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ABSTRACT 

In this thesis, we tackle the two biological questions of Mate Choice and Species 

Extinction using a predator-prey ecosystem simulation named EcoSim. We conducted 

two experiments to studies these questions. In the first experiment, the impact of three 

mate choice models, random, similar, and exaggerated ornamental mate, on the behaviour 

and characteristic of individuals is studied. Experimental results showed very interesting 

genetic and behavioural differences between each model. In the second experiment, the 

effect of demographic, environmental, and genetic factors on the species extinction was 

investigated. Experimental results illustrated that some combinations of these factors can 

lead to predict the near future extinction with some interesting insights about the effect of 

these factors. 
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Chapter I 

INTRODUCTION 
Biological and ecological processes are complex systems formed by the complex 

interactions between biotic and abiotic components. Studies of these processes are 

difficult and in some cases infeasible due to these intricate relations. Moreover, data 

collection, due to a huge number of individuals dispersed on large landscapes, takes a 

long time for most of these processes. Furthermore, the manipulation of natural 

parameters for empirical research, to study their effects on the process and the analysis of 

some long term processes such as evolution, is impossible in a reasonable time. 

Laboratory approaches allow running tests by providing simplified and tractable systems 

where interactions of factors can be eliminated or restricted, and tests can be under 

control. These approaches are complementary and help to expand the knowledge about 

complex processes. In this thesis, two biological phenomena related to individuals’ 

interactions, Mate Choice and Species Extinction, are studied. 

In biology, the pairing of individuals for copulation including the raising of 

offspring is known as mating. Mate choice is a mechanism in which two individuals 

choose each other to mate. This mechanism relies on the behavioural and morphological 

traits that attract and stimulate mates, such as offering of nutrition, territories, nest sites or 

other resources needed by the mate for breeding [Andersson and Iwasa 1996].  

The theory of sexual selection introduced by Charles Darwin, has stated why 

extravagant male traits have not been eliminated by natural selection, although these 

traits make an individual more conspicuous to predators and definitely reduce its survival 
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[van Dijk et al. 2010]. Moreover, growing and preserving ornamented traits requires an 

energetic cost. The interaction between the female preferences and the male traits plays 

an interesting role in the evolutionary process, especially for their impact on the different 

characteristics and behaviors of the individuals who form various species [Bateson 1983]. 

The evolutionary process has an undeniable effect on the sexual selection 

mechanisms. The studies of gradual long-running evolution are typically a combination 

of empirical and laboratory researches. Lancaster et al. [2009] made an empirical 

laboratory experiment on common side-blotched lizards (Uta stansburiana) with 

alternative reproductive strategies based on assessing the throat color and the dorsal 

patterning of males to investigate the effect of multiple traits on the offspring survival. 

They concluded that females choosing males with adaptive combinations of these traits, 

“would exhibit high fitness due to a high number of their progeny inheriting the 

appropriate trait combinations that increase their survival”. Robinson et al. [2011] 

investigated the female preference on the evolution of an exaggerated male ornament 

using the dorsal fin of Xiphophorus birchmanni male fish as a courtship signal. The 

authors state that the female preference selects enlarged dorsal fins in male. Moreover, 

they conclude that males who court more raise their dorsal fins more, and smaller males 

with smaller absolute dorsal fins court more. They mentioned according to dependency 

between male size and dorsal fin size, it is difficult to clarify which one is more important 

in this case. In addition, they explained that the female preference was involved in the 

evolution of the enlarged dorsal fins in males for this species. 

In addition to mate choice which is an interaction between mates, species 

extinction which explains the survival ability of a species is studied in this research. The 
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conservation of endangered species and expansion of their longevity have always 

encouraged scientists to be in search for the fundamental reasons of species’ extinction. 

Each species can combine one or more distinct populations with similar ecological niche. 

Populations’ extinction which is a milestone of biology and ecology has applications in 

conservation biology, biological control, epidemiology and genetics [Griffen and Drake 

2008], [Drake et al. 2011]. 

Many laboratory tests have been done on species extinction. For instance, Drake 

et al. [2011] have investigated experimentally the effect of population size on the 

population’s extinction of the flea Daphnia magna in two phases: initial and quasi-

stationarity. They concluded that the population size has less effect on populations with 

high resilience, but habitat size, and environmental variability have more impact. In 

another experiment, Drake and Griffen [2010] have used laboratory populations of 

Daphnia magna to test the population dynamics due to declining levels of food provision. 

They showed that extinction will be revealed by slowing down the growth rate. 

In general, producing an appropriate condition and an exact repeatable experiment 

is difficult, in particular when more than one factor has an effect on a process. Simulation 

techniques can be a good alternative to consider several factors together. One such 

technique, called Individual-Based Model (IBM) [DeAngelis and Mooij 2005], has been 

used in simulation of ecological and evolutionary processes such as ecological speciation 

[Thibert-Plante and Hendry 2009], genomic complexity [Adami et al. 2000], gender 

change [Zhang et al. 2010] and population dynamics [Letcher et al. 1998]. 

Gras et al. [2009] introduced a predator-prey ecosystem simulation called 

EcoSim, which is the combination of an IBM with Fuzzy Cognitive Map as the behaviour 
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model for the agents. This model allows investigating different aspects of life by evolving 

individuals in a multi-level food chain simulation. The predators act as a pressure factor 

on a prey and can be seen as an environmental stress. The prey eats grass and the grass 

availability is based on a spatial diffusion model leading to a dynamically changing 

environment. Moreover, this model contains a speciation process which generates new 

species from existing ones by an evolutionary process. 

In this study, EcoSim is used as a platform for the investigation of mate choice 

and species extinction. This work is only a preliminary study on these phenomena. In this 

study some natural characteristics such as gender are omitted to simplify complex 

interaction between various conditions and parameters. We tried to test some 

controversial hypotheses, and also make some new hypotheses using a simulation based 

study of biological processes. 

The main contribution of the author in this study is for analysing the information 

gathered from Ecosim and integrating the extracted knowledge to expand the 

understanding of these complex processes. For this purpose, we used different attributes 

of Ecosim, such as demographic, spatial, and genetic factors, called features. These 

features were gathered at each time step from individuals currently existing in the world. 

We designed an approach based on a combination of feature filtering, focusing on the 

most informative features, and predictive model building. We evaluated the accuracy of 

the predictive model to assess the quality and the generality of the models obtained. Then 

we extract highly significant rules from these models and compared their meaning with 

real rules known from biological observations. 
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Mate choice uses the average information of the whole population of prey 

individuals and species extinction uses the average information of each prey species’ 

individuals. After some feature selection based on machine learning techniques, we have 

applied a decision tree method on the selected features to extract some rules. By 

analyzing the obtained results, we were able to understand better the effect of these 

features on each process by extracting meaningful rules. The organization of this study is 

as follows: 

Review of literature (2d chapter) composed of three sections. The first section 

includes a study of mate choice mechanisms and a review of some papers on this topic 

using individual-based models. The second section contains a study of species extinction 

that looks at some papers applying individual-based model approaches. The last section 

reviews the characteristics of EcoSim briefly. 

Design and Methodology (3d chapter) includes four sections. The first and third 

sections review the models used in this study for mate choice and species extinction. The 

second section shows the features preparation done by calculating the average 

information about individuals for the mate choice process. The last section is the 

presentation of the features preparation for species extinction using the average 

information about individuals belonging to specific species. 

Analysis of Results (4th chapter) encompasses two main sections. The first 

section consists of two experiments on mate choice: the study of the behaviours of the 

mate choice models, and the discrimination of models based on average features. The 

second section contains two experiments on species extinction including the prediction of 
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species extinction in the near futures based on average species features and categorized 

features. 

Conclusions and Recommendation (5th chapter) summarizes and discusses the 

results of the experimental studies of mate choice and species extinction. Moreover, it 

suggests some modification to improve the analysis in the future work. 
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CHAPTER II 

REVIEW OF LITERATURE 
The first section takes a look at some mechanisms of sexual selection that present 

the interactions between a choosy partner, in the form of the female preference, and a 

chosen partner, in the form of the male trait. As the individual in our simulation are 

asexual, we focus our review on mate choice mechanisms, which implies different effects 

of a mate preference for another mate trait on the mate choice from a direct or indirect 

point of view. The second section studies the different reasons among demographic, 

environment, and genetic factors that affect the survival or disappearance of a species. 

Finally, the last section takes a look at the EcoSim as the platform of this study. 

2.1 Mate Choice 
Reproduction is the natural process that is the outcome of mating occurring in the 

natural habitat of a given species in which new offspring is produced from its parents. 

The main grouping methods of reproduction are sexual and asexual [Alters 2000]. In 

asexual reproduction, an individual reproduces from a single individual whereas sexual 

reproduction requires the involvement of two individuals that can be of opposite sexes or 

hermaphroditic. In sexual reproduction, a new organism is created by combining the 

genetic material of two organisms. 

Choosing an individual as a mate in the matting process is governed by sexual 

selection. “When the males and females of any animal have the same general habits of 

life, but differ in structure, color, or ornament, such differences have been mainly caused 

by sexual selection” (chap. 4, p. 89) [Darwin 1859]. Darwin’s idea has opened a new 
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horizon to the concept of evolution and has had a highlighted role in the evolutionary 

biology. Darwin found that intricate ornaments and weapons in many animals seemed to 

have different roles in the animal survivorship and the sexual competition for mating or 

attracting the opposite sex. Various mechanisms of sexual selection have been observed 

in which contest and mate choice take noteworthy attentions in the biological studies 

[Andersson and Iwasa 1996]. “Mate choice may be operationally defined as any pattern 

of behaviour, shown by members of one sex, that leads to their being more likely to mate 

with certain member of the opposite sex than with others” [Halliday 1983]. One major 

evolutionary consequences of mate choice is that “variations in the behavior of members 

of one sex are correlated with variations in their mating success”. Choosing a certain 

mate between some potential mates can have different kinds of immediate and long-term 

benefits. Choosing a mate uses different criterions of mate quality such as: 

• Choice for high fecundity or fertility 

• Choice for immediate gains and parental abilities such as feeding 

• Choice for resource and for high mate status 

• Choice for mate complementarily such as genetic complementarily, degree of 

relatedness, and complementarily in the reproductive behaviour 

• Choice for the most effective courtship display [Halliday 1983].  

Mate choice includes different methods such as random mating, assortative 

mating and disassortative mating. In random mating, all individuals can be potential 

partners regardless of any physical, genetic, or behavioural preference. And in assortative 

mating, the mates have more resemblance to each other with regard to some traits, unlike 

disassortative mating [Bos and Caligari 1995]. 

http://en.wikipedia.org/wiki/Behavioural�
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As mentioned, mate choice concentrates on the behavioural and morphological 

traits attracting mates during the mating process. Physical appearance as morphological 

traits has a great impact on sexual attractiveness, especially in the beginning of a 

courtship process, including visual perception, audition, and olfaction [Andersson and 

Iwasa 1996]. “If males vary in the vigour of their sexual display, then, assuming that the 

effect of such display is to increase female sexual motivation, female will be more likely 

to mate with the most vigorous males” [Halliday 1983]. 

The females have special preferences for choosing and attracting males according 

to their traits. In the interaction between female preferences and male ornaments what 

still remain controversial is why females prefer ornamented males and why males evolve 

conspicuous traits that are costly and likely reduce viability [Andersson and Simmons 

2006]. Based on empirical studies, different mechanisms of evolution of mate choice 

based on pre and post-copulatory sexual selection have been presented (Table 1). Each 

mechanism tries to explain the relation between female preferences and male ornaments 

due to the specific point of view of a direct or an indirect evolution. 

Fisher [1915] hypothesized two answers to the interactions of preferences and 

traits with the concept of indirect genetic interaction: (1) females with a strong trait 

preference will have sons with higher mating success, which spread their genes more, (2) 

the male trait indicates high heritable viability that can be inherited by the offspring. He 

stated that the exaggerated traits are the outcome of a positive feedback loop between 

female preference and male display [van Dijk et al. 2010]. 
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Table 1: Some mechanisms of mate choice evolution [Andersson and Simmons 2006] 

Mechanism Explanation 

Direct phenotypic effects “If the ornament reflects the ability of the male to 

provide material advantages, such as a high-quality 

territory, nutrition, parental care or protection. Female 

choice might also evolve as a result of resistance to 

direct costs imposed by males.” 

Sensory bias “Female preference favoring a male ornament can 

initially evolve under natural selection for other 

reasons, for instance in the context of foraging or 

predator avoidance. Males evolving traits that exploit 

this bias then become favored by mate choice.” 

