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Abstract

In this thesis, we revisit some statistical problems, where classical inference can

not provide small-sample optimal solution. These problems motivated Tsui and Weer-

ahandi (1989), and Weerahandi (1993) to introduce the concepts of generalized infer-

ence which consist in constructing generalized test variable (GTV) and generalized

pivotal quantity (GPQ). However, in general location-scale family, the existing liter-

atures do not provide any systematic method for deriving these quantities.

To overcome this problem, the equivariance principle is applied to construct GTV

and GPQ in location-scale family. Namely, we construct the GPQ and GTV for the

parameters of interest in one-sample and two-sample families cases. Particularly, we

study inference problem concerning the difference between two location parameters.

The simulation studies show that the suggested methods preserve the nominal

level, and provides satisfactory power in small and moderate sample sizes. Finally,

some real data sets are analyzed in order to illustrate the application of the suggested

procedures.
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CHAPTER 1

Introduction

1.1. Introduction

The study of generalized confidence interval was motivated by the fact that the

small sample optimal confidence intervals (CI) in statistical problems involving nui-

sance parameters may not be available. For example, exact confidence intervals based

on minimal sufficient statistics are not available (see Weerahandi, 1993) in the prob-

lem of constructing confidence interval for the difference in means of two exponential

distributions, or two normal distributions with different variances. For such prob-

lems, when the sample sizes are small, there do not exist optimal solutions based

on the classical pivotal method. To overcome these problems, Tsui and Weerahandi

(1989) introduced a concept called generalized P-value (GPV) and later on Weera-

handi (1993) developed the generalized confidence interval (GCI). In the above papers,

similar to the construction of the classical p-value and confidence interval, the GCI

are established by constructing a related quantity called generalized pivotal quantity

(GPQ) and GPV by generalized test variable (GTV).

In hypothesis testing, the concepts of GPV and GCI are used as on extension of the

classical P-value and confidence interval, respectively, and have performed well in

1



1.1. INTRODUCTION 2

obtaining P-values and confidence intervals for those cases where the classical proce-

dures do not give satisfactory results. For example, Weerahandi (1993) applied the

generalized confidence intervals to the difference in two exponential means and two

normal means. In addition, Bebu and Mathew (2007) developed a generalized pivotal

quantity for comparing the means and variances of a bivariate log-normal distribu-

tion.

However, there are some limitations of the methods proposed in the quoted papers.

In fact, the authors in these papers deal only with some special distributions, and the

provided inference methods are not applicable for all families of parametric models.

So far, there is no systematic method of constructing GPQ applicable to all families

of parametric models. Motivated by these limitations, the purpose of the presented

thesis is to develop the appropriate method of constructing the GPQ for the general

location-scale family. Further, based on the GPQ, we establish the GCI and GPV of

the location and scale parameters.

The thesis is organized as follows. In Chapter 1, we present the mathematical statis-

tics background, whereby we clarify the concepts used to establish the framework. To

reach the purpose, we start with the univariate location-scale family, then extend the

approaches to the bivariate case. Univariate problems are discussed in Chapter 2, we

consider some well known location-scale families such as normal, gamma distribution,

where the GPQ are well known and easy to be constructed. Then, based on those

examples, we show a method about how to construct the GPQ.
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Based on these ideas we construct the GPQ for location scale parameters, by ex-

tending the methods suggested in Lawless (1972) who constructed CI for the location

and scale parameters of the Cauchy and logistic distributions, by using some classical

pivotal quantities conditional on some ancillary statistics. It should be noted that, in

Lawless (1972), the conditional pivotal quantities are based on the maximum likeli-

hood estimator (MLE), which can be found in Cauchy and logistic families. However,

MLE may not exist in some special cases (see Pitman, 1979). Therefore, in extending

the Lawless (1972) method to a generalized form in term of the general location-scale

family, we consider the case that MLE does not exist. We replace the MLE by the

minimum risk equivariant estimator (MRE), which will be discussed in Chapter 3.

Furthermore, based on the univariate case, we develop the GPQ for the bivariate

location-scale family. For the bivariate case, Sprott (2000, Chapter 7) provided an

approach of constructing classical conditional pivotal quantities for some special cases

such as normal distribution. We extend the Sprott’s work to the generalized form over

the entire location-scale families. The approach provided in Sprott (2000, Chapter 7)

is based on MLE only, without considering the case where the MLE does not exist

(see Chapter 3). In this work, we propose a more general approach that is based on

the MRE instead of the MLE. In addition, for the inference problem of the difference

between the two location parameters, where the ratio of two scale parameters is un-

known, we use another approach which is extended from the univariate case. These

concepts will be discussed in Chapter 4.

In chapter 6, we evaluate our GPQ methods by using simulation methods. In most
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of examples the numerical results are close to the ideal levels, which show that our

methods are consistent.

1.2. The mathematical statistics background

In this section, we define the concepts used in this thesis. In fact, most of the

statistical definitions are based on some related mathematical concepts. Hence, it is

convenience to provide first some related mathematical concepts to define the statis-

tical concepts. These concepts are outlined here for the convenience of the reader.

Nevertheless, for more details, the interested reader is referred to Billingsley (1995),

Casella and Berger (2001), Lehmann and Casella (1998) and Schervish (1997) among

others.

S-algebra, measure, dominating measure and measurable space. Let Ω

be a sample space, i.e. a set of all possible outcomes from a random experiment. The

concept of S-algebra is important in mathematical analysis and probability theory.

Formally, the definition of S-algebra is given as follows.

Definition 1.1. A class of subsets of Ω, denoted by B, is called a S-algebra (or

S-field), if it satisfies the following properties:

a. ∅ ∈ B.

b. If A ∈ B, then Ac ∈ B.
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c. If A1, A2, ... ∈ B, then
∞⋃
i=1

Ai ∈ B.

Based on S-algebra, measure and measurable space are defined as follows.

Definition 1.2. Let B be a S-algebra associated to the sample space Ω. Then,

a nonnegative function λ defined on B is said to be a measure function if it satisfies

the following properties:

a. λ(∅) = 0.

b. Assume A1, A2, ... ∈ B. If {Ai}∞i=1 mutually disjoint, then

λ

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

λ(Ai).

If λ is a measure, (Ω,B, λ) is called measure space, and (Ω,B) is called measurable

space.

Definition 1.3. A measure ν is said to be absolutely continuous with respect to

λ if λ(A) = 0 implies ν(A) = 0. Further, λ is so-called the dominating measure.

We consider a particular case of measure function that satisfies λ(Ω) = 1. Then

λ is said to be a probability function and (Ω,B, λ) is said to be a probability space.
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Measurable function. Another concept related to the definition of statistic is

measurable function, which is defined in the following way.

Definition 1.4. Let Ω1 and Ω2 be nonempty sets. In addition, let B1 and B2 be

S-algebras of subsets of Ω1 and Ω2 respectively. Then, a function f : Ω1 → Ω2 is

said to be measurable if

E ∈ B2 ⇒ f−1(E) ≡ {x ∈ Ω1|f(x) ∈ E} ∈ B1.

Statistic and estimator. When we apply the statistical distributions to model

populations, we usually deal with a family of distributions rather than a single dis-

tribution. This family is indexed by one or more parameters, which allow us to vary

certain characteristics of the distribution while the functional form remains fixed. For

example, when we use the normal distribution to model a particular population, since

we can not precisely specify the mean, we need to deal with a parametric family of nor-

mal distributions with mean µ, where µ is an unspecified parameter, −∞ < µ < ∞.

In this case, the normal distribution involving unknown µ is called normal family.

Based on the definitions given above, let (Rn,B) be a measurable space where B

denote the S-algebra of Rn. Further, let (X ,A) be a measurable space. Then, a

statistic is a measurable transformation T from the sample space (X ,A) into a mea-

surable space (Rn,B). In other words, a statistic is the result of applying a function

(statistical algorithm) to a set of data.

A statistic is distinct from an unknown parameter, which is not computable from a
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sample. A key use of statistics is as estimators in statistical inference, to estimate

parameters of a distribution based on a sample. For instance, the sample mean is a

statistic, while the population mean is a parameter.

One can distinguish two main types of estimators: point estimators and interval es-

timators. Following Casella and Berger (2001, p. 311, 417), the definitions of these

two types of estimators are respectively given as follows.

Definition 1.5. A point estimator is any function W (X1, ..Xn) of a random sam-

ple; that is, any statistic is a point estimator.

To compare the difference between an estimate and an estimator, it is noticed

that an estimator is a function of the sample, while an estimate is the realized value

of an estimator (that is, a number) obtained when a sample is actually taken. For

example, when a sample is given, an estimator is a function of the random variables

X1, ..., Xn, while an estimate is a function of the realized values x1, ..., xn.

Definition 1.6. An interval estimate of a real-valued parameter θ is any pair of

functions, L(x) and U(x), of a sample that satisfy L(x) 6 U(x) for all x ∈ X . If

X = x is observed, the inference L(x) 6 θ 6 U(x) is made. The random interval

[L(X), U(X)] is called an interval estimator.
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Sufficient statistics and complete statistics. Sufficient statistics arise in

nearly every aspect of statistical inference. For example, to start a statistical analy-

sis such as parameter estimation, we usually select a random observable variable X,

whose distribution depends on the parameter of interest. In this case, it usually turns

out that there are some so-called sufficient statistics, which may capture all of the

information about the parameter of interest. Any additional statistics besides these,

carries no information about the parameter of interest. In this case, X can be reduced

to or replaced by the sufficient statistics, without losing any information about the

parameter of interest.

As described in Casella and Berger (2001, p. 272, 417), a sufficient statistic is for-

mally defined as:

Definition 1.7. A statistic T (X) is a sufficient statistic for θ if the conditional

distribution of the random sample X given the value of T (X) does not depend on θ.

In addition, completeness, which is a property of a family of probability distribu-

tions, is closely related to statistical sufficiency and often occurs in conjunction with

it. As discussed in Lehmann and Casella (1998 p. 42), since the complete sufficient

statistics are particularly effective in reducing the data, there are many applications

concerning this concept. For example, Basu’s Theorem, used to prove Proposition 4.1

in this thesis, requires the related statistic to be sufficient and complete. The concept
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of completeness is defined as follows.

Definition 1.8. Let {f(t|θ), θ ∈ Θ} be a family of probability density func-

tions (pdfs) or probability mass functions (pmfs) for a statistic T (X). The family

of probability distributions is called complete if for any measurable function g with

Eθg(T ) = 0 for all θ implies that Pθ(g(T ) = 0) = 1 for all θ. Equivalently, T (X) is

called complete statistic.

Ancillary Statistics. Ancillary statistics, is one of Fisher’s most fundamental

contributions to statistical inference (see David, 2003). In this thesis, the way of

establishing the distributions of pivotal quantities is based on ancillary statistics. In

general, the definition of ancillary statistic is given as follows.

Definition 1.9. A statistic S(X) whose distribution does not depend on the pa-

rameter θ is called an ancillary statistic for θ.

In other words, an ancillary statistic contain no information about θ. In addition,

it was pointed out by Fisher (1925) that although an ancillary statistic by itself fails

to provide any information about the parameter, yet in conjunction with another

statistic, typically the maximum likelihood estimator (MLE), it could provide valu-

able information about the parameter. For more detail related to above definitions,
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we refer to Casella and Berger (2001, p. 282).

Pivotal quantity. Pivotal quantity, is a quantity involving the data and the

unknown parameter of interest, and this is mainly used for constructing confidence

intervals. In this thesis, we consider the construction of generalized confidence inter-

val based on generalized pivotal quantity, which will be discussed in Chapter 3. To

this end, it is important to present the related concepts.

Definition 1.10. Let θ be the parameter of interest and let X ≡ (X1, X2, ..., Xn)

be a random sample. A random variable Z(X, θ) = Z(X1, ..., Xn, θ) is a pivotal quan-

tity for θ if it is a function of X and θ and the distribution of Z(X, θ) is independent

of the parameter θ. That is, if X ∼ f(x|θ), then Z(X, θ) has the same distribution

no matter what the value of θ is (Casella and Berger 2001, p. 427).

Loss function and risk. In statistics, when we estimate θ by T (x), we would

like to evaluate the distance between T (x) and the exact value of θ. A function of

such distance is called loss function. A loss function is used to represent the loss

associated with an estimate being “wrong” (different from either a desired or a true

value) as a function of a measure of the difference between the estimated value and

the true or desired value.
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Definition 1.11. Let X1, ..., Xn be iid random sample from the population whose

probability density function (pdf) or probability mass function (pmf) is f(x|θ), θ ∈ Θ.

Further, let λ be the dominating measure and let A denote the set of allowable de-

cisions (known as action space). Then, a nonnegative function L(θ, a) defined over

Θ×A, is called a loss function.

Furthermore, a loss function satisfies the definition of a random variable so one

can establish a cumulative distribution function and an expected value. However,

more commonly, the loss function is expressed as a function of some other random

variable. The expected loss R∗(θ, δ), also known as risk, is defined by

R∗(θ, δ) = E[L(θ, δ)|θ] =

∫
X
L(θ, δ(x))f(x|θ)dλ(x),

where λ(x) is the related dominating measure.

Equivariance. The idea of equivariant estimator is based on the theory of invari-

ant estimation. Thus, to describe the equivariant estimation, we should begin from

the definition of invariant family of distributions and invariant estimator.

Also, to introduce the concept of invariant estimation, we need to define some other

concepts such as group of transformation, and invariant problem. These definitions

will be used as the backgrounds of invariance.
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Definition 1.12. A nonempty set H together with a binary operation ◦ is called

a group if it satisfies the following conditions:

1.(Closure): For all a, b in H, the result of a ◦ b is also in H.

2.(Associativity): For all a, b and c in H, we have (a ◦ b) ◦ c = a ◦ (b ◦ c).

3.(Identity): There exists an identity element e in H such that for all a in H, we have

e ◦ a = a ◦ e = a.

4.(Inverse): For each a in H, there exists an element a−1 in H such that a ◦ a−1 =

a−1 ◦ a = e, where e is the identity element.

Definition 1.13. A set of functions {h(x) : h ∈ H} from the sample space X

onto X is called a group of transformations of X if

1.(Inverse): For every h ∈ H, there is a h′ ∈ H such that h′(h(x)) = x for all x ∈ X .

2.(Composition): For every h ∈ H and h′ ∈ H, there exists h′′ ∈ H such that

h′(h(x)) = h′′(x) for all x ∈ X .

3.(Identity): The identity, defined by e(x) = x for all x ∈ X , is an element of H.

Based on the concepts of group and group of transformation, the definitions of

invariant distribution and invariant loss function are defined respectively as follows.

Definition 1.14. A family of distributions {f(x|θ) : θ ∈ Θ} is said to be invari-

ant under the group H if for every θ ∈ Θ, and h ∈ H, there is a unique θ′ ∈ Θ, such
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that X ∼ f(x|θ) implies Y = h(X) ∼ f(y|θ′).

For a fixed h ∈ H, the correspondence that takes θ → θ′ defines a function, which

we denote by h̄(θ) = θ′. Then the invariant loss function is defined as follows.

Definition 1.15. Let {f(x|θ) : θ ∈ Θ} be invariant under group H and let

L(θ, a) be a loss function on Θ×A, where A, the set of possible decisions, coincides

with H. We say that the loss function is invariant under H if, for every h ∈ H and

a ∈ A, there exists an a∗ ∈ A such that for all θ ∈ Θ, L(θ, a) = L(h̄(θ), a∗), where

H̄ = {h̄ : h̄ ∈ H} is a group of transformations from Θ to itself.

Further, let H̃ = {h̃ : h̃ ∈ H} be a group of transformation from A to itself, and

let h̃(a) = a∗, where h̃ ∈ H̃. Then the invariant estimation problem and invariant

estimator are respectively defined as follows.

Definition 1.16. Let H be a group of transformations. An estimation problem

is invariant under H if the family of distributions and the loss function are invariant.

Definition 1.17. For an estimation problem that is invariant under H, a point

estimator S(X) of θ is an invariant estimator under the group H if for every x ∈ X ,
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θ ∈ Θ, and h ∈ H, S(h(x)) = S(x).

With above definitions, the definitions of equivariant estimator and minimum risk

equivariant estimator, as defined in Lehmann (1998, p.161), are provided in the fol-

lowing way.

Definition 1.18. Let A be the set of possible decisions that coincides with H,

and let h̃ be any one to one transformation from A to itself. Then in an invariant

estimation problem, an estimator S(X) is said to be equivariant if it satisfies

S(h(X)) = h̃(S(X)) (1)

for all h ∈ H.

Definition 1.19. In an invariant estimation problem, if an equivariant estimator

exists which minimizes the risk, it is called the minimum risk equivariant estimator

(MRE).

For more details related to equivariant estimator, we refer to Lehmann and Casella

(1998, Chapter 3).
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Location and scale families. In probability theory, especially in the field of sta-

tistics, one of the well-known groups of transformations is location and scale family.

There are three types of models included in location and scale families: location fam-

ilies, scale families, and location-scale families. Each of the families is constructed by

specifying a single pdf, say g(x), called the standard probability density function(pdf)

for the family. Then all other pdfs in the family are generated by transforming the

standard pdf in a prescribed way.

Definition 1.20. Let g(x) be any pdf. Then the family of pdfs f(x|θ) = g(x−µ),

indexed by the parameter θ = µ, −∞ < µ < ∞, is called the location family with

standard pdf g(x) and µ is called the location parameter.

