
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2010 

Heuristics for Cultural Algorithm Knowledge Driven Search in Heuristics for Cultural Algorithm Knowledge Driven Search in 

Dynamic Social Systems Dynamic Social Systems 

Viranthi Peiris 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Peiris, Viranthi, "Heuristics for Cultural Algorithm Knowledge Driven Search in Dynamic Social Systems" 
(2010). Electronic Theses and Dissertations. 334. 
https://scholar.uwindsor.ca/etd/334 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/334?utm_source=scholar.uwindsor.ca%2Fetd%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


HEURISTICS FOR CULTURAL ALGORITHM KNOWLEDGE DRIVEN 
SEARCH IN DYNAMIC SOCIAL SYSTEMS

By

Viranthi R. Peiris

A Thesis 

Submitted to the Faculty of Graduate Studies

through Computer Science 

in Partial Fulfillment of the Requirements for 

the Degree of Master of Science at the 

University of Windsor

Windsor, Ontario, Canada

2009

©2009 Viranthi R. Peiris



HEURISTICS FOR CULTURAL ALGORITHM KNOWLEDGE DRIVEN SEARCH IN 

DYNAMIC SOCIAL SYSTEMS

by

Viranthi R. Peiris

APPROVED BY

 
M. Khalid, External Reader

Department of Electrical and Computer Engineering

 
R. Kent, Internal Reader

School of Computer Science

Z. Kobti, Advisor

School of Computer Science

S. Bandyopadhyay, Chair of Defense

School of Computer Science

Date: October 21, 2009



Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this 
thesis has been published or submitted for publication.

I  certify that,  to  the best  of my knowledge,  my thesis  does  not  infringe upon 
anyone’s  copyright  nor  violate  any proprietary  rights  and  that  any ideas,  techniques, 
quotations, or any other material from the work of other people included in my thesis, 
published  or  otherwise,  are  fully  acknowledged  in  accordance  with  the  standard 
referencing practices. Furthermore, to the extent that I have included copyrighted material 
that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, 
I certify that I have obtained a written permission from the copyright owner(s) to include 
such material(s) in my thesis and have included copies of such copyright clearances to my 
appendix. 

 

I declare that this is a true copy of my thesis, including any final revisions, as 
approved by my thesis committee and the Graduate Studies office, and that this thesis has 
not been submitted for a higher degree to any other University or Institution.

iii



ABSTRACT

Population evolution algorithms such as Cultural Algorithms (CA) enable a global 

repository known as the belief space consisting of common cultural traits or generalized 

schemas to influence the population space. Two important aspects of CA are the 

knowledge and its propagation. Individuals in the population use social networks for 

communication. Knowledge representation is generally dependent on the application at 

hand. In this thesis the role of CA belief space knowledge in application neutral 

simulation is explored. A standard benchmark function is used to study the performance 

of various heuristics on the quality of the belief space knowledge. The function captures 

the characteristics of a neutral world in static and dynamic settings. A multi-agent 

simulation was designed where autonomous agents are able to communicate, acquire and 

exploit various knowledge types including topographic, domain, historical and situational. 

While all these strategies showed improvements when searching for the global maximum 

in both static and dynamic environments, we found that domain based topographic 

exploitation strategies of the landscape were the more efficient.
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Chapter 1: Introduction

1.1 Problem Definition

To explore population based strategies in which individuals within a specified proximity 

are  grouped into  social  networks  where  they communicate  with one another  to  share 

required information to reach an optimum global in static and dynamic environments. 

Furthermore, evaluate the  role of different knowledge types in Cultural Algorithms on 

population based strategies.

1.2 Motivation

Finding the global optimum faster is a very important problem in Artificial Intelligence. 

Evolutionary  algorithms  such  as,  Ant  Colony  Optimization  (ACO),  Particle  Swarm 

Optimization (PSO), Cultural Algorithms (CA) and Genetic Algorithms(GA) are some of 

the algorithms that have been used to find the global optimum. 

In ACO [Dorigo 2006]once the ants know the source and the destination, they are able to 

find the shortest path between the source and the destination. ACO has been applied to 

NP-hard problems, routing problems in telecommunication networks, industrial problems 

and  others.  This  can  also  be  used  in  many  dynamic  applications.  Convergence  is 

guaranteed but it takes a long time than most of the other heuristics. Even though the 

destination is unknown ants will be able to find the global optimum. It will take a long 

time to find it because the ants would follow the ant who has the highest fitness. This 

process would be repeated till the entire problem area has been explored. Then once the 

entire area is explored all the ants would go to the best fit location. This process would 

take a long time even though the global optimum is found. More information is given in 
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chapter 2.5.1.

With PSO [Eberhart, 1995] there is no guarantee that it will be able to find the global 

optimum since it is problem dependent. Similarly with GA there is no guarantee that it 

will be able to find the global optimum since this is also problem dependent and when it 

comes  to  our  problem,  GA will  most  likely  find  only  suboptimal  solutions.  More 

information is given in Chapter 2.5.

CA  enables  population  evolution  over  longer  generation  time,  allowing  faster 

convergence  of  the  population.  Knowledge  plays  an  important  role  in  Evolutionary 

Algorithms,  particularly Cultural  Algorithm. However,  CA knowledge development  is 

highly dependent  on  the  application.  Therefore  an  application  neutral  environment  is 

required to evaluate the role of knowledge.

1.3 Thesis Statement

In this thesis we evaluate the role of different knowledge types in Cultural Algorithms. 

Using  an  application  independent  social  simulation,  one  can  isolate  the  role  of  each 

knowledge type in terms of its influence on the population's belief space observed by the 

population performance and convergence. The quest is to identify the extent to which 

each type of knowledge plays in goal optimization with the hypothesis that some types 

have more influence over others.

1.4 Thesis Contribution

In this research a multi-agent simulation was designed where autonomous agents within a 

defined  proximity  are  grouped  into  social  networks.  They  are  able  to  communicate, 

acquire and exploit various knowledge types including topographic, domain, historical 

and  situational. The  Cones  World  Problem  Generator  [Morrison,  1999]a  standard 
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benchmark function to capture the characteristics of a neutral world in static and dynamic 

settings was used. The following nine strategies were developed to find which strategy(s) 

has the best performance. The strategies implemented are briefly listed here:

 Strategy 1 (S1) - Hill Climbing Algorithm.

 Strategy 2 (S2) - Equal probability of Reputation for selecting a neighbour.

 Strategy 3 (S3) - Biased probability of Reputation for selecting a neighbour.

 Strategy 4 (S4) - S3 + Situational Knowledge of Cultural Algorithm.

 Strategy 5 (S5) - S4 + Mutation.

 Strategy 6 (S6) - Neighbours and Domain Knowledge of Cultural Algorithm.

 Strategy 7 (S7) - Situational, Domain, Historical, and Topographical knowledge of 

Cultural Algorithm along with surrounding heights and the neighbours.

 Strategy 8 (S8) - Topographical Knowledge of Cultural Algorithm.

 Strategy 9 (S9) - Modified S8.

The question in this research is how knowledge types play a role in Cultural Algorithms 

efficiency.

1.5 Thesis Organization
 In chapter 2 literature review is  presented on Multi  Agent Systems, Social  Complex 

Systems, Social Networks, Hill Climbing Algorithm and Evolutionary algorithms which 

are  Ant  Colony  Optimization,  Genetic  Algorithms,  Particle  Swarm Optimization  and 

Cultural Algorithm. In chapter 3 detail descriptions are given in regards to the developed 

nine strategies followed by chapter 4 where the test results of  the nine strategies are 

presented.  Chapter  5  describes  the  results  and  attempts  to  validate  the  proposed 

hypothesis against the test results. In the last chapter, chapter 6, the conclusion and future 

work are explained.
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Chapter 2: Literature Review/ Survey

This chapter includes a short survey on  Multi Agent Systems (MAS), complex social 

systems,  social  networks,  Evolutionary  Algorithms  such  as  Ant  Colony Optimization 

(ACO),  Particle  Swarm Optimization  (PSO)  ,  Cultural  Algorithms  (CA)  and  Genetic 

Algorithms (GA). 

2.1 Multi Agent Systems (MAS)

Recently there has been a growing interest in agent based systems technology in artificial 

intelligence research because it has been hailed as a new paradigm for conceptualizing, 

designing  and  implementing  software  systems  [Sycara,  1998].  Agents  are  active, 

persistent  (software)  components  that  perceive,  act,  reason  and  communicate  in 

environments that are distributed and open to solve many complex problems. There are 

many agent based systems which consists of only a single agent. Due to the increased 

technological  complexity,  the  need  for  complex  applications  have  risen  that  require 

systems consisting of multiple agents who can communicate in a peer to peer fashion.  

A Multi Agent System consists of many autonomous agents such as software programs or 

robots who interact with each other to perform a set of tasks or to achieve a set of goals. 

In theory, MASs are usually characterized in terms of internal behaviours and external 

interactions  between agents  [Poslad,  2007].  Some of  the  characteristics  of  an  agent's 

internal  behaviour  are  the  type  of  cognition  used  and  the  performance  measure  they 

utilize when choosing how to behave in model based, reactive,  goal based and utility 

based environments. Some of the characteristics of an agents external behaviour are how 

the agents interact with each other to share information and to perform tasks. MASs main 

internal  and  external  behaviours  characterize  them  as  a  unique  type  of  distributed 

computation  system  which  has  to  be  supported  by  a  generic  distributed  computer 

infrastructure  or  a  set  of  middleware  services.  Software  agents  should  be  able  to 
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communicate with each other to find out the tasks other agents are able to perform. The 

middleware services are provided by an agent's Information Communication Technology 

(ICT)  environment,  which  is  often  called  the  MAS  platform,  where  the  agents  are 

embedded. Some examples of middleware services are, data storage, message transport, 

and service discovery. Replacing these services with agent equivalents may cause some 

disadvantages such as overhead in message invocation and less robust service designs. 

Also agents not only should be able to communicate with other agents but also should be 

able to invoke non agent software services. Sometimes agents not only interact locally 

within their own platform but also interact with remote agents in other platforms. In the 

future there would be many heterogeneous MASs. 

MASs are used to develop complex, large or unpredictable systems as they are mainly 

developed in a modularized manner. The modular components (agents)  will use the most 

appropriate paradigm to solve a particular problem. When interdependent problems arise, 

the  agents  would  communicate  and  coordinate  with  one  another  to  ensure  that 

interdependencies are handled appropriately. 

Most of the distributed computation problems involve open and dynamic environments. 

In an open system the structure of the system itself is capable of dynamically changing 

[Katia Sycara,  1998]. In such a system an agent alone is not able to solve the entire 

problem  due  to  certain  constraints,  incompetency  in  performing  certain  tasks, 

inaccessibility to critical data, etc. Therefore open systems require MAS. 

2.1.1  Applications of Multi-Agent Research
MAS applications cover a variety of domains including: Aircraft maintenance, Electronic 

book buying coalitions, Military de- mining, Wireless collaboration and communications, 

Military logistics planning, Supply-chain management, Joint mission planning and 

Financial portfolio management.
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2.2 Social Complex Systems

2.2.1 Complex Systems

A “complex system is a system for which it is difficult, if not impossible to restrict its 

description to a limited number of parameters or characterising variables without losing 

its essential global functional properties” [Pavard]. 

A complex  system  consists  of  parts  that  interact  in  a  non-linear  fashion  within  the 

environment  and their  behaviours  are  non-predictable,  emergence  also  is  an  essential 

property. It is important to differentiate between a complicated system such as a computer 

or  a  plane  and  a  complex  system such  as  economic  systems  or  ecological  systems. 

Complicated systems contain many functionally distinct parts which are predictable . But 

in complex systems the parts  interact  non-linearly within their  environment,  and their 

components have properties of self  organization which make them non-predictable. In 

addition, complex systems are completely irreducible. This means that it is impossible to 

derive a model from this system without losing all its relevant properties.    

Recently there has been a growing interest in applying complex system approaches to 

social systems  [Eve et al 1997, McKelvey 1997, McKelvey 1999, Goldspink 1999 and 

Marion 1999]. Many social systems are modelled using simple agents [Epstein and Axtell 

1996].  Therefore  Social  Complex  Systems  consists  of  many individuals  (autonomous 

agents)  who  interact  non-linearly  within  the  environment  and  their  behaviour  is 

unpredictable .  

