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Abstract

This thesis addresses the relationship between camera configuration and 3D Euclidean
reconstruction. Simulations have been conducted and have shown that when error is present,
the larger rotation angle, the worse the reconstruction quality. When rotation is avoided, er-
rors in the intrinsic parameters do not affect the 3D reconstruction in a significant way.
Therefore, it is suggested to minimize or avoid rotation when constructing a stereo vision
system. Once this configuration is applied, inaccurate intrinsic parameters, even without the
prior information of intrinsic parameters, can also yield good reconstruction quality. The
configuration of pure translation also provides a framework, which can be used to compute
elements of intrinsic parameters with an additional geometry constraint. The perpendicular
constraint is selected as an example. Focal length can be recovered from this constraint by
assuming the principal point is the centre of the image.



To the bright future.
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Chapter 1

Introduction

Computer vision is the theory of retrieving, interpreting and utilizing information from a
single image, multiple images or videos. Most of the time cameras are used as the devices to
acquire information. Camera calibration and scene reconstruction are two important tasks
in computer vision, contributing to applications of robot navigation, stereo vision, pattern
recognition, video surveillance, and others. In this thesis, the pin-hole camera model is
adopted: 3D (three dimensional) scene points are projected through a single point (pin-
hole) to an image plane.

Camera calibration is defined as the estimation or calculation of the intrinsic parameters
of a camera. The intrinsic parameters consists of the followings: the principal point (image
centre) coordinates; the focal length, which is the distance between principal point and
camera centre (projection centre); the aspect ratio, which is the ratio of the horizontal size
and the vertical size of a single pixel in a image; and the skew factor, which describes the
distortion of pixels if they are not rectangular. Currently, widely-used commercial CCD
cameras can provide the features which ensure that both the horizontal size and the vertical

size of a single pixel are the same and the pixel is always rectangular. Therefore, in this
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thesis it is convenient to assume that the aspect ratio is 1 and the skew factor is 0.

Scene reconstruction is defined as the process of recovering 3D scene information from
an image or set of images. The projection of 3D scene to a 2D (two dimensional) image is
a process in which we lose one dimension [1], and some useful information has been lost
during the projection. The full reconstruction, which is very important for the upcoming ap-
plication, is to recover the original Euclidean structure of the scene. In order to reconstruct
the Euclidean structure of the scene, additional information is required. This is difficult
because the projective structure lacks metric information [4]. In other words, one cannot
fully reconstruct the scene from a single image without any prior information [3]. In this
thesis, scene reconstruction means the recovery of the Euclidean structure of the scene.

Classical scene reconstruction methods require at least two images [31, 10, 43, 21].
Cameras need to be calibrated. Then the camera motion can be recovered. Once they are
done, the Euclidean reconstruction is straightforward by solving a set of equations derived
from the projection procedure. However, errors in intrinsic parameters are inevitable, and
pixel errors always exist because feature correspondence between images is required during
the camera calibration stage or the motion recovery stage. How errors in intrinsic parame-
ters affect reconstruction quality has not been thoroughly studied. In this thesis we propose
to study how camera motion affects the error influence to scene reconstruction when the
intrinsic parameters are contaminated. Our study shows that rotation plays an important
role in determining the effective level of error in intrinsic parameters: the larger the rotation
angle, the larger the error influence. More interesting is if the rotation can be avoided, as
in pure translation, the error of intrinsic parameters seems to be unable to affect the 3D
reconstruction. This translation should be restricted to the vertical or horizontal direction.

In practice, the rough value of intrinsic parameters are usually available from either the
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manufacturer’s data or previous experiments [4, 5]. Consequently once the pure translation
is performed, the calibration can be totally avoided during the 3D reconstruction task.

If the motion is restricted as described before, the projection can be dramatically sim-
plified since the rotation matrix is identity. It brings a neat expression of scene point coordi-
nates in three directions, respectively, from intrinsic parameters and corresponding pixels.
This turns the complicated camera calibration into a simple task: any geometry constraint
in the scene can be applied if there is a constraint which can form sufficient equations to
solve unknowns. In this thesis we propose a calibration method by applying the perpendic-
ular constraint as an example. The output of such method is a single linear equation of three
unknowns: focal length and two principal point coordinates. Any unknown parameter can
be calculated if the other two parameters are known. It is suggested to use the perpendicular
constraint for computing the focal length, since the principal point coordinates are almost
equal to the centre of the image in modern CCD cameras. Some parts of this thesis have
been published [51].

The remainder of this thesis is organized as follow: Chapter 2 introduces the funda-
mental concepts of camera calibration and scene reconstruction. Chapter 3 introduces the
related works of this thesis. Chapter 4 shows how the idea of pure translation is derived
and why this idea is effective, besides, this chapter also provides an innovative scheme of
camera calibration if pure translation is applied and makes a perpendicular constraint as an

example. Finally, Chapter 5 summarizes this thesis.



Chapter 2

Background

This chapter’s aim is to introduce the prerequisite and fundamental concepts for camera
calibration and scene reconstruction. It is divided into two parts: first, the illustration and
the mathematical expression of the projection process is provided; next, stereo vision is in-
troduced. In stereo vision, the general expression set to describe “stereo” is demonstrated.
Then, because of the stereo feature, epipolar geometry is described in short. Derived from
this epipolar geometry, an eight-point algorithm and a motion recovery algorithm are intro-
duced. Once all of this is finished, it is straightforward to show how to recover the Euclidean

structure of a scene.

2.1 Projection Process

A camera is a device which can project a 3D scene onto a 2D image. Since the pine-hole
model is a good approximation of the real camera, the camera concept in this thesis is the
pin-hole model assumption. Suppose all light rays are straight line, pin-hole”” means every

ray should go through a single point, which lies in front of the inner part of the camera.
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This single point is called ”pin-hole” or camera centre.

