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Abstract 

 
Fault tolerance is one of the most important features required by many distributed 

systems. We consider the efficiency issues of constructing distributed computing systems 

that can tolerate Byzantine faults. The well-recognized technique is to introduce 

replicated computation and derive the correct results through a voting mechanism.  While 

this technique is applied to each computation request individually, we believe that by 

considering multiple requests at the same time in a distributed environment, we can 

greatly improve its efficiency. This is based on the observations that computation 

requests may be ordered in a different way for computation at different nodes, and the 

verdict of the correct result for one request may imply the correct result for another 

request. We propose to exploit a suitable solution to improve the efficiency of the 

existing technique to avoid unnecessary computation and unnecessary message 

exchanges among distributed processes.  

 

We consider Peer-to-Peer architecture which is one of the well-known and fast growing 

architectures for distributed systems. The voting mechanism however may be either 

centralized or distributed, which may raise different issues and lead to different solutions.  
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Chapter 1. Introduction 
 

From a consumer’s point of view, an ideal system should always be reliable and 

available [32].  

• Reliability is the likelihood that a system will remain operational despite of 

failures for the duration of a mission. Very high reliability is most important in 

critical applications such as the space shuttle or industrial control, in which failure 

could mean loss of life [32].  

• Availability expresses the fraction of time a system is operational despite failures. 

It is important to note that a system with high availability may in fact fail. 

However, its recovery time and failure frequency must be small enough to 

achieve the desired availability. High availability is important in many 

applications, including airline reservations and telephone switching, in which 

every minute of downtime translates into significant revenue loss [32]. 

 

An absolutely reliable and available system is very often impossible in practice, because 

customers will allow for only a certain amount of time and money to spend for this 

feature, restricting system developers with finite resources to achieve reliability. As a 

consequence, we as consumers of technology and computers have regularly encountered 

failures, either in the form of a software crash, a hardware failure, or a power loss, etc. 

Systems may fail for many reasons [32]: (i) It may have been specified erroneously, 

leading to an incorrect design; (ii) It may contain a fault that manifests only under certain 

conditions that were not tested; or (iii) It may fail due to some unexpected environment 

change. In some cases these failures are just annoyances while in some other cases, they 

result in significant loss. The latter has become more common than the former as today’s 

societies are becoming more and more dependent on computer systems. 

 

Over the years, the industry and academia have presented and used various techniques to 

best approximate an ideal system with limited resources. Such techniques and 

technologies have been categorized as fault tolerant techniques.  Fault-tolerance refers to 

numerous issues concerning different aspects of the development, deployment, and 
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maintenance of a system, the two most common ones being reliability and availability 

[32]. 

 

Fault tolerant techniques are generally designed specifically for two types of systems: 

distributed and centralized. A major difference is that in distributed systems individual 

components may fail without affecting the functionality of the entire system. This very 

characteristic complicates the design and implementation of fault tolerant techniques for 

distributed systems. For this reason, the development of effective and efficient distributed 

fault tolerant systems has been the focus of many pieces of research work. It is also the 

topic of this thesis. 

 

A fault tolerant distributed system can be defined as [30]:  

1. a system whose behavior is well-defined in case of component failure; 

2. a system capable of masking the fault in case of component failure.  

 

Component failures are typically categorized as [30]:  

1. crash or omission failure: When a component does not respond to a request or 

does not show any sign of liveness in a certain period of time.  

2. timing failure: When a response is correct but untimely: either early or late. 

3. a byzantine failure: When the response to a request is incorrect or the 

component’s functionality deviates from its specification. We will be considering 

this type of faults in this thesis. 

 

When designing a fault tolerant method to mask faulty behavior, it is important to see 

what faulty behavior the systems are capable of handling. Furthermore, since the 

recovery of the system is dependent on the likely failure behavior, one has to extend the 

specification of the nodes to incorporate their failure behavior (failure semantics) which 

can usually be specified in the same way as the specification of the semantics of the 

normal behavior.  
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One of the most common methods used to tolerate faults in distributed systems is 

replication. Two types of replication techniques are commonly used in distributed 

systems: 

1. temporal replication: In this method, a single component executes a 

job/computation multiple times. When a component fails to complete a 

computation correctly because of any of the failures mentioned above, it will be 

required to do the computation some more times until it completes the 

computation correctly.  

2. spatial replication: In this method, components of the systems are replicated (with 

possibly different versions of it) through out the system. The replicas can reside 

on a single physical machine or can be spread out among a number of physical 

machines. Note that a component in the system is logically mapped to a single 

node despite its physical location. Here, a computation is executed by a number of 

components, either in parallel or sequentially, until a correct result for the 

computation can be achieved. In this thesis, we will consider spatial replication. 

 

Although with a powerful replication manager, availability can be guaranteed to a high 

degree, replication alone cannot provide reliability. The methods designed to achieve 

reliability can be put into two groups: consensus/fault detection methods and fault 

detection/recovery methods.  

 

The first group aims at finding the correct result of a computation from among a group of 

variant results presented from different replicas/redundant computation executions. 

Consequently, when the correct result is found, faulty results are discarded and the faulty 

nodes which produced these results are detected and guided towards recovery. The most 

common aspects in this category include: 

• a voter: the results from the replicas/redundant computations are analyzed by a 

voter. Each voter has a policy which defines which results are correct and which 

are not. This policy is dependant on the replication type, components, 

computation type, etc. of the system. In this case, the component(s) which have 

returned a result other than the correct one can be detected as faulty.  
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• comparison of messages: faulty nodes are detected via the messages they send. 

When a node shows different behaviors and sends out different messages for the 

same situation, this node is detected as faulty. This method is typically used in 

systems with spatial redundancy to find the correct result of a computation. 

• testing: a testing method is capable of detecting faults in a node. The testing 

method on a node is designed based on the semantics of the computations this 

node execute. 

 

The second group does not consider isolating faulty behavior. Instead, they focus on 

detecting faulty behavior in the system and dictating recovery guidelines for the faulty 

node.  Testing and comparison of messages are part of this category as well.  

 

In this thesis, we consider the consensus/fault detection methods. Our focus is to advance 

the existing voter techniques. 

The basic tasks to achieve fault tolerance include: 

1. replicate components: to replicate a same component throughout the system.  

2. consensus/fault detection: to find the correct result of a computation, detect the 

faulty nodes, and discard incorrect results. 

3. recovery: having faulty nodes detected, recovery steps are followed and the nodes 

are denied from further activity in the system until they are recovered. 

 

The application of the above techniques is slightly different in stateful and stateless 

distributed systems. For stateful systems, if different non-faulty components/nodes 

execute a same set of requests in different orders, their states will deviate from each 

other, leading to different results. As a consequence, guaranteeing that all non-faulty 

nodes execute the same set of requests in the same order is vital for providing fault 

tolerance. We assume that the components of each node are stateless. 

 

It can be seen that fault tolerance introduces considerable overhead in terms of the cost of 

resource requirements and computation time. Although the owners and consumers of a 

system desire for high degree of fault tolerance, they both can only accept a limited 
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overhead. Therefore designing and implementing an efficient fault tolerant method is of 

great importance. The overhead of fault tolerant methods is determined mainly in terms 

of  

• the cost of the addition resources required, 

• the additional time consumed for computation and analysis. 

 

The cost of additional resources and computation time can be reduced in different ways: 

• reducing the number of messages passed around, so that the cost of the needed 

network bandwidth can be reduced. When fewer messages are passed around, 

the system requires less bandwidth to function. Therefore the system becomes 

not only less expensive, but also more scalable and more efficient in wide area 

networks. 

• reducing the number of replicas, so that the amount of hardware needed for the 

replicas to reside on can be reduced. When the number of replicas increases, the 

hardware required for the replicas increases as well. Therefore when fault 

tolerance can be guaranteed with a smaller number of replicas, the cheaper fault 

tolerant system can be developed while keeping scalability at the same time. 

• reducing the time complexity of the computation and analysis, so that we will 

need less computation resources (CPU units, I/O devices etc.). When the time 

complexity of the computations is reduced, we consume fewer amounts of CPU 

units within each node. As a consequence, a more scalable and less time 

consuming fault tolerant system can be achieved. 

 

This thesis aims at introducing an efficient distributed fault tolerant computation system, 

where the components are stateless. With respect to efficiency, we reduce the cost of 

additional recourses and the additional time consumption by: 

1. reducing the number of computations and analysis, 

2. reducing the time complexity of the computation and analysis 
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When a node is faulty, the majority of its computation results are incorrect. We assume 

that when a node becomes faulty, all of its computations are incorrect. Under this 

assumption,  

1. when a node completes a computation incorrectly, we can conclude, without 

further computation, that all the results of the computations after this point (until 

its latest recovery) are incorrect. 

2. when a node completes a computation correctly, we can conclude, without further 

computation, that all the results of the computations before this point (after its 

most recent recovery) are correct. 

 

Making use of these observations, we further improve the efficiency of the existing 

methods by reducing the time complexity to find the correct results and reducing the 

number of computations needed to detect faulty nodes. 

 

The continuing of this thesis is divided into the following Chapters: In chapter 2 we 

present the related works which have focused on developing efficient distributed fault 

tolerant systems. In chapter 3 we present the problem which has motivated our work. In 

chapter 4 we present our solution and algorithm. In chapter 5 we present the evaluation of 

our solution and in chapter 6 we have present our conclusion and future work. 
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Chapter 2. Related Work 
 

In the following, we give a brief overview of the groundbreaking work in optimizing 

fault tolerant distributed systems. 

 

The existing work on optimizing fault tolerant methods in distributed computation 

systems mainly focuses on the optimization of the following three aspects [18]: 

 • the protocol which orders the requests in stateful fault tolerant systems; 

 • the method which finds the correct result of a request; 

 • the method which detects faulty nodes. 

 

Since the focus of this thesis is in stateless distributed systems, we are not concerned with 

the ordering of the requests. In stateful distributed systems, on the other hand, developing 

an efficient protocol for the ordering of the requests is of great importance. The most 

widely used protocol for establishing similar ordering of requests in all the nodes is 

Castro’s BFT protocol [7]. The BFT ensures that:  

1. all non-faulty replicas execute the same requests in the same order while less than 

one third of the nodes are faulty (have crashed or have byzantine behavior);  

2. a node (user) will always choose the correct result for a request.   

BFT places the replicas in a hierarchy, which is referred to as a view. In a view, there is a 

special replica serving as the primary and the others are backups. The structure of a view 

can change when the primary is found faulty.  

BFT has three phases to atomically multicast requests to the replicas in a view. The three 

phases are pre-prepare, prepare, and commit. The pre-prepare and prepare phases are 

used to totally order requests in one view. The prepare and commit phases are used to 

ensure that requests are totally ordered when the structure of a view changes. In the pre-

prepare phase, when the primary receives a request q from a node (user), it assigns a 

sequence number n to q and multicasts the sequence number to the backups in a message 
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called pre-prepare. When a backup receives the pre-prepare message, it enters the 

prepare phase by multicasting a prepare message to all the other replicas. The prepare 

message denotes that the backup has agreed to assign sequence number n to q in the 

current view. In the next step each replica waits until it has received 2f matching prepare 

messages regarding sequence number n and request q. Here f represents the maximum 

number of faulty nodes. At this point a replica is assured that a group of 2f replicas have 

agreed to assign number n to q in the current view. To this point BFT ensures that all 

non-faulty replicas have the same total ordering of requests in the same view, but it can 

not ensure that all nodes have the same total ordering of requests across view changes. 

The commit phase solves this problem. Each replica multicasts commit messages to notify 

others that it has completed the prepare phase. Then each replica collects messages until 

it has a group of 2f +1 commit messages regarding sequence number n in a view v. At 

this point it is said that the request is committed and safe to be executed. The commit 

phase guarantees that there is a group of 2f+1 replicas which know that a group of 2f 

replicas have accepted to assign number n to q in a certain view and are ready to execute 

q.   

The view change protocol provides liveness by allowing the system to make progress 

when the primary fails [7]. When a backup suspects the primary of the current view v to 

be faulty, it enters view v+1 and multicasts a view change message to all replicas. 

Replicas collect view change messages for view v+1 and send acknowledgments for view 

v+1 to the new primary. The new primary collects view change acknowledgments and 

the view change happens when the new primary has 2f+1 view change acknowledgement 

messages. In the end Castro et al proved that their protocol preserves safety and liveness. 

In addition they noted that their method only works when 3f+1 replicas are active in the 

system and their method suffers from excessive message passing.  

 

Amir et al presented a more efficient request ordering protocol [4] compared to BFT [7] 

by reducing the message overhead of the BFT protocol. In this method, nodes are 
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grouped into sites. Each site can have at most 3f+1 nodes. Here f represents the 

maximum number of faulty nodes. In each site one node is chosen as the representative to 

conduct the three phases of the BFT protocol within the site. In addition, one site is 

chosen as the leading site to achieve total ordering of the requests among all the sites 

using the BFT protocol. When the representative of a site or the leading site shows faulty 

behavior, a new node and a new site is assigned to these positions respectively. The 

changes made to these positions are similar to the view change in BFT. This method 

reduces the message complexity for wide area networks from O(n
2
) in BFT to O(s

2
). Here 

n is number of nodes, s is the number of sites and s<<n. Consequently their method 

increases the system's ability to scale.  

 

In a more advanced work, Amir et al presented a new protocol (Blink) used between the 

sites to enhance performance in wide-area systems [5]. This new protocol establishes a 

reliable virtual communication link between the sites. This communication protocol 

discards the need for redundant message sending and allows a site to consume 

approximately the same wide-area bandwidth as a single physical node. The advantages 

of this method compared to their previous work [4] are: (i) The use of BLink increases 

performance by decreasing the number of redundant message passing in comparison to 

their previous work which typically requires (f + 1)
2
 redundant message sends; (ii) The 

new system achieves high performance in terms of time complexity and outperforms their 

previous work by a factor of 4 when running in a system with the same number of faulty 

nodes. The problem of this method is that it exposes weak nodes to the malicious ones 

and does not provide confidentiality. 

