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ABSTRACT 

  An analysis of a library consisting of major histocompatibility (MH) class I α1 and 

class II β1 sequences for Chinook salmon (Oncorhynchus tshawytscha) identified 

mutation clusters or “hotspots” in the sequence, as well as identical mutations occurring 

independently. This suggests that the MH genes in Chinook salmon undergo somatic 

mutation. In sperm competition experiments jacks sired a higher proportion of eggs than 

hooknose males. Furthermore, an analysis of variance indicated that cryptic female 

choice had occurred. To further investigate this, I genotyped parents and offspring at the 

MH class I and class II peptide binding region to determine whether the differential 

fertilization success is driven by variation in genetic compatibility between the ova and 

sperm. I found that mate choice for the MH class I gene had not occurred; however, jack 

sperm that were more similar at the MH class II gene to the female had higher 

fertilization success.  
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CHAPTER ONE 

GENERAL INTRODUCTION 

 

The major histocompatibility complex (MHC) and mate choice 

   Major histocompatibility complex (MHC) molecules are cell-surface 

glycoproteins encoded by a large cluster of genes commonly known as the MHC (Lawlor 

et al., 1990). MHC molecules bind foreign and self peptides in specialized grooves and 

present them to T cells, thereby triggering the appropriate immune response (Nei and 

Hughes, 1991). The MHC genes code for two categories of MHC peptide-binding 

molecules: class I and class II. The MHC class I genes are expressed in all nucleated 

cells, and these molecules present peptides derived from intracellular pathogens, such as 

those derived from the degradation of viral proteins, to CD8+ T cells (Nei and Hughes, 

1991). MHC class II molecules are constitutively expressed on antigen-presenting cells of 

the immune system such as macrophages, B-cells, monocytes, and dendritic cells (Ting 

and Trowsdale, 2002). These molecules present peptides derived from extracellular 

pathogens that are internalized by phagocytosis or endocytosis, to CD4+ T cells (Nei and 

Hughes 1991).  Both MHC molecules are composed of immunoglobulin-like domains (α3 

and β2-m in class I, α2 and β2 in class II ), which interact with T cells, peptide binding 

regions (PBR; α1 and α2 in class I, α1 and β1  in class II), and a hydrophobic trans-

membrane domain (Lawlor et al., 1990). The genes encoding the PBR are typically 

highly polymorphic, and characterized by numerous loci and a high degree of allelic 

diversity in most species (Nei and Hughes, 1991). Genetic variation at the PBR is 

beneficial since it is thought to enhance immunocompetence, as a diverse repertoire of 

MHC molecules would be able to recognize and present a wider range of pathogens. 

There are examples in nature of species lacking MHC polymorphism, and consequently 

having greater susceptibility to pathogens. For instance, the cheetah and the cottontop 

tamarin are species lacking MHC allelic diversity at all loci, and as a result are highly 

susceptible to certain pathogens (O’Brian et al., 1985; Watkins et al., 1988). 

  Teleost fish represent approximately half of the extant fish species, and 99.8% of 

the ray-finned fishes (actinopterygians) belong to the teleosts (Volff, 2005). Teleosts 

provide a unique opportunity for studying the evolution of the MHC genes because, 
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unlike mammals, the genes encoding the α chains of MHC class I, and the α and β chains 

of MHC class II molecules are not linked, thus allowing independent evolution to occur 

(Grimholt et al., 2002).  Since teleost class I and class II genes are unlinked, and because 

they do not form a complex they are more correctly referred to as MH genes (Stet et al., 

2002). Teleost MH genes are studied extensively in an attempt to pinpoint genes 

responsible for disease resistance in economically important fishes, and to determine how 

MH polymorphisms are maintained through evolutionary mechanisms. In order to 

explain the maintenance of MH polymorphism, researchers have developed two disease-

based models: the overdominant (heterozygote advantage) hypothesis, and/or negative 

frequency-dependant selection hypothesis. The overdominant hypothesis states that 

heterozygous individuals have an immunological advantage as they can present a wider 

range of pathogen-derived antigens due to a larger number of different MH molecules; 

thus, selection for heterozygous individuals maintains MH polymorphism in a population 

(Langefors et al., 2001). There is evidence supporting this theory, for example, one study 

examined the resistance of winter-run Chinook salmon (Oncorhynchus tshawytscha) to 

infectious hematopoietic necrosis virus (IHNV), and found that MH heterozygotes had a 

higher survival than MH homozygotes (Arkush et al., 2002). The alternative mechanism 

is frequency-dependent selection, where rare alleles are more advantageous than common 

alleles because parasites would have developed resistance to the more commonly 

encountered molecule over time (Langefors et al., 1998). Selection for the rare allele 

would increase its frequency in a population, thereby maintaining MH polymorphism. 

Although balancing selection for particular alleles associated with disease resistance has 

been demonstrated in teleosts (Langefors, 1998), frequency-dependant selection is 

problematic to prove empirically as allele frequencies would need to be monitored over 

time to show cycling dynamics between alleles and parasites.  

  Sexual selection is an evolutionary mechanism which favours selection of traits 

valuable for increasing reproductive success, and can also function to maintain MHC 

polymorphism in a population. The process of MHC-dependant mate preference involves 

female choice for more genetically dissimilar males in an attempt to produce offspring 

with maximized immunocompetence (Penn and Potts, 1999). The hypothesized 

mechanism is that MHC associated molecules serve as olfactory cues, which females 
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utilize when choosing a mate. For instance, studies on mice have shown that females use 

urinary odour cues to choose mates, and prefer MHC-dissimilar males, thus contributing 

to diversity at the MHC in offspring (Potts et al., 1991; Roberts and Gosling, 2003). MH 

dependant mate choice has also been demonstrated for the stickleback Gasterosteus 

aculeatus, and contrary to findings that promote MH diversity, mate choice provided 

offspring with an optimal number of MH alleles (Aeschlimann et al., 2003). A recent 

study on Chinook salmon (Oncorhynchus tshawytscha) also reported surprising results, 

and in this study mate choice occurred for more genetically similar males, resulting in 

offspring with more similar MH alleles (Yeates, 2009). 

  Female mate choice is typically pre-copulatory, and exercised behaviourally by 

the female, which will usually choose a mate on the basis of material benefits or physical 

characteristics that are indicators of high genetic quality (Tregenza and Wedell, 2000). 

There is also evidence for mate choice occurring at the sperm-egg level, without the 

involvement of a female pre-copulatory behavioural choice. One example for a 

mechanism of post-copulatory mate choice at the sperm-egg level is demonstrated by the 

comb jelly Beroë ovata. In this species, multiple sperm fertilize the oocyte cytoplasm, 

and the female pronucleus inspects and evaluates each of the male pronuclei before 

choosing to fuse with one of them (Ziegler et al., 2005). In external fertilizers such as 

teleosts, there is evidence for sperm selection by eggs based on the MH genes (e.g. 

Yeates et al., 2009; Turner et al., 2009; Wedekind et al., 2001); however, the exact 

mechanism has yet to be determined.    

Chinook salmon, Oncorhynchus tshawytscha 

  Chinook salmon are the largest of the Pacific salmon, and in North America their 

distribution ranges from the Ventura River in California to Point Hope, Alaska, as well as 

the Great Lakes (Myers et al., 1998; Kocik and Jones, 1999). Chinook salmon have also 

been introduced to other parts of the world including New Zealand, Chile, and Argentina 

(Ciancio et al., 2005).  Chinook salmon are anadromous, meaning they live in fresh water 

as juveniles, migrate to sea water where they sexually mature, then return to fresh water 

to spawn (Quinn, 2005). Chinook salmon are also semelparous, meaning they die shortly 

after spawning (Quinn, 2005). Characterization of Chinook salmon life histories is often 

based on the timing of the downstream migration of juveniles, and the upstream 
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migration of adults; however, it is important to note that there is much variation in timing 

of migration, and length of residencies (Quinn, 2005). In general, Chinook salmon 

juveniles, which overwinter in fresh water and emigrate to salt water in early spring, are 

referred to as  “stream-type” with adult runs occurring in spring and summer (Schaffter, 

1980). “Ocean-type” salmon emigrate to salt water within the first 3 months of life, and 

predominately make up the fall-run and summer-run populations (Reimers, 1973). Also, 

there is variation in age and size at reproductive maturity in male Chinook salmon. At the 

spawning site, male Chinook salmon compete for access to females’ eggs aggressively 

(hooknose) or through a sneaking tactic (jack). Which male phenotype a fish adopts is 

genetically and environmentally determined, and the incidence of jacking varies from 

10% to over 90% in some populations (Healey, 1991; Heath et al., 1994; Heath et al., 

1991).    

  The impact of salmon fisheries as well as environment degradation has led to a 

decline in natural spawning populations of Pacific salmon to the extent that several 

populations have been placed under the U.S. Endangered Species Act. As a result, a large 

number of Pacific Northwest hatcheries have been propagating fish in order to 

supplement wild populations. For instance, over 200 million juvenile anadromous Pacific 

salmon are released into the Columbia River annually, and hatchery fish represent almost 

85% of returning salmonids (Campton, 2004). Whether salmon hatcheries are 

augmenting wild populations successfully is controversial, and commonly used 

fertilization protocols have been criticized for causing artificial selection and inbreeding 

(Campton, 2004). Thus, the aim of several hatcheries has been to employ breeding 

methods to minimize genetic change as well as maintain genetic diversity to ensure the 

program’s success. 

  Due to the commercial importance of salmon, the MH genes of salmonids are 

well characterized and available for 16 different species (Wegner, 2008). Although 

salmonids underwent an entire genome duplication approximately 100 million years ago, 

they have very few MH loci in comparison to other fish species (Miller et al., 2002). For 

instance, Atlantic cod may have as many as 42 MH class I loci (Miller et al., 2002), while 

only three class I loci in Pacific (Oncorhynchus spp.) and Atlantic salmon (Salmo salar) 

have been identified: A, B, and UA, and none are the result of the gene duplication 
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(Grimholt et al., 1993; Miller and Withler, 1998). Furthermore, failure to isolate cDNA 

from the B locus, and its substantial divergence from the other loci has led researchers to 

believe that the B locus is a pseudogene (Grimholt et al., 1993; Miller and Withler, 

1998). In addition, only one MH class II gene has been identified in salmonids, and it is 

substantially less polymorphic than class I genes (Miller and Withler, 1996).  