Some of the characteristics of Social Complex Systems are:

 Non-determinism and non-tractability [Pavard] – 

It is impossible to precisely anticipate the behaviour of these systems even if we 

completely know the function of its constituents. It is fundamentally non-deterministic.
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 Agent based - 

Systems comprise of many agents.

 Dynamic - 

Some parts of the system may change, as the agents adapt to their environment. 

The behaviour of the agents change since they are unpredictable and they learn from their 

experiences.  The  dynamics  of  these  systems  are  usually  non-linear  sometimes  even 

chaotic. Also the systems are rarely stabilized.

 Organization - 

Most of the time the agents are categorized into groups. These groups are mostly 

structured and will influence how the system evolves over time.

 Distributed nature of information and representation [Pavard]- 

A complex system possesses properties comparable to distributed systems (in the 

connectionist sense),  example:  some of its  functions cannot  be precisely localised.  In 

addition, the relationships that exist within the elements of a complex system are short-

range, non-linear and contain positive and negative feedback loops. 

 Emergence and self-organization [Pavard] - 

This is the process of deriving some new and coherent structures, patterns and 

properties of the system due to non-linear and distributed interactions between agents of 

the system. They are observed at a macro level even though they are generated in the 

micro level.

2.3 Social Networks 
 A social network is a group of people who are connected by a set of relationships, such as 
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friendship or co-working. By analysing the social networks, one can find out different 

categories  of  relationships  that  occur  between  people,  organizations  and  groups  etc. 

People are represented as nodes in the network and relationships among the people are 

represented as edges. Also the structure of the network can contain many sub structures 

such as, groups and cliques. By analysing these substructures we can find out the likely 

behaviour of the network as a whole. 

The term social network was first coined by J.A Barnes in 1954. Since then a lot of work 

has been carried out in social science fields such as, anthropology, sociology and social 

psychology. 

With the rapid growth of Internet many cyber social  networks have emerged recur to 

social network software and social network websites [Zhao, 2006]. Cyber social networks 

have virtual relationships, but reflect some common law of real world social relationships. 

The  most  popular  Internet  social  network is  Friendster  which  is  a  network of  virtual 

friends. 

[Zhao, 2006] have proposed the EigenForwarding(k,t) search approach because searching 

in social networks was a problem. They applied this approach on a P2P social network by 

leveraging Maze file sharing system. Maze is a Napster-like P2P system, and enables a 

function to construct social networks. In order to make the system run in self-consistency, 

a point-based incentive system was imported to motivate contribution. This consists of 

two kinds of networks which are the friend network and the download network. These 

two  networks  are  merged  to  prove  the  “small  world”  property  of  the  combination 

network. Then they  computed the EigenTrust value of peers to find the critical node in 

the  network.  By  leveraging  the  “small  world”  social  network  and  EigenTrust,  they 

proposed their search approach EigenForwarding(k,t). A search query is forwarded to k 

friends who have the highest EigenTrust values. This has better search performance than 

flooding and random forwarding, and this also indicates the impacts of k and t parameters 

to consult real deployment.
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Then there is a fairly new phenomenon called Social Networking Services (SNSs) [Ahn, 

2007]which  enable  individuals  and  tools  to  communicate  with  people  by  providing 

private space for them. Also they help people to find others who have common interests, 

to create forums for discussions, to exchange photographs and personal news. The social 

networks of SNSs most of the time accurately reflect the real life social relationships of 

people  than  any  other  online  networks.  Also  because  of  their  size  it  gives  a  good 

opportunity to study human social networks.  

Online SNSs – 

Social Networking Services enable users to share personal information such as, hobbies, 

photographs, birthdays, etc. Most SNSs offer features that will help users to form and 

maintain online networks with other users. One such feature is called a “friend”. A user 

can invite another user to be one’s friend. Then if the invited user accepts the invitation 

then a friend relationship is established between them. 

The following gives a brief description about the three SNSs:

 Cyworld – 

This is the oldest and largest online social networking service in South Korea. 

Cyworld was started in September 2001 and has been growing ever since. This 

consisted about 12 million registered users in November 2005. Cyworld users can 

establish, maintain and can dissolve a friend relationship online. 

 MySpace – 

MySpace was the largest social networking service in the world, with more than 

30 million users in November 2006. It was started in July 2003. A new user by 

default gets a friend relationship with Tom Anderson, the cofounder of MySpace. 

This offers services such as, writing testimonials, checking upcoming birthdays, 

shortcuts to friends’s front pages. By crawling the Myspace online web site from 

September to October 2006, the authors obtained 100,000 user information. The 

crawler  will  randomly select  a  starting  user  site,  and  will  crawl  to  the  user’s 
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friends’ pages, their friends’ pages so on. 

 Orkut – 

This  was initially started in  September  2002, by some Google employees  and 

became an official Google service in January 2004. Till recently one could create 

an account only if one was invited by an existing user, which is different from 

Cyworld and MySpace. Ever since it allowed a user to create an account without 

an invitation it expanded greatly. Today it consists of more than 33 million users. 

When  a  user  joins  Orkut,  the  user  can  publish  one’s  profile,  join  other 

communities and upload photographs. This also offers friend relationships. 

What  influence  individuals  to  join  particular  communities,  which  communities  grow 

rapidly and how the communities evolve over time? Are some of the questions that are 

addressed in [Backstrom, 2006]. The probability of an individual joining a community 

depends on the following: 

1. The number of friends one has in the community.

2. Activity level of a community.

3. Friendship level of one’s friends in the community (Connectedness). 

The probability of an individual joining a community is higher when that individual’s 

friends in the community are connected.

The members of a social network fall into three categories [Kumar, 2006]. They are,

 Singletons – 

Singletons are users who are loners. Those who have never made any connections 

with others and are very inactive in the network. 

 Giant component –

Giant  component  consists  of  a  large  group  of  members  who  have  lots  of 

connections with others in the network. These members are highly active and they 
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are either indirectly or directly connected to the large potion of the entire network.

 Middle region – 

Middle region consists of isolated communities who have created small groups 

and communicate with each other.

Then there are sub groups and sub structures in social networks [Jamali, 2006]. Members 

who have similar interests, or who are in the same age, race, ethnicity, gender, religion 

may form cliques or sub groups to share information among each other. 

Even  the  web  can  be  considered  as  a  social  network  [Jamali,  2006].  These  Social 

networks  are  formed  by  hyper-  linking  web  pages  to  other  web  pages.  Creating 

communities  is  one  of  the  important  activities  in  a  web.  Bibliographic  metrics  and 

Bipartite  Cores  are  two approaches  which are  used to  identify communities  in  a link 

topology.

There are some social networks, such as LinkedIn, which has incorporated trust in the 

network connections.  Then Orkut  allows users  to  rate  trustworthiness  of one another. 

Friend Of A Friend project also has developed a trust module so that the users can rate the 

trustworthiness [Golbeck, 2006]. When trust is explicitly rated on a numerical scale, then 

that data can be used to produce information about how much two individuals who do not 

have a  direct  connection trust  each other.  The specific  problem that  the authors have 

looked at is how to use the data in the network to accurately tell to one user (source) how 

much to trust another person (sink). The authors have taken advantage of the explicit trust 

ratings  to  find  out  the trust  that  may exist  between two people  who are  not  directly 

connected.  Trust  has  three  main  properties.  They  are  asymmetry,  transitivity  and 

personalization. To generate a trust network, the edges have to be augmented with values 

representing the trust  relationship between individuals.  The process of  adding trust  is 

explained in detail in the paper [Golbeck, 2006].Detail description about the algorithms 

for inferring trust  relationships between individuals who are not directly connected to 
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each other are given below. There are two algorithms. They are:

• Rounding Algorithm – 

In this algorithm the users will assign {0,1} ratings to all the neighbours, and in 

every step of the algorithm a node will return {0,1} values. Then the source polls 

the neighbours who have got positive ratings (1) and the others (0) are ignored. 

Each neighbour will return their ratings for the sink. The source will then find the 

average of these ratings and will round the final value. This rounded value is the 

reputation rating from source to sink.

• Nonrounding algorithm –

In this algorithm the nodes do not round the values before they return the values. 

At  the  end of  the  algorithm the  original  source will  round the  average  of  the 

values returned by the neighbours. Therefore the final inferred value will be 0 or 

1. 

After  analysing  the  above  mentioned  algorithms  the  authors  have  come  up  with  the 

following results.

• In the rounding algorithm the accuracy at each step increased.

• Rounding algorithm will out perform the nonrounding algorithm.

• Algorithms will be more effective on larger networks with higher average degrees. 

Nowadays it is almost impossible to do one’s work without email. But when a lot of spam 

and  junk  mails  are  received  it  is  a  very  tedious  task  to  find  the  important  emails. 

Therefore the authors have introduced the TrustMail prototype to filter out the unwanted 

messages. 

TrustMail prototype – 
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This is an email client that adds trust ratings to each message in the folder. Therefore a 

user can read the trust rating and can sort the messages accordingly. The users highly 

benefit from this because users do not have to open  unwanted junk mail to find whether 

they are  from trusted  parties  or  not.  This  program extracts  the  sender  and uses  trust 

algorithms to find out whether the person can be trusted or not. 

 According to [Goecks, 2004] current user applications and end user applications in social 

networks provide very limited support such as, current applications mostly do not allow 

the users to manage and to be aware how their information is transferred to the other 

users. Therefore lots of users have privacy concerns because they do not know who has 

access to their information and information dissemination was a hassle. This brings to the 

fact that there is a need for an infrastructure that enables users to manage and control 

information sharing. Therefore the authors built Saori to solve this problem. Saori is a 

computational infrastructure that enables users and applications to manage and control 

information dissemination within social networks. All information dissemination occurs 

along  ties  between  individuals  who  are  connected  to  the  social  network.  Users  can 

leverage their personal networks and the extended networks to share information. Saori 

maintains an information database that can be shared. It presumes that the information is 

in the form of a pointer or a url and each instance of information is owned. Saori has two 

policies. They are Level of Detail (LoD) and Word of Mouth (WoM). To enforce these 

policies Saori must be able to access users’ social networks and attributes. Also maintains 

a  database  of  this  information,  by  mining  users’ email  messages.  Saori  obtains  user 

attributes and personal social networks and stores these in the database. 

Friendster, [Boyd, 2004] is an online dating site that utilizes social networks to encourage 

friend of friend connections. Recently many social networking sites have emerged for 

various reasons, such as dating, job hunting, to find friends, to get recommendations and 

listings etc. Compared to many other sites, Friendster is a very good site to study the 

value  and  implications  of  popularity,  diverse  usage  and  press  coverage  on  the  HCI 

community.
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The  author  has  been  an  active  participant  with  Friendster  users  and  also  an  active 

observer with the social networking software creators. 

The following are some social networks 

 Yahoo! – Flickr – [Kumar, 2006]

Flickr  is  a  popular  and an active network.  It  was launched in  Feb 2004.  This 

allows the users to Upload photographs and share them with their friends. A Flickr 

user can invite a friend to join the network or can add an existing user as a friend. 

According to Jan 2006 data the Flickr time graph consisted about one million 

nodes and eight million directed edges. 

 Yahoo! 360 – [Kumar, 2006]

Yahoo! 360 is  a part  of the Yahoo! User network. This is  a social  networking 

website. This is mainly used to create and to share albums, photographs among 

friends. Users can add contacts and invite others to join the network. According to 

the Jan 2006 time graph Yahoo! 360 had about five million nodes and about seven 

million directed edges. 

2.4 Hill Climbing Algorithm

Hill Climbing is a mathematical optimization technique which falls into the family of 

local search [Wikipedia, 2006]. Hill Climbing algorithm begins with an initial solution 

which is usually chosen at random. The string is then mutated, and if the mutation gives a 

higher fitness for the new solution than the previous solution, then that solution will be 

used  at  the  next  iteration.  This  process  is  repeated  till  a  higher  fitness  is  not  found 

[Marczyk, 2004]. Usually the current solution is close to the optimal solution, but cannot 

guarantee that it will always be close to the optimal solution. This algorithm is widely 

used in Artificial Intelligence for reaching a goal state from a starting node. 