The whole projection process can be divided into three different steps:

The first step is a 3D rigid transformation. This transformation changes the 3D coor-
dinate system from the scene coordinate system to the camera coordinate system, whose
origin is the same as the camera origin. Such a centre is denoted as O. The camera origin
O is also called “the projection centre”. This step can be avoided if the scene coordinate
system is the same as the camera coordinate system, sometimes practical when the scene
coordinate system is totally unknown.

The second step is a 3D to 2D transformation. The 3D scene is projected onto a camera
frame through the projection centre O. A light ray between any 3D scene point and its
corresponding camera frame point must go through O. Note that a camera frame point is a
2D point, and its coordinate system is the same as the camera coordinate without the depth
axis (generally noted Z). The distance between the frame and the camera centre is the focal
length. The boundary of a camera frame is infinite.

The last step is a 2D to 2D transformation. The goal of this step is to obtain the final
image, which is acquired from the camera frame. This transformation changes the 2D coor-
dinate, from the frame coordinate to the image coordinate. The image coordinate consists
of u axis, v axis and the origin. If there is a line along the Z axis that goes through O, this
line will intersect a camera frame. This intersection point, under the image coordinate, is
called “image centre” and denoted as o. Note that this transformation is not a rigid one: it
is an affine transformation.

The whole projection process 1is illustrated in Figure 2.1, where O is the projection
centre, o is the image centre, P is a scene point and p is the corresponding image pixel

point. This figure shows how a scene point is projected into an image.
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image

Figure 2.1: Projection Process
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By using a homogeneous coordinate, the scene point P can be expressed as the vector
P=(X,Y,Z,T)T and the image point p can be expressed as the vector p = (u,v,7)”. From
now on, if a scene point is described under the original scene coordinate system rather
than the camera coordinate system, it is denoted as P: if a scene point is described under
the camera coordinate system rather than the scene coordinate system, it is denoted as
P. Similarly, if a 2D point is on a camera frame and is described under a camera frame
coordinate, it is denoted as p; if a 2D point is on a camera frame and is described under an
image coordinate, it is denoted as p.

The first transformation, which is a 3D rigid transformation, can be expressed with the

equation:

P=DP (2.1)

where D is a 3D transformation matrix that describes the transformation from the scene
coordinate system to the camera coordinate system. When considering the second trans-
formation, which is a 3D to 2D projection transformation, Equation (2.1) will be changed

to:

p=1IP=IDP (2.2)

where I is a 3D to 2D projection matrix. Finally when the last step, a 2D to 2D coordi-

nate system transformation is under consideration, the expression will be:

p=Ap=AIP = AIDP (2.3)

where A is the matrix demonstrating the 2D to 2D coordinate transformation process.
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This coordinate transformation is an affine transformation. A is also called ’the intrinsic
matrix”. It describes the intrinsic parameters of the camera. The details of this matrix are

shown below:

o, 0 uo
A=10 o v (2.4)
0 0 1

where o, O, are image scale factors and ug, vy are image centre coordinates under the
image coordinate system. What’s more, o, = —fk, and o, = — fk,, where f denotes the
focal length of the camera, k, denotes the ratio between pixel coordinate unit and camera
coordinate unit along u axis, and k, denotes the ratio between pixel coordinate unit and
camera coordinate unit along u axis. Sometimes o, and o, are also called ”focal length”,
and it is applied in the following context. If the scene coordinate can be set as the same as
the camera coordinate, D will be an identical matrix and P = P. If T and T are set to be 1, a
scale factor A will be introduced. Therefore, due to the introduction of A, I can be expressed

as

1 000
I=1 0100 (2.5)

0 010

The overall projection equation will be:

p = MIP (2.6)

or
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X
u a, 0 up 1 000
Y
v | =X 0 o, w 0100 (2.7)
Z
1 0 0 1 0010
1

2.2 Stereo Vision

This section deals with the situation when there are two cameras with a fixed configuration.
It is convenient to assume that the coordinate of one camera can be adopted as the 3D scene
coordinate. For simplicity, the reference camera is called the “left camera” and another
camera is called the “right camera”. Assume that there is a scene point that can be projected
into both cameras and can be observed in both images, then the 3D coordinate of this point
can be recovered. This process is called scene reconstruction. See Figure 2.2. Note that
images are placed in front of the camera centre, which is to facilitate analysis: the image
acquired no longer represents an upside down scene.

In order to simplify this problem, it is appropriate to suggest that these two cameras are
identical, meaning their intrinsic parameters are the same. Suppose that there is a scene
point P, based on the previous discussion with one camera, the equation set can be easily

formed to describe the projection process with two cameras:

p = MIP
(2.8)
p =NAI'P
where I’ can be regarded as the camera’s configuration: the motion from the first camera

to the second. Another understanding is the transformation from the left camera’s coordi-

nate to the right camera’s coordinate, which is a 3D to 3D rigid transformation. Therefore,
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left image right image

Figure 2.2: Stereo Vision
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I' = (R|t), where R is the rotation matrix and ¢t = (rx,ty, 1z

R =

Ri1 Ry
Ry1 Ry

R31 R3;

The details of Equation (2.8) is shown below:

u o, 0 up
v | =21 0 o Vo
1 0 0 1

u' o, 0 u
Vol =N o oo v
1 0 0 1

2.2.1 Epipolar Geometry

R

R3;

Ri3
Ry3

R33

)T

Ri2 Ri3
Ry Ry

R3; R33

11

is the translation vector.

N~

Ix

ty

N O~

[S—

(2.9)

(2.10)

Figure 2.2 also illustrates the so-called “epipolar geometry” [40]. If there exists two cam-

eras, along the epipolar line, their centres O and O, respectively, can be determined. Sup-

pose there are two scene points P and Q, and both of them can be projected onto each

image, the corresponding projected points can be noted as p, ¢ on the left image, and p/, ¢’

on the right image. It is well-known that light rays travel in a straight line, so that p lies on

the line PO. Similarly, g, p’ and ¢’ lie on the lines QO, PO’ and QO’, respectively.