Somatic mutation 

   Somatic mutation has been extensively studied in the variable region of 

immunoglobulins (Ig) as it is believed to be the mechanism for the generation of new 

antibodies during the primary immune response (Yang et al., 2006). In this process, 

mutated B cells expressing higher affinity antibodies on the cell surface are selected for 

by antigens, while B cells expressing lower affinity receptors presumably undergo 

apoptosis (Han et al., 1995). Several features of the somatic mutation mechanism in Ig 

has been described (reviewed in Denépoux et al., 1997), yet the possibility of somatic 

mutations occurring in the peptide binding region of the MHC has not yet been proposed 

or investigated.  

  The mechanism for the generation of novel MHC alleles is yet to be proven; 

however, research shows that recombination and gene conversion may be important 

processes for the generation of MHC allelic diversity (Martinsohn et al., 1999). 

Alternately, the MH genes may be diversifying through point mutations occurring in 

somatic cells. Differences in the MH alleles of Chinook salmon are produced by 

relatively small differences in large numbers of nucleotides. For example, an analysis of 

MH class II β1 gene in Chinook salmon revealed three alleles differing only in 3-7 

nucleotides; therefore, point mutations rather than recombination or gene conversion, is 

more likely the mechanism for diversifying alleles at the MH genes (Miller et al., 1997). 

For species that lack MH diversity, such as Chinook salmon, somatic point mutation 

would be an important mechanism for the creation of new MH alleles and would explain 

how the fish maintain immunological competence in two very different aquatic 

environments (fresh and salt water) despite having a limited number of functional MH 

loci. It is important to note that in order for the new alleles to be heritable, mutation 

would have to occur in the germ cells.  
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STUDY OBJECTIVES 

 

  Chapter two analyzes a large MH class I and II sequence library in order to 

quantify and characterize base pair substitutions, and investigates the effects of PCR 

conditions on the frequency of such mutations. In the MH sequence library, regions of the 

MH gene containing a high number of mutations were investigated in order to determine 

whether mutations were occurring in clusters at “hotspots” or spread randomly along the 

gene. A series of PCR-based experiments were conducted to determine how polymerase 

type and the number PCR cycles affect the frequency of mutations observed. From these 

analyses I provide valuable insight into the nature of PCR induced MH artifacts versus 

genuine somatic mutations. 

  Chapter three investigates the outcome of sperm competition between jack and 

hooknose Chinook salmon and the role of MH variation in that process. An artificial 

breeding experiment was performed to produce 25 full- and half-sib families with jack 

and hooknose male parent sperm competing for fertilization, and microsatellite analysis 

was used to determine parentage of offspring. From the microsatellite analysis I 

determine which male (jack versus hooknose) sired the majority of offspring, and 

whether there are any significant sire, dam, and sire-dam interaction effects. In Chapter 

one I used cloning and sequencing to accurately genotype parents and offspring for the 

MH gene in order to determine whether the outcome of sperm competition was 

associated with the MH genotype in parents. From this I was able to investigate whether 

female choice is occurring for sperm expressing more similar/dissimilar MH alleles.  

   

  Results from chapter two and three help us understand the mechanisms for MH 

evolution, and the source of MH polymorphism in Chinook salmon, allowing us to gain 

insight on key evolutionary processes, and enabling us to utilize this information to 

develop successful breeding protocols in hatcheries.  
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INTRODUCTION 

  The major histocompatibility complex (MHC) includes genes of special interest in 

evolutionary biology due to their roles in disease resistance, mate choice, and kin 

recognition (Bernatchez and Landry, 2003). The MHC genes code for membrane-

spanning glycoprotein heterodimers that bind both self and foreign antigens. At the cell 

surface, the MHC-antigen complex interacts with T cells, which recognize an antigen 

only when combined with an MHC molecule (Cuesta et al., 2005). There are two types of 

MHC peptide-binding molecules (class I and class II) differing in structure and function: 

In the cell, foreign, endogenously synthesized proteins, such as those derived from a 

virus, are degraded within the cytoplasm, and are presented by MHC class I molecules to 

CD8+ T cells (Cuesta et al., 2005). Pathogens and proteins that are exogenously derived 

are internalized within the cell by phagocytosis or endocytosis, and are presented by 

MHC class II molecules to CD4+ T cells (Cuesta et al., 2005).  Both types of MHC 

molecules are composed of immunoglobulin-like domains (which interact with T cells), 

peptide binding regions (PBR), and a hydrophobic trans-membrane domain (Lawlor et 

al., 1990). The highest level of polymorphism observed in the MHC genes is concentrated 

within the sequences encoding the PBR, and this variability is correlated to breadth of 

pathogen recognition and disease resistance (Klein and Figueroa, 1986). Although the 

class I and class II genes form a linkage group in mammals, the genes encoding the α 

chains of MHC class I and the α and β chains of MHC class II molecules are not linked 

in teleost fishes; as they do not form a single complex, they are more correctly referred to 

as MH genes in teleosts (Stet et al., 2002). Furthermore, since the class I and class II loci 

are not physically linked in teleosts, independent evolution can occur, making the MH 

11 



genes in teleosts a good model for molecular evolution studies (Grimholt et al., 2002).   

  The degree of polymorphism in the MHC genes varies greatly by species and by 

population within species (Miller et al., 1997). For instance, the MHC in humans is 

estimated to contain 421 loci; whereas, salmonids are estimated to have only 3 class I 

genes (designated A, UA, and B), and only 1 class II gene (Horton et al., 2004; Miller 

and Withler, 1998). Furthermore, the MH class I B locus in salmonids is likely a non-

classical MH locus, due to the failure to isolate cDNA, and its reduced α2 variability 

compared to those of MH class I A (Grimholt et al., 1994). Salmonids underwent a 

whole-genome duplication 25-100 million years ago resulting in the current 

pseudotetraploidy state, yet this event was not followed by a corresponding increase in 

the number of functional MH loci (Allendorf and Thorgaard, 1984).  

MHC polymorphism can be attributed to a variety of mutagenic mechanisms such as 

gene duplications, deletions, point mutations, recombination, and gene conversion; 

however, such novel mutations must occur in the germ-line for selection to act on them 

(Lawlor et al., 1990). A single nucleotide substitution resulting in an amino acid change 

in the PBR sequences can create a new/rare allele, having important fitness consequences 

for the organism (Langefors et al., 1998). Miller et al. (1997) examined MH evolution in 

Chinook salmon (Oncorhynchus tshawytscha) and found that much of the variability in 

MH class I α1 alleles were produced by point mutations, as well as inter-allelic exchange 

or conversion. Furthermore, Miller et al. (1997) discovered that most of the point 

mutations found in the PBR genes were nonsynonymous indicating that selection is 

responsible for maintaining the polymorphisms. 

  The MH genes have been used widely for behavioural, population genetic, and 
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survival-related evolutionary analyses in salmon (e.g. Landry et al., 2001; Evans et al., 

2009; Pitcher and Neff, 2006). The likelihood of MH genotyping error is high, yet only 

one systematic assessment of MH genotyping error or mutation in teleosts has been 

published (Lenz and Becker, 2008). In vitro PCR conditions are known to significantly 

influence the mutation rate, and numerous methods have been proposed to eliminate 

artificial amplicons during and after the PCR (Borriello and Krauter, 1990; Eckert and 

Kunkel, 1991; Zylstra et al., 1998; Thompson et al., 2005). Several population genetic 

studies have discovered singleton mutants in individuals, and dismissed these as likely 

PCR artefacts (Alcaide et al., 2008; Grimholt et al., 2002; Grimholt et al., 1994). 

Alternatively, somatic hypermutation occurring in vivo, an important mechanism for 

maintaining variation in immune genes, may be responsible for some of those single-

copy mutants. Due to the relatively low number of functional MH loci in salmonids, it 

would be beneficial for the salmon to have alternative mechanisms of allele 

diversification such as somatic mutation. Somatic hypermutation is seen in the variable 

regions of the immunoglobulin (Ig) genes (Lee et al., 2002; Yang et al., 2005); however, 

there have been no studies to date on the potential for such mutations to occur in the 

peptide binding region of the MH genes.  

   In this study we conduct a large-scale survey of rare single-copy MH PBR 

sequences in 67 Chinook salmon and report a very high frequency of such alleles. 

Detailed characterization of those mutations identified potential somatic mutations as 

well as mutation hotspots in the MH class I and II PBR. We also use a series of PCR-

based experiments to investigate how PCR conditions affect mutation frequencies, and 

show that the polymerase used can significantly increase base pair substitutions (BPS) 
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and chimera mutations and increasing the number of PCR cycles increases chimera 

mutations. This analysis, coupled with the sequence survey, provides insight on the 

relative occurrence of PCR artefacts and somatic mutations in Chinook salmon.  

METHODS AND MATERIALS 

  Our analyses consisted of two separate approaches: 1) a detailed analysis of an 

MH sequence library consisting of 396 MH class I α1 sequences (n=38 fish), and 389 

MH class II β1 sequences (n= 29 fish); and 2) an experimental evaluation of the 

contribution of PCR artefacts to the observed frequency of rare MH sequence mutants. 

Sequence Library 

  Two sequence libraries were used to characterize and quantify mutations 

occurring in Chinook salmon MH genes across multiple individuals. The fish were all 

from Yellow Island Aquaculture in British Columbia, and DNA was extracted either 

from fin tissue or blood using a standard plate-based extraction method (Ephinstone et al. 

2003). The MH class I α1 sequence library (396 sequences) was constructed using 

primers previously developed (Miller et al. 1997). The sequence of the sense primer was 

5’-TGA CTC ACG CCC TGA AGT A-3’, and the anti-sense primer was 5’-CTC CAC 

TTT GGT TAA AAC G-3’ producing either a 228bp and/or a 222bp fragment(s). The 

PCR consisted of: 1μL of extracted DNA, 0.5 μL of each primer (100ng/μL), 2.5 μL 10X 

PCR buffer (10mM Tris-HCl (pH-8.4) 50mM KCl), 3.0μL of MgCl2 (25mM), 1.0μL of 

dNTP’s (200μM), and 0.5 units of DNA Taq polymerase (Invitrogen), and ddH20 to 

make a 25μL reaction. The reaction profile consisted of:  2 min initial denaturation 

(95°C), 30 cycles of 30 sec denaturation (95°C), 30 sec annealing (52°C), 1 min 

extension (72°C), and 10 min extension (72°C). The MH class II β1 sequence library (389 
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sequences) was constructed using primers previously developed by Docker and Heath 

(2002), and conditions identical to those used to amplify the α1 gene. The sequence of the 

sense primer was 5’-CCG ATA CTC CTC AAA GGA CCT GCA-3’, and the anti-sense 

primer was 5’-GGT CTT GAC TTG MTC AGT CA-3’ producing a 294bp fragment. 

