
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

Heuristics for Cultural Algorithm Knowledge Driven Search in Heuristics for Cultural Algorithm Knowledge Driven Search in

Dynamic Social Systems Dynamic Social Systems

Viranthi Peiris
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Peiris, Viranthi, "Heuristics for Cultural Algorithm Knowledge Driven Search in Dynamic Social Systems"
(2010). Electronic Theses and Dissertations. 334.
https://scholar.uwindsor.ca/etd/334

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/334?utm_source=scholar.uwindsor.ca%2Fetd%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

HEURISTICS FOR CULTURAL ALGORITHM KNOWLEDGE DRIVEN
SEARCH IN DYNAMIC SOCIAL SYSTEMS

By

Viranthi R. Peiris

A Thesis

Submitted to the Faculty of Graduate Studies

through Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2009

©2009 Viranthi R. Peiris

HEURISTICS FOR CULTURAL ALGORITHM KNOWLEDGE DRIVEN SEARCH IN

DYNAMIC SOCIAL SYSTEMS

by

Viranthi R. Peiris

APPROVED BY

M. Khalid, External Reader

Department of Electrical and Computer Engineering

R. Kent, Internal Reader

School of Computer Science

Z. Kobti, Advisor

School of Computer Science

S. Bandyopadhyay, Chair of Defense

School of Computer Science

Date: October 21, 2009

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this
thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon
anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,
quotations, or any other material from the work of other people included in my thesis,
published or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that I have included copyrighted material
that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act,
I certify that I have obtained a written permission from the copyright owner(s) to include
such material(s) in my thesis and have included copies of such copyright clearances to my
appendix.

I declare that this is a true copy of my thesis, including any final revisions, as
approved by my thesis committee and the Graduate Studies office, and that this thesis has
not been submitted for a higher degree to any other University or Institution.

iii

ABSTRACT

Population evolution algorithms such as Cultural Algorithms (CA) enable a global

repository known as the belief space consisting of common cultural traits or generalized

schemas to influence the population space. Two important aspects of CA are the

knowledge and its propagation. Individuals in the population use social networks for

communication. Knowledge representation is generally dependent on the application at

hand. In this thesis the role of CA belief space knowledge in application neutral

simulation is explored. A standard benchmark function is used to study the performance

of various heuristics on the quality of the belief space knowledge. The function captures

the characteristics of a neutral world in static and dynamic settings. A multi-agent

simulation was designed where autonomous agents are able to communicate, acquire and

exploit various knowledge types including topographic, domain, historical and situational.

While all these strategies showed improvements when searching for the global maximum

in both static and dynamic environments, we found that domain based topographic

exploitation strategies of the landscape were the more efficient.

iv

DEDICATION

To my loving parents, husband and son.

v

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Kobti for his encouragement, guidance and immense

help that enabled me to complete my research while juggling a new born and the thesis.

Without his constant persistence, his innovative ideas, his own research and support

throughout my entire M.Sc program I would not have been able to make this research a

success. My sincere gratitude goes to Dr. Kent for his unconditional support and valuable

advice. Also I would like to thank Dr. Khalid for his advice and support.

Finally I would like to thank my husband for his encouragement, immense patience,

tolerance and support taking care of our son when ever he can to give me time to work

on the thesis.

vi

Table of Contents
Author’s Declaration of Originality ...iii

ABSTRACT..iv

DEDICATION..v

ACKNOWLEDGEMENTS..vi

List of Tables...ix

List of Figures..x

Chapter 1: Introduction..1

1.1 Problem Definition..1
1.2 Motivation...1
1.3 Thesis Statement..2
1.4 Thesis Contribution...2
1.5 Thesis Organization...3

Chapter 2: Literature Review/ Survey..4

2.1 Multi Agent Systems (MAS)...4
2.1.1 Applications of Multi-Agent Research...5

2.2 Social Complex Systems...6
2.2.1 Complex Systems...6

2.3 Social Networks ..7
2.4 Hill Climbing Algorithm...14
2.5 Evolutionary Algorithms...15

2.5.1 Ant Colony ..16
2.5.2 Genetic Algorithms (GA)...17
2.5.3 Particle Swarm ..19
2.5.4 Cultural Algorithm Framework..21

Chapter 3: Proposed Algorithms..24

3.1 Cones World Problem Generator [Morrison 1999]...24
3.2 Static Environment..26
3.3 Dynamic Environments...26
3.4 Strategy 1 (S1)- Hill Climbing Algorithm..27
3.5 Strategy 2 (S2) - Equal probability of Reputation for selecting a neighbour..........28
3.6 Strategy 3 (S3) - Biased probability of Reputation for selecting a neighbour.........29
3.7 Strategy 4 (S4) – S3 + Situational Knowledge of Cultural Algorithm....................31
3.8 Strategy 5 (S5) - S4 + Mutation...34
3.9 Strategy 6 (S6) - Neighbours and Domain Knowledge of Cultural Algorithm.......35

3.9.1 Domain Knowledge...37
3.10 Strategy 7 (S7) - Situational, Domain, Historical, and Topographical knowledge
of Cultural Algorithm along with surrounding heights and the neighbours..................38

3.10.1 Situational Knowledge...40

vii

3.10.2 Historical Knowledge..41
3.10.3 Topographic Knowledge..41
3.10.4 Domain Knowledge...41
3.10.5 Neighbours...41
3.10.6 Local area...41

3.11 Strategy 8 (S8) - Topographical Knowledge of Cultural Algorithm......................42
3.12 Strategy 9 (S9) - Modified S8..45
3.13 Repast: The environment...48

3.13.1 Repast Setup:...48
3.13.2 Repast User Interface...50
3.13.3 Cones Model..51
3.13.4 Cones Space...52
3.13.5 Cones Agents...52
3.13.6 Statistics...52

Chapter 4: Experimental Setup...55

4.1 Static Environment – 10 cones and 20 agents ..56
4.2 Dynamic Environments – 10 cones and 20 agents ..63
4.3 Static and Dynamic Environments – 10 cones and 10 agents.................................67
4.4 Static and Dynamic Environments – 10 cones and 5 agents...................................68
4.5 Static and Dynamic Environments – 5 cones and 20 agents...................................70
4.6 Static and Dynamic Environments – 5 cones and 10 agents...................................71
4.7 Static and Dynamic Environments – 5 cones and 5 agents.....................................72

Chapter 5: Discussion...73

5.1 Simulation Statistics..73
5.2 Statistical Results...79

Chapter 6: Conclusion and Future Work..81

6.1 Conclusion...81
6.2 Future Work...84

References...85
VITA AUCTORIS...90

viii

List of Tables
Table 1: Colour gradient assigned to each cone's height..50

Table 2: Results of the strategies with 10 cones and 20 agents with neighbours within 50

pixels..66

Table 3: Results of the strategies with 10 cones and 20 agents with neighbours within 10

pixels..67

Table 4: Results of the strategies of 10 cones and 10 agents with neighbours within 50

pixels..68

Table 5: Results of the strategies of 10 cones and 10 agents with neighbours within 10

pixels..68

Table 6: Results of the strategies of 10 cones and 5 agents with neighbours within 50

pixels..69

Table 7: Results of the strategies of 10 cones and 5 agents with neighbours within 10

pixels..69

Table 8: Results of the strategies of 5 cones and 20 agents with neighbours within 50

pixels..70

Table 9: Results of the strategies of 5 cones and 20 agents with neighbours within 10

pixels..70

Table 10: Results of the strategies of 5 cones and 10 agents with neighbours within 50

pixels..71

Table 11: Results of the strategies of 5 cones and 10 agents with neighbours within 10

pixels..71

Table 12: Results of the strategies of 5 cones and 5 agents with neighbours within 50

pixels..72

Table 13: Results of the strategies of 5 cones and 5 agents with neighbours within 10

pixels..72

ix

List of Figures
Figure 1: Pseudo code of Hill Climbing Algorithm ..15

Figure 2: Pseudo code of the basic Ant Colony Optimization [Maniezzo, 2000]17

Figure 3: Algorithmic steps for GA [Goldberg 1989]..18

Figure 4: PSO pseudo code [Kennedy 2001]...20

Figure 5: Cultural Algorithm Framework [Reynolds 2002]...21

Figure 6: Cultural Algorithm pseudo code from [Reynolds 2002]22

Figure 7: Formula for the base landscape [Peng, 2005]...24

Figure 8: Example of a three dimensional landscape generated by the df1 function.25

Figure 9: The surrounding heights of an agent...27

Figure 10: Pseudo code for strategy S1..28

Figure 11: Pseudo code for strategy S2..29

Figure 12: Number line showing how the biased probability is determined......................30

Figure 13: Pseudo code for strategy S3..31

Figure 14: Pseudo code for strategy S4..34

Figure 15: Pseudo code for strategy S5..35

Figure 16: Pseudo code for strategy S6..37

Figure 17: Pseudo code for strategy S7..40

Figure 18: The surrounding heights of an agent...42

Figure 19: Pseudo code for strategy S8..45

Figure 20: Pseudo code for strategy S9..48

Figure 21: The main function routine..49

Figure 22: Repast tool bar..50

Figure 23: Cones Settings...51

Figure 24: Landscape with 5 cones..52

Figure 25: Scenarios of peaks..53

Figure 26: Number of steps taken to reach a peak...54

Figure 27: Example of a graph...54

Figure 28: Strategy S1 – static - Hill Climbing Algorithm with 10 cones and 20 agents. .56

x

Figure 29: Strategy S2 – static - Equal Probability of Reputation for selecting a neighbour

with 10 cones and 20 agents...57

Figure 30: Strategy S3 – static - Biased Probability of Reputation for selecting a

neighbour with 10 cones and 20 agents..58

Figure 31: Strategy S4 – static - Situational Knowledge of Cultural Algorithm with 10

cones and 20 agents..58

Figure 32: Strategy S5 – static - Situational Knowledge and Mutation with 10 cones and

20 agents...59

Figure 33: Strategy S6 – static- Neighbours and Domain Knowledge of Cultural

Algorithm with 10 cones and 20 agents. ...60

Figure 34: Strategy S7 – static - Situational, Domain, Historical, and Topographical

knowledge of Cultural Algorithm along with surrounding heights and the neighbours with

10 cones and 20 agents...61

Figure 35: Strategy S8 – static - Topographical Knowledge of Cultural Algorithm with 10

cones and 20 agents..62

Figure 36: Strategy S9 – static - Modified S8 with 10 cones and 20 agents......................63

Figure 37: Strategy S6 – dynamic- Neighbours and Domain Knowledge of Cultural

Algorithm with 10 cones and 20 agents...64

Figure 38: Strategy S7 – dynamic-Situational, Domain, Historical, and Topographical

knowledge of Cultural Algorithm along with surrounding heights and the neighbours with

10 cones and 20 agents...64

Figure 39: Strategy S8 – dynamic-Topographical Knowledge of Cultural Algorithm with

10 cones and 20 agents...65

Figure 40: Strategy S9 – dynamic-Modified S8 with 10 cones and 20 agents..................66

Figure 41: Shows the number of steps that all the agents required to find the highest peak

for strategies S6 – S9 in both the static and the dynamic environments with 10 cones

(neighbour size 50 pixels)..74

Figure 42: Shows the number of steps that all the agents required to find the highest peak

for strategies S6 – S9 in both the static and the dynamic environments with 5 cones

(neighbour size 50 pixels)..75

xi

Figure 43: Shows the number of steps 20 agents are required to find the highest peak for

strategies S6 – S9 in both static and dynamic environments with 5 and 10 cones

(neighbour size 50 pixels)..75

Figure 44: Shows the number of steps 10 agents are required to find the highest peak for

strategies S6 – S9 in both static and dynamic environments with 5 and 10 cones

(neighbour size 50 pixels)..76

Figure 45: Shows the number of steps 5 agents are required to find the highest peak for

strategies S6 – S9 in both static and dynamic environments with 5 and 10 cones

(neighbour size 50 pixels)..76

Figure 46: Shows the influence of the neighbour size on the simulation with 10 cones and

20 agents...77

Figure 47: Shows the influence of the neighbour size on the simulation with 10 cones and

10 agents...77

Figure 48: Shows the influence of the neighbour size on the simulation with 5 cones and

20 agents...78

Figure 49: Shows the influence of the neighbour size on the simulation with 5 cones and

10 agents...78

xii

Chapter 1: Introduction

1.1 Problem Definition

To explore population based strategies in which individuals within a specified proximity

are grouped into social networks where they communicate with one another to share

required information to reach an optimum global in static and dynamic environments.

Furthermore, evaluate the role of different knowledge types in Cultural Algorithms on

population based strategies.

1.2 Motivation

Finding the global optimum faster is a very important problem in Artificial Intelligence.

Evolutionary algorithms such as, Ant Colony Optimization (ACO), Particle Swarm

Optimization (PSO), Cultural Algorithms (CA) and Genetic Algorithms(GA) are some of

the algorithms that have been used to find the global optimum.

In ACO [Dorigo 2006]once the ants know the source and the destination, they are able to

find the shortest path between the source and the destination. ACO has been applied to

NP-hard problems, routing problems in telecommunication networks, industrial problems

and others. This can also be used in many dynamic applications. Convergence is

guaranteed but it takes a long time than most of the other heuristics. Even though the

destination is unknown ants will be able to find the global optimum. It will take a long

time to find it because the ants would follow the ant who has the highest fitness. This

process would be repeated till the entire problem area has been explored. Then once the

entire area is explored all the ants would go to the best fit location. This process would

take a long time even though the global optimum is found. More information is given in

1

chapter 2.5.1.

With PSO [Eberhart, 1995] there is no guarantee that it will be able to find the global

optimum since it is problem dependent. Similarly with GA there is no guarantee that it

will be able to find the global optimum since this is also problem dependent and when it

comes to our problem, GA will most likely find only suboptimal solutions. More

information is given in Chapter 2.5.

CA enables population evolution over longer generation time, allowing faster

convergence of the population. Knowledge plays an important role in Evolutionary

Algorithms, particularly Cultural Algorithm. However, CA knowledge development is

highly dependent on the application. Therefore an application neutral environment is

required to evaluate the role of knowledge.

1.3 Thesis Statement

In this thesis we evaluate the role of different knowledge types in Cultural Algorithms.

Using an application independent social simulation, one can isolate the role of each

knowledge type in terms of its influence on the population's belief space observed by the

population performance and convergence. The quest is to identify the extent to which

each type of knowledge plays in goal optimization with the hypothesis that some types

have more influence over others.

