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ABSTRACT 

This thesis examined contaminant accumulation in newly transformed amphibian young 

of year and elimination kinetics during amphibian hibernation.   

Chapter 2 evaluated PCB concentrations in four amphibian species at five different 

locations to determine the importance of species specific processes in environmental chemical 

exposure and accumulation in amphibians.  Lipid levels between species were highly variable.  

Significant interspecific differences in PCB concentrations suggest contaminant accumulation is 

regulated in part by physiological and biological processes.   

Chapter 3 examined PCB elimination rates in hibernating Rana clamitans to determine if 

changes in chemical activity occurred during hibernation. Significant PCB elimination rates were 

observed for low Kow congeners, ranging from 0.0027 to 0.04 d
-1

. A negative correlation was 

found between Kow and elimination rate.  There was an increase in fugacity of higher Kow 

compounds corresponding to a decrease in lipid content.  PCBs in metabolic group 2 were 

preferentially eliminated over those in metabolic group 3.  
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CHAPTER 1 – THESIS INTRODUCTION 

1.1 General Introduction 

Over the course of the last two decades a worldwide decline has been observed in 

amphibian species, and many stressors have been suggested as contributing factors in this decline 

including the introduction of chemical pollutants and pesticides into natural systems (Ankley et 

al. 2004; Wake, 1991; Collins, 2003).  Previous elimination studies have demonstrated an 

increase in chemical fugacity of polychlorinated biphenyls (PCBs) during metamorphosis in 

green and leopard frogs (Leney et al., 2006), but there is little information on the uptake and 

elimination of hydrophobic organic chemicals during hibernation, or how biological processes 

such as life cycle differences, foraging strategies and latitudinal range distributions can affect 

species specific chemical accumulation patterns. 

Chapter 2 of this thesis presents a study conducted to determine if amphibian species 

occupying common habitats had similar chemical accumulation patterns.  Four species of native 

anuran amphibians were sampled just after metamorphosis at five sites along their overlapping 

species distributions. 

Chapter 3 presents an elimination study conducted to determine whether chemical 

activity increases during hibernation in amphibians. In this chapter, green frogs (Rana clamitans) 

were dosed with a PCB mixture in order to determine chemical elimination rates during 

hibernation, or brumation; lipid levels were measured in order to assess bioenergetic demands of 

hibernation. 

The hibernation and species specific differences studies presented in this thesis aid in the 

completion of kinetic models predicting metabolism of OCs during different amphibian life 

stages and activity periods.  
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1.2 Worldwide Amphibian Declines and Climate Change 

Global minimum temperatures have been increasing at double the rate of maximum 

temperatures (Walther et al., 2002), with spring arriving a few days earlier every decade 

(Parmesan and Yohe, 2003). 

Global warming is a potentially contributes to amphibian declines in both tropical and 

temperate regions (Pounds et al., 1999).  In temperate regions, lipid declines are steeper during 

warmer winters as amphibians are forced to operate at a higher metabolic level with minimal 

available food resources to make up for this additional energy expenditure (Rose, 1967).   PCB 

concentrations and congener ratios in amphibians are possibly regulated by global warming 

effects including changes in lipid content, contaminant distribution in precipitation, and changes 

in population size that can result from higher levels of winter mortality (Maniero and Carey, 

1997). 

1.3 Life History of Amphibian Species Used in Studies 

 Four amphibian species native to North America were used in this study.  Chapter 2 

involved sampling leopard frogs, green frogs, wood frogs (Rana sylvatica), and Eastern American 

toad (Bufo americanus) young of year.  The elimination experiments in Chapter 3 were conducted 

using green frogs (Rana clamitans).   

Green frogs grow to an adult length of approximately 10 cm.  Green frogs are aquatic and 

live, breed, and hibernate in bodies of water ranging from rivers to ponds.  The breeding season 

for green frogs in Ontario, Canada lasts from May into early June, and once hatched, the tadpoles 

transform in approximately 16 weeks, although tadpoles hatched later in the breeding season will 

overwinter as tadpoles and transform the following year (Stebbins, 1951). 

Leopard frogs are within the same size range as green frogs, with adult lengths ranging 

from 6 to 10 cm.  Leopard frogs can be found in a very wide range of habitats and tend to favor 
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open areas including fields, marshes, and agricultural areas.  Leopard frog habitat is only limited 

by access to permanent water sources.  Leopard frogs breed for the entire spring/summer season 

(Stebbins, 1951) – in Ontario from April to August – and tadpoles transform 8-12 weeks after 

hatching but do not overwinter as tadpoles (Harding, 1997). 

Wood frogs are the smallest of the amphibians used in this study, with a size range of 

approximately 4 to 7 cm.  Wood frogs can be found in damp and shady woods.  Wood frog 

breeding occurs in April, and tadpoles transform within 13 weeks of hatching (Stebbins, 1951).  

Wood frogs are biologically notable for their capacity to survive extracellular freezing (Story and 

Story, 1984). 

Eastern American toads range in size from 5 to 11 cm and are terrestrial, living and 

hibernating on land.  Eastern American toads breed in late May, with the exception of late season 

cold weather forcing breeding into June, and tadpoles transform 6 to 10 weeks after hatching.  

Eastern American toad young of year, or ‘toadlets’, are very small – approximately 1 cm long 

(Harding, 1997). 

1.4 Polychlorinated Biphenyls (PCBs) 

 Polychlorinated Biphenyls, or PCBs, is the name applied to a large group of congeners 

comprised of different numbers of chlorine atoms substituted into biphenyl rings (Tanabe, 1988).  

PCBs are man-made, biphenyl-based, chlorinated organic compounds.  PCBs were intensively 

used in industry as stable, heat resistant oils.  PCBs were manufactured and sold for industrial use 

from 1929 until 1977, when production was banned due to toxicological effects of PCBs (Waid, 

1986).  PCBs are extremely persistent, and are still readily detected in the environment 3 decades 

after the cessation of production (Tanabe, 1988). 

There are 209 PCB congeners, resulting from chlorine substitution patterns of the 

benzene rings.  Each PCB congener is associated with an octanol-water coefficient, or Kow value, 
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which indicates how readily a specific congener partitions between octanol and water when at 

chemical equilibrium.  

 

PCB chlorination is positively correlated to Kow as higher chlorinated PCBs are 

increasingly hydrophobic.  The Kow values associated with each PCB congener cover a wide 

range, necessitating the general use of a log scale;  with log Kow values ranging from 4.09-8.18 

(Hakwer and Connell, 1988). 

PCBs were banned due to concern over environmental persistence (Waid, 1986), 

bioaccumulative concerns (Tanabe 1988) and possible toxic effects in humans including cancer 

(Cogliano, 1988), cardiovascular disease (Gustavsson and Hogstedt, 1997), and weakened 

immune system functioning (Chang et al., 1981).  PCB toxicity has also been observed in many 

other animal species (Lind et al., 2004; Aulerich and Ringer, 1977; Jensen et al., 1977). 

Amphibians are vulnerable to the toxic effects of PCBs.  Xenopus laevis tadpoles have 

been shown to develop reproductive abnormalities, including the feminization of male gonads, 

when dosed with PCBs (Qin et al., 2003).  Tadpoles exposed to PCBs have decreased mass and 

survival rates (Fisher et al., 2003; Jelaso et al., 2002).  Exposure to PCBs has been shown to 

result in permanent scoliosis, or kinking, of the tail of tadpoles (Fisher et al., 2003; Jelaso et al., 

2002), a toxicological effect that has direct implications for the ability of tadpole stage 

amphibians to forage for food and effectively escape predators.  Jelaso, et al. (2002) additionally 

observed neurological impairment such as circular swimming patterns at both low and high 

dosing concentrations.  PCB exposure can also directly result in significant changes in gene 

expression, with possible effects including delayed metamorphosis and interference in the 

development and regulation of the nervous system (Jelaso et al., 2005). 
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1.5 A Kinetic Model for Chemical Uptake and Elimination 

The change in concentration of a chemical within an aquatic organism can be predicted 

using the equation: 

 

where Corg equals chemical concentration in the organism; 

kw is uptake rate constant from water; 

Cw is chemical concentration in water; 

kfood is uptake rate constant from food; 

Cfood is chemical concentration in food; 

kdiff is the elimination rate constant from the organism by way of diffusion; 

keg is the elimination rate constant from the organism by way of fecal egestion; 

kgro is the elimination rate constant from the organism because of growth; 

krep is the elimination rate constant from the organism because of reproduction; 

kmer is the elimination rate constant from the organism because of metabolism. 

