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Abstract

One important application of DNA microarrays is measuring the expression levels of genes.

The quality of the microarrays design which includes selecting short Oligonucleotide se-

quences (probes) to be affixed on the surface of the microarray becomes a major issue. A

good design is the one that contains the minimum possible number of probes while having

an acceptable ability in identifying the targets existing in the sample. This thesis focuses

on the problem of computing the minimal set of probes which is able to identify each tar-

get of a sample, referred to as Non-unique Oligonucleotide Probe Selection. We present

the application of an Estimation of Distribution Algorithm named Bayesian Optimization

Algorithm (BOA) to this problem. This approach considers integration of BOA and one

simple heuristic. The obtained results compare favorably with the state-of-the-art methods.

We also present application of our method in integration with decoding approach in a mul-

tiobjective optimization framework for solving the problem in the case of multiple targets

in the sample.
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Chapter 1

Introduction

Microarrays are tools used for performing many hybridization experiments in parallel. As

noted by [43], two main applications are considered for microarrays. First application is

measuring the expression levels of thousands of genes simultaneously. Gene expression level

is measured based on the amount of mRNA sequences bound or hybridized to their comple-

mentary sequences affixed on the surface of the microarray. The complementary sequences

are called probes which are typically short DNA strands about 8 to 30 bp [53]. The second

important application of miocroarrays is the identification of unknown biological compo-

nents in a sample [21]. Knowing the sequences affixed on the microarray and considering

the hybridization pattern of a sample, one can infer which targets exist in the sample by

observing appropriate hybridization reactions [43].

Finding an appropriate set of probes to be affixed on the surface of microarray, or in

other words, finding a good design for microarray is a crucial task. The appropriate design

should lead to cost-efficient experiments. Therefore, while the quality of the probe set is

important, the objective of finding the minimal set of probes also should be considered. The

quality of the probe set is discussed in terms of its ability to identify the unknown targets

in the sample. The probe selection problem is discussed in this thesis. Before addressing

the problem, we present a general introduction of the microarrays.

1



1. INTRODUCTION

1.1 Functional Genomics and Microarrays

The research field of functional genomics aims to understand functions of genes, their inter-

actions, and how they are regulated [38]. Experiments are conducted in this research field

in order to obtain knowledge about state of a genomic system. One of the major related

tasks is to obtain knowledge about gene expression and regulation. Several techniques are

applied in order to measure the gene expression. These techniques mostly focus on the

quantification of mRNA molecules in the cell [38]. All of these techniques are based on

the fact that the nucleic acids hybridize to their complements. The constructed hybrid in

these hybridization experiments refer to the built double-stranded molecule from one DNA

strand and one RNA strand.

Some of the frequently used techniques of gene expression measurement are ”northern

blot analysis”, ”RPA (ribonuclease protection assay)”, ”RT-PCR (reverse transcription-

polymerase chain reaction)”, ”SAGE (serial analysis of gene expression)”, and ”in-situ

hybridization”. For further information, refer to [48] and [29].

The disadvantage of these techniques is that they focus on a single gene or a few genes

at a time. On the other hand, the scope of the investigations was extended from a single

gene to studying all the genes at once. Therefore, the current techniques were not able

to satisfy new requirements. This caused the development of ”DNA microarrays”, which

became a proper research tool for functional genomics.

DNA Microarrays or DNA chips (Figure 1.1) are arrays of many DNA molecules (probes)

on a quartz, glass, or nylon surface [38]. The probes are segments of known genes affixed in

the locations called spots on the chip. Targets are mRNA extracted molecules from a blood

sample or tissue, which are labeled with a fluorescent or radioactive dye. The function of

microarrays are based on the construction of RNA-DNA-hybrids or double-stranded DNA.

In the general process of microarray experiments, the targets are allowed to hybridize

to the probes of the chip. In case of finding their complementary sequences in a sample of

targets, probes hybridize to the targets. The targets which have not hybridized are washed

away from the chip, and the amount of hybridization in each spot which can be recognized

by the intensity of the fluorescence or radioactivity, can be used in order to measure the

2



1. INTRODUCTION

Figure 1.1: DNA Microarray

gene expression level. The details of this experiment depends on the microarrays platform.

Four main technology platforms of microarrays that are listed by [38] as follows: ”nylon

membrane arrays” or ”radioactive filters”, ”cDNA arrays” or ”red/green arrays”, ”polynu-

cleotide”, and ”oligonucleotide arrays”. The last one is the subject of this thesis discussion.

[38] distinguishes three important applications of oligonucleotide arrays or DNA chips:

1-gene expression measurements, which is the most important application, and the DNA

chips are commonly used for these measurements because they have high number of spots

on a small surface which allow conducting many expression experiments in parallel. The

researchers are able to apply the obtained information from these experiments to study gene

functions [20], to discover genetic causes of diseases [13], etc. 2-sequencing by hybridization

(SBH) [26], and 3-determination of single nucleotide polymorphisms (SNP)s [5] [23] [16].

An oligonucleotide chip follows these steps from production to analysis of obtained

hybridization data: ”chip production”, ”target preparation”, ”hybridization, washing, and

staining”, ”data acquisition and analysis”.

Finding an appropriate set of probes to be affixed on the surface of microarray, or in

other words, finding a good design for microarray is a crucial task. While the quality of

the probe set is important, the objective of finding the minimal set of probes also should

be considered. The quality of the probe set is discussed in terms of its ability to identify

the unknown targets in the sample. On the other hand, smaller set of probes designed for

the microarrays leads to more cost-efficient experiments, because the number of probes are

3



1. INTRODUCTION

proportional to the number of hybridizations that are performed.

Two approaches are considered for the probe selection problem, namely, unique and

non-unique probe selection. In the unique probe selection, for each single target there

is one unique probe designed to hybridize only to that target. In this case, in specified

experimental conditions, the probe should not hybridize to other targets except for its

intended target. However, due to high levels of similarity in families of closely related gene

sequences, finding unique probes for each target is almost impossible [21] [22] [30] [35] [43]

[51] [52] [53]. When many targets are similar, experimental errors increase. In these cases,

alternative approach is applying non-unique probes.

The non-unique probes are designed to hybridize to more than one target. The non-

unique probe selection problem is to find the smallest probe set that is able to uniquely

identify a set of targets in the sample [53]. Minimizing the probe set is an important

objective. Smaller microarray designs occupy less space on the surface of microarray. This

leads to use smaller chips, and reduce the costs considerably [43].

Our focus in this thesis is on the non-unique probe selection. We propose a method

for solving the non-unique probe selection problem. Given a design containing candidate

non-unique probes, our task is to analyze and minimize the design in order to select the best

possible probe set. The initially given design is presented as a target-probe incidence matrix.

Target-probe incidence matrices contain the targets and probes and their hybridization

patterns. The included probes are the high quality ones selected among all possible non-

unique probes [21]. Computing the initial target-probe incidence matrix in not a trivial

task [22].

1.2 Probe Design

As mentioned, we are given a probe design including good probes which are candidates for

probe selection. The design is given as target-probe incidence matrices, and our task in to

minimize it. Computing a proper design is not a trivial task. Although this thesis does

not include the discussion on the computing of the incidence matrices, in this section, we

briefly explain the important parameters which are considered for this design computation.

4



1. INTRODUCTION

Among a lot of possible non-unique probes, some are selected as the candidate probes

for the chip design. These probes should satisfy criteria of: Homogeneity, Sensitivity, and

Specificity [12] [30].

Homogeneity property discusses about the melting temperature of the probes [12] [30]

denoted by Tm. Tm is a temperature at which half of the DNA molecules have been separated

to single-stranded molecules [42]. In order to satisfy homogeneity property, the melting

temperature of all the candidate probes should be within a predefined range close to the

experiment temperature. This is for ensuring that the probes will hybridize to the intended

targets at temperature about the experiment temperature. This property causes uniform

performance among the probes [49].

In other words, the candidate probes should be isothermal, that is, they should behave

similarly under conditions of hybridization experiment, such as, salt concentration and

temperature [47]. The melting temperature is affected by different factors such as salt

concentration of the solution and the base composition of the DNA. Also, DNA containing

many G-C pairs has a higher melting temperature than one with more A-T pairs [31] [32].

A sensitive probe returns a strong signal when it is beside its complementary target

sequence in the sample. Some probes are self-complementary which means they can fold

back on themselves and this decreases the sensitivity of the probe [47] [49]. A probe prone

to self-complementarity is demonstrated in the Figure 1.2 [12]. The self-complementary

probes form secondary structures [30]. Gibbs free energy is a measure that is applied in

order to predict the stability of secondary structure. The nearest neighbor model can be

used to compute free energy.

Figure 1.2: A probe prone to self-complementarity

5



1. INTRODUCTION

Specific probes are unique ones for each gene of a genome. High specificity decreases

cross-hybridization. Cross-hybridization happens when probes hybridize to targets other

than their specified ones. The probes containing repetitive sequences are likely to cross-

hybridize [30]. In order to increase the specificity of the candidate probe set, probes that

contain repetitive sequences are filtered. This can be performed by means of softwares such

as RepeatMasker [57] which detects the repetitive sequences [47].

A common similarity measure based on Hamming Distance is used for identifying specific

probes. For two strings of a and b, the Hamming Distance (H(a, b)) is defined as the number

of corresponding positions in which two strings have different characters. For instance, if

a = 10111101 and b = 11111000, then H(a, b) = 3. The process of specificity check is

computationally expensive [12]. The brute force approach considers all the genomes of

length n, and searches for all the probes of length m in order to ensure the Hamming

Distances are large enough. Time for this process is of O(mn2).

Except for these three major factors, there are three other constraints proposed by [28]

which can be considered to improve the quality of the candidate probe set [12]: (1) probes

should not contain any of the single bases (A, T, C or G) for more than 50% of their size;

(2) probes should not contain contiguous sequence of As and Ts or Cs and Gs in regions of

more than 25% of the probe size; (3) GC-content should be between 40% and 60% of the

probe sequence.