PCR products were ligated into a TA cloning vector, and inserts were amplified using the 

M13 forward primer (5’-GTA AAA CGA CGG CCA GT-3’) and M13 reverse primer 

(5’-AAA CAG CTA TGA CCA TG-3’). The reactions were comprised of: 50-100 ng of 

template, 0.5μL of each primer, 2.5 μL of 10X PCR buffer, 2.5 mM MgCl2, 200 μM 

dNTPs, 0.5 units DNA Taq polymerase (Sigma), and ddH2O to adjust final volume to 25 

μL. On average 10 sub-clones were used for sequencing for each fish. Inserts were 

sequenced using a 1/8th reaction of a CEQ DTCS Quick Start Kit and analyzed on a CEQ 

800 automated DNA sequencer (Beckman Coulter, Fullerton, CA). Sequence variants 

were confirmed in 15 sub-clones by reverse sequencing; therefore, we rejected 

sequencing error as the source of the sequence variation. 

Analysis of Sequence Library 

  Alignments were constructed for all the MH class I α1 sequences, and all class II 

β1 sequences separately using Geneious Pro (Biomatters Limited) software. Because fish 

samples originated from a single captive population, there were relatively few alleles, and 

their identification was possible even with as few as 4 clones per fish. Once alleles were 

identified, base pair substitutions were recorded, and mutation frequency was calculated 

for each gene. To allow visualization of the relationships between the sequence variants, 

TCS version 1.21 was used to create a haplotype network with a subset of alleles and 

mutants obtained from the α1 gene (Clement et al., 2000). To identify alleles versus 
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mutant sequences, a frequency distribution histogram was created for the MH class I α1 

sequences, and alleles were identified by a sequence frequency greater than four. The 

MH class II β1 gene is substantially less polymorphic and detection of alleles was made 

directly by viewing alignments, and determining which sequences had occurred at a high 

frequency.  

  The number of nonsynonymous and synonymous base pair substitutions was 

determined for both α1 and β1 alleles and base pair substitution (BPS) mutants. Cross 

tabulation was used to determine whether the number of nonsynonymous and 

synonymous substitutions in the true alleles differed significantly from the substitutions 

found in the BPS mutants. 

 Chimera mutants were identified as having sequence polymorphisms from the two 

recognized alleles recombined to generate an apparently novel allele sequence. Chimera 

mutations were excluded from the mutation rate calculation, as studies have suggested 

these are likely PCR artefacts (Judo et al., 1998; Lenz and Becker, 2008; see below).  

 A 20-base-pair sliding window analysis was used to determine whether specific 

sequence regions had higher (or lower) substitution rates than expected. For each 20-

base-sliding window, the number of mutations was counted and an average across all 

sliding windows was calculated. Mutation rate estimates obtained from individual sliding 

windows were used in a Z-score test to determine the probability of observing that value 

by chance.  

 PCR Treatments 

  To investigate the effect of PCR conditions on mutation frequency in the MH II 

β1 gene, we ran a series of PCR treatments using DNA from two fish (Table 1). Each  
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Table 1. The experimental design used to determine the effect of PCR conditions on 
mutation frequency in the MH class II β1 region. AmpliTaq® polymerase and Phusion® 
polymerase were used to PCR amplify the MH class II β1 region in Chinook salmon. All 
treatments include the 30 PCR cycles conducted after cloning in the total number of PCR 
cycles. 

 

 

Treatment DNA polymerase Total No. of PCR cycles  

1 AmpliTaq® 60 

2 AmpliTaq® 90 

3 AmpliTaq® 120 

4 AmpliTaq® 150 

5 Phusion® 60 

6 Phusion® 90 

7 Phusion® 120 

8 Phusion® 150 
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treatment differed in the number of total PCR amplification cycles (60, 90, 120, and 150 

cycles), and each reaction was conducted with either AmpliTaq® (Applied Biosystems), 

or Phusion® High Fidelity polymerase (Finnzymes). Phusion®, unlike AmpliTaq®, has 

proof-reading ability, and is a Pyrococcus (Pfu)-like enzyme with a double-stranded 

DNA binding domain, which reportedly increases processivity. The expectation is that 

the observed frequency of mutations should be greater in the treatments with AmpliTaq® 

polymerase and with greater number of PCR cycles, if the mutations are resulting from 

PCR error. Furthermore, mutations should occur randomly across the PBR sequence if 

they are indeed artefacts, so identical mutations should not be observed in separate 

reactions. The conserved MH class II β2 region was used as a control, since it was found 

to be highly conserved in comparison to the PBR region (Miller and Withler, 1996). If 

most of the mutations were generated by PCR error, we would predict similar mutation 

rates in both β1 and β2 regions. 

 DNA extraction and amplification  

 Chinook salmon collected from Yellow Island Aquaculture Ltd. (YIAL) in British 

Columbia, Canada were used for this experiment. DNA was extracted from fin tissue 

using a standard plate based extraction method (Elphinstone et al., 2003). The PBR β1 of 

MH class II was PCR amplified with primers developed by Docker and Heath (2002) to 

produce a 294 bp fragment. The PCR conditions used are identical to those used for the 

sequence library except 1.0 units of AmpliTaq® polymerase (Applied Biosystems) was 

used. For treatments consisting of reactions greater than 60 total PCR cycles, 1μL of PCR 

product (obtained using the previous PCR) was added to a fresh master mix, and run for 

an additional 30 cycles. This was repeated until the number of desired PCR cycles was 
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achieved. For PCRs utilizing Phusion®, the reagent concentrations consisted of 1μL of 

extracted DNA, 0.7μL of each primer (100ng/μL), 4μL of 5x Phusion® HF buffer, 0.4μL 

of dNTPs (200μM), 0.2μL (0.02U/μL) of Phusion® DNA polymerase (Finnzymes), and 

ddH20 to make a 20μL reaction. The thermal cycler profiles used were identical to those 

used to amplify the α1 and β1 gene, described above. 

  The conserved β2 region (control) was PCR amplified in two fish using 

AmpliTaq® polymerase for 120 cycles. The sense primer (5’-CCG ATA CTC CTC AAA 

GGA CCT GCA-3’), is situated at the N-terminal region of the β1 domain (Miller and 

Withler, 1996), and the antisense primer (5’-GGT CTT GAC TTG MTC AGT CA-3’) is 

located at the end of the β2 domain. The PCR conditions used were the same as those 

used to amplify the β1 domain. These primers amplified a single fragment approximately 

290 bp in length. 

Following PCR amplification, the products were cloned into the pGEM®-T vector 

(Promega) following the manufacturer’s protocol. The insert was amplified using the 

M13 forward and reverse primers under the following conditions: 2 min initial 

denaturation (94°); then 35 cycles of 1 min denaturation (94°), 1 min annealing (55°), 1 

min extension (72°); a final 3 min extension cycle (72°).  Each 25μl reaction consisted of: 

50-100ng of template DNA, 0.05μg of each primer, 0.5 units of DNA Taq polymerase, 

25 mM MgCl2, and 200 μM dNTPs. Approximately 29-65 sub-clones containing inserts 

were cleaned for each PCR-cycle treatment using AMPure (Agencourt) purification 

system, and sequenced using the M13 forward primer along with a BigDye Terminator 

v3.1 Cycle Sequencing Kit (Applied Biosystems).  After purification using CLEANseq 

(Agencourt), sequencing was performed using ABI BigDye Terminator version 3.1 on an 
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ABI 3130xl sequencer. 

Data Analysis 

 Alignments were constructed for all β1 sub-clone sequences (N=397), and β2 

sequences (N=58) with Geneious Pro (Biomatters Limited) software. Alleles were 

identified as the sequences occurring at the greatest frequency, and remaining sequences 

were characterized as either chimera or BPS mutants. Chimera and BPS mutation 

frequency was determined separately for each treatment by counting the number of 

sequences containing the mutation divided by the total number of sequences in that 

treatment. Mutations were pooled across all treatments for each polymerase type, and 

cross tabulation was used to determine whether there were significant differences 

between the total number of chimera and BPS mutants using AmpliTaq® versus Phusion®. 

A log-linear analysis was conducted to determine whether there was a significant effect 

of polymerase type on the frequency of BPS and chimeras produced, and whether the 

number of PCR amplification cycles (when combining all treatments) had a significant 

effect on the frequency of BPS and chimeras produced (SYSTAT version 12). Finally, 

cross-tabulation was used to determine whether the number of mutations observed in the 

β2 exon (n= 58) was significantly different from the mutation count observed in the β1 

exon. 

RESULTS 

 Sequence Library 

MH class I α1: Analysis of 396 MH class I α1 sequences (n=38 fish) revealed 86 distinct 

sequences. Fifteen alleles were identified, with seven of those previously identified 

(GenBank accession numbers: DQ647923, DQ647922, U80293, U80273,  
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U80284, AF362114, and AF162868). BPS in the MH class I α1 sequences occurred at a 

frequency of 15.2%, and chimeras occurred at a frequency of 4.8%. For this study we 

further analyze BPS, but excluded chimeras from our analyses since they are known to be 

common PCR artefacts. Sequences with only one BPS represented 88.3% of the BPS 

mutants, and sequences having two BSP represented 11.7% of the BPS mutations. The 

haplotype network for alleles DQ647922 and U80284 shows a typical BPS mutation 

pattern dominated by single BPS mutations (Figure 1a). Of the sequences with mutations 

a large proportion of the sequences 72% were singletons i.e. were found only once in the 

sequence library (Figure 1b). Across all sequences and both genes, the majority of BPS 

(88.1%) occurred in only a single clone sequence (Figure 2a). Identical BPS occurring 

twice (in separate PCRs) represented 6.8% of mutations, and identical BPS occurring 

three times represented 5.1% of mutations (Figure 2a). As expected, most of the BPS in 

both the true MH PBR α1 alleles and the mutations were nonsynonymous (87% and 60% 

respectively).  However, the frequency of nonsynonymous substitutions in the α1 alleles 

was significantly greater than in the BPS mutations (χ2=14.83; p<0.0010). 

