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Abstract
Survival analysis is a branch of statistics which deals with the analysis of time

to event (or in general event history). In particular, regression models that relate

event occurrence rates to predictor variables are quite common in the medical field.

One such regression model is the Aalen’s nonparametric additive model in which the

regression coefficients are assumed to be unspecified functions of time. In this project

we consider estimation of Aalen’s nonparametric regression coefficients when some

uncertain prior information is available about these coefficients. More precisely, we

combine unrestricted estimators and estimators that are restricted by a linear hy-

pothesis (prior information) and produce James-Stein-type of shrinkage estimators.

We develop the asymptotic joint distribution of such restricted and unrestricted es-

timators and use it for studying the relative performance of the proposed estimators

via their asymptotic distributional biases and risks. We conduct Monte Carlo sim-

ulations to examine relative performance of the estimators in small samples and we

illustrate the methodology by using a real data on the survival of primary billiary

cirrhosis patients.
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Chapter 1

Introduction

1.1 Preliminaries

Survival analysis is a branch of statistics which deals with the analysis of time-to-event

(or in general event history). Applications of event history analysis methodologies

are numerous in the medical field, but are also found in economics, engineering and

sociology. Usually, the investigator would collect data on the occurrence times of a

certain event of interest (outcome variable) along with a set of independent predic-

tor variables (covariates) such gender, age, social status, biomarkers of diseases and

similar variables. The investigator would then desire to know if and how such co-

variates influence the occurrence rates (intensity) of the event of interest. The Cox’s

proportional hazards (PH) model is one of the earliest and perhaps the most used

statistical model which attempts to address such questions. Cox’s original model

was later formulated in terms of counting process theory and named multiplicative

intensity model (Andersen and Gill (1999)). The multiplicative intensity model (MI)

has extended the PH model in the sense that it allowed multiple events and time

varying covariate processes. The PH model and its variants assume that the intensity

1



CHAPTER 1. INTRODUCTION 2

function of the counting process defined by the events of interest is made up of the

product of a baseline nonparametric intensity function of time, and a parametric part

consisting of a function of a linear combination of the independent variables. The

effect of the covariates is measured through the unknown coefficients of the linear

combination (regression parameters) which do not depend on time. This entails that

the hazard ratio of two individuals differing just by the level of a given covariate

would be constant over time. This property, which is known as the proportional

hazards assumption, gives an attractive interpretation in terms of risk ratio and is

mathematically tractable. However, such an assumption is sometimes not satisfied by

the data at hand and hence, in these situations, time-varying regression coefficients

are required in order to quantify the effect of the covariates on the intensity func-

tion. As an alternative to MI models, Aalen (1993) proposed an additive regression

model, whereby the intensity function is governed by the covariates as well as by

past events through a linear regression with time-varying coefficients. Estimation of

Aalen’s nonparametric time-varying regression coefficients is performed via weighted

least squares and their asymptotic properties are studied by using the martingale

theory for counting processes (Martinussen & Scheike (2006)).

Sometimes, there may be prior non-sample information that is available about the

covariates of interest, whereby a subset of the covariates is known to be irrelevant

to the event occurrence rate. That is, in general, the investigator may have prior

uncertain information in the form of a linear hypothesis which restricts the regression

coefficients to a subspace. If such information is correct, then restricted estimators

which incorporate the hypothesis should be more efficient than the unrestricted least

squares estimators. However, when the linear hypothesis is incorrect, the restricted

estimators perform quite poorly and are largely dominated by the unrestricted es-

timators. A safe way, in between these two strategies, is to use James-Stein-type
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shrinkage estimators, which are linear combinations of the restricted and unrestricted

estimators. In the classical linear regression models, the shrinkage estimators are

known to dominate the unrestricted estimators over the whole parameter space and

dominate the restricted estimators everywhere except in a small neighborhood of the

linear restriction.

1.2 Problem Statement and Objectives

In this project, we propose shrinkage estimators for the nonparametric regression co-

efficients in Aalen’s additive model under a general linear hypothesis involving the

coefficients. We study the asymptotic joint distribution of the restricted and unre-

stricted estimators of such coefficients via martingale central limit theorems. Conse-

quently, we define integrated distributional quadratic risks and biases of the proposed

shrinkage estimators and compare them analytically with those of the restricted and

unrestricted estimators. We then take on the task of comparing the performance of

the estimators in small samples via a Monte Carlo simulation study. The method-

ology is then illustrated by using a data set on the survival times of patients with

primary billiary cirrhosis.

This project is organized as follows. In the following few sections, we introduce

the existing literature on Aalen’s additive hazard regression model. We define the

unrestricted estimators of the cumulative regression coefficients and re-iterate some

of the results on their asymptotic normality through martingale theory. To render

this project self-contained, a brief introduction to counting processes and related

martingale theory is provided in Appendix A. In chapter 2, we define a general linear

hypothesis about the regression coefficients and provide restricted estimators of the

cumulative coefficients. We also study the joint asymptotic normality of the restricted
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and unrestricted estimators. We then define James-Stein-type shrinkage estimators

of the coefficients under the prior uncertain information given in the form of the

linear hypothesis. We define and study the distributional quadratic biases and risks

of the proposed shrinkage estimators and compare them asymptotically to those of

the restricted and unrestricted estimators. In chapter 3, we conduct Monte Carlo

simulations examining the small sample performance of the estimators and provide

an application of the methods to a data set on the survival times of patients with

primary billiary cirrhosis.

1.3 Aalen’s Additive Hazards Regression Model

Survival data usually come in complex form where a censored time-to-event variable,

along with some past history, is recorded. The history consists of the past of the time-

to-event process itself as well as an accompanying covariates process. The objective

is to study the relationship between event occurrence rates and the history variables

provided with it. The analysis of such data sets is easily formulated in terms of

counting processes, so that existing martingale theory can be employed to study

properties of estimators thereof. For the ith individual, we record their event or

censoring time, say Ti, as well as some important additional information. Therefore,

let [Ni(t), Xi(t), Yi(t)] for i = 1, ..., n be the random sample from the ith individual,

where

Ni(t) = number of events up to time t,

Xi(t) = the ith covariate of a locally bounded vector of k covariates

and Yi(t) = risk indicator at time t,
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i.e.

Yi(t) =


1, if ith individual is at risk at time t,

0, otherwise .

Further, let {Fit, t > 0}, be the family of S-fields generated by the process {Ni(t); t ≥ 0}.

Ft is the S-field generated by
⋃n
i=1Fit. The natural filtration of any counting process

is right-continuous, so we can state that {Ft, t ≥ 0} is a right-continuous filtration.

In this paper, we consider that {(Xi(t), Yi(t)); t ≥ 0} is a counting process adapted

to the filtration {Ft; t ≥ 0}.

Following Martinussen & Scheike (2006), Aalen’s nonparametric additive regression

model is defined through the intensity function of the counting process, N(t), as

follows

λ(t) = Y (t)h(t|X) = Y (t)X ′(t)β(t) (1.1)

with cumulative intensity function given by

Λ(t) =

∫ t

0

λ(s)ds.

The nonparametric functions, βj(t) for j = 1, ..., k, are assumed to be locally inte-

grable, i.e. ∫ t

0

|β(s)|ds <∞, (1.2)

for all 0 ≤ t ≤ τ , where τ is the maximum time which the investigators consider

(often end-of-study time).

In general, a major objective is to estimate the cumulative regression coefficients

defined as

Bj(t) =

∫ t

0

βj(u)du for j = 1, ..., k.
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As proposed in Aalen (1993), this is easily achieved by using the least squares

technique. For simplicity of notation, let us redefine the vector of covariates to incor-

porate the risk indicator functions, and organize them in a design matrix,

X(t) = (Y1(t)X1(t), ..., Yn(t)Xn(t))′,

so that λ(t) = X ′(t)β(t) .

Recall from Section 1.1 that Ni(t) is the number of events up to time t, where

{Ni(t); t ≥ 0} is a counting process. Then, by equation (1.1),

Λ(t) =

∫ t

0

X ′(s)β(s)ds,

and by Doob-Meyer decomposition, we get N(t) − Λ(t) = M(t) where M(t) is an

Ft−martingale (for brief introduction to martingales, please see Appendix A). Then

we can write N(t) = M(t) + Λ(t)

⇒ dN(t) = dM(t) + d

[∫ t

0

X ′(s)β(s)ds

]
⇒ dN(t) = dM(t) +X ′(t)β(t)dt (1.3)

⇒ dN(t) = dM(t) +X ′(t)dB(t).

Now, since M is a martingale, we have E[dM(t)] = 0. Therefore, heuristically and

in parallel with the usual regression models, one could propose least squares esti-

mators for dB(t). Now assume that X ′(t)W (t)X(t) is a full rank matrix, for some

predictable diagonal k × k weight matrix W (t). In the case where X(t) is not of full

rank, it suffices to replace the usual matrix inverse by a generalized matrix inverse.

So, let

X−1(t) = (X ′(t)W (t)X(t))−1X ′(t)W (t). (1.4)
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From equation 1.3, we have

dN(t) = 0 +X ′(t)dB̂(t)

⇒ dB̂(t) = X−1(t)dN(t).

This leads to the estimators

⇒ B̂(t) =

∫ t

0

X−1(s)dN(s). (1.5)

Obviously, (1.3) and (1.5) imply that

B̂(t) =

∫ t

0

X−1(s)[dM(s) +X ′(t)dB(s)],

and by (1.4)

B̂(t) =

∫ t

0

X−1(s)dM(s) +B(t).

Since ∫ t

0

X−1(s)dM(s)

is an Ft-martingale with mean 0, we get

E[B̂(t)] = 0 + 1×B(t) = B(t),

which shows that B̂(t) is an unbiased estimator.

The derivation of the least squares estimator can also be done slightly more rig-

orously by noticing that the model in (1.3) can be considered a regression model of

the form Ỹ (t) = X ′(t)b(t) + ε(t) where Ỹ (t) = dN(t), b(t) = dB(t) is the vector of

coefficients, with the matrix of covariates X(t), and ε(t) = dM(t) being the model’s

error term. Therefore we need to minimize the squared residual function

L(b(t)) = (Ỹ (t)−X ′(t)b(t))W (t)(Ỹ (t)−X ′(t)b(t))′
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with respect to b(t) , where W (t) is a weight matrix. Then, taking the derivative

with respect to b(t), we get

∂L

∂b(t)
= −2X(t)W (t)Ỹ (t) + 2X(t)W (t)X ′(t)b(t)

set
= 0.

Further,

∂2L

∂(b(t))2
= −2X(t)W (t)X ′(t),

which is a positive-definite matrix by part (iv) of Condition A, stated in the next

section. Therefore, the least squares estimator for b(t) is

b̂LS(t) = [X(t)W (t)X ′(t)]−1X(t)W (t)dN(t).

By using the relationship between b(t) and B(t), the resulting estimator for B(t) is

B̂LS(t) =

∫ t

0

[X(s)W (s)X ′(s)]−1X(s)W (s)dN(s)

for 0 ≤ t ≤ τ .

1.4 Asymptotic normality of B̂(t)

In this section, we state a result on the asymptotic normality of Aalen’s least squares

estimator for the cumulative regression coefficients. To this end, we need some further

notation and regularity conditions. Let,

Γ2js(t) =
n∑
i=1

Wi(t)Xij(t)Xis(t)

and

Γ3jsl(t) =
n∑
i=1

W 2
i (t)Xij(t)Xis(t)Xil(t)
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for j, s, l = 1, ..., k. Let also,

Ω−1(t) = E[W1(t)X
′
1(t)X1(t)].

Some results given in throughout this paper use operations such as supremums and

infimums of an uncountable collection of random variables. Thus, in order to guaran-

tee that the resulting quantities are random variables, we assume that all processes

under consideration are separable. It should be noted that this restriction is without

loss of generality, and this is just for technical consideration. Indeed, it is well known

that every stochastic process is equivalent to a separable process ( Doob (1953, p.

51-57), Burrill (1972, p. 436-443), Billingsley (1995, p. 531)).

The following condition will be referred to throughout this paper in order to es-

tablish most of the asymptotic results of the estimators given.

• Condition A

i) {(Xi(t), Ni(t)) , 0 ≤ t ≤ τ} for i = 1, ..., n are i.i.d

ii) E

[
sup
0≤t≤τ

∣∣W 2
1 (t)X1j(t)X1s(t)X1l(t)

∣∣] <∞ for j, s, l = 1, ..., k

iii) E

[
sup
0≤t≤τ

|W1(t)X1j(t)X1s(t)|
]
<∞ for j, s = 1, ..., k

iv) X ′(t)W (t)X(t) is a positive-definite matrix,∀ t ε [0, τ ]

v) E[W1(t)X
′
1(t)X1(t)] is non-singular ∀ t ε [0, τ ]
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vi)

∫ t

0

|β(s)|ds <∞, ∀ t ε [0, τ ].

Recall that a metric space-valued function is called càdlàg if it is right-continuous

with left limits. Let D ([0, τ ],Rp) denote the space that consists of càdlàg functions

on [0, τ ] into Rp and endowed with the sup-norm Skorohod topology (see Billingsley,

1995). For the sake of simplicity, we let D ([0, τ ]) stand for D ([0, τ ],Rp).

According to Theorem 5.1.1 of Martinussen and Scheike, if Condition A holds,

then

√
n(B̂(t)−B(t))

D→ U

on D ([0, τ ]), where U is a Gaussian martingale with covariance function

Φ(t) =

∫ t

0

Ω(s)E[W 2
1 (s)X ′1(t)X1(t)X

′
1(t)β(s)]Ω(s)ds.

1.5 MLE of Aalen’s regression coefficients

The argument used thus far to derive estimators of the cumulative regression coef-

ficients in Aalen’s additive model was through least squares analogy. However, it is

also possible to derive the same estimator through a likelihood argument. To this

end, we notice that log-likelihood function for β(t) is simply

l(β(t)|X(t)) =
n∑
i=1

∫
ln(X ′i(t)β(t))dNi(t)−

∫
X ′i(t)β(t)dt.

To find the maximum likelihood estimate for β(t), one could solve the system of score

equations,
∂l(β(t)|X(t))

∂β(t)
= 0. Martinussen and Scheike (2006, p. 114) choose to take

this derivative heuristically, leaving us with the score functions:

X ′(t) diag

(
Yi(t)

λi(t)

)
(dN(t)−X(t)dB(t)). (1.6)
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Setting this equal to 0,

X ′(t)W (t)dN(t) = X ′(t)W (t)X(t)dB(t)

⇒ dB(t) = [X ′(t)W (t)X(t)]−1X ′(t)W (t)dN(t)

where W (t) = diag
(
Yi(t)
λi(t)

)
. Thus,

B̃(t) =

∫
[X ′(t)W (t)X(t)]−1X ′(t)W (t)dN(t).