1.4 Thesis Contribution

In this research a multi-agent simulation was designed where autonomous agents within a

defined proximity are grouped into social networks. They are able to communicate,

acquire and exploit various knowledge types including topographic, domain, historical

and situational. The Cones World Problem Generator [Morrison, 1999]a standard

2

benchmark function to capture the characteristics of a neutral world in static and dynamic

settings was used. The following nine strategies were developed to find which strategy(s)

has the best performance. The strategies implemented are briefly listed here:

 Strategy 1 (S1) - Hill Climbing Algorithm.

 Strategy 2 (S2) - Equal probability of Reputation for selecting a neighbour.

 Strategy 3 (S3) - Biased probability of Reputation for selecting a neighbour.

 Strategy 4 (S4) - S3 + Situational Knowledge of Cultural Algorithm.

 Strategy 5 (S5) - S4 + Mutation.

 Strategy 6 (S6) - Neighbours and Domain Knowledge of Cultural Algorithm.

 Strategy 7 (S7) - Situational, Domain, Historical, and Topographical knowledge of

Cultural Algorithm along with surrounding heights and the neighbours.

 Strategy 8 (S8) - Topographical Knowledge of Cultural Algorithm.

 Strategy 9 (S9) - Modified S8.

The question in this research is how knowledge types play a role in Cultural Algorithms

efficiency.

1.5 Thesis Organization
 In chapter 2 literature review is presented on Multi Agent Systems, Social Complex

Systems, Social Networks, Hill Climbing Algorithm and Evolutionary algorithms which

are Ant Colony Optimization, Genetic Algorithms, Particle Swarm Optimization and

Cultural Algorithm. In chapter 3 detail descriptions are given in regards to the developed

nine strategies followed by chapter 4 where the test results of the nine strategies are

presented. Chapter 5 describes the results and attempts to validate the proposed

hypothesis against the test results. In the last chapter, chapter 6, the conclusion and future

work are explained.

3

Chapter 2: Literature Review/ Survey

This chapter includes a short survey on Multi Agent Systems (MAS), complex social

systems, social networks, Evolutionary Algorithms such as Ant Colony Optimization

(ACO), Particle Swarm Optimization (PSO) , Cultural Algorithms (CA) and Genetic

Algorithms (GA).

2.1 Multi Agent Systems (MAS)

Recently there has been a growing interest in agent based systems technology in artificial

intelligence research because it has been hailed as a new paradigm for conceptualizing,

designing and implementing software systems [Sycara, 1998]. Agents are active,

persistent (software) components that perceive, act, reason and communicate in

environments that are distributed and open to solve many complex problems. There are

many agent based systems which consists of only a single agent. Due to the increased

technological complexity, the need for complex applications have risen that require

systems consisting of multiple agents who can communicate in a peer to peer fashion.

A Multi Agent System consists of many autonomous agents such as software programs or

robots who interact with each other to perform a set of tasks or to achieve a set of goals.

In theory, MASs are usually characterized in terms of internal behaviours and external

interactions between agents [Poslad, 2007]. Some of the characteristics of an agent's

internal behaviour are the type of cognition used and the performance measure they

utilize when choosing how to behave in model based, reactive, goal based and utility

based environments. Some of the characteristics of an agents external behaviour are how

the agents interact with each other to share information and to perform tasks. MASs main

internal and external behaviours characterize them as a unique type of distributed

computation system which has to be supported by a generic distributed computer

infrastructure or a set of middleware services. Software agents should be able to

4

communicate with each other to find out the tasks other agents are able to perform. The

middleware services are provided by an agent's Information Communication Technology

(ICT) environment, which is often called the MAS platform, where the agents are

embedded. Some examples of middleware services are, data storage, message transport,

and service discovery. Replacing these services with agent equivalents may cause some

disadvantages such as overhead in message invocation and less robust service designs.

Also agents not only should be able to communicate with other agents but also should be

able to invoke non agent software services. Sometimes agents not only interact locally

within their own platform but also interact with remote agents in other platforms. In the

future there would be many heterogeneous MASs.

MASs are used to develop complex, large or unpredictable systems as they are mainly

developed in a modularized manner. The modular components (agents) will use the most

appropriate paradigm to solve a particular problem. When interdependent problems arise,

the agents would communicate and coordinate with one another to ensure that

interdependencies are handled appropriately.

Most of the distributed computation problems involve open and dynamic environments.

In an open system the structure of the system itself is capable of dynamically changing

[Katia Sycara, 1998]. In such a system an agent alone is not able to solve the entire

problem due to certain constraints, incompetency in performing certain tasks,

inaccessibility to critical data, etc. Therefore open systems require MAS.

2.1.1 Applications of Multi-Agent Research
MAS applications cover a variety of domains including: Aircraft maintenance, Electronic

book buying coalitions, Military de- mining, Wireless collaboration and communications,

Military logistics planning, Supply-chain management, Joint mission planning and

Financial portfolio management.

5

2.2 Social Complex Systems

2.2.1 Complex Systems

A “complex system is a system for which it is difficult, if not impossible to restrict its

description to a limited number of parameters or characterising variables without losing

its essential global functional properties” [Pavard].

A complex system consists of parts that interact in a non-linear fashion within the

environment and their behaviours are non-predictable, emergence also is an essential

property. It is important to differentiate between a complicated system such as a computer

or a plane and a complex system such as economic systems or ecological systems.

Complicated systems contain many functionally distinct parts which are predictable . But

in complex systems the parts interact non-linearly within their environment, and their

components have properties of self organization which make them non-predictable. In

addition, complex systems are completely irreducible. This means that it is impossible to

derive a model from this system without losing all its relevant properties.

Recently there has been a growing interest in applying complex system approaches to

social systems [Eve et al 1997, McKelvey 1997, McKelvey 1999, Goldspink 1999 and

Marion 1999]. Many social systems are modelled using simple agents [Epstein and Axtell

1996]. Therefore Social Complex Systems consists of many individuals (autonomous

agents) who interact non-linearly within the environment and their behaviour is

unpredictable .

Some of the characteristics of Social Complex Systems are:

 Non-determinism and non-tractability [Pavard] –

It is impossible to precisely anticipate the behaviour of these systems even if we

completely know the function of its constituents. It is fundamentally non-deterministic.

6

http://jasss.soc.surrey.ac.uk/3/2/1.html#marion1999
http://jasss.soc.surrey.ac.uk/3/2/1.html#marion1999

 Agent based -

Systems comprise of many agents.

 Dynamic -

Some parts of the system may change, as the agents adapt to their environment.

The behaviour of the agents change since they are unpredictable and they learn from their

experiences. The dynamics of these systems are usually non-linear sometimes even

chaotic. Also the systems are rarely stabilized.

 Organization -

Most of the time the agents are categorized into groups. These groups are mostly

structured and will influence how the system evolves over time.

 Distributed nature of information and representation [Pavard]-

A complex system possesses properties comparable to distributed systems (in the

connectionist sense), example: some of its functions cannot be precisely localised. In

addition, the relationships that exist within the elements of a complex system are short-

range, non-linear and contain positive and negative feedback loops.

 Emergence and self-organization [Pavard] -

This is the process of deriving some new and coherent structures, patterns and

properties of the system due to non-linear and distributed interactions between agents of

the system. They are observed at a macro level even though they are generated in the

micro level.

2.3 Social Networks
 A social network is a group of people who are connected by a set of relationships, such as

7

friendship or co-working. By analysing the social networks, one can find out different

categories of relationships that occur between people, organizations and groups etc.

People are represented as nodes in the network and relationships among the people are

represented as edges. Also the structure of the network can contain many sub structures

such as, groups and cliques. By analysing these substructures we can find out the likely

behaviour of the network as a whole.

The term social network was first coined by J.A Barnes in 1954. Since then a lot of work

has been carried out in social science fields such as, anthropology, sociology and social

psychology.

With the rapid growth of Internet many cyber social networks have emerged recur to

social network software and social network websites [Zhao, 2006]. Cyber social networks

have virtual relationships, but reflect some common law of real world social relationships.

The most popular Internet social network is Friendster which is a network of virtual

friends.

[Zhao, 2006] have proposed the EigenForwarding(k,t) search approach because searching

in social networks was a problem. They applied this approach on a P2P social network by

leveraging Maze file sharing system. Maze is a Napster-like P2P system, and enables a

function to construct social networks. In order to make the system run in self-consistency,

a point-based incentive system was imported to motivate contribution. This consists of

two kinds of networks which are the friend network and the download network. These

two networks are merged to prove the “small world” property of the combination

network. Then they computed the EigenTrust value of peers to find the critical node in

the network. By leveraging the “small world” social network and EigenTrust, they

proposed their search approach EigenForwarding(k,t). A search query is forwarded to k

friends who have the highest EigenTrust values. This has better search performance than

flooding and random forwarding, and this also indicates the impacts of k and t parameters

to consult real deployment.

8

Then there is a fairly new phenomenon called Social Networking Services (SNSs) [Ahn,

2007]which enable individuals and tools to communicate with people by providing

private space for them. Also they help people to find others who have common interests,

to create forums for discussions, to exchange photographs and personal news. The social

networks of SNSs most of the time accurately reflect the real life social relationships of

people than any other online networks. Also because of their size it gives a good

opportunity to study human social networks.

Online SNSs –

Social Networking Services enable users to share personal information such as, hobbies,

photographs, birthdays, etc. Most SNSs offer features that will help users to form and

maintain online networks with other users. One such feature is called a “friend”. A user

can invite another user to be one’s friend. Then if the invited user accepts the invitation

then a friend relationship is established between them.

The following gives a brief description about the three SNSs:

 Cyworld –

This is the oldest and largest online social networking service in South Korea.

Cyworld was started in September 2001 and has been growing ever since. This

consisted about 12 million registered users in November 2005. Cyworld users can

establish, maintain and can dissolve a friend relationship online.

 MySpace –

MySpace was the largest social networking service in the world, with more than

30 million users in November 2006. It was started in July 2003. A new user by

default gets a friend relationship with Tom Anderson, the cofounder of MySpace.

This offers services such as, writing testimonials, checking upcoming birthdays,

shortcuts to friends’s front pages. By crawling the Myspace online web site from

September to October 2006, the authors obtained 100,000 user information. The

crawler will randomly select a starting user site, and will crawl to the user’s

9

friends’ pages, their friends’ pages so on.

 Orkut –

This was initially started in September 2002, by some Google employees and

became an official Google service in January 2004. Till recently one could create

an account only if one was invited by an existing user, which is different from

Cyworld and MySpace. Ever since it allowed a user to create an account without

an invitation it expanded greatly. Today it consists of more than 33 million users.

When a user joins Orkut, the user can publish one’s profile, join other

communities and upload photographs. This also offers friend relationships.

What influence individuals to join particular communities, which communities grow

rapidly and how the communities evolve over time? Are some of the questions that are

addressed in [Backstrom, 2006]. The probability of an individual joining a community

depends on the following:

1. The number of friends one has in the community.

2. Activity level of a community.

3. Friendship level of one’s friends in the community (Connectedness).

The probability of an individual joining a community is higher when that individual’s

friends in the community are connected.

The members of a social network fall into three categories [Kumar, 2006]. They are,

 Singletons –

Singletons are users who are loners. Those who have never made any connections

with others and are very inactive in the network.

 Giant component –

Giant component consists of a large group of members who have lots of

connections with others in the network. These members are highly active and they

10

are either indirectly or directly connected to the large potion of the entire network.

 Middle region –

Middle region consists of isolated communities who have created small groups

and communicate with each other.

Then there are sub groups and sub structures in social networks [Jamali, 2006]. Members

who have similar interests, or who are in the same age, race, ethnicity, gender, religion

may form cliques or sub groups to share information among each other.

Even the web can be considered as a social network [Jamali, 2006]. These Social

networks are formed by hyper- linking web pages to other web pages. Creating

communities is one of the important activities in a web. Bibliographic metrics and

Bipartite Cores are two approaches which are used to identify communities in a link

topology.

There are some social networks, such as LinkedIn, which has incorporated trust in the

network connections. Then Orkut allows users to rate trustworthiness of one another.

Friend Of A Friend project also has developed a trust module so that the users can rate the

trustworthiness [Golbeck, 2006]. When trust is explicitly rated on a numerical scale, then

that data can be used to produce information about how much two individuals who do not

have a direct connection trust each other. The specific problem that the authors have

looked at is how to use the data in the network to accurately tell to one user (source) how

much to trust another person (sink). The authors have taken advantage of the explicit trust

ratings to find out the trust that may exist between two people who are not directly

connected. Trust has three main properties. They are asymmetry, transitivity and

personalization. To generate a trust network, the edges have to be augmented with values

representing the trust relationship between individuals. The process of adding trust is

explained in detail in the paper [Golbeck, 2006].Detail description about the algorithms

for inferring trust relationships between individuals who are not directly connected to

11

each other are given below. There are two algorithms. They are:

• Rounding Algorithm –

In this algorithm the users will assign {0,1} ratings to all the neighbours, and in

every step of the algorithm a node will return {0,1} values. Then the source polls

the neighbours who have got positive ratings (1) and the others (0) are ignored.

Each neighbour will return their ratings for the sink. The source will then find the

average of these ratings and will round the final value. This rounded value is the

reputation rating from source to sink.

• Nonrounding algorithm –

In this algorithm the nodes do not round the values before they return the values.

At the end of the algorithm the original source will round the average of the

values returned by the neighbours. Therefore the final inferred value will be 0 or

1.

After analysing the above mentioned algorithms the authors have come up with the

following results.

• In the rounding algorithm the accuracy at each step increased.

• Rounding algorithm will out perform the nonrounding algorithm.

• Algorithms will be more effective on larger networks with higher average degrees.

Nowadays it is almost impossible to do one’s work without email. But when a lot of spam

and junk mails are received it is a very tedious task to find the important emails.

Therefore the authors have introduced the TrustMail prototype to filter out the unwanted

messages.

TrustMail prototype –

12

This is an email client that adds trust ratings to each message in the folder. Therefore a

user can read the trust rating and can sort the messages accordingly. The users highly

benefit from this because users do not have to open unwanted junk mail to find whether

they are from trusted parties or not. This program extracts the sender and uses trust

algorithms to find out whether the person can be trusted or not.

