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Abstract

In this thesis, we consider inference problems in linear regression under both ho-

moscedasticity and heteroscedasticity of the error noise. Namely, we construct gen-

eralized confidence regions and generalized confidence intervals for regression coeffi-

cients of linear regression models. Regressor variables are considered non-stochastic.

Independent normal errors with zero mean and constant or varying dispersion are

considered. The regression data from two different regimes are considered. In testing

the equality of the regression coefficients in the two regimes under heteroscedasticity,

we develop the generalized pivotal quantities of their differences and the generalized

p-values. Generalized methods of inference are especially useful in multiparameter

cases where nontrivial tests are difficult to obtain. We propose generalized test vari-

ables and generalized p-values to test the equality of the sets of regression coefficients

of the two regimes. The test can be applied efficiently for all sample sizes and for

homoscedastic as well as heteroscedastic cases. The simulation study shows that

the proposed method preserves the nominal significance level and maintain satisfac-

tory power under heteroscedasticity, and for small and moderate sample sizes. We

also construct the generalized confidence region for the difference of the two sets of

regression coefficients. When the regression coefficients remained the same for the

two regimes under heteroscedasticity, we propose generalized confidence regions and

generalized confidence intervals for the regression parameters.

We applied the proposed method on the community health study data of Sarnia

in 2005 and the US gasoline consumption data before and after the 1973 oil crisis.

The analysis results show that, for both data sets, the regime change is statistically

significant at 5% level.
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Chapter 1

Introduction

1.1 Literature review

In estimation, we often infer the true value of the parameter or a function of the

parameter is contained in an interval with certain confidence. These intervals are

called confidence intervals. To define confidence intervals consider a random sample

Y = (Y1, Y2, . . . , Yn) from a probability density function (pdf) or a probability mass

function (pmf) f(y|θ) where θ is an unknown parameter. Suppose T1(Y ) and T2(Y )

are two statistics such that

Pr[T1(Y ) ≤ θ ≤ T2(Y )] = γ, γ ∈ (0, 1).

If the realized values of T1(Y ) and T2(Y ) are a and b respectively, [a, b] is called

a 100γ percent confidence interval for θ. Here γ is called the confidence coefficient.

Typical values of γ are 0.9, 0.95 and 0.99. One method of constructing confidence

interval is to use a pivotal quantity.

Definition (Pivotal quantity): Let Y = (Y1, Y2, . . . , Yn) be a random sample from

a probability density function (pdf) or a probability mass function (pmf) f(y|θ) where

θ is an unknown parameter and Q = g(Y, θ) is a function of Y and θ. If Q has a

probability distribution independent of any unknown parameters, it is called a pivotal

quantity.

1



Chapter 1. Introduction 2

Thus for a fixed γ, there exist real numbers q1 and q2 ( q1 < q2) such that

Pr[q1 ≤ g(Y, θ) ≤ q2] = γ, γ ∈ (0, 1).

If q1 ≤ g(Y, θ) ≤ q2 ⇔ T1(Y ) ≤ θ ≤ T2(Y ) where T1(Y ) and T2(Y ) are functions of

sample only, the random interval [T1(Y ), T2(Y )] is called a 100γ percent confidence

interval for θ. For an observed sample point y = (y1, y2, . . . , yn), [T1(y), T2(y)] is also

called a 100γ percent confidence interval for θ.

In complex situations involving nuisance parameters, often the uniformly most

accurate confidence intervals are unavailable. For instance, the uniformly most ac-

curate unbiased confidence intervals for the difference in means of two independent

normal populations do not exist unless the population variances are assumed equal.

When the variances are heterogeneous, this problem is known as the Behrens-Fisher

problem (Welch, 1938). To overcome this problem, Weerahandi (1993) introduced

the concept of generalized pivotal quantity and generalized confidence interval.

Definition (Generalized pivotal quantity): Let Y = (Y1, Y2, . . . , Yn) be a ran-

dom sample from a distribution involving parameters θ and δ. We are interested

in constructing a confidence interval for θ. Let y = (y1, y2, . . . , yn) be the observed

sample. The generalized pivotal quantity, denoted by R(Y, y, θ, δ), has the following

three properties:

1. R is a function of Y, y, θ and δ,

2. the distribution of R is independent of θ and δ and

3. R(y, y, θ, δ) does not depend on δ.

In this thesis, we consider a more specific generalized pivotal function that satisfies

R(y, y, θ, δ) = θ. Accordingly, a 100(1 − α) percent generalized confidence interval

for θ is [Rα/2, R1−α/2] where Rα/2 and R1−α/2 are the 100(α/2)th and 100(1 − α/2)th

percentiles of R(Y, y, θ, δ). It is noticed that generalized confidence intervals can be

constructed for small as well as for large samples.
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In passing, recall the duality between the uniformly most accurate confidence in-

terval and the uniformly most powerful (UMP) test. Thus, for the above mentioned

problem where classical inference does not provide an optimal (small sample) con-

fidence interval, the UMP unbiased test does not exist too. Tsui and Weerahandi

(1989) introduced generalized test variables and generalized p-values to deal with

this problem.

Definition (Generalized test variable): Let Y = (Y1, Y2, . . . , Yn) be a random

sample from a distribution involving parameters θ and δ. We are interested in testing

the hypothesis

H0 : θ = θ0 against H1 : θ 6= θ0.

Let y = (y1, y2, . . . , yn) be the observed sample. The generalized test variable, denoted

by T (Y, y, θ, δ), is a function of (Y, y, θ, δ) that satisfies the following requirements:

1. For given y and (θ0, δ) the distribution of T is independent of the nuisance

parameter δ.

2. t = T (y, y, θ, δ) does not depend on any unknown parameters.

3. For given y and δ, P (T ≥ t) is stochastically monotone in θ, i.e. stochastically

increasing or decreasing in θ.

In general, for a given y and δ we can take

T (Y, y, θ, δ) = R(Y, y, θ, δ)− θ

and one can verify that, the distribution of T for given y and δ is stochastically

monotone in θ. In this case the generalized p-value for testing the hypothesis is

P = 2 min

{
sup
θ=θ0

P (T ≥ t), sup
θ=θ0

P (T ≤ t)

}

= 2 min

{
sup
θ=θ0

P (R ≥ θ), sup
θ=θ0

P (R ≤ θ)

}

= 2 min {P (R ≥ θ0), P (R ≤ θ0)} .

In the same setting, if T (Y, y, θ, δ) satisfies the following conditions, it can be consid-

ered as a generalized test variable too (Gamage et al; 2004):
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1. The distribution of T (Y, y, θ0, δ) is free of the nuisance parameter δ.

2. t = T (y, y, θ0, δ) is free of δ.

3. P (T ≥ t) is nondecreasing in θ for fixed y and δ.

McNally, Iyer and Mathew (2003) used the generalized test variables and the gener-

alized p-values to test population and individual bioequivalence. They showed that

these tests perform better than confidence interval methods and have superior power

for assessing population bioequivalence.

Lin and Lee (2004) constructed a generalized pivotal quantity to estimate the

common mean of several normal populations when the variances are unknown and

unequal. The proposed generalized pivotal quantity was based on the best linear

unbiased estimator of the common mean.

Gamage, Mathew and Weerahandi (2004) developed a procedure based on gener-

alized p-values to test the equality of the mean vectors of two multivariate normal

populations with unequal covariance matrix. They showed the type I error probability

of their generalized p-value test did not exceed the nominal level. They constructed a

generalized confidence region for the difference between the mean vectors. A solution

of the heteroscedastic MANOVA problem using generalized p-value was also given.

Factors that influence the gun accuracy of an M1 series tank are of considerable

interest in US army. One of the factors is gun tubes. Mathew and Webb (2005)

developed generalized confidence intervals and generalized test variable to compare

variability among two types of gun tubes (new tubes and control tubes). They con-

sidered mixed models for their generalized inference.

Hannig, Iyer and Patterson (2006) proposed fiducial generalized pivotal quanti-

ties as a subclass of generalized pivotal quantities. They showed that generalized

confidence intervals constructed based on fiducial generalized pivotal quantities have

asymptotically correct frequentist coverage. They found that the subfamily of fidu-

cial generalized pivots has a close connection with fiducial inference proposed by R.
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A. Fisher.

In Metrology, a measurand is based on a sequence of measurements each with

type-A and type-B errors. The measurements may come from a single experiment or

several separate experiments. Wang and Iyer (2006) proposed a generalized confidence

interval for a measurand based on the two measurement models with different sets of

assumptions on type-B errors.

Krishnamoorthy, Mathew and Ramachandran (2006) constructed generalized p-

values and generalized confidence intervals to test and compute confidence interval for

the mean of a lognormal distribution. They assessed occupational exposure using the

lognormal mean. They showed that their proposed methods are easy to implement

and applicable to small sample sizes. They extended their procedures to compare two

lognormal means and to infer a lognormal variance.

Krishnamoorthy, Mathew and Ramachandran (2007) developed generalized piv-

otal quantities (GPQs) for the overall mean and the variance components for one-way

random effects model. The GPQs were then used to construct tolerance limits in the

one-way random effects model and to construct upper confidence limits for the ex-

ceedance probabilities of occupational exposure limit.

Bebu and Mathew (2007) proposed a generalized confidence interval for the ratio

of the means of a bivariate log-normal distribution. They also suggested the same

approach to obtain a confidence interval for the ratio of the variances. Simulated

coverage probabilities of the proposed generalized confidence intervals were found

satisfactory irrespective of the sample size. The power of the tests based on the

GPQs were also found satisfactory.

Li, Xu and Li (2007) proposed a method of constructing generalized p-value via

the fiducial inference. They discussed the properties of the power of the generalized

test. They illustrated their methods for the two-parameter exponential distribution

and unbalanced two-fold nested design.
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1.2 Objective

Our objective is to find generalized confidence intervals for regression coefficients, dis-

persion parameters and the expected response for simple and multiple linear regression

models with non-stochastic explanatory variables but under different assumptions of

the error distribution:

(i) Error distribution is normal with zero mean and constant variance.

(ii) Error distribution is normal with zero mean and varying dispersion.

(iii) Heteroscedasticity in two different regimes.

With the same assumptions, we construct generalized confidence regions for multiple

linear regression parameters. Also, for testing the equality of corresponding regression

coefficients in two different regimes with heteroscedasticity, we develop generalized

test variables, confidence regions, confidence intervals and p-values.



Chapter 2

Generalized Confidence Intervals

for Simple Linear Regression

Parameters

In this chapter we construct generalized confidence intervals for simple linear regres-

sion parameters under different scenarios. Consider a simple linear regression model

of the form:

Yi = β0 + β1Xi + εi, i = 1, 2, ..., n, (2.1)

where Y is the response variable, X is the explanatory variable, ε is the random error

term, and β0 and β1 are the regression coefficients. The regressor X is considered fixed

throughout this chapter. In section 2.1, we assume independent normal errors with

zero mean and constant variance. Based on this assumption we develop generalized

pivotal quantities for the regression coefficients, dispersion parameter and expected

response for a given value of X and then obtain their generalized confidence intervals.

In section 2.2, errors are considered independently normally distributed with zero

mean and varying dispersion, i.e. εi ∼ N(0, σ2
i ). In particular, we take σ2

i = σ2X2
i ,

where σ is constant (Dougherty; 1992). We construct generalized pivotal quantities

for β0, β1 and σ2. The notion of regimes is introduced in section 2.3. Regimes can

be different time periods, different regions etc. We consider data from two regimes.

7
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We assume the regression coefficients remain the same for the two regimes. The dis-

persion in error terms are assumed the same within the regime but different between

regimes. We propose generalized pivotal quantities for the regression parameters in

such case. In section 2.4, we test the equality of the corresponding regression coeffi-

cients of the two regimes. When the regimes’ error variances are different, it becomes

a Behrens-Fisher problem problem in regression setting. We propose generalized piv-

otal quantities for the difference of the corresponding regression coefficients. The

generalized p-values for testing the equality of corresponding slopes and intercepts of

two regimes are then given.

2.1 Error terms are normal random variables

with zero mean and constant variance

Suppose the error terms are iid normal with zero mean and constant variance σ2. The

maximum likelihood estimators for β0, β1 and σ2 are b0 = Ȳ − b1X̄, b1 =
∑

(Xi−X̄)Yi∑
(Xi−X̄)

2

and S2
Y =

∑
(Yi−Ŷi)

2

n
, respectively, where X̄ =

∑
Xi

n
, Ȳ =

∑
Yi

n
and Ŷi = b0 + b1Xi.

Interval estimation will be based on these maximum likelihood estimators. The esti-

mator b = (b0, b1)
′ follows a bivariate normal distribution as


b0

b1


 ∼ N2





β0

β1


 , σ2




1
n

+ X̄2
∑

(Xi−X̄)
2

−X̄∑
(Xi−X̄)

2

−X̄∑
(Xi−X̄)

2
1∑

(Xi−X̄)
2





 ,

and S2
Y follows a chi-square distribution as

nS2
Y

σ2
∼ χ2

n−2 (see Appendix A.1).

Also, b0 and b1 are independent of S2
Y (see Appendix A.2).
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2.1.1 Generalized confidence interval (GCI) for β1

Denote generalized pivotal quantity (GPQ) for β1 by Rβ1 . We define

Rβ1 = b1 − b1 − β1
σ√∑

(Xi−X̄)
2

× σ√∑
(Xi − X̄)

2
× sy

SY

= b1 − b1 − β1
σ√∑

(Xi−X̄)
2

× 1√
S2

Y

σ2

× sy√∑
(Xi − X̄)

2
,

where sy is the observed value of SY . Here, b1−β1
σ√∑

(Xi−X̄)2

∼ N(0, 1) and
nS2

Y

σ2 ∼ χ2
n−2.