This is obviously same as the estimator obtained through least squares method. In

the next chapters, we shall use this estimator as the basis for building shrinkage

estimators of the regression coefficients. The least squares estimator will be called

the unrestricted estimator of the cumulative regression coefficients in the sense that

it does not assume or incorporate any prior information provided in the form of linear

hypothesis. We then develop the restricted estimators of the cumulative regression

coefficients and study their asymptotic properties as well as their joint asymptotic

normality with the unrestricted least squares estimators described earlier.

In passing, we notice that given the definition of B(t), we can extract an estimate

for β(t) from B̃(t) through kernel smoothing technique. The reader is referred to

Martinussen & Sheike (2006, p. 114-115) for further discussion on this topic.



Chapter 2

The proposed shrinkage estimators

The estimators of B(t) defined in the previous chapter are known as Unrestricted

Estimators (UE’s) because they are not subject to any constraints. There are many

other methods of finding unrestricted estimators - when discussing estimators, we

tend to assume that they are unrestricted unless a restriction is specified. From now

on, we will use UE to stand for unrestricted estimators.

A Restricted Estimator (RE) is simply an estimator which is computed in the same

way as its UE, under some specified condition. It may be the case that we know

some information about the parameter β or we only wish to deal with it under cer-

tain restrictions. In fact, when the restriction holds, the RE is known to be more

efficient than its related UE. We will use the subscript R to denote RE’s from this

point on. In this chapter, we derive restricted estimators of B(t) under a linear hy-

pothesis on the regression coefficients and study their asymptotic properties. We also

examine the asymptotic joint normality of the proposed restricted estimator and the

unrestricted estimators derived in Chapter 1. We then proceed and propose James-

Stein-type shrinkage estimators of B(t) and study their performance in comparison

with the restricted and unrestricted estimators via a concept known as asymptotic

12
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distributional risk and biases.

2.0.1 Restricted Estimators of B(t)

In this subsection, we will derive an estimator for dB(t), restricted to some constraints

based on prior knowledge. This will be used in deriving the restricted estimator for

B(t), which is what we are actually interested in.

Suppose we have some prior information about the parameter of interest. In partic-

ular, the parameter b(t) = dB(t) is supposed to satisfy the following restriction:

Rb(t) = r1(t) for 0 ≤ t ≤ τ

where R is a known q× k matrix of rank q < k and r1(t) is a known, q-column vector

which is Riemman integrable on every compact subset of R.

Again, we start with equation (1.3) :

dN(t) = X ′(t)dB(t) + dM(t).

In order to derive the restricted estimator, b̃R(t), we will use Lagrange multipliers.

The Lagrange function of b(t) and its Lagrange multipliers, λ, is:

L(b(t), λ) = (Ỹ (t)−X ′(t)b(t))W (t)(Ỹ (t)−X ′(t)b(t))′ − 2λ (Rb(t)− r1(t)) .

Then, taking the derivative with respect to b(t) gives us k linear equations, which we

set equal to 0:

∂L

∂b(t)
= −2X(t)W (t)Ỹ (t) + 2X(t)W (t)X ′(t)b(t)− 2R′λ̂

set
= 0. (2.1)
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Now, taking the derivative with respect to the vector of Lagrange multipliers λ and

evaluating them at (b̃R(t), λ̂) gives us q linear equations, which we also set equal to

0:

∂L

∂λ
= 2Rb̃R(t)− 2r1(t)

set
= 0. (2.2)

This leaves us with a system of (k + q) linear equations with (k + q) unknowns.

Equation (2.2) implies that

Rb̃R(t) = r1(t),

and equation (2.1) implies that

X(t)W (t)Ỹ (t)−X(t)W (t)X ′(t)β̃R(t) +R′λ̂ = 0.

Doing some algebraic manipulations of this equation, we can solve for λ̂. We get

X(t)W (t)X ′(t)b̃R(t) = X(t)W (t)Ỹ (t) +R′λ̂

⇒ b̃R(t) = [X(t)W (t)X ′(t)]−1X(t)W (t)Ỹ (t) + [X(t)W (t)X ′(t)]−1R′λ̂

⇒ b̃R(t) = β̂LS(t) + [X(t)W (t)X ′(t)]−1R′λ̂ (2.3)

where b̂LS(t) is the familiar least squares regression estimator for b(t),
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i.e. b̂LS(t) = [X(t)W (t)X ′(t)]−1X(t)W (t)Ỹ (t).

Then, Rb̃R(t) = Rb̂LS(t) +R[X(t)W (t)X ′(t)]−1R′λ̂ .

Hence, since R[X(t)W (t)X ′(t)]−1R′ is positive-definite (see Proposition A.1.2 in the

appendix), we get

[R(X(t)W (t)X ′(t)R′]−1Rb̃R(t) = [R[X(t)W (t)X ′(t)]−1R′]−1Rb̂LS(t) + λ̂

⇒ λ̂ = [R[X(t)W (t)X ′(t)]−1R′]−1(Rb̃R(t)−Rb̂LS(t)) .

So from (2.2),

λ̂ = [R[X(t)W (t)X ′(t)]−1R′]−1
(
r1(t)−Rb̂LS(t)

)
.

Plugging this back into (2.3), we get

b̃R(t) = b̂LS(t) + [X(t)W (t)X ′(t)]−1R′[R[X(t)W (t)X ′(t)]−1R′]−1
(
r(t)−Rb̂LS

)
= (Ik − [X(t)W (t)X(t)]−1R′[R[X(t)W (t)X ′(t)]−1R′]−1R)b̂LS(t)

+ [X(t)W (t)X ′(t)]−1R′[R[X(t)W (t)X ′(t)]−1R′]−1r1(t)

= (Ik − An(t)R)b̂LS(t) + An(t)r1(t)

where

An(t) = [X(t)W (t)X ′(t)]−1R′[R[X(t)W (t)X ′(t)]−1R′]−1. (2.4)
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Recall that the restricted estimator for B(t) is our main focus here, and that

B(t) =

∫ t

0

dB(s) , 0 ≤ t ≤ τ.

Accordingly, the RE for B(t) is given by

B̃R(t) =

∫ t

0

dB̃R(s) =

∫ t

0

b̃R(s)ds.

Formally, the following proposition gives the RE for B(t), for 0 ≤ t ≤ τ .

Proposition 2.0.1. The restricted estimator for B(t) can be written in the following

way:

B̃R(t) =

∫ t

0

(Ik − An(s)R)b̂LS(s)ds +

∫ t

0

An(s)r1(s)ds, (2.5)

for 0 ≤ t ≤ τ .

The proof of this proposition is given in Appendix B.

2.0.2 Asymptotic Normality of the restricted estimators

In this subsection, we derive the asymptotic normality of the restricted and unre-

stricted estimators. At this point, we have a restricted estimator for B(t) and it is

important that we know it’s aymptotic distribution. This is particularly useful in

studying the asymptotic optimality of the proposed estimators.

As a preliminary step, below we recall the asymptotic properties of B̂LS(t).

Proposition 2.0.2. If Condition A holds, then

n
1
2 (B̂LS −B)

D−−−→
n→∞

U (2.6)
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on D ([0, τ ]), where U is a Gaussian martingale with mean 0 and covariance function∫ t

0

Ω(s)E[W 2
1 (s)X1(s)X

′
1(s)X1(s)β(s)]Ω(s)ds (2.7)

for 0 ≤ t ≤ τ .

The proof is outlined in Martinussen & Scheike (2006, p. 110 - 112). Also, for com-

pleteness, we provide a proof with further details in the appendix.

Note that, following Proposition 2.0.1, B̃R(t) has the following decomposition:

B̃R(t) =

[∫ t

0

b̂LS(s)ds

]
−
∫ t

0

[X(s)W (s)X ′(s)]−1R′[R[X(s)W (s)X ′(s)]−1R′]−1(Rb̂LS(s)− r1(s))ds

= B̂LS(t)−
∫ t

0

An(s)(Rb̂LS(s)− r1(s))ds

where W (s) is a weight matrix.

We want to study the asymptotic behaviour of
√
n(B̃R(t) − B(t)), and we can do

this by recognizing its relationship with
√
n(B̂LS(t) − B(t)), which has asymptotic

behaviour that we are already familiar with.

Also, in the sequel, we consider the following sequence of local alternatives:

H1,n : Rb(t) = r1(t) +
δ1(t)√
n
, n = 1, 2, 3, ... (2.8)

where R is a known q × k full-rank matrix, and r1(t) and δ1(t) are known integrable

q × 1 vectors, Riemman-integrable on every compact subset of R.
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Notice that

√
n(B̃R(t)−B(t))

=
√
n(B̂LS(t)−B(t)) −

√
n

(∫ t

0

An(s)(Rb̂LS(s)− r1(s))ds
)

=
√
n(B̂LS(t)−B(t))−

√
n

∫ t

0

An(s)(RdB(s)− r1(s))ds

−
∫ t

0

An(s)Rd[
√
n(B̂LS(s)−B(s))].

So, under the sequence of local alternatives in (2.8), and following the results in

Martinussen & Scheike (2006, p. 110),

√
n(B̃R(t)−B(t)) =

√
n(B̂LS(t)−B(t))−

∫ t

0

An(s)δ1(s)ds

−
∫ t

0

An(s)Rd[
√
n(B̂LS(s)−B(s))]

= n−
1
2

∫ t

0

Ω(s)X(s)W (s)dM(s) + n−
1
2

∫ t

0

{
(n−1Γ(s))−1 − Ω(s)

}
X(s)W (s)dM(s)

−
∫ t

0

An(s)δ1(s)ds

−
∫ t

0

An(s)R

×
(
n−

1
2 Ω(s)X(s)W (s)dM(s) + n−

1
2

{
(n−1Γ(s))−1 − Ω(s)

}
X(s)W (s)dM(s)

)
.

Further, note that the sequence of local alternatives in 2.8 implies the following se-

quence of local alternatives,

H2,n : RB(t) = r2(t) +
δ2(t)√
n
, (2.9)
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where R is the same known q × k full-rank matrix at (2.8),

r2(t) =

∫ t

0

r1(s)ds,

and

δ2(t) =

∫ t

0

δ1(s)ds.

Then we have the following very useful decomposition:

√
n(B̃R(t)−B(t)) = P1,n(t) + P2,n(t)− P3,n(t)

where

P1,n(t) = n−
1
2

∫ t

0

[Ik − An(s)R]Ω(s)X(s)W (s)dM(s), (2.10)

P2,n(t) = n−
1
2

∫ t

0

[Ik − An(s)R]
{

(n−1Γ(s))−1 − Ω(s)
}
X(s)W (s)dM(s),(2.11)

P3,n(t) =

∫ t

0

An(s)δ1(s)ds. (2.12)

In order to show the convergence of
√
n(B̃R(t)−B(t)), we can study the convergence

of the 3 seperate parts of this decomposition.

To simplify notation, let

A(t) = Ω(t)R′[RΩ(t)R′]−1

for 0 ≤ t ≤ τ .

We begin with the convergence of P1,n(t) to a Gaussian martingale.
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Proposition 2.0.3. Assume that Condition A and (2.9) hold, and let P1,n(t) be the

random quantity given in (2.10). Then, {P1,n(t), t ≥ 0} converges in distribution to

a Gaussian martingale on D ([0, τ ]), with covariance function

Φ∗(t) =

∫ t

0

[I − A(s)R]Ω(s)E[W 2
1 (s)[X1(s)X

′
1(s)]X1(s)β(s)]Ω(s)[I −R′A′(s)]ds.

The proof of this proposition is given in Appendix B. Further, in the following propo-

sition, we show that P2,n(t) converges in probability to 0, uniformly on [0, τ ] .

Proposition 2.0.4. Suppose that Condition A and (2.9) hold, and let P2,n(t) be the

random quantity given in (2.11). Then,

P2,n(t)
P−−−→

n→∞
0

uniformly over [0, τ ] .

The proof of this proposition is given in Appendix B. Concerning the quantity P3,n(t),

the following proposition shows that it converges in probability to a non-random ma-

trix.

Proposition 2.0.5. Suppose that Condition A and (2.9) hold, and let P3,n(t) be the

random quantity given in (2.12). Then,

P3,n(t)
P−−−→

n→∞

∫ t

0

A(s)δ1(s)ds

uniformly over [0, τ ] .
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The proof of this proposition is given in Appendix B.

Note that, from the convergence of each part of the decomposition, we can draw a

conclusion about the convergence of their sum. In particular, since

√
n(B̃R(t)−B(t)) = P1,n(t) + P2,n(t)− P3,n(t), we conclude that

√
n(B̃R −B)

D−−−→
n→∞

U∗ (2.13)

on D ([0, τ ]), where U∗ is a Gaussian martingale such that

U∗(t) ∼ Nk

(
−
∫ t

0

Ω(s)R′[RΩ(s)R′]−1δ1(s)ds ,Φ
∗(t)

)
with

Φ∗(t) =

∫ t

0

[I − A(s)R]Ω(s)E[W 2
1 (s)[X1(s)X

′
1(s)]X1(s)β(s)]Ω(s)

× [I −R′A′(s)]ds

for 0 ≤ t ≤ τ .

Now we know the asymptotic behaviour of the restricted estimator, as well as that

of the unrestricted estimator. More generally, we derive below the joint asymptotic

normality of the UE and RE. To simplify notation, let

ξn(t) =
√
n(B̃R(t)− B̂LS(t))

and

ηn(t) =
√
n(B̃R(t)−B(t)).
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In addition, let

C(s) = Ω(s)E[W 2
1 (s)[X1(s)X

′
1(s)]X1(s)β(s)]Ω(s).

Proposition 2.0.6. Suppose that Condition A and (2.9) hold. Then

(ξ′n(t), η′n(t))′
D−−−→

n→∞
(ξ′0(t), η

′
0(t))

′

on D ([0, τ ]), where {(ξ′0(t), η′0(t))′, t ≥ 0} is the Gaussian martingale with

(ξ′0(t), η
′
0(t))

′ ∼ N2k

∫ t

0

Ik
Ik

A(s)δ1(s)ds, Φ∗∗(t)


with

Φ∗∗(t) =

∫ t

0

A11(s) A12(s)

A21(s) A22(s)

 ds,

where

A11(s) = A(s)RC(s)R′A′(s),

A12(s) = −A(s)RC(s)[Ik −R′A′(s)],

A21(s) = [Ik − A(s)R]C(s)R′A′(s),

A22(s) = [Ik − A(s)R]C(s)[Ik −R′A′(s)].
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By using Proposition 2.0.6, we establish below Corollary 2.1. Briefly, Corollary 2.1

gives the asymptotic normality of (ξ′n(t), η′n(t))′ with a more tractable expression of

the variance-covariance matrix, Φ∗∗.