Fisherian mechanisms “If there are genetic components to variance in female 

preference and male trait, a female choosing a male 

with a large trait bears daughters and sons that can 

both carry alleles for a large trait, and for the 

preference for it. This genetic coupling might lead to 

self-reinforcing co-evolutions between trait and 

preference.” 

Indicator mechanisms (‘good genes’ or ‘handicap-mechanisms’) suggest that 

“attractive male traits reflect broad genetic quality. 

Inherent in such mechanisms is the maintenance of 

genetic variation. In addition, other advantageous 

genes and relative freedom from deleterious mutations 

might lead to high male condition and expression of 

sex traits. Female preference for such traits can 

provide genetic benefits to those of her offspring that 

inherit favorable alleles from their father.” 

In addition, a direct mechanism of mate preference shows that a strong mate 

preference can evolve if it improves the total fitness of the other mate through direct 

phenotypic benefits, such as avoidance of disease transmission, inbreeding, protection 
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from other coercive males, or through choice of a mate who gives better parental care or 

who is more fecund. 

2.1.1 Papers Review 

Although the sexual selection still has many open questions, various aspects of it 

have been studied in many papers. Here we focus our literature review on the few 

Individual-based modeling approaches that have been used to examine the effect of the 

morphological mate choice. This section reviews some of these works: genetic linkage 

between preferences and traits, the effect of exaggerated traits on the reproduction ratio, 

and a consequence of attractive mates on the longevity of offspring. 

Lorch et al. [2003] examined the effect of condition-dependent (non-mating 

fitness and display) sexual selection on the rate of adaptation. They present an individual-

based genetic model in which a diploid additive genetic system evolves based on 

covariance between traits. “This model includes four basic traits: (1) a resource 

acquisition trait that determines condition, (2) a trait that specifies the extent to which 

display trait expression depends on male condition, (3) a trait representing the condition-

independent part of male display, and (4) the intensity of female mating preference”. 

Each female produces one son and one daughter to make next generation. As a result, the 

authors mentioned that the variance in male display trait stays at a higher level by 

evolving the condition dependence. Moreover, costly male display decreases when sexual 

selection is excluded. 

van Dijk et al. [2010] introduced an individual-based model of sexual selection 

and mate choice in a quantitative genetic context to study the genetic linkage between 

preference and trait. They present the multi-locus genetic model of male display and 
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female preference and a cross-over procedure that recombines the parental genomes once 

at each generation. In addition, they apply viability selection according to natural 

selection and the mate choice in their model is a mathematical equation based on male 

display. The authors conducted experiments by combining natural selection with sexual 

selection. Based on the results, they concluded that “strong mate selection causes strong 

genetic linkage.” Moreover, “genetic linkage coincides with run-away Fisherian sexual 

selection.” And finally they mentioned that “strong natural selection decreases the 

strength of the Fisher process.” 

In nature, females of some species have an attraction to multiple male ornaments. 

The main question here is to what extent each of the male ornaments indicates the 

quality, or reflects different aspects, to the female while paying also attention to the 

imposed cost. van Doorn and Weissing [2004] studied this phenomenon by a 

mathematical analysis of an individual-based model platform using two kinds of 

ornaments for individuals. In this model, the ornaments show different quality of mate on 

the basis of overlap or independent information of multiple ornaments. The effect of 

dependency between ornaments on the evolution of female preferences takes into account 

male quality and viability and female’s choice cost. They stated that female preferences 

for multiple indicators of quality may evolve when the choice cost is low and also when 

the ornaments provide independent cues of an individual’s genetic quality. In other 

words, the ornament diversity can be determined by the amount of independent 

information provided by ornaments. 

Fawcett et al. [2006] presented two individual-based models for exploring the link 

between male attractiveness and offspring sex ratios based on female preference. The 
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first model applies the multi-locus genetic model, and the second model uses the 

quantitative genetic model based on a continuously variable male trait. In the first step, 

they simulated the evolution of a conspicuous male trait and female preference due to 

sexual selection in the absence of variation in offspring sex ratios. Afterward, they 

investigated the possibility to determine the offspring’s sex by females’ preference. On 

the basis of the simulations, the authors state that females with attractive partners should 

produce more sons than those with unattractive partners because these sons will inherit 

their father’s attractiveness and these females enjoy high mating success. 

In other work, Fawcett et al. [2011] developed an individual-based evolutionary 

model for investigating the dynamic interplay between sexual selection and sex-ratio 

adjustment. They utilized two types of males, which differ in their ornamentation and one 

type of female which can adjust offspring sex-ratios in relation to its partner’s 

ornamentation. The mutation can alter ornaments and exchange ornamentation of 

offspring. They explained that females who mate with exaggerated ornamented males 

have more sons in comparison to those who mate to less-ornamented males. 

Consequently, the biased sex allocation weakens sexual selection and leads to a gradual 

decline in male ornamentation and female preference. Furthermore, they mentioned that 

species with little or no control over offspring’s sex could include the exaggerated sexual 

displays. 

In few species, females choose males with rare or novel traits instead of classical 

phenotypes. This rare preference could have some beneficial such as rare male 

phenotypes might be more immune to diseases or less attract predators that search 

common phenotypes. Kokko et al. [2007] applied an individual-based model to study this 
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problem. In this model, a male phenotype is determined by a gene having k alleles in a 

haploid structure. The females have a choice gene which either have a preferred allele or 

mate randomly. In addition, males have temporal viability selection with some randomly 

selected genotypes that suffer an extra mortality risk or the most common genotype that 

is affected by the extra mortality risk. Each female samples n males to evaluate 

phenotypic frequencies and mates with the rarest male in its sample. The fitness of a 

phenotype is dependent on its frequency relative to other phenotypes. The authors stated 

when females choose a costly mating preference for rare males this preference will 

spread or reduce until stopped by frequency-dependent selection. Moreover, if females 

are usually prevented from expressing their preference, that preference can evolve into 

much higher frequencies and converge into fixation. They mentioned that sensible 

preferences bring about viability benefits evolve more easily than those that do not and 

the rarity mating preferences happen less often than others mating preferences. 

2.2 Species Extinction 
The second biological phenomenon that will be reviewed here is species 

extinction. There are many factors in extinction that can be classified into the three main 

realms of Demography, Genetics and Environment [Griffen and Drake 2008]. 

Demographic factors are impacted by population growth, reproduction rate and 

individual lifespan, and include: population variability, initial population size and 

migration [Ovaskainen and Meerson 2010]. A larger population is less susceptible to 

extinction. In addition, a small population far below carrying capacity, which is able to 

increase quickly, can avoid extinction from demographic stochasticity. Furthermore, 

migration can increase population size when the negative density-dependence is weak. 
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Genetic factors correspond to a shortage of genetic variation, which can be caused 

by a decrease in fitness due to inbreeding depression [Reed et al. 2003]. Diminishing 

genetic variation may increase extinction risk by limiting the adaptation ability to 

stressful environments. Moreover, migration can reduce extinction risk by decreasing the 

genetic consequences of small population size. 

Finally, factors such as habitat quality, habitat fragmentation and environmental 

stressors have a major role in extinction as environmental factors [Patten et al. 2007]. For 

instance, the temporal variation in food availability can increase the extinction risk by 

decreasing the long-term growth rate of the population. The effects of most of these 

extinction factors depend on interactions with other factors and conditions. It is therefore 

important to carefully study the effect of each factor. In real life, it is difficult to identify 

or compute an exact effect of these factors separately; it is even harder to do it altogether. 

2.2.1 Papers Review 

As mentioned in previous discussions, different factors could influence the 

extinction of species. The vast numbers of these factors and the huge area affected by 

them have been studied in different papers. 

Walters et al. [2002] utilized an individual-based model to explore the effect of 

demographic and environmental stochasticity on vulnerability of Red-cockaded 

Woodpecker populations. This model contains breeding territories and non-breeding 

space that the birds must cross to find the breeding territories. Each territory can be 

created or lost based on some conditions. In addition, males in this model can compete 

for two resources of breeding territories and empty territories, and females only move 

into territories containing a male. They stated that they observed two major results: 1) the 



16 
 

16 

distribution and the density of territories impact on population behaviour the same as 

population size, especially within a certain range of population sizes, and 2) the 

environmental stochasticity has small effects on vulnerability and consequently, small 

populations could be stable. 

Hovel and Regan [2007] assessed how habitat fragmentation and loss influenced 

predator–prey interactions and cohort size for a group of settling blue crabs using a 

spatial individual-based model. Cells of this model are divided into three habitat types: 

sea-grass patch interior, sea-grass patch edge and matrix. In addition, it includes three 

types of prey, meso-predators and top-level predators. Top level predators only hunt 

meso-predators and prey can be eaten by meso-predators. Each organism has a different 

level of habitat preference. Three types of movement are created: random movement, 

predation avoidance movement, and directed hunting. They showed that sea-grass habitat 

fragmentation and loss strongly influenced prey cohort size. Nevertheless, factors such as 

predator hunting strategy, prey movements and patterns of settled prey can alter the effect 

of habitat fragmentation and loss on prey. In addition, the presence of top-level predators, 

the ability of predators and meso-predators to detect and respond to prey, and prey 

movements have great effects on prey cohort size. Finally, they showed that increasing 

prey mobility can reverse the patterns of prey survival versus sea-grass fragmentation. 

Uchman [2000] studied the influence of individual variability on population 

dynamics using an individual-based model. This model implements differences in 

individual assimilation rates due to intra-specific competition and variability of initial 

weights. The number of individuals in the population oscillates due to the availability of 

resources. Moreover, individuals are characterized by their weight that varies with the 
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assimilation of resources and the loss due to respiration. They concluded that a 

population consisting of identical individuals becomes extinct when resources are entirely 

consumed or are not sufficient. In contrast, including individual variability, the model 

produces longer population lifespan due to the oscillated behaviours of population size 

which allow the resources can increase when the number of individuals decreases. 

Furthermore, they explained that the average extinction time is not a monotonic function 

of the degree of individual variability. 

Natural hybridization is a considerable menace that can cause species extinction. 

Wolf et al. [2001] investigated extinction risk of two hybridizing annual plant species 

using an individual-based model simulating the life cycle and including some ecological 

parameters. This model contained the habitat, including K patches in which each patch is 

occupied by only one flowering adult, and a sympatric population containing members of 

two species. Due to the interactions among the selfing rate, pollen production, pollen 

competition, seed production, and seedling competitive ability of each class of plants, 

three species can emerge in this model: native species, invading species, and hybrid 

species. The authors stated that different parameters such as population size, variance in 

pollen-tube growth rate and pre-zygotic reproductive barriers impact on extinction risk. 

Furthermore, the competitive ability, initial frequency, and selfing rate of the native taxon 

strongly affect extinction. They explained that when there is no habitat differentiation, 

one of the parental species or the hybrids replace the other two taxa. Finally, they claimed 

that hybridization is a significant genetic threat to both rare and abundant species, also it 

can lead to an imminent extinction. 
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2.3 EcoSim 
Gras et al. [2009] have presented EcoSim, an IBM including a behavioural model 

based on Fuzzy Cognitive Maps (FCM) [Kosko 1986]. EcoSim models biological 

concepts and processes such as genomes, evolution, speciation and interbreeding. Several 

studies have been done using EcoSim. Devaurs et al. [2010] have shown that the 

behaviour of this model is realistic by comparing the species abundance patterns 

observed in the simulation with real communities of species. Furthermore, the chaotic 

behaviour [Golestani and Gras 2010] and multi-fractal property [Golestani and Gras 

2011] of the system observed in real ecosystems have been proven. Golestani et al. 

[2012] have also measured the effect of geographic barrier on the speciation in EcoSim. 

In [Majdabadi Farahani et al.], the diffusion of a disease in a population of prey and 

different healing policies have been studied in EcoSim. 

In this model, two organism types, prey and predator, are simulated in a torus like 

discrete world which is a 1000×1000 matrix of cells. Besides prey and predators, every 

cell in this world may contain some amount of grass, which is the primary producer, and 

meat. The availability of grass is calculated based on a spatial diffusion model that 

shaped the dynamic environment. Predators live on prey and prey live on grass. The 

predators act as a pressure factor on prey (environmental stress). 

