.g., book, airline ticket, or real-estate) of
each deep web and analyze the html search interface. Thus, an automatic integration
system often contains an automatic identification system and a semantic system. The
identification system is to analyze the query interface or contents of a deep web site and
to identify the domain that it belongs to. For example, we have known a large amount of
deep web sites. Now, we are only interested in the online book store sites. So a first step,

we need to found out those sites that are related to our desired information about book.

After that, we already have a set of deep web sites in a domain of interest. Then, we need
to build a unified query interface to search those sites at the same time. To create a
unified query interface, a semantic system is necessary to build and manage semantic
mappings on the search interfaces of those deep web sites. In short, it is to map queries to
difference search interfaces. Then integration system will extract, combine, and rank the
results retrieved form difference data sources. Finally, present regenerative results to the
users. Generally, a virtual integration provides more experience to user besides search.
For instance, we search a book in a virtual integration search engine. The results are
retrieved from the difference online book stores, such as “amazon.com”, “ebay.com”, and
“indigo.ca”. In addition to return those results, the search engine also provides the best

price of the book. For that reason, virtual integration is more suitable for the structure

databases.

Lowest price of the book: “Robotics’?

y

v

Amazon.com eBay.com indigo.ca

Figure 4: Virtual Integration — Comparison Shopping

The surfacing approach is also called deep web crawling which downloads hidden
content through sending a set of queries. Commercial search engines, say Google, have

begun to surface the deep web. The surfaced results are already added into the Google

search engine index today. In general, the challenges of deep web crawling include: how
to process html query form [18]; how to extract relevant data from result pages [15] [2];
and how to choose a set of queries [20] [16] [18] [21] [3] [22]. An excellent crawler
should surface the deep web sites automatically. Hence, the crawler needs an approach to
process html query form and extract relevant data from result pages automatically. We
use web service in our experiments, so we do not need to process the html query form,
and the results is XML file format. For that reason, we can focus on query selection

problem.

The real environment usually sets up a return limitation for the maximal number
of results. Most of the earlier methods are designed to download a deep web site without
return limitation. Therefore, they cannot work well when return limitation exists. We

present a DF-Weighted Greedy algorithm to cope with this challenge.

Experiments are carried on three data sources which are “cs.berkeley.edu”,
“uwaterloo.ca”, and “ctv.ca”. The size of the first data source is small, which contains
about 30,000 web pages. This means return limitation problem is not serious in this data
source, because the number of most matches will not surpass the limit. The other two
data sources are larger than the first one. The number of web pages of “uwaterloo.ca” and
“ctv.ca” are approximate 150,000, and 140,000. The experimental results show our DF-

Weighted greedy works well when downloading the data from the last two data sources.

In addition to the introduction section, there are five sections in this thesis.
Section 2 introduces relative work. It includes the difference types of query selection
approaches for deep web crawling. Section 3 introduces set covering problem and how

to convert a query selection problem to a set covering problem. In section 4, we present

three sampling based algorithms: Greedy, Weighted Greedy and DF-Weighted Greedy.
Section 5 describes our experiments and gives the results. Finally, the conclusion and

future work are given in section 6.

CHAPTER II

RELATED WORK

The key problem of deep web crawling is how to choose a set of queries to submit

to the query form. There are many ways to select keywords.

A primitive solution can be randomly selecting some words from a dictionary.
However this solution is not efficient, due to that a large number of rare queries may not
match any page, or there could be many overlapping returns. Instead of selecting

keywords from dictionary, several algorithms have been developed to select keywords.

Currently, most approaches that had been developed are to analyze and choose the
queries from the documents downloaded from the previous queries submitted to the deep
web database. They can be categorized as: Graph approach [1] [24], Incremental
approach [20] [18], and Sampling based approach [16] [3] [22]. Graph approach is used

to download structured database, so it is not discussed in my thesis.

2.1 Incremental approach

Incremental approach selects queries from the documents that have been
downloaded. The number of documents increases as more queries are sent, thus this kind

of approach are called incremental approach.

Ntoulas et al. [20] propose an adaptive method. Their approach selects the query
returning most new documents per unit iteratively. Since there is no prior knowledge of

all the document frequencies of the queries, this method requires the estimation of the

document frequencies based on the documents already downloaded. From this estimation
and the occurrences of the queries in the downloaded documents, the number of matched
new documents can be estimated. They propose two ways to estimate. The first method
which is called independence estimator assumes that the occurrence probability of a term
in the subset of documents is equal to that in the entire document set. Based on the
frequency of a term in the subset of documents N(q; | subset collection), the method can
estimate how many times a particular term occurs in the entire document set N(q;). Then
we can estimate the number of new documents by: Npew(Qi) = N(Qi) - N(qi | subset

collection).

The method of Zipf estimator [13] is to estimate the frequency of terms inside
document collection by following a power law distribution. That is, the frequency of a

term within the document collection is given by the formula:
N(@)=a (r+8)7, D

where r is the rank of the term and a , B , and Y are constants that depend on the

document collection. Based on the subset of documents that we have downloaded, we can
estimate a , B , and Y by the approach which is mentioned in [20]. Given the ranking r

of a term inside the subset of document collection, N(qi) can be calculated by formula
(1). They compare three keyword selection policies: random (Keywords are randomly
selected from dictionary.), generic-frequency (Keywords are selected from 5.5-million-
web-page corpus based on their decreasing frequency.), and their adaptive algorithm. The
experimental result shows that adaptive algorithm (Keywords are selected from the

subset of documents) performs remarkably well in all cases. The approaches proposed in

10

[20], select queries from an incremental document collection. Therefore, we call this kind
of approach as incremental approach. Incremental approach selects queries from an
incremental document collection. That means you need to analyze each document once it
is downloaded and calculate the document frequency again for each term. This step will
be very time-consuming, if we count the document frequency for every query at each
round. In order to calculate document frequency efficiently, Ntoulas’ solution computes
the document frequency by updating the query statistics table after we submit a new

query and download more documents. However maintaining this table still is difficult.

COENCE CIN

Software 20 Java
Science 30 Science 5
Computer 80 Computer 20
Total pages downloaded: 100 MNew pages downloaded: 20
(@) After issuing q, up to O, () Bvissuirggi
f'j;
ffjff
_
Software
Science 35
Computer 100
lava 10

Total pages downloaded: 120
{c) After issuing g, up tog

Figure 5: Statistic Table: Document Frequency of Terms

11

The sampling-based approach [16] [3] firstly creates a sample database and builds
a set of queries from the sample database, rather than iteratively selecting keywords from

an incremental subset of document collection until crawling ends.

Madhavan et al. [18] develop a deep-web crawling system. Because the system is
an industry product, it needs to consider how to select seed queries. Their system detects
the feature of the query interfaces. Since they need to process difference languages, their
approach does not select queries from a dictionary. Instead, they select the seed queries
from the html query form. After that, the iterative probing and keyword selection

approach is similar to that proposed in [20].

Their query selection policy is based on TF-IDF that is the popular measure in the
information retrieval. TF-IDF measures the importance of the word by the formula

below.
tfidf (w,p) = tf (w,p) X idf (w) 2)

This formula consists of two parts: tf (w,p) and idf (w). tf(w, p) is the term

frequency of the term w in page p, and measures the importance of the word w in page
p.
tf(w,p) = nw,p/N ’

where ny,p represents the number of times a word w occurs in web page p; N,

is the total number of terms in page p.

idf (w) (inverse document frequency) measures the importance of the word

among all web pages, and is calculated by log (di) where D is the total number of web

pages and d, is the number of web pages where the term w appears.

12

Madhavan et al’s method adds the top 25 words on every web page sorted by their
TF-IDF values into the query pool. From the query pool, they remove the following two
kinds of terms.