Consider an additional condition, this time on the weight matrix, W (t) :

• Condition B

The weight matrix, W (t) satisfies

Wi(t) =
1

Xi(t)β(t)
, i = 1, ..., n

for 0 ≤ t ≤ τ .

Note that the chosen Wi(t) depends on the parameter β(s). In practice, this param-

eter is replaced by the least-squares estimator [X(t)X ′(t)]−1X ′(t)dN(t). Further, as

mentioned above, under Condition B we can further simplify the variance-covariance

in Proposition 2.0.6. This is done in the following corollary:

Corollary 2.1. Suppose that Condition A, Condition B and (2.9) hold. Then

(ξ′n(t), η′n(t))′
D−−−→

n→∞
(ξ′(t), η′(t))′

on D ([0, τ ]), where {(ξ′(t), η′(t))′, t ≥ 0} is the Gaussian martingale with

(ξ′(t), η′(t))′ ∼ N2k

∫ t

0

Ik
Ik

A(s)δ1(s)ds , Φ∗∗∗(t)


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where

Φ∗∗∗ =

∫ t

0

A(s)RΩ(s) 0

0 Ω(s)− A(s)RΩ′(s)

 ds,

for 0 ≤ t ≤ τ .

2.2 Shrinkage Estimators

The Shrinkage Estimator was developed by Charles Stein (1956), and improved by

Stein in collaboration with Willard James 5 years later.

In the following subsection, we let

J(t) = R′
(∫ t

0

RΩ(s)R′ds

)−1
R

δ∗(t) =

∫ t

0

Ω(s)R′[RΩ(s)R′]−1δ(s)ds,

Σ11(t) =

∫ t

0

Ω(s)R′[RΩ(s)R′]−1RΩ(s)ds

∆(t) =

(∫ t

0

δ∗′(s)ds

)
×R′

(∫ t

0

RΩ(s)R′ds

)−1
R×

(∫ t

0

δ∗(s)ds

)

q = rank(Σ11(t)J(t)Σ11(t))

φn(t) = ξ′n(t)J(t)ξn(t)
D−−−→

n→∞
φ(t) ∼ χ2

q(∆(t)),

and

ϕn(t) = ξ′n(t)Ĵ(t)ξn(t), (2.14)
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where Ĵ(t) is a consistent estimator for J(t), uniformly on [0, τ ].

In addition, we have the following proposition.

Proposition 2.2.1. Suppose that Conditions A, B and 2.9 hold. Then

i) φn(t)
D−−−→

n→∞
ξ′(t)J(t)ξ(t) ∼ χ2

q(∆(t)),

on D ([0, τ ]), and

ii) ϕn(t)
D−−−→

n→∞
ξ′(t)J(t)ξ(t) ∼ χ2

q(∆(t)), on D ([0, τ ])

The proof of this proposition can be found in Appendix B.

2.2.1 Shrinkage Estimator

The shrinkage estimator can be defined by:

B̂S(t) = B̃R(t) + (1− cϕ−1n (t))(B̂LS(t)− B̃R(t)) (2.15)

where c, which is known as the shrinkage constant, is chosen in an interval such that

B̂S(t) dominates B̂LS(t), and ϕn(t) is defined in (2.14). In the sequel, we will consider

c = q − 2.

The shrinkage estimator tends to overshrink the estimator, especially when ϕn(t) is

very small in comparison with c. To remedy this issue, the Positive-Part Shrinkage

(PS) Estimator was developed by truncating the shrinkage estimator in the following
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way:

B̂S+

(t) = B̃R(t) +max(0, 1− cϕ−1n (t))(B̂(t)− B̃R(t))

= B̃R(t) +

(
1− q − 2

ϕn(t)

)+

(B̂(t)− B̃R(t)), (2.16)

where

(f(t))+ = max (0, f(t)) .

2.3 Asymptotic Distributional Risk and Bias

In Ahmed & Nicol (1999), a paper on shrinkage estimators in non-linear regression,

the authors state that because the test based on ϕn(t) is consistent against fixed al-

ternatives, the shrinkage estimators become asymptotically isomorphic to B̂LS(t) as

n→∞.

2.3.1 Asymptotic Distributional Risk

In this section, we provide the asymptotic distributional risk for each of the estimators

of B(t). In order to evaluate the performance of the proposed estimators, we calculate

their risks and compare them. The risk of an estimator is the expected value of its

loss function, so let us consider the weighted quadratic Loss Function for an estimator

θ̂ of θ:

L(θ̂, θ;W ∗) = n

∫ τ

0

(θ̂(s)− θ(s))′W ∗(s)(θ̂(s)− θ(s))ds. (2.17)
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Then the Risk is given by

R(θ̂, θ;W ∗) = E[L(θ̂, θ;W ∗)] = E

[
n

∫ τ

0

(θ̂(s)− θ(s))′W ∗(s)(θ̂(s)− θ(s))ds
]
.

Now consider the asymptotic distribution of the loss function. We choose to look at

the asymptotic risk since it is difficult (or, rather, impossible) to find the small-sample

distribution of (θ̂(s)− θ(s))′W ∗(s)(θ̂(s)− θ(s)).

Suppose that the distribution of the loss function converges to an integrable ran-

dom variable, Ψ. Then the Asymptotic Distributional Risk (ADR) is defined by

ADR(θ̂, θ;W ∗) = E[Ψ].

In this paper we consider the loss function given in equation (2.17).

For the purpose of simplification, define

W
∗
(s) =

∫ τ

s

W ∗(t)dt. (2.18)

We will start with the ADR of the unrestricted estimator.

Proposition 2.3.1. Suppose that Conditions A, B, and the sequence of local alter-

natives in (2.9) hold. Then,

ADR
(
B̂LS, B;W ∗

)
=

∫ τ

0

tr
(

Ω(s)W
∗
(s)
)
ds.



CHAPTER 2. THE PROPOSED SHRINKAGE ESTIMATORS 28

The proof of this proposition can be found in Appendix B.

The ADR of the restricted estimator is given in the following proposition.

Proposition 2.3.2. Suppose that Condition A, Condition B and (2.9) hold. Then,

ADR(B̃R, B;W ∗) =

∫ τ

0

tr
(

Ω(s)W
∗
(s)
)
ds−

∫ τ

0

tr
(

Σ(s)W
∗
(s)
)
ds

+

∫ τ

0

δ∗′(s)W ∗(s)δ∗(s)ds.

The proof of this proposition can be found in Appendix B.

Notice that, by Propositions 2.3.1 and 2.3.2,

ADR(B̃R, B;W ∗) = ADR
(
B̂LS, B;W ∗

)
−
∫ τ

0

tr
(

Σ(s)W
∗
(s)
)
ds+

∫ τ

0

δ∗′(s)W ∗(s)δ∗(s)ds.

The following proposition provides the ADR of the shrinkage estimator.

Proposition 2.3.3. Suppose that Condition A, Condition B and (2.9) hold, and that

B̂S(t) is the shrinkage estimator given in (2.15). Then,

ADR
(
B̂S, B;W ∗

)
= ADR(B̂LS, B;W ∗)

−
∫ τ

0

tr
(

Σ(s)W
∗
(s)
)
ds+

∫ τ

0

δ∗′(t)W ∗(t)δ∗(t)dt

−2

∫ τ

0

E

[
1− q − 2

D1(t)

]
δ∗′(t)W ∗(t)δ∗(t)dt

+

∫ τ

0

E

[(
1− q − 2

D1(t)

)2
]

trace(W ∗(t)Σ11(t))dt
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+

∫ τ

0

E

[(
1− q − 2

D2(t)

)2
]
δ∗(t)′W ∗(t)δ∗(t)dt,

where

D1(t) = χ2
q+2( δ

∗(t)′W ∗(t)δ∗(t)) (2.19)

and

D2(t) = χ2
q+4( δ

∗(t)′W ∗(t)δ∗(t)). (2.20)

The proof of this proposition can be found in Appendix B.

It is clear from the last proposition that, in order for our shrinkage estimator to

be better than the unrestricted estimator (with respect to the risk),

−
∫ τ

0

tr
(

Σ(s)W
∗
(s)
)
ds+

∫ τ

0

δ∗′(t)W ∗(t)δ∗(t)dt

−2

∫ τ

0

E

[
1− q − 2

D1(t)

]
δ∗′(t)W ∗(t)δ∗(t)dt

+

∫ τ

0

E

[(
1− q − 2

D1(t)

)2
]

trace(W ∗(t)Σ11(t))dt

+

∫ τ

0

E

[(
1− q − 2

D2(t)

)2
]
δ∗(t)′W ∗(t)δ∗(t)dt,

must be negative. We use this fact to prove the following proposition. Let chmin(A)

and chmax(A) be the smallest and largest eigenvalues of the matrix A, respectively.

Proposition 2.3.4. Suppose that Condition A, Condition B and (2.9) hold. Also

suppose that the weight matrix, W ∗(t), is an element of the set

{W ∗(t) : 0 ≤ (q + 2)chmax (W ∗(t)Σ11(t)) ≤ 2trace (W ∗(t)Σ11(t)) , t > 0} . (2.21)
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Then,

ADR
(
B̂S, B;W ∗

)
≤ ADR

(
B̂LS, B;W ∗

)
.

The proof of this proposition can be found in Appendix B.

The ADR of the positive-part shrinkage estimator is given in the following proposi-

tion, and follows similar steps to those in Proposition 2.3.3.

Proposition 2.3.5. Suppose that Condition A, Condition B and (2.9) hold. Then,

ADR
(
B̂S+

, B;W ∗
)

=

∫ τ

0

tr ([Ω11(t)− Σ11(t)]W
∗(t)) dt+

∫ τ

0

δ∗′(t)W ∗(t)δ∗(t)dt

−2

∫ τ

0

E

[(
1− q − 2

D1(t)

)+
]
δ∗′(t)W ∗(t)δ∗(t)dt

+

∫ τ

0

E

([1− q − 2

D1(t)

]+)2
 trace(W ∗(t)Σ11(t))dt

+

∫ τ

0

E

([1− q − 2

D2(t)

]+)2
 δ∗(t)′W ∗(t)δ∗(t)dt,

where D1(t) and D2(t) are defined as in equations (2.19) and (2.20), respectively.

This result follows directly from the proof of Proposition 2.3.3, found in Appendix B.

It is possible to write ADR
(
B̂S+

, B;W ∗
)

as a function of ADR
(
B̂S, B;W ∗

)
, which

is illustrated in the following proposition. This will be useful for comparison purposes.

Proposition 2.3.6. Suppose that the conditions in Proposition 2.3.5 hold. Then

ADR
(
B̂S+

, B;W ∗
)
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= ADR
(
B̂S, B;W ∗

)
+2

∫ τ

0

E

[
I(−∞,0)

{
1− q − 2

D1(t)

}(
1− q − 2

D1(t)

)]
δ∗′(t)W ∗(t)δ∗(t)dt

+

∫ τ

0

E

[
I(−∞,0)

{
1− q − 2

D1(t)

}(
1− q − 2

D1(t)

)2
]

trace(W ∗(t)Σ11(t))dt

+

∫ τ

0

E

[
I(−∞,0)

{
1− q − 2

D1(t)

}(
1− q − 2

D1(t)

)2
]
δ∗(t)′W ∗(t)δ∗(t)dt.

The proof of this proposition can be found in Appendix B.

While the shrinkage estimator has a lower risk than the unrestricted estimator, the

positive-part shrinkage estimator is an even bigger improvement.

Proposition 2.3.7. Suppose that Condition A, Condition B and (2.9) hold. Also,

suppose that the weight matrix, W ∗(t), is chosen to satisfy (2.21) Then,

ADR
(
B̂S+

, B;W ∗
)
≤ ADR

(
B̂S, B;W ∗

)
.

The proof of this proposition follows directly from the proof of Proposition 2.3.4.

2.3.2 Asymptotic Distributional Bias

In addition to minimizing risk, we are also interested in minimizing bias. In this

section, we will provide the asymptotic distributional bias (ADB) for each of the

estimators. Using results from George Judge and Mary Bock, Ahmed & Nicol showed

that the asymptotic distributional bias of an estimator θ̂ of θ is defined by:

ADB(θ̂, θ) = lim
n→∞

E[n
1
2 (θ̂ − θ)].

We will start with the ADB of the unrestricted estimator.
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Proposition 2.3.8. Suppose that Conditions A, B, and the sequence of local alter-

natives in (2.9) hold. Then,

ADB
(
B̂LS, B

)
= 0.

The proof of this proposition follows directly from Proposition 2.0.2.

The ADB of the restricted estimator is given in the following proposition.

Proposition 2.3.9. Suppose that Condition A, Condition B and (2.9) hold. Then,

ADB(B̃R, B) =

∫ τ

0

∫ t

0

A(s)δ1(s)dsdt.

The proof of this proposition follows directly from relation (2.13).

We will now provide the ADB of the shrinkage estimator.

Proposition 2.3.10. Suppose that Condition A, Condition B and (2.9) hold. Then,

ADB(B̂S, B) =

∫ τ

0

δ∗(t)dt+

∫ τ

0

E

[
1− q − 2

D1(t)

]
δ∗(t)dt.

The proof of this proposition can be found in Appendix B.

We provide the ADB of the positive-part shrinkage estimator, B̂S+
, in the following

proposition. The proof follows directly from the proof of Proposition 2.3.10.
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Proposition 2.3.11. Suppose that Condition A, Condition B and (2.9) hold. Then,

ADB(B̂S+

, B) =

∫ τ

0

δ∗(t)dt+

∫ τ

0

E

[(
1− q − 2

D1(t)

)+
]
δ∗(t)dt.

The proof of this proposition can be found in Appendix B.



Chapter 3

Empirical Studies

3.1 Simulation study

In this section we study the performance of the shrinkage estimators by using Monte

Carlo simulations. To this end, we consider a simple survival model whose inten-

sity function for the ith individual is given by λ(t|Xi(t)) = Yi(t)Xiβ(t), where we set

β(t) = (β0t, β2t, ..., β4t), where βq for q = 0, ..., 4 are unknown but constant and the co-

variate process is time-independent. Thus, we assumed the time-dependent regression

coefficients to be linear. This leads to a cumulative intensity function given by Λ(t) =

t2Yi(t)Xiβ, where β = (β0, ..., β4) and since we only allow one-event for each subject,∫ t
0
Yi(s)ds = Yi(t). This enables us to generate random times, T , via Uniform(0, 1)

numbers, U , by inverting the relationship 1 − F (T ) = exp {−Λ(T )}. We generated

the covariates Xi1, ..., Xi4 from Uniform(0, 20) and we set β = c(2, 0, 0, 0, 0), under

the null hypothesis and β = c(2, 0, 0, 0, 0 + δ) under the alternative hypothesis, where

34
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δ varied from zero to one with steps of .05. Our restriction is given by Rβt = r, where

R =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


and

r = (0 0 0 0)′.