It is possible to model the metabolism of individual PCB congeners by dosing an 

organism with a known amount of chemical and measuring elimination over time.  PCB 

elimination rate constants in frogs have previously been assessed by Leney, et al. (2006) using a 

first order, one-compartment model (Barron et al., 1990).  This model encompasses all possible 

routes of chemical elimination from the organism and resolves congeners that are passively 
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eliminated from those that are biotransformed. For elimination experiments where the test 

organism is dosed with a chemical and placed into a clean system the following equation is used: 

 

and this equation can then be rearranged: 

 

where Corg(t) represents the mass of chemical in the organism at time t, Corg(t=0) is the mass of 

chemical in the animal at the beginning of the elimination experiment, and k2 is the total chemical 

elimination rate constant.   

 

Once the k2 value has been determined experimentally, the time to a 90% steady state can 

be calculated using the following equation: 

 

1.6 Metabolic Biotransformation 

Substances foreign to an organism’s system (xenobiotics), such as PCBs, can be bio-

transformed by enzyme systems.  The function of biotransformation is to convert lipid-soluble 

chemicals into water-soluble metabolites which are readily excreted by the organism 

(Livingstone, 1998).  Some of these water-soluble metabolites are much more toxic than the 

original compound (Livingstone, 1988). 

Oxidative metabolism of xenobiotic chemicals is a function of the mixed function 

oxidase, or MFO, system.  The enzymes functioning within the MFO system are cytochrome P-
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450, or CYP enzymes.  PCB congeners are metabolized by different enzymes according to 

chlorination pattern, and four metabolic groups are recognized.  Metabolic group one consists of 

congeners lacking both meta-para and ortho-meta vicinal hydrogen atoms.  Congeners with only 

meta-para vicinal hydrogen atoms are classified as group two PCBs.  Congeners with only ortho-

meta vicinal hydrogen atoms are classified as group three PCBs.  Group four consists of 

congeners with both meta-para and ortho-meta vicinal hydrogen atoms.  Group two (meta-para) 

congeners are metabolized as a result of cytochrome P-450 2B isozyme activity.  PCBs in group 

three (ortho-meta) are metabolized by cytochrome P-450 1A enzyme activity.  Group four 

congeners are considered very easily to metabolize as they can be metabolized by both P-4501 

1A and 2B isozymes (Kannan, 1995). 

 

 

Figure 1.1 Diagram of basic PCB structure with letters depicting possible chlorine substitution 

patterns, with m=meta, o=ortho, and p=para. 

 

P-450 activity can greatly differ according to amphibian species (Noshiro and Omura, 

1984); animal species with low P-450 activity have been shown to bioaccumulate PCBs at high 

rates (Tanabe, 1988).  Increased P-450 enzyme activity can also serve as a biomarker of high 

levels of PCB contamination in amphibians (Jelaso et al., 2005). 

1.7 The Fugacity Concept 
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 During times in which lipid levels decrease within an organism, the capacity to contain 

PCBs within lipid also decreases placing chemicals under greater escaping pressure.  This 

chemical activity is called fugacity.  Fugacity (f measured in Pa) describes the linear relationship 

between the whole body concentration of a chemical in mol x m
-3

 (C) and the fugacity capacity in 

mol x m
-3

 x Pa
-1

 (Z) so that: 

 

Fugacity capacity (Z) of an organism can be estimated from the concentration of lipid (XL), the 

Kow of the congener being assessed, and the Henry’s law constant value in Pa x m
3
 x mol

-1
 (H) so: 

  (Mackay and Paterson, 1981) 

thus: 

 

When fugacity is high, there is increased pressure for chemicals to move away from the lipid 

phase and into the circulatory fluids of an organism and potentially augment active toxicological 

stress. 

1.8 Chemical Elimination and Metabolism of PCBs in Amphibians 

Previous chemical elimination studies with amphibians have determined elimination rates 

for tadpole (average k2=0.044 d
-1

), metamorph (average k2=0.170 d
-1

), and adult stage amphibians 

(average k2=0.017 d
-1

; Leney et al., 2006a; 2006b; 2006c).  It was determined that elimination 

rates were highest in metamorph stage amphibians (Leney et al., 2006b).  Additionally, fugacity 

of PCBs increased up to a factor of four during metamorphosis, as the tail was adsorbed and the 

digestive tract and mouthparts morphologically adjusted to the shift from herbivore to insectivore 
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(Leney et al., 2006b).  Adult amphibians at ambient temperatures had the slowest elimination 

rates for PCBs among the three life-stages (Leney et al., 2006b). 

1.9 Study Objectives 

1.9.1 Holistic Objective 

 The overall goal of this study was to provide critical information and data for the 

development of a model that predicts chemical dynamics and activity during the entire amphibian 

life cycle.  Although the major morphological life stages (tadpole, metamorph, and adult) have 

been modeled (Leney, et al., 2006b) there has been very little work done towards understanding 

elimination processes during hibernation of amphibians in temperate regions.  Furthermore, 

accumulation studies have focused only on a few species, and there is a need to assess if a general 

model describes PCB accumulation dynamics in different anuran species. 

1.9.2 Chapter 2 Objectives 

 Chapter 2 set out to determine interspecific differences in lipid and PCB levels in field 

sampled amphibians.  Previous studies (Beck and Congdon, 2003; DeGarady and Halbrook, 

2006) have found inter-species differences in lipid and PCB levels in young of year.  Interspecific 

differences provide evidence for the need to develop biological models to predict chemical fate 

and effects in amphibians. 

 The hypothesis tested in Chapter 2 was: 

2.1.  Fugacity models predict there will be no differences in contaminant lipid concentrations 

among amphibian species, and that life histories do not regulate contaminant 

accumulation patterns. 

1.9.3 Chapter 3 Objectives 

 The purpose of the experiment in Chapter 3 was to determine elimination rate constants 

(k2 values) for PCBs in hibernating adult green frogs.  Previous studies by Leney, et al. (2006b) 
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showed an increase in fugacity in tadpole stage amphibians.  Chapter 3 set out to determine 

whether a similar increase in chemical activity occurred for hibernating amphibians. 

The hypotheses tested in Chapter 3 were: 

3.1. There will be no significant changes in lipid in adult frogs during hibernation. 

3.2. There will be no elimination of PCBs by adult frogs during hibernation. 
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CHAPTER 2 – INTERSPECIES DIFFERENCES IN AMPHIBIAN 

PCB CONCENTRATIONS 

2.1 Introduction 

It is necessary to evaluate the effects of environmental chemicals in different species and 

life stages of amphibians in relation to the worldwide amphibian decline (Ankley 2004).  PCBs 

continue to be observed in a wide range of environmental samples including amphibians 

(DeGarady and Halbrook, 2006; Kadokami et al., 2004).  Chemical concentration in tadpoles and 

young of year amphibians is directly related to body burden and lipid levels of the parents prior to 

breeding (Kadokami et al., 2004).  Aquatic organisms in temperate regions have been shown to 

experience seasonal shifts in elimination activity (Paterson et al., 2007).  In yellow perch for 

example, PCBs were not readily eliminated in fall or winter, and elimination rates at the 

beginning of spring were extremely slow (Paterson et al., 2007).  Amphibians eliminated 

persistent chemicals more slowly than other aquatic organisms, even at ambient temperatures 

(Leney, 2006a). 

There is growing evidence that bioenergetic processes are as important as chemical 

properties when predicting the accumulation of persistent chemicals in organisms, and that simple 

thermodynamic models are not sufficient to explain exposure dynamics among species (Paterson 

et al., 2007).  In amphibians these processes include overwintering strategies, foraging strategies, 

time spent in the larval form and where within the range of a species an individual is located.  

Fugacity models predict that all species of amphibians occupying the same habitat would have 

similar lipid concentrations of chemicals, thus the above bioenergetic processes and range effects 

would be rendered relatively unimportant.   

The goal of this study was to evaluate PCB concentrations in four different amphibian 

species at five different locations along a latitudinal gradient to determine the relative importance 
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of species specific processes in the exposure and accumulation of environmental chemicals in 

anuran amphibians.  The null hypothesis is that there are no latitudinal range effects on lipid 

concentration and no interspecific differences in PCB accumulation.  If there are no inter-species 

differences in lipid or PCB concentrations, this would indicate that chemical properties such as 

Kow dominate chemical accumulation.  Little is known about interspecific differences in 

contaminant bioaccumulation in amphibian species even though species-specific differences in 

contaminant bioaccumulation could be a factor in the rapid decline of certain amphibian species. 

