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Abstract

One of the main problems in graph theory is the question of graph connectivity. Graph connectivity

often arises in problems related to network reliability. Graph connectivity can be studied from

two different aspects, namely, vertex-connectivity and edge-connectivity. Vertex connectivity is the

smallest number of vertices whose deletion will cause a connected graph to be disconnected. The

focus of this work is on finding separation pairs of a graph which is the set of pairs of vertices

that deleting them would disconnect a graph. Finding separation pairs can be used in solving

the problem of vertex-connectivity and finding the triconnected components of the graph. There

have been different algorithms presented during the past which are non-linear or if linear, very

complicated. This work is based on the work of Tarjan and Hopcroft which finds the separation

pairs in linear time, that is achieved by the use of Depth-First Search (DFS). Our goal is to present an

algorithm that finds the separation pairs in an asynchronous distributed computer network using

distributed Depth-First search (DDFS).
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Chapter 1

Introduction

1.1 Introduction

Graph connectivity has always been one of the most important problems explored in graph the-

ory. Some of the most common uses of graph connectivity are in communication networks like

telephone networks where the reliability of the network can be determined. Other applications

are in irreducibility analysis of Feynman diagrams in quantum physics and chemistry, scheduling

problem in operational research and circuit-layout problems.

A graph is k-vertex-connected (k-edge-connected, respectively) if removing less than k vertices (edges,

respectively) will not result in a disconnected graph. Clearly, we are interested in the cases where

k ≥ 2. A 2-vertex-connected graph is commonly called a biconnected graph while a 2-edge-connected

graph is commonly called a bridge-connected graph. A 3-vertex-connected graph is also called a tri-

connected graph.

Despite the fact that a tremendous amount of effort had been put into the studies of the graph

connectivity problems, efficient algorithms are known only for k ≤ 4.

For k = 2, the first biconnectivity algorithm was presented by Tarjan[42] The algorithm runs on the

RAM (the standard sequential computer model) and takes O(|V|+ |E|) time and space for a con-

nected graph G = (V,E). The algorithm also solves the brige-connectivity problem. Later, Hopcroft

and Tarjan presented an optimal algorithm for triconnectivity[20]. Both algorithms are based on a

1



CHAPTER 1. INTRODUCTION 2

graph traversal technique called depth-first search. Later, Gabow revisited depth-first search from a

different perspective - the path-based view - and presented new depth-first-search-based optimal

algorithm for biconnectivity and bridge-connectivity[16]. Galil and Italiano[17] presented the first 3-

edge-connectivity algorithm. Their method is to use reduction to transform the 3-edge-connectivity

problem to the 3-vertex-connectivity problem and then use the triconnectivity algorithm of Hopcroft

el al. to solve the problem. The algorithm runs in optimal time and space. Owing to the fact that the

algorithm of Galil et al. is rather complicated, a few simpler optimal algorithms were then reported

by Taoka et al.[41], Nagamochi and Ibaraki[35] and Tsin[44],[48].

Efficient algorithms for other computer models have also been proposed. For the PRAM (the paral-

lel RAM) model, for the biconnectivity problem, Tsin and Chin [49] presented an algorithm that runs

on the CREW (concurrent-read-exclusive-write) PRAM. The algorithm takes O(log2(|V|)) time using

O(|V|2/ log2(|V|)) processors (Note: log denotes log2) which is optimal for dense graphs. Tarjan and

Vishkin[43] developed an algorithm for the CRCW (concurrent-read-concurrent-write) PRAM that

takes O(log(|V|)) time using O(|V|+ |E|) processors. For triconnectivity, a number of algorithms had

been reported[37, 33,14] and all are very complicated. Each of them gives rise to a complicated non-

optimal sequential algorithm. For 4-vertex-connectivity, Kanevsky and Ramachandran presented

an algorithm for finding all the separating triples (sets of three vertices whose removal results in a

disconnected graph)[22]. The algorithm runs on the Arbitrary CRCW PRAM in O(log2 n) time using

O(n2) processors. It also gives rise to a sequential algorithm that runs in O(n2) time and space.

On the External-Memory model, Chiang et.al. presented the first I/O-efficient biconnected compo-

nent algorithm[10]. The algorithm is an adaption of the biconnected component PRAM algorithm

of Tarjan et.al[49] based on simulation. It performs O(min{sort(V2), log(V/M)sort(E)}) I/Os. Using

an External-Memory connected component algorithm of Munagala et al[34], Meyer showed that

the I/O bound of the biconnected-component algorithm of Chiang et. al. can be improved to

O((E/V)sort(V) ·max{1, loglog(|V|DB/|E|)}). Note that (|E|/|V| · sort(|V|)) = Θ(sort(|E|)).

On the distributed computer model, a number of algorithms that run in O(|V|) time and transmits

O(|E|) messages of O(log |V|) length had been proposed[4,12,29,39]. In the fault-tolerance setting,

with the assumption that a breadth-first search or depth-first search spanning tree is available,

Karaata[26] presented a self-stabilizing algorithm that finds all the biconnected components in O(d)
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rounds (d is the diameter of the graph) using O(|V|4 log4) bits per processor; Devismes [13] im-

proved the bounds to O(H) moves (H is the height of the spanning tree) and O(|V| log4) bits per

processor, and Tsin[44] further improved the result to O(dn log4) rounds and O(|V| log4) bits per

processor without assuming the existence of any spanning tree.For 3-edge-connectivity, Saifullah

and Tsin[46] presented a self-stabilizing algorithm that can identify all the 3-edge-connected com-

ponents in O(H) rounds or O(|V|H) moves using O(|V|H log∆) bits per processor, where H is the

height of the depth-first search tree constructed by the algorithm and ∆ is the largest degree of a

node in the network.

In wireless sensor network, Turau[50] presented an algorithm that takes O(|V|) time and transmits

at most 4m messages for the biconnectivity problem. No algorithm has been for proposed for

3-connectivity or higher.

1.1.1 Motivation

A distributed computer/communication network can be modeled as a graph G = (V,E) such that V

represents the set of notes (which are computers) and E represents the communication links between

the nodes. The vertex- (edge-,respectively) connectivity of G represents the reliability of the net-

work in the presence of node or link failures. Specifically, a k-vertex-connected (k-edge-connected,

respectively) network will remain connected in the presence of k−1 or less node (link, respectively)

failures.

As pointed out earlier, the 2-vertex- and 2-edge-connectivity problems have been studied exten-

sively in the distributed setting. A number of efficient distributed algorithms have been proposed.

For 3-edge-connectivity, Jennings et al.[21] presented a distributed algorithm that requires O(|V|3)

time and messages. Tsin[45] improved the time and message bounds by presenting a distributed

algorithm that takes O(|V|+ H2
T) time and transmitting O(|E|+ |V|HT) messages, where HT(< |V|) is

the height of a depth-first spanning tree of the network. In the worst case, the algorithm requires

only O(|V|2) time and messages.

For 3-vertex-connectivity, no distributed algorithm has been reported so far. Our objective is to

develop an efficient distributed algorithm for triconnectivity to fill the void. We shall develop our

algorithm using the ideas underlying the sequential algorithm of Hopcroft et al.
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1.1.2 Previous related works

For the triconnectivity problem, the only known algorithm with linear-time complexity is the

aforementioned depth-first-search-based algorithm of Hopcroft and Tarjan. Unfortunately, this

algorithm is rather complicated and its presentation contains quite a number of serious, although

amendable, errors which make the paper quite difficult to comprehend. In 2001, Gutwenger and

Mutzel[18] wrote a paper on SPQR-trees in which they revealed the errors in the algorithm of

Hopcroft el al. and fixed them. Gutwenger and Mutzel were motivated by the fact that the SPQR-

tree is a data structure that can be used to represent the decomposition of a biconnected graph into

its triconnected components. They had also implemented the algorithm and claimed that it was the

only implementation that correctly implemented the triconnectivity algorithm of Hopcroft et al. in

linear time.

