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Abstract

Multimedia applications involving image retrieval demand fast response, which requires
efficient database indexing. Generally, a two-level indexing scheme in an image database
can help to reduce the search space against a given query image. The first level is required
to significantly reduce the search space for the second-stage of comparisons and must be
computationally efficient. It is also required to guarantee that no new false negatives may
result. In this thesis, we propose a new image signature representation for the first level of
a two-level image indexing scheme that is based on hierarchical decomposition of image
space into spatial arrangement of image features (quadtrees). We also formally prove that
the proposed signature representation scheme not only results in fewer number of matching
signatures but also does not result in any new false negative. Further, the performance of
the retrieval scheme with proposed signature representation is evaluated for various feature

point detection algorithms.
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Chapter 1

Introduction

The old saying “A picture is worth a thousand words” [53] still bears strong importance in
the modern world of science and technology. In fact, with the increasing use of streaming
and embedded multimedia on the internet, the importance of pictures and videos is continu-
ously on the rise. We see an extensive use of photographic materials in almost every step of
our life, from buying a new car to monitoring heart conditions. Therefore, organization of
photographic materials is a fundamental component of efficient operation of any multime-
dia system. Content-based image retrieval (CBIR) is any technique that helps to organize
archive of digital pictures by their visual content for easy matching and retrieval [15].

One of the most challenging problems in the field of multimedia and computer vision is
the automatic interpretation of image information. Generally speaking, exact characteriza-
tion of human vision and perception is difficult, if not impossible. The knowledge base of
humans gradually evolves with the help of the surroundings, whereas machines are usually
built and trained for a specific task only. As a result, machines can only try to simulate
human behavior. But obviously, the task of image retrieval from a large collection through

human only is impractical. As a result, CBIR is of utmost importance and is a subject of
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intense research [15]. Generally speaking, CBIR requires automatic identification and un-
derstanding of the semantics of image contents for search and retrieval of similar images
against a given query image.

One of the fundamental requirements of a CBIR system is the fast response which
requires quick searching capabilities to search suitable images from a given image database.
It is well known that the efficiency of search and retrieval of information in a database
system is index dependent. In an image database with a large number of images, sequential
search is not an option. Therefore, some indexing scheme is required to facilitate search and
retrieval process. In an image database, the purpose of indexing is to reduce the cardinality
of search space only. This allows the potentially similar images to go through more rigorous
matching process that is generally more exhaustive and computationally expensive.

Most of the existing image indexing techniques are essentially based on quantifiable
dominant visual image features such as color, texture, spatial arrangements of image con-
tents, etc. [5, 40, 42, 47]. In [1], a new and different indexing scheme that is based on hier-
archical decomposition of image space and quadtrees has been presented. In this scheme,
abstract or symbolic images are used to improve the speed and efficiency of the search and
retrieval process. A symbolic image is an abstraction of the actual or physical image and
is based on its salient features [1]. Such images are generally used for comparisons only
or to establish index structures to reduce the cardinality of the search space. The physical
images are retrieved from the database only when a suitable match is determined. Some of

the important advantages of this scheme are as follows:

e It is independent of basic geometric transformations (i.e., translation, rotation and

scaling).

e The use of hierarchical decomposition allows representation of image at various level
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of details (from coarse to fine) through the use of quadtrees.
e [ts computational time is independent of the complexity of the physical image.

e [t uses a two-level indexing that allows to curtail search space in the earlier stages of

comparison with the help of image signatures.

One of the key aspects of this scheme is the improvement of retrieval efficiency by
curtailing the search space in earlier stages of computation. An image signature in this
scheme is essentially a representation of a symbolic image in a form so as to facilitate
identification of only those images that satisfy a matching criteria. Therefore, selection of
proper signature representation is extremely important. However, it involves the following

trade-offs:

e The result of signature matching should be a limited number of potentially matching

candidate images for the second level of filtering.

e The signature matching process should not result in any new false negative. In other
words, due to signature matching, any potentially relevant image should not be left

out from more intensive second level filtering.

These two competing and opposite trade-offs make it difficult to find a suitable signature
representation scheme. In this thesis, We present a new image signature representation
scheme. Like the scheme in [1], it also results in non-unique signatures but significantly
increases the overall efficiency of the system by reducing the possible number of candidate
images for intensive second level of filtering. In addition, it is mathematically proven that

this scheme does not result in any new false negative.
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Another important aspect of indexing scheme in [1] is the process through which sym-
bolic images from the physical images are generated. Since physical images are not actually
considered in the filtering process, the results and performance of the whole system is heav-
ily dependent on accuracy of information encoded in symbolic images. In this scheme, a
symbolic image is derived from feature points using corner detection algorithm. A survey of
literature [56] indicates several corner detection methods. These methods vary considerably
in term of their output and underlying philosophy. Therefore, in this thesis, We evaluate and
compare results of three different popular corner detection algorithms, namely, the Smallest
Univalue Segment Assimilation Nucleus (SUSAN) Detector [58], the Harris Detector [25]
and the method proposed in [60], which we call the Wedge Detector.

The rest of this thesis is organized as follows: in Chapter 2, We provide an overview
of Content-Based Image Retrieval. In Chapter 3, the idea of symbolic image representa-
tion is discussed along with some description of the three aforementioned corner detection
methods. We also provide a brief description of the idea of hierarchical decomposition
and introduce the notion of quadtree in this chapter. Chapter 4 provides details of the new
signature representation scheme and various experimental results including extensive com-
parisons between the existing and the proposed signature representation schemes. Finally,

Chapter 5 provides some concluding remarks.



Chapter 2

Content-based Image Retrieval

Content-Based Image Retrieval (CBIR) is an active area of research for quite some time
[61]. The emphasis of CBIR is primarily on finding quantifiable visual features which
can describe image contents. Prominent among these features are the image color, texture,
shape, spatial image features etc [15]. Each of these features has its own advantages and
limitations with some discussion in subsequent Sections. However, the ultimate choice of
feature is generally domain specific.

Some techniques combine more than one of the above mentioned features and try to take
advantage of the ones used. Query By Image Content, also known as QBIC by IBM [19]
is a notable example of a such system. It combines color, texture and shape-based features.
QBIC uses a graphical query language where the user can compose a query graphically by
drawing, selecting or by some other graphical means. The images are stored in the database
in such a way that they can be classified based on features such as colors, textures, shapes
etc. The query is performed by matching the query image features with the database image
features. VisualSEEK [57] is another notable scheme that allows the user to form visual

queries by creating spatial arrangement of color regions through a diagraming process. It
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combines both color and spatial information to match a query image with the database

images.

2.1 Color-based Retrieval

The most widely discussed visual feature to represent image contents is its color. A survey
of literature indicates number of different ways of summarizing colors in an image [15].
Essentially, most of the techniques based on this feature make use of color histograms [19].
Any technique that is based on this feature alone does not take any advantage of either
the local or the spatial image features. As a result, two entirely different images can be
described by the same color contents [1]. Also, there are too many independent dimensions
in a generic color histogram, such as choice of color space, choice of quantization in color
space and quantization of the histogram values, which makes the interpretability between
different color descriptors a difficult task [39]. A set of color and texture descriptors for
MPEG-7 standard has been described in [39] which are well suited for both images and
videos. One of them is the Scalable Color Descriptor (SCD), which uses the HSV color
space and encodes the histograms using Haar transform. Another one is the Color Structure
Descriptor (CSD), which uses the HMMD color space. However, for complex backgrounds
or cases where the object occupies only a small portion of the scene, matching the histogram

of the entire scene against the histogram of a model may fail to perform satisfactorily [26].