Definition 1.21. Let g(x) be any pdf. Then for any σ > 0, the family of pdfs

f(x|θ) = (1/σ)g(x/σ), indexed by the parameter θ = σ, is called the scale family

with standard pdf g(x) and σ is called the scale parameter.

Definition 1.22. Let g(x) be any pdf. Then for any −∞ < µ < ∞ and σ > 0,

the family of pdfs f(x|θ) = (1/σ)g(x−µ
σ

), indexed by the parameter θ = (µ, σ), is

called the location and scale family with standard pdf g(x) and µ and σ are called

the location parameter and scale parameter, respectively.
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To summarize the above definitions, note that the construction of location and

scale families is related to the following theorem.

Theorem 1.1. Let g(x) be any pdf and let µ and σ > 0 be any given constants.

Then the function

f(x|µ, σ) =
1

σ
g

(
x− µ

σ

)
is a pdf.

The proof of this theorem is given in the appendix.



CHAPTER 2

Generalized inference in univariate location-scale family

In this chapter, we discuss the concept of generalized pivotal quantity (GPQ),

which is an approach for generating the generalized confidence interval. Also, we

introduce the concept of generalized p-value (GPV) based on generalized test vari-

able (GTV), which can be considered as a function of GPQ. Therefore, in order to

compute the GCI and GPQ for a given inference problem for univariate location-scale

family, it is important to construct the related GPQ first. In this case, we develop

an approach for finding the required GPQ, which is based on the conditional pivotal

quantity. Finally, we present the GPQ of some special location-scale families as ex-

amples.

2.1. Concepts of generalized inference

The concept of generalized P-value was first introduced by Tsui and Weerahandi

(1989) whereas the generalized confidence interval was introduced by Weerahandi

(1993). In the quoted papers, given the following two definitions are

17
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Definition 2.1. Let X1, ..., Xn be the iid observable random variables with pdf

f(x|θ), where θ = (θ1, θ2) is a vector of unknown parameters. Here θ1 is the parameter

of interest and θ2 is a vector of nuisance parameters. Let X denote the sample space

of possible values of X, where X = X1, ..., Xn, and let Θ denote the parameter space

of θ and Θ1 be the parameter space of θ1. In addition, we denote x (x ∈ X ) as an

observation from X. Let R = R(X, x, θ) be a function of X, x, θ, where θ = (θ1, θ2).

Then, the function R is said to be a generalized pivotal quantity if it satisfies the

following conditions .

1. Given x, the distribution of R is free from unknown parameters;

2. the observed pivotal, defined as Robs = R(x, x, θ), does not depend on the nuisance

parameter.

Then, for a given generalized pivotal quantity R, and a confidence coefficient γ,

a 100γ% generalized confidence interval for θ1, say Θθ1 , as defined in Weerahandi

(1993), is given by

Θθ1 = {θ1 ∈ Θ1|Robs ∈ CIθ1}, (2)

where the subset CIθ1 is given by

Pr(R ∈ CIθ1) = γ.

Especially, when Robs = R(x, x, θ) = θ1, and CIθ1 ⊆ Θ1,

Θθ1 = {θ1 ∈ Θ1|θ1 ∈ CIθ1} = CIθ1 . (3)
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Besides, as introduced by Tsui and Weerahandi (1989), generalized test variable

(GTV), which is used to compute the generalized p-value (GPV), is defined in the

following way.

Definition 2.2. Let x be the observed value of the random vector X, and let

θ = (θ1, θ2), where θ1 is the parameter of interest, and θ2 is a vector of nuisance

parameters. Then, the generalized test variable, is defined as a function of (X, x, θ),

say T (X, x, θ), which satisfies the following requirements.

(1). T (x, x, θ) = t is free of θ.

(2). For fixed x and θ, the distribution of T (X, x, θ) is free of the nuisance parameter

θ2.

(3). For fixed x and θ2, P [T (X, x, θ) > t|θ1] is non-decreasing in θ1.

For the first requirement, Tsui and Weerahandi (1989) points out that it can be

considered as a redundant requirement, because if the function T (X, x, θ) we construct

does not satisfy the first requirement, then we can define a new GTV T ′(X, x, θ) =

T (X, x, θ) − T (x, x, θ), which satisfies the first requirement. In addition, for the

third requirement, Krishnamoorthy, Mathew, and Ramachandran (2007) gives a more

general form:

(3). For fixed x and θ2, P [T (X, x, θ) > t|θ1] is stochastically monotone in θ1 (i.e.

stochastically increasing or decreasing in θ1).

In this thesis, we use the definition of Krishnamoorthy et al. (2007) instead of Tsui
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and Weerahandi (1989).

Now, suppose that we are interested in testing the hypotheses

H0 : θ1 > θ0 v.s. H1 : θ1 < θ0, (4)

where θ1 is the parameter of interest and θ0 is a specified constant. Then, for fixed

x and θ2, as discussed in Krishnamoorthy et al. (2007), one can construct the GTV

by T1(X, x, θ) = R(X, x, θ) − R(x, x, θ), where R(X, x, θ) is the GPQ discussed in

Definition 2.1 and R(x, x, θ) is the observed value of R(X, x, θ). In this case, it can

be verified that P [T (X, x, θ) > t] is decreasing in θ1. Then, the generalized p-value

for (4) is given by

p = sup
H0

P [T1(X, x, θ) > 0] = sup
H0

P [R(X, x, θ)−R(x, x, θ) > 0]. (5)

Especially, when Robs = θ1,

p = P (R(X, x, θ) > θ0). (6)

From what we discussed above, it can be seen that the GTV is just a function of the

GPQ, R(X, x, θ), since θ0 is a known constant. Therefore, if we can construct the

R(X, x, θ), it is easy to construct the GTV and compute the GPV by using (5).

Because the distribution of R(X, x, θ) is free of any unknown parameters, the gen-

eralized p-value at θ0 can be obtained by using a numerical method or estimated by

using Monte Carlo simulation.



2.2. GENERALIZED PIVOTAL QUANTITY FOR SOME LOCATION-SCALE FAMILIES 21

2.2. Generalized pivotal quantity for some location-scale families

As discussed in Subsection 2.1, most of difficulty in finding GCI and GPV for

location-scale family is in constructing the related GPQ. To clarify the idea of the

procedures of constructing GPQ for location-scale family, we first look at some well-

known location-scale families as examples. In the sequel, we denote X̄ and S2
X as the

sample mean and the sample variance respectively.

1. Normal distribution. Let X1, X2, ...Xn be iid with Xi ∼ N (µ, σ2), i = 1, ..., n,

it can be verified that X̄, S2
X are the uniformly minimum variance unbiased estimators

(UMVUE) of µ, σ2, respectively. Since

(X̄ − µ)/(SX/
√

n) ∼ Tn−1 and (n− 1)S2
X/σ2 ∼ X 2

n−1,

the functions (X̄ − µ)/(SX/
√

n) and (n− 1)S2
X/σ2 are the pivotal quantities.

Therefore, the generalized pivotal quantities are given by

Rσ = s2
obs((n− 1)S2

X/σ2)−1,

Rµ = x̄obs − (X̄ − µ)/(SX/
√

n)
√

s2
obs.

2. Exponential distribution. Let X1, X2, ...Xn be iid with Xi ∼ exp(σ), i =

1, 2, ..., n. Then it can be verified that X̄ is the UMVUE of σ. Therefore, the classical
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pivotal quantity is given by X̄/σ and GPQ is x̄obs(X̄/σ)−1.

3. Gamma distribution. Let X1, X2, ...Xn be iid with Xi ∼ Gamma(α, σ), α is

known.

It can be verified that, X̄ ∼ Gamma(nα, σ/n). Therefore, 2nX̄/σ ∼ Gamma(nα, 2).

This implies that 2nX̄/σ is the classical pivotal quantity of σ. Then, the GPQ of σ

is 2nx̄obs(2nX̄/σ)−1.

4. Cauchy distribution. Let X1; ...; Xn be iid sample from a Cauchy distribution

with location parameter µ, then X̄ − µ follows the Cauchy distribution with location

parameter 0. Further, it is shown in Hass, Bain and Antle (1970) that the pivotal

quantities of Cauchy distribution with location parameter µ and scale parameter σ

are (µ̂− µ)
√

n/σ and σ̂/σ, then the generalized pivotal quantities are given by

σ̂obs(σ̂/σ)−1, and µ̂obs − (µ̂− µ)/σ × σ̂obs(σ̂/σ)−1,

where the µ̂ and σ̂ are the maximum likelihood estimator (MLE) of µ, and σ, re-

spectively. The procedures of finding these estimators are also given in Haas et al.

(1970).

Based on the above examples, we provide a framework of constructing GPQ and

GPV, and this will be discussed in the next section.
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2.3. Generalized pivotal quantity in location-scale family

In Section 2.2, we have considered some well-known distributions and we have

shown the approach of how the related generalized pivotal quantities are constructed.

As one can see, most of the GPQ are related to the following pivotal quantities:

µ̂ − µ, σ̂/σ and (µ̂ − µ)/σ, where µ̂ and σ̂ are some estimators. In this case, it is

reasonable to assume that for any location-scale family, there exist a general method

of constructing the related GPQ by using the pivotal quantities mentioned above.

In fact, the applications of above pivotal quantities in location-scale family case are al-

ready discussed. For example, Lawless (1972) used those pivotal quantities to develop

some conditional confidence interval procedures for the location and scale parameters

of the Cauchy and logistic distributions. It should be noted that these procedures

can also be applied to the general location-scale family where the MLE exists. In this

case, we can construct the GPQ by extending the idea of his work.

However, since the purpose of Lawless (1972) is to deal with Cauchy and logistic dis-

tributions, where the MLE exists, the conditional pivotal quantities discussed in his

paper is based on the MLE only. In this thesis, we are interested in extending these

conditional pivotal quantities to the general location-scale families including the case

where the MLE does not exist (see Chapter 3). Briefly, as one of the contributions

in this thesis, we use the minimum risk equivariant estimator as a replacement of the

MLE. This will be discussed in Chapter 3.

2.3.1. Conditional pivotal function in location-scale family.
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Let X1, X2, ...Xn be iid with pdf f(xi) = σ−1g((xi − µ)/σ). Lawless (1972) pre-

sented the conditional pivotal function of location-scale family with 3 situations, that

are: Location family, scale family and location-scale family.

2.3.1.1. Location family. In this subsection, we consider the case where µ is an

unknown parameter while σ is supposed to be known. Thus, since σ is known, with-

out loss of generality, we can let σ be equal to one for convenience. Then, the joint

distribution of X1, X2, ...Xn are given by

f(x1, x2, ...xn|µ) =
n∏

i=1

g(xi − µ).

The following lemma is useful in establishing the pivotal quantities for the location

scale parameters. Recall that two random variables X and Y are said to be function-

ally independent if the only function φ(k1, k2) such that φ(X, Y ) = 0 is φ = 0.

Lemma 2.1. Let X and Y be independent nondegenerated random variables. Then

X and Y are functionally independent.

Proof. Let S(X) and S(Y ) denote the sigma-fields generated by X and Y

respectively. Then, X and Y are independent iff S(X) and S(Y ) are independent.

Further, let φ be a measurable function such that φ(X, Y ) = 0. This implies that φ

is both S(X)-measurable and S(Y )-measurable. Then, since S(X) and S(Y ) are
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independent, φ must be a constant function, and since φ(X, Y ) = 0, we get φ = 0,

and that completes the proof. �

Proposition 2.1. Let T (X1, ..., Xn) be a nonconstant measurable function of

(X1, ..., Xn). Then T (X1, ..., Xn) and X1, ..., Xn are not functionally independent.

Proof. Let

φ(k1, ..., kn+1) = k1 − T (k2, ..., kn+1).

We have

φ(T,X1, ...Xn) = T − T (X1, ..., Xn) = 0.

However, φ(k1, ..., kn+1) is a function other than φ = 0. This implies T (X1, ..., Xn)

and X1, ..., Xn are not functionally independent.

�

Proposition 2.2. Let T (X1, ..., Xn) be a measurable function of (X1, ..., Xn).

Then, T (X1, ..., Xn) and X1, ..., Xn−1 are functionally independent.

Proof. 1. If T is a constant, this does not depend on X1, ..., Xn:

Suppose T and X1, ..., Xn−1 are not functionally independent. There exists a function

φ1(k1, ..., kn) other than φ1 = 0, but φ1(T, X1, ..., Xn−1) = 0.

Since T is a constant, φ1(T, X1, ..., Xn−1) can be considered as a function of X1, ..., Xn−1.

Set φ2(k2, ..., kn) = φ1(T, k2, ..., kn). Then

φ2(X1, ..., Xn−1) = φ1(T,X1, ..., Xn−1) = 0.
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This implies that there exists a function φ2(k1, ..., kn−1) other than φ2 = 0. However,

since φ2(X1, ..., Xn−1) = 0, we can verify that X1, ..., Xn−1 are not functionally inde-

pendent. This contrasts the fact that, by Lemma 2.1, X1, ..., Xn−1 are functionally

independent. Therefore, T and X1, ..., Xn−1 are functionally independent.

2. If T is a nonconstant and measurable function of X1, ..., Xn, suppose that T at

least depends on one random variable Xj. By changing the order of X1, ..., Xn, let

Xn be the Xj. Then T can be expressed as a function of Xn and X∗, where X∗ is a

subset of {X1, ..., Xn−1}.

Let T = T̃ (X∗, Xn). Suppose T and X1, ..., Xn−1 are not functionally independent.

There exists an φ1(k1, ..., kn) other than φ1 = 0, but φ1(T, X1, ..., Xn−1) = 0.

Since T = T̃ (X∗, Xn),

φ1(T,X1, ..., Xn−1) = φ1(T̃ (X∗, Xn), X1, ..., Xn−1),

which is a function of X1, ..., Xn−1, Xn. Set φ2(k1, ..., kn) = φ1(T̃ , k1, ..., kn−1), such

that

φ2(X1, ..., Xn) = φ1(T̃ (X∗, Xn), X1, ..., Xn−1).

This implies that there exist a function φ2(k1, ..., kn) other than φ2 = 0. However,

since φ2(X1, ..., Xn) = 0, one can verify that X1, ..., Xn are not functionally inde-

pendent, which contradicts the fact that, by Lemma 2.1, X1, ..., Xn are functionally

independent.

Therefore, T (X1, ..., Xn) and X1, ..., Xn−1 are functionally independent. �
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Let µ̂ be the MLE or equivariant estimator of µ. In the sequel, we denote

ai = Xi − µ̂, i = 1, ...n. (7)

Note that, for the case of scale family, ai is replaced by bi = Xi/σ̂, i = 1, 2, ..., n.

By using Proposition 2.1 and 2.2, we establish the following corollary and propositions:

Corollary 2.1. Let µ̂ be a nonconstant estimator of µ. Then,

(i): µ̂ and X1, ..., Xn are not functionally independent.

(ii): µ̂ and X1, ..., Xn−1 are functionally independent.

Proof. The statement (i) follows directly from Proposition 2.1, and the state-

ment (ii) follows directly from Proposition 2.2. �

Proposition 2.3. Assume that relation (7) holds. Then a1, ..., an are not func-

tionally independent.

Proof. Since µ̂ can be expressed as a function of x1, ..., xn, once we fix the value

of x1, ..., xn−1, then the value of xn will be fixed.

This implies that once we fix the values of a1 = x1− µ̂, ..., an−1 = xn−1− µ̂, the value

of an = xn − µ̂ will be fixed.

Therefore, since µ̂ is equivariant, an can be expressed as a function of a1, ..., an−1, we

can set an = T (a1, ..., an−1). There exists a function

φ(k1, ..., kn) = kn − T (k1, ..., kn−1)
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other than φ = 0, but φ(a1, ...an−1, an) = 0.

This implies that ai = Xi − µ̂, i = 1, ..., n are not functionally independent. �

Proposition 2.4. Assume that relation (7) holds. Then a1, ..., an−1 are function-

ally independent.

Proof. Suppose a1, ..., an−1 are not functionally independent. There exists a

function φ(k1, ..., kn−1) other than φ = 0, but φ(a1, ...an−1) = 0;

Since ai = Xi − µ̂, i = 1, ..., n− 1, we can verify that

φ(a1, ...an−1) = φ(X1 − µ̂, ..., Xn−1 − µ̂),

which is a function of µ̂ and X1, ..., Xn−1. Set

φ1(X1, ..., Xn−1, µ̂) = φ(X1 − µ̂, ..., Xn−1 − µ̂) = φ(a1, ...an−1).

Therefore, there exists a function φ1(k1, ..., kn) other than φ1 = 0, with

φ1(X1, ..., Xn−1, µ̂) = 0.

This implies that µ̂ and X1, ..., Xn−1 are not functionally independent. But by Corol-

lary 2.1, µ̂ and X1, ..., Xn−1 are functionally independent, and that is a contradiction.

Therefore, ai = Xi− µ̂, i = 1, ..., n− 1 are functionally independent, which completes

the proof. �

Proposition 2.5. Assume that relation (7) holds. Then a1, ..., an−1 are ancillary

statistics for any location-scale family.

Proof. Define an by Xn = an + µ̂. Then, since µ̂ is an equivariant estimator of

µ, an can be expressed as a function of a1, ..., an−1 and µ̂. Set an = T (a1, ..., an−1, µ̂).
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Then

Xi = ai + µ̂, i = 1, ..., n− 1; Xn = an + µ̂.