As mentioned, many parameters such as secondary structure, salt concentration, GC

content, hybridization energy, etc. influence the quality of the probes hybridization [43],

and should be considered carefully in selecting the candidate probes. For instance, at a

given temperature and salt concentration, all probes should exhibit the same hybridization

affinity [22]. Moreover, Hybridization errors such as cross-hybridization, self-hybridization,

and non-sensitive hybridization should also be taken into account in computing the set of

candidate probes for the oligonucleotide probe selection [52]. Candidate probes also should

neither be self-complementary nor should cross-hybridize [22].

6



1. INTRODUCTION

1.3 Non-unique Oligonucleotide Probe Selection

As mentioned before, a unique probe hybridizes to only one target. Due to the difficulty in

finding unique probes for closely related gene families, the unique probe selection approach

is impractical for many datasets. The alternative is non-unique probe selection, in which

a probe can hybridize to more than one target. Our focus in this work in the non-unique

probe selection problem.

A formal definition of the non-unique probe selection problem is presented: Given the

target-probe incidence matrix H, and parameters smin ∈ N and cmin ∈ N, the goal is

to select a minimal probe set such that each target is hybridized by at least cmin probes

(minimum coverage constraint), and any two subsets of targets are separated by means of at

least smin probes (minimum separation constraint) [22] [21]. A probe separates two subsets

of targets if it hybridizes to exactly one of them. We say that a probe hybridizes to a set of

targets when it hybridizes to at least one of the targets in the target set [43]. In other words,

assume two target sets of S and T . If P (S) and P (T ) are the set of probes hybridizing to

S and T respectively, a probe p separates these two sets of targets if p ∈ P (S)∆P (T ) [43].

∆ denotes symmetric set difference. Moreover, target sets S and T are smin-separable if at

least smin probes separates them, that is |P (S)∆P (T )| ≥ smin.

This problem can be considered in two cases of single and multiple targets in the sample.

We illustrate the two cases of probe selection problem with an example. Assume that we

have a target-probe incidence matrix H = (hij) of a set of three targets (t1,...,t3) and

five probes (p1,...,p5), where hij = 1, if probe j hybridizes to target i, and 0 otherwise

(see Table 1.1). The incidence matrix contains the ”good probes” and their hybridization

pattern to targets. the good probes are selected in an earlier step named probe design

(explained in section 1.2) .

The problem is to find the minimal set of probes which identifies all targets in the

sample. First, we assume that the sample contains a single target. Using a probe set of

{p1, p2}, we can recognize the four different situations of ‘no target present in the sample’,

‘t1 is present’, ‘t2 is present’, and ‘t3 is present’ in the sample. The minimal set of probes

in this case is {p1, p2} since {p1} or {p2} cannot detect these four situations.

7



1. INTRODUCTION

Table 1.1: Sample Target-probe incidence matrix

p1 p2 p3 p4 p5

t1 0 1 1 0 0

t2 1 0 0 1 0

t3 1 1 0 0 1

Consider the case that multiple targets are present in the sample. In this case, the

chosen probe set should be able to distinguish between the events in which all subsets (of

all possible cardinalities) of the target set may occur. The probe set {p1, p2} is not good

enough for this purpose. With this probe set, we cannot recognize between the case of

having subset {t1, t2} and {t2, t3} in the sample. Moreover, the probe set {p3, p4, p5} can

distinguish between all events in this case. It should be noted that the incidence matrix

presented here is an unreal example, and its dimensions (number of probes and targets) are

not representative of the real datasets of non-unique probe selection problem. For instance,

the smallest incidence matrix in the literature contains about 256 targets and 2786 probes.

For more information on the datasets properties, see Table 7.1.

The probe selection is proven to be a NP-hard problem [11], and is considered as a

variation of the combinatorial optimization problem minimal set covering problem. We

consider the problem in both cases of single target and multiple targets in the sample. The

focus of the literature has mostly been on the problem of single target, although multiple

targets in the sample is more realistic. In most of the real experiments of target-probe

hybridization, several targets exist simultaneously in the sample, and in general, the identity

of targets in the sample is unknown in advance. Therefore, it is crucial for the selected probe

set of the final design to have the ability to identify several targets in the sample.

1.4 Contribution of this thesis

As mentioned, the non-unique probe selection problem can be approached as an optimiza-

tion problem. The search space of the problem consists of 2p (p = number of probes)

possible solutions which makes this problem impossible to solve exhaustively, even with
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powerful computers [35]. We propose a method based on an EDA (Estimation Distribution

Algorithms), named BOA (Bayesian Optimization Algorithm)(see section 3.2) integrated

with simple probe selection heuristics for both cases of single target and multiple targets

in sample. This work is the first one which considers the ability of the probes to recognize

multiple targets in the sample explicitly as an objective of the optimization algorithm.

The heuristics used in integration with the BOA are Dominated Row Covering (DRC)

and Dominant Probe Selection (DPS) which were proposed in [52] for solving the problem

of non-unique probe selection (see section 4.2). Also, we propose a new heuristic named

Sum of Dominated Row Covering (SDRC), and apply it for a series of experiments. The

non-unique probe selection problem has been considered as optimization problems for the

cases of single target and multiple targets in the sample. We approach the problem in case

of single target in the sample as a one-objective optimization problem. The objective of

this problem is minimizing the number of selected probes. The results of our experiments

compare favorably with the state-of-the-art methods.

The case of multiple targets in the sample is considered as a two-objective optimization

problem. While first objective is minimizing the probe set, the other one is the ability of

the selected set in identifying a predetermined number of targets in the sample. Several

methods have been proposed for solving multiobjective optimization problems efficiently by

means of evolutionary-based algorithms such as BOA (see section 5). We have applied one

of the most efficient methods proposed in the literature.

The definition of the non-unique probe selection problem is realistic when the possibility

of presence of a set of targets in the sample is considered. Only in this case, the obtained

solutions are practical solutions. Therefore, evaluating the ability of the selected (by means

of any method) probe sets in identifying targets of the sample is a critical task. Our work

is the first one that explicitly seeks to maximize the ability of a probe set in identifying

multiple targets in the sample, along with the goal of minimizing the probe set. In order

to measure the ability of selected probe set in identifying multiple targets, we have applied

decoding idea proposed by Schliep et. al [43] (see section 6).

9
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1.5 Organization of this thesis

This thesis is organized as follows. Chapter 2 provides a detailed review on the non-unique

probe selection problem. Then, in subsequent chapters 3.2, 4.2, 6, and 5, we describe the

fundamentals of our algorithm. A review on the main concepts of Bayesian Optimization

Algorithm (BOA) is presented in chapter 3.2, and its advantages over the Genetic Algo-

rithms (GA) are discussed. Also, the heuristics which we have integrated into the BOA are

discussed in chapter 4.2. At the end of this section, we explain how and why we integrate

these heuristics into the BOA in section 4.2. The multiobjective optimization technique

and decoding idea applied in this work are discussed in chapters 5 and 6, respectively. We

discuss the results of our experiments in chapter 7.3.2. Finally, we conclude this research

work with discussion of possible future research directions and open problems appears in

the sections 8.1 and 8.2 of the chapter 8.2, respectively.

10



Chapter 2

Review of Literature

The probes for hybridization experiments were selected mostly randomly or based on the

frequency of occurance of probes sequences in the genes before the work of Herweig et al.

[18]. Other criteria such as G+C content [4] [9], and free energy and melting temperature

[27] were also considered. Herwig et al. [18] emphasized on the importance of selecting

good and informative probes for the experiments, and formulating the problem of probe

selection to be studied systematically. Their work which was focused on the unique probe

selection, was the first one that considered the problem as an explicit optimization problem.

They presented an information-theoretical approach based on entropy maximization to this

problem. Their simple greedy heuristic based on clustering and entropy achieved probe sets

of higher quality than the sets chosen randomly or based on frequency.

Borneman et al. [2] introduced two alternative formulations of the non-unique probe

selection problem, called Minimum Cost Probe Set (MCPS), and other called Maximum

Distinguishing Probe Set (MDPS). The first one focuses on finding a minimal probe set that

is able to identify all the given clones. In the second one, for a given k, we focus on finding

a probe set that is able to distinguish between maximum number of clone pairs. These two

problems are NP-hard problems and variants of the set cover problem [19]. Borneman et

al. [2] proposed two heuristic algorithms for solving these problem. The proposed heuristic
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for MDPS is based on simulated annealing, and the one for MCPS is based on Lagrangian

relaxation.

The work of Rash and Gusfield [40] was based on string barcoding problem which is

useful in identifying an unknown string as one of a set of known strings. Rash and Gusfield

considered genes as strings and the probes as substrings of these original strings. They

used suffix tree to identify the critical substrings and eventually to reduce the number of

variables in an Integer Linear Programming formulation. The ILP formulation was used to

solve the optimization problem. They applied CPLEX [58] to solve the ILP problem.

The works [40] and [2] addressed the application of non-unique probes; But they did

not consider the errors, and also simplified the problem by assuming at most one target to

be present in the sample. As mentioned, this case is a simplified version of the non-unique

probe selection problem.

Schliep et al. [43] proposed a three-stepped methodology (Figure 2.1 [43]) for microarray

design based on a group testing approach [8]. They explained that the selection of candidate

probes was based on an extended version of the longest common factor method [36]. The

most suitable design candidates were selected and the target-probe incidence matrix was

computed. They introduced a fast heuristic in order to select a minimal probe set that was

able to distinguish between most targets sets of small cardinality. Since guaranteeing the

separation of all possible subsets of the original target set was computationally impossible

by their heuristic, they could only guarantee the separation of up to a randomly chosen

number N (e.g. N = 500000) of pairs of target subsets. In this work, for the first time the

idea of decoding was proposed. They presented a Bayesian method in order to evaluate the

ability of the obtained probe set by their fast heuristic in identifying multiple targets in the

sample. In this work, cross-hybridization and experimental errors were explicitly taken into

account for the first time.