In the triconnectivity algorithm of Hopcroft and Tarjan, depth-first search plays a central role.

Therefore, if we were to develop a distributed algorithm for triconnectivity based on their algo-

rithm, we would have to had an algorithm to traverse the network in a depth-first search manner.

Fortunately, there have been quite a number of distributed depth-first search algorithms published

in the literature.

Cheung[9] reported the first distributed depth-first search algorithm. The algorithm runs in 2|E| time

units and transmit 2|E|messages. Awerbuch[4] presented an algorithm that has an order of magni-

tude improvement in time complexity over that of Cheung but transmits twice as many messages

as Cheung. Specifically, his algorithm runs in at most 4|V| time units (note that |V|−1≤ |E| ≤O(|V|2))

and transmits 4|E| messages. Moreover, his algorithm does not require the messages received at

each node to be processed in the order they arrived. Lakshmanan et al.[29] presented an algorithm

that improved both the time and message bounds to 2|V| − 2 time units and at most 4|E| − (|V| − 1)

messages, respectively. However, their algorithm requires that the messages received at each node

to be processed in the order they arrived. Soon after that, Cidon[12] presented an algorithm that

takes 2|V| − 2 time units and transmits at most 3|E| messages. Moreover, his algorithm also does

not require the messages received at each node to be processed in the order they arrived. Tsin[47]

showed that Cidon’s algorithm does not always work correctly by presenting two counterexamples.

He then showed that the errors in Cidon’s algorithm can be fixed but the resulting algorithm will
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have time and message bounds same as those of Lakshmanan et al. Tsin also showed that by using

the dynamic backtracking technique of Makki et al.[31], the time bound of the corrected Cidon’s

algorithm can be improved to n(1 + r), where 0 ≤ r < 1.

Sharma et al[39] showed that if the message length is allowed to be O(|V|) rather than O(1), both

the time and messages bounds of distributed depth-first search can be reduced to 2|V| −2.

1.1.3 Contribution of this thesis

To the best of our knowledge, there has been no distributed algorithm presented for triconnectiv-

ity. We shall present an efficient distributed algorithm that identifies a subsets of separation pairs

based on which the network can be decomposed into split components (essentially triconnected

sub-networks of the given network). For a network G = (V,E), our algorithm runs in (|V|+ H2)

time and transmits O(|E|+ |V| ·H) messages, where H(< |V|) is the height of the depth-first search

tree constructed by the algorithm. In the worst case (i.e. when H = O(|V|)), our algorithm takes

O(|V|2) time and transmit O(|V|2) messages. This algorithm is the first distributed algorithm for

triconnectivity.

Considering the example of a telephone or computer network (where phones or computers are the

nodes of the graph and links are the edges), our algorithm can be used to determine how reliable

the network is should there be one or two node-failures occur simultaneously in the network.

1.2 Organization of this thesis

In Chapter 2, some basic definitions in graph theory are given. A brief description of the depth-first

search technique is also given. In Chapter 3, the triconnectivity algorithm of Hopcroft et al. is

explained. In Chapter 4, the distributed model for which our algorithm is designed is described.

In Chapter 5, our distributed algorithm for finding separation pairs is presented. The correctness

proof of the algorithm as well as time and message complexities analysis are given. In Chapter 6,

we make some concluding remarks and discuss some possible future work.



Chapter 2

Definitions

In order to be able to fully understand the algorithm we will present, we shall first familiarize the

reader with graph theory terminologies and definitions. The following are some of these definitions

that would be used in the following chapters.

2.1 Basic Definitions

A graph G = (V,E) will be represented by its vertex set V and its edge set E.

Edge

Every element in E is an edge in G. Every edge is determined by two vertices. If the two vertices

are v and w, then the edge is denoted by (v,w).

Adjacent

If there is an edge (v,w) in the graph G, then v and w are adjacent to each other.

Incident to

Edge (v,w) is incident to vertices v and w. Vertices v and w are incident to the edge (v,w).

6
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Degree

A vertex v in the graph G has the degree k (denoted by deg(v)) if there are k edges incident to it in G.

Directed Edges

If the (v,w) in graph G is an ordered pair, then the edge is a directed edge and is said to be directed

from v to w.

Undirected Edges

If the (v,w) in graph G is an unordered pair, then the edge is an undirected edge.

Figure 2.1: Directed and undirected graphs

Directed Graph

A directed graph is a graph in which every edge is a directed edge.

Undirected Graph

A undirected graph is a graph in which every edge is an undirected edge.

Multigraph

A multigraph is a graph in which there exists two vertices having two or more edges incident upon

both of them.

Head And Tail Of The Edge
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Let (v,w) is a directed edge, v is called the tail and w is called the head of the edge.

Path

Let G is a multigraph, a path in G v �∗ w is a sequence of vertices and edges leading from v to w. A

path is simple if all its vertices are distinct. Vertices v and w are called the terminating vertices of

the path.

Cycle

A path v �∗ w is a cycle if all its edges are distinct and the only vertex that occurs exactly twice on

the path is v.

Connected Graph

An undirected multigraph is connected, if every pair of vertices v and w in G is connected by a path.

Subgraph

If G(V,E) and G′= (V′,E′) are two multigraphs such that V ⊆V′ and E⊆E′ then G′ is a subgraph of G.

Bond

A multigraph having exactly two vertices v,w and one or more edges (v,w) is called a bond.

Directed Tree

A directed tree is a directed graph whose undirected version is connected and has a vertex, called

the root, which is the head of no edges and all vertices except the root are the head of exactly one edge.

Spanning Tree

If G is a multigraph, a tree T is a spanning tree of G, if T is a subgraph of G and T contains all the

vertices of G.

Biconnected Graph
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A connected multigraph G is biconnected if for each triple of distinct vertices v,w and a in V, there

is a path P : v � w such that a is not on the path P.

Separation Point

If there is a distinct triple v,w,a in graph G such that a is on every path v � w, a is called a Separation

point (or an articulation point) of G.

Separation Pair

Let a,b be a pair of vertices in a biconnected multigraph G. Suppose the edges of G are divided into

equivalence classes E1,E2, ...,En such that two edges which lie on a common path do not contain

any vertex of a,b except as an endpoint are in the same class. These classes are called the separation

classes of G with respect to a,b. If there are at least two separation classes, then a,b is a separation

pair of G unless:

(i) there are exactly two separation classes, and one class consists of a single edge, or

(ii) there are exactly three separation classes, each consisting of a single edge. In much simpler

words, a separation pair is a pair of vertices that their elimination will disconnect a biconneted graph.

Triconnected Graph

If G is a biconnected multigraph such that it does not contain a separation pair, then G is triconnected.

Adjacency List

In order to show the relation between the edges and vertices in a graph we can use an adjacency

list. This list shows which vertices are adjacent to a given vertex v.

A graph and its adjacency list are shown as an example In Figure below.
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Figure 2.2: A graph and its adjacency list

2.2 Depth-first Search

Depth-first search is a systematic method for exploring a multigraph[42]. This search can be used

for numbering the vertices in the graph and also determining a spanning tree of a graph.