To observe the evolution of an individual behaviour and ultimately ecosystems 

over thousands of generations, several conditions need to be fulfilled: 1) every individual 

should possess genomic information; 2) this genetic material should affect the individual 

behavior and consequently its fitness; 3) the inheritance of the genetic material has to be 

done with the possibility of modification; 4) a sufficiently high number of individuals 
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should coexist at any time step and their behavioural model should allow for complex 

interactions and organizations to emerge; 5) a model for species identification, based on a 

measure of genomic similarity, has to be defined; 6) a large number of time steps need to 

be performed. These complex conditions pose computational challenges and require the 

use of a model which allies the compactness and easiness of computation with a high 

potential of complex representation. 

 

Figure 1: A sample of Predator’s FCM including concepts and edges. The width of each edge shows 

the influence value of that edge. Color of an edge shows inhibitory (red) or excitatory (blue) effects 

[http://sites.google.com/site/ecosimgroup] 

Every individual of EcoSim acts according to its FCM which is coded in its 

genomes and assigned to it at birth time. The FCM is a directed graph containing nodes 
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called concepts and edges representing the influence of concepts on each other (Figure 1). 

When a new offspring is created, it is given a genome which is a combination of the 

genomes of its parents with some possible mutations. 

In EcoSim, the FCM is not only the base for describing and computing the agent 

behaviours, but also the platform for modeling the evolutionary mechanism and the 

speciation events. Formally, a FCM is a graph which contains a set of nodes C, each node 

Ci being a concept, and a set of edges I, each edge Iij representing the influence of the 

concept Ci on the concept Cj. A positive weight associated with the edge Iij corresponds 

to an excitation of the concept Cj from the concept Ci, whereas a negative weight is 

related to an inhibition (a null value meaning that there is no influence of Ci on Cj). An 

activation level ai (explained later) is associated to each concept. A FCM allows 

computing the new activation levels of the concepts of an agent, based on its perception 

and on the current activation levels of its concepts using normalized matrix product (look 

at Figure 2 as an example). 

 
Figure 2: A FCM for detection of foe (predator) and decision to evade with its corresponding matrix 

L (0 for ‘Foe close’, 1 for ‘Foe far’, 2 for ‘Fear’ and 3 for ‘Evasion’) and the fuzzification and 

defuzzification functions [Gras et al. 2009] 
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There are three kinds of concepts: sensitive (such as distance to food and to sexual 

partner), internal (such as fear, hunger and satisfaction) and motor (such as escape, eat 

and reproduce). In addition, each concept has an activation level which depends on the 

current perceptions and its past internal state. The current activation level of a concept is 

computed based on the FCM and is used to choose the next action of the agent. The 

environmental fuzzified information of an agent is used to compute the activation level of 

a sensitive concept. Activation level of an internal concept is influenced by the sensitive 

concepts of the agent. And lastly, the action of agent is selected based on the defuzzified 

activation levels of the motor concepts that are affected by the sensitive and internal 

concepts. EcoSim iterates continuously, and each iteration, called time step, consists of 

the computation of the activation level of the concepts, the choice and application of an 

action for every individual. A time step also includes the update of the world: emergence 

and extinction of species and growth and diffusion of grass. 

Each individual has an energy level that is affected by its actions. All actions 

decrease the energy level except the eating action. The energy is provided by the primary 

or secondary resources found in the world. For example, prey individuals gain 250 units 

of energy by eating one unit of grass and predators gain 500 units of energy by eating one 

prey. At each time step, each agent spends energy depending on its action and on the 

complexity of its behaviour model (number of existing edges in its FCM). On average, a 

movement action such as escape and exploration requires 50 units of energy, a 

reproduction action uses 110 units of energy and the choice of not action results in an 

small expenditure of 18 units of energy. 
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One of the actions performed by the individuals is reproduction. Several factors 

play roles in reproduction. For reproduction to be successful, the two parents need to be 

in the same cell, have enough energy, chose the reproduction action and be genetically 

similar. The organisms cannot determine their genetic similarity with their potential 

partner. They try to mate and if the partner is too dissimilar, the reproduction fails. The 

result of the reproduction action is a unique offspring with a genome which represents a 

combination of the parental genomes. The newborn receives an initial amount of energy 

equivalent to the energy that the two parents spend in reproduction. Moreover, all 

individuals can move in this model. The movement can be due to exploration, foraging or 

socialization. The movement of individuals can make different populations with various 

species. Figure 3 shows the spatial distribution of individuals in one specific time step of 

simulation’s world. 

 

Figure 3: The status of the world in one specific time step, white color represents predator species 

and the other colors show different prey species 
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This model takes advantage of a speciation mechanism. A species is represented 

as a set of individuals having a similarity genetic characteristics [Mallet 1995]. The 

speciation mechanism implemented in EcoSim is based on the gradual divergence of 

populations which contain individuals that are more and more genetically different. This 

gradual divergence can lead to situations where some conspecific individuals cannot 

interbreed. To reflect the incipient process of speciation, a splitting of the species in two 

sister species is then performed. The splitting mechanism produces two clusters of 

individuals with high intra-cluster similarity and strong inter-cluster dissimilarity. 2-

means clustering technique is implemented to allow for (1) the splitting of an existing 

species S into S1 and S2, and (2) the clustering of individuals that initially belonged to S 

into one of either S1 or S2 [Aspinall and Gras 2010]. The speciation method begins by 

finding the individual in a species S with the greatest distance from the ‘species genome’ 

called the species center. If this distance is greater than a predefined threshold for 

speciation (which is two time greater than the threshold for reproduction), the 2-means 

clustering is performed. Otherwise, species S remains unchanged. If clustering is to be 

performed, two new species are created – one centered on a random individual, denoted 

Ir, and another centered on the individual which is the most genetically different from Ir, 

denoted If. Subsequently, all remaining individuals in S are added to one of the two new 

sister species – whichever species the individual is more genetically similar. After 

recalculating the new centers for the two new species, the process of clustering is 

repeated for convergence. After the 2-means clustering is completed, two new sister 

species (S1 and S2) emerge. A single splitting events can only produce 2 sister species at 

a given time step. However, if one or both of the two resulting sister species are still 
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genetically heterogeneous after the splitting, other splitting events can occur on these new 

species at the next time step resulting in a final splitting of the initial species in more than 

two sister species in a very short period of time. 

It is worth to notice that the speciation mechanism is only a labelling process. The 

information about species membership is not use for any purpose during the simulation 

but only for post-processing analysis of the results. It can be viewed as an online 

hierarchical clustering process. Since clustering is a difficult and time consuming task, it 

is impossible to apply it to the whole population of individuals’ genomes (at some time 

steps there are more than 500,000 existing individuals) at every time step. We have 

therefore chosen a heuristic hierarchical approach in which the clustering is done through 

the whole process, in a given time step only a small subset of the whole population being 

clustered by our species splitting mechanism. However, we have observed that the quality 

of the clusters obtained by this heuristic approach is better, in term of both inter and intra 

cluster similarity, than the one obtained by applying a global clustering algorithm to the 

whole population. That can be explained by the fact that the loss in quality due to the 

hierarchical heuristic approach is less than the one due the high complexity of solving the 

whole clustering problem. 

It has been observed that after an initialization period (between 500 and 1000 time 

steps), the individuals that are genetically similar (member of the same species) are also 

geographically close to each other in the world. Moreover, when a speciation event 

occurs, the two genomic clusters formed lead to two spatially separated populations. 

After splitting, the two sister species are still very similar leading to high number of 

hybridization events (Figure 4). 
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Figure 4: Reproduction between individuals in different situations. The red arrows indicate 

situations in which the genetic distance between individuals is greater than the threshold for 

reproduction and reproduction is stopped. Black arrows connect individuals with genetic distance 

smaller than the threshold for reproduction, indicating that these individuals can interbreed even if 

they belong to different species [Golestani et al. 2012] 

As the two sister species continue to diverge, two completely isolated species 

emerge. The genetic distance between the two new species increases with time and 

rapidly becomes larger than the within cluster distance generating strongly isolated 

clusters in the genomic space. In this model, a new individual is a member of the species 

of one of its parents whom the most similar. Normally, the two parents are from the same 

species unless a hybridization event occurs. 
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CHAPTER III 

DESIGN AND METHODOLOGY 
3.1 Mate Choice Models 

In EcoSim, the reproduction process is implemented according to the algorithm of 

Figure 5 in which an individual does not have specific gender. When an individual 

reaches to the proper age of mating with an enough amount of energy, it can mate with 

other individuals. In this algorithm, A and A′ present the first (choosy) and the second 

(chosen) partners who are trying to mate each other. D(.) shows the genetic distance 

between two individuals that should be less than T in which T has a predefined value. A 

choosy partner selects randomly a chosen partner for reproduction process based on 

meeting three conditions, including: 1) similar genetic distance between partners, 2) 

enough energy of chosen partner for this process and bring the new offspring 3) willing 

of chosen partner to mate right away with choosy partner. 

 
Figure 5: The algorithm of reproduction in EcoSim [Gras et al. 2009] 
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If all conditions meet, the reproduction process happens and consequently, a new 

offspring will be born. Otherwise the reproduction is failed. The random candidate for 

mating is selected from the five nearest individuals of choosy partner who are presented 

in the predefined distance. This list of the nearest individuals is called the local list. 

Although in EcoSim, the mate choice occurs due to a random selection, in 

general, a sexual reproduction is a result of an interpersonal attraction. For studying the 

effect of a morphological attraction, as mate choice, on the sexual selection and on the 

population in the long run, the amount of energy as an indicator of a physical attraction is 

chosen. Energy represents the potential ability of an individual for mating and creating an 

offspring. Moreover, it shows the capacity of an individual to forage and consume food. 

As a consequence, energy can be assumed as a physical indicator of the strength or the 

ability to survive of an individual. 

For evaluating energy as a morphological trait in mate choice, two models are 

presented. In the first model, called “Max Energy”, each choosy individual prefers to 

mate with an individual candidate who has the highest value of energy in the local list. 

For this purpose, a priority list of the local list’s individuals is generated based on energy. 

In this list, the first candidate has the highest amount of energy, and the last candidate has 

the lowest one. The choosy partner selects a chosen partner from this list. The first 

individual, who meets the three mating condition mentioned before, will be the chosen 

partner for reproduction process. This model demonstrates a mating with an exaggerated 

partner. In the second model, called “Similar Energy”, each choosy individual selects a 

partner based on positive assortative mating. Each individual makes a priority list of local 

partners based on maximum similarity (minimum distance between the values of energy) 
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and mates with the more similar candidate who fulfills all other mating conditions. This 

model is used to implement the idea of genetic compatibility between mates. Clutton-

Brock [2007] stated that strong “selection on females to maximize the growth and 

survival of their offspring may generate selection pressures for mating with genetically 

compatible partners”. 

To summarize, the original model, called “Random”, doesn’t consider the 

morphology of mate, the Similar Energy model selects a similar mate, and the Max 

Energy model chooses the most exaggerated mate based on the amount of energy as a 

morphological trait. 

3.1.1 Feature Preparation 

For investigating the mate choice models on the long-time evolution, 34 features 

are prepared by computing their average on all existent individuals at each time step 

without paying attention to the species identity. These features include information about 

demography, death, action, perception, and genomes of individuals and are described in 

Table 2 and Table 3. Demographic features include the characteristics of the population 

such as Species-Ratio, the ratio of all the current species to the entire population, Death-

Ratio, the ratio of the number of dead individuals to the total population, Interbreeding-

Ratio which is the ratio of new-born individuals with parents from two different species 

to the whole new-borns. 

Furthermore, some action features, which show the percentage of the individuals 

choosing one action at a given time step like escape, forage and eat, are calculated. In 

addition to actions, some perception features are chosen, which depict the perception of 

an individual from its environment such as Distance-Food, Distance-Friends and 
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Distance-Predators. Only the Food-Availability feature is not directly measured from the 

individuals’ information and is calculated by counting the total amount of food in the 

world to represent the availability of food in the entire world as an environmental factor. 

This feature can be affected by the population size and the individuals’ dispersion. 