Klau et al. [22] stated the ILP formulation for the non-unique probe selection problem,

and used a branch-and-cut algorithm formulation for solving the group separation problem

which guaranteed separation of all possible target sets. However, the preliminary imple-

mentation of Klau et al. was capable of separating only the target pairs. Compared to the
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Figure 2.1: An overview of the three-stepped methodology proposed by [43]

heuristic proposed by Schliep et al. [43], this approach resulted in considerable reduction

in the cardinality of the final probe set. CPLEX [58] was applied to solve the ILP. They

also measured the decoding ability of the obtained probe set, and noticed a mild reduction.

Years later, klau et al. also solved the more general version of ILP formulation which also

includes all the group separation constraints [21] in which groups correspond to multiple

targets. By this extension, the assumption of the multiple targets was realized.

As mentioned, the ILP formulation for the non-unique probe selection was first proposed

in [22] and [21]. Target-probe incidenc matrix (Hij), n probes and m targets and the con-

straints cmin and smin are given. A set of binary variables (xj) are considered corresponding

to the probes (pj) where 1 ≤ j ≤ n, and n is number of probes. xj = 1 if the probe pj is

present, otherwise xj = 0. The non-unique probe selection problem is formulated as follows:

Minimize :
n∑

j=1

xj (2.1)

subject to:
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xj ∈ {0, 1} 1 ≤ j ≤ n (2.2)

n∑
j=1

Hijxj ≥ cmin 1 ≤ i ≤ m (2.3)

n∑
j=1

|Hij −Hkj |xj ≥ smin 1 ≤ i < k ≤ m (2.4)

Function 2.1 indicates the minimization problem of probes. The constraint 2.2 restricts

the variables of the problem to binary-valued ones. The coverage and separation constraints

are demonstrated by 2.3 and 2.4, respectively. In this version of ILP, the constraint 2.4

indicates the single target case of the problem. There is another version of ILP formulation,

proposed in the [21], which contains group separation constraints. Therefore, it covers the

case of multiple targets in the sample. This formulation is as follows:

Minimize :
n∑

j=1

xj . (2.5)

subject to:

xj ∈ {0, 1} 1 ≤ j ≤ n (2.6)

n∑
j=1

|ωtax
j − ω

tay
j |xj ≥ min

d,
n∑

j=1

|ωtax
j − ω

tay
j |

 ∀(tax, tay) ∈ {2T × 2T }, (2.7)

|tax|, |tay| ≤ dmax, tax 6= tay (2.8)

where cmin = smin = d. tax and tay are two sets of targets. The constraints of 2.7 are the

group separation constraints (multiple targets case) and also cover the single target case. If

tax = ∅ and tay = ti for 1 ≤ i ≤ m, the Equation 2.7 and 2.8 satisfies the coverage constraint.

Here, the ILP aims to select two sets of targets which cause the maximal violated group

inequality [21].
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Gasieniec et al. [12] proposed a new direction to confront with the probe selection

problem. They introduced an efficient algorithm named RANDPS that randomly selects

a small number of probes. They conducted their experiments by either one probe (unique

probe) or multiple probes (non-unique probes), and the assumption of only one target in

the sample. Their algorithm takes a set of known genes as input and instead of checking

all possible probes, it randomly picks probes based on some minimal criteria checking.

Considering non-exhaustive search resulted in a algorithm which is efficient in time and

space. The experiments results show that a single probe is sufficient for identifying almost

all the genes uniquely, and the others need at most two probes [12].

Wang et al. [52] has discussed the non-unique probe selection theoretically. The problem

was presented as selection of a d-disjunct submatrix from the original (binary) target-probe

incidence matrix. The submatrix should include the same number of rows (targets) and

minimum possible number of columns (probes). Wang et. al showed that this minimization

problem is MAX SNP-complete, but has a polynomial-time approximation with the perfor-

mance ratio of 1 + 2
(d+1) . This minimization is polynomial-time solvable when every probe

hybridizes to exactly two targets.

In [6], Deng et al. considered the group testing approach in studying the non-unique

probe selection problem. The non-unique probe selection problem is presented in three

steps in this work: 1) Collection of a large set of non-unique probes. 2) Find a minimum

subset of probes to identify up to d viruses. 3) Testing the decoding ability of the result

probe set. Deng et. al focused on the minimization problem (step 2). [6] was a survey

of the computational complexity of the problem considering a non-adaptive group testing

design approach. According to this survey, the best-known group testing design has been

within a factor of O(logd) from the lower bound and the best-known approximation for the

non-unique probe selection in within a factor of O(logn) from optimal solution [6].

Thai et al. [50] focused on the DNA library screening which requires efficient pooling

designs in order to be able to recognize the positive and negative clones. The design of

the decoding algorithm to determine whether a clone is positive regarding the design is a

challenging task. The challenge is due to the experimental errors and presence of inhibitors
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that are clones that neutralize positive clones. The novel decoding algorithm which is

proposed in this work identifies all the positives in the presence of errors and inhibitors.

Deng et al. [7] proposed algorithms for the non-unique probe selection based on the

Integer Linear Programming. Their focus was on the minimization problem while they

paid attention to the decoding ability of the obtained solution. Their design algorithm

first builds a matrix close to a d-disjunct matrix matrix using one ILP. Then another

ILP is formulated for finding the violations of d-disjunctness. Addressing the violations

and formulating another ILP for finding more violations is done recursively until all the

violations are resolved. They claimed that their decoding algorithm is able to identify up to

d targets in the sample with at most k experimental errors, and the algorithm complexity is

O(hn) in which h is the number of selected probes. They also claimed that their decoding

algorithm is much faster than the other methods using d-separable matrix.

Focusing on the single target case, Meneses et al. [30] used a two-phase heuristic in-

cluding, first, construction of a feasible solution containing enough probes able to satisfy

the constraints, and second, reducing the size of the probe set. In the first phase, a feasible

solution is constructed for the ILP formula presented in [22]. Then iteratively this solution

is reduced by removing probes while the solution still satisfies the coverage and separation

constraints. This algorithm outperformed the method of [22] for the largest experimented

dataset; But for the smaller datasets the obtained solutions included more probes than

results in [22].

Ragle et al. [35] also based the work on the ILP formula presented in [22] and applied a

cutting-plane approach with reasonable computation time, and achieved the best results for

some of the benchmark datasets in case of single target. Without using any a priori method

to decrease the number of initial probes, the cutting-place algorithm relaxes a constraint

set in order to find the lower bounds on the number of the required probes for an optimal

solution. Then it improves the lower bound till an optimal solution is obtained. Their

method was able to reduce the cardinality of the final probe set by 20% compared to the

state-of-art methods.

Wang et al. [52] presented deterministic heuristics in order to solve the ILP formulation,
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and reduce the size of final probe set. They applied their heuristic in order to introduce a

population-based approach (without learning phase) for coverage and separation in order

to guide the search for the appropriate probe set in case of single target in the sample.

Recently, Wang et al. [51] presented a combination of the genetic algorithm and the

selection functions used in [52], and obtained results which are in most cases better than

results of [35].
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Chapter 3

Estimation of Distribution Algorithm

named Bayesian Optimization Algorithm

Genetic algorithms are optimization methods based on the selection and recombination

operators. The partial solutions of a problem, called building blocks, are manipulated by

the selection and recombination methods. These two mechanisms rebuild and mix the

building blocks [34]. The general and fixed recombination operators often cause breaking

the building blocks and loosing important information. This can lead to convergence to a

local optimum. The problem of building block disruption is named linkage problem.

The linkage problem became an important deficiency of classic genetic algorithms. This

deficiency caused the classic genetic algorithms not to be able to solve even problems com-

posed of simple partial subproblems [34]. Mainly two classes methods proposed to prevent

the linkage problem and disruption of partial solutions of the problem. First class of meth-

ods are focused on changing the representation of solutions or modifying the recombination

operators. The second class are focused on finding ways to extract information from the

promising data samples and use the information to generate new solutions. EDA was an

approach which proposed in order to resolve the deficiency of the classic genetic algorithms,

and was categorized as a technique of the second class.
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3.1 Estimation of Distribution Algorithm

EDA (Estimation of Distribution Algorithm) method was introduced by Mühlenbein and

Paaß [33] [24]. EDAs are also called Probabilistic Model-Building Genetic Algorithms (PM-

BGA) which extend the concept of classical GAs. Targeting more efficient exploration of the

search space, EDA approach has been proposed. In EDA optimization methods, a sample

of the search space is generated and the information extracted from that sample is used in

order to explore the search space more efficiently.

The EDA (Algorithm 1) is an iterative approach. In initialization (1), a set of random

solutions is generated which is the first sample of search space; The quality of solutions is

evaluated (3); A subset of high quality solutions that have more probability to be chosen is

selected (4); A probabilistic model of the sample is constructed, and the model is used to

generate a new set of solutions (5). The algorithm is repeated from evaluation step.

Algorithm 1 EDA
1: (Random) initialization of set of solutions S0

2: S = S0

3: Evaluation of S

4: Select set of promising solutions Sl

5: Build probabilistic model M of Sl

6: Sample from the Model M and generate new set of solutions S

7: Repeat from 3

3.2 Bayesian Optimization Algorithm

In BOA, which was first proposed by Pelikan [34], the constructed probabilistic model is

a Bayesian Network. A Bayesian Network can be considered as a Directed Acyclic Graph

in which the nodes represent the variables of the problem, and the directed edges intro-

duced between some nodes represent the dependencies among the variables. The important

advantage of constructing a Bayesian Network is discovering and representing the possible
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dependencies between the variables of the problem. The discovered dependencies which are

extracted from the sample of search space, are used to accomplish the target of BOA to

explore the search space more efficiently. Figure 3.1 [59] displays the main iteration of the

BOA.