 

In addition to Amir’s work [4,5], Kotla et al also presented a method [19] which 

optimizes BFT [7] by reducing the number of messages sent and decreasing the time 

consumed to find the correct result of a request. Unlike Amir’s [4] work, replicas respond 

to a user’s request without first running the three-phase BFT protocol. Instead, they 



10 

optimistically accept the order proposed by the primary and send the result immediately 

to the user. This causes a reduction in the number of message passing but the replicas can 

become temporarily inconsistent with one another. The users can detect these 

inconsistencies and help direct the replicas to converge to a single total ordering of 

requests. In their protocol, a user sends a request to the primary, then the primary 

forwards the request to the replicas, and the replicas execute the request after completing 

the prepare phase. Afterwards the replicas send their results to the user. Each message 

containing a result is appended with history information. This history information 

represents the current state of the state machine of the replica sending back the result. The 

user will eventually accept a result if one of the two conditions holds: 1. it receives 3f + 1 

(f is the number of faulty nodes) similar results with matching history information; 2. it 

receives between 2f + 1 and 3f similar results with matching history information. The 

user sends a commit message to the replicas. Once 2f +1 replicas acknowledge receiving 

a commit message, the user accepts the result.  

Since the requests may not be executed in the same order in all the replicas, the state of 

the correct replicas may diverge, and they may send different responses to the user. 

Therefore when a specific result is accepted, the history information appended to this 

result is forwarded to the replicas so they would update their current state to the one 

represented by the history information. This method reduces the number of messages 

used in BFT by 3.7 times and speeds up the time to achieve the correct result of a request 

to 2.7 times. The authors noted that their method is near optimal.  

 

Unlike the previous work [19, 4, 5] focused on reducing the number of messages, Yin et 

al optimized the BFT [7] protocol by reducing replication costs. Their method [33] can 

tolerate f number of faults by only requiring 2f+1 number of active replicas, while all the 

previous work presented require 3f+1 active replicas. Their method separates the 

ordering of the requests from the execution of the requests in the BFT protocol. 

Separating the ordering from execution means that the nodes which cooperate in the BFT 
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protocol to order the requests (ordering nodes) are different from the nodes which 

actually execute the requests (replicas). Therefore, by separating these nodes, only 2f+1 

replicas are needed to execute a request while still guaranteeing fault tolerance. In 

addition to reducing the number of replicas needed, their method solves the 

confidentiality problem in Amir’s BLink protocol [5]. To achieve confidentiality, a 

privacy firewall is placed between the replicas and the ordering nodes. This firewall 

discards the results in minority and only forwards the result in majority to the user and 

the ordering nodes. This method prevents the ordering nodes and the user to find the 

faulty nodes.  

In their protocol, a node (user) sends a request to the ordering nodes and they assign a 

sequence number to it. The assignment of the sequence number is achieved by the 

execution of the BFT protocol. When the order of the request is determined, it is 

forwarded to the replicas to be executed. When a replica receives a new request, it checks 

the request’s sequence number sn with the sequence number sn’ of the last request it 

calculated. If sn =sn’+1 then the replica will calculate it; otherwise it will wait until it has 

calculated all the requests with a sequence number sn’’ that sn<sn’’<sn’. After 

calculating a result for the request, the node will send it to the privacy firewall. The 

firewall chooses the result in majority as the correct one and sends it to the user. 

Although separating the agreement from the execution reduces the number of replicas 

needed, it increases the time the user has to wait to receive the correct result of its 

request. 

 

Similar to Yin [33], Correia also presented an efficient ordering protocol [8] which can 

mask f faulty nodes by using only 2f+1 replicas. Unlike Yin’s [33] work, this protocol is 

not based on BFT but its performance is similar to Yin’s protocol. To achieve the same 

ordering of requests in all the nodes, they make use of a center node which is responsible 

for the ordering of requests. In this protocol, a node (user) sends a request to one of the 

replicas. When the replica receives the request, it forwards it to all the other replicas. 
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When each replica has received the request, they hash the request and send the hash to 

the center. When the center receives f+1 similar hashes it assigns the hashed request a 

sequence number and forwards it to the replicas. When a replica receives the sequence 

number of the request it executes the request in its given order. When a replica finishes 

the execution of the request, it sends the result to the user. Then the user waits for f + 1 

identical results from different replicas until it declares the result as correct.  

 

As mentioned, although the efficiency of ordering protocols is not an issue for us, 

detecting faulty nodes and finding the correct result of each request is of utmost 

importance in both stateless and stateful fault tolerant systems. The techniques used for 

developing fault detection and finding correct results are similar in both stateless and 

stateful distributed systems.  

 

The most common technique to detect faulty nodes is the use of tests. A test is designed 

to be capable of identifying faults in the nodes. Traditionally, a central node was 

responsible for conducting the tests and informing non-faulty nodes of the faulty ones 

which it had recently detected [9]. This central node is a single point of failure which is 

inconvenient for distributed systems. To adopt the traditional testing method with the 

current distributed computation systems, Hosseini et al presented a distributed fault 

detection method [15, 16]. In this method, any node can test a subset of other nodes for 

the presence of failures. The information used by a node to produce its fault diagnosis is 

the result produced by its own tests along with information passed to it indicating the 

results of the tests performed by other nodes.  

In this protocol, a node P is tested by a group of nodes which is referred to as the testers 

of P. Each node only sends diagnosis information to its testers. When a node Pj sends a 

message to its tester Pi passing the information about the faultiness of a node (diagnostic 

message), Pi temporarily stores this message if Pi had found Pj to be fault-free when it 

last tested it. The next time when Pi tests Pj, if it finds Pj to be fault-free, it will consider 
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all messages received from Pj in the interval between the two tests as correct and will use 

them to produce new diagnosis information. Although this method prevents a single point 

of failure in fault detection, it works under the assumption that a node cannot repair itself 

before its faultiness is diagnosed by another node. This assumption is very strong and not 

realistic.  

 

Albini et al optimized Hosseini’s [15] distributed diagnosis method by reducing the 

number of tests. In their protocol, the nodes are grouped in clusters. One of the nodes is 

assigned as the tester of each cluster [10] and each cluster contains N/2 nodes. Here N 

represents the total number of nodes. In each cluster, the tester tests all the nodes in the 

cluster and produces fault diagnosis information about each of them. At each testing 

interval, each tester of a cluster tests the testers of other clusters in addition to the nodes 

in its own cluster. When a tester j finds another tester i as fault-free, tester j asks tester i 

to send it the diagnostic information i has collected about its cluster. On the other hand, if 

the tester i is found faulty, tester j informs the nodes in the cluster to change their tester.  

When all the tests have been conducted, another protocol is run in the system which 

creates a graph whose vertices are the fault-free nodes and there is an edge directed from 

a vertex a to a vertex b, if node a has tested node b and has found it to be fault-free. Then 

the protocol finds the shortest paths between any vertex i and vertex j in the graph. The 

protocol keeps the edges in the shortest paths and deletes the rest. Then it propagates the 

diagnosis information of a node i to a node j through the nodes on i’s shortest path to j. 

This protocol runs until the diagnosis information of all the nodes has been propagated.  

 

Since the testing method produces a great deal of additional network traffic, Kihlstrom et 

al presented a new family of fault detectors [17] which does not require the use of tests 

and is suitable for consensus problems [12]. In this method, they assume that each node 

has the capability of predicting the result for each request it sends out because it is 

familiar with the semantics of the algorithm which will calculate its request.  In their fault 
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detectors, they consider three arrays in each node: one array representing all nodes that 

are faulty (byz), one array representing all nodes that are suspicious of having crashed 

down (outp) and another array representing messages the node is expecting to receive 

(exp). In the first step, when a node sends out a request to a node α, it turns on a timer. If 

the timer expires, the node appends α to outp and saves the details of the expected result 

in exp. When a node receives the result from α, it checks if the result meets its prediction. 

If it does, the node will accept the result; otherwise it adds the node to byz. Afterwards, it 

checks if the node is in the outp list. If so, it deletes it from the list and deletes the 

expecting result from α from the exp as well. In addition, it increases the timer for α for 

sending back a result. Every time one of the lists outp and byz gets updated, the node sets 

them to other nodes. When a node receives the outp and byz lists from other nodes, it 

adds the nodes in these lists to its own outp and byz lists. By passing around these two 

lists, all the nodes achieve a common view towards the system. Although their system 

presumably does not make use of tests, their assumption that each node can predict the 

correct result is very unrealistic. Therefore this method is not practical although it is more 

efficient than the testing technique.  

 

Typical fault detection methods make use of excessive tests which only serve the purpose 

of finding the location and characteristics of a fault. These methods introduce a great deal 

of overhead into the system. Unlike previous techniques, we established a method which 

can eliminate the need for excessive test. It not only detects fault but also find the correct 

result to a request as well.  

 

Finding the correct result of a request is a major issue in both stateless and stateful fault 

tolerant systems. The correct result to a request can be found in a centralized manner or a 

distributed manner. In this thesis, we use a centralized technique to find the correct result 

of requests. We will refer to the centralized technique as central decision making 

mechanism. 
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The most widely used centralized decision making mechanism is the voting algorithm. 

As mentioned, these algorithms mask incorrect results produced by faulty nodes, and 

prevent their propagation through out the system. These voting algorithms have been 

classified by Latif-Shabgahi [21] based on their functionality: generic voters, hybrid 

voters and purpose-built voters.  

Generic voters [21] calculate the final result for a computation by only using the results 

received from nodes. These algorithms have fault detection capability and are also able to 

create warnings when they cannot make a decision. Note that in cases where a 

computation can have multiple correct results, these voters are inadequate. The best 

known of these voters is the majority voter. The majority voter chooses the correct result 

from among the variant input results, where at  2/)1( +n  inputs have the same value. In 

this thesis, we have adopted a majority voter as well. Because of its ability to detect 

faults, we chose this voter to integrate fault detection and finding the correct result.  

Another well known generic voter is the median voter. This voter selects the mid-value of 

the variant input results as the final result. This voter can produce the correct result when 

a maximum  2/)1( +n  input results are incorrect. Although this voter can handle cases 

where a computation can have multiple correct results, it does not have fault detection 

capability. In addition this voter has a higher probability to produce incorrect results 

compared to the majority voter.  

Hybrid voters [21] use additional information such as the reliability level of nodes, on-

line diagnosis information of the nodes, or other various probabilistic information to 

improve their performance. These voters optimize genetic voters and produce more 

accurate results compared to them. The best known voter is the weighted average voter 

which calculates the weighted average of the input results. The weights can be 

predetermined or can be dynamically assigned. Typically, these weights represent the 

possibility of the input result being faulty. A well known voting algorithm which uses 

weights is the adoptive majority voter introduced by Latif-Shabgahi [22]. This adaptive 

majority voter uses the node’s history of faulty behavior to improve the performance of 
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the majority voter. In their method, the number of times a node has produced the correct 

result is computed. The nodes with the most produced correct results are considered as 

most reliable and the nodes with the least produced correct results are considered as the 

least reliable. In their method, a majority voter with a predefined voting threshold α is 

used. If the majority of n nodes produce results with a difference of α of each other, 

based on a majority voter, all of the n nodes are producing the correct result, and the 

voter should choose one of these results as the correct one. Previously, majority voters 

randomly choose the final result from the set of correct results, but by considering the 

reliability of the nodes, this voter can be improved. Instead of randomly choosing the 

final output, the voter can choose the result of the node with the highest reliability as the 

correct result. 

Voting algorithms incorporating prediction and smoothing [21] are another group of 

hybrid voters. These voters are suitable for cyclic systems in which there exists some 

relationship between the result in one cycle and the result in the next. Knowledge of this 

relationship between successive results is used in this class of voters. A well known voter 

in this group is the smoothing voter. This voter extends the majority voter by adding an 

acceptance test. This test indicates a node as faulty if the node executes the same request 

twice and there is an excessive difference between the two results it produces. These 

voters are used in systems where one computation is executed several times by the nodes. 

When a decision cannot be made by simple majority voting, the smoothing voter chooses 

the input result closest to the previous output produced by the voter as the final result for 

the current computation. We do not make use of the voters in this category because we 

have assumed that all the computations in the system are non-cyclic. Since our method is 

independent of the type of computations (cyclic or non-cyclic), our method can be simply 

adapted to systems with cyclic computations. 

Another well known algorithm in the hybrid voter category is the integrated voting 

algorithm. These voters use self-diagnostic methods which enables them to select correct 

results more often compared to genetic voters. Latif-Shabgahi et al presented a family of 
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these voters [22]. It is not important how the diagnosis information is created; the 

important factor to know about this information is that they present the percentage of 

fault in each node. The authors present a limit for diagnosis information: any node with 

diagnosis information higher than this limit is considered reliable. They present four 

ways on how this diagnosis information can be used to optimize voting performance: 

The diagnosis information of nodes is handled independently from the results returned. In 

this case, the voter finds the final output by only using the input results. Then the voter 

uses the diagnosis information to produce warning in the case when the diagnosis 

information show severe damages in the node whose result is chosen as the final output. 

The voter chooses the output result based on the input results and the diagnosis 

information of the node. The diagnosis information is used to validate the output result. 

This method can work in two ways: (i) the voter finds the output result and if among the 

nodes which have given the correct result, there is a node whose diagnosis information is 

higher than the limit, the final result is validated; otherwise the voter produces a warning. 

(ii) the second way is similar to the previous one. The difference is that in the case where 

none of the nodes with the correct result has a diagnosis information higher than the limit, 

the result returned by a node with the highest diagnosis information is validated and 

chosen as the output. 