2.2 Materials and Methods 

2.2.1 Sample collection 

Four native amphibian species, Rana clamitans (green frog), R. sylvatica (wood frog), R. 

pipiens (Northern leopard frog), and Bufo americanus (American toad), young of year were 

sampled at five locations where geographical ranges for each species overlap in Ontario, Canada 

(Figure 2.1).  These species were chosen for sampling as they are common to Ontario and they 

have the largest range overlap.  Samples were taken at a variety of latitudes to assess possible 

lipid differences within and among species along their range.  Young of year frogs were chosen 

for sampling because chemical concentrations in newly metamorphosed amphibians have been 

recently influenced by hibernation, breeding, and metamorphosis - all of which feature distinct, 

species-specific time frames (Table 2.1).  Sampling sites were coded as follows: Essex (≈42°), 

Wellington (≈43°), Frontenac (≈44°), Nipissing (≈45° & 46°), and Cochrane (≈49°).  Site details 

including exact coordinates and sampling dates are available in Table 2.2.  Sampling took place 

over the first two weeks of July, 2006.  Amphibians were sampled from multiple locations within 

the same area due to differences in habitat preference.  Five young of year amphibians of each 

species were sampled at each site, with the exception of American toad young of year.  Due to the 

much smaller size of American toad young of year compared to other amphibian species young of 

year, approximately 35-40 American toads were collected at each site to meet the minimum 
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weight requirements for chemical analysis.  After collection, samples were stored on dry ice until 

transfer to a -30° C freezer where they were stored pending analysis.  Leopard frog young of year 

could not be located over an extensive 3 day sampling period at latitude ≈49°.  Wood frogs were 

not available in Essex County (≈42°).  Wood frogs have become rare in Essex County, 

presumably as a result of habitat destruction. 

2.2.2 Analysis 

Methods for PCB analysis are described in specific detail by Leney, et al. (2006).  To 

summarize, whole organism amphibian samples were homogenized using hexane and acetone 

rinsed surgical scissors.  Mortar and pestle were used to pulverize an approximately 2 gram 

subsample of each homogenized sample with sodium sulphate.  The ground sample was then 

packed into a glass column with 50 mL of 1:1 dichloromethane: hexane.  Each column was 

spiked with 100 µl of tri-bromo-benzene spiking standard at a concentration of 125 ng/g for 

recovery correction during analysis. Another 250 mL of 1:1 dichloromethane: hexane was added 

and the column stood undisturbed for a minimum of 1 hour before elution. 

Collected extracts were concentrated to 10 mL and 10% of each extract was removed for 

lipid concentration analysis. The extract was then added to a glass column containing 6 grams of 

florisil and eluted with 50 mL of hexane for lipid cleanup. Extracts were concentrated and 

transferred to vials with a final volume of 1 mL in 2,2,4-trimethylpentane. 

A method blank column and a column containing fish homogenate from the Detroit River 

were processed alongside each set of samples to provide a reference sample for quality assurance. 

Chemical analyses were performed using an HP 5890 with gas chromatography electron 

capture detector (GC-ECD).  For amphibians, whole body PCB concentrations were determined.  

American toad samples consisted of enough pooled organisms to meet minimum mass 

requirements for analysis.  A secondary standard and spiking standard were run with each set of 
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samples.  Congeners were identified by retention time and by molecular ion and quantified by 

comparison to the peaks in a secondary standard.  Recovery of the tri-bromo-benzene spiking 

standard in the samples was 85±6.7% (mean± SE) of the recovery in the homogenate.  Recovery 

of PCB congener 180 in the reference homogenate tissue extracted alongside each sample set was 

within two standard deviations of the mean value from the laboratory control charts maintained 

by the organic analytical laboratory at the Great Lakes Institute for Environmental Research, a 

Canadian Association for Laboratory Accreditation Inc. certified facility.  PCB concentrations in 

method blanks were below machine detection limits (which range from 0.1 pg - 0.05 µg).  

Statistical analysis was performed using Kruskal-Wallis One-way Analysis of Variance (Systat 

12 for Windows). 

2.3 Results 

There were no statistically significant differences in percent lipid found among species 

(p=0.999) or locations (p=0.999; Kruskal-Wallis One-way Analysis of Variance, SYSTAT 12).  

Lipid levels were highly variable within locations and species.  American toad lipid levels were 

significantly higher than those of other species at the Wellington County sampling location 

(p=0.004; Figure 2.2, Lat. 44). 

 Wellington county amphibians (Lat. 43°) had significantly higher total wet weight PCB 

(Figure 2.3) and lipid corrected PCB concentrations (Figure 2.4) than amphibians sampled from 

all other sites.  Average wet weight (Figure 2.4) and lipid corrected (Figure 2.5) concentrations of 

PCB 31/28, PCB 52, PCB 101, PCB 110, PCB 153, PCB 138, and PCB 180 were plotted 

individually by location as these PCB congeners are known to be generally resistant to being 

metabolized.  Average concentrations of PCB congeners 153 and 180 were significantly higher in 

Wellington County frogs (Figure 2.5, lat. 43° PCB 153 p=0.001, PCB 180 p=0.03).  Lipid 

corrected concentrations of PCB congeners 153, 138, and 180 were significantly higher in 

Wellington County frogs (Figure 2.6, lat. 43° PCB 153 p=0.001, PCB 138 p=0.01, PCB 180 
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p=0.01).  There were no significant differences in congener concentration in frogs from the other 

four sites.  Average concentrations of congeners 153 and 180 were significantly higher in leopard 

frogs (Figure 2.5, PCB 153 p=0.02, PCB 180 p=0.005).  Lipid corrected concentrations of PCB 

congeners 153 and 180 were significantly higher in Northern leopard frogs (Figure 2.6, PCB 153 

p=0.02, PCB 180 p=0.006).  Lipid corrected concentrations of PCB 110, however, were 

significantly higher in American toads (Figure 2.6, p=0.01).   

2.4 Discussion 

Significantly higher levels of PCBs in Wellington County amphibians (Figures 2.2 and 

2.3) indicated that the observed chemical concentrations in leopard frogs were in response to 

local contamination.  A previous study calculating the concentrations of PCBs in mink collected 

in this area confirmed the elevated levels in Wellington County (Haffner, et al. 1998).  This offers 

further support for the use of amphibians as biomonitoring organisms. 

Fugacity models predict there will be no differences in contaminant lipid concentrations 

among amphibian species such that species specific processes do not regulate contaminant 

accumulation patterns.  As lipid corrected concentrations of PCB 110 were significantly higher in 

American toads (Figure 2.6, p=0.01), and lipid corrected concentrations of PCB congeners 153 

and 180 were significantly higher in Northern leopard frogs (Figure 2.6, PCB 153 p=0.02, PCB 

180 p=0.006) the accumulation of PCBs in part is driven by biological processes, and this was 

observed at all sampling sites.  

Biological processes are concluded to be important in regulating contaminant 

accumulation in frogs as evidenced by interspecies differences in amphibians within the same 

location.  Furthermore, the interspecific differences do not appear to be physiologically regulated 

– in that species accumulation patterns are not consistent between sites (Figures 2.4 and 2.6).  The 

interspecific differences in PCB concentration in this study indicate that amphibian species 

exhibit species specific exposure patterns that might be related to bioenergetic processes 
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associated with different ecological efficiencies in the different sampling areas.  There is not a 

common pattern for the most contaminated species among sites suggesting that resource 

utilization by a species might be site dependent.  Future efforts to develop a life cycle model for 

amphibians need to address species specific differences in contaminant accumulation and 

metabolism. 