 According to [Goecks, 2004] current user applications and end user applications in social

networks provide very limited support such as, current applications mostly do not allow

the users to manage and to be aware how their information is transferred to the other

users. Therefore lots of users have privacy concerns because they do not know who has

access to their information and information dissemination was a hassle. This brings to the

fact that there is a need for an infrastructure that enables users to manage and control

information sharing. Therefore the authors built Saori to solve this problem. Saori is a

computational infrastructure that enables users and applications to manage and control

information dissemination within social networks. All information dissemination occurs

along ties between individuals who are connected to the social network. Users can

leverage their personal networks and the extended networks to share information. Saori

maintains an information database that can be shared. It presumes that the information is

in the form of a pointer or a url and each instance of information is owned. Saori has two

policies. They are Level of Detail (LoD) and Word of Mouth (WoM). To enforce these

policies Saori must be able to access users’ social networks and attributes. Also maintains

a database of this information, by mining users’ email messages. Saori obtains user

attributes and personal social networks and stores these in the database.

Friendster, [Boyd, 2004] is an online dating site that utilizes social networks to encourage

friend of friend connections. Recently many social networking sites have emerged for

various reasons, such as dating, job hunting, to find friends, to get recommendations and

listings etc. Compared to many other sites, Friendster is a very good site to study the

value and implications of popularity, diverse usage and press coverage on the HCI

community.

13

The author has been an active participant with Friendster users and also an active

observer with the social networking software creators.

The following are some social networks

 Yahoo! – Flickr – [Kumar, 2006]

Flickr is a popular and an active network. It was launched in Feb 2004. This

allows the users to Upload photographs and share them with their friends. A Flickr

user can invite a friend to join the network or can add an existing user as a friend.

According to Jan 2006 data the Flickr time graph consisted about one million

nodes and eight million directed edges.

 Yahoo! 360 – [Kumar, 2006]

Yahoo! 360 is a part of the Yahoo! User network. This is a social networking

website. This is mainly used to create and to share albums, photographs among

friends. Users can add contacts and invite others to join the network. According to

the Jan 2006 time graph Yahoo! 360 had about five million nodes and about seven

million directed edges.

2.4 Hill Climbing Algorithm

Hill Climbing is a mathematical optimization technique which falls into the family of

local search [Wikipedia, 2006]. Hill Climbing algorithm begins with an initial solution

which is usually chosen at random. The string is then mutated, and if the mutation gives a

higher fitness for the new solution than the previous solution, then that solution will be

used at the next iteration. This process is repeated till a higher fitness is not found

[Marczyk, 2004]. Usually the current solution is close to the optimal solution, but cannot

guarantee that it will always be close to the optimal solution. This algorithm is widely

used in Artificial Intelligence for reaching a goal state from a starting node.

Example [Marczyk, 2004]:

There is a three-dimensional contour landscape. A given set of coordinates on that

14

landscape represents one particular solution. Those solutions that are better are higher in

altitude, forming hills and peaks; those that are worse are lower in altitude, forming

valleys. A "hill-climber" is then an algorithm that starts out at a given point on the

landscape and moves inexorably uphill.) Hill-climbing is what is known as a greedy

algorithm, meaning it always makes the best choice available at each step in the hope that

the overall best result can be achieved this way.

Pseudo code of the hill climbing algorithm is given in figure 1.

1 Each agent will check the surrounding height

2 If surrounding height > current height then

3 Move agent to the surrounding height.

4 Else

5 If surrounding height = current height then

6 Move agent randomly by one step within the allowed x, y cones space range.

7 Else

8 Agent remains at the current position

9 Repeat till surrounding height <= current height.

Figure 1: Pseudo code of Hill Climbing Algorithm

2.5 Evolutionary Algorithms
Problem solving approaches that use computational models which are based on the

principles of natural evolution are called evolutionary algorithms (EA) [Saleem, 2001]. In

evolutionary algorithms an individual would have to go through the process of selection,

recombination and mutation. Then the individuals who have the high fitness values would

most likely be selected to form the next generation. Some of the popular evolutionary

algorithms are Ant Colony Optimization (ACO), Genetic Algorithms (GA), Particle

Swarm Optimization (PSO) and Cultural Algorithms (CA).

15

2.5.1 Ant Colony
Ant Colony Optimization (ACO) takes inspiration from the foraging behaviour of ants

[Dorigo 2006]. Ants deposit a chemical substance called pheromone on the path when

walking to and from a food source. Other ants sense the presence of pheromone and tend

to follow a trail that is rich in pheromone. Thus they are able to find the shortest path

from a food source to the nest. Also ants are capable of adapting to changes in the

environment. For example being able to find a new shortest path when the old path is no

longer feasible due to obstacles.

In the Ant Colony Optimization Algorithms proposed by Dorigo [2006] the ants are

defined as computational agents, which iteratively build solutions to an optimization

problem. ACO has been applied to optimization problems in areas such as asymmetric

and symmetric travelling salesman problem, scheduling, routing and partitioning

problems.

In [Peng, 2005] Each ant will move from a state ι to another one ψ corresponding to a

more complete solution. Each agent at each step will compute a set of feasible expansions

to its current state by using the following probability distribution,

α. τ ι ψ + (1- α). η ι ψ

∑ (τ ι v) + (1 – α). η ι v if ι ψ ∈ tabuk ∉ tabuk

ρk ι ψ =

0, otherwise

Will move to the new position only if it is better than the previous step. tabuk represents a

set of feasible moves for an agent k. Parameter α defines the relative importance of the

trail. Then after each iteration t of the algorithm, the trails are updated by the following

formula,

τ ι ψ(t) = ρ τ ι ψ(t -1) + Δ τ ι ψ.

16

ρ is a user defined co-efficient and Δ τ ι ψ represents the sum of the contributions of all

agents that used the move ι ψ to find the next position.

 The pseudo code from [Maniezzo, 2000] describes how the basic Ant Colony

optimization works.

 1. (initialization)

 initialize τ ι ψ, ∀ ι, ψ

 2. (construction)

 for each ant k do

 repeat

 compute η ι ψ, ∀ ι, ψ

 choose in probability the state to move into

append the chosen move to the kth ant 's set

tabuk

 until ant k has completed its solution

 [apply a local optimization procedure]

end do

 3. (Trail update)

 For each ant move (ι, ψ) do

compute Δ τ ι ψ and update the trail values

 4. (Terminating condition)

If not (end condition) and go to step 2.

Figure 2: Pseudo code of the basic Ant Colony Optimization [Maniezzo, 2000]

2.5.2 Genetic Algorithms (GA)
Genetic Algorithm (GA) was developed by J. H. Holland in 1975 [Holland 1975]. In GA

initially a set of solutions or a population would be randomly generated. Then at each

iteration by using a fitness function which is problem domain specific would select the

17

fittest solutions. Most of these functions are stochastic so that only a small proportion of

less fit solutions would be selected. This is done to keep the diversity of the population

large and to avoid premature convergence on poor solutions. Then would test the selected

solutions to find whether the optimal solution is found. If not found then would apply

recombination and mutation to breed the next generation (new solutions). Generally the

average fitness would have increased in this generation since only the best solutions

(parents) are selected for recombination and mutation. This process will be repeated till

the optimal solution is found or till a fixed number of generations have been reached or

successively better solutions have not been found.

Figure 3 gives the basic algorithmic steps presented by Goldberg [Goldberg 1989].

1 t = 0;

2 initialize P(t)

3 evaluate structures in P(t)

4 repeat

5 t = t + 1

6 select_reproduction C(t) from P(t-1)

7 recombine and mutate structures in C(t) forming C'(t);

8 evaluate_structures in C'(t)

9 select_replace P(t) from C'(t) and P(t+1);

10Until (termination condition satisfied)

Figure 3: Algorithmic steps for GA [Goldberg 1989]

Initially a population of individuals would be generated (usually randomly). Then the

individuals' structures would be evaluated. A probability that is proportional to its fitness

would be assigned to each individual. A selection buffer C(t) is created which will contain

the better individuals from P(t – 1) “select_reproduction” because they have a higher

probability of creating better offspring. Next mutation and crossover would be applied to

individuals in buffer C(t) and the new generation would be stored in the buffer C'(t). Then

the structural fitness of C'(t) would be evaluated and P(t) would be replaced with the

18

individuals from C'(t) and P(t-1). This process would be repeated till the termination

condition is satisfied.

Cannot guarantee that GA s are able to produce optimal solutions because of its

evolutionary nature. For example:

Requirement is to find the highest peak of a given landscape. The algorithm will prefer

solutions that lie on a peak. The individuals will generate solutions and at each iteration

the best solutions will be kept and mutated expecting better solutions and the rest will be

eliminated. Once the individuals have reached either the same peak or different peaks the

solution with the highest value will be selected assuming that is the highest peak. But

there can be another higher peak which has not been found by any of the individuals since

when they reach a peak, the surrounding area is not higher so they will stop exploring the

landscape. Therefore the solution that was thought as the optimal is actually only a sub

optimal solution.

2.5.3 Particle Swarm
When compared with genetic search, Particle Swarm Optimization (PSO) is a relatively

recent optimization technique of the swarm intelligence paradigm [Windisch, 2007]. PSO

is a population based optimization technique [Eberhart, 1995], inspired by the behaviour

of schools of fish, herds of animals or flocks of birds. Particle Swarm Optimization is

somewhat similar to genetic algorithms because both of them are population based. In

PSO the system is initialized with a population of random solutions called particles.

These particles move through the problem space in search of the global minima or

maxima. Each particle keeps track of its past best performance/ fitness and its neighbours

(specified proximity radius) best performance to decide on its next move. Also the swarm

is aware of the global best achieved by all the particles. At each iteration the particles will

update its velocity and position by using the following (a) and (b) equations.

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)

present[] = present[] + v[] (b)

19

v[] is the agent's velocity, present[] is the current position of the agent and rand() is a

random number between 0 and 1. C1 and C2 are the learning factors and usually c1 = c2

= 2. The previous best position of particle i is denoted by pBesti and the previous global

best is denoted by gBest.

The pseudo code of the initial version of PSO for real valued variables is given in
[Kennedy 2001] as follows,

1 For each particle

2 initialize particle

3 End For

4 Do

5 For each particle

6 calculate fitness value

7 if the fitness value is better than the best fitness value (pBest) in history

8 set the current value as the new pBest

9 End

10 Choose the particle with the best fitness value of all the particles as the gBest

11 For each particle

12 calculate particle velocity according to equation (a)

13 update particle position according to equation (b)

14 End

15While maximum iterations or minimum error criteria is not attained.

Figure 4: PSO pseudo code [Kennedy 2001]

By simulating individual learning and social cultural transmission PSO attains both

simplicity and efficiency (speed of convergence). Some of the advantages of PSO are, it

has performed well on a variety of benchmark problems, such as, Schaffer f6 function

[Peng, 2005] and global minimum. Also in a wide range of applications such as,

minimizing the weight of a tension spring (engineering optimization problem) and neural

network optimization. But it does not accurately reflect the accurate human belief system

20

and performance is problem dependent.

2.5.4 Cultural Algorithm Framework
The Cultural Algorithm (CA) is a class of computational models derived by observing the

cultural evolution process in nature [Reynolds 1978, 1994]. The Cultural Algorithm

consists of three major components which are population space, belief space and a

communication protocol that describes how knowledge is exchanged between population

space and belief space [Reynolds, 2005]. The knowledge that is generated in the

population space is selectively passed to the belief space which is a global knowledge

repository which will influence the changes made by the next generation in the population

space. Each individual in the population space has access to the knowledge that is in the

belief space, therefore as these individuals evolve to achieve a goal the knowledge is

modified and passed to the belief space. Cultural algorithms are mainly designed to

model the society including humans. But it is equivalently applicable to non social search

problems such as, Constraint Satisfaction or optimization problems. Following diagram

shows the basic CA framework.

Figure 5: Cultural Algorithm Framework [Reynolds 2002]

The population space consists of autonomous entities or agents of the specific problem.

These agents have knowledge or a set of strategies or beliefs. The belief space contains

21

some of the knowledge that is generated in the population space. In Cultural Algorithms

evolution happens both in the population space and belief space through communication.

As the population in the population space evolves the belief space will be updated

accordingly by the acceptance function and the knowledge in the belief space will

influence the agents in the population space. The Reproduction function will generate the

new generation and the modify function causes mutation or changes to the new

generation. The performance function will identify the optimal state of the system.

The CA pseudo code presented by Reynolds [Reynolds 2002] is given in the figure 6.

1Begin

2 t = 0;

3 Initialize Population POP(t);

4 Initialize Belief Space BLF(t);

5 repeat

6 Evaluate Population POP(t);

7 Adjust (BLF(t), Accept(POP(t)));

8 Adjust (BLF (t));

9 Variation(POP (t) from POP (t-1));

10 until termination condition achieved

11End

Figure 6: Cultural Algorithm pseudo code from [Reynolds 2002]

The Cultural Algorithm is a population based algorithm just like Ant Colony Optimization

(ACO) and Particle Swarm Optimization (PSO), but unlike ACO and PSO, Cultural

Algorithm uses five basic knowledge models in the problem solving process. They are,

 Situational Knowledge: Situational knowledge was proposed by [Chung, 1997]

for real valued function optimization problem solving in static environments. This

contains knowledge of exemplars.

 Normative Knowledge: Defines a set of standards within which maximum fitness

is expected.

 Topographic Knowledge: Provides a spatial or array framework in which

22

environmental patterns can be identified.

 Domain Knowledge: This was introduced into CA by Reynolds and Saleem in

[Reynolds, 2005] in order to solve dynamic optimization problems. This is

generated from the problem domain to predict trends in the resource landscape.

 Historic Knowledge: This was also introduced into CA by Reynolds and Saleem

in [Reynolds, 2005] in order to find about global dynamics and to be able to

backtrack when necessary. While domain knowledge provides information about

local changes in terms of geometrical or gradient considerations, historic

knowledge provides a more global perspective of the changes.

 A hybrid algorithm with GA and CA is presented in [Xue, 2007] . In [Coelho 2006] PSO

was used within the CA framework. [Peng 2003] and [Peng 2004] has carried out a

thorough investigation on these types of knowledge and conclude that by amalgamating

these knowledge sets in the right combination the CA might be able to converge faster.

Also these papers mention how each knowledge category can affect the others to evolve.