The node with the highest diagnosis information is found and its result is chosen as the 

output result. In this case, the voter is nothing more than a selection function. 

The voter uses the diagnosis information to improve the method it uses to find the output 

result. These voters use the diagnosis information of each node to weigh its result 

returned. The higher the diagnosis information is, the more weight the result has.  

 

In some cases, designing a voter specialized for a specific application domain can result 

in more optimal results. These voters are referred to as Purpose-built voters [21]. These 

voters are customized based on the characteristics of the application. Some sample of 

voters in this category can be: SIFT [21]: It is a voter in aircraft control which is a 
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customized majority voter. Stepwise negotiating voter [21]: It integrates the majority 

voter and standby redundant systems. A standby system halts a number of its components 

when the voter can not make a decision. When the voter finds a result, the halted 

components will continue functioning again. The Stepwise voter behaves as if it were a 

majority voter if it can find the output result; but if it cannot, the system degrades to a 

standby system.  The expedient voter [21] is used in multi-stage software systems. In 

these systems, each software is not considered as one unit; instead it is subdivided into 

components and the voter produces an output once enough number of components has 

produced a result. It has been seen that this voter works considerably faster than the case 

where the software is considered as one unit. 

 

Although a voter is a less complicated method to find a correct result compared to a 

distributed architecture, a distributed architecture is more compatible with distributed 

computation systems. 

Finding the correct result to a request in a distributed manner can be generalized to the 

byzantine agreement problem. The byzantine agreement protocol tries to arrange all the 

non-faulty nodes to agree on the value of a certain entity [20]. For example, the 

correctness of a node (is it faulty of not), the result of a request, the order of the requests, 

etc. Lamport’s protocol is the most well known byzantine agreement protocol [20]. It is 

round optimal in the sense that the number of rounds the protocol runs until an agreement 

is reached is optimal. By agreement we mean that all the nodes accept a common result 

as the correct one of a request. In their method, when a server calculates a request, it 

signs the result and sends the result to other nodes. When a node receives a result from 

the server it logs it and then signs the result and forwards it to all the other nodes. When 

the node receives a signed result which is not equal to the result it originally received 

from the server, it adds the newly received result to its log. If the signed result has not 

been signed by all the nodes yet, the node will sign it and forward it to others. Otherwise, 

if the result is signed by everyone, the node checks to see how many different results it 
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has logged. If more than one result is signed by the server, it can define the server as 

faulty and discard all the results. Otherwise, in the case that there is only one result 

signed by the server, the node chooses that as the correct result of its request. This 

protocol can tolerate faults up to one third of the nodes. Their method has exponential 

message complexity therefore making it impractical. 

 

One of the early and well known work presented in optimizing Lamport’s [20] protocol is 

Lynch et al [24]. They were capable of changing Lamport’s protocol in a way that its 

message complexity were polynomial. In the first step, when a node receives a result 

from the server, it signs the result and forwards it to the other nodes. When a node 

receives a signed result for another node, it saves the result in its log. When the number 

of matching signed results exceed f+1, the node signs the result and sends it to the other 

nodes. Here f is the number of faulty nodes. When a node receives 2f+1 number of signed 

results from distinct nodes, it will send out a commit message indicating that it has 

accepted the result. When a node receives 2f+1 commit messages, it will then use the 

result. Unlike Lamport’s protocol, this methods is practical since it has a polynomial 

message complexity.   

 

In addition to Lynch’s [24] work, Fitzi also introduced a byzantine agreement protocol 

with a polynomial message complexity in terms of the number of nodes [13]. In their 

method, the protocol has two phases: information gathering and data convergence. Each 

node has a tree where each vertex represents the result returned by a node. The root 

vertex represents the result returned by the server and each vertex shows a result returned 

by a node. The result in a vertex for a node denotes that this is the result that the server 

returned to the node.  For instance, a vertex i.j.α,  denotes that a node i says that node j 

says that the server returned the value α to it. 

The information gathering phase has multiple rounds. In the first round, the server sends 

its result to all the nodes and they save it in the root vertex. In the next rounds, the nodes 
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send their trees to each other. Each node will update its tree using the trees it has 

received. After each round of information gathering, in the data convergence stage, if the 

difference between the data received by another node and the result in the root node is 

smaller than σ then the result is untouched; otherwise it is set to ┴ which is a value out of 

the possible result range. Vertices with the ┴ value are noted as faulty. The updated tree 

is sent out in the next round of information gathering. In this step, to reduce their message 

complexity to polynomial, they prune their tree by deleting vertices from nodes which 

seem to have crashed or are faulty. Therefore messages are only sent to nodes assumed to 

be fault-free. The execution of these two phases continues for a predefined number of 

times. Although this method runs in polynomial time, it is not an optimal solution.  

 

Feldman presented an optimal byzantine agreement method [11] which can reach 

agreement in synchronous systems if the number of faulty nodes is smaller than one third 

of the total number of nodes; and if the system is asynchronous, agreement can be 

achieved if the number of faulty nodes is smaller than one fourth of the total number of 

nodes. Their protocol guarantees that: 1. if a value is produced by a non-faulty node, 

other non-faulty nodes will agree on the value; 2. if a value is produced by a faulty node 

and a non-faulty node agrees on the value, other non-faulty nodes may or may not agree 

on it. In the first step, when a node produces a value, it sends the value to the other nodes. 

In the next step, all the nodes share their received values with each other. Then each node 

is given a random number from 0 to n (total number of nodes). The node with the least 

number chooses n-f values from those other nodes have shared with. Here f is the number 

of faulty nodes. This node chooses values close to the one it originally received and sends 

its chosen values to other nodes. When the nodes receive the chosen values, they 

calculate the average of the chosen values. If the average has a difference smaller than α 

from the original value they received, they will consider the average as the correct result 

for the request. Otherwise the node will discard the received values. In this case, although 

the proposed protocol can achieve agreement in constant time with optimal message and 
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cryptography complexity, in 1-t/n of the times, the agreement cannot be achieved. 

 

Hardekopf et al presented a new family of byzantine consensus protocols [14]. His 

protocol is not based on the traditional Lampton protocol [20] and can reach agreement in 

constant time just like Feldman’s [11] protocol. In this work, the author combines 

byzantine agreement with a central decision making mechanism. Every node calculates 

the result for a computation request independently and sends its results to other nodes. 

Every time a node receives a result from another node, it runs its central decision making 

mechanism (typically a voter) to see if it can find the correct result. When the central 

mechanism finds the result, the node sends it to a shared memory and a timer in the 

memory starts to count down. If a result resides in the memory, it is over-written by the 

new result. In the next steps, when a central mechanism of a node finds a result, it checks 

its result with the one in the shared memory. If its result is equal to the one in the shared 

memory, the node does nothing; otherwise it replaces the old result in the shared memory 

with its own and forwards its result to other nodes based on Lynch’s byzantine agreement 

protocol. When the timer of the memory reaches zero, the result in the memory is sent to 

the user. The authors have shown that their algorithm has an average O(1) complexity in 

relation with the number of nodes. 

Hardekopf further on advances their method to avoid the use of shared memory [14]. In 

the new method, each node calculates a result for a computation request and saves the 

hash of its result. In the next step, the node sends its result to other nodes based on the 

byzantine agreement protocol. When a node receives a result, it checks it with its own 

result, if they are similar, the node creates a hash of the received result and sends it back 

to the sender. This hash is called an endorsement. It shows that a node has calculated the 

same result. When a node receives an endorsement, it runs its central mechanism (voter) 

to see if it can find the correct result based on the received endorsements. If the voter can 

find a result, the node forwards it to the node which requested the computation. The 

authors show that the algorithm complexity in each node is O(n), where n is the total 
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number of nodes. 

 

In addition to the above pieces of work, Sobe also aimed at optimizing the process of 

finding the correct result by reducing the number of messages passed around [31]. Sobe 

reduced the message complexity by eliminating the messages containing information 

about the correctness of a result. These messages are piggybacked on the messages 

containing requests and results. Although their method reduces the number of messages, 

it introduces new problems: a node must wait for the next message to arrive until it can 

find out that a previous result it has received is correct or not. This message can take a 

great deal of time to arrive, therefore introducing unnecessary wait. Sobe tried to solve 

this problem by allowing the nodes to make use of the result. If later on the result is 

found incorrect, the node must rollback all the calculations it has done based on the 

result. This is not a very convenient solution because an incorrect result can be 

propagated to other nodes. Therefore those nodes must be notified and must rollback as 

well. In this situation the effect of an incorrect result can be similar to a ripple effect. 

Therefore repairing the system can be very costly and time consuming.  

 

All the previous work presented have been designed and evaluated in traditional 

distributed computation systems. Today, a great deal of distributed computing is being 

carried out by web services. These services are incapable of handling the presented fault 

tolerant mechanisms because of the heavy computations embedded in them. Therefore 

new fault tolerant mechanisms need to be presented for web services. 

 

Zhao presented a fault tolerant method for stateful web services [34] based on the BFT 

[7] protocol presented by Castro [7]. This method adopts BFT to the web service 

architecture by reducing the number of message passing and message processing. As in 

BFT, a service request can only be executed when the three phases (pre-prepare, prepare, 

commit) of the BFT protocol has been completed. But unlike in BFT where all the 
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replicas which execute the request send back the result, in this method a replica only logs 

the result and does not send it to the client until the replica becomes a primary after a 

view change. If the primary becomes faulty, the user will accept an incorrect result since 

only the primary sends back the results. To solve this problem, if the client uses a central 

decision mechanism (such as voter), the client must wait for f+1 (f is the number of faulty 

nodes) view changes until it can find the correct result for a request. This number of view 

change may take a great amount of time.  

 

Merideth et al [24] pointed out that traditional fault tolerant methods are not suitable for 

web service architecture because stateful web services are typically multi-tier, in the 

sense that a web service can be dependent on other web services, therefore creating a 

multi-tier infrastructure [24]. They show that Zhao’s [34] method only supports fault 

tolerance in the first tier. Therefore a method is needed to advance fault tolerance to the 

remaining tiers as well. In their architecture a web service is replicated on levels one and 

two but web services on the third tier and above is provided by only one node. In their 

method a node (user) sends its request to the replicated web services using the BFT [7] 

protocol. In the next step each replica sends a request to each web service β which it is 

dependent on. Each web service β executes the service after receiving f+1 requests for it 

and then sends back the result to the requesting replicas. When the requesting replicas 

receive the result, each replica checks its result from β with the other replicas. If it 

matches the majority of the results, the replica uses the result from β to compute the final 

output for the user’s request. Similar to BFT, the user waits for f+1 similar results before 

accepting it as the correct one. In this method, since the web services on the third tier and 

above are provided by one node, it can suffer from unavailability if a node in these tiers 

crash. 

In addition, they present spatial and temporal redundancy techniques for establishing 

stateless fault tolerant web services [24]. In spatial redundancy, they use fault masking 

techniques to prevent the propagation of faulty results. While web services are replicated 
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on different machines, only one web service (called the primary web service) provides 

the requested service at a time. A redundancy manager is considered to check the 

correctness of the primary by repeatedly testing it. If a service shows to be faulty, the 

redundancy manager discards the result from the web service and allocates another web 

service as the primary and resends the request to the new primary. 

In temporal redundancy, a second attempt at a request is repeatedly initiated until the 

correct result is obtained. With this technique, a service has no physical replicas. At first, 

a node (user) sends a request to the web service and waits for the result. When the user 

receives the result, it tests the web service. If it shows to be faulty, it will resend the 

request to the web service again and again until the web service shows to be fault-free. 

Since each web service is stateless, the only way to make such a service fault tolerant is 

to retry to use it until it gives the correct result.   

 

As for stateless web services, Santos et al presented a fault tolerant method which is 

independent of a protocol which established fault tolerance [28]. The authors argued that 

methods such as Zhao’s [34] and Meredith’s [24] are against the methodology of web 

services: they should be interoperable and independent of various technologies and 

platforms. Their newly proposed method uses technologies such as XML, SOAP, UDDI, 

etc used by all web services. In their method, they considered a central node which is 

responsible for invoking service replicas, analyzing the results for each request and 

detecting faults. In the first step, a node (user) sends its request to the central node which 

forwards the request to all the replicas. When a replica finishes the execution of the 

request, it sends back the results to the central node so it will use its voter to find the 

correct one. Since the voter does not play the role of a fault detector, the central node has 

other components to detect faults. These components test the replicas periodically to 

check if they are faulty or not and take the faulty replicas out of the system. Their method 

suffers from the excessive network traffic caused by tests carried out by the fault 

detection components. The periodic test not only causes excessive messages but also 
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greatly delays the time to reach a result. Our method uses a similar technique to find the 

correct result of a request but avoids additional message passing for fault detection by 

incorporating fault detection capabilities into our voter. 

 

Our method is capable of tolerating f faults with only 2f+1 replicas, similar to Yin’s [33] 

and Correia’s [8] protocols. Since our method is designed for stateless fault tolerant 

services, it is not based on the BFT [7] protocol: we are not concerned about the ordering 

of the requests. As a result, our method only makes use of replicas and not ordering nodes 

[7]. Consequently, we only need 2f+1 replicas for executing the requests, resulting in a 

more efficient protocol compared to BFT [7] and Amir’s [4, 5] protocol in terms of the 

number of active replicas needed.  