In this search, first we assume that all the vertices are in the unvisited state. We start from an arbitrary

vertex, call it the root, and look at its adjacency list for unvisited vertices. If there are unvisited

vertices, we will arbitrarily choose one and move to that vertex. We continue the same process till

the time there are no unvisited vertices, then the search will backtrack. In depth-first search, each

edge is examined exactly twice and each vertex is visited once. If the graph is an undirected graph,

then by using depth-first search we can impose an order on its vertices (according to the depth-first
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search numbers) and hence transform it to a directed graph.

The search can be presented as a recursive function as shown below:

DFS(v)

begin

visit vertex v and mark it as visited

choose an unvisited vertex w in A[v] (the adjacency list of v)

invoke DFS(w)

end

It is well-known that depth-first search runs in O(|V|+ |E|) time, where E is the edge set and V is the

vertex set of the graph[42].

The following figures shows how a graph is traversed by DFS.

Figure 2.3: DFS traversal

As noted before, DFS can be used for constructing a spanning tree of a graph. After DFS is

applied, the edges that belong to the spanning tree are called the tree-edges and the rest of the edges

are called the fronds. The difference between the tree edges and the fronds is that, if during the

search we visit a vertex w in A[v] and w is not visited the edge (v,w) will become a tree-edge and if

w is already visited, the edge (v,w) will become a frond.
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2.2.1 Some Definitions Related To DFS

DFS Tree

The spanning tree constructed by the depth-first search traversal of the graph is called a DFS tree

of the graph.

DFS Number

The number assigned to a vertex during a depth-first search is called the depth-first search number of

that vertex and is denoted by dfs(v).

Child

In the DFS tree, if (v,w) theis a tree edge then v is the parent of the w and w is a child of v.

Leaf

If a vertex in the DFS tree of graph G does not have any children, it is a leaf.

Ancestor and descendant

In a DFS tree, if d f s(v) < d f s(w) then v is an ancestor of w and w is a decendant of the v. Each node

is its own descendant and ancestor. The number of descendants of the node v is denoted by nd(v).

Subtree

In the DFS tree T, a subtree rooted in w, denoted by T(w), is the largest subgraph of T (which is a

tree) whose root is w.

Incoming and Outgoing frond

If (v,w) is a frond (also called back-edge) then it is an outgoing frond of v and an incoming frond of

w.



Chapter 3

Sequential Algorithm

3.1 The Sequential Algorithm Of Hopcroft And Tarjan

In 1973, Tarjan and Hopcoft presented a sequential algorithm for finding the triconnected com-

ponenets of a biconnected graph. The algorithm is based on depth-first search and makes several

passes over the input graph. Since we are focusing our algorithm on finding separation pairs,

there will be certain parts of their algorithm that we will not discuss in this thesis. However, we

will explain the sequential algorithm of Tarjan and Hopcroft to facilitate the understanding of our

distributed algorithm in the next chapters.

The algorithm basically consists of the following steps (these steps will be discussed in more detail

in the following sections):

1. The input graph G is split into a set of triple bonds and a graph G′.

2. If G′ is already biconnected, then continue at Step 3. Otherwise, decompose G′ into bicon-

nected components using the biconnectivity algorithm of Tarjan[20]. Repeat Step 3 and 4 for each

of the biconnected components.

3. Perform a depth-first search over G′ (or a biconnected component of G′) to create an adjacency

structure of the graph that complies with certain conditions (to be discussed in the following

sections).

13
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4. Based on the adjacency structure, perform a depth-first search over G′ (or a biconnected

component of G′) to decompose the graph into a collection of paths.

5. For each of the paths determined in Step 4, determine a subset of separation pairs lying

on it. The separation pairs are identified by keeping track of two stacks one of which contains

the potential separation pairs and the other contains the edges of the split components. The split

components are determined along with the separation pairs.

6. The set of triple bonds and triangles are merged to form a set of bonds and polygons. These

bonds, polygons together with the split components form the triconnected components of the input

graph G.

3.2 A Characterization of Separation Pairs

Hopcroft et al. classify separation pairs into two types: Type-1 and Type-2. Furthermore, they give

the following characterization theorem of separation pairs (note that the vertices are presented by

their depth-first search numbers):

Theorem 13[20] Let G = (V,E) be a biconnected graph and a,b be two vertices in G with a < b.

Then {a,b} is a separation pair if and only if one of the following conditions holds:

• Type-1: There are distinct vertices r , a,b and s , a,b such that b→ r, lowpt1(r) = a, lowpt2(r) ≥ b

and s is not a decendant of r.

• Type-2: There is a vertex r , b such that a→ r{ b, b is a first decendant of r,a , 1, every frond

xd y with r ≤ x < b has a ≤ y, and every frond xd y with a < y < b and b→wd x has lowpt1(w) ≥ a.

We shall use the graph given in Hopcroft et al. to illustrate various concepts and ideas. The graph

is shown in figure 3.1.
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Figure 3.1: Separation pairs[20]

3.3 A High-level Description of the Algorithm

In the algorithm of Hopcroft et al., in order to find the triconnected components, the graph is split

into smaller graphs which are called the split graphs. For each separation pair (a,b), the graph G

is split into two graphs G1 and G2 and an virtual edge of (a,b) is added to the split graphs. If the

split graphs are split until no more splits are possible, the graphs remaining are called the split

components. These split components are non-unique.

There are three types of split components: triple bonds such as ({a,b}, {(a,b), (a,b), (a,b)}), triangles

such as ({a,b,c}, {(a,b), (a,c), (b,c)}) and a triconnected graphs.

Some of the split components are then reassembled (merged). Specifically, the triple bonds are

merged to form a set of bonds B and the triangles are merged to form polygons P. The set of

B
⋃

P
⋃
{triconnecgtedgraphs} is the set of triconnected components of the input graph G. Note that

the triconneted components of a graph are unique.
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Basically, the algorithm of Hopcroft et al. can be summarized into the following steps:

• The multiple edges in the graph G are split off to form a set of triple bonds and a graph G′

• The biconnected components of G′ are determined and for each of them are processed as

follows:

1. The split components are determined;

2. Connected components are determined by combining B, P and the triconnecgted graphs.

The main part of the algorithm of Hopcroft et al. is to find the split components of the biconnected

components of G′. For this purpose, he had to determine the separation pairs of the graph. In order

to find the separation pairs, several passes are made over the graph and a few values are calculated

as follows:

• The graph is traversed with DFS and lowpt1(v), lowpt2(v), nd(v) and parent(v) are calculated;

• An acceptable adjacency list is constructed for each vertex v;

• A DFS is performed based on the acceptable adjacency list structure to partition the edges into

disjoint simple paths, lowpt1(v) and lowpt2(v) are recalculated and A1[v], degree(v) and Highpt

are calculated for each node.

During the first depth-first search, the following parameters are calculated for each vertex v:] nd(v)

(the number of descendants of v), lowpt1(v) and lowpt2(v).

The definition for lowpt1(v) and lowpt2(v) are as follows:

lowpt1(v) = min({v}
⋃
{lowpt1(w)|v � w}

⋃
{w|v−� w})

and

lowpt2(v) = min({v}
⋃

(({lowpt1(w)|v � w}
⋃
{lowpt2(w)|v � w}

⋃
{w|v−� w})−{lowpt1(v)}))
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In simple words, lowpt1(v) is the lowest vertex accessible to v by traversing zero or more tree-edges

and one frond and lowpt2(v) would be the second lowest vertex accessible to v in the graph G in the

same way.