2.2 Texture-based Retrieval

Texture is another important feature for images that contain repetitive patterns such as car-

pets, grass field, checker boards etc. The use of texture features is generally domain spe-
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cific with common application in aerial images. A discussion of texture feature extraction
methods using wavelet and cosine transforms is presented in [16] and [38] . In [39], three
different texture descriptors are listed for the MPEG-7 standard. One of them is the Texture
Browsing Descriptor which concentrates on the regularity, directionality and coarseness of
textures. The Homogeneous Texture Descriptor is probably the most robust texture descrip-
tor specifically targeted to similarity-based retrieval [24]. It is calculated in the frequency
domain by using different kinds of filters. The third one is the Edge Histogram Descriptor
which captures the spatial distribution of edges. This descriptor is used in the cases where
the texture is not homogeneous. As stated before, in most cases only color or texture fea-
tures alone are not sufficient to describe the complete pictorial information present in an

image.

2.3 Shape-based Retrieval

Shape-based retrieval [12, 63, 65] is another important aspect of image databases and a pri-
mary requirement in many applications, specially those dealing with security and surveil-
lance. The principal focus of schemes using shape feature is on shape representation and
on matching of different shapes. In [12], moment invariants and Zernike moments are used
to represent the shape feature vectors. k-means clustering is then used to group the im-
ages with similar shapes together. To match a query image with database images, neural
network is used with the clusters. Latecki, et al. [35] describes another method of shape
representation using discrete curve evolution. Since contours of objects in an image can
be distorted due to noise and segmentation errors, instead of using the original contours,
an approximation is used. Every curve is approximated by a polygon by considering pair

of consecutive line segments and substituting them by a single line segment by joining the
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end points. This iterative process is stopped with the help of a shape similarity measure,
which is calculated by finding visual correspondence of the different parts. In [4], curves
are represented by a set of segments. These features (curvature and orientation) are then
arranged in a metric tree [13] to facilitate matching and retrieval. A Dynamic Programming
(DP) approach has been discussed in [47]. In this approach, a shape is represented by a
sequence of convex and concave segments. These segments are merged using DP where
the program searches for the least cost path in a DP table. After merging, the merged seg-
ment is compared with larger segments from other shapes. All of the shape-based retrieval
methods require extensive computations and are time-intensive and, hence, cannot be used

when dealing with large collections of images [20].

2.4 Spatial Similarity-based Retrieval

Spatial arrangements of image objects and mutual relationships among them are the focus of
spatial similarity-based retrieval schemes. Geographical and medical information domains
are the primary beneficiaries of such type of image retrieval. Much of the approaches in
spatial retrieval have been inspired by the classical iconic indexing scheme proposed by

Chang, et al. [8].

2.4.1 Iconic Indexing

The basic idea of iconic indexing is to represent each object in an image by a symbol. A
real image is then transformed to an equivalent symbolic image, where a matrix of symbols
represent the objects of the real image. Figure 2.1 shows a sample image and the corre-

sponding symbolic image representation. Here, the vocabulary or the set of symbols is
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O e
)74 c | d

O VI]la b

Figure 2.1: A sample image and the corresponding symbolic image

V ={a,b,c,d,e}. The symbols are projected in 2 directions (X and Y axes) to generate the
2D-string. Let us assume that the set of operators (explained in the following paragraph)
is U = {=,<}. The 2D-string representation of the symbolic image for Figure 2.1 can be

formulated as follows:

( a=e<c<b=dja=b<c=d<e)

= (X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 , X1 21 X4 22 X3 23 X5 24 X2),

where

X1 XpX3Xx4%5 is aecbd
X1 X4x3x5%x) is abcde
YiY2y3ya is =< <=
1nBUuils =<=<

(2.1)
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Here, the operators {=, <} denote spatial relationships. The operator { <} denotes left-
right or below-above spatial relationship for the first and second string respectively, whereas
the operator {=} denotes the “same location” spatial relationship.

In this way, an image can be represented by a 2D-string of symbols. A query image can
then be transformed to a 2D-string in the same way where the user can specify the query
graphically by drawing an iconic figure. This figure is then translated to a 2D-string and
matched with the iconic index of a database image, which is basically the 2D-string repre-
sentation of the database image itself. Therefore, the problem of image retrieval reduces to
a 2D-string matching problem.

However, the 2D-string matching problem is similar to the Longest Common Subse-
quence Problem (LCS) [6] and is NP complete. Hence, this scheme is not computationally
feasible for large image databases. Further, multiple occurrences of projection of symbols
along the axes lead to ambiguity in the string representation. Moreover, since the infor-
mation is encoded in the form of 2D-strings, this scheme fails to represent complete de-
scription of spatial relationships between the overlapping objects of an arbitrarily complex

image [36]. This scheme also cannot recognize any rotational variant of an image [20].

2.4.2 Extensions to Iconic Indexing

To overcome the aforementioned limitations, many extensions to the original iconic index-
ing scheme have been proposed. These extensions include extended 2D-strings [30, 31], 2D
C and 2D C+-strings [28, 29, 37], 2D B-strings [36], ®%R-strings [20] etc. In [30], the idea
of splitting an object into several parts is introduced to handle overlapping objects. New
local operators are also introduced to handle more spatial relationships. The 2D C-strings

method described in [37] introduces 13 types of spatial relationships, which are basically
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modified and extended versions of the relationships described in [30] so that they can be
incorporated in a global 2D-string representation. Another recent extension to the iconic
indexing method is the “two dimension begin-end boundary string” or 2D-Be-string [62].
This scheme uses the idea of Minimum Bounding Rectangle (MBR) [44] to represent object
locations inside an image more precisely. In this scheme, “dummy objects” are introduced
to simplify the string representation, and the number of required operators are reduced to
only one, the {=} operator.

However, being variants of the LCS problem, most of these methods are computation-
ally expensive. Also, most of them are not invariant to the basic geometric transformations
(translation, rotation, scaling) [51].

In [45], a symbolic representation of images termed as virtual image is proposed and
consists of entities (objects) and binary spatial relationships among them. Although virtual
images are independent of translation and scaling, they are sensitive to rotation.

Also, most of the string-based techniques discussed above do not use any multi-dimensional
indexing mechanism. As a result, for a given query image, an exhaustive search is made to
find all relevant images which is not suitable for large image databases. Some string-based
methods have also been proposed which use signature files for indexing. The method using
Nine Direction Lower Triangular (9DLT) matrix was proposed in [7]. The 9DLT matrix
basically uses 9 directional code values to represent binary spatial relationships among ob-
jects. An example of a 9DLT matrix is shown in Figure 2.2, where we show the 9DLT
matrix for the symbolic image from Figure 2.1. Here, we can see that there are 9 possi-
ble directions in which a symbol (object) can exist with respect to another symbol. These
9 directions are represented by 9 values, {0,1,2,3,4,5,6,7,8}. Finally, the 9DLT matrix

contains the values corresponding to the spatial relationships between the objects. Exten-
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Figure 2.2: Example of a 9DLT matrix

sions to the 9DLT matrix based method such as unique-ID based [11], generalized prime
number based [9] and bit pattern based [10] matrix strategies are also found in literature.
However, most of the matrix based approaches also suffer from considerable number of
problems, such as storage overhead, inability to deal with geometrical transformations, etc.

[22].

2.5 Multi-dimensional Indexing

To support efficient indexing and faster retrieval of images from a given image database,
several multi-dimensional algorithms have also been proposed [5, 42, 46]. In [46], R-
trees are used for indexing images represented as Attributed Relational Graphs (ARGs).
In an ARG, image objects are represented by the graph vertices and their relationships
are represented by the edges. Both the vertices and the edges are labeled by attributes
corresponding to properties of the objects and their mutual relationships, respectively. The
ARGs corresponding to the images are mapped to a high-dimensional point using FastMap
[18]. These high-dimensional points are then indexed in the database using R-trees [23].