Our method integrates fault detection techniques with the techniques to find the correct 

result of a request. Our fault detection method is similar to Hosseini’s [14, 15]. The major 

difference is that each node diagnoses itself as faulty and does not rely on other nodes to 

find its faultiness. Therefore we do not have to make use of their strong assumption that 

no node can repair before being diagnosed by other nodes. The method we use to find the 

correct result is similar to Santos [28], but our central node does not have separate 

components to test for faulty nodes. The voter in the central node is a genetic voter (the 

majority voter). At this stage a simple genetic voter was enough for us to achieve our 

goals. In our method, a voter can find the correct result in an amount of time less than 

that by the genetic voters, and thus increases the performance. To our understanding, all 

the voters presented have the same approximate speed when having f faulty nodes in the 

system. But unlike Santos [28], the voter in our central node can not only find the correct 

result, but also detect faulty nodes. With the use of this method, the messages sent out in 

the system are used both for finding the correct result and detecting faulty nodes, 

therefore eliminating the need for additional messages to detect faults. The message 

complexity of our method is equal to the state-of-the-art efficient fault detection methods 

presented. We have a message complexity of O(n
2
) where n is the number of nodes while 
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providing a distributed fault detection technique. 
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Chapter 3. Problem Definition and Our Solution 
 

Although fault tolerant mechanism can help diagnose and mask faults to enable critical 

systems to function without explicitly showing errors, they normally demand for a great 

deal of extra computational time and additional system resources. The overhead that a 

fault tolerant mechanism introduces can make a system very costly to operate. In 

particular, a fault tolerant system can become inappropriate for highly interactive and 

time sensitive applications because of the additional time it takes to achieve fault 

tolerance. Therefore, there has been much concern about reducing the overhead of the 

fault tolerant mechanisms. 

There are several ways that fault tolerant mechanism can introduce overhead: 

• requiring additional resources and computation power to calculate the result of a 

request. As mentioned before, the basic technique to establish fault tolerance is 

redundant computation which requires that a request be computed in multiple 

nodes. Therefore it is clear that more resources are needed to establish a fault 

tolerant system; 

•  requiring additional computation power for the voting and test method. These 

methods diagnose and mask faulty results by analyzing the data, taking into 

account the identities of the nodes, the results they have returned, etc. Additional 

computation power is consumed to carry out such analyses.  

• requiring additional time to mask faulty results and find the final result for a 

computation request. In regular (i.e. non-fault-tolerant) systems, a request is 

computed by only one node and its result is used by the user at this node. In fault 

tolerant systems, on the other hand, a request is computed by multiple nodes and 

a single result is derived using the results computed by multiple nodes. 

Therefore, considering that different nodes have different computational speeds, 

from slow PCs to high speed frameworks, the time to derive the final result 

increases, as the user should wait for more than one node to calculate the request. 

In addition, after the results are acquired, a certain amount of time is consumed to 

diagnose the faulty results, and choose one as the correct result for the request. 
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As it can be seen, by considering such additional computation time, the time to 

reach a result for a request is largely increased compared to that for regular 

systems. 

• sending additional messages over the network. To achieve fault tolerance, 

additional information about the identities of the nodes, the requests, the related 

results etc. need to be passed among different nodes.  

o As the system uses redundant computation, a request is sent to multiple 

nodes instead of only one, introducing new messages.  

o Consequently, each node has to send back its result to the voter. This 

introduces a group of additional messages.  

o When the system uses weighted voters, the voters make use of the 

information about the nodes, such as their fault percentage, their 

probability of becoming faulty, etc. For such information to be sent to the 

voter, another group of messages are introduced into the system.  

 

As it can be clearly seen, to reach fault tolerance in the system, lots of messages have to 

be introduced. 

 

Critical systems in need of fault tolerance are usually time sensitive systems, such as 

space crafts and nuclear reactors, where the time to get a result is vital for the system to 

properly function. Therefore, it is highly desirable that these systems do not spend too 

much additional time for applying a fault tolerant method to find the correct result of a 

request: It is quite important that the amount of time to mask faults is well-controlled so 

that the correct result can be reached in time. For instance, consider a space craft in which 

its sensors detect a solar storm. The fault tolerant method takes a considerable amount of 

time to diagnose the incorrect sensor data and chose the final result sent back from the 

sensors indicating that a solar storm is coming. Therefore the space craft cannot take 

appropriate actions in time and it is dislocated from the earth’s orbit by the solar storm. 

 

Anther commonly known characteristics of critical systems is carrying out intensive 

computation. For example, consider a computational base station which analyzes the data 
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sent back from a space satellite. In a regular mode, this station makes use of two high 

speed computational frameworks to analyze the data. To achieve fault tolerance, suppose 

that the data need to be analyzed by ten high speed computer frameworks and their 

results are checked by a fault tolerant method in another high speed framework to find 

faulty results and choose a final one. This fault tolerant method requires 11 frameworks 

to analyze each data sent back from the satellite, which is a considerable amount of 

computation overhead. As such systems make use of very expensive computing 

resources, avoiding any additional computations is highly desired. 

 

Although the overhead introduced by fault tolerance cannot be completely avoided, it can 

be reduced by using well-studied methods that take into account the time complexity and 

resource (network bandwidth, memory space, computational power, etc) use.  

 

This thesis focuses on developing an efficient fault tolerant method. Our goals are as 

follows: 

1. reducing the time to reach a result for a request: we consider reducing the time to 

reach a correct result by reducing the time to diagnose and mask faults. 

2. reducing the consumption of computational power to calculate requests: we 

consider eliminating those computations that do not affect the decision of the final 

result for that request.  

 

We assume that the system considered has a central voter in the sense that it collects the 

results calculated by every node and chooses a final result using quorum-based voting 

mechanism.  

 

Different nodes can provide different services. For example, node A can process requests 

q1 and q2 while node B can process requests q1, q3, and q4. 

 

We assume that each node can process a predefined set of requests and we assume that all 

nodes have the knowledge about which other nodes are capable of processing which 

requests.  
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Each node can issue a service request to m nodes that can process it, where m is at least 

twice the number of nodes that may become faulty at the same time so that the majority 

voting can be carried out. 

 

A request can be initiated at any node. Multiple requests can be initiated at different 

nodes at more or less the same time. Due to network delay, a same request can be 

received by different nodes in different orders. 

 

When a central voter found a correct result of a computation, it sends the result to every 

node in the system. 

 

 (Ass1) When a node starts to malfunction, it will never produce a correct result until it is 

repaired. 

 

(Ass2) A malfunctioning node can only be repaired by the administrator.  

 

Our solution to provide reduction on the consumption of both time and computation 

power are based on two observations.  

 

Observation 1: If a result calculated by a node at time t turns out to be correct, 

then for any time t1 before t, all the results calculated by this node are correct as 

long as no reparation was carried out between t1 and t.  

 

 

Figure 1 Observation 1 

 

<q1,r1,t1> ,…, <qm,rm,tm>  , <qm+1,rm+1,tm+1> ,…, <qn-1,rn-1,tn-1>  ,  <qn,rn,tn>,… 

repair 

correct 

no repair correct 



31 

This is illustrated in Figure 1: if rn is correct then rj is correct for all j such that m+1 < j < 

n-1. 

 

Let <q,r,t> denote the computation of request q at time t, resulting in r. Consider the 

situation where node N has calculated the following results: <q1,r1, t1>, <q2,r2, t2>, <q3,r3, 

t3>, <q4,r4, t4>, <q5,r5, t5> where t1< t2< t3< t4< t5. After time t5, we realized that the result 

r4 for q4 is correct. Suppose that N has only been repaired at a time between t2 and t3: no 

reparation is done between time t3 and t4. Then based on the above observation, we can 

conclude that the result r3 is correct for request q3. 

 

The correctness of observation 1 is derived from assumptions Ass1 and Ass2: When a 

node realizes that a result r it has calculated is correct, based on assumption Ass1, we can 

conclude that this node was functioning properly at the time it calculated r.  Now based 

on assumption (Ass2), it can be concluded that the node was functioning properly 

between the last reparation and the time it calculated r. Therefore, based on Ass1, we can 

conclude that all the results calculated in this time period are correct.   

 

Observation 2: If a result calculated by a node at time t turns out to be incorrect, 

then for any time t1 after t, all the results calculated by this node are incorrect as 

long as no reparation was carried out between t and t1.  

 

 

Figure 2 Observation 2 

 

For instance, consider the previous example. Suppose now that node N realizes that its 

result r3 for q3 is incorrect and that it has only been repaired at a time between t4 and t5. 

Based on this observation, it can be concluded that the result r4 is incorrect for request q4. 

<q1,r1,t1> ,…, <qm,rm,tm>  , <qm+1,rm+1,tm+1> ,…, <qn-1,rn-1,tn-1>  ,  <qn,rn,tn>,… 

repair 

incorrect 

no repair incorrect 
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The correctness of observation 2 is also derived from assumptions Ass1 and Ass2: When 

a node realizes that a result r it has calculated is incorrect, based on Ass1, we know that 

the node was malfunctioning at the time t it calculated r. According to Ass2, we can 

conclude that the node is malfunctioning from time t until the time the node was repaired. 

Using Ass1 again, we know that all results calculated from time t till the time the node 

was repaired, are incorrect.  

 

For convenience, we will use α, β to range over services, ρ to range over nodes. We will 

use  

• T(ρ, t) to represent the type of the fault at node ρ at time t. In particular, we use a 

special symbol Null to denote that there is no fault at node ρ. 

• R(ρ, t, α) to represent the result of the computation of α at node ρ at time t. 

• C(ρ, α) to represent the correct result of computing α at node ρ. 

• fix(α, t) to represent whether node α is fixed at time t (and will function well 

afterwards). 

 

With these notations, the two observations are formally expressed as follows. 

 

Proposition 1:  

∀t, t1, if R(ρ, t, α)= C(ρ, α) 

and ∀t2 s.t. t1<t2<t .  fix(α, t2) = false 

then ∀β, ∀t3 s.t. t1<t3<t .  R(ρ, t3, β )= C(ρ, β) 

 

Proposition 2:  

∀t, t1, if R(ρ, t, α) ≠ C(ρ, α) 

and ∀t2 s.t. t<t2<t1 .  fix(α,t2) = false 

then ∀β, ∀t3 s.t. t<t3<t1 .  R(ρ, t3, β )≠ C(ρ, β) 
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The following example highlights how these two propositions can be used in fault 

tolerant distributed systems to improve the efficiency. 

 

Example 1: Assume that the network has six nodes N1, N2, N3, N4, N5, N6 and there are 

eight requests q1, q2, q3, q4, q5, q6, q7, q8 handled in a certain period. Suppose that the fault 

tolerant distributed system goes through the following steps: 

 

We use tuple <q1, r1,i , t, b> (called message-tuple below) to denote that result r1i has been 

calculated for request q1 at time t. Here t has values t1,t2, …tn where t1<t2<t3….<tn. In 

addition, b has three values: when b is null, it means we do not know yet whether r1i is 

correct or not. When b is true or false, it means that r1i is correct or incorrect, 

respectively. 

 

Step1: each node sends out its requests to other nodes. In table 2, the row of Step 1 shows 

the requests sent by each node. 

Step 2: each node receives the requests. In table 2, the row of Step 2 shows the requests 

received in order by each node. This is also illustrated in Figure 3 where the arrows 

illustrate the requests sent to and received from node N1. 
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Figure 3 Requests sent in the system 

 

Step 3: each node, in a certain period of time, finishes the computation of some requests, 

and sends the results to the voting center. In table 2, the row of Step 3 shows the 

message-tuples calculated for the first several requests received. This step is illustrated in 

the following picture. 

 

Figure 4 Results sent to the voter 

 

<q5,r5.t1,->,<q1,r1,t3,->, 

<q3,r3,t6,->,<q4,r4,t8,-> 

<q5,r5,t1,->,<q3,r3,t2,->,<q8,r8,t3,-> 
 

<q1,r1,t1,->,<q3,r3,t3,->,<q8,r8,t5,-> 

<q1,r1,t2,->,<q3,r3,t3,->,<q3,r3,t4,-> 
 <q1,r10,t1,->,<q3,r30,t2,->,<q4,r40,t3,-> 

<q1,r10,t1,->,<q8,r80,t2,->, 

<q4,r40,t3,-> 
N1 

N2 

N3 

N4 

N5 

N6 

Voter 

N2 

N3 

N5 

N6 

N1 sends 

requests:q1, q3, q4 

The requests it has 

received are:  

 [q5,q3,q8,q5,q6,q1, 

q6,q1,q7,q7,q8] 

N2 sends requests:q1, 

q5, q7 

The requests it has 

received are:  

[q1,q8,q3,q3,q7,q6, 

q5,q4,q1,q8,q6] 

N5 sends requests: q6 

The requests it has 

received are:  

[q5,q3,q1,q4,q7,q6, 

q8,q1,q3,q7,q6, q1] 

N3 sends requests:q8, q1, q6 

The requests it has received 

are:  

[q1,q1,q3,q7,q3,q5,q4,q5,q8,q6,q7] 

 

N4 

N1 

q1, q3, q4 

q1, q3, q4 q1, q3, q4 
q1, q3, q4 

q1, q3, q4 

N4 sends requests: q3, q7 

 

The requests it has received are:  

[q8,q1,q4,q3,q7,q6,q5,q1,q5,q8,q6, 

q1] 

N6 sends requests:q5, q8 

The requests it has 

received are:  

 [q1,q3,q8,q1,q5,q7, 

q4,q1,q6,q3,q7, q5, 

q8] 
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Step4: the voting center receives the results of Step 3 from all nodes. In table 2, the row 

of Step 4 shows these results received by the voting center.  

Step 5: the voting center finds the correct results for some of the requests using its voting 

algorithm. In table 2, the row of Step 5 shows the message-tuples consisting of the 

correct results that the voter is able to derive at this time. These results are sent back to all 

other nodes.  

 

Table 1 shows the decisions of the correct results made by the central voter at this stage. 

There are 6 nodes in total so in order for a result to be considered correct, it has to be 

returned by at least three nodes. For example, the majority voter finds four nodes having 

calculated r1 for q1. Therefore it chooses r1 as the correct result for q1.  