Thus, generated random survival times were then censored by using independent

random variates generated from Uniform(0, 3). This setting led to censoring rates

varying from 5-15%. Each scenario was simulated 1000 times for sample sizes of n =

250, 500, 750 and 1000. In each scenario, we computed the empirical mean squared

errors (MSE) of the all the estimators (shrinkage, positive shrinkage, restricted and

unrestricted) and, by taking the unrestricted estimator as benchmark, we reported

the ratios of these MSEs relative to the benchmark. The results are summarised in

Figures 1-4.

It is clearly visible that the proposed shrinkage estimators outperform the usual

restricted and unrestricted estimators on almost all of the parameter space. When the

null hypothesis is true (in other words, δ = 0), we see that the best estimator is the

restricted estimator as foreseen from the analytic derivations of the chapter 2, while

its performance deteriorates substantially when we get away from the null space. On

the other hand, the positive shrinkage estimator dominates the unrestricted estimator

throughout the null and alternative space and converges to it in terms of MSE for

all of the sample sizes considered. However, the shrinkage estimator seems to be

worse than the unrestricted at the null hypothesis for sample sizes that are smaller

than n = 1000. This may indicate that the asymptotic distributional risk dominance
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of the shrinkage estimator requires quite large samples to kick in. In summary, this

simulation study agrees with our theoretical results about the asymptotic distribution

risk, which were developed in the previous section.

Figure 3.1: Ratios of MSE for all estimators relative to the unrestricted estimator

with delta varying over the parameter space and sample size n=250
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Figure 3.2: Ratios of MSE for all estimators relative to the unrestricted estimator

with delta varying over the parameter space and sample size n=500
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Figure 3.3: Ratios of MSE for all estimators relative to the unrestricted estimator

with delta varying over the parameter space and sample size n=750



CHAPTER 3. EMPIRICAL STUDIES 39

Figure 3.4: Ratios of MSE for all estimators relative to the unrestricted estimator

with delta varying over the parameter space and sample size n=1000
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3.1.1 Application to Real Data Sets

In 1974, the Mayo Clinic began a ten-year trial in primary biliary cirrhosis (PBC) of

the liver. This was a randomized placebo-controlled trial of the drug D-penicillamine,

and there were 424 patients in total at the clinic who were eligible to participate.

The data is mostly complete for the first 312 patients, however the last 112 did not

participate in the clinical trial, consenting only to have measurements recorded and

followed for survival. In addition, six of those cases were lost. This data set is

fairly well-known and a nearly identical set appears in appendix D of Fleming and

Harrington (1991).

While Cox’s proportional model has been used for this data, the covariate values were

all determined at the time when they entered the study. It is, however, quite possible

that the values of these covariates would change over the duration of the trial. For

this reason, it may be a good idea to consider a model which is time-dependent, such

as Aalen’s model.

There were seventeen covariates collected from the patients who participated in the

clinical trial, including age, sex, blood clotting time and treatment, to name a few.

Here, we fit Aalen’s additive regression model to the PBC data using the R function

aalen, found in the timereg package. We will fit the full model and use the supremum-

test to determine which covariates are significant. Our restriction is given by

Rβ(t) = r, where R is the identity matrix, and r = (0, ..., 0)′.
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Table 1: Supremum-test of significance

Covariate P-Value (H0 : B(t) = 0)

trt 0.298

age 0.037

sex 0.623

ascites 0.178

hepato 0.375

spiders 0.667

edema 0.190

log(bili) 0.000

log(albumin) 0.004

log(copper) 0.068

log(alk.phos) 0.374

log(ast) 0.315

log(trig) 0.536

log(platelet) 0.602

protime 0.195

stage 0.573

We can see that the drug D-penicillamine (covariate trt) did not have a significant

impact on time of death in this trial. Next, we use the Kolmogorov-Smirnov test to
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determine which effects appear to be time-invariant.

Table 2: Kolmogorov-Smirnov test

Covariate P-Value (H0 : B(t) = constant effect )

trt 0.071

age 0.045

sex 0.324

ascites 0.110

hepato 0.302

spiders 0.673

edema 0.040

log(bili) 0.122

log(albumin) 0.253

log(copper) 0.012

log(alk.phos) 0.062

log(ast) 0.340

log(trig) 0.455

log(platelet) 0.138

protime 0.271

stage 0.381

Note that very few of the p-values are significant. Therefore, in this model of the
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PBC data, most of the B(t) appear to be time-independent. The covariates that do

appear to be time-dependent are: age, edema and copper.

In addition, R will estimate the cumulative coefficient estimates for each of the co-

variates in our model, at 112 different points in time. These are given in the following

plots.
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Using Table 3.1.1, we can reduce our model to include only the significant covariates,

i.e. age, log(bili) and log(albumin).

To calculate the estimators, we considered the full model. We computed the UE, RE,

shrinkage and positive-part shrinkage estimators for the coefficient of each covariate.

Here we provide the plots of all estimators for only the three significant covariates,

and the intercept.
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Figure 3.5: Intercept estimates for all estimators over the 95 unique event times

Figure 3.6: Coefficient estimates for the age covariate for all estimators over the 95

unique event times



CHAPTER 3. EMPIRICAL STUDIES 48

Figure 3.7: Coefficient estimates for the log(bili) covariate for all estimators over the

95 unique event times
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Figure 3.8: Coefficient estimates for the log(albumin) covariate for all estimators over

the 95 unique event times



Chapter 4

Conclusion

This paper proposes a shrinkage estimator and positive-part shrinkage estimator for

the nonparametric regression coefficients in Aalen’s additive model, under a general

linear hypothesis involving the coefficients. Using some martingale theory, we have

shown that the unrestricted and restricted estimators for the cumulative regression

coefficients are asymptotically normal. We then compared the estimators analytically,

by calculating their risks and biases, considering a quadratic loss function.

To conclude the paper, we evaluated their performance in a Monte Carlo simula-

tion study, and then applied the model to a data set on the survival times of patients

with primary billiary cirrhosis. It was clear from the simulation that the proposed

shrinkage estimators outperformed the usual restricted and unrestricted estimators

on the parameter space, provided that the sample size was large (n ≥ 1000).

50



Appendix A

A.1 Martingale Theory

This appendix provides a bit of a background on the martingale and counting pro-

cess theory that is used in the estimation of risk coefficients for the additive hazard

models. We begin with a few elementary definitions and propositions.

The “norm” of a matrix can be defined a number of different ways. Wherever the

“norm” of a matrix appears throughout this paper, we refer to the following definition.

Definition A.1.1. For a matrix, A, let the “norm” of A be defined by

|A| =
√
λ(AA′)

where λ is the largest eigenvalue of the matrix (AA′) .

The following proposition is used to show that the matrix R[X(t)W (t)X ′(t)]−1R′ is

invertible, in order to derive the RE in section 2.0.1 .

51
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Proposition A.1.2. Let the n×n matrix A be positive definite and let B be an m×n

matrix. If B is full-rank, then the matrix BAB′ is positive

definite.

Proof. Let A be an n × n positive definite matrix, and B be any full-rank, m × n

matrix.

Since A is positive definite, z′Az > 0 ∀ z ε Rn � z 6= 0 .

Then z′BAB′z = (B′z)′A(B′z) ≥ 0 .

Also, (B′z)′A(B′z) = 0 ⇔ B′z = 0. Thus z = 0, since B is full-rank.

Therefore BAB′ is an m×m matrix such that, z′(BAB′)z = w′Aw > 0 for

all z ε Rm such that z 6= 0)

i.e. BAB′ is positive-definite.

Martingale theory is an important part of the foundation behind the estimators de-

veloped in this paper. The ability to write the cumulative coefficients in terms of

martingales, follows from the Doob-Meyer Decomposition Theorem, which uses the

notion of integrable and uniformly integrable processes. For this reason, we will de-

fine these concepts. For further details about these concepts, the reader is referred to

Fleming & Harrington (1991, Chapters 1 & 2), Rao (1969) and Lipster & Shiryayev

(1989, Chapter 5).

Definition A.1.3. Let C be a non-empty set of elements, and let A be a collection

of subsets of C. A is a “σ-field” ( or σ-algebra) if

1.) If E ε A, then Ec ε A (A is closed under complements), and
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2.) If the sequence of sets {E1, E2, ...} is in A, then
⋃∞
j=1Ej ε A (A is closed under

countable unions).

This definition can be found in Fleming & Harrington (1991, p. 322).

When introducing a martingale, it is important to state that it is a martingale with

respect to its filtration. We define this concept below.

Definition A.1.4. (Fleming & Harrington, 1991, p. 17)

A “filtration” is a family, F = {Ft, t ∈ T}, of sub-σ-fields of C such that ∀s, t ε T

s < t⇒ Fs ⊂ Ft.

. Notation : Let Ft− denote the filtration at an instant before t. This is the smallest

σ-field containing
⋃
s>tFs

. Remark : The filtration (or history) of a counting process is a right-continuous

filtration. That is,
⋂
s>tFs = Ft. This property is important for many of the mar-

tingale theory proofs.

Definition A.1.5. (Martinussen & Scheike, 2006, p. 19)

A “stochastic process” is a family of random variables X = {X(t), t ≥ 0} indexed by

time, all defined on the same probablility space (Ω,Ft, P ) .
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Definition A.1.6. (Kalbfleisch & Prentice, 1980, p. 157)

A stochastic process X = {Xt , t ≥ 0} is “adapted to the filtration” Ft if

∀ t ≥ 0, Xt is Ft −measurable.

In the first section of this paper, we impose a set of conditions, Condition A, on

our model. One condition in this set is that {X ′i(t)Ni(t), 0 ≤ t ≤ τ} is a separable

process for i = 1, ..., n. To better explain this condition, we provide the following

definition of a “separable process”.

Definition A.1.7. (Doob, 1953, p.51)

Let {Xt, t ∈ T} be a real stochastic process with linear parameter set T . Let S be a

system of linear Borel sets. Then {Xt, t ∈ T} is “separable” relative to S if there is

a sequence {tj} of parameter values and an ω set, ω1, of probability 0 such that if

S ∈ S and I is any open interval, the ω sets

{Xt(ω), t ∈ IT} ,
{
Xtj(ω) ∈ S, tj ∈ IT

}
differ by, at most, a subset of ω1.

The stochastic process {Nt, t ≥ 0} introduced in Chapter 1 is a counting process. This

concept is defined below.

Definition A.1.8. (Fleming & Harrington, 1991, p. 18)

A “counting process” is a stochastic process {N(t), t ≥ 0} adapted to a filtration

{Ft : t ≥ 0} whose paths are right-continuous (almost surely), piecewise constant and

whose discontinuities are jumps of magnitude 1, such that
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(i) N(0) = 0

(ii) P [N(t) <∞] = 1 .

The process {Mt, t ≥ 0} that appears throughout this paper is a martingale. It is a

counting process with some special properties which are useful in the derivation of

our estimators, and it is defined in greater detail below.

Definition A.1.9. (Kalbfleisch & Prentice, 1980, p. 157)

Let {Ft, t ≥ 0} be a filtration, and let {Mt, t ≥ 0} be a [continuous] real-valued stochas-

tic process adapted to the filtration {Ft, t ≥ 0}.

{Mt, t ≥ 0} is a “martingale” with respect to {Ft, t ≥ 0} if the following are satisfied:

(i) E[ |Mt| ] <∞ , t ≥ 0

(ii) E[Mt|Fs] = Ms , s ≤ t

or, equivalently, E[dM(t)|Ft− ] = 0 , ∀ t ∈ (0, τ ].

. Note : Given a process {Mt, t = 0, 1, 2, ... }, one can choose

Ft = σ{Ms, s = 0, 1, ..., t}, the σ -field generated by {Ms, s = 0, 1, ..., t}. This is

called the “natural filtration” of the process {Ms, s = 0, 1, 2, ...}. In continuous

time,

the natural filtration is Ft = σ{Ms, s ≤ t} .

For our purposes, let Ni(t) be a counting process such that

Ni(t) =


1, if Ti ≤ t and an event occurred at Ti ,

0, otherwise ,
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and let N(t) = [N1(t), ..., Nn(t)]′.

We redefined X(t) as an n× k matrix with the ith row defined by:

[Yi(t), Yi(t)Xi1(t), ..., Yi(t)Xik(t)] for i = 1, ..., n.

Following Aalen’s additive model, the intensity function for Ni(t) is

λi(t) = [Yi(t), Yi(t)Xi1(t), ..., Yi(t)Xik(t)]β(t)

= [Yi(t), Yi(t)Xi1(t), ..., Yi(t)Xik(t)][β0(t), ..., βk(t)]
′

Further, let Λ(t) denote the cumulative intensity function for Ni(t),

i.e.

Λi(t) =

∫ t

0

λi(s)ds,

for 0 ≤ t ≤ τ .

The following are definitions of types of processes that are used throughout this paper.

Definition A.1.10. (Flemming & Harrington, 1991, p. 17)

An “increasing process”, A(t), is a right-continuous process with non-decreasing sam-

ple paths such that P [A(0) = 0] = 1.
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Definition A.1.11. (Flemming & Harrington, 1991, p. 17)

An increasing process, A(t), is an “integrable process” if and only if

sup {E[|A(t)|]} <∞.

Definition A.1.12. (Klebaner, 2005, p. 185)

An integrable process, A(t) is “uniformly integrable” if

sup E[|A(t)|I{|A(t)|>M}]→ 0 as M →∞.

Definition A.1.13. The Ft-process, {Mt}t≥0, is a “local martingale” if there exists

an increasing sequence of Markov stopping times (Tn) such that

(i) Tn
P−−−→

n→∞
∞

and (ii) For each n ≥ 1, the stopped process MTnI{t≥0} is an Ft-martingale.

This definition of a local martingale can be found in Borovskikh & Semenovi(1997,

p. 6).

. Note : The sequence (Tn) is called a “localizing sequence”.

Definition A.1.14. An Ft-martingale, {Mt}t≥0, is “square integrable” (or to have

“finite variance”) if

sup
t≥0

E[M(t)2] <∞.
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For further details, we refer the reader to Kalbfleisch & Prentice (1980, p. 158).

Definition A.1.15. A stochastic process {Mt, t ≥ 0} is said to be a “local square

integrable martingale” if it satisfies both definitions A.1.13 and A.1.14.

Now we can proceed to analyze the properties of our cumulative intensity process

Λ(t). First, note that, as given in the following proposition, M is in fact a martingale.

Proposition A.1.16. The stochastic process M(t) = N(t)− Λ(t) is a martingale.

This result is established in Fleming & Harrington (1991, Theorem 1.4.1, p. 37).

Proposition A.1.17. The cumulative intensity process, Λ(t) has the following

property:

E[N(t)|Ft− ] = E[Λ(t)|Ft− ] = Λ(t).

The proof of this proposition is given in Fleming & Harrington (1991, p. 62).