R*-trees [2] for image indexing has been discussed in [42], which are improvement over the
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R-trees. Graph-based image representation and indexing algorithm has been proposed in
[5]. Several other multi-dimensional indexing methods such as multi-dimensional binary-
trees [3], K-D-B-trees [52], BD-trees [14], G-trees [34], grids [43], multi-attribute hashing
[54] etc. also exist. However, unlike quadtrees [55], none of these indexing methods can be
directly related to the notion of recursive decomposition of an image (explained in Section
3.2), which is one of the key motivations behind our retrieval system because of its ability to
represent an image at various level of details. As a result, quadtree is picked as the preferred
representation method of multi-dimensional indexing in our case. The structure and formal

definitions related to quadtrees are described in detail in Section 3.2.2.

2.6 Summary

This chapter discusses the evolution of content-based image retrieval throughout the past
few years. The various areas of CBIR have been presented with emphasis on spatial
similarity-based retrieval. From the discussions we see that despite having advantages
and applications in their own domains, most of the existing methods suffer from several

drawbacks.



Chapter 3

Symbolic Image Representation and

Recursive Decomposition

The key to the notion of a spatial similarity-based image retrieval system is the symbolic or
abstract image representation of an actual image. A symbolic image is an abstraction of the
actual image and contains pertinent information necessary for comparison purposes only.
Such a representation also provides physical data independence, and hence, eliminates the

repetitive task of spatial and semantic information encoding [1].

3.1 Feature Image Representation

Each image [; in an image database is unique and distinct and can contain one or more
objects O,k > 1. In many applications, an image can be described by the help of a set of
significant feature components, defined as Fy = {FkI,sz, F,rc"} These features can be

described as follows [21]:

Physical features: Physical features are those features which can be expressed quantita-

14
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tively. These features can be measured directly from the physical image. As a result,
physical feature identification can be an automated process. Example of physical

features are number of image objects, object positions, object areas etc.

Logical features: Logical features are those features which can not be calculated directly,
rather those have to be retrieved semantically. Attaching a label (e.g. “sky”) to a part

of the image is an example of a logical feature.
Features can also be described as:

Global features: These kind of features are directly associated with physical features and
can be easily computed. These features are based on the overall image composition
and generally applicable to the whole image. Example of these kind of features are

image size, overall image color composition etc.

Local features: Local features contain low-level characteristic information associated with
the image. Computation of these kind of features require extensive low level process-
ing, and hence, are computationally expensive. These kind of features usually contain
spatial information about the image. Image boundary points and centroids of image

objects are example of these kind of features.

In spatial similarity-based retrieval, Only those image features that provide spatial infor-
mation about the image objects (spatial positions, mutual relationships etc.) are considered
important. These features are termed as spatial features.

A spatial feature ij of an image object Oy, in a 2D image space can be represented as a
set of points P,Z ={ p,];’l , p,];’z, ...}, where pk.’m = (xi’m,yi’m) are the coordinates of the said

point. These points can be tagged with labels from the representative domain to capture



CHAPTER 3. SYMBOLIC IMAGE & RECURSIVE DECOMPOSITION 16

necessary semantics [1]. Each of these individual points represent some spatial feature of
an image object and is called a feature point. For the sake of clarity, it is assumed that only
a single feature point represents a spatial feature of an image object. Thus, the entire image
is represented by a set of representative feature points.

The identification and labeling of feature points in a physical image essentially converts
it into an equivalent symbolic image, also called feature image [1]. For feature image
extraction, one can take advantage of the existing image processing techniques such as
detection of corner points. Corner points represent important local features in images.
Generally speaking, they are the points that have high curvature and lie at the junction
of different brightness regions of an image. Generally corner points are not affected by
illumination and have the property of rotational invariance [59]. Therefore, corner points
can serve as feature points for generation of an equivalent symbolic image of an actual
image. As indicated before, symbolic images are used for comparison and to determine
suitability of match for retrieval of actual images against a given query image. Actual
images are retrieved from the database only when the retrieval results are presented to the
user. Therefore, feature image generation is one of the fundamental steps in the retrieval
process and can effect the overall accuracy and performance of the system.

A survey of literature indicates several different corner point detection methods [59].
The output provided by these methods vary considerably due to differences in the under-
lying techniques of each method. Most of the commonly used methods usually rely on
intensity derivatives to find high curvature points. Some methods use direct intensity val-
ues of the pixels inside a pre-defined window to find corners whereas some other methods
try to define a corner model and match the image regions with it. As a result, the methods

behave differently in terms of accuracy, robustness and sensitivity [60].
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To test our retrieval system against varying detection algorithms, we selected the fol-
lowing three important contemporary methods. Our selection is essentially based on the
differences in their underlying philosophies and, consequently, different output feature im-

ages in terms of spatial similarity.

3.1.1 SUSAN Detector

The method introduced in [58] is a popular corner detector. In this method, no image deriva-
tives are used and no noise reduction is needed. The method works on a small pre-defined
window called Univalue Segment Assimilating Nucleus (USAN). A pixel is considered as
the nucleus and the area of USAN, also called mask, is defined by the pixels which have
same or similar intensity as that of the nucleus. Let ry and r represent coordinates of nu-
cleus and some other point within the mask c(r,rp) of an area M. Every pixel is compared

to the the nucleus using the comparison function:

i)~} o

C(r,ro):exp{— P
where ¢ is the threshold and determines how similar the intensity values should be so as
to be considered in the same USAN. This threshold varies from image to image between

different image databases and must be tuned for each image database. The size of USAN

is given as:

n(M) = Z c(r,ro) (3.2)

reM

If ¢ is the rectangular function then n is the number of pixels in the mask which are

within ¢ of the nucleus. The area of USAN falls to a local minima for a corner (Smallest
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Figure 3.1: The principle behind SUSAN (a) Pre-defined windows with nuclei marked (b)
Area of USAN falling to minimum in case of a corner

USAN). The idea is evident from Figure 3.1, where we see an image containing a simple
triangular object. Three sample pre-defined windows are shown in Figure 3.1-a , with the
nucleus (center) of each marked. In Figure 3.1-b, the area of USAN for each of the three
windows is marked in black. As stated before, the pixels with same or similar intensity are
considered to be in the same USAN as the nucleus. We see that for the corner, the area of
USAN falls to minimum indeed.

The response of SUSAN operator is given by:

n(M) = g—n(M), ifnM)<g 3.3)

0, otherwise

where g is the geometric threshold which determines the acute level of a corner. The
value of g determines the minimum size of the univalue segment. This geometric threshold
is necessary to filter out the false positives which can result from detecting multiple corners

on a straight edge. This threshold ensures that a corner is acute enough to be considered as
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Figure 3.2: Application of the SUSAN detector on a facial image

a corner point.

Figure 3.2 shows the output corner points marked for a facial image after applying the
SUSAN detector. The image is taken from the ORL face database [64], details of which
can be found in Section 4.4. The threshold ¢ was tuned properly to generate the best output.
Here, we see that the SUSAN principle gives reasonably correct output in terms of detected
corners. However, we also see that some expected corners (specially around the chin area)
were not detected. If the intensity values are not different enough for the surroundings of
the corner, the area of USAN will not fall to a local minima and, as a result, the SUSAN

detector will not detect a corner.