» Eliminate the high frequency terms, such as the terms that have appeared in
many web pages (e.g. over 80%), since these terms could be from menus or
advertisements.

» Delete the terms which occur only on one page, since many of these terms
are meaningless words that are not from the contents of web pages, such as
nonsensical or idiosyncratic words that could not be indexed by the search

engine.

The remaining words are issued to deep web as queries and a new set of web
pages are downloaded. Then this is repeated again in the new iteration. Additionally, their
approach emphasizes breadth oriented crawling that is quite different to prior researches.
They observed the statistic data on Google.com and found the results returned to users
were more dependent on the number of deep web sites. They analyzed 10 millions of
deep web sites. They discovered the top 10,000 deep web sites accounted for 50% of
Deep-Web results, while even the top 100,000 deep web sites only accounted for 85%.
This observation causes their focus on crawling as many deep web sites as possible,

rather than surfacing on specific deep web sites.

2.2 Sampling based approach

In [21] [3], Barbosa et al. propose an approach to siphon the deep web by

selecting keyword with highest frequency from the sample document collection. This

13

algorithm selects the highest frequency keyword from the potential keyword list and is
expected to lead a high coverage. It is composed of two phases: phase 1 selects a set of
words from the html search form and randomly issues them until a non-empty result page
is returned. By extracting high-frequency words from the results page, their algorithm
creates an initial keyword list. Then it iteratively updates the frequency of words in the
list and adds new high-frequency words into the list by randomly issuing the word in the
list until the number of submission reaches the threshold. In phase 2, the approach selects
the most frequency keyword from the keyword list to construct a new query in each

round until the number of submission is up to maximum times.

In [16], Lu et al. further improve the sampling based method. Keywords are
selected from a fixed sample database by a set covering algorithm. Those queries which
can cover most documents in the sample database are expected to cover most of data in
the entire database. The framework of this approach is showing in the figure below. For
sampling based approach, queries are selected from the sample set of documents from the

total database. This approach consists of three phases:

1) Create a sample DB: Issue the initial keywords to the total DB, obtain the

matched documents, and then construct a sample database;

2) Construct the query pool: Analyze all the documents in the sample DB, apply

set-covering algorithm to select the keywords and generate a query pool;
3) Send the queries to Total DB to retrieve documents.

The advantage of this method is that only a small part of documents need to be

downloaded, because crawler sometimes may only need to know the URL, not the entire

14

documents. Our focus is sampling based approach. Hence, more detail about sampling

based approach will be described in Chapter 1V.

(1) Randomly select documents totalDB |« (4)Issue the queries
sampleDB
(2)Select the words (3)Set-covering o

algorithm / Queries

QueryPool

Figure 6: The framework of Lu’s sample-based approach

15

CHAPTER Il

SET COVERING PROBLEM

One of key problems of deep web crawling is to select a set of meaningful
keywords. Selecting queries from a document collection is a popular method. Ntoulas et

al [20] are the first to use set-covering problem to represent the query selection problem.

Set-covering problem is a typical NP problem [6]. It can be described as the
following: given a finite set U and a family X of subsets of U, the solution is to find a
cover C whose union is U and it is a subfamily of X. The set-covering problem can be
divided into two problems. One is the set covering decision problem, i.e., given a pair
(U,X) and an integer k; the question is to decide whether there is a cover of size k or less.
The set-covering decision problem is NP-Complete. The other is the set covering
optimization problem, i.e., given a pair (U,X) the goal is to find minimum-size subsets

O whose elements cover all of U. The set covering optimization problem is NP-hard [11].

More formally, given U and X as follows:

U=US

SeX

The set covering optimization problem is to find a family of sets O such that

16

U = UgsepS whereO € X
, and the cost of O is minimum.

The input of the set covering problem is often represented by a query-document
matrix as illustrated in Figure 7. In Figure 7 (a), the matrix represents the relationship
between three queries (q1, g2, g3) and four documents (d1, d2, d3, d4). If the cell (i,j) is
1, query in the ith row (q;) is contained in the document in the jth column (d;). This
matrix representation can be illustrated by Figure 7 (b). The rectangle in Figure 7 (b)
represents the whole document set. Each document is represented as a black point inside

the rectangle. Every oval in the figure (b) represents a set of documents covered by a

query.
q;
d d d d
1 2 3 4 q3 o
a 0 1 1 0 o
a» 1 0 1 1
qs 1 0 0 1 a,
(a) documents (b) Set covering problem

Figure 7: Formalization of the query selection problem
The minimum set cover problem can be formulated as the Integer Linear
Program [11]. According to the integer linear program formulation in [11], we formalize
the set covering problem for query selection as the following: Let A is an m*n matrix of
0 and 1 representing a document collection like Figure 7(a). The set covering problem is
to find a solution m-vector S whose S; =0 or 1 (i =1,...,m) that iS representing whether
the query i is either chosen or not. C; is an m-vector of positive integer that is

representing the cost of each query, and C; = 3L, A;j, wherei=1,...,m. E is an n-vector

17

of ones that is representing every document in the matrix A is covered. More formally, it

can be formulated as below:
minimize(CTS) (3

Subjectto : AT XS >E, (4)

where S; ={0,1]i=1,...,m}; Ei= {1i=1,...,n}; Ci={X¥j-1 4;; | i=1,...,m}.

For instance, there are two solutions: {g1, q2} and {qg1, q3} for the problem in the

Figure 7. From the Figure 7 (a), we can know:

01 1 0
A=f1 0 1 1
1 0 0 1

There are three subset gz, g2, and gs in the matrix A. By the definition of C:
C= {2,3,2)

First step, we verify both solutions are satisfied with the condition.

01 1 0] 1
Subject to: 1 0 1 1| XS=E,whereE =

1
1 0 0 1

1
1
For the solution {qi, g2}: S=11
0

18

[0 1 1 1
Thus, LHS = |2 9 Ofx |1
1 1 0 0
0 1 1
1] 1
_|1 1| _
LHS= 5 > 1 =F
1. 1
1
For the solution {qi, gs}: S=10
1
0 1 1 1
{1 0 o0
Thus, LHS = 11 0 x[(l)]
0 1 1

Therefore, both solutions subject to the condition:

[N

AT xS >E
In the next step, we calculate the cost for both solutions.

For the solution {qi, g2}:

Total cost =CTS
21"
=13 X|1
2 0

For the solution {qs, qs}:

19

Total cost =CTS
21"
=13 X|O0
2 1

By the objective function Formula (3), we know the solution 2 is better than the

solution 1.

20

CHAPTER IV

SET COVERING ALGORITHMS

Set covering problem has been proved to be NP-Complete [6]. Optimal solution is
hard to obtain within polynomial time. Various optimization algorithms are developed,
such as Greedy, Weighted Greedy, Genetic, and Clustering etc. Traditional Greedy and

Weighted Greedy algorithms will be implemented in experiment section.