Some few features need a little more explanations. The Genetic-Diversity 

measures how much diversity exists in the gene pool of the world. The entropy is 

commonly used as an index of diversity in ecology and increasingly used in genetics 

[Sherwin 2010]. In our case, the genetic diversity is the entropy of the genomes of all 

individuals, and represents the level of similarity between all the genomes of all 

individuals [Khater et al. 2011]. Genetic-Diversity, that shows the variety of alleles at all 

loci of the whole population, is calculated by the equation (.1.): 
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where ijp  expresses the frequency of alleles j at locus i in the entire population 

calculated by a discretization technique. The minimum and maximum value of each locus 

is calculated, and this range is discretized into several bins by fix step. MaxGenetic-

Diversity is the number of bins having a frequency greater than zero. The next measure, 

Genetic-Complexity is an evaluation of the behavioural model complexity. As this 

complexity rely on the number of existing edges in the FCM, and the edges values are 

coded in the genome, Genetic-Complexity is computed by counting  the number of active 

loci in the genome, that is the ones having a value greater than a small value  

( ε>jsActiveLocu ). For each individual i, the greater this measure is the more 

complicated the individual is considered. It is computed by the equation (.2.): 
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The Parental-Investment measures the energy cost that each parent has to pay for 

the breeding process and for the offspring care. This energy is partially transmitted to the 

offspring and defines its initial energy level. The last feature is Distance-Evolution which 

is the average genetic difference between the current population and the initial genome. It 

represents the accumulation of genetic variations in the population since the beginning of 

a run. It is computed by the equation (.3.): 
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where CR and iC  refer to the reference genes and the individual genes respectively and 

D(.) is the Euclidian distance function. 

Table 2: The features of the mate choice based on information of all individuals in the entire 

population at each time step 

# Feature Definition 

01 Population-Size The total number of individuals 

02 Species-Ratio The ratio of total species to the whole population 

03 Speciation-Ratio The ratio of new species to the whole species 

04 Extinction-Ratio The ratio of extinct species to the whole species 

05 Food-Availability The amount of grass in the entire world (all cells) 

06 Speed The average speed 

07 Energy The average energy 

08 Age The average age 

09 Death-Ratio The total number of deaths to the whole population 

10 Death-Age The average age at the time of death 

11 DeathAge-Ratio The ratio of deaths due to oldness to the whole deaths 
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Table 3: The features of the mate choice based on information of all individuals in the entire 

population at each time step (continue) 

# Feature Definition 

12 DeathEnergy-Ratio The ratio of deaths due to lack of energy to the whole deaths 

13 Killed-Ratio The ratio of killed individuals by predators to the whole deaths 

14 Escape-Ratio The ratio of escape from predators to the whole population (action) 

15 Foraging-Ratio The ratio of searching for food to the whole population (action) 

16 Socialize-Ratio The ratio of socialization among preys to the whole population 

(action) 

17 Explore-Ratio The ratio of world exploration to the whole population (action) 

18 Eat-Ratio The ratio of food consumption to the whole population (action) 

19 Sedentary-Ratio The ratio of immobile individuals to the whole population (action) 

20 Reproduce-Ratio The ratio of reproduction to the whole population (action) 

21 ReproduceFail-Ratio The ratio of failed reproduction to the whole population 

22 Genetic-Diversity The diversity of alleles for all loci based on the entropy calculation 

(refer to the equation (.1.)) 

23 MaxGenetic-

Diversity 

The max diversity of alleles for all loci 

24 Genetic-Complexity The number of loci having active alleles (refer to the equation (.2)) 

25 Parental-Investment The ratio of energy which transfers to a new individual at the birth 

time and decreases the parents’ energy as a cost of the offspring care 

26 Distance-Evolution The genetic difference between the reference genes (origin) and the 

current genes (refer to the equation (.3.)) 

27 Distance-Mating The genetic difference between mates 

28 Distance-Predators The perception of the predators’ distance 

29 Distance-Food The perception of the food’s distance 

30 Distance-Friends The perception of the friends’ distance 

31 Inner-Energy The perception of the amount of individual’s energy 

32 Quantity-LocalFood The perception of the quantity of food in the vicinity  

33 Quantity-

LocalPartner 

The perception of the quantity of partners in the vicinity 

34 Compactness The average number of individuals in a specific area (a cell) also 

called the population density 



32 
 

32 

3.2 Species Extinction Model 
According to the preceding discussion about EcoSim, the evolutionary 

mechanisms include interbreeding, mutation, and speciation. These mechanisms produce 

the evolution process over a long time in which a new species can appear or a species can 

disappear. Each species generates a massive raw data in its lifespan based on information 

of its individuals. Manipulation and analysis of these data needs suitable information 

retrieval tools. A dedicated class was added to the EcoSim to gather the information 

about all species which is used for species extinction. Furthermore, this class saves the 

information for each species separately per time step for more investigations. 

3.2.1 Feature Preparation of Extinction 

The study of species extinction includes 48 features, which are used in the 

prediction of the future extinction. These features are extracted from information about 

each species separately by taking the average values of all individuals’ properties 

belonging to the specific species at every time step. Twenty-eight of these features are 

common with the features in the mate choice part, including: Speed, Energy, Age, Death-

Ratio, Death-Age, DeathAge-Ratio, DeathEnergy-Ratio, Killed-Ratio, Escape-Ratio, 

Foraging-Ratio, Socialize-Ratio, Explore-Ratio, Eat-Ratio, Sedentary-Ratio, Reproduce-

Ratio, ReproduceFail-Ratio, Genetic-Diversity, Parental-Investment, Genetic-

Complexity, Distance-Evolution, Distance-Mating, Distance-Predators, Distance-Food, 

Distance-Friends, Inner-Energy, Quantity-LocalFood, Quantity-LocalPartner and 

Compactness. The descriptions of these 28 features are given in Table 2 and Table 3, 

although their calculations differ slightly as they are computed per species for the species 

extinction problem. The rest of features are described in Table 4. Twelve features of this 
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table, from number 09 to 20, represent spatial metrics characterizing the complex spatial 

dynamics of the world. These measures are calculated according to the position and the 

dispersion of the individuals belonging to each species separately. 

        

        

        

        

        

        

        

        

Figure 6: A sample part of the world. There are 3 patch types which show 3 species. The cells 

surrounded by thick solid lines shape illustrate one patch and also show the surface area of that 

patch. The cells’ neighbours are showed by the arrows. 

An ecological mosaic is a raster-based grid of categorical values to depict the 

distribution of a specific ecological measure [Parrott et al. 2008]. Most of these measures 

have been designed to describe the composition and configuration of patches, contiguous 

cells containing the same category value, in a landscape based on a grid (see Figure 6). In 

EcoSim, the individuals of each species are located in a couple of cells of the world and 

the adjacent cells containing individuals of the same species are considered as a patch. 

Thereby each species can be consisted of a number of patches called ‘patch type’. The 

defined metrics in [Li and Reynolds 1993] and [Parrott et al. 2008] are applied to a two-

dimensional world and adapted to EcoSim concepts. For example, Patch-Volume is the 

number of cells occupied by a species and Surface-Area is the number of cells in a patch, 

which are not shared by the adjacent cells of the same patch type. The Moore 

neighbourhood, comprising the eight cells surrounding the central cell, is used to define 
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the adjacency. Another measure is Contagion which is calculated by (.4.) and (.5.) to 

measure a dispersion of a patch type. A lower value of contagion shows many small 

patches and a higher value indicates few large ones. 
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where, RC is contagion, )ln(max ptptEE ×=  and pt is the number of patch types (in 

EcoSim the number of species). The nij is the number of adjacencies between cells of 

patch type j and cells of patch type i. 

Spatial-Complexity (.6.) is a measure to describe how one patch type occupies a 

space, and it is calculated by considering the contents of successively square windows 

with size i ϵ [0 - n2] (n is used to compute the maximum size of a window used to covers 

the space and its value is 5). SC value is lower for uniform or ordered patch shapes and 

has higher value for complex shapes. 
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where ip  is the frequencies of the different possible occupation levels. The occupation 

level i shows how many of windows with size i contain i individuals for each possible 

placement of them. 
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Fractal-Dimension is used to quantitatively describe how one object occupies its 

volume [Foroutan-pour et al. 1999]. The count boxing method is applied to calculate the 

fractional dimension for each species. For this purpose, the world is covered with a 2-

dimension filling box and the number of boxes (N(r)) required to cover the part of the 

whole world containing at least one cell related to the given species is recorded. This 

procedure is repeated with different size r (=2, 5, 10, 20 and 25) of the box and a graph of 

ln(N(r)) versus ln(1/r) is generated. Afterward, the fractal dimension is obtained by 

calculating the slope of the best-fit line through the points. 

The Spatial-Diversity measures the distribution of individuals of a species based 

on the locations of all its individuals and is computed in two steps. The first step is the 

computation of the spatial centre of the species. EcoSim’s world is a torus in which the 

opposite borders of the world (grid) are adjacent. Therefore, the circular statistics 

[Jammalamadaka and Sengupta 2001] [Md Ibne and Gras 2010] are applied to compute 

the centre of the spatial species distribution. The second step is the calculation of the 

average distance of all individuals to the center and the spatial standard deviation. More 

formally, if C is the center of one species, then: 
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The last measure is History-Movement that is calculated by considering the total 

movement of the center species in k (=100) time steps for each species. This value shows 

the trend of movement in long time. 
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Table 4: The features of species extinction based on the individuals’ information for each species at 

each time step 

# Feature Definition 

01 Individual-Ratio The ratio of species population to the whole population 

02 Species-Number The total number of species 

03 Death-Energy The average energy at the time of death 

04 Parent1-MatingAge The age of choosy partner at the time of mating 

05 Parent1-

MatingEnergy 

The energy of choosy partner at the time of mating 

06 Parent2-MatingAge The age of chosen partner at the time of mating 

07 Parent2-

MatingEnergy 

The energy of chosen partner at the time of mating 

08 Interbreeding-Ratio The ratio of births due to interbreeding to the total births 

09 Spatial-Diversity The dispersal place of a species’ members based on the species 

center 

10 Volume-Ratio The ratio of the volume of a species patch (the number of cells 

that a species occupies) to the species population 

11 Surface-Area The number of outer cells in the species patch 

12 Shape-Complexity The ratio of the volume of a species patch to the volume of 

bounding box (smallest box that covers the volume) 

13 Spatial-Complexity The ratio of the volume of a species patch to the volume box 

14 Space-Ratio The measure shows how the species patches occupies the world 

15 Patch-Number The number of patches of one species 

16 Patch-Size The average size patches of one species 

17 MultiSpecies-Cell The number of cells that are shared between more than one 

species 

18 Contagion The measure shows the tradeoff between the size and the number 

of patches in the world 

19 Fractal-Dimension The measure describes how one species occupies its volume 

20 History-Movement The amount of a species movement during the specific time steps 
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CHAPTER IV 

ANALYSIS OF THE RESULTS 
This chapter presents the analysis of EcoSim’s results on the two topics of mate 

choice and species extinction. For each topic, two experiments using a prediction process, 

based on the prepared features presented in the previous chapter, are conducted to 

distinguish between different cases of each topic. The machine learning techniques such 

as a Decision-Tree classifier (C4.5 / J48) and a Bayesian-Network (with K2: a hill 

climbing search algorithm), are applied to the results of prediction to evaluate the 

accuracy of data sets and to extract the prediction rules using WEKA [V3.6.4]. Moreover, 

five measures, including True-Positive Rate (TP Rate: sensitivity), False-Positive Rate 

(FP Rate), area under ROC curve (TP Rate versus the FP Rate) and F-measure (the 

weighted harmonic mean of precision and recall) as well as the overall accuracy, based 

on the confusion matrix, are used to evaluate the performance of the prediction process. 

The later discussions are based on the overall accuracy and the other measures bring to 

show the quality of the experiments. 

4.1 Mate Choice 
For assessing the sexual selection models, two experiments are conducted. In the 

first experiment, the major characteristics of three mating models are compared together 

by analysing the variations of features in time. This experiment focuses on the long-term 

trend of similarities and differences between models. The second experiment investigates 

the prediction of each model based on the proposed features. This experiment aims to 

find the general rules that can predict and explain the three different mating policies. 

http://en.wikipedia.org/wiki/Sensitivity_%28tests%29�
http://en.wikipedia.org/wiki/Harmonic_mean�
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Both experiments use information from 15,000 time steps coming from time steps 10,000 

to 25,000 of 3 independent runs for each model. We do not consider the first 10,000 time 

steps to give time to the system to stabilize and for the evolutionary process to affect the 

system.  

4.1.1 Model Comparison 

The chosen (second) partner for reproduction in the Random mating model is 

selected randomly from the local (same cell) partner list. This model implies a mating 

without any barrier that just needs to satisfy three main primary conditions. These 

conditions are: both partners having sufficient energy, the two partners being genetically 

similar enough, and both of them having a willingness to mate together with choosing the 

reproduction action. In the Similar Energy mating model, in addition to the three previous 

conditions, an individual prefers to mate with a candidate from the local partner list with 

a trait similar to its trait that presents the genetic compatibility between mates. Finally, in 

the Max Energy mating model, the preferred mate is a partner with an exaggerated trait. 