3.1.2 Harris Detector

Harris detector [25] is another common corner detection method. In this method, the image
intensity derivatives are used to find corners with a pre-requisite of a smoothing operator
to reduce the sensitivity to noise. The Harris detector is an improvement over Moravec’s
corner detector [41]. In Moravec’s detector, a small window is considered and the average
intensity value in the window is calculated. Then the window is shifted in different direc-
tions to calculate the average change in intensity. For a corner, the shift of the window in

any direction will result in large change of intensity value. As the shifts are too discrete
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and the used window is rectangular, the output of the Moravec’s detector has room for im-
provement. Harris proposed a different way of calculating corner scores to get rid of these
drawbacks. For an image pixel (x,y) of an image I, the Harris method first calculates the

autocorrelation matrix given as:

> LI
M@x,y)=S8«| " "7, (3.4)
LI, I}

where I, and I, are the image intensity gradients and S denotes the smoothing opera-
tor [49]. The use of a smoothing operator is optional, but advisable as this function uses
image derivatives which can be susceptible to noise. The greatest eigenvalue of M(x,y)
corresponds to the rate of change in the direction of highest variation, while the smallest
eigenvalue corresponds to the rate of change in perpendicular direction of the highest vari-
ation. If both of these eigenvalues have high magnitudes, then (x,y) can be considered as
a corner point. Since calculating eigenvalues is computationally expensive, the following

approximation has been suggested to determine the corner strength:

R(x,y) = det(M(x,y)) — x(trace(M(x,y)))?. (3.5)

Suitable value of k has been determined to be 0.04 —0.15 [56]. The value of R(x,y)
is generally larger than the specific threshold for a corner point. The threshold is again,
dependent on the type of images used and may vary from database to database.

Figure 3.3 shows the output corner points marked for the same facial image as in Fig-
ure 3.2 after application of the Harris detector. The threshold was properly tuned again to
generate acceptable output. Here, we see that compared to the output of the SUSAN de-

tector, the corner points detected by the Harris detector are spread more equally across the



CHAPTER 3. SYMBOLIC IMAGE & RECURSIVE DECOMPOSITION 21

Figure 3.3: Application of the Harris detector on a facial image

image. Rather than using the pixel intensity values directly, the Harris detector uses image

derivatives. As a result, the output provided is different than that of the SUSAN detector.

3.1.3 Wedge Detector

We call the method described in [60] as the Wedge detector. It uses a simple corner model
to detect corner shapes. The corner model consists of a wedge (the corner), having its origin
at the center of a circular neighborhood (the background) and is described by an angular
position 6 and an angular width ¢ (Figure 3.4). For each pixel, the circular area around
it is segmented into background and foreground by using a sigmoid function. The corner

strength is then calculated using the following equation:

Cloy W) = [ [ W) —sigletiy+ ) ~Ty)ldidj,  (36)

where C, , is the circular area around (x,y), W(;p is the binary map of the corner model
being used, sig() is the sigmoid function for background and foreground segmentation and

I(x,y) is the average pixel intensity in Cy y. The sigmoid function sig() is defined as follows:

1




CHAPTER 3. SYMBOLIC IMAGE & RECURSIVE DECOMPOSITION 22

Figure 3.4: A simple corner model

Figure 3.5: Application of Wedge detector on a facial image

Here, s is a constant whose value is adjusted to determine to which extent a pixel is
segmented as a foreground pixel. Instead of using a constant threshold for background and
foreground segmentation, use of a sigmoid function is deemed to be more stable.

Instead of finding the optimal 0 and ¢ for the corner model which can be too time
consuming, the values are approximated by calculating the union of smaller foreground
wedges. Finally, only those points are considered as corners for which the value of C(x, y, We(p )
from Equation 3.6 exceeds a pre-determined corner strength value. This threshold is the pri-
mary control parameter and varies from one database to another.

Figure 3.5 shows the output corner points marked for the same facial image as in Figure



CHAPTER 3. SYMBOLIC IMAGE & RECURSIVE DECOMPOSITION 23

Figure 3.6: (a) Input image (b) Output of the SUSAN Detector (c) Output of the Harris
Detector (d) Output of the Wedge Detector

3.2 and 3.3 after applying the Wedge detector. The corner strength threshold was prop-
erly tuned to generate acceptable output. Here, we see that the output of this method has
similarity to the SUSAN detector. Like SUSAN detector, this method also does not detect
expected corner points around the chin region. The reason for the similar outputs from these
two methods is the similarity in their underlying mechanism. SUSAN detector also relies
on a simple segmentation to obtain the USANs. But unlike SUSAN, this method explicitly
compares the segments to a pre-established corner model. In that sense, this method has
some difference in principle compared to the SUSAN detector and, hence, the output corner
points are not exactly the same.

Figure 3.6 shows the comparison of the results obtained by these three corner detection
methods on the same image (Figure 3.6-a) as depicted before. As can be seen, the corner
points obtained by these three methods are considerably different in terms of spatial rela-
tionships among them. As a result, our retrieval system will behave differently to each of

these methods and we have observed the same in experiments (Section 4.4).
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3.2 Recursive Decomposition

Recursive decomposition is the method of dividing the feature image into distinct regions
to capture and recognize the spatial and semantic relationships among individual feature

points and is defined as follows [1]:

Definition 3.1. The process of recursively dividing an image space into four equal size
quadrants 0,...,3 is termed as the recursive decomposition of an image. The resultant
quadrants are recognized by four directional relations as North-West (NW), North-East
(NE), South-West (SW), South-East (SE), respectively. The decomposition process stops
only when each and every feature point can be identified by a distinct quadrant and, there-
fore, each quadrant can contain exactly one point in it.

The decomposition hierarchy can be mapped to a top-down built quadtree [55] of height

h such that:

e The root of the tree is assumed to be at level / = 0 and represents complete image.
e The level i,i > 0, of the tree corresponds to the ith level of decomposition.

e The leaf nodes of the tree represent the smallest quadrants resulting from the decom-

position, and each encloses only a single feature point.

Figure 3.7 is an example of a hierarchically decomposed feature image and its corre-
sponding quadtree representation. In this figure, the root of the tree corresponds to the
original non-decomposed image. Each level of the quadtree corresponds to subsequent lev-
els of decomposition. The circles represent internal nodes of the tree whereas leaf nodes
correspond to the smallest quadrants. Quadrants containing feature points are represented

by black rectangles and white rectangles represent empty quadrants.
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Figure 3.7: A recursively decomposed image and its corresponding quadtree

3.2.1 Geometric Transformation Independence

During the semantic conversion process, each feature point is considered as a reference
point to recalculate the orientation of the principal axes of the feature image using the

method described in [27]. The basic idea here is to fit a simple straight line
y=a+bx

to the set of feature points based on the criterion of least absolute deviations [50]. Based
on the fitted line, the principal axes and the centroid of the image are recalculated. After
all the feature points are considered and the new centroid and principal axes of the feature
image are found, the coordinates of all the feature points are recalculated with respect to
the new centroid and principal axes (Figure 3.8), thus making the representation translation,

rotation and scale independent.
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Old image size : 480X480
New image size: 636X636
New centroid : (211,221)
Angle :30°

o

)
a(x1,y1)
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Figure 3.8: A feature image with recomputed boundaries parallel to the new principal axis

3.2.2 Quadtrees

To establish a measure of similarity between the images matched in first stage of filtering,
their corresponding quadtrees are matched. The quadtrees are matched with the help of
a distance function (Definition 3.7). The distance function is defined in such a way that
the distance is computed node by node, starting from the root and going down along both
of the trees gradually. This results in reduced number of comparisons since it allows to
eliminate trees that appear to be different at the initial stages of processing. To formulate

spatial filtering and indexing scheme, the following terminologies are necessary [1]:
Definition 3.2. A quadtree is defined as follows:

e A single node @ is a quadtree. This node is a leaf as well as the root of the tree.

m > 0 is called the occupancy of this node. It is meant to capture the number of
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feature points in the region of the image corresponding to the node. The coordinate

sequence of this node is A, the empty sequence.

o If 71, T, T3, Ty are quadtrees whose roots have occupancies m1,m,, m3 and my respec-

tively, where m| + my + m3 +m4 > 0, we have that

M2 M3+ ma

T 2 WAL

is a quadtree. The node (m| + my + m3 4+ my) is the root of the resulting quadtree.
The leaves of T1, 7>, Tz and Ty are the leaves of the resulting quadtree. The coordinate
sequence of root node is A. If seq is coordinate sequence of a node in Tj,for1 < j<4,
then j e seq is the coordinate sequence of this node in the resulting quadtree, where o

is the sequence concatenation operator.