 MH class I α1 transitions made up 75% of the observed BPS, while transversions 

represented 25% of mutations. Furthermore, A→G mutations occurred at the highest 

frequency (33.3%; Table 2), followed by T→C mutations (20%; Table 2). The frequency 

of BPS mutations found in the 37-61bp (z score=2.39; p=0.0082 and z score=1.88; 

p=0.03), and 113-132bp (z score=1.88; p=0.03) region of the α1 gene was found to be 

significantly higher than background (Figure 3a).  Also, in the MH class I α1 gene the 

154-194bp region had significantly lower levels of base-pair substitution than 

background (z score = -2.25; p=0.012 and z score=-1.73; p=0.04; Figure 3a). 
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Figure 1. Panel a: Haplotype network of a subset of sequences (n=31) obtained from the 
MH class I α1 gene library for Chinook salmon. Allele labels are enclosed by rectangles 
and mutants by ovals. The number of connecting branches represents the number of base 
pair differences between sequences. Panel b: The number of alleles and their respective 
sequence frequencies for the MH class I α1 gene library (N=396) for Chinook salmon. 
Sequence frequencies greater than five (in grey) are the alleles. 
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Figure 2. The position and frequency of single base pair substitutions (BPS) along the 
gene in the 3’ to 5’ direction (complementary to the sense primer) resulting from separate 
PCR reactions. Panel a: MH class I α1 peptide binding region (N=61 BPS; 222-228 bp), 
and Panel b: MH class II β1 peptide binding region (N=68 BPS; 213 bp). 
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Table 2. Distribution of nucleotide substitutions in the MH class I α1 (n=61mutations) 
and MH class II β1 (n=68 mutations) sequence libraries from Chinook salmon. Bolded 
frequencies represent the two highest values. 

 

 

Original Base 

     A T G C Total 
A  0.050 0.100 0.017 0.230 
T 0.067  0.050 0.117 0.475 
G 0.333 0.000  0.017 0.131 
C 0.050 0.200 0.000  0.164 

M
H

 c
la

ss
 I 
α1

 

Total 0.450 0.250 0.150 0.150 1.000 
A  0.015 0.044 0.000 0.059 
T 0.029  0.044 0.162 0.235 
G 0.412 0.000  0.000 0.412 
C 0.029 0.265 0.000  0.294 

Su
bs

tit
ut

io
n 

M
H

 c
la

ss
 II

 
β1

 

Total 0.471 0.279 0.088 0.162 1.000 
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Figure 3. Line graphs showing the number of mutant base pairs in a sliding 20-base-pair 
window analysis of the MH sequence library data. Panel a: MH class I α1 PBR, and Panel 
b: MH class II β1 PBR. The dashed lines indicate the mean mutation value across the 
entire region, and grey shaded areas represent mutation counts in the sliding window 
found outside the 95% confidence interval.  
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  MH class II β1: The 389 MH class II β1 sequence library (n= 29 fish) revealed 73 

distinct sequences.  Four alleles were identified in our MH class II β1 sequence library 

and all have been reported previously (GenBank accession numbers: DQ450874, 

AY100006, AY100007, and AY100008). The BPS frequency in the MH class II β1 

sequence library was 17.5%, and the frequency of chimeras was 3.3%. Sequences with 

only one BPS accounted for 82.9% of the total identified mutations; two BPS sequences 

represented 15.8% of mutations, and one sequence was found to have 3 BPS representing 

1.3% of mutations. Most mutations (84%; Figure 2b) were unique, occurring only once in 

the sequence library; however, 13% of mutations (Figure 2b) were found occurring in 

another sequence generated from a separate PCR reaction, and two mutations occurred in 

three separate reactions (3%; Figure 2b). Similar to the α1 gene, the number of 

nonsynonymous and synonymous substitutions in β1 alleles differed significantly from 

the number of substitutions in the sequences with BPS mutations (χ2=5.59; p=0.018) with 

the alleles having a larger proportion of nonsynonymous mutations than the mutants 

(88.8% and 74% respectively).   

 Analysis of nucleotide substitutions at MH class II β1 revealed that transitions 

occurred at a frequency of 88%, with transversions occurring at a frequency of 13%. 

There was a strong bias for A→G substitutions (41.2%), followed by T→C substitutions 

(26.5%; Table 2).  The 20 base sliding window analysis revealed that the 17-36bp region 

had a significantly elevated frequency of BPS (χ2=5.062; p=0.024) (Figure 3b). 

Analysis of PCR Effects on Mutations 

  The possibility of somatic mutations in the MH PBR has been masked by a 

perception of high levels of PCR error, and researchers consequently dismissed all “rare” 
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MH PBR sequences as probable PCR artefacts. Thus the purpose of our PCR experiments 

was to determine the effect of PCR conditions on MH PBR mutations, as well as to 

characterize those mutations. The number of clones sequenced for each treatment ranged 

from 29 to 65, giving a total of 397 sequences from two fish for the MH class II β1 gene: 

two alleles were identified differing by six base pair substitutions. The first allele 

(GenBank accession: AY100008) represented 5.4% of the sequences, the second allele 

(GenBank accession: DQ450874) represented 53.0% of the sequences, and the remaining 

sequences exhibited mutations and were placed in either the BPS or chimera category. Of 

the mutant sequences, three were found in GenBank (accessions AY100009, EF432121, 

and EF432117), and all were chimeras.  

  Of the mutations produced with AmpliTaq® polymerase, 50% were chimeras, 

while the remaining mutant sequences were BPS. Of the mutations produced by Phusion® 

polymerase, 94% were chimeras, while only 6% were BPS. Pooling sequences across all 

treatments, there is a significant difference (χ2=39.96; p<0.001) in the total number of 

chimeras produced by the two polymerases, with Phusion® producing a greater frequency 

(41.0%) than AmpliTaq® (13.1%). A log-linear analysis used to test for the effect of 

polymerase and PCR cycle number revealed polymerase type significantly affected 

chimera production (χ2=23.15; p<0.001), as did the number of PCR amplification cycles 

(χ2=73.13; p<0.001; Figure 4). AmpliTaq® produced a greater frequency of BPS (13.1%) 

than Phusion® polymerase (2.7%), and the effect of polymerase type was significant 

(χ2=16.16; p<0.001). The number of PCR amplification cycles did not have a significant 

effect on the frequency of BPS across all treatments (χ2=2.731; p=0.44).  

  An alignment of all of the MH class II β2 (trans-membrane) sequences (N = 58)  
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Figure 4. The frequency of chimeras and base-pair substitutions (BPS) with various PCR 
cycle numbers and two polymerase enzymes AmpliTaq® and Phusion®. The number of 
PCR amplification cycles significantly affected chimera frequency (χ2=73.13; p<0.001), 
as did polymerase type (χ2=23.15; p<0.001). Polymerase type had a significant effect on 
BPS frequency (χ2=16.16; p<0.001); however, the number of PCR cycles did not have a 
significant effect on BPS frequency (χ2=2.731; p=0.435).   
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included as a conserved region, revealed two alleles differing by a single synonymous 

base pair substitution. These two sequences had both been previously identified 

(GenBank accession numbers U34719 and U34718).  Seven mutant sequences (12.1%) 

were identified; none were found on GenBank.  Since this gene contained two sequences 

differing by a single BPS, we could not reliably identify chimeras. As a result, only the 

frequency of BPS in β1 and β2 genes were compared. The BPS frequency in the β2 exon 

(12.1%) was not significantly different from the BPS frequency in the β1 exon of (16.9%) 

at 120 PCR cycles (χ2=0.5780; p=0.45).  

DISCUSSION 

  In this study we analyzed MH class II β1 and MH class I α1 sequences to provide 

insight into the nature of MH mutations. In both sequence libraries we discovered BPS 

occurring at identical sites but in different reactions. The probability of this occurring by 

chance is very low; therefore, it is more likely that these mutants represent somatic 

mutations. The criteria for acceptance of new human MHC alleles  is that the sequence 

must be represented by two or more clones, preferably from separate reactions (Marsh et 

al., 2005). Applying this rule, the mutations we identified are likely somatic mutations, 

and their low occurrence is reflective of somatic mutations being rare events. We also 

found that A→G substitutions predominated over other mutations, followed by T→C 

mutations, in both the α1 and β1 genes, with equal substitution rates in C and G in the α1 

gene. A study on somatic mutation in immunoglobulin genes of a teleost fish revealed a 

predominant accumulation of G·C→A·T substitutions, and this has also been shown in 

humans to occur as a result of the spontaneous deamination of DNA bases (Yang et al., 

2006; Cooper and Youssoufian, 1988). In this study we found an accumulation of A→G 
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and T→C substitutions because coding DNA sequences (complementary to template) 

were analyzed; however, if cDNA were used we would observe the Watson-Crick 

complement and G→A and C→T mutations would predominate. Furthermore, there are 

general patterns associated with mammalian somatic mutation in immunoglobulin genes 

such as the approximately equal substitution rates in C and G, and a greater number of 

mutations in A versus T, which is what we also found in the MH genes (Smith et al., 

1996; Milstein et al., 1998; Foster et al., 1999). Our analysis of the sequence library data 

revealed mutation clusters or “hotspots” in both the β1 and α1 gene; although Taq error 

may be responsible for the majority of BPS, it is plausible that the MH sequence 

characteristics increases the likelihood of polymerase error in particular areas of the gene, 

and the same mechanism could be occurring in vivo and in vitro.  

  There are no existing studies on somatic mutations in the MH genes; however, 

somatic mutations in the immunoglobulin genes are well characterized (e.g. Lee et al., 

2002; Rogozin et al., 2001; Shapiro et al., 2002; Yang et al., 2006). One study found that 

the complementarity-determining regions (CDRs) in immunoglobulins, which form 

antigen binding sites, have a greater frequency of somatic mutations than the framework 

regions (Rogozin et al., 2001). Similarly, increased somatic mutation rates in the PBR of 

MH would be advantageous as it would increase the MH repertoire, and could potentially 

be beneficial when encountering novel pathogens. However, there exists a limit to the 

advantages of MH allele diversity because adding new MH molecules would increase the 

potential for destruction of T cells that are activated by MH molecules complexed with 

self peptides in the thymus (Matzinger et al., 1984). There are published examples where 

a lack of MHC PBR polymorphism has had deleterious effects on an organism through 
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increasing susceptibility to pathogens (O’Brian et al., 1985; Siddle et al., 2007). Chinook 

salmon are anadromous and as a result they encounter different pathogen communities as 

they migrate from fresh water to their ocean rearing environment at about eight months of 

age. Allelic diversity at the MH genes may play an important role in their survival and 

fitness, and several studies have linked MH allelic characteristics with increased survival 

when encountering specific pathogens in salmonids (Arkush et al., 2002; Langefors et al., 

2001). Chinook salmon have a limited number of MH loci, and we suggest that somatic 

mutation may be an important mechanism for increasing allelic diversity at the MH loci 

in Chinook salmon. 