23

Chapter 3: Proposed Algorithms

We have incrementally developed a number of strategies of increasing complexity that

can be applied on an application neutral system which contains static/dynamic

environments which are inspired from a standard benchmark function the Cones World

Problem Generator.

3.1 Cones World Problem Generator [Morrison 1999]
This was originally developed by De Jong and Morrison [Morrison 1999]. They called it

DF1. It is a standard and a rigorous test function generator that is used to study the

performance of evolutionary algorithms in changing environments [Peng 2005]. It is

capable of providing instances of a wide variety of dynamic landscapes.

The cones world generates a multi dimensional problem landscape in which resource

cones of different heights and slopes would be scattered. This would be carried out in two

steps.

Step1:

Specify a baseline static landscape of the desired complexity. The base landscape will be

generated according to the following formula,

Figure 7: Formula for the base landscape [Peng, 2005]

Where,

K : The number of cones

n: dimensionality

Hj: Height of cone j

Rj: Slope of cone j

24

Cj,i: coordinate of cone j in dimension i

The values for each cone (Hj, Rj and Cji) are randomly assigned based on user specified

ranges.

Hj ϵ (Hbase, Hbase + Hrange)

Rj ϵ (Rbase, Rbase + Rrange) and

Cji ϵ (-1, 1)

Each of these independently specified cones are blended together using the max function.

If two cones overlap then the height at a point is the height of the cone that has the

highest value at that point. [Peng, 2005]

For this thesis a three dimensional landscape was used in which K = 5, Hbase = 3, Hrange

= 3, Rbase = 10 and Rrange = 2. Example of a cones world environment is given in figure

8.

Figure 8: Example of a three dimensional landscape generated by the df1 function.

x ϵ (-1, 1) , y ϵ (-1, 1), with n = 2, H ϵ (3, 6) and R ϵ (10, 12)

Step2:
Specify the dynamics. Dimension Cj,i , height Hj and slope Rj of every cone j can be

changed. These can be changed by the following logistics function,

25

Yi = A * Yi-1 * (1-Yi-1)

A is a constant and Yi is the value at iteration i

The generator will randomly generate cones each time it is called. Cones World Problem

Generator was selected because it is able to generate test functions over a wide range of

surface complexities and problem dynamics. Also it is able to evaluate the system in a

more flexible and a systematic way.

3.2 Static Environment
In the static environment, once the cones are randomly generated they remain in that

position. The cones do not move.

3.3 Dynamic Environments
Initially just like the static environment cones will be deployed on the landscape. Then

after hundred and fifty steps the cones will be moved to different locations. Then after the

next hundred and fifty steps (three hundred steps) not only the cones will be moved but

also the heights of all the cones will be changed. This will be repeated till number of steps

are six hundred. There are four different dynamic environments. When the environment

changes the agents will start exploring from where they stopped.

The user is able to select or enter the following for the nine strategies.

 Particular strategy.

 Number of cones.

 Number of agents.

 Static/ dynamic environment.

 Number of pixels for a step (step size).

 The mutation probability for the strategy 5.

26

3.4 Strategy 1 (S1)- Hill Climbing Algorithm.

Implemented the Hill Climbing Algorithm. Once an agent is randomly placed on the

landscape, the agent's current and surrounding pixel heights are passed to the algorithm as

shown in figure 9. Note that the agent is at H11.

The three basic rules for the heuristic algorithm are as follows:

1) Move the agent to the surrounding pixel with the highest height, higher than its

current height.

2) If there are any surrounding pixels with height equal to its current height H11, then the

agent is randomly moved by one pixel within the allowed x and y cones space range.

3) Otherwise the agent remains at the current position.

These rules are repeated all the way to the top of the peak where the agent is located. If

the peak is a plateau rather than a point (single pixel), then the agent will randomly

wonder along the plateau at the same height in search of a higher pixel.

Figure 9: The surrounding heights of an agent.

27

H
00

H
01

H
02

H
10

H
11

H
12

H
20

H
21

H
22

The pseudo-code for strategy S1 is given in figure 10.

1 Each agent will check the surrounding height

2 If surrounding height > current height then

3 Move agent to the surrounding height.

4 Else

5 If surrounding height = current height then

6 Move agent randomly by one step within the allowed x, y cones space range.

7 Else

8 Agent remains at the current position

9 Repeat till surrounding height <= current height.

Figure 10: Pseudo code for strategy S1.

3.5 Strategy 2 (S2) - Equal probability of
Reputation for selecting a neighbour.

The agents who are within fifty pixels apart are grouped into networks. Initially all the

agents reputation will be zero. Then each agent by using equal probability (50/50

probability of picking any neighbour) will pick a neighbour and will request for its height.

If the height is greater than itself then will move one step towards the neighbour's location

and increase the neighbour's reputation by one. Otherwise the agent will use hill climbing

algorithm to decide on the next move and decrease the neighbour's reputation by one. If

an agent does not have any neighbours then it will use hill climbing algorithm to decide

on its next move. The pseudo code is given in figure 11.

1 For each agent, check within 50 pixels for another agent

2 If there is an agent within 50 pixels apart then

3 Add that agent to the current agent's network

4 End For

5 For each agent check whether the agent belongs to a network

28

6 If the agent belongs to a network then

7 By using equal probability of reputation select a neighbour.

8 Request for the neighbour's height.

9 If neighbour's height > current agent's height then

10 Move the agent by 1 step towards the neighbour.

11 Increase neighbour's reputation by 1.

12 Else

13 Use Hill Climbing Algorithm (S1) to move

14 Decrease neighbour's reputation by 1

15 Else

16 Use Hill Climbing Algorithm (S1) to move

17 Repeat till user selects stop or till the number of iterations = number of iterations given

in the user settings menu.

Figure 11: Pseudo code for strategy S2.

3.6 Strategy 3 (S3) - Biased probability
of Reputation for selecting a
neighbour.

The agents who are within fifty pixels apart are grouped into networks. Initially all the

agents reputation will be zero. For the first five iterations strategy S2 will be carried out.

From the sixth iteration onwards, each agent will get all it's neighbours reputations, add

them into an array. Using the reputations in the array a new array (Sa) is created that

contains the sum of the reputations at the current and previous indices. Then a random

number between 0 and 1 is generated where that number is multiplied by the total of all

the neighbours reputations (Bp). The agent associated with the index in array (Sa) who's

value is greater and closest to the result (Bp) as illustrated in figure 12 will be the agent's

neighbour (in the case of the example in figure 12 it is agent at index 3). Then the agent

29

will request for its height. If the height is greater than itself then it will move one step

towards the neighbour's location and increase the neighbour's reputation by one.

Otherwise, will use hill climbing algorithm to decide on the next move and decrease that

neighbour's reputation by one. If an agent does not have any neighbours then it will use

hill climbing algorithm to decide on its next move.

Figure 12: Number line showing how the biased probability is determined

The pseudo code is given in figure 13.

1 For each agent, check within 50 pixels for another agent

2 If there is an agent within 50 pixels apart then

3 Add that agent to the current agent's network

4 End For

5 For Number of iterations 1 – 5 do

6 Strategy S2

7 End For

8 For Number of iterations 6 - till user selects stop or till the number of iterations =

number of iterations given in the user settings menu

9 Calculate the sum of reputations of all the neighbours

10Store the first neighbour's reputation and id in an array

11Then add the next neighbour's reputation to the previous neighbour's reputation and

store that value in the same array.

12Repeat till all the neighbours reputations are added to the previous neighbour's

30

reputation.

13BiasedRep = ceiling (Rand * sum of reputations of all the neighbours)

14Check whether BiasedRep is less than or equal to any value in the array.

15Then get the id of the first value that is greater than or equal to it.

16The agent who has that id is this agent's neighbour.

17 Request for the neighbour's height.

18 If neighbour's height > current agent's height then

19 Move the agent by 1 step towards the neighbour.

20 Increase neighbour's reputation by 1.

21 Else

22 Use Hill Climbing Algorithm (S1) to move

23 Decrease neighbour's reputation by 1

24 Else

25 Use Hill Climbing Algorithm (S1) to move

26End For

Figure 13: Pseudo code for strategy S3

3.7 Strategy 4 (S4) – S3 +
Situational Knowledge of Cultural
Algorithm.

In strategy 7, for the first ten iterations strategy 3 is carried out. Then at every tenth

iteration the top 10% agents based on their reputations will be calculated and their ID, x-y

coordinates and height will be stored in the belief space, which forms the global

repository. Randomly the agents can either, pick an agent from the belief space or from

the neighbourhood. If the agent (A) decides to pick an agent from the belief space, then

by using biased probability of the agent reputation will pick an agent (B), followed by

checking whether the height of B is greater than A. If it is, agent B's reputation is

increased by one and will travel one pixel towards agent B. If not agent B's reputation

31

will be decreased by one and will select another agent based on biased probability of

reputation from the neighbourhood. If the agent (A) decides to pick a neighbour from the

neighbourhood the agent will perform strategy S3 as described in the previous section.

The pseudo code is given in figure 14.

1 Nth Iteration = false (Nth Iteration = 10)

2 For Number of iterations 1 – till the user selects stop or number of iterations = number

 of iterations given in the user settings menu do

3 If Number of iterations mod 10 = 0 then

4 Nth Iteration = true

5 Else

6 Nth Iteration = false

7 If Nth Iteration = true then

8 Evaluate all the agents reputations

9 Select the top 10% agents based on their reputations and store their id, x,y and z

coordinates in the belief space.(Global repository)

10 Randomly pick a neighbour or the belief space.

11 If belief space is selected then

12 By using Biased probability of reputation select an agent

from the belief space.

13 If selected agent's height > current agent's height then

14 Move the agent by 1 step towards the neighbour.

15 Increase selected agent's reputation by 1.

16 Else

17 Decrease selected agent's reputation by 1.

18 By using Biased probability of reputation select an

agent from the network.

19 If no neighbours then

20 Do Strategy S1

21 Else

22 Request for the neighbour's height.

32

23 If neighbour's height > current agent's

height then

24 Move the agent by 1 step

towards the neighbour.

25 Increase neighbour's

reputation by 1.

26 Else

27 Use Hill Climbing Algorithm

(S1) to move

28 Decrease neighbour's

reputation by 1

29 Else

30 By using Biased probability of reputation select an agent from the

network.

31 If no neighbours then

32 Do Strategy S1

33 Else

34 Request for the neighbour's height.

35 If neighbour's height > current agent's

36 height then

Move the agent by 1 step towards the

37 neighbour.

38 Increase neighbour's

reputation by 1.

39 Else

40 Use Hill Climbing Algorithm

(S1) to move

41 Decrease neighbour's

reputation by 1

42 Else

33

43 If Number of iterations 1 – 10 then

44 Do Strategy S3

45 Else

46 Follow the selected agent till the next Nth Iteration

47 Increase Number of iterations by 1.

Figure 14: Pseudo code for strategy S4

3.8 Strategy 5 (S5) - S4 + Mutation.

The user is given a choice whether to mutate an agent or not. If the user decides to mutate

the agents, then the user can enter a mutation probability in the Mutation field of the

Parameter settings. If the user decides not to mutate agents then zero should be entered.

Once a mutation probability (ex: 0.05) is entered, every ten iterations a random number

between 0 to 100 is generated and if it falls between 0 to 5 (0.05 * 100), the agent will be

mutated for the next ten iterations. As soon as the agent is mutated, random x-y

coordinates will be generated to which the agent will travel towards. The agent will travel

to its destination and while doing so will share and gather information with encountered

neighbours along the way. If the destination x-y is reached prior to the expiration of the

ten iterations the agent will remain at its destination until the time expires. If the random

number is not within 0 and 5, that agent will not be mutated and will use S4 strategy as

described in the previous section. The pseudo code is given in figure 15.

1 Nth Iteration = false

2 AmIMutated = false

3 For Number of iterations 1 – till the user selects stop or number of iterations = number

of iterations given in the user settings menu do

4 If Number of iterations mod 10 = 0 then

5 Nth Iteration = true

6 Else

34

7 Nth Iteration = false

8 If Nth Iteration = true then

9 If Mutation > 0 then

10 Get the mutation probability from the user settings menu.

11 Random number generator will generate a number

12 If that number*100 < user entered probability * 100 then

13 Agent is mutated

14 Else

15 Agent is not mutated

16 If agent is mutated then

17 x,y coordinates will be randomly generated

18 Agent will move by 1 step towards x,y

19 AmIMutated is set to true

20 Else

21 Do all the steps after “If Nth Iteration = true

22 then” in strategy S4

23 Else

24 Do all the steps after “If Nth Iteration = true

25 then” in strategy S4

26 Else

27 Follow the selected agent till the next Nth Iteration.

28 Increase number of iterations by 1.

Figure 15: Pseudo code for strategy S5

3.9 Strategy 6 (S6) - Neighbours and
Domain Knowledge of Cultural
Algorithm.

In Strategy 6 to Strategy 9 each agent has its own miniature map of 20 x 20 cells (10 x 10

35

pixels) denoted as MyMap. This is to reflect a miniature outline of the landscape forming

200 x 200 pixels. Each cell in MyMap is initialized with -1 and does not contain any

cones.

At each step all the agents will check within 50 pixels apart for neighbours. If neighbours

are found the agent will retrieve their maps and update it's own map. With the updated

map the agent will select the closest location none of its neighbours have been (i.e. by

determining the closest initialized value of -1) and travel toward it. On its way if the agent

comes across a cone it will calculate the peak of the cone without climbing it and also

will check for neighbours within 50 pixels and update it's map. At the end of each update

of MyMap the agent checks if it's map is complete (i.e. no more -1s). With a complete

map, the agent will find the highest height and travel to the location. The pseudo code is

given in figure 16.

1If (myMap is not complete) then

2 Get my height

3 If (has reached destination) or (No of steps >= 0) then

4 Store my height in the relevant x and y coordinates in myMap.

5 Get neighbours who are within 50 pixels.

6 If (no of neighbours >= 1) then

7 Get the neighbours maps.

8 Update myMap.

9 Out of all the -1's in myMap, the random number generator will
select the closest x and y coordinate.

10 Move agent by 1 step towards the selected location.

11 Clear has reached destination flag.

12 If (my height = 0) then

13 Calculate Domain knowledge

14 Move agent by 1 step towards the selected location.

15 Out of all the -1's in myMap, the random number generator will
select the closest x and y coordinate.

16 Store my height in the relevant x and y coordinates in myMap.

17 else

36

18 Calculate Domain knowledge

19 Move agent by 1 step towards the selected location.

20 Out of all the -1's in myMap, the random number generator will
select the closest x and y coordinate.

21 Store my height in the relevant x and y coordinates in myMap.

22 Check whether myMap is complete.

23 If (myMap is complete) then

24 myMap complete flag = true.