 

Requests Results Received Correct Result Messages sent from 

voter 

q1 r1, r1, r1, r1 

r10, r10 

r1 <q1,r1,-,true> 

q3 r3,r3,r3,r3,r3 

r30 

r3 <q3,r3,-,true> 

 

q4 r4 

r40, r40 

n/a No message sent 

q5 r5,r5 n/a No message sent 

q8 r8,r8 

r80 

n/a No message sent 

Table 1 

 

Picture 5 illustrates the messages sent by the voter after having calculated the correct 

results. 
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Figure 5 Results sent by the voter 

 

Step 6: each node derives the correct/incorrect results using Proposition 1 and Proposition 

2, and sends the results to the voting center, if there are any. In table 2, the row of Step 6 

shows the message-tuples consisting of the correct/incorrect results found by each node at 

this time.  

 

Having received correct results for q1 and q3, nodes N1, N2 and N5 are able to conclude, 

by using Proposition 1, that their results for requests q5 and q8 are correct. Nodes N4 and 

N6 can conclude, by using Proposition 2, that their result r40 for request q4 is incorrect. 

The following picture illustrates how each node uses Proposition 1 and Proposition 2 to 

derive correct/incorrect results. Here a red circle highlights a request in a node whose 

result is judged by the voter as correct. A blue circle highlights a request whose result is 

judged by the voter as incorrect. In the end of this step, two more results are found 

correct: <q5,r5,t1,true> and <q8,r8,t3,true>. 

N1 N2 

N3 

N4 
N5 

N6 

<q1,r1,-,true>,<q3,r3,-,true> 

 
<q1,r1,-,true>,<q3,r3,-,true> 

 

<q1,r1,-,true>,<q3,r3,-,true> 

 

<q1,r1,-,true>,<q3,r3,-,true> 

 

<q1,r1,-,true>,<q3,r3,-,true> 

 

<q1,r1,-,true>,<q3,r3,-,true> 
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Figure 6 Using Proposition 1 and 2 

 

Step 7: the voting center sends the correct results <q5,r5,t1,true> and <q8,r8,t3,true> 

achieved in Step 6 to all the nodes. In table 2, the row of Step 7 shows the message-tuples 

with all correct results found in Step 6. 

 

Steps N1 N2 N3 N4 N5 N6 Voting 

Center 

Results received: <q1,r1,-,true>,<q3,r3,-,true> 

Results calculated: <q5,r5,t1,->,<q3,r3,t2,->,<q8,r8,t3,-> 

Checks to see if the results 

returned by the node are similar 

to the results it has calculated 

Has never been 

repaired 

Checks to see if it  

has been repaired 

Conclusion: 

<q5,r5,t1,true> 

Use Proposition 1 

and 2  

N1: 

Results received: <q1,r1,-,true>,<q3,r3,-,true> 

Results calculated: <q1,r1,t1,->,<q8,r8,t3,->,<q3,r3,t5,-> 

Has never been 

repaired 

Conclusion: 

<q8,r8,t3,true> 

Results received: <q1,r1,-,true>,<q3,r3,-,true> 

Results calculated: <q1,r1,t2,->,<q1,r1,t3,->,<q3,r3,t4,-> 

N2: 

N3: 
Has never been 

repaired 

Conclusion: 

Nothing 

Results received: <q1,r1,-,true>,<q3,r3,-,true> 

Results calculated: <q8,r80,t1,->,<q1,r10,t2,->, 

<q4,r40,t3,-> 

N4: 
Has never been 

repaired 

Conclusion: 

<q4,r40,t3,false> 

Results received: <q1,r1,-,true>,<q3,r3,-,true> 

Results calculated: <q5,r5,t1,-><q1,r1,t6,->,<q3,r3,t3,-

>,<q4,r4,t8,->  

N5: Has never been 

repaired 

Conclusion: 

<q5,r5,t1,true> 

Results received: <q1,r1,-,true>,<q3,r3,-,true> 

Results calculated: <q1,r10,t1,->,<q3,r30,t2,>, 

<q4,r40,t3,-> 
N6: 

Has never been 

repaired 

Conclusion: 

<q4,r40,t3,false> 
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1 q1, q3, q4 q1, q5, q7 q8, q1, q6 q3, q7, q5, q8 q6 - 

2 [q5,q3,q8, 

q5,q6,q1, 

q6,q1,q7, 

q7,q8] 

[q1,q8,q3, 

q3,q7,q6, 

q5,q4,q1, 

q8,q6] 

[q1,q1,q3, 

q7,q3,q5, 

q4,q5,q8, 

q6,q7] 

[q8,q1,q4, 

q3,q7,q6, 

q5,q1,q5, 

q8,q6, q1] 

[q5,q3,q1, 

q4,q7,q6, 

q8,q1,q3, 

q7,q6, q1] 

[q1,q3,q8, 

q1,q5,q7, 

q4,q1,q6, 

q3,q7, q5, 

q8] 

- 

3 

 

<q5,r5,t1,->, 

<q3,r3,t2,->, 

<q8,r8,t3,-> 

<q1,r1,t1,->, 

<q8,r8,t3,->, 

<q3,r3,t5,-> 

<q1,r1,t2,->, 

<q1,r1,t3,->, 

<q3,r3,t4,-> 

<q8,r80,t1,-

>, 

<q1,r10,t2,-

>, 

<q4,r40,t3,-> 

<q5,r5,t1,->, 

<q3,r3,t3,->, 

<q1,r1,t6,-> 

<q4,r4,t8,-> 

<q1,r10,t1,-

>, 

<q3,r30,t2,-

>, 

<q4,r40,t3,-> 

 

4 - - - - - - <q5,r5,t1,->, 

<q1,r1,t1,->, 

<q8,r80,t1,->, 

<q1,r1,t2,->, 

<q1,r10,t1,->, 

<q5,r5,t1,->, 

<q3,r3,t2,->, 

<q8,r8,t3,->, 

<q1,r1,t3,->, 

<q3,r30,t2,->, 

<q1,r10,t2,->, 

<q3,r3,t3,->, 

<q3,r3,t4,->, 

<q8,r8,t3,->, 

<q3,r3,t5,-> 

<q4,r40,t3,->, 

<q4,r40,t3,->, 

<q4,r4,t8,->, 

<q1,r1,t6,->, 

 

5 - - - - - - <q1,r1,-,true>, 

<q3,r3,-,true> 

6 <q5,r5,t1,tru

e> 

<q8,r8,t3,tru

e> 

- <q4,r40,t3,fa

lse> 

<q5,r5,t1,tru

e> 

<q4,r40,t3, 

false> 

- 

7       <q5,r5,-,true>, 

<q8,r8,-,true> 

Table 2 
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Chapter 4. Implementation 
 

In this chapter, we give the design and implementation details of our efficient fault 

tolerant systems. To implement our methods the following messages are used for the 

communication among the nodes: 

• TQ message: a task request sent from one node to others. This message has the 

form <q, n> where q is the requests and n is the id of the requesting node. 

• QR message: a request together with result sent from a node to the voting center. 

A QR message can be typically viewed as a message-tuple whose last element 

has null value.  

• QV message: a verdict of a request sent from one node to the others. A QV 

message is also a message-tuple whose last element is either true or false (no null 

value). 

 

4.1 The functions of each node 

 

Each node can only execute one request at a time. It maintains a list W for all requests 

which have not yet been executed by this node. The calculated results are saved in a list 

C. List C contains tuples <q, r, t> for all request q whose result r is computed locally at 

time t but its correctness is unknown. It is used to keep the records of all the executed 

requests with their associated results so that their correctness may be obtained later on 

according to Proposition 1 and 2. Note that a request r may appear in either W or C, or 

both. It may appear in both W and C because the same request may be asked more than 

once for computation.  

 

In addition to these two lists, a node also maintains a list V for all those requests q whose 

verdicts are received while their request messages have not yet arrived: Due to network 

delay or network malfunctions, it is possible for a node to receive a verdict of a request q 

before it receives the request itself. In this case, q appears neither in W nor C when its 

verdict arrives. We keep in V such request q, together with its verdict, in order to avoid 
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the redundant computation of q when the original TQ message arrives. 

 

When a node receives a TQ message, it appends the message to list W. For each request 

q, after having finished the computation, the node will send the result to the voting center, 

and add the request/result pair to list C. 

 

When the node gets the correct result for a request q from the voter, it checks its C list to 

see if the result it has calculated for q equals to the result returned by the voter.  

• If so, it retrieves all the requests it has calculated since its last repair, up until 

calculating q. Based on Proposition 1, it concludes that all these results are 

correct.  In the next step, the node sends a QV message to the voter indicating its 

results for these requests as correct and then discards them from list C. 

• If not, it retrieves all the requests it has calculated after q and up until it was 

repaired. Based on Proposition 2, the node concludes that all these results are 

incorrect. In the next step, the node sends a QV message to the voter indicating 

its results for these requests as incorrect and then discards them from list C. 

 

In the case that the node has not yet calculated q, it will discard all occurrences of q from 

its W list so it would not calculate q any longer: When the correct answer of q is found, 

there is no need to compute it again. Note that if the node is in the middle of processing q 

when receiving the correct result for it, it will halt the calculation immediately and 

discard q. Then it will go to the next request waiting to be calculated. 

 

The following algorithm shows our method when a verdict v for a request q is received: 

 

lable1:  

if q appears neither in W nor C, add it to V 

delete all occurrences of q in W 

for each occurrence q' of q in list C 

 if R(p,t,q')=v 

  for each request q'' computed before q' 
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   send out its result as verdict  

   delete all occurrences of q'' in W 

        remove q'' from list C 

       remove q' from C 

 else 

  for each request q'' computed after q' 

   move q'' from list C to list W 

     remove q' from C      

      repair, and then start with label1 

 

4.2 The functions of the voting center 

 

The voting center maintains a list of records, one for each request whose correct result is 

still unknown.  

 

Since different nodes may produce different results for the same request, each record is 

associated with a list of results so far received.  

 

The voting center keeps a list Q of triplets <q, r, k> for all requests q whose verdict has 

not yet been reached. Here q is a request, r is a result, and k is the number of receipts of r 

as an answer for q. 

 

When a QR message <q,r,t,-> arrives, the voting center checks whether it can make a 

decision on the correct result of request q, based on the majority vote.  

• If so, it will send the verdict (the correct result) to all the nodes. Note that it does 

not need to record the correct result, since it will not make use of it in the future. 

Thus, the record of this request is removed afterwards. In addition, all the results 

for request q are deleted from the Q list. 

• If it cannot make a decision based on the majority vote, it will only record the 

result in list Q for future use. 
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When a QV message <q,r,t,*> arrives, the voting center checks will work as follows: 

• If this message <q,r,t,true> indicates that a result for a request q is correct, the 

voter no longer waits for more results for it: Accepting the result in the message, 

it forwards the result to the user and the other nodes which can process q. In the 

next step, it discards the record regarding q and all of its results from its Q list. 

• If this message <q,r,t,false> indicates that a result for a request q is correct, the 

voter deletes the result r from its Q list. 

 

The following example illustrates how our implemented fault tolerant method works: 

 

Example 2: In Example 1, we have illustrated the major steps in our method. Now we 

show its implementation details: how the data structures used in our method are used and 

updated in each step of Example 1. 

 

In the second step, when nodes N1, N2, N3, N4, N5 and N6 receive requests sent in step 

1, their W list looks as follows: 

Node W list 

N1 [<q5,N6>,<q3,N4>,<q8,N6>,<q5,N2>,<q6,N5>,<q1,N2>,<q6,N3>,<q1,N3>,<q7,N2>,<q7,N4>,<q8,N3>] 

 

N2 [<q1,N1>,<q8,N6>,<q3,N4>,<q3,N1>,<q7,N4>,<q6,N5>,<q5,N6>,<q4,N1>,<q1,N3>,<q8,N3>,<q6,N3>] 

 

N3 [<q1,N1>,<q1,N2>,<q3,N4>,<q7,N4>,<q3,N1>,<q5,N2>,<q4,N1>,<q5,N6>,<q8,N3>,<q6,N3>,<q7,N2>] 

 

N4 [<q8,N3>,<q1,N1>,<q4,N1>,<q3,N1>,<q7,N2>,<q6,N3>,<q5,N6>,<q1,N2>,<q5,N2>,<q8,N6>,<q6,N5>, 

<q1,N3>] 

N5 [<q5,N6>,<q3,N4>,<q1,N1>,<q4,N1>,<q7,N2>,<q6,N3>,<q8,N6>,<q1,N3>,<q3,N1>,<q7,N4>,<q6,N3>, 

<q1,N2>] 

N6 [<q1,N1>,<q3,N4>,<q8,N3>,<q1,N2>,<q5,N2>,<q7,N2>,<q4N1>,<q1,N3>,<q6,N3>,<q3,N1>,<q7,N4>] 

Table 3 

 

In step 3, when the nodes have finished the calculation of a number of requests and have 

sent the results to the voter, their W and C list will look as follows: 

Nod

e 

W list C list 
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N1 [<q5,N2>,<q6,N5>,<q1,N2>,<q6,N3>,<q1,N3>,<q7,N2>,<q7,N4>,<q8,N3>

] 

[<q5,r5,t1>,<q3,r3,t2>,<q8,r8,t3>] 

N2 [<q3,N1>,<q7,N4>,<q6,N5>,<q5,N6>,<q4,N1>,<q1,N3>,<q8,N3>,<q6,N3>

] 

[<q1,r1,t1>,<q8,r8,t3><q3,r3,t5>] 

N3 [<q7,N4>,<q3,N1>,<q5,N2>,<q4,N1>,<q5,N6>,<q8,N3>,<q6,N3>,<q7,N2>

] 

[<q1,r1,t2>,<q3,r3,t3>,<q3,r3,t4>] 

N4 [<q3,N1>,<q7,N2>,<q6,N3>,<q5,N6>,<q1,N2>,<q5,N2>,<q8,N6>, 

<q6,N5>, <q1,N3>] 

[<q8,r80,t2>,<q1,r10,t1>,<q4,r40,t3>

] 

N5 [<q7,N2>,<q6,N3>,<q8,N6>,<q1,N3>,<q3,N1>,<q7,N4>,<q6,N3>, 

<q1,N2>] 

[<q5,r5.t1>,<q1,r1,t3>,<q3,r3,t6>, 

<q4,r4,t8>] 

N6 [<q1,N2>,<q5,N2>,<q7,N2>,<q4N1>,<q1,N3>,<q6,N3>,<q3,N1>,<q7,N4>] [<q1,r10,t1>,<q3,r30,t2>,<q4,r40,t3>

] 

Table 4 

 

In step 4, if we consider that the voter receives the results in step 3 in the following order:  

<q5,r5,t1,->,<q1,r1,t1,->,<q8,r80,t1,->,<q1,r1,t2,->,<q1,r10,t1,->,<q5,r5,t1,->, 

<q3,r3,t2,->,<q8,r8,t3,->,<q1,r1,t3,->,<q3,r30,t2,->,<q1,r10,t2,->,<q3,r3,t3,->, 

<q3,r3,t4,->,<q8,r8,t3,->,<q3,r3,t5,->,<q4,r40,t3,->,<q4,r40,t3,->,<q4,r4,t8,->,<q1,r1,t6,->, 

 

the voter’s Q list will evolve as follows in step 5. In each step of the following table, one 

of the requests is processed in the order it is received (as presented above). The correct 

result found for a request in each step is shown as well.  