Figure 3.1: The main iteration of BOA

Based on the generic algorithm of EDA, in BOA, a probabilistic model which is a

Bayesian Network is constructed in step (5) (See Algorithm 1). Learning a Bayesian Network

is basically a two-step process. First the dependencies should be discovered which means

an appropriate network structure should be found, and second, the conditional probabilities

between the variables should be estimated. A local search algorithm is used for the problem

of building the best network from the sample in each iteration of BOA. A metric to measure

the quality of the built network directs the local search. For further information on building

Bayesian Networks, see [17]. After constructing the network, the joint probabilities of

the variables should be estimated. These probabilities can be estimated based on the

frequency of occurrences of the variables in the sample. In optimization problems, there is

a difficult class of problems which contain dependencies among variables, and classical GAs

has been shown not to be able to solve these problems properly [14]. On the other hand,

BOA approach has been more successful in solving such problems. We are interested in

applying BOA approach for the complex problem of non-unique probe selection optimization

problem. In this problem, we considered that each binary variable represents the presence or
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absence of a particular probe in the final design matrix. The dependencies among variables

represent the fact that choosing a particular probe have a consequence on the choice of

other probes in an optimal solution. Pelikan and Goldberg [34] [10] have proven that when

the number of variables and the maximum number of dependencies for any variable are

n and k, respectively, the size of the sample should be about of O(2k.n1.05) to guarantee

convergence with a given probability.

There are several advantages in applying this new approach. First, BOA is known as an

efficient way to solve complex optimization problems. Therefore, it is interesting to compare

it with other methods applied to the non-unique probe selection problem. Second, EDA

methods, by working on the samples of the search space and deducing the properties of

dependencies among the variables of the problem, are able to reveal new knowledge about

the biological mechanisms involved. Finally, with the study of the results obtained from

experimenting different values of the parameter k, BOA provides the ability to evaluate the

level of complexity of the non-unique probe selection in general, and the specific complexity

of the classical set of problems applied to evaluate the algorithms used for solving this

problem in particular.
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Chapter 4

Heuristics

4.1 Introduction

Our algorithm applies three heuristics in combination with the BOA. Two of the heuristics

are those proposed by Wang et al. [52], namely, Dominated Row Covering (DRC), and

Dominant Probe Selection (DPS). A third heuristic has also been used in our experiments,

which we named Sum of Dominated Row Covering(SDRC ). In this heuristic, we modified

the definitions of the functions C(pj) (coverage function), and S(pj) (separation function)

of DRC. As mentioned above, our algorithm integrates simple heuristics to the BOA.

4.1.1 Dominated Row Covering Heuristic

The heuristic Dominated Row Covering (DRC) was proposed by Wang et al. [52]. Given the

target-probe incidence matrix H, probe set P = {p1,...,pn}, and the target set T={t1,...,tm},

two main functions C(pj) (coverage function) and S(pj) (separation function) have been

defined for this heuristic as follows.

C(pj) = max
ti∈Tpj

{cov(pj , ti) | 1 ≤ j ≤ n} (4.1)
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where Tpj is the set of targets covered by pj .

S(pj) = max
tik∈T 2

pj

{sep(pj , tik) | 1 ≤ j ≤ n} (4.2)

where T 2
pj

is the set of target pairs separated by probe pj .

Function C favors the selection of probes that cmin-cover dominated targets. Target ti

dominates target tj , if Ptj ⊆ Pti . Function S favors the selection of the probes that smin-

separate dominated target pairs. Target pair tij dominates target pair tkl, if Ptij ⊆ Ptkl
.

The functions C(pj) and S(pj) have been defined as the maximum between the values of

the functions cov and sep, respectively.

The functions cov and sep have been defined over P × T and P × T 2, respectively, as

follows:

cov(pj , ti) = hij ×
cmin

|Pti |
, pj ∈ Pti , ti ∈ T (4.3)

sep(pj , tik) = |hij − hkj | ×
smin

|Ptik |
, pj ∈ Ptik , tik ∈ T 2 (4.4)

where Pti is the set of probes hybridizing to target ti, and Ptik is the set of probes

separating target-pair tik.

Value of sep(pj , tik) is what pj can contribute to satisfy the separation constraint for

target-pair tik. Value of cov(pj , ti) is the amount that pj contributes to satisfy the coverage

constraint for target ti. Hence, S and C are the maximum values that pj can contribute to

satisfy the minimum separation and coverage constraints, respectively.

The selection function D(pj) which has been defined as follows will indicate the degree

of contribution of pj to the minimal solutions.

D(pj) = max{C(pj), S(pj)} | 1 ≤ j ≤ n} (4.5)
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The probes with high value of D(pj) are good probes that will be selected for the

solution probe set. The coverage and separation functions of DRC have been calculated for

the target-probe incidence matrix of Table 4.1, in Tables 4.2 and 4.3, respectively [52].

Table 4.1: Target-probe incidence matrix

p1 p2 p3 p4 p5 p6

t1 1 1 0 1 0 1

t2 1 0 1 0 0 1

t3 0 1 1 1 1 1

t4 0 0 1 1 1 0

Table 4.2: Coverage function table: C has been calculated based on the DRC definition

p1 p2 p3 p4 p5 p6

t1
cmin

4
cmin

4 0 cmin
4 0 cmin

4

t2
cmin

3 0 cmin
3 0 0 cmin

3

t3 0 cmin
5

cmin
5

cmin
5

cmin
5

cmin
5

t4 0 0 cmin
3

cmin
3

cmin
3 0

C cmin
3

cmin
4

cmin
3

cmin
3

cmin
3

cmin
3

Table 4.3: Separation function table: S has been calculated based on the DRC definition

p1 p2 p3 p4 p5 p6

t12 0 smin
3

smin
3

smin
3 0 0

t13
smin

3 0 smin
3 0 smin

3 0

t14
smin

5
smin

5
smin

5 0 smin
5

smin
5

t23
smin

4
smin

4 0 smin
4

smin
4 0

t24
smin

4 0 0 smin
4

smin
4

smin
4

t34 0 smin
2 0 0 0 smin

2

S smin
3

smin
2

smin
3

smin
3

smin
3

smin
2

The DRC algorithm consists of three phases of : Initialization, Construction, and Reduc-
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tion. In the initialization phase, the D(p) value is computed for each probe of the original

probe set. The probes for which D(p) = 1 are added to an initial probe set (Pini). This

probe set is most probably a non-feasible solution. Therefore, in the construction phase

(see Algorithm 2), high-degree (high-value in D) probes are added to the initial probe set

repeatedly until we obtain a feasible solution (Pcon). In the Reduction phase (see Algorithm

2), the low-degree (low-value in D) probes are removed repeatedly, as long as, the feasibility

of the solution is not disturbed. At the end of this phase, we hope to obtain a minimal

feasible solution (Pred).

4.1.2 Sum of Dominated Row Covering Heuristic

According to DRC algorithm (section 4.1.1), the probes of highest value of D(pj) will be

the candidate probes for the solution probe set. Calculation of the coverage and separation

functions were given in Tables 4.2 and 4.3 based on DRC definitions in rows C and S,

respectively [52]. We see, by definition of DRC functions, the four probes of p1, p3, p4,

and p5 have the same score for the coverage of the dominated targets and the same score

for the separation of the dominated target pairs, and D(p1) = D(p3) = D(p4) = D(p5) =
cmin

3 . Although, it can be noticed from 4.2 and 4.3 that each of these probes has a distinct

covering and separating property. These properties are not reflected by the definitions of

current DRC functions.

In order to capture this information, we modified and redefined the two functions of

C(pj) and S(pj), in the SDRC (see Equation 4.6 and 7.2 below). The values of C(pj) and

S(pj) have been recalculated and presented in Tables 4.4 and 4.5. In the SDRC, the D

score is calculated the same as D function in DRC (see Equation 6.5).

C(pj) =
∑

ti∈Tpj

cov(pj , ti) 1 ≤ j ≤ n (4.6)

S(pj) =
∑

tik∈T 2
pj

sep(pj , tik) 1 ≤ j ≤ n (4.7)
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Algorithm 2 Dominated Row Covering Heuristic
Input: T = {t1, . . . , tm}, P = {p1, . . . , pn}, and H = [hij ]

Output: Near-minimal solution Pmin

begin
/* Initialization Phase */

Compute D(p) for all p ∈ P using Equations (6.3)–(6.5)

Pini ← {p ∈ P | D(p) = 1} /* essential probes only */

/* Construction Phase */

Psol ← Pini

Sort P r Psol in decreasing order of D(p)

for each target ti not cmin-covered by Psol do
ni ← #probes needed to complete cmin-coverage of ti

Psol ← Psol ∪
⋃l=ni

l=1 {next highest-degree probe pl ∈ P r Psol that covers ti}

end

for each target-pair tik not smin-separated by Psol do
nik ← #probes needed to complete smin-separation of tik

Psol ← Psol ∪
⋃l=nik

l=1 {next highest-degree probe pl ∈ P r Psol that separates tik}

end

/* Reduction Phase */

Pmin ← Psol

H ← H|Pmin , /* restriction of H to probes in Pmin */

Compute D(p) for all p ∈ Pmin

Sort Pdel ← {p ∈ Pmin | D(p) < 1} in increasing D(p)

if Pmin r {p} is feasible for each p ∈ Pdel then
Pmin ← Pmin r {p}

end

Return final Pmin
end

4.1.3 Dominant Probe Selection Heuristic

The heuristic Dominant Probe Selection (DPS), proposed by Wang et al. [52], favors the

selection of dominant probes. pj dominates pl if Tpl
⊂ Tpj . As it was shown in the Table
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Table 4.4: Coverage function table: C has been calculated based on the SDRC definition

p1 p2 p3 p4 p5 p6

t1
cmin

4
cmin

4 0 cmin
4 0 cmin

4

t2
cmin

3 0 cmin
3 0 0 cmin

3

t3 0 cmin
5

cmin
5

cmin
5

cmin
5

cmin
5

t4 0 0 cmin
3

cmin
3

cmin
3 0

C 7cmin
12

9cmin
20

13cmin
15

47cmin
60

8cmin
15

47cmin
60

Table 4.5: Separation function table: S has been calculated based on the SDRC definition

p1 p2 p3 p4 p5 p6

t12 0 smin
3

smin
3

smin
3 0 0

t13
smin

3 0 smin
3 0 smin

3 0

t14
smin

5
smin

5
smin

5 0 smin
5

smin
5

t23
smin

4
smin

4 0 smin
4

smin
4 0

t24
smin

4 0 0 smin
4

smin
4

smin
4

t34 0 smin
2 0 0 0 smin

2

S 31smin
30

77smin
60

13smin
15

5smin
6

31smin
30

19smin
20

4.1, Tp1 = {t1, t2} and TP6 = {t1, t2, t3}. Therefore, Tp1 ⊂ Tp6 , and p6 dominates p1.