Example [Marczyk, 2004]: 

There  is  a  three-dimensional  contour  landscape.  A given  set  of  coordinates  on  that 
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landscape represents one particular solution. Those solutions that are better are higher in 

altitude,  forming hills  and  peaks;  those  that  are  worse  are  lower  in  altitude,  forming 

valleys.  A "hill-climber"  is  then  an  algorithm that  starts  out  at  a  given  point  on  the 

landscape and moves  inexorably uphill.)  Hill-climbing is  what  is  known as  a  greedy 

algorithm, meaning it always makes the best choice available at each step in the hope that 

the overall best result can be achieved this way. 

Pseudo code of the hill climbing algorithm is given in figure 1.

1 Each agent will check the surrounding height

2 If surrounding height > current height then

3 Move agent to the surrounding height.

4 Else

5  If surrounding height = current height then

6 Move agent randomly by one step within the allowed  x, y cones space range.

7  Else

8 Agent remains at the current position

9  Repeat till surrounding height <= current height.

Figure 1: Pseudo code of Hill Climbing Algorithm 

2.5 Evolutionary Algorithms
Problem  solving  approaches  that  use  computational  models  which  are  based  on  the 

principles of natural evolution are called evolutionary algorithms (EA) [Saleem, 2001]. In 

evolutionary algorithms an individual would have to go through the process of selection, 

recombination and mutation. Then the individuals who have the high fitness values would 

most likely be selected to form the next generation. Some of the popular evolutionary 

algorithms  are  Ant  Colony  Optimization  (ACO),  Genetic  Algorithms  (GA),  Particle 

Swarm Optimization (PSO) and Cultural Algorithms (CA).  
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2.5.1 Ant Colony 
Ant Colony Optimization (ACO) takes inspiration from the foraging behaviour of ants 

[Dorigo 2006]. Ants deposit a chemical substance called pheromone on the path when 

walking to and from a food source. Other  ants sense the presence of pheromone and tend 

to follow a trail that is rich in pheromone. Thus they are able to find the shortest path 

from a  food source  to  the  nest.  Also ants  are  capable  of  adapting  to  changes  in  the 

environment. For example being able to find a new shortest path when the old path is no 

longer feasible due to obstacles. 

In  the  Ant  Colony Optimization  Algorithms  proposed by Dorigo  [2006]  the  ants  are 

defined  as  computational  agents,  which  iteratively  build  solutions  to  an  optimization 

problem. ACO has been applied to optimization problems in areas such as asymmetric 

and  symmetric  travelling  salesman  problem,  scheduling,  routing  and  partitioning 

problems. 

In [Peng, 2005]  Each ant will move from a state ι  to another one ψ corresponding to a 

more complete solution. Each agent at each step will compute a set of feasible expansions 

to its current state by using the following probability distribution, 

α.  τ ι ψ + (1- α).    η ι ψ  

∑ (τ ι v) + (1 – α). η ι v    if  ι ψ ∈ tabuk ∉ tabuk

ρk  ι ψ =

0, otherwise

Will move to the new position only if it is better than the previous step. tabuk represents a 

set of feasible moves for an agent k. Parameter α defines the relative importance of the 

trail. Then after each iteration t of the algorithm, the trails are updated by the following 

formula,

τ ι ψ(t) = ρ τ ι ψ(t -1) + Δ τ ι ψ.
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ρ is a user defined co-efficient and  Δ τ ι ψ represents the sum of the contributions of all 

agents that used the move  ι ψ to find the next position.

     The  pseudo  code  from [Maniezzo,  2000]  describes  how the  basic  Ant  Colony 

optimization works.

     1.  (initialization)

           initialize  τ ι ψ, ∀ ι,  ψ

     2.  (construction)

          for each ant k do

          repeat

          compute η ι ψ, ∀ ι, ψ

         choose in probability the state to move into

append the chosen move to the kth ant 's set

tabuk

    until ant k has completed its solution 

   [apply a local optimization procedure]

end do

    3.  (Trail update)

    For each ant move (ι, ψ) do

compute Δ τ ι ψ and update the trail values 

    4.  (Terminating condition)

If not (end condition) and go to step 2. 

Figure 2: Pseudo code of the basic Ant Colony Optimization [Maniezzo, 2000] 

2.5.2 Genetic Algorithms (GA)
Genetic Algorithm (GA) was developed by J. H. Holland in 1975 [Holland 1975]. In GA 

initially a set of solutions  or a population would be randomly generated. Then at each 

iteration by using a fitness function which is problem domain specific would select the 
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fittest solutions. Most of these functions are stochastic so that only a small proportion of 

less fit solutions would be selected. This is done to keep the diversity of the population 

large and to avoid premature convergence on poor solutions. Then would test the selected 

solutions to find whether the optimal solution is found. If not found then would apply 

recombination and mutation to breed the next generation (new solutions). Generally the 

average  fitness  would  have  increased  in  this  generation  since  only the  best  solutions 

(parents) are selected for recombination and mutation. This process will be repeated till 

the optimal solution is found or till a fixed number of generations have been reached or 

successively better solutions have not been found.  

Figure 3 gives the basic algorithmic steps  presented by Goldberg [Goldberg 1989]. 

1 t = 0;

2 initialize P(t)

3 evaluate structures in P(t)

4 repeat

5 t = t + 1

6 select_reproduction C(t) from P(t-1)

7 recombine and mutate structures in C(t) forming C'(t);

8 evaluate_structures in C'(t)

9 select_replace P(t) from C'(t) and P(t+1);

10Until (termination condition satisfied)

Figure 3: Algorithmic steps for GA [Goldberg 1989]

Initially a population of individuals would be generated (usually randomly).  Then the 

individuals' structures would be evaluated. A probability that is proportional to its fitness 

would be assigned to each individual. A selection buffer C(t) is created which will contain 

the better  individuals from P(t  – 1) “select_reproduction” because they have a higher 

probability of creating better offspring.  Next mutation and crossover would be applied to 

individuals in buffer C(t) and the new generation would be stored in the buffer C'(t). Then 

the structural fitness of C'(t) would be evaluated and P(t) would be replaced with the 
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individuals  from C'(t)  and P(t-1).  This process  would be repeated till  the termination 

condition is satisfied. 

Cannot  guarantee  that  GA s  are  able  to  produce  optimal  solutions  because  of  its 

evolutionary nature. For example:

Requirement is to find the highest peak of a given landscape. The algorithm will prefer 

solutions that lie on a peak. The individuals will generate solutions and at each iteration 

the best solutions will be kept and mutated expecting better solutions and the rest will be 

eliminated. Once the individuals have reached either the same peak or different peaks the 

solution with the highest value will be selected assuming that is the highest peak. But 

there can be another higher peak which has not been found by any of the individuals since 

when they reach a peak, the surrounding area is not higher so they will stop exploring the 

landscape.  Therefore the solution that was thought as the optimal is actually only a sub 

optimal solution.

2.5.3 Particle Swarm 
When compared with genetic search, Particle Swarm Optimization (PSO) is a relatively 

recent optimization technique of the swarm intelligence paradigm [Windisch, 2007]. PSO 

is a population based optimization technique [Eberhart, 1995], inspired by the behaviour 

of schools of fish, herds of animals or flocks of birds. Particle Swarm Optimization is 

somewhat similar to genetic algorithms because both of them are population based. In 

PSO the  system is  initialized  with  a  population  of  random solutions  called  particles. 

These  particles  move  through  the  problem space  in  search  of  the  global  minima  or 

maxima. Each particle keeps track of its past best performance/ fitness and its neighbours 

(specified proximity radius) best performance to decide on its next move. Also the swarm 

is aware of the global best achieved by all the particles. At each iteration the particles will 

update its velocity and position by using the following (a) and (b) equations. 

v[] = v[] + c1 * rand() * (pbest[] - present[] ) + c2 * rand() * (gbest[] - present[]) (a)

present[] = present[] + v[] (b)
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v[] is the agent's velocity, present[] is the current position of the agent and rand() is a 

random number between 0 and 1. C1 and C2 are the learning factors and usually c1 = c2 

= 2. The previous best position of particle i is denoted by pBesti and the previous global 

best is denoted by gBest.  

The  pseudo  code  of  the  initial  version  of  PSO for  real  valued  variables  is  given  in 
[Kennedy 2001] as follows,

1 For each particle

2 initialize particle

3 End For

4 Do

5 For each particle

6 calculate fitness value

7 if the fitness value is better than the best fitness value (pBest) in history 

8 set the current value as the new pBest 

9 End

10 Choose the particle with the best fitness value of all the particles as the gBest

11 For each particle

12 calculate particle velocity according to equation (a)

13 update particle position according to equation (b)

14 End

15While maximum iterations or minimum error criteria is not attained.

Figure 4: PSO pseudo code [Kennedy 2001]

By  simulating  individual  learning  and  social  cultural  transmission  PSO  attains  both 

simplicity and efficiency (speed of convergence). Some of the advantages of PSO are, it 

has performed well on a variety of benchmark problems, such as, Schaffer f6 function 

[Peng,  2005]  and  global  minimum.  Also  in  a  wide  range  of  applications  such  as, 

minimizing the weight of a tension spring (engineering optimization problem) and neural 

network optimization. But it does not accurately reflect the accurate human belief system 
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and performance is problem dependent.

2.5.4 Cultural Algorithm Framework
The Cultural Algorithm (CA) is a class of computational models derived by observing the 

cultural  evolution  process  in  nature  [Reynolds  1978,  1994].  The  Cultural  Algorithm 

consists  of  three  major  components  which  are   population  space,  belief  space  and a 

communication protocol that describes how knowledge is exchanged between population 

space  and  belief  space  [Reynolds,  2005].  The  knowledge  that  is  generated  in  the 

population space is selectively passed to the belief space which is a global knowledge 

repository which will influence the changes made by the next generation in the population 

space. Each individual in the population space has access to the knowledge that is in the 

belief space, therefore as these individuals evolve to achieve a goal the knowledge is 

modified and  passed to the belief  space.  Cultural  algorithms are  mainly designed to 

model the society including humans. But it is equivalently applicable to non social search 

problems such as, Constraint Satisfaction or optimization problems.  Following diagram 

shows the basic CA framework.

Figure 5: Cultural Algorithm Framework [Reynolds 2002]

The population space consists of autonomous entities or agents of the specific problem. 

These agents have knowledge or a set of strategies or beliefs. The belief space contains 
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some of the knowledge that is generated in the population space. In Cultural Algorithms 

evolution happens both in the population space and belief space through communication. 

As  the  population  in  the  population  space  evolves  the  belief  space  will  be  updated 

accordingly  by  the  acceptance  function  and  the  knowledge  in  the  belief  space  will 

influence the agents in the population space. The Reproduction function will generate the 

new  generation  and  the  modify  function  causes  mutation  or  changes  to  the  new 

generation. The performance function will identify the optimal state of the system. 

The CA pseudo code presented by  Reynolds [Reynolds 2002] is given in the figure 6.

1Begin

2 t = 0;

3 Initialize Population POP(t);

4 Initialize Belief Space BLF(t);

5 repeat

6 Evaluate Population POP(t);

7 Adjust (BLF(t), Accept(POP(t)));

8 Adjust (BLF (t));

9 Variation(POP (t) from POP (t-1));

10 until termination condition achieved

11End

Figure 6: Cultural Algorithm pseudo code from [Reynolds 2002]

The Cultural Algorithm is a population based algorithm just like Ant Colony Optimization 

(ACO)  and  Particle  Swarm Optimization  (PSO),  but  unlike  ACO and  PSO,  Cultural 

Algorithm uses five basic knowledge models in the problem solving process. They are, 

 Situational  Knowledge: Situational knowledge was proposed by [Chung, 1997] 

for real valued function optimization problem solving in static environments. This 

contains knowledge of exemplars. 

 Normative Knowledge: Defines a set of standards within which maximum fitness 

is expected. 

 Topographic Knowledge:  Provides  a  spatial  or  array  framework  in  which 
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environmental patterns can be identified. 

 Domain Knowledge: This was introduced into CA by Reynolds and Saleem in 

[Reynolds,  2005]  in  order  to  solve  dynamic  optimization  problems.  This  is 

generated from the problem domain to predict trends in the resource landscape.

 Historic Knowledge: This was also introduced into CA by Reynolds and Saleem 

in [Reynolds,  2005] in  order  to  find about  global  dynamics  and to  be able  to 

backtrack when necessary. While domain knowledge provides information about 

local  changes  in  terms  of  geometrical  or  gradient  considerations,  historic 

knowledge provides a more global perspective of the changes.    