In the study of the optimality of the proposed estimators, we use large-sample theory.

Indeed, the exact [finite-sample] distributions are impossible to obtain in this context.

More precisely, the established results involve three different notions of convergence:

convergence in mean, convergence in probability, convergence in distribution . For

more details about these concepts, we refer the reader to Billingsley (1995), Taylor

(1973, p. 166-182) and Whittle (1976, Chapter 16).

Further, for the convenience of the reader, we give below very brief definitions of these

concepts.
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Consider the sequence of real-valued random variables {Xn;n = 1, 2, ...} and let X

be a real-valued random variable.

Definition A.1.18. (Billingsley, 1995, p. 70)

Xn is said to “converge almost surely” (or with probability 1) to X iff

P [|Xn −X| ≥ ε, infinitely often ] = 0.

This is denoted by Xn
a.s.−−−→
n→∞

X .

A well-known example of this mode of convergence is the Strong Law of Large Num-

bers (SLLN).

• Example:

Suppose {X1, X2, ..., Xn} is a sequence of independent random variables, with

E[X1] = µ, and E[|X1|4] <∞.

Then Xn
a.s.−−−→
n→∞

µ .

This is Borel’s version of the SLLN, and it can be found in Athreya & Lahiri (2006,

p.40).
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Definition A.1.19. (Billingsley, 1995, p. 243)

Xn is said to “converge in pth mean” (or in Lp norm) to X if

lim
n→∞

E[|Xn −X|p] = 0.

In particular, if p = 1, Xn converges in mean to X if

lim
n→∞

E[|Xn −X|] = 0.

• Example: Suppose {X1, X2, ..., Xn} is a sequence of i.i.d. random variables, with

E[X1] = µ, and var[X1] = σ2 <∞.

Then Xn converges in mean to µ, as n tends to ∞.

Definition A.1.20. (Billingsley, 1995, p. 70)

Xn is said to “converge in probability” to X if

∀ ε > 0 , lim
n→∞

P [|Xn −X| > ε] = 0.

This is denoted by Xn
P−−−→

n→∞
X .

A well-known example of convergence in probability is the Weak Law of Large Num-

bers.

Definition A.1.21. (Billingsley, 1995, p. 329)

Let Fn(t) = P [Xn ≤ t] and F (t) = P [X ≤ t].

Then Xn is said to “converge in distribution” iff

lim
n→∞

Fn(t) = F (t)
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at all continuity points t of F . This is denoted by Xn
D−−→ X.

One can also say that Fn converges to F weakly.

The notion of the “predictable variation” of a stochastic process is defined below.

Definition A.1.22. The “predictable variation process” of the Ft-martingale M(t)

is a compensator for the process M2(t) and is denoted 〈M〉(t).

In particular, the predictable variation of a square-integrable Ft-martingale M is given

by

〈M〉(t) =

∫ t

0

var[dM(u)|Fu− ].

For more details and applications of this concept, we refer the reader to Kalbfleisch

& Prentice (1980, p. 158).

We also have the notion of “optional variation”. This appears in the martingale

central limit theorem, however we will not use this type of variation in any of our

proofs.

Definition A.1.23. The “optional variation process” of the Ft-martingale M(t) is

a compensator of the process M2(t) and is denoted [M ](t).

It is given by

[M ] =
n∑
i=1

{M(ti+1)−M(ti)}2
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over increasingly fine partitions of the interva [0, τ ].

This definition can be found in Therneau & Grambsch (2000, p.21).

The martingale central limit theorem will be the foundation of any proof regarding

the asymptotic behaviour of martingales. There are various different versions and

generalizations of this theorem, and we will be using that which closely resembles

that given by Rebolledo.

Theorem A.1.24. Martingale Central Limit Theorem

Let M (n) = (M
(n)
1 , ...,M

(n)
k ) be a vector of local square integrable Ft-martingales.

Also, let T0 ⊆ T and consider the conditions

i) 〈M (n)〉(t) P→ V (t) for all t ε T0 as n→∞

ii) [M (n)](t)
P→ V (t) for all t ε T0 as n→∞

iii) 〈M (n)
εh 〉(t)

P→ 0 for all t ε T0, h and ε > 0 as n→∞, where M
(n)
ε is a vector of

local square integrable Ft-martingales which contains all the jumps of components of

M (n) of absolute value greater than ε.

If iii) and either i) or ii) are true, then

(M (n)(t1), ...,M
(n)(tl))

D→ (M (∞)(t1), ...,M
(∞)(tl)) as n→∞ for all t1, ..., tl ε T0

where M (∞) is a continuous Gaussian vector martingale with 〈M (∞)〉 = [M (∞)] = V

for a continuous deterministic k × k positive semi-definite matrix-valued function on

T .

In addition, if T0 is dense in T (i.e. if the closure of T0 is T )

and contains τ if τ ε T then, under the same conditions, then
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M (n) D→M (∞) in D(T ) as n→∞ .

This theorem is established in Andersen et. al. (1993, p. 83), as well as in Borovskikh

& Semenovi (1997, Chapter 5).

It is well known that convergence in mean implies convergence in probability, and

convergence in probability implies convergence in distribution. The converse is not,

in general true. However, under certain conditions the converse does hold, and this

is outlined in Lebesgue’s Dominated Convergence Theorem below.

Theorem A.1.25. Lebesgue’s Dominated Convergence Theorem (LDCT)

Let {fn} be a sequence of measurable functions such that fn → f pointwise almost

everywhere as n→∞ and, for an integrable function g, |fn| ≤ g for all n.

Then f is integrable and ∫
fdµ = lim

n→∞

∫
fndµ.

(Williams, 1991, p. 54)

Recalling the earlier definition of predictable variation, let us now consider the

variance of such a process.

Proposition A.1.26. Let M(t) be an Ft-martingale. Then the variance of dM(t),

conditional upon its history just prior to t, is

var(dM(t)|Ft−) = d〈M〉(t).

The proof of this proposition is given in Fleming & Harrington (1991, p. 40).



Appendix B

B.1 Lemmas, Proofs and Definitions

This appendix contains the lemmas and propositions that are referred to throughout

this paper, as well as some necessary definitions. More importantly, this appendix

contains proofs of the main propositions used in this paper. We will begin with Gill’s

Lemma (Gill, 1980, p. 98).

Lemma B.1.1. (Gill’s Lemma)

Suppose that

1. fn(t)
P−−−→

n→∞
f(t) for almost all t ∈ [0, τ ] and

∫ τ

0

|f(t)|dt <∞.

2. ∀ δ > 0, ∃ kδ(t) ≥ 0 with

∫ τ

0

kδ(t)dt <∞

such that

lim inf P [ |fn(t)| ≤ kδ(t), ∀t ε [0, τ ] ] ≥ 1− δ.

Here, each bound, kδ(t), is non-random. Then∫ t

0

fn(s)ds
P−−−→

n→∞

∫ t

0

f(s)ds,

64
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uniformly on [0, τ ].

The proof of Gill’s Lemma is found in Gill (1980, p. 98).

By using Gill’s Lemma above, we establish the following lemma, which is useful in

deriving the joint asymptotic normality of the UE and RE in Chapter 2.

Lemma B.1.2. Suppose that

sup
0≤t≤τ

|fn(t)− f(t)| P−−−→
n→∞

0 , τ <∞,

where ∫ τ

0

|f(t)|dt <∞.

Then ∫ t

0

fn(s)ds
P−−−→

n→∞

∫ t

0

f(s)ds

uniformly on [0, τ ] .

Proof. First, note that condition 1 of Gill’s Lemma (Lemma B.1.1) is satisfied. Fur-

ther, since fn(t)
P−−−→

n→∞
f(t) uniformly on [0, τ ] we have, for all ε > 0,

∀ δ > 0,∃ N0 ∈ N 3 ( ∀ n ≥ N0, P [ |fn(t)− f(t)| < ε] < δ ) .

Then

∀ ε > 0,∀ δ > 0,∃ N0 ∈ N 3 ( ∀ n ≥ N0, P [ |fn(t)− f(t)| < ε] ≥ 1− δ ) ,

and thus

∀ ε > 0,∀ δ > 0,∃ N0 ∈ N 3 ( ∀ n ≥ N0, P [ ∀t ∈ [0, τ ], |fn(t)− f(t)| < ε] ≥ 1− δ ) .
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We will now use this to show that condition 2 of Gill’s Lemma is satisfied. Notice

that the set

{∀ tε[0, τ ], |fn(t)− f(t)| < ε} ⊂ {∀ tε[0, τ ] ||fn(t)| − |f(t)|| < ε}

⊂ {|fn(t)| < |f(t)|+ ε,∀ tε[0, τ ]} .

This is because

∀ε > 0, |fn(t)− f(t)| < ε ⇒ ∀ε > 0, ||fn(t)| − |f(t)|| < ε

⇒ ∀ε > 0, |fn(t)| < |f(t)|+ ε.

It follows that

lim inf
n

P [|fn(t)| < |f(t)|+ ε, ∀ t ∈ [0, τ ] ] ≥ 1− δ,

with ∫ τ

0

(|f(t)|+ ε) dt =

∫ τ

0

|f(t)|dt + ετ <∞,

since τ <∞ .

Therefore, if we let kδ(t) = |f(t)|+ ε, we have

lim inf
n

P [|fn(t)| < kδ(t),∀ t ∈ [0, τ ] ] ≥ 1− δ

with ∫ τ

0

kδ(t)dt <∞.

Thus, condition 2 of Lemma B.1.1 is satisfied. Therefore we can conclude that∫ τ

0

fn(t)dt
P−−−→

n→∞

∫ τ

0

f(t)dt

uniformly on [0, τ ] .
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Lenglart’s Inequality will be useful in the proofs of the joint asymptotic normality of

the UE and the RE. It is outlined in the following proposition. For more details about

this inequality, including the proof of this result, the reader is referred to Lenglart

(1977).

Proposition B.1.3. (Lenglart’s Inequality) If M is a local square integrable Ft-

martingale, then

P

[
sup
0≤t≤τ

|M | > η

]
≤ δ

η2
+ P [〈M〉(τ) > δ]

for any η > 0 and δ > 0 .

Before we can move on to prove Proposition B.1.5, we need the following lemma,

which uses a stronger condition (and therefore a stronger result) than that given in

Martinussen & Scheike (2006, p. 110).

Lemma B.1.4. If Condition A holds, then there exist continuous functions r2jp(t)

and r3jpl(t) such that

sup
0≤t≤τ

|n−1Γ2jp(t)− r2jp(t)|
a.s.−−−→
n→∞

0

and

sup
0≤t≤τ

|n−1Γ3jpl(t)− r3jpl(t)|
a.s.−−−→
n→∞

0

for j, p, l = 1, ..., k .

Note that, as mentioned above, the stated result has stronger conclusion than that

given in Martinussen & Scheike (2006, p. 110), for which only the convergence in

probability is established. However, it should be noted that our Condition A is
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stronger than that in Martinussen & Scheike (2006, p. 110). The proof follows from

the uniform strong law of large numbers. Also, for a similar proof, we refer the reader

to Andersen & Gill (1982).

Proposition B.1.5. Suppose that Condition A is satisfied. Then∫ t

0

k∑
l=1

k∑
h=1

{
(n−1Γ(s))−1 − Ω(s)

}2
hi
×

(
n−1

n∑
i=1

X2
il(s)Xih(s)W

2
i (s)

)
βh(s)ds

P−−−→
n→∞

0,

uniformly on [0, τ ] .

Proof. First, notice that, from Lemma B.1.4,

n−1Γ(t)
P−−−→

n→∞
Ω−1(t)

uniformly on [0, τ ] . Then, using the fact that inversion of a matrix is a continuous

operation,

(n−1Γ(t))−1
P−−−→

n→∞
Ω(t)

uniformly on [0, τ ] .

Notice that

k∑
l=1

k∑
h=1

{
(n−1Γ(t))−1 − Ω(t)

}2
hi
×

(
n−1

n∑
i=1

X2
il(t)Xih(t)W

2
i (t)

)
βh(t)

=
k∑
l=1

k∑
h=1

{
(n−1Γ(t))−1 − Ω(t)

}2
hi

(n−1Γ3llh(t))βh(t).

Therefore, since n−1Γ3llh(t) converges to r3llh(t) uniformly on [0, τ ] by Lemma B.1.4,

k∑
l=1

k∑
h=1

{
(n−1Γ(t))−1 − Ω(t)

}2
hi

(n−1Γ3llh(t))βh(t)
P−−−→

n→∞
0
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uniformly on [0, τ ] ,

i.e.

sup
0≤t≤τ

∣∣∣∣∣
k∑
l=1

k∑
h=1

{
(n−1Γ(t))−1 − Ω(t)

}2
hi

(n−1Γ3llh(t))βh(t)

∣∣∣∣∣ P−−−→
n→∞

0.

Therefore, by Lemma B.1.2,∫ t

0

k∑
l=1

k∑
h=1

{
(n−1Γ(s))−1 − Ω(s)

}2
hi
×

(
n−1

n∑
i=1

X2
il(s)Xih(s)W

2
i (s)

)
βh(s)ds

P−−−→
n→∞

0,

uniformly on [0, τ ], which is the desired result.

Lemma B.1.6. If the sequence {Hn}∞n=1 is a non-negative r.v. and

Hn
P−−−→

n→∞
0

then, ∀ ε > 0,

nHn I{Hn>ε}
P−−−→

n→∞
0.

Proof. First, since

Hn
P−−−→

n→∞
0,

we have ∀ ε > 0,

lim
n→∞

P [ |Hn| > ε ] = 0.

Let δ > 0 . Now,

P [ |nHnI{Hn>ε}| > δ ] = P [ |nHnI{Hn>ε}| > δ ,Hn > ε ]

+ P [ |nHnI{Hn>ε}| > δ ,Hn ≤ ε ]

= P [ |nHn| > δ , Hn > ε ] + 0
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= P [ nHn > δ , Hn > ε ]

≤ P [ Hn > ε ].

Thus

lim
n→∞

P [ |nHnI{Hn>ε}| > δ ] ≤ lim
n→∞

P [ Hn > ε ] = 0.

Therefore, by definition of convergence in probability,

nHnI{Hn>ε}
P−−−→

n→∞
0,

and this completes the proof.

Let {Ft , t ≥ 0} be the σ-field generated by the process {M(s), 0 ≤ s ≤ t} . Note

that {Ft , t ≥ 0} is a filtration.

Also, let

Z1(t) = n−
1
2

∫ t

0

([
Γ(s)

n

]−1
− Ω(s)

)
X(s)W (s)dM(s).

Combining Proposition B.1.3 and Proposition B.1.5, we prove the following proposi-

tion. The established result is useful in deriving the asymptotic normality of the UE.

Also, the provided proof gives more detail than that given in Martinussen & Scheike

(2006, p. 111).