4.1. Greedy Algorithm

One popular algorithm for set covering problem is the greedy algorithm which
chooses queries according to one rule: at each round, always selects the query that covers
the largest number of new documents per unit cost. A greedy algorithm makes the locally
“best” choice at each stage, but it is not the best choice globally. Assuming we have
constructed a query pool with a set of queries, greedy algorithm is to find the most

effective query from the query pool.
Greedy Algorithm:
Input: m * n Matrix A;

Output: A solution m-vector S;

dfi = ;l=1 AU’

21

B=A;
E is an n-vector, and initializes every element to 1;
S and c is an m-vector, and initialize every element to O;
while AT xS <E{
for(1=1; i<=m; i++){
new; = 27:1 Bjj;

Ci = dfi / new;,

Find a k which minimizes cy;

Sk =1;

Remove the kth row and jth column from B, if cell;j =1,

for (j = 1; j <=m; j++){

if(S;= 1 and A; is redundant) S; = 0;

return S;

22

For example, the matrix below represents a sample database which contains nine
documents (d1, d2, d3, ..., d9). Suppose our query pool includes six queries (g1, g2, g3,

g4, g5, and g6).

d1 d2 d3 d4 d5 d6 d7 d8 d9
ql 0 0 0 0 0 0 1 0 1
q2 0 0 0 0 1 0 1 0 1
q3 1 0 0 0 0 1 0 0 0
q4 0 0 0 0 0 1 1 1 0
95 1 1 0 1 1 0 0 0 1
q6 1 1 1 1 0 0 0 0 0

Table 1: Greedy algorithm example (1)
By the rule mentioned above, we can convert the matrix to a set-covering problem
as the figure below. We choose sets (queries) by greedy algorithm to cover all

documents. The whole procedure is listed as following:

Figure 8 : Set-covering Formalization (Example)

23

Round 1: Add gsinto query pool, the value of new/df for each query is equal to 1.

As a result, we randomly select the query with largest df.

di d2 d3 d4 ds dé d7 ds d9 df new new/df
ql | o 0 0 0 0 0 1 0 1 2 2 1
2 |o 0 0 0 1 0 1 0 1 3 3 1
B3 |1 0 0 0 0 1 0 0 0 2 2 1
g |o 0 0 0 0 1 1 1 1 4 4 1
B |1 1 0 1 1 0 0 0 1 5 5 1
6 |1 1 1 1 0 0 0 0 0 4 4 1

Table 2: Greedy algorithm example (2)
Round 2: Add g4 into query pool, since new/df(qs) = % is maximum value in the

last column.

d1 d2 d3 d4 d5 d6 d7 ds d9 df new new/df
gl [o 0 0 0 0 0 1 0 1 2 1 172
2 |o 0 0 0 1 0 1 0 1 3 1 13
B |1 0 0 0 0 1 0 0 0 2 12
g |0 0 0 0 0 1 1 1 1 4 3 3/4
B |1 1 0 1 1 0 0 0 1 5 - -
6 |1 1 1 1 0 0 0 0 0 4 1 1/4

Table 3: Greedy algorithm example (3)
Round 3: Add gs into query pool, since new/df(gs) = ¥4 is maximum value in the

last column.

dl d2 d3 d4 ds dé d7z ds d9 df new new/df
gl [0 0 0 0 0 0 1 0 1 2 0
2 |o 0 0 0 1 0 1 0 1 3 0
B3 |1 0 0 0 0 1 0 0 0 2 0
g |0 0 0 0 0 1 1 1 1 4 - -
5 |1 1 0 1 1 0 0 0 1 5 - -
6 |1 1 1 1 0 0 0 0 0 4 1 1/4

Table 4: Greedy algorithm example (4)

Therefore, the Solution of this example is {0s, 94, Js}-

The whole procedure of choosing sets by the greedy algorithm can be transferred

to set covering view as picture below.

24

0@ 6

Figure 9: the whole procedure of Greedy Algorithm

Check whether the solution {qs, g4, s} covers all the documents by:

1
00 00 0010 17 } 07
0 0001010 1 1 0
10 00 010 00 0
OO0001111x52E,whereE—1,S—1
11011000 1 1 1
111100 0 0 o 1 1
1.
0 0 1 0 1 1
0 0 00 1 1|
0.0 00 0 1| |d
0.0 00 1 1| |g
Thus,LHS=010010><1
0 0 1 10 0f |,
11010 0 []
0 0 01 00
1 1. 0 1 1 o
21 11
2l |1
1] |1
2l |1
=|1|>|1|=E
1| |1
1] |1
1| |1
21 Ih

Therefore, all the documents are covered by the solution {qs, g4, gs}-

25

Next, calculate the cost of the solution {Qs, d4, 9s}:

Total cost =CTS

DU N WK
):—\HHOOC:D

4.2. Weighted Algorithm

Traditional set covering algorithms do not work well when applied to deep web
crawling due to various special features of the application domain. Typically, most set
covering algorithms ignore the distribution of document frequencies. In [34], the authors
developed a new set covering algorithm that targets the deep web crawling. Instead of
straightforward greedy set covering algorithm, it introduces weights into the greedy
strategy. They use Document Frequency df (the number of documents that contain a
specific earlier query.), Document Weight dw (the inverse of the number of terms in QP
that occurs in the document), and Query Weight qw(the sum of the document weights of
all documents containing term q). The weighted greedy algorithm is based on choosing

the query with the smallest df/qw.

To improve simple greedy algorithm and decrease the overlap, the weighted

greedy algorithm introduces weights into the greedy strategy and propose a weighted

26

greedy algorithm instead of a straightforward greedy set covering algorithm. The

definitions are introduced as follows:

Definition 3 (Document Weight): Let D={di,...,dn} be the SampleDB and
QP={qa,...,qn} be the QueryPool. We consider each document as a set of terms and use
the notation g; € di to indicate that a term g; occurs in the document d;. The weight of a

document with respect to QP and d; (1<<i=<m), denoted by dw(d;, QP) (or d,, for shot), is

the inverse of the number of terms in QP that occurs in the document d;, i.e.

W= 1
~ |dinQP|

Definition 4 (Query Weight): The weight of a query ¢; (1<j<n) in QP with
respect to D, denoted by qw(q;, QP) (or qw for short), is the sum of the document weights
of all documents containing term g, i.e.,

qw = quedi,dieD dw

Weighted Greedy Algorithm:
Input: m * n Matrix A;

Output: A solution m-vector S;

dfi = ?:1 Al]’

27

B=A;
E is an n-vector, and initializes every element to 1;
S and c is an m-vector, and initialize every element to 0;
While AT xS < E{
for(1=1; i<=m; i++){
qw; = B;T x dw ;

ci = dfi / qw;;

Find a k which minimizes cy;
Sk =1;

Remove the kth row and jth column from B, if cell;; =1,

for (j =1; <=m; j++){

if(S;= 1 and A; is redundant) S; = 0;

return S;

The weighted greedy algorithm always selects the next query with the largest
“qw/df". Based on this rule, the weighted greedy algorithm selects keywords from

SampleDB as queries which have lower overlapping rate. This algorithm retrieves a

28

much better result than the simple greedy method in the SampleDB, so it should be

expected to retrieve a better result in the TotalDB.

By Weighted Greedy Algorithm, we can get the Solution #2(qgs, Q4, Q) for

example 2.
Round 1:
dl d2 d3 d4 d5 dé d7 d8 do df qw qw/df
gl 0 0 0 0 0 0 0333 O 0.25 2 0.583 0.292
g2 0 0 0 0 0.5 0 0333 0 0.25 3 1.083 0.361
g3 1 0 0 0 0 0.5 0 0 0 2 15 0.75
q4 0 0 0 0 0 0.5 0333 1 025 |4 2.083 0.521
a5 0.5 0.5 0 0.5 0.5 0 0 0 025 |5 225 045
g6 0.5 0.5 1 0.5 0 0 0 0 0 4 2.5 0.625
Table 5: Wighted Greedy algorithm example (1)
Round 2:
d1 d2 d3 d4 d5 d6 d7 ds do df qw qw/df
ql 0 0 0 0 0 0 0333 0 0.25 2 0.583 0.292
g2 0 0 0 0 0.5 0 0333 O 0.25 3 1.083 0.361
g3 1 0 0 0 0 0.5 0 0 0 2 0.5 0.25
q4 0 0 0 0 0 0.5 0333 1 025 |4 2.083 0.521
g5 0.5 0.5 0 0.5 0.5 0 0 0 0.25 5 0.75 0.15
6 0.5 0.5 1 0.5 0 0 0 0 0 4 - -
Table 6: Wighted Greedy algorithm example (2)
Round 3:
di d2 d3 d4 d5 dé d7 d8 do df qw qw/df
gl |0 0 0 0 0 0 0333 0 025 |2 0
g2 |0 0 0 0 0.5 0 0333 0 025 |3 0.5 0.1667
g3 1 0 0 0 0 0.5 0 0 0 2 0 0
g4 |0 0 0 0 0 0.5 0333 1 025 |4 - -
g5 |05 0.5 0 0.5 0.5 0 0 0 025 |5 05 0.1
g6 0.5 0.5 1 0.5 0 0 0 0 0 4 - -

Table 7: Wighted Greedy algorithm example (3)

29

We transfer the whole procedure of choosing sets by the weighted greedy

algorithm in set covering view as picture below.