25 Find the highest height in myMap.

26 Take 1 step towards the location of the highest height.

Figure 16: Pseudo code for strategy S6

3.9.1 Domain Knowledge
This strategy involves the agent estimating the peak of the cone without climbing to the

top of the cone. First the agent finds an edge of the cone. This point is marked as A. Then

the agent travels 20 steps along the edge of the cone to point B and will save each point

along the way into an array. With the coordinates of point A and B the radius can be

calculated using the formula below.

Where:

W is length of the chord defining the length of the arc base.

H is the height measured from at the mid point of the arc base.

37

H above is the distance between the middle point in the array and the middle point

between A and B.

Once the radius is calculated the agent travels a few steps towards the centre of the cone

just enough to determine the slope of the cone. Finally the height of the cone is calculated

as shown in the formula below.

3.10 Strategy 7 (S7) - Situational, Domain,
Historical, and Topographical knowledge of
Cultural Algorithm along with surrounding
heights and the neighbours.

Each agent will get information from the Cultural Algorithm's knowledge sources such as,

Situational knowledge, Topographic knowledge, Historical knowledge, domain

knowledge, also from the neighbour's within 50 pixels and the surrounding area. Then the

agent will update it's map with this information and will pick the closest location that

none of its neighbour's have been nor a location given by the above mentioned knowledge

sources. Then as the agent is travelling to the selected location, it will update the

Historical knowledge and it's map. If the agent lands on a cone then will calculate the

peak of the cone without climbing to the top (as explained in chapter 3.9.1), and store that

value in the map and also will update it's map with the information given by the

38

neighbours. Once an agent has reached the selected destination it will check the above

mentioned knowledge sources, neighbours and the local area and will select the closest

location that none of its neighbour's have been nor a location given by the above

mentioned knowledge sources. Once all the agents have taken a step, Situational

knowledge, Topographic knowledge and Historical knowledge sources are updated. Also

the agent's map is checked to determine if all the values in the myMap are filled. If it is,

then will search for the highest value in myMap, and will update the Situational

knowledge with the highest value and will set myMap complete flag to true. Then all the

agents will travel to this location. The pseudo code is given in figure 17.

1If (myMap is not complete) then

2 Get my history list.

3 Get my height.

4 If (has reached destination) or (No of steps >= 0) then

5 Store my height in the relevant x and y coordinates in myMap

6 Get neighbours who are within 50 pixels.

7 If (no of neighbours >= 1) then

8 Get the neighbours maps.

9 Update myMap.

10 Check the local area.

11 If (No of steps >= 1) then

12 update myMap with topographic knowledge.

13 Check Historical knowledge.

14 Update myMap with the surrounding values, situational knowledge and
historical knowledge.

15 Out of all the -1's in myMap, the random number generator will
 select a particular x and y coordinate.

16 Move agent by 1 step towards the selected location.

17 Store the historical values in the history list

18 Store my height in the relevant x and y coordinates in myMap.

19 Clear has reached destination flag.

20 If (my height = 0) then

39

21 Calculate Domain knowledge

22 Out of all the -1's in myMap, the random number generator will
 select a particular x and y coordinate.

23 Move agent by 1 step towards the selected location.

24 Update myMap with the surrounding values, situational knowledge and
historical knowledge.

25 Store the historical values in the history list

26 Store my height in the relevant x and y coordinates in myMap

27 else

28 Calculate Domain knowledge.

29 Out of all the -1's in myMap, the random number generator will
 select a particular x and y coordinate.

30 Move agent by 1 step towards the selected location.

31 Update myMap with the surrounding values, situational knowledge and
historical knowledge.

32 Store the historical values in the history list

33 Store my height in the relevant x and y coordinates in myMap

34 Check whether myMap is complete.

35 If (myMap is complete) then

36 myMap complete flag = true.

37 Find the highest height in myMap.

38 Update situational knowledge.

39 else

40 Take 1 step towards the location of the highest height.

After all the agents have taken a step the knowledge sources will be updated.

Figure 17: Pseudo code for strategy S7

3.10.1 Situational Knowledge
Situational knowledge consists the highest height at that time step. This is the local best

and can be the global best if that is the highest height in the landscape.

40

3.10.2 Historical Knowledge
At each step, the historical knowledge contains each agent's highest ten heights.

Therefore when ever an agent queries the historical knowledge the agent will know the

ten highest heights found until that time step. Then the agent will update its map with this

information.

3.10.3 Topographic Knowledge
The landscape is divided into 16 cells. The Topographic knowledge consists of the highest

height found by an agent in each cell. When ever a value is higher than the current value

in that cell, that value will be replaced by the new found higher value.

3.10.4 Domain Knowledge
Domain knowledge is explained in chapter 3.9.1.

3.10.5 Neighbours
The agents who are within 50 pixels apart are neighbours. An agent will check the

neighbours maps to find out the locations where the neighbours have been and will update

its map. This is performed so that another agent does not have to go to a place where

another has been. Then the entire landscape can be explored much faster.

3.10.6 Local area

41

H
00

H
01

H
02

H
10

H
11

H
12

H
20

H
21

H
22

Figure 18: The surrounding heights of an agent.

The agent at H11 will check the local area which are coloured in gray to check whether

the next step at any direction is higher than its current position. The agent will update its

map with the values in the surrounding area.

3.11 Strategy 8 (S8) - Topographical
Knowledge of Cultural Algorithm.

The landscape is divided into sixteen cells. Initially the agents will randomly be scattered

on the landscape. There is a master topographical map with sixteen equal cells of 50 by

50 pixels each. If there are less than sixteen agents then each agent will be assigned to the

closest cell according to their current location. For example:

If there are two agents that will fall into the same cell then the first agent will be assigned

to that cell and the other agent will be assigned to the next closest cell. When ever an

agent is assigned to a cell the master map is updated. But if there are more than sixteen

agents then the first sixteen will be assigned to the sixteen cells and the others depending

on their current locations and according to the master map will be assigned to cells.

Once an agent lands on a cell the agent will start exploring the cell and will check for

agents within 50 pixels apart(neighbours) then will update its map with the value(s) given

by the neighbours and also with its own explored locations. This way more than 1 agent

would not explore any area that was explored by another. Then when it has finished

exploring that particular cell the agent will check in the master map for cells that have not

been explored by any agent. If there are any unexplored cells then that agent will be

assigned to that cell.

42

If there are no more unexplored cells then the agents who have finished exploring their

assigned cells will come to the middle of the landscape.

When all the agents are in the middle of the landscape, they will update their maps. Then

will check for the highest height and all the agents will travel to the highest height. An

agent's step = 10 pixels in this simulation.

With each agents map being 20 by 20 cells (10 by 10 pixels for each cell) and the

topographical map being 4 by 4 cells (50 by 50 pixels for each cell) the worst case (Twc)

and best case (Tbc) exploration steps can be calculated as follows:

With number of agents (nAgents)>= 16

Steps to explore a topographical cell (S) = 5steps x 5steps = 25 steps

Worst case to assigned cell (wcs) is 28 steps (diagonal length = sqrt(202+202))

Worst case steps to come to the middle from a corner of the landscape (wcm) ≈ 14 steps

Worst case to the corner of the landscape from the middle (wcmh) ≈ 14 steps

Lowest number of agents in a cell (nApc) = floor(nAgents/16) (i.e. div. into 16 cells)

Twc (nAgents) ≈ ceiling(S/ nApc) + wcs + wcm + wcmh

Tbc (nAgents) ≈ ceiling(S/ nApc) + wcm + wcmh

With number of agents (nAgents)< 16

Twc (nAgents) ≈ S*(celling(16/nAgents)) + wcs + wcm + wcmh

Tbc (nAgents) ≈ S*(celling(16/nAgents)) + wcm

The pseudo code is given in figure 19.

1cntTopo = 0

2 If (cntTopo = 0) then

3 Initialize the Master Topo array

43

4 cntTopo = cntTopo + 1

5If (No of steps = 0) then

6 Get my x coordinate

7 Get my y coordinate

8 Assign a cell

9 Store my height in the relevant x and y coordinates in myMap array

10 Check whether the agent has finished exploring

11 Get neighbours within 50 pixels apart

12 If (no of neighbours > 0) then

13 Get the neighbours maps.

14 Update myMap with the values in the neighbours maps.

15 If (No of steps > 0) and (Not finished exploring) then

16 Move agent by 1 step in the cell

17 Store my height in the relevant x and y coordinates in myMap array

18 If (No of steps > 0) and (Finished exploring) then

19 Got a cell = false

20 Check Master Topo array to find whether there are any more unexplored cells

21 If (unexplored cells = true) then

22 Assign a cell

23 Move agent by 1 step in the cell

24 Store my height in the relevant x and y coordinates in myMap array

25 Finished exploring = false

26 Else

44

27 Finished exploring = true

28 Reached centre = false

29 Check whether the agent is in the centre of the landscape

30 If (reached centre) and (Not got highest height)

31 Get neighbours who are within 50 pixels.

32 Count number of neighbours

33 If (number of neighbours = number of agents – 1) then

34 Get the neighbours maps.

35 Update myMap with the values in the neighbours maps.

36 Get the highest height

37 Got highest height = true

38 Move agent by 1 step towards the highest height

39 Else if (Not reached centre) and (Not got highest height) then

40 Move agent by 1 step towards the centre

41 Else if (got highest height = true) then

42 Move agent by 1 step towards the highest height till the highest

height is reached.

Figure 19: Pseudo code for strategy S8

3.12 Strategy 9 (S9) - Modified S8.

This strategy is very similar to strategy 8. The landscape is divided into sixteen cells.

Initially the agents will randomly be scattered on the landscape. There is a master

topographical map with sixteen cells. If there are less than sixteen agents then each agent

will be assigned to the closest cell according to their current location. For example:

45

If there are two agents that will fall into the same cell then the first agent will be assigned

to that cell and the other agent will be assigned to the next closest cell. When ever an

agent is assigned to a cell the master map is updated. But if there are more than sixteen

agents then the first sixteen will be assigned to the sixteen cells and the others depending

on their current location and according to the master map will be assigned to cells.

Once an agent lands on a cell the agent will start exploring the cell and will check for

agents within 50 pixels apart(neighbours) then will update its map with the value(s) given

by the neighbours and also with its own explored locations. This way more than 1 agent

would not explore any area that was explored by another. Then when it has finished

exploring that particular cell the agent will check the master map for cells that are not

been explored by any agent. If there are any unexplored cells then that agent will be

assigned to that cell.

If there are no more unexplored cells and all the agents have finished exploring the

assigned cells then will go through the maps of all the agents and find the location of the

highest height and all the agents will travel to the highest height. The pseudo code is

given in figure 20. The worst case (Twc) and best case (Tbc) steps are same as S8.

1cntTopo = 0

2 If (cntTopo = 0) then

3 Initialize the Master Topo array

4 cntTopo = cntTopo + 1

5 If (No of steps = 0) then

6 Get my x coordinate

7 Get my y coordinate

8 Assign a cell

9 Store my height in the relevant x and y coordinates in myMap array

10 Check whether the agent has finished exploring

46

11 Get neighbours within 50 pixels apart

12 If (no of neighbours > 0) then

13 Get the neighbours maps.

14 Update myMap with the values in the neighbours maps.

15 If (No of steps > 0) and (Not finished exploring) then

16 Move agent by 1 step in the cell

17 Store my height in the relevant x and y coordinates in myMap array

18 If (No of steps > 0) and (Finished exploring) then

19 Got a cell = false

20 Check Master Topo array to find whether there are any more unexplored cells

21 If (unexplored cells = true) then

22 Assign a cell

23 Move agent by 1 step in the cell

24 Store my height in the relevant x and y coordinates in myMap array

25 Finished exploring = false

26 Else if (Not got highest height) then

27 Finished exploring = true

28 Store my height in the relevant x and y coordinates in myMap array

29 If (Finished exploring = true) then

30 Get the neighbours maps.

31 Find the location of the highest height

32 Got highest height = true

33 If (Got highest height = true) then

47

34 Move agent by 1 step towards the highest height till the highest

height is reached.

Figure 20: Pseudo code for strategy S9

The above mentioned strategies are implemented in Repast.

3.13 Repast: The environment
Repast (Recursive Porous Agent Simulation Toolkit) is a simulation tool that consists of a

set of API to build agent based simulations easily and rapidly. This is an object oriented

tool and has many platforms such as, Java, Microsoft .Net and Python. It is an open

source software that was developed by Sallach, Collier, Howe, North and others [Collier

2003] at the University of Chicago and later maintained by Argonne National Laboratory

(ANL). Now it is maintained by non profit Organization Repast Organization for

Architecture and Development (ROAD). Even though it is mainly intended for developing

agent based simulations it is also suitable for network analysis and visual descriptions of

algorithms, concepts and programs. The Repast version that is built on the Java platform

is Repast J 3.0. It is an integrated simulation development framework that provides some

functionalities to develop and run simulations. These functionalities are,

 Graphical display features to demonstrate the simulation.

 To create charts and graphs to capture the outcome of the simulation visually.

 User settings menu which allows the user to initialize, run, stop or pause the

simulation when its running.

Since Repast J is an open source software, the users can modify its behaviour any way

they want. Some of the features of Repast are explained below.

3.13.1 Repast Setup:
 The main function routine is given below in figure 21. The first routine that starts the

environment is loadModel in the instantiated init object of class SimInit() that loads the

object model of class ConesModel.

public static void main(String[] args) {

48

SimInit init = new SimInit();

ConesModel model = new ConesModel();

init.loadModel(model, "", false);

}

Figure 21: The main function routine

The basic Repast routines are listed below.

setup() - Implements uchicago.src.sim.engine.SimModel.setup. The cone space, agent

space, scheduling and display is handled by this routine.

begin() - Implements uchicago.src.sim.engine.SimModel.begin. This routine calls

buildModel(), buildSchedule(), buildDisplay() and displaySurf.display().

buildModel() - Cones model, agents and graph initialization and display are initiated by

this function.

buildSchedule() - One of the most important steps in creating a dynamic environment is

handled by this routine, here schedules for dynamic cones, moving agents and updating

agent statistics (Graph and Histogram) are handled. Each item, that is Cones (if

dynamic), agents and statistics all have their individual schedule that can be

associated to the simulating computer's “tick” rate. In the schedule assigned to the

agents, their behavioural algorithm can be called that determines their next

movement.

buildDisplay() - The contour colour arrangement for each cone's gradient is serviced by

this call. Each cone's height is limited from 1 to 100 and a colour gradient (RGB) has

been assigned to each magnitude of height as shown in the table 1 below.