Let X̃ = (X1, ..., Xn) and let x̃ = (x1, ..., xn). We have f(x̃) =
∏n

i=1 g(xi − µ).

Since a1, ..., an−1 and µ̂ are functionally independent,

f(ã, µ̂) = |J |
n∏

i=1

g(ai + µ̂− µ),

where ã = (a1, ..., an−1) and |J | is the Jacobian matrix.

Then,

f(ã) =

∫ ∞

−∞
|J |

n∏
i=1

g(ai + µ̂− µ)dµ̂ = |J |
∫ ∞

−∞

n∏
i=1

g(ai + z)dz,

where z = µ̂− µ and

J =


∂X1

∂a1
. . . ∂X1

∂an−1

∂X1

∂µ̂
... . . .

...
...

∂Xn

∂a1
. . . ∂Xn

∂an−1

∂Xn

∂µ̂

 =

1 . . . 0 1
... . . .

...
...

0 . . . 0 1

 .

Since

f(ã) = |J |
∫ ∞

−∞

n∏
i=1

g(ai + z)dz,

by integrating out z eliminates µ, which implies that f(ã) does not depend on µ.

Therefore, a1, ..., an−1 are ancillary statistics, which completes the proof. �

Since ai = Xi− µ̂, we have Xi = ai + µ̂. By applying the Jocobi’s transformation,

the joint pdf of a1, ..., an−1, µ̂ are given by:

f(a1, ..., an−1, µ̂) = |J |
n∏

i=1

g(ai + µ̂− µ).
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Therefore,

f(µ̂|a1, ..., an−1) =
f(a1, ..., an, µ̂)

f(a1, ...an)
=

|J |
n∏

i=1

g(ai + µ̂− µ)

|J |
∫ ∞

−∞

n∏
i=1

g(ai + z)dz

.

Hence,

f(µ̂|a1, ..., an−1) =

n∏
i=1

g(ai + µ̂− µ)∫ ∞

−∞

n∏
i=1

g(ai + z)dz

,

where the |J | and z are defined in the proof of Proposition 2.5.

Therefore, it is clear that z1 = µ̂−µ is the pivotal quantity, with conditional density:

f(z1|a1, ..., an−1) =

n∏
i=1

g(ai + z1)∫ ∞

−∞

n∏
i=1

g(ai + z1)dz1

.

2.3.1.2. Scale family. In this subsection, we consider the case where σ is an un-

known parameter, while µ is supposed to be known. Since the µ is known, without

loss of generality, we can let µ equal to zero for convenience. Then, the joint distri-

bution of X1, X2, ...Xn are given by:

f(x1, x2, ..., xn|σ) = σ−n

n∏
i=1

g(xi/σ).

In this subsection, we assume that MLE of σ exist. The case where the MLE does

not exist, is discussed in the Chapter 3. Let σ̂ be the MLE of σ if it exists. Then,

the quantities

bi = Xi/σ̂, i = 1, ...n (8)
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will also satisfy the Propositions 2.4 and 2.5 by replacing (7) with (8).

Then, similar to the location family, we find that conditional on b1, ..., bn, Z2 = σ̂/σ

is the pivotal quantity, with conditional density:

f(z2|b1, ..., bn−1) =

zn−1
2

n∏
i=1

g(biz2)∫ ∞

0

zn−1
2

n∏
i=1

g(biz2)dz2

.

2.3.1.3. Location-scale family. In this subsection, we consider the more general

case where µ and σ are both unknown.

The joint pdf of X1, ..., Xn is

f(x1, ..., xn) = σ−n

n∏
i=1

g

(
xi − µ

σ

)
.

Here we assume that the MLEs for (µ, σ) exist. Thus, let µ̂, σ̂ be the MLE of µ and

σ, respectively. Once again, the case where MLE does not exist will be discussed

in Chapter 3. Then the quantities ai = (xi − µ̂)/σ̂, i = 1, ..., n − 2 are functionally

independent ancillary statistics. Similar to the previous sections, we can verify that

Z3 = (µ̂− µ)/σ̂, Z4 = (σ̂)/σ

are pivotal quantities, with joint conditional density:

f(z3, z4|a1, ..., an−2) =

zn−1
4

n∏
i=1

g((z3 + ai)z4)∫ ∞

0

∫ ∞

−∞
zn−1
4

n∏
i=1

g((z3 + ai)z4)dz3dz4

. (9)

In summary, the conditional pivotal functions of the 3 situations are given by:
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1: µ unknown, σ known: ai = Xi−µ̂
σ

, where the µ̂ is the estimator of µ. The

pivotal function of µ is Z1 = µ̂− µ.

2: µ known, σ unknown: ai = Xi−µ
σ̂

, where the σ̂ is the estimator of σ. The

pivotal function of σ is Z2 = σ̂/σ.

3: µ, σ both unknown: ai = Xi−µ̂
σ̂

, the pivotal functions are Z3 = (µ̂ − µ)/σ̂,

and Z4 = σ̂/σ.

2.3.2. Generalized pivotal quantity in location-scale family.

Based on the above classical pivotal functions, the generalized pivotal quantities

are given by:

1: µ unknown, σ known: the generalized pivotal quantity of µ is

R1 = µ̂obs − (µ̂− µ), (10)

where the µ̂ is the MLE of µ.

2: µ known, σ unknown: the generalized pivotal quantity of σ is

R2 = σ̂obs(σ̂/σ)−1, (11)

where the σ̂ is the MLE of σ.

3: µ, σ both unknown: the generalized pivotal quantities are

R3 = µ̂obs − σ̂obs(µ̂− µ)/σ̂, R4 = σ̂obs(σ̂/σ)−1. (12)

Again, it should be recalled that, here, we consider the case where the MLE of (µ, σ)

exist. For the case where MLE does not exist, the GPQ in (10), (11), and (12) are
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applied by replacing MLE with equivariant estimators, which will be discussed in the

next chapter.

2.4. Generalized confidence interval and P-value

With the same notations given in the previous sections, let X1, X2, ...Xn be iid

with pdf f(xi) = σ−1g((xi − µ)/σ). Further, let Z3 = (µ̂ − µ)/σ̂, and let Z4 = σ̂/σ.

As discussed above, the GPQ for location and scale parameters are respectively given

by

R3 = µ̂obs − σ̂obsZ3, R4 = σ̂obsZ
−1
4 , (13)

where the distribution of Z3 and Z4 are discussed in Subsection 3.1.3.

For R3 and R4, it can be verified that their observed pivotal are µ and σ, respectively.

In this case, as discussed in Section 2.1 of Chapter 2, the 100γ% GCI of µ, say CIµ

is given by

Pr(R3 ∈ CIµ) = γ, (14)

and CIσ, the 100γ% GCI of σ, is

Pr(R4 ∈ CIσ) = γ. (15)

Further, consider the testing problem

H0 : µ > µ0 v.s. H1 : µ < µ0, (16)

based on what we discussed in subsection 2.1, the generalized p-value is given by

pµ = P (R3 > µ0) = P (µ̂obs − σ̂obsZ3 > µ0). (17)



2.4. GENERALIZED CONFIDENCE INTERVAL AND P-VALUE 34

Similarly, in the testing problem

H0 : σ > σ0 v.s. H1 : σ < σ0, (18)

the generalized p-value is

pσ = P (R4 > σ0) = P (σ̂obsZ
−1
4 > σ0). (19)



CHAPTER 3

Equivariant method

It is well known that the maximum likelihood estimators (MLE) of the loca-

tion and scale parameters may not exist. For example, as shown in Gupta and

Székely(1994), if

g(x) = c(x log2 x)−1

where 0 < x 6 k < 1, k is any constant that satisfies 0 < k < 1 and c = −1/ log(k)

is a constant, then the MLE’s for the location and scale parameters for the location-

scale family σ−lg((x− µ)/σ) does not exist.

Another similar example is given in Pitman (1979), which shows that, if

g(x) =
1

2(1 + |x|)(1 + log(1 + |x|))2
,

where −∞ < x < ∞. Then the MLE’s for the location and scale parameters for the

probability density function σ−lg((x − µ)/σ) does not exist. In this case, there is a

need for finding other good estimators as replacement.

As discussed in Chapter 2, one solution for the case where the MLE does not exist is to

use the equivariant estimator instead of MLE. In this section, we study the efficiency

of equivariance method by discussing the concepts and applications of equivariant

estimators particularly in location-scale family. In this case, first we present some

concepts about equivariant estimator in location-scale family.

35
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3.1. Equivariant point estimator

3.1.1. Equivariant estimator of the location parameter.

Let X = (X1, ..., Xn), where X1, ..., Xn are iid with joint pdf

f(x|µ) =
n∏

i=1

g(xi − µ),−∞ < µ < ∞,

here g is known and µ is an unknown location parameter. Here we consider the estima-

tion problem of µ under the loss function L(µ, a) that satisfies L(µ, a) = L(µ+c, a+c),

where a ∈ A and c is any constant. Also, consider the group of transformations

H = {X ′ = X + c = (X1 + c, ..., Xn + c), µ′ = µ + c, a′ = a + c}. (20)

Under the transformations (20), one can verify that:

f(x′|µ′) = f(x|µ), L(µ′, a′) = L(µ, a)

for all c, µ ∈ R, x ∈ X, and a ∈ A and this implies that f(x|µ) and L(µ, a) are invari-

ant under the group of transformations (20). Therefore, the problem of estimating µ

is said to be an invariant estimation problem under the translation group.

In this case, an estimator µ̂(X) is an equivariant estimator for µ under (20) if it

satisfies

µ̂(X + c) = µ̂(X) + c, (21)

for all c.

For a given location family, there may exist more than one estimator that satisfies

(21). Thus, it is desirable to choose an equivariant estimator whose risk is minimal,

so-called minimum risk equivariant estimator (MRE).
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Under the square error loss function, Pitman (1939) developed a set of minimum risk

equivariant estimators, known as Pitman estimators, for the location families.

In this thesis, we denote µ̂P the Pitman estimator for µ. Also, we denote µ̂M the MLE

for µ. Similarly, the notation σ̂P and σ̂M are used in order to denote respectively the

Pitman estimator and MLE for σ. As quoted from Schervish (1997, Chapter 6), the

related expressions of MRE are presented as follows.

Theorem 3.1. Let X1, ..., Xn be the iid random sample from location family with

pdf f(x|θ) = g(x − µ), where µ is the unknown parameter. Then, under the loss

function L(µ, a) = (µ− a)2, the MRE of µ is given by:

µ̂P (x) =

∫ ∞

−∞
t

n∏
i=1

g(xi − t)dt∫ ∞

−∞

n∏
i=1

g(xi − t)dt

. (22)

Proof. Let h(x) = h(x1, ..., xn) = (x1 + µ, ..., xn + µ) = x + µ, and z = t− µ, we

can verify that:

µ̂P (h(x)) = µ̂P (x1 + µ, ..., xn + µ) =

∫ ∞

−∞
t

n∏
i=1

g(xi + µ− t)dt∫ ∞

−∞

n∏
i=1

g(xi + µ− t)dt

.
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Then

µ̂P (h(x)) =

∫ ∞

−∞
(z + µ)

n∏
i=1

g(xi − z)dz∫ ∞

−∞

n∏
i=1

g(xi − z)dz

= µ̂(x) + µ = h̄(µ̂(x)),

that is, µ̂P (h(X)) = h̄(µ̂P (X)), which implies that µ̂P (X) is an equivariant estimator

for µ.

In addition, it can be verified that (22) minimizes the mean squared-error function

(see Schervish, 1997, p. 348, or Lehmann and Casella, 1998, p. 154). This implies

that (22) is the MRE for location parameter µ. �

Note that the MRE given in (22) is referred in literature as Pitman estimator for

location parameters (see Pitman, 1939). Here we present an example which illustrates

the application of relationship (22). Also, by this example, we illustrate a relationship

between Pitman estimator and MLE in the location family case. More precisely, in

Example 3.1, Pitman estimator and MLE are the same.

Example 3.1. Let X1, ..., Xn iid with Xi ∼ N (µ, 1), where −∞ < µ < ∞ is an

unknown parameter. It can be verified that the MLE for µ is X̄ =
1

n

n∑
i=1

Xi. In

addition, the following proposition can be verified.

Proposition 3.1. Let X1, ..., Xn be a random sample as given in Example 4.1.

Then, the Pitman estimator for µ is X̄.
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Proof. From (22), we can verify that:

µ̂P (x) =

∫ ∞

−∞
t

n∏
i=1

g(xi − t)dt∫ ∞

−∞

n∏
i=1

g(xi − t)dt

=

∫ ∞

−∞

t

(2π)n/2
exp[−1

2

n∑
i=1

(xi − t)2]dt∫ ∞

−∞

1

(2π)n/2
exp[−1

2

n∑
i=1

(xi − t)2]dt

=

∫ ∞

−∞

t

(2π)n/2
exp[−1

2

n∑
i=1

(xi − x̄)2 − n

2
(x̄− t)2]dt∫ ∞

−∞

1

(2π)n/2
exp[−1

2

n∑
i=1

(xi − x̄)2 − n

2
(x̄− t)2]dt

.

Therefore,

µ̂P (x) =

exp[−1
2

n∑
i=1

(xi − x̄)2]

∫ ∞

−∞

t

(2π)n/2
exp[−n

2
(x̄− t)2]dt

exp[−1
2

n∑
i=1

(xi − x̄)2]

∫ ∞

−∞

1

(2π)n/2
exp[−n

2
(x̄− t)2]dt

=
x̄

1
= x̄.

�

In summary, for the normal location family case, the Pitman estimator and MLE

are same for the location parameter. In general, the following propositions make a

connection between equivariant estimator and MLE.

Proposition 3.2. Let µ be the location parameter and suppose that µ̂M , the MLE

of µ, exists. Then, µ̂M is equivariant.

The details of the proof can be found in Lehmann and Casella (1998, p.150).

In other words, in location family, the MRE performs always better than MLE. It

should be noted that similar result holds for the scale family case, which will be

discussed in the next subsection.
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3.1.2. Equivariant estimator of the scale parameter.

Let X = (X1, ..., Xn), where X1, ..., Xn are iid with joint pdf

f(x|σ) =
1

σn

n∏
i=1

g(xi/σ), 0 < σ < ∞,

here g is known and σ is an unknown scale parameter. Consider the estimation

problem of σ under the loss function L(σ, a), which satisfies L(σ, a) = L(cσ, ca),

where a ∈ A and c is any constant. For example, L(σ, a) = (a−σ)2/σ2 is a legitimate

such loss function.

Further, consider the group of transformations:

H = {X ′ = cX = (cX1, ..., cXn), σ′ = cσ, a′ = ca}. (23)

We can verify that

f(x′|σ′) = f(x|σ), L(σ′, a′) = L(σ, a)

for all c, σ, x, and a ∈ A.

Therefore, this estimation problem is invariant and any estimator σ̂(X) that satisfies

σ̂(X ′) = cσ̂(X),

for all c > 0, is said to be an equivariant estimator for σ under the group of transfor-

mations in (23).

Once again, we would like to choose an equivariant estimator whose risk is minimal,

that is the MRE.



3.1. EQUIVARIANT POINT ESTIMATOR 41

Theorem 3.2 (Pitman, 1939). Let X1, ..., Xn be independent random sample from

scale family with pdf f(x|θ) = σ−1g(x/σ), where σ is the unknown parameter. Then,

under the loss function L(σ, a) = (a− σ)2/σ2, the MRE, so-called Pitman estimator

of σ, is given by:

σ̂P (X) =

∫ ∞

0

t−n−2

n∏
i=1

g(xi/t)dt∫ ∞

0

t−n−3

n∏
i=1

g(xi/t)dt

(24)

Proof. Similar to the proof of Pitman estimator for location, we can verify that

σ̂P (h(X)) = h̄(σ̂P (X)), where h(X) = X/σ.

This implies that σ̂P is an equivariant estimator for σ. Furthermore, it can be verified

that (24) minimizes the risk under the loss function L(σ, a) = (σ − a)2/σ2. For more

details, we refer to Schervish (1997, p. 352). This implies that the estimator σ̂P (X)

is the MRE for scale parameter σ. �

In addition, the connection between MRE and MLE in scale family is provided

by the following proposition.

Proposition 3.3. Let σ be the scale parameter and suppose that σ̂M , the MLE of

σ exists. Then, σ̂M is also equivariant.

For details, we refer to Lehmann and Casella (1998, p. 168). In addition, recall

that MRE is the equivariant estimator that minimizes the risk. In other words, in

scale family case, if MRE exists, it is always better than MLE (with respect to the
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loss function in Theorem 3.2). This relationship is shown in the following example, in

which we illustrate the application of relation (24) for the normal scale family case.

Example 3.2. Let X1, ..., Xn iid with Xi ∼ N (0, σ2), where 0 < σ < ∞ is an un-

known parameter. It can be verified that the MLE for σ is

√
1

n

n∑
i=1

X2
i . In addition,

the Pitman estimator for σ is given by:

σ̂P (x) =

∫ ∞

0

t−n−2

n∏
i=1

g(xi/t)dt∫ ∞

0

t−n−3

n∏
i=1

g(xi/t)dt

=

∫ ∞

0

t−n−2

(2π)n/2
exp[− 1

2t2

n∑
i=1

x2
i ]dt∫ ∞

0

t−n−3

(2π)n/2
exp[− 1

2t2

n∑
i=1

x2
i ]dt

.