Differences in bioenergetic processes could account for interspecific differences observed 

in this study.  Leopard frogs, wood frogs, and green frogs remain in the tadpole stage for a much 

longer time than American toads (Table 2.1).  Additionally, it has been shown that length of 

tadpole stage is positively correlated with the length of time it takes for a species to make post-

metamorphosis behavioural and physiological changes, such as increased aerobic capacity (Pough 

and Kamel, 1984). Green frogs remain in tadpole stage the longest, while American toads and 

wood frogs develop at such a rapid rate that they still contain some immature organs after 

undergoing metamorphosis (Pough and Kamel, 1984; Table 2.1).  Metamorphic differences, such 

as organ development and functioning, have implications for chemical accumulation and 

exposure; depending on how long it takes for post-metamorphosis organ functioning to resume, 

amphibians such as American toads and wood frogs could be relying more on stored energy after 

transformation.  At latitude 44 newly transformed American toads had significantly (p=0.004) 

higher lipid concentrations compared to other species tested (Figure 2.2) and also higher average 

PCB concentrations (Figure 2.3).  The shorter tadpole stage could have direct effects on PCB 

accumulation.  Habitat effects could also result in differences in PCB accumulation; for example, 

American toads are largely terrestrial post-metamorphosis and are thus exposed to aquatic 

contaminants for a much shorter time period than species such as green frogs.   

Leopard frogs have an intermediate length tadpole stage but participate in a much longer 

breeding season than the other three amphibian species collected during this study (Table 2.1).  

Leopard frog young of year may transform as late as the end of the summer, resulting in a 
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metamorphic disadvantage compared to other species.  Leopard frog lipid corrected PCB 

concentrations were higher than those of other species at latitudes 43 and 46.  Wood frogs and 

American toads would have the last months of summer to store lipid, while green frogs are able to 

overwinter as tadpoles and reserve lipid stores for transformation at a more advantageous time the 

following year.  Hibernation in amphibians results in significant costs to the lipid stores of adult 

amphibians; late emerging adults would be placed at a distinct disadvantage.  Additionally, 

Northern amphibians breed immediately after emerging from hibernation, when lipid levels are 

already depleted (Donohoe et al. 1998).  It has been observed that the wet weight PCB 

concentration in amphibian eggs is twice that of the mother (Kadokami, et al. 2004) and 

bioamplification of PCBs has been observed in yellow perch eggs (Daley et al., 2009).  Thus, 

American toads would be transforming closer to the original maternal transfer of PCB body 

burden which could be directly influencing the high contaminant lipid levels found at latitude 44 

(Figure 2.3).  Due to a longer breeding season, adult leopard frog lipid levels should decrease and 

chemical activity, or fugacity, should increase at a greater rate than for the other amphibians 

collected, resulting in greater PCB concentration within the parents and greater fugacity, and 

lower lipid levels, in the eggs.  Indeed, leopard frog lipid concentrations were below 2% at all 

sites (Figure 2.2), and lipid corrected PCB concentrations were higher than those of other species 

at several sampling sites (Figure 2.4).  Significantly higher lipid levels in American toad young of 

year at one sampling site (Figure 2.2) are of interest, as American toads have the shortest 

breeding season and parents and eggs should emerge from breeding with higher lipid levels than 

the other three species collected for this study.  Habitat and site which determine quality of 

foraging, cover, and weather combined with species specific differences in the bioenergetic 

mechanisms regulating growth, development and metabolism would account for the interspecific 

contaminant accumulation differences in this study. 
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Adult anuran amphibians eliminate POPs such as PCBs at extremely slow rates (Leney, 

2006a).  Adult chemical body burden could be determined by species-specific accumulation 

patterns occurring early in development.  These findings have implications for contaminant life 

cycle modeling in amphibians.  Future modeling work will need to take into account biological 

processes which result in significant differences in chemical accumulation between species and 

sites. 

2.5 Conclusions 

This study determined that there are inter-species differences in contaminant lipid 

concentrations and PCB mass in different frog species. Such differences cannot be explained by 

simple thermodynamic partitioning models, and provide strong support for the need of species 

specific models for anurans.  As lipid and PCB concentration are the two factors directly 

regulating fugacity, these observations support previous research that suggest life cycle and 

ecological factors such as foraging strategies are regulating chemical accumulation dynamics in 

amphibians.  PCB concentrations were not indicative of latitudinal effects due to processes such 

as cold condensation as other factors such as local contamination and biological processes were 

more dominant.  Further inspection of interspecific differences in life cycle processes with 

relation to chemical activity could help to explain the species specific declines and extinctions of 

amphibians. 
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Table 2.1 Species specific details for study organisms. 

Species
1
 Adult Size

1
 Habitat

1
 Length of 

breeding 

Season
1
 

Time to 

metamorphosis
1
 

Rana clamitans 

(Green Frog) 

≈10 cm Aquatic May to early 

June 

≈16 weeks; 

tadpoles hatched 

later overwinter as 

tadpoles 

R. pipiens 

(Leopard Frog) 

≈6-10 cm Variable; only 

limiting factor is 

access to water 

April to August 8-12 weeks
2
 

R. sylvatica 

(Wood Frog) 

≈4-7 cm Damp, shaded, 

wooded areas 

April ≈13 weeks 

Bufo americanus 

(Eastern 

American Toad) 

≈5-11 cm
2
 Terrestrial; 

variable; only 

limiting factor is 

access to water
2
 

late May
2
 6-10 weeks

2
 

1
All information from Stebbins (1951) except where otherwise noted. 

2
Harding (1997). 
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Table 2.2 Site details and collection dates for five amphibian species. 

Species Location and coordinates Date 

Rana clamitans 

(Green Frog) 

Essex County 

42° 5.91438, -82° 56.6424 

 

June 29, 2006 

Wentworth County 

43° 14.419, -79° 59.458 

July 5, 2006 

Frontenac County 

44° 43.623, -76° 48.095 

July 8, 2006 

Nipissing  County 

46° 15.495, -78° 54.108 

July 10, 2006 

Cochrane County 

48° 17.887, -79° 50.965 

July 13, 2006 

R. pipiens 

(Leopard Frog) 

Essex County 

42° 5.91438, -82° 56.6424 

 

June 29, 2006 

Wentworth County 

43° 17.619, -79° 53.057 

July 5, 2006 

Frontenac County 

44° 31.376, -76° 36.636 

July 6, 2006 

Nipissing  County 

46° 15.495, -78° 54.108 

July 10, 2006 

No sample  

R. sylvatica 

(Wood Frog) 

No sample  

Wentworth County 

43° 17.619, -79° 53.057 

July 4, 2006 

Frontenac County 

44° 30.465, -76° 33.280 

July 7, 2006 

Nipissing  County 

46° 21.206, -78° 46.053 

July 15, 2006 

Cochrane County 

48° 17.887, -79° 50.965 

July 13, 2006 

Bufo americanus 

(Eastern American Toad) 

Essex County 

42° 5.91438, -82° 56.6424 

 

June 29, 2006 

Wentworth County 

43° 17.619, -79° 53.057 

July 5, 2006 

Frontenac County 

44° 23.456, -76° 34.328 

July 6, 2006 

Nipissing  County 

46° 06.804, -78° 55.509 

July 11, 2006 

Cochrane County 

48° 11.723, -79° 51.720 

July 13, 2006 
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Figure 2.1 Distribution maps
1
 depicting the ranges of each test species (Northern leopard frog, 

Eastern American toad, green frog, and wood frog). 
1
All distribution maps prepared by the Natural Heritage Information Centre and based on 

the November, 2000 records contained in the Ontario Herpetofaunal Summary Database. 
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Figure 2.2 Average total body percent lipid by sampling location latitude and by species.  Error 

bars represent standard error.  American toad lipid levels were significantly higher than those of 

other species at latitude 44 (p=0.004). 
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Figure 2.3 Average PCB concentration (ng/g wet weight) by amphibian species and sampling 

location. Error bars represent standard error.  AT=American Toad, GF=Green Frog, LF=Leopard 

Frog, and WF=Wood Frog.  Total PCB concentrations were significantly higher in Wellington 

County, lat. 43° (p=0.001). 
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Figure 2.4 Lipid corrected PCB concentration (μg/g) by amphibian species and sampling 

location. Error bars represent standard error.  AT=American Toad, GF=Green Frog, LF=Leopard 

Frog, and WF=Wood Frog.  Lipid corrected total PCB concentrations were significantly higher in 

Wellington County, lat. 43° (p=0.002). 
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Figure 2.5 Average wet weight concentrations in ng/g for sample congeners (Kow=low, medium, 

and high) for four amphibian species (LF=Leopard Frog, AT=American Toad, GF=Green Frog, 

WF=Wood Frog) at five different sampling sites in Ontario, Canada.  Error bars represent 

standard error.  Concentrations of PCB congeners 153 and 180 were significantly higher in 

Wellington County frogs (lat. 43° PCB 153 p=0.001, PCB 180 p=0.03).  Concentrations of 

congeners 153 and 180 were significantly higher in leopard frogs (PCB 153 p=0.02, PCB 180 

p=0.005). 
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Figure 2.6 Lipid corrected average PCB concentrations in μg/g for sample congeners (Kow=low, 

medium, and high) for four amphibian species (LF=Leopard Frog, AT=American Toad, 

GF=Green Frog, WF=Wood Frog) at five different sampling sites in Ontario, Canada.  Error bars 

represent standard error.  Concentrations of PCB congeners 153, 138, and 180 were significantly 

higher in Wellington County frogs (lat. 43° PCB 153 p=0.001, PCB 138 p=0.01, PCB 180 

p=0.01).  Concentrations of PCB 110 were significantly higher in American toads (p=0.01).  