  A hybrid algorithm with GA and CA is presented in [Xue, 2007] . In [Coelho 2006] PSO 

was used within the  CA framework.  [Peng 2003]  and [Peng 2004]  has  carried  out  a 

thorough investigation on these types of knowledge and conclude that by amalgamating 

these knowledge sets in the right combination the CA might be able to converge faster. 

Also these papers mention how each knowledge category can affect the others to evolve.
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Chapter 3: Proposed Algorithms

We have incrementally developed a number of strategies of increasing complexity that 

can  be  applied  on  an  application  neutral  system  which  contains  static/dynamic 

environments which are inspired from a standard benchmark function the Cones World 

Problem Generator.

3.1 Cones World Problem Generator [Morrison 1999]
This was originally developed by De Jong and Morrison [Morrison 1999]. They called it 

DF1. It  is  a  standard and a  rigorous  test  function generator  that  is  used to  study the 

performance  of  evolutionary  algorithms  in  changing  environments  [Peng  2005].  It  is 

capable of providing instances of a wide variety of dynamic landscapes. 

The cones  world generates  a  multi  dimensional  problem landscape in  which resource 

cones of different heights and slopes would be scattered. This would be carried out in two 

steps. 

Step1: 

Specify a baseline static landscape of the desired complexity. The base landscape will be 

generated according to the following formula,

Figure 7: Formula for the base landscape [Peng, 2005]

Where,

K : The number of cones

n: dimensionality

Hj: Height of cone j

Rj: Slope of cone j
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Cj,i: coordinate of cone j in dimension i

The values for each cone (Hj, Rj and Cji) are randomly assigned based on user specified 

ranges. 

Hj ϵ (Hbase, Hbase + Hrange)

Rj ϵ (Rbase, Rbase + Rrange) and

Cji  ϵ (-1, 1)

Each of these independently specified cones are blended together using the max function. 

If two cones overlap then the height at a point is the height of the cone that has the 

highest value at that point. [Peng, 2005]

For this thesis a three dimensional landscape was used in which K = 5, Hbase = 3, Hrange 

= 3, Rbase = 10 and Rrange = 2. Example of a cones world environment is given in figure 

8.

 

Figure 8: Example of a three dimensional landscape generated by the df1 function. 

x ϵ (-1, 1) , y ϵ (-1, 1), with n = 2, H  ϵ (3, 6) and R  ϵ (10, 12) 

Step2: 
Specify the dynamics. Dimension Cj,i ,  height Hj  and slope Rj of every cone j  can be 

changed. These can be changed by the following logistics function,
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Yi = A * Yi-1 * (1-Yi-1)

A is a constant and Yi is the value at iteration i 

The generator will randomly generate cones each time it is called. Cones World Problem 

Generator was selected because it is able to generate test functions over a wide range of 

surface complexities and problem dynamics. Also it is able to evaluate the system in a 

more flexible and a systematic way.

3.2 Static Environment
In the static environment,  once the cones are randomly generated they remain in that 

position. The cones do not move.

3.3 Dynamic Environments
Initially just like the static environment cones will be deployed on the landscape. Then 

after hundred and fifty steps the cones will be moved to different locations. Then after the 

next hundred  and fifty steps (three hundred steps) not only the cones will be moved but 

also the heights of all the cones will be changed. This will be repeated till number of steps 

are six hundred. There are four different dynamic environments. When the environment 

changes the agents will start exploring from where they stopped.

The user is able to select or enter the following for the nine strategies.

 Particular strategy.

 Number of cones.

 Number of agents.

 Static/ dynamic environment.

 Number of pixels for a step (step size).

 The mutation probability for the strategy 5.
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3.4 Strategy 1 (S1)-  Hill Climbing Algorithm.

Implemented the Hill  Climbing Algorithm. Once an agent  is  randomly placed on the 

landscape, the agent's current and surrounding pixel heights are passed to the algorithm as 

shown in figure 9. Note that the agent is at H11. 

The three basic rules for the heuristic algorithm are as follows:

1) Move  the  agent  to  the  surrounding  pixel  with  the  highest  height,  higher  than  its 

current height.

2)  If there are any surrounding pixels with height equal to its current height H11,  then the 

agent is randomly moved by one pixel within the allowed x and y cones space range. 

3)  Otherwise the agent remains at the current position. 

These rules are repeated all the way to the top of the peak where the agent is located. If 

the peak is  a  plateau rather  than a  point  (single  pixel),  then the agent  will  randomly 

wonder along the plateau at the same height in search of a higher pixel.

Figure 9: The surrounding heights of an agent.
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The pseudo-code for strategy S1 is given in figure 10.

1 Each agent will check the surrounding height

2 If surrounding height > current height then

3 Move agent to the surrounding height.

4 Else

5  If surrounding height = current height then

6 Move agent randomly by one step within the allowed  x, y cones space range.

7  Else

8 Agent remains at the current position

9  Repeat till surrounding height <= current height.

Figure 10: Pseudo code for strategy S1.

3.5  Strategy  2  (S2)  -  Equal  probability  of  
Reputation for selecting a neighbour.

The agents who are within fifty pixels apart are grouped into networks. Initially all the 

agents  reputation  will  be  zero.  Then  each  agent  by  using  equal  probability  (50/50 

probability of picking any neighbour) will pick a neighbour and will request for its height. 

If the height is greater than itself then will move one step towards the neighbour's location 

and increase the neighbour's reputation by one. Otherwise the agent will use hill climbing 

algorithm to decide on the next move and decrease the neighbour's reputation by one. If 

an agent does not have any neighbours then it will use hill climbing algorithm to decide 

on its next move. The pseudo code is given in figure 11.

1 For each agent, check within 50 pixels for another agent

2 If there is an agent within 50 pixels apart then

3 Add that agent to the current agent's network

4 End For

5 For each agent check whether the agent belongs to a network
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6 If the agent belongs to a network then

7 By using equal probability of reputation select a neighbour.

8 Request for the neighbour's height.

9 If neighbour's height > current agent's height then

10 Move the agent by 1 step towards the neighbour.

11 Increase neighbour's reputation by 1.

12 Else

13 Use Hill Climbing Algorithm (S1) to move

14 Decrease neighbour's reputation by 1

15 Else 

16 Use Hill Climbing Algorithm (S1) to move

17 Repeat till user selects stop or till the number of iterations = number of iterations given 

in the user settings menu.

Figure 11: Pseudo code for strategy S2.

3.6 Strategy 3 (S3) - Biased probability 
of  Reputation  for  selecting  a 
neighbour.

The agents who are within fifty pixels apart are grouped into networks. Initially all the 

agents reputation will be zero. For the first five iterations strategy S2 will be carried out. 

From the sixth iteration onwards, each agent will get all it's neighbours reputations, add 

them into an array. Using the reputations in the array a new array (Sa) is created that 

contains the sum of the reputations at the current and previous indices. Then a random 

number between 0 and 1 is generated where that number is multiplied by the total of all 

the neighbours reputations (Bp). The agent associated with the index in array (Sa) who's 

value is greater and closest to the result (Bp) as illustrated in figure 12 will be the agent's 

neighbour (in the case of the example in figure 12 it is agent at index 3). Then the agent 

29



will request for its height. If the height is greater than itself then it will move one step 

towards  the  neighbour's  location  and  increase  the  neighbour's  reputation  by  one. 

Otherwise, will use hill climbing algorithm to decide on the next move and decrease that 

neighbour's reputation by one. If an agent does not have any neighbours then it will use 

hill climbing algorithm to decide on its next move. 

Figure 12: Number line showing how the biased probability is determined

The pseudo code is given in figure 13. 

1 For each agent, check within 50 pixels for another agent

2 If there is an agent within 50 pixels apart then

3 Add that agent to the current agent's network

4 End For

5 For Number of iterations 1 – 5 do

6 Strategy S2

7 End For 

8 For Number of iterations 6 - till user selects stop or till the number of iterations = 

number of iterations given in the user settings menu

9 Calculate the sum of reputations of all the neighbours

10Store the first neighbour's reputation and id in an array

11Then add the next neighbour's reputation to the previous neighbour's reputation and  

store that value in the same array. 

12Repeat  till  all  the  neighbours  reputations  are  added  to  the  previous  neighbour's   
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reputation.

13BiasedRep = ceiling (Rand * sum of reputations of all the neighbours)

14Check whether BiasedRep is less than or equal to any value in the array. 

15Then get the id of the first value that is greater than or equal to it. 

16The agent who has that id is this agent's neighbour.

17 Request for the neighbour's height.

18 If neighbour's height > current agent's height then

19 Move the agent by 1 step towards the neighbour.

20 Increase neighbour's reputation by 1.

21 Else

22 Use Hill Climbing Algorithm (S1) to move

23 Decrease neighbour's reputation by 1

24 Else 

25 Use Hill Climbing Algorithm (S1) to move

26End For

Figure 13: Pseudo code for strategy S3

3.7  Strategy  4  (S4)  –  S3  + 
Situational  Knowledge  of  Cultural 
Algorithm.

In strategy 7,  for the first  ten iterations strategy 3 is carried out.  Then at  every tenth 

iteration the top 10% agents based on their reputations will be calculated and their ID, x-y 

coordinates  and  height  will  be  stored  in  the  belief  space,  which  forms  the  global 

repository. Randomly the agents can either, pick an agent from the belief space or from 

the neighbourhood. If the agent (A) decides to pick an agent from the belief space, then 

by using biased probability of the agent reputation will pick an agent (B), followed by 

checking  whether  the  height  of  B  is  greater  than  A.  If  it  is,  agent  B's  reputation  is 

increased by one and will travel one pixel towards agent B. If not agent B's reputation 
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will be decreased by one and will select another agent based on biased probability of 

reputation from the neighbourhood. If the agent (A ) decides to pick a neighbour from the 

neighbourhood the agent will perform strategy S3 as described in the previous section. 

The pseudo code is given in figure 14.

1 Nth Iteration = false (Nth Iteration = 10)  

2 For Number of iterations 1 – till the user selects stop or  number of iterations = number 

   of iterations given in the user settings menu do

3 If Number of iterations mod 10 = 0 then

4 Nth Iteration = true

5 Else

6 Nth Iteration = false

7 If Nth Iteration = true then

8 Evaluate all the agents reputations

9 Select the top 10% agents based on their reputations and store their id, x,y and z   

coordinates in the belief  space.(Global repository)

10 Randomly pick a neighbour or the belief space.

11 If belief space is selected then

12 By using Biased probability of reputation select an agent 

from the belief space.

13 If selected agent's height > current agent's height then

14 Move the agent by 1 step towards the neighbour.

15 Increase selected agent's reputation by 1.

16 Else

17 Decrease selected agent's reputation by 1.

18 By using Biased probability of reputation select an 

agent from the network.

19 If no neighbours then

20 Do Strategy S1

21 Else

22 Request for the neighbour's height.
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23 If neighbour's height > current agent's 

height then

24 Move the agent by 1 step 

towards the neighbour.

25 Increase neighbour's 

reputation  by 1.

26 Else

27 Use Hill Climbing Algorithm 

(S1) to move

28 Decrease neighbour's 

reputation by 1

29 Else

30 By using Biased probability of reputation select an agent from the 

network.

31 If no neighbours then

32 Do Strategy S1

33 Else

34 Request for the neighbour's height.

35 If neighbour's height > current agent's 

36 height then

Move the agent by 1 step towards the 

37 neighbour.

38 Increase neighbour's 

reputation by 1.

39 Else

40 Use Hill Climbing Algorithm 

(S1) to move

41 Decrease neighbour's 

reputation by 1

42 Else
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43 If Number of iterations 1 – 10 then

44 Do Strategy S3

45 Else

46 Follow the selected agent till the next Nth Iteration

47 Increase Number of iterations by 1.

Figure 14: Pseudo code for strategy S4

3.8 Strategy 5 (S5) - S4 + Mutation.

The user is given a choice whether to mutate an agent or not. If the user decides to mutate 

the agents, then the user can enter a mutation probability in the Mutation field of the 

Parameter settings. If the user decides not to mutate agents then zero should be entered.