Figure 10 : the whole procedure in set covering view (by Weighted Greedy Algorithm)

Check whether the solution {qs, g4, g2} covers all the documents by:

1
00 00 0010 17 } 07
00001010 1 1 1
10 00 0 10 0 0 0
000001111X52E' WhereE—i, S—1
1101100 0 1 1 0
111100 0 0 o 1 1
1
0 0 1 0 1 17
0000 1 1
0 0 00 0 1] f
0.0 00 1 1f |4
Thus, LHS =0 1 0 0 1 0fx]|,
0 0 110 0f |q
1101 0 0 [/]
0 0 01 0 0
1 1. 0 1 1 o

30

Il

NP NP R PR
V

LN U
Il
3

Therefore, all the documents are covered by the solution {qs, 04, 02}

Next, calculate the cost of the solution {qs, 04, 02}:

Total cost = CTS

2 _O_

31 (1
121 o
=4 ¥4

5| o
(41 14l
- 11

By comparing with the cost in the example of section 4.1, we can see the solution
given by weighted greedy algorithm is better than the solution generated by conventional

greedy algorithm.

4.3. Ranking Problem

Return limitation and ranking policy results in the ranking problem. Many hidden

web sites set up a limit k for the number of results. When a query matches a large number

31

of documents, the deep web sites only return at most k documents. This is called return

limitation. Ranking policy is the rule of sorting results.

[J
[] []
ST L4 °
~ N _mmmm
4 e =<
. S 3
e wad ®
? 3
/
/
/
® L) Ps
)
~— ‘ ~
S
. -~
S
. > S >
. 7 °
3 _
L4)

Figure 11: A deep web site usually set up a return limitation

Ranking policy generally could be either static or dynamic. A static ranking, say
the web service of “twitter.com”, sorts the results by the order of date and time. A
dynamic ranking could sort the results by the relevance to the query. Those documents
that are highly related to the search query will be listed on the top. The more relevant to
the search query, the position of a document is closer to the top. However for the
commercial search engines, the ranking policy is much more complex. Generally, the
commercial search engines rank the results mainly by the order of relevance and
importance. The relevance of web pages will be evaluated by many factors: such as the
number of occurrence times, the position of appearance, and whether the title contains the
term etc. The importance of web pages will be measured by other criteria, e.g., the
number of links to the web page from the other websites and the reputation of those
websites. Once the search engine has sorted a list of documents with their scores, it will

choose the top k documents as the results for a query.

The return limitation gives us a great challenge to download data from the deep

web sites. For example, the greedy algorithm and the weighted greedy algorithm likely

32

select the terms with high document frequency as queries. These queries are supposed to
match a large number of documents. However because of the return limitation, only at

maximal k number of documents can be downloaded.

When a deep web site sets up a return limitation, the rule of ranking is also a
critical problem for deep web crawling. By Lu et al. [17]’s previous research, if a search

engine commits static ranking rule, there is the following result:

M <—xN, (5)

where M is the number of documents that can be downloaded; k is the return
limitation; dfy is the lower bound of document frequencies of all queries sent; N is data

source size.

This formula shows that if we select high frequency terms as queries, fewer
documents can be downloaded. For example, suppose we keep submitting queries whose
document frequency is greater than 200 to a deep web search engine whose k equals to
100. By Equation 5, if the search engine lists the result with static ranking policy, the

total number of documents which can be downloaded should be:

M<N><100'
B 200’

No matter how many queries are sent. Despite dynamic ranking policy could
alleviate such a ranking problem, those popular terms are still not a good choice.
Therefore our idea is to select the queries whose document frequencies are less than k.

Our proposed method improves the weighted algorithm by always selecting the queries

33

whose document frequency is less than k. However we do not know the document
frequency of a term until we submit the term as query. Hence, we have to estimate the
document frequency of a term. One straight-forward method is to estimate the document
frequency of a term in the total database by using sample database. Assuming that the
probability of a term in the sample database and the total database is the same, the

document frequency of a term can be estimated by:

C/l?TotalDB = df:SampleDB X |TotalDB|/|SampleDB| ©

The method that we apply document frequency estimation method on the
weighted greedy algorithm to choose queries from the sample database is called DF-

Weighted algorithm.

DF-Weighted firstly estimates the document frequency of total database for all the
terms in the sample database. The terms whose document frequency is less than k are
selected to generate a matrix with all the documents covered by them. After that, the
matrix is processed as the input of weighted greedy algorithm. Then weighted greedy

algorithm outputs a set of queries.

34

CHAPTER V

EXPERIMENTS

5.1. Experimental Environment

The task of our experiments is to evaluate various downloading policies described

in Charter 3 on real deep web sites. We select Bing web service as our test bed and use

slices of the data indexed in Bing as various deep web data sources. Those slices can be

web sites, such as cs.berkeley.edu, which can be accessed using Bing search syntax “site:

cs.berkeley.edu”. Such search interface and the results from Bing are quite similar to the

search box provided by the web site itself. Thus we can simulate the access to almost all

the web sites as searchable deep web data sources.

For example, if we plan to test on “cs.berkeley.ca”, we can repeatedly submit

queries to Bing search engine like “site: cs.berkeley.edu [query]”, as shown in Figure 12.

Web

RELATED SEARCHES
Sondra Vazirani
Raunaq Vazirani
Anil Vazirani

Vijay Vazirani
Reetika Vazirani
Umesh V Vazirani
Multi-Cut

Flow Cut

oing

site:cs.berkeley.edu vazirani E‘

ALL RESULTS 1-10 of 321 results

Home Page For Umesh Vazirani

Umesh V. Vazirani. Roger A. Strauch Professor of EECS Director, Berkeley Quantum Computation
Center (BQIC) 671 Soda Hall Computer Science Division
www.cs.berkeley.edu/~vazirani - Cached page

Book

Algorithms . by 5. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani . This is a penultimate draft of
our soon to appear textbook. For more information, visit http-/fwww.mhhe.com __.
www.cs.berkeley.edu/~vazirani/algorithms_html - Cached page

Figure 12: The results for “site:cs.berkeley.edu vazirani”

35

Advanced

In this thesis, instead of using html form search interface, we submit the queries to
Bing web service. Therefore we do not need to fill the html query form and extract the

data from html result pages.

Bing API provides HTTP Get to implement the process of submitting requests. A
request to the HTTP endpoint consists of an HTTP GET request to the appropriate URI.
There are two URIs, one for XML results and one for JSON results. The XML format is
used in our experiment. So we submit our requests to the URIL
http://api.search.live.net/xml.aspx” . If we want to query the site “cs.berkeley.edu” for

the pages matching the term “large”, the complete request sent to Bing web service is:

http://api.search.live.net/xml.aspx? Appid=<AppID>&query=site:cs.berkeley.edu%?20larg

e&sources=web.