Concentrations of PCB congeners 153 and 180 were significantly higher in Northern leopard 

frogs (PCB 153 p=0.02, PCB 180 p=0.006). 
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CHAPTER 3 – POLYCHLORINATED BIPHENYL ELIMINATION 

RATES AND CHANGES IN CHEMICAL ACTIVITY IN 

HIBERNATING AMPHIBIANS 

3.1 Introduction 

Many species worldwide are in decline, resulting in a loss of biodiversity.  Over the 

course of the last 20 years, a major decline has been observed in amphibian species (Ankley et al., 

2004).  Many stressors have been suggested as contributing to this decline, including the 

introduction of chemical pollutants and pesticides into natural systems (Ankley et al., 2004).  In 

order to resolve the relative potential of environmental chemicals affecting the observed decline 

in amphibian species, it is essential to develop life cycle models.  These models require specific 

information on chemical uptake and elimination rates.  Amphibian elimination studies, using 

polychlorinated biphenyls (PCBs), are able to provide a calibrated model for amphibian chemical 

metabolism at key lifecycle stages.  Previous studies using frogs have shown an increase in the 

chemical activity, or fugacity, of PCBs during metamorphosis, due to the accelerated use of lipids 

being absorbed from the tail (Leney et al., 2006b).  This same increase in fugacity is predicted to 

occur at other points of the amphibian lifecycle where stored lipids are being utilized as an energy 

source.   

Hibernation, or burmation, is a critical period when amphibians are forced to rely on 

stored lipids.  Hibernation is unique to cold adapted amphibians; hibernating amphibians are at 

increased risk of infection, predation, and death by hypoxia (Weber, 2009; Beebee, 1996).  Frogs 

occur further North in all geographical areas than other ectotherms; aquatic ranid tadpoles are the 

only larval stage amphibians that have been found to consistently overwinter (Feder and 

Burggren, 1992).  Some hibernating amphibians are able to adjust their blood chemistry to rely on 
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cutaneous gas exchange, but amphibians have generally been found to be less successful than 

other hibernating vertebrates in hypoxic conditions (Boutilier et al., 1997).  Lipids are the primary 

stored energy source during hibernation, supplying a fuel reserve to last for up to 8 months and 

for immediate breeding activity in the spring (Fitzpatrick, 1976; Feder and Burggren, 1992).  In 

the fall, lipid and glycogen are heavily stored in the liver and fat bodies of amphibians (Feder and 

Burggren, 1992).  Cold adapted amphibians go underwater or bury underground or layers of leaf 

litter to overwinter (Beebee, 1996); hibernating on land avoids the risk of hypoxia, and 

hibernating in the water lessens the risk of freezing (Feder and Burggren, 1992).  Amphibians 

enter a hypometabolic state of torpor, cued by epinephrine and thyroid hormonal signals, when 

submerged and exposed to low temperatures that lower metabolic rates and potentially regulate 

the biotransformation of PCBs (Feder and Burggren, 1992;Donohoe et al, 1998).  Chemical 

elimination rates for PCBs during amphibian hibernation have yet to be quantified.  The 

development of a life-cycle model for the elimination rates of pollutants such as PCBs is essential 

in predicting the hazard of manmade chemicals relative to the observed decline of amphibians. 

The primary goal of this study was to quantify the rate that amphibians were able to 

eliminate and metabolize PCBs during hibernation.  Previous studies of green frog tadpoles, 

metamorphs, and adults concluded that elimination rates were slowest in the adult phase and 

highest during the metamorph stage (Leney et al., 2006c).  Leney, et al. (2006c) also concluded 

that fugacity increased during the metamorph stage of green frogs with lipid content decreasing 

relatively rapidly as a result of tail adsorption.  We hypothesized that PCB elimination rates will 

be very slow for overwintering adult green frogs, and that chemical fugacity will increase due to a 

decline in stored lipids in hibernating frogs. 

3.2 Materials and Methods 

3.2.1 Experimental Design 
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An elimination experiment was performed using 67 adult green frogs (Rana clamitans) 

ranging in size from 15.28 to 41.97 grams (mean mass of 27.78 g). Frogs were collected during 

October, 2007 from ponds at Leadley Environmental Co., an aquaculture facility in Essex County 

near Windsor, Ontario, Canada.  57 frogs were dosed with 1 µg/g wet weight PCB mixture (1:1:1 

ratio of Aroclors 1248:1254:1260 in sunflower oil) and sampled on days 0, 21, 62, and 85 with 

day 0 occurring October 21, 2007.  10 control frogs were injected with 1 µg/g clean sunflower oil 

and collected at the start (day 0) and termination (day 180) of the experiment.  After dosing, frogs 

were split into two groups and transferred into cages in two separate ponds.  To control for PCB 

recycling and contamination, control frogs were also placed into the same ponds as the 

experimental organisms in a separate caged area.  The two experimental ponds contained 

sediment from local ponds where the frogs were collected, and floating plants and cinderblocks 

were provided for cover and to enable the frogs to climb out of the water before entering into the 

hibernation phase. 

Frogs were immediately homogenized upon collection using hexane and acetone rinsed 

blenders and stored in hexane rinsed aluminum foil at -20°C until analysis.  Samples were 

analysed following the termination of the experiment.  Whole body PCB concentrations were 

analyzed.   

3.2.2 Analysis 

Methods for PCB analysis are described in specific detail in by Leney, et al. (2006a).  To 

summarize, mortar and pestle were used to pulverize a 2 gram subsample of each homogenized 

sample with sodium sulphate.  The ground sample was then packed into a glass column with 50 

mL of 1:1 dichloromethane: hexane.  Each column was spiked with 100 µl of tri-bromo-benzene 

spiking standard at a concentration of 125 ng/g in order to assess recovery correction during 

analysis. Another 250 mL of 1:1 dichloromethane: hexane was added and the column stood 

undisturbed for a minimum of 1 hour before elution.  Collected extracts were concentrated to 10 
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mL and 10% of each extract was removed for lipid concentration analysis. The extract was then 

added to a glass column containing 6 grams of florisil and eluted with 50 mL of hexane for lipid 

cleanup. Extracts were concentrated and transferred to vials with a final volume of 1 mL in 2,2,4-

trimethylpentane.  A method blank column and a column containing fish homogenate from the 

Detroit River (reference sample for quality assurance) were processed alongside each set of 

samples. 

Chemical analysis of extracted samples for PCBs was performed using a Hewlett-

Packard 5890 gas chromatograph with a 5973 mass-selective detector and a 7673 autosampler.  A 

secondary standard and spiking standard were run with each set of samples.  Congeners were 

identified by retention time and by molecular ion and quantified by comparison to the peaks in a 

secondary standard.  Recovery of the spiking standard calculated from (13C) PCB 153 was 

73±3.4% (mean± SE).  Recoveries of PCB congeners 180 and 138 in the reference homogenate 

tissue extracted alongside each sample set were within one and two standard deviations, 

respectively, of the mean value from the laboratory control charts maintained by the organic 

analytical laboratory at the Great Lakes Institute for Environmental Research, a Canadian 

Association for Laboratory Accreditation Inc. certified facility.  PCB concentrations in method 

blanks were below the machine detection limit of 0.05 ng/g. 