Next, the order of the vertices adjacent to v in A[v] is changed. The resulting adjacency list, A(v) is

called an acceptable adjacency lists. A(v) is created based on the function φ. It is defined as below:

if e = (v,w) is a tree edge and lowpt2(w) < v, then φ(e) = 2lowpt1(w)

if e = (v,w) is a tree edge and lowpt2(w) ≥ v, then φ(e) = 2lowpt1(w) + 1

if e = (v,w) is an outgoing frond, then φ(e) = 2w + 1.

Next, another DFS is performed over the graph, this search will proceed according to the new

A(v) to generate a collection of paths. Specifically, whenever a tree-edge is encountered, it is added

to the path and whenever a frond is encountered, it will be the last edge in the path. The first path is

a cycle and the remaining paths are simple paths. Each path has its first and last vertex in common

with other paths. Becaue these paths are generated according to the acceptable adjacency list every

vertex will end in the lowest possible vertex. A1(v) is defined as the first vertex encountered in the

new A(v) and Highpt is the first frond encountered during the path finding search. Since the paths

are found based on DFS they can be found in O(|V|+ |E|) time.

Next, the separation pairs are determined based on the theorem stated at the beginning of this

chapter (which we restate below for convenience) and the values calculated above.

Theorem 13[20] Let G = (V,E) be a biconnected graph and a,b be two vertices in G with a < b.

Then {a,b} is a separation pair if and only if one of the following conditions holds:

• Type-1: There are distinct vertices r , a,b and s , a,b such that b→ r, lowpt1(r) = a, lowpt2(r) ≥ b

and s is not a decendant of r.

• Type-2: There is a vertex r , b such that a→ r{ b, b is a first decendant of r,a , 1, every frond

xd y with r ≤ x < b has a ≤ y, and every frond xd y with a < y < b and b→wd x has lowpt1(w) ≥ a.

Two stacks are used, namely ESTACK and TSTACK.

The TSTACK contains triples (h,a,b) where a,b is a potential separation pair and h is the largest
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vertex in the triconnected component. The algorithm checks the top entry on the TSTACK to see

if the condition given in Theorem 13 is satisfied. The ESTACK is used to keep the edges of split

components. The output of the algorithm is the separation pairs and the triconnected components

of the graph.



Chapter 4

The Distributed Model

A distributed network can be represented by an undirected graph G = (V;E) where V is the set of

network sites and E is the set of communication links. The sites communicate with each other by

sending messages over the communication links and performing some computations locally. Every

site has an identity and is able to keep data locally. Each site knows which other sites in the network

it is connected to. Without loss of generality, we assume that a message if sent will be delivered

and no message will be lost in the network. We also assume that it will take finite time for every

message to be delivered. Since communication cost is larger than local computation time by many

order of magnitude, we shall consider the time for local computations as negligible.

The message complexity of a distributed algorithm is the total number of messages sent when the

algorithm is executed. The time complexity of a distributed algorithm is the maximum time passed

between the beginning and end of the algorithm. For simplicity, it is commonly assumed that each

message will take at most one time unit to be delivered.

Since our distributed algorithm is bsed on an algorithm that uses depth-first search, we will need

to study distributed depth-fist search. There have been a number of DDFS algorithms presented

during the last two decades. These algorithms have different message lengths and different rules

imposed on their networks. Some of the most important DDFS algorithms are presented by Awer-

buch[4], Cidon[12],Cheung[9], Lakshmanan et al.[29], Makki et al.[31] and Sharma et al.[39]. The

following table compares the time and message complexity of these algorithms:

19
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Table 4.1: Different DDFS algorithms and their complexities[47]
Author Message length Time Mesage
Cheung O(1) 2m 2m

Awerbuch O(1) < 4n 4m
Lakhamanan et al. O(1) 2n−2 ≤ 2m,< 4m− (n−1)
Cidon(corrected) O(1) 2n−2 ≤ 2m,< 4m− (n−1)

Tsin O(lgn) n(1 + r) ≤ n + 1,< 4m− (n−1)
Sharma et al. O(n) 2n−2 2n−2
Makki et al. O(n) n(1 + r) n(1 + r)

Some of the algorithms assume that every node in the network has access to global information

about all the other nodes in the network. This assumption will lower the number of messages

passed along the network substantially. The algorithms presented by Sharma et al. and Makki et

al. use such an assumption and use messages of length O(n). They show improvement in time or

message complexity compared to the other algorithms.

Other algorithms such as Cidon’s use messages of length O(1). Cidon’s algorithm also adopt a

weaker computer model in that it does not require the FIFO (First-in-first-out) rule, which means

that the messages are not processed in the order they arrived and are not delivered in the same

order they were received. In 2002, Tsin[47] presented two counterexamples to show that Cidon’s

algorithm does not always work correctly. He also showed how to correct the errors in Cidon’s

algorithm. We will base our distributed depth-fist search on the corrected Cidon’s algorithm

according to Tsin.

In summary, the following are the assumptions we make for our network model:

• All the messages sent over the links are delivered correctly in one time unit; each message

deliverance takes finite time and the FIFO rule is not required.

• Every node knows only its incident links and has no global knowledge of the network.

• the message length is O(log |V|).

• the nodes in the network run asynchronously (i.e. there is no clock synchronizing them).

Each node can be either in the idle state or discovered state. The edges incident to every node can

be marked in one of the four possible ways: unvisited, visited, parent and child. Initially, all the links
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are marked unvisited. There are two types of messages, namely Visited and Token, for performing

the basic depth-first search. The Token is sent in sequential order from a node to one of its adjacent

nodes as the graph is being traversed by a depth-first search.

Initially, all the nodes are in idle state. The distributed algorithm is invoked by one of the nodes.

After entering the discovered state, the node chooses one of its unvisited links and sends the Token

over the link. It then marks the link as child. The node also sends a Visited message over every

incident link other than the parent link to let the node at the end knows that it has been visited by

the search.

If a node receives a Token message through an unvisited link, it will mark the link as parent and

enter the discovered state, then it will pass the Token along one of its unvisited links. If there are no

unvisited links left, then the search has to backtrack so the Token is sent over the parent link. This

process will continue until the search backtracks to the first node that initiated the DFS (which has

become the root of the DFS tree).

If the Token is sent through a visited or unvisited link but not for the first time, the link is marked

as visited and no other action is taken. If a Visited message is received through an unvisited or child

link, the link will be marked as visited.



Chapter 5

The Distributed Algoithm

5.1 The Distributed Algorithm

We shall assume without loss of generality that the network is biconnected. If it is not, we can use

the existing distributed algorithm for biconnectivty to decompose the network into a collection of

biconnected networks and then apply our algorithm to each of them.

The algorithm is based on the sequential algorithm of Hopcroft and Tarjan. To carry the depth-first

search, we shall use the distributed depth-first search algorithm of Cidon with corrections made by

Tsin.

As with the algorithm of Hopcroft et. al., our algorithm makes three passes over the network

G = (V,E). During the first pass, a depth-first search is performed over G to generated a Palm tree

P = (V,EP) of G and lowpt1(v), lowpt2(v),nd(v),v ∈V, are computed. Using lowpt1(v), lowpt2(v),v ∈V,

the values φ(e),∀e ∈ E, is computed and the incident links of the Palm tree at each node v are rear-

ranged to produce the acceptable adjacency structure, A(v),v ∈ V.

During this pass, the following types of messages are used:

Token( f lag,count, lowpt1, lowpt2,nd): when f lag = 1, the message is sent to a child node; when

f lag = 0, the message is sent to the parent node; count is the next depth-first search number avail-

able for assigning to a node; lowpt1 and lowpt2 are the lowpt1 and lowpt2 values of the sender; nd is

22



CHAPTER 5. THE DISTRIBUTED ALGOITHM 23

the number of descendants of the sender.