As mentioned in the previous chapter, the energy is used as an indicator of the 

morphological trait for the mate choice. For the Max Energy model, an individual with 

the higher amount of energy is stronger than the other individuals in the local partner list. 

It supposed that this individual has a higher fitness due to its ability of gaining and 

preserving that energy level. 

The results are provided by taking the average of three separate runs for each 

model and illustrating the comparison between Random, Similar Energy and Max Energy 

mating models after the first 10,000 time steps. In the following pictures, weighted 

smoothing technique is applied to improve the quality of them. Two points should be 
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considered in analysing the results: 1) there is no gender implemented in this simulation 

and 2) the energy as a morphological trait has no direct effect on the viability of 

individuals but can be considered as an indicator of their potential fitness. The first 

characteristic of this comparison is the population size. For this measure, the Max Energy 

model is almost greater than the Random and the Similar Energy models (Figure 7). 

A 

 

B 

 
Figure 7: A) the population size, B) the average of energy for the time steps 10000 to 25000 

As seen in Figure 7, the average energy of all individuals is approximately the 

same in all models. In EcoSim, doing each action consumes energy depending on the 

speed and Genetic-Complexity of an individual. Moreover, the reproduction process 
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takes an extra energy that decreases the parents’ energy in the birth process by Parental-

Investment as a cost to pay for mating and offspring care. On the contrary, only the action 

of eating can increase the level of energy of an individual. Consequently, the similarity 

between the energy trends of the mating models implies that the ratio of the eating action, 

with the amount of Parental-Investment, the speed and the amount of Genetic-

Complexity are in balance with energy, and the rise of the one component compensates 

the fall of the other components. According to the results, see Appendix (A) Figure 30, 

the average speed all models are approximately in same range but the ratio of food 

consumption for Max Energy model is lower, then the energy difference returns to the 

Parental-Investment and the Genetic-Complexity that both are genetic concepts, and also 

food consumption. 

Different figures show that the major discrimination is between the Max Energy 

and the Random models, and the Similar Energy model has an intermediate behaviour. 

Therefore, the comparisons will concentrate on the Random and the Max Energy mating 

models. The Parental-Investment of the Max Energy model has higher values in 

comparison to the other models and, its Genetic-Complexity has lower values (Figure 8). 

These two features explain a trade-off that have an effect on the energy level and explain 

the similar trend of the average energy observed for the different models. The higher 

amount of Parental-Investment means a higher mating cost. This cost, for Max Energy 

model in which individuals prefer a partner with the exaggerated trait, is higher than in 

the Random model in which individuals have not any mating preference. 
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A 

 

B 

 

C 

 
Figure 8: A) the average of Parental-Investment, B) the average of Genetic-Complexity C) the 

average of Genetic-Diversity for the time steps 10000 to 25000 
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On the other hand, the Genetic-Complexity, showing the average summation of 

the active loci of individuals, in the Max Energy model is lower than the one of the 

Random model. That means that the evolved behavioural models (FCM) in the Max 

Energy model are simpler than those of the Random model. Nonetheless, the Genetic-

Diversity of the three models is very similar. Based on these observations it can be 

inferred that the individuals of Max Energy model have a simpler behavioural model and 

more parental costs, although have the same genetic diversity as the other models. In 

addition to these observations, the Species-Ratio is similar for all models (see Appendix 

(A) Figure 30); it means that there is almost the same number of species per population 

size for the three models. This similarity reveals that a high genetic complexity does not 

necessarily imply a higher species ratio. 

In spite of the mate chose’s condition of Max Energy and Similar Energy models, 

the reproduction ratio of these models is similar to the Random model. This similarity 

means that the mate choice restriction does not have a deleterious effect on the number of 

reproduction. However, if the average energy of all models is similar, then why the 

population size of the Max Energy model is higher? This phenomenon might be due to 

the individuals’ lifespan in this model, although the reproduction ratio, the reproduction 

failed ratio and the death ratio of this model, see Appendix (A) Figure 31, have not a 

significant difference compared to the Random model. The higher Max Energy’s 

population size can be caused by the more average age and the average death age of the 

individuals in this model. The individuals in the Max Energy model can live longer, as it 

can be seen in Figure 9, which can be explained by more chance of survival. The similar 

reproduction ratio and higher age of individuals leads to a higher number of offspring that 
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each individual can produce during its life and subsequently, a higher value of its fitness. 

The greater fitness of the Max Energy model can reveal that 1) mating with a ‘strong’ 

partner has a positive effect on the fitness of that individual and that 2) energy can be a 

good indicator for the morphological choice. 

A 

 

B 

 
Figure 9: A) the average age, B) the average age of death for the time steps 10000 to 25000 

Choosing a partner based on the energy as a morphological trait has an effect on 

the average of genetic distance between the two partners. The genetic mating distance in 

the Max Energy model is almost higher than the Random model (Figure 10). This means 

that the mating based on the exaggerated trait increases the average genetic distance of 
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partners (more dissimilarity between mates). We could expect that an increase of genetic 

distance between parents will also increase the genetic diversity of the population, but 

this is not the case. Perhaps this increase is smoothed by the natural selection pressure 

leading to the observed similar genetic diversity in all the models. But this phenomenon 

is still not well understood and needs more investigation. 

A 

 

B 

 
Figure 10: A) the distance of mating, B) average evolution of origin for the time steps 10000 to 25000 

In addition to the average genetic distance of mating, the average evolutionary 

distance, showing the increase in genetic distance from the origin due to the evolutionary 

process, is highly lower in the mating models (Figure 10). The slope of the Origin model 
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is the sharpest, and the Max Energy model has the lowest one. This graph shows that in 

the Random model the accumulation of genetic variation from the origin of the run is 

much faster than for the models with mating policies. Although the Random model has 

higher evolutionary distance, this variety doesn’t mean more various gene pools, as 

illustrated by the genetic diversity measure (Figure 8). This figure shows therefore a 

restriction in mating partner, even if it increases the genetic distance between mates, can 

slow down the evolutionary process. However, it does not affect the genetic diversity 

necessarily. 

A 

 

B 

 
Figure 11: A) the compactness of individuals, B) the food availability for the time steps 10000 to 

25000 
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The last difference when using the energy as a mate choice is on the dispersion of 

population. On the average, individuals of the Max Energy model make more compact 

groups as illustrated in Figure 11. This compactness has not had an impact on the 

reproduction ratio and the species ratio, although it affects the ratio of socialization, 

foraging and sedentary, see Appendix (A) Figure 32. Moreover, a higher compactness 

means a higher death ratio due to the lack of energy because the dense group of 

individuals cannot find enough food to eat. Consequently, the availability of food for the 

Random model is higher than for the other models which are caused by the larger 

dispersion of individuals who allow the grass to grow more and faster. 

In this experiment, the comparison between different mating models has been 

done mainly by comparing different graphs. However, for a more formal evaluation the 

Table 5 shows the global statistic of population size, distance of mating and distance of 

evolution for each model. Based on this table we can conclude that Random and Max 

Energy models have a clearly separated behaviors for these three chrematistics (average 

separated by several standard deviations). The global statistics of other characteristics do 

not present as good separations as these three characteristics. 

Table 5: The global statistic of some characteristics (mean & standard deviation) 

Characteristic Statistic Random Similar Energy Max Energy 

Population Mean 1.51 e5 1.70 e5 1.93 e5 

STD 1.62 e4 1.24 e4 1.09 e4 

Distance-Mating Mean 3.32 3.45 3.50 

STD 0.06 0.03 0.02 

Distance-

Evolution 

Mean 32.55 24.19 22.93 

STD 0.90 0.41 0.26 
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4.1.2 Prediction of the mate choice models 

To analyse in detail the different mating models, we apply machine learning 

techniques to find the features and the rules that can differentiate and then explain each 

model. Three experiments are conducted based on three different sets, each of them being 

a combination of three runs one for Max Energy, one for Similar Energy and one for 

Random models. Each set contains 45000 samples (15000 samples for each run) 

corresponding to the time steps between 15000 and 25000. Two sets are merged together 

to prepare the training set and the test set. And the third independent set makes the 

validation set. As mentioned in the Feature Preparation’s section, 34 features are gathered 

to study the mate choice in three steps: prediction of mate choice models, features 

reduction and rules extraction. 

In the first experiment, all 34 features are used to discriminate between the mating 

models. The overall accuracy and other measures show that the predictions for the 

training and the test set are highly accurate (Table 6). The tree learned using j48 

technique contains 79 leaves, each of them being a rule. This tree is composed of only 20 

features out of the 34 used features. 

Table 6: The evaluation measures of all features using the J48 technique 

Data Set TP Rate FP Rate F-Measure ROC Accuracy 

Training 0.998 0.001 0.998 0.999 99.79% 

Test 0.998 0.001 0.998 0.999 99.83% 

Validation 0.323 0.339 0.283 0.629 32.28% 

The accuracy of validation set is 32% which means that the model learned on the 

training set is too specific and can not make accurate prediction when the conditions are 

different. This low accuracy could be explained by the over-fitting problem. Furthermore, 
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the TP and FP rate of the validation show that only a few positive samples are classified 

correctly. Although the F-measure is low, the ROC measure shows that even the obtained 

classifier is weak, it is not random. 

Decreasing the number of leaves can help to find more general rules. For reducing 

the number of rules and also bounding the effect of the over-fitting problem, the number 

of samples per leaf, which is a technique for pruning a tree -called Pruning Sample-, is 

increased to 1500. This pruning technique decreases the overall accuracy of the training 

set about 5%, but it increases the accuracy of the validation set about 16% (Table 7). 

Consequently, the new rules tree has nine leaves which is a strong reduction compared to 

the 79 rules we had before. 

Table 7: The evaluation measures of all features using the J48 technique with the pruning samples 

equal to 1500 for distinguishing the mating models 

Data Set TP Rate FP Rate F-Measure ROC Accuracy 

Training 0.942 0.029 0.942 0.982 94.18% 

Test 0.945 0.027 0.945 0.983 94.49% 

Validation 0.483 0.258 0.434 0.663 48.31% 

In the next step, the most important features are selected based on feature 

selection techniques, such as Greedy-Stepwise, Linear-Forward-Selection, Best-First and 

Ranker (with merit greater than 0.2), which are implemented in WEKA [V3.6.4] and 

using default parameters, to find more general rules. Each technique provides a subset of 

the features (Table 8). The last column of this table shows the 10 selected features based 

on a voting mechanism. 
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Table 8: The selected features using the machine learning techniques for distinguishing the mating 

models. The last column presents the common features by a voting mechanism 

# Feature Ranker 

Best-First,  

Greedy-Stepwise,  

Linear-Forward-Selection 

J48 
Selected 

Features 

01 Population-Size     

02 Food-Availability     

03 Species-Ratio     

04 Age     

05 Distance-Predators     

06 Quantity-LocalFood     

07 Socialize-Ratio     

08 Explore-Ratio     

09 Foraging-Ratio     

10 Sedentary-Ratio     

11 Reproduce-Ratio     

12 ReproduceFail-Ratio     

13 Parental-Investment     

14 Genetic-Complexity     

15 Distance-Evolution     

16 Distance-Mating     

17 Genetic-Diversity     

18 MaxGenetic-Diversity     

19 Killed-Ratio     

20 DeathAge-Ratio     

The accuracy of the validation set with the selected features and the pruning 

samples equal to 1500 increases about 2% (Table 9), although the accuracy of the 

training set and the test set decrease about 6%. The tree only includes six features, 

Distance-Evolution, Foraging-Ratio, Sedentary-Ratio, Age, Genetic-Diversity and Food-
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Availability that formed nine rules for the prediction of the mating models shown in 

Figure 12. 

Table 9: The evaluation measures of the selected features using the J48 technique with the pruning 

samples equal to 1500 for distinguishing the mating models 

Data Set TP Rate FP Rate F-Measure ROC Accuracy 

Training 0.887 0.056 0.887 0.972 88.68% 

Test 0.887 0.056 0.887 0.971 88.74% 

Validation 0.505 0.252 0.495 0.650 51.52% 

This tree is similar to the tree which is generated using all features and the 

pruning samples equal to 1500 (Table 7). This similarity and the change of the accuracies 

imply that some features have a negative effect on the learning of the mating models, and 

also these machine learning techniques could not find the proper features set for this 

experiment. The rules tree illustrated in Figure 12 shows that each mating model is 

covered by three rules. 