49

Table 1: Colour gradient assigned to each cone's height

Cone Height (some arbitrary units) Colour gradient (RGB)
1 to 33 Aqua (0, 255, 255) to Green (0, 255, 0)
33 to 67 Green (0, 255, 0) to Orange(255, 255, 0)
67 to 100 Orange(255, 255, 0) to Red (255, 0, 0)
0 (0,0,0) white (no cones)

displaySurf.display()- Finally, this routine displays the cones and agents on the surface

of the plot.

3.13.2 Repast User Interface
Repast Tool bar
Repast tool bar is given in figure 22.

Figure 22: Repast tool bar

The repast tool bar consists of Play (1), Step (2), Initialize (3), stop (4), pause (5) and

exit/close (6). Pressing Initialize as self described will initialize the repast simulation plus

setup the cones and provide initial locations for the agents. Initialization is not required to

be pressed prior to start of the simulation. Either pressing Play or Step will initialize the

simulation prior to continuous or stepping through the simulation. Once play has been

pressed the simulation can be stopped (4) or paused (5).

Cones Settings: The cones Settings menu provides the user selectable options to run the

simulation. The cones settings used in the thesis are given in the figure 23.

Dynamic: The check box allows the user to select a moving landscape (moving cones)

and unchecked is for a static landscape.

Find Agent : feature allows the user to enter the agents ID number (numeric) to identify

50

the location of the agent by changing the agent's colour.

Hop steps: The number of pixels to take a step.

HillAlg: Strategy 1 in Chapter 3.

KnwSearch: Strategy 7 in Chapter 3.

Mutation: The mutation probability for Strategy 5 will

be entered here.

Neighbours: Strategy 6 in Chapter 3.

NtBiasedProb: Strategy 3 in Chapter 3.

NtEqlProb: Strategy 2 in Chapter 3.

RunLength: The number of steps that the simulation

will run.

SituationalKnw: Strategy 4 in Chapter 3.

TopoKnw_Situ: Strategy 9 in Chapter 3.

TopographicalKnw: Strategy 8 in Chapter 3.

WorldXSize, WorldYSize - defines the size of the

canvas.

Figure 23: Cones Settings

3.13.3 Cones Model
Cones model is the main class that initializes repast, ConesSpace, ConesAgent and

statistics. In addition, this class also schedules the ConesSpace, ConesAgent and statistics

of the agents (Histogram and Graph) for simulation.

51

3.13.4 Cones Space
Cones Space class generates the cones based on the paper [A Test Problem Generator for

Non-Stationary Environments] The cones are generated in a Cartesian coordinates space

where the x range is [-1, 1) and the y range is [-1, 1) based on the df1 function and then

translated to a pixel range of width [0, 200) and height [0, 200). A sample of the cones

space layout and colour gradient is shown below in figure 24.

3.13.5 Cones Agents
Agents will behave according to the selected strategy.

3.13.6 Statistics
The agent statistics are displayed

in a graph and histogram form.

Also beneath the histogram are

time steps traversed by the agents

to reach the peaks of the cones.

To determine the time (number of

steps) was divided into two

counters. The reason was, because

in the cones space and wider

bases may have very smallslopes

resulting in the agent hovering at

a given height above ground level

(pixel height = 0).

Figure 24: Landscape with 5 cones

52

The figure 25 below illustrates the scenarios:
(1) peak (2) peak (3) peak

Figure 25: Scenarios of peaks

Scenario 1 has a slope of 1 vertical height unit per 1 horizontal pixel.

Scenario 2 has a slope of 2 or more vertical height units per 1 horizontal pixel.

Scenario 3 has a slope of 1 vertical height unit per 2 or more horizontal pixels.

With scenario 1 and 2 for every movement of the agent on the slope of the cone results in

finding a height pixel until the peak is reached. However with scenario 3 after the agent

climbs one vertical height unit the agent has to traverse horizontally to reach the next

highest pixel at random. Therefore to determine the time (number of steps) to reach the

peak two counters were used. The main counter keeps track of steps with an increasing

height of the agent and this counter stops when the agent moves horizontally. The

secondary counter keeps track of horizontal movement and adds its value to the main

counter on detection of height followed by the secondary counter being reset to zero.

Finally the time to reach the peak is the value in the main counter. The pseudo code is

given in figure 26.

1 While(simulation running)

2 if (new height found)

3 main_ctr = main_ctr + 1 + secondary_ctr;

4 secondary_ctr = 0;

5 else
6 secondary_ctr = secondary_ctr +1,

7 loop

53

Figure 26: Number of steps taken to reach a peak

Graph
The graph in figure 27 contains the following,

• The light blue line shows the minimum cone's height

• The dark blue line shows the maximum height of the agents at that time step

• The red line shows the average height of all the agents.

• Black line shows the highest cone's height.

Figure 27: Example of a graph

54

Chapter 4: Experimental Setup

We performed experiments to find out which strategy is able to find the highest peak

faster. Experiments were done on both the static and the dynamic environments. All the

nine strategies explained in chapter 3 were tested in each of the following combinations.

 10 cones and 20 agents in static/ dynamic environments with neighbours within 10

and 50 pixels.

 10 cones and 10 agents in static/ dynamic environments with neighbours within 10

and 50 pixels.

 10 cones and 5 agents in static/ dynamic environments with neighbours within 10

and 50 pixels.

 5 cones and 20 agents in static/ dynamic environments with neighbours within 10

and 50 pixels.

 5 cones and 10 agents in static/ dynamic environments with neighbours within 10

and 50 pixels.

 5 cones and 5 agents in static/ dynamic environments with neighbours within 10

and 50 pixels.

The above mentioned six tests fall into two categories that are 10 cones and 5 cones.

For both categories, initially the cones and the agents were randomly deployed and the

cone locations and the agents starting points were saved into files. Then for the next test

in the same category the cones and the agents were loaded from the files. This was done

for comparison purposes, since if the cones and the agents in a category are not in the

same place for all the tests in that category we cannot compare the results and come to a

conclusion on which strategy is the best. The results of the tests are given below,

55

4.1 Static Environment – 10 cones and 20 agents

Strategy S1: Hill Climbing Algorithm.

In this algorithm only one agent was able to find the highest peak as shown in figure 28.

For more details see section 3.4. Agents average was about 50 pixels for 150 steps.

Figure 28: Strategy S1 – static - Hill Climbing Algorithm with 10 cones and 20 agents

Strategy S2: Equal Probability of Reputation for selecting a neighbour.

In this strategy initially all the agents will get a reputation of 0. Then each agent by using

equal probability (50/50 probability of picking any neighbour) will pick a neighbour. For

more details see section 3.5. In this strategy none of the agents were able to find the

highest peak as shown in figure 29. Agents average was about 65 pixels for 150 steps.

56

Figure 29: Strategy S2 – static - Equal Probability of Reputation for selecting a

neighbour with 10 cones and 20 agents.

Strategy S3: Biased probability of Reputation for selecting a neighbour.
In this strategy for some agents to get reputations, equal probability of reputation strategy

(S2) will run for the first five steps. Then each agent by using biased probability will

select a neighbour. For more details see section 3.6. In this strategy none of the agents

were able to find the highest peak as shown in figure 30. The average was about 68 pixels

for 150 steps.

57

Figure 30: Strategy S3 – static - Biased Probability of Reputation for selecting a

neighbour with 10 cones and 20 agents.

Strategy S4: Situational Knowledge of Cultural Algorithm
At every tenth iteration the top 10% agents heights are passed to the belief space which is

a global repository. The agents can randomly by using equal probability, select whether to

pick an agent from the belief space or from the neighbourhood. For more details see

section 3.7. In this strategy none of the agents were able to find the highest peak as shown

in figure 31. The average was about 39 pixels for 150 steps.

Figure 31: Strategy S4 – static - Situational Knowledge of Cultural Algorithm with 10

58

cones and 20 agents.

Strategy S5: Situational Knowledge and Mutation
The user can enter a mutation probability(ex: 0.05), then at every 10 iterations, the

random number generator will generate a number and if its between 1-5, then that agent

will be mutated, and will continue to be mutated until the next tenth iteration. If the

number that the random number generates is not between 1-5, then that agent will use S4

strategy to move. That agent is not mutated. Once an agent is mutated, random x,y

coordinates will be generated and the agent will continue to move towards that direction

till the next tenth iteration. The test was carried out by entering 0.05 for the mutation

probability. For more details see section 3.8. In this strategy none of the agents were able

to find the highest peak as shown in figure 32. The average was about 65 pixels for 150

steps.

Figure 32: Strategy S5 – static - Situational Knowledge and Mutation with 10 cones and

20 agents.

Strategy S6 : Neighbours and Domain Knowledge of Cultural Algorithm
At each step all the agents will check within 50 pixels apart for neighbours. If there are

neighbours then will get their maps and update it's own map. Then will select the closest

59

location that none of its neighbours have been and travel there. Then on their way when

they come across a cone instead of climbing it they will calculate the peak of the cone.

Domain knowledge is used to calculate the peak of a cone. For more details see section

3.9. In this strategy all the agents were able to find the highest peak as shown in figure 33.

The agents took about 45 steps to reach the highest peak.

Figure 33: Strategy S6 – static- Neighbours and Domain Knowledge of Cultural

Algorithm with 10 cones and 20 agents.

Strategy S7 : Situational, Domain, Historical, and Topographical knowledge of
Cultural Algorithm along with surrounding heights and the neighbours.
Each agent will get information from the Cultural Algorithm's knowledge sources such as,

Situational knowledge, Topographic knowledge, Historical knowledge, domain

knowledge, also from the neighbour's who are within 50 pixels and the surrounding area.

Then the agent will update it's map with this information and will pick the closest location

that none of its neighbour's have been nor a location given by the above mentioned

knowledge sources. After each step each agent will check its map to find whether it is

complete. If it is complete then will look for the highest height in the map and will update

the situational knowledge and set the map complete flag to true. Then all other agents

will get the highest height from situational knowledge and everyone will travel to the

60

highest height. For more details see section 3.10. In this strategy all the agents were able

to find the highest peak as shown in figure 34. The agents took about 47 steps to reach the

highest peak.

Figure 34: Strategy S7 – static - Situational, Domain, Historical, and Topographical

knowledge of Cultural Algorithm along with surrounding heights and the neighbours with

10 cones and 20 agents.

Strategy S8: Topographical Knowledge of Cultural Algorithm
The landscape is divided into cells where a master topographical map has sixteen equal

cells where each cell is 50 by 50 pixels. According to the locations of the agents they will

be assigned to the nearest cell. Once an agent lands on a cell the agent will start exploring

the cell and will check for agents within 50 pixels apart(neighbours) then will update its

map with the value(s) given by the neighbours and also with its own explored locations.

This way more than 1 agent would not explore any area that was explored by another.

Then when it has finished exploring that particular cell the agent will check in the master

map for cells that are not been explored by any agent. If there are any unexplored cells

then that agent will be assigned to that cell. If there are no more unexplored cells then the

agents who have finished exploring their assigned cells will come to the middle of the

landscape. Once all the agents are in the middle, then they will update their maps and get

61

the highest height and travel to the highest height. For more details see section 3.11. In

this strategy all the agents were able to find the highest peak as shown in figure 35. The

agents took about 55 steps to reach the highest peak. This is within the worst case (Twc)

and best case (Tbc) steps with 1 agent.

Figure 35: Strategy S8 – static - Topographical Knowledge of Cultural Algorithm with 10

cones and 20 agents.

Strategy S9: Modified S8
This strategy is very similar to strategy 8. Once all the agents have finished exploring

their cells instead of travelling to the middle of the landscape as in strategy 8, they will

calculate the highest height and travel to the highest height. For more details see section

3.12. In this strategy all the agents were able to find the highest peak as shown in figure

36. The agents took about 51 steps to reach the highest peak. This is within the worst case

(Twc) and best case (Tbc) steps with 1 agent.

62

Figure 36: Strategy S9 – static - Modified S8 with 10 cones and 20 agents.

4.2 Dynamic Environments – 10 cones and 20 agents
Initially just like the static environment cones will be deployed on the landscape. Then

after hundred steps the cones will be moved to different locations. Then after the next

hundred steps (two hundred steps) not only the cones will be moved but also the heights

of all the cones will be changed. This will be repeated for five hundred steps. Then at the

five hundredth step the landscape that was loaded initially will be loaded again and then

the next landscape (the landscape that was loaded at the hundredth step) will be loaded.

When the environment changes the agents will start exploring from where they stopped.

Strategy S6 : Neighbours and Domain Knowledge of Cultural Algorithm
The performance of the agents are shown in figure 37 and the results of this test are given

in table 2.

63

Figure 37: Strategy S6 – dynamic- Neighbours and Domain Knowledge of Cultural
Algorithm with 10 cones and 20 agents

Strategy S7 : Situational, Domain, Historical, and Topographical knowledge of
Cultural Algorithm along with surrounding heights and the neighbours.
The performance of the agents are shown in figure 38 and the results of this test are given

in table 2.

Figure 38: Strategy S7 – dynamic-Situational, Domain, Historical, and Topographical

knowledge of Cultural Algorithm along with surrounding heights and the neighbours with

10 cones and 20 agents.

64

Strategy S8: Topographical Knowledge of Cultural Algorithm
The performance of the agents are shown in figure 39 and the results of this test are given

in table 2.

Figure 39: Strategy S8 – dynamic-Topographical Knowledge of Cultural Algorithm with

10 cones and 20 agents

Strategy S9: Modified S8
The performance of the agents are shown in figure 40 and the results of this test are given

in table 2.

65

Figure 40: Strategy S9 – dynamic-Modified S8 with 10 cones and 20 agents.