Lemma B.1.7. Suppose that Condition A is satisfied.

Then Z1(t) is a local Ft-martingale and

Z1(t)
P−−−→

n→∞
0

uniformly on [0, τ ] .
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Proof. The jth component of Z1(t) is given by:

Z1j(t) = n−
1
2

n∑
i=1

∫ t

0

Vji(s)dMi(s)

where

Vji(t) =
k∑
l=1

{
(n−1Γ(t))−1 − Ω(t)

}
jl
Xil(t)Wi(t). (B.1)

Also, the integral, Z1(t), has predictable variation given by

〈Z1〉(τ) = n−1
∫ τ

0

V (t) diag(λ(t))V ′(t)dt

where V (t) is the matrix with (j, i)th component given in equation (B.1) . Then the

predictable variation of the jth component of Z1 is

〈Z1j〉(τ) = n−1
n∑
i=1

∫ τ

0

V 2
ji(t)λi(t)dt.

Also, since M(t) is a local square integrable Ft-martingale, Z1j(t) is also locally

square integrable because

Z1j(t) = n−
1
2

n∑
i=1

∫ t

0

Hi(s)dMi(s)

where Hi(t) = Vji(t), which is locally bounded.

Further, by Cauchy-Shwarz inequality,

〈Z1j〉(τ) = n−1
n∑
i=1

∫ τ

0

V 2
ji(t)λi(t)dt ≤

∫ τ

0

Gj(t)dt,

where

Gj(t) =
k∑
l=1

k∑
h=1

{
(n−1Γ(t))−1 − Ω(t)

}2
jl
×

(
n−1

n∑
i=1

X2
il(t)Xih(t)W

2
i (t)

)
βh(t).



APPENDIX B. 72

Now, by Proposition B.1.5, ∫ τ

0

Gj(t)dt
P−−−→

n→∞
0.

Then 〈Z1j〉
P−−−→

n→∞
0, and thus, by Lenglart’s inequality ( Proposition B.1.3 ),

sup
0≤t≤τ

|Z1j(t)|
P−−−→

n→∞
0,

i.e. Z1j(t) converges in probability to 0, uniformly on [0, τ ].

Proposition B.1.8. Let An(t) be defined as in (2.4), let A(t) be defined as in (B.7),

and suppose that the conditions in Lemma B.1.4 hold. Then

An(t)
P−−−→

n→∞
A(t)

uniformly on [0, τ ].

Proof. We have An(t) = [X(t)W (t)X ′(t)]−1R′[R[X(t)W (t)X ′(t)]−1R′]−1, so

An =

[
X(t)W (t)X ′(t)

n

]−1
R′[R[X(t)W (t)X ′(t)]−1R′]−1

n

=

(Γ(t)

n

)−1
R′

[
R

(
Γ(t)

n

)−1
R′

]−1 .
By Lemma B.1.4,

Γ(t)

n

P−−−→
n→∞

Ω(t) , uniformly on [0, τ ].

Further, applying Slutsky’s Theorem, we get

An(t)
P−−−→

n→∞
Ω(t)R′[RΩ(t)R′]−1. (B.2)
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Since this convergence follows directly from the fact that R is a full rank matrix,

along with the fact that (
X(t)W (t)X ′(t)

n

)−1
P−−−→

n→∞
Ω(t)

uniformly on [0, τ ], we conclude that the convergence in (B.2) is uniform on [0, τ ] ,

i.e.

lim
n→∞

An(t)
P−−−→

n→∞
A(t)

uniformly on [0, τ ].

Lemma B.1.9. Let Q̃ji(t) =
∑k

l=1 {(I − An(t)R)Ω(t)}jlWi(t)Xil(t) and assume that

Condition A holds. Then

sup
0≤t≤τ

|n−
1
2 Q̃ji(t)| ≤ H̃n

where H̃n converges in probability to 0 as n tends to ∞. In particular,

sup
0≤t≤τ

∣∣∣n− 1
2 Q̃ji(t)

∣∣∣ P−−−→
n→∞

0.

Proof.

Q̃ji(t) =
k∑
l=1

{(I − An(t)R)Ω(t)}jlWi(t)Xil(t)

=
k∑
l=1

k∑
h=1

{I − An(t)R}jh {Ω(t)}hlWi(t)Xil(t)

=
k∑

h=1

{I − An(t)R}jh

(
k∑
l=1

{Ω(t)}hlWi(t)Xil(t)

)

=
k∑

h=1

{I − An(t)R}jh
(
Ṽhi(t)

)

where

Ṽhi(t) =
k∑
l=1

{Ω(t)}hlWi(t)Xil(t).
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Then

sup
0≤t≤τ

|n−
1
2 Q̃ji(t)| = sup

0≤t≤τ

∣∣∣∣∣
k∑

h=1

{I − An(t)R}jh (n−
1
2 Ṽhi(t))

∣∣∣∣∣
≤ sup

0≤t≤τ

∣∣∣∣∣
k∑

h=1

{I − An(t)R}jh

∣∣∣∣∣ sup
0≤t≤τ

∣∣∣(n− 1
2 Ṽhi(t))

∣∣∣ .
Then, using the result in Martinussen & Scheike (2006, p. 112),

sup
0≤t≤τ

∣∣∣n− 1
2 Q̃ji(t)

∣∣∣ ≤ sup
0≤t≤τ

∣∣∣∣∣
k∑

h=1

{I − An(t)R}jh

∣∣∣∣∣ × Hn, (B.3)

where

Hn ≡ k · sup
t,h,l
|(Ω−1(t))−1hl | n

− 1
2 sup
t,i,l
|Wi(t)Xil(t)|.

Following the result in Martinussen & Scheike (2006, p. 112), we have

Hn
P−−−→

n→∞
0. (B.4)

Therefore, using Proposition B.1.8 and relation (B.4), we get

H̃n
P−−−→

n→∞
0 (B.5)

with

H̃n =
k∑

h=1

sup
0≤t≤τ

∣∣∣{I − An(t)R}jh
∣∣∣×Hn. (B.6)

Therefore, combining relations (B.3) and (B.5), we get

sup
0≤t≤τ

∣∣∣n− 1
2 Q̃ji(t)

∣∣∣ P−−−→
n→∞

0.
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Proposition B.1.10. Under Condition A and the local alternatives in (2.9), P1,n(t)

is a locally square integrable martingale.

Proof. Recall that

P1,n(t) = n−
1
2

∫ t

0

[Ik − An(s)R]Ω(s)X(s)W (s)dM(s).

Then P1(t) is of the form ∫ t

0

H(s)dM(s)

where

H(s) = n−
1
2 [Ik − An(s)R]Ω(s)X(s)W (s).

By Theorem 2.2.2 of Martinussen & Scheike (2006), since H(s) is locally bounded

and Fs−1-predictable, P1(t) is a local square integrable martingale.

Therefore P1(t) is a locally square integrable martingale.

Proof of Proposition 2.0.1 . Recall that we developed the following restricted

estimator for b(t) = dB(t) :

b̂R(t) = (Ik − An(t)R)b̂LS(t) + An(t)r(t),

where

An(s) = [X(s)W (s)X ′(s)]−1R′[R[X(s)W (s)X ′(s)]−1R′]−1.

Then a restricted estimator for B(t) is simply

B̃R(t) =

∫ t

0

(Ik − An(s)R)b̂LS(s)ds+

∫ t

0

An(s)r(s)ds.
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Therefore,

B̃R(t) =

∫ t

0

[(Ik − An(s)R)b̂LS(s)ds + An(s)r(s)]ds.

�

Proof of Proposition 2.0.3 . Using Proposition B.1.10 , we conclude that the

predictable variation of P1,n(t) is :

〈P1,n〉(τ) = n−1
∫ τ

0

[I − An(t)R]Ω(t)X(t)W (t)diag(λ(t))W ′(t)X ′(t)Ω[I −R′A′n(t)]dt

=

∫ τ

0

[I − An(t)R]Ω(t)

(
1

n

n∑
i=1

W 2
i (t)[Xi(t)X

′
i(t)]λi(t)

)
Ω[I −R′A′n(t)]dt

=

∫ τ

0

αn(t)mn(t)α′n(t)dt,

where

αn(t) = I − An(t)R

and

mn(t) = Ω(t)

(
1

n

n∑
i=1

W 2
i (t)[Xi(t)X

′
i(t)]λi(t)

)
Ω(t).

To simplify calculations, let

A(t) = Ω(t)R′[RΩ(t)R′]−1. (B.7)

and let

Φ∗(τ) =

∫ τ

0

[I − A(t)R]Ω(t)E[W 2
1 (t)[X1(t)X

′
1(t)]X1(t)β(t)]Ω(t)[I −R′A′(t)]dt



APPENDIX B. 77

=

∫ τ

0

α(t)m(t)α′(t)dt,

where

α(t) = I − A(t)R

and

m(t) = Ω(t)E[W 2
1 (t)[X1(t)X

′
1(t)]X1(t)β(t)]Ω.

Combining Lemma B.1.4 and Proposition B.1.8, we note that αn(t) converges in prob-

ability to α(t) and mn(t) converges in probability to m(t), both uniformly on [0, τ ],

i.e. sup
0≤t≤τ

|αn(t)− α(t)| P−−−→
n→∞

0 and sup
0≤t≤τ

|mn(t)−m(t)| P−−−→
n→∞

0.

Then

sup
0≤t≤τ

|αn(t)mn(t)α′n(t)− α(t)m(t)α′(t)| P−−−→
n→∞

0.

Further, one can verify that ∫ τ

0

|α(t)m(t)α′(t)| dt <∞.

Therefore, using Lemma B.1.2, we get

sup
0≤t≤τ

|〈P1,n〉(t)− Φ∗(t)| = sup
0≤t≤τ

∣∣∣∣∫ τ

0

αn(t)mn(t)α′n(t)− α(t)m(t)α′(t)

∣∣∣∣ dt P−−−→
n→∞

0.
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Hence,

〈P1,n〉(t)
P−−−→

n→∞
Φ∗(t), (B.8)

uniformly on [0, τ ] .

Now consider the process containing all jumps with absolute value greater than ε,

for ε > 0, of the jth component of P1:

P1jε,n(t) =
n∑
i=1

∫ t

0

n−
1
2

k∑
l=1

Q̃ji(s) I{|n− 1
2 Q̃ji(s)|>ε

}dMi(s)

where

Q̃ji(s) = {[I − An(s)R]Ω(s)}jlWi(s)Xil(s).

The predictable variation of this process is

〈P1jε,n〉(t) =
n∑
i=1

∫ t

0

[
n−

1
2 Q̃ji(s)

]2
I{
|n− 1

2 Q̃ji(s)|>ε
}λi(s)ds,

and then, using relations (B.3) and (B.6), we get

〈P1jε,n〉(t) ≤
n∑
i=1

∫ t

0

[
H̃n

]2
I{|H̃n|>ε}λi(s)ds,

where H̃n is defined as in (B.6) .

So,

〈P1jε,n〉(t) ≤
n∑
i=1

H̃2
nI{H̃n>ε}

∫ t

0

λi(s)ds

≤ nH̃2
nI{H̃n>ε}

[
1

n

∫ t

0

n∑
i=1

Xi(s)β(s)ds

]

≤ nH̃2
nI{H̃n>ε} sup

0≤t≤τ

(∫ t

0

1

n

n∑
i=1

Xi(s)β(s)ds

)
. (B.9)
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Then,

〈P1jε,n〉 ≤ nH̃2
nI{H̃n>ε}τ sup

0≤t≤τ

∣∣∣∣∣ 1n
n∑
i=1

Xi(t)

∣∣∣∣∣ sup
0≤t≤τ

|β(t)|.

Now, from relation (B.5), H̃n
P−−−→

n→∞
0. Then, by Lemma B.1.6

nH̃2
nI{H̃n>ε}

P−−−→
n→∞

0. (B.10)

Further, by the uniform strong law of large numbers,

sup
0≤t≤τ

∣∣∣∣∣ 1n
n∑
i=1

Xi(t)− E[X1(t)]

∣∣∣∣∣ a.s.−−−→
n→∞

0. (B.11)

Therefore, combining (B.9) , (B.10) and (B.11), we get

〈P1jε,n〉(t)
a.s.−−−→
n→∞

0. (B.12)

Finally, using relations (B.8) and (B.12) along with the Martingale Central Limit

Theorem, we conclude that P1,n(t) converges in distribution to a Gaussian martingale,

on D ([0, τ ]), with covariance function Φ∗(t).

�

Proof of Proposition 2.0.4 . P2,n is given by

P2,n(t) =

∫ t

0

[I − An(s)R]n−
1
2V (s)dM(s),

and as in the proof of Proposition B.1.10, P2,n is a locally square integrable Ft-

martingale whose predictable variation process is

〈P2,n〉(t) = n−1
∫ t

0

[I − An(s)R]V (s) diag(λi(s))V
′(s)[I −R′A′n(s)]ds.



APPENDIX B. 80

To simplify the proof, let us deal with P2,n component-wise. The jth component

of 〈P2,n〉(t) is

〈P2j,n〉(τ) = n−1
n∑
i=1

∫ τ

0

Q2
ji(t)λi(t)dt,

where

Qji(t) =
k∑
l=1

{
[I − An(t)R][(n−1Γ(t))−1 − Ω(t)

}
jl
Xil(t)Wi(t)

=
k∑
l=1

[
k∑

h=1

{I − An(t)R}jh
{

(n−1Γ(t))−1 − Ω(t)
}
hl

]
Xil(t)Wi(t).

Then,

〈P2j,n〉(τ) = n−1
n∑
i=1

∫ τ

0

Q2
ji(t)λi(t)dt

=

∫ τ

0

n−1
n∑
i=1

[
k∑
l=1

k∑
h=1

{I − An(t)R}jh
{

(n−1Γ(t))−1 − Ω(t)
}
hl
Xil(t)Wi(t)

]2
λi(t)dt.

Using the Cauchy-Schwarts Inequality, we get

〈P2j,n〉(τ) ≤
n∑
i=1

∫ τ

0

n−1
k∑
l=1

[
k∑

h=1

{I − An(t)R}jh
{

(n−1Γ(t))−1 − Ω(t)
}
hl

]2

×
k∑
l=1

(Xil(t)Wi(t))
2λi(t)dt.

Applying Cauchy-Schwartz again, we get that

〈P2j,n〉(τ) ≤
n∑
i=1

∫ τ

0

n−1
k∑
l=1

[
k∑

h=1

{I − An(t)R}2jh

][
k∑

h=1

{
(n−1Γ(t))−1 − Ω(t)

}2
hl

]
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×
k∑
l=1

(Xil(t)Wi(t))
2λi(t)dt.