Step Q list Correct result 

found 

1 <q5,r5,t1> No result 

2 <q5,r5,t1>,<q1,r1,t1> No result 

3 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1> No result 

4 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1>,<q1,r1,t2> No result 

5 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1>,<q1,r1,t2>,<q1,r10,t1> No result 

6 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1>,<q1,r1,t2>,<q1,r10,t1>,<q5,r5,t1> No result 

7 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1>,<q1,r1,t2>,<q1,r10,t1>,<q5,r5,t1>,<q3,r3,t2> No result 

8 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1>,<q1,r1,t2>,<q1,r10,t1>,<q5,r5,t1>,<q3,r3,t2>,<q8,r8,t3>,

<q1,r1,t3>,<q3,r30,t2> 

No result 

9 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1>,<q1,r1,t2>,<q1,r10,t1>,<q5,r5,t1>,<q3,r3,t2>,<q8,r8,t3>,

<q1,r1,t3 >,<q3,r30,t2>,<q1,r10,t2> 

No result 

10 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1>,<q1,r1,t2>,<q1,r10,t1>,<q5,r5,t1>,<q3,r3,t2>,<q8,r8,t3>,

<q1,r1,t3>,<q3,r30,t2>,<q1,r10,t2>,<q3,r3,t3> 

No result 
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11 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1>,<q1,r1,t2>,<q1,r10,t1>,<q5,r5,t1>,<q3,r3,t2>,<q8,r8,t3>,

<q1,r1,t3>,<q3,r30,t2>,<q1,r10,t2>,<q3,r3,t3>,<q3,r3,t4> 

No result 

12 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1>,<q1,r1,t2>,<q1,r10,t1>,<q5,r5,t1>,<q3,r3,t2>,<q8,r8,t3>,

<q1,r1,t3>,<q3,r30,t2>,<q1,r10,t2>,<q3,r3,t3>,<q3,r3,t4>,<q8,r8,t3> 

No result 

13 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1>,<q1,r1,t2>,<q1,r10,t1>,<q5,r5,t1>,<q3,r3,t2>,<q8,r8,t3>,

<q1,r1,t3>,<q3,r30,t2><q1,r10,t2>,<q3,r3,t3>,<q3,r3,t4>,<q8,r8,t3>,<q3,r3,t5> 

r3 correct result 

of q3 

14 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1>,<q1,r1,t2>,<q1,r10,t1>,<q5,r5,t1>,<q8,r8,t3>,<q1,r1,t3>,

<q1,r10,t2>,<q8,r8,t3>,<q4,r40,t3,-> 

No result 

15 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1>,<q1,r1,t2>,<q1,r10,t1>,<q5,r5,t1>,<q8,r8,t3>,<q1,r1,t3>,

<q1,r10,t2>,<q8,r8,t3>,<q4,r40,t3,->,<q4,r40,t3> 

No result 

16 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1>,<q1,r1,t2>,<q1,r10,t1>,<q5,r5,t1>,<q8,r8,t3>,<q1,r1,t3>,

<q1,r10,t2>,<q8,r8,t3>,<q4,r40,t3>,<q4,r40,t3>,<q4,r4,t8> 

No result 

17 <q5,r5,t1>,<q1,r1,t1>,<q8,r80,t1>,<q1,r1,t2>,<q1,r10,t1>,<q5,r5,t1>,<q8,r8,t3>,<q1,r1,t3>,

<q1,r10,t2>,<q8,r8,t3>,<q4,r40,t3>,<q4,r40,t3>,<q4,r4,t8>,<q1,r1,t6> 

r1 correct result 

of q1 

18 <q5,r5,t1>,<q8,r80,t1>,<q5,r5,t1>,<q8,r8,t3>,<q8,r8,t3>,<q4,r40,t3>,<q4,r40,t3>,<q4,r4,t8>  

Table 5 

 

In step 6, when the nodes receive the verdicts regarding requests q1 and q3 from step 5, 

their W and C list will change as follows. The column “Deleted from W list” shows the 

requests which should not be calculated any more and the column “Deleted from C list” 

shows the results whose correctness or incorrectness have been found by using 

Proposition 1 and 2. 

Nodes Changed W list Deleted from W 

list 

Changed C list Deleted from C 

list 

N1 [<q6,N5>,<q6,N3>, 

<q7,N2>,<q7,N4>,<q8,N3>] 

<q1,N2>,<q1,N3>, 

<q5,N2> 
<q8,r8,t3> <q5,r5,t1>,<q3,r3,t2> 

N2 [<q7,N4>,<q6,N5>,<q5,N6>, 

<q4,N1>,<q6,N3>] 

<q3,N1>,<q1,N3>, 

<q8,N3> 

empty <q1,r1,t1>,<q8,r8,t3><

q3,r3,t5> 

N3 [<q7,N4>,<q5,N2>,<q4,N1>,<q5,N

6>,<q8,N3>,<q6,N3>,<q7,N2>] 

<q3,N1> empty <q1,r1,t2>,<q3,r3,t3>,<

q3,r3,t4> 

N4 [<q7,N2>,<q6,N3>,<q5,N6>, 

<q5,N2>,<q8,N6>,<q6,N5>] 

<q3,N1>,<q1,N2>, 

<q1,N3> 

<q8,r80,t2> <q1,r10,t1>,<q4,r40,t3> 

N5 [<q7,N2>,<q6,N3>,<q8,N6>, 

<q7,N4>,<q6,N3>] 

<q1,N3>,<q3,N1>, 
<q1,N2> 

<q4,r4,t8> <q5,r5.t1>,<q1,r1,t3>, 

<q3,r3,t6>, 

N6 [<q5,N2>,<q7,N2>,<q4N1>,<q6,N

3>,<q7,N4>] 

<q1,N2>,<q1,N3>, 

<q3,N1> 
empty <q1,r10,t1>,<q3,r30,t2>,

<q4,r40,t3> 

Table 6 
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In step 7, when the voter receives the verdicts for q5 and q8 from step 6, the Q list of the 

voter will be updated as follows. The column “Deleted from the Q list” shows the results 

which have been deleted from the Q list because their correctness has been found by the 

received verdicts: 

Changed Q list Deleted from the Q list 

<q4,r40,t3>,<q4,r40,t3>,<q4,r4,t8> <q5,r5,t1>,<q8,r80,t1>,<q5,r5,t1>,<q8,r8,t3>,<q8,r8,t3> 

Table 7 

 

When the voter forwards the verdict for q5 and q8 to the other nodes in the last step, the 

W list and C list of the nodes are updated as follows: 

Nodes Changed W list Deleted from W 

list 

Changed C list Deleted from C 

list 

N1 [<q6,N5>,<q6,N3>, 

<q7,N2>,<q7,N4>] 

<q8,N3> empty <q8,r8,t3> 

N2 [<q7,N4>,<q6,N5>, 

<q4,N1>,<q6,N3>] 

<q5,N6> empty nothing 

N3 [<q7,N4>,<q4,N1>,<q5,N6>, 

<q6,N3>,<q7,N2>] 

<q5,N2>,<q8,N3> empty nothing 

N4 [<q7,N2>,<q6,N3>,<q6,N5>] <q5,N6>,<q8,N6>, 

<q5,N2> 

empty <q8,r80,t2> 

N5 [<q7,N2>,<q6,N3>,<q7,N4>, 

<q6,N3>] 

<q8,N6> <q4,r4,t8> nothing 

N6 [<q7,N2>,<q4N1>,<q6,N3>,<q7,N

4>] 

<q5,N2> empty nothing 

Table 8 

 

⁪ 
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Chapter 5.  Method Evaluation 
 

Suppose we have n requests q1,...,qn, each sent to m nodes.  

Let 

( ) ( ){ }inodeatrrrequestsofnpermutatioaisrrrrrrrrA nniinnnnn ......|)...((),...,...(... 1,1,,1,,11,11 =  

 

Each element of Α is called an order assignment. It refers to the order of the requests at 

each node. 

 

Given an order assignment α, a result assignment γα associates a Boolean value to each 

request q in α, representing whether the result of q computed at this node is correct or 

not. 

 

Let Sα,γα denote the time saving of the computation of the requests with order assignment 

α and result assignment γα compared to computing the n requests in synchronized order. 

The average saving S(m,n) of using our method compared to computing the n requests in 

synchronized order is calculated as the mean of the savings with respect to all order 

assignment α and result assignment γα: 

 

( )
hAssigntationsWitNumOfPermu

S

nmS

∑
= γαα

γαα
,

,

,  

 

Here NumOfPermutationsWithAssign denote the total number of permutations of the 

requests that q1,...,qn can have in m nodes, combined with all possible result assignments 

for each permutation. 

 

Clearly, a precise measurement of the savings will take too much time to calculate due to 

the exponential blowout caused by the total number of permutations of the requests and 

the total number of result assignments for each permutation. 
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Thus, we have randomly selected some samples to evaluate the performance of our 

method. 

 

5.1 Evaluation settings 

 

We have evaluated our method by means of simulation. The main focus of our 

experiments is to determine the saving of our method in the following two aspects:  

1. saving of the time we use to reach a correct result; 

2. reduction of the number of redundant computations we need to perform. 

 

There are many factors that affect the performance of our method, for example: 

a) number of nodes,  

b) maximum number of faulty nodes within certain time period considered, 

c) number of times that a same request is repeatedly requested,  

d) the number of requests a node can execute in parallel, 

e) probability of a node becoming faulty,  

f) repair time,  

g) total number of requests within the time period considered,  

h) the time each request takes for computation, 

i) time for message passing, 

j) etc. 

 

Among all these factors having effects on the performance of our method, we will 

consider the first three as parameters.  

 

a) The number of nodes is of great importance: both the time consumed to reach the 

correct result of a request and the number of redundant executions of a request have 

direct dependencies to it.  

• The estimation of the time saved to reach the correct result of a request q is 

dependent on the number of nodes which have not yet calculated q.  Therefore 
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when the total number of nodes changes, the number of nodes which have not yet 

calculated q is changed as well. Because of this, the performance of our method 

is affected.  

• The number of redundant computations of a request q which can be avoided 

depends on the number of nodes which have not yet calculated q as well. 

Therefore the change in the total number of nodes changes the number of nodes 

which have not yet calculated q, consequently affecting the performance of our 

method.  

 

These two phenomena are thoroughly investigated in the following sections. 

 

b) The maximum number of faulty nodes is highly important as well, since this number 

directly effects both the computation time and the number of answers needed to find the 

correct result for a request.  

• When the maximum number of faulty nodes changes, the policy used by the 

voter to find the correct result of a request changes as well. By policy we mean 

the number of common results needed by the voter so it can choose the correct 

result of a request. This change affects the performance of our method.  

• When the number of faulty nodes changes, the number of nodes which can use 

Proposition 1 is changed as well, consequently affecting the performance of our 

method.   

 

c) The number of times that a same request is repeatedly requested can affect the number 

of redundant computations we need to perform.  The amount of reduction in the 

redundant computations of a request q is dependent on the number of occurrences of 

request q not calculated in the system. When a request is sent repeatedly, the number of 

occurrences of request q changes, consequently affecting the number of redundant 

computations we need to perform.  

 

d) Different nodes can have different degrees of parallelism when it comes to executing 

requests. This also has impact on the time we use to reach a correct result. To simplify 
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the evaluation of our method, we only consider sequential execution: each node can 

execute only one request at a time. 

 

e) Different nodes may have different probability to turn faulty. For simplicity, we 

consider that all nodes have the same probability. Based on real life experience, we 

sometimes adopt a system administration rule which demands for the removal of any 

machine that shows faulty behavior more than 50% of the time. Therefore we consider 

that all nodes may become faulty with a probability of 50%, which is high enough.  

 

f) We consider that each node takes the same amount of time to get repaired. 

 

g) We consider that all the nodes send the same number of requests. Each node can send 

a request at any time it desires.  

 

h) The time spent on computing each individual result directly effects the time we use to 

reach a (global) correct result. For simplicity, we consider that the amount of 

computation time needed for processing each request in each node is the same.  

 

g) The time spent on message passing also directly effects the time we use to reach a 

correct result. For simplicity, we assume that the time consumed from the moment a 

request is sent into the network to the time it reaches its destination is the same for all 

requests. This amount of time is considered as one time unit in the simulations.   