<2xml version="1.0" encoding="utf-g" 7>
<?pageview_candidate 7>
- <SearchRespo ="http:/ /schemas.microsoft.com/LiveSearch/2008/04/XML/element" Version="2.0">
- <Query>
<SearchTerms >

</Query>

:cs.berkeley.edu large</SearchTems>

- <web:Web xmins:web="http:/ /schemas.microsoft.com/LiveSearch/2008/04/XML/web">
<web:Totz1>4310000 </web Total>
<web: Offset=50</web: Offsets
- <web:Results>
- <web:WebResult>
<web:Title>UC Berkeley HiFi Webpage</web:Title>

pi d - in data isition and sensor

isp ifi.cs.berkeley. ut.html</
DateTime>2010-05-23T01:12:23Z </web:DateTime >
ebResult>
eb:WebResult>
<web:Title>Interactive OCR: Especially Mathematics</web:Title>
<web:Description>A large number are covered in the literature, some of which have been incorporated in programs. Returning now to the zone
geometry on the pages, ideally, we can now unambiguoush scriptions
<web:Url>http:/ /www.cs.berkeley.edu/~fateman/interact.html < B
<web:DisplayUrl>www.cs.berkeley. edu /~fateman finteract.html </web: DisplayUrl>
<web:DateTime>2010-05-22T03:43:54Z </web:DateTime >
</web:WebResult>
- <web:WebResult>
<web:Title>Traveling through the Darks</web:Title>
<web:Description>I dragged her off; she was large in the belly. My fingers touching her side brought me the reason— her side was warm; her fawn

Figure 13: Response page from Bing web service
The picture above is a portion of response page. Several returned elements are
explained below:
1) The Total element, “<web:Total>", contains the estimated number of results

for a particular request. Since Bing web service usually provides a very

36

inaccurate number, we use our own estimation of the size by exhaustively
sending a very large number of queries.

2) The Offset element, “<web:offset>", indicates the current position of the
result set you are processing. You can change Offset using the optional
Offset parameter. Each response page at most contains 50 results. This
means, if a query matches 100 results, you need to submit this query twice to
Bing web services. For example, if you wanted to ask for 50 results at a time,
you would pass “web.count=50" as part of the query string. If you wanted to
get the next 50 results after getting the first results, you would pass
“web.offset=51". The full URI would be as the following:
http://api.search.live.net/xml.aspx?
Appid=<AppID>&query=site:cs.berkeley.edu%20large&sources=web

&web.count=50&web.offset=51

Bing web service imposes some challenges for deep web crawling, such as return
limitation, ranking of the returns, paginated results, and inter-page overlapping.

1) Return limit, only top one thousand of results can be returned per query.

2) Inter-page overlap: Bing web service sometimes even could return same
documents when you issue a query. In our experimental result, we had pruned this
kind of duplicate.

3) Ranking criteria: Comparing local simulation data source, we do not know the
rule of Bing search engine for ranking results. This problem also gives us a new

challenge to download deep web data.

37

In order to facilitate the experiment on Bing web service, we build a web service
crawler. The figure below is the GUI and the dataflow diagram of our crawler. To make
the crawler more flexible, the system is independent of algorithms. A query selection

algorithm output the queries to a text file. And our WS-Crawler read the queries from the

text file and creates a query pool.

_
| | WS-Crawler V1.0 - - E=SNEER

File

Data Source |cs.berkeley |w

Dictionary |Random Dict |+

Search
Performance:
Keyword: abound
Matching Results: ¥3.0 ||
Download Files: 52.0
Duplicate Files: 21
Overlap Rate: 1.4091533 L
Coverage: r % 1§

Figure 14: The user interface of our crawler

38

Local
sample
database

Output | Response
T analysis

Response page

S

) 4

|
|
|
|
|
: |
| |
| |
| |
| |
| |
|
Query selection ! O"'_a”‘_' | .
algorithm | Query Pool —Read—»| submission t Wab sarvice

: manager |
| |
| |
| |
| |
| Dictionary | :
L | Create I
| |

| | Deep web

| ,—SEIE:J data sourc | database

|
|
Run

Read : |
by order Gl |
of randormly :
| |

Web service crawler

Figure 15: Dataflow diagram of our crawler

5.2. Evaluation Criteria

When we select queries from documents by different algorithms, the solutions
should be also different. In order to evaluate which solution performance is better, we

select Hit Rate [22] and Overlapping Rate [22] as our evaluation criteria.

Hit rate is to measure how many percentages of documents are harvested by the
crawler. So Hit Rate is equal to the number of unique documents downloaded divide by

the total number of documents in the web database.

| Us21S(q;,DB) | (7)
|DB]

HR(Q,DB) =

39

Overlapping rate is used to measure the communication cost. In the formula (8),
Overlapping Rate is equal to the number of documents downloaded, including duplicate

documents divide by the number of unique documents downloaded.

Yi01S(q;, DB)|)

OR(Q,DB) = -
(@.DB) |U%_4S(q;, DB) |

For example, we have a document set which contains 4 documents (d1, d, ds, and
ds). There are 3 queries (g1, g2, and qz) in our query pool. The relation between the
documents and queries is shown in the Figure 7. We have two solutions that can cover all

of documents. One is {1, g2}, and the other is {qi, gs}.

Solution 1:
2+3
4
HR({q,,9,},DB) = Z =100%
Solution 2:
2+ 2
OR({q1,q5},DB) = —,— =1

4

The hit rate for both solutions is same. However the overlapping rate of solution 2
is lower, this means the solution 2 reaches 100 percent coverage with less documents

downloaded. Therefore, the solution 2 is better than the solution 1.

40

5.3. Experiments

5.3.1 Sample Databases Creation

The experiments are carried on three data sources: ‘“cs.berkeley.edu”,
“uwaterloo.ca”, and “ctv.ca”. For each data source, we create three samples whose sizes
are approximately 5%, 10%, and 20% of the original data source. We create three
different sample databases for each data source. The sizes of those sample databases are
approximately 5%, 10%, and 20%. the sample databases are built as follows:

1) Randomly select queries from the Webster dictionary that contains about
59000 terms;

2) Issue some of those queries to Bing web service and download more than 20%
documents;

3) All those documents can be divided into many portions by queries. We
randomly compose those sets of documents into about 5%, 10%, or 20%
document collection;

4) Use Lucene (atool to index the documents) to create sample databases.

Data Source cs.berkeley.edu uwaterloo.ca ctv.ca
Approximate
30,000 150,000 140,000
(N)
1548 8019 6911
Sample Size 3319 13924 14504
6066 29690 28568

Table 8: Description of Data Sources and Sample Databases

41

5.3.2 Ranking Strength Observation on the Data Sources

Ranking problem has a great effect on the performance of downloading data from
the deep web sites. Thus to measure the ranking strength of the data sources is necessary.
Ranking strength is measured by calculating the percentage of queries which are within
the return limitation. All the selected terms whose document frequency is bigger than 1
from the three sample databases (20%N). All those terms are submitted to the Bing web
service and k has default value 1000. Then we can get the number of terms whose

document frequencies are less than 100 and 200.

Approximate Terms Ranking
Data Source dflog dflog /tn df200 df200 /tn
(N) Num (tn) Strength
cs.berkeley.edu 30,000 48,522 36,546 75% 39,627 81% weak
uwaterloo.ca 150,000 271,530 173,438 64% 184,403 68% middle
ctv.ca 140,000 116,073 63,638 55% 69,385 59% strong

Table 9: Percentage of Terms within k
From Table 9, we can make the following observation:
Because the size of data source “cs.berkeley.edu” is small, the matches of the

most of queries do not exceed the return limit. Therefore ranking strength in this data

source is weak.

