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Abstract

In this paper we seek to investigate and compare several Kurzweil-Henstock type

integrals. We present these integrals as special cases of a more general construc-

tion and establish key properties required in order to create similar “well behaved”

integrals. After establishing basic results (additivity, monotonicity, etc.) for these

integrals, we shift our focus to more interesting questions about them. We consider

mainly the following topics: additivity, their relationship to the Lebesgue integral,

absolute integrability, their relationships with each other, their relationship with dif-

ferentiation, possible convergence theorems and the establishment of a Fubini Theo-

rem.
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History and Thesis Outline

In the late 19th century and early 20th century, much work was being done in

integration theory in order to integrate more and more complex integrands. This

eventually culminated in the works of Lebesgue, which did not solve all of the issues,

but which had such useful applications that it was eventually embraced by most

mathematicians. One of the main downfalls (sometimes seen as an advantage) of the

Lebesgue integral, was that it was an absolute integral, in that a function is integrable

if and only if its absolute value is integrable. Researchers began working on this issue

in many different ways. For example, Perron attacked the problem using majorant

and minorant functions and Denjoy using antiderivatives. This time period lead to

a multitude of integrals of various complexity, all having their own strengths and

weaknesses.

In the 1950’s two mathematicians Ralph Henstock and Jaroslav Kurzweil inde-

pendently introduced a new integral, having many of the desired properties, while

still remaining accessible to even 1st year calculus students. This integral has been

appropriately termed the Kurzweil-Henstock integral or the generalized Riemann in-

tegral due to its similarities with the Riemann integral. This led to a wave of new

integrals and interesting questions of extensions and generalizations.

In this thesis, we attempt to gather many of these integrals as a special case of a

more general construction. We also aim to establish their properties, relationships to

other well known integrals and their relationships with each other.
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The first chapter focuses mainly on introductory material. Basic notation of the

paper is established, followed by a quick study of filters. These integrals are naturally

represented as the limit of a filter so this quick study will pay dividends further on.

The second chapter begins introducing the general construction. The notion of a

base is established, followed by the essential properties of bases that will be needed

for the investigation. Bases are then used to define differentiation and integration.

The remainder of the chapter is devoted to simple consequences of the definitions and

alternate forms of the integral.

The third chapter dives into the core of the material. Particular bases of interest

are introduced and briefly compared. Essential properties of these bases are then

established followed by a rather long investigation into additivity. This investigation

leads to further distinctions between bases, since some lead to additive integrals and

others do not. The remainder of the chapter focuses on the study of absolute inte-

grability and the relationship of the integrals produced by our bases to the Lebesgue

integral. These studies turn out to be one and the same: we discover that the

Lebesgue integrable functions are precisely the absolute integrable functions for these

bases. Some of our bases turn out to generate absolute integrals giving us alternate

representations for the Lebesgue integral and further distinguishes between bases.

The fourth chapter focuses on bases using the notion of regularity. Roughly speak-

ing, regularity is a measure of “how square an interval is” and these bases require a

certain level of “squareness”. We look into the affects on differentiation and integra-

tion when one adjusts this level of “squareness”.
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The final chapter answers the question: how do we put together bases in product

spaces? One could just mash them together without requiring much structure, but

then the integral produced by the resulting base will not relate to the integrals of

the original bases. This is where the notion of a product base is introduced, leading

to a Fubini Theorem for bases with certain properties. The last thing shown in the

thesis is a proof of the Fubini Theorem for the Lebesgue integral. We do this by

using our Fubini Theorem and the established relationships between our bases and

the Lebesgue integral.

Original contributions in the thesis include severe ironing out of the concept non-

overlapping introduced in [4], along with multiple corrections throughout his work. A

completely revamped proof of Pfeffer’s famous counter example for additivity 3.3.9.

This example is referenced in many papers in the field, [4] and [3], but there were

errors in the details of the proof [5]. An original proof of a patching theorem 3.3.13

(and associated results) partially solving this issue of additivity. Also, in most of the

unoriginal content within the thesis there has been a concerted effort in presenting

more detail or an alternate approach.

3



CHAPTER 1

Preliminaries

1.1. Notation

Throughout the paper; the assumed norm in Rn will be the supremum norm; that

is, if x = (x1, ..., xn), then ||x|| = max{|x1|, ..., |xn|}; when referring to the distance

between two points we use the metric induced by this norm. The open ball of radius

ε centred at x will be denoted B(x, ε). Similarly, B(A, ε) is the ε neighborhood of A.

For a set E, we will use E or cl(E), E◦ or int(E), and bd(E) to denote the closure,

interior, and boundary of E respectively. Generally, the neighborhood system at x

will be denoted Ux and neighborhoods of x will not be assumed open. The power

set of X will be denoted P(X). Intervals, unless otherwise stated, are assumed to be

non-degenerate and compact. The Lebesgue measure of a measurable set E will be

denoted λ(E). The length of an interval I in R will be denoted either by λ(I) or by

|I|. For any function f : X 7→ R, we define f+ = max{f, 0} and f− = max{−f, 0}.

1.2. Filters

Most of this section was taken from [11] with slight modifications to write most

of it in terms of filterbases. This material is quite common and could be found in

most introductory books on topology.
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Definition 1.2.1. Filter

Let X be a space and F be a non-empty family of non-empty subsets of X. We

call F a filter in X if it satisfies the following properties:

(1) if F1, F2 ∈ F , then F1 ∩ F2 ∈ F and

(2) if F1 ∈ F and F1 ⊆ F2, then F2 ∈ F .

If F is a filter, we call a non-empty subfamily F0 of F a filterbase for F if F = {F ⊆

X : F0 ⊆ F for some F0 ∈ F0}. A family F0 of non-empty sets is a filterbase for some

filter if and only if for any F1, F2 ∈ F0 there is an F3 ∈ F0 such that F3 ⊆ F1 ∩ F2.

Notice that in a topological space X for any x ∈ X the neighborhood system Ux

of x is a filter on X. This will be an important fact moving forward, since it gives a

connection between the filters on a space and the topology on a space.

Definition 1.2.2. Finer, coarser

A filterbase F1 is said to be finer than a filterbase F2 if for every F2 ∈ F2, there

exists an F1 ∈ F1 such that F1 ⊆ F2. We will denote this by F1 < F2. For filters,

one sees that F1 < F2 if and only if F1 ⊇ F2.

Definition 1.2.3. Convergence of a filter base, cluster point.

A filter base F on a topological space X is said to converge to a point x ∈ X,

denoted F → x, if F is finer than the neighborhood system Ux at x. A point x ∈ X

is said to be a cluster point of F if each F ∈ F meets each neighborhood of x.

5



Theorem 1.2.4.

A filterbase F1 clusters at x if and only if there is a filterbase F2 that is finer than

F1 which converges to x.

Proof. (⇒) If F1 has x as a cluster point, then F2 = {U ∩ F : U ∈ Ux, F ∈ F1}

is a filterbase which is finer than F1 and converges to x.

(⇐) Conversely, if F2 is finer than F1 and converges to x, then each F ∈ F1 and

each U ∈ Ux belongs to the filter generated by F2; hence, F ∩ U 6= ∅. �

We will now show that convergence of filterbases is able to describe topological

concepts.

Theorem 1.2.5.

If E ⊆ X, then x ∈ E if and only if there is a filter F with E ∈ F and F → x.

Proof. (⇒)If x ∈ E, then C = {E ∩ U : U ∈ Ux} is a filterbase for a filter that

contains E which also converges to x.

(⇐) If E ∈ F → x, then for U ∈ Ux we have U ∩ E ∈ F so that U ∩ E 6= ∅.

Therefore, x ∈ E. �

Definition 1.2.6. Image filterbase

If F is a filterbase on X and f : X → Y , then f(F) is the filterbase {f(F ) : F ∈

F}.

Theorem 1.2.7.

Let f : X → Y . Then, f is continuous at x if and only if whenever a filterbase

F → x, then f(F) → f(x).
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Proof. (⇒) Suppose that f is continuous at x and F → x. Let V be a neighbor-

hood of f(x). Then there is a neighborhood U of x such that f(U) ⊆ V . Since F → x,

there is an F ∈ F contained in U , so that f(F ) ⊆ V . Therefore, f(F) → f(x).

(⇐) Assume the condition is satisfied. Let F be the filter of all neighborhoods of

x. Then F → x, thus, f(F) → f(x). So for every neighborhood V of f(x), there is

a neighborhood U of x, such that f(U) ⊆ V . Therefore, f is continuous at x.

�

We will write limF f , read “the limit of f following F”, for the limit of f(F),

when it exists. Notice that this limit may not be unique; however, in most of our

applications it will be.

Definition 1.2.8. Cauchy filterbase

Let X be a metric space, a filterbase F ∈ X is said to be Cauchy, if for any ε > 0

there is an F ∈ F such that diam(F ) < ε. Note that a filterbase is Cauchy if and

only if the generated filter is so.

Theorem 1.2.9.

Every convergent filterbase is Cauchy.

Proof. Let ε > 0 and suppose that F is a filterbase converging to x. Then

B(x, ε
3
) contains a member of F and diam(B(x, ε

3
)) < ε. �

Theorem 1.2.10.

A metric space X is complete if and only if every Cauchy filterbase in X converges.

7



Proof. (⇒) Suppose that X is a metric space and F is a Cauchy filterbase.

Choose a sequence {Fn} in F with diam(Fn) < 1
n
. Without loss of generality we can

assume that each Fn is closed since if Fn ∈ F , then Fn ∈ F and diam(Fn) = diam(F n).

We will also assume that Fn ⊆ Fn−1 ⊆ ... ⊆ F1. This is possible, since if F1, F2 ∈ F ,

there is an F3 ∈ F such that F3 ⊆ F1 ∩ F2. Now since {Fn} is a nested sequence of

closed sets whose diameters are going to 0 and the space is complete, we have that⋂
n∈N Fn = {x} for some x ∈ X. We will now show that F → x. Let U ∈ Ux. Then,

there exists an ε > 0 such that B(x, ε) ⊆ U . Choose an n ∈ N such that 1
n
< ε. Then

Fn ⊆ B(x, ε) ⊆ U . Therefore, F → x.

(⇐) Suppose that every Cauchy filterbase in X is convergent in X. Let {xn} be a

Cauchy sequence inX and ε > 0. Consider the filterbase F consisting of the sets Fm =

{xn : n ≥ m}. There exists an N ∈ N such that for any n,m ≥ N, d(xn, xm) < ε.

Therefore, diam(FN) < 2ε so that F is a Cauchy filterbase. Now, by our assumption,

F → x for some x ∈ X. So, for any neighborhood U of x there exists an N ∈ N such

that FN ⊆ U . Therefore, for all n ≥ N, xn ∈ U so that xn → x. �

Definition 1.2.11. Limit superior, inferior

Let X be a topological space equipped with a complete order ≤. For a filterbase

F in X we define the limit superior as

lim supF = inf
F∈F

supF.

Similarly, the lim inf F is simply supF∈F inf F . Generally, for our purposes we will

be considering these definitions applied to images of filterbases.

8



Proposition 1.2.12.

Let F be a filterbase. Then, lim inf F ≤ lim supF .

Proof. Let F1, F2 ∈ F , there is an F3 ∈ F such that F3 ⊆ F1 ∩ F2. In which

case

inf F1 ≤ inf F3 ≤ supF3 ≤ supF2.

Taking the infimum of the right side over the F2 ∈ F followed by taking the supremum

of the left side over the F1 ∈ F we have the result. �

Proposition 1.2.13.

A filterbase F in R converges if and only if lim supF = lim inf F , in which case

limF is the common value.

Proof. (⇒) Let ε > 0 and suppose that limF = a. Then, there exists an F ∈ F

such that a − ε ≤ inf F ≤ supF ≤ a + ε taking suprema and infima we see that

lim supF = lim inf F = limF .

(⇐) Let ε > 0 and suppose that lim inf F = lim supF = a. Then, there exists

F1, F2 ⊆ F such that supF1 ≤ a+ ε and inf F2 ≥ a− ε. Since F is a filterbase, there

exists an F3 ∈ F such that F3 ⊆ F1 ∩ F2, in which case F3 ⊆ B(a, ε), as required.

�

Proposition 1.2.14.

Let F1, F2 be filterbases with F1 finer than F2. Then, lim supF1 ≤ lim supF2

and lim inf F1 ≥ lim inf F2.

9



Proof. Let F2 ∈ F2, then there exists an F1 ∈ F1 such that F1 ⊆ F2. Therefore,

supF1 ≤ supF2. Taking the infimum of the left side over all F1 ∈ F1 we have that

lim supF1 ≤ supF1 ≤ supF2. Finally, taking the infimum of the right side over all

F2 ∈ F2 we have the result. The lim inf case is proved similarly.

�
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CHAPTER 2

The Base Framework

In this chapter, we will introduce our most basic notation and our general frame-

work for our integration. After doing this, we will show some equivalent approaches

to our integral, many of which have been studied by other mathematicians. The

material is primarily found in [4] but not from the point of view of filters. Most of

these definitions, not necessarily to the same generality, can also be found in [1], [5]

and in [7].

2.1. Notation

Let X be some non-empty space and I some non-empty family of subsets of X,

sometimes referred to as “(generalized) intervals”. Suppose also that we are given a

binary relation on I, which we name non-overlapping and denote I ⊥ J . We will

assume that I and the non-overlapping relation satisfy the following property: given

any I0, ..., In ∈ I with I1, ..., In ⊆ I0, there are J1, ..., Jm ∈ I such that:

I0 =
n⋃

i=1

Ii ∪
m⋃

j=1

Jj (1)

and for any i ∈ {1, .., n}, j1, j2 ∈ {1, ...,m} we have Ii ⊥ Jj1 and Jj1 ⊥ Jj2 for j1 6= j2.

We will also assume that for I, J,K ∈ I

I ⊥ J and K ⊆ I =⇒ K ⊥ J ; (2)

I ∩ J = ∅ =⇒ I ⊥ J ; (3)

11



I ⊥ J =⇒ @K ∈ I such that K ⊆ I ∩ J. (4)

In the topological setting, unless otherwise stated, the term non-overlapping will

simply mean that the intersection of the interiors of the sets is empty.

Definition 2.1.1. Base

A non-empty family B ⊆ P(X×I) is called a base on X. For (x, I) ∈ X×I, x is

referred to as a tag. Thus, any base is a collection of families consisting of “intervals”

and their associated tags. Any base containing the empty set will be termed trivial

and we assume that all bases given a priori are non-trivial.

Definition 2.1.2. Anchored in E, within E

Let B be a base, β ∈ B and E ⊆ X. We define:

β[E] = {(x, I) ∈ β : x ∈ E}, which we call β anchored in E,

β(E) = {(x, I) ∈ β : I ⊆ E}, which we call β within E,

B[E] = {β[E] : β ∈ B}, which we call B anchored in E and

B(E) = {β(E) : β ∈ B}, which we call B within E.

Thus, anchoring in E puts the tags in E and in the other case, the entire “interval”

is contained in E.

Definition 2.1.3. Finer base, equivalent base

As with filterbases, a base B is said to be finer than a base B′ or B′ is coarser than

B, if for every β′ ∈ B′ there is a β ∈ B such that β ⊆ β′. We denote this by B < B′.

If B 4 B′ and B′ 4 B, then we will call B and B′ equivalent which we denote B ≈ B′.
12



Definition 2.1.4. Filtering

A base B is filtering if for every β1, β2 ∈ B, there exists a β ∈ B such that

β ⊆ β1 ∩ β2.

Notice that a filtering base B is simply a filterbase in the space P(X × I). This

connection will allow us to use limiting processes.

Definition 2.1.5. B ignores a point

We say that B ignores a point x ∈ X if there is a β ∈ B such that β[{x}] = ∅.

Unless otherwise stated, we will assume that our bases ignore no point and are

filtering. This will ensure that each B[{x}] is also a filterbase, so that the definition

of derivative 2.1.6 will become meaningful.

Definition 2.1.6. Derivative

Let F,G : X × I 7→ R. We define the B-derivative of F with respect to G as a

number DBFG(x), if it exists, such that for any ε > 0, there exists a β ∈ B such that

if (x, I) ∈ β[{x}], ∣∣∣∣DBFG(x)− F (x, I)

G(x, I)

∣∣∣∣ < ε.

Thus,

DBFG(x) = lim
B[{x}]

F

G
.

Given an “interval” function G we will generally write G(I) rather than G(x, I).

13



Definition 2.1.7. Lower and upper derivatives

We define the upper and lower derivatives of F with respect to G at x as

DBFG(x) = lim sup
B[{x}]

F

G
and DBFG(x) = lim inf

B[{x}]

F

G
.

Since B[{x}] is a filterbase, it follows from 1.2.12 and 1.2.13 that

(1) DBFG(x) ≥ DBFG(x)

(2) DBFG(x) exists if and only if DBFG(x) = DBFG(x), in which case all three

are equal.

An extensive study of these sorts of derivatives can be found in [9] and [10]. This

reference also uses many of the bases introduce further on and even some that aren’t

introduced.

Corollary 2.1.8.

If B and B′ are equivalent bases, then DB′FG(x) = DBFG(x) and DBFG(x) =

DB′FG(x). Furthermore, the existence of the derivative with respect to either base

implies the existence of the derivative with respect to the other base, in which case

they are equal.

Definition 2.1.9. Division, partition

A finite set D ⊆ I is called a division if its elements are non-overlapping. A

partition (also known as a tagged partition) is a finite family π ∈ P(X×I) such that

the set {I : (x, I) ∈ π} forms a division and, for each I in this set, the x such that

(x, I) ∈ π is unique. For π a partition we define
⊔
π =

⋃
(x,I)∈π I.

14



We call D a division of I ∈ I if
⋃
D = I; similarly, we call π a partition of I ∈ I

if
⊔
π = I.

Let F : X × I 7→ R and π be a partition. Then, we will write

F (π) =
∑

(x,I)∈π

F (x, I).

This is a generalization of the concept of Riemann sum. Similarly if H : I 7→ R and

D is a division, then we write

H(D) =
∑
I∈D

H(I) and H(π) =
∑

(x,I)∈π

H(I).

Definition 2.1.10. Partitioning property

A base B is said to have the partitioning property if for every I ∈ I and β ∈ B

there is a partition π ⊆ β of I.

Notice that if B is finer than B′ and B has the partitioning property, then B′ has

the partitioning property.

Proposition 2.1.11.

Let I0 ∈ I and let B be a base with the partitioning a property. Then, any partition

π ⊆ β ∈ B in I0 can be extended to a partition π̂ ⊆ β of I0.

Proof. By the assumption (1) on the family I, I \
⊔
π =

⋃m
i=1Ki, where Ki ∈

I are non-overlapping with each other and the “intervals” in π. Since B has the

partitioning property there are partitions π ⊆ β of Ki for i = 1, ...,m. Let π̂ =

π ∪
⋃m

i=1 πi. Then, π̂ ⊆ β is a partition of I0. �
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We will use this result freely, generally without reference. In the general theory,

all bases will be assumed to have the partitioning property and, as mentioned before,

be filtering.

Definition 2.1.12. Henstock integral

Let I0 ∈ I and F : X×I 7→ R. We define the Henstock integral of F with respect

to B over I0 as a number (B)
∫

I0
F , if it exists, such that for every ε > 0, there exists

a β ∈ B such that for every partition π ⊆ β of I0,

∣∣∣∣F (π)− (B)

∫
I0

F

∣∣∣∣ ≤ ε.