  In this study, we analyzed mutation rates when amplifying the MH class II β1 

gene in Chinook salmon under various PCR cycle numbers, and with proof-reading 

(Phusion®) versus non proof-reading (AmpliTaq®) polymerase. We found that the 

polymerase used had a significant effect on the type of mutations produced, with 

AmpliTaq® producing a greater frequency of BPS, and Phusion® producing a greater 

frequency of chimeras. It is not surprising that AmpliTaq® produced a greater frequency 

of BPS since it has no proof-reading capabilities.  Furthermore proof-reading 

polymerases have been shown to create chimera sequences at a high rate (Zylstra et al., 

2008), and we found that higher numbers of PCR cycles exacerbated this problem. A 

study by Zylstra and colleagues (1998) showed that Pfu, another proof-reading 

polymerase, increased the formation of recombination artefacts, and they suggest 

reducing PCR cycle number to minimize or eliminate those artefacts (Judo et al., 1998). 

Additionally, Borriello and Krauter (1990) significantly reduced chimera sequence 

frequency using “PCR+1”, which effectively eliminated/reduced PCR heteroduplexes, 
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and in turn sequence scrambling in E. coli. Although the most frequently occurring 

artifact mutations formed during PCR are chimeras, they are generally easily identified 

and eliminated. However, three chimera sequences identified in this study were found in 

GenBank, thereby providing evidence that undetected PCR artefacts have been mistaken 

for true MH PBR alleles in past studies, and more caution should be taken, particularly 

for highly polymorphic genes. We also found that the number of PCR cycles did not have 

a significant effect on the frequency of BPS. This is surprising since the proportion of 

mutant sequences produced is a function of the number of PCR cycles assuming that all 

PCR amplicons will be amplified at an equal rate. We acknowledge that PCR bias occurs, 

and somatic mutations likely represented a portion of mutations; nevertheless, new 

mutations are created in each cycle, and further amplified in subsequent cycles so we 

expected to observe an increase in the frequency of mutations with PCR cycle number. 

  The mechanism of allele diversification of the MH genes is largely unknown, and 

we propose that somatic mutation is a plausible mechanism for the diversification of MH 

alleles. This is the first study to analyze MH sequence variants in Chinook salmon for 

somatic mutations. In previous MH studies, sequence mutants were eliminated from the 

analyses unless they were common, and thus were deemed a true allele. This practice 

may have masked the presence of unexpected allele diversifying mechanisms such as 

somatic mutations.  On the other hand, it is important that sequences are examined 

thoroughly before including them as possible alleles, since including artefacts in genetic 

analysis will inflate allele diversity estimates, as possibly bias estimates of other effects 

such as recombination (Lenz and Becker, 2008). In order to identify true alleles reliably 

and the most likely candidates for somatic mutation, we recommend using a proof-
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reading polymerase, the lowest number of PCR cycles possible, and, ideally, conducting 

multiple independent PCRs for each sample. Future planned studies will determine 

whether the putative somatic mutations are expressed. Our findings provide insight into a 

possible novel mechanism acting to enhance the immune function of Chinook salmon 

through the creation of somatic MH diversity. 
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CHAPTER THREE 

 

Sperm competition and MH-mediated mate choice in jack versus hooknose Chinook 

salmon (Oncorhynchus tshawytscha)
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INTRODUCTION 

  Sexual selection is widely recognized as a powerful evolutionary process having 

important consequences for reproductive behaviour, morphology, and fitness (Birkhead 

and Pizzari, 2002). The majority of research on sexual selection is focused on pre-

copulatory mate choice; however, the discovery of female promiscuity and polyandry 

indicated that mate choice also persists after copulation (Birkhead and Pizzari, 2002). For 

males, it is well-known that promiscuity has evolved to increase reproductive fitness; 

however, the female benefits are less pronounced, and researchers predict that females 

copulate with multiple males to increase genetic diversity and fitness in offspring 

(Birkhead and Pizzari, 2002; Dixson and Anderson, 2001). Sexual selection occurring 

post-copulation is the result of two possible mechanisms: sperm competition and/or 

cryptic female choice (CFC). Sperm competition is competition between the sperm of 

multiple males to fertilize ova (Parker, 1984), and CFC occurs when the female 

influences the outcome of sperm competition (Eberhard, 1996). Although the 

mechanisms for sperm competition vary across taxa, the outcome can typically be 

predicted based on the knowledge of  relative sperm numbers, sperm quality, the timing 

of inseminations, and the timing of female ovulation (Birkhead and Pizzari, 2002). In 

contrast, identifying CFC is challenging as it is often subtle, and masked by male-driven 

components (Birkhead and Pizzari, 2002). 

  The genes most extensively studied in mate choice research are the major 

histocompatibility complex (MHC) genes, presumably as a result of its crucial function in 

the immune system as well as its role in behavioural contexts. The MHC genes code for 

cell-surface receptors which bind self and non-self peptides, and present them to T cells 

(Lawlor et al., 1990). There are two functionally distinct MHC molecules, class I and 

class II, and they present peptides derived from intracellular and extracellular antigens 

respectively. The genes encoding the peptide binding region (PBR) of the MHC molecule 

are highly polymorphic and the focus of all MHC research. In mammals the MHC class I 

and class II genes are located in close proximity forming a linkage group or “complex” 

(Klein, 1986). Interestingly, in teleosts, the genes encoding the class I and class II genes 

are unlinked, and since they do not form a single complex they are more correctly 

referred to as MH genes (Stet et al., 2002). Because of the highly polymorphic nature of 
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the MHC PBR genes, they have been candidate genes in numerous mate choice studies. 

Researchers postulate that the mechanism for MHC-mediated pre-copulatory mate choice 

involves individual MHC-influenced body odours (in the form of soluble MHC 

molecules, fragments, or ligands), which females use as a cue to assess her potential 

partner’s MHC genotype (Brown et al., 1989; Singh et al., 1987). While there have been 

several studies exploring the effect of MHC on pre-copulatory mate choice (reviewed in 

Tregenza and Wedell, 2000), there is evidence the MHC may also play a role in post-

copulatory sexual selection, presumably through egg-sperm interactions (Wedekind et al., 

1996; Rülicke et al., 1998). Salmonid species are a good model system for the study of 

post-copulatory sexual selection, and specifically for investigating sperm competition and 

CFC because fertilization is external, making in-vitro fertilizations possible under 

controlled settings. The structure of the teleosts egg consists of an outer envelope (the 

chorion), and unlike mammals, only a single location for sperm entry into the egg (the 

micropyle; Kamler, 1992). The teleost egg offers a unique opportunity for investigating 

sperm competition because having only a single entrance available for fertilization should 

dramatically elevate sperm competition, and result in the evolution of characteristics that 

increase sperm competitiveness. The micropyle may also facilitate CFC. During sperm 

attraction and movement through the funnel-shaped micropyle, the potential exists for the 

egg to favor certain sperm over others, and this should lead to mate choice based on 

genetic compatibility at loci such as the MH genes (Skarstein et al., 2005).  

  Male Chinook salmon compete aggressively for spawning access to females to 

ensure that their sperm will fertilize the eggs (Esteve, 2005). Male Chinook salmon that 

mature precociously and return to freshwater at least one year earlier than other fish in 

the same cohort are referred to as “jacks,” while males with later maturation are referred 

to as “hooknose” males (Heath et al., 1994). Usually, the larger hooknose males with 

well-developed secondary sexual characteristics have an advantage over the smaller 

jacks, since the larger males guard females to prevent other males from fertilizing the 

eggs (Esteve, 2005). However, the smaller jacks have developed an alternative strategy to 

obtain fertilizations using a “sneaking” tactic (Esteve, 2005). In this tactic, jacks remain 

strategically hidden from the hooknose males and the females until female oviposition, 

when the jacks emerge from hiding, and use their small body size and cryptic colouration 
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to gain a position closer to the female’s vent (Esteve, 2005). Research has shown that 

with this reproductive strategy jacks can achieve comparable paternity to that of 

hooknose males (Fleming and Reynolds, 2004). Although it is generally thought that 

jacks are the inferior male phenotype (Gross, 1984), studies have suggested that jacks 

have a survivorship advantage over hooknose males since exposure to ocean factors such 

as predators and parasites is reduced by at least one year (Gross, 1991). Because the 

quality of available refuges for jacks may not always be favourable for reproductive 

success, it is plausible that the jack phenotype would be under strong selection to evolve 

a strategy to enhance fertilization success through sexual selection for genetic and 

physical traits increasing jack sperm competitiveness. 

  In this study, I investigated the outcome of sperm competition between jack and 

hooknose male Chinook salmon in a 5x5 in-vitro fertilization experiment. Microsatellite 

paternity analysis revealed that jacks out-competed hooknose males, and fertilized the 

majority of eggs. An analysis of variance (ANOVA) conducted on these results revealed 

that the majority of the variance was attributed to differences in sperm traits between jack 

and hooknose males; however, significant interaction effects indicate a sperm-egg 

compatibility mechanism was also playing a role. In this study I further investigate 

whether genetic compatibility at the MH genes had influenced the outcome of sperm 

competition. I show that jacks fertilized eggs at the highest frequency when their MH 

class II β1 alleles were more similar to the female’s alleles than the hooknose males. This 

study provides the first evidence for a substantial sperm advantage, and a novel role for 

the MH genotype in sperm-egg interactions during fertilization resulting from jack 

Chinook salmon. These results have important implications in fundamental evolutionary 

biology, and practical implications for the successful propagation and management of the 

species. 

METHODS AND MATERIALS 

Sperm Competition 

  The Chinook salmon used in this study were from the Quinsam River, British 

Columbia. Gametes were collected from a total of ten males and five females in 

reproductive condition. The males consisted of five mature males (“hooknose males”) 

and five jacks. Jacks were distinguished from hooknose males based on their lack of 
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secondary sexual characteristics, gonad inspection, and body size (Heath et al. 2002). 