Let’s use P as an example. It is obvious that P, p, p’, O and O’ are coplanar. Therefore,
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if lines are represented by vectors, the cross product of vectors 00’ and O, p is perpendicular

to the vector OTp’ . The expression is:

0'p'-(0'0 x Op) =0 2.11)

where - denotes scalar product and x denotes cross product. Equation (2.11) is correct if

all the elements are defined in the same coordinate system. Suppose the coordinate system
. — ~T — — -

of one camera is selected as the reference, and denote O'P’ as p’", O'O as t and Op as p.

Equation (2.11) turns into:

- (txRp) = p TRP =0 (2.12)

where R is the rotation matrix and # x = T', where T is the anti-symmetric matrix:

0 —tz7 ty
tx=T=11 0 —tx (2.13)
—ty tx O
Here a new matrix E = TR is adopted. E is called the “essential matrix”. Then Equation

(2.12) becomes

P EF=0 (2.14)

Inside Equation (2.14), Ep = TRp is a vector with three elements which can be denoted
as a, b and c, respectively. Then if p’ r_ (x,y,1), Equation (2.14) can be transformed into

a single equation:



CHAPTER 2. BACKGROUND 13

ax+by+c=0 (2.15)

Equation (2.15) is a line equation. Therefore, it demonstrates that point p’ lies on a line
formed by Ep. This is the inner connection between two image points projected from a
single scene point: if each of the two points is determined, the position of another point
can be limited on a line. This is also called “epipolar constraint” or ‘“Longuet-Higgins
constraint”. This constraint can be used to find the corresponding point in another image if
one feature point in one image is selected.

Point p and point p’, which are discussed above, are defined within the normalised
coordinates, which means these two points are defined under a camera frame coordinate
system. In order to transform from normalised coordinates to pixel coordinates, which
means these two points are defined under image coordinate system, the intrinsic matrix A
should be introduced. If point p and point p’ are defined under pixel coordinate system,

since j=A"1pand p’ = A’~!p/, Equation (2.15) becomes

ATPYTE(A"1p) =0 (2.16)

Then

PTA TEA 1 p =0 (2.17)

Here we introduce a new matrix F = A’ T EA~! called “fundamental matrix”. Then

Equation (2.17) turns into:

p'Fp=0 (2.18)
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2.2.2 Eight-Point Algorithm

As shown in Equation (2.18), the fundamental matrix F can be determined by p and p'.

Denote that p = u,v,17 and p' = ’,/, 17 . Equation (2.18) turns into:

u Fii1 Fio Fi3 u
pFp=1| By Fn P v | =0 (2.19)
1 3y F3p B33 1

That is:

uu/Fll =+ uv’le +ukl3 + VulFlz —+ vv/Fzz +vF3 + M/F13 —+ VIF23 +F33=0 (2.20)

Considering all image point pairs (an image point and its corresponding point in another
image are called an image point pair), since one pair can form an equation by Equation

(2.20), then a set of n equations can be rewritten as:
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Fiy

F

w'y upy'y w vy vy vy V1 B3
/ / / / / /

Af— u3u’3 u3v’3 us V3u/3 V3v/3 V3 1//3 V/3 1 F22 =0 (2-21)

F3

Unll n unvln Up Vnlp anln Vo U, Vo1 Fi3

Fy3

F33

where f contains all elements of the matrix F" and A is the equation matrix. Since F and
f are defined up to an unknown scale, the additional constraint of forcing the norm of f to be
1 can be made. Therefore, thanks to this additional constraint, eight points, which can form
eight equations, are sufficient to solve Equation (2.21). Some algorithms, such as Jacobi or
Singular Value Decomposition (SVD), can be applied to find the least eigenvector of ATA.
The found eigenvector is the solution. Another method of solving Equation (2.21) is to
set F33 = 1, which turns it into a linear least squares minimisation problem. It is claimed
that general conclusions from these two algorithms, additional constraint and mandatory
normalisation, are equally valid [20].

Because the classical eight-point algorithm is sensitive if any element of the coordinates
has been changed, the normalisation process by expressing coordinates in fixed canonical
frame is advised [20]. Besides, to improve the condition of the matrix ATA, there are

two methods suggested [20]. One is by scaling the coordinates to make the average of
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homogeneous coordinates be unity. Another is by scaling the translation to minimise the
value of coordinates. In practice, there are two approaches for improvement: isotropic
scaling and non-isotropic scaling. As described in [20], these two approaches are listed
below:

Isotropic Scaling:

1. The points are translated so that their centroid is at the origin.
2. The points are then scaled so that the average distance from the origin is equal to v/2.

3. This transformation is applied to each of the two images independently.
Non-isotropic Scaling:
1. The points are translated so that their centroid is at the origin.

2. Both of two principal moments become unity by applying Choleski factorisation.

2.2.3 Motion Recovery

Once the essential matrix E is acquired, it is possible to decompose it and to recover the
rotation and translation elements. Due to [31], E = RT, where R is the rotation matrix and

T is the translation matrix. The outline of the algorithm can be found in [22]:

1. Find E.
2. Find the SVD of E = UDV?, where D = diag(a,b,c) and a > b > c.

3. If the centre of the first camera is the centre of the reference frame, the motion matrix

is one of the four following matrices:
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zv'|U(0,0,1)")

v
(Uzvt|—-u(0,0,1)7)
wz'vru(o,0,1)T)
(

uz'vr—u(0,0,1)7)

where

0O 10
Z=1 -1 00 (2.22)
0 01

To select the correct motion matrix, randomly select one point pair and test if the recon-

structed scene point is in front of the camera.