Thus, the integral can be interpreted as the limit of the image under F of the filterbase

F whose elements are of the form {π ⊆ β : π a partition of I0}, β ∈ B. From this

fact, we obtain the uniqueness, linearity, and monotonicity of the integral; moreover,

the integral exists if and only if the image filterbase F (F) is Cauchy.

If I0 is the union of a division the (B)
∫

I0
f is defined in the same way. This

modification will be used in the study of the triangular base 3.1.13.

Definition 2.1.13. Upper, lower Henstock integrals

For F : X × I 7→ R we define the upper and lower Henstock integrals on I0 to be

(B)

∫
I0

F = inf
β∈B

sup
π⊆β

F (π) and (B)

∫
I0

F = sup
β∈B

inf
π⊆β

F (π),

where π runs over partitions of I0 ∈ I. The upper and lower integrals can be seen as

the lim sup and lim inf of the image filterbase mentioned in the previous definition.
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Proposition 2.1.14.

The integral (B)
∫

I0
F exists if and only if (B)

∫
I0
F = (B)

∫
I0
F, in which case they

are all equal.

Proof. Again, this is a special case of proposition 1.2.13. �

Proposition 2.1.15.

If B is finer than B′, then

(B′)
∫

I0

F ≥ (B)

∫
I0

F and (B)

∫
I0

F ≥ (B′)
∫

I0

F.

Proof. This is just a special case of proposition 1.2.14 �

Corollary 2.1.16.

If B is finer than B′ and F is B′ integrable on I0, then F is also B integrable on

I0.

Corollary 2.1.17.

If B and B′ are equivalent, then (B′)
∫

I0
F = (B)

∫
I0
F and (B′)

∫
I0
F = (B)

∫
I0
F .

Furthermore, if F is integrable with respect to either of the bases, then it is integrable

with respect to the other base and to the same value.

From now on, if there is only one base B involved, we often suppress

it in the notation. If we say that F is Henstock integrable, it will be

understood to be with respect to this base.
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Proposition 2.1.18.

A function F : X×I is Henstock integrable on I0 ∈ I if and only if F is Henstock

integrable on every “subinterval” of I0.

Proof. (⇐) Is immediate.

(⇒) Suppose that F is Henstock integrable on I0 ∈ I. Let ε > 0 and I ∈ I with

I ⊆ I0. There exists a β ∈ B such that for any partition π ⊆ β of I0,

|F (π)−
∫

I0

F | ≤ ε.

Let π1, π2 ⊆ β be partitions of I. We may extend these partitions in the same way

to form partitions π̂1, π̂2 ⊆ β of I0. Therefore,

|F (π1)− F (π2)| = |F (π̂1)− F (π̂2)|

≤ |F (π̂1)−
∫

I0

F |+ |
∫

I0

F − F (π̂2)|

≤ 2ε.

Thus the filterbase used in the definition of the Henstock integral over I is Cauchy

and must therefore converge. �

Proposition 2.1.19.

Let F : X × I → R, I0 ∈ I and B be a base with the partitioning property. If F

is Henstock integrable on I0 and D is a division in I0 with
⋃
D ∈ I. Then,

∫
S
D
F =

∑
I∈D

∫
I

F.
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Proof. By (2.1.18), F is integrable over subintervals of I0. We may as well

assume I0 =
⋃
D, that is, that D = {I1, ..., Im} is a division of I0.

Let ε > 0. For each i = 0, 1, . . . ,m, there is a βi ∈ B such that if π ⊆ βi is a

partition, then

|
∑

(x,I)∈π

F (x, I)−
∫

Ii

F | ≤ ε/m.

Since B is filtering, we can replace these by one β. For i = 1, ...,m let πi ⊆ β be a

partition of Ii. Notice that now π =
⋃m

i=1 πi ⊆ β is a partition of I0 contained in β0

and F (π) =
∑m

i=1 F (πi). Thus,

|
∫

I0

F −
∑
I∈D

∫
I

F |

≤|
∫

I0

F − F (π)|+ |
m∑

i=1

∫
Ii

F − F (πi)|

≤2ε.

�

Theorem 2.1.20. Saks Henstock lemma

Let F be a Henstock integrable function on I0 ∈ I. For ε > 0, let βε ∈ B be such

that if π ⊆ βε is a partition of I0,

|F (π)−
∫

I0

F | ≤ ε.

Then, for any partition π ⊆ βε(I0),

|
∑

(x,I)∈π

F (x, I)−
∫

I

F | ≤ ε.
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Proof. Let α > 0 and π0 ⊆ βε(I0) be a partition. By the fundamental assump-

tions (1) on I , I0 \
⊔
π0 can be written as the union of K1, ..., Km ∈ I, where the

Ki are non-overlapping with each other and the “intervals” in π0. By 2.1.18, F is

integrable on each Ki and since B is filtering, there is a β1 ∈ B such that if π ⊆ β1 is

a partition of Ki,

|F (π)−
∫

Ki

F | ≤ α

m
and β1 ⊆ βε.

Find partitions πi ⊆ β1 of Ki for i = 1, ..,m. Let π̂ = π ∪
⋃m

i=1 πi. Then π̂ ⊆ β

and is a partition of I0. Therefore, using 2.1.19,

|
∑

(x,I)∈π

F (x, I)−
∫

I

F |

=|
∑

(x,I)∈π̂

F (x, I)−
m∑

i=1

F (πi)−
∫

I0

F +
m∑

i=1

∫
Ki

F |

≤|
∑

(x,I)∈π̂

F (x, I)−
∫

I0

F |+
m∑

i=1

|F (πi)−
∫

Ki

F |

≤ ε+ α.

Since α was chosen arbitrarily the result follows. �

Corollary 2.1.21.

Let F be Henstock integrable on I0 ∈ I. For ε > 0, let βε ∈ B be such that if

π ⊆ βε is a partition of I0,

|F (π)−
∫

I0

F | ≤ ε.

Then, for any partition π ⊆ βε(I0),

∑
(x,I)∈π

|F (x, I)−
∫

I

F | ≤ 2ε.
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Proof. Let π ⊆ βε(I0) be a partition. We define

π+ = {(x, I) ∈ π : F (x, I)−
∫

I

F ≥ 0} and

π− = {(x, I) ∈ π : F (x, I)−
∫

I

F < 0}.

By the Saks Henstock lemma 2.1.20 we have

∑
(x,I)∈π+

|F (x, I)−
∫

I

F | = |
∑

(x,I)∈π+

(F (x, I)−
∫

I

F )| ≤ ε and

∑
(x,I)∈π−

|F (x, I)−
∫

I

F | = |
∑

(x,I)∈π−

(F (x, I)−
∫

I

F )| ≤ ε.

Therefore,

∑
(x,I)∈π

|F (x, I)−
∫

I

F | =
∑

(x,I)∈π+

|F (x, I)−
∫

I

F |+
∑

(x,I)∈π−

|F (x, I)−
∫

I

F |

≤ 2ε.

�

2.2. Alternate Definitions of the Henstock Integral

Definition 2.2.1. Variation of F over β

Let B be a base and F : X × I 7→ R. The variation of F over β ∈ B is defined as

V (F, β) = sup
π⊆β

|F |(π)

where π runs over all partitions contained in β.

Similarly, we define the variation of F over B to be:

V (F,B) = inf
β∈B

V (F, β) = inf
β∈B

sup
π⊆β

|F |(π),
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where π once again runs over partitions contained in β.

Definition 2.2.2. Variational measure, inner variation

The variational measure B-V F is defined on all subsets E of X by

B-V F (E) = V (F,B[E]),

which we call the variation of E.

The inner variation B-VF is defined on all elements I of I by

B-VF (I) = V (F,B(I)),

which we call the inner variation of I.

Note the distinction in bracketing types between the definition of variational mea-

sure (V F ) and inner variation of F (VF ). The first uses square brackets, which forces

tags to be inside the set E. The second definition uses round brackets meaning that

the sets associated with the tags are contained inside I. Often times, if the base in

use is clear, we will simply write V F (E) rather than B-V F (E) and VF (I) rather than

B-VF (I).

Proposition 2.2.3.

Let E1, E2 ⊆ X and F : X × I → R. Then,

(1) if E1 ⊆ E2 ⊆ X, V F (E1) ≤ V F (E2) (monotonicity),

(2) V F (E1 ∪ E2) ≤ V F (E1) + V F (E2).

Proof. The first statement is immediate. Thus, we may assume for the second

that that E1 and E2 are disjoint. Let β1 ∈ B such that V (F, β1[E1]) ≤ V F (E1) + ε
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and β2 ∈ B such that V (F, β2[E2]) ≤ V F (E2)+ ε. Since B is filtering, we may choose

a β ∈ B such that β ⊆ β1∩β2. Then, for each partition π ⊆ β, since we are summing

over disjoint sets,

|F |(π[E1 ∪ E2]) = |F |(π[E1]) + |F |(π[E2]) ≤ V F (E1) + V F (E2) + 2ε.

Taking the supremum over all such π ⊆ β and then taking the infimum over all β ∈ B

gives the result.

�

Definition 2.2.4. Pointwise character

A base B is said to have pointwise character if, whenever βx ∈ B, for each x ∈ X,

there is one β ∈ B such that β[{x}] ⊆ βx for every x ∈ X.

Definition 2.2.5. σ-local character

A base B is said to have σ-local character if for any sequence {Xn} of disjoint

subsets of X, and any sequence {βn}n∈N ⊆ B there is a β ∈ B such that β[Xn] ⊆

βn[Xn] for each n ∈ N.

The pointwise character of a base is used to gather properties that occur locally

and transform them into properties that occur globally.

Proposition 2.2.6.

Any base of pointwise character is of σ-local character.

Proof. Let {Xn} be a sequence of disjoint subsets of X and for each n ∈ N let

βn ∈ B[Xn]. Let βx = βn[{x}] for each x ∈ Xn and by pointwise character choose
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a β ∈ B such that for all x ∈ X, β[{x}] ⊆ βx. Then β[Xn] =
⋃

x∈Xn
β[{x}] ⊆⋃

x∈Xn
βn[{x}] = βn.

�

Proposition 2.2.7.

Suppose B is of σ-local character and that F : X×I 7→ R. Then for any sequence

{En} of subsets of X and E0 ⊆
⋃

n∈NEn,

V F (E0) ≤
∞∑

n=1

V F (En).

Thus for B of σ-local character, V F becomes an outer measure.

Proof. By the monotonicity of V F , we may assume that the En are disjoint.

Let ε > 0. For any n ∈ N there is a βn ∈ B such that V (F, βn[En]) ≤ V F (En) + ε
2n .

Since B is of σ-local character there is a β ∈ B such that β[En] ⊆ βn for all n ∈ N.

Let π ⊆ β[E0] be a partition, then

|F |(π) =
∞∑

n=1

|F |(π[En])

≤
∞∑

n=1

V (F, βn[En])

≤
∞∑

n=1

V F (En) +
ε

2n

=
∞∑

n=1

V F (En) + ε.

Taking the supremum over all π ⊆ [E0] on the left side, followed by the infimum over

all β ∈ B we have the result. �
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Definition 2.2.8. Additive, subadditive, superadditive, 2-additive

Let H : I 7→ R. Recall that for a division D, H(D) =
∑

I∈DH(I). Then we say

that

(1) H is additive if H(D) = H(I) for any I ∈ I and any division D of I,

(2) H is subadditive if H(D) ≥ H(I) for any I ∈ I and any division D of I and

(3) H is superadditive if H(D) ≤ H(I) for any I ∈ I and any division D of I.

We will denote the family of all additive functions by A, the family of all sub-

additive functions by A and the family of all superadditive functions by A. When

restricting our attention to functions inside an “interval” I0, we will write A(I0) for

the family of additive functions on I0. Similar conventions will be used for superaddi-

tive and subadditive functions. A function H will be called 2-additive if it is additive

for all divisions containing only 2 elements.

Definition 2.2.9. Variationally equivalent

Let F1, F2 : X × I 7→ R, we say that F1 and F2 are variationally equivalent on

I0 ∈ I if, for every ε > 0 there is a β ∈ B and a superadditive function ϕ : I 7→ R+

such that ϕ(I0) < ε and for every (x, I) ∈ β(I0),

|F1(x, I)− F2(x, I)| ≤ ϕ(I).

We say that F1, F2 are variationally equivalent if they are variationally equivalent

on every I0 ∈ I. We denote this by F1 ≈ F2.
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Proposition 2.2.10.

For F1, F2 : X × I 7→ R,

F1 ≈ F2 on I0 ⇐⇒ V (F1 − F2,B(I0)) = 0.

Proof. (⇒) Let ε > 0, choose a β ∈ B and a ϕ : I 7→ R+ as in the definition of

variationally equivalent 2.2.9. Let π ⊆ β(I0) be a partition. Then,

∑
(x,I)∈π

|F1 − F2|(x, I) ≤
∑

(x,I)∈π

ϕ(I) ≤ ϕ(I0) < ε.

(⇐) Suppose V (F1 − F2,B(I0)) = 0 and let ε > 0. Choose a β ∈ B such that

V (F1 − F2, β(I0)) ≤ V (F1 − F2,B(I0)) + ε = ε, then I 7→ V (F1 − F2, β(I)) is the

required function. Superadditivity stems from the fact that if π1 ⊆ β is partition in

I1 and π2 ⊆ β is a partition in I2, where I1 and I2 are non-overlapping elements of I.

Then, π1 ∪ π2 is a partition in I1 ∪ I2. Thus if I1 ∪ I2 ∈ I,

(F1 − F2)(π1) + (F1 − F2)(π2) = F (π1 ∪ π2) ≤ V (F1 − F2, β(I1 ∪ I2)).

Taking the supremum of all such partitions π1 ⊆ β and π2 ⊆ β we have super-

additivity.

�

Lemma 2.2.11.

Suppose H1, H2 : I 7→ R are additive functions and H1 ≈ H2 with respect to a

base B with the partitioning property. Then H1 = H2.

Proof. Let ε > 0 and I0 ∈ I. There is a β ∈ B and a superadditive function ϕ

such that ϕ(I0) < ε and for each (x, I) ∈ β(I0), |H1(I) − H2(I)| ≤ ϕ(I). Let π ⊆ β
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be a partition of I0. Then,

|H1(I0)−H2(I0)| ≤
∑

(x,I)∈π

|H1(I)−H2(I)|

≤
∑

(x,I)∈π

ϕ(I)

≤ ϕ(I0)

< ε.

�

Definition 2.2.12. Variational integral

If there exists an additive function that is variationally equivalent to F , then it is

called the variational integral of F .

Corollary 2.2.13.

By the previous lemma if B has the partitioning property, then the variational

integral of F : X × I 7→ R is uniquely defined.

This theorem was shown in [4] and is very convenient. It shows equivalent defini-

tions for the Henstock integral. The most handy of which is the equivalence involving

the variation.

Theorem 2.2.14. Alternate definitions of the Henstock integral

Let B have the partitioning property and be filtering. Let F : X × I 7→ R and

I0 ∈ I. Then the following are equivalent:

(1) F is Henstock integrable on I0;
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(2) For every ε > 0 there exists a β ∈ B(I0) such that for every I ⊆ I0, I ∈ I

and for every partition π ⊆ β of I,∣∣∣∣∫
I

F − F (π)

∣∣∣∣ < ε;

(3) There is an additive function H such that V (H − F,B(I0)) = 0;

(4) There is an additive function H ≈ F on I0;

(5) For every ε > 0 there is a β ∈ B, an A ∈ A and a B ∈ A such that

A(I0)−B(I0) < ε

and for every (x, I) ∈ β(I0),

A(I) ≥ F (x, I) ≥ B(I).

Proof. (1) ⇐⇒ (2) Follows immediately from the Saks Henstock lemma 2.1.20

and proposition 2.1.19.

(3) ⇐⇒ (4) Follows from proposition 2.2.10.

(2) ⇒ (3) Let ε > 0 and define H(I) =
∫

I
F for any I ∈ I with I ⊆ I0. The

fact that this function is additive was done in proposition 2.1.19. And the fact that

V (H − F,B(I0)) = 0 was done in corollary 2.1.21.

(4) ⇒ (5) Suppose that H ∈ A(I0) such that H ≈ F on I0. Let ε > 0, choose a

β ∈ B(I0) and ϕ ∈ A so that for all (x, I) ∈ β,

|H(I)− F (x, I)| ≤ ϕ(I) and ϕ(I0) < ε.

For I ⊆ I0 we define A(I) = ϕ(I)+H(I) and B(I) = −ϕ(I)+H(I). Then clearly

A ∈ A, B ∈ A and A(I0)−B(I0) ≤ 2ε.
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Finally, for (x, I) ∈ β,

A(I) = ϕ(I) +H(I) ≥ F (x, I) ≥ H(I)− ϕ(I) = B(I).

(5) ⇒ (3) Let AF be the set of all superadditive functions A on I(I0) for which

there exists a β ∈ B(I0) such that for all (x, I) ∈ β, A(I) ≥ F (x, I). Put

H(J) = inf{A(J) : A ∈ AF}.

Let AF be the set of all subadditive functions B on I(I0) for which which there exists

a β ∈ B(I0) such that for all (x, I) ∈ β, B(I) ≤ F (x, I). Put

H(J) = sup{B(J) : B ∈ AF}.

Then, for each J , H(J) = H(J) so let H(J) be their common value. Then H is well

defined and additive.

Let ε > 0, β ∈ B and A,B be as shown as in (5). For (x, I) ∈ β(I0), either

H(I) ≥ F (x, I), in which case,

A(I) ≥ H(I) ≥ F (x, I) ≥ B(I),

so that |H(I)− f(x, I)| < ε, or F (x, I) > H(I), so that

A(I) ≥ F (x, I) ≥ H(I) ≥ B(I)

and again |H(I)− F (x, I)| < ε. Summing over any partition π ⊆ β(I0) yields

|H − F |(π) ≤ |A−B|(I) ≤ |A−B|(I0) ≤ ε.

Therefore, V (H − f,B(I0)) = 0.
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(3) ⇒ (2) Let ε > 0 and choose a β ∈ B(I0) so that V (H − F, β(I0)) < ε. Let

I ⊆ I0 and let π ⊆ β be a partition of I,

|H(I)− F (π)| = |(H − F )(π)| < ε.

Thus
∫

I
F exists and is equal to H(I) and (2) holds.

�

2.3. Condition for Integrability

Lemma 2.3.1.

Let B be of pointwise character and have the partitioning property. Let I0 ∈ I

and let ϕ be a non-negative additive function defined on sub“intervals” of I0. Then

for f : X → R, H ∈ A(I0), F (x, I) = f(x)ϕ(I) and

E = {x ∈ I0 : DBHϕ(x) = f(x)},

we have

V (H − F,B(I0)[E]) = 0.

Proof. Let ε > 0, then for every x ∈ E there exists a βx ∈ B such that for

(x, I) ∈ βx[{x}],

|H(I)

ϕ(I)
− f(x)| < ε.

i.e. |H(I)− F (x, I)| < εϕ(I). Let β ∈ B(I0) such that for every x ∈ E,

β[{x}] ⊆ βx[{x}].
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Let π ⊆ β[E] be a partition, then

|H − F |(π) =
∑

(x,I)∈π

|H − F |(x, I) <
∑

(x,I)∈π

εϕ(I) ≤ εϕ(I0).

Therefore, V (H − F, β(I0)[E]) ≤ εϕ(I0). �

Recall that B(I0) is the set of β ∈ B restricted to have their “interval” inside of

I0 and that B[E] is the set of β ∈ B restricted to have their tags inside of E. We

use both definitions in the following propositions simultaneously. Another thing to

note in the following proposition is that even though the integration is restricted to

be inside the “interval” I0 the differentiation is not. The “intervals” used in the limit

of the derivative could end up extending outside of I0. This extending outside of I0

could occur since we do not know that if we move further along the filter generated

by our base that we necessarily shrink the size of the “intervals”.