Despite the size of “ctv.ca” and “uwaterloo.ca” is very close, words of “ctv.ca”
are very generic. The percentage of popular terms of “ctv.ca” is higher than

“uwaterloo.ca”. Hence ranking strength of ““ctv.ca” is stronger than “uwaterloo.ca”.

42

5.3.3 Comparison on Query Selection Policies

We evaluate four query selection policies on 27 combinations of experiment
environments. For each data source, we set up three different return limitations (100, 200
and 1000) and three different sample databases (approximately 5%, 10%, and 20%). We
evaluated the four query selection policies as the following:

» Random: Randomly selects queries from the Webster dictionary;
» Sampling based policies: Greedy, Weighted Greedy, and DF-Weighted

greedy policies.

As mentioned before, those sampling based algorithms select queries from the
matrixes. However if we generate the matrix by exporting all the terms from a sample
database, this matrix will be so large that the memory of our computer cannot afford it.
By the research of [16], we keep randomly selecting terms from the sample database until
the total document frequencies of terms is 20 times of the size of sample database. We
used those terms to create the matrix as mentioned in the section 3. Finally three

sampling based algorithms are run on the matrix.

Because we evaluate the crawling performance by comparing the value of OR and
HR. In our experiments, we design a chart to record the value of OR, HR and the raw

data as Table 10.

Query est mi mi ui di Mi Ni or OR HR

Q1

02

Qi

Table 10: Experiment record chart

43

Below is the explanation for the columns in the table 9:
1) est mi: matches estimated by Bing search engine;
2) mi: actual matches;
3) ui : the number of new documents retrieved by a query;
4) di: the number of duplicate documents retrieved by a query;
5) Mi: the number of total matches (includes duplicate docs) retrieved by
{01 ...q};
6) Ni: the number of total unique documents retrieved by {q: ...qi};
7) or: the overlapping rate of a query;
8) OR: the overlapping rate up to g;:

9) HR: the hit rate up to g;.

After running 108 (4>27) experiments on 27 combinations, we create 27
performance diagrams. The values of OR are plotted on x-axis, and the values of HR are
plotted on y-axis. All performance diagrams are listed in the appendix I. We select some

representative diagrams to list below.

44

0.35

0.7

05 T ‘ T T T T

e Random] o e Attt IEUECE i Random
Greedy : Greedy
..... Weighted LT O O . L
== == = DF-Weighted == == = DF-Weighted
é 2‘2 24 01 15 2 25 3 35 4 45
(a) (b)

==== Random
Greedy
""" Weighted

== == = DF-Weighted

35 4

45

(a) cs.berkeley.edu Sample size = 5% Limitation = 100

(b) cs.berkeley.edu Sample size = 5% Limitation = 200

(c) cs.berkeley.edu Sample size = 5% Limitation = 1000

Figure 16: Performance Diagrams of cs.berkeley.edu

The first three diagrams come from the data source “cs.berkeley.edu”. As said
before, the ranking strength of this data source with respect to the queries is weak. Most
of queries issued do not exceed return limitation k. In other words, the Weighted Greedy
is similar to the DF-Weighted. Thus our proposed method does not show any advantage

in this data source.

45

0.45 T
4 :
04 3 ‘/,/‘
/.I‘
7/ #
035 Vv / ‘,‘/
Vs g |
03 e E e AL
o
025F s o
&/ 7
&/ el
02 e
“‘/l ./v
015} AL
LST
AlA :
01 “\‘/J" : “| =+="-Random
BT Greedy
[111] T8 | SREtIE Weighted
g ~ = = DF-Weighted
D 1 1 4t 1 1 1 T T
12 14 16 18 2 22 24 26 28
()
07 T T
.—’v‘..
o
06 > i
’ 4
¢ i
05h Fpeetagth
'y s
by &
I 7/
04F /_}/ 7 :
13 /'
VERR
03f- Ay
§ ¢
By
02} [;/r :
G
h =+=+*Random
}t
O F g7 oeeeemedieemdeii Greedy
A Weighted
(= = = DF-Weighted
0 i i i I
1 2 3 5 6 7

07 T T T T
[11-] ERERERER PR P rey
054‘.’.—: -
-
o
-
04}
03} -
02 8
==+-Random
01 Greedy
I T L Weighted
: = == DF-Weighted
0 i I H T
1 15 2 25 3 35

(b)

(a) uwaterloo.ca Sample size = 10% Limitation = 100

(b) uwaterloo.ca Sample size = 10% Limitation = 200

(c) uwaterloo.ca Sample size = 10% Limitation = 1000

Figure 17: Performance Diagrams of uwaterloo.ca

However things change in the performance diagrams of ‘“uwaterloo.ca”. As

ranking strength becomes stronger, DF-Weighted performs better in the data sources:

“uwaterloo.ca”. This can be observed from Figure 17. DF-Weighted performs best in

terms of OR.

46

05 7 1 ‘ 7 T ! ; T 07 T T ' T

PRI —

Random
Greedy

g == Random
Greedy

0.05} cilmeenn Weighted F | B 1 11 [eeses Weighted
i | == === DF-Weighted == == DF-Weighted
0 T : ;
1 12 14 16 18 2 22 24 26 28 1 15 2 25 3 35
(a) (b)

(a) ctv.ca Sample size = 20% Limitation = 100

(b) ctv.ca Sample size = 20% Limitation = 200

{ === Random (c) ctv.ca Sample size = 20% Limitation = 1000
: Greedy

i] ===== Weighted

‘ = = = DF-Weighted

2 25 3 35 4 45 5 55

Figure 18: Performance Diagrams of ctv.ca

Greedy algorithm and weighted algorithm are originally designed to solve un-
ranking data sources. But the ranking strength of “ctv.ca” is just strongest in three data
sources. From the Figure 18, diagrams show ranking problem gives a great trouble to
both algorithms. Let’s take an example to explain. “Home” is a word with highest
document frequency and appears in the most of web pages of “ctv.ca”. According to the
rule of the greedy algorithm, the word “home” must be selected by the greedy algorithm.
However, it cannot retrieve as much as expected documents, due to return limitation.
Therefore, it is difficult to achieve a high HR for the greedy and weighted algorithm. But
our DF-Weighted algorithm just could solve this problem perfectly. Performance

diagrams also show DF-Weighted performs best in terms of OR in the data sources

47

“uwaterloo.ca” and “ctv.ca”. To make it clearer, we construct a table (Table 11). We list
their HR at a fix OR value for two data sources: “uwaterloo.ca” and “ctv.ca”. We can

observe DF-Weighted greedy algorithm performs best except the situation in the first

row.
Random . DE-
Dictionary Greedy | Weighted Weighted
data ssui?(% k OR HR®%) | HR®%) | HR@®) | HR(®%)

100 14 12 19 20 19
5 200 14 16 22 23 25
1000 14 15 25 25 30
100 14 12 15 19 19
uwaterloo.ca 10 200 1.4 16 20 23 23
1000 14 15 23 25 25
100 14 12 18 21 22

20 200 14 16 20 22 225
1000 14 15 19 22 23

5 100 14 175 - - 26.5
200 14 18 - - 27
1000 14 215 - - 26
10 100 14 175 - - 29
ctv.ca 200 14 18 - - 30
1000 14 215 - - 31
20 100 14 175 - - 29
200 14 18 - - 32
1000 14 215 - - 32

Table 11: Comparison of DF-Weighted and others

48

Additionally, from all the performance diagrams, we also found: between greedy
algorithm and weighted greedy algorithm, the latter one outperforms the former a little bit
in the most of cases. To make it clearer, we construct a new table (Table 12). We list their
HR at a fix OR value for two data sources: “cs.berkeley.edu” and “uwaterloo.ca”. We can

observe weighted greedy algorithm always performs better than greedy algorithm.