Once a mutation probability (ex: 0.05) is entered, every ten iterations a random number 

between 0 to 100 is generated and if it falls between 0 to 5 (0.05 * 100), the agent will be 

mutated  for  the  next  ten  iterations.  As  soon  as  the  agent  is  mutated,  random  x-y 

coordinates will be generated to which the agent will travel towards. The agent will travel 

to its destination and while doing so will share and gather information with encountered 

neighbours along the way. If the destination x-y is reached prior to the expiration of the 

ten iterations the agent will remain at its destination until the time expires. If the random 

number is not within 0 and 5, that agent will not be mutated and will use S4 strategy as 

described in the previous section.  The pseudo code is given in figure 15.

1 Nth Iteration =  false

2 AmIMutated = false

3 For Number of iterations 1 – till the user selects stop or number of iterations = number 

of iterations given in the user settings menu do

4 If Number of iterations mod 10 = 0 then

5 Nth Iteration = true

6 Else
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7 Nth Iteration = false

8 If Nth Iteration = true then

9 If Mutation > 0 then

10 Get the mutation probability from the user settings menu.

11 Random number generator will generate a number

12 If that number*100 < user entered probability * 100 then

13 Agent is mutated

14 Else

15 Agent is not mutated

16 If agent is mutated then

17 x,y coordinates will be randomly generated

18 Agent will move by 1 step towards x,y

19 AmIMutated is set to true

20 Else

21 Do all the steps after “If Nth Iteration = true 

22                   then” in strategy S4

23 Else

24 Do all the steps after “If Nth Iteration = true 

25                    then” in strategy S4

26 Else

27 Follow the selected agent till the next Nth Iteration.

28 Increase number of iterations by 1.

Figure 15: Pseudo code for strategy S5

3.9  Strategy  6  (S6)  -  Neighbours  and 
Domain  Knowledge  of  Cultural 
Algorithm.

In Strategy 6 to Strategy 9 each agent has its own miniature map of 20 x 20 cells (10 x 10 
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pixels) denoted as MyMap. This is to reflect a miniature outline of the landscape forming 

200 x 200 pixels. Each cell in MyMap is initialized with -1 and does not contain any 

cones.

At each step all the agents will check within 50 pixels apart for neighbours. If  neighbours 

are found the agent will retrieve their maps and update it's own map. With the updated 

map the agent will select the closest location none of its neighbours have been (i.e. by 

determining the closest initialized value of -1) and travel toward it. On its way if the agent 

comes across a cone it will calculate the peak of the cone without climbing it and also 

will check for neighbours within 50 pixels and update it's map. At the end of each update 

of MyMap the agent checks if it's map is complete (i.e. no more -1s). With a complete 

map, the agent will find the highest height and travel to the location. The pseudo code is 

given in figure 16. 

1If  (myMap is not complete) then

2 Get my height

3  If (has reached destination) or (No of steps >= 0) then

4 Store my height in the relevant x and y coordinates in myMap. 

5 Get neighbours who are within 50 pixels.

6 If (no of neighbours >= 1) then

7 Get the neighbours maps.

8 Update myMap.

9 Out of all the -1's in myMap, the random number generator will 
select the closest x and y coordinate.

10 Move agent by 1 step towards the selected location.

11 Clear has reached destination flag.

12  If (my height = 0) then

13 Calculate Domain knowledge 

14 Move agent by 1 step towards the selected location.

15 Out of all the -1's in myMap, the random number generator will 
select the closest x and y coordinate.

16 Store my height in the relevant x and y coordinates in myMap.

17 else
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18 Calculate Domain knowledge

19 Move agent by 1 step towards the selected location.

20 Out of all the -1's in myMap, the random number generator will 
select the closest x and y coordinate.

21 Store my height in the relevant x and y coordinates in myMap.

22 Check whether myMap is complete.

23 If (myMap is complete) then

24 myMap complete flag = true.

25 Find the highest height in myMap.

26 Take 1 step towards the location of the highest height.

Figure 16: Pseudo code for strategy S6

3.9.1 Domain Knowledge
This strategy involves the agent estimating the peak of the cone without climbing to the 

top of the cone. First the agent finds an edge of the cone. This point is marked as A. Then 

the agent travels 20 steps along the edge of the cone to point B and will save each point 

along the way into an array. With the coordinates of point A and B the radius can be 

calculated using the formula below.

Where:

W is length of the chord defining the length of the arc base.

H is the height measured from at the mid point of the arc base.
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H above is  the  distance  between the  middle  point  in  the  array and the  middle  point 

between A and B.

Once the radius is calculated the agent travels a few steps towards the centre of the cone 

just enough to determine the slope of the cone. Finally the height of the cone is calculated 

as shown in the formula below.

3.10 Strategy 7 (S7) - Situational,  Domain, 
Historical, and Topographical knowledge of 
Cultural Algorithm along with surrounding 
heights and the neighbours.

Each agent will get information from the Cultural Algorithm's knowledge sources such as, 

Situational  knowledge,  Topographic  knowledge,  Historical  knowledge,  domain 

knowledge, also from the neighbour's within 50 pixels and the surrounding area. Then the 

agent will update it's map with this information and will pick the closest location that 

none of its neighbour's have been nor a location given by the above mentioned knowledge 

sources.  Then  as  the  agent  is  travelling  to  the  selected  location,  it  will  update  the 

Historical knowledge and it's map. If the agent lands on a cone then will calculate the 

peak of the cone without climbing to the top (as explained in chapter 3.9.1), and store that 

value  in  the  map  and  also  will  update  it's  map  with  the  information  given  by  the 
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neighbours.  Once an agent has reached the selected destination it will check the above 

mentioned knowledge sources, neighbours and the local area and will select the closest 

location  that  none  of  its  neighbour's  have  been  nor  a  location  given  by  the  above 

mentioned  knowledge  sources.  Once  all  the  agents  have  taken  a  step,  Situational 

knowledge, Topographic knowledge and Historical knowledge sources are updated. Also 

the agent's map is checked to determine if all the values in the myMap are filled. If it is, 

then  will  search  for  the  highest  value  in  myMap,  and  will  update  the  Situational 

knowledge with the highest value and will set myMap complete flag to true. Then all the 

agents will travel to this location.  The pseudo code is given in figure 17.

1If  (myMap is not complete)  then

2 Get my history list.

3 Get my height.

4 If (has reached destination) or (No of steps >= 0) then

5 Store my height in the relevant x and y coordinates in myMap 

6 Get neighbours who are within 50 pixels.

7 If (no of neighbours >= 1) then

8 Get the neighbours maps.

9 Update myMap.

10 Check the local area.

11 If (No of steps >= 1) then

12 update myMap with topographic knowledge.

13 Check Historical knowledge.

14 Update myMap with the surrounding values, situational knowledge and 
historical knowledge.

15 Out of all the -1's in myMap, the random number generator will 
            select a particular x and y coordinate.

16 Move agent by 1 step towards the selected location.

17 Store the historical values in the history list

18 Store my height in the relevant x and y coordinates in myMap. 

19 Clear has reached destination flag.

20  If (my height = 0) then
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21 Calculate Domain knowledge 

22 Out of all the -1's in myMap, the random number generator will 
            select a particular x and y coordinate.

23 Move agent by 1 step towards the selected location.

24 Update myMap with the surrounding values, situational knowledge and 
historical knowledge.

25 Store the historical values in the history list

26 Store my height in the relevant x and y coordinates in myMap 

27 else

28 Calculate Domain knowledge.

29  Out of all the -1's in myMap, the random number generator will 
             select a particular x and y coordinate.

30 Move agent by 1 step towards the selected location.

31 Update myMap with the surrounding values, situational knowledge and 
historical knowledge.

32 Store the historical values in the history list

33 Store my height in the relevant x and y coordinates in myMap 

34 Check whether myMap is complete.

35 If (myMap is complete) then

36 myMap complete flag = true.

37 Find the highest height in myMap.

38 Update situational knowledge.

39 else

40 Take 1 step towards the location of the highest height.

After all the agents have taken a step the knowledge sources will be updated.

Figure 17: Pseudo code for strategy S7

3.10.1 Situational Knowledge
Situational knowledge consists the highest height at that time step. This is the local best 

and can be the global best if that is the highest height in the landscape.
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3.10.2 Historical Knowledge
At  each  step,  the  historical  knowledge  contains  each  agent's  highest  ten  heights. 

Therefore when ever an agent queries the historical knowledge the agent will know the 

ten highest heights found until that time step. Then the agent will update its map with this 

information.   

3.10.3 Topographic Knowledge
The landscape is divided into 16 cells. The Topographic knowledge consists of the highest 

height found by an agent in each cell. When ever a value is higher than the current value 

in that cell, that value will be replaced by the new found higher value. 

3.10.4 Domain Knowledge
Domain knowledge is explained in chapter 3.9.1. 

3.10.5 Neighbours
The  agents  who  are  within  50  pixels  apart  are  neighbours.  An  agent  will  check  the 

neighbours maps to find out the locations where the neighbours have been and will update 

its map. This is performed so that another agent does not have to go to a place where 

another has been. Then the entire landscape can be explored much faster.

3.10.6 Local area
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Figure 18: The surrounding heights of an agent.

The agent at H11 will check the local area which are coloured in gray to check whether 

the next step at any direction is higher than its current position. The agent will update its 

map with the values in the surrounding area. 

3.11  Strategy  8  (S8)  -  Topographical 
Knowledge of Cultural Algorithm.

The landscape is divided into sixteen cells. Initially the agents will randomly be scattered 

on the landscape. There is a master topographical map with sixteen equal cells of 50 by 

50 pixels each. If there are less than sixteen agents then each agent will be assigned to the 

closest cell according to their current location. For example:

If there are two agents that will fall into the same cell then the first agent will be assigned 

to that cell and the other agent will be assigned to the next closest cell. When ever an 

agent is assigned to a cell the master map is updated. But if there are more than sixteen 

agents then the first sixteen will be assigned to the sixteen cells and the others depending 

on their current locations and according to the master map will be assigned to cells. 

Once an agent lands on a cell the agent will start exploring the cell and will check for 

agents within 50 pixels apart(neighbours) then will update its map with the value(s) given 

by the neighbours and also with its own explored locations. This way more than 1 agent 

would not explore any area that  was explored by another.  Then when it  has finished 

exploring that particular cell the agent will check in the master map for cells that have not 

been explored by any agent.  If there are any unexplored cells then that agent will  be 

assigned to that cell. 
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If there are no more unexplored cells then the agents who have finished exploring their 

assigned cells will come to the middle of the landscape.

When all the agents are in the middle of the landscape, they will update their maps. Then 

will check for the highest height and all the agents will travel to the highest height. An 

agent's step = 10 pixels in this simulation.

With  each  agents  map being  20 by 20 cells  (10 by 10 pixels  for  each  cell)  and  the 

topographical map being 4 by 4 cells (50 by 50 pixels for each cell) the worst case (Twc) 

and best case (Tbc) exploration steps can be calculated as follows:

With number of agents (nAgents)>= 16

Steps to explore a topographical cell (S) =  5steps x 5steps =  25 steps 

Worst case to assigned cell (wcs) is 28 steps  (diagonal length = sqrt(202+202))

Worst case steps to come to the middle from a corner of the landscape (wcm)  ≈ 14 steps

Worst case to the corner of the landscape from the middle (wcmh) ≈ 14 steps

Lowest number of agents in a cell (nApc) = floor(nAgents/16)  (i.e. div. into 16 cells)

Twc (nAgents) ≈ ceiling(S/ nApc) + wcs + wcm + wcmh  

Tbc (nAgents) ≈ ceiling(S/ nApc) + wcm + wcmh 

With number of agents (nAgents)< 16 

Twc (nAgents) ≈ S*(celling(16/nAgents)) + wcs + wcm + wcmh  

Tbc (nAgents) ≈  S*(celling(16/nAgents)) +  wcm   

The pseudo code is given in figure 19.