Proposition 2.3.2.

Let B be of pointwise character and have the partitioning property, I0 ∈ I, ϕ a

non-negative additive function defined on subsets of I0, f : X → R, H ∈ A(I0), and

F (x, I) = f(x)ϕ(I). Suppose for E = {x ∈ I0 : DBHϕ(x) = f(x)} we have

V (H − F,B(I0)[I0 \ E]) = 0.

Then F is Henstock integrable on I0 and H is its Henstock integral.

Proof. From the previous simple calculations we know that

V (H − F,B(I0)) ≤ V (H − F,B(I0)[I0 \ E]) + V (H − F,B(I0)[E])

= 0 + 0
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= 0.

Therefore from the equivalent definition of the Henstock integral the result follows.

�
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CHAPTER 3

Examples of Bases and Basic Results

3.1. Introduction of Relevant Bases

For this chapter I will be the family of compact, non-degenerate intervals in Rn

and recall that λ denotes Lebesgue measure. Often times the function F : X×I → R

by F (x, I) = f(x)λ(I) will be denoted F = fλ. Unless otherwise stated f and F are

assumed to be functions where f : Rn → R and F : Rn × I → R.

The bulk of the material in this chapter is taken from [4] and [5]. Most of these

bases are quite common and can be found in most of the literature in the field. For

example [1], [3], [4], [6], [7], [8] and [9] all cover these bases in some way shape or

form. The Riemannian base and refining base were added in order to give the reader

some familiar material to compare the other bases to. An extensive 1-dimensional

study of the gauge bases is shown in [1] and is suggested for an introduction to the

topic. The 2-dimensional case is studied in [4] a little less extensively.

Definition 3.1.1. f is B-integrable, (B)
∫

I0
fdλ

Let I0 ∈ I, f : I0 → R and F (x, I) = f(x)λ(I). If (B)
∫

I0
F exists, we will write

(B)
∫

I0
fdλ or often times simply (B)

∫
I0
f for that integral and say that f is B-

integrable on I0.
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Definition 3.1.2. Riemannian base, constant gauge base

We call the base Briem = {βδ : δ ∈ R, δ > 0} the Riemannian base or constant

gauge base, where βδ = {(x, I) ∈ Rn × I : x ∈ I and diam(I) ≤ δ}.

Notice that a function F : Rn × I → R is Briem-integrable on I0 if, there exists a

real number (Briem)
∫

I0
F such that for any ε > 0 there exists a δ > 0 such that for

any partition π whose mesh is less than δ,

∣∣∣∣F (π)− (Briem)

∫
I0

F

∣∣∣∣ < ε.

Therefore, when considering real valued functions f on Rn the Briem-integral of F = fλ

is exactly that of the Riemann integral of f .

It is clear that this base is filtering and the fact that it has the partitioning

property will be shown in Cousin’s theorem 3.2.2.

Proposition 3.1.3.

The Riemannian base is not of σ-local character.

Proof. Let {Xn}n∈N be a sequence of disjoint subsets of Rn and β 1
n
∈ Briem for

each n ∈ N. Now if there is a βm ∈ Briem such that βm[Xn] ⊆ β 1
n
[Xn] for each n ∈ N.

Then, m ≤ 1
n

for each n ∈ N, so that m ≤ 0. But no such βm exists in Briem.

�

Definition 3.1.4. Refinement base

We call the base Bref = {βD : D is a division} the refinement base, where βD =

{(x, I) ∈ Rn × I : there is some J ∈ D such that I ⊆ J and x ∈ I}.
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For a real valued function f on Rn, Bref-integrability of f on I0 just says that

there exists an A ∈ R such that for any ε > 0 there exists a division D such that for

any partition π of I0 that is finer than D,

|fλ(π)− A| < ε.

Notice that this is the refining integral for intervals, which is equivalent to the Rie-

mann integral.

It is clear that this base is filtering and we will show in Cousin’s theorem 3.2.2

that is has the partitioning property. It is also easy to see that it is not of σ-local

character. Indeed, let Xn = [ 1
n+1

, 1
n
] and let Dn be a division of [0, 1] containing Xn.

Then for any βD ∈ Bref with βD[Xn] ⊆ βDn for each n ∈ N , we have that D must

have an infinite number of elements.

Definition 3.1.5. Gauge

A function δ : Rn 7→ (0,∞) is called a gauge.

We begin now to introduce bases that are directed by gauges. When speaking of

these bases at the same time we will refer to them loosely as the gauge bases.

Definition 3.1.6. Kurzweil bases

We define the Kurzweil bases as:

B1 = {βδ : δ is a gauge}, where βδ = {(x, I) ∈ Rn × I : x ∈ I ⊆ B(x, δ(x))},

B�1 = {β�δ : δ is a gauge}, where β�δ = {(x, I) ∈ Rn × I : I ⊆ B(x, δ(x))} and

B̃1 = {β̃δ : δ is a gauge}, where β̃δ = {(x, I) ∈ βδ : x is a vertex of I}.
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We call them the Kurzweil base, the weak Kurzweil base and the modified Kurzweil

base respectively.

Definition 3.1.7. Regularity, R(I)

Let I be a an interval in Rn. The regularity of I is defined to be

R(I) =
length of the minimal side of I

length of the maximal side of I
.

Notice that for, n = 1, the regularity is always 1 so this notion generally is not

considered in the one dimensional case.

Often times for measurable sets I an alternate definition of regularity is used, the

alternate definition being

R(I) =
λ(I)

diam(I)n
.

We will now show that these two definitions are essentially equivalent when it

comes down to intervals. To compare them, we denote the first definition by R1 and

the second by R2.

Proposition 3.1.8.

For I an interval in Rn we have that R1(I) ≥ R2(I) and R1(I)
n ≤ R2(I).

Proof. Let S be the length of the minimal side of I and L the length of the

maximal side of I. Then,

R1(I) =
S

L
≥ λ(I)

Ln
=

λ(I)

diam(I)n
= R2(I).

Also,

R1(I)
n =

(
S

L

)n

≤ λ(I)

diam(I)n
= R2(I).

36



�

It will become clear that for the purpose of integration and differentiation these

two notions lead to equivalent theories.

Definition 3.1.9. Vitali covering

Let ρ : Rn → (0, 1). Let V ⊆ I, and let E ⊆ Rn. If, for every x ∈ E, there

exists a sequence {Vk} from V such that diam(Vk) → 0, R(Vk) ≥ ρ(x) and x ∈ Vk,

we say that V is a ρ-Vitali cover of E. Generally the ρ in consideration is clear and

we simply call V a Vitali cover of E.

Theorem 3.1.10. Vitali covering theorem

Let V be a Vitali covering of a set E ⊆ Rn. Then there exists a countable family

{Vk} of sets chosen from V such that Vi ∩ Vj = ∅, for i 6= j and λ(E \
⋃∞

i=1 Vi) = 0.

Proof. This was proved in [8] p.109.

�

Definition 3.1.11. Kempisty fixed bases

Let r ∈ (0, 1). We define the Kempisty fixed bases as:

Br = {βr
δ : δ is a gauge}, where βr

δ = {(x, I) ∈ βδ : R(I) ≥ r} and

Br� = {βr�

δ : δ is a gauge}, where βr�

δ = {(x, I) ∈ β�δ : R(I) ≥ r}.

We call these the Kempisty fixed r-base and the weak Kempisty fixed r-base

respectively. Here we call r a regulator of the base. Often times we will simply

say that a function is r-integrable or r-differentiable rather than Br-integrable or
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Br-differentiable. Notice that different values of r will produce different bases. The

effects of this change of r on differentiability and integrability of functions will be

studied later in 4.1 and in 4.2 respectively.

Definition 3.1.12. Kempisty bases

Let ρ : Rn → (0, 1). We define the Kempisty bases as:

Bρ = {βρ
δ : δ is a gauge}, where βρ

δ = {(x, I) ∈ βδ : R(I) ≥ ρ(x)} and

Bρ� = {βρ�

δ : δ is a gauge}, where βρ�

δ = {(x, I) ∈ β�δ : R(I) ≥ ρ(x)}.

We call these the Kempisty ρ-base and the weak Kempisty ρ-base respectively.

Here we call ρ a regulator of the base. Again notice that different values of ρ lead to

different bases.

Definition 3.1.13. Triangular bases

We define the Triangular bases as:

T = {τδ : δ is a gauge}, where τδ = {(x, I) ∈ R2 × T : x ∈ I ⊆ B(x, δ(x))} and

T � = {τ �δ : δ is a gauge}, where τ �δ = {(x, I) ∈ R2 × T : I ⊆ B(x, δ(x))},

where T is the family of triangles in R2. We call them the triangular base and the

weak triangular base respectively.

It is clear that each of these bases produce different integrals for functions of

the form F (x, I). Consider simply any function F (x, I) that is λ(I) for the I in

consideration in the base and 0 otherwise. Most authors fail to mention this fact in

the general setting and begin working out considerably longer solutions in the case
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where F (x, I) = f(x)λ(I). It is nice to be able to show quickly that these bases each

produce unique integrals. We present one such example and leave the rest to the

reader.

Proposition 3.1.14.

There is a function F : Rn×I 7→ R that is Br-integrable but not B1-integrable on

an interval I0.

Proof. Consider the function F (x, I) where F (x, I) = λ(I) for any r-regular

interval I and 0 otherwise. We first show that F is Br-integrable. Let ε > 0, δ be any

gauge and let π ⊆ βr
δ be a partition of I0. Then,

|F (π)− λ(I0)|

=|
∑

(x,I)∈π

F (x, I)− λ(I0)|

=|
∑

(x,I)∈π

λ(I)− λ(I0)|

=|λ(I0)− λ(I0)|

=0.

Therefore, F is Br-integrable on I0 to 0.

We now show that F is not B1-integrable on I0. By proposition 3.2.6 for any

gauge δ there is a partition π ⊆ βδ of I0 such that for any (x, I) ∈ π, R(I) < r. For

such a partition π,

F (π)
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=
∑

(x,I)∈π

F (x, I)

=
∑

(x,I)∈π

0

=0.

We have already shown that for any gauge δ there is a partition π of I0 for which

F (π) = λ(I0). Therefore, F cannot be B1-integrable on I0 since the associated filter

will not be Cauchy. �

More interesting questions of integrability arise in the traditional setting where

F (x, I) is of the form F (x, I) = f(x)λ(I). We however, differ this treatment until

later in order to present some basic properties of these bases.

Proposition 3.1.15.

Let p : Rn → R and 0 < r < 1 with p(x) ≥ r for every x ∈ Rn. Then,

(1) All bases are finer than their weak counterparts,

(2) B̃1 is finer than B1,

(3) Briem 4 B1 4 Br 4 Bρ and

(4) B�1 4 Br� 4 Bρ�.

Proof. Simply look at which family of intervals or triangles contains the other

families.

�

Proposition 3.1.16.

All of the gauge bases are filtering.
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Proof. Simply notice that for any gauges δ1, δ2 and any two regulators r1, r2

that if (x, I) is min{δ1, δ2}-fine and max{r1, r2}-regular, then it is also δ1, δ2-fine and

r1, r2-regular.

�

Proposition 3.1.17.

All of the previous gauge bases are of local character.

Proof. Let δx be a gauge for each x ∈ Rn, then letting δ(x) = δx(x) we see that

if (x, I) is δ-fine, then it is also δx-fine. Similarly, if ρx is a regulator for each x ∈ Rn

then setting ρ(x) = ρx(x) we see that if (x, I) is ρ regular, then it is also ρx regular.

�

Proposition 3.1.18.

All of the previous gauge bases ignore no point.

Proof. Given x = (x1, ..., xn) ∈ Rn and a gauge δ we have (x, [x1, x1 + δ(x)
2n

] ×

[x2, x2 + δ(x)
2n

]× ...× [xn, xn + δ(x)
2n

]) ∈ αδ for non triangular bases.

For the triangular base we have (x,A) ∈ τδ where A is the triangle with vertices

x, (x1 + δ(x)
2
, x2) and (x1, x2 + δ(x)

2
).

�

3.2. Partitioning Property

The existence of ρ-regular partitions using intervals for any interval was shown

in [5]. We use this to show the existence of triangular partitions partitions of any
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interval. After this we do a slight variation of Pfeffer’s argument in [5] to show the

existence of partitions whose elements are all non ρ-regular.

Lemma 3.2.1.

Let A be an interval and let 0 < r < 1. Then there is a division D of A such that

R(D) > r for each D ∈ D.

Proof. Let A =
∏n

i=1[ai, bi], let ci = bi − ai for i = 1, ..., n and choose a real

number ε with 1 > ε > 0 and (1−ε
1+ε

) > r. Find integers pi ≥ 1, such that | c1
ci

pi

p1
− 1| ≤ ε

and divide the i-th side of A into pi equal intervals of length ci

pi
for i = 1, .., n. This

induces a division on A consisting of intervals I with

R(I) =
infk

ck

pk

supi
ci

pi

=
infk

ckp1

pkc1

supi
cip1

pic1

≥ 1− ε

1 + ε
.

This choice is possible. Indeed,∣∣∣∣c1pi

cip1

− 1

∣∣∣∣ ≤ ε ⇐⇒ (1− ε)
ci
c1
≤ pi

p1

≤ (1 + ε)
ci
c1
.

The intervals Ui =
(
(1− ε) ci

c1
, (1 + ε) ci

c1

)
here have positive length 2ci

c1
. Choose p1 ∈ N

with 1
p1
< mini

ci

c1
. Then, for each i = 1, .., n, there is a natural number pi such that

pi

p1
∈ Ui, as required. �

Theorem 3.2.2. Cousin’s theorem

Let I0 be an interval, δ a gauge and let ρ : Rn → (0, 1) be a regulator. Then there

is a δ-fine, ρ-regular partition π of I0.
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Proof. Suppose that I is a compact interval that is not δ-fine, ρ-regular parti-

tionable. First notice that any interval can be cut into pieces whose diameters are

less than any fixed size. Putting this fact together with the previous lemma we can

form a division D1 of I such that for any D ∈ D1 we have that R(D) > 1− 2−1 and

diam(D) < 2−1. Now if every D ∈ D1 is δ-fine, ρ-regular partitionable, then I would

be also. Hence, there is a D1 ∈ D1 that is not δ-fine, ρ-regular partitionable. We can

find a division D2 of D1 such that for any D ∈ D2 we have that R(D) > 1− 2−2 and

diam(D) < 2−2. Once again if every D ∈ D2 is δ-fine, ρ-regular partitionable, then D1

would be also. Hence, there is a D2 ∈ D2 that is not δ-fine, ρ-regular partitionable.

Continue the process inductively.

The result is a sequence of nested closed intervals {Di}i∈N that are not δ-fine, ρ-

regular partitionable for which R(Di) > 1− 2i and diam(Di) < 2−i. Thus
⋂∞

i=1Di =

{x0} and there exists an N ∈ N such that R(DN) > ρ(x0) and diam(DN) < δ(x0).

So we have that {(x0, DN)} is a δ-fine, ρ-regular partition of DN , a contradiction.

�

Corollary 3.2.3.

All of the previous gauge bases other than the triangular bases and the modified

Kurzweil base have the partitioning property.

Proposition 3.2.4.

The triangular bases and B̃1 have the partitioning property.

Proof. Given a gauge δ, use Cousin’s theorem to choose find a partition π in βδ.

Replacing each (x, I) ∈ π by the 4 triangles determined by x and the vertices of I,
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retaining x as the tag, yields a partition in τδ. Of course, if any of the triangles are

degenerate we do not place them in the partition.

Similarly, once π has been chosen in βδ, replace each (x, I) ∈ π by the same tag

x and the at most 2n non-degenerate intervals obtained by intersecting I with the

half-spaces determined by the (n − 1)-dimensional hyperplanes through x that are

normal to the coordinate axes. This yields a partition in β̃δ.

�

It will be useful in some instances to have the existence of a partition that is δ-fine

whose elements are all not ρ-regular.

Lemma 3.2.5.

Let I0 ∈ I and 0 < r < 1. There is a division D of I0 for which R(D) < r and

diam(D) < diam(I0)
2

for any D ∈ D.

Proof. First cut I0 into 2n equal sized pieces by cutting it with an (n − 1)-

dimensional planes that cross its center. The resulting intervals all have diameter

equal to diam(I0)
2

. Say J is one of these resulting intervals. Now we use (n − 1)-

dimensional planes perpendicular to the shortest side of J to cut J into k pieces of

equal size. Then, the regularity of these pieces is R(J)/k. Choosing k large enough

ensures that the resulting pieces will have regularity less than r. Doing this for each

J and amassing the resulting intervals we have our required division.

�
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Proposition 3.2.6.

For any I0 ∈ I, any gauge δ and any regulator ρ : Rn 7→ R there is a δ-fine

partition of I0 for which R(I) < ρ(x) for any (x, I) ∈ π.

Proof. Suppose that I0 ∈ I did not have the desired property and let ε > 0.

There is a division D1 of I0 for which R(D) < 1
2

and diam(D) < diam(I0)
2

for any

D ∈ D1. Now if each D ∈ D1 has the desired property then so would I0. Suppose

that D1 ∈ D1 were such a D without the desired property. Then there is a division

D2 of D1 for which R(D) < 1
22 and diam(D) < diam(I0)

22 for any D ∈ D2. As before

there is a D2 ∈ D2 that does not have the desired property. Continue the process

inductively.

The result is a family of nested compact intervals {Di}i∈N that do not have the

desired property for which diam(Di) <
diam(I0)

2i and R(Di) <
1
2i . Then

⋂∞
i=1Di = {x}.

Choose a k ∈ N such that diam(I0)
2k < δ(x) and 1

2k < ρ(x). Then, {(x,Dk)} is a δ-

fine partition of Dk for which R(I) < ρ(x) for any (x, I) in the partition. This is a

contradiction.

�

3.3. Additivity

We now ask the question: “If f is integrable with respect to one of our bases on

two intervals, will it be integrable on their union?”. Surprisingly, for certain bases,

the answer is not always yes. A nice introduction to this and an intuitive feel as to

why not can be found in [3]. The traditional example of why not 3.3.9 can be found in

[5]; with a few gaps in the arguments. Most of the remaining material in this section
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will be found in [4]. We also present some interesting results on how this “additivity”

will hold for overlapping intervals in 3.3.12 and 3.3.13.

Definition 3.3.1. B is additive

We will say that B is additive if VF is 2-additive for any F : X × I → R.

Definition 3.3.2. Additive in the sense of Henstock

In the topological setting, where two sets are non-overlapping if the intersection

of their interiors is empty, we will say that B is additive in the sense of Henstock if

for any β1 ∈ B(I) and β2 ∈ B(Rn \ I◦), there is a β ∈ B such that β ⊆ β1 ∪ β2.

Proposition 3.3.3.

B̃1 is additive in the sense of Henstock.

Proof. Let I ∈ I, β̃δ1 ∈ B̃1(I) and β̃δ2 ∈ B̃1(Rn \ I◦). Define

δ(x) =


min{δ1(x), δ2(x), dist(x,bd(I))

2
} for x /∈ bd(I),

min{δ1(x), δ2(x), dist(x,E)
2

} for x ∈ bd(I),

where E is the set formed by removing from the boundary of I, all sides of I that

contain x. For (x, J) ∈ β̃δ if x ∈ I◦, then (x, J) ∈ β̃δ1(I) and if x ∈ Rn \ I, then

(x, J) ∈ β̃δ2(Rn \ I◦). By the definition of δ and since x is a vertex of J we have that

for x ∈ bd(I), J ⊆ I or J ⊆ Rn \ I◦. Therefore, (x, J) ∈ β̃δ1 ∪ β̃δ2 .