Greedy Weighted
data Sample size (%) k OR HR(%) HR(%)

100 15 21 24
5 200 15 23 25
1000 15 22 23
100 15 19 22
cs.berkeley.edu 10 200 15 20 22
1000 15 21 23
100 15 23 23
20 200 15 24 26
1000 15 24 26
100 1.4 19 20
5 200 14 22 23
1000 1.4 25 25
100 14 15 19
uwaterloo.ca 10 200 14 20 23
1000 14 23 25
100 1.4 18 21
20 200 1.4 20 22
1000 1.4 19 22

Table 12: Comparison of Greedy and Weighted

5.3.4 Effect of Ranking Problem on HDF

Barbosa’s algorithm always selects highest document frequency queries at each
round. In order to clear the effect of ranking problem on the high document frequency

queries, we perform a set of experiments. In the experiment of section 5.3.2, we already

49

get the actual document frequency for the terms by submitting all terms in the sample
database to the Bing web service. Then we extract all the terms whose document

frequency is at least 200 to generate a new set of queries and store them in a text file.

The text file is called HDF dictionary.

Sample database (20%N) Terms (df > 1) Terms (df >200)
cs.berkeley.edu 48,522 5,339
uwaterloo.ca 271,530 25,042
ctv.ca 232,146 20,269

Table 13: The number of terms for three data sources

At the beginning, we set up k to 100 for all the experiments. In the first
experiment, we randomly submit the sample terms. We call this approach Sample
Random. In the second experiment, we select those queries in the HDF dictionary as
queries. Due to this approach always selects high frequency queries, it is denoted by
HDF. In order to generate enough super high document frequency terms, we create a set
of disjunctive queries by randomly combining the terms of HDF dictionary with OR rule,
say “initially OR heidelberg OR social OR theatres OR overall OR include”. In the third
experiment, we issue the disjunctive queries containing five terms. That approach is
called HDF5. In the same way, the approach issuing a set of disjunctive queries with 10
or 15 terms is denoted by HDF10 or HDF15. We donate those four approaches selecting
high document frequency queries to HDF policy. The performance diagrams of five

approaches on three data sources are given in Figure 19.

50

08 : : . : : : 08 : —

—-=-HDF15 > 3 —-=-HDF15
a7k AR S e .| ——HorF10 | 7 SRR - MR o ———HDF10
ot S S KLU HDF5 I/ s SR A |0 HDF5
¢ ==+ HDF » === s HDF
08k ’// ‘ : == =—Random Sample I osr /I/ 2 R "| ===Random Sample
i i "
o5& ; : g 05F b 4
i ! /
04}-¥ . 044
{ {
03t 03 d
02 -! 02} !
i B uplsiid ean
0.1 [awnss GRY S S i
f /
0 i i i olt H
0 10 20 30 40 50 60 70 0 5 10 15 20 2
(a) (b)
08
L e —-=-HDF15
g e ———HDF10
V2%, SR S U HDF5
% ===+ HDF
06} PR " —
i : gl T el .
o : ‘ SIS (a) cs.berkeley.edu (sample size: 20% N; K =100)
05t Y4 ;
¥ .
8 ,,’ : (b) uwaterloo.ca (sample size: 20% N; K = 100)

(c) ctv.ca (sample size: 20%N; K = 100)

(c)
Figure 19: Comparison on Random Sample Terms and High DF Terms

In Figure 19, we can make the following observation: For HDF policy, the
document frequency of queries are higher, the performance performs worse. In the Figure
19 (a), when ranking strength of the “cs.berkeley.edu” is weak, the performance of HDF
approach beats Random Sample approach. However as ranking strength becomes
stronger in the “uwaterloo.ca” and “ctv.ca”, the performance of HDF approach is even
worse than the Random Sample approach. Those experiments prove HDF policy cannot

achieve good performance for the ranking data sources.

51

CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This thesis studies query selection problem so that our crawler efficiently accesses
the content of deep web. To achieve this goal, we select the candidate queries from a

sample database using set covering algorithms.

A conventional method for the set covering problem is the greedy algorithm. And
the weighted greedy is a variation of the greedy by introducing query weight.
Additionally, in order to focus on query selection problem, we access the deep web via
web services. Most of these services set up a return limitation for the results. To increase
the crawling performance, we developed DF-Weighted algorithm by introducing

document frequency estimation based on the sample database.

We carry out our experiments on Bing web service and choose “cs.berkeley.edu”,
“uwaterloo.ca”, and “ctv.ca” as the data sources. We choose HR and OR as the
evaluation criteria. We evaluate four query selection policies: random queries from
dictionary, greedy algorithm, weighted greedy algorithm, and df-weighted algorithm.
Experimental evaluation shows:

» Weighted greedy algorithm outperforms the greedy algorithm in most
experiments.
» The DF-Weighted algorithm achieves excellent performance in the strong

ranking data sources.

52

» It is difficult for HDF policy to achieve good performance in the ranking

data sources.

6.2 Future Work

The limit of the number of returns is a big challenge for crawling deep web. The
limitation is stricter, it is more necessary to adopt a good query selection approach for a
deep web crawler. The df-weighted algorithm achieves a surprising result in the
experiments, but document frequency estimation method is indeed very naive. Beside
independent maximum likelihood estimation method (our approach), some other
approaches [14] [23] [19] [13] have been proposed. If we incorporate these estimation
methods into the queries selection technique, we believe this should be helpful to achieve

better performance.

We also discover, when the size of data source is pretty large (e.g. >1 million) and
the return limitation (e.g. 10) is very small, it is very hard to achieve a high HR. To solve
this problem, the multiple keywords combination is a possible method. The main problem
is how to combine a query with several keywords without exceed the return limitation

and with low cost.

In this thesis, we only focus on the textual database. But how to select queries to
download relational database is also interesting topic. For the relational database, html
query form usually also provide multiple attributes interface. We can apply the same idea

that we used to select promise query for each attribute by estimating the document

53

frequency based sample database. Predicting the document frequency of the values of

multiple attributes also should be a big challenge.

54

APPENDIX |

inations:

All Experimental Results of 27 Comb

Limitation = 200

=5%

(b) cs.berkeley.edu Sample size

5% Limitation =100

(a) cs.berkeley.edu Sample size

=== Random
Greedy

===== Waighted

= = = DF-Weighted

24

015 fneeeee

0.25 f--no

Limitation = 100

=10%

cs.berkeley.edu Sample size

Limitation = 1000

=5%

(c) cs.berkeley.edu Sample size

[A

28

- Random
Greedy
== Weighted
== === DF-Weighted

D3 fenreen

0.4
0.35 feneeees

45

5

=== = DF-Weighted
4

3.