Further, they are independent as b1 and S2
Y are independent.

Therefore,

Rβ1 = b1 − Tn−2 × (
√

n/(n− 2))sy√∑
(Xi − X̄)

2
, (2.2)

where Tn−2 has a t-distribution with n− 2 degrees of freedom. From equation (2.2),

the distribution of Rβ1 is independent of any unknown parameters. Also, the observed

value of Rβ1 is β1.

To construct a 100(1− γ) percent GCI for β1, we set

Pr(Rβ1 < c) = 1− γ/2.

This implies that

Pr


b1 − Tn−2.

(
√

n/(n− 2))sy√∑
(Xi − X̄)

2
< c


 = 1− γ/2.

Therefore,

Pr


Tn−2 >

√∑
(Xi − X̄)

2

(
√

n/(n− 2))sy

.(b1 − c)


 = 1− γ/2.

Suppose tn−2,γ/2 is the 100(1− γ/2)th percentile of Tn−2, then we get

√∑
(Xi − X̄)

2

(
√

n/(n− 2))sy

.(b1 − c) = −tn−2,γ/2.



Chapter 2. Generalized Confidence Intervals for Simple Linear Regression Parameters 10

Hence,

c = b1 + tn−2,γ/2.

(√
n/(n− 2)

)
sy

√∑
(Xi − X̄)

2
.

Again, let

Pr(Rβ1 < d) = γ/2.

This implies that

Pr


b1 − Tn−2.

(
√

n/(n− 2))sy√∑
(Xi − X̄)

2
< d


 = γ/2,

or,

Pr


Tn−2 >

√∑
(Xi − X̄)

2

(
√

n/(n− 2))sy

.(b1 − d)


 = γ/2.

From the t-table we have Pr(Tn−2 > tn−2,γ/2) = γ/2. Then,

√∑
(Xi − X̄)

2

(
√

n/(n− 2))sy

.(b1 − d)) = tn−2,γ/2.

Therefore,

d = b1 − tn−2,γ/2.
(
√

n/(n− 2))sy√∑
(Xi − X̄)

2
.

Thus, the 100(1− γ) percent GCI for β1 is

[d, c] =


b1 − tn−2,γ/2.

(
√

n/(n− 2))sy√∑
(Xi − X̄)

2
, b1 + tn−2,γ/2.

(
√

n/(n− 2))sy√∑
(Xi − X̄)

2


 .

2.1.2 GCI for β0

The GPQ for β0 is

Rβ0 = b0− b0 − β0

σ

√
1/n + X̄2/

∑
(Xi − X̄)

2
× σ

√
1/n + X̄2/

∑
(Xi − X̄)

2× sy

SY

, (2.3)
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then,

Rβ0 = b0 − Z√
(S2

Y /σ2)
× sy

√
(1/n + X̄2/

∑
(Xi − X̄)

2
) with Z ∼ N(0, 1).

Hence,

Rβ0 = b0 − Tn−2

√
(n/(n− 2))s2

y(1/n + X̄2/
∑

(Xi − X̄)
2
),

whose distribution is independent of any unknown parameters. Again, from (2.3)

Rβ0 = β0 for observed value (X, s2
y). As in the case of generalized estimation of β1, a

similar set of operations and inverse operations gives 100(1− γ) percent GCI for β0 :

[
b0 − tn−2,γ/2 × S(b0), b0 + tn−2,γ/2 × S(b0)

]
,

where,

S(b0) =

√
(n/(n− 2)) s2

y

(
1/n + X̄2/

∑
(Xi − X̄)2

)
.

2.1.3 GCI for dispersion parameter

The GPQ for σ2 is

Rσ2 =
σ2

S2
Y

× s2
y =

s2
y

S2
Y /σ2

=
ns2

y

nS2
Y /σ2

=
ns2

y

χ2
n−2

. (2.4)

To construct the 100(1− γ) percent GCI for σ2 let

Pr(Rσ2 < c) = 1− γ/2.

Then,

Pr

(
ns2

y

χ2
n−2

< c

)
= 1− γ/2,

or,

Pr

(
χ2

n−2 >
ns2

y

c

)
= 1− γ/2.

Suppose χ2
n−2,γ/2 is the 100γ/2th percentile of χ2

n−2. It implies that

ns2
y

c
= χ2

n−2,γ/2,
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or,

c =
ns2

y

χ2
n−2,γ/2

.

Again Pr(Rσ2 < d) = γ/2 gives

ns2
y

d
= χ2

n−2,1−γ/2.

Therefore,

d =
ns2

y

χ2
n−2,1−γ/2

.

Thus, the 100(1− γ) percent GCI for σ2 is

[d, c] =

[
ns2

y

χ2
n−2,1−γ/2

,
ns2

y

χ2
n−2,γ/2

]
.

2.1.4 GCI for expected response for given X

Let µX be the expected response for a given X, i.e.,

µX = E[Y | X] = β0 + β1X.

Therefore, an estimate of µX is

µ̂X = b0 + b1X.

Since µ̂X is a linear combination of two jointly normal random variables b0 and b1,

µ̂X is also normally distributed. Now,

E[µ̂X ] = E[b0 + b1X] = β0 + β1X = µX .

V [µ̂X ] = V [b0 + b1X] = V [Ȳ − b1X̄ + b1X] = V [Ȳ + b1(X − X̄)].

One can verify that

Cov[Ȳ , b1] = E

(
ε̄×

∑
(Xi − X̄)εi∑
(Xi − X̄)2

)
=

∑
(Xi − X̄)σ2

n
∑

(Xi − X̄)2
= 0.
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Then,

V [µ̂X ] =
σ2

n
+ (X − X̄)2 σ2

∑
(Xi − X̄)

2 = σ2

(
1

n
+

(X − X̄)2

∑
(Xi − X̄)

2

)
.

Therefore ,

µ̂X ∼ N

(
µX , σ2

(
1

n
+

(X − X̄)2

∑
(Xi − X̄)

2

))
.

The GPQ for µX is

RµX
= µ̂X − µ̂X − µX

σ
√

1
n

+ (X−X̄)2∑
(Xi−X̄)

2

× σ

√
1

n
+

(X − X̄)2

∑
(Xi − X̄)2

× sy

SY

, (2.5)

= µ̂X − Z√
S2

Y /σ2
× sy

√
1/n + (X − X̄)2/

∑
(Xi − X̄)

2
,

= µ̂X − Tn−2

√
(n/(n− 2))s2

y(1/n + (X − X̄)2/
∑

(Xi − X̄)
2
),

which gives the 100(1− γ) percent GCI for µX as
[
µ̂X − tn−2,γ/2

√
V̂ (µ̂X), µ̂X + tn−2,γ/2

√
V̂ (µ̂X)

]
,

where tn−2,γ/2 is the 100(1− γ/2)th percentile of Tn−2 and

V̂ (µ̂X) = (n/(n− 2)) s2
y

(
1/n + (X − X̄)2/

∑
(Xi − X̄)

2
)

.

2.2 Error distribution is normal with zero mean

and varying dispersion

Consider the model

Yi = β0 + β1Xi + εi, where i = 1, 2, . . . , n.

We assume independent εi ∼ N(0, σ2
i ), where σ2

i are not necessarily equal. Het-

erogeneous error variance is often observed in practice (Gujarati; 1995). In matrix

notation, we can express the model as

Y = Xβ + ε,
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where

Y =




Y1

Y2

...

Yn




, X =




1 X1

1 X2

...

1 Xn




, β =


β1

β2


 , ε =




ε1

ε2

...

εn




.

We assume that ε ∼ Nn(0, V ), where

V =




σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
n




.

Often it is observed that variability increases as X increases. If we assume σ2
i = σ2X2

i ,

where σ2 is a constant, we can make the following transformation

Yi

Xi

=
β0

Xi

+ β1 +
εi

Xi

or,

Ýi = β0X́i + β1 + έi.

We may rewrite the above expression as

Ýi = β1 + β0X́i + έi. (2.6)

Now, έi ∼ N(0, σ2). Thus homoscedasticity is maintained in the model (2.6) and it

becomes the usual estimation problem in simple linear regression with constant error

variance and non-stochastic X. For notational simplicity consider Ýi as Yi, X́i as Xi

and έi as εi. The maximum likelihood estimators for β0, β1 and σ2 are

b0 =

∑
(Xi − X̄)Yi∑
(Xi − X̄)

2 , b1 = Ȳ − b0X̄ and S2
Y =

∑
(Yi − Ŷi)

2

n
,

where X̄ =
∑

Xi/n, Ȳ =
∑

Yi/n and Ŷi = b1 + b0Xi. These estimators are

distributed as

b1

b0


 ∼ N2





β1

β0


 , σ2




1
n

+ X̄2
∑

(Xi−X̄)
2

−X̄∑
(Xi−X̄)

2

−X̄∑
(Xi−X̄)

2
1∑

(Xi−X̄)
2






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and

nS2
Y

σ2
∼ χ2

n−2.

The GPQs for β0, β1 and σ2 are obtained as before:

Rβ0 = b0 − b0 − β0
σ√∑

(Xi−X̄)
2

× σ√∑
(Xi − X̄)

2
× sy

SY

, (2.7)

Rβ1 = b1− b1 − β1

σ

√
1/n + X̄2/

∑
(Xi − X̄)

2
× σ

√
1/n + X̄2/

∑
(Xi − X̄)

2× sy

SY

, (2.8)

Rσ2 =
σ2

S2
Y

× s2
y, (2.9)

where s2
y is observed value of S2

Y .

2.3 Heteroscedasticity in two different regimes

Often data are collected in two different regimes, for example, the pre-depression

period and the depression period. The dispersion in error terms remains the same

within the regime but varies between regimes. Consider the model

Yi = β0 + β1Xi + εi; i = 1, 2, . . . , n,

where εi is normally distributed with zero mean and

V ar(εi) =





σ2
1 for i = 1, 2, . . . , n1,

σ2
2 for i = n1 + 1, n1 + 2, . . . , n.

(2.10)

In matrix notation

Y = Xβ + ε,

here ε ∼ Nn(0
¯
, V ), where

V =


σ2

1In1 0
¯

0
¯

σ2
2In−n1


 .
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2.3.1 GCIs for β0 and β1 when σ2
1 and σ2

2 are known

When σ2
1 and σ2

2 are known, the estimation problem is straightforward. The general-

ized least square estimates of regression parameters are obtained by

b = (b0(X, Y ), b1(X,Y ))′ = (X ′V −1X)−1X ′V −1Y,

which follows a bivariate normal distribution as

b ∼ N2

(
β, (X ′V −1X)−1

)
.

Suppose

(X ′V −1X)−1 =


 g1(X, σ2

1, σ
2
2) g12(X, σ2

1, σ
2
2)

g12(X, σ2
1, σ

2
2) g2(X, σ2

1, σ
2
2)


 ,

where g1(X, σ2
1, σ

2
2) = V ar(b0), g2(X, σ2

1, σ
2
2) = V ar(b1) and g12(X, σ2

1, σ
2
2) = Cov(b0, b1).

The GPQ for β0 and β1 are respectively:

Rβ0 = b0(X, y)− b0(X, Y )− β0

(g1(X, σ2
1, σ

2
2))

1/2
× (

g1(X, σ2
1, σ

2
2)

)1/2

= b0(X, y)− Z × (
g1(X, σ2

1, σ
2
2)

)1/2
(2.11)

and

Rβ1 = b1(X, y)− b1(X, Y )− β1

(g2(X, σ2
1, σ

2
2))

1/2
× (

g2(X, σ2
1, σ

2
2)

)1/2

= b1(X, y)− Z × (
g2(X, σ2

1, σ
2
2)

)1/2
, (2.12)

where Z is N(0, 1). Let n2 = n−n1 and introduce j such that i = n1+1, n1+2, ......, n

is the same as j = 1, 2, ......, n2. Then g1 and g2 can be expressed as

g1(X, σ2
1, σ

2
2) =

∑
Xi

2

σ2
1

+
∑

Xj
2

σ2
2

(n1

σ2
1

+ n2

σ2
2
)(

∑
Xi

2

σ2
1

+
∑

Xj
2

σ2
2

)− (n1X̄1

σ2
1

+ n2X̄2

σ2
2

)
2 ,

g2(X, σ2
1, σ

2
2) =

n1

σ2
1

+ n2

σ2
2

(n1

σ2
1

+ n2

σ2
2
)(

∑
Xi

2

σ2
1

+
∑

Xj
2

σ2
2

)− (n1X̄1

σ2
1

+ n2X̄2

σ2
2

)
2 ,
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where X̄1 =
∑

Xi/n1 and X̄2 =
∑

Xj/n2. The generalized (1 − α)% confidence

intervals for β0 and β1 are, respectively

[
b0(X, y)− Zα/2 ×

(
g1(X, σ2

1, σ
2
2)

)1/2
, b0(X, y) + Zα/2 ×

(
g1(X, σ2

1, σ
2
2)

)1/2
]

and

[
b1(X, y)− Zα/2 ×

(
g2(X, σ2

1, σ
2
2)

)1/2
, b1(X, y) + Zα/2 ×

(
g2(X, σ2

1, σ
2
2)

)1/2
]
.

2.3.2 GCIs for β0 and β1 when σ2
1 and σ2

2 are unknown

When σ2
1 and σ2

2 are unknown, we propose weighted estimators for the regression

parameters. First, independent estimates of regression parameters for the two regimes

are obtained using the least square method and then weighted average of the estimates

give the proposed estimates for the combined sample.