2.2.4 Scene Reconstruction

Suppose the intrinsic parameters, the rotation matrix and the translation matrix are known,
as shown in Equation (2.10). It is straightforward then to reconstruct the scene. Suppose

there is a matrix M = Al. The projection equation, Equation (2.3), turns into:

X
u myp mip Mz mi4
Y
v =L mpy1 myy M3 M4 (2.23)
y4
1 m3; mzy M3z M4
1

Expanding Equation (2.23):
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— muX4mppY+mi3Z+my
m31 X +m3pY +m33Z+msq (2.24)

— my X+moyV+mp3Z+moy
m31 X+m3Y +m33Z+m3y

For a pair of image points p = (u,v,1)7 and p’ = (u/,/, 1)

myX+mpY+mi3Z+miy
m31X+m3Y +m33Z+m3y

u =

mo X+mp Y +mp3Z+mog
m31 X+m3Y +m33Z+m3y (2 25)
p_ my Xtm,Y+miZ4m)y ’
/ / / /
my X +myp¥ +mssZ sy,
iy XtmyY +mysZ+miy

VT W Xl Y ml Z 4,

The final format of Equation (2.25) is:

umzp —mpy  um3y —nmiy  UmM33 —m3 miq — Ums4
X
V3| —my| VM3 — M3 VN33 — N3 M4 — Vi34
Yy | = (2.26)
! . / /. / /! / / !,
Wiy — Ny Wnizy =1y, Wiyz — N3 7 Mg — U N3y
Vimyy —myy Vimy, —my,  Vimiy —mly mhy —V'mly

Equation (2.26) is an over-determined equation and is easily solved.

2.3 Conclusion

This chapter introduces the foundation of this field. If the intrinsic parameters are known

and two images are given, the whole reconstruction process can be summarized as:

1. Find eight image point pairs.

2. Calculate the fundamental matrix by the improved eight-point algorithm.
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3. Calculate the essential matrix.

4. Decompose the essential matrix to obtain rotation and translation information.

5. Reconstruct the scene.

When the intrinsic parameters are unknown and there are no more specific information
of the scene, it is possible to recover the projective or affine (non-metric) structure of the
scene. However, it is impossible to recover the Euclidean structure of the scene. So that in
this thesis an assumption is adopted that the intrinsic parameters are known, even if they

are inaccurate.
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Related Work

The camera calibration and scene reconstruction have been studies for more than two
decades. This chapter is to introduce these previous works. They can be divided into several
categories: classical calibration, self-calibration, motion recovery and scene reconstruction
with known intrinsic parameters, which are directly related to our work. The calibration
is to calculate intrinsic parameters of a camera. There are two directions: the classical
calibration and self-calibration. The classical calibration uses a well known pattern while
self-calibration uses matched pixels across many images instead. Motion recovery is to re-
cover the configuration between two cameras. Scene reconstruction is to recover the scene

information.

3.1 Classical Calibration

Camera calibration is the process of calculating the intrinsic parameters of a camera. Sup-
posing that not only accurate scene point coordinates, but also accurate corresponding pixel

point coordinates can be acquired, and the scene coordinate system is the same as the cam-

20
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era coordinate system, one scene point and its projected image point can provide two equa-
tions. Because the intrinsic parameters contain four elements, at least two points can pro-
vide sufficient information to calculate the intrinsic parameters. The straightforward way
to solve it is to use the Direct Linear Transformation method. However, it is not practical
since measuring the coordinates is costly. Hence many alternative approaches have been
proposed to deal with this problem. Some require more than one image; others require only

one image to calibrate the camera.

3.1.1 Calibration by More Than One Images

One direction is to use a calibration pattern. Let the camera take two or more pictures
from a pattern, then calculate the intrinsic parameters by measuring the predefined pattern
features, which should appear in the image. This requires a, specially designed pattern,
which limits its application range.

A coplanar grid can be used as a pattern to calibrate the camera. Tsai [48, 49] proposed
a calibration method which recovers the intrinsic and extrinsic parameters by making them
best fit the measured image coordinates of known target point coordinates. This method
has two stages. The first stage is to estimate extrinsic parameters (the rotation and the
translation parameters related to the scene coordinate system) by closed form least squares
estimation. The second stage is to estimate intrinsic parameters by applying an iterative
non-linear optimization.

Zhang [57, 58] proposed another calibration method by letting a camera view a pla-
nar pattern at several (at least two) different orientations. The information of the motion
is not required. This method uses a closed-form solution. Then a non-linear refinement

from a maximum-likelihood criterion is adopted. However, in practice this method requires
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many images, at least 15 to 20 images with different orientation, to achieve the promising
accuracy, which limits its usage. Besides, the special designed pattern also restricts appli-
cable fields. The advantage of this method is its accuracy. This method currently has been
widely applied and many people use this method as the reference to test the accuracy of

their proposed new methods.

3.1.2 Calibration by Only One Image

Calibration by only one image has been in development for many years. It can be divided
into several categories: calibration based on vanishing points, calibration based on circles,
calibration based on symmetry and calibration based on four coplanar control lines. How-
ever, these methods require the specific structure of the scene and besides, the accuracy of
these calibration methods is worse than the calibration method by patterns [57, 58].

The first idea of adopting vanishing points to calibrate the camera was proposed by
Caprile [6]. It is based on the view of a cube. Three vanishing points can be retrieved
from the image of the cube and the intrinsic parameters can be calculated from the attribute
of vanishing points. Extended work has been proposed [17, 45, 53, 54, 55, 1, 9, 16]. For
example, the use of an orthogonal wedge, which is defined as two rectangular planes inter-
secting at right angles, as a reference structure [45]; using paralelepipeds rather than cubes,
which are a subclass of parallelepipeds, to calibrate the camera [53, 54, 55]; using a single
image containing a rectangular prism, which is to generate two vanishing points for camera
calibration [1].

The first paper which uses circles in a single image to calibrate the camera is the work
of [12], who proposes the method of calibrating the camera using one image containing

two concentric circles of known radii. The assumptions of zero skew, unit aspect ratio,
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no distortion and square pixels are made. A similar attempt is proposed by [46]: camera
calibration from a single view which contains three spheres. Another method was proposed
by [7]: camera calibration with two arbitrary coplanar circles, even if the centres of the
circles and/or part of the circles are occluded. Besides, the work of [27] was proposed as
the improvement of [12]: camera calibration by using planar pattern of pairs of concentric
circles. What’s more, the work of [8] was proposed: camera calibration with two arbitrary
coaxial circles.