Let u =
s

t2
, where s =

n∑
i=1

x2
i . We have,

σ̂P (x) =

∫ ∞

0

s−(n+1)/2u(n−1)/2 exp
[
−u

2

]
du∫ ∞

0

s−(n+2)/2un/2 exp
[
−u

2

]
du

.

After some computations, we get

σ̂P (x) =

√
sΓ(n+1

2
)

∫ ∞

0

(u/2)(n+1)/2−1

Γ(n+1
2

)
exp

[
−u

2

]
du

√
2Γ(n+2

2
)

∫ ∞

0

u(n+2)/2−1

Γ(n+2
2

)
exp

[
−u

2

]
du

=
Γ(n+1

2
)

Γ(n+2
2

)

√
s

2
. (25)

This implies that the Pitman estimator is unequal to the MLE for scale parameter

of the normal distribution. However, in agreement with Proposition 3.4, MLE of σ

is an equivariant estimator of σ, but the MRE should be better than MLE. To verify

this result, we use the following proposition and corollary which prove that the mean
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square error (MSE) of MRE is less than that of MLE.

Proposition 3.4. Let X1, ..., Xn be iid from a scale family whose scale parameter

is σ, and suppose that MLE of σ, σ̂M(X) exists. Further, let σ̂P (X) be the MRE of σ

as given by Theorem 3.2. Then, under the loss function of Theorem 3.2, the MSE of

σ̂P (X) is less than the MSE of σ̂M(X).

Proof. From Proposition 3.3, we evaluated that σ̂M(X), the MLE of σ is equi-

variant. In addition, since σ̂P (X), the Pitman estimator for σ, is the MRE, with the

loss function L(σ, a) = (σ − a)2/σ2, we have,

R(σ, σ̂P (X)) 6 R(σ, σ̂M(X)), (26)

where

R(σ, δ∗(X)) =

∫
X

(σ − δ∗(x))2 f(x|σ)

σ2
dx

is the risk function of δ∗(X). In addition, since σ > 0, from (26) we have∫
X

(σ − σ̂P (x))2 f(x|σ)

σ2
dx 6

∫
X

(σ − σ̂M(x))2 f(x|σ)

σ2
dx,

and then, ∫
X

(σ − σ̂P (x))2 f(x|σ)dx 6
∫
X

(σ − σ̂M(x))2 f(x|σ)dx.

That gives

E
[
(σ − σ̂P (x))2] 6 E

[
(σ − σ̂M(x))2] .

Therefore,

MSE(σ̂P (X)) 6 MSE(σ̂M(X)),
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i.e., the MSE of σ̂P (X) is less than the MSE of σ̂M(X). �

Based on Proposition 3.4, we establish the following corollary.

Corollary 3.1. Let X1, ..., Xn be iid with Xi ∼ N (0, σ2), i = 1, 2, ..., n. Then,

the MSE of the MRE σ̂P (X), is less than the MSE of the MLE σ̂M(X).

In order to illustrate numerically this theoretical result, in Chapter 5 we use the

simulation method to evaluate the efficiency of Pitman estimator. Briefly, as given in

Chapter 5, the simulation study and numerical results confirm the above theoretical

results.

3.1.3. Equivariant estimator of the location and the scale parameters.

Let X = (X1, ..., Xn), where X1, ..., Xn are iid with joint pdf

f(x|, µ, σ) =
1

σn

n∏
i=1

g

(
xi − µ

σ

)
, 0 < σ < ∞,−∞ < µ < ∞,

where g is known and (µ, σ) are unknown location and scale parameters. First,

consider the estimation problem of σ under the loss function L(σ, a), which satisfies

L(σ, a) = L(cσ, ca), where a ∈ A and c is any constant.

By using arguments similar to those in the previous sections, one can verify that the

problem remains invariant under the group of transformations

H = {X ′ = b + cX = (b + cX1, ..., b + cXn), σ′ = cσ, a′ = ca, µ′ = b + cµ}. (27)
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Then, it can be verified that any estimator σ̂(X) that satisfies

σ̂(b + cX) = cσ̂(X)

is said to be an equivariant estimator for σ under the group of transformations in

(27). Secondly, we consider the estimation problem of µ. The transformations in

(27) relating to the sample space and parameter space remain the same, but the

transformations of the decision space now become a′ = b + ca. Similarly, one can

verify that the problem remains invariant if the associated loss function is given by

L(µ, σ, a) = ρ

(
a− µ

σ

)
, (28)

where ρ is any function. For example, ρ ((a− µ)/σ) = (a− µ)2/σ2.

Then, any estimator µ̂(X) is said to be equivariant for µ if it satisfies

µ̂(b + cX) = b + cµ̂(X).

Of course, for reasons similar to those in the previous subsections, it is of interest

to choose an equivariant estimator whose risk is minimal. The following theorem

provides the MRE formula for µ and σ, respectively.

Theorem 3.3. Let X1, X2, ..., Xn be iid random sample from location-scale fam-

ily with pdf f(x|θ) = 1/σg((x − µ)/σ), where µ and σ are the unknown parameters.

Then, under the loss function (28), the MRE (Pitman estimator) of µ is given by:
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µ̂P (x) =

∫ ∞

0

∫ ∞

−∞

u

vn+3

n∏
i=1

g

(
xi − u

v

)
dudv∫ ∞

0

∫ ∞

−∞

1

vn+3

n∏
i=1

g

(
xi − u

v

)
dudv

. (29)

In addition, the MRE (Pitman estimator) of σ is:

σ̂P (x) =

∫ ∞

0

v−n−2

∫ ∞

−∞

n∏
i=1

g

(
xi − u

v

)
dudv∫ ∞

0

v−n−3

∫ ∞

−∞

n∏
i=1

g

(
xi − u

v

)
dudv

. (30)

The proof is similar to that given in Theorem 3.1 and 3.2. For more details, the

reader is referred to Schervish (1997, Chapter 6).

Example 3.3. Let X1, ..., Xn be iid with Xi ∼ N (µ, σ), where −∞ < µ < ∞ and

0 < σ < ∞ are both unknown. By (29), one can verify that the Pitman estimator of

µ is X̄, which is the same as MLE. Also, by (30) the Pitman estimator of σ is given

by

σ̂P (X) =
Γ(n

2
)

Γ(n+1
2

)

√√√√1

2

n∑
i=1

(Xi − X̄)2.

Again, here we should note that this Pitman estimator is different from MLE, which

is given by

σ̂M(X) =

√√√√ 1

n

n∑
i=1

(Xi − X̄)2.

In addition, from Proposition 3.4, it can be verified that the MSE of Pitman estimator

is less than the MSE of MLE. This theoretical result is confirmed by simulated results

presented in Chapter 5.

From Example 3.1, 3.2 and 3.3, we find that the Pitman estimator is better than the
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MLE since the MSE of Pitman estimator is less than the MSE of the MLE where it

exists. Furthermore, even in the case where MLE does not exist, Pitman estimation

method can also be applied. To illustrate this point of view, we apply the Pitman

estimation to what we mentioned in the beginning of this chapter (see Chapter 5),

the 2 examples in which the MLE of location and scale parameters did not exist.

This highlights the efficiency of Pitman estimator in location and scale family. The

simulation studies and numerical results are presented in Chapter 5.

3.2. GPQ based on equivariant estimator

In Chapter 2, we discuss the approaches for constructing different MLE based

GPQ, which can be used to compute GCI and GPV. However, since it is already

pointed out in this section that the MRE performs better than MLE, we would like

to evaluate the approaches of GPQ based on MRE, that is, for (10), (11), (12), (17)

and (19), we replace the MLE by Pitman estimator, respectively. The evaluations are

made by applying these approaches to some particular problems.

Since the GPV and GCI in location-scale family is more important than the other two

types of families, which do not include any nuisance parameter, here we only study

the GCI and GPV in location-scale family case.

3.2.1. Evaluation of performances.
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For the following examples, we only discuss the theoretical approach. Further,

the numerical simulation results are presented in Chapter 5.

Example 3.4. Normal distribution with unknown location and scale parameters.

Let X1, X2, ...Xn iid N (µ, σ2), where −∞ < µ < ∞, and 0 < σ < ∞ are unknown

parameters. In addition, let ai = (xi− µ̂)/σ̂, where µ̂ = X̄ and σ̂ is chosen from 2 dif-

ferent estimators: MLE (σ̂M(X)) and Pitman estimator, (σ̂P (X)), respectively. It was

shown in Chapter 2 that conditional on a = (a1, a2, ...an−2), Z3 = (µ̂−µ)/σ̂, Z4 = σ̂/σ

are the pivotal quantities. Further, from (9), the joint conditional pdf is:

f(z3, z4|a) =

zn−1
4

n∏
i=1

g((z3 + ai)z4)∫ ∞

0

∫ ∞

−∞
zn−1
4

n∏
i=1

g((z3 + ai)z4)dz3dz4

. (31)

More precisely, the following proposition helps to simplify the pdf of Z3 and Z4. The

proof of this proposition is done by applying the Basu’s Theorem (see Casella and

Berger, 2001, p. 287 or Lehmann and Casella, 1998, p. 42). Alternatively, another

proof based on direct calculation and transformation is given in the appendix.

Proposition 3.5. Let ā =
1

n

n∑
i=1

ai and S2 =
n∑

i=1

(ai − ā)2. If X1, ...Xn are iid

N (µ, σ2), then,

(i): √
n(n− 1)Z3

S

∣∣∣a1, a2, ...an ∼ Tn−1.
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(ii):

S2Z2
4 |a ∼ X 2

n−1.

Proof. It can be verified that√
n(n− 1)Z3

S
=

√
n(X̄ − µ)

SX

, (32)

where S2
X = 1

n−1

n∑
i=1

(Xi − X̄)2. Further, it is well known that

√
n(X̄ − µ)

SX

∼ Tn−1 (33)

In addition, it can be verified that (X̄, S2
X) is a complete sufficient statistic for (µ, σ2);

while (a1, ..., an) is an ancillary statistic for (µ, σ2). Then, by Basu’s Theorem,
√

n(X̄ − µ)

SX

and (a1, ..., an) are independent. Therefore, from (32) and (33),√
n(n− 1)Z3

S
|a ∼ Tn−1

(ii). Similar to (i), one can prove that S2Z2
4 |a ∼ X 2

n−1. �

Therefore, the generalized pivotal quantities of µ and σ are given by:

Rµ = µ̂obs − σ̂obs

(
µ̂− µ

σ̂

)

= µ̂obs − σ̂obs
Sobs√

n(n− 1)


√

n(n− 1)

(
µ̂− µ

σ̂

)
S


= µ̂obs − σ̂obs

(
Sobs√

n(n− 1)
(Tn−1)

)
,

and

Rσ = σ̂obs(σ̂/σ)−1 = Sobsσ̂obs(S
2σ̂2/σ2)−

1
2 =

Sobsσ̂obs√
X 2

n−1

.
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Example 3.5. Cauchy distribution with unknown location and scale parameters.

For Cauchy distribution and Logistic distribution, which is discussed in the next

example, Lawless (1972) already evaluated the efficiency of MLE. Therefore, here we

only study the case of Pitman estimator.

Let X1, ...Xn iid Cauchy(µ, σ2), where −∞ < µ < ∞, and 0 < σ < ∞ are unknown

parameters. Accordingly, let ai = (xi − µ̂)/σ̂, where µ̂ and σ̂ are respectively given

by µ̂P (X), and σ̂P (X), the Pitman estimator for location and scale parameters. It is

shown in Chapter 2 that

R3 = µ̂obs − σ̂obsZ3, R4 = σ̂obsZ
−1
4 , (34)

where Z3 = (µ̂−µ)/σ̂, and Z4 = σ̂/σ, are the generalized pivotal quantities. By using

(9), the joint conditional density is given by:

f(z3, z4|a) =

zn−1
4

n∏
i=1

g((z3 + ai)z4)∫ ∞

0

∫ ∞

−∞
zn−1
4

n∏
i=1

g((z3 + ai)z4)dz3dz4

,

where g(x) =
1

π

1

1 + x2
. Therefore, the conditional probability density function of Z3

given a is:

f(z3|a) =

∫ ∞

0

zn−1
4

n∏
i=1

g((z3 + ai)z4)dz4∫ ∞

0

∫ ∞

−∞
zn−1
4

n∏
i=1

g((z3 + ai)z4)dz3dz4

,
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and then,

f(z3|a) =

∫ ∞

0

zn−1
4

n∏
i=1

1

π

1

1 + ((z3 + ai)z4)2
dz4∫ ∞

0

∫ ∞

−∞
zn−1
4

n∏
i=1

1

π

1

1 + ((z3 + ai)z4)2
dz3dz4

. (35)

Similarly, the conditional pdf of Z4 given a is:

f(z4|a) =

∫ ∞

−∞
zn−1
4

n∏
i=1

g((z3 + ai)z4)dz3∫ ∞

0

∫ ∞

−∞
zn−1
4

n∏
i=1

g((z3 + ai)z4)dz3dz4

,

that is,

f(z4|a) =

∫ ∞

−∞
zn−1
4

n∏
i=1

1

π

1

1 + ((z3 + ai)z4)2
dz3∫ ∞

0

∫ ∞

−∞
zn−1
4

n∏
i=1

1

π

1

1 + ((z3 + ai)z4)2
dz3dz4

. (36)

Example 3.6. Logistic distribution with unknown location and scale parameters.

Let X1, ...Xn iid Logistic(µ, σ2), where −∞ < µ < ∞, and 0 < σ < ∞ are unknown

parameters. Then, similar as Example 3.5, let ai = (xi − µ̂)/σ̂, where µ̂ and σ̂ are

respectively given by µ̂P (X), and σ̂P (X), the Pitman estimator for location and scale

parameters. Then,

R3 = µ̂obs − σ̂obsZ3, R4 = σ̂obsZ
−1
4 , (37)

where Z3 = (µ̂ − µ)/σ̂, and Z4 = σ̂/σ, are the generalized pivotal quantities. From

(9), the joint conditional density of (Z3, Z4) is given by:
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f(z3, z4|a) =

zn−1
4

n∏
i=1

g((z3 + ai)z4)∫ ∞

0

∫ ∞

−∞
zn−1
4

n∏
i=1

g((z3 + ai)z4)dz3dz4

,

where g(x) =
ex

(1 + ex)2
. Then,

f(z3|a) =

∫ ∞

0

zn−1
4

n∏
i=1

1

(1 + exp((z3 + ai)z4))2
dz4∫ ∞

0

∫ ∞

−∞
zn−1
4

n∏
i=1

1

(1 + exp((z3 + ai)z4))2
dz3dz4

. (38)

and

f(z4|a) =

∫ ∞

−∞
zn−1
4

n∏
i=1

1

(1 + exp((z3 + ai)z4))2
dz3∫ ∞

0

∫ ∞

−∞
zn−1
4

n∏
i=1

1

(1 + exp((z3 + ai)z4))2
dz3dz4

. (39)

From the previous examples and their simulated results, which are given in Chapter

5, one can see that the GPQ approaches based on Pitman estimator perform very

well. In addition, for the case where MLE does not exist, the approaches based on

Pitman estimators still provide satisfactory results. The related numerical examples

are presented in Chapter 5.



CHAPTER 4

Generalized inference in bivariate location-scale family

In the previous chapters, we discussed the GPQ method in location-scale family

for one-sample case. It is noticed that the GPQ was derived from conditional pivotal

quantities. Then based on these results we present the pivotal quantities in location-

scale family. However, it should be noted that the motivation of GPQ is to solve

some complex inference problems involving nuisance parameters, which may not be

solved by using classical inference methods. In location family or scale family case,

there is no any nuisance parameter and hence, the GPQ should provide similar result

as that provided by the classical inference method. From this point of view, in this

chapter we only study the problems related to location-scale family. Nevertheless,

the problems related to location family only or scale family only can be verified in a

similar way.

4.1. Description of the problems

Let X = (X1, ..., Xn), Y = (Y1, ..., Ym) be iid with the distributions of Xi and Yj

given by

fX(xi|µ1, σ1) =
1

σ1

g1

(
xi − µ1

σ1

)
, i = 1, .., n;

fY (yj|µ2, σ2) =
1

σ2

g2

(
yj − µ2

σ2

)
, j = 1, ...,m;

53
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where µ1, µ2, σ1, σ2 are all unknown and g1, g2 are the given probability density func-

tions. Then, based on the above conditions, our interest is to make inference about

the following parameters, respectively.

1. The ratio of the scale parameters ρ = σ2

σ1
.

2. The difference between the location parameters δ = µ1 − µ2, with known ρ.

3. The difference between the location parameters δ = µ1 − µ2, with unknown ρ.

Then, extending the GPQ methods of the univariate case, we develop the following

2 approaches for the above bivariate problems. Briefly, for the inference problems

of ρ and δ with known ρ, we use the first approach, which is extended from Sprott

(2000). In addition, for the inference problem of δ with unknown ρ, here we provide

an alternative approach, which will be discussed in this chapter.

4.2. Generalized pivotal quantity in bivariate case (first approach)

Since X = (X1, ...Xn) and Y = (Y1, ..., Ym) are independent, the joint pdf of

X1, ..., Xn, Y1, ..., Ym is

fXY (x1, ..., xn, y1, ..., ym) =
1

σn
1 σm

2

n∏
i=1

g1

(
xi − µ1

σ1

) m∏
j=1

g2

(
yj − µ2

σ2

)
.