In these definitions, the root node of the quadtree T is denoted by root(7") and the

occupancy of the node n of a quadtree is denoted by occupancy(n).

Definition 3.3. The level of a node, n, in a quadtree is the length of the coordinate sequence

of that node and is denoted by level(n).

Definition 3.4. The height of a quadtree 7', denoted by height((7'), is one more than the

maximum level of any node in the quadtree.

Definition 3.5. The ith approximation of a quadtree T, for i > 0, is the quadtree which

results by removing all nodes on level j > i. It is denoted by T,

Definition 3.6. A quadtree is complete iff each leaf node has an occupancy of 0 or 1.
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Now the distance function is defined as:
Definition 3.7. The distance between two quadtrees 7 and U, d(T,U) is defined as follows:

case 1: Suppose height(7) = height(U) = 1 and occupancy(root(7")) + occupancy(root(U))
= 0. Then
d(T,U)=0

case 2: Suppose height(7) = height(U) = 1 and occupancy(root(7")) + occupancy(root(U))
> 0.

Also, let M =occupancy(root(7)) and N = occupancy(root(U)). Then

M —N]|

ATV) = TN

case 3: Suppose height(7T) = 1 and occupancy(root(7)) = 0 and height(U) > 1. Then

d(T,U)=1
case 4: Suppose height(7T) = 1, occupancy( root(7) ) = 1, height(U) > 1 and at least one

child of the root node of U has an occupancy greater than 0. Then

N1

d(T.U) = —

case 5: Suppose height(7T) = 1, occupancy( root(7) ) = 1, height(U) > 1 and at least one

child of the root node of U has an occupancy equal to 0. Then

d(T,U) =1
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case 6: Suppose height(7') > 1 and height(U) > 1.

For 1 < j <4, let the subtree of T and U determined by the nodes having coordinate

sequence j be called T; and U, respectively.

Let occupancy(root(7')) = M and occupancy(root(U)) = N

For 1 < j <4, let occupancy(root(7;)) = m; and occupancy(root(U;)) = n;. Then
4 m; 4 j
d(T,U)= (T;,U;) —d(T;,U;)
( ) ) max ;M I ; N ]

Theorem 3.1. Let T and U be two complete quadtrees. Then, for i > 0,

d(Ti,Ui) < d(T(i+1),U(i+1)>

Proof. (Adapted from [1])

Basis — Case i = 0: Case I: height(T) = height(U) = 1.
Then, T© = 7(1) and U© = (1) and the result follows.

Case 2: height(T) = 1 and occupancy(root(7')) = 0 and height(U) > 1.
Then, 7 = T7() = T and height(T(V) = 1.
From Definition 3.7, Case 3 we have that

d(TO, U0y =g(rM vy =1.

Case 3: height(T) = 1 and occupancy(root(7)) = 1 and height(U) > 1.

Then, 7O =70 =T and height(T(l)) =1.
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Suppose occupancy(root(U (©)))= N. From Definition 3.7, Case 4 we have that
d(T©, U0y =|N—1|/N.
Now, height(T(l)) = 1. .. from Definition 3.7, Case 4 and 5 we have that

d(TW,UM) > |N — 1|/N and the result follows.

Case 4: height(T) > 1 and height(U) > 1.

For 1 < j <4, let the subtree of T and U determined by the nodes having coordi-
nate sequence j be called T; and U; respectively. Let occupancy(root(7)) = M and
occupancy(root(U)) = N.

For 1 < j <4, let occupancy(root(7;)) = m; and occupancy(root(U;)) = n;.

Without loss of generality, we assume that M > N. By Definition 3.7, Case 2 we have
that

d(TO.UO0) = (M—-N)/M.

Now, consider the following term:

where, if m; = n; = 0, the jth summand is equal to 0.

For 1 <d <4, if my > ny, then

my lmg —ng| _ma—ng
M max(mg,ng) M
Again, if my < ng, then
mq _|mg—na| _ mamg—ng _mq—ng

M max(mg,ng) = M my M
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0> i mj—njl (MZQN)

=1 max(mj,n;)

. Now, d(T(l),U(l)) > 0.

M —N)
A1 0y s o> L — (1 y©O
r0,u) > 0> S —a(r®,u)
Hence, the result follows.
Induction: Assuming that the theorem is true for i = 0,..., k, we will show that it is true

fori=k+1.

For 1 < j <4, let the subtree of T and U determined by the nodes having coordi-

nate sequence j be called T; and U; respectively.Let occupancy(root(7)) = M and

occupancy(root(U)) = N.

For 1 < j <4, let occupancy(root(7;)) = m; and occupancy(root(U;)) = n;.

Then, we have that the subtree of 7% and U®) determined by the nodes having
(k=1)

coordinate sequence j are Tj(k_l) and U; respectively. We also have that:

4 4
k) ook mj o k-1) o (k- n k=1) (k-
d(Tj()’UJ()):max<21M]d(]}( )yt 1))’2 d(T! )’UJ( 1))>,
J:

and

4 4
(k+1) pr(ktl)y mj o) 77(k) nj k) (k)
a1, U, )_max<21ﬁd(q U ),Zlﬁjd(Tj Uj )).

]: J:

But, by hypothesis we already have that d (Tj(k_l),U (k=1)

our result follows.
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]

This theorem implies that for two trees T and U, if d (Ti U i) > v, where Y > 0 is the
allowable deviation in similarity or threshold and i > 0, then the distance between these
two trees at subsequent levels d (T(i+1),U (”1)) will never be less than the threshold 7.
This means that one can start comparing the trees from the root level and as soon as it is
discovered that the distance between the two trees at a given approximation is greater than
the threshold, its corresponding database image can be discarded without any additional
computation. The distance function is defined in such a way ( Definition 3.7) that the
minimum distance between two trees can be 0 and the maximum distance can be 1. As a
result, the value of y can range from O to 1.

A suitable value of 7 is critical to the filtering process. A small value though reduces
the search space, but carries the risk of leaving out some of the potential candidates. On
the other hand, a value close to 1 may not leave out potential candidates but may result in a
larger set of candidates for a potential match, including those which may not be close to the
query image at all. The optimal value is both application and user expectation dependent
and cannot be predicted in advance.

With the help of a quadtree, we can represent an image at various levels of details and
provide different measurements of similarity between a query and the database images. In
terms of quadtree representation, the extent of fineness is directly proportional to the depth
of the quadtree [1]. The smaller the depth of the tree, the more coarse or less accurate is
the description. The most coarse is the root level, where all feature points are only in one
square. Hence, the less the depth of the tree traversed during comparisons, the more is the
chance that there will be a match, specially when most of the images in the database are

similar to some extent. This is an important observation and serves as the basis of our new
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signature representation scheme.

3.3 Summary

In this chapter, the notion of symbolic image representation has been presented. The im-
portance of underlying corner detection method in our proposed system has been discussed
with details of three different corner detectors: SUSAN, Harris and the Wedge detector. The
idea of recursive decomposition with its advantages and the process of quadtree building

and matching are also presented.