Males were dried around the vent and stripped of sperm by applying gentle abdominal 

pressure. Care was taken to avoid contamination with urine, mucous, and water during 

stripping and storage. Spermatocrit (the percentage of the milt volume occupied by the 

spermatozoa) was measured (Skarstein et al. 2005) for all males, and sperm density was 

corrected so that eggs were fertilized with the same number of sperm cells from each 

male. Eggs were collected by humanely euthanizing the fish and cutting the abdominal 

wall to release the eggs. Eggs from each female were divided into five equal groups, and 

sperm from a sire pair (consisting of the mixture of sperm from one jack and one 

hooknose male) was added to one group of eggs from each dam. This was repeated so 

that each sire pair fertilized one group of eggs for each dam to make a 5 x 5 factorial 

cross with a total of 25 maternal half-sib families. Each egg/sperm mixture was then 

activated by adding approximately 3X its volume of fresh water, and eggs were then 

incubated separately in a vertical stack incubator. The experiment was terminated when 

the eggs developed eyespots, and 48 eggs were selected from each cross for genetic 

parentage assignment and MH genotyping. 

Parentage Assignment  

  DNA was extracted from parental fin clips, as well as from embryos dissected 

from the eyed eggs, using a standard plate-based extraction method (Elphinstone et al., 

2003). Parentage was determined for 48 offspring per cross using microsatellite markers: 

Ots107 (Nelson and Beacham, 1999), OtsG83b (Williamson et al., 2002), and 

Omy1191UW (Spies et al., 2005). Parental and offspring DNA were amplified in 

polymerase chain reactions (PCR) with solutions comprised of: 1.0 μL of extracted DNA, 

0.50 μL of each primer (100 ng/μL), 2.5 μL 10x reaction buffer, 3.0 μl MgCl2 (25mM), 

1.0 μl dNTP’s (200 μM), 0.20 U AmpliTaq® polymerase (Applied Biosystems, Foster 

City, CA), and ddH20 to make a 25 μl reaction. The reaction profile consisted of: 2 min. 

initial denaturation (95°C), 30 cycles of 30 sec. denaturation (95°C), 30 sec. annealing 

(52-60 °C), 1 min. extension (72°C), followed by a final 10 min. extension (72°C). The 

forward primers for all PCRs were dye-labeled, and products were analyzed on a LI-COR 

4300 DNA analyzer. Gene ImagIR software was used to visually score and determine 

42 



fragment sizes which were then assigned to the dam and either the jack or hooknose 

males. 

MH genotyping 

  The PBR of the MH class II β1 gene was PCR amplified from parental samples 

with primers developed by Docker and Heath (2002). The sequence of the sense primer 

was 5’-CCG ATA CTC CTC AAA GGA CCT GCA-3’, and the anti-sense primer was 

5’-GGT CTT GAC TTG MTC AGT CA-3’, and amplified a 294 bp fragment.. The PCR 

consisted of: 1.0 μL extracted DNA (50-100 ng), 0.50 μL of each primer (100 ng/μL), 2.5 

μL 10x reaction buffer, 3.0 μl MgCl2 (25mM), 1.0 μl dNTP’s (200 μM), and 0.20 U 

AmpliTaq® polymerase (Applied Biosystems), and ddH20 to make a 25 μl reaction. The 

reaction profile consisted of: 2 min. initial denaturation (95°C), 30 cycles of 30 sec. 

denaturation (95°C), 30 sec. annealing (52°C), 1 min. extension (72°C), followed by a 

final 10 min. extension (72°C). The MH class II β1 gene was not genotyped in the 

offspring due to limited parental allele variation (see Results section, below). 

 The MH class I α1 gene was PCR amplified from parental and offspring samples 

using primers previously developed (Miller et al., 1997). The sequence of the sense 

primer was 5’-TGA CTC ACG CCC TGA AGT A-3’, and the anti-sense primer was 5’-

CTC CAC TTT GGT TAA AAC G-3’. The reaction and cycling conditions were 

identical to those used for amplification of the β1 gene (see above). 

  MH PCR products (both MH class I and II) from parental samples were cloned 

into a pGEM®-T vector following the manufacturer’s protocol (Promega). White colonies 

were selected, boiled in ddH2O, and then used for insert verification PCR. The insert was 

amplified using the M13 forward primer (5’-GTA AAA CGA CGG CCA GT-3’) and 

M13 reverse primer (5’-AAA CAG CTA TGA CCA TG-3’) under the following 

conditions: 2 min. initial denaturation (94°); 35 cycles of 1 min. denaturation (94°), 1 

min. annealing (55°), 1 min. extension (72°); and a final 3 min. extension cycle (72°). 

Each 25 μl reaction consisted of: 50-100 ng plasmid DNA, 0.50 μL of each primer (100 

ng/μL), 2.5 μL 10x reaction buffer, 25 mM MgCl2, 200 μM dNTPs, and 0.50 U 

AmpliTaq® polymerase (Applied Biosystems). Eight sub-clones containing 

appropriately- sized inserts were sequenced from each parent. PCR products were 

purified using AMPure (Agencourt) purification system, and sequencing reactions were 
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performed using the M13 forward primer along with a BigDye Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems). After purification using CLEANseq (Agencourt), 

sequencing was performed using the M13 forward primer and ABI’s BigDye Terminator 

version 3.1 on an ABI 3130xl sequencer. 

  To evaluate the inheritance of the MH alleles in the F1 generation, a subset of the 

offspring from each of the 25 maternal half-sib families were genotyped at the MH class I 

α1 gene. Offspring MH class I α1 PCR products were directly sequenced, and allelic 

variation was read from the chromatogram. The MH class II β1 gene lacked sufficient 

polymorphism amongst the parents to allow meaningful segregation analysis, and, 

therefore, offspring were not genotyped at the MH class II β1 locus. 

DATA ANALYSIS 

Analysis of reproductive success 

  The frequency of jack-sired and hooknose-sired offspring was determined for 

each family, and cross tabulation (SYSTAT, version 12) was used to determine whether 

the number of jack sired offspring differed significantly from the number of hooknose 

sired offspring. An ANOVA was used to partition the variance in male mating success 

into dam, sire-pair, and dam-sire interaction effects.  

Analysis of MH sequences and segregation 

  Parental genotypes: Geneious Pro software (Biomatters) was used to create 

alignments to identify alleles. Two alignments, one each for the α1 and β1 gene, were 

built using all sequences from parental samples. Actual alleles occurred at a greater 

frequency than PCR artifacts, and sequences were verified by comparison to alleles 

identified in the previous project. Identical sequences were grouped and assigned an 

allele name.  

 Offspring genotypes: Each maternal half-sib family consisted of a dam and two 

possible sires (either the jack or hooknose male); fifteen to 34 offspring were genotyped 

from each maternal half-sib family for the α1 gene. Sequence scanner version 1.0 

(Applied Biosystems) was used to view overlapping base peaks in sequences obtained 

from offspring PCR products for the α1 gene. The overlapping peaks identified in 

offspring sequences were examined, and compared to the nucleotide polymorphisms 

identified in parental sequences to deduce offspring genotype.  
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 Segregation analysis: Parental alleles are expected to occur at 50% frequency in 

the offspring, based on Mendel’s principle of segregation. To determine whether 

offspring were inheriting maternal and paternal α1 alleles as expected by Mendel’s 

principle, a chi-square test for each family was conducted to detect significant departures 

from the 1:1 ratio. Because of low sample size, a chi-square analysis could not be used to 

establish whether offspring genotype frequencies departed significantly from the 

expected Mendelian ratios.    

Analysis of offspring genotypes 

  The purpose of the following analyses is to determine whether the egg-sperm 

compatibility is affected by whether the sperm MH genotypes are more similar or 

dissimilar to the egg.  

Expected offspring α1 and β1 genotypes were determined for all parental crosses based on 

Mendelian segregation. An allele amino acid dissimilarity index (AADI) was estimated 

for expected offspring genotypes as the number of amino acid differences between the 

two allele sequences. Thus, a higher number represents greater dissimilarity between 

alleles, and homozygotes would have a dissimilarity of zero. For each maternal half-sib 

family, the four AADI values were used to determine an average value. For each 

maternal half-sib family the AADI average obtained from jack-sired offspring genotypes 

was subtracted from the AADI average from hook-nose sired offspring, and this value 

was used to determine whether AADI was associated with higher/lower jack fertilization 

success. A scatter-plot was created by plotting the frequency of jack-sired offspring 

against the difference in the average AADI for each family; regression was used to 

determine whether the former was dependant on the latter. This analysis was conducted 

for both the α1 and β1 gene. 

RESULTS 

Reproductive success 

  Parentage analysis revealed that jacks had sired the majority of offspring in all 

half-sib families, and in male pair 5, jacks had sired all offspring (Figure 1). The  
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Figure 1. Microsatellite analysis was used to determine parentage of 48 Chinook salmon 
offspring per maternal half-sib family. Each bar displays the number of jack-sired and 
hooknose-sired offspring in each half-sib family. The difference between the number of 
jack-sired offspring, and the number of hooknose-sired offspring across all families was 
highly significant (χ2=132.6; p<0.0010). 
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difference between the number of jack-sired offspring, and the number of hooknose-sired 

offspring was highly significant (χ2=133; p<0.0010). An ANOVA revealed a significant 

dam effect (F=3.18; p=0.013), a significant sire-pair effect (F=23.2; p<0.0010), and a 

significant dam-sire pair interaction (F=2.53; p=0.0010).  

MH sequence and segregation 

  A total of four MH II β1 alleles were identified in parental samples, B1-Ots-A, 

B1-Ots-B, B1-Ots-C, and B1-Ots-D, and all nucleotide sequences are found in GenBank 

(accession numbers: AY100006, EF432120, DQ450874, and AY100008 respectively; 

Table 1). Two sire pairs had identical genotypes, and four of five females were 

homozygous for the U80299 allele. Due to the lack of allelic diversity at this gene in the 

parental samples, offspring were genotyped for the MH I α1 gene only, which was found 

to be more polymorphic, thus making it possible to determine inheritance of maternal and 

paternal alleles. 