Other attempts were also proposed. The idea of using symmetry in a single image
to calibrate the camera was proposed by [26]. There are three different categories from
this idea. The first is calibration from translational symmetry. The second is calibration
from reflective symmetry. The last is calibration from rotational symmetry. Also a method
of camera calibration from a single view with four coplanar control lines was proposed
by [42], who use control lines rather than control points to perform constraints. These

constraints can be used to compute intrinsic parameters.

3.2 Self-Calibration

Another direction to calibrate a camera is the so-called self-calibration” or "auto-calibration”.
Most of the self-calibration methods rely on the calculation of virtual shapes and then de-
rive the intrinsic parameters. Early self-calibration methods are based on the calculation of
the Dual of the Image of the Absolute Conic (DIAC) using the so-called Kruppa’s equa-
tions [11, 32, 29, 52]. Other methods rely on the calculation of the Absolute Quadric [13,
25, 47] which has the advantage of constricting both the DIAC and the plane at infinity on
which the Absolute Conic lies in space. More recently, the so-called Absolute Line-Quadric

was shown to exhibit some nice properties when dealing with a camera with varying pa-
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rameters [50, 38].

Another approach for self-calibrating a camera consists in upgrading the projective
structure of a scene into an affine one from which the metric reconstruction can be eas-
ily obtained. This can be achieved by calculating the position of the plane at infinity in
space either through the so-called modulus constraint [37, 18] or from a quasi-affine re-
construction [24, 36]. Unfortunately, the accuracy of the estimated parameters, when using
the above mentioned methods and others [14, 35], is undermined by the correspondence
problem and by the numerous degenerate motion configurations [28, 44]. Since camera
self-calibration is a non-linear problem, the problem of choosing initial values of parame-
ters is often difficult.

In addition, initializing the optimization procedures which are close to the ground truth
does not guarantee the convergence to the desired solution. For example, when the candi-
date plane at infinity contains one of the camera centres, the optimization procedure fails
even if the motion of the camera is not degenerated. In order to circumvent these issues,
[15] have proposed a globally convergent method that uses interval analysis in order to
bound the values of the camera parameters. However, the prohibitive running time of this

method makes it inappropriate for most applications.

3.3 Motion Recovery

Motion recovery is one of the crucial steps of scene reconstruction. Sometimes it is also
included as one of the camera calibration targets. It aims at finding out the rotation matrix
and the translation vector/matrix of the camera. The motion recovery step can be performed
at the essential matrix, which can be obtained from the fundamental matrix and intrinsic

parameters. The fundamental matrix can be derived from a point correspondence by the
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eight-point algorithm. Once the essential matrix is obtained, by using an SVD algorithm,
the rotation matrix and the translation matrix can be retrieved [31, 39, 22]. Nevertheless,
this algorithm is to be criticized as extensively sensitive to noise in the specification of the
matched points [20]. Therefore, other but more complicated algorithms have been proposed
for calculating the fundamental matrix [56, 34, 23, 2].

Then Hartley [20] improved the eight-point algorithm by adopting the idea of normal-
ization. This improvement does not only make the algorithm be less sensitive to pixel
error, but also make the algorithm be less sensitive to errors on the intrinsic parameters. By
adopting this improved algorithm, the scene reconstruction can achieve the considerable

accuracy [4]. Hence this algorithm is applied in this thesis.

3.4 Scene Reconstruction

Scene reconstruction is to recover the Euclidean information of the scene, which is of great
value in computer vision [4]. The classical and most popular approach is based on known or
roughly known intrinsic parameters. Once intrinsic parameters are known, the 3D structure
can be recovered from matched points only [31].

Such reconstruction method relies on knowing the intrinsic parameters and extrinsic
parameters (motion) of the camera. Once such camera parameters are obtained, the scene
reconstruction is straightforward by using triangulation [31] or a least-squares algorithm.
This strategy, however, is impractical under some situations, due to the previous calibra-
tion process. To solve this problem, scene reconstruction without calibration has been
proposed [13, 30, 41, 59, 19, 23]. When the intrinsic parameters are unknown, the re-
construction problem becomes more difficult in the Euclidean case. Given two images of

the same rigid scene, we have 15 parameters to be estimated. That is, five for the camera
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motion (rotation and translation) and ten for the intrinsic parameters of the two cameras
(assuming different cameras). On the other hand, using pixel correspondences yields only
7 independent constraints. [33]. Adding more images will not provide enough constraints
for this problem when each new image has different intrinsic parameters. Therefore, in the
general case, it is not possible to recover the Euclidean structure using only pixel corre-
spondences across images. In accordance with the above this thesis uses classical scene
reconstruction, which requires a priori calibration process to acquire intrinsic parameters.
When dealing with the situation where the intrinsic parameters are approximately known,
it is still possible to solve the reconstruction problem [4]. The 3D reconstruction obtained
this way is affected by both pixel accuracy and errors on the intrinsic parameters’ values.
Although inaccurate intrinsic parameters might not be as serious as high-level pixel errors,

the effect of errors in intrinsic parameters still needs to be analyzed.

3.5 Conclusion

This chapter investigates the literature of related topics. Different calibration approaches
and two categories of scene reconstruction are proposed. In order to achieve a Euclidean
reconstruction when a general case is applied, a previous calibration process is needed.
There are many calibration methods which have been proposed. But the most reliable
method with two images is the improved eight-point algorithm. Therefore, in this thesis the
process of scene reconstruction consists of two stages: calculate the fundamental matrix
and the essential matrix by the improved eight-point algorithm, recovers the motion and

then reconstruct the scene by reversing the projection process.