By selecting dominant probes instead of dominated probes, more targets can be covered.

To favor the selection of a dominant probe that has the same degree as some of its dominated

probes, the definitions of functions cov and sep (Equations 6.3 and 6.4) have been modified

in order to give higher value to dominant probe p rather than the dominated probes. This

is possible with penalizing each entry in Tables 4.2 and 4.3 by an amount that takes into

account the number of targets covered and the number of target-pairs separated by a given

probe. The new cov and sep functions are respectively as follows

cov(pj , ti) = hij ×
cmin

|Pti |
× 1

m− |Tpj |
, (4.8)

where pj ∈ Pti , ti ∈ T , and cov(pj , ti) ∈ [0, 1]; Pti is the set of probes hybridizing to target
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ti, Tpj in the penalty term is the set of targets covered by pj , and m is the number of

targets. By new definition of cov function, probes that cover fewer targets are penalized

more than probes that cover more targets.

sep(pj , tik) = |hij − hkj | ×
smin

|Ptik |
× 1

m(m−1)
2 − |T 2

pj
|

, (4.9)

where pj ∈ Ptik , tik ∈ T 2, and sep(pj , tik) ∈ [0, 1]; Ptik is the set of probes separating target-

pair tik and T 2
pj

is the set of target-pairs separated by pj . By new definition of sep function,

probes that separate fewer target-pairs are penalized more than probes that separate more

target-pairs.

The difference between DPS and DRC heuristics is in the definitions of functions cov

and sep, as described above.

4.2 The combination of BOA and DRC

As mentioned, we have applied the modified version of BOA to the non-unique probe selec-

tion problem. In this version, we have integrated BOA with one of the heuristics described

above. A minimum set of probes should satisfy the coverage and separation constraints.

Since the probe set found by BOA does not guarantee the constraints satisfaction, we have

applied the heuristics in order to guarantee this issue.

In each iterative step of BOA, a sample of solutions is generated. Each solution is a

string of 0 and 1 which represents a set of probes. Each position in the string represents the

presence or absence of a probe in the solution which is noted by 1 or 0, respectively. After

generating the sample of solutions, the feasibility of each solution should be guaranteed

by computing the DRC heuristic. Hence, every solution generated by BOA in the current

sample, is transformed by applying the heuristic, in order to respect the coverage and

separation constraints.

In order to apply the Bayesian Optimization Algorithm, the objective(s) to be optimized

should be determined. An objective is a function that measures the quality of the solutions

for the given problem, and this measure will help explore the search space efficiently in
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order to find good solutions that optimize the objective. In single target case, the goal is

minimization of the probe set. In multiple targets case, in addition to this goal, we want

to maximize the ability of the found probe set in identifying several targets in the sample.

These can be defined as the objective(s) for the BOA. Therefore, for the first goal, we

use inverse of the length of a solution as our objective function. The length of a solution

corresponds to the cardinality of probe set, and it is given by the number of ones in the

solution. For the second goal, in the multiple targets case, we use a modified version of the

decoding idea (see section 6).

This results in forming a one-objective and a two-objective optimization problem in

cases of single targets and multiple targets in the sample respectively. On the other hand,

appropriate multiobjective optimization technique (see chapter 5) should be applied to solve

the two-objective problem.
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Chapter 5

Multiobjective Optimization

Multiobjective optimization refers to optimization problems with several separate objectives

[1]. In these problems, each solution has a value for each objective. In other words, each

solution has several fitness values. The immediate problem caused by this property is

how to judge about the overall fitness of solutions. For instance, a solution may have good

fitness values for some of the objectives, and have weak values for other objectives. Another

solution may have average values for all the objectives. Which of these solutions is better?

This major problem, especially cause the evolutionary-based optimization algorithms to be

confused in convergence to the optimal solution [1]. There is no clear way to compare the

quality of the solutions in this case.

A classical approach to deal with this issue is to make a weighted sum over all the

objectives and try to make a single compound objective to be able to judge about the

overall fitness of the solutions. There are two major problems for this approach. First,

finding the appropriate weights for each objective is not a trivial problem itself. Assigning

wrong weights may cause the evolutionary-based algorithm to converge to an unacceptable

solution. Second, sometimes assigning weights to separate objectives and combining them

is as meaningless as comparing very different criteria and trying to judge which is better

than the other. The literature approach this problem as a ranking problem, and different
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5. MULTIOBJECTIVE OPTIMIZATION

methods are proposed and examined in order to solve this problem.

In solving the non-unique probe selection problem in multiple targets case, we consider

two major objectives. First objective is minimizing the cardinality of the probe set. Second

one is maximizing the ability of recognizing multiple targets existing in the sample by

selecting the most appropriate probes. These two objectives are somewhat contradictory.

We know that in case of selecting more probes, the ability of probe set in recognizing the

targets in the sample increases. Therefore, we decided to use one of the multiobjective

optimization approaches for solving this problem, instead of combining these two objectives

and making one single objective.

Bentley and Wakefield [1] have mentioned an important property for an appropriate

ranking method for evaluating the solutions in multiobjective optimization problems. The

property is range-independence. In most of the complex multiobjective problems, each

objective has an effective range, and the function ranges is non-commensurable [44]. As a

result, in case of combining different objectives and making one single objective from them,

it is possible that the compound fitness is influenced by the values of the objectives of a

larger range more than the objectives of smaller ranges. Hence, in order to ensure that

all the objectives are treated equally, either all the objective ranges should be the same in

order to make them commensurable, or the method should ensure that objectives are not

directly compared with each other.

Bentley and Wakefield [1] have proposed six ranking methods for multiobjective opti-

mization problems: three range-dependent and three range-independent. The most impor-

tant one is Weighted Average Ranking (WAR) which is demonstrated in Algorithm 3. In

this method, the fitness values of the solutions for each objective (noted by “O” in the

Algorithm 3) are extracted and listed separately. In the Algorithm 3, the lists are noted as

“FINESS-LIST”s. The lists are sorted, and based on the position (noted by “P” in Algo-

rithm 3) of each fitness value, a rank (noted by “SOLUTION.RANK” in the Algorithm 3)

is assigned to the fitness value of the solution. For each solution, different ranks obtained

by sorting each list of objectives is averaged (indicated by ** in the Algorithm 3). Since

each objective has been treated separately, this method is range-independent. (Note that
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5. MULTIOBJECTIVE OPTIMIZATION

IMPORTANCE[] is an array of predefined “importance” weights.)

Algorithm 3 Weighted Average Ranking (WAR)
for every objective in problem do

Form a list of the fitness of each solution and pointer to this solution

for current objective do

Sort FITNESS − LIST into order of fitness

end for

end for

Set every SOLUTION.RANK = 0

for every ranking position P in population do

for every objective O in problem do

** FITNESS−LIST for O[P ]− > SOLUTION.RANK+ = P ∗IMPORTANCE

end for

end for

Corne and Knowles [3] have evaluated seven ranking methods using a multiobjective

evolutionary algorithm in cases of having 5, 10, 15, and 20 objectives. They have shown

that the method of average ranking AR (modified version of the WAR of Bentley and

Wakefield) outperforms the other algorithms in most cases. Based on their results, they

recommended using this method for the 2-5 objectives problem. It should be noted that in

their AR method, the value of importance array of “IMPORTANCE[]”, mentioned above,

is set to one.

We have applied this method in our experiments of two-objective problem for solving the

non-unique probe selection problem in the multiple targets case. By applying multiobjective

optimization technique with BOA, we have provided a framework for the problem of non-

unique probe selection. New objectives for the problem which result from further studies

based on the nature of the problem can be added to the framework easily.
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Chapter 6

Decoding

The decoding method proposed by Schliep et al. [43], uses a Bayesian framework to infer the

presence of the targets in the sample. The method is based on Monte Carlo Markov Chain

sampling and it explicitly allows for experimental errors. Assume a probe set of {p1,...,pn}

as the solution of non-unique probe selection, and a result vector r = (r1,...,rn) in which

each ri corresponds to the result of hybridization (0 or 1) of the current sample of targets

to the probe pi. Given the mentioned result vector, the posterior probability that a set of

targets S includes all the targets present in the sample is calculated by Bayes formula as

follows:

P [S|r] =
P [r|S].P [S]

P [r]
(6.1)

P [r|S] is the probability of observing the result vector r, while all and only targets of set

S are present in the sample. In order to formulate the P [r|S], two assumptions were made.

First, the probability of observing a specific result is only related to the number of targets

from the set S that a probe binds to. Second, the observed binding results of probes are

independent from each other. Based on these assumptions, Schliep et al. [43] have defined

the P [r|S] as:
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P [r|S] =
∏
pj

f(rj , |S(j) ∩ S|), (6.2)

where S(j) is the set of targets probes pj hybridizes to and |S(j) ∩ S| is the number

of targets probe pj hybridizes to and also are in the target set S. Note that rj is either

0 or 1. f(0, 0), f(0,≥ 1), f(1, 0), and f(1,≥ 1) are different cases that this function will

have. Considering fp and fn as false positive and false negative rates of the target-probe

hybridization experiments, four cases of f , mentioned above, were set to 1− fp, fn, fp, and

1− fn, respectively.

A prior probability (P [S]) is assigned to every set S from the set of all subsets of the

original targets set. This is the probability of finding only the targets of set S in the sample.