�

Proposition 3.3.4.

All of the other gauge bases introduced are not additive in the sense of Henstock.
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Proof. Suppose that β ⊆ β1(I) ∪ β2(Rn \ I), where β1, β2 ∈ B and I ∈ I. Then

for (x, J) ∈ β with x ∈ J◦ ∩ bd(I), we have J ∩ I◦ 6= ∅ and J ∩ (Rn \ I)◦ 6= ∅.

Therefore, (x, J) /∈ β a contradiction.

�

Proposition 3.3.5.

If B is filtering and additive in the sense of Henstock, then it is additive.

Proof. Let I1, I2 ∈ I with I1, I2 non-overlapping and I1 ∪ I2 ∈ I. Let α ∈ B,

then V (F, α(I1) ∪ α(I2)) = V (F, α(I1)) + V (F, α(I2)). Indeed, if π ⊆ α(I1) ∪ α(I2) is

a partition, then

|F |(π) = |F |(π(I1)) + |F |(π(I2))

≤ V (F, α(I1)) + V (F, α(I2)).

Taking the supremum over all partitions π ⊆ α(I1) ∪ α(I2),

V (F, α(I1) ∪ α(I2)) ≤ V (F, α(I1)) + V (F, α(I2)).

For the reverse inequality let π1 ⊆ α(I1) and π2 ⊆ α(I2) be partitions. Then, π1∪π2 ⊆

α(I1) ∪ α(I2) and is a partition, so that

|F |(π1) + |F |(π2) = |F |(π1 ∪ π2) ≤ V (F, α(I1) ∪ α(I2)).

Taking the supremum of the left over all partitions π1 ⊆ α(I1) followed by the supre-

mum over all partitions π2 ⊆ α(I2). Therefore, V (F, α(I1) ∪ α(I2)) = V (F, α(I1)) +
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V (F, α(I2)). Therefore,

V (F, α(I1 ∪ I2)) = V (F, α(I1)) + V (F, α(I2))

≥ V (F,B(I1)) + V (F,B(I2)).

Taking the infimum over all α ∈ B of the left,

V (F,B(I1 ∪ I2)) ≥ V (F,B(I1)) + V (F,B(I2)).

Now to show the reverse inequality. Let ε > 0 and choose α̂1, α̂2 ∈ B such that

V (F, α̂1(I1)) ≤ V (F,B(I1)) + ε and

V (F, α̂2(I2)) ≤ V (F,B(I2)) + ε.

Choose any α1, α2 ∈ B such that

α1 ⊆ α̂1(I1) ∪ α̂1(X \ I◦1 ) and

α2 ⊆ α̂2(I2) ∪ α̂2(X \ I◦2 ).

Finally, choose an α ∈ B such that α ⊆ α1 ∩ α2.

Claim α(I1 ∪ I2) = α(I1) ∪ α(I2)

It is clear that α(I1)∪α(I2) ⊆ α(I1∪ I2). Suppose that α(I1∪ I2) * α(I1)∪α(I2).

Then, there exists an (x, I) ∈ α(I1 ∪ I2) such that I * I1 and I * I2. Now

α ⊆ α1 ∩ α2

⊆
[
α̂1(I1) ∪ α̂1(X \ I◦1 )

]
∩

[
α̂2(I2) ∪ α̂2(X \ I◦2 )

]
.
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Since I * I1 and I * I2, we have that I ⊆ X \ I◦1 ∩ X \ I◦2 = X \ (I◦1 ∪ I◦2 ) but

I ⊆ I1∪I2. Therefore, I ⊆ bd(I1∪I2) but I is non-degenerate. This is a contradiction

so the claim holds.

Therefore,

V (F, α(I1 ∪ I2)) = V (F, α(I1) ∪ α(I2))

= V (F, α(I1)) + V (F, α(I2))

≤ V (F, α1(I1)) + V (F, α2(I2))

≤ V (F, α̂1(I1)) + V (F, α̂2(I2))

≤ V (F,B(I1)) + V (F,B(I2)) + 2ε.

Taking the infimum on the left over all α ∈ B we have the result.

�

Corollary 3.3.6.

B̃1 is additive.

Proposition 3.3.7.

Suppose that B is additive in the sense of Henstock, has the partitioning property,

and is filtering. Let F be integrable on two non-overlapping I1, I2 ∈ I for which

I1 ∪ I2 ∈ I. Then F is integrable on I1 ∪ I2.

Proof. Let H be an additive function with V (H − F,B(I1)) = 0 and V (H −

F,B(I2)) = 0. We may assume that the H’s are the same since I1 and I2 are non-

overlapping and since B is additive in the sense of Henstock. Indeed, any “interval”
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can be partitioned into pieces inside I1, pieces inside I2 and pieces outside both. After

doing this we simply work additively on those pieces. But since B is additive we have

that V (H − F,B(I1 ∪ I2)) = V (H − F,B(I1)) + V (H − F,B(I2)) = 0. Therefore, F

is integrable on I1 ∪ I2.

�

Corollary 3.3.8.

Let F be B̃1-integrable on two non-overlapping I1, I2 ∈ I for which I1 ∪ I2 ∈ I.

Then, F is B̃1-integrable on I1 ∪ I2.

The often cited example in the following theorem was given by Pfeffer [5]. The

proof had some flaws which we have corrected. Pfeffer often times refers to this result

as a lack of “additivity”.

Theorem 3.3.9.

There is a function f : R2 → R that is Br-integrable on two non-overlapping

intervals but that is not integrable on their union.

Proof. Let A = [0, 1] × [0, 1], B = [−1, 0] × [0, 1], An
+ = [3 · 2−n−1, 4 · 2−n−1] ×

[0, 2−2n], An
− = [0, 2−2n]× [3 · 2−n−1, 4 · 2−n−1] and f : R2 → R defined to be 23n+1

n
on

An
+,−23n+1

n
on An

− and 0 elsewhere. Let 0 < r < 1, r > ε > 0, α > 0 with α < ε
2

and

let k ∈ N with k+2
k2+1

< ε
2
. We will first show that f is Br-integrable on A. Choose a

gauge δ such that the following conditions are satisfied:

δ(0, 0) < 2−k2

, (1)

δ(x) < |x| for x 6= (0, 0), (2)
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δ(x) < dist(x,An
+) for x /∈ An

+ ∪ {(0, 0)}, (3)

δ(x) < dist(x,An
−) for x /∈ An

− ∪ {(0, 0)}, (4)

|fλ(π[An
+])| < 1

n
+
α

2n
, (5)

|fλ(π[An
−])| < 1

n
+
α

2n
, (6)

where π is any δ-fine partition. The second last condition is made possible since for

any n ∈ N, f is Riemann integrable on an interval I+
n containing An

+ that also does

not intersect any other Am
± . Notice that the Riemann integral of f over In

+ is 1
n
. So

there exists a positive number δn such that for any partition π of In
+ that is δn-fine,

|fλ(π) − 1
n
| < α

2n . Since f ≥ 0 on all of In
+ it follows that for any partition π in

I+
n , fλ(π) < 1

n
+ α

2n . Ensuring now that δ < δn on In
+ we have condition (5). A

similar process can be used to ensure condition (6). Due to condition (5) for any

δ-fine partition π tagged in An
+ we have

∑
(x,I)∈π f(x)λ(I ∩A \An

+) ≤ α
2n . Otherwise,

π could be extended to a δ-fine partition π1 that covered An
+, in which case,

|fλ(π1[A
n
+])| = |

∑
(x,I)∈π1[An

+]

f(x)λ(I)|

= |
∑

(x,I)∈π1[An
+]

f(x)λ(I ∩ An
+) + f(x)λ(I ∩ A \ An

+)|

=
1

n
+

∑
(x,I)∈π1[An

+]

f(x)λ(I ∩ A \ An
+)

>
1

n
+
α

2n
.

However, this contradicts condition (5). A similar argument can be used over the An
−

using condition (6).
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Let π be a δ-fine, r-regular partition of A. Condition (3) will ensure that if

(x, I) ∈ π with I ∩ An
+ 6= ∅, then x ∈ An

+ ∪ {(0, 0)}. Also, due to condition (3), if

(x, I) ∈ π with x ∈ An
+, then I∩Am

+ = ∅ for any m 6= n and I∩Am
− = ∅ for any m ∈ N.

Similar conclusions can be drawn about the An
− using condition (4). Condition (2)

ensures π[{(0, 0)}] = {((0, 0), I0)} for some I0 ∈ I. We will assume that the longer

side of I0 is along the y-axis. Let L be the length of the longer side of I0 and S be

the length of its shorter side. Then,

|fλ(π)|

=|
∑
n∈N

fλ(π[An
+]) + fλ(π[An

−])|

=|
∑
n∈N

[ ∑
(x,I)∈π[An

+]

[f(x)λ(I ∩ An
+) + f(x)λ(I ∩ A \ An

+)] +
∑

(x,I)∈π[An
−]

[f(x)λ(I ∩ An
−)

+ f(x)λ(I ∩ A \ An
−)]

]
|

≤|
∑
n∈N

 ∑
(x,I)∈π[An

+]

f(x)λ(I ∩ An
+) +

∑
(x,I)∈π[An

−]

f(x)λ(I ∩ An
−)

 |
+

∑
n∈N

|
∑

(x,I)∈π[An
+]

f(x)λ(I ∩ A \ An
+)|+

∑
n∈N

|
∑

(x,I)∈π[An
−]

f(x)λ(I ∩ A \ An
−)|

≤|
∑
n∈N

 ∑
(x,I)∈π[An

+]

f(x)λ(I ∩ An
+) +

∑
(x,I)∈π[An

−]

f(x)λ(I ∩ An
−)

 |+ 2
∑
n∈N

α

2n

≤|
∑
n∈N

 ∑
(x,I)∈π[An

+]

f(x)λ(I ∩ An
+) +

∑
(x,I)∈π[An

−]

f(x)λ(I ∩ An
−)

 |+ 2α

≤|
∑
n∈N

 ∑
(x,I)∈π[An

+]

f(x)λ(I ∩ An
+) +

∑
(x,I)∈π[An

−]

f(x)λ(I ∩ An
−)

 |+ ε. (7)
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The Riemann sum comprises only of the pieces of the partition tagged inside the An
±.

Also, for any piece of the partition, say (x, I) tagged in some An
±, we can split its

contribution into two pieces, the piece inside An
± and the piece outside of An

±. We

have shown that the contribution of the parts hanging over the An
± is negligible and

we focus our attention to the parts inside the An
±. Notice that if An

+ is contained in

the interval I0, then so is An
−, since its longer side is along the y-axis; similarly, if

An
+ ⊥ I0, then An

− ⊥ I0 also. In both cases, the contribution of An
+ and An

− cancel

each other. Thus, we need only consider {n : 3
2n+1 < L and 4

2n+1 > S}, the set of

those n for which An
+ is not entirely covered by I0 and for which their counterpart An

−

is partially covered. If this set is not empty, put a = sup{n ∈ N : 4 · 2−n−1 > S} and

b = inf{n ∈ N : 3 · 2−n−1 < L}. Notice that by condition (1), L < 2−k2
= 2−(k2+1)+1,

so that b ≥ k2 + 1. Then by regularity, ε < r < S
L
≤ 2−a+1

3·2−b−1 ≤ 2b−a+1. Therefore,

2b−a+1 > ε >
k + 2

k2 + 1
>

1

k
> 2−k; hence,

k + 1 > a− b.

Thus,

|
∑
n∈N

 ∑
(x,I)∈π[An

+]

f(x)λ(I ∩ An
+) +

∑
(x,I)∈π[An

−]

f(x)λ(I ∩ An
−)

 |
≤

a∑
i=b

1

i

≤
k2+1+(a−b)∑

i=k2+1

1

i

≤
k2+k+2∑
i=k2+1

1

i
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≤ k + 2

k2 + 1

<
ε

2
.

Combining this with (7) we have that |fλ(π)| ≤ 3ε
2
. Therefore, f is Br-integrable on

A and (Br)
∫

A
fdλ = 0. It is also easy to show that f is Br-integrable on B, using

the fact that f is non-zero only on a set of 0 Lebesgue measure.

We now show that f is not Br-integrable on A ∪ B. Let α > 0 and let δ be

a gauge on A ∪ B. Find a natural number k such that 2−k+1 < δ((0, 0)). Let

C0 = [0, 2−k+1]× [0, 2−k+1] and D0 = [2−2k−2−k+1, 2−2k]× [0, 2−k+1]. Now find δ-fine,

r-regular, partitions P = {((0, 0), C0), ..., (xp, Cp)} and Q = {((0, 0), D0), ..., (yt, Dt)}

of A∪B such that (fλ)(P ) = 0 and (fλ)(Q) ≥
∑t

j=1(Br)
∫

Dj
fdλ−α =

∑2k−1
n=k

1
n
−α ≥

k
2k−1

− α > 1
2
− α. This can be done quite easily by ensuring that the partitions are

symmetric along the line y = x in the appropriate areas. For P and Q we ensure the

symmetry outside of the square C0 but still within A. For Q we build the partition

in such a way that inside [0, 2−k+1]× [0, 2−k+1] the contribution to the Riemann sum

is greater than
∑2k−1

n=k
1
n
. This can be done by tagging any intervals covering any An

+

inside C0 \D0 with points from An
+. We must also ensure that the intervals touching

the y-axis are sufficiently small so that their contributions inside B are no bigger than

α. Choosing α less than 1
4
, |fλ(P )− fλ(Q)| = 1

2
− α ≥ 1

4
. Therefore, (Br)

∫
A∪B

fdλ

does not exist since the Cauchy condition for integrability fails. �
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Comparing theorem 3.3.9 with corollary 3.3.8 we obtain:

Corollary 3.3.10.

The integral produced by B̃1 is not the same as the integral produced by Br or Bρ.

This is true even when considering only functions of the form F (x, I) = f(x)λ(I).

Corollary 3.3.11.

The function of theorem 3.3.9 is not B1-integrable. Thus the Br integral is more

general than the B1 integral, even when considering only functions of the form F (x, I) =

f(x)λ(I).

Proof. Throughout the proof we use the same notation as in the previous theo-

rem. Suppose that F were B1-integrable on A. Then it would have to integrate to 0

by the proof of the previous theorem. Let ε > 0 and choose a gauge δ such that for

any δ-fine partition π ⊆ βδ of A, |
∑

(x,I)∈π f(x)λ(I)| < ε.

Now δ(0, 0) > 3 · 2−n−1 for some n ∈ N. Let I = [0, 2−2n] × [0, 3 · 2−n−1]. Now

consider how many Ak
+ fall in [0, 3 · 2−n−1]× [0, 3 · 2−n−1] \ I. For such Ak

+ we would

need the right end points of their projections onto the x-axis to be less than 3 · 2−n−1

and the left end points of their projections onto the x-axis to be greater than 2−2n.

Now 3 ·2−a−1 > 2−2n so if a < 2n, then Aa
+ falls to the right of 2−2n. Also 2−b+1 < 2−b

and 2−n < 3 · 2−n−1 so for b < n we have that Ab
+ falls to the left of 3 · 2−n−1. Thus

there are at least n such Ak
+. But if we look at the volume that each one of those Ak

+

produce we see that

2n∑
k=n

1

k
≥

2n∑
k=n

1

2n
=

1

2
.
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Thus choosing a partition δ-fine partition π of I0 that contains ((0, 0), I), that is

built symmetrically outside the box [0, 3 ·2−n−1]× [0, 3 ·2−n−1] and such that for each

piece of the partition touching one of the Ak
+ that fall in [0, 3 ·2−n−1]× [0, 3 ·2−n−1]\ I

that piece is tagged in Ak
+. Then we see that (fλ)(π) ≥ 1

2
. Thus f is not B1-integrable

on A.

�

So, the Br-integral is not “additive” but what sort of conditions can we impose

to ensure this sort of “additivity”?

Proposition 3.3.12.

Let I1, I2 ∈ I with I1 ∪ I2 ∈ I and I1, I2 overlapping; i.e., I◦1 ∩ I◦2 6= ∅. If

f : Rn → R is Br-integrable on I1, I2, then f is Br-integrable on I1 ∪ I2.

Proof. We will assume that I1 * I2 and that I2 * I1 or the result holds trivially.

We will also assume that I1 is to the left of I2. The left most face of I2 will be denoted

A and the right most face of I1 will be denoted B.

Let ε > 0. Define H to be the unique additive function on those I ∈ I contained

in I1 ∪ I2 for which H(I) = (Br)
∫

I
fdλ when I ⊆ I1 or I ⊆ I2. Choose a gauge δ

such that:

(1) δ(x) < dist(x,A) for x /∈ A,

(2) δ(x) < dist(x,B) for x /∈ B,

(3) for any partition π ⊆ βr
δ ,

∑
(x,I)∈π(Ii)

|f(x)λ(I)−H(I)| < ε
2

for i = 1, 2.
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Let π ⊆ βr
δ (I1 ∪ I2) be a partition, let π1 = π(I1) and let π2 = π \ π1. For any

(x, I) ∈ π1 we have I ⊆ I1 and for any (x, I) ∈ π2 we have I ⊆ I2. Therefore,

∑
(x,I)∈π

|f(x)λ(I)−H(I)|

=
∑

(x,I)∈π1

|f(x)λ(I)−H(I)|+
∑

(x,I)∈π2

|f(x)λ(I)−H(I)|

<
ε

2
+
ε

2

=ε.

Thus, H is an additive function for which V (fλ−H,Br(I0)) = 0 giving the result.

�

Corollary 3.3.13. Patching theorem

Let I1, I2, I3 ∈ I, I3 overlapping each of I1 and I2 and let I1 ∩ I2 ⊆ I3. If f is

Br-integrable on I1, I2 and I3 and I1 ∪ I2 ∈ I. Then, f is Br-integrable on I1 ∪ I2.

Proof. Since the overlapping case was done, we assume that I1 and I2 are non-

overlapping. We may redefine I3 to be I3 ∩ (I1 ∪ I2) ∈ I since it has all of the same

properties. Then I1 and I3 are overlapping, f is Br-integrable on I1 and on I3. So

by the previous proposition f is Br-integrable on I1 ∪ I3 ∈ I. Applying the previous

theorem again to the intervals I1 ∪ I3 and I2, we have that f is Br-integrable on

I1 ∪ I2 ∪ I3. But I1 ∪ I2 ∪ I3 = I1 ∪ I2, so that the result holds.

�
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Proposition 3.3.14.

A function f is B̃1-integrable ⇐⇒ f is B1-integrable, in which case the integrals

are equal.

Proof. Notice that any partition π ⊆ βδ can be converted to a partition π̂ ⊆ β̃δ

for which fλ(π) = fλ(π̂). We do this by taking each (x, I) ∈ π and cutting I into

at most 2n intervals having x as a vertex and using x as their tag. So the image

filterbases generating the integrals for both of these bases are identical. Therefore,

their integrals are equal.

�

Corollary 3.3.15.

Let fλ be B1-integrable on two non-overlapping I1, I2 ∈ I for which I1 ∪ I2 ∈ I.

Then fλ is B1-integrable on I1 ∪ I2.

3.4. Absolute Integrability

One might wonder which of these bases produces an absolute integral in the tra-

ditional setting. This was studied in [4] and is presented a little more concisely here.

Definition 3.4.1.