Let z3 = (t1, t2), where t1 = (µ̂1 − µ1)/σ̂1, t2 = (µ̂2 − µ2)/σ̂2, and z4 = (t3, t4), where

t3 = σ̂1/σ1, t4 = σ̂2/σ2. In addition, let (a, b) = {a, b1, ..., bm−2}, where

ai =
Xi − µ̂1

σ̂1

, and bj =
Yj − µ̂2

σ̂2

,
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i = 1, ..., n, j = 1, ...,m. Then, as in the previous sections, it can be verified that the

join pdf of Z3, Z4 conditional on (a, b),

f(z3, z4|a, b) = f(t1, t2, t3, t4|a, b),

is given by

f(z3, z4|a, b) = Ctn−1
3 tm−1

4

n∏
i=1

g1((t1 + ai)t3)
m∏

j=1

g2((t2 + bj)t4), (40)

where

C =

(∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
tn−1
3 tm−1

4

n∏
i=1

g1((t1 + ai)t3)
m∏

j=1

g2((t2 + bj)t4)dt1dt2dt3dt4

)−1

.

Commonly, (µ̂i, σ̂j) are the MLEs. However, it should be noted that in some special

bivariate cases, the MLEs do not exist. In this case, with the same procedures as

discussed in Chapter 3 and 4, we can use the Pitman estimator instead. Further, it

can be verified that in bivariate case, the MSE of Pitman estimator is less than the

MSE of the MLE. Then, here we only consider the Pitman estimator if the estimation

is required. For example, we let µ̂i, σ̂j denote the Pitman estimators of µi and σj,

respectively.

In addition, for a discussion of the above pivotal quantities based on MLE, we refer

to Sprott (2000, Chapter 7), in which the author provides similar results, but based

on the MLE only, without considering the case when the MLE does not exist.

Furthermore, Sprott (2000, Chapter 7) uses (40) based on MLE to construct the
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classical conditional pivotal quantities of some special cases such as the normal distri-

bution. We extend the approach of Sprott (2000, Chapter 7) to the generalized form

over the class of location-scale families. That is, in any bivariate location-scale family,

the GPQ constructed based on (40) can be applied for the problems considered here.

4.2.1. Inference problem for the ratio of scale parameters ρ = σ2

σ1
.

For this problem, let

v =
t4
t3

=
σ̂2/σ2

σ̂1/σ1

=
σ̂2/σ̂1

ρ
. (41)

By using Jacobian method, one can transform (40) to the joint pdf of T1, T2 and V .

That is,

f1(t1, t2, t3, v|a, b) = f(t1, t2, t3, vt3|a, b)|t3|

= Cvm−1tn+m−1
3

n∏
i=1

g1((t1 + ai)t3)
m∏

j=1

g2((t2 + bj)vt4). (42)

Then, the pdf of v can be computed by taking the marginal pdf. That is,

fV (v|a, b) = CIV (v) =
IV (v)∫∞

0
IV (v)dv

, (43)

where

IV (v) = vm−1

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
tn+m−1
3

n∏
i=1

g1((t1 + ai)t3)
m∏

j=1

g2((t2 + bj)vt3)dt1dt2dt3,

and

C =

(∫ ∞

0

IV (v)dv

)−1

.

From the above equation, one can see that the pdf of v does not dependent on ρ.

This implies that v can be considered as a pivotal quantity of ρ.
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From the pivotal quantity v, the constructed generalized pivotal quantity is

Rρ1 = (σ̂2obs/σ̂1obs)

(
σ̂2/σ̂1

ρ

)−1

=
σ̂2obs

σ̂1obs

v−1. (44)

Based on (44), consider the testing problem

H0 : ρ > ρ0 v.s. H1 : ρ < ρ0. (45)

Similar as the results presented in Chapter 2, the generalized p-value is given by

pρ = P (Rρ1 > ρ0) = P

(
σ̂2obs

σ̂1obs

v−1 > ρ0

)
. (46)

In the following subsections, we consider inference problem for the difference between

location parameters. To this end, let δ = µ1 − µ2. For clarity sake, we present first

case, where the parameter ρ is known and secondly we deal with the case where ρ is

unknown.

4.2.2. Inference for the difference of location parameters δ = µ1 − µ2 (ρ

known).

Consider the inference problem concerning the difference between location pa-

rameters, δ = µ1 − µ2, with known ρ. In this case, since δ contains two parameters

of interest µ1 and µ2, which are included in t1 and t2, respectively, it is convenient to

make a connection between the pivotal quantity of δ and t1, t2. Let

d = t1 − t2ρv = t1 − t2
σ̂2

σ̂1

=
µ̂1 − µ̂2 − δ

σ̂1

. (47)

In addition, let

u = t1ρv + t2. (48)
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Then,

t1(u, d) = (ρvu + d)
(
1 + ρ2v2

)−1
and t2(u, d) = (u− ρvd)

(
1 + ρ2v2

)−1
.

This makes a transformation. In this case, since ρ is known, the joint pdf of u, d, v

can be obtained from (42). That is,

f2(u, d, t3, v|ab) = f1(t1(u, d), t2(u, d), t3, v|ab)|J |,

that gives

f2(u, d, t3, v|ab) = C|J |vm−1tn+m−1
3

n∏
i=1

g1

((
(ρvu + d) (1 + ρv)−1 + ai

)
t3
)

×
m∏

j=1

g2

((
(u− ρvd)

(
1 + ρ2v2

)−1
+ bj

)
vt3

)
(49)

where J is the Jacobian matrix. One can verify that

|J | =
(
1 + ρ2v2

)−1
.

An alternative construction of d, as suggested by Sprott (2000, Chapter 7), is given

by

d =
µ̂1 − µ̂2 − δ√

σ̂1
2 + σ̂2

2
=

µ̂1 − µ1

σ̂1

− µ̂2 − µ2

σ̂2

ρv√
1 + ρ2v2

=
t1 − t2ρv√
1 + ρ2v2

, (50)

and

u =

µ̂1 − µ1

σ̂1
2 +

µ̂2 − µ2

σ̂2
2√

1

σ̂1
2 +

1

σ̂2
2

=

µ̂1 − µ1

σ̂1

ρv +
µ̂2 − µ2

σ̂2√
1 + ρ2v2

=
t1ρv + t2√
1 + ρ2v2

. (51)

These also make a transformation, where

t1(u, d) = (ρvu + d)
(√

1 + ρ2v2
)−1

,

t2(u, d) = (u− ρvd)
(√

1 + ρ2v2
)−1

,
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and the Jacobian matrix satisfies |J | = 1. In this case, the joint pdf of u, d, v is given

by

f2(u, d, t3, v|a, b) = f1(t1(u, d), t2(u, d), t3, v|a, b)|J |

and so,

f2(u, d, t3, v|a, b) = Cvm−1tn+m−1
3

n∏
i=1

g1

((
(ρvu + d)

(√
1 + ρ2v2

)−1

+ ai

)
t3

)

×
m∏

j=1

g2

((
(u− ρvd)

(√
1 + ρ2v2

)−1

+ bj

)
vt3

)
. (52)

Since the Jacobian is 1, with u and d given by (51) and (50), respectively, in the

sequel, we use (51), and (50), instead of (48) and (47) respectively.

Since ρ is known, (41) does not contain any unknown parameter. Furthermore, notice

that σ̂1 and σ̂2 only depend on a and b, respectively. In this case, for given a and b, v

is fixed. Therefore, instead of the joint pdf (52), here one should use the conditional

pdf

f3(u, d, t3|v, a, b) =
f2(u, d, t3, v|a, b)

fV (v|a, b)

= f2(u, d, t3, v|a, b)

(∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
f2(u, x, t3, v|a, b)dudt3dx

)−1

,

that gives

f3(u, d, t3|v, a, b) =
f2(u, d, t3, v|a, b)∫ ∞

−∞
ID(x)dx

,

where

ID(d) = vm−1

∫ ∞

0

∫ ∞

−∞
tn+m−1
3

n∏
i=1

g1

((
(ρvu + d)

(√
1 + ρ2v2

)−1

+ ai

)
t3

)

×
m∏

j=1

g2

((
(u− ρvd)

(√
1 + ρ2v2

)−1

+ bj

)
vt3

)
dudt3.
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Then, by integrating with respect to u and t3, respectively, the conditional pdf of d

is found to be

f(d|v, a, b) =
ID(d)∫ ∞

−∞
ID(x)dx

, (53)

which does not contain any unknown parameter. This implies that d is a pivotal

quantity of δ.

Similarly, the GPQ of δ is given by

Rδ1 = µ̂1obs − µ̂2obs −
√

σ̂1
2
obs + σ̂2

2
obs

(
µ̂1 − µ̂2 − δ√

σ̂1
2 + σ̂2

2

)
,

and finally,

Rδ1 = µ̂1obs − µ̂2obs − d

√
σ̂1

2
obs + σ̂2

2
obs. (54)

Then, the generalized p-value for the testing problem

H0 : δ > δ0 v.s. H1 : δ < δ0, (55)

is given by

pδ = P (Rδ1 > δ0). (56)

However, if ρ is unknown, as one can see, the pdf (52) includes ρ. This implies

that d is not any longer a pivotal quantity since the related pdf contains unknown

parameter ρ. Therefore, the first approach is inappropriate for the bivariate case

where ρ is unknown. In this case, we introduce another approach, which is discussed

in the following subsection.
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4.3. Generalized pivotal quantity in bivariate case (second approach)

Let Z3i = (µ̂i − µi)/σ̂i, Z4i = σ̂i/σi, i = 1, 2. Since (X1, ...Xn) and (Y1, ..., Ym)

are independent, as discussed in Chapter 2, one can develop the following generalized

pivotal quantities for µ1, µ2, σ1, σ2, respectively.

R31 = µ̂1obs − σ1obsZ31,

R32 = µ̂2obs − σ2obsZ32,

R41 = σ̂1obsZ
−1
41 ,

R42 = σ̂2obsZ
−1
42 ,

where the distributions of Z3i, Z4i are discussed in Chapter 2. In this case, let

Rδ2 = R31 −R41 = µ̂1obs − µ̂2obs − σ1obsZ31 + σ2obsZ32. (57)

It can be verified that the distribution of Rδ2 is free of any unknown parameters.

Further, when µ̂iobs = µ̂i, and σ̂iobs = σ̂i, i = 1, 2, Rδ2 reduces to δ. These imply that

Rδ2 is a generalized pivotal quantity for δ.

In addition,by using the similar way, one can verify that

Rρ2 = R42/R41 =
σ̂2obsZ

−1
42

σ̂1obsZ
−1
41

=
σ̂2obsZ41

σ̂1obsZ42

. (58)

is another generalized pivotal quantity for ρ.

For (58) and (57), since each of them contains 2 independent distributions, sometimes

it is hard to compute the confidence bounds and GPV by using the classical cumulative

probability approach. In this case, it is convenient to use Monte Carlo estimation

approach instead. For the related algorithm and discussions, the interested readers
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can refer to Krishnamoorthy, K. and Mathew, Thomas. (2003).

Based on the above GPQs, the GPV for testing (55) is

pδ = P (Rδ2 > δ0). (59)

Besides, in addition to (46), one can develop an alternative GPV for testing (45),

which is given by

pρ = P (Rρ2 > ρ0). (60)

4.4. Example 4.1

To illustrate the above procedures, here we carry out some examples in which the

distributions of Xi and Yj are normal. In other words, we assume

fX(xi|µ1, σ1) =
1

σ1

g1

(
xi − µ1

σ1

)
=

1

σ1

√
2π

exp

[
−(xi − µ1)

2

2σ2
1

]
,

fY (yj|µ2, σ2) =
1

σ2

g2

(
yj − µ2

σ2

)
=

1

σ2

√
2π

exp

[
−(yj − µ2)

2

2σ2
2

]
, (61)

where i = 1, .., n and j = 1, ...,m. Under the above assumption, we can apply the

methods provided in this chapter to construct the GPQ for each of the bivariate

problems of interest. Furthermore, we also provide methods for computing GCI and

GPV, based on the GPQ constructed.

Construction of GPQ.

1. First approach. Under the above assumptions, we have the following proposi-

tion.

Proposition 4.1. If g1 and g2 satisfy (61), respectively. Then,
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(i):

(n− 1)
∑

b2
jv

2

(m− 1)
∑

a2
i

∼ F(m− 1, n− 1),

where F(m − 1, n − 1) stands for Fisher distribution with m − 1 and n − 1

degrees of freedom.

(ii): When ρ is known,(
mn(m + n− 2)v2(1 + ρ2v2)

(nρ2v2 + mv2)(
∑

a2
i + v2

∑
b2
j)

) 1
2

d ∼ Tm+n−2.

Proof. Let g1 and g2 satisfy (61). Then, for (43),

IV (v) = CV vm−1,

where

CV =

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

tm+n−1
3√
2π

m+n exp

[
−t23

2

n∑
i=1

(t1 + ai)
2 − v2t23

2

m∑
j=1

(t2 + bj)
2

]
dt1dt2dt3

=

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
C1t

m+n−1
3 exp

[
−t23

2

n∑
i=1

(t1 + ai)
2 − v2t23

2

m∑
j=1

(t2 + bj)
2

]
dt1dt2dt3,

and C1 =
(√

2π
)−m−n

is a component which does not contain v, t3, t2, t1. Let

IV 1(v) =
IV (v)

C1

.

Then,

f(v|a, b) = IV (v)

(∫ ∞

0

IV (v)dv

)−1

= IV 1(v)C1

(∫ ∞

0

IV 1(v)C1dv

)−1

= IV 1(v)

(∫ ∞

0

IV 1(v)dv

)−1

.
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Similarly, let t11 =
√

nt1t3 and t21 =
√

mvt2t3. It can be verified that

IV 1(v) = vm−1

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
tm+n−1
3

× exp

(
−t23

2

n∑
i=1

(t1 + ai)
2 − v2t23

2

m∑
j=1

(t2 + bj)
2

)
dt1dt2dt3

= vm−1

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
tm+n−1
3

× exp

(
−t23

2

(
n∑

i=1

a2
i + v2

m∑
j=1

b2
j

)
− nt21t

2
3

2
− mv2t22t

2
3

2

)
dt1dt2dt3,

and then,

IV 1(v) = vm−1

∫ ∞

0

∫ ∞

−∞
C2t

m+n−2
3 exp

(
−t23

2

(
n∑

i=1

a2
i + v2

m∑
j=1

b2
j

)
− mv2t22t

2
3

2

)
dt2dt3

×
[∫ ∞

−∞

exp(−t211/2)√
2π

dt11

]
.

Therefore,

IV 1(v) = vm−2

∫ ∞

0

C3t
m+n−3
3 exp

(
−t23

2

(
n∑

i=1

a2
i + v2

m∑
j=1

b2
j

))
dt3

×
[∫ ∞

−∞

exp(−t221/2)√
2π

dt21

]
.

Then, by integrating with respect to t21, one can verify that

IV 1 = C4v
m−2

(
n∑

i=1

a2
i + v2

m∑
j=1

b2
j

)−m+n−2
2

(
1

2

(
n∑

i=1

a2
i + v2

m∑
j=1

b2
j

))m+n−2
2

×
∫ ∞

0

(t23)
m+n−4

2

Γ(m+n−2
2

)
exp

(
−t23

2

(
n∑

i=1

a2
i + v2

m∑
j=1

b2
j

))
dt23,

which gives

IV 1 = C4v
m−2

(
1

2

n∑
i=1

a2
i +

1

2
v2

m∑
j=1

b2
j

)−m+n−2
2

,
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where C2, C3 and C4 are given in the following way:

C2 =
√

n
−1√

2πC1,

C3 =
√

m
−1√

2πC2,

C4 = 2
m+n−4

2 Γ

(
m + n− 2

2

)
C3.

It can be seen that the quantities C2, C3 and C4 do not contain v, t3, t2, t1. Let

ā2 =
n∑

i=1

a2
i /(n− 1), and b̄2 =

m∑
i=1

b2
j/(m− 1),

In this case,

IV 1(v) = C4v
m−2

(
(n− 1)ā2 + (m− 1)b̄2v2

)−m+n−2
2 ,

and therefore, by letting IV 2(v) = IV 1(v)
C4

, it can be verified that

f(v|a, b) = IV 1(v)

(∫ ∞

0

IV 1(v)dv

)−1

= IV 2(v)

(∫
v

IV 2(v)dv

)−1

.

Let v1 = b̄2v2/ā2, after some computations, we find

fv1(v1) =
v

m−1
2
−1

1 (n− 1 + (m− 1)v1)
−m+n−2

2∫ ∞

0

v
m−1

2
−1

1 (n− 1 + (m− 1)v1)
−m+n−2

2 dv1

,

and then,

fv1(v1) =
1

B(m−1
2

, n−1
2

)
v

m−1
2
−1

1 (n− 1 + (m− 1) v1)
−m+n−2

2 ,

which implies that

(n− 1)
∑

b2
jv

2

(m− 1)
∑

a2
i

∼ F(m− 1, n− 1).
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In addition, it can be verified that when ρ is known, (53) can be transformed to

C5

∫ ∞

0

∫ ∞

−∞
tn+m−1
3 exp

[
−1

2

n∑
i=1

(
(ρvu + d)

(√
1 + ρ2v2

)−1

+ ai

)2

t23

]

× exp

[
−1

2

m∑
j=1

(
(u− ρvd)

(√
1 + ρ2v2

)−1

+ bj

)2

v2t23

]
dudt3,

which is equivalent to

C5

∫ ∞

0

∫ ∞

−∞
tn+m−1
3 exp

[
−1

2

(
t23

(∑
a2

i +
∑

b2
jv

2
))]

× exp

[
−1

2

(
t23

mnv2d2 (1 + ρ2v2)

(nρ2v2 + mv2)
+ o2

)]
dudt3,

where

o2 =
(u(nρ2v2 + mv2) + (nd−mv2d)ρv)2

(1 + ρ2v2)(nρ2v2 + mv2)
.