Three main features of this tree include the average age of all individuals, the 

evolutionary distance and the ratio of foraging that cover about 55% of samples’ space of 

the training set containing the rules 1, 4 and 7 in Table 10. This table summarizes the 

rules generated by the selected features. According to this table, to distinguish a mating 

model based on the average features of all individuals, at most five features (rule 8) need 

to be evaluated. Moreover, these rules reveal that the main differences between these 

three mating models are linked to a combination of genetic, spatial and behavioural 

characteristic of the models. 

The Distance-Evolution, as it appears in Figure 10, is very different in the 

Random model compared to the two models with mating policies. The Max Energy 

model has a higher average age (Figure 9), therefore this feature strongly affects the rule 
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of 7 but appear also on most of the rules. Although the graph of the Genetic-Diversity 

(Figure 8) has a lot of fluctuations, this feature could distinguish about 10% of all 

samples with the rules 2 and 5. 

 
Figure 12: The rules tree of the selected features with the pruning samples equal to 1500 for 

distinguishing the mating models. The number in each leaf is the number of matched samples with 

the corresponding rule. 
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Table 10: The extracted rules of the selected features using the J48 technique for distinguishing the 

mating models 

# IF THEN 

01 Distance-Evolution is very high Random 

02 Distance-Evolution is high AND 
Foraging-Ratio is not very low AND 
Age is young AND 
Genetic-Diversity is not high 

Random 

03 Distance-Evolution is not high AND 
Foraging-Ratio is low 
Age is young AND 
Sedentary-Ratio is very low AND 

Random 

04 Distance-Evolution is not very high AND 
Foraging-Ratio is very low 

Similar 

Energy 

05 Distance-Evolution is high AND 
Foraging-Ratio is not very low AND 
Age is young AND 
Genetic-Diversity is high 

Similar 

Energy 

06 Distance-Evolution is not high AND 
Foraging-Ratio is not very low AND 
Age is young AND 
Sedentary-Ratio is very low AND 
Food-Availability is not high 

Similar 

Energy 

07 Distance-Evolution is not very high AND 
Foraging-Ratio is not very low AND 
Age is not young 

Max 

Energy 

08 Distance-Evolution is not high AND 
Foraging-Ratio is not very low AND 
Age is young AND 
Sedentary-Ratio is very low AND 
Food-Availability is high 

Max 

Energy 

09 Distance-Evolution is not high AND 
Foraging-Ratio is not low AND 
Age is young AND 
Sedentary-Ratio is very low AND 

Max 

Energy 

As mentioned previously, some features can decrease the accuracy of prediction, 

but the techniques used could not detect and remove them properly. In a last step, each 

feature is evaluated separately for finding an appropriate features set for distinguishing 
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the mating models. Based on this experiment, some of the features have not an effect on 

the predicting and some of them have a small positive effect on it. Two features, 

including Foraging-Ratio and ReproduceFail-Ratio have a negative effect on the 

prediction which means that removing them increases the accuracy by about 15%. The 

interesting point is that all feature selection techniques, and the J48 chose them as the 

important features for mating models. By evaluating all 34 features and removing the 

unimportant features, a subset containing six features is selected. These features, 

including Sedentary-Ratio, Age, Genetic-Complexity, Distance-Evolution, Distance-

Mating and Quantity-LocalFood improve the accuracy of the validation set about 17% in 

comparison to the previously selected features (see Table 11). However, the accuracy on 

the training set dropped down only by about 2%. Some features such as Genetic-

Diversity, Genetic-Complexity and DeathEnergy-Ratio can increase the accuracy on the 

training set by about 6%, but only improve the accuracy of the validation set by about 

1%. (71.13%), and therefore, these features are removed as well. 

Table 11: The evaluation measures of the second set of selected features using the J48 technique and 

the pruning samples equal to 1500 for distinguishing the mating models 

Data Set TP Rate FP Rate F-Measure ROC Accuracy 

Training 0.870 0.065 0. 869 0.958 86.99% 

Test 0.866 0.067 0.867 0.956 86.63% 

Validation 0.699 0.15 0.697 0.802 69.94 % 

The tree based on these six selected features, shown in Figure 13, contains nine 

rules with a maximum depth of seven. The two first rules, containing two features of 

Distance-Evolution and Distance-Mating, can cover about 80% of the Random samples 

(12140 out of 15000). Quantity-FoodLocal is a part of individual’s perception that shows 

the amount of food resources in a vicinity of individual. The amount of this feature gets 



54 
 

54 

impacted by the food availability and the number of individuals in the vicinity whom are 

consuming the food. 

 
Figure 13: The rules tree of the second set of selected features with the pruning samples equal to 1500 

for distinguishing the mating models. The number in each leaf is the number of matched samples 

with the corresponding rule. 
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Furthermore, the features such as population size and compactness have an 

indirect effect on this feature, for instance more individuals or more compact groups can 

decrease the amount of food in the vicinity of an individual. The interesting results of this 

analysis is that these rules show that adding a mating choice based on the energy trait can 

affect different aspects of the individuals such as their genetic characteristics. Moreover, 

these differences are specific of the mating models giving the possibility to accurately 

classify them. 

4.2 Species Extinction 
To study the extinction of species, two experiment sets are considered that aim to 

predict the species extinction in the next 100 time steps in EcoSim. Both sets, a 

combination of two runs using the time steps from 10000 to 20000, are used to build a 

training set and a test set. About 15% (70,000) of the combined samples are chosen 

randomly to form the training set and the remainder, composed of 410,000 samples, 

forms the test set. In addition, for both sets, an independent run is prepared to construct a 

validation set, containing 300,000 samples, to evaluate the overall accuracy of the learned 

model. Each run is formed by information about 300 species approximately. 

The goal of the first experiment is to investigate the different features’ effect on 

extinction. In this experiment, the dependencies and relations between features are also 

studied. In addition, some general rules for predicting species extinction are extracted by 

the machine learning techniques presented in beginning of this chapter. In the second 

experiment, the impact on the species extinction of five categories of features, 

demographic, age-energy, spatial, mating and genetic features, are analyzed in detail. 
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This experiment examines the relations between similar features and extracts the proper 

rules of each category. 

4.2.1 First Experiment  

As mentioned in the Feature Preparation section, 48 features have been computed 

to study species extinction. This part contains four steps: prediction of extinction, features 

selection, features dependencies and rules extraction. For these experiments, the J48 

technique and a Bayesian-Network are applied to extract the rules and examine the 

features dependency respectively. 

In the first step, all features are used to evaluate their respective importance on the 

prediction of extinction. The achieved accuracy for the test set is about 94% which 

indicate a good quality of the learned model. Moreover, the high accuracy of the 

validation set shows the generality of the learned model. The tree obtained from the J48 

technique contains 1183 leaves composed by 18 features of 48 features. This large 

number of leaves imply a large number of rules but also an over-fitting problem. For 

decreasing the effect of these problems, the tree is pruned by increasing the number of 

samples per a leaf to 1000. The accuracy is almost unchanged, but the number of leaves 

is reduced dramatically to seven leaves. The results, obtained after applying the pruning 

technique (see Table 12), show that all features together have a good capacity for 

predicting the species extinction. All measures used for the evaluation confirm the high 

accuracy of the prediction on the training, test and validation sets. In addition, they prove 

that the rules created by the J48 technique are general enough to predict the extinction of 

a species in the near future even in the different situations from the ones used to learn the 

model. 
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Table 12: The evaluation measures of all features using the J48 technique and a pruning samples 

equal to 1000 

Data Set TP Rate FP Rate F-Measure ROC Accuracy 

Training 0.942 0.075 0.941 0.971 94.16% 

Test 0.942 0.073 0.942 0.971 94.20% 

Validation 0.935 0.089 0.930 0.965 93.35% 

Figure 14 present the tree obtained with the pruning samples equal to 1000, which 

contains seven rules made by six features, including Reproduce-Ratio, ReproduceFail-

Ratio, Explore-Ratio, Age, Parent2-MatingAge and Spatial-Diversity. The number 

mentioned under each leaf gives the number of samples that are matched by this rule. 

Two rules of this tree with 20650 and 43643 samples have more impact on prediction of 

extinction and cover about 90% of the samples of the training set. 

 

Figure 14: The rules tree of all features with a pruning samples equal to 1000. The number in each 

leaf is the number of matched samples with the corresponding rule. The dashed shape shows a rule 

with a high number of matched samples 
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The rules extracted from Figure 14 are given in Table 13. For instance, based on 

rule number two, the species is more at risk of extinction when the exploration ratio is 

low, even when the reproduction ratio is adequate. Exploration can affect the gene flow 

in long-time evolution indirectly due to the level of interaction between individuals. 

Thus, the low exploration ratio can implies the lower gene flew. The interesting part of 

this rule is the role of a chosen partner in the extinction of a species. This rule implies 

that a species with few interaction and young mate is extremely vulnerable. One 

hypothesis is that the offspring survival of a young partner cannot be guaranteed because 

the ability of that partner for surviving and fitting to the environment is still doubtful. 

Table 13: The extracted rules using the J48 technique 

# IF THEN Explanation 

01 Reproduce-Ratio is low Extinction 
The species growth ratio is 
negative. 

02 Reproduce-Ratio is not low AND 
Explore-Ratio is low AND 
Parent2-MatingAge is young 

Extinction 
The few interaction between 
individuals and the young chosen 
partners leads to become extinct. 

03 Reproduce-Ratio is not low AND 
Explore-Ratio is low AND 
Parent2-MatingAge is not young AND 
Spatial-Diversity is low 

Extinction 

The few interaction of individuals 
with low spatial distribution 
declines the genetic diversity. 

04 Reproduce-Ratio is not low AND 
Explore-Ratio is low AND 
Parent2-MatingAge is not young AND 
Spatial-Diversity is not low 

No 
Extinction 

 

05 Reproduce-Ratio is not low AND 
Explore-Ratio is not low AND 
ReproduceFail-Ratio is low 

No 
Extinction 

 

06 Reproduce-Ratio is not low AND 
Explore-Ratio is not low AND 
ReproduceFail-Ratio is not low AND 
Age is old 

Extinction 

The high mortality ratio in the old 
species steers toward extinction. 

07 Reproduce-Ratio is not low AND 
Explorae-Ratio is not low AND 
ReproduceFail-Ratio is not low AND 
Age is not old  

No 
Extinction 
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The number of pruning samples has an impact on the combination of selected 

features. For example, if the pruning samples decrease to 500 samples, Individual-Ratio, 

Genetic-Diversity and Interbreeding-Ration replace Age. In addition, Parent2-MatingAge 

and Spatial-Diversity get exchanged with Parent1-MatingAge, Age and Spatial-Diversity. 

These relations express the dependency of some features with each other. For finding the 

important features and tracking the dependency between features, the feature space 

should be reduced. In the second step, the effective features are selected based on feature 

selection techniques. 

Table 14: The selected features using the feature selection techniques. Last column presents the 

common features based on a voting mechanism 

# Feature Ranker 

Best-First,  

Greedy-Stepwise,  

Linear-Forward-Selection 

J48 
Selected 

Features 

01 Individual-Ratio     

02 Interbreeding-Ratio     

03 Parental-Investment     

04 Distance-Friends     

05 Quantity-LocalFood     

06 Quantity-LocalPartner     

07 Escape-Ratio     

08 Foraging-Ratio     

09 Socialize-Ratio     

10 Exploration-Ratio     

11 Eat-Ratio     

12 Sedentary-Ratio     

13 Reproduce-Ratio     

14 ReproduceFail-Ratio     

15 Parent1-MatingAge     

16 Parent1-MatingEnergy     
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Table 15: The selected features using the feature selection techniques. Last column presents the 

common features based on a voting mechanism (continue) 

# Feature Ranker 

Best-First,  

Greedy-Stepwise,  

Linear-Forward-Selection 

J48 
Selected 

Features 

17 Parent2-MatingAge     

18 Parent2-MatingEnergy     

19 Distance-Mating     

20 Distance-Evolution     

21 Genetic-Diversity     

22 Killed-Ratio     

23 Death-Energy     

24 Death-Ratio     

25 Age     

26 Death-Age     

27 Spatial-Diversity     

28 Contagion     

29 Volume-Ratio     

30 Speed     

The last column of Table 14 and Table 15 show the selected features based on a 

voting mechanism. The achieved accuracy of the training set with these eleven features is 

about 93% close to the accuracy with of all features (Table 16). The training set, and 

validation set confirm that this feature selection doesn’t decline the prediction of 

extinction’s quality. 