Chapter 4

The Proposed Signature Scheme with

Experimental Results

As mentioned before, the first of the two-level hierarchical indexing scheme in [1] is based
on the concept of signature matching. It serves as a spatial filter to discredit unqualified
images against a given query image. The second stage (as described in Section 3.2.2) is
based on tree matching that not only serves as a secondary filter but also provides a measure
of similarity to rank-order retrieved images. The main purpose of two-staged filtering is to
reduce the cardinality of the search space in first level of filtering so that the second level
that performs more intensive computations has to deal with only a limited set of candidate
images. It is important to note that in the first stage of filtering, if the search space is too tight
and small, there is a likelihood of leaving out some of the potentially useful matches a.k.a
false negatives. On the other hand, if the search space is too wide, there is a possibility of
retrieving irrelevant information a.k.a false positives [17]. In an ideal system, the number of
both false negatives and false positives should be zero. In reality, it is always better to have

false positives than false negatives and most of the image retrieval systems are designed on

34
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this philosophy.

4.1 The Existing Scheme

In [1], a signature is defined as a 32-bit number and is a combination of both disjoint and
superimposed coding methods [17, 48]. Each signature in this scheme consists of two
disjoint fields. First one of these fields is based on population standard deviation of the
number of feature points in the four quadrants after only first level of decomposition. It can

be represented by the following equation [1]:

3 2
Si = Lj-olaj —K)° m, (4.1)

3
Yi=04j
where u = Z;ZO a;j/4 and a; is the number of feature points in each of the four quadrants
after the first level of decomposition.
The second field is the average number of feature points at each level of decomposition

of the image and can be represented by the following equation [1]:

s — @ 4.2)
where £ is the height of the quadtree.
After building the signature, the notion of Tolerance Factor (Definition 4.1) is used to
relax the signature to accommodate the concept of similarity. A step-by-step example of
how a signature is formed is given later in Section 4.3.

The main problem with this signature representation is the generalization in both of its

fields. As a result, this signature matching scheme results in too many false positives. This
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can be observed from the results in Section 4.4. As stated before, having too many false
positives leads to poor performance due to higher number of comparisons. Moreover, im-
age retrieval systems are most likely to be used in specialized applications where images
are generally similar to each other to some extent (e.g. medical imaging, facial recognition,
etc.). As an example, a typical facial image database consists of close-up facial shots of
all subjects. Here the basic shape of face in all of the images is similar. When most of the
images in a database have some type of similarity, the distribution of feature points in the
first level of decomposition does not exhibit much variance for creation of distinguished
signatures. As a result, many of the signatures will be identical. The signature representa-
tion scheme defined in [1] only deals with the standard deviation in first level and average
number of points in each level. This is not suitable for many applications, particularly
those involving specialized databases. However, it is important to note that whatever can

be accepted in the second stage of filtering must not be rejected in the first stage.

4.2 The Proposed Scheme

Our new signature representation scheme is based on the observations and tradeoffs stated
before. The proposed scheme results in significantly less number of qualified signatures for
second level of filtering and, hence, results in significantly improved system performance.
Also, our signature representation is entirely based on the idea of recursive decomposition
and quadtrees and, hence, does not incur any additional computational or storage overhead.

Our signature representation scheme is based on the important observation that in most
of the images, the coordinate locations of feature points are mostly coarse. This is due
to the fact that usually the feature points occur at locations where there is a sharp inten-

sity or illumination change. This occurs around the object boundaries whereas most of the
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Figure 4.1: Distribution of feature points in a typical image

images in real applications contain only few objects. Even if an image contains a lot of
objects, compared to the pixel resolution of the image, the number of feature points and,
hence, the number and placement of these points are still coarse. Therefore, during recur-
sive decomposition, if we only consider the information available to us in the first level of
decomposition, we may not gain much useful information and if the two images have some
degree of similarity, they may yield the same signatures. This concept is illustrated in Fig-
ure 4.1 where the coordinate locations of the feature points are denoted by dots appearing
in an oval shape in the center of the image. Here we can see that a number of quadrants
at different levels of decomposition are empty, i.e., they do not contain any feature point.
To be more precise, before level 3, the feature points are all concentrated only in one quad-
rant at each level of decomposition. In this figure, shaded areas indicate quadrants with no
feature points.

From this observation, we can intuitively assume that the quadrants with no feature
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points should not be involved in subsequent computations. Later we formally prove that
discarding these empty quadrants does not result in loss of relevant information and hence,
cannot generate any new false negative during the quadtree matching process. Based on

these observations, the new signature representation scheme [32] is given as follows:

e As before, a signature S of a quadtree T of an image is a 32-bit number. However, in
new scheme, the signature S consists of four 8-bit disjoint fields S;, 1 <i < 4. Each of

these fields corresponds to one of the four quadrants in the recursive decomposition.
e if height(7T) =1, then S =0.

o if height(7T) = 2, then S; = % of total number of feature points belonging to the

quadrant i.

e if height(T) > 2, for 1 <i < 4 let the subtree of T determined by the nodes having
coordinate sequence i be called 7;. Also, each S; is further divided into four equal
size disjoint fields (i.e. 2 bits each) S(,-7 J) 1 < j <4 such that each field corresponds

to one of the four quadrants in the recursive decomposition of 7;. Then for each 7;:

1. if height(7;) = 1, then S; = 0.

2. if height(T;) = 2, then §; ;) = % of total number of feature points belonging to

the quadrant corresponding to ;.
3. if height(7;) > 2:
— If at least two of the four immediate descendants of 7; have occupancy

greater than 0, then S; ;) = % of total number of feature points belonging

to the quadrant corresponding to j.
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— In all other cases, T; = T; ;), such that root(7(; ;) = only immediate de-

scendant of root(7;) with non-zero occupancy. Go to step 1.

In simple words, the representation implies that we can keep on recursively subdividing
each of the quadrants until we get at least two sub-quadrants, each containing at least one
feature point in it. This will allow us to discard most of the empty quadrants. Figure 4.2
shows the application of this method for the top right quadrant of Figure 4.1. Here we can
observe that at level 3, there are three sub-quadrants with non-zero occupancy. Therefore,
we stop at level 3 and build the signature accordingly.

In this scheme, we need to represent % of total number of feature points with the help

of only two bits. This is achieved by representing the % value(p) with the help of 4 ranges:

p <25%

25% < p < 50%

50% < p < 75%

p>T15%

Although this may generalize the information to some extent but the flexibility in the
generated signatures out weights this generalization. Further, the generated signatures pro-
vide significant improvement in the overall system performance as can be observed from
the experimental results.

It should be noted that since this is the first stage of filtering, if any image that can be
matched with the query image in the second stage is left out in the signature matching phase,
it will become a false negative. In our signature representation, whenever we traverse a level

down in the quadtree to find nodes with non-zero occupancy, we discard empty nodes. If
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- -

(a)

<« Stop at this level

(b)

Figure 4.2: New signature representation method (a) A sample recursively divided image
and (b) its corresponding quadtree
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we can prove that even after discarding these nodes, the tree distance still remains the same
as before (or less), we can guarantee that our signature representation scheme will not result
in any new false negative. The proof here is given only for one of the four subtrees after
first level of decomposition but others are similar. Before first level of decomposition, the

signature is trivial and does not result in any new false negative.

Theorem 4.1. If there exists two trees T and U such that no node of T or U has more than
one immediate descendant with non-zero occupancy up to level m and level n respectively,
then d(T,U) > d(T,,U,), where T, and U, are two subtrees such that root(T,) = only
descendant of root(T ) with non-zero occupancy at level m and root(U,) = only descendant

of root(U ) with non-zero occupancy at level n.