By integrating f(d|v, a, b) with respected to u, t3, respectively, one can verify that

f(d|v, a, b) = C6

[
n∑

i=1

a2
i +

m∑
j=1

b2
jv

2 +
mnv2d2(1 + ρ2v2)

(nρ2v2 + mv2)

]− 1
2
(m+n−1)

.

For more details, the reader is referred to the Appendix A.1.3.

Let

t =

[
mn(m + n− 2)v2(1 + ρ2v2)

(nρ2v2 + mv2)(
∑

a2
i + v2

∑
b2
j)

] 1
2

d.

Then, we have

f(t|v, a, b) =
[1 + t2/(m + n− 2)]

− 1
2
(m+n−2+1)

√
n + m− 2B

(
1/2, m+n−2

2

) .

so that (
mn(m + n− 2)v2(1 + ρ2v2)

(nρ2v2 + mv2)(
∑

a2
i + v2

∑
b2
j)

) 1
2

d ∼ Tm+n−2.

�
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By Proposition 4.1, (44) and (54) can be transformed to

Rρ1 =
σ̂2obs

σ̂1obs

v−1 =
σ̂2obs

√
(n− 1)

∑
bobs

2
j

σ̂1obs

√
(m− 1)

∑
aobs

2
i

(
(n− 1)

∑
b2
jv

2

(m− 1)
∑

a2
i

)−1/2

,

hence,

Rρ1 =
σ̂2obs

√
(n− 1)

∑
bobs

2
j

σ̂1obs

√
(m− 1)

∑
aobs

2
i

(F(m− 1, n− 1))−1/2 . (62)

Furthermore,

Rδ1 = µ̂1obs − µ̂2obs −
√

σ̂1
2
obs + σ̂2

2
obs

(
mn(m + n− 2)v2d2(1 + ρ2v2)

(nρ2v2 + mv2)(
∑

a2
i + v2

∑
b2
j)

) 1
2

×

(
mn(m + n− 2)v2

obs(1 + ρ2v2
obs)

(nρ2v2
obs + mv2

obs)(
∑

aobs
2
i + v2

obs

∑
bobs

2
j)

)− 1
2

,

where vobs = σ̂2
2
obs/(ρσ̂1

2
obs). Therefore,

Rδ1 = µ̂1obs − µ̂2obs − T (n + m− 2)

√
σ̂1

2
obs + σ̂2

2
obs

×

(
mn(m + n− 2)v2

obs(1 + ρ2v2
obs)

(nρ2v2
obs + mv2

obs)(
∑

aobs
2
i + v2

obs

∑
bobs

2
j)

)− 1
2

. (63)

As one can see, Rδ1 is a function of ρ and its pdf depends on ρ. Hence, if ρ is unknown,

Rδ1 is not a GPQ. In this case, we use the second approach instead.

2. Second approach. Let

ā =
1

n

n∑
i=1

ai, S2
1 =

n∑
i=1

(ai − ā)2, b̄ =
1

m

m∑
j=1

bi, and S2
2 =

m∑
j=1

(bi − b̄)2.

If Xi ∼ N (µ1, σ1) and Yi ∼ N (µ2, σ2), as discussed in Example 3.4,

R31 = µ̂1obs − σ̂1obs

(
µ̂1 − µ1

σ̂1

)

= µ̂1obs − σ̂1obs

S1obs√
n(n− 1)


√

n(n− 1)

(
µ̂1 − µ1

σ̂1

)
S1


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which gives,

R31 = µ̂1obs − σ̂1obs

(
S1obs√
n(n− 1)

(Tn−1)

)
.

Similarly,

R32 = µ̂2obs − σ̂2obs

(
S2obs√

m(m− 1)
(Tm−1)

)
.

Therefore,

Rδ2 = R31 −R32,

and finally,

Rδ2 = µ̂1obs − µ̂2obs − σ̂1obs

(
S1obs × Tn−1√

n(n− 1)

)
+ σ̂2obs

(
S2obs × Tm−1√

m(m− 1)

)
(64)

is the GPQ for δ obtained by the second approach.

Similarly, by applying the second approach, which is discussed in Section 4.3,

R41 = σ̂1obs(σ̂1
2/σ2

1)
−1 = S1obsσ̂1obs(S1σ̂1

2/σ2
1)
−1 =

S1obsσ̂1obs√
X 2

n−1

,

and

R42 = σ̂2obs(σ̂2
2/σ2

2)
−1 = S2obsσ̂1obs(S2σ̂2

2/σ2
2)
−1 =

S2obsσ̂2obs√
X 2

m−1

.

Therefore, another GPQ of ρ, as suggested in Section 4.3, is

Rρ2 = R42/R41 =
S2obsσ̂2obs

√
X 2

n−1

S1obsσ̂1obs

√
X 2

m−1

=
S2obsσ̂2obs

S1obsσ̂1obs

√
X 2

n−1

X 2
m−1

.

It can be verified that ā = b̄ = 0, thus S1 =
∑n

i=1 a2
i and S2 =

∑m
j=1 b2

j . Further, is

well known that

X 2
n−1/(n− 1)

X 2
m−1/(m− 1)

∼ F(n− 1, m− 1). (65)
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These imply that

Rρ2 =
S2obsσ̂2obs

S1obsσ̂1obs

√
X 2

n−1

X 2
m−1

=
σ̂2obs

√
(n− 1)

∑
bobs

2
j

σ̂1obs

√
(m− 1)

∑
aobs

2
i

(F(m− 1, n− 1))−1/2 ,

which is same as (62).

Computation of GCI and GPV.

Based on the GPQ we constructed above, the 100γ% GCI can be computed by

applying the generalized pivotal quantity to (2). For instance, since the observed

pivotal of Rρ1 is ρ, we can use (3), instead of (2). In this case, the 95% GCI of ρ, say

CIρ, is given by

Pr(Rρ1 ∈ CIρ) = 0.95.

In addition, the GPV methods provided in Chapter 2 can also be applied here, with

the GPQ constructed above. For example, if we want to test (45), the GPV is

Pr(Rρ1 > ρ0).

In order to verify the efficiency of the generalized pivotal quantities and the related

GCI and GPV methods provided above, we carry out some numerical simulations,

which are shown in Chapter 5.



CHAPTER 5

Numerical results, simulation study, and applications

In this section, we carry out some simulation studies in order to evaluate the

performances of the (conditional) approaches we discussed in the previous sections

(i.e. Pitman estimator, generalized p-value (GPV), and generalized confidence inter-

val (GCI), with small and moderate sample sizes. Furthermore, we also apply these

approaches to some real data sets.

5.1. Point estimation approach

To study the efficiency of Pitman estimator, in the following examples we repeat

the simulation 10000 times. In each replicate, we first generate the data under the

given condition, then based on the data we compute the Pitman estimator and MLE

(if it exists), respectively. After performing the 10000 simulated samples and obtain-

ing the estimators, we evaluate the performance by computing the average of the

10000 estimators and the MSE.

Example 5.1. Normal distribution with known location parameter and

unknown scale parameter (Example 3.2).

70
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Here we work under the same condition as given in Example 3.2, where the exact

value of σ is given by σ = 2. By applying the simulation method discussed above, we

present the results with different values of size n as shown in Table 5.1.

Table 5.1. Numerical results of MRE and MLE in Example 3.2

Size σ̂P (X) MSE of σ̂P (X) σ̂M(X) MSE of σ̂M(X)
n=5 1.793630 0.3754643 1.884990 0.3808773
n=10 1.904615 0.1944069 1.952750 0.1970261
n=50 1.980724 0.04007357 1.990652 0.04018838
n=100 1.987849 0.02025364 1.992825 0.02025826

From Table 5.1, it is noted that the MSE of MLE is larger than MSE of Pitman

estimator in scale family. But as the size increases, the MSE of MLE is getting close

to the MSE of Pitman estimator.

Example 5.2. Normal distribution with unknown location and scale

parameters (Example 3.3).

In Example 3.3, we verify that the Pitman estimator of µ is X̄, which is also the

MLE. However, the Pitman estimator of σ is different from the MLE. Here we carry

out the simulations and study the difference between the MSE of Pitman estimator

and MSE of MLE. By setting exact values µ = σ = 2. The numerical results are

presented in Table 5.2.

From Table 5.2, it is noted that the MSE of MLE is larger than MSE of Pitman

estimator of scale parameter. But as the size increases, the MSE of MLE is getting
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Table 5.2. Numerical results of MRE and MLE in Example 3.3

Size σ̂P (X) MSE of σ̂P (X) σ̂M(X) MSE of σ̂M(X)
n=5 1.756706 0.4744318 1.671564 0.4838348
n=10 1.89907 0.1991592 1.852258 0.2021038
n=50 1.967015 0.04082784 1.957205 0.04117583
n=100 1.981417 0.01999685 1.976469 0.02001215

closer to the MSE of Pitman estimator.

In the beginning of Chapter 3, we have presented 2 examples for the case where

MLE does not exist. Here we apply the Pitman estimation method to these 2 exam-

ples, and evaluate the efficiency of Pitman estimator in location-scale family in which

MLE does not exist.

Example 5.3.

Let X1, ..., Xn be iid with pdf f(x|µ, σ) = σ−lg((x − µ)/σ), where g(x) =

c(xlog2x)−1, 0 < x ≤ k, k is any constant that satisfies 0 < k < 1, c = −1/log(k) is a

constant and −∞ < µ < ∞, 0 < σ < ∞ are both unknown. By choosing µ = σ = 2

and using the simulation method with different sample size n, the results are shown

in Table 5.3.

Table 5.3. Numerical results of Pitman estimator in Example 5.3

Size µ̂(x) MSE of µ̂(x) σ̂(x) MSE of σ̂(x)
n=10 2.118721 0.04340062 2.386992 0.2505716
n=100 1.989474 0.01407563 2.011956 0.01343508
n=200 1.990491 0.01373037 2.003245 0.01342210
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From Table 5.3, the simulation results show that even for small sample size the Pit-

man point estimator is very close to the exact value. In addition, as the sample size

increases, the Pitman estimators of location and scale parameters both get closer to

the exact value.

Example 5.4.

Let X1, ..., Xn be iid with pdf f(x|µ, σ) = σ−lg((x− µ)/σ), where

g(x) =
1

2(1 + |x|)(1 + log(1 + |x|))2
,−∞ < x < ∞,

with −∞ < µ < ∞, 0 < σ < ∞ are both unknown. In this case, if we let F (x)

denote the cumulative distribution function (cdf), it can be verified that

F (x) =


1

2(1 + log(1− (x− µ)/σ))
if x 6 µ

1− 1

2(1 + log(1 + (x− µ)/σ))
if x > µ

To evaluate the Pitman estimator in this location-scale family numerically, we apply

the simulation method given in the previous examples. To this end, we choose µ =

σ = 2 and carry out the simulations with different sample size n, as presented in

Table 5.4.

Table 5.4. Numerical results of Pitman estimator in Example 5.4

Size µ̂P (X) MSE of µ̂P (X) σ̂P (X) MSE of σ̂P (X)
n=5 1.0066701 11.247332 0.7996300 3.2886735
n=10 2.0202800 6.2806460 1.2966522 1.2754575
n=50 2.00331056 0.06228972 1.87996060 0.20682585
n=60 1.99697324 0.05619604 1.89837688 0.17093954
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From Table 5.4, it is noted that when sample size is small, the Pitman estimator may

produce large MSE due to the heavy tails of the distribution. But as the sample size

increases, the MSE becomes small and the Pitman estimators of location and scale

parameters both get closer to the exact value.

5.2. Generalized P-values and confidence intervals (univariate case)

In the previous chapters, the GCI and GPV methods for univariate case are pro-

vided and theoretically analyzed. In this subsection, we use simulation methods to

illustrate the performances of these methods.

To evaluate the efficiency of GCI method, we set the confidence coefficient γ = 0.95

and study the related coverage probability, that is, the probability that the GCI will

contain the exact value of the parameter of interest. Ideally, the coverage probability

of a 95% GCI should be 0.95. However, due to sampling variation, the actual cov-

erage probability of the interval may not be exactly equal to 0.95. In this case, it is

necessary to simulate the coverage probabilities under different situations, which are

presented in the following examples.

For GPV, in McNally, Iyer, and Mathew (2003), a simulation method is used to eval-

uate the power of the test based on the GPV approach. In the following examples,

we use the same method and set the significance level α = 0.05 to study the power

of the suggested tests. In addition, the generalized test statistic used here is similar

to that in Bebu and Mathew (2007).
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Example 5.5. GPV and GCI for Example 3.4.

Under the situation of Example 3.4, in order to evaluate the generalized p-values

of µ and σ under the hypothesis tests (16) and (18), respectively, we simulate the

power at significance level α = .05. By choosing µ0 = σ0 = 2, the results for different

exact values of µ and σ are shown in Table 5.5, with the related figures shown in

Figures 5.1 and 5.2, respectively. Further, in Table 5.6, we choose µ = σ = 2 and the

simulated coverage probability is presented.

Table 5.5. The simulated powers in Example 5.5

(µ, σ) Size Power of (16) Power of (18)
(.5, .5) n=5 1 0.9773

n=10 1 1
n=100 1 1

(1, 1) n=5 0.5781 0.4383
n=10 0.8961 0.8512
n=100 1 1

(1.5, 1.5) n=5 0.1518 0.1312
n=10 0.2576 0.2547
n=100 0.9542 0.9733

(2, 2) n=5 0.0463 0.0484
n=10 0.0522 0.0465
n=100 0.0518 0.0455

(3, 3) n=5 0.0123 0.0134
n=10 0.005 0.003
n=100 0 0

(4, 4) n=5 0.0049 0.0044
n=10 .0017 0.0005
n=100 0 0

From Table 5.5, one can see that under the null hypothesis, i.e. µ > 2, as the

exact value of the parameter of interest µ increases, the power decreases, and as µ
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Figure 5.1. The simulated powers of (16) in Example 5.5
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Figure 5.2. The simulated powers of (18) in Example 5.5

tends to infinity, the power function tends to 0. In addition, when µ tends to 2, the

power is close to 0.05. This shows that the provided generalized test is consistent.

The above results can also be verified in Figure 5.1 and 5.2. From the figures, it
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Table 5.6. The simulated coverage probabilities of the 95% GCI in
Example 5.5

Size GCI of µ̂M(X) GCI of µ̂P (X) GCI of σ̂M(X) GCI of σ̂P (X)
n=2 0.917 0.920 0.932 0.934
n=5 0.932 0.947 0.946 0.941
n=10 0.956 0.948 0.947 0.948
n=100 0.952 0.951 0.950 0.950

can be seen that when θ = θ0 = 2 (here θ denote to the parameter of interest), the

powers are all approximately equal to 0.05. But on the left hand side of 2, the power

continually increases to 1 when the distance between θ and 2 increases. And in the

right hand side the power decreases to 0 when the distance increases. Furthermore, in

the left hand side of 2, for each exact value of θ, the power increases as the sample size

increases. This implies that the hypothesis become more precise when sample size is

large (note that on the right hand side of 2 implies that the alternative hypothesis is

true).

In addition, it is shown in Table 5.6 that, when the sample size is small, the simu-

lated coverage probability is close to .95, besides, as the size increases, the coverage

probability gets close to .95. This implies that the GCI method performs well in this

example.

In summary, the numerical results show that the provided GCI and GPV methods

are optimal.

Example 5.6. GPV and GCI for Example 3.5.
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In this example, consider the hypothesis tests (16) and (18), respectively. With

µ0 = σ0 = 2, we simulate the powers under the different values of µ and σ. The

results are shown in Table 5.7, with the related figures shown in Figure 5.3 and 5.4,

respectively. Further, by choosing different values of µ and σ, the simulation results

of coverage probabilities are presented in Table 5.8.

Table 5.7. The simulated powers in Example 5.6

(µ, σ) Size Power of (16) Power of (18)
(.5, .5) n=5 0.9425 0.8506

n=10 1 0.9969
n=100 1 1

(1, 1) n=5 0.4062 0.3046
n=10 0.6107 0.5683
n=100 1 1

(1.5, 1.5) n=5 0.1352 0.1027
n=10 0.1919 0.1439
n=100 0.6587 0.7668

(2, 2) n=5 0.0485 0.0521
n=10 0.0567 0.0374
n=100 0.0852 0.0243

(3, 3) n=5 0.001 0.003
n=10 0 0
n=100 0 0

(4, 4) n=5 0 0
n=10 0 0
n=100 0 0
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Figure 5.3. The simulated powers of (16) in Example 5.6
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Figure 5.4. The simulated powers of (18) in Example 5.6
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Table 5.8. The simulated coverage probabilities of the 95% GCI in
Example 5.6

(µ, σ) Size GCI of µ GCI of σ
(2, 2) n=5 0.938 0.944

n=10 0.942 0.957
n=100 0.959 0.952

(-2, 0.5) n=5 0.934 0.930
n=10 0.941 0.943
n=100 0.954 0.948

From Table 5.7, one can see that for the parameter of interest, the power decreases

when the exact value increases. In addition, the power is close to 0.05 when the exact

value is equal to 2. Also, Figure 5.3 and 5.4 show the same information. Also, from

these figures, when θ = θ0 = 2 (here θ denote to the parameter of interest), the

powers are all approximately equal to 0.05. But on the left hand side of 2, the power

continually increases to 1 when the distance between θ and 2 increases. And in the

right hand side the power decreases to 0 when the distance increases. Furthermore, in

the left hand side of 2, for each exact value of θ, the power increases as the sample size

increases. This implies that the hypothesis become more precise when sample size is

large (note that on the right hand side of 2 implies that the alternative hypothesis is

true).