Let B be a base, β ∈ B and let π1, π2 ⊆ β be partitions of I0 ∈ I. Let D1,D2

be the respective divisions associated with these partitions by dropping their tags.

Let D be a division of I0 refining both D1 and D2 with D ⊆ I. Then we define

π1 = {(x, I) : I ∈ D and there exists (x1, I1) ∈ π1 such that x = x1, I ⊆ I1} and we

call π1 a π2-refinement of π1.
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If B does not use all of I and only uses a certain subset then we assume that D is

contained in this subset instead. For example when dealing with Br we will assume

that D is contained in the family of r-regular intervals.

Definition 3.4.2. Refining base

We will say that a base B is refining if for any β ∈ B and partitions π1, π2 ⊆ β of

I0 ∈ I and for any π2-refinement of π1, say π1, we have that π1 ⊆ β.

Proposition 3.4.3.

B�1,Br� , T � are refining and B1, B̃1,Br,Bρ, T are not refining.

Proof. Let π1, π2 ⊆ β ∈ B where B is a base from those listed above. Also let

π1 be some π2-refinement of π1. Then for (x, I) ∈ π1, we may have that x /∈ I, it

follows that B1, B̃1,Br,Bρ, T are not refining. Now since there is an (x, I1) ∈ π1 with

I ⊆ I1 ⊆ B(x, δ(x)), we have that (x, I) ∈ β for β ∈ B�1,Br� , T �.

�

Lemma 3.4.4.

Let I0 ∈ I, f : I0 → R and let B be a base. Then, the following are sufficient

conditions for f to be B-integrable on I0.

(1) For every ε > 0, there exists a β ∈ B such that if π1, π2 ⊆ β are partitions of

I0 and D is a refining division,

∣∣∣∣∣∣
∑

(x1,I1)∈π1

∑
(x2,I2)∈π2

∑
I∈D,I⊆I1,I⊆I2

(f(x1)− f(x2))λ(I)

∣∣∣∣∣∣ < ε.
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(2) For every ε > 0, there exists a β ∈ B such that if π1, π2 ⊆ β are partitions of

I0 and D is a refining division,

∑
(x1,I1)∈π1

∑
(x2,I2)∈π2

∑
I∈D,I⊆I1,I⊆I2

|f(x1)− f(x2)|λ(I) < ε.

By a refining division we simply mean that D refines the divisions associated with π1

and π2.

Proof. It is clear that (2) implies (1), so it suffices to show that (1) holds. The

fact that (1) implies integrability follows immediately from:∣∣∣∣∣∣
∑

(x1,I1)∈π1

f(x1)λ(I1)−
∑

(x2,I2)∈π2

f(x2)λ(I2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(x1,I1)∈π1

∑
(x2,I2)∈π2

∑
I∈D,I⊆I1,I⊆I2

(f(x1)− f(x2))λ(I)

∣∣∣∣∣∣
<ε.

Therefore, we are dealing with a Cauchy filter in a complete space and we have

convergence. �

Lemma 3.4.5.

If the second condition holds from the previous lemma, then |f | is also B-integrable.

Proof. Keeping the same notation as in the previous lemma,∣∣∣∣∣∣
∑

(x,I)∈π1

|f |(x)λ(I)−
∑

(x,I)∈π2

|f |(x)λ(I)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(x1,I1)∈π1

∑
(x2,I2)∈π2

∑
I∈D,I⊆I1,I⊆I2

(|f |(x1)− |f |(x2))λ(I)

∣∣∣∣∣∣
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≤
∑

(x1,I1)∈π1

∑
(x2,I2)∈π2

∑
I∈D,I⊆I1,I⊆I2

|f(x1)− f(x2)|λ(I)

<ε.

�

Theorem 3.4.6.

Let B be a refining base and f : I0 → R. Then the following are equivalent:

(1) f is B-integrable;

(2) the second condition of lemma 3.4.4 holds;

(3) |f | is B-integrable;

(4) f+ and f− are B-integrable.

Proof. (1) =⇒ (2) Suppose that f is integrable, let ε > 0 and choose a β ∈ B

by the definition of integrability. Let π1, π2 ⊆ β be partitions of I0 and π1, π2 ⊆ β be

refinements generated by the same division D. We define σ+ to be the set of (x, I)

such that there exists (x1, I1) ∈ π1 and (x2, I2) ∈ π2 with I1 = I2 = I and x = x1 if

f(x1)−f(x2) ≥ 0 and x = x2 otherwise. Similarly, we define σ− to be the set of (x, I)

such that there exists (x1, I1) ∈ π1 and (x2, I2) ∈ π2 with I1 = I2 = I and x = x1 if

f(x1)− f(x2) < 0 and x = x2 otherwise. Since B is refining,

∑
(x1,I1)∈π1

∑
(x2,I2)∈π2

∑
I∈D,I⊆I1,I⊆I2

|f(x1)− f(x2)|λ(I) = |fλ(σ+)− fλ(σ−)| < 2ε.

(2) =⇒ (1) This was done in lemma 3.4.4.

(1) ⇐⇒ (3) f is integrable if and only if the second condition of lemma 3.4.4

holds which happens if and only if |f | is integrable.
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(1) ⇐⇒ (4) Since f = f+− f− and |f | = f+ + f− the result follow immediately.

�

Corollary 3.4.7.

If B is one of the bases B�1,Br� , T �, a function f : Rn → R is B integrable on

I0 ∈ I if and only if |f | is B integrable on I0.

Notice that the use of Lebesgue measure in this section was of no importance. We

could have had the same results with any additive function on I.

3.5. Relation to the Lebesgue Integral

Naturally, now that we have established that some of these integrals are absolute

(in the traditional setting), we begin to question their relation to the Lebesgue inte-

gral. It turns out that all of these integrals are extensions of the Lebesgue integral

and the family of absolutely integrable functions for any of these integrals is exactly

the Lebesgue integrable functions.

Following [5] we first show that the indefinite integral of a function f is differen-

tiable almost everywhere and equal to f on these places.

Proposition 3.5.1.

Let f be Br-integrable on I0 and F (I) be its indefinite integral. Then DBρFλ(x) =

f(x) a.e. on I0.
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Proof. Let E1 = {x ∈ I0 : DBρFλ(x) = f(x)} and E = I0 \ E1. For x ∈ E there

exists an εx > 0 such that for any βρ
δ ∈ Bρ there is some (x, I) ∈ βρ

δ [{x}] with∣∣∣∣F (I)

λ(I)
− f(x)

∣∣∣∣ ≥ εx.

Define En = {x ∈ E : εx ≥ 1
n
} for n = 2, .... Choose an ε ∈ (0, 1

n
) and find a βρ

δ ∈ Bρ

such that for any partition π ⊆ βρ
δ of I0,

∑
(x,I)∈π

|f(x)λ(I)− F (I)| < ε

n
.

Let R = {I ∈ I : (xI , I) ∈ βδ[En], R(I) ≥ ρ(xI), I ⊆ I0 and |F (I)
λ(I)

− f(xI)| ≥ 1
n
}.

Then R is a Vitali cover of En, so by the Vitali covering theorem 3.1.10, there exists

a sequence {Ik} of non-overlapping intervals in R such that

λ(En \
⋃
k∈N

Ik) = 0.

There is a k ∈ N such that λ(En \
⋃k

i=1 Ii) < ε. Now {(xI1 , I1), ..., (xIk
, Ik)} can be

extended to some partition π ⊆ βρ
δ of I0. Therefore,

1

n
λ(Ii) ≤ |F (Ii)− f(xIi

)λ(Ii)| =⇒
∑

i=1,..,k

λ(Ii) ≤ n
∑

i=1,...,k

|F (Ii)− f(xIi
)λ(IIi

)| ≤ ε.

Thus λ(En) = 0 for every n ≥ 2, so that λ(E) = 0.

�

Lemma 3.5.2.

The arbitrary union of non-degenerate intervals is measurable.

Proof. Let H be a family of non-degenerate intervals. For any x ∈
⋃
H there is

a cube containing x with arbitrarily small diameter contained in
⋃
H. Therefore, by
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the Vitali covering theorem 3.1.10, there is a countable family D of cubes inside H

such that λ(
⋃
H \ D) = 0. Since, each D ∈ D is measurable,

⋃
H can be expressed

as the union of a measurable set and a null set. Therefore,
⋃
H is measurable.

�

We now establish measurability of derivatives as in [8].

Theorem 3.5.3.

The Bρ-derivative (with respect to Lebesgue measure) of any function is measurable

if it exists.

Proof. We will actually show that the upper derivative is measurable but since

the derivative is equal to the upper derivative the result will be shown. Let F :

Rn × I → R, for the remainder of this proof we will denote the upper derivative of

F simply by F̄ . Let a ∈ R and let Q = {x ∈ R : F̄ (x) > a}. Now if x ∈ Q, there

exists a number α > 0 and a sequence {Ix
n} ⊆ I such that λ(Ix

n) → 0, x ∈ Ix
n and

F (Ix
n)

λ(Ix
n)
≥ a+ α. Let Qh,k =

⋃
x∈Q

⋃
Ix
n where the second union is over all Ix

n for which

diam(Ix
n) < 1

h
and F (x,Ix

n)
λ(Ix

n)
≥ a+ 1

h
. Then Qh,k is the union of intervals and is therefore

measurable. Notice that Q =
⋃

h∈N
⋂

k∈NQh,k, so that Q is measurable. �

Corollary 3.5.4.

Each Bρ-integrable function f : Rn 7→ R is measurable.

Proof. Let f be a Bρ-integrable function with indefinite integral F . Then

DBρF (x) = f(x) a.e. and DBρF is measurable, so that f is measurable. �
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Finally we establish the equivalence of the integral generated by the base B�1 and

the Lebesgue integral. Half of the proof follows [5]. Most of the work is done once

the connection between the Lebesgue integral and gauges is introduced via semi-

continuity.

Theorem 3.5.5.

For f : Rn → R and I0 ∈ I, f is B�1-integrable on I0 ⇐⇒ f is Lebesgue integrable

on I0, in which case the integrals are equal.

Proof. (⇐) Suppose that f is Lebesgue integrable on I0 ∈ I. There are functions

g and h on I0, which are upper and lower semi-continuous respectively and for which

g ≤ f ≤ h and
∫

I0
h − gdλ < ε

2
. Find a gauge δ on I0 such that g(y) ≤ g(x) +

ε
2λ(I0)

and h(y) ≥ h(x) − ε
2λ(I0)

for any x, y ∈ I0 with dist(x, y) < δ(x). Let π =

{(x1, I1), ..., (xn, In)} be a δ-fine partition of I0. Then,

g|Ii
− ε

2λ(I0)
≤ g(xi) and h|Ii

+
ε

2λ(I0)
≥ h(xi),

and integrating over Ii,∫
Ii

gdλ− ελ(Ii)

2λ(I0)
≤ g(xi)λ(Ii) ≤ f(xi)λ(Ii) ≤ h(xi)λ(Ii) ≤

∫
Ii

hdλ+
ελ(Ii)

2λ(I0)
.

Subtracting
∫

Ii
fdλ and noticing that g ≤ f ≤ h,

∣∣∣∣f(xi)λ(Ii)−
∫

Ii

fdλ

∣∣∣∣ ≤ ελ(Ii)

2λ(I0)
+

∫
Ii

h− gdλ.

Summing over all i,

∣∣∣∣fλ(π)−
∫

I0

fdλ

∣∣∣∣
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≤
p∑

i=1

∣∣∣∣f(xi)λ(Ii)−
∫

Ii

fdλ

∣∣∣∣
≤ ε

2
+

∫
I0

h− gdλ

≤ε.

(⇒) If f is B�1-integrable then both f+ and f− are B�1-integrable. Then they are Bρ-

integrable so that they are both measurable. Now for any M ≥ 0, M is B�1-integrable.

Notice that min{f+,M} = 1
2
(f+ +M+ |f+−M |) and since B�1 is an absolute integral

we have that min{f+,M} is B�1-integrable. But this is a measurable function that

is positive and is bounded above by a Lebesgue integrable function, namely M , so

that it is Lebesgue integrable. Thus we can form an increasing sequence of Lebesgue

integrable functions converging to f+, so that by the monotone convergence theorem

f+ is Lebesgue integrable. Indeed,

∫
I0

f+dλ = lim

∫
I0

min{f+,M}dλ = lim(B�1)
∫

I0

min{f+,M}dλ ≤ (B�1)
∫

I0

f+dλ <∞.

Similarly we can show that f− is Lebesgue integrable. But, f = f+− f− so that f is

Lebesgue integrable. �

Notice that if f ≥ 0 and is integrable with respect to ANY of the non-triangular

gauge bases that the previous theorem holds.

Corollary 3.5.6.

For any of the non-triangular gauge bases presented, the family of absolutely inte-

grable functions with respect to the base is precisely the Lebesgue integrable functions.
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From this it is easy to take results from the Lebesgue integral and apply them to

the integrals generated by the non-triangular gauge bases. For example, we may now

use the monotone convergence and dominated convergence theorems for the integrals

generated by the non-triangular gauge bases.

Proposition 3.5.7.

For f : I0 7→ R,

(B�1)
∫

I0

fdλ = (Br�)

∫
I0

fdλ

and

(B�1)
∫

I0

fdλ = (Br�)

∫
I0

fdλ.

Proof. We prove one of the statements and the other is similar.

Since Br� is finer than B�1, it suffices to show that

(B�1)
∫

I0

fdλ ≤ (Br�)

∫
I0

fdλ.

We assume that (B�1)
∫

I0
fdλ > −∞ or else the result follows trivially. Let ε > 0 and

choose a βr�

δ ∈ Br� such that for any partition π2 ⊆ βr�

δ of I0,

(Br�)

∫
I0

fdλ+ ε ≥ fλ(π2).

Let β�δ ∈ B�1 and π1 ⊆ β�δ be a partition of I0. Now for any (x, I) ∈ π1, I can be

divided into a finite number of r-regular intervals. Keeping the same tag x for each of

these intervals and doing this for each element of π1, we can construct a new partition

of I0 whose Riemann sum is identical to that of π1 and is contained in βr�

δ . So we

67



have that

(Br�)

∫
I0

fdλ+ ε ≥
∑

(x,I)∈π1

fλ(π1).

Taking the supremum over all π1 ⊆ β�δ followed by the infimum over all β�δ ∈ B�1 we

have the result.

�

Proposition 3.5.8.

For f : I0 7→ R,

(B�1)
∫

I0

fdλ = (Bρ�)

∫
I0

fdλ

and

(B�1)
∫

I0

fdλ = (Bρ�)

∫
I0

fdλ.

Proof. This proof is nearly identical to proposition 3.5.7.

�

This is one of the tougher equivalences to show since an exact cutting procedure

is not used. This was presented in [4] on page 32.

Proposition 3.5.9.

Let f : Rn → R and I0 ∈ I. Then, f is B�1-integrable on I0 if and only if it is

T �-integrable on I0. In which case both integrals are equal.

Proof. Let I0 ∈ I and f : I0 7→ R. Since B�1 and T � produce absolute integrals

we may assume that f ≥ 0. Following a similar process to proposition 3.5.7 it is easy
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to see that

(T �)

∫
I0

fdλ ≤ (B�1)
∫

I0

fdλ ≤ (B�1)
∫

I0

fdλ ≤ (T �)

∫
I0

fdλ.

So we need only show that if f is B�1-integrable then it is also T �-integrable since the

other side is trivial.

Suppose that f is B�1-integrable and let ε > 0. Choose a β�δ ∈ B�1 such that for

every partition π1 ⊆ β�δ in I0,∣∣∣∣∣∣
∑

(x,I)∈π1

f(x)λ(I)− (B�1)
∫

I

fdλ

∣∣∣∣∣∣ < ε

4
.

Now since f is (B�1)-integrable it is also Lebesgue integrable so there exists an

η > 0 such that for I ∈ I with λ(I ′) < η and I ′ ⊆ I0,

(B�1)
∫

I′
fdλ =

∫
I′
fdλ <

ε

4
.

Let π3 ⊆ τ ∗3 be a partition of I0. Now for any (x, T ) ∈ π3, we can find a finite

number of intervals Ix
1 , ..., I

x
kx

contained in T ◦ that are non-overlapping such that if s

is the number of elements in π3,

f(x)λ(T \
kx⋃
i=1

Ix
i ) <

ε

4s

and

λ(T \
k⋃

i=1

Ix
i ) <

η

s
.

Let π′1 =
⋃

(x,I)∈π3

⋃kx

i=1{(x, Ix
i )}, then π′1 ⊆ β�δ and

λ(I0 \ (
⊔

π′1)
◦) ≥

∑
(x,I)∈π′1

λ(I \
kx⋃
i=1

Ix
i ) > s

η

s
= η.
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Choose a partition π′′1 ⊆ β�δ of I0 \ (
⊔
π′1)

◦. Then,

|
∑

(x,I)∈π3

f(x)λ(I)− (B�1)
∫

I0

fdλ|

≤ |
∑

(x,I)∈π3

f(x)λ(I)−
∑

(x,I)∈π′1

f(x)λ(I)|+ |
∑

(x,I)∈π′1

f(x)λ(I)− (B�1)
∫

I0

fdλ|

≤ ε

4
+ |

∑
(x,I)∈π′1

f(x)λ(I) +
∑

(x,I)∈π′′1

f(x)λ(I)−
∑

(x,I)∈π′′1

f(x)λ(I)− (B�1)
∫

I0

fdλ|

≤ ε

4
+ |

∑
(x,I)∈π′1

S
π′′1

f(x)λ(I)− (B�1)
∫

I0

fdλ|+ |
∑

(x,I)∈π′′1

f(x)λ(I)|

≤ ε

4
+
ε

4
+ |(B�1)

∫
I0\(

F
π′1)◦

fdλ|+ |
∑

(x,I)∈π′′1

f(x)λ(I)− (B�1)
∫

I

fdλ|

≤ ε.

Therefore, f is T �-integrable on I0.

�

Theorem 3.5.10.

For I0 ∈ I and f : I0 7→ R the following are equivalent

(1) f is Lebesgue integrable on I0;

(2) f is B�1-integrable on I0;

(3) f is Br�-integrable on I0;

(4) f is Bρ�-integrable on I0;

(5) f is T �-integrable on I0;

Where all of the integrals are equal if they exist.

Proof. This result is just a collection of previous results.
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�

Corollary 3.5.11.

If f is Lebesgue integrable, then it is also B-integrable where B is any of the gauge

bases presented in this chapter. Thus all of the gauge integrals introduced are simply

extensions of the Lebesgue integral.

Proposition 3.5.12.

Let f : I0 7→ R for I0 ∈ I we have,

(T )

∫
I0

fdλ ≥ (B1)

∫
I0

fdλ ≥ (Br)

∫
I0

fdλ

and

(T )

∫
I0

fdλ ≤ (B1)

∫
I0

fdλ ≤ (Br)

∫
I0

fdλ.

Proof. The relation between B1 and Br is clear since Br is finer than B1. So we

need only show the relation between T and B1. We show one of the results, the other

is similar.

Let ε > 0 and choose a gauge δ such that for any partition π3 ⊆ τδ we have

(T )
∫

I0
fdλ + ε ≥

∑
(x,T )∈π3

f(x)λ(I). Let π1 ∈ βδ be a partition of I0. Now for each

(x, I) ∈ π1 we cut I into at most four non-overlapping triangles tagged at x. Putting

all of these triangles along with their tags in a set we have made a partition π3 ⊆ τδ

which has the same Riemann sum as π1. Therefore,

(T )

∫
I0

fdλ+ ε ≥
∑

(x,I)∈π1

f(x)λ(I).