 

Now we show the performance evaluation of our method. Section 5.1 is about the 

evaluation of the amount of computation saving (Section 5.1.1) and the amount of time 

saving (Section 5.1.2). Section 5.2 illustrates the trade-off. 

 

5.1.1 Evaluating the amount of computation saving 

 

In this section we show how much our method can reduce the number of redundant 

computations of a request. We have presented three evaluations to show the performance 
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of our method: 

a) when the total number of nodes TN changes; 

b) when the number of faulty nodes FN changes; 

c) when the number of times RT that a same request is repeatedly requested 

changes. 

 

Our method can reduce the number of redundant computations in the situation when a 

node receives the correct result for a request q before or during its own calculation of q. 

In this case, the node will discard q without calculating it any longer. The reason behind 

is that when the correct result for a request is found, there is no need for it to be 

calculated by other nodes any longer. Therefore, all remaining calculations of q can be 

eliminated. These eliminations reduce the number of redundant computations of a 

request. 

 

Evaluation when TN changes 

 

The following diagram shows the number of redundant computations avoided for a 

request while the number of nodes changes. In this evaluation we have kept the values of 

the parameters FN and RT fixed while the value of TN changes. In the following diagram 

FN = 49%, RT = 0 while each node sends 15 distinct requests throughout the simulation 

run. TN ranges from 10 nodes to 400 nodes. Since each node can become faulty at 

anytime, and the nodes can send out requests with any pace, each data in the following 

diagram is collected as the average of 100 simulation runs. 
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Figure 7 Number of redundant computations avoided in the system 

 

It can be seen that the number of redundant computations avoided increases with the 

increase of the nodes. The number of computation saving starts from 585 and goes up to 

2700, 4320,…, until 720000. This result is not so strange, because a system with a larger 

number of nodes will have more nodes with computation saving compared to a system 

with a smaller number of nodes, in a same situation. In other words, when there are more 

nodes active in the system, a computation can be avoided in more nodes, in the sense that 

when the voter finds the correct result to a request, there are more nodes in which the 

request can be simply ignored. For example, when the voter chooses the correct result for 

request q, 10% of the total nodes have sent in the wrong result and 50% have sent in the 

correct one. In this case redundant computation is avoided in the remaining 30% of the 

nodes which have not yet sent in a result. Consequently, in a system with 100 nodes, the 

number of computations avoided is 30, while in a system with 200 nodes this value is 60.  

 

In addition to the above observation, we can also see that the increase of the computation 

saving is linear to the increase of the TN. This is shown in the following diagram.  

Average number of redundant computation avoided 

0 

100000 

200000 

300000 

400000 

500000 

600000 

700000 

800000 

900000 

10 20 30 50 100 150 200 250 300 350 400 

number of nodes

Number

Series1



52 

Percentage of computation saving

0

10

20

30

40

50

60

10 20 30 50 100 150 200 250 300 350 400

Number of nodes

P
e
rc

e
n

ta
g

e

Series1

 

Figure 8 Percentage of computation saving 

 

Here, the percentage (computation) saving is defined by the following formula: 

xavoidednscomputatioredundantofnumberTotal

systemtheinsentrequestsofnumberTotal 100
=  

Our evaluations show an approximately 39% computation saving for any TN. We give 

our intuitive explanation about it below. 

 

A voter can have any of the situation Si =(a,b,c) for each request, where a is the 

percentage of wrong results; b is the percentage of correct results, and c is the percentage 

of computation savings. According to our assumption, b = 50% (for majority vote), and 

thus we also have a < 50%, c < 50%. Considering only integer numbers, we have 50 

different situations, e.g. (1%, 50%, 49%), (2%, 50%, 48%), ... (49%, 50%, 1%). Let pi be 

the probability of situation Si with constraint 1
1

=∑
=

situationsofnumber

i

ip . For simplicity, we consider 

the same probability for all the situations, i.e. ∀i, pi = 1/50.  

 

Let c(S) denote the third element of situation S. The predicted average percentage saving 
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is    

       predicted average percentage saving (paps)  

 = [p1*c(S1)+p2*c(S2)+…+pn*c(Sn)] 

 =  p1 * [c(S1)+c(S2)+…+c(Sn)] 

 = 1/50*[50%+49%+…+40%+…+30%+…+20%+…+10%+…+1%]  

 = 24%.  

 

Now that we know the average percentage of computation saving of one request, the 

average computation saving of the total system x can be achieved by: 

x
nnodebysentrequestsofnumberpaps

nnodebysentrequestsofnumber

nodesofnumbertotal

n

nodesofnumbertotal

n
100

1

1 =

× ∑

∑

=

=  

As we have paps=24%, it is clear that x = 24. 

 

We have observed an average percentage saving (39%) higher than predicted (24%). This 

is because of the use of Proposition 1 which helps the voter to find the correct results in a 

better way. 

 

Evaluation when FN changes 

 

The following diagram shows the amount of redundant computations avoided for a 

request while the number of faulty nodes changes. In this evaluation we have kept the 

values of the parameters TN and RT fixed while the value of FN changes. In the 

following diagram TN = 200, RT = 0 while each node sends 15 distinct request 

throughout the simulation run. FN ranges from 5% to 49% of the total nodes. Each node 

becomes faulty with a probability of 50%. Since each node can become faulty at anytime, 

and nodes can send out requests with any random pace, each data in the following 

diagram is collected as the average of 100 simulation runs. 
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Figure 9 Average number of redundant computation avoided 

 

As it can be seen, with the increase of the percentage of faulty nodes, the number of 

avoided redundant computations decreases, e.g., the system with 5% faulty nodes has the 

most computation saving of 480000 computations. We give our intuitive explanation 

below.  

 

Figure 10 Voter functionality 

 

When a maximum of 49% of the nodes can become faulty at any time, at least 50% of the 

non-faulty nodes are needed to produce a result for a request q so that the voter can find 

its correct result. Compared to the situations with less percentage of faulty nodes, since 

more nodes are needed to calculate a result for q, the number of computations which can 

be avoided decreases. It can be seen in picture 10 that with the increase of the percentage 

Faulty results in voter:         5%...10%…20%…30%…40%…49% 

 

Correct results in voter:       6%…11%…21%…31%…41%…50% 

 

 

Remaining nodes:               89%…79%…59%…39%…19%…1% 
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of faulty nodes, the percentage of nodes which have not yet calculated q drops from 89% 

to 1%. 

 

In addition, since all the nodes have the same computation power and process requests 

sequentially, the time needed for 50% of non-faulty nodes to produce results is most 

probably larger compared to the time needed for 6%, 11%, 21%, 31% or 41% of non-

faulty nodes to produce results. Consequently, since a longer time is consumed until the 

voter can find the correct result for q, a smaller number of nodes (1%) can be exempted 

from calculating it.  

 

Another factor that affects the computation saving is the application of Proposition 1. We 

explain below that with the increase of faulty nodes, Proposition 1 will cause less 

computation saving. With the increase of faulty nodes, since the result of q is achieved in 

a longer time, Proposition 1 triggered by the verdict regarding q is executed later as well. 

For the same reason mentioned above, for each request q’ whose correct result can be 

found by this Proposition, it is more probable that a larger number of nodes have the 

chance to calculate it. Therefore, computation of q’ is avoided in a smaller number of 

nodes, resulting in an increase in computation saving.  

 

Note that this phenomenon is common to all cases when we use any voting algorithms 

(not necessarily Proposition 1), as shown in Figure 10 for both the experiments with and 

without using Proposition 1. 

 

However, compared to the similar experiment but using solely simple voting (without 

Proposition 1), another observation from our experiment is that the decrease of 

computation saving slows down with the increase of the allowed faulty nodes. This 

phenomenon is due to the use of Proposition 1 in our method. Proposition 1 allows the 

non-faulty nodes to find the correct result of a request before the voter can do so. 

Therefore, it can aid in the increase of the number of exempted computations, slowing the 

decrease of this number.  
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Evaluation when RT changes 

 

Recall that a request can be repeatedly sent, the present evaluation shows how the 

performance of our method is affected by the change of the repeated requests: The 

following diagram shows the amount of redundant computations avoided while the 

number of repeated requests changes. In this evaluation we have kept the values of the 

parameters TN and FN fixed while the value of RT changes. In the following diagram, 

TN = 200, FN = 49% while each node sends 15 requests throughout the simulation run. 

RT ranges from 5 to 15. The value of RT shows the number of common requests each 

node shares with the other nodes. Since each node can become faulty at anytime, and 

nodes can send out requests with any random pace, each data in the following diagram is 

the average of 100 simulation runs. 
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Figure 11 Average number of total computation saving 

 

It can be seen that, with the increase of RT, the number of computation saving increases 

as well. The reason for this increase is that when a request q is sent out repeatedly, the 

number of q requests existent in the W list of nodes increases as well. Therefore when the 

result of q is found by the voter or by Proposition 1, there will be more q requests in the 
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W list, compared to the situation where q is sent out only once. Thus, when more requests 

are sent out repeatedly, more computation saving is achieved.  

5.1.2 Evaluating the amount of time saving 

 

Note that our method can reduce the time to reach a correct result due to the following 

reasons: 

• Using Proposition 1, we may be able to conclude that the results it has calculated 

for a number of requests are correct, before getting their correct results from the 

voting center. This situation speeds up the time to find the correct result for a 

request. 

• Due to the use of Proposition 1, the voter can avoid waiting for a sufficient 

number of results for a request q so it can be able to choose the correct result for 

it. In this case an unnecessary waiting time is eliminated, resulting in the 

reduction of the time consumed to reach the correct result.  

 

In this section we show how much our method can reduce the time consumed for the 

correct result of a request to be achieved. We present three evaluations to show the 

performance of our method.  

 

Note that time saving is a different concept from computation saving. Time saving refers 

to the reduction of the time consumed for reaching a correct result of a request, while 

computation saving refers to the number of redundant computations avoided while still 

guaranteeing fault tolerance. In other words, if the average time consumed to reach a 

correct result in a system without making use of Proposition 1 and 2 is r, and the average 

time consumed to reach a correct result with our method is r’, then the amount of time 

saving is r-r’. The estimation of time saving can be achieved by the following steps: 

When a Proposition 1 finds the correct result for a request q 

1. Derive the amount of time consumed by each non-faulty node for it to be able to 

calculate a result for q. This time can be found by the following function: 
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The amount of time consumed by a node to calculate request q can be estimated in 

one of the following ways:  

I. if the node has not yet calculated q and it is in its W list: check how many 

requests in the W list it has to calculate until it reaches q. This number of 

requests can be found by the index of the cell that contains request q (indq) in 

list W. The time t consumed to finish the calculation of these requests can be 

found by multiplying indq with the time consumed to calculate each request 

(computation time). Recall that all requests have the same computation time. 

II. if the node is calculating q when receiving a verdict regarding q: The remaining 

computation time needed to complete the execution of q is the time saved. 

III. if the node has not yet received q: We assume that the next request that the node 

will receive is q. Therefore the amount of time consumed so the node can be 

able to calculate q, is the current number of requests in the W list multiplied by 

the computation time. This number of requests is equal to the current length of 

the W list. Note that the W list works like a vector, and therefore its length 

varies with the number of requests residing in it. 

IV. if the node has calculated q: No time is consumed because it has already been 

calculated. 

 

2. Among those with TCN≠ 0, we sort the TCN of all the non-faulty nodes in an 
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increasing order and put them in a list called TC. 

3. check how many correct results the voter still needs to be able to find the correct 

result for q. This number can be derived with the following formula: 

if we consider: 

o cR as the number of requests which have sent back the correct 

result to the voter, 

o faultLimit as the maximum number of faulty nodes, and 

o rN as the number of correct results  needed for the voter to find 

the correct result, 

then 

 rN = faultLimit - cR+1 

 

The voter needs faultLimit+1 number of common results to be able to declare it as 

the correct result. At this stage the voter compares the results it has received with 

the correct result r found by Propostion 1. It sees that cR number of nodes have 

sent back the value r. In this situation, if the system did not use Proposition 1, the 

voter needed faultLimit - cR+1 more results with the value of r to be able to 

declare it as correct. 

 

4. in the last step, the time saved to reach the correct result of  q is calculated as 

follows: As we mentioned, the voter still needs rN number of requests to be able 

to declare r as the correct result. To find the average amount of time wt the voter 

has to wait to receive the remaining rN results, we first extract rN number of 

TCNs from the beginning of the TC list. To find the value of wt we will find the 

possible maximum and minimum time the voter needs to wait, and consider their 

median value as wt.  

o maximum amount of wait (Maxwt): if we consider that all the rN 

number of nodes chosen from the TC list calculate their request in W 

list sequentially , then: 

Maxwt = 0 

for the first rN number of TCNs in the list TC 
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   Maxwt = Maxwt + TCN 

o Minimum amount of wait (Minwt): if we consider that all the rN 

number of nodes calculate their requests at the same time then Minwt 

will equal the value of the rN’th TCN in the TC list. 

 

Therefore wt = (Minwt+Maxwt)÷2. wt represents the average amount of time 

saved to reach the correct result of q because the voter does not need to wait for 

an additional wt amount of time to find the correct result any longer. Please note 

that in calculating the time saving, the time consumed for the results to be sent to 

the voter is exempted. 