The prior probability of observing k different targets in a sample is denoted by ck, and the

abundance of each target ti in samples including more than one target is denoted by fi.

Hence, the prior probability has been defined as

P [S] ∝ c|S|.
∏
ti∈S

fi

∏
ti /∈S

(1− fi) (6.3)

In the non-unique probe selection, we are interested in calculating the probability of

presence of target t in the sample, given the result vector r. This can be shown by the

marginal p[ti|r] which can be calculated by the posterior of set S over all subsets of T that

include targets t.

P [ti|r] ∝
∑

S:t∈SP [S|r] (6.4)

Since P [r] is not available, the posterior can not be computed directly. On the other

hand, computing the above equation requires an exponential time in terms of the number

of targets. Therefore, the proposed method for this problem by Schliep et al. [43] is Markov

Chain Monte Carlo. By sampling a sufficient number of sets Sk, the marginal P [ti|r] can be

estimated as the frequency of observing t in the sets Sk. A Markov chain is constructed over

all possible sets S, which is the space of all subsets of the original target set. By choosing

P [S|r] as the stationary distribution, Gibbs sampling is applied in this approach. The
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Markov chain is guaranteed to converge to a stationary distribution. After convergence, the

relative frequency of the targets ti in the states Sk that chain visited is used in estimation

of the marginals P [ti|r].

The decoding software was provided to us by Dr. Schliep. We changed the software in

order to use the decoding as one of our objectives in the optimization problem. In order to

measure the ability of each probe set, obtained by BOA, in identifying a set of targets in the

sample, we select a set of true targets. We introduce the experimental errors to the model.

This also helps in solving the non-unique probe selection problem more realistically. The

probes that hybridize to the true targets are assumed to be true positives. In experiments,

we considered fn = 0.05 and fp = 0.05. We removed probes from the positive true probes

according to the false positive rate, and also add probes to the positive probes set according

to the false negative rate.

The obtained design (probe set) is the input for the decoding software, and the output

is a ranked list of targets based on the probability of their presence in the sample. We

examine the ranked list in order to find the true targets among them. We assume that a

given set of targets are carefully identified if in the ranked list of all targets predicted by

the decoding algorithm, the true targets existing in the sample are the only ones ranked in

the first top positions. Based on this, we defined the decoding related objective for BOA.

In our experiments, we randomly select a subset of the original target set as the true

targets set. For l randomly selected targets, there are l possible top positions of 0,1,2, ...,

l−1. We search the sorted list of targets produced by the decoding algorithm for the l true

targets, and their positions. Hence, we will obtain a list of positions : pos1, pos2, ..., posl.

The objective Objdec is defined as following:

Objdec =
1∑l

i=1 posi

(6.5)

Hence, the maximum value for this objective happens when all the true targets are ranked

in the top l position of the list. In this case, the summation is calculated as: (l−1)×(l)
2 . We

examine at most 100 targets in the top of the sorted list. In case of not finding the true

targets in the sorted list, their position value is set to 100. Therefore, the maximum value
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for the positions summation, which corresponds to the minimum value for the objective, is

equal to: l × 100. In this case, none of the initial true targets are found in the first 100

positions of the targets ranked list.
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Results of Computational Experiments

We combined BOA with DRC heuristic for solving the non-unique probe selection problem

for both cases of single target and multiple targets in the sample. In the single target case,

the results of applying our method indicated that we are able to improve the results obtained

by the best methods in literature. We have extended our method, using a multiobjective

optimization technique, in order to cover the multiple targets case which is a more realistic

problem.

Since our method is basically a time-consuming one, we have applied Message Passing

Interface (MPI) technique [15] in order to decrease the execution time of the program. The

MPI is a library of methods for distributed computing. It should be noted that since mi-

croarray design is not a repetitive task, the execution time of the method used for obtaining

a good design is not important. Hence, different methods applied for the problem have been

compared based on the cardinality of the final obtained probe set, and not the computa-

tional time. The experiments were written in c++ and conducted on Sharcnet systems

[54].

The parameters of coverage and separation constraints (cmin and smin) were set to ten

and five, respectively. We calculated the appropriate sample size by applying the condition

of convergence for the BOA which was mentioned in section 3.2. While n is the number of
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variables, the sample size should be of O(2k.n1.05). The number of variables is equal to the

number of real and virtual probes for each dataset in this problem. In all the experiments,

we set the variable k to two. According to the experiments which will be explained in

section 7.2.2, increasing the dependency parameter did not result in better probe sets [45].

This parameter is equal to the maximum number of incoming edges to each node of the

Bayesian Netwrok used in the BOA software [55] to model every sample of the search space.

Other parameters of BOA software have been set to their default values. For instance, the

percentage of the offspring and parents in the sample was set to 50.

7.1 Data Sets

We have performed the experiments on ten artificial datasets called a1,..., a5, b1,..., b5, and

two real datasets HIV1 and HIV2. All previous studies mentioned in section 2 have been

conducted on the same datasets, except for the HIV1, and HIV2 that have not been used

in [22] [21]. As mentioned, the datasets are the target-probe incidence matrices. Properties

of the datasets are presented in Table 7.1. Along with this information, the number of

virtual probes required for each dataset has been noted. The virtual probes are added to

the datasets to guarantee the feasibility of the original probe set. The feasibility is defined

in terms of satisfying the coverage and separation constraints.

The artificial datasets a1,...,a5,b1,...,b5 has been generated by means of Random Evolu-

tionary FORest Model (REFORM) software [39]. Ten first test sets of 256 targets (a1,...,a5)

have been generated by one model, and the next five sets (b1,...,b5) with 400 targets have

been generated by another model. for further information on the sets generation, see [22].

The sets of HIV1 and HIV2 with 200 targets sequences for each have been downloaded

from the National Center for Biotechnology Information (NCBI). These datasets contain

similar sequences that make them appropriate sets for the non-unique probe selection prob-

lem. The candidate probes of these sets have been generation by means of Primer3 software.

The input parametes used for this software are: probe length between 18 and 27 nucleotides,

melting temperature between 57,◦C and 63,◦C, and GC content between 20 and 80%. By

the software, 40 probes for each HIV sequence (eight thousand in total), were generated

38



7. RESULTS OF COMPUTATIONAL EXPERIMENTS

Table 7.1: Properties of the datasets used for experiments. The first ten are artificial, and

the last two ones are real. Number of targets, probes, and virtual probes are noted by (|T |),

(|P |), and (|V |), respectively.

Set |T | |P | |V |

a1 256 2786 6

a2 256 2821 2

a3 256 2871 16

a4 256 2954 2

a5 256 2968 4

b1 400 6292 0

b2 400 6283 1

b3 400 6311 5

b4 400 6223 0

b5 400 6285 3

HIV1 200 4806 20

HIV2 200 4686 35

for each dataset. Before constructing the HIV target-probe incidence matrices, the repeat

probes have been filtered [35].

7.2 Single targets in sample

7.2.1 Experiments with the default parameters:

First series of experiments have been performed with the default parameters of BOA [55].

For instance, the maximum number of incoming edges to each node was set to two, and

the percentage of the offspring and parents in the population was set to 50. The results we

obtain by applying this approach are presented in Table 7.2. The comparison between the

results is based on the minimum set of probes obtained from each approach.

We have named the combination of BOA and heuristics DRC, DPS, and SDRC re-
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Table 7.2: Comparison of the cardinality of the minimal probe set for different approaches:

Performance of various algorithms evaluated using ten datasets with different number of

targets (|T |), probes (|P |), and virtual probes (|V |). The last three columns are showing

the improvement of BOA+DRC over three methods ILP, OCP, and DRC-GA (see Equation

7.1).

Set |T | |P | |V | ILP[22][21] OCP[35] DRC[51] BOA BOA BOA

-GA +SDRC +DPS +DRC

a1 256 2786 6 503 509 502 503 503 502

a2 256 2821 2 519 494 490 492 491 490

a3 256 2871 16 516 543 534 535 533 533

a4 256 2954 2 540 539 537 540 538 537

a5 256 2968 4 504 529 528 530 530 528

b1 400 6292 0 879 830 839 843 837 834

b2 400 6283 1 938 842 852 853 849 846

b3 400 6311 5 891 827 835 839 831 829

b4 400 6223 0 915 873 879 877 877 875

b5 400 6285 3 946 874 890 887 886 879

HIV1 200 4806 20 - 451 450 452 450 450

HIV2 200 4686 35 - 479 476 479 475 474

spectively BOA+DRC, BOA+DPS, and BOA+SDRC. Three columns have been included

related to experiments performed by state-of-the-art approaches Integer Linear Program-

ming (ILP) [22][21], Optimal Cutting Plane Algorithm (OCP) [35], and Genetic Algorithm

(DRC-GA) [51]. The last three columns show the improvement of our approach over each

of the three latest approaches. The improvement is calculated by Equation 7.1.

Imp =
PBOA+DRC

min − PMethod
min

PMethod
min

× 100 (7.1)

where Method can be substituted by either ILP, OCP, or DRC-GA.

The calculated value of Imp is negative(positive) when BOA+DRC returns a probe set
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smaller(larger) than PMethod
min . Therefore, smaller value of Imp shows more efficiency of

the BOA+DRC method. For instance, regarding Table 7.3, for dataset a3, our approach

has obtained 0.18% and 2.02% better results (smaller probe set) than DRC-GA and OCP,

respectively, and 1.35% worse result (larger probe set) than ILP.

Table 7.3: The last three columns are showing the improvement of BOA+DRC over three

methods ILP, OCP, and DRC-GA (see Equation 7.1)

Set ILP[22][21] OCP[35] DRC-GA[51]

a1 -0.20 -1.37 0

a2 -5.59 -0.81 0

a3 +1.35 -2.02 -0.18

a4 -0.55 -0.37 0

a5 +4.76 -0.19 0

b1 -5.12 +0.50 -0.60

b2 -9.81 +0.47 -0.70

b3 -6.96 +0.24 -0.72

b4 -4.37 +0.23 -0.45

b5 -7.08 +0.57 -1.23

HIV1 - -0.22 0

HIV2 - -1.04 -0.42

As shown in the Table 7.2, the best results are obtained with the BOA+DRC, while

we expected better results from the BOA+DPS, because the DPS has shown better perfor-

mance on the non-unique probe selection [52]. The results obtained in the [35] are considered

as the best ones in the literature for the non-unique probe selection problem. As shown in

the 7.2, Wang et. al. [51] have recently reported the results (noted as DRC-GA) which are

comparable to (and in most cases better than) [35].