Visited(d f s): d f s is the depth-first search number of the sender.

During the second pass, a depth-first search is made over the Palm tree P using the acceptable

adjacency structure and lowpt1(v), lowpt2(v),v ∈V are recomputed. The network G is also implicitly

decomposed into a collection of paths, Pi,1 ≤ i ≤ k, such that P1 is a cycle while each Pi,2 ≤ i ≤ k is a

simple path whose terminating nodes lie on some P j, j < i.

During this pass, the following types of messages are used:

Token1(m): m is the parameter used in determining the new depth-first number during the

second pass (see Procedure 5 of[20]).

Visited: same as above.

During the third pass, a subset of separation pairs that are sufficient to decompose G into the split

components are determined. The separation pairs are determined in parallel on the paths Pi,1≤ i≤ k.

During this pass, the following types of messages are used:

Vlink: to inform an ancestor of the sender to create a virtual link.

DecreaseDegree: to inform a descendant of the sender (which forms a Type-2 pair with the

sender) to update its degrees as well as creating a virtual link.

UpdateDegree: to inform an ancestor of the sender (which forms a Type-1 pair with the sender)

to update its degrees as well as creating a virtual link.

Deg of child is 2( f lag, f irstchild) with TSTACK: f lag = true if and only if the sender, say v,

satisfies the condition: “deg(v) = 2∧ f irstchild(v) > v”. When f lag = true, f isrtchild is the first child

of the sender, it is irrelevant otherwise.

Deg of child is 2( f lag, f irstchild,d): f lag = true if and only if the sender, say v, satisfies the con-
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dition: “deg(v) = 2∧ f irstchild(v) > v”. When f lag = true, f isrtchild is the first child of the sender, it

is irrelevant otherwise. The receiver of the message is d which is an ancestor of the sender.

5.1.1 Determining lowpt1, lowpt2 and nd(v)

Initially, all nodes are in the idle state and all links are marked unvisited. One predesignated node r

then enters the discovered state and initiates the algorithm by starting a depth-first search as follows:

d f s(r)← 1; lowpt1(r)← lowpt2(r)← 1; nd(r)← 1;

call DFS(2);

send a message visit(1) over every unvisited incident link.

————————————————————————————————————

Procedure DFS(count)

if (∃ an incident link e that is marked unvisited) then

send Token(1,count,−,−,−) over link e;

mark link e as child;

else if (v = r) then /* v is the node executing algorithm DFS */

STOP

else send Token(0,count, lowpt1(v), lowpt2(v),nd(v)) over the parent link;

————————————————————————————————————

At each node v ∈ V, the following operations for computing the values of lowpt1(v), lowpt2(v),

and nd(v) are carried out:

• On receiving a Token(1,count,−,−,−) message from an incident link e:

if (state(v) = idle) then

state(v)← discovered;

mark link e as the parent link;

d f s(v)← count;
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if (there is no saved visited message) then

lowpt1(v)← lowpt2(v)← d f s(v);

else

lowpt1(v)←min({d f s(w)|(visit(d f s(w)) is a saved message) ∧ (v,w) , e}

∪{d f s(v)});

lowpt2(v)←min({d f s(w)|(visit(d f s(w)) is a saved message) ∧ (v,w) , e}

−{lowpt1(v)}∪ {d f s(v)});

nd(v)← 1;

call DFS(count + 1);

send a visit(d f s(v)) message over every visited or unvisited incident link.

else if (link e is marked unvisited) then

mark link e as visited

else if (link e is marked child) then

mark link e as visited;

/* a Token message must have been sent over link e earlier.

Let it be Token(1,cnt,−,−,−). Then, re-transmit the message */

call DFS(cnt);

• Upon receiving a visited(w) message from an incident link e:

if (state(v) = idle) then save the message

else if (e is marked ‘unvisited’) /* i.e. e is a back-edge */

then

mark link e as visited;

if (w < lowpt1(v)) then

lowpt2(v)← lowpt1(v);

lowpt1(v)← w;

else if (lowpt1(v) < w < lowpt2(v)) then

lowpt2(v)← w
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else if (link e is marked child) then

mark link e as visited;

/* a Token message must have been sent over link e earlier.

Let it be Token(1,cnt,−,−,−). Then, re-transmit the message */

call DFS(cnt);

if (w < lowpt1(v)) then

lowpt2(v)← lowpt1(v);

lowpt1(v)← w;

else if (lowpt1(v) < w < lowpt2(v)) then

lowpt2(v)← w;

• On receiving a Token(0,cnt,L1,L2,nd) message from a link e:

/* Link e must be a child link */

if (L1 < lowpt1(v)) then /* Update lowpt1(v), lowpt2(v) */

lowpt2(v)←min{lowpt1(v),L2};

lowpt1(v)← L1;

else if (L1 = lowpt1(v)) then

lowpt2(v)←min{lowpt2(v),L2};

else lowpt2(v)←min{lowpt2(v),L1};

nd(v)← nd(v) + nd;

call DFS(cnt)

Theorem 5.1 When the depth-first search terminates at the root r, lowpt1(v);lowpt2(v);nd(v);∀v ∈V,

are correctly computed.

proof: (By induction on the level of the nodes.)
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Base case: Consider a leaf-node v. Since v has no child nodes, all of the links incident on it are

either outgoing fronds or the parent link. Therefore, lowpt1(v) and lowpt2(v) are computed purely

based on the Visited messages. As a result, lowpt1(v) and lowpt2(v) are computed as:

lowpt1(v)

= min({d f s(v)}∪ {d f s(w)|(v ↪→ w) ∈ EP})

= min({d f s(v)}∪ {lowpt1(w)|(v→ w) ∈ EP}∪ {d f s(w)|(v ↪→ w) ∈ EP}) and

lowpt2(v)

= min({d f s(v)}∪ ({d f s(w)|(v ↪→ w) ∈ EP}− {lowpt1(v)}))

= min({d f s(v)}∪ (({d f s(w)|(v ↪→ w) ∈ EP}∪ {lowpt1(w)|(v→ w) ∈ EP}

∪{lowpt2(w)|(v→ w) ∈ EP})−{lowpt1(v)})).

Hence, both lowpt1(v) and lowpt2(v) are computed correctly at every leaf-node. Furthermore, nd(v)

is correctly set to 1.

Induction hypothesis: Suppose for every node w on level > k, lowpt1(w), lowpt2(w), nd(w) are cor-

rectly computed.

Induction step: Consider a node v on level k. For each frond v ↪→w, node v receives d f s(w) through

the incident link e = (v ↪→w). Furthermore, by the induction hypothesis, lowpt1(w), lowpt2(w),nd(w)

are correctly computed for every child node w. Since lowpt1(w), lowpt2(w) are sent to node v through

a Token messages, it is easily verified that the algorithm correctly computes lowpt1(v) as:

min({d f s(v)}∪ ({lowpt1(w)|v→ w}∪ {d f s(w)|(v ↪→ w) = e ∈ EP}))

and lowpt2(v) as:

min({d f s(v)}∪ (({lowpt1(w)|v→w}∪ {lowpt2(w)|v→w}∪ {d f s(w)|(v ↪→w) = e ∈ EP})−{lowpt1(v)})).

Furthermore, it is easily verified that nd(v) is correctly computed as
∑
{nd(w)|v→ w}+ 1. �

During the third pass, the algorithm finds a subset of separation pairs that are sufficient to generate
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all the split components of the network. The separation pairs are determined based on Lemma 3 of

Gutwenger et. al., or originally, Lemma 13 of Hopcroft et. al.