Suppose b
(i)
0 , b

(i)
1 are least square estimates of β0 and β1 respectively and σ̂2

i = S2
i is

the error mean square for regime i, where i = 1, 2. The proposed weighted estimator

of β0 is

b0 = w1b
(1)
0 + (1− w1)b

(2)
0 ,

where w1 is the weight for regime 1 and it is determined such that V ar(b0) is minimum.

Now,

V ar(b0) = w2
1V ar

(
b
(1)
0

)
+ (1− w1)

2V ar
(
b
(2)
0

)
= w2

1σ
2
1f(X1) + (1− w1)

2σ2
2f(X2)

where

f(X) =
1

n
+

X̄2

∑
(Xi − X̄)2

,

X1 = (X1, X2, . . . , Xn1) and X2 = (Xn1+1, Xn1+2, . . . , Xn). Differentiating V ar(b0)

with respect to w1 and then equating it to 0 we get

2w1σ
2
1f(X1)− 2(1− w1)σ

2
2f(X2) = 0,
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which gives

w1 =
σ2

2f(X2)

σ2
1f(X1) + σ2

2f(X2)
.

The estimate is given by

ŵ1 =
s2
2f(X2)

s2
1f(X1) + s2

2f(X2)
,

where s2
1 and s2

2 are the observed value of the error mean squares S2
1 =

∑
(Yi−Ŷi)

2

n1−2
and

S2
2 =

∑
(Yj−Ŷj)

2

n2−2
, respectively.

Therefore,

b0 = ŵ1b
(1)
0 + (1− ŵ1)b

(2)
0 .

Using (2.3) the GPQ for β0 for regime i is

R
β

(i)
0

= b
(i)
0 − b

(i)
0 − β0

σi

√
f(Xi)

× σi

√
f(Xi)× si

Si

= b
(i)
0 − Tni−2 × si

√
f(Xi). (2.13)

Therefore, the GPQ for β0 for combined sample is

Rβ0 = ŵ1Rβ
(1)
0

+ (1− ŵ1)Rβ
(2)
0

. (2.14)

For observed y of Y , Rβ0 is equal to β0 and its distribution is independent of any

unknown parameters. The 100α/2th and 100(1 − α/2)th percentiles of Rβ0 form a

100(1− α) percent GCI for it. The percentiles can be obtained through simulation.

Similarly, the GPQ for β1 is

Rβ1 = δ̂1Rβ
(1)
1

+ (1− δ̂1)Rβ
(2)
1

, (2.15)

where R
β

(i)
1

is the GPQ for β1 for regime i, i = 1, 2. Now, R
β

(i)
1

is defined as

R
β

(i)
1

= b
(i)
1 − b

(i)
1 − β1

σi

√
f ∗(Xi)

× σi

√
f ∗(Xi)× si

Si

= b
(i)
1 − Tni−2 × si

√
f ∗(Xi), (2.16)
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where

f ∗(X) =
1∑

(Xi − X̄)
2

and δ̂1 is the estimated weight which is defined as

δ̂1 =
s2
2f
∗(X2)

s2
1f
∗(X1) + s2

2f
∗(X2)

.

The GCI for β1 can then be obtained by getting the percentiles of Rβ1 through

simulation.

The GPQ for σ2
i is

Rσ2
i

=
σ2

i

S2
i

× s2
i =

(ni − 2)s2
i

χ2
ni−2

. (2.17)

2.4 Testing equality of corresponding regression

coefficients under heteroscedasticity

Consider the regression model





Yi = β10 + β11Xi + εi, i = 1, 2, . . . , n1,

Yj = β20 + β21Xj + εj, j = 1, 2, . . . , n2,
(2.18)

where n2 = n − n1 with εi iid N(0, σ2
1) and εj iid N(0, σ2

2). Also, εi and εj are

independent.

We would like to test the hypotheses

H01 : β10 = β20 against H11 : β10 6= β20 and

H02 : β11 = β21 against H12 : β11 6= β21.

To test the hypotheses, we propose GPQs for the difference of the corresponding

regression coefficients of two regimes. Our proposed GPQs can be used efficiently

in testing the hypotheses irrespective of the sample sizes of the regimes. We will
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illustrate the construction of the GPQ for β10 − β20. The GPQ for β11 − β21 can be

obtained in a similar fashion.

We know that

b10(X1, Y1) ∼ N
(
β10, σ

2
1f(X1)

)
, b20(X2, Y2) ∼ N

(
β20, σ

2
2f(X2)

)
,

where,

f(X) =
1

n
+

X̄2

∑
(Xi − X̄)2

,

Y1 = (Y1, Y2, . . . , Yn1), Y2 = (Yn1+1, Yn1+2, . . . , Yn), X1 = (X1, X2, . . . , Xn1) and

X2 = (Xn1+1, Xn1+2, . . . , Xn).

Again, (see Appendix A.1)

(n1 − 2)S2
1

σ2
1

∼ χ2
n1−2 and

(n2 − 2)S2
2

σ2
2

∼ χ2
n2−2,

where S2
1 =

∑
(Yi−Ŷi)

2

n1−2
and S2

2 =
∑

(Yj−Ŷj)
2

n2−2
are the error mean squares for regimes

1 and 2, respectively. Further, these four random variables b10, b20, S2
1 and S2

2 are

independent of each other, since bi0 and S2
i , i = 1, 2, are independent of each other

(Appendix A.2) and the samples from the two regimes are independent.

Therefore,

b10(X1, Y1)− b20(X2, Y2) ∼ N
(
β10 − β20, σ

2
1f(X1) + σ2

2f(X2)
)
.

The proposed GPQ for β10 − β20 is

Rβ10−β20 = b10(X1, y1)− b20(X2, y2)−
(

b10(X1, Y1)− b20(X2, Y2)− (β10 − β20)

(σ2
1f(X1) + σ2

2f(X2))1/2

)

×
(

σ2
1f(X1)

s2
1

S2
1

+ σ2
2f(X2)

s2
2

S2
2

)1/2

. (2.19)

Then,

Rβ10−β20 = b10(X1, y1)− b20(X2, y2)− Z

(
s2
1f(X1)

S2
1/σ

2
1

+
s2
2f(X2)

S2
2/σ

2
2

)1/2
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with Z ∼ N(0, 1).

Further, we have

Rβ10−β20 = b10(X1, y1)− b20(X2, y2)− Z

(
(n1 − 2)s2

1f(X1)

χ2
n1−2

+
(n2 − 2)s2

2f(X2)

χ2
n2−2

)1/2

= b10(X1, y1)− b20(X2, y2)− Z
(

χ2
n1−2+χ2

n2−2

n1+n2−4

)1/2
×

(
χ2

n1−2 + χ2
n2−2

n1 + n2 − 4

)1/2

×
(

(n1 − 2)s2
1f(X1)

χ2
n1−2

+
(n2 − 2)s2

2f(X2)

χ2
n2−2

)1/2

,

and finally,

Rβ10−β20 = b10(X1, y1)− b20(X2, y2)− Tn1+n2−4

×
(

1

n1 + n2 − 4

(
(n1 − 2)s2

1f(X1)

B
+

(n2 − 2)s2
2f(X2)

1−B

))1/2

,(2.20)

where

B =
χ2

n1−2

χ2
n1−2 + χ2

n2−2

∼ Beta(
n1 − 2

2
,
n2 − 2

2
).

We have seen from (2.19) for observed sample Rβ10−β20 is equal to β10 − β20. We also

observe that its distribution is independent of any unknown parameters.

Similarly, the proposed GPQ for β11 − β21 is

Rβ11−β21 = b11(X1, y1)− b21(X2, y2)−
(

b11(X1, Y1)− b21(X2, Y2)− (β11 − β21)

(σ2
1f

∗(X1) + σ2
2f

∗(X2))1/2

)

×
(

σ2
1f

∗(X1)
s2
1

S2
1

+ σ2
2f

∗(X2)
s2
2

S2
2

)1/2

, (2.21)

where

f ∗(X) =
1∑

(Xi − X̄)
2 .

Then,

Rβ11−β21 = b11(X1, y1)− b21(X2, y2)− Tn1+n2−4

×
(

1

n1 + n2 − 4

(
(n1 − 2)s2

1f
∗(X1)

B
+

(n2 − 2)s2
2f
∗(X2)

1−B

))1/2

.(2.22)
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The percentiles of Rβ10−β20 and Rβ11−β21 would give the GCIs for β10−β20 and β11−β21

respectively. The percentiles can be obtained using simulation.

The generalized p-values for testing the equality of intercepts and slopes are respec-

tively

Pβ10−β20 = 2 min {P (Rβ10−β20 ≥ 0), P (Rβ10−β20 ≤ 0)} (2.23)

and

Pβ11−β21 = 2 min {P (Rβ11−β21 ≥ 0), P (Rβ11−β21 ≤ 0)} . (2.24)



Chapter 3

Generalized Inference for Multiple

Linear Regression Parameters

In this chapter we make generalized inference on parameters of a multiple linear

regression model for a fixed set of values of the explanatory variables. Different

assumptions are made about the error distribution. Consider the multiple linear

regression model

Yj = β1X1j + β2X2j + . . . + βpXpj + εj, j = 1, 2, . . . , n. (3.1)

Here Yj is the response variable for the jth set of values of (X1, X2, . . . , Xp) and εj

is the corresponding random error term. Also, βi, i = 1, 2, . . . , p represent a total

of p unknown parameters to be estimated. Intercept can be included in the model

by defining X1j = 1 for all j. In section 3.1, we assume iid normal errors with

zero mean and constant variance. Then, we construct the generalized confidence

region for the regression parameters’ vector and generalized confidence interval for

the regression coefficients. We also construct generalized confidence interval for the

dispersion parameter. In section 3.2, heteroscedasticity in error terms is considered.

We assume that variability in error terms is due to the measurement errors in one

particular explanatory variable. Multivariate data from two different regimes with

heteroscedasticity are considered in section 3.3. As in the simple linear regression

case, we assume that the regression coefficients remain the same for the two regimes

23
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and that the error variance is stationary within the regime but different between

regimes. In such case, we propose generalized confidence regions and confidence in-

tervals for the regression parameters’ vector and regression coefficients, respectively.

In section 3.4, we test the equality of the sets regression coefficients of two regimes

under heteroscedasticity. Chow (1960) proposed a test to do this task in the ho-

moscedastic case. Later, Toyoda (1974) extended the Chow test for heteroscedastic

regimes. He showed that the test is appropriate when the regimes’ error variances

are equal. Under heteroscedasticity the test works well if at least one regime has

large sample size. If both regimes have small sample sizes, its level of significance is

affected greatly even for moderate heteroscedasticity. For this multivariate Behrens-

Fisher problem we propose a generalized test variable that can be used efficiently in

testing the equality of the sets regression coefficients of the two regimes irrespective

of their sample sizes. The generalized p-value for this test is given. We construct the

generalized confidence region for the difference of the two sets of regression coefficients

and then, the generalized confidence intervals for elements of that vector. Note that

in the definition of GTV, given in section 1.1, the third property refers to the case

where θ ∈ R. For the case where θ ∈ Rn, the concept of monotonocity needs some

clarifications since the concept of order is not clearly defined in Rn. Let, the norm of

a vector x ∈ Rn is ‖ x ‖2
A= x′Ax, where A is a positive definite matrix. We consider

that the vector x is less than the vector y ∈ Rn (x < y) if

‖ x ‖A<‖ y ‖A,

for any positive definite matrix A. Thus, a real valued function over Rn, say, f(x),

x ∈ Rn is considered to be non-decreasing if for all x1 < x2 ∈ Rn we have

f(x1) ≤ f(x2).
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3.1 Error terms are normal random variables with

zero mean and constant variance

Suppose error terms εj, j = 1, 2, . . . , n are iid normal with zero mean and constant

variance σ2. Defining

Y =




Y1

Y2

...

Yn




, β =




β1

β2

...

βp




, X =




X11 X21 . . . Xp1

X12 X22 . . . Xp2

...
...

. . .
...

X1n X2n . . . Xpn




and ε =




ε1

ε2

...

εn




,

the model in (3.1) can be written in matrix notation as

Y = Xβ + ε, (3.2)

where X has full column rank.

3.1.1 Generalized confidence region (GCR) for β

Given model (3.2), the least squares estimator for β is

β̂ = b = (X ′X)−1X ′Y, where b = (b1, b2, . . . , bp)
′,

and given the normality assumption on ε,

b ∼ Np

(
β, σ2(X ′X)−1

)

and by the result in Appendix A.1,

(n− p)S2

σ2
∼ χ2

n−p,

where

S2 = (Y − Ŷ )′(Y − Ŷ )/(n− p) =
n∑

j=1

(Yj − Ŷj)
2/(n− p) = Error MS.

Let us define

T =
(
s2(X ′X)−1

)−1/2
b,
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Λ =
(
s2(X ′X)−1

)−1/2
σ2(X ′X)−1

(
s2(X ′X)−1

)−1/2
,

θ =
(
s2(X ′X)−1

)−1/2
β,

where s2 is the observed value of S2.

Therefore,

T ∼ Np(θ, Λ).

It implies that

U = (T − θ)′Λ−1(T − θ) ∼ χ2
p.

One can verify that

U =
1

σ2
(b− β)′(X ′X)(b− β).

Further, let

V =
S2

σ2s2
.

One can verify that

V ∼ 1

(n− p)s2
χ2

n−p .