This gives,

〈P2j,n〉(τ) ≤
n∑
i=1

∫ τ

0

n−1

[
k∑

h=1

{I − An(t)R}2jh

](
k∑
l=1

k∑
h=1

{
(n−1Γ(t))−1 − Ω(t)

}2
hl

)

×

(
k∑
l=1

(Xil(t)Wi(t))
2

)
λi(t)dt.

Hence,

〈P2j,n〉(τ) ≤
∫ τ

0

n−1

[
k∑

h=1

{I − An(t)R}2jh

]

×

[
k∑
l=1

k∑
h=1

k∑
u=1

{
(n−1Γ(t))−1 − Ω(t)

}2
hu

(
n∑
i=1

(Xil(t)Wi(t))
2λi(t)

)]
dt,

and then,

〈P2j,n〉(τ) ≤ sup
0≤t≤τ

(
k∑

h=1

{I − An(t)R}2jh

)[∫ τ

0

k∑
h=1

Gh(t)dt

]

where

Gh(t) =
k∑
l=1

k∑
u=1

{
(n−1Γ(t))−1 − Ω(t)

}2
hu

[
n−1

n∑
i=1

(Xil(t)Wi(t))
2

]
λi(t).

Thus

〈P2j,n〉(τ) ≤

[
k∑

h=1

(
sup
0≤t≤τ

| {I − An(t)R}jh |
)2
][∫ τ

0

k∑
h=1

Gh(t)dt

]
.

(B.13)
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Note that this supremum is

sup
0≤t≤τ

|I − An(t)R| = sup
0≤t≤τ

|I − [X(t)X ′(t)]−1R′[R[X(t)X ′(t)]−1R′]−1R|

so the limit of this supremum is

1 + lim
n→∞

[
sup
0≤t≤τ

|[X(t)X ′(t)]−1R′[R[X(t)X ′(t)]−1R′]−1R|
]

≤ 1 + sup
0≤t≤τ

|Ω(t)R′[RΩ(t)R′]−1R| <∞.

This means that

lim
n→∞

(
sup
0≤t≤τ

| {I − An(t)R}jh |
)2

<∞.

Therefore, by using Proposition B.1.8,

lim
n→∞

k∑
h=1

[(
sup
0≤t≤τ

| {I − An(t)R}jh |
)2
]
<∞ (B.14)

since this is simply a finite sum of finite values.

In addition, using Proposition B.1.5, we conclude that∫ τ

0

k∑
h=1

Gh(t)dt
P→ 0. (B.15)

Hence, combining (B.13), (B.14) and (B.15), we get

〈P2j,n〉(τ)
P−−−→

n→∞
0.
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Hence, using Lenglart’s inequality (Proposition B.1.3), we have

sup
0≤t≤τ

|P2j(t)|
P−−−→

n→∞
0.

This means that P2j(t) converges in probability to 0, uniformly over [0, τ ], for each

j = 1, ..., k .

Therefore P2(t) converges in probability to 0, uniformly over [0, τ ] .

�

Proof of Proposition 2.0.5 . Recall that An(t) converges in probability to A(t),

uniformly on [0, τ ] (by Proposition B.1.8). Therefore

sup
0≤t≤τ

|An(t)δ1(t)− A(t)δ1(t)|
P−−−→

n→∞
0.

Further, ∫ τ

0

|A(t)δ1(t)| dt <∞.

Then, by Lemma B.1.2,

sup
0≤t≤τ

∣∣∣∣∫ t

0

An(s)δ1(s)ds−
∫ t

0

Ω(s)R′[RΩ(s)R′]−1δ1(s)ds

∣∣∣∣ P−−−→
n→∞

0,

uniformly on [0, τ ] .

Thus,

P3,n(t)
P−−−→

n→∞

∫ t

0

Ω(s)R′[RΩ(s)R′]−1δ1(s)ds,

uniformly on [0, τ ] .
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�

Proof of Proposition 2.0.6 . Notice that we can rewrite (ξ′n(t), η′n(t))′ in the fol-

lowing way:

(ξ′n(t), η′n(t))′ =
√
n

∫ t

0

 −An(s)R

Ik − An(s)R

Ω(s)X(s)W (s)dM(s)

+
√
n

∫ t

0

 −An(s)R

Ik − An(s)R

{(n−1Γ(s))−1 − Ω(s)
}
X(s)W (s)dM(s)

+

∫ t

0

Ik
Ik

An(s)δ1(s)ds.

Then by similar arguments to those used to show the asymptotic normality of

√
n(B̃R(t)−B(t)), ( i.e. replacing [I − An(t)R] with our new matrix)

we get

(ξ′n(t), η′n(t))′
D−−−→

n→∞
(ξ′(t), η′(t))

′
on D ([0, τ ])

where

(ξ′(t), η′(t))
′ ∼ N2k

∫ t

0

Ik
Ik

Ω(s)R′[RΩ(s)R′]−1δ1(s)ds , Φ∗∗(t)


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where

Φ∗∗(t) =

∫ t

0

 −A(s)R

Ik − A(s)R

Ω(s)E[W 2
1 (s)[X1(s)X

′
1(s)]X1(s)β(s)]Ω(s)

(
−R′A′(s) Ik −R′A′(s)

)
ds

and A(s) = Ω(s)R′[RΩ(s)R′]−1 ( by Proposition B.1.8 ) . This can be written as

Φ∗∗(t) =

∫ t

0

A11(s) A12(s)

A21(s) A22(s)

 ds.

�

Proof of Corollary 2.1.

Recall from Proposition 2.0.6 that the general form of Φ∗∗ is

Φ∗∗(t) =

∫ t

0

A11(s) A12(s)

A21(s) A22(s)

 ds,

where

A11(s) = A(s)RC(s)R′A′(s),

A12(s) = −A(s)RC(s)[Ik −R′A′(s)],

A21(s) = [Ik − A(s)R]C(s)R′A′(s),

A22(s) = [Ik − A(s)R]C(s)[Ik −R′A′(s)]

and

C(s) = Ω(s)E[W 2
1 (s)[X1(s)X

′
1(s)]X1(s)β(s)]Ω(s).
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Now, if we let

W1(s) =
1

X1(s)β(s)
,

then

C(s) = Ω(s)E

[
X1(s)X

′
1(s)

X1(s)β(s)

]
Ω(s)

= Ω(s)

because Ω−1(s) is simply E

[
X1(s)X

′
1(s)

X1(s)β(s)

]
.

Then, the covariance becomes

∫ t

0

 κ(s) κ(s)− A(s)RΩ(s)

[κ(s)− A(s)RΩ(s)]′ κ(s)− A(s)RΩ(s)− [A(s)RΩ(s)]′ + Ω(s)



where

κ(s) = A(s)RΩ(s)R′A′(s).

Then,

A12(s) = κ(s)− A(s)RΩ(s)

= A(s)RΩ(s)R′A′(s)− A(s)RΩ(s)

= Ω(s)R′[RΩ(s)R′]−1RΩ(s)R′[RΩ(s)R′]−1RΩ(s)− Ω(s)R′[RΩ(s)R′]−1RΩ(s)

= Ω(s)R′[RΩ(s)R′]−1RΩ(s)− Ω(s)R′[RΩ(s)R′]−1RΩ(s)

= 0.

The other 3 values simplify in a similar way, and therefore the covariance becomes:

Φ∗∗∗ =

∫ t

0

Ω(s)R′[RΩ(s)R′]−1RΩ(s) 0

0 Ω(s)− Ω(s)R′[RΩ(s)R′]−1RΩ′(s)

 ds,



APPENDIX B. 87

and this completes the proof.

�

In order to prove Proposition 2.2.1, and later Proposition 2.3.3, we will use a theorem

from Nkurunziza (2012b). The following proposition shows that the conditions of

that theorem are satisfied.

Proposition B.1.11. Let J(t) and Σ11(t) be matrices defined as in Section 2.2. Then

1.) Σ11(t)J(t) is an idempotent matrix,

and

2.) J(t)Σ11(t)J(t) = J(t).

Proof. First, note that

Σ11(t)J(t) =

(∫ t

0

Ω(s)R′[RΩ(s)R′]−1RΩ(s)ds

)
R′
(∫ t

0

RΩ(s)R′ds

)−1
R

=

(∫ t

0

Ω(s)R′[RΩ(s)R′]−1[RΩ(s)R′]ds

)(∫ t

0

RΩ(s)R′ds

)−1
R

=

(∫ t

0

Ω(s)R′ds

)(∫ t

0

RΩ(s)R′ds

)−1
R. (B.16)

Then

Σ11(t)J(t)Σ11(t)J(t)

=

(∫ t

0

Ω(s)R′ds

)(∫ t

0

RΩ(s)R′ds

)−1
R

(∫ t

0

Ω(s)R′ds

)(∫ t

0

RΩ(s)R′ds

)−1
R

=

(∫ t

0

Ω(s)R′ds

)(∫ t

0

RΩ(s)R′ds

)−1(∫ t

0

RΩ(s)R′ds

)(∫ t

0

RΩ(s)R′ds

)−1
R
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=

(∫ t

0

Ω(s)R′ds

)(∫ t

0

RΩ(s)R′ds

)−1
R.

Therefore, by relation B.16,

Σ11(t)J(t)Σ11(t)J(t) = Σ11(t)J(t).

In addition,

J(t)Σ11(t)J(t) = J(t)

[(∫ t

0

Ω(s)R′ds

)(∫ t

0

RΩ(s)R′ds

)−1
R

]
,

by relation (B.16). Then,

J(t)Σ11(t)J(t)

= R′
(∫ t

0

RΩ(s)R′ds

)−1
R

(∫ t

0

Ω(s)R′ds

)(∫ t

0

RΩ(s)R′ds

)−1
R

= R′
(∫ t

0

RΩ(s)R′ds

)−1(∫ t

0

RΩ(s)R′ds

)(∫ t

0

RΩ(s)R′ds

)−1
R

= R′
(∫ t

0

RΩ(s)R′ds

)−1
R

= J(t),

and this ends the proof.

The proposition which is proven below is important for determining the ADR of each

of the proposed estimators.

Proof of Proposition 2.2.1. By Slutsky’s Theorem
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ξ′n(t)J(t)ξn(t)
D−−−→

n→∞
ξ′(t)J(t)ξ(t).

It suffices to prove that

ξ′(t)J(t)ξ(t) ∼ χ2
q(∆(t)).

We will do this using Theorem 4 of Styan (1970), so we must show that the four

conditions of that theorem are satisfied.

By Proposition B.1.11, Σ11(t)J(t) is idempotent. Therefore,

Σ11(t)J(t)Σ11(t)J(t) = Σ11(t)J(t),

and so

Σ11(t)J(t)Σ11(t)J(t)Σ11(t) = Σ11(t)J(t)Σ11(t).

Thus, the first condition is satisfied.

Now we need to show that trace(J(t)Σ11(t)) = q = rank(Σ11(t)J(t)Σ11(t)). First,

trace (J(t)Σ11(t)) = trace (Σ11(t)J(t))

= trace

((∫ t

0

Ω(s)R′ds

)(∫ t

0

RΩ(s)R′ds

)−1
R

)

= trace

((∫ t

0

RΩ(s)R′ds

)(∫ t

0

RΩ(s)R′ds

)−1)
= trace (Iq)
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= q.

We can also write

rank (Σ11(t)J(t)Σ11(t)) = rank

[(∫ t

0

Ω(s)R′ds

)(∫ t

0

RΩ(s)R′ds

)−1(∫ t

0

RΩ(s)ds

)]

= rank

(∫ t

0

Ω(s)R′ds

)
,

and since
∫ t
0

Ω(s)ds is invertible, we have

rank

(∫ t

0

Ω(s)R′ds

)
= rank (R) = q.

Therefore the second condition is satisfied. The third condition is satisfied since

J(t)Σ11(t) is idempotent. Indeed,

J(t)Σ11(t) = R′
(∫ t

0

RΩ(s)R′ds

)−1
R

(∫ t

0

Ω(s)R′[RΩ(s)R′]−1RΩ(s)ds

)
= R′

(∫ t

0

RΩ(s)R′ds

)−1(∫ t

0

RΩ(s)ds

)
,

and thus

(J(t)Σ11(t))(J(t)Σ11(t))

= R′
(∫ t

0

RΩ(s)R′ds

)−1(∫ t

0

RΩ(s)ds

)
R′
(∫ t

0

RΩ(s)R′ds

)−1(∫ t

0

RΩ(s)ds

)
= R′

(∫ t

0

RΩ(s)R′ds

)−1(∫ t

0

RΩ(s)ds

)
= J(t)Σ11(t).

Therefore the third condition is satisfied. By Proposition B.1.11, J(t)Σ11(t)J(t) =

J(t), so (∫ t

0

δ∗′(s)ds

)
J(t)Σ11(t)J(t)

(∫ t

0

δ∗(s)ds

)



APPENDIX B. 91

=

(∫ t

0

δ∗′(s)ds

)
J(t)

(∫ t

0

δ∗(s)ds

)
=

(∫ t

0

δ∗′(s)ds

)
×R′

(∫ t

0

RΩ(s)R′ds

)−1
R×

(∫ t

0

δ∗(s)ds

)
= ∆(t),

which satisfies the last condition.

Therefore all of the conditions of Theorem 4 of Styan (1970) are satisfied and, from

this theorem, we conclude that

ξ′(t)J(t)ξ(t) ∼ χ2
q(∆(t)).

�

In the next three proofs, the ADRs of the unrestricted, restricted and shrinkage esti-

mators are calculated.

In order to calculate the ADR of any of the estimators for B(t), we must first recall

from Proposition 2.1 that, if Conditions A, B and (2.9) hold, then

(ξ′n(t), η′n(t))′
D−−−→

n→∞
(ξ′(t), η′(t))′

on D ([0, τ ]), where {(ξ′(t), η′(t))′, t ≥ 0} is the Gaussian martingale with

(ξ′(t), η′(t))′ ∼ N2k

∫ t

0

δ∗(t)
δ∗(t)

 ,

Σ11(t) 0

0 Ω11(t)− Σ11(t)


 ,

for 0 ≤ t ≤ τ , where

Ω11(t) =

∫ t

0

Ω(s)ds,
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and

Σ11(t) =

∫ t

0

Σ(s)ds.

We will begin with the ADR of the unrestricted estimator.

Proof of Proposition 2.3.1.

Using the loss function at (2.17), the ADR of the unrestricted estimator, B̂LS of

B is given by

ADR(B̂LS, B;W ∗) =

∫ τ

0

E[ρ′(t)W ∗(t)ρ(t)]dt,

where

ρ(t) ∼ Nk

(
0,

∫ t

0

Ω(s)ds

)
.

Therefore, since this is a single value,

ADR(B̂LS, B;W ∗) =

∫ τ

0

tr

(
W ∗(t)

∫ t

0

Ω(s)ds

)
dt

= tr

(∫ τ

0

∫ t

0

W ∗(t)Ω(s)ds dt

)
= tr

(∫ τ

0

∫ τ

s

W ∗(t)Ω(s)dt ds

)
= tr

(∫ τ

0

Ω(s)

(∫ τ

s

W ∗(t)dt

)
ds

)
.