Table 16: The evaluation measures using the selected features and the pruning samples equal to 1000 

Data Set TP Rate FP Rate F-Measure ROC Accuracy 

Training 0.935 0.086 0.935 0.959 93.48% 

Test 0.935 0.088 0.934 0. 960 93.45% 

Validation 0.951 0.074 0.951 0. 950 95.07% 
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In the third step, the dependency between the selected features is studied by a 

Bayesian-Network in which each node can have at most three parents. As shown in 

Figure 15, the leaves of this graph are made by three features: ReproduceFail-Ratio, 

Parental-Investment, and Parent2-MatingEnergy. Moreover, Individual-Ratio depends on 

most of the features except Partner1-MatingEnergy and Partner2-MatingEnergy. This 

dependency of Individual-Ratio expresses that the quality of the population size of a 

species relies on some other factors such as the average age and the birth ratio. 

 
Figure 15: The dependencies of the selected features. Individual-Ratio has not a connection with 

dashed shape features 
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phenomenon appears. Finding the major features by this dependency graph is difficult, 

because the features can have some hidden dependencies. Nevertheless, it can be 

expected that the Individual-Ratio and Interbreeding-Ratio appear in the extinction rules 

due to their dependencies with other features. 

Figure 16 presents the tree obtained using the features selected by pruning 1000 

samples per leaf. This tree is formed by six features, Individual-ratio, Parental-

Investment, Reproduce-Ratio, Interbreeding-Ratio and Parent2-MatingAge, and contains 

six rules. Although the dependency graph shows the relation between the features, the 

selected features by the J48’s tree do not correspond to these dependencies. 

 
Figure 16: The tree using the selected features with the pruning samples equal to 1000. The number 

in each leaf is the number of the matched samples with the corresponding rule. The dashed shape 

shows a rule with a high number of matched samples 
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Two main rules, highlighted by dashes, cover about 93% of the training set. These 

two rules are: ‘if Reproduction-Ratio is low, then that species will become extinct’ and ‘if 

Reproduce-Ratio is not low, AND Parent2-MatingAge is not young, AND Parental-

Investment is not high, then that species will not become extinct’. The second rule 

explains that a species with an adequate birth ratio and a low parental cost can survive in 

the near feature because the growth population rate is positive and also the individuals of 

that species do not have risky investment on the mating process. 

Comparing tree of Figure 12 to the one of Figure 16, it is noticeable that 

Reproduction-Ratio is the root of both trees. The rule using this feature reveals that a 

durable species depends mostly on how the growth ratio is. In addition to Reproduce-

Ratio, Parent2-MatingAge is common among both trees confirming the importance of a 

chosen partner’s age on the survival of a species in EcoSim. Comparing Figure 14 and 

Figure 16 it appears that Explore-Ratio, ReproduceFail-Ratio and Spatial-diversity get 

exchanged for Individual-Ratio, Parental-Investment and Interbreeding-Ratio. This 

replacement states that the population ratio of a species, the parental cost, and the ratio of 

inter-species breeding can compensate for the exploration ratio, which is an element for 

the gene flow due to movement of individuals, the unsuccessful birth ratio, and the 

species dispersal. Clearly, the Individual-Ratio can be affected by Explore-Ratio, 

ReproduceFail-Ratio and Spatial-diversity due to the impact of the diversity of the gene 

pool on the population size and also the effect of the growth ratio on it. In a rough 

conclusion, the extinction of a species can be predictable by different combination of 

features, because most of them have strong or hidden dependencies on each other and a 
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change in the combination of features can lead to several different rules due to the 

repetitive behaviour of machine learning techniques used. 

4.2.2 Second Experiment 

In this experiment, the features are divided into six categories and studied 

separately. These categories include: demographic, spatial, age-energy, mating, genetic 

and multi-category features. Each category contains the features related to the title of that 

category. This experiment is conducted to examine the effect of each category on the 

species extinction. In addition, for each category we attempt to find the main features that 

are need to build the general rules predicting extinction using the J48 technique. 

4.2.2.1 Demographic Features 

The first category, including five features: Species-Number, Individual-Ratio, 

Reproduce-Ratio, Death-Ratio, and Killed-Ratio, represents the demographic features. It 

has been shown that demographic features (factors) have an impact on the extinction of 

populations [Ovaskainen and Meerson 2010]. Figure 15 presents the dependencies of the 

demographic features using a Bayesian-Network technique. It can be seen in this figure 

that Individual-Ratio is caused by Reproduce-Ratio and Death-Ratio confirming the 

dependence of the population size with the birth and death ratio. It is obvious that the 

number of individuals leads to an increase or a decrease of the number of births and 

deaths, consequently it can affect ratio. It seems reasonable to expect that Individual-

Ratio can have a great effect on the species extinction. 
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Figure 17: The dependencies of demographic features 

The evaluation measures, showed in Table 17, prove that the demographic 

features are good enough for predicting the extinction in EcoSim. The accuracy is high 

even for the validation set. The tree based on the demographic features and with pruning 

1000 samples per leaf is shown in Figure 18. This tree has a depth of five with five rules 

made by three features: Individual-Ratio, Reproduce-Ratio and Killed-Ratio. 

Table 17: The evaluation measures of demographic features using the J48 technique 

Data Set TP Rate FP Rate F-Measure ROC Accuracy 

Training 0.934 0.090 0.933 0.961 93.39% 

Test 0.933 0.087 0.933 0.962 93.34% 

Validation 0.948 0.074 0.948 0.975 94.83% 

Species-Number and Death-Ratio do not appear in the tree. Three rules, 

highlighted by dash in Figure 18, cover most samples of the training set. The first two 

rules can predict about 78% of the training samples which demonstrate the importance of 

the individual ratio and the reproduction ratio in disappearing or in surviving of a species. 
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Figure 18: The tree of demographic features with the pruning samples equal to 1000. The numbers in 

the leaves give the number of matched samples with the corresponding rule. The dashed shape shows 

a rule with a high number of the matched samples 
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become extinct’, ‘If Reproduce-Ratio is not low, AND Individual-Ratio is not low, then 

that species will not go extinct’ and ‘If Reproduce-Ratio is not low, AND Individual-

Ratio is not very low, AND Killed-Ratio is not low, then that species will not go extinct’. 
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of a species to hard situation. The dependencies between these features, given in Figure 

19, show that Speed and Energy are caused by Age. 

 
Figure 19: The dependencies of age-energy features 
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Table 18: The evaluation measures of age-energy features using the J48 technique 

Data Set TP Rate FP Rate F-Measure ROC Accuracy 

Training 0.907 0.121 0.907 0.926 90.73% 

Test 0.908 0.113 0.908 0.926 90.79% 

Validation 0.933 0.103 0.932 0.937 93.28% 

Two rules cover about 85% of the training samples, shown by a dashed shape in 

Figure 20. These rules are ‘if Death-Energy is low, then that species will become extinct’ 

and ‘if Death-Energy is not low, AND AGE is not old, AND Energy is not very high, 

then that species will not become extinct’. 

 
Figure 20: The tree of age-energy features with pruning samples equal to 1000. The numbers in the 

leaves give the number of matched samples with the corresponding rule. The dashed shape shows a 

rule with a high number of the matched samples 
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Death-Energy possibly means that the species faces some severe conditions. The second 

rule expresses that a species can survive when its individuals are young with an 

acceptable amount of energy. 

In a second attempt, four features: Death-Energy, DeathAge-Ratio, DeathEnergy-

Ratio and Speed are removed to concentrate more on the rest of them. In Figure 21, the 

tree is given based on the three features: Age, Energy and Death-Energy. This tree is 

made by five rules with a depth of four. Three rules highlighted by dash can cover 95% 

of the training samples: ‘if Age is too old, then that species will become extinct’, ‘if Age 

is not too old, AND Death-Age is old, then that species will not become extinct’, and ‘if 

Age is not too old, AND Death-Age is too young, then that species will become extinct’.  

 
Figure 21: The rules tree for Age, Energy and Death-Age features with the pruning samples equal to 

1000. The numbers in the leaves give the number of matched samples with the corresponding rule. 

The dashed shape shows a rule with a high number of the matched samples 
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The third rule means that a species contain individuals which are not old and in 

which the average age of death is very young will become extinct due to missing the 

younger individuals without replacement. When comparing trees of Figure 20 and Figure 

21, it appears that Death-Age is replaced with Age and Death-Energy. The relation 

between these features can be observed in Figure 19. 

4.2.2.3 Spatial Features 

The third category works on the thirteen spatial features that encompass Spatial-

Diversity, Volume-Ratio, Surface-Area, Shape-Complexity, Contagion, Spatial-

Complexity, Fractal-Dimension, Space-Ratio, Compactness, Patch-Number, Patch-Size, 

MultSpecies-Cell and History-Movement. The spatial features are part of the 

environmental factors, as the habitat fragmentation, that have a major role in extinction 

[Patten et al. 2007], [Drake and Lodge 2004]. 

 
Figure 22: The dependencies of spatial features 
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According to Figure 22 that shows the graph of features dependencies, Volume-

Ratio and Surface-Area have more connections with other features. As mentioned before, 

Volume-Ratio is the division between the population size of a species and the number of 

occupied area (cells). This feature shows how the species is distributed in the world and 

can be viewed as a measure for the access of the species to the natural resources. The 

second feature, Surface-Area, presents the boundary of dispersion of a species that shows 

the extent of species’ territory. These features can explain the vulnerability of a species 

according to the occupied area, the availability and dispersal of food and partners in that 

area. 

The results of spatial features using the J48 technique show that they are good 

enough to predict the extinction without losing the overall accuracy (Table 19). The tree 

obtained with pruning 1500 samples per leaf, given in Figure 23, contains six rules. Only 

Volume-Ratio and Surface-Area form this tree which can be explain by the effect they 

have on the other features as it can be seen in the dependency graph. The samples of 

training set are covered approximately equally with all leaves of this tree. 

Table 19: The evaluation measures of spatial features using the J48 technique 

Data Set TP Rate FP Rate F-Measure ROC Accuracy 

Training 0.919 0.106 0.918 0.949 91.86% 

Test 0.919 0.098 0.919 0.942 91.88% 

Validation 0.937 0.080 0.937 0.957 91.67% 

The six rules are: ‘if Volume-Ratio is very high, then that species will become 

extinct’, ‘if Volume-Ratio is not very high, AND Surface-Area is very high, then that 

species will become extinct else will not’, ‘if Volume-Ratio is very low, AND Surface-

Area is high, then that species will not become extinct’, and ‘if Volume-Ratio is very 
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low, AND Surface-Area is not high, then that species will not become extinct else will 

become extinct'. 

 
Figure 23: The rules tree of spatial features with the pruning samples equal to 1000. The numbers in 

the leaves give the number of matched samples with the corresponding rule. The dashed shape shows 

a rule with a high number of the matched samples 
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dependency graph presented in Figure 24. The changes of Reproduce-Ratio, which is 
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affected by the abundance of recourses such as food and partner, can impact on the 

quantity and variety of individuals of a species. Having more individuals means faster 

consumption of the available food and makes severe situation for a species. 

 
Figure 24: The dependencies of mating features 

Table 20 shows that the evaluation measures with the mating features are as good 

as the measures with the selected features for the training, test and validation sets. These 

measures are achieved by pruning 1000 samples per leaf using the J48 technique. The 

tree of mating features contains five rules with two of them covering about 90% of the 

training samples. 

Table 20: The evaluation measures of mating features using the J48 technique 

Data Set TP Rate FP Rate F-Measure ROC Accuracy 

Training 0.933 0.092 0.933 0.941 93.34% 

Test 0.933 0.091 0.933 0.943 93.32% 

Validation 0.949 0.084 0.948 0.950 94.88% 
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This tree is made by four features: Reproduce-Ratio, Parent1-MatingAge, 

Parent2-MatingAge and Interbreeding-Ratio. The two main rules are: ‘if Reproduce-

Ratio is low, then that species will become extinct’ and ‘if Reproduce-Ratio is not low, 

AND (Parent1-MatingAge AND Parent2-MatingAge) are not young, then that species 

will not become extinct’. The second rules mention that the parental age has an impact on 

the survival or extinction of a species. A species that has a positive birth rate but has a 

young choosy partner in average can be at risk of extinction. This phenomenon is 

interesting, although it needs extra investigation. One hypothesis can be based on the 

amount of energy of younger individuals: If they have less energy in comparison to 

mature individuals, therefore, the cost of parental care can kill them and consequently, 

the number of older individuals will be increased in contrast to younger individuals. 