Chapter 4

Error Effects on 3D Reconstruction

From the previous discussion, it is obvious that the scene reconstruction process is affected
by errors from pixels and intrinsic parameters. Both of these two kinds of errors are in-
evitable. Besides, similar to the white noise, the values of pixel error are random and
impossible to predict, which makes their influence permanent. When regarding errors in in-
trinsic parameters, sometimes the intrinsic parameters approximation is known, either from
manufacturer’s data or previous experiments. Because intrinsic parameters do not directly
and independently affect the scene reconstruction result, it is possible to reduce or even
eliminate intrinsic parameter errors, for the reconstruction result.

The first step in solving this problem is reviewing the scene reconstruction equation:

Equation (2.6):

p=MAIP

To help facilitate analysis, it is convenient to assume that image pixels are error free.

Considering the effect of errors in intrinsic parameters, the equation above can be reformed

27
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to:

P+ pe=MA+A,)IP

= MAIP + \A,IP

where A, is the error matrix of intrinsic parameters and p, is the error vector of pixel

coordinates. The above equation can be reformed as:

De = MAIP 4.1)

It’s obvious that /, the projection matrix, plays an essential role in the intrinsic param-
eters error influence. In order to demonstrate how motion and intrinsic parameters error
corrupt the recovered scene, some simulations have been conducted. The reason for using
simulations rather than real experiments is that experimental coefficients can be controlled.
Without such absolute control, due to the unpredictable nature of pixel error, one cannot
tell which coefficient conducts or dominates the final imperfect result. Therefore, no con-
clusions can be made.

It is well-known that the ratio o, /o, is usually stable and is equal to 1, which is true
for real cameras. With this fact, intrinsic parameter errors can be restricted to be inside the
two coordinates of the principal point and to the focal length. Note that here that the focal
length is the alias of o, and o,. It is crucial to clarify the camera coordinate system and
the image coordinate system: the X-Axis and Y-Axis of the camera coordinate are within
the same direction as the u-Axis and v-Axis of the image coordinate system, respectively;

Z-Axis of the camera coordinate system is with the direction from the camera centre to the
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image centre and is perpendicular to the image plane.

To make an acceptable approximation, the coefficients of simulation are listed as fol-
lows: the pre-defined virtual scene consists of 50 random space points, which are inside
a volume of 30cm(X) by 30cm(Y) by Scm(Z); two virtual cameras are located at 20cm(Z)
off the scene; for each designated inter-camera configuration, two images are created by
projecting the scene into two cameras, respectively. These two images are then used as
inputs for the scene reconstruction system. In addition, pixel error with 0.5 pixel level or
1.0 pixel level are added to projected image points. For every test, a total of 100 trials is
carried out. For every trial, 3D space points are selected randomly and errors from pixels
and intrinsic parameters are generated randomly, too. The results shown on the different
graphs are obtained by taking the mean value for each case. The scenario of the simulation
is the same as described in Conclusion part of Chapter 2.

Note that during the experiments, the value of any single 3D relative error is meaning-
less since the error influence can be scaled by modifying the value of the focal length, by
resizing the scene or by changing the distance between the camera and the scene. Besides,
since an image centre o is set to be at the central position of a specific image, the size of
an image also affects the value of the 3D relative error. Therefore, attention should be paid
only on the emerging trend caused by different rotation angles under certain circumstances.
In simulation, the translation along Z-Axis is not under consideration. The reason is as
follows: Assume there are two cameras placed along Z-Axis. Even if the front camera
is transparent and does not affect the function of another camera, it is still impossible to
analysis it. This is because distances between the scenes are different, which is similar to
the situation if these two cameras have two different focal lengths. It is against the former

assumption that two cameras are identical.
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30 Relative Error with Principal FPaint Coordinate Error and 0.5 Pixel Error
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Figure 4.1: Translation along X-Axis and regular rotation, with principal point coordinate
error and 0.5 pixel error level

4.1 General Case: Rotation and Translation Between the
Two Cameras

First, the translation between each camera is set to be 20cm along the X-Axis. The results
are listed below:

Figure 4.1 and Figure 4.2 show experimental results with various rotation angles and a
constant translation along the X-Axis if principal point coordinate error is applied. Because

the error is randomly selected, the position of the principal point is not stable and will
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30 Relative Errar with Principal Paint Coordinate Error and 1.0 Pixel Error
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Figure 4.2: Translation along X-Axis and regular rotation, with principal point coordinate
error and 1.0 pixel error level
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30 Relative Error with Focal Length Error and 0.5 Fixel Error
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Figure 4.3: Translation along X-Axis and regular rotation, with focal length error and 0.5
pixel error level
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30 Relative Error with Focal Length Error and 1.0 Fixel Error
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Figure 4.4: Translation along X-Axis and regular rotation, with focal length error and 1.0
pixel error level
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30 Relative Error with Principal Faint Coordinate Error and 0.5 Pixel Error
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Figure 4.5: Translation along Y-Axis and regular rotation, with principal point coordinate

error and 0.5 pixel error level

affect the overall reconstruction quality. However, it still can be concluded that most of the

time smaller rotation angles yield better reconstruction quality. Figure 4.3 and Figure 4.4

show experimental results with various rotation angles and a constant translation along the

X-Axis if focal length error is applied. For these two figures, the trend is very clear: the

larger the rotation angle, the higher the error on the 3D reconstruction. In conclusion, the

reconstruction quality drops if the rotation angle increases.

The next set of figures show the results when the translation is 20cm and along the

Y-AXis.
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30 Relative Errar with Principal Paint Coordinate Error and 1.0 Pixel Error
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Figure 4.6: Translation along Y-Axis and regular rotation, with principal point coordinate
error and 1.0 pixel error level
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30 Relative Error with Focal Length Error and 0.5 Fixel Error
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Figure 4.7: Translation along Y-Axis and regular rotation, with focal length error and 0.5
pixel error level
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30 Relative Error with Focal Length Error and 1.0 Fixel Error
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Figure 4.8: Translation along Y-Axis and regular rotation, with focal length error and 1.0
pixel error level
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Figure 4.5, Figure 4.6, Figure 4.7 and Figure 4.8 also verify the conclusion that the

bigger the rotation, the worse the reconstruction quality.