Again, U and V are independent of each other (see Appendix A2). Therefore,

F =
U/p

V
=

1
σ2 (b− β)′(X ′X)(b− β)/p

S2

σ2s2

= s2Fp, n−p, (3.3)

where Fp, n−p has Fishers’s distribution with (p, n−p) degrees of freedom. Note that,

for given Y and β the distribution of F is free of the nuisance parameter σ2. Also,

under H0 : β = β0, the observed value of F is

f0 =
1

p
(b− β0)

′(X ′X)(b− β0) (3.4)
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that does not depend on σ2. Further, the observed value of F is

f =
1

p
(b− β)′(X ′X)(b− β),

a positive definite quadratic form in (b−β). For given y, f is a non-decreasing function

of β. It implies that P (F ≥ f) is stochastically non-increasing in β. Therefore, F is

the generalized test variable for testing H0 : β = β0. The generalized p-value is

P (F ≥ f0).

Now, this generalized test variable F can be used to obtain a GCR for β. In fact, in

multiparameter problems, generalized pivotal quantities are difficult or impossible to

obtain. Instead, the distribution of a generalized test variable can be used to derive a

generalized confidence region (Gamage et al; 2004). Let Fp, n−p, 1−α is the 100(1−α)th

percentile of Fisher’s distribution with (p, n− p) degrees of freedom. Then

P (F ≤ s2Fp, n−p, 1−α) = 1− α.

The 100(1− α) percent generalized confidence region (GCR) for the elements of β is

represented by the set of values of the vector b which satisfy the following inequality

(b− β)′(X ′X)(b− β) ≤ ps2Fp, n−p, 1−α. (3.5)

3.1.2 Generalized confidence interval (GCI) for βi

Suppose,

σ2(X ′X)−1 = σ2




d11 d12 . . . d1p

d21 d22 . . . d2p

...
...

. . .
...

dp1 dp2 . . . dpp




.

Denote the generalized pivotal quantity for βi by Rβi
. Then

Rβi
= bi − bi − βi

σ
√

dii

× σ
√

dii × sy

SY

, (3.6)
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where s2
y is the observed value of

S2
Y =

n∑
j=1

(Yj − Ŷj)
2/n.

Note that
nS2

Y

σ2 ∼ χ2
n−p. One can verify that

Rβi
= bi − Tn−p

√
n

n− p
s2

y dii , (3.7)

where Tn−p has a t-distribution with n− p degrees of freedom. We would like to con-

struct generalized confidence intervals for β′i s. There are p of them. If we construct

100(1 − α) percent generalized confidence intervals for each of them, the probabil-

ity that the p intervals will simultaneously be correct is at least (1 − pα). If p is

large, the set of generalized confidence intervals becomes relatively uninformative.

There are several approaches to maintain the overall confidence level to be at least

(1−α). Among them Bonferroni approach(Alt; 1982), Scheffe method (Scheffe; 1959)

and Working-Hotelling approach (Working and Hotelling; 1929) are widely used. For

simplicity we consider the Bonferroni technique of splitting α. We construct gener-

alized confidence intervals for β′i s each with confidence coefficient (1− α/p). In this

way we maintain the overall confidence level to be at least (1 − α). Therefore, the

100(1− α) percent joint generalized confidence intervals for β′i s are

(
bi − tn−p, α/2p

√
n

n− p
s2

y dii, bi + tn−p, α/2p

√
n

n− p
s2

y dii

)
,

where tn−p, α/2p is the 100(1−α/2p)
th percentile of Tn−p. The limitation of the Bonfer-

roni approach is that when p is large, it will give conservative results. In such case, the

other methods of maintaining overall confidence level can be applied in generalized

inference.
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3.1.3 GCI for dispersion parameter

The GPQ for σ2 is

Rσ2 =
σ2

S2
Y

× s2
y.

One can verify that

Rσ2 =
ns2

y

χ2
n−p

(3.8)

Therefore, a 100(1− γ) percent GCI for σ2 is
(

ns2
y

χ2
n−p,1−γ/2

,
ns2

y

χ2
n−p,γ/2

)
,

where χ2
n−p,1−γ/2

is the 100(1− γ/2)
th percentile of χ2

n−p.

3.2 Error distribution is normal with zero mean

and varying dispersion

Consider the model

Yj = β1X1j + β2X2j + . . . + βpXpj + εj, j = 1, 2, . . . , n.

We assume independent εj ∼ N(0, σ2
j ), where σ2

j are not necessarily equal. In matrix

notation

Y = Xβ + ε.

Here, we assume that ε ∼ Nn(0, V ), where

V =




σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
n




.

Often this heteroscedasticity in error variance is due to systematic errors in measure-

ments of one or more explanatory variables. For instance, suppose σ2
j = σ2X2

ij, where
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σ2 is a constant. We can make the following transformation to stabilize the error

variance:

Yj

Xij

= β1
X1j

Xij

+ β2
X2j

Xij

+ . . . + βi
Xij

Xij

+ . . . + βp
Xpj

Xij

+
εj

Xij

.

Or,

Y ′
j = β1X

′
1j + β2X

′
2j + . . . + βiX

′
ij + . . . + βpX

′
pj + ε′j, (3.9)

with X ′
ij = 1 for ∀j and ε′j ∼ N(0, σ2). Therefore, the model (3.9) becomes a

multiple linear regression model with normal and homoscedastic error term and non-

stochastic X. GCR for β and GCIs for βi and σ2 can be obtained as explained in

section 3.1.

3.3 Heteroscedasticity in two different regimes

Consider the model

Yj = β1X1j + β2X2j + . . . + βpXpj + εj, j = 1, 2, . . . , n,

where εj is normally distributed with zero mean and

V ar(εj) =





σ2
1 for j = 1, 2, . . . , n1

σ2
2 for j = n1 + 1, n1 + 2, . . . , n

(3.10)

i.e. σ2
1 and σ2

2 are error variances in the two different regimes. In matrix notation

Y = Xβ + ε,

where ε ∼ Nn(0
¯
, V ) and

V =


σ2

1In1 0
¯

0
¯

σ2
2In−n1


 .

3.3.1 GCR and GCI for regression coefficients when σ2
1 and

σ2
2 are known

For the known variance case, the least squares estimators of regression parameters

are

β̂ = b = (b1, b2, . . . , bp)
′ = (X ′V −1X)−1X ′V −1Y,
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and b follows a p-variate normal distribution:

b ∼ Np

(
β, (X ′V −1X)−1

)
.

Therefore,

(b− β)′(X ′V −1X)(b− β) ∼ χ2
p.

A 100(1 − γ) percent GCR for β is the set of values of b which satisfy the following

inequality

(b− β)′(X ′V −1X)(b− β) ≤ χ2
p, 1−γ/2

, (3.11)

where χ2
p, 1−γ/2

is the 100(1− γ/2)
th percentile of χ2

p distribution. Further, suppose

(X ′V −1X)−1 =




g11 g12 . . . g1p

g21 g22 . . . g2p

...
...

. . .
...

gp1 gp2 . . . gpp




,

where gkk is the variance of bk and gkk′ is the covariance of bk and bk′ , k 6= k′ =

1, 2, . . . , p. Then GPQ for βk is

Rβk
= bk − bk − βk√

gkk

×√gkk = bk − Z
√

gkk, (3.12)

where Z ∼ N(0, 1). Therefore, a 100(1 − γ) percent joint generalized confidence

intervals for βk s are

(
bk − Zγ/2p

√
gkk, bk + Zγ/2p

√
gkk

)
,

where Zγ/2p is the 100(1− γ/2p)
th percentile of Z.

3.3.2 GCR and GCI for regression coefficients when σ2
1 and

σ2
2 are unknown

Let us partition the model Y = Xβ + ε for the two regimes as

Y1

Y2


 =


X1

X2


 β +


ε1

ε2


 ,
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where Y1 is of order (n1 × 1) representing responses for the first regime,

Y2 is of order (n− n1 × 1) representing responses for the second regime,

X1 is the design matrix of order (n1 × p) for the first regime,

X2 is the design matrix of order (n− n1 × p) for the second regime,

β is the (p× 1) vector of regression coefficients,

ε1 is the (n1 × 1) error vector for regime 1 and

ε2 is the (n− n1 × 1) error vector for regime 2.

Then, we have in matrix notation the model for the ith regime

Yi = Xiβ + εi, i = 1, 2,

where εi ∼ Nni
(0
¯
, σ2

i Ini
). The generalized test variable for the ith regime is

Fi =

1
σ2

i
(bi − β)′(X ′

iXi)(bi − β)/p

S2
i

σ2
i s2

i

= s2
i Fp, ni−p, (3.13)

where s2
i is the observed value of S2

i = Error MS for regime i, Fp, ni−p has a F

distribution with (p, ni − p) degrees of freedom and

β̂i = bi = (bi1, bi2, . . . , bip)
′ = (X ′

iXi)
−1X ′

iYi, i = 1, 2.

Let us define

F = η1F1 + (1− η1)F2 = η1s
2
1Fp,n1−p + (1− η1)s

2
2Fp,n2−p.

η1 is determined in such a way that V ar(F ) is minimum. One can verify that

η̂1 =
s4
2V2

s4
1V1 + s4

2V2

,

where

Vi = V ar(Fp, ni−p) =
2(ni − p)2(ni − 2)

p(ni − p− 2)2(ni − p− 4)
for ni − p > 4, i = 1, 2.

Let Fγ satisfy Pr(F ≤ Fγ) = 1 − γ. We can obtain Fγ through simulation. Then

100(1 − γ) percent GCR for β is obtained by the set of values of the vectors b1 and

b2 which satisfy the following inequality

η̂1(b1 − β)′(X ′
1X1)(b1 − β) + (1− η̂1)(b2 − β)′(X ′

2X2)(b2 − β) ≤ pFγ. (3.14)
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Further, suppose

Cov(bi) = σ2
i (X

′
iXi)

−1 = σ2
i




di11 di12 . . . di1p

di21 di22 . . . di2p

...
...

. . .
...

dip1 dip2 . . . dipp




,

where σ2
i dikk is the variance of the least square estimator of βk and σ2

i dikk′ is the

covariance between the least square estimators of βk and βk′ , k 6= k′ = 1, 2, . . . , p for

ith regime. The generalized pivotal quantity for βk is

Rβk
= ŵkRβ

(1)
k

+ (1− ŵk)Rβ
(2)
k

, (3.15)

where R
β

(i)
k

is the GPQ for βk from the ith regime and

R
β

(i)
k

= bik − Tni−p × si

√
dikk. (3.16)

Here s2
i is the observed value of S2

i , the error mean square for regime i and

ŵk =
s2
2d2kk

s2
1d1kk + s2

2d2kk

is the estimated weight factor.

3.4 Testing equality of corresponding regression

coefficients under heteroscedasticity

In section 3.3 we consider the case where the regression coefficients remained the same

for the two regimes, only the error variances were different between regimes. In this

section, we like to test the equality of the regression coefficients of the two regimes

under heteroscedasticity. Consider the regression models





Y1j = β11X11j + β12X12j + . . . + β1pX1pj + ε1j, j = 1, 2, . . . , n1,

Y2j = β21X21j + β22X22j + . . . + β2pX2pj + ε2j, j = 1, 2, . . . , n2,
(3.17)
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where ε1j ∼ iid N(0, σ2
1) and ε2j ∼ iid N(0, σ2

2). In matrix notation





Y1 = X1β1 + ε1,

Y2 = X2β2 + ε2,

where βi = (βi1, βi2, . . . , βip)
′,

εi = (εi1, εi2, . . . , εini
)′ ∼ Nni

(0, σ2
i Ini

),

ε1 and ε2 are independent,

Yi = (Yi1, Yi2, . . . , Yini
)′ and

Xi is the design matrix of order (ni × p) for the ith regime.

The least squares estimators of the regression parameters for the ith regime is

β̂i = bi = (bi1, bi2, . . . , bip)
′ = (X ′

iXi)
−1X ′

iYi.

An unbiased estimator for the error variance σ2
i is S2

i , error mean square for regime i.

Further,


b1

b2


 ∼ N2p





β1

β2


 ,


σ2

1(X
′
1X1)

−1 0

0 σ2
2(X

′
2X2)

−1





 , (3.18)

and

S2
i (X

′
iXi)

−1

is the random matrix of order (p× p) for the ith regime, where (see Appendix A.1)

(ni − p)S2
i

σ2
i

∼ χ2
ni−p. (3.19)

We would like to test

H0 : β1 = β2 against H1 : β1 6= β2.

Suppose the observed value of S2
i is s2

i . Let us define

Z =
[
σ2

1(X
′
1X1)

−1 + σ2
2(X

′
2X2)

−1
]−1/2

[(b1 − b2)− (β1 − β2)] ,
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and

U =
s2
1

S2
1

× σ2
1(X

′
1X1)

−1 +
s2
2

S2
2

× σ2
2(X

′
2X2)

−1.

From (3.18),

Z ∼ Np(0, I).

The matrix U can be rewritten as

U =
s2
1

S2
1/σ

2
1

× (X ′
1X1)

−1 +
s2
2

S2
2/σ

2
2

× (X ′
2X2)

−1,

and then, from (3.19),

U =
(n1 − p)s2

1

χ2
n1−p

× (X ′
1X1)

−1 +
(n2 − p)s2

2

χ2
n2−p

× (X ′
2X2)

−1.