In addition, it is shown in Table 5.8 that, when the sample size is small, the simu-

lated coverage probability is close to .95. Besides, as the size increases, the coverage

probability gets close to .95. Once again, as discussed in Example 5.5, the numerical

results show that the GCI and GPV methods are asymptotically optimal for the data
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generated by the model in Example 5.6.

Example 5.7. GPV and GCI for Example 3.6.

With the same procedure as described in the previous example, the simulation

results of powers and coverage probabilities are presented in Table 10 and 11, respec-

tively. Here the values of µ0 and σ0 in (16) and (18) are chosen to be µ0 = σ0 = 2.

The simulated powers under the different exact values of µ and σ are given in Ta-

ble 5.9, with the related figures presented in Figure 5.5 and 5.6, respectively. Also, by

choosing different values of µ and σ, the simulation results of coverage probabilities

are given in Table 5.10.

Table 5.9. The simulated powers in Example 5.7

(µ, σ) Size Power of (16) Power of (18)
(.5, .5) n=5 0.9583 0.9431

n=10 1 1
n=100 1 1

(1, 1) n=5 0.4062 0.4017
n=10 0.6852 0.7541
n=100 1 1

(1.5, 1.5) n=5 0.1889 0.1263
n=10 0.2773 0.2181
n=100 0.9810 0.9533

(2, 2) n=5 0.0851 0.0413
n=10 0.0654 0.0439
n=100 0.0583 0.0366

(3, 3) n=5 0.0027 0
n=10 0.0013 0
n=100 0.0026 0.0012

(4, 4) n=5 0.0003 0
n=10 0.0004 0
n=100 0.0018 0

From Table 5.9 and 5.10, it is noticed that the simulated results are quite similar
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Table 5.10. The simulated coverage probabilities of the 95% GCI
in Example 5.7

(µ, σ) Size GCI of µ GCI of σ
(2, 2) n=5 0.953 0.942

n=10 0.954 0.947
n=100 0.950 0.953

(-2, 0.5) n=5 0.955 0.922
n=10 0.946 0.947
n=100 0.948 0.954
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Figure 5.5. The simulated powers of (16) in Example 5.7

with Example 5.5 and 6.6. That is, for the parameter of interest, the power decreases

when the exact value increases. In addition, the power is close to 0.05 when the exact

value is equal to 2. Also, Figure 5.5 and 5.6 illustrate the same pattern. From the

figures, when θ = θ0 = 2 (here θ denote to the parameter of interest), the powers are

all approximately equal to 0.05. But on the left hand side of 2, the power continually

increases to 1 when the distance between θ and 2 increases. And in the right hand side



5.2. GENERALIZED P-VALUES AND CONFIDENCE INTERVALS (UNIVARIATE CASE) 83

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0
0.2

0.4
0.6

0.8
1.0

1.2

Exact Value

Po
we

r

● ●

●

●
● ●

●

n=5
n=10
n=100

Figure 5.6. The simulated powers of (18) in Example 5.7

the power decreases to 0 when the distance increases. Furthermore, in the left hand

side of 2, for each exact value of θ, the power increases as the sample size increases.

This reflects the fact that the hypothesis test become more precise when sample size

is large (note that on the right hand side of 2 implies that the alternative hypothesis

is true).

In addition, for the coverage probability presented in Table 5.10, the simulated cov-

erage probability is close to .95 when the sample size is small. Besides, as the size

increases, the coverage probability get close to .95. Thus, as discussed in Example

5.5, the numerical results show that the GCI and GPV methods are also optimal for

Example 5.7.

Example 5.8. GPV and GCI for Example 5.4.
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In Example 5.4, we present the case where the Pitman estimators is applicable

for a location-scale family, while the MLEs for location and scale parameters do not

exist. In this subsection, we apply the GCI methods to the same distribution, in

which the pdf is given by

f(x|µ, σ) =
1

2σ(1 + |x−µ
σ
|)(1 + log(1 + |x−µ

σ
|))2

,

−∞ < x < ∞, and −∞ < µ < ∞, 0 < σ < ∞ are both unknown.

Simulation study. Under the hypothesis tests (16) and (18), let µ0 = σ0 = 2.

The simulated powers under the different exact values of µ and σ are given in Ta-

ble 5.11, with the related figures shown in Figure 5.7 and 5.8, respectively. Also, by

choosing different values of µ and σ, the simulated coverage probabilities are given in

Table 5.12.

For the coverage probabilities presented in Table 5.12, the simulated coverage

probability is lower than .95 when the sample size is small. These results imply that

the GPQ method provided in this paper does not perform well for small sample size.

This problem may be caused by the fact that the Pitman estimators for this example

exist but do not perform well, which are discussed in Example 5.4. However, as the

size increases, the coverage probability get close to .95. In conclusion, the GCI and

GPV methods seem to be optimal for this example when the sample size is moderate.

In addition, from Table 5.11 and 5.12, it can be seen that the power decreases when

the exact value increases. Also, Figure 5.7 and 5.8 illustrate the same information. In

fact, from these figures, when θ = θ0 = 2 (here θ denote to the parameter of interest),

the powers are higher than 0.05, when sample size is small. This result confirms that
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Figure 5.7. The simulated powers of (16) in Example 5.8
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Figure 5.8. The simulated powers of (18) in Example 5.8
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Table 5.11. The simulated powers in Example 5.8

(µ, σ) Size Power of (16) Power of (18)
(.5, .5) n=5 0.7121 0.5129

n=10 0.9245 0.5484
n=50 1 0.9870
n=60 1 0.9912

(1, 1) n=5 0.4169 0.2829
n=10 0.6559 0.2931
n=50 0.9956 0.7025
n=60 0.9957 0.8100

(1.5, 1.5) n=5 0.1655 0.1527
n=10 0.2582 0.1681
n=50 0.8458 0.2334
n=60 0.8688 0.2451

(2, 2) n=5 0.0705 0.0544
n=10 0.0671 0.0610
n=50 0.0588 0.0597
n=60 0.0521 0.0513

(3, 3) n=5 0.0247 0.0296
n=10 0.0019 0.0028
n=50 0 0
n=60 0 0

(4, 4) n=5 0.0161 0.0102
n=10 0.0019 0.0011
n=50 0 0
n=60 0 0

Table 5.12. The simulated coverage probabilities of the 95% GCI
in Example 5.8

(µ, σ) Size GCI of µ GCI of σ
(2, 2) n=5 0.804 0.793

n=10 0.870 0.931
n=50 0.943 0.941
n=60 0.943 0.948

(-2, 0.5) n=5 0.825 0.804
n=10 0.908 0.940
n=50 0.944 0.945
n=60 0.946 0.949
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in this example with small sample size, our methods seem to be inaccurate, which

needs to be investigated in future. However, as sample size increases, the power get

close to 0.05. Moveover, on the left hand side of 2, the power continually increases

to 1 when the distance between θ and 2 increases. And in the right hand side the

power decreases to 0 when the distance increases. Furthermore, in the left hand side

of 2, for each exact value of θ, the power increases as the sample size increases. This

indicates that the hypothesis test is unbiased and consistent when sample size is large.

5.3. Generalized P-value and confidence interval (bivariate case)

Example 5.9. GCI for Example 4.1.

To perform the simulation study for Example 4.1, we choose the different exact

values of µ1, σ1, µ2, σ2, respectively. With the methods we provide in Example 4.1,

the simulated coverage probabilities of the .95 C.I. for ρ, δ conditionally to v, are

presented in Table 5.13 and Table 5.14.
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Table 5.13. The simulated coverage probabilities of the 95% GCI
in Example 5.9

(µ1, µ2, σ1, σ2) n m GCI of δ (ρ known) GCI of ρ
(2, 2, 2, 2) 5 5 0.9499 0.9521

10 10 0.9487 0.9512
20 20 0.9497 0.9488
50 50 0.9496 0.9507
100 100 0.9519 0.9525
5 10 0.9471 0.9482
5 100 0.9454 0.9511
50 100 0.9527 0.9475
10 5 0.9467 0.9485
100 5 0.9459 0.9470
100 50 0.9471 0.9516

(2, 1, 2, 1) 5 5 0.9508 0.9490
10 10 0.9519 0.9498
20 20 0.9477 0.9490
50 50 0.9512 0.9503
100 100 0.9516 0.9482
5 10 0.9496 0.9466
5 100 0.9521 0.9514
50 100 0.9507 0.9498
10 5 0.9491 0.9495
100 5 0.9512 0.9492
100 50 0.9497 0.9505
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Table 5.14. Continuation of Table 5.13

(µ1, µ2, σ1, σ2) n m GCI of δ (ρ known) GCI of ρ
(1, 2, 1, 2) 5 5 0.9539 0.9511

10 10 0.9527 0.9505
20 20 0.9521 0.9469
50 50 0.9516 0.9485
100 100 0.9520 0.9545
5 10 0.9469 0.9496
5 100 0.9495 0.9452
50 100 0.9516 0.9471
10 5 0.9475 0.9511
100 5 0.9484 0.9514
100 50 0.9512 0.9497

(2, 1, 200, 1) 5 5 0.9463 0.9481
10 10 0.9482 0.9476
20 20 0.9474 0.9508
50 50 0.9528 0.9511
100 100 0.9473 0.9484
5 10 0.9495 0.9470
5 100 0.9477 0.9482
50 100 0.9462 0.9476
10 5 0.9492 0.9466
100 5 0.9464 0.9509
100 50 0.9521 0.9482

(2, 1, 2, 100) 5 5 0.9546 0.9471
10 10 0.9458 0.9473
20 20 0.9471 0.9534
50 50 0.9483 0.9497
100 100 0.9485 0.9493
5 10 0.9519 0.9508
5 100 0.9512 0.9464
50 100 0.9454 0.9489
10 5 0.9491 0.9490
100 5 0.9483 0.9489
100 50 0.9522 0.9473

As one can see from Table 5.13 and 5.14, the coverage probabilities for ρ are all

close to 0.95 under each situation. This implies that our methods for constructing the

GCI of ρ perform well. Besides, for GCI of δ conditionally to v, first we consider the
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case that the sample sizes of the two groups (X and Y ) are equal. In this case, it is

shown in Table 5.13 and 5.14 that when the sample sizes are small, i.e. n = m = 5, the

differences between the simulated coverage probabilities .95 are around .5. Moreover,

if the ratio ρ is not significant, the coverage probabilities are higher than 0.95, while

it is lower than 0.95, for the case that the ratio is significant (i.e. ρ = 100). However,

as the size increases, the coverage probabilities get close to .95.

Further, the simulated coverage probabilities for the case that the sample sizes of the

two groups are unequal are also provided in the above tables. It can be seen from

Table 5.13 and 5.14, unless the two samples are come from the same population, the

results turn out to be inaccurate, especially for the cases that the difference of sample

sizes are large.

In addition, the coverage probabilities for .95 GCI of δ with unknown ρ, as discussed

in Chapter 4, only the second approach can be applied. By using the second approach,

which is discussed in Example 4.1, the results are presented in Table 5.15 and 5.16.
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Table 5.15. The simulated coverage probabilities of the 95% GCI
for δ with unknown ρ

(µ1, µ2, σ1, σ2) n m Second approach
(2, 2, 2, 2) 5 5 0.9748

10 10 0.9606
20 20 0.9572
50 50 0.9526
100 100 0.9503
5 10 0.9657
5 100 0.9496
50 100 0.9528
10 5 0.9664
100 5 0.9507
100 50 0.9498

(2, 1, 2, 1) 5 5 0.9698
10 10 0.9587
20 20 0.9545
50 50 0.9512
100 100 0.9501
5 10 0.9586
5 100 0.9507
50 100 0.9492
10 5 0.9648
100 5 0.9532
100 50 0.9509
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Table 5.16. Continuation of Table 5.15

(µ1, µ2, σ1, σ2) n m Second approach
(1, 2, 1, 2) 5 5 0.9716

10 10 0.9586
20 20 0.9520
50 50 0.9495
100 100 0.9508
5 10 0.9709
5 100 0.9574
50 100 0.9508
10 5 0.9559
100 5 0.9493
100 50 0.9474

(2, 1, 200, 1) 5 5 0.9513
10 10 0.9497
20 20 0.9485
50 50 0.9525
100 100 0.9505
5 10 0.9447
5 100 0.9496
50 100 0.9501
10 5 0.9540
100 5 0.9508
100 50 0.9493

(2, 1, 2, 100) 5 5 0.9494
10 10 0.9482
20 20 0.9511
50 50 0.9509
100 100 0.9496
5 10 0.9479
5 100 0.9484
50 100 0.9495
10 5 0.9533
100 5 0.9508
100 50 0.9503

It is shown in Table 5.15 and 5.16 that, if the exact value of ρ is close to 1, the

coverage probabilities based on the second approached are all a little higher than 0.95,

and get close to 0.95 as the sample sizes increase. However, if ρ is significant larger
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than 1, for instance, ρ = 100, in this case, as we can see from the tables, the coverage

probabilities are close to 0.95, even for the small sample sizes.

Example 5.10. GPV for δ in Example 4.1.

In Example 4.1, we also provide the procedures for computing the GPV with

respect to (45) and (55), respectively. Under the same condition of Example 4.1, where

X and Y are normal distributed with unknown ρ, we use the same simulation method

presented in Krishnamoorthy and Mathew (2003) to evaluate the performances of (59)

for testing (55). For (46) and (60), the interested readers can verify in the same way.

In this example, we assume the sample sizes m and n are equal, µ2 is set to be 2,

and under the significance level α = 0.05 is, the null hypothesis is H0: δ > 0, versus

the alternative hypothesis H1: δ < 0. Let SA denote the simulated powers based on

(59). Then, by choosing the different values of m, n, µ1, σ1, σ2, and δ = µ1 − µ2,

the simulated results are provided in the following tables. Firstly, we consider the

case that σ1 and σ2 are equal. In this case, we choose σ1 = σ2 = 2 (both small) and

σ1 = σ2 = 200 (both large), the results are presented in Table 5.17. Secondly, for

the case that σ1 and σ2 are different, we choose σ1 = 1, σ2 = 2 (small difference)

and σ1 = 1, σ2 = 200 (significant difference), the results are provided in Table 5.18.

Besides, for the simulated powers presented in Table 5.17 and 5.18, the related figures

are given in Figure 5.9∼5.12, respectively.

It is shown in Table 5.17, 5.18 and the related figures that, under the null hypothesis

of (55) with δ0 = 0, when µ2 is fixed, the power of (59) decreases as the exact value
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of the parameter of interest δ increases. And as µ tends to infinity, the powers both

tend to 0. In addition, when µ1 is close to µ2 (δ tends to 0), the powers are close to

0.05. Moreover, from the related figures, it can be seen that on the left hand side of

δ = 0, the powers continually increase when the distance between δ and 0 increases.

And in the right hand side the powers decrease to 0 when the distance increases.