Comparing our approach to all the three efficient approaches, we have been able to

improve the result of non-unique probe selection for dataset HIV2, and obtain the shortest

solution length of 474. The results we obtained for datasets a1, a2, a4, and HIV1 are also
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equal to the best results calculated for these datasets in the literature. Another comparison

based on the number of datasets is presented in Table 7.4.

Table 7.4: Comparison between BOA+DRC and ILP, OCP, and DRC-GA: Number of

datasets for which our approach has obtained results better or worse than or equal to

methods ILP, OCP, and DRC-GA. In the column average, the average of improvements of

our approach (illustrated in last three columns of Table 7.2) is presented.

Worse Equal Better Average

ILP 2 0 8 -3.36

OCP 5 0 7 -0.33

GA-DRC 0 5 7 -0.36

Another important advantage of our approach over other methods is that BOA can

provide biologists with useful information about the dependencies between the probes of the

dataset. In each experiment, we have stored the scheme of the relations between variables

(probes) which have been found by BOA. As mentioned, by means of this information, we

can realize which probes are related to each other. Therefore, we can conclude the targets,

that these probes hybridize to, also have correlations with each other.

A part of the obtained dependencies between probes for dataset HIV2 is presented in

Figure 7.1. Network display of this output is demonstrated in Figure 7.2. This Figure

indicates parts of the output of the BOA software. Probes 30 to 38 and their dependencies

to other probes are illustrated. As shown, no dependency has been discovered for probes

30, 31, and 34. Probe 32 has two incoming edges from probes 1720 and 4184. It means

that when probes 1720 and 4184 are selected for the final probe set, probe 32 has high

probability to also be selected for solving this problem.

7.2.2 Experiments for investigation of dependency:

We conducted another series of experiments in order to study the effect of increasing the

number of dependencies searched by BOA. The parameter maximum incoming edges rep-

resents this in BOA. As mentioned before, this parameter was set to two for previous
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Figure 7.1: Part of the BOA output for dataset HIV2: the discovered dependencies for

probes 30 to 38 by BOA.

Figure 7.2: Network demonstration of the BOA output from Figure 7.1

experiments. We decided to increase this number to three and four, and repeat the exper-

iments of BOA+DRC for some of the datasets. The results and the number of iterative

steps to converge are shown in Table 7.6.

We did not notice any improvements in results, but comparing cases of k = 2 and k = 3,

the number of iterative steps to converge has been reduced. According to the results, it is

possible that the obtained results are the global optimal solutions for some of the mentioned

datasets. It is also possible that this problem does not contain high order dependencies.

Therefore, search for higher order dependencies does not help to solve the problem. These

should be further investigated with more experiments.
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Table 7.5: Cardinality of minimal probe set for DRC+BOA: the experiment was repeated

in order to investigate the effect of increasing the dependency parameter (k). By gen in the

table, we mean the number of iterative steps of BOA to converge.

Set k = 2 k = 3 k = 4

a1 502 gen:26 502 gen:17 502 gen:19

a2 490 gen:21 490 gen:20 490 gen:15

a3 533 gen:24 533 gen:19 533 gen:17

a4 537 gen:20 537 gen:17 537 gen:22

a5 528 gen:16 528 gen:13 528 gen:15

7.3 Multiple targets in sample

As mentioned, we have extended our method to cover the case of multiple targets for

the non-unique probe selection problem [46]. We applied the multiobjective optimization

technique presented in section 5, and measured the ability of the probe set in identifying

a predetermined number of random targets in the sample as the second objective for our

optimization problem. This ability was measured by applying the decoding idea described

in section 6.

The experiments were conducted in two main series of identification of five and ten

targets, and identification of fifteen and twenty targets in the sample. All experiments

were performed while the number of generations for BOA was set to 40, and the BOA was

combined with only the DRC heuristic in these experiments.

7.3.1 Identification of five and ten targets

In the first series of experiments, the goal was set to measure the ability of the solutions in

simultaneously identifying five and ten targets in the sample. The results are presented in

the table 7.6.

As mentioned, first, we chose to measure the ability of the solutions in identifying

five random targets in the sample. Investigating the obtained results, we realized that

the identification ability of the solutions are higher than the expectation, and a randomly
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Table 7.6: Cardinality of minimum probe set obtained by applying the BOA+DRC in case

of multiple targets in the sample - two cases of five and ten targets in the sample were

considered.
Set BOA+DRC BOA+DRC

(5 targets) (10 targets)

a1 508 515

a2 494 502

a3 537 545

a4 540 546

a5 533 539

b1 867 879

b2 883 897

b3 864 872

b4 891 912

b5 920 938

HIV1 456 458

HIV2 483 487

selected probe set (in first iteration of BOA) is able to identify five targets in the sample

for all the datasets.

As presented in the Table 7.6, the length of the minimal solutions (or number of probes

in final probe sets) for all datasets are greater than what we achieved in one-objective

optimization problem (Table 7.2). This is expected in multiobjective optimization. The

optimization algorithm should compromise between optimizing each of the two objectives.

Therefore, this is natural that objective length has not been minimized as before, especially

while the two objectives are in contradiction with each other. As mentioned, a larger set of

probes results in better decoding ability.

In next step, we decided to increase the number of the targets to ten in order to make

a more difficult optimization problem. Even is this case, our observation was similar to the
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previous step. As mentioned before, we have set the separation constraint (smin) to five.

By applying the DRC heuristic (4.2) in our method, we guarantee the separation of all pairs

of targets by at least five probes. Enforcing this constraint improves the decoding ability

of the obtained probe sets by our method; But the number of targets that can be identified

by the probe sets is not known and should be investigated. Therefore, by performing the

mentioned experiments in case of five and ten targets in the sample, in fact, we determined

the number of targets that can be identified by the probe sets obtained by our method.

We assumed that the problem of decoding could be modified to discovering a threshold

for the difficulty of decoding for each dataset. That is, we can examine further in order

to find the maximum number of multiple targets that can exist in the sample, and the

solutions generated by our method can identify them properly. Finding this threshold and

increasing it will make problems of optimization difficult enough. We expect to obtain

larger sets of probes by solving these optimization problems, as the reason was explained;

But the obtained probe sets will have the ability of identifying larger numbers of targets

in the sample which will be more realistic. We conducted another series of experiments to

investigate our assumption more carefully (see section 7.3.2).

7.3.2 Identification of fifteen and twenty targets

Since the obtained probe sets by our method had a high ability to identify multiple (five

and ten) targets in the sample, we tried to increase the number of targets in the sample,

and make a more difficult optimization problem and find the difficulty threshold of decoding

problem for each dataset. Therefore, we examined the problem in case of fifteen and twenty

targets in the sample.

We conducted new experiments for all the datasets. Table 7.7 indicates the cardinality of

the minimal probe sets obtained for datasets a1,...,a5 in the new experiments. As mentioned

before, the obtained probe sets by multiobjective optimization are larger than the obtained

probe sets by one-objective optimization problem.

Our observations of decoding ability of the probe sets were interesting. We realized that

our attempt to find a difficulty threshold for the decoding problem was right. Not only we
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Table 7.7: Cardinality of minimum probe set obtained by applying the BOA+DRC in case

of multiple targets in the sample - two cases of fifteen and twenty targets in the sample

were considered.
Set BOA+DRC BOA+DRC

(15 targets) (20 targets)

a1 517 524

a2 504 507

a3 549 553

a4 548 552

a5 544 547

could find this threshold for some datasets, but also, by applying our proposed multiobjec-

tive framework, we could improve the decoding ability of the probe sets significantly. For

instance, the improvements of the decoding score (in case of fifteen targets) in 40 iterations

of BOA for dataset a3 is shown in Figure 7.3.

In Figure 7.3, the maximum decoding score obtained in each iteration of BOA is pre-

sented. The maximum possible decoding score for the case of fifteen targets is obtained

when all the targets are identified by the probe set as the top fifteen positions. Therefore,

the value of the maximum score is 1
105 ≈ 0.009524. As shown in the figure, the maximum

decoding score in iterations has been improved from 0.005235 to the maximum possible

decoding score 0.009523. This indicates that our method has been able to solve this opti-

mization problem quiet efficiently.

As described in section 6, the inverse of the maximum decoding score in case of fifteen

targets ( 1
0.009524 ≈ 105) is the summation of the targets positions. Therefore, 105

15 ≈ 7

indicates the average targets positions in the optimal case. By inversing the decoding score,

and dividing it by the number of targets in the sample, we calculate the average targets

position corresponding to the decoding score (Equation 7.2).

AverageTargetsPosition =
∑l

i=1 posti

l
1 ≤ i ≤ l (7.2)
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Figure 7.3: Maximum decoding score for dataset a3 in 40 iterations of multiobjective opti-

mization in case of fifteen targets in the sample.

where ti is the target existing in the sample, and l is the number of targets in the sample.

The average targets position can be used for comparing the obtained results by different

experiments. In order to show the targets identification improvements obtained by the

multiobjective method, we calculated the decoding score for the optimal probe sets obtained

by one-objective optimization problem (see section 7.2), and averaged the score over 50

runs for each of the datasets. We compared the calculated score with the maximum score

obtained by multiobjective optimization. In all cases, considerable improvements were

noticed. The scores and their associated average target position is demonstrated in the Table

7.8. For instance, the average target position identified by the optimal probe set obtained

in case of single target in sample, for dataset a3, is 49.93. By applying multiobjective

optimization method, we have improved this value to its best possible value (7) in case of

fifteen targets in the sample.