Proof. Without loss of generality, we can assume that height(7") > 1 and height(U) > 1.

Case 1: m = n. From Definition 3.7, Case 6 we have that:
4 m; 4 i
d(T.U) = (T; U —d(T; U
( ) ) max j_ZlM ] ;N I

where T; and U; are the subtree of 7 and U determined by the nodes having coordi-
nate sequence j respectively. occupancy(root(7')) = M and occupancy(root(U)) = N

For 1 < j <4, occupancy(root(T;)) = m; and occupancy (root(U;)) = n;.
Now, let T,, and U}, are two subtrees such that:

root(7;) = only immediate descendant of root(7") with non-zero occupancy and

root(Up) = only immediate descendant of root(U) with non-zero occupancy.

then:

e occupancy(root(7j)) = M when j =a
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e occupancy(root(T})) = 0 otherwise
Similarly:

e occupancy(root(U;)) = N when j =b

e occupancy(root(U;)) = 0 otherwise
Hence,
d(T,U)
= max Z] 1Md(TjaU) Z] 1N (T17U>>

= max %d(Ta,Ua)7%d(Tb7Ub)>

= max d(Ta,Ua),d(Tb7Ub))

e if a = b, then we have d(T,U) = d(T,,Up)
e if a # b,then for d(T,,U,) we have occupancy (root(U,)) = 0.

Also, height(U,) = 1 and height(7;) > 1, and from Definition 3.7, Case 3 we

have:

d(T,,U,) = 1.

Similarly, d(7},Up)=1.

Therefore, in this case d(T,U) =1 > d(T,,Up)

=d(T,U) > d(T4,Up)

Similarly d(7,,Up) > d(T,Uy), where T, and U, are two subtrees such that:

root(7;) = only immediate descendant of root(7;) with non-zero occupancy.

root(U;) = only immediate descendant of root(U,) with non-zero occupancy.

S d(TU) > d(Ty,Up) > d(To,Ug) > ... > d(T,,Uy) = d(T,U) > d(T,,U,).
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Case 2: m # n. This Case is similar to Case 1 above. Let us assume that 7;,, and U,, are two

subtrees such that:

root(7;,) = last descendant of root(7") having only one immediate descendant with
nonzero occupancy and root(U,) = last descendant of root(U) having only one im-

mediate descendant with nonzero occupancy.

By Case 1 it has already been proven that d(7,U) > d(T,,,U,). Now, let T, and U,

are two subtrees such that:

root(7;) = only immediate descendant of root(7;,) with non-zero occupancy and

root(Up) = only immediate descendant of root(U,) with non-zero occupancy.
Then we exactly have Case 1 from which rest of the proof follows.

~.d(T,U) > d(T,,U,).
O

This theorem is very important for us since it ensures that our signature representation
will not result in any new false negative. It is important to note that even if theoretically
one may find a representation scheme to generate a unique signature for each database
image but in reality, the cost of finding such a representation may not be worth it and may
significantly degrade overall system performance. Even though this scheme generates non-
unique signatures, it is quite simple and does not incur any additional overhead. All of the

quadtree information required here is already available for use in second level of filtering.
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4.3 Tolerance Factor

Another important aspect of signature representation is the Tolerance Factor (Definition
4.1). Tolerance Factor is essential to accommodate the concept of similarity between a
database and the query image [1] and effects the number of matched images retrieved.
Therefore, it is obvious that it has an immediate effect on the number of retrieved signa-
tures. The higher the value of the Tolerance Factor, the higher the number of retrieved
signatures and possibly higher number of matched images. In our representation, the mod-

ified definition of Tolerance Factor is given as:

Definition 4.1. The Tolerance Factor (TF) is an addition of +x to the % values of Si.j)s
1 <i,j <4 for each S; of a database image signature S for similarity-based search and

retrievals by providing a range-search capability [1].

TF = 0 is a special case and provides an exact match. The value of x in TF depends on
application and extent of similarity. This allows us to test a range of image signatures for a
possible match against a given query image signature S,, computed without any tolerance.
In the second stage of filtering, only those images are taken into consideration for which the
binary AND operation between the query image signature S, and database image signature
S results in the query image signature S, i.e. S, NS — S,.

As an example, suppose we have assigned the following 2 bit binary codes to the 4

ranges:

e p<25% — 00
® 25% < p < 50% — 01

e 50% < p<75% — 10
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e p>T75% — 11

Now, let us assume S 1) is 43% and accordingly the assigned binary code is 01. Let
us also assume that the value of x for calculating TF is 10. Then we have two range values

and consequent binary codes for Sy 1):

L] Sl(lvl) 25(171)—X:33—>01
o Sl =Sany+x=53-10

Our final representation of S(; ;) is computed by taking binary representations of the

three values and performing a binary OR operation. In other words:

/ 7

= S(1.1) — 01U01U 10
:>S(171) — 11

Similarly, lets assume S(; 5y — 00, S(; 3y — 01 and S(; 4y — 10. Then, by concatenating

these binary codes we find Sy:

St = Sa.1)Sa2)181.3)S0.4)
— S —11/00|01]10
= S, — 11000110.

Similarly, lets assume S, — 00111000, S3 — 00101001 and S4 — 00111100. Finally,

by concatenating these codes, we find the 32-bit signature S for a database image:
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S — 1152|5354
= § — 11000110 00111000 00101001 00111100.

Now, suppose our query image signature is S, — 10000110 00101000 00100001 00110100.

Then, by performing a binary AND operation between S and S, we find:

11000110 00111000 00101001 00111100
N

10000110 00101000 00100001 00110100

10000110 00101000 00100001 00110100

which is equal to the query image signature S,. Hence, this database image will be

accepted for the second stage.

4.4 Experimental Results

To verify the presented concepts, we conducted a series of experiments on three separate
image databases with each database concentrating on different aspects of the system (aver-

age computational time, effect of changing threshold value etc.).

4.4.1 Databases and Experimental Setup

The first of these databases is the popular Olivetti-Oracle Research Lab (ORL) face database
[64]. The ORL face database consists of 400 frontal face images; images of 40 individuals
with 10 variations of each in terms of pose, illumination, facial expression (open/closed
eyes, smiling/not smiling) and facial details (glasses/no glasses). The second database

is a binary shape database. It consists of binary images of closed shapes of different ob-
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Figure 4.3: Spatially similar images from the binary shape database

jects collected from [33]. We randomly selected 2000 different shape objects. In order
to demonstrate geometrical variance independence, we generated five geometric variants
of each original image. As a result the database contains 12000 images with exactly six
instances of each image. The above mentioned two databases vary from each other consid-
erably in terms of their complexity and the number of images. The images from the ORL
face database are generally more complex in terms of illumination and intensity variation
than the images from the binary shape database. As a result, it is more difficult to produce
consistent symbolic images from the facial images. On the other hand, the binary shape
database has significantly higher number of images. These two databases are used to com-
pare the performance of the proposed system to the existing system since the main purpose
of our proposed system is to reduce the number of matched signatures in the first stage and
consequently the overall CPU time.

The third image database, called spatial database is a small database and consists of
binary images of spatially similar objects collected from [33]. Images of only 20 objects
are collected such that each object has 5 spatially similar images, making it a database of
only 100 total images. The experiments on this database are conducted mainly to observe
the effect of changing the value of distance threshold v, as described in Section 3.2.2.

Figure 4.3 shows the spatially similar images of an apple from this database. Some

important characteristics of the image databases used are summarized in Table 4.1.
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For the first two databases, each image is used as a query image and compared against
all other database images. Recorded results are the the average results (number of retrieved
images, computational time, etc.) over all instances of execution. For the spatial database,
we randomly selected one of the five spatially similar images of each object as a query
image and the results are averaged for all of the 20 objects.