Furthermore, as one can see from the tables and related figures, when the exact value

of σ2
1 + σ2

2 is large, the decreasing rate of power is slower than the case that σ2
1 + σ2

2

is small. For example, in the case of n = m = 5, when σ1 = σ2 = 200, the power of

(59) decreases from 0.1236 to 0.0332, as the exact value of δ increases from −102 to

-12. However, when σ1 = 1, and σ2 = 200, the power decreases from 0.2482 to 0.0622,

as δ increases from -102 to -12. Besides, for small sample sizes (i.e. n=m=5), when

the exact value of σ2
1 + σ2

2 is small, the powers are closer to 0.05 as δ tends to 0, as

compare to the case that σ2
1 + σ2

2 is large.
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Table 5.17. The simulated powers of Example 5.10 with equal scale parameters

Sizes (m=n) (δ, σ1, σ2) SA (δ, σ1, σ2) SA
5 (-2, 2, 2) 0.3236 (-102, 200, 200) 0.1236

(-1, 2, 2) 0.1162 (-12, 200, 200) 0.0332
(0, 2, 2) 0.0314 (0, 200, 200) 0.0324
(1, 2, 2) 0.0066 (8, 200, 200) 0.0276
(2, 2, 2) 0 (98, 200, 200) 0.0056

10 (-2, 2, 2) 0.6392 (-102, 200, 200) 0.255
(-1, 2, 2) 0.245 (-12, 200, 200) 0.053
(0, 2, 2) 0.0412 (0, 200, 200) 0.043
(1, 2, 2) 0.0022 (8, 200, 200) 0.0316
(2, 2, 2) 0 (98, 200, 200) 0.003

20 (-2, 2, 2) 0.9202 (-102, 200, 200) 0.4594
(-1, 2, 2) 0.4518 (-12, 200, 200) 0.073
(0, 2, 2) 0.0472 (0, 200, 200) 0.0442
(1, 2, 2) 0.0012 (8, 200, 200) 0.0322
(2, 2, 2) 0 (98, 200, 200) 0

50 (-2, 2, 2) 0.9992 (-102, 200, 200) 0.8084
(-1, 2, 2) 0.7898 (-12, 200, 200) 0.092
(0, 2, 2) 0.048 (0, 200, 200) 0.0494
(1, 2, 2) 0 (8, 200, 200) 0.0338
(2, 2, 2) 0 (98, 200, 200) 0

100 (-2, 2, 2) 1 (-102, 200, 200) 0.9742
(-1, 2, 2) 0.9712 (-12, 200, 200) 0.105
(0, 2, 2) 0.0485 (0, 200, 200) 0.0506
(1, 2, 2) 0 (8, 200, 200) 0.0274
(2, 2, 2) 0 (98, 200, 200) 0
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Table 5.18. The simulated powers of Example 5.10 with unequal
scale parameters

Sizes (m=n) (δ, σ1, σ2) SA (δ, σ1, σ2) SA
5 (-2, 1, 2) 0.4784 (-102, 1, 200) 0.2482

(-1, 1, 2) 0.1792 (-12, 1, 100) 0.0622
(0, 1, 2) 0.0348 (0, 1, 200) 0.0468
(1, 1, 2) 0.0016 (8, 1, 200) 0.0402
(2, 1, 2) 0 (98, 1, 200) 0.0046

10 (-2, 1, 2) 0.8392 (-102, 1, 200) 0.4392
(-1, 1, 2) 0.3624 (-12, 1, 200) 0.0634
(0, 1, 2) 0.0445 (0, 1, 200) 0.0502
(1, 1, 2) 0 (8, 1, 200) 0.0412
(2, 2, 2) 0 (98, 1, 200) 0.001

20 (-2, 1, 2) 0.9866 (-102, 1, 200) 0.7073
(-1, 1, 2) 0.6198 (-12, 1, 200) 0.087
(0, 1, 2) 0.048 (0, 1, 200) 0.0524
(1, 1, 2) 0 (8, 1, 200) 0.034
(2, 2, 2) 0 (98, 1, 200) 0

50 (-2, 1, 2) 1 (-102, 1, 200) 0.9742
(-1, 1, 2) 0.9294 (-12, 1, 200) 0.1096
(0, 1, 2) 0.0528 (0, 1, 200) 0.0487
(1, 1, 2) 0 (8, 1, 200) 0.0316
(2, 2, 2) 0 (98, 1, 200) 0

100 (-2, 1, 2) 1 (-102, 1, 200) 0.9999
(-1, 1, 2) 0.998 (-12, 1, 200) 0.1484
(0, 1, 2) 0.046 (0, 1, 200) 0.0458
(1, 1, 2) 0 (8, 1, 200) 0.018
(2, 2, 2) 0 (98, 1, 200) 0
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Figure 5.9. Example 5.10: The simulated powers with σ1 = σ2 = 2 (SA)
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Figure 5.10. Example 5.10: The simulated powers with σ1 = σ2 =
200 (SA)
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Figure 5.11. Example 5.10: The simulated powers with σ1 = 1,
σ2 = 2 (SA)
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Figure 5.12. Example 5.10: The simulated powers with σ1 = 1,
σ2 = 200 (SA)
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5.4. Applications

In Section 5.3, we simulate the coverage probabilities for the GCI of 3 bivariate

problems with respect to normal families. As one can see from the results, the meth-

ods provided in this thesis perform well, especially for the case of equal sample sizes.

Therefore, in the following examples, we would like to apply the methods to some

real data sets.

Example 5.11: Air lead levels (univariate case).

This data set is available in Krishnamoorthy, Mathew, and Ramachandran (2006).

The data contains 15 different air lead levels, which were collected for health hazard

evaluation purpose on February 23, 1989. It is already confirmed that the given sam-

ple does not follow normal distribution but lognormal distribution. In this case, we

assume the air lead levels sample X1 ∼ Lognormal(µ, σ). Then, by taking the log-

transformation to X1, it can be verified that the logged data are normal distributed.

That is, X = log(X1) ∼ N (µ, σ). Then, the computation results are given in the

Table 5.19. From Table 5.19, the Pitman estimator for µ is 4.332862, and the .95

Table 5.19. Computation results of Example 5.11

Parameters of interest Pitman estimator 0.95 GCI
µ 4.332862 (3.405445, 5.310342)
σ 1.708681 (0.9931368, 2.5532461)

GCI is (3.405445, 5.310342). Since the lower bound of 0.95 GCI is higher than 0, this

indicates the fact that the exact value of µ is significant different from 0. Further,
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the Pitman estimator for σ is 1.708681, and the 0.95 GCI is (0.9931368, 2.5532461),

which indicates that the difference between σ and 1 is not statistically significant at

level 5%.

Example 5.12: Normal Body Temperature (bivariate case).

These data are derived from a dataset presented in Mackowiak, Wasserman,

and Levine (1992). In this data set, a total number of 130 patients have been as-

signed, with 65 males and 65 females. Their body temperatures have been tested

and recorded. Furthermore, it is already confirmed that the temperatures in these

2 gender groups are normal distributed, respectively. In this case, we assume male

group X ∼ N (µ1, σ1) and female group Y ∼ N (µ2, σ2). Then, our interest is to use

the method provided in this paper to compute the generalized confidences for ρ and

δ of this data set. Then, by using the methods provided, the results are presented in

Table 5.20. From Table 5.20, the 0.95 GCI for ρ is (0.6848705, 1.3106982), in which

Table 5.20. Computation results of Example 5.12

Parameters of interest Pitman estimator 0.95 GCI
µ1 98.1 (97.92873, 98.28112)
σ1 .696 (0.5283083, 0.8186700)
µ2 98.39 (98.20655, 98.57497)
σ2 0.74 (0.5623908, 0.8679169)
ρ 1.064 (0.6848705, 1.3106982)

δ (Second approach) -.2892308 (-0.54288915, -0.03725161)

the value 1 is included. This implies that we failed to reject that hypothesis that

σ1 = σ2, in other words, the ratio of scale parameters is equal to 1. In addition, for

testing H0: ρ > 1, the GPV is 0.6912, which indicates that the null hypothesis H0 is

not rejected.
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However, the 0.95 GCI for δ is (−0.54288915, −0.03725161) based on the second ap-

proach. Since both intervals do not contain 0, these imply that there is a significant

different between two location parameters. By using (59) for one-sided testing prob-

lem H0: δ > 1 versus H0: δ < 1, the GPV is 0.0133 from the second approach. These

results indicate the null hypothesis should be rejected at 2% significant level, i.e. this

confirms that µ1 < µ2.

Example 5.13: Cloud Seeding (bivariate case).

The data set are available in Krishnamoorthy, and Mathew (2003). The amount

of rainfall (in acre-feet) from 52 clouds were recorded. In this data, 26 clouds were

randomly seeded with silver nitrate, while the rest were not. The above quoted

authors already confirmed that lognormal models fit the data sets very well. In

this case, we assume unseeded cloud group X1 ∼ Lognormal(µ1, σ1) and seeded

cloud group Y1 ∼ Lognormal(µ2, σ2). Then, by taking the log-transformation to

these 2 data sets, the logged data are confirmed to be normal distributed. That is,

X = log(X1) ∼ N (µ1, σ1) and Y = log(Y1) ∼ N (µ2, σ2). Then, the computation

results are given in the Table 5.21.

Table 5.21. Computation results of Example 5.13

Parameters of interest Pitman estimator GCI
µ1 3.990406 (3.325968, 4.641512)
σ1 1.625515 (1.071410, 2.148553)
µ2 5.134187 (4.496115, 5.775415)
σ2 1.583602 (1.019519, 2.084743)
ρ 0.9742157 (0.4540212, 1.3706670)

δ (Second approach) -1.143781 (-2.073196, -0.2211248)
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It is shown in Table 5.21 that, the Pitman estimator for ρ is 0.9742157, and the .95

GCI is (0.4540212, 1.3706670), and accordingly, one cannot reject the null hypothesis

that the ratio of scale parameters is equal to 1. Further, for testing H0: ρ > 1,

the GPV is 0.4548, which indicates that the null hypothesis is not rejected at 5%

significance level.

However, the inference results of GCI for δ indicate that there is a significant difference

between the two location parameters. In addition, for testing H0: δ > 0, the GPV is

0.007, based on (59). These results indicate that µ1 < µ2. This confirms the result

provided in Krishnamoorthy and Mathew (2003), in which the author applied the

two-sample t-test for the logged data and concluded that µ1 is not equal to µ2.



CHAPTER 6

Conclusion and future research

In this thesis, we are interested in developing the general procedures of construct-

ing the GCI and GPV in location-scale family. The suggested approach is based on

equivariant estimator and thus, the approach improves the existing methods given in

the literature which are based on MLE.

In particular, the established GPQ and GTV are functions of the Pitman estima-

tors which are the minimum risk equivariant estimators, and thus more general and

more efficient than MLE. Indeed, as mentioned in this thesis, the suggested procedure

is applicable to some location-scale families where MLE does not exist. As a prelimi-

nary step, we start by establishing the procedure for the univariate (one-sample) case.

Further, extend the methods to the bivariate (two-samples) case. In this case, similar

to the univariate case, we solve some inference problems concerning the location and

scale parameters. Namely, we establish GCI and GPV for the ratio, ρ, between two

scale parameters as well as GCI and GPV for the difference, δ, between two location

parameters. For this last problem, we distinguish the case where the ratio between the

scale parameters is known to the case where the ratio between the scale parameters

is unknown. Thus, we suggest a solution to the classical Behrens-Fisher problem.
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Methodologically, two approaches are presented in bivariate case. For the inference

problem with respect to δ, the second approach is applicable to the case that ρ is

unknown. This is more advanced than the first one which can be applied to the case

of known ρ only.

To illustrate the performance of the provided methods, we apply our methods

into some well-known location-scale families, such as normal, Cauchy, Logistic, and

bi-normal. In these examples, the simulated coverage probabilities are presented. The

simulation studies confirm that the suggested method performs well in most cases.

Finally, it should be noticed that some problems are still needed to be solved. For

instance, the methods discussed in this thesis are only applicable to the univariate or

bivariate location-scale families. Indeed, the multivariate case which contains more

than 2 sample groups is beyond the scope of this thesis. In addition, further research

are needed to handle the problem related to the numerical computations, especially

for the case where the GPQ and GTV do not have closed form. In this case, due to the

heavy trail and multiple dimensions of the integrations, the numerical computations

are time consuming, particularly when the samples sizes are large. These problems

will be investigated in future research.



APPENDIX A

Appendix

A.1. Some theoretical results

A.1.1. Proof of Theorem 1.1.

Since g(x) is a pdf, g(x) ≥ 0 for all value of x. So 1
σ
g
(

x−µ
σ

)
≥ 0 for all value of

x, µ, and σ > 0. In addition, let y = x−µ
σ

, we can verify that:

∫ ∞

−∞

1

σ
g

(
x− µ

σ

)
dx =

∫ ∞

−∞
g(y)dy = 1,

which implies that f(x|µ, σ) is a pdf.

A.1.2. Proof of Proposition 3.8.

From (31), the conditional density of z3 is

f(z3|a) =

∫ ∞

0

zn−1
4

n∏
i=1

g((z3 + ai)z4)dz4∫ ∞

0

∫ ∞

−∞
zn−1
4

n∏
i=1

g((z3 + ai)z4)dz3dz4

=

∫ ∞

0

zn−1
4 exp

(
−1

2

n∑
i=1

(z3 + ai)
2z2

4

)
dz4∫ ∞

−∞

∫ ∞

0

zn−1
4 exp

(
−1

2

n∑
i=1

(z3 + ai)
2z2

4

)
dz4dz3

.
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Let ā =
1

n

n∑
i=1

ai and s2 =
n∑

i=1

(ai − ā)2. It can be verified that ā = 0. The density

function of z3 is transformed to:

f(z3|a) =

∫ ∞

0

zn−1
4 exp

(
−1

2
z2
4s

2

(
1 +

n(z3 + ā)2

s2

))
dz4∫ ∞

−∞

∫ ∞

0

zn−1
4 exp

(
−1

2
z2
4s

2

(
1 +

n(z3 + ā)2

s2

))
dz4dz3

=

∫ ∞

0

zn−1
4 exp

(
−1

2
z2
4s

2

(
1 +

n(z3 + ā)2

s2

))
dz4∫ ∞

−∞

∫ ∞

0

zn−1
4 exp

(
−1

2
z2
4s

2

(
1 +

n(z3 + ā)2

s2

))
dz4dz3

.

Let

I(z3) =

∫ ∞

0

zn−1
4 exp

(
−1

2
z2
4s

2

(
1 +

n(z3 + ā)2

s2

))
dz4,

we have

f(z3|a) =
I(z3)∫ ∞

−∞
I(z3)dz3

. (66)

Further, let

r = s2

(
1 +

n(z3 + ā)2

s2

)
and t = z2

4s
2

(
1 +

n(z3 + ā)2

s2

)
= z2

4r.

One can verify that

z4 = t1/2r−1/2 and
∂z4

∂t
= 1/2t−1/2r−1/2.

Hence,

I(z3) = r−
n−1

2

∫ ∞

0

1

2
t

n−1
2 exp

(
−1

2
t

)
|1/2t−1/2r−1/2|dt

= r−
n
2 2n/2−1Γ

(n

2

)∫ ∞

0

(
t
2

)n−1
2

2Γ
(

n
2

) exp

(
−1

2
t

)
dt = r−

n
2 2

n
2
−1Γ

(n

2

)
.
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Therefore, from (66), we have

f(z3|a) =
r−n/2∫ ∞

−∞
r−n/2dz3

=

(
s2
(
1 + n(z3+ā)

s2

))−n/2

∫ ∞

−∞

(
s2

(
1 +

n(z3 + ā)

s2

))−n/2

dz3

,

and then

f(z3|a) =

(
1 + n(z3+ā)2

s2

)−n/2

∫ ∞

−∞

(
1 +

n(z3 + ā)2

s2

)−n/2

dz3

. (67)

In addition, let u =

√
n(n− 1)(z3 + ā)

s
. We have dz3 =

s√
n(n− 1)

du and then,

∫ ∞

−∞
I(z3)dz3 =

∫ ∞

−∞

(
1 +

u2

n− 1

)−n/2
s√

n(n− 1)
du

=
s√

n(n− 1)

√
nB(1/2, (n− 1)/2).

Therefore, from (66) and (67), we get

f(z3|a) =

(
1 + n(z3+ā)2

s2

)−n/2

1√
n(n−1)

s
√

nB(1/2, (n− 1)/2)
. (68)

Further, let U =

√
n(n− 1)(Z3 + ā)

S
, where given a1, a2, ..., an, the conditional pdf of

Z3 is given in (68). The conditional pdf of U given a1, a2, ..., an is

fU(u|a) = f

(
su√

n(n− 1)
− ā|a

)
s√

n(n− 1)

=
1√

nB(1
2
, n−1

2
)

(
1 +

u2

n− 1

)−n/2

, u ∈ R.

Note that the last term is the pdf of t distribution with n − 1 d.f. Since ā = 0, this

implies that

U =

√
n(n− 1)(Z3 + ā)

S
=

√
n(n− 1)(

µ̂− µ

σ̂
)

S
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follows Tn−1 distribution, which complete the proof of (i).

Similarly, one can verify that

S2Z2
4 |a =

S2σ̂2

σ2

∣∣∣a1, ...an ∼ X 2
n−1,

which complete the proof of (ii).

A.1.3. Simplify of f(d|v, a, b) (ρ unknown) in Example 4.1.

In the proof of Proposition 4.1, conditionally to v, we verify that (53) can be

transformed to

C5

∫ ∞

0

∫ ∞

−∞
tn+m−1
3 exp

[
−1

2

n∑
i=1

(
(ρvu + d)

(√
1 + ρ2v2

)−1

+ ai

)2

t23

]

× exp

[
−1

2

m∑
j=1

(
(u− ρvd)

(√
1 + ρ2v2

)−1

+ bj

)2

v2t23

]
dudt3

and this can be rewritten as

C5

∫ ∞

0

∫ ∞

−∞
tn+m−1
3

× exp

[
−1

2

(
t23

(∑
a2

i +
∑

b2
jv

2 +
mnv2d2 (1 + ρ2v2)

(nρ2v2 + mv2)
+ o2

))]
dudt3,

where

o =
(
u(nρ2v2 + mv2) + (nd−mv2d)ρv

) (
(1 + ρ2v2)(nρ2v2 + mv2)

)−.5
.

Let

k =

(
n
∑

a2
i + m

∑
b2
jv

2 +
mnv2d2 (1 + ρ2v2)

(nρ2v2 + mv2)

)
.
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Then, by transforming u to o, we have

f(d|v, a, b) = C51

∫ ∞

0

tn+m−2
3 exp

[
−1

2
(t3k)2

][∫ ∞

−∞

exp
(
−1

2
(ot3)

2
)

√
2π

d(ot3)

]
dt3

= C51

∫ ∞

0

tn+m−2
3 exp

[
−1

2
(t3k)2

]
dt3

= C6k
n+m−1

2

∫ ∞

0

(t3k)2n+m−1
2

−1

2
n+m−1

2 Γ
(

n+m−1
2

) exp

[
−1

2
(t3k)2

]
d[(t3k)2],

and then,

f(d|v, a, b) = C6

[
n∑

i=1

a2
i +

m∑
j=1

b2
jv

2 +
mnv2d2(1 + ρ2v2)

(nρ2v2 + mv2)

]− 1
2
(m+n−1)

,

where C51 and C6 are the components which do not contain t3, u, and d.
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