It should be noted that although the decoding ability of the probe sets has been sig-

nificantly improved comparing with the probe sets obtained in single target case, during
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40 iterations, the decoding score has not been improved considerably for the datasets a1,

a2, and a5. The problem of identifying fifteen targets in the sample can be considered a

difficult problem for these datasets, and further attempts are required in order to solve these

problems more efficiently.

The same calculations can be conducted for the case of twenty targets in the sample

(see Table 7.9). The maximum decoding score in this case is 1
190 ≈ 0.005263. 190 which is

the summation of twenty targets positions results in 190
15 ≈ 12.67 average target position for

this case.

As presented in the Table 7.9, comparing with the optimal probe set obtained by the one-

Table 7.8: Comparing the average decoding score (Ave Decoding Score) of the optimal

probe set obtained by one-objective optimization with the maximum decoding score (Max

Decoding Score) obtained by the multiobjetcive optimization in case of fifteen targets in the

sample. The average target position (Ave Target Position) corresponding to each score is

also presented. Maximum possible decoding score (0.009523) has been obtained for datasets

a3, a4, b1, b2, b3, b4, b5, and almost for HIV 2.

Set Ave Dec Score Ave Target position Max Dec Score Ave Target Position

a1 0.001300 51.28 0.005235 12.73

a2 0.001304 51.12 0.005235 12.73

a3 0.001335 49.93 0.009523 7

a4 0.001338 49.82 0.009523 7

a5 0.001218 54.73 0.005235 12.73

b1 0.001499 44.47 0.009523 7

b2 0.001486 44.86 0.009523 7

b3 0.001477 45.14 0.009523 7

b4 0.001627 40.97 0.009523 7

b5 0.001476 45.17 0.009523 7

HIV1 0.000956 69.73 0.003597 18.53

HIV2 0.001196 55.74 0.009346 7.13
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Table 7.9: Comparing the average decoding score (Ave Decoding Score) of the optimal

probe set obtained by one-objective optimization with the maximum decoding score (Max

Decoding Score) obtained by the multiobjetcive optimization in case of twenty targets in

the sample. The average target position (Ave Target Position) corresponding to each score

is also presented. The maximum possible decoding score (0.005263) has been obtained for

dadaset b3 and almost b4.
Set Ave Dec Score Ave Target Position Max Dec Score Ave Target Position

a1 0.000920 54.35 0.002747 18.20

a2 0.000898 55.68 0.002695 18.55

a3 0.000885 56.50 0.002824 17.70

a4 0.000988 50.61 0.002808 17.81

a5 0.000828 60.39 0.002293 21.80

b1 0.000989 50.56 0.002391 20.91

b2 0.001067 46.86 0.003690 13.55

b3 0.001177 42.48 0.005236 9.54

b4 0.001152 43.40 0.005263 9.5

b5 0.001037 48.22 0.003690 13.55

HIV1 0.000677 73.85 0.002062 24.24

HIV2 0.001134 44.09 0.002732 18

objective optimization, probe set obtained by two-objective framework has higher ability in

identification of targets. The maximum decoding score after 40 iterations of two-objective

method is always greater than the average score calculated for the optimal solution obtained

by one-objective optimization.

Since the optimization problem in case of twenty targets is a difficult problem, we

did not notice a significant improvement in the value of decoding objective during the 40

iterations of our method for any of the datasets. It means that the current configuration

of BOA is not able to solve this problem efficiently. Therefore, we should try to find a

better BOA configuration to solve this case more efficiently. The possible modifications
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can be performed on the number of iterations of BOA. On the other hand, we think that

we should investigate the impact of the parameter of ‘maximum incoming edges’ on the

decoding objective. The maximum incoming edges, (see section 3.2), determines the level

of dependency among variables in BOA.

Comparison between optimized and random solutions of same length

Following the experiments illustrated in section 7.3.2, we performed another series of inter-

esting experiments on the dataset a3, all the datasets of b-series, and HIV -datasets.

As mentioned before, the minimal length of solutions or the cardinality of the minimal

probe set obtained by our multiobjective optimization framework is more than the minimal

length obtained by the one-objective optimization approach. Furthermore, the solution with

the minimal number of probes is not necessarily the one with the best decoding score. In the

Table 7.10, the minimum length obtained in case of single target in the sample (experiments

of section 7.2, Table 7.2) for some datasets are demonstrated. Along with these, the length

of the solution with the maximum decoding value in case of twenty targets in the sample is

indicated for mentioned datasets.

We conducted a new comparison to illustrate the efficiency of our approach, as follows.

We chose the minimum set of probes obtained by the one-objective optimization approach

for each dataset, and added random probes to this set as far as building a set of the same

cardinality mentioned in the third column of the Table 7.10. Then, the decoding score of the

resulted probe set, for each dataset, was compared with the obtained maximum decoding

score in the case of twenty targets. The result is illustrated in Table 7.11.

As noted in Table 7.11, in the second column, decoding score of a random solution of the

same length of the optimal solution obtained by our two-objective framework is illustrated.

In the third column, the maximum decoding value obtained for the case of twenty targets in

the sample is shown. Considerable increase obtained, by applying optimization algorithm,

can be noticed by comparing these two values for each dataset.

As mentioned before, by increasing the number of the probes, the decoding ability of

the probe set also increases; We noticed that by increasing the cardinality of the probe set,
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Table 7.10: Comparing cardinality of the minimum probe set obtained by one-objective

optimization problem and the cardinality of the solution with the maximum decoding score

in case of twenty targets in the sample.

Set Minimum Length Length

(single target in sample) (of the solution with maximum decoding score)

a3 533 681

b1 834 968

b2 846 989

b3 829 932

b4 875 1159

b5 879 1010

HIV1 450 525

HIV2 474 584

Table 7.11: Comparing the decoding ability of the optimized solution in case of twenty

targets in the sample to the decoding ability of a random solution of the same length.

Set Random Solution Optimized Solution

a3 0.000869 0.002824

b1 0.000893 0.002391

b2 0.000909 0.003690

b3 0.001047 0.005236

b4 0.001094 0.005263

b5 0.001010 0.003690

HIV1 0.000674 0.002062

HIV2 0.000778 0.002732

the decoding ability did not increase as much as when we apply our optimization algorithm.

This proved the efficiency of our algorithm from another aspect.
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Chapter 8

Conclusions

8.1 Summary of Contributions

In this thesis, we presented a new approach for solving the non-unique probe selection

problem. Our approach is based on the combination of one of the EDAs named BOA with

the simple and fast heuristics proposed for solving the non-unique probe selection problem.

We obtained results that compare favorably with the state-of-the-art. Comparing to all the

approaches deployed on the non-unique probe selection, our approach proved its efficiency.

In the case of single target in the sample, it obtained the smallest probe set for most

datasets.

Besides its high ability for optimization, our approach has another advantage over others

which is its ability to indicate dependencies between the variables or probes for each dataset.

This information can be of interest for biologists.

Moreover, for the case of multiple targets in the sample, we applied an extended version

of the combination of BOA and DRC. We considered a second objective for the problem

which was the ability of the selected probe set in identification of multiple targets in the

sample. By applying a modified version of the decoding (chapter 6), we tried to measure

the ability of the solutions in achieving the second goal. Our work is the first one that
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explicitly considers the decoding ability as an objective for the optimization problem.

Our goal was to approach the non-unique probe selection problem in case of multiple

targets as a two-objective optimization problem. We conducted the experiments in case of

five and ten targets in the sample. Examining the results, we realized that identification

of five or ten targets is not a difficult problem for the obtained probe sets. The separation

constraint (smin) in the non-unique probe selection problem improves the decoding ability

of the obtained solutions (probe sets) by our method. Therefore, even in first iteration of

the algorithm, we can find probe sets that are able to identify five or ten targets in the

sample properly.

Since the ability of the solutions obtained by BOA+DRC in identifying the five and

ten targets in the sample was already high, we investigated this problem for finding the

maximum number of targets that can be identified by the solutions obtained by our method,

and improving the ability of decoding. Assumption of fifteen and twenty targets in the

sample constructed difficult optimization problems. Our method was successful in solving

the optimization problem for the case of fifteen targets for the datasets a3 and a4, and

optimization led to obtaining maximum possible decoding ability for the probe sets after

40 iterations.

On the other hand, comparing the decoding ability of the probe sets obtained by one-

objective and two-objective optimization, we noticed a significant improvement by applying

two-objective framework for both cases of fifteen and twenty targets in the sample. More-

over, we believe that our multiobjective-based method makes a flexible framework for the

problem of non-unique probe selection.

8.2 Future Work

As mentioned in the experiments section 7.2.2 related to the one-objective problem or the

case of single target in the sample, we investigated the effect of increasing the dependencies

among variables discovered by BOA for some of the datasets. According to the presented

results, it is possible that the minimal probe sets found for some of these datasets are the

global optimal values. This is a subject that requires more experiments and investigation
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in future.

Also, one specific advantage of our approach is discovering the dependencies among the

variables or probes. These discovered dependencies can be interpreted more precisely by

biologists in order to detect more interesting information about the relation between probes

and the targets to which they hybridize.

In the case of multiple targets in the sample, we are interested in examining the impact of

modification in the BOA parameters on the decoding ability of the solutions. For instance,

the impact of increasing the maximum number of dependencies between the variables on

the decoding ability can be investigated in further studies.

Moreover, as mentioned in the experiments section related to multiple targets, the exper-

iments are performed for 40 iterations of BOA. The possibility of improvement in decoding

ability of the solutions by increasing the number of iterations should be studied.

On the other hand, we believe that our extended approach for the case of multiple targets

is very flexible. Hence, in further studies, it will be interesting to consider new objectives

and integrate them to the optimization problem. For instance, the cost associated to adding

a probe to a microarray chip may differ for several probes. Therefore, a third objective of

obtaining the least expensive design can be considered for the problem. By applying our

proposed approach, it will be possible to embed the new objectives to the problem by using

current flexible structure.
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