Each of the corner point detection methods described in Section 3.1 has a key control
parameter. We adjusted this parameter to a suitable value for each of the three methods by
visually observing the output for few randomly selected representative images from each
database.

The experiments are repeated for a range of TF values. To match the TF of both
systems for comparisons, we chose TF € {0.0,0.1,0.2} for the existing system whereas
for the proposed system, we chose TF € {0,5,10}. An interval of 5 in the proposed system
is considered to be equivalent to an interval of 0.1 in the existing system and is a reasonable
choice for the proposed system as 0 < §; ;) < 100 for all S; ;. The distance threshold
value vy is fixed at 0.5 to discard unqualified images for the first two databases. For the

spatial database, it is varied from O to 1 with a step size of 0.2.

Characteristic ORL Face Database | Binary Shape Database | Spatial Database
Number of Total Images 400 12000 100

Number of Original Images 400 2000 100

Rotational Variants Per Image | 0 2 0

Scale Variants Per Image 0 2 0

Translation Variants Per Image | O 1 0

Minimum Image Size (pixels) | 92X 112 52X 50 75X 42
Maximum Image Size (pixels) | 92 X 112 609 X 492 124 X 158

Table 4.1: Summary of characteristics of image databases
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4.4.2 Results and Analysis

All of the experimental results are collected using same hardware configuration for both the
existing and the proposed system for all experiments — a personal computer with an Intel
Core™2 Quad processor running at a speed of 2.33GHZ and containing 6 GB of RAM
whereas the developed application is in Java.

Figures (4.4-4.9) show the results of comparison of average number of retrieved and
matched signatures for the first two databases using the three corner detection methods. In
these figures, the label “Tree” indicates the entire tree matching or the n” approximation.
From these figures, we can observe that for all cases, the proposed signature representation
scheme results in considerably fewer number of matched signatures. As a result, the overall
performance of the system is improved, which is evident from the CPU time comparisons
presented in Figure 4.10. The solid lines in Figure 4.10 represent CPU times for the existing
method while the dashed/dotted lines represent CPU times for the proposed method.

In binary shape database, there are exactly six known instances of each image. Ideally
for TF = 0.0, only six signature should match with the query image signatures and, as
a result, we should retrieve only six images. However, it is important to note that since
image signatures are not unique, the system may retrieve more than six matching signatures.
However, as can be observed from Figures (4.7-4.9), the new method results in significantly
reduced number of matched signatures, making it nearly optimal when TF = 0.0.

Also, for the ORL face database although all of the 10 images for a particular individual
have similar shapes, they may not be spatially similar to one another. The concept of spatial
similarity in this domain translates to pose rather than shape as one might expect. As a
result, our system is not expected to retrieve all of the 10 images of a particular individual

but may retrieve images that have similar pose, even if they belong to different individual.
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Figure 4.7: Comparison of results for the binary shape database using SUSAN
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(a) (Query) (b) (© (d)

Figure 4.11: Example query and output images from the ORL face database

This is evident from Figure 4.11 where we show a query image and the retrieved images
(Harris detector, TF = 0.0, y= 0.5, n'" approximation). Here we can observe that only 3
of the 10 images for the individual in query image are retrieved by the system along with
3 apparently unexpected images of different individuals. However, if we observe these
images with corner points marked more closely (using Harris detector), it may become
obvious that even though the shapes in those images are different, their symbolic image
representations are spatially similar.

We have also observed general behavior of the system with respect to variations in 7F
and approximation. For smaller approximations, lesser depths of quadtrees are compared
against potential candidate images as determined by the signature matching process. When
approximation is 0, only the root level is considered and as a result almost all of the signa-
tures are successfully matched in the second stage. Also, the number of retrieved signatures
increases along with an increase in TF. These results are in accordance with the general
concept of the overall system.

If we compare results of the three corner detection methods, we can see that in general,

Harris detector results in higher number of retrieved signatures in the first stage. As Harris
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Database Name

ORL Face Database

Binary Shape Database

Detection Method | Min. Depth | Max. Depth | Feature Points | Min. Depth | Max. Depth | Feature Points
SUSAN 7 8 36-108 4 11 5-191

Harris 6 7 43-82 5 9 10-202
Wedge 6 8 33-100 4 10 4-164

58

Table 4.2: Summary of characteristics of feature images

detector is based on image derivatives, it is expected to be more “consistent” across the
images in a database when there is no noise. This is specially true for the ORL face database
where the intensity characteristics of the images are different from each other. Since the
Harris detector behaves consistently, the output symbolic images are spatially more similar
to each other than those for the SUSAN or the Wedge detector. As a result we have higher
number of retrieved signatures. This can be both good or bad since there is no ground
rule and the ultimate choice of corner detector depends entirely on the image database
and expectation of the user. Table 4.2 provides the comparison of some feature image
characteristics for the three corner detection methods on the ORL face database and the
binary shape database.

Figure 4.12 shows the result of changing the distance threshold value for all three tol-
erance factors for the spatial database. Results presented here are only for Harris detector.
As mentioned before, a threshold corresponding to a measured distance of 0.0 is a special
case in which an exact match between the query image and the database images is sought.
On the other hand, a distance of 1.0 does not filter anything in the second phase of indexing
process and will accept all of the retrieved images that have passed the signature filtering
phase. We also see from Figure 4.12 that for 7F = 0, the proposed system retrieves only 3.5
signatures on average, where there are actually 4 spatially similar images in the database
against a given query image. This is because even if the images are spatially similar, TF =0
is very restrictive and allows searches only for exact signature match. As a result, it does

not retrieve the expected images. Indeed, the combination of different 7F and 7y values
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Figure 4.12: Effect of changing distance threshold on the spatial database

gives the system a wider range of customization. For this database, TFF =5 and y= 0.6
seems like a reasonable choice, as it results in the expected 4 matched images for a query
image (marked by a small square in Figure 4.12). For a real application where the expected
output is not known, the parameters can be tuned manually or by incorporating some kind

of relevance feedback from the user.

4.5 Summary

This chapter describes the primary contribution of the thesis, the new signature represen-
tation scheme. The representation method and the motivation behind the algorithm is dis-
cussed in detail. It is also formally proved that the new signature representation does not
result in any new false negative. Experimental results on three different databases with

varying control parameters is presented. From the results, we see that the new signature
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representation indeed generates fewer number of matched signatures and consequently, im-
proved CPU time compared to the existing scheme. Comparison and analysis of the results
for the three different corner detection methods, namely, SUSAN, Harris and the Wedge

detector have also been presented.



Chapter 5

Conclusions and Future Works

In this thesis, we have presented a new signature representation method for a two-level
spatial similarity-based image retrieval system using quadtrees. The key contributions of

the thesis can be summarized as follows:

e The new signature representation scheme presented in this thesis results in signifi-
cantly fewer number of matched signature in the first level of filtering compared to
the existing scheme, and hence, improves the overall system performance consider-

ably.

e [t is mathematically proven that the new signature representation scheme does not
carry any risk of generating new false negatives, which is a condition that every CBIR

system must satisfy.

e As the system is heavily dependent on the output of the underlying corner detection
method, extensive comparison of results for three different corner detection methods,

namely, SUSAN, Harris and the Wedge detector is also presented.

61
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The system presented here is highly customizable in terms of output by using combi-
nation of different values for the tolerance factor and the distance threshold. Hence, the
system can be improved significantly by incorporating relevance feedback. User feedback,
in turn, may allow the system to optimally auto-tune the parameters. Besides user feed-
back, the work may be extended to incorporate other image features such as image color

and texture, so that the best match against a query can be determined.
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