Then, by (2.18),

ADR(B̂LS, B;W ∗) = tr

(∫ τ

0

Ω(s)W
∗
(s)ds

)
=

∫ τ

0

tr
(

Ω(s)W
∗
(s)
)
ds,

and this completes the proof.
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�

Proof of Proposition 2.3.2.

Using the loss function at (2.17), the ADR of the restricted estimator, B̃R of B is

given by

ADR(B̃R, B;W ∗) =

∫ τ

0

E[η′(t)W ∗(t)η(t)]dt.

Similar to the proof of Proposition 2.3.1, since this is a single value,

ADR(B̃R, B;W ∗) =

∫ τ

0

tr (Ω11(s)W
∗(s)− Σ11(s)W

∗(s)) ds+

∫ τ

0

δ∗′(s)W ∗(s)δ∗(s)ds.

(B.17)

Notice that ∫ τ

0

tr (Ω11(t)W
∗(t)− Σ11(t)W

∗(t)) dt

= tr

(∫ τ

0

(∫ t

0

Ω(s)ds

)
W ∗(t)dt−

∫ τ

0

(∫ t

0

Σ(s)ds

)
W ∗(t)dt

)
.

Then, similar to the proof of 2.3.1, we have∫ τ

0

tr (Ω11(t)W
∗(t)− Σ11(t)W

∗(t)) dt

= tr

(∫ τ

0

∫ τ

s

Ω(s)W ∗(t)dtds−
∫ τ

0

∫ τ

s

Σ(s)W ∗(t)dtds

)
= tr

(∫ τ

0

Ω(s)W
∗
(s)ds−

∫ τ

0

Σ(s)W
∗
(s)ds

)
=

∫ τ

0

tr
(

Ω(s)W
∗
(s)
)
ds−

∫ τ

0

tr
(

Σ(s)W
∗
(s)
)
ds.

So, combining this with (B.17), we have that

ADR(B̃R, B;W ∗) =

∫ τ

0

tr
(

Ω(s)W
∗
(s)
)
ds−

∫ τ

0

tr
(

Σ(s)W
∗
(s)
)
ds

+

∫ τ

0

δ∗′(s)W ∗(s)δ∗(s)ds.

�
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Proof of Proposition 2.3.3.

Using the loss function at (2.17), the ADR of the shrinkage estimator, B̂S of B is

given by

ADR(B̂S, B;W ∗)

=

∫ τ

0

E

[(
η′(t)−

(
1− q − 2

ϕ(t)

)
ξ(t)

)′
W ∗(t)

(
η′(t)−

(
1− q − 2

ϕ(t)

)
ξ(t)

)]
dt

=

∫ τ

0

E[η′(t)W ∗(t)η(t)]dt (B.18)

−2

∫ τ

0

E

[
η′(t)W ∗(t)

(
1− q − 2

ϕ(t)

)
ξ(t)

]
dt (B.19)

+

∫ τ

0

E

[
ξ′(t)W ∗(t)ξ(t)

(
1− q − 2

ϕ(t)

)2
]
dt. (B.20)

We will consider (B.18), (B.19) and (B.20) separately. Beginning with (B.18), we

have∫ τ

0

E[η′(t)W ∗(t)η(t)]dt =

∫ τ

0

tr
(

Ω(s)W
∗
(s)
)
ds −

∫ τ

0

tr
(

Σ(s)W
∗
(s)
)
ds

+

∫ τ

0

δ∗′(s)W ∗(s)δ∗(s)ds (B.21)

= ADR(B̂LS, B;W ∗)−
∫ τ

0

tr
(

Σ(s)W
∗
(s)
)
ds(B.22)

+

∫ τ

0

δ∗′(s)W ∗(s)δ∗(s)ds. (B.23)

by Proposition 2.3.2 .

From (B.19) and the definition of ϕ(t), we have,

−2

∫ τ

0

E

[
η′(t)W ∗(t)

(
1− q − 2

ϕ(t)

)
ξ(t)

]
dt

= −2

∫ τ

0

E

[
η′(t)W ∗(t)

(
1− q − 2

trace(ξ′(t)Ĵ(t)ξ(t))

)
ξ(t)

]
dt

= −2

∫ τ

0

E
[
h
(

trace(ξ′(t)Ĵ(t)ξ(t))
)
η′(t)W ∗(t)ξ(t)

]
dt,
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where

h (z(t)) = 1− q − 2

z(t)

for z(t) 6= 0.

Then, by Theorem 2.1 of Nkurunziza (2012b),

−2

∫ τ

0

E

[
η′(t)W ∗(t)

(
1− q − 2

ϕ(t)

)
ξ(t)

]
dt

= −2

∫ τ

0

E

[
1− q − 2

D1(t)

]
δ∗′(t)W ∗(t)δ∗(t)dt, (B.24)

where D1(t) is defined as in (2.19). Note that the conditions of that theorem are

satisfied by Proposition B.1.11.

From (B.20) and the definition of ϕ(t), we have,∫ τ

0

E

[
ξ′(t)W ∗(t)ξ(t)

(
1− q − 2

ϕ(t)

)2
]
dt

=

∫ τ

0

E
[
h
(

trace(ξ′(t)Ĵ(t)ξ(t))
)

trace(ξ′(t)W ∗(t)ξ(t))
]
dt,

where

h (z(t)) =

(
1− q − 2

z(t)

)2

for z(t) 6= 0.

Then, by Theorem 2.2 of Nkurunziza (2012b),∫ τ

0

E

[
ξ′(t)W ∗(t)ξ(t)

(
1− q − 2

ϕ(t)

)2
]
dt

=

∫ τ

0

E

[(
1− q − 2

D1(t)

)2
]

trace(W ∗(t)Σ11(t))dt

+

∫ τ

0

E

[(
1− q − 2

D2(t)

)2
]

trace(δ∗′(t)W ∗(t)δ∗(t))dt. (B.25)

Once again, note that the conditions of this theorem are satistfied by Proposition

B.1.11. Therefore, combining (B.21), (B.24) and (B.25), we have

ADR(B̂S, B;W ∗) = ADR(B̂LS, B;W ∗)−
∫ τ

0

tr
(

Σ(t)W
∗
(t)
)
dt
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+

∫ τ

0

δ∗′(t)W ∗(t)δ∗(t)dt

−2

∫ τ

0

E

[
1− q − 2

D1(t)

]
δ∗′(t)W ∗(t)δ∗(t)dt

+

∫ τ

0

E

[(
1− q − 2

D1(t)

)2
]

trace(W ∗(t)Σ11(t))dt

+

∫ τ

0

E

[(
1− q − 2

D2(t)

)2
]

trace(δ∗′(t)W ∗(t)δ∗(t))dt.

�

In order to prove Proposition 2.3.4, we need Courant’s Theorem. We provide this

theorem, as given in Saleh (2006), below.

Proposition B.1.12. Let λ1, λ2, ..., λn be the characteristic roots of an n× n matrix

A such that minλi = λ1 , maxλi = λn, and let v1, ..., vn be the characteristic vectors.

Then A = λ1v1v
′
1 + ... + λnvnv

′
n, I = v1v

′
1 + ... + vnv

′
n : sup

(
x′Ax

xx′

)
= λn and

inf

(
x′Ax

xx′

)
= λ1. Hence,

chmin(A) ≤ x′Ax

xx′
≤ chmax(A),

where

mini (λi) = chmin(A)

and

maxi (λi) = chmax(A).

Proof of Proposition 2.3.4 .

The ADR of the shrinkage estimator is given by

ADR
(
B̂S, B;W ∗

)
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= ADR
(
B̂LS, B;W ∗

)
−
∫ τ

0

trace
(

Σ(t)W
∗
(t)
)
dt+

∫ τ

0

δ∗′(t)W ∗(t)δ∗(t)dt

−2

∫ τ

0

E

[
1− q − 2

D1(t)

]
δ∗′(t)W ∗(t)δ∗(t)dt

+

∫ τ

0

E

[(
1− q − 2

D1(t)

)2
]

trace(W ∗(t)Σ11(t))dt

+

∫ τ

0

E

[(
1− q − 2

D2(t)

)2
]
δ∗(t)′W ∗(t)δ∗(t)dt

= ADR
(
B̂LS, B;W ∗

)
+2(q − 2)

∫ τ

0

E[D−1 (t)] trace(δ∗′(t)W ∗(t)δ∗(t)dt)−
∫ τ

0

δ∗′(t)W ∗(t)δ∗(t)dt

−2(q − 2)

∫ τ

0

E[D−11 (t)] trace(W ∗(t)Σ11(t))dt

+(q − 2)2
∫ τ

0

E[D−21 (t)] trace(W ∗(t)Σ11(t))dt+

∫ τ

0

δ∗′(t)W ∗(t)δ∗(t)dt

−2(q − 2)

∫ τ

0

E[D−12 (t)] trace(δ∗′(t)W ∗(t)δ∗(t))dt

+(q − 2)2
∫ τ

0

E[D−22 (t)] trace(δ∗′(t)W ∗(t)δ∗(t))dt.

This can be further simplified, leaving us with

ADR
(
B̂S, B;W ∗

)

= ADR
(
B̂LS, B;W ∗

)
+(q − 2)

∫ τ

0

trace(δ∗′(t)W ∗(t)δ∗(t))E[2D−11 (t)− 2D−12 (t) + (q − 2)D−22 (t)]dt
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−(q − 2)

∫ τ

0

trace(W ∗(t)Σ11(t))
{

2E[D−11 (t)]− (q − 2)E[D−21 (t)]
}
dt.

Using the definitions of D1 and D2, along with the identity

E[χ−2d+2(∆(t))]− E[χ−2d+4(∆(t))] = 2E[χ−4d+4(∆(t))],

we have

ADR
(
B̂S, B;W ∗

)

= ADR
(
B̂LS, B;W ∗

)
+(q2 − 4)

∫ τ

0

c2(t)E[D−22 (t)]dt

−(q − 2)

∫ τ

0

c1(t)
{

2E[D−11 (t)]− (q − 2)E[D−21 (t)]
}
dt,

where c1(t) = trace(W ∗(t)Σ11(t)) and c2(t) = trace(δ∗′(t)W ∗(t)δ∗(t)). We also have

the identity

(q − 2)E[χ−4d+2(∆(t))] = E[χ−2d+2(∆(t))]− 2∆(t)E[χ−4d+4(∆(t))],

which allows us to write

ADR
(
B̂S, B;W ∗

)

= ADR
(
B̂LS, B;W ∗

)
−(q − 2)

∫ τ

0

{
c1(t)E[D−11 (t)] + 2c1(t)∆(t)E[D−22 (t)]− (q + 2)c2(t)E[D−22 (t)]

}
dt.

Thus, it suffices to prove that 2∆(t)c1(t)− (q + 2)c2(t) ≥ 0, for all t, since q − 2 > 0.

If c2(t) = 0, we are done, so let c2(t) > 0. Then we need to prove that
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∆(t)
c1(t)

c2(t)
≥ (q + 2)

2
, for all t. Following the proof of Corollary 2.1 in Nkuru-

nziza (2010), we can use Courant’s Theorem to get

c1(t)

chmax(W ∗(t)Σ11(t))
≤ ∆(t)

c1(t)

c2(t)
≤ c1(t)

chmin(W ∗(t)Σ11(t))
,

where chmin(A) and chmax(A) are the smallest and largest eigenvalues of the matrix

A, respectively. Then ∆(t)
c1(t)

c2(t)
≥ (q + 2)

2
, for all t, and we are done.

�

Proof of Proposition 2.3.6 .

Proposition 2.3.5 states that

ADR
(
B̂S+

, B;W ∗
)

=

∫ τ

0

tr ([Ω11(t)− Σ11(t)]W
∗(t)) dt+

∫ τ

0

δ∗′(t)W ∗(t)δ∗(t)dt

−2

∫ τ

0

E

[(
1− q − 2

D1(t)

)+
]
δ∗′(t)W ∗(t)δ∗(t)dt

+

∫ τ

0

E

([1− q − 2

D1(t)

]+)2
 trace(W ∗(t)Σ11(t))dt

+

∫ τ

0

E

([1− q − 2

D2(t)

]+)2
 δ∗(t)′W ∗(t)δ∗(t)dt,

Notice that we can write

E

[(
1− q − 2

D1(t)

)+
]

= E

[
I(0,∞)

{
1− q − 2

D1(t)

}(
1− q − 2

D1(t)

)]
= E

[(
1− I(−∞,0)

{
1− q − 2

D1(t)

})(
1− q − 2

D1(t)

)]
.

Then

E

[(
1− q − 2

D1(t)

)+
]

= E

[
1− q − 2

D1(t)

]
− E

[
I(−∞,0)

{
1− q − 2

D1(t)

}(
1− q − 2

D1(t)

)]
.
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Similarly,

E

([1− q − 2

D1(t)

]+)2
 = E

[(
1− q − 2

D1(t)

)2
]

−E

[
I(−∞,0)

{
1− q − 2

D1(t)

}(
1− q − 2

D1(t)

)2
]
.

Therefore we can write ADR
(
B̂S+

, B;W ∗
)

as a function of ADR
(
B̂S, B;W ∗

)
in

the following way:

ADR
(
B̂S+

, B;W ∗
)

= ADR
(
B̂S, B;W ∗

)
+2

∫ τ

0

E

[
I(−∞,0)

{
1− q − 2

D1(t)

}(
1− q − 2

D1(t)

)]
δ∗′(t)W ∗(t)δ∗(t)dt

+

∫ τ

0

E

[
I(−∞,0)

{
1− q − 2

D1(t)

}(
1− q − 2

D1(t)

)2
]

trace(W ∗(t)Σ11(t))dt

+

∫ τ

0

E

[
I(−∞,0)

{
1− q − 2

D1(t)

}(
1− q − 2

D1(t)

)2
]
δ∗(t)′W ∗(t)δ∗(t)dt.

This concludes the proof.

�

Proof of Proposition 2.3.10 .

The ADB of B̂S is given by

ADB(B̂S, B) =

∫ τ

0

E

[
ξ(t) +

(
1− q − 2

ϕ(t)

)
η′(t)

]
dt
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=

∫ τ

0

E [ξ(t)] +

∫ τ

0

E [h (trace (η′(t)J(t)η(t))) η′(t)] dt,

where h(z) = 1− q − 2

z
.

Then, by Theorem 2.2 of Nkurunziza (2012a),

ADB(B̂S, B) =

∫ τ

0

δ∗(t)dt+

∫ τ

0

E

[
1− q − 2

D1(t)

]
δ∗(t)dt.

This concludes the proof.

�
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