Taking the supremum over all such partitions π1 ∈ βδ followed by an infimum over

all βδ ∈ B1 we see that the result holds. �
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Corollary 3.5.13.

If a function f is T -integrable, then it is also Br-integrable, Bρ-integrable and

B1-integrable.

Theorem 3.5.14.

For any of the gauge bases, the family of absolutely integrable functions with respect

to the base is precisely the Lebesgue integrable functions.

Proof. This follows immediately from 3.5.6, 3.5.10 and the previous corollary.

�

Now we show that the triangular base does not produce the same integral as the

ones produced by the rectangular bases. This is example is outlined in [4]; however,

no solution is presented. Rather than using rotation invariance as in the reference we

opt for the more direct route giving a full solution.

Theorem 3.5.15.

The bases B1 and T produce different integrals even in the classical setting.

Proof. Let I0 = [0, 1] × [0, 1], an = 1 − 2−n for n = 0, ... and for n ∈ N let

Kn = [an−1, an]× [an−1, an] and Ln = {(u, v) ∈ Kn : v ≤ u}.

Now for each n ∈ N construct a function fn : Kn 7→ R such that

(1) fn is continuous on Kn, and fn = 0 on bd(Kn);

(2) fn ≥ 0 on Ln;

(3) fn(u, v) = −fn(v, u) for (u, v) ∈ Kn;

(4)
∫

Ln
fn(u, v)dudv = 1

n
under Lebesgue integration;
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(5) fn = 0 on I0 \Kn.

We define f(u, v) =
∑∞

i=1 fi(u, v).

Claim f is not Lebesgue integrable on I0

Indeed, f+ ≥
∑n

k=1 f
+
k so that

∫
I0
f+dλ ≥

∑n
k=1

∫
I0
f+

k dλ =
∑n

k=1
1
k
→∞. Using

the same method we see that
∫

I0
f−dλ ≥ ∞ also.

Claim f is B1-integrable on I0

Let ε > 0 and find an m ∈ N such that 1
m
< ε

2
. Choose a gauge δ on I0 such that:

(1) δ(x) < dist(x, (1, 1)), for x 6= (1, 1) to tag (1,1);

(2) δ(x) < dist(x, bd(Kn)), for x /∈ bd(Kn) to force tags in Kn;

(3) δ(1, 1) < 1
2m ;

(4) δ(x) small enough so that for any partition π ⊆ βδ[Kn], |
∑

(x,I)∈π(f(x)λ(I)−∫
I
fdλ)| < ε

2n+1 .

Condition (4) is possible since f is Lebesgue integrable on B(Kn, η) where eta is a

positive small number. Let π ⊆ βδ be a partition of I0, then we have that ((1, 1), J) ∈

π for some interval J . Now this interval J cuts through some Kn, let b be the smallest

such integer where this occurs.

Remembering that our partition could have an error up to ε
2b+1 in approximating

the volume over Kb\J and that δ((1, 1)) < 1
m

, we know that |
∑

(x,I)∈π[Kn] f(x)λ(I)| ≤

1
m

+ ε
2b+1 ≤ ε

2
+ ε

2b+1 . Therefore,

|
∑

(x,I)∈π

f(x)λ(I)| = |
∑

(x,I)∈π[
Sb

k=1 Kk]

f(x)λ(I)|

≤ |
∑

(x,I)∈π[Kb]

f(x)λ(I)|+ |
∑

(x,I)∈π[
Sb−1

k=1 Kk]

f(x)λ(I)|
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≤ ε

2
+

ε

2b+1
+ |

∑
(x,I)∈π[

Sb−1
k=1 Kk]

f(x)λ(I)|

≤ ε

2
+

ε

2b+1
+

b−1∑
k=1

|
∑

(x,I)∈π[Kk]

f(x)λ(I)|

≤ ε

2
+

ε

2b+1
+

b−1∑
k=1

ε

2k+1

≤ ε.

Therefore, f is B1-integrable on I0.

Claim f is not T -integrable on I0

Let ε > 0 and δ be any gauge. By the work done earlier, if f is T -integrable on

I0, then its integral must be 0. Choose an n0 ∈ N such that 1
2n0−1 < δ(1, 1). Let

A be the triangle with corners (1, 1), (an0 , an0) and (an0 , 1). Then, ((1, 1), A) ∈ τδ.

Choose l,m ∈ N such that
∑m

i=l
1
i
> ε. For i = l, ...,m find a partition πi ⊂ τδ of Li,

with fλ(πi) >
1
i
− ε

2i+1 . This is possible since f is Lebesgue integrable on Li. Let

π = {((1, 1), A)} ∪
⋃m

i=l πi. We extend π to a partition π̂ ⊂ τδ of I0 by partitioning

symmetrically outside of [an0 , 1] × [an0 , 1] and however we would like for the rest of

[an0 , 1]× [an0 , 1]. Then,

|fλ(π̂)| ≥ |fλ(π)|

=
m∑
i=l

fλ(πi)

>

m∑
i=l

1

i
− ε

2i+1

>
ε

2
.
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Therefore, f is not T -integrable on I0.

�

Notice that this example carries over for the bases Br and Bρ.

Corollary 3.5.16.

Even in the traditional setting, T provides a different integral than B1, Br and Bρ.

Corollary 3.5.17.

B1, Br and Bρ provide integrals that are different from that of the Lebesgue integral.
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CHAPTER 4

Fixed Regularity Investigation

In this chapter we investigate the effects of changing the regularity r in Kemp-

isty fixed regularity bases. The main questions being, does changing the regularity

really affect the integrabiliy or differentiability of functions? The material here was

presented in [2]. We have tried to include a little more direction and detail in the

proof.

4.1. Fixed Regularity Differentiability

It is clear that for two different regularities we can make functions that are dif-

ferentiable with respect to Lebesgue measure under one regularity but not the other.

For example, if we are given two real numbers r1 and r2 with 0 < r1 < r2 < 1 we

can make the function F : I 7→ R by F (I) = λ(I) for r2-regular intervals and 0

else. This function will be r2-differentiable at every point to 1 but will fail to be

r1-differentiable anywhere. What sort of conditions can we impose on the function in

question to ensure a change in regularity does not alter differentiability? We know

that any interval can be subdivided into r-regular pieces, so maybe if the function

were additive for any fixed x ∈ Rn this could be of use. This approach does lead to a

sufficient condition and in fact, we could simply require sub-additivity of the function

and achieve the same result.
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For the rest of this section we will deviate from our traditional notation in order

to simplify the discussion. Often times we will write the integral over a family which

is not actually an interval but is a finite union of non-overlapping intervals. This is to

be interpreted in the additive sense. We first begin with the notation for the section,

let G : I 7→ R be an additive function for fixed x ∈ Rn. Let t ∈ Rn, 0 < α < 1 and

δ > 0. Define,

ω = sup{|G(I)| : t ∈ I = [u, v], αδ ≤ vi − ui ≤ δ for all i} = ω(t, δ, G, α) and

Ω = sup{|G(I)| : I ⊆ B(t, δ), I = [u, v]} = Ω(t, δ, G, α).

Proposition 4.1.1.

Let n ∈ N. There exists a constant κ such that

ω ≤ Ω ≤ κω.

Proof. Let Q = {x ∈ Rn : xi ≥ ti for i = 1, ..., n}. We estimate G(I) for

I = [a, b] ⊆ B(t, δ) ∩Q with bi − ai ≤ (1− α)δ.

Let c = (c1, .., cn) = (b1 − δ, .., bn − δ). Then, t ∈ [c, a] ⊆ [c, b] ⊆ B(t, δ). So that,

1[ai,bi) = 1[ci,bi) − 1[ci,ai) and 1I∗ =
∑
H

σ(H)1H∗

where the sum is taken over all intervals H = [u, v] such that [ui, vi] ∈ {[ci, bi], [ci, ai]}

for i = 1, .., n, the star denotes the corresponding half-open interval i.e., I∗ = [a, b) and

σ(H) ∈ {−1, 1} is chosen appropriately by the inclusion exclusion formula. Notice

that the number of summands is less than 2n (two options n trials). Moreover, t ∈ H

since ci = bi − δ ≤ (ti + δ) − δ = ti and bi ≥ ti. Also, since bi − ci > ai − ci =
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bi − ci − (bi − ai) ≥ bi − ci − (1− α)δ = αδ and bi − ci = δ we have that |G(H)| ≤ ω,

thus

|G(I)| ≤
∑
H

|G(H)| ≤ 2nω.

Now for [u, v] ⊆ B(t, δ) ∩ Q we have vi − ui ≤ δ. Choose any m ∈ N with

m ≥ (1 − α)−1, then (vi−ui)
m

≤ δ(1 − α) and we can cut [u, v] into mn intervals for

which the previous estimate is applicable. Hence,

|G[u, v]| ≤ mn2nω.

Now the above arguments could have been used for any one of the orthants in

Rn(with t as origin). Therefore, since there are 2n such orthants,

|G(I)| ≤ 2nmn2nω

for any interval I ⊆ B(t, δ), hence

Ω ≤ (4m)nω.

The inequality ω ≤ Ω is obvious.

�

Corollary 4.1.2.

Suppose that G is α-lipschitzian at t ∈ I◦0 .(That is, there is an η > 0 and r > 0

such that |G(K)| ≤ ηλ(K) for every interval K with t ∈ K ⊆ B(t, r) with R(K) ≥ α).

Then the inequality,

|G(J)| ≤ κη(2r0)
n
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holds for every interval J ⊆ B(t, r0) with r0 ≤ r. In particular, G is β-lipschitzian at

t for any 0 < β < 1.

Proof. For ω = ω(t, r0, G, α), we have that ω ≤ Ω(2r0)
n by α-lipschitzian.

Therefore, |G(J)| ≤ Ω ≤ κω ≤ κη(2r0)
n for any interval J ⊆ B(t, r0). Taking r0

to be the length of the maximal edge of J , we have that given 0 < β < 1 with

t ∈ J ⊆ B(t, r) and R(J) ≥ β,

|G(J)| ≤ κη(2r0)
n ≤ κηβ−nλ(J).

�

Theorem 4.1.3.

Let 0 < α < 1, 0 < β ≤ 1. Let F be an additive interval function that is α-

differentiable to c at t. Then, F is β-differentiable to c at t.

Proof. The result is clear for α ≤ β so we assume that β < α. Notice that F−cλ

is α-lipschitzian at t since F has derivative c at t, thus by the previous corollary it is

β-lipschitzian there. Thus F is β-differentiable to c at t.

�

4.2. Fixed Regularity Integrability

In this section we wish to show that given any 0 < α < 1 there is a function f that

is α1-integrable for any α1 ≥ α, that is also not α2-integrable for any α2 < α. We

will now describe the construction of the function and prove several lemmas leading

to the desired result.
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Let 0 < α < 1 and choose two sequences {rk},{ak} such that 1
3
≥ rk ↘ 0,

1
3
> ak ↘ 0 and also r0(α

−1 + a0) ≤ 2. Let S0 = [0, 1], remove the concentric open

interval T0 of length |S0| − 2r0|S0|, calling the two remaining intervals S1
1 and S2

1

(ordered from left to right). We call the two resulting intervals the S intervals of the

first order. Now taking the S intervals of the first order and from each we remove

a concentric open interval of length |S1| − 2r1|S1|, which we denote T 1
1 and T 2

1 and

we call the T intervals of the first order. After removing the T intervals of the first

order from the S intervals of the first order, we have four intervals S1
2 , S

2
2 , S

3
2 and

S4
2 of length |S1|r1 (once again the ordering is from left to right). We refer to these

intervals as the S intervals of the second order. We continue the process inductively.

In general, given 2n intervals S1
n, ..., S

2n

n remove an open concentric interval T i
n of

length |Sn| − 2rn|Sn| from each Si
n leaving the intervals S2i

n and S2i−1
n . The result of

which are the intervals S1
n+1, ..., S

2n+1

n+1 of length rn|Sn|, which we call the S intervals

of (n+ 1)-th order.

Clearly there are 2n n-th order T intervals of length (1−2rn)r0...rn−1 and similarly,

there are 2n n-th order S intervals of length r0...rn−1. We define D =
⋂∞

i=0

⋃2i

k=0 S
k
i

to be our Cantor set.

Now in order to build our function f we need to pass to higher dimensions, so for

a fixed i and p = (p1, ..., pn−1) ∈ {1, ..., 2i}n−1 we define

Kp
i = T p1

i × ...× T
pn−1

i ,

Lp
i = Sp1

i × ...× S
pn−1

i ,

Qp+
i = Kp

i × [α−1r0...ri−1, (α
−1 + ai)r0...ri−1]
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Qp−
i = Kp

i × [(α−1 − ai)r0...ri−1, α
−1r0...ri−1]

Qp
i = Qp+

i ∪Qp−
i .

Often times, out of convenience, we will simply drop the super index p. It is easily

seen that there are 2(n−1)i intervals Ki, Li, Q
+
i , Q

−
i and Qi. For which we know

λ(Ki) = ((1− 2ri)r0...ri−1)
n−1,

λ(Li) = (r0...ri−1)
n−1,

λ(Qi) = ((1− 2ri)r0...ri−1)
n−12air0...ri−1 and

λ(Q+
i ) = λ(Q−

i ) = ((1− 2ri)r0...ri−1)
n−1air0...ri−1.

It is clear that Qi ⊆ [0, 1]n−1 × [0, 2] ⊆ [−1, 2]n, since (α−1 + ai)r0...ri−1 ≤ (α−1 +

a0)r0 ≤ 2. Also, α−1 ≥ 1 > 1
3
≥ ai, so that (α−1 − ai)r0...ri−1 > 0. Define I0 to be

[−1, 2]n. Let {ci} be a sequence decreasing to 0 such that
∑∞

i=0 ci = +∞ and define

f(x) =



ci

2(n−1)iλ(Q+
i )

for x ∈ Int(Q+
i ),

−ci

2(n−1)iλ(Q−
i )

for x ∈ Int(Q−
i ),

0 else.

Note that f is Lebesgue integrable over any closed set H ⊆ [−1, 2]n with H ∩

([0, 1]n−1 × {0}) = ∅. This is since f is Lebesgue integrable on each Qi and H would

intersect only a finite number of Qi since α−1r0...ri−1 → 0. We will use this fact in

order to prove a few propositions and lemmas that will help clarify the proof.
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Proposition 4.2.1.

Let I0 ⊆ Rn be a compact interval, f : I0 → R, S ⊆ I0 a closed set and f(x) = 0 on

S. Assume that for every closed set H ⊆ I0 with S ∩H = ∅ the integral
∫

H
fdλ exists

in the Lebesgue sense, and let us denote its value by F (H). Let q ∈ R, 0 < α < 1.

Then, the following two assertions are equivalent:

(1) the α-regular integral of f over I0 exists and is equal to q;

(2) for every ε0 > 0 there is a gauge δ0 : S → (0,∞) such that

|F (I0 \
⊔

π)− q| ≤ ε0

for any δ0-fine, α-regular partition π tagged in S for which S is contained in

the interior of
⊔
π.

Proof. (1) =⇒ (2) Let ε0 > 0, F1(J) = (Bα)
∫

J
fdλ and choose a gauge δ0

associated with the integrability of f on I0 approximating to the level ε0. Then

for any α-regular, δ0-fine partition π anchored in S we have |F (
⊔
π)| < ε0 by the

Saks-Henstock lemma 2.1.20 since f = 0 on S. Therefore,

|F (I0 \
⊔

π)− q| = |F1(I0 \
⊔

π)− F1(I0)| = |F1(
⊔

π)| ≤ ε0.

(2) =⇒ (1) First recall that integrability in the Lebesgue sense implies α-

integrability and both integrals are equal. Let G0 = ∅ and Gl = {x ∈ I0 : d(x, S) >

2−l} for l = 1, ... Also define the functions, fj : I0 → R by fj = f · 1Gj
. Given ε > 0,

we define ε0 = ε
2

and find a gauge δ0 by our assumption. Notice that f is integrable

on Gj (since its closure satisfies the supposition) so that fj is integrable on I0. For

j = 1, ... we set εj = ε
2j and find associated gauges δj for integrability of fj on Gj to
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the level εj of approximation. We pull together all approximations by defining

δ(x) =


δ0(x) for x ∈ S,

min(δj(x), 2
−j−1) for x ∈ Gj \Gj−1 and j = 1, ...

Let π = {(t1, K1), ..., (tm, Km)} be a δ-fine, α-regular partition of I0. Now if

(t,K) ∈ π[Gl \ Gl−1] then K ⊆ Gl+1 due to the definition of Gl and the 2−j−1 that

appears in the definition of the gauge. Now by the Saks Henstock lemma 2.1.20,

|
∑

(t,K)∈π[Gl\Gl−1]

f(t)λ(K)− (Bα)

∫
K

fdλ|

=|
∑

(t,K)∈π[Gl\Gl−1]

f(t)λ(K)− (Bα)

∫
K

fl+1dλ|

≤εl+1

=ε02
−l−1.

Since f(x) = 0 on S,

∣∣ ∑
(t,K)∈π

f(t)λ(K)− q
∣∣

=
∣∣ ∑

(t,K)∈π[I0\S]

f(t)λ(K)− q
∣∣

≤
∣∣ ∑

(t,K)∈π[I0\S]

f(t)λ(K)− F (I0 \
⊔

π[S])
∣∣+∣∣F (I0 \

⊔
π[S])− q

∣∣
=

∣∣ ∞∑
l=1

∑
(t,K)∈π[Gl\Gl−1]

f(t)λ(K)− F (K)
∣∣+∣∣F (I0 \

⊔
π[S])− q

∣∣
≤

∣∣ ∞∑
l=1

∑
(t,K)∈π[Gl\Gl−1]

f(t)λ(K)− F (K)
∣∣ + ε0
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≤
∞∑
l=2

ε02
−l−1 + ε0

=ε.

�

Lemma 4.2.2.

Let α < α1 < 1, p ∈ N such that α1 > (α−1 − ap)
−1. Let π be an α1-regular

partition in [−1, 2]n such that for (t, J) ∈ π

(1) t = (t1, ..., tn−1, 0),

(2) J ⊆ B(t, (α−1 − ap)r0...rp−1),

(3) [0, 1]n−1 × {0} ⊆ int(
⊔
π)

Then, |
∫

I0\
F

π
fdλ| ≤ 2n−1cp+1.

Proof. We will write F (M) instead of
∫

M
fdλ if the integral exists in the sense

of Lebesgue. Since f|(S
i Qi)c = 0 and the Q are disjoint,

F (I \
⊔

π) =
∑
Q

F (Q \
⊔

π).

Clearly the sum could have been taken over all Q such that F (Q \
⊔
π) 6= 0. If Qi is

such a Q, then, F (Qi \ J) 6= 0 for some (t, J) ∈ π. Indeed, if F (Qi \ J) = 0 for every

J , then F (Qi ∩ J) = 0 for every J since F (Qi ∩ J) = 0. Thus, F (Qi ∩
⋃
J) = 0.

That is, F (Qi \
⊔
π) = 0. Now for the (t, J) ∈ π with F (Qi \ J) 6= 0 we will set

J = [u1, v1] × ... × [un−1, vn−1] × [w, z], notice that since (1) and (3) we have that

w ≤ 0.
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Claim z > (α−1 − ai)r0...ri−1

If z ≤ (α−1 − ai)r0...ri−1, then λ(Qi ∩ J) = 0, so that F (Qi \ J) = F (Qi) = 0 a

contradiction.