Now, define

TI = Z ′UZ = Z ′
(

(n1 − p)s2
1

χ2
n1−p

× (X ′
1X1)

−1 +
(n2 − p)s2

2

χ2
n2−p

× (X ′
2X2)

−1

)
Z. (3.20)

Clearly the distribution of TI is independent of any unknown parameters. Further,

for given y, the observed value of TI is

tI = [(b1 − b2)− (β1 − β2)]
′ u−1/2uu−1/2 [(b1 − b2)− (β1 − β2)]

= [(b1 − b2)− (β1 − β2)]
′ [(b1 − b2)− (β1 − β2)] ,

where

u =
[
σ2

1(X
′
1X1)

−1 + σ2
2(X

′
2X2)

−1
]

is the observed value of U . Under H0 the observed value of TI does not depend on any

unknown parameters. Further, for given y, tI is a positive definite quadratic form in

[(b1− b2)− (β1−β2)]. Therefore, tI is a non-decreasing function of β1−β2. It implies

that P (TI ≥ tI) is stochastically non-increasing in β1 − β2. Thus, TI is a generalized

test variable. The generalized p-value is

P (TI ≥ tI | H0). (3.21)
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Now, we will construct generalized confidence region for β1 − β2 based on the distri-

bution of the generalized test variable TI . Let tI1−γ satisfy that

P (TI ≤ tI1−γ ) = 1− γ.

Then, a 100(1− γ) percent generalized confidence region for the elements of β1 − β2

is represented by the set of values of the vector b1 − b2 which satisfy the following

inequality

[(b1 − b2)− (β1 − β2)]
′ [(b1 − b2)− (β1 − β2)] ≤ tI1−γ . (3.22)

In testing the hypothesis

H0 : β1k = β2k against H1 : β1k 6= β2k, k = 1, 2, . . . , p,

we use the GPQ for β1k − β2k as we did for the simple linear regression model. The

GPQ for β1k − β2k, denoted by Rβ1k−β2k
, is simply an extension of GPQs given in

(2.20) and (2.22). Now,

Rβ1k−β2k
= b1k(X1, y1)− b2k(X2, y2)− Tn1+n2−2p

×
(

1

n1 + n2 − 2p

(
(n1 − p)s2

1d1kk

B
+

(n2 − p)s2
2d2kk

1−B

))1/2

(3.23)

where s2
i is the observed value of S2

i = error mean square for regime i, S2
i dikk is an

unbiased estimator of the variance of bik and

B =
χ2

n1−p

χ2
n1−p + χ2

n2−p

∼ Beta

(
n1 − p

2
,
n2 − p

2

)
.

A joint 100(1−α) percent generalized confidence interval for β1k−β2k, k = 1, 2, . . . , p,

is obtained by computing individual generalized confidence interval for β1k−β2k each

with confidence coefficient (1− α/p) through simulation.
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Simulation Study

Simulation was carried out to study the performance of generalized confidence inter-

vals (GCIs) of linear regression coefficients and dispersion parameters and generalized

tests (GTs) for comparing regression coefficients for small and moderate sample sizes

3, 5, 10, 14, 15, 20, 30 and 60. Independent variables X were considered non-stochastic

but different assumptions about the error distribution were made. For a fixed sample

size, 10,000 samples were generated and the GCIs with typical 95 percent confidence

level were computed for each sample. The percentage of intervals that included the

true parameter was then obtained. For GTs, generalized p-value was computed for

each sample and then the proportion of rejecting null hypothesis was computed under

null and alternative hypothesis. In section 4.1, results are presented for simple linear

regression models and in section 4.2 results are given for the multivariate case. The

programs were written in R to run the simulation.

4.1 Simulation result for simple linear regression

model

Consider a simple linear regression model of the form

Yi = β0 + β1Xi + εi, i = 1, 2, ..., n

with X fixed and independent normal εi’s.

37
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For the classical case when εi ∼ N(0, σ2), we generated the observations y’s for

fixed X’s and different set of values of β0, β1 and σ2. The values of X’s are given in

Table 4.1. The values of X were randomly selected from numbers 1 to 1000 and then

those were fixed for the simulation study. Parameter values are presented in Table 3.2.

GCIs for β0, β1 and σ2 were computed using (2.3), (2.2) and (2.4), respectively, for

each sample obtained from the simulation scheme. Table 4.2 gives the percentages of

GCIs that include the true parameter. For each parameter, the observed confidence

level for GCI is close to the nominal 95 percent level even for small sample of size 3.

In case of heteroscedasticity εi ∼ N(0, σ2
i ), we assumed σ2

i = σ2X2
i . We used the

same set of values of β0, β1 and σ2 for simulation as in the earlier case. The GCIs

for β0, β1 and σ2 were obtained using (2.7), (2.8) and (2.9) respectively. Observed

confidence levels are presented in Table 4.3 for each parameter. As in the previous

case, the observed confidence level for each parameter is close to the nominal 95

percent level.

In situations when the data were collected over two different regimes and error

variance remained stationary within each regime but varied between regimes, we fixed

the error variance for the first regime to be σ2
1 = 4 and for the second regime to be

σ2
2 = 9. We also assumed that regime change did not affect the regression parameters

and we kept their values at β0 = 5 and β1 = 2. Then GCIs of the regression parameters

were computed when:

i. σ2
1 and σ2

2 were assumed known,

ii. σ2
1 and σ2

2 were assumed unknown and estimated by the error mean square

of the respective regime.

When variances were unknown, the GCIs of the regression parameters were obtained

using the proposed weighted generalized pivotal quantities (GPQs) given in (2.14)

and (2.15). Then the observed confidence levels of GCIs were calculated.

Tables 4.4 and 4.5 give the simulation results for the two cases where n1 and n2
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are the sample sizes of regime 1 and 2 respectively. In the known variance case,

the observed confidence levels of GCIs of the regression coefficients are close to the

nominal 95 percent level even when the regime sample sizes are small (Table 4.4).

Sample size difference of regimes has no impact in observed confidence levels.

When the regimes’ error variances are unknown, we observed that empirical con-

fidence levels are just below the typical 95 percent for overall sample size n =

n1 + n2 ≤ 20 (Table 4.5). When n is 14, the observed confidence level of GCIs

of the slope parameter is 94 percent for both equal and unequal sample sizes. Incre-

ments in sample sizes (n > 20) improve the confidence levels close to the nominal

level.

In testing the hypothesis of equality of regression coefficients in the two regimes,

we proposed the generalized pivotal quantities of their differences in (2.19) and (2.21).

The null and alternative hypotheses are

H01 : β10 = β20 against H11 : β10 6= β20 and

H02 : β11 = β21 against H12 : β11 6= β21.

For this simulation study, we set β10 = β20 = 5 and β11 = β21 = 2. We estimated the

proposed generalized confidence intervals (GCIs) as well as the classical confidence

intervals (CI) for β10−β20 and β11−β21 for each sample obtained from the simulation

scheme in homoscedastic and heteroscedastic settings. In the homoscedastic case, the

classical confidence intervals were obtained using the exact t distributions each with

n1 + n2 − 4 degrees of freedom. In the heteroscedastic case, the confidence intervals

were obtained using approximate t distributions (Schechtman and Sherman; 2007).

The approximate t statistic for comparing the slope parameters is

t =
b11(X1, Y1)− b21(X2, Y2)− (β11 − β21)

(S2
1f

∗(X1) + S2
2f

∗(X2))
1/2

,

where S2
1 and S2

2 are the error mean squares of the two regimes and

f ∗(X) =
1∑

(Xi − X̄)
2 .
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The degrees freedom of this t statistic is obtained by applying the Satterthwaite’s

approximation (Satterthwaite; 1941) which is

r =
(S2

1f
∗(X1) + S2

2f
∗(X2))

2

(S2
1f∗(X1))

2

n1−2
+

(S2
2f∗(X2))

2

n2−2

.

Similarly, the approximate t statistic can be obtained for comparing the intercepts of

the two regimes. Then, we computed the percentages of times we rejected the null

hypothesis for the generalized and classical tests and compare these values with the

nominal value of 5 percent. In the case of homoscedasticity, we set σ2
1 = σ2

2 = 4. For

heteroscedasticity, we considered two situations:

i. moderate heteroscedasticity (σ2
1 = 4 and σ2

2 = 9) and

ii. severe heteroscedasticity (σ2
1 = 4 and σ2

2 = 25).

Tables 4.6 and 4.7 give the simulation results. In the case of homoscedasticity, the

test is found to be conservative for small samples (n ≤ 14). As sample size increases,

the test attains the nominal significance level of 0.05 for n ≥ 20. In contrast, the

classical test preserves the nominal level for all sample sizes considered. No impact

on the significance levels was observed due to the sample size differences of regimes.

In the case of moderate heteroscedasticity, we observed that when the regimes’

sample sizes are equal, the significance levels of the proposed generalized tests are

close to the nominal 0.05 level for n ≥ 14. For n = 14 (n1 = 7 and n2 = 7),

the observed significance level of the test is 0.04 for comparing the slopes of the

two regimes. When the regimes’ sample sizes are unequal, the test is found to be

conservative if overall sample size is small (≤ 14) and there exists large difference

in regimes’ sample sizes. When regimes’ sample sizes are 4 and 10, the observed

significance level of the test is 0.02 for comparing the slope. As sample size increases,

the test preserves the significance levels close to the nominal level for n ≥ 20. On the

other hand, in the case of moderate heteroscedasticity, the classical test based on the

equal variance assumption gives significance level close to the nominal level when the

regimes’ sample sizes are equal. When regimes’ sample sizes are unequal, the classical
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test is either too conservative or too liberal. The classical test is found to be liberal

when the large sample has smaller error variance than that of the small sample and is

found to be conservative in the opposite case. Even when overall sample size is large

(≥ 30), the classical test is conservative if the regimes’ sample sizes differ significantly

unlike the proposed test.

In the severe heteroscedastic case, the similar results are obtained for the general-

ized test as in the case of moderate heteroscedasticity. But the classical test is found

to be conservative or liberal in most of the cases of the severe heteroscedasticity,

except when the overall sample size is large (n ≥ 30) and the regimes’ sample sizes

are approximately equal. In the heteroscedastic cases, when there is difference in

regimes’ sample sizes, the generalized test is comparatively better than the classical

test in terms of empirical significance level.

Table 4.8 gives the observed significance levels of the proposed generalized test

and the test based on approximate t distributions in testing equality of the regression

coefficients in the two regimes in the moderate and severe heteroscedastic cases. We

observed that the approximate t test preserves the nominal 5 percent significance

level for all sample sizes considered in the heteroscedastic cases.

The powers of the generalized test and the classical test in testing equality of the

slope parameters of the two regimes in the heteroscedastic cases are presented in Table

4.9. Figures 4.1 and 4.2 show the power curves of the two tests in testing equality

of the slope parameters of the two regimes with severe heteroscedasticity (σ2
1 = 4,

σ2
2 = 25) for different sample sizes, respectively. We observed that the generalized test

gives higher power for overall sample size n ≥ 14. In particular, Figure 4.3 illustrates

the behaviour of the power of both tests in the severe heteroscedastic case for n = 20

and it is clear that the proposed test performs better than the classical test. In the

case of moderate heteroscedasticity, both tests yield similar power for n ≥ 20.

The size and power of the proposed test and the test based on approximate t in

testing equality of the slope parameters in heteroscedastic cases (from moderate to
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severe) are presented in Table 4.10 for n1 = 15 and n2 = 5. Here, fixed X values

considered in simulation are 10, 10.5, 11,..., 17 for regime 1 and 10, 10.5, 11,..., 12

for regime 2. We observed that the size and the power of the generalized test are

comparable with that of the approximate t test. The observed level of significance

(size) of the generalized test is close to the nominal 5 percent level for the moderate

and the severe heteroscedastic cases. When the slope difference is 8, the power of

the generalized test is 1 for the moderate heteroscedasticity (σ2
1 = 1, σ2

2 = 2) and it

is 0.98 for the severe heteroscedasticity (σ2
1 = 1, σ2

2 = 4). In the extreme case when

σ2
1 = 1, σ2

2 = 8, the power is 0.838 that is also quite satisfactory.