 

Evaluation when TN changes 

 

The following diagram shows the average time saved in reaching the correct results of the 

requests while the total number of nodes changes. In this evaluation we have kept the 

values of the parameters FN and RT fixed while the value of TN changes. In the 

following diagram FN = 49%, RT = 0 while each node sends 15 distinct request 

throughout the simulation run. TN ranges from 10 nodes to 400 nodes. Since each node 

can become faulty at anytime, and the nodes can send out requests with any pace, each 

data in the following diagram is the average of 100 simulation runs. 
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Figure 12 Average of total time saving 

 

Each data in the presented diagram represents the value of wt. As it can be seen, with the 

increase of the number of nodes, the time saved to reach a correct result increases. The 

increase can be explained by the fact that with the increase of the number of nodes, when 

Proposition 1 finds the correct result for a request, there will be more nodes contributing 

to time saving. For example, consider two systems, one with 100 nodes and the other 

with 200 nodes, while in both systems 10% of the nodes are faulty. In both systems a 

situation is reached where Proposition 1 finds the correct result r for request q, while the 

voter has only received 10% of the total number of results it needs to declare r as the 

correct value. In this situation, the time saving in the system with 100 nodes is: 

 

Number of common results the voter needs to make a decision: 10% of 100 nodes 

= 10, 

 10% of 10 result has been received by the voter = 1 

 Number of results still needed by the voter: 10-1+1 = 10 

The time saving is: Maxwt = ∑
=

10

1

][
i

iTC  and Minwt = TC[10]. In the worst case, all 

the TCN values in the TC list equal 1, then Maxwt = 10 and Minwt = 1. Therefore 
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wt = 5.5. 

On the other hand the time saving for the system with 200 nodes is: 

 

Number of common results the voter needs to make a decision: 10% of 200 nodes 

= 20, 

 10% of 20 result has been received by the voter = 2 

 Number of results still needed by the voter: 20-2+1 = 19 

The time saving is: Maxwt = ∑
=

21

1

][
i

iTC  and Minwt = TC[19]. If all the TCN values 

in the TC list equal 1, then Maxwt = 19 and Minwt = 1, therefore wt = 10. 

 

As we can see, the amount of time saving increases with the increase of the number of 

nodes. In Diagram 12, when the number of nodes increases from 10 to 400, the time 

saving increases from 13205 to 22125, 54050, 286065,…, up until 12225450 time units. 

 

Next, we check the average time saved in each node after Proposition 1 is used once to 

find the correct result of a request. The following diagram shows the experimental results 

achieved: 
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Figure 13 Average time saving in each node 

 

This diagram shows that, although the total time saving increases with the increase of the 

number of nodes, the time saving in each node achieved by a one-time execution of 

Proposition 1 is reduced. The increase in total time saving is not caused by the increase of 

the amount of time saving in each node, but caused by the increase of the number of 

nodes which contribute to the accumulation of the total time saving. Furthermore, as 

mentioned before in Section 5.1.1: evaluation when TN changes, when the number of 

nodes increases while the percentage of faulty nodes is fixed, the time for the voter to 

find the correct result of a request q is delayed. This causes the execution of Proposition 1 

invoked by the verdict of q to be delayed as well. This delay can have two side effects for 

each request q’ whose correct result can be found by the execution of this proposition: 

• The number of nodes calculated q’ increases, therefore reducing the time 

saving 

• The index (indq’) of q’ in W list decreases, therefore reducing the time saving.  

 

 

Evaluation when FN changes 
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The following diagram shows the total average time saved in reaching the correct results 

of the requests while the percentage of faulty nodes changes. In this evaluation we have 

kept the values of the parameters TN and RT fixed while the value of FN changes. In the 

following diagram, TN = 200, RT = 0, each node sends 15 distinct request throughout the 

simulation run, and FN ranges from 5% to 49% of the total nodes. Each node becomes 

faulty with a probability of 50%. Since each node can become faulty at anytime, and 

nodes can send out requests with any random pace, each data in the following diagram is 

the average of 100 simulation runs.  
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Figure 14 Average time saving 

 

As it can be seen, with the increase in percentage of faulty nodes, the total time saved 

(accumulated from all nodes) to reach a correct result increases. Each data in the 

presented diagram represents the value of wt. The increase can be explained with the fact 

that, with the increase of the number of faulty nodes, the time needed for the voter to find 

the correct result for a request increases as well. With the increase of faulty nodes, more 

time is needed for a voter to find a correct result. Therefore, when Proposition 1 finds the 

correct result for a request, more time is saved by the voter. For example, consider two 

systems with the same number of nodes (ex. 200), one with 10% faulty nodes, and the 
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other with 30% faulty nodes. In both systems a situation is reached where Proposition 1 

finds the correct result r for request q, while the voter has only received 10% of the total 

number of results it needs to declare r as the correct value. In this situation the time 

saving in the first system is: 

 

Number of common results the voter needs to make a decision: 10% of 200 nodes 

= 20, 

 10% of 20 result has been received by the voter = 2 

 Number of results still needed by the voter: 20-2+1 = 19 

The time saving is: Maxwt = ∑
=

21

1

][
i

iTC  and Minwt = TC[19]. In the worst case, all 

the TCN values in the TC list equal 1, then Maxwt = 19 and Minwt = 1, therefore 

wt = 10. 

 

On the other hand the time saving for the system with 30% faulty node is: 

 

Number of common results the voter needs to make a decision: 30% of 200 nodes 

= 60, 

 10% of 60 result has been received by the voter = 6 

 Number of results still needed by the voter: 60-6+1 = 55 

The time saving is: Maxwt = ∑
=

55

1

][
i

iTC  and Minwt = TC[55]. If all the TCN values 

in the TC list equal 1, then Maxwt = 55 and Minwt = 1, therefore wt = 28. 

 

As we can see, the amount of time saved increases with the increase of the number of 

faulty nodes. This is confirmed in Diagram 15: when the percentage of faulty nodes 

increases from 5% to 49%, the time saved increases from 1102385 to 4963330 time units. 

 

In addition to the total time saved, we check to see the average time saved in each node 

after a Proposition 1 finds the correct result of a request. The following diagram shows 

the results achieved: 
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Figure 15 Average time saving in each node 

 

This diagram shows that although the total time saving increases with the increase of the 

number of faulty nodes, the time saving in each node achieved by a one-time execution of 

Proposition 1 is reduced. This can be explained as follows: when the number of faulty 

nodes increases, the accumulated time saving of all the nodes increases as well; this is 

caused by the increase of the number of nodes where time saving can be achieved. 

However, the amount of time saved in each node does not increase. Consider the above 

example. This time, suppose that all the TCN’s in the TC list of the (second) system with 

30% faulty nodes have a value of 0.5. In this case, its (total) time saving is: wt = 14. As 

we can see, although the total average time saving of the second system is more than the 

total average time saving of the first system with 10% faulty nodes where wt = 10 and 

TCN of each node is 1, the time saved in each node is smaller in the second system 

compared to that of the first system. 

 

Evaluation when RT changes 

 

The following diagram shows the total average time saved in reaching the correct results 

of the requests while the number of repeated requests changes. In this evaluation we have 
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kept the values of the parameters TN and FN fixed while the value of RT changes. In the 

following diagram TN = 200, FN = 49% while each node sends 15 requests throughout 

the simulation run. TN ranges from 5 to 15. Since each node can become faulty at 

anytime, and nodes can send out requests with any random pace, each data in the 

following diagram is the average of 100 simulation runs. 
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Figure 16 Average amount of total time saving 

 

As it can be seen the total amount of time saving does not change significantly. It has an 

approximate value of 4940000 time units. The reason the time saving does not change is 

that the increase in the number of a repeated request does not speed up the time it takes 

for its correct result to be found. When the voter receives a result of a request q from a 

node n, it checks if n has previously sent in a result for q. If it hasn’t, the voter adds the 

new result to its Q list and considers it when finding the correct result for q; otherwise the 

voter will discard it. Thus, the process of finding the correct result of a repeated request is 

similar to the situation where each request is sent out only once.  
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5.2 Evaluating the tradeoff 

 

While gaining savings on the total number of redundant computations and reducing the 

time to reach correct results, the proposed method introduces additional communications 

between the voting center and the other nodes. After having reached a verdict for a 

requests q, the voting center needs to send additional messages to all other nodes in order 

to enable them to remove request q from their W list, and to find correct results to 

requests in their C list by using Proposition 1. For example, suppose each service request 

is sent to k nodes.  

• The voting center uses k additional messages to send a verdict r to all k nodes. In 

this case, there are altogether k+1 additional messages passed around so that all 

the nodes can find the correct result of request q. 

• In addition, when a node finds the correct result of a request q’ using Proposition 

1, the node sends the correct result to the voter and the voter forwards this result 

to all the other k-1 remaining nodes. In this case, for all the nodes to find the 

correct result of request q’, k additional messages are passed around. 

 

To better understand the trade-off, we have carried out experiments to show the 

relationship between the numbers of requests whose computation is exempted and the 

number of additional messages introduced. The following diagram shows the ratio of 

numbers of redundant computations avoided / the number of additional messages. To 

estimate this ratio we have considered a weight for each message and each request based 

on the amount of time they consume. 

 

In our evaluation, we consider a weight with a value of 1 for each message and a weight 

with a value of 5 for the processing of each request. Note that we are evaluating our 

method in a computation intensive environment, which is why request processing has 

been given a larger weight. Therefore the ratio is computed as follows: 

messagesadditionalofnumber

avoidednscomputatioredundantofnumber

*1

*5
 

Diagram 17 shows the ratio when FN = 49%, RT=0 while each node sends 15 distinct 
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requests. TN varies from 10 to 400 nodes. Again, due to the existence of other factors, 

each data in the figure is calculated as an average from 100 experiments.  
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Figure 17 Ratio of total computation saving to additional messages 

 

This diagram shows that although our method adds new messages into the system, it can 

achieve computation saving with an average ratio of 3.5. In addition, the following 

diagram shows the ratio of the time reduced to reach the correct result of a request to the 

number of additional messages introduced. As mentioned we have assumed that one time 

unit is consumed for a single message to arrive at its destination. 
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Figure 18 Ratio of total saving to additional messages 

 

As we can see, the ratio of the time reduced to reach the correct result / the number of 

additional messages remains more or less a constant (approximately 12). 
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Chapter 6. Conclusion and Future Work 
 

The work presented in this thesis mainly focused on developing an efficient fault tolerant 

method for distributed systems, in terms of the amount of time consumed and number of 

computations carried out to find the correct result of a request. 

 

The fact that the results produced by a node can help us understand the underlying 

behavior of a node helped us establish an efficient fault tolerant method. As shown, the 

effect of different behaviors (correct or incorrect) of a node can exceed more than one 

request. Therefore, by finding the range and type of the effect of different behaviors of a 

node, the correctness or incorrectness of the results of multiple requests can be found 

simultaneously. As a consequence, by using this information we were able to reduce the 

time to find the correctness of requests. 

 

In addition, we used the dynamicity of the system requirements to reduce computations. 

The computations needed to be executed so the correct result of a request can be found 

changes as different nodes carry out different requests. Therefore, if the lists of requests 

to be computed by the nodes are compatible with the system requirements, unnecessary 

computations can be avoided, resulting in the reduction of computations carried out. 

 

 

This thesis showed that by using the nodes to aid the voter in finding the correct results, 

efficiency can be achieved in terms of time complexity and number of computations. We 

presented two proposition based on our following observations: 

 

1. when a node completes a computation incorrectly, we can conclude, without 

further computation, that all the results of the computations after this point (until 

its latest recovery) are incorrect. 

2. when a node completes a computation correctly, we can conclude, without further 

computation, that all the results of the computations before this point (after its 

most recent recovery) are correct. 
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Our work is one of the first to make use of the two observations above to develop an 

efficient fault tolerant method. In our method, when a node receives a correct result for a 

previously calculated request from the voter, we use the above two observations to 

conclude that the results the node has calculated for previous requests is correct or 

incorrect. Therefore, our method can find the correct result of a request before the central 

voter can find it, resulting in reduction of the time and number of computations needed to 

find the correct results to requests. Consequently, in our model when a correct result of a 

request is found the remaining nodes which have not yet calculated it are informed of it 

and are told not to calculate the request any longer. This results in an additional reduction 

of the number of computations executed by the nodes. 

 

Our method is capable of achieving an average time saving of 5350000 time units when 

finding the correct result of a request while the number of active nodes increased from 10 

nodes to 400 nodes. While this same method achieves an average time saving of  

2300000 when the percentage of faulty nodes increase from 5% to 49%, and an average 

time saving of 4940000 when the redundant sends of a single request increases from 0 to 

15. 

 

In addition, by using the above Propositions our method is capable of achieving an 

average computation saving of 190657 computations while the number of nodes 

increases from 10 to 400. As well, this method achieves an average computation saving 

of 340133 computations when the percentage of faulty nodes increases from 5% to 49% 

and an average computation saving of 895000 computations when the redundant sends of 

a single request increases from 0 to 15. 

 

Our method has a message complexity of O(n
2
) where n is the number of nodes. 

Although our method introduces additional messages into the system, its complexity is 

exponential in terms of the number of nodes, which is similar to the other commonly used 

fault tolerant methods [7, 8, 12, 15]. 
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In addition the algorithm which makes use of Proposition 1 and 2, which is the heart of 

our method, has a time complexity of  ( )2nqO  for a request q, where nq is the total 

number of requests. 

 

As it was seen, our method successfully reduces the number of computations and time 

consumption to find the correct result or a request, therefore developing an efficient fault 

tolerant method for distributed systems. 

 

As for our future work, we plan to advance our method to stateful distributed fault 

tolerant systems. At the moment our method can not handle the diversion in results 

caused by different ordering of requests in different nodes. To be able to advance our 

method to stateful systems, we aim at using Proposition 1 and 2 therefore we do not want 

to achieve similar ordering of requests in all the nodes. On the other hand we aim at 

finding the correct results despite the diversions in results from correct nodes and 

advancing Proposition 1 and 2 so nodes can be able to find correct and incorrect results 

despite being in relatively different states from each other. 

 

In addition, we aim at distributing the voting strategy among the nodes so our method 

will not suffer a single point of failure in terms of the voting center. 
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