Claim (α−1 + ai)r0...ri−1 > z

First off, note that α−1 > 1 and ai <
1
3
, so that α−1 − ai > 0. So we have that

(α−1 − ai)r0...ri−1 > 0 ≥ w. Now if z ≥ (α−1 + ai)r0...ri−1, then the n-th projection

of Qi is contained in [w, z], in which case

λ(Q+
i ∩ J) = λ(K1 ∩ [u1, v1])...λ(Kn−1 ∩ [un−1, vn−1])(

z − w

2
) = λ(Q−

i ∩ J).

Therefore, F (Qi ∩ J) = 0 and F (Qi) = 0, so that F (Qi \ J) = 0 a contradiction.

Now since J is α1-regular we have that α1 ≤ R(J) ≤ vj−uj

z−w
so that vj − uj ≥

α1(z − w) ≥ α1z > α1(α
−1 − ai)r0...ri−1. Now α1(α

−1 − ai) > 1 if and only if

α1 > (α−1 − ai)
−1, and for i > p, α1 > (α−1 − ap)

−1 ≥ (α−1 − ai)
−1 in which case

vj − uj > α1(α
−1 − ai)r0...ri−1 > r0...ri−1.

Claim i > p

Due to (2) and a previous claim we have that (α−1 − ai)r0...ri−1 < z < (α−1 −

ap)r0...rp−1. Now, if (α−1 − aj)r0...rj−1 is decreasing, then we would have our claim.

But,

(α−1 − aj)r0...rj−1 − (α−1 − aj+1)r0...rj ≥ 0

⇐⇒ r0...rj−1[α
−1 − aj − (α−1 − aj+1)rj] ≥ 0

⇐⇒ α−1 − aj − (α−1 − aj+1)rj ≥ 0

⇐⇒ α−1 − α−1rj + aj+1rj − aj ≥ 0.
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However,

α−1(1− rj) + aj+1rj − aj

≥α−1(1− rj) + 0− 1

3

≥α−1(1− 1

3
)− 1

3

≥2

3
− 1

3

=
1

3
.

Therefore, i > p.

Now F (Qi \ J) 6= 0 so that [u1, v1]× ...× [un−1, vn−1] ∩Ki 6= ∅ (for some interval

Ki of the i-th order). i.e. [uj, vj] ∩ T
pj

i 6= ∅ for j = 1, .., n− 1. Since |Ti| + 2|Si+1| =

|Si| = r0...ri−1, [uj, vj] ∩ T
pj

i 6= ∅, |vj − uj| > r0...ri−1 and since there are Si+1’s on

each side of T
pj

i , we have that [uj, vj] contains at least one interval S
qj

i+1. Thus

Sq1

i+1 × ...× S
qn−1

i+1 ⊆ [u1, v1]× ...× [un−1, vn−1].

Then [u1, v1]× ...× [un−1, vn−1] contains all intervals Km of order m ≥ 1 lying inside

Sq1

i+1× ...×S
qn−1

i+1 . i.e. one interval Ki+1, 2n−1 intervals Ki+2 (since each Si+1 contains

two intervals Si+2) and in general 2(n−1)(l−1) intervals Ki+l. We therefore have that

J contains at least 2(n−1)(l−1) intervals Qi+l where l ∈ N. Indeed, Ki+l ⊆ [u1, v1] ×

...× [un−1, vn−1], z > (α−1 − ai)r0...ri−1 > (α−1 + ai)r0...ri > (α−1 − ai)r0...ri > ... >

(α−1 + ai+l)r0...ri+l−1 and w ≤ 0 < (α−1 − ai+l)r0...ri+l−1. Therefore, Qi+l = Ki+l ×

[(α−1− ai+l)r0...ri+l−1, (α
−1 + ai+l)r0...ri+l−1] ⊆ [u1, v1]× ...× [un−1, vn−1]× [w, z] and
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there are 2(n−1)(l−1) such Qi+l from above. Evidently for these Qi+l, F (Qi+l \ J) = 0

since Qi+l \ J = ∅.

Let kl be the number of intervals Ql of the l-th order such that F (Ql \
⊔
π) 6= 0.

Now by (2) we have that k0 = ... = kp = 0 since for j ∈ {1, ..., p}, Qj \
⊔
π = Qj. Now

since [0, 1]n−1 × {0} ⊆ int(
⊔
π) and (α−1 + ai)r0...ri−1 → 0, we have that eventually

Qi ⊆ int(
⊔
π). So that eventually Qi \

⊔
π = ∅, in which case, F (Qi \

⊔
π) = 0.

Therefore, there exists an m ∈ N such that kp+m+1 = kp+m+2 = ... = 0.

Now kp+1 ≤ 2(n−1)(p+1) since there are only 2(n−1)(p+1) intervals Qp+1.

Claim kp+2 ≤ 2(n−1)(p+2) − kp+1

First off, there are 2(n−1)(p+2) Q intervals of the (p + 2)-th order, so that kp+2 ≤

2(n−1)(p+2). Now if F (Qp+1 \
⊔
π) 6= 0, then F (Qp+1 \ J) 6= 0 for some (t, J) ∈ π.

In which case from previous calculations we see that J contains at least 2(n−1)(1−1)

intervals Qp+2. But there are kp+1 such Qp+1 which are all disjoint, so there at

least kp+1 intervals Qp+2 contained in
⊔
π. For these intervals Qp+2 we have that

F (Qp+2 \
⊔
π) = 0, therefore, kp+2 ≤ 2(n−1)(p+2) − kp+1.

kp+3 ≤ 2(n−1)(p+3) − 2(n−1)kp+1 − kp+2

Since there are only 2(n−1)(p+3) intervals Qp+3, kp+3 ≤ 2(n−1)(p+3). Now each Qp+1

counting towards the kp+1 induces a J containing 2n−1 intervals Qp+3. Similarly, each

Qp+2 contributing to kp+2 induces a Qp+3 not contributing to the kp+3. Therefore,

kp+3 ≤ 2(n−1)(p+3) − 2(n−1)kp+1 − kp+2.
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Following the same process we see that for 1 ≤ l ≤ m, we receive m inequalities

of the form

kp+l ≤ 2(n−1)(p+l) − 2(n−1)(l−2)kp+1 − ...− 2n−1kp+l−2 − kp+l−1.

Now transferring all but the first number in each inequality to the left, we have m

inequalities of the form

kp+l + 2(n−1)(l−2)kp+1 + ...+ 2n−1kp+l−2 + kp+l−1 ≤ 2(n−1)(p+l).

Adding all of these inequalities and factoring,

kp+1(2 +2n−1 + ...+ 2(n−1)(m−2)) + ...+ kp+m ≤ 2(n−1)(p+1)(1 +2n−1 + ...+ 2(n−1)(m−1)).

After noticing that these are geometric sums,

kp+1(1+
2(n−1)(m−1) − 1

2(n−1) − 1
)+ ...+kp+m−1(1+

2n−1 − 1

2n−1 − 1
)+kp+m ≤ 2(n−1)(p+1) 2

(n−1)m − 1

2n−1 − 1

Multiplying both sides by 2n−1 − 1 and noticing that 2(n−1)(p+1)(2(n−1)m − 1) ≤

2(n−1)(p+1+m),

kp+1(2
(n−1)(m−1) − 1) + ...+ kp+m−1(2

n−1 − 1) + (2n−1 − 1)
m∑

i=1

kp+i ≤ 2(n−1)(p+1+m).

Now dropping some unwanted terms,

kp+12
(n−1)(m−1) + kp+22

(n−1)(m−2) + ...+ kp+m−12
n−1 + kp+m ≤ 2(n−1)(p+1+m).

Finally, dividing both sides by 2(n−1)(m−1),

kp+1 + kp+22
−(n−1) + ...+ kp+m−12

−(n−1)(m−2) + kp+m2−(n−1)(m−1) ≤ 2(n−1)(p+2).
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Notice that by the definition f we have that |F (Qp+l \
⊔
π)| ≤ cp+l

2(n−1)(p+l) . Putting

together all of our previous calculations,

|F (I0 \
⊔

π)| =
∣∣ m∑

i=1

2(n−1)i∑
j=1

F (Qj
p+i \

⊔
π)

∣∣
=

∣∣ m∑
i=1

∑
j

F (Qj
p+i \

⊔
π)

∣∣
≤

∣∣ m∑
i=1

∑
j

cp+i

2−(n−1)(p+i)

∣∣
=

∣∣ m∑
i=1

kp+i
cp+i

2−(n−1)(p+i)

∣∣
≤

∣∣ m∑
i=1

kp+i
cp+1

2−(n−1)(p+i)

∣∣
≤

∣∣cp+12
−(n−1)(p+1)

m∑
i=1

kp+i2
−(n−1)(i−1)

∣∣
≤

∣∣2n−1cp+1

∣∣
where the sum without indicated bounds is over all Q intervals of the p + i-th order

contributing to kp+i.

�

Lemma 4.2.3.

Let 0 < α2 < α < 1. For any gauge δ on I0 there exists α2-regular, δ-fine partitions

πj for j = 1, 2 satisfying:

(1) for (t, J) ∈ πj we have t = (t1, ..., tn−1, 0),

(2) [0, 1]n−1 × {0} ⊆ int(
⊔
πj),

(3) F (I0 \
⊔
π1) ≥ 1 and
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(4) F (I0 \
⊔
π2) = 0.

Proof. We intend to build our partitions on or containing [0, 1]n−1 × {0}. In

light of this throughout the proof we will refer to the height of an interval as its right

endpoint in the n-th dimension rather than its actual length along the n-th dimension.

Let δ be a gauge on I0. In order to find areas where we will have freedom to build

larger intervals over the Kp
i , we define

Wk = {w = (w1, ..., wn−1) ∈ Dn−1 : δ(w, 0) >
1

k
} for k ∈ N.

It may seem strange that in order to build over the Kp
i we restrict our attention

to Dn−1 =
⋂∞

i=1

⋃
p L

p
i . Recall however, that each Lp

i contains a Kq
i . Now Dn−1 is

dense in itself so by the Baire Category theorem there is a Wp that is not nowhere

dense in Dn−1. Therefore, there exists a z ∈ clDn−1(Wp) and a w > 0 such that

Dn−1∩B(z, w) ⊆ clDn−1(Wp) ⊆ cl(Wp). Now since Dn−1 =
⋂∞

i=0

⋃
Li, λ(Li) → 0 and

Dn−1 ∩B(z, w) 6= ∅, there exists a q ∈ N such that z ∈ Lq ⊆ B(z, w).

Without loss of generality, we assume that q is chosen such that

1− 2rq

α−1
> α2 and α−1r0...rq−1 <

1

p
.

This is all possible since 1−2rq

α−1 ↗ α, α−1r0...rq−1 ↘ 0 and since for any i > j there is

an Li ⊆ Lj. Now since
∑∞

i=0 ci = ∞, there is an m ∈ N such that

cp + cp+1 + ...+ cp+m ≥ 2(n−1)q.

There is an interval Kq of order q such that Kq ⊆ Lq, 2n−1 intervals Kq+1 with

Kq+1 ⊆ Lq, in general there are 2(n−1)j intervals Kq+j with Kq+j ⊆ Lq for j = 0, ...,m.
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Now each interval Kq+j can be written as

Kq+j = T z1
q+j × ...× T

zn−1

q+j

where T zi
q+j = (λzi

q+j −
(1−2rq+j)r0...rq+j−1

2
, λzi

q+j +
(1−2rq+j)r0...rq+j−1

2
). We extend Kq+j in

order to get an element from Wp inside of it. Find positive numbers ϕq+j with

r0...rq+j−1

2
> ϕq+j >

(1− 2rq+j)r0...rq+j−1

2

such that all the intervals

T̃ zi
q+j = (λzi

q+j −
(1− rq+j)r0...rq+j−1

2
, λzi

q+j + ϕq+j)

are pairwise disjoint with i fixed and j = 0, ...,m . All of this is possible since for i > j,

T̄i ∩ T̄j = ∅ and since λzi
q+j +

(1−2rq+j)r0...rq+j−1

2
is the right endpoint of T zi

q+j. From this

process we obtain non-overlapping intervals Hq+j = cl (T̃ z1
q+j × ...× T̃

zn−1

q+j ) ⊆ Lq+j ⊆

Lq. This is since
r0...rq+j−1

2
> ϕq+j and dist(λzi

q+j, bd(Sq+j)) =
r0...rq+j−1

2
.

Hq+j ∩Wp 6= ∅ for j = 0, ...,m

Indeed, Dn−1 ∩ B(z, w) ⊆ W̄p and Hq+j ⊆ Lq ⊆ B(z, w) so if Hq+j ∩ Dn−1 6=

∅, then we are done. But Hq+j ∩ Lq+j 6= ∅, in fact, the left corner of Lq+j i.e.

(λz1
q+j −

r0...rq+j

2
, ..., λ

zn−1

q+j −
r0...rq+j

2
) is contained in the interior of Hq+j and there is a

sequence of elements in Dn−1 tending to this corner. Therefore, Hq+j ∩Wp 6= ∅ as

required.

Say τq+j ∈ Hq+j ∩Wp, let ψ > 0 and set J = Hq+j× [−ψr0...rq+j−1, α
−1r0...rq+j−1]

and let (t, J) be included in our partition π1, where t = (τq+j, 0). Notice that the

height of J is the height of Q−
q+j but is lower that the height of Q+

q+j. This is how

F (I0 \
⊔
π) will become large.
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We must now estimate the regularity of J (since π was supposed to be α2-regular).

Notice first that

ϕq+j +
(1− 2rq+j)r0...rq+j−1

2

<
r0...rq+j−1

2
+

(1− 2rq+j)r0...rq+j−1

2

=(1− rq+j)r0...rq+j−1

≤r0...rq+j−1

≤(α−1 + ψ)r0...rq+j−1.

Therefore,

R(J) =
ϕq+j +

(1−2rq+j)

2
r0...rq+j−1

(α−1 + ψ)r0...rq+j−1

≥ (1− 2rq+j)r0...rq+j−1

(α−1 + ψ)r0...rq+j−1

≥ 1− 2rq+j

α−1 + ψ
.

Notice that J ⊆ B(t, (α−1 + ψ)r0...rq+j−1), (1 − 2rq)α > α2 and α−1r0...rq−1 <
1
p
, so

ψ can be chosen small enough so that R(J) ≥ α2 and J ⊆ B(T, 1
p
) ⊆ B(t, δ(t)).

All the pairs (t, J) constructed up until now form an α2-regular, δ-fine partition

which we will complete in order to form π1. We wish to complete π1 in such a way as

to have F (I0\
⊔
π) = F (I0\

⋃
J), where the union is over all J previously mentioned.

In order to do this we will ensure that the height of any interval we add falls outside

of [(α−1 − ai)r0...ri−1, (α
−1 + ai)r0...ri−1]. This will ensure that our added intervals

intersect an equal portion of Qp−
i and Qp+

i . This will result in F (I0 \
⊔
π) being equal

to F (I0 \
⋃
J).
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Each J corresponds to an (n− 1)-dimensional interval Hq+j. The set cl([0, 1]n−1 \⋃
Hq+j) can be written as a finite number of compact intervals. So by Cousin’s theo-

rem 3.2.2 we can find a δ-fine, α2-regular partition of cl([0, 1]n−1 \
⋃
Hq+j) consisting

of pairs (s̃, M̃) where s̃ = (s1, ..., sn−1) and M̃ are (n−1)-dimensional intervals. Con-

sider a particular M̃ = [ĉ1, d̂1]× ...× [ĉn−1, d̂n−1], we form the n-dimensional interval

M = M̃ × [−h,−h+ d1− c1] for some h > 0. We first notice that the regularity of M

is the same as the regularity of M̃ . We choose h small enough so that 0 < h < d1− c1

and M ⊆ B(s, δ(s)) where s = (s̃, 0). We will also choose h so that

−h+ d1 − c1 /∈ ((α−1 − ai)r0...ri−1, (α
−1 + ai)r0...ri−1)

for i ∈ N. This is possible since (α−1−ai)r0...ri−1 and (α−1+ai)r0...ri−1 both converge

to 0 and the intervals [(α−1 − ai)r0...ri−1, (α
−1 + ai)r0...ri−1] are disjoint.

Then all (t, J) and (s,M) form a partition π1 satisfying conditions (1) and (2).

Claim F (I0 \
⊔
π1) ≥ 1

Now F (M) = 0 for any (s,M) ∈ π1 and for any p ∈ N and j = 0, ...,m,

Qp
q+j− ⊆ J for any (t, J) ∈ π1. Since K

p

q+j = Hp
q+j and the n-th projection of

J , [−ψr0...rq+j−1, α
−1r0...rq+j−1] contains [(α−1 − ai)r0...rq+j−1, α

−1r0...rq+j−1]. �

Therefore, F (I0 \
⊔
π1) is just the integral over the Q+

q+j that are associated with

each (t, J) ∈ π1. i.e.

F (I0 \
⊔

π1) =
m∑

i=0

∑
F (Q+

q+i)

93



where the interior sum is taken over the intervalsQ+
q+j associated with each (t, J) ∈ π1.

The number of such intervals of order q + i is 2(n−1)i and we have that

F (I0 \
⊔

π1) = cq2
−(n−1)q + ...+ 2(n−1)mcq+m2−(n−1)(q+m)

= 2−(n−1)q(cq + ...+ cq+m)

≥ 2−(n−1)q2(n−1)q

= 1.

We now construct π2, first we make an α2-regular, δ-fine (n − 1)-dimensional

partition of [0, 1]n−1 consisting of pairs (t̃, J̃). For an element (t̃, J̃), let d be the

length of J̃ ’s maximal side and let 0 < h < d be such that

−d+ h /∈ ((α−1 − ai)r0...ri−1, (α
−1 + ai)r0...ri−1).

Let J = J̃× [−h,−h+d] and t = (t, 0). Now, (t, J) is δ-fine and R(J) = R(J̃) so that

(t, J) is α2-fine. We let π2 be the collection of all these (t, J). Then, π2 is δ-fine, α2-

regular and satisfies both (1) and (2). Now to show that F (I0 \
⊔
π2) = 0. Indeed, for

every Qi we have that F (Qi\
⊔
π2) = 0. This is since, λ(Q+

i \
⊔
π2) = λ(Q+

i \
⊔
π2) and

therefore, F (Q+
i \

⊔
π2) = −F (Q−

i \
⊔
π2). Now, F (I0\

⊔
π2) =

∑
i∈N

∑
F (Qi\

⊔
π2) =

0, where the interior sum is over all i-th order intervals Qi.

Theorem 4.2.4.

Given any 0 < α < 1, there is a function f that is Bα1-integrable for any α1 ≥ α

that is not Bα2-integrable for any α2 < α.
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Proof. Consider the function built earlier. Choose a p ∈ N such that α1 >

(α−1 − ap)
−1 and 2n−1cp+1 ≤ ε0 and let δ = (α−1 − ap)r0...rp−1. We see that lemma

4.2.2 gives us (2) of proposition 4.2.1, which implies Bα1-integrability of f over I0 for

any α1 > α.

Lemma 4.2.3 clearly shows that condition (2) of proposition 4.2.1 cannot hold.

Suppose it did, then

|F (I0 \
⊔

π1)− F (I0 \
⊔

π2)| ≤ |F (I0 \
⊔

π1)− q|+ |F (I0 \
⊔

π2)− q|.

We have shown that the right side of the inequality can be made arbitrarily small.