Chapter 4. Simulation Study 43

Table 4.1: Fixed X values for different sample sizes

Sample sizes
3 5 10 14 20 30 60

278 195 304 478 616 753 177 932
99 751 838 896 304 637 767 756
735 209 747 657 519 850 621 887

701 535 71 756 509 984 904
127 280 975 357 919 185 514

711 915 224 855 664 605
426 961 791 852 921 259
140 257 294 395 168 758
235 544 876 720 528 926
270 189 703 315 800 776

668 582 542 400 858
512 811 768 288 429
668 5 121 516 744
866 511 871 815 330

459 883 201 435
496 557 66 298
219 295 296 40
64 649 839 321
207 778 386 255
854 924 802 41

483 222 311
298 537 126
193 850 122
568 266 645
498 357 747
871 250 147
55 17 93
378 62 511
417 134 883
860 300 495
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Table 4.2: Empirical confidence levels for 95% generalized confidence intervals of the
classical linear regression parameters

Observed confidence level for
β0 β1 σ2 Sample size β0 β1 σ2

5 2 4 3 0.951 0.950 0.950
5 0.951 0.953 0.953
14 0.953 0.954 0.946
30 0.950 0.951 0.950

5 0.5 4 3 0.952 0.953 0.951
5 0.952 0.952 0.950
14 0.949 0.950 0.948
30 0.951 0.953 0.950

5 0.5 0.25 3 0.949 0.948 0.949
5 0.949 0.953 0.948
14 0.950 0.950 0.950
30 0.952 0.950 0.949

10 -2 0.0025 3 0.949 0.947 0.949
5 0.949 0.949 0.952
14 0.947 0.947 0.947
30 0.948 0.948 0.950
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Table 4.3: Observed confidence levels for 95% generalized confidence intervals of the
classical linear regression parameters in the case of heteroscedasticity

Observed confidence level for
β0 β1 σ2 Sample size β0 β1 σ2

5 2 4 3 0.945 0.946 0.947
5 0.948 0.950 0.947
14 0.950 0.954 0.947
30 0.949 0.951 0.952

5 0.5 4 3 0.952 0.952 0.948
5 0.952 0.951 0.947
14 0.947 0.948 0.948
30 0.950 0.950 0.953

5 0.5 0.25 3 0.952 0.950 0.951
5 0.951 0.953 0.953
14 0.950 0.951 0.952
30 0.947 0.952 0.944

10 -2 0.0025 3 0.947 0.949 0.944
5 0.947 0.946 0.948
14 0.953 0.950 0.951
30 0.951 0.952 0.946
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Table 4.4: Observed confidence levels for 95% generalized confidence intervals of the
simple linear regression coefficients when error variances σ2

1 = 4 and σ2
2 = 9 of the

two regimes are assumed known

Observed confidence level for
n1 n2 β0 β1

5 5 0.951 0.954
7 7 0.951 0.952
10 10 0.952 0.951
15 15 0.953 0.956
30 30 0.948 0.950

6 4 0.953 0.953
4 10 0.950 0.948
8 12 0.951 0.949
15 5 0.951 0.950
5 15 0.949 0.948
13 17 0.949 0.949
26 34 0.948 0.950
12 48 0.950 0.951
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Table 4.5: Observed confidence levels for 95% generalized confidence intervals of the
simple linear regression coefficients when error variances σ2

1 = 4 and σ2
2 = 9 of the

two regimes are assumed unknown

Observed confidence level for
n1 n2 β0 β1

5 5 0.923 0.927
7 7 0.933 0.939
10 10 0.939 0.939
15 15 0.943 0.947
30 30 0.945 0.946

6 4 0.919 0.919
4 10 0.942 0.941
8 12 0.940 0.935
15 5 0.931 0.933
5 15 0.934 0.932
13 17 0.940 0.940
26 34 0.944 0.945
12 48 0.943 0.944
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Table 4.6: Observed significance levels of the generalized and classical test in testing
the equality of the regression coefficients in homoscedastic case (σ2

1 = σ2
2 = 4)

at 0.05 level of significance

Observed significance level for
Generalized test Classical test

n1 n2 β10 = β20 β11 = β21 β10 = β20 β11 = β21

5 5 0.027 0.022 0.048 0.046
7 7 0.031 0.031 0.052 0.053
10 10 0.040 0.035 0.054 0.054
15 15 0.040 0.046 0.049 0.049
30 30 0.054 0.050 0.049 0.047

6 4 0.018 0.030 0.052 0.050
4 10 0.022 0.025 0.052 0.052
8 12 0.037 0.038 0.052 0.053
15 5 0.034 0.034 0.052 0.053
5 15 0.041 0.040 0.048 0.047
13 17 0.041 0.041 0.048 0.050
26 34 0.043 0.045 0.054 0.052
12 48 0.049 0.045 0.050 0.052
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Table 4.7: Observed significance levels of the generalized and classical tests in testing
the equality of the regression coefficients in heteroscedastic cases at 0.05 level of
significance

Observed significance level for
Generalized test Classical test

σ2
1 σ2

2 n1 n2 β10 = β20 β11 = β21 β10 = β20 β11 = β21

4 9 5 5 0.017 0.019 0.047 0.056
7 7 0.036 0.040 0.040 0.055
10 10 0.037 0.038 0.038 0.043
15 15 0.043 0.045 0.041 0.053
30 30 0.046 0.045 0.050 0.050

6 4 0.023 0.038 0.073 0.099
4 10 0.019 0.019 0.030 0.025
8 12 0.032 0.036 0.027 0.027
15 5 0.038 0.041 0.096 0.110
5 15 0.036 0.043 0.012 0.013
13 17 0.041 0.044 0.038 0.037
26 34 0.042 0.041 0.034 0.034
12 48 0.045 0.042 0.012 0.013

4 25 5 5 0.026 0.033 0.056 0.076
7 7 0.043 0.045 0.071 0.086
10 10 0.039 0.045 0.032 0.039
15 15 0.050 0.047 0.032 0.048
30 30 0.051 0.046 0.053 0.052

6 4 0.036 0.050 0.122 0.152
4 10 0.027 0.023 0.021 0.017
8 12 0.033 0.033 0.024 0.015
15 5 0.042 0.039 0.178 0.199
5 15 0.028 0.032 0.003 0.002
13 17 0.044 0.043 0.029 0.033
26 34 0.051 0.047 0.022 0.021
12 48 0.055 0.048 0.002 0.003
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Table 4.8: Observed significance levels of the generalized test and the test based
on approximate t distribution in testing the equality of the regression coefficients in
heteroscedastic cases at 0.05 level of significance

Observed significance level for
Generalized test Test based on approx. t

σ2
1 σ2

2 n1 n2 β10 = β20 β11 = β21 β10 = β20 β11 = β21

4 9 5 5 0.017 0.019 0.043 0.043
7 7 0.036 0.040 0.044 0.048
10 10 0.037 0.038 0.052 0.051
15 15 0.043 0.045 0.054 0.053
30 30 0.046 0.045 0.047 0.050

6 4 0.023 0.038 0.055 0.066
4 10 0.019 0.019 0.049 0.052
8 12 0.032 0.036 0.046 0.049
15 5 0.038 0.041 0.059 0.061
5 15 0.036 0.043 0.060 0.056
13 17 0.041 0.044 0.051 0.053
26 34 0.042 0.041 0.049 0.053
12 48 0.045 0.042 0.051 0.049

4 25 5 5 0.026 0.033 0.048 0.054
7 7 0.043 0.045 0.051 0.053
10 10 0.039 0.045 0.049 0.050
15 15 0.050 0.047 0.049 0.047
30 30 0.051 0.046 0.048 0.053

6 4 0.036 0.050 0.063 0.055
4 10 0.027 0.023 0.049 0.050
8 12 0.033 0.033 0.051 0.048
15 5 0.042 0.039 0.064 0.064
5 15 0.028 0.032 0.051 0.052
13 17 0.044 0.043 0.049 0.044
26 34 0.051 0.047 0.048 0.052
12 48 0.055 0.048 0.041 0.049
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Table 4.9: Power of the tests in testing the equality of the slope parameters (β11 =
β21 = 2) in the two regimes with heteroscedasticity at 0.05 level of significance

Slope difference (β11 − β21)
Test σ2

1 σ2
2 n1 n2 -0.05 -0.03 -0.025 0 0.025 0.03 0.05

GCI 4 9 6 4 0.448 0.214 0.156 0.040 0.168 0.208 0.454
4 10 1 0.950 0.892 0.028 0.905 0.962 1
8 12 1 1 0.998 0.036 0.999 1 1
13 17 1 1 1 0.046 1 1 1
26 34 1 1 1 0.052 1 1 1
12 48 1 1 1 0.048 1 1 1

4 25 6 4 0.253 0.111 0.095 0.040 0.088 0.115 0.200
4 10 1 0.890 0.763 0.020 0.764 0.893 0.999
8 12 1 0.997 0.950 0.030 0.962 0.990 1
13 17 1 0.999 0.990 0.045 0.994 1 1
26 34 1 1 1 0.056 1 1 1
12 48 1 1 1 0.051 1 1 1

CI 4 9 6 4 0.872 0.531 0.453 0.095 0.379 0.503 0.891
4 10 1 0.999 0.986 0.019 0.985 1 1
8 12 1 1 0.997 0.028 0.996 1 1
13 17 1 1 1 0.037 1 1 1
26 34 1 1 1 0.040 1 1 1
12 48 1 1 1 0.016 1 1 1

4 25 6 4 0.643 0.351 0.325 0.181 0.307 0.363 0.670
4 10 1 0.888 0.727 0.110 0.722 0.873 1
8 12 1 0.979 0.871 0.018 0.872 0.965 1
13 17 1 1 0.989 0.030 0.989 1 1
26 34 1 1 1 0.028 1 1 1
12 48 1 1 1 0.003 1 1 1
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Table 4.10: Size and power of the generalized test and the test based on approximate
t in testing the equality of the slope parameters (β11− β21 = 0) in the two regimes of
sample sizes n1 = 15 and n2 = 5 in heteroscedastic cases at 0.05 level of significance

Slope difference σ2
1 σ2

2 Generalized test Test based on approx. t

0 1 2 0.054 0.054
1 4 0.058 0.057
1 8 0.046 0.053

2 1 2 0.343 0.372
1 4 0.195 0.218
1 8 0.139 0.129

4 1 2 0.821 0.838
1 4 0.585 0.581
1 8 0.315 0.313

6 1 2 0.989 0.986
1 4 0.877 0.861
1 8 0.606 0.600

8 1 2 1 1
1 4 0.981 0.979
1 8 0.838 0.831
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Figure 4.1: Power of the generalized test at 0.05 level of significance in testing the
equality of the slope parameters (β11 = β12) in the two regimes with severe het-
eroscedasticity σ2

1 = 4 and σ2
2 = 25 for different sample sizes
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4.2 Simulation result for multiple linear regression

model

Consider the regression models of two regimes





Y1j = β10 + β11X11j + β12X12j + ε1j, j = 1, 2, . . . , n1,

Y2j = β20 + β21X21j + β22X22j + ε2j, j = 1, 2, . . . , n2,
(4.1)

where ε1j ∼ iid N(0, σ2
1) and ε2j ∼ iid N(0, σ2

2). In matrix notation





Y1 = X1β1 + ε1,

Y2 = X2β2 + ε2,

where βi = (βi0, βi1, βi2)
′,

εi = (εi1, εi2, . . . , εini
)′ ∼ Nni

(0, σ2
i Ini

),

ε1 and ε2 are independent,

Yi = (Yi1, Yi2, . . . , Yini
)′ and

Xi is the design matrix of order (ni × 3) for the ith regime.

To test the hypothesis

H0 : β1 = β2 against H1 : β1 6= β2,

we proposed a generalized test variable in (3.20). Simulation was done to obtain the

empirical significance level and the power of the test at 0.05 level of significance for

regimes’ sample sizes 5, 10 and 15. The explanatory variables were considered fixed.

The values of Xi1 were obtained from a sequence starting from 1 and then increased

by 5 at every step. The values of Xi2 were randomly sampled from 1000 to 10000 and

then they were fixed for the simulation. In table 4.11, these X values are given. For

heteroscedasticity, three situations were considered:

i. moderate heteroscedasticity (σ2
1 = 1 and σ2

2 = 2),

ii. severe heteroscedasticity (σ2
1 = 1 and σ2

2 = 4) and

iii. extreme heteroscedasticity (σ2
1 = 1 and σ2

2 = 8).



Chapter 4. Simulation Study 57

Observations y’s were generated using (4.1) for βi0 = 5, βi1 = 0.5 and βi2 = 1. For a

fixed sample size, 10,000 samples were generated and for each sample the generalized

p-value for the test was computed using (3.21). Then proportion of rejecting the

null hypothesis was calculated. This gives the empirical significance level for the

generalized test. The power of the test was obtained by assigning the difference

between corresponding regression coefficients β1k − β2k 6= 0, k=1,2,3 following the

same procedure.

Empirical significance levels of the proposed generalized test at 0.05 level are given

in Table 4.12 for the different sample sizes and the heteroscedastic cases. When the

regimes’ sample sizes are 15 and 5, the observed significance level of the test is 0.045

in the case of moderate heteroscedasticity. In the cases of the severe and extreme het-

eroscedasticity, the observed levels are 0.048 and 0.041, respectively. When regimes’

sample sizes are 15 and 10, the empirical significance levels of the test are 0.052, 0.049

and 0.047 for moderate to extreme heteroscedastic cases, respectively. For equal sam-

ple case (n1 = n2 = 15), the similar results are observed. Thus for small samples and

in the heteroscedastic cases the test preserves the significance level very close to the

nominal 0.05 level.

In Table 4.13, the power of the generalized test is given for regimes’ sample sizes

15 and 5 and in the heteroscedastic cases at 0.05 level of significance. We observed

that when the difference between the sets of regression coefficients is β1 − β2 =

(20, 10, 15)′, the power of the test is 0.91 in the moderate heteroscedastic case. When

the difference is increased to (30, 15, 20)′, the power of the test is 0.996 in the moderate

heteroscedastic case and it is 0.915 in the severe heteroscedastic case. In the case of

extreme heteroscedasticity, a large difference in the sets of regression coefficients is

expected. We observed that in the extreme heteroscedastic case when the difference

between the coefficients is large (30, 20, 25)′, the power of the test is 0.800, which

is also quite satisfactory. Therefore, the proposed generalized test maintains good

power in testing equality of the two sets of regression coefficients of the two regimes

in the heteroscedastic cases.
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Table 4.11: Fixed X values for different sample sizes

Sample size Xi1 Xi2

5 1 6333
6 4066
11 5388
16 1551
21 2596

10 1 3956
6 1831
11 3339
16 8105
21 8199
26 4202
31 5671
36 8820
41 9758
46 5558

15 1 2950
6 4639
11 2875
16 7977
21 9563
26 3239
31 3635
36 2923
41 2672
46 7584
51 3521
56 7141
61 9702
66 1451
71 7655
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Table 4.12: Observed significance levels of the generalized test (GT) in testing the
equality of the two sets of regression coefficients in the two regimes with heteroscedas-
ticity at 0.05 level of significance

n1 n2 σ2
1 σ2

2 Observed significance level of the GT

15 5 1 2 0.045
1 4 0.048
1 8 0.041

15 10 1 2 0.052
1 4 0.049
1 8 0.047

15 15 1 2 0.050
1 4 0.044
1 8 0.051
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Table 4.13: Power of the generalized test (GT) in testing the equality of the two sets
of regression coefficients in the two regimes of sample sizes n1 = 15 and n2 = 5 with
heteroscedasticity at 0.05 level of significance

β10 − β20 β11 − β21 β12 − β22 σ2
1 σ2

2 Power

0 0 0 1 2 0.045
1 4 0.048
1 8 0.041

10 5 10 1 2 0.541
1 4 0.355
1 8 0.211

20 10 15 1 2 0.908
1 4 0.712
1 8 0.444

30 15 20 1 2 0.996
1 4 0.915
1 8 0.732

30 20 25 1 2 0.998
1 4 0.964
1 8 0.800
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4.3 Conclusion

In situations when the data were collected over two different regimes and the regres-

sion coefficients remained the same between regimes only the error variance varied

by regimes, we proposed generalized confidence intervals (GCIs) for the regression

coefficients. The simulation study shows that the GCIs preserve the confidence levels

close to the nominal level. In testing equality of the regression coefficients in the two

regimes, the generalized pivotal quantities of their differences and the generalized

p-values were developed. When the regimes’ error variances are different, the testing

problem becomes a Behrens-Fisher problem in regression setting. In such case, the

generalized test is comparatively better than the classical test based on equal variance

assumption when regimes’ sample sizes are unequal. The generalized test is found

comparable with the test based on approximate t distribution in the heteroscedas-

tic cases. Generalized methods are especially useful in multiparameter cases where

nontrivial tests are difficult to obtain. To test the equality of the sets regression coef-

ficients of two regimes under heteroscedasticity, we proposed a generalized test. The

test preserves the nominal significance level and maintain satisfactory power.