Theorem 5.2 The distributed algorithm takes O(|V|) time and transmits O(|E|) messages to compute

lowpt1(v), lowpt2(v),nd(v),∀v ∈ V.

Proof: The algorithm performs a depth-first search over the network G. Since the computation of

lowpt1(v), lowpt2(v),nd(v),v ∈V, are done locally at each node v, the computation thus takes zero time.

The total time and message complexities are thus that same as those of the distributed depth-first

search algorithm which are O(|V|) and O(|E|), respectively[47]. �

5.1.2 Constructing the acceptable adjacency structure

At the end of the depth-first search during the first pass, the adjacency list for the palm tree at every

node is rearranged and the nodes are renumbered with new depth-first search numbers so that the

following properties are satisfied:

(i) the root of the depth-first tree T is numbered 1;

(ii) let v ∈ V and wi,1 ≤ i ≤ n, be its children in T. Then

d f s(wi) = d f s(v) +
∑n

j=i+1 nd(w j) + 1;

(iii) For each v ∈ V, the edges e in the adjacency list of v, A(v), are in ascending order according

to lowpt1(w) if e = v→ w, or w if e = v ↪→ w, respectively. Moreover, let wi,1 ≤ i ≤ n, be the

children of v. Then ∃i0 such that lowpt2(w) < d f s(v),1 ≤ i ≤ i0 and lowpt2(w) ≥ d f s(v), i0 < i ≤ n.

Every frond in A(v) comes in between v→ wi0 and v→ wi0+1.

At each node v, the links of the palm tree incident on v are ordered according to the following value:

∀e ∈ E, φ(e) =

if e = (v,w) is a tree edge and lowpt2(w) < v, then φ(e) = 3lowpt1(w)

if e = (v,w) is a tree edge and lowpt2(w) ≥ v, then φ(e) = 3lowpt1(w) + 1
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if e = (v,w) is an outgoing frond, then φ(e) = 3w + 2.

Definition: The adjacency structure for the palm tree, P = (V,EP), of the network G = (V,E) is

acceptable if for every v ∈V, the edges e in the adjacency list of v are ordered according to increasing

value of φ(e).

Note that the acceptable adjacency structure involves the child links and the outgoing non-tree links

(links e = v ↪→ w such that d f s(v) > d f s(w)) of G only.

At every node v,v ∈ V, the following operations are performed:

call Compute phi(v);

Create the acceptable adjacency structure, A(v),v ∈ V, using φ(e),e ∈ E.

————————————————————————————————————

Procedure Compute phi(v);

————————————————————————————————————

for each (e ∈ A(v)) do

if (e = v→ w) then /* e is a tree link */

if (lowpt2(w) < v) then

φ(e)← 3 ∗ lowpt1(w)

else φ(e)← 3 ∗ lowpt1(w) + 2

else /* e is a frond */

φ(e)← 3 ∗ lowpt1(w) + 1

————————————————————————————————————

The correctness is obvious. The time and message complexities are obviously zero.
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5.1.3 Recalculating dfs(v), lowpt1(v), lowpt2(v)

During the second pass, a depth-first search is performed over the palm tree, P = (V,EP) of the net-

work G = (V,E) using the acceptable adjacency structure A(v),v ∈ V, of P and renumber the nodes

with depth-first search numbers.

When the first pass was completed, all the nodes re-entered the idle state. The root of the depth-

first search tree r initiates the second pass as follows:

state(r)← discovered;

m← |V|;

next← 0;

highpt(r)← 0;

newds f (r)← 1 /* which is m−nd(r) + 1 */;

call Pathsearch(next,m,r);

send a visited(newd f s(r)) message over every outgoing non-tree link.

————————————————————————————————————

Procedure Pathsearch(next,m,v)

next← next + 1;

while ((A(v)[next] is a non-tree link) ∧(next ≤ deg(v))) do /* skip non-tree links */

next← next + 1;

if (next ≤ deg(v)) then

send Token1(m) over the child link e, where e = A(v)[next];

else d f s(v)← newd f s(v); /* update d f s(v) */

if (v = r) then /* v is the node executing algorithm DFS */

STOP

else m←m−1;

send Token1(m) over the parent link;
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————————————————————————————————————

At each node v ∈ V, the following operations for computing the values of lowpt1(v), lowpt2(v), and

nd(v) are carried out:

• On receiving a Token1(m) message from the parent link:

state(v)← discovered;

next← 0;

highpt(r)← 0;

newds f (v)←m−nd(v) + 1;

call Pathsearch(next,m,v);

send a visit(newd f s(v)) message over every outgoing non-tree link.

• On receiving a visited(w) message from an incident link e:

/* the link e must be an incoming non-tree link */

highpt(v)←max{highpt(v),w};

• On receiving a Token1(m) message from a child link e:

call Pathsearch(next,m,v)

Theorem 5.3 When the depth-first search terminates at the root r, d f s(v),highpt(v),∀v ∈ V, are correctly

computed.

Proof: The distributed algorithm performs a depth-first search over the network G to re-calculate

d f s(v),v ∈ V. The correctness of computing d f s(v),v ∈ V, thus follows from that given in[47].

The correctness of computing highpt(v),v ∈ V follows from that given in[20]. �

Theorem 5.4 The distributed algorithm takes O(|V|) time and transmits O(|E|) messages to compute
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d f s(v),highpt(v),∀v ∈ V.

Proof: Same as that of Theorem 5.2. �

After re-computing d f s(v)∀v ∈ V, another depth-first search is performed over the network G to

re-calculate lowpt1(v), lowpt2(v),∀v ∈ V. Since the detail of the algorithm, the correctness proof and

the time and message complexity analysis are essentially the same as those for the first pass, we

shall omit them here. Instead, we state the following theorem.

Theorem 5.5 The distributed algorithm takes O(|V|) time and transmits O(|E|) messages to re-compute

lowpt1(v), lowpt2(v),∀v ∈ V.

Proof: Immediate. �

5.1.4 Determining the Separation Pairs

For ease of explanation, we shall use v and d f s(v) interchangeably in this section. During the third

pass, the algorithm finds a subset of separation pairs that are sufficient to generate all the split

components of the network. The separation pairs are determined based on Lemma 3 of Gutwenger

et. al., or originally, Lemma 13 of Hopcroft et. al.

The third pass is initiated by all those nodes that have an outgoing non-tree link which is the last

link of a path. It goes as follows:

if (A(v)[1] is an outgoing non-tree link) then

/* The outgoing non-tree link is the last link of a path. */

TSTACK← null;

v.link← v.parent← null; /* initialize the virtual links */

A(v)← A(v)−A(v)[1]; /* exclude the last link from further consideration */

call Update-TSTACK(v);
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send TSTACK and a deg of child is 2(false,null) message over the parent link;

————————————————————————————————————

Procedure Update-TSTACK(v)

————————————————————————————————————

for each (e ∈ A(v)) do

if (e = v→ w) then /* e is a tree link */

while (top entry (h,a,b) on TSTACK satisfies a > lowpt1(w)) do

pop TSTACK;

if (no entry was popped out of TSTACK) then

push (w + nd(w)−1, lowpt1(w),v) onto TSTACK

else

let (h′,a′,b′) be the last entry popped;

push (max{y,w + nd(w)−1}, lowpt1(w),b′) onto TSTACK;

else let e = v ↪→ w; /* e must be a frond */

while (top entry (h,a,b) on TSTACK satisfies a > d f s(w)) do

pop TSTACK;

if (no entry was popped out of TSTACK) then

push (v,w,v) onto TSTACK

else

y←max{h|(h,a,b)was popped out ofTSTACK};

let (h′,a′,b′) be the last entry popped;

push (y,w,b′) onto TSTACK

rof;