  A total of 13 MH I α1 alleles were identified in parental samples, and of these 

only four were found in the GenBank database (Table 1). A1-Ots-N, A1-Ots-T, A1-Ots-

H, and A1-Ots-L are found in GenBank under the accession numbers DQ647922, 

U80293, DQ647923, and U80284 respectively. Translation of the 13 nucleotide 

sequences revealed that all base substitutions are non-synonymous, and thus form distinct 

amino acid sequences (Table 1). A1-Ots-N, A1-Ots-E, and A1-Ots-T are alleles found 

only in jacks, and A1-Ots-D, A1-Ots-C, and A1-Ots-I were found only in hooknose 

males (Table 1). The alleles occurring at the greatest frequency were A1-Ots-P (17.6%), 

followed by A1-Ots-R (15.7%), A1-Ots-A (12.6%), and A1-Ots-M (12.4%; see Table 1).  

 Analysis of the segregation of paternal and maternal α1 alleles in jack-sired 

offspring revealed no departure from the 1:1 ratio (too few offspring were sired by 

hooknose males to allow an assessment of segregation in the hooknose offspring).  

Offspring Genotypes 

  To determine whether jack sperm were more successful at fertilization when more 

genetically similar/dissimilar to the ovum at the MH gene than the hooknose male, a 

regression analysis was performed. The frequency of jack-sired offspring was not 

dependant upon the difference in average AADI between jack and hooknose offspring 

expected genotypes for the α1 gene (F = 0.0129; p = 0.911; Figure 2a). For the β1 gene, 



Table 1. Alleles identified in the Chinook salmon study population for the MH class I α1 and MH class II β1 gene. J denotes the jack 
male, H the hooknose male, and D the dam, and indicates in which parental sample the alleles were identified. The frequency was 
determined by counting the occurrence of that allele in the entire population, and dividing by 2N (N=483). Since offspring were not 
genotyped for the β1 gene, a frequency is not available. 

Allele Fish 
 

Frequency  Amino Acid Sequence 
GenBank 

No. 

A1-Ots_A 
 

D1,D3,H4 0.126 
 

FYTASSEVPNFPEFVIVGMVDGVQMVHYDSNSQRAVPKQDWINKAAETLPQYWESETGNFKGAQQTFKANIDIVKQ NA 

A1-Ots-R 
 

D2,D5,H4 0.157 
 

FYTASSEVPNFPEFVVVGMVDGVQMVHYDSNSQRAVPKQDWVNKAAD--PQYWERNTGNFKGDQQTFKANIDIAKQ NA 

A1-Ots-I H1 0.034 
 

FYTASSEVPNFPEFVVVGMVDGVQMVHYDSNSQRAVPKQDWVNKAAD--PQYWERNTGIFKGNQQTFKANIDIAKQ NA 

A1-Ots-C H2 0.023 
 

FYTASSEVPNFPEFVVVGMVDGVQMVHYDSNSQRAVPKQDWINKAAETLPQYWERETGIFKGDQQTFKANIDIAKQ NA 

A1-Ots-E J2 0.034 
 

FYTASSEVPNFPEFVVVGMVDGVQMVHYDSNSQRAVPKQDWINKAAETLPQYWERNTGNFKGAQQTFKANIDIAKQ NA 

A1-Ots-N J3,J4 0.062 
 

FFTASSEVPNFPEFVVVGTVDGVQMFHYDSNSQRAVPKQDWINKAAETLPQYWERETGICKGTQQTFKANIDIVKQ DQ647922 

A1-Ots-T J5 0.034 FYTASSEVPNFPEFVVVGTVDGVQMFHYDSNSQRAVPKQDWMNKAAD--PQYWERNTGNCKGTQQTFKANIDIVKQ U80293 

A1-Ots-L D5,H5 0.046 
 

FYTASSEVPNFPEFVVVGTVDGVQMFHYDSNSQRAVPKQDWMNKAAETLPQYWERETGIDKGAQQTFKANIDIVKQ U80284 

A1-Ots-P 
D4,J3,J5,H2,

H3,H5 0.176 
 

FYTTSSEVPNFPEFVVVGMVDGVQMFHYDSNSQGAVPKQDWMNKAAETLPQYWERETGNCKGDQQTFKANIDIAKQ NA 

A1-Ots-D H1 0.032 
 

FFTASSEVPNFPEFVVVGMVDGVQMVHYDSNSQRAVPKQDWVNKAAD--PQYWERNTGNCKGDQQTFKANIDIVKQ NA 

A1-Ots-H D3 0.057 
 

FFTASSEVPNFPEFVVVGMVDGVQMFHYDSNSQRAVPKQDWMNKAAETLPQYWERNTGNCKGDQQTFKANIDIVKQ DQ647923 

A1-Ots-M D4,J1,J4 0.124 FFTASSEVPNFPEFVIVGMVDGVQMVHYDSNSQRAVPKQDWVNKAAD--PQYWERNTGNGKGAQQTFKANIDIAKQ NA 

A1-Ots-B D1,J2 0.085 
 

FYTASSEVPNFPEFVVVGMVDGVQMVHYDSNSQRAVPKQDWINKAAETLPQYWESETGNFKGAQQTFKANIDIVKQ NA 

B1-Ots-A 
D1-5, H1-5, 

J1-5 NA 
 

GIEFIDSYVFNKAEYIRFNSTVGRYVGYTELGVKNAEAWNKGPQLGQEQAELERFCKPNAALHYRAILDK AY100006 

B1-Ots-B D4 NA 
 

GIEFIDSYVFNKVEHIRFNSTVGRYVGYTELGLKNAEAWNKGPQLGQEQAELERFCKPNAALHYRAILDK EF432120 

B1-Ots-C H2 NA 
 

GIEFIDSYVFNKVENIRFNSTVGRYVGYTELGVKNAEAWNKGPQLGQEQAELERFCKPNAALHYRAILDK DQ450874 

B1-Ots-D H5, J4 NA 
 

GIEFIHSYVFNKVEHIRFNSTVGRYVGYTELGLKNAEAWNKGPQLGQEQAELERVCKPNAALEYRAILDK AY100008 
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Figure 2. The frequency of jack sired offspring versus the difference in the average amino 
acid dissimilarity index (AADI) in jack and hooknose offspring per maternal half-sib 
family. The average AADI was determined from the individual AADI values obtained 
from expected genotypes in offspring in each maternal half-sib cross. The frequency of 
jack-sired offspring was not dependant upon the difference in average AADI between 
jack and hooknose offspring for a) the α1 gene (F = 0.0129; p = 0.911); however, this 
relationship was significant for b) the β1 gene (F = 9.23; p = 0.006). 
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when jack sperm were more genetically similar to the female ovum than the hooknose 

sperm, they sired offspring at a higher frequency, and this relationship was significant (F 

= 9.23; r2 = 0.2863; p = 0.006; Figure 2b).  

 

DISCUSSION 

  In this study jack sperm out-competed hooknose sperm, and fertilized the majority 

of eggs in 25 maternal half-sib families. The elevated jack fertilization success is not 

surprising since studies on other salmonid species have shown that sperm from 

precociously maturing males is higher in quality than the sperm from the dominate male 

phenotype. For instance, Gage and colleagues (1995) investigated sperm characteristics 

in alternative male reproductive strategies in Atlantic salmon (Salmo salar), and 

discovered that precociously maturing parr produced more motile and long-lived sperm 

than anadromous males. Similar findings were observed in rainbow trout (Salmo 

gairdneri), sticklebacks (Gasterosteidae), and in other Atlantic salmon studies (Linhart, 

1984; de Fralpont, 1993; Vladic and Jarvi, 2001; Stoltz and Neff 2006). My ANOVA 

revealed a highly significant male pair effect which likely reflects differences in sperm 

swimming velocity between jack and hooknose males. Jack fertilization success did vary 

by female; nevertheless, jack sperm sired the majority of offspring in all families 

indicating that on average jack sperm was more effective than hooknose sperm, likely 

due to sperm velocity. In Chinook salmon, preliminary data has shown that jack sperm 

swimming velocity did not differ significantly from hooknose sperm swimming velocity 

five seconds after activation (T. Pitcher, University of Windsor, unpublished data). This 

indicates that there may be unexplored factors associated with increased sperm quality in 

jacks apart from swimming speed.  

   I found that the dam component in the ANOVA had a significant effect on the 

relative success of the jack sire in the jack/hooknose pair. The dam component of the 

variance in jack fertilization success reflects differences between the eggs of each female 

that affect jack fertilization success, such as the size of the eggs, the amount of ovarian 

fluid surrounding the eggs, or even the chemical composition of the egg and/or ovarian 

fluid. Female cryptic choice is female choice exerted post-copulation (Eberhard 1996). In 

salmonids, researchers have discovered that ovarian fluid released with the female’s eggs 
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can influence sperm behaviour, and is a putative mechanism for CFC (Lahnsteiner 2002; 

Gage et al. 2004; Rosengrave et al. 2009). Rosengrave et al. (2008) analyzed CFC in 

Chinook salmon, and found that the composition of female ovarian fluid differentially 

enhanced sperm swimming speed among males. Although ovarian fluid was not 

controlled for between females in this study, the fertilization medium consisted of mostly 

water, and ovarian fluid would have been too dilute to contribute significantly to sperm 

swimming speed. Furthermore, the female variance only represented 0.96% of the total 

variance; thus, although interesting, ovarian fluid as a mechanism for CFC is likely not a 

major component of the observed variance in fertilization success in this study. 

  In this study I found a significant dam x sire-pair interaction that reflects egg-

sperm compatibility variation among families. Analysis of the class I α1 gene revealed 

high allelic polymorphism; however, mate choice was not occurring for this gene. 