Chapter 5

Application of Proposed

Generalized Methods on Real Data

In this section, we applied the proposed methods on two data sets: the community

health study data of Sarnia in 2005 and the US gasoline consumption data before and

after the 1973 oil crisis. The programs were written in R and the statistical package

SPSS was used in the data analyses.

5.1 Is air pollution in Sarnia causing respiratory

problems among adults?

Sarnia is a major city in Southwestern Ontario, Canada. The city is also known

as ‘Chemical Valley’ because over 40 percent of Canada’s chemical industries are

there. Toxic releases of those industries pollute the environment of the city and

put the residents’ life at risk of developing different diseases. The pollutants include

respiratory toxicant, lead, mercury, benzene and nickel (Fung et al; 2007). Our

objective is to examine whether the pollution has any impact on chronic respiratory

problems. A community health study was conducted in the city in 2005. Residents

of age 18 years or older were interviewed. A predesigned questionnaire was used in

the survey. Most of the questions were about the mental and physical health of the

62
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respondents. Besides, they recorded responses such as length of stay in the region,

presence in the region in the summer period, smoke, odours of the chemical plants etc.

that can be used as a proxy for the exposure to the environment. Socio-demographic

information of the residents was also documented.

5.1.1 Description of the data

The data were collected from the 5 regions of the city with postal codes N7S, N7T,

N7V, N7W and N7X. The number of respondents interviewed from these regions are

268, 392, 120, 16, and 8, respectively. For each respondent the number of respiratory

problems was counted. The respiratory problems included hay fever or other allergies,

an attack of shortness of breath at any time in the last 12 months, an asthmatic attack

in the last 12 months, current asthma and other respiratory problems. A respondent’s

length of stay in the community in completed years was recorded. It can be a proxy for

the length of exposure to pollutions in Sarnia. Age of the respondent was categorized

as 18-40 years and 40+, as older people are more vulnerable of developing health

problems.

5.1.2 Analysis results

The scatter plot of the years of living in Sarnia and the number of respiratory problems

(Figure 5.1) does not show a clear picture of relationship between them. Respondents

were then grouped according to their length of stay and the mean of the number of

respiratory problems was computed for each group. Figure 5.2 gives the scatter plot

of the years of living in Sarnia and the mean number of respiratory problems for the

five regions. A pattern of relationship emerges. If we discard the groups that have no

respiratory problems from the analysis, a linear trend may exist (Figure 5.3). In this

case the correlation coefficient is significant (r = 0.264, p - value = 0.001). We fitted a

simple linear regression model with mean number of respiratory problems as response

and years of living as regressor. Note that the data had been aggregated by regions

and years of living and the model was fitted using the aggregated data. Table 5.1
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gives analysis of variance for the model. Estimates with their 95 percent generalized

confidence intervals (GCIs) and generalized p - values (GP-values) are given in Table

5.2. We observed that years of living in Sarnia is a significant regressor of mean

number of respiratory problems. This gives an indication that long term exposure to

the environmental pollution in Sarnia may create respiratory health hazard.

Since the data were collected from 5 different regions of Sarnia, we further examined

whether the relationship holds in each region. Table 5.3 gives the correlation between

years of living and mean number of respiratory problems by region. The significant

relationship is observed only in region N7S. It is to be noted that in region N7X

none had any respiratory problems. The estimates of the parameters for simple

linear regression model with their corresponding GCIs (95 percent) and GP-values

by region are given in Table 5.4. We observed that years of living is a significant

regressor for mean number of respiratory problems in region N7S.

To illustrate our proposed generalized method for comparing two corresponding re-

gression coefficients, we considered region N7S as regime 1 and N7T as regime 2.

Table 5.5 presents the 95 percent GCIs for the differences of the regression coeffi-

cients with GP-values. It is shown that years of living in Sarnia has a significant

different effect on the mean number of respiratory problems in region N7S from that

of region N7T.

One might argue that the observed positive relationship between years of living in

Sarnia and mean number of respiratory problems is due to the respondent’s age.

We controlled the effect of age by fitting a multiple linear regression model of mean

number or respiratory problems on years of living and age of respondents. Here, the

second stage of aggregation was done on the data. The data had been aggregated by

region, years of living and age of the respondent. The analysis results are given in

Table 5.6 and 5.7. We observed that the positive relationship between years of living

in Sarnia and mean number of respiratory problems still holds at α = 0.05.
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5.1.3 Conclusion

Continuous disposal of industrial toxicant made the environment of Sarnia polluted

and put the residents’ lives at risk. Surveys are needed to measure the extent of

pollution and it’s impact on human lives and environment. Measures should also be

taken to recycle the industrial waste.
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Figure 5.1: The scatter plot of the years of living in Sarnia and the number of

respiratory problems
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Figure 5.2: The scatter plot of the years of living and the mean number of respiratory

problems for the five regions in Sarnia
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Figure 5.3: The scatter plot of the years of living and the mean number of respiratory

problems for the five regions in Sarnia after excluding groups with no respiratory

problems
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Table 5.1: Analysis of variance for the linear regression model of mean number of
respiratory problems on years of living in Sarnia

Source of variation Sum of squares df Mean square F Sig

Years of living 5.466 1 5.466 11.893 0.001
Residual 73.069 159 0.460

Total 78.535 160

Table 5.2: Estimates of the parameters for the linear regression model of mean number
of respiratory problems on years of living in Sarnia

Variables in the model Estimate 95% GCI GP-value

Intercept 0.684 (0.485, 0.882) 0.000
Years of living 0.008 (0.004, 0.013) 0.001
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Table 5.3: the Correlation coefficient between years of living in Sarnia and the mean
number of respiratory problems by region

Region r p-value sample size

N7S 0.412 0.001 58
N7T 0.085 0.509 63
N7V 0.279 0.105 35
N7W 0.779 0.121 5
N7X - - -

Table 5.4: Estimates of the parameters for the linear regression model of mean number
of respiratory problems on years of living in Sarnia by region

Region Variable Parameters Estimates 95% GCI GP-value

N7S Intercept β10 0.538 (0.224, 0.852) 0.001
Years of living β11 0.013 (0.005, 0.021) 0.001

N7T Intercept β20 0.801 (0.506, 1.095) 0.000
Years of living β21 0.002 (-0.005, 0.009) 0.509

N7V Intercept β30 0.659 (0.135, 1.182) 0.015
Years of living β31 0.010 (-0.002, 0.023) 0.105

N7W Intercept β40 0.977 (-0.493, 2.447) 0.125
Years of living β41 0.026 (-0.012, 0.630) 0.121

Table 5.5: The 95 percent Generalized confidence intervals for the difference of the
regression coefficients in regions N7S and N7T

Difference of the parametrs GCI GP-value

β10 − β20 (-0.694, 0.163) 0.228
β11 − β21 (0.0004, 0.021) 0.039
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Table 5.6: Analysis of variance for the linear regression model of mean number of
respiratory problems on years of living in Sarnia and age of respondents

Source of variation Sum of squares df Mean square F Sig

Years of living 3.369 1 3.369 7.122 0.008
Age of respondents 0.269 1 0.269 0.569 0.452

Residual 90.396 191 0.473

Total 94.034 193

Table 5.7: Estimates of the parameters for the linear regression model of mean number
of respiratory problems on years of living in Sarnia and age of respondents

Variables in the model Estimate 95%GCI GP-value

Intercept 0.836 (0.637, 1.035) 0.000
Years of living 0.007 (0.002, 0.012) 0.008
Age category -0.049 (-0.280, 0.181) 0.673
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5.2 Impact of gasoline price on total US gasoline

consumption before and after 1973 oil crisis

The Oil crisis began when members of the Organization of the Petroleum Exporting

Countries (OPEC) with Egypt and Syria placed an oil embargo on the United States

on October 15, 1973. This came as a punishment for the US decision to resupply the

Israeli military during the October War, the fourth Arab-Israeli war. The embargo

caused a persistent effect in the US economy because the industrialized US economy

was heavily dependent on the crude oil and OPEC was their predominant supplier.

Here we studied the US gasoline consumption data from 1960 to 1995. We fitted

a linear regression model to the data. Then we divided the data into two regimes:

before 1973 as regime 1 and on or after 1973 as regime 2 and examined using our

proposed generalized test variable whether the set of regression coefficients of the

regime 1 model is different from that of regime 2 model.

5.2.1 Description of the data

The data were taken from the Council of Economic Advisers, Report of the President

1996 (http://pages.stern.nyu.edu/∼ wgreene/Text/tables/TableF2-2.txt). The data

consist of total US gasoline consumption (expenditure/price index), price index for

gasoline, percapita disposable income, price index for new cars, price index for used

cars, price index for public transport, aggregate price index for consumer durables,

aggregate price index for consumer non-durables, aggregate price index for consumer

services, and US total population.

5.2.2 Analysis results

A linear regression model was selected using stepwise selection criteria taking total

US gasoline consumption as the response variable and all the remaining variables as

the regressors. Collinearity among the independent variables (Myers; 1990) was also

taken care in the model selection. The final model included price index for gasoline
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and price index for used cars as the regressors. The overall model fit was good

(R2 = 0.83 and F2,32 = 37 with p-value < 0.001). Table 5.8 presents the estimated

regression coefficients with their GCIs and GP-values. Collinearity diagnostics for

the model are presented in Table 5.9. We observed that the values of the variance

inflation factor are less than 10, none of the condition index is greater than 30 and

the smallest eigen value is not closed to zero. All these diagnostics indicate that

collinearity is not a problem for the model. The normality assumption of the errors

was also satisfied (Shapiro-Wilk W=0.967, p-value=0.361)

We observed that (Table 5.8) the price index of gasoline is not a significant regres-

sor for total US gasoline consumption for the period of 1960 to 1995. This result is

opposite to what we expected. The reason could be that we analyzed the data of two

very different economic era, before the 1973 oil crisis and after the crisis, together.

Figures 5.4 and 5.5 give the plots of the consumption of gasoline and the price index

for gasoline by years, respectively. We observed that before the crisis, there was not

that much variation in gasoline price and its consumption increased steadily. But af-

ter the crisis, we observed much more variation in gasoline price and its consumption.

The scatter plot of the price and consumption of gasoline before and after the oil

crisis is given in Figure 5.6. Before the crisis, a positive linear relationship between

price and consumption of gasoline was observed. But it might not be the case after

the crisis.

Then, we splitted the data in to two regimes: before the oil crisis and on or after the

crisis and fitted the model separately for the two regimes. The estimated regression

coefficients for the two regimes are given in Table 5.10. We observed that before the

oil crisis, the price index of gasoline was positively related with the total consumption

of gasoline. Although increase in price index resulted in increase in consumption, it

is not surprising, because at the time, price of gasoline was inexpensive. However,

between 1973 to 1995, we observed a significant reverse relationship between price

index for gasoline and total gasoline consumption. After the oil embargo in 1973, the

price of gasoline increased abruptly and became expensive. As a result, increase in
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price index resulted in decrease in gasoline consumption.

We observed that the estimated regression coefficients of the two regimes are quite

different from each other. Severe heterogeneity in error variances of the two regimes

was also observed. Error mean squares for regimes 1 and 2 are 17.416 and 99.56,

respectively, that are significantly different (F20,10=5.717, p-value=0.004). In such

case, we would like to test whether the two sets of regression coefficients are different,

i.e.

H0 : β1 = β2 against H1 : β1 6= β2,

where βi is the vector of regression coefficients for the regime i = 1, 2. As the sample

size of the first regime is small (n1 = 13) and severe heteroscedasticity between two

regimes exists, the classical asymptotic test and the Chow test are not appropriate

for this case. We applied our proposed generalized test for testing the hypothesis,

since the test can be efficiently used for small sample sizes and heteroscedastic case.

The observed generalized test variable is 495406.5 with generalized p-value < 0.0001.

Therefore, at 0.05 level of significance we reject the null hypothesis.