1cntTopo = 0

2 If (cntTopo = 0) then

3 Initialize the Master Topo array
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4 cntTopo = cntTopo + 1

5If (No of steps = 0) then

6 Get my x coordinate

7 Get my y coordinate

8 Assign a cell 

9 Store my height in the relevant x and y coordinates in myMap array

10 Check whether the agent has finished exploring

11     Get neighbours within 50 pixels apart

12     If (no of neighbours > 0) then

13 Get the neighbours maps.

14 Update myMap with the values in the neighbours maps.

15 If (No of steps > 0) and (Not finished exploring) then

16 Move agent by 1 step in the cell

17 Store my height in the relevant x and y coordinates in myMap array

18 If (No of steps > 0) and (Finished exploring) then

19 Got a cell = false

20 Check Master Topo array to find whether there are any more unexplored cells

21 If (unexplored cells = true) then

22 Assign a cell 

23 Move agent by 1 step in the cell

24 Store my height in the relevant x and y coordinates in myMap array

25 Finished exploring = false

26 Else
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27 Finished exploring = true

28 Reached centre = false

29 Check whether the agent is in the centre of the landscape

30 If (reached centre) and (Not got highest height)

31 Get neighbours who are within 50 pixels.

32 Count number of neighbours

33 If (number of neighbours = number of agents – 1) then

34 Get the neighbours maps.

35 Update myMap with the values in the neighbours maps.

36 Get the highest height

37 Got highest height = true

38 Move agent by 1 step towards the highest height

39 Else if (Not reached centre) and (Not got highest height) then

40 Move agent by 1 step towards the centre

41 Else if (got highest height = true) then

42 Move agent by 1 step towards the highest height  till the highest 

height is reached.

Figure 19: Pseudo code for strategy S8

3.12 Strategy 9 (S9) - Modified S8.

This strategy is very similar to strategy 8. The landscape is divided into sixteen cells. 

Initially  the  agents  will  randomly  be  scattered  on  the  landscape.  There  is  a  master 

topographical map with  sixteen cells. If there are less than sixteen agents then each agent 

will be assigned to the closest cell according to their current location. For example:

45



If there are two agents that will fall into the same cell then the first agent will be assigned 

to that cell and the other agent will be assigned to the next closest cell. When ever an 

agent is assigned to a cell the master map is updated. But if there are more than sixteen 

agents then the first sixteen will be assigned to the sixteen cells and the others depending 

on their current location and according to the master map will be assigned to cells. 

Once an agent lands on a cell the agent will start exploring the cell and will check for 

agents within 50 pixels apart(neighbours) then will update its map with the value(s) given 

by the neighbours and also with its own explored locations. This way more than 1 agent 

would not explore any area that  was explored by another.  Then when it  has finished 

exploring that particular cell the agent will check the master map for cells that are not 

been explored by any agent.  If there are any unexplored cells then that agent will  be 

assigned to that cell. 

If  there  are  no more  unexplored  cells  and  all  the  agents  have  finished  exploring  the 

assigned cells then  will go through the maps of all the agents and find the location of the 

highest height and all the agents will travel to the highest height. The pseudo code is 

given in figure 20. The worst case (Twc) and best case (Tbc) steps are same as S8.

1cntTopo = 0

2 If (cntTopo = 0) then

3 Initialize the Master Topo array

4 cntTopo = cntTopo + 1

5 If (No of steps = 0) then

6 Get my x coordinate

7 Get my y coordinate

8 Assign a cell 

9 Store my height in the relevant x and y coordinates in myMap array

10 Check whether the agent has finished exploring
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11     Get neighbours within 50 pixels apart

12     If (no of neighbours > 0) then

13 Get the neighbours maps.

14        Update myMap with the values in the neighbours maps.

15 If (No of steps > 0) and (Not finished exploring) then

16 Move agent by 1 step in the cell

17 Store my height in the relevant x and y coordinates in myMap array

18 If (No of steps > 0) and (Finished exploring) then

19 Got a cell = false

20 Check Master Topo array to find whether there are any more unexplored cells

21 If (unexplored cells = true) then

22 Assign a cell 

23 Move agent by 1 step in the cell

24 Store my height in the relevant x and y coordinates in myMap array

25 Finished exploring = false

26 Else if (Not got highest height) then

27 Finished exploring = true

28 Store my height in the relevant x and y coordinates in myMap array

29 If (Finished exploring = true) then

30 Get the neighbours maps.

31 Find the location of the highest height

32 Got highest height = true

33 If (Got highest height = true) then
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34 Move agent by 1 step towards the highest height  till the highest 

height is reached.

Figure 20: Pseudo code for strategy S9

The above mentioned strategies are implemented in Repast. 

3.13 Repast: The environment
Repast (Recursive Porous Agent Simulation Toolkit) is a simulation tool that consists of a 

set of API to build agent based simulations easily and rapidly. This is an object oriented 

tool and has many platforms such as,  Java,  Microsoft .Net and Python. It  is  an open 

source software that was developed by Sallach, Collier, Howe, North and others [Collier 

2003] at the University of Chicago and later maintained by Argonne National Laboratory 

(ANL).  Now  it  is  maintained  by  non  profit  Organization  Repast  Organization  for  

Architecture and Development (ROAD). Even though it is mainly intended for developing 

agent based simulations it is also suitable for network analysis and visual descriptions of 

algorithms, concepts and programs. The Repast version that is built on the Java platform 

is Repast J 3.0. It is an integrated simulation development framework that provides some 

functionalities to develop and run simulations. These functionalities are,

 Graphical display features to demonstrate the simulation.

 To create charts and graphs to capture the outcome of the simulation visually.

 User  settings  menu which  allows the  user  to  initialize,  run,  stop or  pause the 

simulation when its running.

Since Repast J is an open source software, the users can modify its behaviour any way 

they want. Some of the features of Repast are explained below.

3.13.1 Repast Setup:
 The main function routine is given below in figure 21. The first routine that starts the 

environment is loadModel in the instantiated init object of class SimInit() that loads the 

object model of class ConesModel. 

public static void main(String[] args) {
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SimInit init = new SimInit();

ConesModel model = new ConesModel();

init.loadModel(model, "", false);

}

Figure 21:  The main function routine

The basic Repast routines are listed below.

setup() - Implements uchicago.src.sim.engine.SimModel.setup. The cone space, agent

space, scheduling and display is handled by this routine.

begin() - Implements uchicago.src.sim.engine.SimModel.begin. This routine calls

buildModel(), buildSchedule(), buildDisplay() and displaySurf.display().

buildModel() - Cones model, agents and graph initialization and display are initiated by 

this function.

buildSchedule() - One of the most important steps in creating a dynamic environment is 

handled by this routine, here schedules for dynamic cones, moving agents and updating 

agent statistics (Graph and Histogram) are handled. Each item, that is Cones (if

dynamic), agents and statistics all have their individual schedule that can be

associated to the simulating computer's “tick” rate. In the schedule assigned to the

agents, their behavioural algorithm can be called that determines their next

movement.

buildDisplay() - The contour colour arrangement for each cone's gradient is serviced by 

this call.  Each cone's height is limited from 1 to 100 and a colour gradient (RGB) has 

been assigned to each magnitude of height as shown in the table 1 below.
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Table 1: Colour gradient assigned to each cone's height

Cone Height (some arbitrary units) Colour gradient (RGB)
1 to 33 Aqua (0, 255, 255)  to Green (0, 255, 0)
33 to 67 Green (0, 255, 0) to Orange(255, 255, 0)
67 to 100 Orange(255, 255, 0)  to Red (255, 0, 0)
0 (0,0,0) white (no cones)

displaySurf.display()- Finally, this routine displays the cones and agents on the surface 

of the plot.

3.13.2 Repast User Interface
Repast Tool bar 
Repast tool bar is given in figure 22.

Figure 22: Repast tool bar

The repast tool bar consists of Play (1), Step (2), Initialize (3), stop (4), pause (5) and

exit/close (6). Pressing Initialize as self described will initialize the repast simulation plus 

setup the cones and provide initial locations for the agents. Initialization is not required to 

be pressed prior to start of the simulation. Either pressing Play or Step will initialize the 

simulation prior to continuous or stepping through the simulation. Once play has been 

pressed the simulation can be stopped (4) or paused (5).

Cones Settings: The cones Settings menu provides the user selectable options to run the 

simulation. The cones settings used in the thesis are given in the figure 23.

Dynamic: The check box allows the user to select a moving landscape (moving cones) 

and unchecked is for a static landscape. 

Find Agent : feature allows the user to enter the agents ID number (numeric) to identify 
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the location of the agent by changing the agent's colour.

Hop steps: The number of pixels to take a step.

HillAlg: Strategy 1 in Chapter 3.

KnwSearch: Strategy 7 in Chapter 3.

Mutation: The mutation probability for Strategy 5 will 

be entered here.

Neighbours: Strategy 6 in Chapter 3.

NtBiasedProb: Strategy 3 in Chapter 3.

NtEqlProb: Strategy 2 in Chapter 3.

RunLength:  The number of steps that the simulation 

will run.  

SituationalKnw: Strategy 4 in Chapter 3.

TopoKnw_Situ: Strategy 9 in Chapter 3.

TopographicalKnw: Strategy 8 in Chapter 3.

WorldXSize,  WorldYSize -  defines the size of the  

canvas.

Figure 23: Cones Settings

3.13.3 Cones Model
Cones  model  is  the  main  class  that  initializes  repast,  ConesSpace,  ConesAgent  and 

statistics. In addition, this class also schedules the ConesSpace, ConesAgent and statistics 

of the agents (Histogram and Graph) for simulation.
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3.13.4 Cones Space
Cones Space class generates the cones based on the paper [A Test Problem Generator for 

Non-Stationary Environments] The cones are generated in a Cartesian coordinates space 

where the x range is [-1,  1) and the y range is [-1, 1) based on the df1 function and then 

translated to a pixel range of width [0,  200) and height [0, 200). A sample of the cones 

space layout and colour gradient is shown below in figure 24.

3.13.5 Cones Agents
Agents will behave according to the selected strategy.

3.13.6 Statistics
The agent statistics are displayed 

in  a  graph  and  histogram  form. 

Also  beneath  the  histogram  are 

time steps traversed by the agents 

to  reach  the  peaks  of  the  cones. 

To determine the time (number of 

steps)  was  divided  into  two 

counters. The reason was, because 

in  the  cones  space  and  wider 

bases may have  very smallslopes 

resulting in the agent hovering at 

a given height above ground level 

(pixel height = 0).

Figure 24: Landscape with 5 cones
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The figure 25 below illustrates the scenarios:
(1)     peak             (2)     peak    (3)    peak

Figure 25: Scenarios of peaks

Scenario 1 has a slope of 1 vertical height unit per 1 horizontal pixel.

Scenario 2 has a slope of 2 or more vertical height units per 1 horizontal pixel.

Scenario 3 has a slope of 1 vertical height unit per 2 or more horizontal pixels.

With scenario 1 and 2 for every movement of the agent on the slope of the cone results in 

finding a height pixel until the peak is reached. However with scenario 3 after the agent 

climbs one vertical height unit the agent has to traverse horizontally to reach the next 

highest pixel at random. Therefore to determine the time (number of steps) to reach the 

peak two counters were used. The main counter keeps track of steps with an increasing 

height  of  the  agent  and  this  counter  stops  when  the  agent  moves  horizontally.  The 

secondary counter keeps track of horizontal movement and adds its value to the main 

counter on detection of height followed by the secondary counter being reset to zero. 

Finally the time to reach the peak is the value in the main counter. The pseudo code is 

given in figure 26.

1 While(simulation running)

2 if (new height found)

3 main_ctr = main_ctr + 1 + secondary_ctr;

4 secondary_ctr = 0;

5 else
6 secondary_ctr = secondary_ctr +1,

7 loop
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Figure 26: Number of steps taken to reach a peak

Graph
The graph in figure 27 contains the following,

• The light blue line shows the minimum cone's height

• The dark blue line shows the maximum height of the agents at that time step 

• The red line shows the average height of all the agents.

• Black line shows the highest cone's height.

Figure 27: Example of a graph
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Chapter 4: Experimental Setup

We performed experiments to find out which strategy is able to find the highest peak 

faster. Experiments were done on both the static and the dynamic environments. All the 

nine strategies explained in chapter 3 were tested in each of the following combinations.

 10 cones and 20 agents in static/ dynamic environments with neighbours within 10 

and 50 pixels.

 10 cones and 10 agents in static/ dynamic environments with neighbours within 10 

and 50 pixels.

 10 cones and 5 agents in static/ dynamic environments with neighbours within 10 

and 50 pixels.

 5 cones and 20 agents in static/ dynamic environments with neighbours within 10 

and 50 pixels.

 5 cones and 10 agents in static/ dynamic environments with neighbours within 10 

and 50 pixels.