Table 2: Results of the strategies with 10 cones and 20 agents with neighbours within 50
pixels

Strategy Static
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4
S3(Best out of
non knowledge
strategies)

N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F
S6 45 49 48 50 53 50.00
S7 47 49 52 55 52 52.00
S8 55 51 51 52 51 51.25
S9 50 50 50 51 50 50.25

66

Table 3: Results of the strategies with 10 cones and 20 agents with neighbours within 10
pixels

Strategy Static
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4
S3(Best out of
non knowledge
strategies)

N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F
S6 74 74 80 72 70 74.00
S7 76 76 110 70 70 81.50
S8 58 58 60 65 58 60.25
S9 52 52 50 60 50 53.00

4.3 Static and Dynamic Environments – 10 cones and 10 agents
The Table 3 given below contains the results of the tests. The first five strategies were run

for 150 steps. The rest of the strategies were run till all the agents reached the highest

peak.

67

Table 4: Results of the strategies of 10 cones and 10 agents with neighbours within 50
pixels

Strategy Static
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4
S3(Best out of
non knowledge
strategies)

N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F
S6 53 55 60 70 N/F 61.66*
S7 52 55 70 80 65 67.50
S8 79 75 80 90 80 81.25
S9 75 70 80 85 80 78.75
*- The average of all the valid tests

Table 5: Results of the strategies of 10 cones and 10 agents with neighbours within 10
pixels

Strategy Static
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4 N/F
S3(Best out of
non knowledge
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 138 138 N/F 140 130 136.00
S7 105 105 140 110 130 121.25
S8 80 80 90 100 90 90.00
S9 75 75 70 80 70 73.75
*- The average of all the valid tests

4.4 Static and Dynamic Environments – 10 cones and 5 agents
The Table 4 given below contains the results of the tests. The first five strategies were run

for 150 steps. The rest of the strategies were run till all the agents reached the highest

68

peak.

Table 6: Results of the strategies of 10 cones and 5 agents with neighbours within 50
pixels

Strategy Static
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4
S3(Best out of
non knowledge
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 105 105 95 95 90 96.25
S7 109 110 95 100 105 102.5
S8 120 120 130 140 125 128.75
S9 124 120 120 135 130 126.25

Table 7: Results of the strategies of 10 cones and 5 agents with neighbours within 10
pixels

Strategy Static
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4
S3(Best out of
non knowledge
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 N/F N/F N/F N/F N/F N/F
S7 280 N/F N/F N/F N/F N/F
S8 125 125 130 130 150 133.75
S9 122 122 120 130 130 125.50

69

4.5 Static and Dynamic Environments – 5 cones and 20 agents
The Table 5 given below contains the results of the tests. The first five strategies were run

for 150 steps. The rest of the strategies were run till all the agents reached the highest

peak.

Table 8: Results of the strategies of 5 cones and 20 agents with neighbours within 50
pixels
Strategy Static

Env.
Dynamic Env. Average of Dynamic

(steps)
En1 En2 En3 En4

S3(Best out of
non knowledge
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 45 45 45 50 65 51.25
S7 45 48 60 75 60 60.75
S8 56 55 60 70 55 60.00
S9 52 50 50 55 50 51.25

Table 9: Results of the strategies of 5 cones and 20 agents with neighbours within 10
pixels
Strategy Static

Env.
Dynamic Env. Average of Dynamic

(steps)
En1 En2 En3 En4

S3(Best out of
non knowledge
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 72 73 71 71 72 71.75
S7 75 74 105 65 73 79.25
S8 58 60 65 68 59 63
S9 53 56 52 58 50 54

70

4.6 Static and Dynamic Environments – 5 cones and 10 agents
The Table 6 given below contains the results of the tests. The first five strategies were run

for 150 steps. The rest of the strategies were run till all the agents reached the highest

peak.

Table 10: Results of the strategies of 5 cones and 10 agents with neighbours within 50
pixels

Strategy Static
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4
S3(Best out of
non knowledge
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 56 55 60 70 75 65.00
S7 53 55 65 70 65 63.75
S8 79 70 75 85 72 75.50
S9 75 70 80 90 70 77.50

Table 11: Results of the strategies of 5 cones and 10 agents with neighbours within 10
pixels

Strategy Static
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4
S3(Best out of
non knowledge.
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 135 140 N/F 130 132 134
S7 126 128 132 105 122 121.75
S8 83 85 86 95 90 89
S9 75 76 78 85 86 81.25

71

4.7 Static and Dynamic Environments – 5 cones and 5 agents
The Table 7 given below contains the results of the tests. The first five strategies were run

for 150 steps. The rest of the strategies were run till all the agents reached the highest

peak.

Table 12: Results of the strategies of 5 cones and 5 agents with neighbours within 50
pixels

Strategy Static
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4 N/F
S3(Best out of
non knowledge
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 105 105 90 90 85 92.50
S7 100 110 100 100 110 105
S8 120 120 130 140 130 130.00
S9 122 120 120 135 120 123.75

Table 13: Results of the strategies of 5 cones and 5 agents with neighbours within 10
pixels

Strategy Static
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4 N/F
S3(Best out of
non knowledge
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 N/F N/F N/F N/F N/F N/F
S7 N/F N/F N/F N/F N/F N/F
S8 125 126 128 130 128 128
S9 123 128 126 125 129 127

72

Chapter 5: Discussion

5.1 Simulation Statistics
Figures 41 and 42 compares the number of steps taken for all the agents to find the

highest peak in both static and dynamic environments.

73

Figure 41: Shows the number of steps that all the agents required to find the highest peak

for strategies S6 – S9 in both the static and the dynamic environments with 10 cones

(neighbour size 50 pixels).

74

4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

140
of steps vs number of agents (10 cones)

S6 – s tatic
S7 – s tatic
S8 – s tatic
S9 – s tatic
S6 – dyn
S7 – dyn
S8 – dyn
S9 – dyn

of agents

st
ep

s

4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

140

of steps vs number of agents (5 cones)

S6 – static
S7 – static
S8 – static
S9 – static
S6 – dyn
S7 – dyn
S8 – dyn
S9 – dyn

of agents

st
ep

s

Figure 42: Shows the number of steps that all the agents required to find the highest peak

for strategies S6 – S9 in both the static and the dynamic environments with 5 cones

(neighbour size 50 pixels).

Figures 43 to 45 shows that the number of steps the agents took to find the highest peak
for strategies S6 – S9 in both the static and the dynamic environments were not dependent
on the number of cones.

Figure 43: Shows the number of steps 20 agents are required to find the highest peak for

strategies S6 – S9 in both static and dynamic environments with 5 and 10 cones

(neighbour size 50 pixels)

75

5 10
0

10

20

30

40

50

60

70

Influence of environment on time (with 20 agents)

S6 – static
S7 – static
S8 – static
S9 – static
S6 – dyn
S7 – dyn
S8 – dyn
S9 – dyn

of cones

S
te

ps

Figure 44: Shows the number of steps 10 agents are required to find the highest peak for

strategies S6 – S9 in both static and dynamic environments with 5 and 10 cones

(neighbour size 50 pixels).

Figure 45: Shows the number of steps 5 agents are required to find the highest peak for

strategies S6 – S9 in both static and dynamic environments with 5 and 10 cones

(neighbour size 50 pixels).

76

5 10
0

20

40

60

80

100

120

140

Influence of environment on time (with 5 agents)

S6 – static
S7 – static
S8 – static
S9 – static
S6 – dyn
S7 – dyn
S8 – dyn
S9 – dyn

of cones

S
te

ps

5 10
0

10

20

30

40

50

60

70

80

90

Influence of environment on time (with 10 agents)

S6 – static
S7 – static
S8 – static
S9 – static
S6 – dyn
S7 – dyn
S8 – dyn
S9 – dyn

of cones

S
te

ps

Figure 46: Shows the influence of the neighbour size on the simulation with 10 cones and

20 agents.

Figure 47: Shows the influence of the neighbour size on the simulation with 10 cones and

10 agents.

77

5 10 15 20 25 30 35 40 45 50 55
0

20

40

60

80

100

120

140

160
Influence of Neighbour size on time (10 cones & 10 agents)

S6 – static
S7 – static
S8 – static
S9 – static
S6 – dyn
S7 – dyn
S8 – dyn
S9 – dyn

Neighbour s ize

S
te

ps

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

Influence of Neighbour size on time (10 cones & 20 agents)

S6 – static
S7 – static
S8 – static
S9 – static
S6 – dyn
S7 – dyn
S8 – dyn
S9 – dyn

Neighbour size

S
te

ps

Figure 48: Shows the influence of the neighbour size on the simulation with 5 cones and

20 agents.

Figure 49: Shows the influence of the neighbour size on the simulation with 5 cones and

10 agents.

Note: Charts showing Neighbour size on time for 5 cones & 5 agents is not shown as the
strategies S6 and S7 did not find any the cones within 150 steps.

78

10 50
0

20

40

60

80

100

120

140

160
Influence of Neighbour size on time (5 cones & 10 agents)

S6 – static
S7 – static
S8 – static
S9 – static
S6 – dyn
S7 – dyn
S8 – dyn
S9 – dyn

Neighbour s ize

S
te

ps

10 50
0

10

20

30

40

50

60

70

80

90

Influence of Neighbour size on time (5 cones & 20 agents)

S6 – static
S7 – static
S8 – static
S9 – static
S6 – dyn
S7 – dyn
S8 – dyn
S9 – dyn

Neighbour size

S
te

ps

5.2 Statistical Results

By analysing the test results that were presented in chapter 4 we can clearly

observe that in strategies S1 to S5, all the agents were not able to find the highest peak.

However in strategies S6 to S9 all the agents were able to find the highest peak.

Given the landscape canvas of 200 by 200 pixels, theoretically an exhaustive

approach would take 40000 steps in total to determine the highest peak. In strategies S6 to

S9, each agent has a map scaled one tenth the size of the landscape. The map (20 x 20

cells, where each cell represents and area of 10 x 10 pixels) allows each agent to identify

explored areas and reconstruct the landscape of the canvas as it travels. Furthermore, this

also reduces the exploration to no more than 400 steps (1%). However the drawback is

that since only one pixel in each 10 x 10 pixel area is sampled there can be instances

where two cones have close but unequal heights on the landscape in which case, the

highest peak may not be found. On the other hand if a unique cell exists where all the

pixels in the 10 x 10 cell have values greater than any other cell, then the highest peak

will be found. Once all the agents reach the cell where the highest peak is located, Hill

Climbing algorithm (S1) is used to reach the peak.

Based on the statistical data for S6 to S9 the most influence on time to find the

highest peak is the number of agents. The statistics also shows that the number of cones

have no effect on strategies S6 to S9. This is confirmed since the strategies are based on

dividing the landscape irrespective of the number of cones. The goal is to find a

strategy(s) in which all the agents are able to reach the highest peak (global optimum) the

fastest.

It has been hypothesized in section 1.3 that domain based topographic

exploitation strategies are better than the other strategies. From the statistics it can be

observed that a topographical approach (S6 to S9) produced better and close results. With

strategies S6 and S7 where the agents are going in search of unexplored agent map cells,

the agents can consume many steps along the way towards unexplored cells. Furthermore,

base on results in figure 46, 47, 48 and 49 the performance of S6 and S7 are heavily

79

dependant on neighbour size, where a larger neighbour size produced better results. With

strategies S8 and S9, the agents are assigned to sections of the topographical map where

the agents have minimal (if there are more than sixteen agents) or no overlap with another

agent.

 Although S8 and S9 did not always show better results than strategy S6 and S7 as

in the case with neighbour size of 50 pixels, S8 and S9 had the least influence on

neighbour size and showed better results than S6 and S7 with a small neighbour size of 10

pixels. Furthermore with S8 and S9 the landscape is explored in a more efficient “divide

and concur” approach integrated with knowledge sharing.

Therefore based on the results, domain based topographic exploitation strategies,

Strategy S8: Topographical Knowledge of Cultural Algorithm; and Strategy S9: Modified

S8, provided overall better results than other presented strategies.

80

Chapter 6: Conclusion and Future Work

6.1 Conclusion
Our main goal was to incorporate several Cultural Algorithms knowledge as a group or

individually to socially motivated population based algorithms in which the entire

population as a whole is able to find the global optimum. Therefore we incrementally

developed a number of strategies of increasing complexity that are applied on an

application neutral system which contains static/dynamic environments.

Strategy 1 - Implemented the Hill Climbing Algorithm. In this the agents are randomly

scattered across the landscape. They will search the surrounding area for a higher

location. When a higher location is found they will move there otherwise will continue

looking for a higher location. This process will be repeated till the agents do not find a

higher location in the surrounding area.

Strategy 2 – The agents within 50 pixels apart are grouped into social networks. An agent

by using the equal probability of reputation will select a neighbour and inquire for its

height. If the neighbour's height is greater than itself then will move by one pixel towards

that location and increase the neighbour's reputation by one. Otherwise will decrease the

neighbour's reputation by one and use the Hill Climbing algorithm to move.

Strategy 3 - The agents within 50 pixels apart are grouped into social networks. An agent

by using the biased probability of reputation will select a neighbour and inquire for its

height. If the neighbour's height is greater than itself then will move by one pixel towards

that location and increase the neighbour's reputation by one. Otherwise will decrease the

neighbour's reputation by one and use the Hill Climbing algorithm to move.

Strategy 4 – For the first ten steps strategy 3 will be executed. Then at the tenth step by

using equal probability of reputation an agent is able to select a neighbour from its

81

neighbourhood or from the belief space of the Cultural Algorithm. If the belief space is

selected then the agent will inquire from the selected agent for its height. If the height is

greater than itself then will move by one pixel towards that location and increase that

particular agent's reputation by one. Otherwise by using biased probability of reputation

will select a neighbour and execute strategy 3.

Strategy 5 – The user is able to set a mutation probability. If the user decides not to

mutate any agent then strategy 4 will be executed. If the user decides to mutate then will

enter the mutation probability. When an agent is mutated that agent will go in the

direction of a randomly generated location for the next ten steps.

Strategy 6 – At each step all the agents will check within 50 pixels apart for neighbours. If

neighbours are found the agent will retrieve their maps and update it's own map. With the

updated map the agent will select the closest location none of its neighbours have been

(i.e. by determining the closest initialized value of -1) and travel toward it. On its way if

the agent comes across a cone it will calculate the peak of the cone without climbing it

and also will check for neighbours within 50 pixels and update it's map. At the end of

each update of MyMap the agent checks if it's map is complete (i.e. no more -1s). With a

complete map, the agent will find the highest height and travel to the location.