Then, we tested the equality of each of the regression coefficients of regime 1 with

the corresponding regression coefficients of regime 2. We constructed the GCIs for

the difference of the corresponding regression coefficients of the two regimes and

then their GP-values. There are 3 regression coefficients. Therefore, to maintain the

global level at least approximately to be 0.05, we construct GCIs each with confidence

coefficients (1 − 0.05/3) ∼= 0.98. Table 4.11 gives the GCIs for the difference of the

regression coefficients with their GP-values. We observed that after the oil crisis in

1973, increase in gasoline price resulted in significant decrease in its consumption

unlike prior 1973.

5.2.3 Conclusion

When we suspect regime change in the data, analysis should be done by regimes.

The equality of the sets of regression parameters of the regimes should be tested. We
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applied generalized test that can efficiently test the equality of the sets of regression

coefficients of two regimes for all sample sizes and heteroscedastic case.
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Figure 5.4: The plot of the consumption of gasoline by years
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Figure 5.5: The plot of the price index for gasoline by years
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the oil crisis
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Table 5.8: Estimates of the parameters for the linear regression model of the total US
gasoline consumption on price index for gasoline and price index for used cars during
1960 and 1995

Variables in the model Estimate 95% GCI GP-value VIF

Intercept 154.42 (133.54, 173.31) 0.000
Price index for gasoline 4.263 (-14.34, 22.861) 0.644 5.466
Price index for used cars 26.37 (9.86, 42.88) 0.003 5.466

Table 5.9: Collinearity diagnostics for the linear regression model of the total US
gasoline consumption on price index for gasoline (PIG) and price index for used cars
(PUC) during 1960 and 1995

Variance proportion
Dimension Eigen value Condition index Constant PIG PUC

1 2.813 1.000 0.02 0.00 0.01
2 0.164 4.144 0.91 0.03 0.06
3 0.023 11.099 0.06 0.97 0.93



Chapter 5. Application of Proposed Generalized Methods on Real Data 80

Table 5.10: Estimates of the parameters for the linear regression model of the total
US gasoline consumption on price index for gasoline (PIG) and price index for used
cars (PUC) before and after the oil crisis in 1973

Regime Variables Estimate 95% GCI GP-value

1960-1972 Intercept -337.03 (-378.68, -295.37) 0.000
PIG 381.14 (307.10, 455.18) 0.000
PUC 134.09 (74.04, 194.14) 0.001

1973-1995 Intercept 232.20 (216.73, 247.67) 0.000
PIG -18.66 (-26.36, -10.95) 0.000
PUC 26.64 (20.80, 32.48) 0.000

Table 5.11: The Generalized confidence intervals for the difference of the correspond-
ing regression coefficients of two regimes each with confidence coefficient 0.98

Difference of the parametrs GCI GP-value

β10 − β20 (-623.6, -514.4) 0.000
β11 − β21 (309.28, 491.9) 0.000
β12 − β22 (31.02, 182.55) 0.003



Chapter 6

Conclusion and Future Research

Weerahandi (1989, 1993) developed the concept of generalized confidence intervals

and generalized p-values for complex inference problems involving nuisance parame-

ters. This generalized methodology of inference is suitable for all sample sizes and is

found to be efficient even when the assumptions of optimal inference do not hold.

In this thesis we applied the concept to the case of simple and multiple linear

regression models. Specifically, we constructed generalized confidence intervals for

regression coefficients, dispersion parameters and the expected response for simple

and multiple linear regression models. We also constructed generalized confidence

regions for multiple linear regression parameters.

The regression data from two different regimes were considered. We considered a

particular case when the regression coefficients remained the same for the two regimes

and the error variances were assumed same within the regime but different between

regimes. We proposed generalized confidence regions and generalized confidence in-

tervals for the regression parameters in such a case. The global confidence level was

maintained using the Bonferroni approach. The simulation study showed that the

GCIs preserve the confidence levels close to the nominal level for overall sample size

n = n1 + n2 ≥ 14.

In testing the equality of the regression coefficients in the two regimes, we de-

veloped the generalized pivotal quantities of their differences and the generalized

p-values. From the simulation study we observed that when the regimes’ error vari-

81



Chapter 5. Conclusion and Future Research 82

ances are different, the generalized test is comparatively better than the classical test

based on equal variance assumption in the case of unequal regimes’ sample sizes. The

test is found comparable with the test based on approximate t distribution in the

heteroscedastic cases.

Generalized methods are especially useful in multiparameter cases where nontriv-

ial tests are difficult to obtain. To test the equality of the sets regression coefficients of

two regimes under heteroscedasticity, the Chow test was extended by Toyoda (1974).

But the test’s significance level is greatly affected if the regimes have small sample

sizes. In classical inference, only asymptotic tests are available for this problem.

In such a case, we proposed generalized test variables and generalized p-values that

can be applied efficiently for all sample sizes and for homoscedastic as well as het-

eroscedastic cases. The simulation study showed that the proposed method preserves

the nominal significance level and provides satisfactory power under heteroscedastic-

ity and for small and moderate sample sizes.

We also constructed the generalized confidence region for the difference of the two

sets of regression coefficients and then, the generalized confidence intervals for each

elements of that vector.

We applied our proposed methodology on the two data sets: the community health

study data of Sarnia in 2005 and the US gasoline consumption data before and after

the 1973 oil crisis. These applications clearly showed that there is a regime change

in the data. Accordingly, the analysis should be done by regimes.

In this thesis, regressor variables were considered to be non-stochastic. Also, the

error distribution was assumed to be normally distributed. For future research, we

plan to investigate

1. the general case where independent variables may be stochastic and

2. the complex cases where the normality assumption of the error is not satisfied.



Appendix A

A.1 Distributions of the estimators of the error

variance in linear regression

Consider the linear regression model

Yj = β1X1j + β2X2j + . . . + βpXpj + εj, j = 1, 2, . . . , n.

Here Yj is the response variable for the jth set of values of (X1, X2, . . . , Xp) and εj is

the corresponding random error term. Also, βi, i = 1, 2, . . . , p represent a total of p

unknown parameters. Defining

Y =




Y1

Y2

...

Yn




, β =




β1

β2

...

βp




, X =




X11 X21 . . . Xp1

X12 X22 . . . Xp2

...
...

. . .
...

X1n X2n . . . Xpn




and ε =




ε1

ε2

...

εn




,

the model can be written in matrix notation as

Y = Xβ + ε,

where X has full column rank. The ordinary least squares estimator for β is

β̂ = b = (X ′X)−1X ′Y, where b = (b1, b2, . . . , bp)
′,

and given the normality assumption on ε ∼ Nn(0, σ2In),

b ∼ Np

(
β, σ2(X ′X)−1

)
(A.1)
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and

Y ∼ Nn(Xβ, σ2In). (A.2)

In this thesis we consider two estimators of the error variance σ2:

S2 =
(Y − Ŷ )′(Y − Ŷ )

(n− p)
=

(Y −Xβ̂)′(Y −Xβ̂)

(n− p)
and

S2
Y =

(Y −Xβ̂)′(Y −Xβ̂)

n
.

The estimator S2, the error mean square, is unbiased and the estimator S2
Y , the

maximum likelihood estimator, is biased. We are to find the distributions of these

two estimators. From (A.2),

Y

σ
∼ Nn

(
Xβ

σ
, In

)
.

Let us define

W =
Y −Xβ̂

σ
.

Then,
(

Y −Xβ̂

σ

)′ (
Y −Xβ̂

σ

)
=

1

σ2
(Y −Xβ̂)′(Y −Xβ̂). (A.3)

Since

Y −Xβ̂ = Y −X(X ′X)−1X ′Y =
[
I −X(X ′X)−1X ′] Y,

where

[
I −X(X ′X)−1X ′] Y

is an idempotent matrix, from (A.3) we have

1

σ2
(Y −Xβ̂)′(Y −Xβ̂) =

1

σ2
Y ′ [I −X(X ′X)−1X ′] Y,

or,

1

σ2
(Y −Xβ̂)′(Y −Xβ̂) =

(
Y

σ

)′ [
I −X(X ′X)−1X ′]

(
Y

σ

)
. (A.4)
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Recall that if X ∼ Nn(µ, Σ) where Σ is positive definite, then

X ′AX ∼ χ2

rank(A)
(µ′Aµ)

iff ΣA is idempotent. Further, rank(A) = trace(ΣA).

Therefore, from (A.4),

1

σ2
(Y −Xβ̂)′(Y −Xβ̂) ∼ χ2

with degrees of freedom equal to

trace
[
I −X(X ′X)−1X ′]

and non-centrality parameter

(
Xβ

σ

)′ [
I −X(X ′X)−1X ′]

(
Xβ

σ

)
.

One can verify that

trace
[
I −X(X ′X)−1X ′] = n− p

and

(
Xβ

σ

)′ [
I −X(X ′X)−1X ′]

(
Xβ

σ

)
= 0.

Thus,

1

σ2
(Y −Xβ̂)′(Y −Xβ̂) ∼ χ2

(n−p).

Therefore, the error mean square S2 = (Y−Xβ̂)′(Y−Xβ̂)
(n−p)

is distributed as

(n− p)S2

σ2
∼ χ2

(n−p)

and the maximum likelihood estimator S2
Y = (Y−Xβ̂)′(Y−Xβ̂)

(n)
is distributed as

nS2
Y

σ2
∼ χ2

(n−p).
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A.2 Ordinary least squares estimators β̂ is

independent of error mean square

Consider the regression model defined in appendix A.1

Y = Xβ + ε.

The ordinary least squares estimator for β is

β̂ = b = (X ′X)−1X ′Y, where b = (b1, b2, . . . , bp)
′,

and given the normality assumption on ε ∼ Nn(0, σ2In),

b ∼ Np

(
β, σ2(X ′X)−1

)
.

An unbiased estimator of σ2 is S2 = (Y−Ŷ )′(Y−Ŷ )
(n−p)

= (Y−Xβ̂)′(Y−Xβ̂)
(n−p)

. We are to show

that b = β̂ and S2 are independent.

For σ fixed, β̂ is a complete sufficient statistic for β while (Y −Xβ̂)′(Y −Xβ̂) is an

ancillary statistic for β.

Recall Basu’s theorem (Basu; 1955, Lehmann; 1981) that states any complete

sufficient statistic is independent of any ancillary statistic. Therefore, by Basu’s

theorem, we conclude that β̂ and (Y −Xβ̂)′(Y −Xβ̂) are independent. Since S2 is

a function of (Y −Xβ̂)′(Y −Xβ̂), we have β̂ and S2 are independent.

A.3 U and V are independent

Consider the regression model defined in appendix A.1

Y = Xβ + ε.

The ordinary least squares estimator for β is

β̂ = b = (X ′X)−1X ′Y, where b = (b1, b2, . . . , bp)
′,

and given the normality assumption on ε ∼ Nn(0, σ2In),

b ∼ Np

(
β, σ2(X ′X)−1

)
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and

Y ∼ Nn(Xβ, σ2In).

An unbiased estimator of σ2 is S2 = (Y − Ŷ )′(Y − Ŷ )/(n − p) =
Σ(Yj−Ŷj)

2

n−p
=

Error MS, j = 1, 2, . . . , n.

Now, the total variability in the data (Y − Xβ)′(Y − Xβ) can be decomposed into

two parts as

(Y −Xβ)′(Y −Xβ) = (Y − Ŷ + Ŷ −Xβ)′(Y − Ŷ + Ŷ −Xβ)

=
[
(Y − Ŷ ) + X(b− β)

]′ [
(Y − Ŷ ) + X(b− β)

]

= (Y − Ŷ )′(Y − Ŷ ) + (Y − Ŷ )′X(b− β)

+(b− β)′X ′(Y − Ŷ ) + (b− β)′X ′X(b− β)

= (Y − Ŷ )′(Y − Ŷ ) + (Y ′X − Ŷ ′X)(b− β)

+(b− β)(X ′Y −X ′Ŷ ) + (b− β)′X ′X(b− β).

If we put Ŷ ′X = Y ′X and X ′Ŷ = X ′Y in the above equation we get

(Y −Xβ)′(Y −Xβ) = (Y − Ŷ )′(Y − Ŷ ) + (b− β)′X ′X(b− β).

It implies

1

σ2
(Y −Xβ)′(Y −Xβ) =

1

σ2
(Y − Ŷ )′(Y − Ŷ ) +

1

σ2
(b− β)′X ′X(b− β).

Now,

1

σ2
(Y −Xβ)′(Y −Xβ) = (Y −Xβ)′(σ2In)−1(Y −Xβ) ∼ χ2

n,

1

σ2
(Y − Ŷ )′(Y − Ŷ ) =

Σ(Yj − Ŷj)
2

σ2
∼ χ2

n−p and

1

σ2
(b− β)′X ′X(b− β) = (b− β)′(σ2(X ′X)−1)−1(b− β) ∼ χ2

p.
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Recall Cochran’s theorem (Montgomery; 2006):

Let Zi be NID(0,1) for i = 1, 2, . . . , v and

∑
Z2

i = Q1 + Q2 + . . . + Qs,

where s ≤ v and Qj has vj degrees of freedom (j = 1, 2, . . . , s). Then Q1, Q2, . . . , Qs

are independent chi-square random variables with v1, v2, . . . , vs degrees of freedom,

respectively, if and only if

v = v1 + v2 + . . . + vs.

Because the degrees of freedom of 1
σ2 (Y−Ŷ )′(Y −Ŷ ) and 1

σ2 (b−β)′X ′X(b−β) add to n,

the total degrees of freedom, Cochran’s theorem implies that they are independently

distributed chi-square random variables.

Now, V = S2

σ2s2 = (Y−Ŷ )′(Y−Ŷ )
(n−p)σ2s2 is a function of 1

σ2 (Y − Ŷ )′(Y − Ŷ ). Therefor, V and

U = 1
σ2 (b− β)′X ′X(b− β) are independent of each other.
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