 5 cones and 5 agents in static/ dynamic environments with neighbours within 10 

and 50 pixels.

The above mentioned six tests fall into two categories that are 10 cones and 5 cones.

For both categories, initially the cones and the agents were randomly deployed and the 

cone locations and the agents starting points were saved into files. Then for the next test 

in the same category the cones and the agents were loaded from the files. This was done 

for comparison purposes, since if the cones and the agents in a category are not in the 

same place for all the tests in that category we cannot compare the results and come to a 

conclusion on which strategy is the best.  The results of the tests are given below,
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4.1 Static Environment – 10 cones and 20 agents 

Strategy S1: Hill Climbing Algorithm. 

In this algorithm only one agent was able to find the highest peak as shown in figure 28. 

For more details see section 3.4. Agents average was about 50 pixels for 150 steps.

Figure 28: Strategy S1 – static - Hill Climbing Algorithm with 10 cones and 20 agents

Strategy S2: Equal Probability of Reputation for selecting a neighbour.

In this strategy initially all the agents will get a reputation of 0. Then each agent by using 

equal probability (50/50 probability of picking any neighbour) will pick a neighbour. For 

more details see section 3.5. In this strategy none of the agents were able to find the 

highest peak as shown in figure 29. Agents average was about 65 pixels for 150 steps.
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Figure  29:  Strategy  S2  –  static  -  Equal  Probability  of  Reputation  for  selecting  a  

neighbour with 10 cones and 20 agents.

Strategy S3: Biased probability of Reputation for selecting a neighbour.
In this strategy for some agents to get reputations, equal probability of reputation strategy 

(S2) will run for the first five steps. Then each agent by using biased probability will 

select a neighbour. For more details see section 3.6. In this strategy none of the agents 

were able to find the highest peak as shown in figure 30. The average was about 68 pixels 

for 150 steps.
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Figure  30:  Strategy  S3  –  static  -  Biased  Probability  of  Reputation  for  selecting  a  

neighbour with 10 cones and 20 agents.

Strategy S4: Situational Knowledge of Cultural Algorithm
At every tenth iteration the top 10% agents heights are passed to the belief space which is 

a global repository. The agents can randomly by using equal probability, select whether to 

pick an agent from the belief  space or from the neighbourhood. For more details  see 

section 3.7. In this strategy none of the agents were able to find the highest peak as shown 

in figure 31. The average was about 39 pixels for 150 steps.

Figure  31: Strategy S4 – static - Situational Knowledge of Cultural Algorithm with 10  
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cones and 20 agents.

Strategy S5: Situational Knowledge and Mutation
The  user  can  enter  a  mutation  probability(ex:  0.05),  then  at  every  10  iterations,  the 

random number generator will generate a number and if its between 1-5, then that agent 

will  be mutated,  and will  continue to be mutated until  the next tenth iteration.  If  the 

number that the random number generates is not between 1-5, then that agent will use S4 

strategy to  move.  That  agent  is  not mutated.   Once an agent  is  mutated,  random x,y 

coordinates will be generated and the agent will continue to move towards that direction 

till the next tenth iteration. The test was carried out by entering 0.05 for the mutation 

probability. For more details see section 3.8. In this strategy none of the agents were able 

to find the highest peak as shown in figure 32. The average was about 65 pixels for 150 

steps.

 

Figure 32: Strategy S5 – static - Situational Knowledge and Mutation with 10 cones and 

20 agents.

Strategy S6 : Neighbours and Domain Knowledge of Cultural Algorithm
At each step all the agents will check within 50 pixels apart for neighbours. If there are 

neighbours then will get their maps and update it's own map. Then will select the closest 
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location that none of its neighbours have been and travel there. Then on their way when 

they come across a cone instead of climbing it they will calculate the peak of the cone. 

Domain knowledge is used to calculate the peak of a cone.  For more details see section 

3.9. In this strategy all the agents were able to find the highest peak as shown in figure 33. 

The agents took about 45 steps to reach the highest peak.

Figure  33:  Strategy  S6  –  static-  Neighbours  and  Domain  Knowledge  of  Cultural  

Algorithm with 10 cones and 20 agents.

Strategy  S7  :  Situational,  Domain,  Historical,  and  Topographical  knowledge  of 
Cultural Algorithm along with surrounding heights and the neighbours.
Each agent will get information from the Cultural Algorithm's knowledge sources such as, 

Situational  knowledge,  Topographic  knowledge,  Historical  knowledge,  domain 

knowledge, also from the neighbour's who are within 50 pixels and the surrounding area. 

Then the agent will update it's map with this information and will pick the closest location 

that  none  of  its  neighbour's  have  been  nor  a  location  given  by the  above mentioned 

knowledge sources. After each step each agent will check its map to find whether it is 

complete. If it is complete then will look for the highest height in the map and will update 

the situational knowledge and set the map complete flag to true. Then all other agents 

will get the highest height from situational knowledge and everyone will travel to the 
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highest height. For more details see section 3.10. In this strategy all the agents were able 

to find the highest peak as shown in figure 34. The agents took about 47 steps to reach the 

highest peak.

Figure  34: Strategy S7 – static  -  Situational,  Domain,  Historical,  and Topographical  

knowledge of Cultural Algorithm along with surrounding heights and the neighbours with  

10 cones and 20 agents.

Strategy S8: Topographical Knowledge of Cultural Algorithm
The landscape is divided into cells where a master topographical map has sixteen equal 

cells where each cell is 50 by 50 pixels. According to the locations of the agents they will 

be assigned to the nearest cell. Once an agent lands on a cell the agent will start exploring 

the cell and will check for agents within 50 pixels apart(neighbours) then will update its 

map with the value(s) given by the neighbours and also with its own explored locations. 

This way more than 1 agent would not explore any area that was explored by another. 

Then when it has finished exploring that particular cell the agent will check in the master 

map for cells that are not been explored by any agent. If there are any unexplored cells 

then that agent will be assigned to that cell. If there are no more unexplored cells then the 

agents who have finished exploring their assigned cells will come to the middle of the 

landscape. Once all the agents are in the middle, then they will update their maps and get 
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the highest height and travel to the highest height.  For more details see section 3.11. In 

this strategy all the agents were able to find the highest peak as shown in figure 35. The 

agents took about 55 steps to reach the highest peak. This is within the worst case (Twc) 

and best case (Tbc) steps with 1 agent.

Figure 35: Strategy S8 – static - Topographical Knowledge of Cultural Algorithm with 10  

cones and 20 agents.

Strategy S9: Modified S8
This strategy is very similar to strategy 8. Once all the agents have finished exploring 

their cells instead of travelling to the middle of the landscape as in strategy 8, they will 

calculate the highest height and travel to the highest height. For more details see section 

3.12. In this strategy all the agents were able to find the highest peak as shown in figure 

36. The agents took about 51 steps to reach the highest peak. This is within the worst case 

(Twc) and best case (Tbc) steps with 1 agent.
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Figure 36: Strategy S9 – static - Modified S8 with 10 cones and 20 agents.

4.2 Dynamic Environments – 10 cones  and 20 agents 
Initially just like the static environment cones will be deployed on the landscape. Then 

after hundred steps the cones will be moved to different locations. Then after the next 

hundred steps (two hundred steps) not only the cones will be moved but also the heights 

of all the cones will be changed. This will be repeated for five hundred steps. Then at the 

five hundredth step the landscape that was loaded initially will be loaded again and then 

the next landscape (the landscape that was loaded at the hundredth step) will be loaded. 

When the environment changes the agents will start exploring from where they stopped.

Strategy S6 : Neighbours and Domain Knowledge of Cultural Algorithm
The performance of the agents are shown in figure 37 and the results of this test are given 

in table 2.
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Figure  37:  Strategy  S6  –  dynamic-  Neighbours  and  Domain  Knowledge  of  Cultural 
Algorithm with 10 cones and 20 agents

Strategy  S7  :  Situational,  Domain,  Historical,  and  Topographical  knowledge  of 
Cultural Algorithm along with surrounding heights and the neighbours.
The performance of the agents are shown in figure 38 and the results of this test are given 

in table 2.

Figure  38: Strategy S7 – dynamic-Situational, Domain, Historical, and Topographical  

knowledge of Cultural Algorithm along with surrounding heights and the neighbours with  

10 cones and 20 agents.
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Strategy S8: Topographical Knowledge of Cultural Algorithm
The performance of the agents are shown in figure 39 and the results of this test are given 

in table 2.

Figure 39: Strategy S8 – dynamic-Topographical Knowledge of Cultural Algorithm with  

10 cones and 20 agents

Strategy S9: Modified S8
The performance of the agents are shown in figure 40 and the results of this test are given 

in table 2.
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Figure 40: Strategy S9 – dynamic-Modified S8 with 10 cones and 20 agents.

Table 2: Results of the strategies with 10 cones and 20 agents with neighbours within 50  
pixels

Strategy Static 
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4
S3(Best  out  of 
non  knowledge 
strategies)

N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F
S6 45 49 48 50 53 50.00
S7 47 49 52 55 52 52.00
S8 55 51 51 52 51 51.25
S9 50 50 50 51 50 50.25
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Table 3: Results of the strategies with 10 cones and 20 agents with neighbours within 10  
pixels

Strategy Static 
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4
S3(Best  out  of 
non  knowledge 
strategies)

N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F
S6 74 74 80 72 70 74.00
S7 76 76 110 70 70 81.50
S8 58 58 60 65 58 60.25
S9 52 52 50 60 50 53.00

4.3 Static and Dynamic Environments – 10 cones and 10 agents
The Table 3 given below contains the results of the tests. The first five strategies were run 

for 150 steps. The rest of the strategies were run till all the agents reached the highest 

peak.   
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Table  4:  Results of the strategies of 10 cones and 10 agents with neighbours within 50  
pixels

Strategy Static 
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4
S3(Best  out  of 
non  knowledge 
strategies)

N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F
S6 53 55 60 70 N/F 61.66* 
S7 52 55 70 80 65 67.50
S8 79 75 80 90 80 81.25
S9 75 70 80 85 80 78.75
*- The average of all the valid tests

Table  5:  Results of the strategies of 10 cones and 10 agents with neighbours within 10  
pixels

Strategy Static 
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4 N/F
S3(Best  out  of 
non  knowledge 
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 138 138 N/F 140 130 136.00 
S7 105 105 140 110 130 121.25
S8 80 80 90 100 90 90.00
S9 75 75 70 80 70 73.75
*- The average of all the valid tests

4.4 Static and Dynamic Environments – 10 cones and 5 agents
The Table 4 given below contains the results of the tests. The first five strategies were run 

for 150 steps. The rest of the strategies were run till all the agents reached the highest 
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peak.   

Table  6:  Results of the strategies of 10 cones and 5 agents with neighbours within 50  
pixels

Strategy Static 
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4
S3(Best  out  of 
non  knowledge 
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 105 105 95 95 90 96.25 
S7 109 110 95 100 105 102.5
S8 120 120 130 140 125 128.75
S9 124 120 120 135 130 126.25

Table  7:  Results of the strategies of 10 cones and 5 agents with neighbours within 10  
pixels

Strategy Static 
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4
S3(Best  out  of 
non  knowledge 
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 N/F N/F N/F N/F N/F  N/F
S7 280 N/F N/F N/F N/F N/F
S8 125 125 130 130 150 133.75
S9 122 122 120 130 130 125.50
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4.5 Static and Dynamic Environments – 5 cones and 20 agents
The Table 5 given below contains the results of the tests. The first five strategies were run 

for 150 steps. The rest of the strategies were run till all the agents reached the highest 

peak.   

Table  8:  Results of the strategies of 5 cones and 20 agents with neighbours within 50  
pixels
Strategy Static 

Env.
Dynamic Env. Average of Dynamic

(steps)
En1 En2 En3 En4

S3(Best  out  of 
non  knowledge 
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 45 45 45 50 65 51.25 
S7 45 48 60 75 60 60.75
S8 56 55 60 70 55 60.00
S9 52 50 50 55 50 51.25

Table  9:  Results of the strategies of 5 cones and 20 agents with neighbours within 10  
pixels
Strategy Static 

Env.
Dynamic Env. Average of Dynamic

(steps)
En1 En2 En3 En4

S3(Best  out  of 
non  knowledge 
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 72 73 71 71 72 71.75
S7 75 74 105 65 73 79.25
S8 58 60 65 68 59 63
S9 53 56 52 58 50 54
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4.6 Static and Dynamic Environments – 5 cones and 10 agents
The Table 6 given below contains the results of the tests. The first five strategies were run 

for 150 steps. The rest of the strategies were run till all the agents reached the highest 

peak.  