————————————————————————————————————
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————————————————————————————————————

Procedure Type-2( f lag,z)

————————————————————————————————————

if ( f lag = true) then /* i.e. (deg(w) = 2∧ f irstchild(w) > w) */

mark (v,z) as a type-2 separation pair; /* z = f irstchild(w) */

v.child(v)← z; /*effectively deleted (v,w) and (w, f irstchild(w)) */

send a vlink(v,z) message over the link (v,w);

else if ( top entry(h,a,b) on TSTACK satis f ies a = v) then

pop top-entry (h,a,b) out of TSTACK;

mark (a,b) as a type-2 separation pair;

for each (e = (v,x) ∈ Ev) do

if (a ≤ x ≤ h) then

deg(v)← deg(v)−1; Ev← Ev−{e};

/* Join nodes v(= a) and b with a virtual link (v,b) */

v.child(v)← b;deg(v)← deg(v) + 1; Ev← Ev∪{(v,b)};

send a DecreaseDegree(b,a,h) message to node b

————————————————————————————————————

————————————————————————————————————

Procedure Type-1

————————————————————————————————————

mark (v, lowpt1(w)) as a type-1 pair;

for each (e = (v,x) ∈ Ev) do

if (w ≤ x ≤ w + nd(w)−1) then

deg(v)← deg(v)−1;Ev← Ev−{e};

v.parent← lowpt1(w); Ev← Ev∪{(v, lowpt1(v))}; deg(v)← deg(v) + 1;

send an UpdateDegree(lowpt1(w),w,nd(w)) message to node lowpt1(w) over
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the parent link;

————————————————————————————————————

————————————————————————————————————

Procedure Separation-pairs

————————————————————————————————————

if ((a = v)∧ (parent(b) = a)) then pop top entry out of TSTACK;

if (v , 1)∧ (( f lag = true)∨ top entry (h,a,b) on TSTACK satisfies (a = v)) then

call Type-2( f lag,z)

else if (lowpt1(w) < v∧ lowpt2(w) ≥ v)

∧(parent(v) , 1∨ v has a child other than w) then

call Type-1;

call Clean-up;

else call Clean-up;

————————————————————————————————————

————————————————————————————————————

Procedure Clean-up

————————————————————————————————————

while (top entry (h,a,b) on TSTACK satisfies v ∈/ {a,b} ∧(highpt(v) > h) )

do pop TSTACK;

if (e does not start a new path) then

A(v)← A(v)−{e};

call Update-TSTACK(v);

if (v , 1∧ (deg(v) = 2∧ f irstchild(v) > v)) then
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send a deg of child is 2(true, f irstchild(v)) message with TSTACK

over the parent link;

else

send a deg of child is 2(false, null) message with TSTACK over

the parent link;

————————————————————————————————————

For every node v ∈ V:

• On receiving a deg of child is 2(flag, z) message and a TSTACK from a child link e:

call Separation-pairs

• On receiving a deg of child is 2(flag, z, d) message from a child link:

if (v , d) then

pass the message over the parent link

else /* there must exist a TSTACK at node v */

call Separation-pairs

• On receiving a DecreaseDegree(b,a,h) message from the parent link:
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if (v = b) then

for each (e = (v,x) ∈ Ev) do

if (a ≤ x ≤ h) then

deg(v)← deg(v)−1; Ev← Ev−{e};

/* Join nodes a and v with a virtual link (a,v) */

v.parent(v)← a; deg(v)← deg(v) + 1; Ev← Ev∪{(a,v)};

if (deg(v) = 2∧ f irstchild(v) > v) then

send a deg of child is 2(true, f irstchild(v),a) message over the parent link;

else send a deg of child is 2(false,null,a) message over the parent link;

else pass the message over the firstchild link;

• On receiving a vlink(z,z′) message from the parent link:

if (v = z′) then

v.parent← z;Ev← Ev∪{(v,z)}− {parent link};

send a deg of child is 2( f alse,null,z) message over the parent link

else send the message over the firstchild link;

• On receiving a UpdateDegree(z,w,nd) message from a child link e:

if (v = z) then

for each (e = (v,x) ∈ Ev) do

if (w ≤ x ≤ w + nd−1) then

deg(v)← deg(v)−1;Ev← Ev−{e};

v.child(v)← w;Ev← Ev∪{(v,w)}; deg(v)← deg(v) + 1;

else if (e does not start a new path) then

send the message over the parent link;
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Since the distributed algorithm finds a subset of separation pairs, we must show that the subset is

sufficient to decompose the network G into its splits components.

Lemma 5.6 Let (a,b) be a Type-1 separation pair. The distributed algorithm correctly identifies (a,b) as a

separation pair.

Proof: By Lemma 3 of Gutwenger et. al., (or Lemma 13 of Hopcroft et. al.), ∃r,s ∈ V such

that r,s ∈/ {a,b},b→ r, lowpt1(r) = a, lowpt2(r) ≥ b and s is not a descendant of r. It follows that if

parent(b) = 1, then a = 1 and s is not a descendant of r implies that s must be a descendant of a child

x of a or a child y of b such that x , b and y , r. But G is biconnected implies that the former case is

impossible. The latter case implies that b has a child other than r.

Therefore, the condition (lowpt(r) < b∧ lowpt2(r) ≥ b)∧ (parent(b) , 1∨b has a child other than r) holds

true. As a result, after node b invokes Procedure Separation-pairs, the aforementioned condition

will eventually be evaluated which results in (a,b) being marked as a Type-1 separation pair at

nodes b. �

Lemma 5.7 Let w be a node of degree 2 in G such that v and u are the two nodes adjacent to it. The distributed

algorithm correctly identifies (v,u) as a separation pair.

Proof: The links (v,w) and (w,u) must lie on a common path Pi. Furthermore, one of them, say

(v,w), must be a tree link while the other, say (w,u), is either a tree link or a frond.

If (w,u) is a frond, then (v,u) is a Type-1 separation pair and by Lemma 5.1, the algorithm correctly

identifies it.

Suppose (w,u) is a tree link. When node w sends its TSTACK over its parent link to v, it also

send a deg of child is 2(true,u) message over the parent link. Upon receiving the TSTACK and the

deg of child is 2(true,u) message, node v will invoke Procedure Type-2 which results in marking
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(v,u) as a Type-2 separation pair. �

Lemma 5.8 Let G be a biconnected network with no vertices of degree two or type-1 separation pairs. Suppose

on returning from node w to node v along the tree link v→w on a path Pi, the top entry on TSTACK (h,a,b)

is found to satisfy the Type-2 test, Then (a,b) is a Type-2 separation pair.

Proof: The Type-2 test tests for the the condition:

(v , 1)∧ (top entry (h,a,b) on TSTACK satisfies (a = v))∧ (parent(b) , a)

Since the condition is satisfied, we have (parent(b) , a) which implies that ∃r such that a→ r and r

is an ancestor of b.

If there a frond (x, y) such that r≤ x< b and y< a, then the triple on TSTACK corresponding to (h,a,b)

would have been deleted when TSTACK was examined at node u where u is the lowest common

ancestor of x and b. But then (h,a,b)

Similarly, if there a frond (x, y) such that x is a descendant of b while y lies on the tree-path connecting

nodes a and b, then the triple on TSTACK corresponding to (h,a,b) would have been deleted when

the frond (x, y) was examined at node y owing to highpt(y). But then (h,a,b) cannot be the top entry

on TSTACK at node v, a contradiction!