3.2.3 Modeling 

Elimination rate constants for PCB congeners were assessed using the one compartment 

first order rate constant model previously described by Leney, et al. (2006a).  This model 

encompasses all possible routes of chemical elimination from the organism.  For elimination 

experiments where the test organism is dosed with a chemical and placed into a clean system (no 

uptake) the following equation is used: 
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this equation can  be rearranged to derive: 

 

where Corg(t) represents the mass of chemical (in ng) in the organism at time t (days), Corg(t=0) 

represents the mass of chemical in the animal at the beginning of the elimination experiment, and 

k2 is the total chemical elimination rate constant in units of d
-1

.  From this the equation to 

calculate the elimination rate constant, k2, can be derived: 

 

Elimination rate constant, k2, values were determined by plotting the natural log of the 

chemical concentration of individual PCB congeners in each sample against sampling date in 

days. The slope of the regression line for each congener resulted in the k2 value. Regression 

analysis of concentration against sampling day was performed to determine whether k2 values 

were significant. 

Once the k2 value has been determined, the time to a 90% steady state .was calculated 

using the following equation: 

 

 Chemical activity, or fugacity, is inversely related to the capacity of an organism, which 

is inversely dependent on the amount of lipid, and directly related to chemical concentration.    As 

lipid decreases within an organism, the capacity to contain PCBs within an organism decreases, 

and chemicals are placed under greater pressure to partition into other phases such as the 

circulatory system. Fugacity (f measured in Pa) of an organism can be measured as a function of 
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the whole body concentration of chemical in mol x m
-3

 (C) and the capacity of the organism in 

mol x m
-3

 x Pa
-1

 (Z) such that 

 

Fugacity capacity (Z) can be estimated as the concentration of lipids in the sample (XL), the Kow 

of the congener being assessed, and the Henry’s law constant value in Pa x m
3
 x mol

-1
 (H) . 

 (Mackay and Paterson, 1981) 

thus: 

 

Fugacity increases have been observed during hibernation, with increased toxic effects 

being a predicted outcome (Macdonald et al., 2002).   

3.3 Results 

Mortality rates for this experiment were greater than 50% as a result of a complete die off 

in one of the experimental ponds; as a result the experiment was ended after 85 days because of 

insufficient numbers of frogs available for day 180.  As there were no surviving animals in the 

disease affected pond, only animals from one pond were sampled. 

A regression analysis was performed to determine if the lipid content of sampled frogs 

changed during the experiment. A significant decrease in lipid mass of sampled frogs was 

observed over the sampling period.  Mean lipid at the beginning of the experiment was 2.2 ± 

1.0% of total mass (mean±standard error) and declined to 0.89±0.18 of total mass in the final 

control.  Figure 3.2 illustrates the decline of lipid content over the duration of the experiment.  

The coefficient of determination for linear-regression analysis (r
2
) value derived from regression 
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analysis of lipids over the course of the study indicated that 25% of the variability of lipid could 

be accounted for by time of hibernation. 

Table 3.1 summarizes the elimination rate constants for individual PCB congeners as 

well as the corresponding t90 values.  Significant (p<0.05) PCB elimination rate constants (k2) 

ranged from 0.0027 to 0.04 d
-1

 and t90 were in the range of 61 to 7675 days, suggesting only a few 

low Kow congeners had the potential to achieve steady state during the period of hibernation.   

Non significant and non-calculable k2 values were the result of either fast elimination rates with 

too few time points (low Kow congeners), or very slow elimination such that there was no 

significant loss of chemical over the sampling period (very high Kow congeners).  

 Low (PCB 31/28, PCB52), medium (PCB 101, PCB 110), and high (PCB 153/132, PCB 

138, PCB 180) Kow congener concentrations were plotted vs. sampling date (Figure 3.3).    These 

congeners are resistant to metabolism and revealed that for passive elimination there is a negative 

relationship between k2 and Kow   There was, however, no significant relationship between 

elimination rate and Kow for all congeners with significant elimination rates.  Figure 3.4 suggests 

that biotransformation processes continued to operate during hibernation, and metabolic activity 

was sufficient in hibernating frogs to confound the relationship between k2 and Kow over the 

course of the experiment.  Significantly eliminated congeners showed a negative correlation for 

k2 vs. log Kow, but the relationship was not significant (p=0.49; Figure 3.4) supporting the 

conclusion that biotransformation mechanisms of chemical elimination are relatively important in 

the hibernating frogs.  These results indicate that elimination rates in hibernating amphibians are 

a result of both passive elimination and metabolism.  In either case, elimination rates were very 

low compared with those observed in active adults (Leney et al., 2006a).  It is not known if the 

metabolic activity was a response to a warm period during the winter, and might be an artifact of 

the winter warm spell experienced during this study.  The relationship for k2 vs. log Kow for all 

measured congeners was significant (p=0.002; Figure 3.4). 
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Fugacities of congeners PCB 31/28, PCB 52, PCB 101, PCB 110, PCB 153/132, PCB 

138, and PCB 180 at each sampling date were plotted as a ratio of fugacity (f) at Day 0 to 

illustrate relative change in fugacity during hibernation (Figure 3.5).  

 Fugacity increases were observed for the high Kow congeners (PCBs 153/132, 138, and 

180) which were being eliminated more slowly than lipid contents were being depleted during 

hibernation.  Relative change in fugacity for these congeners was positively correlated to log Kow 

(Figure 3.6; r
2
=0.5918, p<0.001). Congeners with a Log Kow value below 7.0 tended to decrease 

in fugacity while congeners with a Log Kow over 7.0 tended to experience an increase in fugacity. 

Relative fugacities of congeners belonging to metabolic groups 2 (r
2
=0.6941, p<0.001) 

and group 3 (r
2
=0.2165, p=0.04) were significantly related to Kow (Figure 3.7).  There was a 

significant difference (p<0.001) in relative fugacity between congeners belonging to metabolic 

group 2 and more recalcitrant congeners in group 3 (Figure 3.7). 

3.4 Discussion 

Although high hibernation survival (>80%) rates of amphibians have been observed in 

laboratory conditions at constant above freezing temperatures (James et al., 2004), mortality rates 

of close to 50% of a monitored Ranid frog population have been observed and attributed to the 

stresses related to amphibian hibernation in field conditions (Maniero and Carey, 1997).  Similar 

mortality rates have been observed in salamander populations overwintering in caged habitats 

(Vernberg, 1953).  Although relatively high mortality rates were anticipated in selecting the 

number of frogs to be used for this study, the actual mortality rate of approximately 70% limited 

the duration of the experiment.  The unexpectedly high mortality rate was largely a result of the 

loss of 30 test organisms to disease during a mid-winter warm spell. During this period water 

temperatures rose to >4°C, and encouraged some individuals out of hibernation.   Such an event 

places a high energetic cost on adult frogs resulting in increased lipid utilization and also making 
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them susceptible to disease as amphibian immune functioning is reduced at colder temperatures 

(Maniero and Carey, 1997).  Low body temperatures during winter have been observed to result 

in delayed growth and spread of pathogenic organisms within amphibians (Ratkowsky et al., 

1982).  When temperatures fluctuate during this time period, or winter temperatures are warmer, 

the bacteria and fungus causing infection in amphibians are able to thrive while amphibian 

immune response is still compromised.   

Elimination rates for hibernating adult green frogs in this study ranged from 0.0027 to 

0.04 d
-1

 compared to 0.013 to 0.04 d
-1

 in adult green frogs under ambient conditions in a study by 

Leney, et al. (2006a; Figure 3.1).  Elimination rate constants were lower for hibernating frogs 

than adult frogs under ambient temperatures, and much lower than tadpole and metamorph stage 

green frogs (Figure 3.1).  The lower k2 values observed during hibernation reflected lower 

metabolic rates, but as basal metabolism was still evident with the biotransformation of group 2 

congeners during the study. 