Table  10:  Results of the strategies of 5 cones and 10 agents  with neighbours within 50 
pixels

Strategy Static 
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4
S3(Best  out  of 
non  knowledge 
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 56 55 60 70 75 65.00 
S7 53 55 65 70 65 63.75
S8 79 70 75 85 72 75.50
S9 75 70 80 90 70 77.50

Table  11:  Results of the strategies of 5 cones and 10 agents  with neighbours within 10 
pixels

Strategy Static 
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4
S3(Best  out  of 
non knowledge. 
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 135 140 N/F 130 132 134
S7 126 128 132 105 122 121.75
S8 83 85 86 95 90 89
S9 75 76 78 85 86 81.25
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4.7 Static and Dynamic Environments – 5 cones and 5 agents
The Table 7 given below contains the results of the tests. The first five strategies were run 

for 150 steps. The rest of the strategies were run till all the agents reached the highest 

peak.  

Table  12:  Results of the strategies of 5 cones and 5 agents  with neighbours within 50 
pixels

Strategy Static 
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4 N/F
S3(Best  out  of 
non  knowledge 
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 105 105 90 90 85 92.50 
S7 100 110 100 100 110 105
S8 120 120 130 140 130 130.00
S9 122 120 120 135 120 123.75

Table  13:  Results of the strategies of 5 cones and 5 agents  with neighbours within 10 
pixels

Strategy Static 
Env.

Dynamic Env. Average of Dynamic
(steps)

En1 En2 En3 En4 N/F
S3(Best  out  of 
non  knowledge 
strategies)

N/F N/F N/F N/F N/F N/F

S4 N/F N/F N/F N/F N/F N/F
S5 N/F N/F N/F N/F N/F N/F
S6 N/F N/F N/F N/F N/F N/F
S7 N/F N/F N/F N/F N/F N/F
S8 125 126 128 130 128 128
S9 123 128 126 125 129 127

72



Chapter 5: Discussion

5.1 Simulation Statistics
Figures 41 and 42 compares the number of steps taken for all  the agents to  find the 

highest peak in both static and dynamic environments.
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Figure 41: Shows the number of steps that all the agents required to find the highest peak  

for strategies S6 – S9 in both the static and the dynamic environments with 10 cones  

(neighbour size 50 pixels).
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Figure 42: Shows the number of steps that all the agents required to find the highest peak  

for strategies S6 – S9 in  both the static  and the dynamic environments with 5 cones  

(neighbour size 50 pixels).

Figures 43 to 45 shows that the number of steps the agents took to find the highest peak 
for strategies S6 – S9 in both the static and the dynamic environments were not dependent 
on the number of cones.

Figure 43: Shows the number of steps 20 agents are required to find the highest peak for  

strategies  S6  –  S9  in  both  static  and  dynamic  environments  with  5  and  10  cones  

(neighbour size 50 pixels)
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Figure 44: Shows the number of steps 10 agents are required to find the highest peak for  

strategies  S6  –  S9  in  both  static  and  dynamic  environments  with  5  and  10  cones  

(neighbour size 50 pixels).

Figure 45: Shows the number of steps 5 agents are required to find the highest peak for  

strategies  S6  –  S9  in  both  static  and  dynamic  environments  with  5  and  10  cones  

(neighbour size 50 pixels).
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Figure 46: Shows the influence of the neighbour size on the simulation with 10 cones and  

20 agents.

Figure 47: Shows the influence of the neighbour size on the simulation with 10 cones and  

10 agents.
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Figure 48: Shows the influence of the neighbour size on the simulation with 5 cones and  

20 agents.

Figure 49: Shows the influence of the neighbour size on the simulation with 5 cones and  

10 agents.

Note: Charts showing Neighbour size on time for 5 cones & 5 agents is not shown as the 
strategies S6 and S7 did not find any the cones within 150 steps.
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5.2 Statistical Results

By analysing  the  test  results  that  were  presented  in  chapter  4  we  can  clearly 

observe that in strategies S1 to S5, all the agents were not able to find the highest peak. 

However in strategies S6 to S9 all the agents were able to find the highest peak. 

Given the  landscape  canvas  of  200 by 200 pixels,  theoretically  an  exhaustive 

approach would take 40000 steps in total to determine the highest peak. In strategies S6 to 

S9, each agent has a map scaled one tenth the size of the landscape. The map (20 x 20 

cells, where each cell represents and area of 10 x 10 pixels) allows each agent to identify 

explored areas and reconstruct the landscape of the canvas as it travels. Furthermore, this 

also reduces the exploration to no more than 400 steps (1%). However the drawback is 

that since only one pixel in each 10 x 10 pixel area is sampled there can be instances 

where two cones have close but unequal heights on the landscape in which case,  the 

highest peak may not be found. On the other hand if a unique cell exists where all the 

pixels in the 10 x 10 cell have values greater than any other cell, then the highest peak 

will be found. Once all the agents reach the cell where the highest peak is located, Hill 

Climbing algorithm (S1) is used to reach the peak.

Based on the statistical data for S6 to S9 the most influence on time to find the 

highest peak is the number of agents. The statistics also shows that the number of cones 

have no effect on strategies S6 to S9. This is confirmed since the strategies are based on 

dividing  the  landscape  irrespective  of  the  number  of  cones.  The  goal  is  to  find  a 

strategy(s) in which all the agents are able to reach the highest peak  (global optimum) the 

fastest. 

It  has  been  hypothesized  in  section  1.3  that   domain  based  topographic 

exploitation strategies are better than the other strategies. From the statistics it  can be 

observed that a topographical approach (S6 to S9) produced better and close results. With 

strategies S6 and S7 where the agents are going in search of unexplored agent map cells, 

the agents can consume many steps along the way towards unexplored cells. Furthermore, 

base on results in figure 46, 47, 48 and 49 the performance of S6 and S7 are heavily 
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dependant on neighbour size, where a larger neighbour size produced better results. With 

strategies S8 and S9, the agents are assigned to sections of the topographical map where 

the agents have minimal (if there are more than sixteen agents) or no overlap with another 

agent. 

 Although S8 and S9 did not always show better results than strategy S6 and S7 as 

in  the  case  with neighbour  size  of  50 pixels,   S8 and S9 had the least  influence on 

neighbour size and showed better results than S6 and S7 with a small neighbour size of 10 

pixels. Furthermore with S8 and S9 the landscape is explored in a more efficient “divide 

and concur” approach integrated with knowledge sharing. 

Therefore based on the results,  domain based topographic exploitation strategies, 

Strategy S8: Topographical Knowledge of Cultural Algorithm; and Strategy S9: Modified 

S8, provided overall better results than other presented strategies.
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Chapter 6: Conclusion and Future Work

6.1 Conclusion
Our main goal was to incorporate several Cultural Algorithms knowledge as a group or 

individually  to  socially  motivated  population  based  algorithms  in  which  the  entire 

population as a whole is able to find the global optimum. Therefore we incrementally 

developed  a  number  of  strategies  of  increasing  complexity  that  are  applied  on  an 

application neutral system which contains static/dynamic environments. 

Strategy 1 - Implemented the Hill Climbing Algorithm. In this the agents are randomly 

scattered  across  the  landscape.  They  will  search  the  surrounding  area  for  a  higher 

location. When a higher location is found they will move there otherwise will continue 

looking for a higher location. This process will be repeated till the agents do not find a 

higher location in the surrounding area.

Strategy 2 – The agents within 50 pixels apart are grouped into social networks. An agent 

by using the equal probability of reputation will select a neighbour and inquire for its 

height. If the neighbour's height is greater than itself then will move by one pixel towards 

that location and increase the neighbour's reputation by one. Otherwise will decrease the 

neighbour's reputation by one and use the Hill Climbing algorithm to move.

Strategy 3 -  The agents within 50 pixels apart are grouped into social networks. An agent 

by using the biased probability of reputation will select a neighbour and inquire for its 

height. If the neighbour's height is greater than itself then will move by one pixel towards 

that location and increase the neighbour's reputation by one. Otherwise will decrease the 

neighbour's reputation by one and use the Hill Climbing algorithm to move.

Strategy 4 – For the first ten steps strategy 3 will be executed. Then at the tenth step by 

using  equal  probability  of  reputation  an  agent  is  able  to  select  a  neighbour  from its 
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neighbourhood or from the belief space of the Cultural Algorithm. If the belief space is 

selected then the agent will inquire from the selected agent for its height. If the height is 

greater than itself then will move by one pixel towards that location and increase that 

particular agent's reputation by one. Otherwise by using biased probability of reputation 

will select a neighbour and execute strategy 3.

Strategy 5 – The user is able to set a mutation probability.  If the user decides not to 

mutate any agent then strategy 4 will be executed. If the user decides to mutate then will 

enter  the  mutation  probability.  When  an  agent  is  mutated  that  agent  will  go  in  the 

direction of a randomly generated location for the next ten steps. 

Strategy 6 – At each step all the agents will check within 50 pixels apart for neighbours. If 

neighbours are found the agent will retrieve their maps and update it's own map. With the 

updated map the agent will select the closest location none of its neighbours have been 

(i.e. by determining the closest initialized value of -1) and travel toward it. On its way if 

the agent comes across a cone it will calculate the peak of the cone without climbing it 

and also will check for neighbours within 50 pixels and update it's map. At the end of 

each update of MyMap the agent checks if it's map is complete (i.e. no more -1s). With a 

complete map, the agent will find the highest height and travel to the location.

Strategy 7 – This is very similar to Strategy 6. Instead of only looking at the neighbours 

maps  to  decide  on  the  next  step  the  agents  will  use  Cultural  Algorithm's  situational 

knowledge,  historical  knowledge,  domain knowledge,  topographic  knowledge and the 

surrounding area  to decide on the next step. Then once an agent's map is complete, The 

situational knowledge is updated with the highest height and myMap complete flag is set 

to  true.  Then  all  agents  will  go  to  the  location  of  the  highest  peak  since  the  entire 

landscape was explored at least by one agent.

Strategy 8 – The landscape is divided into cells where a master topographical map has 

sixteen equal cells where each cell is 50 by 50 pixels. According to the locations of the 
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agents they would be assigned to the nearest cell. Once an agent lands on a cell the agent 

will explore the entire cell and update it's map. Then when it has finished exploring that 

particular cell the agent will check in the master map for cells that have not been explored 

by any agent. If there are any unexplored cells then that agent will be assigned to that cell. 

If there are no more unexplored cells then the agents who have finished exploring their 

assigned cells would come to the middle of the landscape. Once all the agents have come 

to the middle, then they will update their maps and get the highest height and travel to the 

highest height.

Strategy 9 -  This strategy is  very similar to strategy 8. The landscape is  divided into 

sixteen cells. Initially the agents would randomly be scattered on the landscape. There is a 

master topographical map with  sixteen cells. Each agent will be assigned to the closest 

cell  that  is  not  been  explored  by another  agent(if  there  are  less  than  sixteen  agents) 

according to their current location. Once an agent lands on a cell the agent will explore 

the entire cell and update it's map. Then when it has finished exploring that particular cell 

the agent will check in the master map for cells that have not been explored by any agent. 

If there are any unexplored cells then that agent is assigned to that cell. If there are no 

more unexplored cells and all the agents have finished exploring the assigned cells then 

will go through the maps of all the agents and find the location of the highest height. Then 

all the agents will travel to the highest height.  

After performing extensive experiments on both static and dynamic environments, and 

carrying out simulation analysis  as explained in  the previous  chapter  (Chapter 5),  we 

found  that  neighbour  strategy  (S6)  and  knowledge  based  strategy  (S7)  are  highly 

dependent on the neighbour size and topographical knowledge strategy (S8) and modified 

topographical  knowledge  strategy  (S9)  were  not  dependent  on  the  neighbour  size. 

Therefore  we  came  to  the  conclusion  that  domain  based  topographic  exploitation 

strategies of CA play a significant role.
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6.2 Future Work
 Test these strategies in other benchmark functions.

To apply these strategies on multi dimensional landscapes and test the performance.  
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