=+=-=+= Random
sumes Weighted

Limitation = 1000

cs.berkeley.edu Sample size =10%

Limitation = 200

%

cs.berkeley.edu Sample size =10

=-=-=-=Random

Greedy
= Weighted
=== = DF-Weighted

=-=-=-- Random

Greedy
Weighted
=== = DF-Weighted

0.45

(1] SRR

4.5

35

55

=200

20% Limitation

cs.berkeley.edu Sample size

20% Limitation = 100

cs.berkeley.edu Sample size

==+="= Random

Greedy
semms Weighted

== === DF-Weighted

35

=== Random

=== Weightad
1| = == DF-Weighted

24

26

5% Limitation =100

uwaterloo.ca Sample size

=1000

20% Limitation

cs.berkeley.edu Sample size

28

—+="-Random

: Greedy
i Weighted

— = = DF-Weighted

=+=-=-- Random
Greedy
meeme YWeighted

== === DF-Weighted

0.7

0.6 ---sno-

=1000

5% Limitation

uwaterloo.ca Sample size

=200

5% Limitation

uwaterloo.ca Sample size

—'=—'-Random

Greedy
o Weighted

= = = DF-Weighted
4

45

.| =*="-Random

Greedy
tWeighted
— = = DF-Weighted

35

05

56

uwaterloo.ca Sample size = 10% Limitation = 100 uwaterloo.ca Sample size = 10% Limitation = 200

-4 = =.~Random -Random
Greedy il Greedy

g -“"""Weighted] : : mmmweigmed
o ; i i ; ; J| T REDreighiod : : 5 : — — — DF-Weighted
' T 0 i 1 i T
1 12 14 16 18 2 22 24 26 28 ; e ; S : e

| = =-Random : : ——-Random
Greedy v Greedy
i e Weighted ’ 4 : nWeighted
— — — DF-Weighted : : = = — DF-Weighted
T T

1 2 3 4 5 6 7 1 g 2 25 3 35

—='-Random —+="=Random
Greedy ; £ Greedy

nWeighted ' Weighted

— = = DF-Weighted : : : ; — = = DF-Weighted

1 15 2 25 3 35 4 45 1 15 2 25 J 35 45 5 55 6

] =8

57

=5% Limitation = 200

ctv.caSample size

=5% Limitation = 100

ctv.caSample size

=== Random
semnn Weighted
= == OF - Weighted

=-=-=-- Random

seunn YWeighted
= == = DF-\Weighted

17

16

[

0.35

0.3--nvenee
0.25 fnneennn
015 foneeenn

% Limitation = 100

=10

ctv.caSample size

5% Limitation = 1000

ctv.caSample size

19

-=-=-= Random

Greedy
= Weighted

DF-Weighted

13

17

=+=+='= Random

Gready
Weighted
== === DF-Weighted

22

24

12

g
015 i

(123 SR
0.2f-wmmnenee

Limitation = 1000

=10%

ctv.caSample size

% Limitation = 200

=10

ctv.caSample size

=+=+=-= Random

==nns VWeighted
= DF-Weighted

deeemaaan

0.7

=-=-=-- Random

Greedy
Weighted
= = = OF-Weighted

‘f”
e o
ra

1

r
¢

4
»’i‘

»

5
B fmremeneennnnnnas
02F -

0
0.15 f-------- gt

0.26 - --nnnmeemeen

0.05F--

35

15

25

15

58

=20% Limitation = 200

ctv.caSample size

ctv.caSample size = 20% Limitation = 100

=-='=-- Random
Greedy
= Weighted
= = = DF-Weighted

=+=-=:= Random
Greedy

Weighted
= === DF-Weighted

35

238

ctv.caSample size = 20% Limitation = 1000

=-=-=-= Random

Greedy
=* Weighted
= = = DF-Weighted

55

59

REFERENCES

Agichtein.E, Ipeirotis.P, Gravano.L. Modeling Query-Based Access to Text Databases. WEBDB
(2003), 87-92.

Alvarez.M, et al. Extracting lists of data records from semistructured web pages. Data &
Knowledge Engineering, vol. 64 , no. 2 (2008), pp. 491-509.

Barbosa.L, Freire.). Siphoning hidden-web data through keyword-based interfaces. In:Proc.of
SBBD,309-321 (2004), 309-321.

Bergman.M.K. The deep web:Surfacing hidden value. the Journal of Electronic Publishing, 7(1)
(2001), 07-01.

Chakrabarti.S, Van.B.M, Dom.B. Focused crawling:A new approach for topic specific resource
discovery. Computer Networks, Elsevier, 31 (1999), 1623-1640.

Cormen.T.H, Leiserson C.E, and Rivest R.L. Introduction to Algorithms, 2nd Edition. MIT
Press/McGraw Hill, 2001.

Florescu.D, Levy.A.Y, and Mendelzon.A.O. Database techniques for the world-wide web:A
survey. SIGMOD Record, 27(3) (1998), 59-74.

He.B. Accessing the deep web. Communications of the ACM 50(5) (2007), 94-101.

He.H, Meng.W, Yu.C.T, and Wu.Z. Automatic Integration of Web Search Interfaces with WISE-
Integrator. VLDB Journal (2004), 13(3):256-273.

10 http://en.wikipedia.org/wiki/Deep_Web(2010).

11 http://en.wikipedia.org/wiki/Set_cover_problem(2010).

12 Ipeirotis.P, Gravano.L. Distributed search over the hidden web: Hierarchical database

sampling and selection. In Proceedings of VLDB (August 2002).

13 Ipeirotis.P.G, Gravano.L. Distributed search over the hidden web: hierarchical database

sampling and selection. Proceedings of the 28th international conference on Very Large Data
Bases, Hong Kong, China:VLDB Endowment (2002), 394-405.

14 Jenlinek.F, Mercer.R. Interpolated estimation of markov sourceparameters from sparse data.

workshop on Pattern Recognition in Practice, 381-397 (1980).

15 Knoblock.C.A, Lerman.k, Minton.S, Muslea.l. Accurately and reliably extracting data from the

60

web:a machine learning approach. IEEE Data Eng.Bull.23(4) (2000), pp.33-41.

16 Lu.J, Wang.Y, Liang.J, Chen.J,Liu.J. An Approach to Deep Web Crawling by Sampling. Web
Intelligence and Intelligent Agent Technology.WI-IAT '08. IEEE/WIC/ACM International
Conference (2008), 718-724.

17 Lu.J. Ranking Bias in Deep Web Size Estimation Using Capture Recapture Method. Data and
Knowledge Engineering, Elsevier. 69(8) (2010), 866-879.

18 Madhavan.J, Ko.D,Kot.L,et al. Google's Deep Web crawl. Proc.VLDB Endow,1(2), 1241-1252.

19 Ney.H, Essen.U, Kneser.R. On structuring probabilistic dependences in stochastic language
modelling (1994), 1-38.

20 Ntoulas.A, Zerfos.P, Chao.). Downloading textual hidden web content through keyword
queries. (Denver,CO,USA:ACM, 100-109 2005), Procedings of the 5th ACM/IEEE-CS joint
conference on Digital libraries.

21 Vieira.K, Barbosa.L, Freire.J, Silva.A. Siphon++:a hidden-webcrawler for keyword-based
interfaces. Proeeding of the 17th ACM conference on Information and knowwledge
management, Napa Valley, California, USA:ACM (2008), 1361-1362.

22 Wang.Y, Lu.J, Liang.J, and Chen.). Crawling Deep Web Using a New Set Covering Algorithm. In
Advanced Data Mining and Applications (2009), 326-337.

23 William.G.A, Geoffrey.S. Good-Turing Frequency Estimation Without Tears. Journal of
Quantitative Linguistics, 2, 3 (1995), 217-237.

24 Wu.P, Wen.J.R.L, Liu.H, Ma.W.Y. Query selection techniques for efficint crawling of
structured web sources. Proc. of ICDE (2006), 47-56.

25 Wu.W, Yu.C, Doan.A, and Meng.W. An Interactive Clustering-based Approach to Integrating
Source Query interfaces on the Deep Web. In Proc. of SIGMOD (2004), 95-106.

61

VITA AUCTORIS

NAME: Chong Fu

PLACE OF BIRTH: Guangdong, China

YEAR OF BIRTH: 1975

EDUCATION: University of Windsor, Windsor, Ontario
2006-2008 Bachelor;
University of Windsor, Windsor, Ontario

2008-2011 Master.

62

	Downloading Deep Web Data from Real Web Services
	Recommended Citation

	Master thesis