4.2 Simplified Case: Pure Translation Between the Two
Cameras

As discussed above, the rotation angles between the two cameras amplify the effect of
errors on reconstruction quality. It is quite straight-forward to think about the situation
when the motion is pure translation. Simulations have been performed under this situation.
Coefficients are kept the same.

Figure 4.9, Figure 4.10, Figure 4.13, Figure 4.14, Figure 4.11, Figure 4.12, Figure 4.15
and Figure 4.16 again demonstrate the discipline: the smaller the rotation angle, the better
the reconstruction quality. More interesting is if the rotation is totally avoided, the recon-
struction quality is best and errors in the intrinsic parameters seem to be not affected by the
reconstruction quality. It is illustrated in all of these figures. It is because the projection ma-
trix / plays an essential role in scene reconstruction and this matrix is directly determined

by the inter-camera configuration. When there is no rotation, / is:

100
I=| 0101 (4.2)
00 1

The way of how translation affects the reconstruction error, when there are only errors
from intrinsic parameters, is the same as when introducing inaccurate scale factors. Since

scale factors can be eliminated during the 3D reconstruction process, errors from intrinsic
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Figure 4.9: Translation along X-Axis and small rotation, with principal point coordinate
error and 0.5 pixel error level
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Figure 4.10: Translation along X-Axis and small rotation, with principal point coordinate
error and 1.0 pixel error level
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30 Relative Error with Focal Length Errar and 0.5 Pixel Errar
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Figure 4.11: Translation along X-Axis and small rotation, with focal length error and 0.5
pixel error level
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30 Relative Error with Focal Length Error and 1.0 Fixel Error
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Figure 4.12: Translation along X-Axis and small rotation, with focal length error and 1.0
pixel error level
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Figure 4.13: Translation along Y-Axis and small rotation, with principal point coordinate
error and 0.5 pixel error level
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Figure 4.14: Translation along Y-Axis and small rotation, with principal point coordinate
error and 1.0 pixel error level
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Figure 4.15: Translation along Y-Axis and small rotation, with focal length error and 0.5
pixel error level
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Figure 4.16: Translation along Y-Axis and small rotation, with focal length error and 1.0
pixel error level
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parameters also do not affect the reconstruction quality if pure translation is applied.

4.3 Discussion

The simulation result verifies the initial guess: camera motion (inter-camera configuration)
plays an important role in determining how much error will corrupt the reconstruction qual-
ity. This is because, as shown from above, that a large rotation will significantly amplify
the noise effect derived from the pixel error or errors in intrinsic parameters. When a pure
translation along the X-Axis or Y-Axis or their combination is applied, errors in intrinsic
parameters will no longer affect the reconstruction quality.

Simulations were also conducted when the translation is set to the combination of move-
ment along the X-Axis and movement along the Y-Axis, and the results verify the same
trend. However the reconstruction quality is worse when the combined translation is ap-
plied under the same conditions. This is reasonable since pure translation along the X-Axis
or the Y-Axis only introduces one unknown into the matrix /, but the combined translation
introduces two unknowns. Hence in the next chapter, when referring to the pure translation,
it means the translation along the X-Axis or the Y-Axis separately.

In order to construct an optimized system, pure translation, or translation and a very
small rotation is suggested. Once pure translation is applied, accurate intrinsic parameters
will no longer be needed and a very good 3D reconstruction quality can still be acquired. In
practice, pure translation is easy to implement: align two cameras together or move a single
camera along a straight line. Even if absolute translation is hard to achieve, minimized

rotation still benefits the accuracy of the system.
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4.4 The Use of Perpendicularity to Obtain the Focal Length

4.4.1 Mathematical Analyze

As discussed previously, pure translation should be applied. This section introduces another
benefit when pure translation is introduced. The assumptions of f = o, = o, and identical
cameras are made. Since translation along the X-Axis or the Y-Axis is symmetrical, only

translation along the X-Axis and Y-Axis is analyzed in detail. Equation (2.10) becomes:

X
u o, 0 ug 1 000
Y
v [=A] 0 o, v 0100
Z
1 0O 0 1 0010
1
(4.3)
X
u' o, 0 u 1 00 tx
Y
V I=N10 o v 0100
Z
1 0O 0 1 0010
\ 1
After transformation, the above equation becomes:
X =tx(a+buy)
Y=c+bv 4.4)

Z = —btxf

where

2u? —2uu’ + (v—v')?
2u—u')2+2(v—V)?
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u—u'

(u—u')2+(v—v)2

bh—

(u—u)(v+V)
2u—u')2+2(v—v")?

c=—

Equation (4.4) is the overall expression of a scene point. To find out a scene point its
image pair, the translation distance and intrinsic parameters are required. The scene point
can also be used as a framework to calibrate the camera. Using certain space geometry
constraint can form new equations, whose coefficients are image pairs, translation distance
and intrinsic parameters. Since image pairs are easily known, the relationship among trans-
lation distance and elements of intrinsic parameters can be obtained. Sometimes translation
distances can be eliminated and the unknowns are elements of intrinsic parameters only,
which provide some methods of calculating intrinsic parameters (camera calibration).