 
Figure 25: The rules tree of mating features with the pruning samples equal to 1000. The numbers in 

the leaves give the number of matched samples with the corresponding rule. The dashed shape shows 

a rule with a high number of the matched samples 
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4.2.2.5 Genetic Features 

The fifth category examines the effect of five genetic features on the extinction. 

This experiment uses the features: Parental-Investment, Distance-Mating, Distance-

Evolution, Genetic-Diversity and Genetic-Complexity. The dependency graph in the 

Figure 26 shows that Genetic-Diversity has more connection than the other features. This 

feature explains the diversity of the genes’ pool for a species. 

 
Figure 26: The dependencies of genetic features 

Table 21 presents the quality of genetic features for the prediction of species 

extinction. The overall accuracy for the training, test and validation sets are similar to the 

ones obtained with the selected features. The tree contains four rules in which two of 

them, highlited by dash, cover about 95% samples of the training set. This tree is 

composed of three features: Parental-Investment, Distance-Mating and Genetic-Diversity. 

Although Genetic-Diversity has a lot of connections with other nodes in the dependency 

graph, the Distance-Mating is the root of the tree. 

Table 21: The evaluation measures of genetic features using the J48 technique 

Data Set TP Rate FP Rate F-Measure ROC Accuracy 

Training 0.933 0.097 0.932 0.927 93.28% 

Test 0.930 0.099 0.930 0.926 93.02% 

Validation 0.949 0.092 0.948 0.938 94.88% 
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The genetic features create four rules, including: ‘if Distance-Mating is very low, 

then that species will become extinct’, ‘if Distance-Mating is not very low, AND 

Parental-Investment is not high, then that species will not become extinct’ and ‘if 

Distance-Mating is not very low, AND Parental-Investment is high, AND Genetic-

Diversity is not high, then that species will become extinct else will not’. In all rules, the 

usage of Distance-Mating shows that the genetic similarity between partners has a key 

role on the extinction. One explanation might be that if the partners are too genetically 

similar, the diversity in a species declines and leads to extinction of that species. This 

interesting rule shows the impact of genetic distance between partners as a pre-zygotic 

barrier. Furthermore, the cost that should be paid by partners can put individuals at risk of 

death. This cost corresponds to the investment of each individual in the breeding process. 

 
Figure 27: The rules tree of genetic features with the pruning samples equal to 1000. The numbers in 

the leaves give the number of matched samples with the corresponding rule. The dashed shape shows 

a rule with a high number of the matched samples 
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4.2.2.6 Multi-category Features 

The last category includes six features form the previous categories. These 

features are chosen to study the effect of a combination of features on the extinction. The 

chosen features are the most important feature of each category. For this purpose, 

Species-Number from demographic, Energy from age-energy, Volume-Ratio from 

spatial, Interbreeding-Ratio from mating and Genetic-Diversity and Parental-Investment 

from genetic category are selected. The dependency graph between them is given in 

Figure 28. It shows that Interbreeding-Ratio is caused by Genetic-Diversity and Volume-

Ratio. These dependencies can be due to the relation between interbreeding and an 

increase or a decrease of the genes' variety. Moreover, Genetic-Diversity is caused by 

Parental-Investment and Energy that it is acknowledgment validation of the parental cost 

as a part of genetic content in EcoSim. 

 
Figure 28: The dependencies of multi-category features 
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features: Parental-Investment from genetic, Interbreeding-Ratio from mating and 

Volume-Ratio from spatial category, are used in the tree. This tree (Figure 29) is made by 

four rules. Each of them covers an acceptable number of the training samples which is 

interesting because in all other trees just some rules could cover most of the sample 

space. 

Table 22: The evaluation measures of multi-category features using the J48 technique 

Data Set TP Rate FP Rate F-Measure ROC Accuracy 

Training 0.904 0.128 0.903 0.917 90.40% 

Test 0.903 0.129 0.902 0.917 90.32% 

Validation 0.914 0.126 0.913 0.923 91.37% 

These rules include: ‘if Parental-Investment is very high, then that species will 

become extinct’, ‘if Parental-Investment is not very high, AND Interbreeding-Ratio is not 

very low, then that species will not become extinct’ and ‘if Parental-Investment is not 

very high, AND Interbreeding-Ratio is very low, AND Volume-Ratio is low, then that 

species will not become extinct else will become extinct’. The last rule implies that the 

individual dispersal can be affected by the ratio of interbreeding. The low interbreeding 

ratio shows that the species have a few gene exchanges with other species and 

consequently, the survival of this species is dependent to the compact spatial distribution 

of its individuals. Based on previous experiments, the survivorship of compact spatial 

distribution of individuals depends on the food availability. Therefore, this rule reveals 

the dependency of different features on the extinction of a species. 
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Figure 29: The rules tree of multi-category features with the pruning samples equal to 1000. The 

numbers in the leaves give the number of matched samples with the corresponding rule. The dashed 

shape shows a rule with a high number of the matched samples 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 
In this study, we used EcoSim, an IBM platform with genetic traits. This model 

allows us to work on numerous features simultaneously. Based on this model, we 

conducted two experiments for investigating mate choice models and species extinction 

generating a huge amount of raw data. We apply a new strategy, based on a combination 

of feature selected techniques and machines learning tools to explore such a large data 

set. We have been able to obtain very interesting and promising results to find the 

effective features impacting on these phenomena. We have therefore validated our 

approach which can now be generalized and applied to many different data and many 

different situations. 

5.1 The Mate Choice Models 
Three models of morphological mate choice, based on energy as an indicator of 

strength, were examined. The results showed that energy as a physical signal for mating 

process can change some characteristic of species. Two experiments were conducted to 

evaluate the introduced mate choice models. In the first experiment, the general 

behaviour of Similar Energy, as a similar mate policy, Max Energy, as an exaggerated 

ornamented mate policy, and Random, as a random mate policy, were compared together. 

The results showed that the Max Energy and Similar Energy models have different 

behaviours in comparison to the Random model. However, the main differences occurred 

between Max Energy and Random models and Similar Energy model had intermediate 

behaviours between them. 
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Some features had almost opposite trends in Random and Max Energy models. 

For instance, Population-Size, Parental-Investment, Age, Age-Death, Distance-Mating, 

and Compactness, are higher in the Max Energy model, whereas Genetic-Complexity and 

Distance-Evolution, are lower in the Max Energy model. Some intuitive and interesting 

results have been extracted from these models: 

• On average, individuals having a strong mate have a simpler behavioural 

model, more parental costs and form more compact groups. The good 

parent hypothesis predicts that individuals with the most exaggerated traits 

invest more in offspring [Hoelzer 1989]. Moreover, due to differential 

allocation hypothesis [Burley 1986], individuals paired to attractive 

partners provide more care. However these hypotheses has some conflicts 

with other empirical studies [Maguire and Safran 2010]. In our 

experiments, we considered an equal parental cost for both partners. 

• A high genetic complexity does not necessarily imply a higher species 

ratio, but maybe genetic diversity has an effect on it. 

• A restricted mate choice can slow down the evolutionary process. 

• Contrary to our expectation, the increase of genetic distance between 

parents did not increase the genetic diversity of the population. However, 

the compatibility hypothesis implies that genetic dissimilarity between 

mates increases the genetic diversity [Mays and Hill 2004]. For instance, 

Ortego et al. [2008] observed that mating with genetically less-related 

partners in Lesser Kestrels avoid the detrimental consequences of reduced 
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genetic diversity. This phenomenon is not well understood in our 

simulation and it needs further analysis. 

• The non-random mating policy can increase the average genetic distance 

of partners. 

• Mating with a strong partner has a positive effect on the fitness of the 

offspring. It has been shown that “a strong mate preference can evolve if it 

improves the total fitness of the female through direct phenotypic 

benefits” [Andersson and Iwasa 1996]. 

In the second experiment, machine learning techniques were applied to find the 

proper rules for distinguishing between these three models based on selected features. 

The accuracy of the initial classifications on validation set was not good enough. 

Nevertheless, a sub set of features were extracted which had an acceptable overall 

accuracy on validation set. These six features included Sedentary-Ratio, Age, Genetic-

Complexity, Distance-Evolution, Distance-Mating and Quantity-LocalFood. Based on 

this set, nine rules were extracted that could distinguish between mate choice models. 

The tree is a combination of genetic, perception and action features. However, the genetic 

features formed the main roots of tree. 

Three extensions can improve the mate choice simulation in EcoSim: 1) adding 

sex to the individuals, 2) using genetic linkage between female preferences and male 

traits and 3) applying viability function to males based on conspicuous traits for escaping 

from predators. These modifications can make simulation more realistic. Moreover, 

different sexual selection hypotheses can be investigated by them. 
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5.2 The Prediction of Species Extinction 
Different factors affect extinction of a species. These factures can be categorized 

into three areas of demographic, environmental and genetic. Two experiments were 

considered: using all features together and using several features’ subsets. Different 

machine learning techniques were applied to find the most significant features for the 

extinction process, and the most accurate rules, which can be used to predict this 

phenomenon. In general, the overall accuracy of validation set (higher than 93%) for 

species extinction revealed that selected features are very good for predicting this 

biological phenomenon in EcoSim. However, we observed that varying the parameters of 

these techniques, such as the amount of pruning samples, can change the accuracy and 

the obtained rules. 

Some of the features had dependencies together, and the Bayesian-Networks 

illustrated the relation between them. Moreover, we showed when a feature is removed, a 

number of other features could take its place and compensate its effect on the prediction 

of extinction. These dependencies could also exist in real ecosystems which are of course 

an even more complex system. 

The experiments showed that 16 features have more impact on the species 

extinction and for many of them it confirms some observations in real ecosystems. These 

features include: Individual-Ratio [Lande et al. 2003], [Rai 2003], [Drake et al. 2011], 

Reproduce-Ratio [Ellison 1994], ReproduceFail-Ratio, Explore-Ratio, Age [Pearson 

1995], [Doran et al. 2006], and [Finnegan et al. 2008], Energy [Evans et al. 2005], Death-

Age, Death-Energy, Killed-Ratio, Parent1-MatingAge, Parent2-MatingAge, Parental-

Investment, Distance-Mating, Interbreeding-Ratio [Rhymer and Simberloff 1996], [Wolf 
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et al. 2001] (although in our results having a hybridization avoids going extinct),Volume-

Ratio and Surface-Area [Collins et al. 2009], [Hill et al. 1996]. Table 23 shows the main 

rules achieved by each experiment. One of the main rules that appeared in some feature 

sets is: a species with the low Reproduction-Ratio will become extinct in the near future. 

Table 23: The major rules of different experiments for species extinction that lead to extinction 

Features Set IF 

All, Selected, Demographic, Mating  Reproduce-Ratio is low 

Age-Energy (1) Death-Energy is low 

Age-Energy (2) 

Age is too old 

Age is not too old AND 

Death-Age is too young 

Spatial 

Volume-Ratio is very high  

Volume-Ratio is not very high AND 

Surface-Area is very high  

Volume-Ratio is very low AND  

Surface-Area is high  

Genetic Distance-Mating is very low 

Multi-category 

Parental-Investment is very high 

Parental-Investment is not very high AND 

Interbreeding-Ratio is very low AND 

Volume-Ratio is not low 

When all features were used, only demographic factors, Reproduce-Ratio, 

ReproduceFail-Ratio and Explore-Ratio, appeared in rules. However, in selected features, 

Parental-Investment (a genetic factor) was added to the set of effective rules. The best 

balanced trees in which all rules could cover equally the training samples were related to 

the spatial and multi-category features. Among these two trees, the multi-category tree 

had less depth and rules that are more general. This tree is a combination of all three 
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factors: demographic, environmental and genetic with the features Interbreeding-Ratio, 

Volume-Ratio and Parental-Investment. 

The individual ratio can be a good index to investigate the behaviour of species. 

Drake and Griffen [2010] have mentioned that the individual ratio can impact on the 

extinction due to lifespan of that species. Furthermore, the lifespan can be a measure to 

divide species into two groups of long and short lifespan’ species. These groups can be 

analyzed separately to find major features that work on them, and to keep track the 

different effect of each factor on each group. 
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APPENDIX A 

Mate Choice Model’s Characteristics 

A 

 

B 

 

C 

 
Figure 30: A) the average speed B) the ratio of food consumption C) the species ratio for the time 

steps 10000 to 25000 
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Figure 31: A) the reproduction ratio, B) the reproduction-fail ratio C) the death ratio for the time 

steps 10000 to 25000 
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Figure 32: A) the socialization ratio, B) the foraging ratio C) the sedentary ratio for the time steps 

10000 to 25000 
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