Lipid significantly decreased during hibernation (P<0.05; Figure 3.2) from 2.2 ± 1.0% of 

total mass at the beginning of the experiment (mean±standard error) to 0.89% of total mass on the 

last sampling day.  Lipids are preferentially consumed during hibernation as lipid yields a higher 

energy return than carbohydrate or protein metabolism (Donohoe et al., 1998).  Adult frogs start 

to metabolize carbohydrates rather than lipids in the latter stages of hibernation, saving remaining 

lipids for post-hibernatory breeding activities (Donohoe et al., 1998).  Lipid declines are steeper 

at warmer winter temperatures as amphibians are operating at a higher metabolic level with few 

available food sources (Holenweg and Reyer, 2000).   This is a concern as the planet is currently 

experiencing a period of global warming, with minimum temperatures increasing (Walther et al., 

2002).  The fugacity of environmental pollutants in cold blooded organism such as amphibian 

will be expected to vary with global temperature change due to changes in lipid dynamics 

(Macdonald et al., 2002).  Amphibian weight in hibernating Ranid species is negatively correlated 
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to warmer winter temperatures, with female frogs losing more weight than male frogs (Holenweg 

and Reyer, 2000).  Shifting winter and spring temperatures have been correlated with earlier 

spawning in Ranid frogs (Beebee, 1995; Terhivuo, 1988).  The primary storage site for lipids in 

frogs is the abdomen, with these abdominal fat storage bodies directly storing energy for the 

gonads and use in reproduction.  Reduction of this lipid store, as occured during hibernation in 

this experiment, severely handicaps yolk production (Rose, 1967) at the same time causing 

increased chemical activity in the amphibian at a critical point of its life cycle.  Ranid amphibian 

eggs have been previously shown to have approximately 5x greater lipid concentrations and 2x 

greater PCB concentrations (by wet weight) compared to the female frogs that produced the eggs 

(Kadokami et al., 2004).  This maternal transfer of PCBs has direct implications for the chemical 

activity in eggs and offspring; the increased chemical activity observed in hibernating amphibians 

in this study would be amplified within offspring.   A global warming trend will result in 

increased rates of lipid loss during hibernation, augmenting toxic chemical stress at a critical 

point of the amphibian life cycle, reproduction. 

 Amphibian elimination studies conducted during tadpole and metamorph stages have 

found PCBs with meta-para vicinal hydrogens, commonly called group 2 PCBs, are more readily 

metabolized than congeners with ortho-meta vicinal hydrogens, group 3 PCBs (Leney et al., 

2006c).  Group 2 congeners are more readily metabolized due to the activity of the cytochrome P-

450 2B isozyme (Kannan et al., 1995).  The same trend of higher relative change in fugacity for 

group 3 PCBs than group 2 PCBs was observed in metamorphs (Leney, 2006c) and hibernating 

adult amphibians.  The difference in relative change in fugacity between metabolic groups was 

significant for metamorphs (Leney et al., 2006c) and hibernating frogs (Figure 3.7).  Generally, it 

would appear that during metamorphosis and hibernation, when anurans are relying on internal 

energy supplies, they become metabolically more active with respect to enzymatic processes 

(Leney et al., 2006c; Figure 3.7).  There is little evidence of strong metabolic signals in 
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elimination by adult frogs when actively feeding, but there is gathering evidence that during 

periods of lipid utilization cytochrome P-450 (Phase 1) metabolic activities become pronounced.  

It is not known if this increase in Phase 1 activity is matched by an increase in the conjugation of 

cytochrome P-450 metabolites (Phase 2 metabolism). 

3.5 Conclusions 

This study determined that hibernating green frogs were metabolically active, resulting in 

reduced lipid concentrations.  The negative correlation between Kow and k2 previously observed 

in tadpole, metamorph, and ambient temperature adult green frogs was observed in hibernating 

frogs in this study, but chemical elimination rate constants in hibernating adult green frogs were 

at least an order of magnitude lower than those observed during summer conditions.  Fugacity 

increases as a result of lipid loss during hibernation were primarily observed in high Kow 

congeners. The observed increase in chemical activity during hibernation has direct implications 

for increased contaminant exposures in offspring, and this phenomena is predicted to become 

more of an issue in Northern amphibians as a result of climate change. 
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Table 3.1. Elimination rate constants (k2) of polychlorinated biphenyl (PCB) congeners and time 

to 90% steady state (t90) in hibernating adult green frogs
ab

. 

 
PCB Metabolic group c Log Kow e k2 (d

-1)e r2f p values g t90
h 

19 4 5.02 -i - - - 

18 4 5.24 0.0285±0.0120* 0.38 0.042 80.8 

17 4 5.25 0.0300±0.0086** 0.57 0.0070 76.8 

24/27 4 5.44 0.0027±0.0010* 0.46 0.022 852.8 

16/32 4 5.32 0.0164±0.0072* 0.37 0.048 140.4 

26 4 5.66 0.0030±0.0105 0.01 0.78 767.5 

25 4 5.67 0.0055±0.0071 0.06 0.46 418.7 

31/28 3/4 5.67 0.0273±0.0054*** 0.74 0.00073 84.3 

33/20 4 5.6 0.0270±0.0081** 0.55 0.0087 85.3 

45 4 5.53 0.0012±0.2966 0.01 0.81 1918.8 

52 2 5.84 0.0253±0.0102* 0.41 0.035 91 

49 4 5.85 - - - - 

47/48 3/4 5.82 - - - - 

44 4 5.75 0.0027±0.0099 0.01 0.79 852.8 

42 4 5.76 0.0108±0.0097 0.12 0.30 213.2 

64/41/71 4 5.92 0.0376±0.0059*** 0.82 0.00013 61.2 

40 4 5.66 0.0049±0.0014** 0.56 0.0077 469.9 

74 3 6.2 0.0033±0.0029 0.13 0.28 697.8 

70/76 4 6.2 0.0142±0.0095 0.20 0.17 162.2 

66 3 6.2 0.0201±0.0040*** 0.74 0.00066 114.6 

95 2 6.13 0.0299±0.0094* 0.53 0.011 77 

91 4 6.13 - - - - 

92 2 6.35 - - - - 

84 4 6.04 0.0086±0.0096 0.08 0.39 267.7 

101 2 6.38 0.0269±0.0047*** 0.78 0.00030 85.6 

99 3 6.39 0.0056±0.0032 0.25 0.12 411.2 

97 4 6.29 0.0125±0.0074 0.24 0.13 184.2 
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87 4 6.29 0.0222±0.0076* 0.48 0.018 103.7 

85 3 6.3 - - - - 

110 4 6.48 0.0233±0.0095* 0.40 0.037 98.8 

118 3 6.74 0.0037±0.0027 0.17 0.21 622.3 

105 3 6.65 0.0179±0.0030*** 0.79 0.0002 128.6 

136 2 6.22 0.0036±0.0081 0.02 0.67 639.6 

151 2 6.64 0.0158±0.0061* 0.42 0.030 145.7 

144/133 1/2 6.81 0.0033±0.0073 0.02 0.66 697.8 

149 2 6.67 0.0296±0.0048*** 0.81 0.00016 77.8 

134 4 6.55 0.0061±0.0074 0.07 0.43 377.5 

146 1 6.89 0.0037±0.0029 0.15 0.24 622.3 

153/132 1/4 6.85 0.0069±0.0030* 0.37 0.048 333.7 

141 2 6.82 0.0003±0.0081 0.0001 0.97 7675.3 

137 3 6.83 - - - - 

130 3 6.8 - - - - 

138 3 6.83 0.0044±0.0028 0.22 0.14 523.3 

158 3 7.02 0.0048±0.0031 0.22 0.15 479.7 

128 3 6.74 0.0116±0.0071 0.23 0.14 198.5 

156 3 7.18 0.0045±0.0024 0.28 0.091 511.7 

157 3 7.18 - - - - 

179 2 6.73 0.019±0.0046** 0.65 0.003 121.2 

176 2 6.76 - - - - 

178 1 7.14 0.0016±0.0033 0.03 0.64 1439.1 

187/182 1 7.17 0.0052±0.0027 0.29 0.09 442.8 

183 1 7.2 0.0052±0.0026 0.30 0.08 442.8 

185 2 7.11 - - - - 

174 2 7.11 0.0214±0.0038*** 0.78 0.00032 107.6 

177 2 7.08 0.0129±0.0039** 0.55 0.0088 178.5 

171 3 7.11 0.0055±0.0026 0.33 0.063 418.7 
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172 1 7.33 - - - - 

180 1 7.36 0.0051±0.0026 0.29 0.085 451.5 

170/190 3 7.31 0.0049±0.0026 0.29 0.087 469.9 

202 1 7.24 - - - - 

200 1 7.27 - - - - 

199 2 7.2 - - - - 

201 1 7.62 0.0049±0.0027 0.27 0.10 469.9 

196/203 1 7.65 0.0054±0.0024 0.35 0.054 426.4 

195 3 7.56 0.0036±0.0017 0.32 0.071 639.6 

194 1 7.8 0.0056±0.0026 0.33 0.063 411.2 

208 1 7.71 - - - - 

207 1 7.74 - - - - 

206 1 8.09 - - - - 

aNo asterisk indicates that no significant elimination of this chemical occurred during the experiment.  