It then follows from Lemma 3 of Gutwenger et. al., (or Lemma 13 of Hopcroft et. al.) that (a,b) is a

Type-2 separation pair. �

Lemma 5.9 Let G be a biconnected network with no vertices of degree two or type-1 separation pairs. Suppose

G has a type-2 separation pair. Then the distributed algorithm will detect a separation pair.

Proof: Let (a,b) be a Type-2 separation pair and b1,b2, . . . ,bn be the children of b in the order they

occur in A(b).

Let i0 = min{i | lowpt1(bi) ≥ a}. If i0 exists, the the triple (bi0 + nd(bi0 )−1, lowpt1(bi0 ),b) will be pushed

onto TSTACK at node b when the tree link b→ bi0 is being examined. The triple may be replaced,

but only with triple of the form (h,x,b) such that a ≤ x ≤ lowpt1(bi0 ). Eventually, such a triple will

satisfy the Type-2 test unless another Type-2 pair is found first.
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If i0 does not exist, let (x, y) be the first link examined after node b is reached such that a ≤ y and

x ≤ b. If (x, y) is a frond, then the triple (x, y,x) will be pushed onto TSTACK. If (x, y) is a tree link,

then the triple (y + nd(y)− 1, lowpt1(y),x) will be pushed onto TSTACK. In either case, as with the

above case, the triple may be replaced, but eventually, the triple will satisfy the Type-2 test unless

another Type-2 pair is found first.

Hence, if G has a Type-2 separation pair, then at least one of them is detected by the algorithm. �

Lemma 5.10 The distributed algorithm detects a separation pair if and only if there exists one in the graph.

Proof: A direct consequence of Lemmas 5.6, 5.7, 5.8 and 5.9. �

Theorem 5.11 The distributed algorithm correctly identifies a subset of separation pairs that decompose the

network G into split components.

Proof: (By induction on the number of links in G)

Base case: Suppose G has exactly one link. By Lemma 5.10, the algorithms correctly reports no

separation pair.

Induction hypothesis: Suppose for any network with less than m links, the distributed algorithm

correctly identifies a subset of separation pairs that decompose the network G into split compo-

nents.

Induction step: Let G be a network with m links. If G has no separation pair, then by Lemma 6.5, the

algorithm correctly identifies no separation pair. Otherwise, by Lemma 5.10, the algorithm correctly

identifies one separation pair of G. Let G1 and G2 be the two split components corresponding to the

separation pair.

Since both G1 and G2 has less than m−1 links, by the induction hypothesis, the algorithm correctly

identifies a subset of separation pairs of G1 (G2, respectively) that decompose G1 (G2, respectively)

into split components.

The separation pair that splits G and the two subsets of separation pairs for G1 and G2 form a subset

of separation pairs that decompose the network G into split components. �
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Theorem 5.12 During the third pass, the distributed algorithm takes O(H2) time and transmits a total

of O(|V| ·H) messages to identify a subset of separation pairs that decomposes G into split components, where

H(< |V|) is the height of the depth-first tree of G.

Proof: At the beginning of the third pass, a decomposition of G into a collection of paths Pi,1≤ i≤ k,

has been achieved. Let Pi : v1,v2, ...,vm be any of the paths such that (vi,vi+1),1 ≤ i < m−1, are tree

links while (vm−1,vm) is a frond.

The algorithm identifies the separation pairs lying on Pi starting from vm−1. Since TSTACK can grow

from one entry to at most H
2 entries and transmitting the stack over a parent link is accomplished

by transmitting one entry at a time, the total time spent on transmitting TSTACK, in the worst case,

is thus
∑H

2
j=1 j = O(H2).

Since each vlink, UpdateDegree, Deg of child is 2 and DecreaseDegree message is transmitted

from an ancestor (descendant, respectively) to a descendant (ancestor, respectively) along a path,

the time required to transmit each of them is thus O(H).

The total time required by the third pass is thus O(H2) + O(H) = O(H2).

The size of TSTACK at any node is at most H
2 . Therefore, there are a total of at most O( H

2 · |V|) =

O(|V| ·H) stack entries transmitted.

As for the vlink, UpdateDegree, Deg of child is 2 and DecreaseDegree messages, since each node

transmits a constant number of each of them, the total number of such messages transmitted is O(|V|).

The total number of messages transmitted in the third pass is thus O(|V| ·H)+O(|V|) = O(|V| ·H). �

Theorem 5.13 The distributed algorithm correctly identifies a subset of separation pairs that decompose the

network G into split components.

Proof: By Theorems 5.1, lowpt1(v), lowpt2(v),nd(v),∀v ∈V are correctly computed by the first pass. By

Theorems 5.3 and 5.5, the acceptable adjacency structure is correctly constructed, d f s(v),highpt(v),∀v∈
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V are correctly computed and lowpt1(v), lowpt2(v), ∀v ∈ V are correctly re-computed by the second

pass. By Theorem 5.11, a subset of separation pairs that are sufficient to decompose the network

into split components are correctly determined by the third pass. The theorem thus follows. �

Theorem 5.14 The distributed algorithm takes O(|V|+ H2) time and transmits a total of O(|E|+ |V| ·H)

messages, where H is the height of the depth-first tree of G.

Proof: By Theorems 5.2, lowpt1(v), lowpt2(v),nd(v),∀v ∈ V can be computed in O(|V|) time by trans-

mitting O(|E|) messages during the first pass. The acceptable adjacency structure can clearly be

constructed in O(1) time using no message.

By Theorems 5.4 and 5.5, d f s(v),highpt(v), lowpt1(v), and lowpt2(v),∀v ∈V can be correctly computed

in O(|V|) time by transmitting O(|E|) messages.

By Theorem 5.12, a subset of separation pairs that is sufficient to decompose the network G into

split components can be determined in O(H2) time using O(|V| ·H) messages during the third pass.

The distributed algorithm thus takes a total of O(|V|) + O(|V|) + O(H2) = O(|V|+ H2) time transmit-

ting a total of (|E|) + O(|E|) + O(|V| ·H) = O(|E|+ |V| ·H) messages. �
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Conclusion

We have presented a distributed algorithm for finding separation pairs of a network. The algorithm

runs on an asynchronous computer model in O(|V|+ H2) time and transmits a total of O(|E|+ H|V|)

messages, where H(< |V|) is the height of the depth-first search tree of G. In the worst case, H = |V|

which implies that our algorithm takes O(|V|2) time and transmits O(|V|2) messages. This is the first

and only distributed algorithm known for triconnectivity.

The following are some possible future works:

• Develop a distributed algorithm for determining the split components: Since our algorithm

finds a subset of separation pairs that is sufficient to determine all the split components, This

should not be a difficult task. However, the challenge is that whether we can do it within the

same time and message bounds of our algorithm.

• Improve the time or message complexity of the distributed algorithm: In the worst case, our

algorithm has quadratic time and message complexities. It is worthwhile to consider whether

it is possible to improve the time or message complexity to a sub-quadratic bound.

• Develop new method that could lead to more efficient distributed algorithms without using

depth-first search: The sequential algorithm of Hopcroft el at. based on which we develop

our distributed algorithm is depth-first search based. By contrast, parallel algorithms for

triconnectivity on the various PRAM models are not depth-first search based. Since a network,

43
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to a certain extent, is a parallel computer, it is thus worthwhile to investigate if the parallel

algorithms for the PRAMS would lead to more efficient distributed algorithms.

• Present a distributed algorithm for 4-vertex- or 4-edge-connectivity: it is worthwhile to in-

vestigate whether our method for solving triconnectivity can be extended to solve 4-vertex-

connectivity.
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