But we have also shown that the term on the left side of the inequality is larger than

1. Therefore, f cannot be Bα2-integrable on I0 for any α2 < α. �

95



CHAPTER 5

Fubini’s Theorem and Product Bases

5.1. Product Bases and Basic Results

One might begin to wonder if we can put together two bases to create another base

in a higher dimension. One could just cross the elements in the bases together. This

would in fact create a base with most of the properties mentioned earlier, however,

in most cases the resulting integral will have little to do with the integrals of the two

initial bases. We would like to impose more structure on how we put together bases

in order to end up with some sort of Fubini theorem. This material was presented in

[4]. We have added a little more direction in the proof and fixed some minor issues.

Definition 5.1.1. Product base

Let B1 be a base in X, B2 be a base in Y and suppose that they are both of local

character. Let I1 ⊆ P(X), I2 ⊆ P(Y ) be the corresponding classes of intervals. Let

I = {I × J : I ∈ I1, J ∈ I2}

and

Z = X × Y.

A family B ⊆ P(Z × I) will be called the product base of B1 and B2, denoted

B = B1 × B2, if for every β ∈ B there are choice functions

φX : X → B2 by φX(x) = β2
x and
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φY : Y → B1 by φY (y) = β1
y ,

for which (z, P ) ∈ β if and only if

z = (x, y) and P = I × J

where,

(x, I) ∈ β1
y and (y, J) ∈ β2

x.

When convenient we will simply denote the choice functions by the images under the

map, that is by β2
x and β1

y . We will also denote the element in the base by its choice

functions, for example β = β1
y × β2

x.

Proposition 5.1.2.

Every product base is of local character.

Proof. Let B = B1 × B2 and for each (a, b) ∈ Z let (a,b)β ∈ B, say (a,b)β =(a,b)

β1
y ×(a,b) β

2
x. Fix any b ∈ Y and choose β1

b ∈ B1 such that β1
b [{a}] ⊆(a,b) β

1
b [{a}] for

each a ∈ X. Do this for each b ∈ Y . Similarly, fix any a ∈ X and choose a β2
a ∈ B2

such that β2
a[{b}] ⊆(a,b) β

2
a[{b}] for each b ∈ Y . Let ((a, b), I × J) ∈ β1

b × β2
a ∈ B.

Then, (a, I) ∈ β1
b [{a}] ⊆(a,b) β

1
b [{a}] and (b, J) ∈ β2

a[{b}] ⊆(a,b) β
2
a[{b}]. Therefore,

((a, b), I × J) ∈(a,b) β.

�
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Proposition 5.1.3.

The product of two filtering bases is filtering.

Proof. Let B = B1 × B2 and let α, β ∈ B. Suppose that β = β1
y × β2

x and

α = α1
y × α2

x. Now, since both bases are filtering, there are η2
x ∈ B2 and η1

y ∈ B1 such

that η2
x ⊆ β2

x ∩ α2
x and η1

y ⊆ β1
y ∩ α1

y for each x ∈ X and y ∈ Y . Let η = η1
y × η2

x and

(z, P ) = ((x, y), I × J) ∈ η. Then, (x, I) ∈ η1
y ⊆ α1

y ∩ β1
y and (y, J) ∈ α2

x ∩ β2
x ⊆ η2

x.

Therefore, (z, P ) ∈ α ∩ β. �

Definition 5.1.4. Compound partition

Let π1 = {(x1, I1), ..., (xn, In)} be a partition in X, and for i = 1, .., n let π2
xi

=

{(yi
1, J

i
1), ..., (y

i
ki
, J i

ki
)} be a partition in Y . Then,

π =
⋃

(x,I)∈π1

⋃
(y,I)∈π2

x

{((x, y), I × J)} = {((xi, y
i
j), Ii × J i

j) : i = 1, ..., n, j = 1, ..., k}

is a partition of X × Y , and such a partition will be called a compound partition.

Proposition 5.1.5.

If B1 and B2 have the partitioning property and are filtering, then B = B1 × B2

has the partitioning property.

Proof. Let β1
y × β2

x = β ∈ B1 and I0 × J0 ∈ I. Fix an x ∈ I0. Since B2 has the

partitioning property, there exists a partition π2
x ⊆ β2

x of J0. Say

π2
x = {(yx

1 , J
x
1 ), ..., (yx

kx
, Jx

kx
)}.

Now, since B1 is filtering, for every x ∈ I0 there is a xβ
1 ∈ B1 such that

xβ
1 ⊆

kx⋂
i=1

β1
yx

i
.
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Since B1 is of local character, there is a β1 ∈ B1 such that

β1[{x}] ⊆x β
1[{x}]

for every x ∈ X. There exists a partition π1 ⊆ β1 of I0 say

π1 = {(x1, I1), ..., (xn, In)}.

Then, the compound partition

π = {
(
(xi, y

xi
j ), Ii × Jxi

j

)
: i = 1, .., n, j = 1, .., kxi

}

is contained in β and is a partition of I0 × J0. �

5.2. Fubini Theorem

Theorem 5.2.1. Fubini theorem

Let B = B1 × B2, I0 ∈ I1, J0 ∈ I2, U1 : I0 × I1 7→ R and U2 : I0 × J0 × I2 7→ R.

Define

U : Z × I 7→ R by U
(
(x, y), I × J

)
= U1(x, I)U2(x, y, J).

Suppose that U is B-integrable on I0 × J0 and set

T = {x ∈ I0 : U2(x, ·, ·) is B2 − integrable}.

Let,

g(x) =


(B2)

∫
J0
U2(x, ·, ·), for x ∈ T,

anything, for x /∈ T.

Let W (x, I) = U1(x, I)g(x) for (x, I) ∈ I0 × I1. Then,

(1) V (U1,B1[I0 \ T ]) = 0,

99



(2) W is B1-integrable and

(3) (B1)
∫

I0
W = (B)

∫
I0×J0

U.

i.e. (B1)
∫

I0
U1(x, I)

[
(B2

∫
J0
U2(x, ·, ·)

]
= (B)

∫
I0×J0

U.

Proof. We will first show (1). In an attempt to gain some control over the lack

of integrability of U2(x, ·, ·) on the points in I0 \ T , we define Xn to be the set of

x ∈ I0 such that for all β2 ∈ B2 there are partitions π2,1, π2,2 ⊆ B2 of J0 such that

|U2(x, π
2,1) − U2(x, π

2,2)| ≥ 1
n
. i.e. the set of points that fail Cauchyness by more

than 1
n
. We then have that I0 \ T =

⋃
n∈NXn, so it will suffice to show that

V (U1,B1[Xn]) = 0 for each n ∈ N.

Our plan is to take a partition anchored in Xn far enough in the filter, extend it

to two partitions in I0 × J0 for which Cauchyness is satisfied under U1. However, we

will require that the pieces we use to extend fail Cauchyness under U2. Now since

U = U1U2, it will follow that our original partition must have small variation under

U1.

Fix an n ∈ N and let ε > 0. Choose a β = β1
y × β2

x ∈ B such that for every

partition π ⊆ β of I0 × J0,

∣∣∣∣(B)

∫
I0×J0

U − U(π)

∣∣∣∣ ≤ ε

2
.

For x ∈ Xn we can find partitions π2
x, π̂

2
x ⊆ β2

x of J0 for which

|U2(x, π
2
x)− U2(x, π̂

2
x)| ≥

1

n
.
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Since B1 is filtering we can find a xβ
1 ∈ B1 such that

xβ
1 ⊆ α1

y

for each y ∈ J0 with (y, J) ∈ π1
x ∪ π̂1

x for some J ∈ I2. Now, B1 is of local character

so we can find a β1 ∈ B1 such that

β1[{x}] ⊆x β
1[{x}] ⊆ β1

y [{x}]

for each x ∈ Xn.

Let x ∈ I0 \Xn and let π2
x ⊆ β2

x be a partition of J0, say

π2
x = {(yx

j , J
x
j ) : j = 1, ...,m} and π̂2

x = π2
x.

We define both partitions to be the same since we are not interested in what happens

on I0 \Xn. Defining them this way will ensure cancellation further on.

As before we can choose a γ ∈ β1 such that for every x ∈ I0 \Xn and every y ∈ J0

with (y, J) ∈ π2
x ∪ π̂2

x for some J ∈ I2,

γ1[{x}] ⊆ β1
y [{x}].

Now bringing everything together, choose a φ1 ∈ β1 with

φ1 ⊆ β1 ∩ γ1.

Let π1 be a partition contained in φ1[Xn]. Without loss of generality we assume that

π1 is maximal in size, we can do this since if π1 ⊆ π1∗, then |U1|(π1) ≤ |U1|(π1∗).
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Extend π1 to a partition π1 ⊆ φ1 of I0. By maximality we have that π1 = π1[Xn].

Suppose that π1 = {(x1, I1), ..., (xk, Ik)}, then we define the compound partitions

p = {
(
(xi, y

xi
j ), Ii × Jxi

j

)
: i = 1, .., k and j = 1, ...,mxi

} and

p̂ = {
(
(xi, ŷ

xi
j ), Ii × Ĵxi

j

)
: i = 1, .., k and j = 1, ..., m̂xi

}.

Then p, p̂ ⊆ β, so that |U(p)− U(p̂)| ≤ ε.

Without loss of generality we will assume that

sgn
(
U1(xi, Ii)

)
= sgn

(
U2(xi, π

2
xi

)− U2(xi, π̂
2
xi

)
)

for xi ∈ Xn with U1(xi, Ii) 6= 0. This can be made possible by switching the roles of

π2
xi

and π̂2
xi

if it does not hold.

We then have,

|U(p)− U(p̂)| =

∣∣∣∣∣
n∑

i=1

U1(xi, Ii)

∣∣∣∣∣
∣∣∣∣∣∣
mxi∑
j=1

U2(xi, j
xi
j , J

xi
j )−

m̂xi∑
j=1

U2(xi, ŷ
xi
j , Ĵ

xi
j )

∣∣∣∣∣∣
≥

n∑
i=1

|U1(xi, Ii)|
1

n

≥ |U1|(π1)
1

n
.

Therefore, |U1|(π1) ≤ nε and V (U1,B1[Xn]) = 0 as required.

We now move onto showing (2). We need to show that for every ε > 0, there

exists a β1 ∈ B1 such that for every partition π1 ⊆ β1 of I0,

∣∣∣∣(B)

∫
I0×J0

U −W (π1)

∣∣∣∣ ≤ ε.
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Let ε > 0 and find an α ∈ B such that for every partition π ⊆ α of I0 × J0,∣∣∣∣(B)

∫
I0×J0

U − U(π)

∣∣∣∣ ≤ ε

8
.

Thus, for any partitions π, π̂ ⊆ α of I0 × J0,

|U(π)− U(π̂)| ≤
∣∣∣∣U(π)− (B)

∫
I0×J0

U

∣∣∣∣ +

∣∣∣∣U(π̂)− (B)

∫
I0×J0

U

∣∣∣∣ ≤ ε

4
.

Now W (x, I) = U1(x, I)g(x) and by (1), V (U1,B1[I0 \ T ]) = 0. So we aim to gain

some control over g(x) for x ∈ I0 \ T . For each x ∈ I0 \ T choose a partition π2
x ⊆ α2

x

of J0. As before find an α1 ∈ B1 such that for every x ∈ I0 \ T,

α1[{x}] ⊆
⋂

(y,J)∈π2
x

α1
y[{x}].

Set

Q1 = {x ∈ I0 \ T : |g(x)|+ |U2(x, π
2
x)| ≤ 1}

and for r ∈ N, r ≥ 2

Qr = {x ∈ I0 \ T : r − 1 < |g(x)|+ |U2(x, π
2
x)| ≤ r}.

Now since Qr ⊆ I0 \ T and (1),

V (U1,B1[Qr]) = 0.

Therefore, for every r ∈ N there exists an α1,r ∈ B1 such that for every partition

π1,r ⊆ α1,r[Qr],

|U1|(π1,r) ≤ ε

r2r+2
.

For x ∈ I0 \ T , let

p2
x = p̃2

x = π2
x.
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We define the two partitions to be the same for x ∈ I0 \ T because they are not

needed for the approximations on I0 \ T ; (1) will be enough. However, the partitions

are required in order to use the integrability of U and they are therefore defined. Find

a β1 ∈ B1 such that for every r ∈ N and every x ∈ Qr,

β1[{x}] ⊆ α1[{x}] ∩ α1,r[{x}].

Now lets consider x ∈ T . Let π2
x ⊆ α2

x be a partition of J0. Now since T is the

set of x ∈ I0 such that U2(x, ·, ·) is integrable and |U2(x, π
2
x)− g(x)| is a non-negative

real number, we can find an η2 ∈ B2 such that for every partition π2 ⊆ η2 of J0,

|U2(x, π
2)− g(x)| < 1

2
|U2(x, π

2
x)− g(x)|.

It should be noted that if the right side is 0 we may skip these approximations and

move on to (5).

Choose an α1 ∈ B1, α1 ⊆ β1 such that for x ∈ T ,

α1[{x}] ⊆ α1
y[{x}]

for all (y, J) ∈ π2
x ∪ π2,2

x .

Let π1 ⊆ α1 be a partition of I0. For x ∈ T , (x, I) ∈ π1 with

U1(x, I)(U2(x, π
2
x)− g(x)) > 0

we set p2
x = π2

x and p̃2
x = π2,2

x . For all other x ∈ T we set p2
x = π2,2

x and p̃2
x = π2

x. We

do this in order to remove some absolute values further in the proof.
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Define the compound partitions

p =
⋃

(x,I)∈π1

{
(
(x, y), I × J

)
: (y, J) ∈ p2

x} and

p̃ =
⋃

(x,I)∈π1

{
(
(x, y), I × J

)
: (y, J) ∈ p̃2

x}.

Then, p, p̃ ⊆ α are partitions of I0 × J0, so that

|U(p)− U(p̃)| ≤ ε

4
.

Therefore,

|U(p)−W (π1)|

≤|U(p[I0 \ T × J0])−W (π1[I0 \ T ])|+ |U(p[T × J0])−W (π1[T ])|.

Now since π1 ⊆ α1,

|U(p[I0 \ T × J0])−W (π1[I0 \ T ])|

=

∣∣∣∣∣∣∣
∑(

(x,y),I×J
)
∈p[I0\T×J0]

U1(x, I)U2(x, y, J)−
∑

(x,I)∈π1[I0\T ]

U1(x, I)g(x)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(x,I)∈π1[I0\T ]

∑
(y,J)∈p2

x

U1(x, I)U2(x, y, J)−
∑

(x,I)∈π1[I0\T ]

U1(x, I)g(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(x,I)∈π1[I0\T ]

U1(x, I)

 ∑
(y,J)∈p2

x

U2(x, y, J)− g(x)

∣∣∣∣∣∣
≤

∑
r∈N

∑
(x,I)∈π1[Qr]

r|U1(x, I)|

≤
∑
r∈N

rε

r2r+2
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=
ε

4
.

Now for (x, I) ∈ π1[T ], if

U1(x, I)

 ∑
(y,J)∈π2

x

U2(x, y, J)− g(x)

 > 0,

then,

0 < U1(x, I)(
∑

(y,J)∈π2
x

U2(x, y, J)− g(x))

= U1(x, I)(
∑

(y,J)∈p2
x

U2(x, y, J)− g(x))

≤ U1(x, I)

 ∑
(y,J)∈π2

x

U2(x, y, J)− g(x) + U2(x, p
2
x)− g(x)− 2U2(x, p̃

2
x) + 2g(x)


= 2U1(x, I)

(
U2(x, p

2
x)− U2(x, p̃

2
x)

)
.

However, if

U1(x, I)

 ∑
(y,J)∈p2

x

U2(x, y, J)− g(x)

 ≤ 0

then,

|U1(x, I)(U2(x, p
2
x)− g(x))|

=|U1(x, I)||U2(x, π
2,2
x )− g(x)|

≤|U1(x, I)||U2(x, π
2,2
x )− g(x)|+ |U1(x, I)|

(
|U2(x, π

2
x)− g(x)| − 2|U2(x, π

2,2
x )− g(x)|

)
=|U1(x, I)|

(
|U2(x, π

2
x)− g(x)| − |U2(x, π

2,2
x )− g(x)|

)
=− U1(x, I)(U2(x, π

2
x)− g(x))− |U1(x, I)||U2(x, π

2,2
x )− g(x)|

≤ − U1(x, I)(U2(x, π
2
x)− g(x)) + U1(x, I)(U2(x, π

2,2
x )− g(x))
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=U1(x, I)(U2(x, π
2,2
x )− U2(x, π

2
x))

=U1(x, I)(U2(x, p
2
x)− U2(x, p̃

2
x).

Therefore, for x ∈ T and (x, I) ∈ π1,

|U1(x, I)(U2(x, p
2
x)− g(x))| ≤ 2U1(x, I)(U2(x, p

2
x)− U2(x, p̃

2
x)). (5)

Also,

U(p)− U(p̃) =
∑

(x,I)∈π1

U1(x, I)(U2(x, p
2
x)− U2(x, p̃

2
x)).

Therefore, ∣∣∣∣∣∣
∑

((x,y),I×J)∈p,x∈T

U((x, y), I × J)−W (π1[T ])

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(x,I)∈π1[T ]

U1(x, I)(U2(x, p
2
x)− g(x))

∣∣∣∣∣∣
≤

∑
(x,I)∈π1[T ]

2U1(x, I)(U2(x, p
2
x)− U2(x, p̃

2,2
x ))

=2(U(p)− U(p̃))

≤2
ε

4

=
ε

2
.

Thus,

|U(p)−W (π1)|

≤

∣∣∣∣∣∣
∑

((x,y),I×J)∈p,x∈T

U((x, y), I × J)−W (π1[T ])

∣∣∣∣∣∣
107



+

∣∣∣∣∣∣
∑

((x,y),I×J)∈p,x/∈T

U((x, y), I × J)−W (π1[I0 \ T ])

∣∣∣∣∣∣
≤ ε

2
+
ε

4

=
3ε

4
.

And finally,

∣∣∣∣(B ∫
I0×J0

U −W (π1)

∣∣∣∣
≤

∣∣∣∣(B)

∫
I0×J0

U − U(p)

∣∣∣∣ + |U(p)−W (π1)|

≤ ε
8

+
3ε

4

≤ε.

�

5.3. Corollary to the Fubini Theorem

Let us now look at some more concrete examples of product bases and find some

corollaries to the Fubini theorem. It is easily seen that the product of a B1 base in

Rm and that of a B1 base in Rn results in the B1 base in Rn+m. The same holds true

for the B̃1 and the B�1. This clearly does not hold for bases that use regularity. For

example if we take two squares, one of which whose sides are l times the length of

the other’s sides. Then the product of these squares is an interval whose regularity is

1
l
. Thus, every element of this product base will contain intervals of any regularity.
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For the sake of the following corollary In will denote the family of n-th degree non-

degenerate, compact intervals. Also we will write nB1 for the B1 base in Rn, other

bases will follow follow similar conventions.

Corollary 5.3.1.

Let f : Rn → R be nB�1-integrable on I0 = [a1, b1] × ... × [an, bn] and let m < n

be some integer. Choose any m different coordinate directions Rn, without loss of

generality we assume the first m. Define the set T to be the set of x in [a1, b1]× ...×

[am, bm] such that f(x, ·) is Lebesgue integrable on [am+1, bm+1]× ...× [an, bn]. Then,

(1) [a1, b1]× ...× [am, bm] \ T is a Lebesgue null set;

(2) For g(x) =
∫

[am+1,bm+1]×...×[an,bn]
f(x, ·)dλm on T and arbitrary otherwise, we

have

(nB�1)
∫

I0

fdλ =

∫
[a1,b1]×...×[am,bm]

g(x)dλm.

Notice that since the weak Kurzweil base provides the same integral as that of Lebesgue,

this is in fact the Fubini theorem for the Lebesgue integral.
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