*** p < 0.001 (analysis of variance), ** p<0.01, * p < 0.05. 

b n=11 for all congener analysis 

cValues from Kannan, et al. (1995) and Leney, et al. (2006a). 

 d Values from Hawker and Connell (1988). 

e Values are calculated as the mean ± standard error. 

f Coefficient of determination for linear-regression analysis. 

g P-value determined by ANOVA. 

h Calculated as ln 10/k2. 

i Unable to calculate elimination rate. 

 



50 

 

 

Figure 3.1 PCB elimination rate constants (k2) for tadpole, metamorph, adult at ambient 

temperature, and hibernating adult green frogs.  Error bars represent standard error.  Figure 

includes only PCBs for which elimination rate constants could be calculated for all four life cycle 

stages.  Tadpole, metamorph, and adult elimination rate constants from Leney, et al., 2006a and 

Leney, et al., 2006c.
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Figure 3.2 Regression analysis of lipid measured as percentage of total mass.  The slope of the 

trendline for percent lipid vs. time (days) was -y = -0.0093x + 1.6217 (r
2
= 0.2444, p=0.03). 
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Figure 3.3 Example regressions for sample congeners (Kow =low, medium, and high).  PCBs 

101 p=0.0003, 31/28 P=0.0007, 52 p=0.03, 110 p=0.04, 153/132 P=0.048, 138 p=0.14, and 180 

P=0.09.
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Figure 3.4 Chemical elimination rate constant (k2) vs. hydrophobicity (logKow) for both 

significantly eliminated (square markers) and all measured (cross markers and square markers) 

polychlorinated biphenyl (PCB) congeners in green frogs.  The trendline (dashed line) slope for 

significantly eliminated congeners was y = -0.0024x + 0.0359 (r2=0.0257, p=0.49).  The 

trendline (solid line) slope for all measured congeners was y = -0.0057x + 0.0465 (r2=0.1644, 

p=0.002). 
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Figure 3.5 Relative fugacity (fday(t)/fday0) for select low (PCB 31/28, PCB52), medium (PCB 101, 

PCB 110), and high (PCB 153/132, PCB 138, PCB 180) Kow congeners vs sampling day. 
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Figure 3.6 Relative change in fugacity of all PCB congeners for which elimination rate could be 

calculated (R
2
=0.385, P= 1.5x10

-5
). 
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Figure 3.7 Relative change in fugacity of metabolic group 2 and metabolic group 3 PCB 

congeners.  The trendline (dashed line) slope for group 3 was y =0.3803x – 1.8818 (r
2
=0.2165, 

p=0.04).  The trendline (solid line) slope for group 2 congeners was y = 2555x – 1.5054 

(r
2
=0.6941, p=5.0x10

-6
).  There was a significant difference (p=0.002, Kruskal-Wallis One-way 

Analysis of Variance Systat 12 for Windows) in relative fugacity between groups 2 and 3. 
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CHAPTER 4 – Conclusions 

This thesis examined contaminant accumulation in newly transformed amphibian young 

of year and contaminant elimination during amphibian hibernation.  Chemical concentrations and 

lipid levels were measured in anuran species to assess inter-specific differences in contaminant 

body burden.  Elimination processes during the hibernation of amphibians in temperate regions 

were quantified. 

Chapter 2 determined that there are inter-species differences in lipid and PCB mass in 

different frog species.  As lipid and PCB concentration are the two factors directly regulating 

fugacity, these data support previous research suggesting that life cycle and related bioenergetic 

processes are regulating factors for chemical metabolism in amphibians. Thus, the hypothesis 

tested in Chapter 2 was that: 

2.1. Fugacity models predict there will be no differences in contaminant lipid 

concentrations among amphibian species, and that life histories do not regulate 

contaminant accumulation patterns. 

Hypothesis 2.1 was rejected; although few lipid variations were statistically significant, 

lipid mass was highly variable between species and between sampling locations.  Total PCB 

concentrations and total lipid corrected PCB were highly variable between species.  Interspectific 

differences in PCB accumulation were observed at all sampling sites. 

Further inspection of interspecific differences in life cycle processes with relation to 

chemical activity could help to explain the species specific declines and extinctions of 

amphibians.  Although disease is purported to be the major driver of extinctions, exposures to 

environmental chemicals have been demonstrated to lower immune responses making organisms 

more susceptible to disease. 
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Chapter 3 determined that hibernating green frogs were metabolically active, resulting in 

reduced lipid concentrations.  Chemical elimination rate constants in hibernating adult green 

frogs were at least an order of magnitude lower than those observed during summer conditions.  

Fugacity increases as a result of lipid loss during hibernation were primarily observed in high Kow 

congeners. The observed increase in chemical activity during hibernation has direct implications 

for increased contaminant exposures in offspring, and this phenomena is predicted to become 

more of an issue in amphibians as a result of climate change.  Thus, the hypotheses tested in 

Chapter 3, that: 

3.1. There will be no significant changes in lipid in adult frogs during hibernation. 

3.2. There will be no elimination of PCBs by adult frogs during hibernation. 

 Hypothesis 3.1 was rejected; there was a significant decrease in total body lipid over the 

course of the study.  Hypothesis 3.2 was partially rejected; elimination of low Kow PCBs did 

occur during hibernation. 

 The two studies presented in this thesis add to the body of evidence for the importance of 

bioenergetic processes in chemical accumulation and elimination.  In Chapter 3, the lipid utilized 

during hibernation directly contributed to the increase in fugacity, which was compounded by the 

state of hibernation decreasing the already low metabolism of PCBs in adult green frogs.  Chapter 

2 found highly variable PCB and lipid concentrations between species and sites.  Simple fugacity 

models failed to explain the results of either study.  Additionally, the results of Chapter 2 provide 

counter evidence to chemical activity models developed using a single species.  The sum total of 

the observations contained within this thesis is that rather than chemical properties predicting 

accumulation, bioenergetic processes appear to be driving contaminant accumulation and activity. 

 In a case such as the worldwide amphibian decline, where a major cause has been 

pinpointed as disease driven by global warming, it is important to research the factors 
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contributing the decline and spread of disease.  Especially so are the toxicokinetics of cold 

resistant Northern amphibians, whose fitness is in many respects most dramatically affected by 

global warming.  As the mean cool temperatures rise faster than the warm, hibernation in warm 

years directly effects fitness of egg bearing amphibians.  The results of the research presented in 

this thesis, that lipids are significantly decreasing during hibernation and PCB congeners are 

eliminated slower than in other life stages, would result in increased chemical fugacity for 

amphibians emergent from hibernation and increases in the chemical body burden of their 

offspring.  If hibernation is disrupted by climate change and this effect is intensified, the end 

result will be chemicals which are known to suppress immune function in amphibians becoming 

more chemically active and more likely to bind to receptor sites.  Further immune suppression 

combined with the effects of a global warming trend would intensify the already dramatic 

declines observed with the chytrid fungus.  Taking into account the interspecific differences in 

contaminant accumulation observed in the course of the research for this thesis, the amphibian 

life cycle model developed from research on green frogs becomes more complicated and difficult 

to apply as a general model. 

In conclusion, this thesis found that there are inter-species differences in both lipid 

concentration and PCB body burden for young of year anurans.  These differences are concluded 

to be regulated by bioenergetic processes including length of breeding season, length of tadpole 

stage, and species differences in resource utilization during hibernation and metamorphosis.  This 

thesis found that there is an increase in chemical activity (fugacity) during hibernation due to 

lipid utilization and lowered PCB elimination rates.  This increase in fugacity poses a potential 

hazard for both the hibernating organism and its offspring.  Bioenergetic processes emerged as 

the dominating factors influencing chemical dynamics in both studies presented in this thesis.  It 

is apparent that bioenergetic modeling needs to be tied into amphibian kinetic models if a 

meaningful life cycle model is to be produced. 
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Further areas for future study include modeling chemical metabolism during the time 

leading up to hibernation in temperate zone amphibians.  Also, very little is understood about 

chemical elimination and activity during aestivation, a state similar to hibernation that desert 

amphibians enter during extreme summer heat.  Although it is accepted that there is a worldwide 

amphibian decline, the interactions between factors involved in this decline remain unclear but 

the effects of environmental chemicals cannot be ruled out.
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