Here the perpendicular constraint is adopted as an example. Given three scene points

Py, P> and P3, each with different depth, and Pf P> and Pf P> are perpendicular, then

PP, -PoPs=0

which is

(Xz —Xl)(Xg, —Xz) + (Yz - Y])(Y3 - Yz) + (Zz —Zl)(Z3 —Zz) =0 4.5)

Use Equation (4.4) and Equation (4.5) turns to:

d'o+b'vo+c (u§+v§) +d'ug+¢ =0 (4.6)
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where

d = (b1 —b) (b3 — by)

b = (Cl — C2)(b3 — bz) + (63 — Cz)(bl — bz)

¢ = (b1 —by)(b3 — by)

d = (a1 —az)(bg, —bz) + (a3 —az)(bl — bz)

¢ = (a1 —az)(az —az) + (c1 — 2)(c3 — 2)

Equation (4.6) has three unknowns: the focal length and two principal point coordinates.
This shows that with a right angle in a scene, any intrinsic parameter can be calculated if
the other two are previously known. As discussed before, it is convenient to assume that the
principal point lies at the centre of the image. Under this assumption once the image size,
which is easily fetched, is measured, the focal length can be calculated if there is a right
angle existing in the scene. In the real world, right angles are common, such as windows,

desks, walls and so on. Therefore, this method can be widely applied.

4.4.2 Experiment

Real experiments were conducted to test this algorithm. A pattern cube is shot by two

aligned SONY DSC-S930 cameras and two sets of right angles are extracted manually
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from images, respectively. The camera is previously calibrated by Zhang’s Method [58].
The result is shown in Table 4.1. Note that values in entries have been rounded off to one

decimal.

Table 4.1: Calibration Test

Test | Image Position | Right Angle | Focal Length | Reconstruction Average Error
1 Left /ABC
Right /abc 21324 11.1mm
2 Left /DEF
Right /def 2031.3 11.7mm
Zhang’s Method 22424 10.3mm

The proposed calibration method provides similar results when compared to the wide-
accepted Zhang’s Method. The Zhang’s method provides a more accurate focal length since
its reconstruction quality is the best. It is because the focal length obtained from Zhang’s
method, which is shown in the table, is calculated by using 20 images.

Our method also works when there is only one camera: move the camera along a straight
line and take two images for the scene. The length of the movement does not matter.
However, in the future the proposed method still needs to be improved since its effectiveness

relies on the accuracy of image point coordinates.

4.5 Conclusion

This chapter introduces several experiments which are to illustrate the relationship between
rotation angles and error effects. These experiments show that when pixel error is applied,
the larger the rotation angle, the worse the error influence from intrinsic parameters. There-
fore, in order to minimize the error influence from intrinsic parameters, rotation should be

decreased or avoided. The optimized configuration of a stereo system is the pure translation.
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Figure 4.17: Two Corresponding Images of a Same Cube
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Once this configuration is fixed, the three coordinates of a scene point can be expressed in-
dividually and explicitly. Thanks to those expressions, the framework of calibration then
can be established. In this chapter a perpendicular constraint is selected to calibrate the
camera by solving a linear equation and then perform the 3D reconstruction. Experiments

show the effectiveness of this method.



Chapter 5

Conclusion

In this thesis we have addressed camera calibration, 3D Euclidean scene reconstruction and
how inter-camera geometric configuration of a stereo vision system affects the accuracy of
3D reconstruction. We have reviewed two different calibration approaches together with
motion recovery and two categories of scene reconstruction. When the intrinsic parameters
and the stereo vision system geometry are unknown and there is no additional information
about the scene, it is impossible to recover the 3D Euclidean structure of the scene. Note
that it is possible to recover the 3D projective structure of a scene using only matched pix-
els. However, such 3D reconstruction lacks any metric information making useless for most
applications. In order to obtain the 3D Euclidean reconstruction, one needs to know both
the intrinsic parameters and the stereo vision system’s geometry, namely, total calibration.
Typically, one needs to first calibrate each camera of the stereo vision system before being
able to perform the Euclidean 3D reconstruction of an observed scene. In the case of known
intrinsic parameters, numerous methods have been proposed in the literature for 3D recon-
struction using stereo images. However, the most reliable method that uses two images is

the normalized (improved) eight-point algorithm. Therefore, in this thesis the process of
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scene reconstruction consisted of the following steps. The calculation of the fundamen-
tal matrix and the essential matrix is done by the improved eight-point algorithm. Then,
we recover the camera configuration before performing the reconstruction of the scene by
reversing the projection process. Most of the time an approximation of the intrinsic pa-
rameters is easy to be acquired. Hence, we have investigated how errors in the intrinsic
parameters affect the reconstruction quality and what kind of inter-camera geometry would
be desirable in order to minimize the effects of these errors on the reconstructed scene.

In order to illustrate the relationship between input errors and 3D Euclidean reconstruc-
tion quality, extensive simulations have been conducted under different camera motions
(inter-camera geometry). Input errors consist of pixel error and errors from intrinsic pa-
rameters. As a result, simulations show that when the range of pixel error is fixed, rotations
amplify the error influence: the larger the rotation angle, the worse the reconstruction qual-
ity. What’s more, when rotation is avoided and there is only translation between the two
cameras, errors in intrinsic parameters do not affect the reconstruction quality significantly
and the scene reconstruction yields the best accuracy. Therefore, it is suggested to avoid
rotation, or at least minimize the rotation angle when constructing a stereo vision system in
order to achieve a robust system against errors in intrinsic parameters. Note that pure trans-
lation should be along the X-Axis or the Y-Axis separately, since the combined translation
brings worse reconstruction quality. This special configuration is close to a human’s vision
system: two eyes. This specific configuration also demonstrates that inaccurate intrinsic
parameters can still yield a good reconstruction quality. Another benefit of pure translation
is the ability to simplify the whole projection process mathematically since the rotation,
which consists of three independent parameters (unknowns) in a projection equation, can

be ignored. This simplified expression provides a framework which can be used to compute
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the elements of the intrinsic parameters in assistance with additional geometrical constraint.
The perpendicular constraint is selected as an example. When there is a right angle in the
scene, the corresponding perpendicularity can form an equation, whose unknowns are in-
trinsic parameters. Focal length can be recovered from this equation by assuming that the
principal point is the centre of the image, and then the whole Euclidean scene reconstruc-
tion can be done. The future work will be focused on the mathematical analysis of the
projection process when both rotation and translation are applied, and on the improvement

of the stability of the focal length calculation.
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