Strategy 7 – This is very similar to Strategy 6. Instead of only looking at the neighbours

maps to decide on the next step the agents will use Cultural Algorithm's situational

knowledge, historical knowledge, domain knowledge, topographic knowledge and the

surrounding area to decide on the next step. Then once an agent's map is complete, The

situational knowledge is updated with the highest height and myMap complete flag is set

to true. Then all agents will go to the location of the highest peak since the entire

landscape was explored at least by one agent.

Strategy 8 – The landscape is divided into cells where a master topographical map has

sixteen equal cells where each cell is 50 by 50 pixels. According to the locations of the

82

agents they would be assigned to the nearest cell. Once an agent lands on a cell the agent

will explore the entire cell and update it's map. Then when it has finished exploring that

particular cell the agent will check in the master map for cells that have not been explored

by any agent. If there are any unexplored cells then that agent will be assigned to that cell.

If there are no more unexplored cells then the agents who have finished exploring their

assigned cells would come to the middle of the landscape. Once all the agents have come

to the middle, then they will update their maps and get the highest height and travel to the

highest height.

Strategy 9 - This strategy is very similar to strategy 8. The landscape is divided into

sixteen cells. Initially the agents would randomly be scattered on the landscape. There is a

master topographical map with sixteen cells. Each agent will be assigned to the closest

cell that is not been explored by another agent(if there are less than sixteen agents)

according to their current location. Once an agent lands on a cell the agent will explore

the entire cell and update it's map. Then when it has finished exploring that particular cell

the agent will check in the master map for cells that have not been explored by any agent.

If there are any unexplored cells then that agent is assigned to that cell. If there are no

more unexplored cells and all the agents have finished exploring the assigned cells then

will go through the maps of all the agents and find the location of the highest height. Then

all the agents will travel to the highest height.

After performing extensive experiments on both static and dynamic environments, and

carrying out simulation analysis as explained in the previous chapter (Chapter 5), we

found that neighbour strategy (S6) and knowledge based strategy (S7) are highly

dependent on the neighbour size and topographical knowledge strategy (S8) and modified

topographical knowledge strategy (S9) were not dependent on the neighbour size.

Therefore we came to the conclusion that domain based topographic exploitation

strategies of CA play a significant role.

83

6.2 Future Work
 Test these strategies in other benchmark functions.

To apply these strategies on multi dimensional landscapes and test the performance.

84

References

[Dorigo 2006] Dorigo, M.; Birattari, M.; Stutzle, T., Ant colony optimization, IEEE

Computational Intelligence Magazine, Volume 1, Issue 4, Page(s):28 - 39, Nov. 2006

[Eberhart, 1995] Eberhart, R. C., and Kennedy, J. (1995). Particle Swarm Optimization.

In the proceedings of the IEEE 1995 International Conference on Neural Networks, Perth,

Australia, IEEE Service Center, Piscataway, NJ, 12-13.

[Morrison, 1999] Morrison, R.; and De Jong, K. (1999). A test problem generator for non-

stationery environments. In Proceedings of the Congress of the Evolutionary Computing,

2047-2053.

[Chung, 1997] Chung, Chang Jin. 1997. Knowledge-Based approaches to self-adaptation

in cultural algorithms. Wayne State University.

[Sycara, 1998] Sycara, K, P.; Multiagent Systems. American Association for Artificial

Intelligence. 445 Burgess Drive, Menlo Park, California 94025. Page(s): 79-92, 1998.

[Poslad, 2007] Poslad, S.; Specifying Protocols for Multi-Agent Systems Interaction.

Queen Mary, University of London. ACM Trans. Autonom. Adapt. Syst. 2, 4, Article 15,

24 pages. November 2007.

[Pavard] Pavard, B., and Dugdale, J.; An Introduction to Complexity in Social Science.

GRIC-IRIT, Toulouse, France.

[McKelvey, 1997] McKelvey.; 'Quasi-Natural Organisation Science', Organisation

Science, No 8, page(s): 351-380. 1997.

[McKelvey, 1999] McKelvey.; 'Complexity Theory in Organisation Science: Seizing the

Promise or Becoming a Fad?', Emergence, Vol 1 No 1. Page(s): 5-32.

[Marion 1999] Marion, R.; The Edge of Organisation: Chaos and Complexity Theories if

Formal Social Systems, Sage.

85

[Zhao, 2006] Zhao, Y., Hou, X., Yang, M., and Dai, Y.; Measurement Study and

Application of Social Network in the Maze P2P File Sharing System. Proceedings of the

First International Conference on Scalable Information Systems, Hong Kong. May 29-

June 1 2006.

[Milgram, 1967] Milgram, S.; The Small World Problem Psychology Today, page(s) 62-

67, June 1967.

[Watts 1998] Watts, D. J., and Strogatz, S. H,; Collective Dynamics of Small World

Networks. Nature, 393:440-442. June 1998.

[Ahn, 2007] Ahn, Y., Han, S., Kwak, H., Moon, S., and Hawoong Jeong. Analysis of

Topological Characteristics of Huge Online Social Networking Services. WWW 2007,

May 8 – 12, 2007, Banff, Alberta, Canada.

[Backstrom, 2006] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg and Xiangyang

Lan. Group Formation in Large Social Networks: Membership, Growth and Evolution.

KDD 2006, August 20-23, 2006, Philadelphia, Pennsylvania, USA.

[Kumar, 2006] Ravi Kumar, Jasmine Novak and Andrew Tomkins. Structure and

Evolution of Online Social Networks. KDD 2006, August 20-23, 2006, Philadelphia,

Pennsylvania, USA.

[Jamali, 2006] Mohsen Jamali, and Hassan Abolhassani. Different Aspects of Social

Network Analysis. IEEE 2006. Proceedings of the 2006 IEEE/WIC/ACM International

Conference on Web Intelligence.

[Golbeck, 2006] Jennifer Golbeck and James Hendler. Inferring Binary Trust

Relationships in Web Based Social Networks. 2006 ACM Transactions on Internet

Technology, Vol. 6, No. 4, November 2006, Pages 497- 529.

[Goecks, 2004] Jeremy Goecks and Elizabeth D. Mynatt. Leveraging Social Networks for

Information Sharing. CSCW 2004, November 6-10, 2004, Chicago, Illinois, USA.

[Boyd, 2004] Dana Michele Boyd. Friendster and Publicly Articulated Social

86

Networking. CHI 2004, April 24-29, 2004, Vienna, Austria. ACM

[Wikipedia, 2006] Was last modified on 27 January 2009 at 14:38.

[Marczyk, 2004] Marczyk, A., Genetic Algorithms and Evolutionary Computation, 2004.

[Saleem, 2001] Saleem, S, M., Knowledge Based Solution to Dynamic Optimization

Problems using Cultural Algorithms.

[Maniezzo, 2000] Maniezzo, V. (2000). Ant Colony Optimization: An overview.
http://www3.csr.unibo.it/~maniezzo/didattica/Vienna/ACOintro.pdf Retrieved on March

12, 2005.

[Holland 1975] Holland, J. H.; Adaptation in natural and artificial systems. Ann Arbor:

The University of Michigan Press, 1975.

[Goldberg, 1989] D. Goldberg., Genetic Algorithms in Search, Optimization and Machine

Learning, Addison Wisely 1989.

[Windisch, 2007] Windisch, A.; Wappler, S.; and Wegener, J.; Applying Particle Swarm

Optimization to Software Testing. GECCO 2007. Proceedings of the 2007 conference on

Genetic and evolutionary computation. July 7-11, London, England, United Kingdom.

[Eberhart, 1995] R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm

theory. In Proceedings of the 6th International Symposium on Micromachine Human

Science, pages 39–43, 1995.

[Kennedy, 1995] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In

Proceedings of the IEEE International Conference on Neural Networks, volume 4, pages

1942–1948 vol.4. IEEE Press, 1995.

[Kennedy, 2001] Kennedy J., and Eberhart. R. C. and Shi, Y. (2001). Swarm intelligence.

Morgan Kauffmann Publishers, San Francisco, CA.

[Reynolds, 1978] Reynolds, R. G.; On Modeling the evolution of hunter gatherer

decision making systems, Geographical Analysis, 10(1), 31-46.

[Reynolds, 1994] Reynolds, R. G.; An Introduction to Cultural Algorithms. In

87

http://www3.csr.unibo.it/~maniezzo/didattica/Vienna/ACOintro.pdf

Proceedings of the 3rd Annual Conference on Evolutionary Programming, Sebald, A.V.,

Fogel, L.J. Ed. World Scientific Publishing, River Edge, NJ, 131-139.

[Reynolds, 2005] Reynolds, R. G.; Peng, B.; and Che, X.; Knowledge Swarms:

Generating Emergent Social Structure in Dynamic Environments. Proceedings of the

Agent 2005 Conference on Generative Social Processes, Models and Mechanisms, ANL/

DIS-06-5, ISBN 0-9679168-0, page(s) 747-770.

[Reynolds, Saleem, 2005] Reynolds, R. G.; Saleem, S. M.; The Impact of Environmental

Dynamics on Cultural Emergence, in Perspectives on Adaptations in Natural and

Artificial Systems. Oxford University Press, Page(s) 253-280.

[Xue, 2007] Xue, Z.; Guo, Y.; Improved Cultural Algorithm based on Genetic Algorithm

IEEE International Conference on Integration Technology, 2007. ICIT '07. Page(s):117 -

122, 20-24 March 2007

[Coelho, 2006] An Efficient Particle Swarm Optimization Approach Based on Cultural

Algorithm Applied to Mechanical Design, Coelho, L.; Mariani, V.C.; IEEE Congress on

Evolutionary Computation, 2006. CEC 2006, Page(s):1099 – 1104, 16-21 July 2006.

[Peng, 2003] Peng, B.; Reynolds, R.G.; Brewster, J.; The 2003 Congress on Evolutionary

Computation, 2003. CEC '03, Volume 3, Page(s):1965 - 1971, 8-12 Dec. 2003

[Peng, 2004]Peng, B.; Reynolds, R.G.;, Cultural algorithms: knowledge learning in

dynamic environments, IEEE Congress on Evolutionary Computation, 2004. CEC2004.

Volume 2, Page(s):1751 - 1758, 19-23 June 2004

[Peng, 2005] Peng, B.; Knowledge and Population Swarms in Cultural Algorithms for

Dynamic Environments. P.hD Dissertation, Wayne State University, Detroit, Michigan.

[Morrison 1999] Morrison, R.; and De Jong, K.; A test problem generator for non-

stationary environments. In Proceeding of the Congress on Evolutionary Computing,

2047-2053.

[De Jong, 1975] De Jong, K. A.; The Analysis of the behavior of a class of genetic

adaptive systems, Doctoral dissertation, University of Michigan, Ann Arbor.

88

[Collier 2003] Collier, N., Howe, T., and North, M.; Onward and Upward: The Transition

to Repast 2.0, Proceedings of the First Annual North American Association for

Computational Social and Organizational Science Conference, Electronic Proceedings,

Pittsburgh, PA USA ,June 2003

89

VITA AUCTORIS

NAME: Viranthi R. Peiris

PLACE OF BIRTH: Colombo, Sri Lanka

YEAR OF BIRTH: 1980

EDUCATION: Bachelor of Science in Computing & Information Systems

90

	Heuristics for Cultural Algorithm Knowledge Driven Search in Dynamic Social Systems
	Recommended Citation

	Author’s Declaration of Originality	
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	List of Tables
	List of Figures
	Chapter 1: Introduction
	1.1 Problem Definition
	1.2 Motivation
	1.3 Thesis Statement
	1.4 Thesis Contribution
	1.5 Thesis Organization

	Chapter 2: Literature Review/ Survey
	2.1 Multi Agent Systems (MAS)
	2.1.1 Applications of Multi-Agent Research

	2.2 Social Complex Systems
	2.2.1 Complex Systems

	2.3 Social Networks
	2.4 Hill Climbing Algorithm
	2.5 Evolutionary Algorithms
	2.5.1 Ant Colony
	2.5.2 Genetic Algorithms (GA)
	2.5.3 Particle Swarm
	2.5.4 Cultural Algorithm Framework

	Chapter 3: Proposed Algorithms
	3.1 Cones World Problem Generator [Morrison 1999]
	3.2 Static Environment
	3.3 Dynamic Environments
	3.4 Strategy 1 (S1)- Hill Climbing Algorithm.
	3.5 Strategy 2 (S2) - Equal probability of Reputation for selecting a neighbour.
	3.6 Strategy 3 (S3) - Biased probability of Reputation for selecting a neighbour.
	3.7 Strategy 4 (S4) – S3 + Situational Knowledge of Cultural Algorithm.
	3.8 Strategy 5 (S5) - S4 + Mutation.
	3.9 Strategy 6 (S6) - Neighbours and Domain Knowledge of Cultural Algorithm.
	3.9.1 Domain Knowledge

	3.10 Strategy 7 (S7) -	Situational, Domain, Historical, and Topographical knowledge of Cultural Algorithm along with surrounding heights and the neighbours.
	3.10.1 Situational Knowledge
	3.10.2 Historical Knowledge
	3.10.3 Topographic Knowledge
	3.10.4 Domain Knowledge
	3.10.5 Neighbours
	3.10.6 Local area

	3.11 Strategy 8 (S8) - Topographical Knowledge of Cultural Algorithm.
	3.12 Strategy 9 (S9) - Modified S8.
	3.13 Repast: The environment
	3.13.1 Repast Setup:
	3.13.2 Repast User Interface
	3.13.3 Cones Model
	3.13.4 Cones Space
	3.13.5 Cones Agents
	3.13.6 Statistics

	Chapter 4: Experimental Setup
	4.1 Static Environment – 10 cones and 20 agents
	4.2 Dynamic Environments – 10 cones and 20 agents
	4.3 Static and Dynamic Environments – 10 cones and 10 agents
	4.4 Static and Dynamic Environments – 10 cones and 5 agents
	4.5 Static and Dynamic Environments – 5 cones and 20 agents
	4.6 Static and Dynamic Environments – 5 cones and 10 agents
	4.7 Static and Dynamic Environments – 5 cones and 5 agents

	Chapter 5: Discussion
	5.1 Simulation Statistics
	5.2 Statistical Results

	Chapter 6: Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	References

	VITA AUCTORIS