However, for the β1 gene, greater fertilization success occurred when jack sperm carried 

alleles that were more similar to the female’s allele than the hooknose sperm. Contrary to 

studies that demonstrate mate choice promoting genetic diversity, in this study mate 

choice resulted in a decline in polymorphism at the β1, which is already considerably less 

polymorphic than the α1 gene in Chinook salmon (Miller and Withler 1998). The class I 

and class II MH genes are unlinked in salmon, and thus can evolve independently, 

perhaps explaining the difference in polymorphism at the two genes. Mate choice for 

higher genetic similarity is a mechanism for hybridization avoidance or for limiting 

outbreeding depression. Limiting hybridization may be adaptive as several studies have 

shown that interbreeding between hatchery and wild fish significantly reduces 

productivity and viability of the naturally spawning population (reviewed in 

Reisenbichler and Rubin 1999). Alternatively, local adaptation may drive selection for 

specific alleles rather than heterozygosity to enhance immunity when encountering 

common pathogens. My finding is similar to the results of another study on Atlantic 

salmon (Salmo salar), which also found that males won more fertilizations when they 

more genetically similar at the MH gene to females; however, this was discovered for the 

MH class I locus (Yeates et al. 2009).  Alternatively, another non-MH based mechanism 

may be driving the significant interaction such as a receptor-ligand binding interaction at 

the egg and sperm cell surface. In the sea urchin, genus Echinometra, the protein bindin 
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mediates sperm attachment to eggs, and, similar to the MH molecules, bindin is highly 

polymorphic (Palumbi 1999). One study demonstrated that sea urchin eggs discriminated 

amongst different bindin molecules, and chose sperm from the male with which they 

shared the largest number of bindin alleles (Palumbi 1999). Teleosts lack the protein 

bindin; however, it is plausible that other unidentified polymorphic molecules play a 

similar function in promoting assortative mating in salmon.   

  The outcome of sperm competition in salmonids is largely dependant on sperm 

traits such as sperm velocity and longevity (Gage et al. 2004), and here I provide 

evidence for a bias towards fertilization success in a specific male life history in in vitro 

sperm competition. Such factors are critically important in artificial fertilizations where 

natural pre-zygotic male-male competition and behavioural female choice are eliminated. 

Wedekind et al. (2007) argued that mixed-milt fertilizations can result in artificial 

selection for life history traits in salmonids due to variance in reproductive success 

between male life histories. In this study I showed that jacks had significantly greater 

reproductive success than hooknose males. Since there is evidence for a strong additive 

genetic component to jacking rates (Heath et al. 1994), one would expect that selection 

for jacks would occur over a relatively short period of time under hatchery conditions. 

Furthermore, the increased variance in male reproductive success in artificial 

fertilizations can increase probability of inbreeding and increase loss of genetic variation 

(Wedekind et al. 2007). Although CFC may operate to negate the above mentioned 

genetic consequences, my study showed that male sperm quality was the main 

determinate of post-copulatory reproductive success. In order to reduce genetic change in 

future populations, supportive breeding programs need to implement fertilization 

protocols that mimic reproduction occurring in the wild; however, this would be near 

impossible and the population genetics of eggs fertilized artificially will always differ 

from the one of eggs fertilized naturally in the wild (Campton 2005; Quinn 2005; 

Wedekind et al. 2007). Nevertheless, hatcheries play a crucial role in management and 

conservation of salmon, as human demand far exceeds the number of fish natural habitats 

alone can supply; therefore, it is of great importance that more genetically benign 

management strategies are implemented (Campton 2005). 
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  In this study jacks had higher reproductive output than hooknose males in all 

breeding experiments, and this result is attributed to differences in sperm quality, such as 

sperm swimming velocity and longevity, between jack and hooknose males. I also found 

subtle differences in ovarian fluid or egg composition between the females; however, the 

significant interaction effect can only be explained by CFC mediated by the egg itself. 

Analysis for genetic compatibility revealed that CFC for MH α1 gene had not occurred; 

however, when jacks were more similar at the β1 gene to the female in comparison to the 

hooknose male, jack fertilization success increased. These results demonstrate that 

mixed-milt fertilizations lead to artificial selection for the jack life history, and mate 

choice occurring at the sperm-egg level can also contribute to male reproductive success. 

This is the first study to have analyzed post-copulatory sexual selection in jack and 

hooknose Chinook salmon, and my results provide novel insight into the evolutionary 

mechanisms of sperm competition and CFC occurring in the alternate male phenotypes. 

These mechanisms have important evolutionary as well as management implications, 

which with further research are valuable tools for predicting population dynamics and 

implementing management strategies. 
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CONCLUSIONS AND FUTURE DIRECTIONS 
 
  A library consisting of MH class I α1 and class II β1 sequences for Chinook 

salmon (Oncorhynchus tshawytscha) was surveyed in Chapter two, and analysis of the 

base pair substitutions revealed mutation clusters or “hotspots” on the MH gene. Also, 

identical mutations occurring in independent PCR reactions and fish were observed. This 

suggests that point mutation is occurring in somatic cells, and is the mechanism for the 

diversification of MH alleles in Chinook salmon. A series of PCR-based experiments 

were conducted to investigate the effects of PCR conditions on the observed mutation 

frequency. I found that chimera mutations were produced at the highest frequency, and 

were elevated with increased PCR cycles and when using proof-reading enzyme. Base 

pair substitutions also increased in frequency when using a non-proofreading polymerase; 

however, the number of PCR cycles did not affect the frequency of point mutations with 

this enzyme. To reduce the frequency of PCR artefacts I suggest that proof-reading 

enzyme is used along with the lowest number of PCR cycles necessary. The results of 

Chapter two provided the basis for proper MH allele identification, and were applied in 

Chapter three.  

 In order to provide more evidence for somatic mutation as a mechanism with 

which MH alleles diversify in Chinook salmon, it would be beneficial to detect the cDNA 

copies of the sequence variants identified in genomic DNA. This has already been 

attempted in the Heath lab; however, cDNA copies of the gDNA variants were not 

detected. Somatic mutation produces a genetic mosaic, meaning the mutation occurs in 

some cells but not others, and, as a result, detection of the somatic mutation is 

challenging especially when it is a rare event. I suggest using PCR product obtained with 

guidelines outlined in Chapter two to reduce PCR artefacts in a more accurate and high-

throughput sequencing method for detection of mutants, such as pyrosequencing. Somatic 

mutation occurs in antibodies when B cells are stimulated by antigen and helper T cells, 

and this accumulation of point mutations is known as affinity maturation. It would be 

interesting to analyze MH sequences in fish subjected to a disease challenge to 

investigate whether antigens also stimulate point mutations in the MH genes. 

The outcome of sperm competition between jack and hooknose males was 

analyzed in 25 maternal half-sib families, and I found that the number of jack-sired 
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offspring significantly exceeded the number of hooknose-sired offspring in all families. 

Analysis of the variance in male success revealed significant dam effects, sire pair 

effects, and sire pair-dam interaction effects. The sire variance represented the greatest 

portion of the total variance, and is most likely attributed to differences in jack sperm 

swimming velocity versus hooknose sperm swimming velocity. A significant sire pair-

dam interaction effect indicated that cryptic female choice had occurred. Further 

investigation revealed that jacks sired a higher frequency of offspring when their MH 

class II β1 alleles were more similar to the female’s allele. This is contrary to the 

expectation of mate choice occurring for genetically dissimilar males; however, these 

results suggest that mate choice is occurring for particular alleles that provide an adaptive 

advantage to jacks.  

In order to gain further insight on post-copulatory mate choice in Chinook 

salmon, it would be useful to repeat the experiment using wild fish. This would allow us 

to see whether mate choice is also occurring for more similar MH β1 alleles in wild jacks. 

If so, it would strongly suggest that mate choice for more similar β1 alleles is not only 

adaptive for hatchery fish, but also gives an adaptive advantage for jacks in their natural 

habitat. Also, it would be of interest to determine whether MH-related proteins or other 

polymorphic proteins are being expressed in the egg and sperm, and whether they 

function in mate choice. From a conservation standpoint, it is crucial that hatchery 

managers develop fertilization methods to reduce sperm competition as my results have 

indicated that a) there is high variance in reproductive success of males, and b) sperm 

competition can lead to a decrease in genetic diversity at crucial genes such as the MH 

genes.    

The results of this work have important fundamental and applied implications to 

science. From an evolutionary standpoint, these results provide preliminary information 

on a key evolutionary process functioning at the MH genes. Somatic mutation at the MH 

genes would revolutionize our thinking on how the MH genes evolve in not only salmon, 

but in other species. From a conservation standpoint, improvement of existing 

fertilization protocols is necessary to maintain genetic diversity at the MH gene, and 

ensure the survival of fish in the wild. These results provide valid reason as to why more 

genetic insight is needed in hatcheries. 
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APPENDIX A 

Mutations identified in the Chinook salmon MH sequence libraries for the MH I α1 and 
MH II β1 genes (Chapter two), their location on the gene (read complementary to sense 
primer i.e. in the 3’ to 5’ direction), the frequency observed, and the nucleotides flanking 
the base substituted. 

MH Gene 

Mutation 

Position 

Base 

Substitution 

Number of 

Independent 

PCR reactions 

Flanking 

Sequence 

class I α1 84 T→C,A 3 TATGA 
 128 A→G,C 3 AAACA 
 100 A→G 2 AGAGA 
 193 C→T 2 AGCAG 
 194 A→G,T 2 GCAGA 
 3 C→T 1 TTCTA 
 9 C→T 1 ACCGC 
 15 T→A 1 TCTTC 
 18 T→C 1 TCTGA 
 19 G→T 1 CTGAA 
 31 T→C 1 ACTTC 
 39 G→A 1 GAGTT 
 41 A→G 1 GTTCG 
 42 C→G 1 TTCGT 
 46 G→T 1 TGGTT 
 48 T→C 1 GTTGT 
 50 T→C 1 TGTGG 
 53 G→A 1 GGAGA 
 55 A→G 1 GGATG 
 58 G→A 1 TGGTG 
 68 T→C 1 TGTTC 
 69 T→C 1 GTTCA 
 73 A→G 1 AGATG 
 76 T→C 1 TGTTT 
 77 T→C 1 GTTTC 
 77 T→C 1 GTTTC 
 88 A→G 1 ACAGC 
 91 A→T 1 GCAAC 
 94 A→G 1 ACAGC 
 98 A→G 1 CCAGA 
 112 A→C 1 CCAAA 
 113 A→G 1 CAAAC 
 115 C→T 1 AACAG 
 119 A→G 1 GGACT 
 123 G→A 1 TGGGT 
 129 C→T 1 AACAA 
 131 A→G 1 CAAGG 
 133 G→A 1 AGGCA 
 142 A→C 1 AAACA 
 143 C→A 1 AACAC 
 148 C→T 1 TGCCA 

60 



 152 A→G 1 ACAGT 
 152 A→G 1 ACAGT 
 166 A→T 1 GGAAC 
 200 T→C 1 TTTCA 
 209 A→T 1 CAACA 
 214 G→T 1 TCGAT 
 215 A→G 1 CGATA 
 217 A→G 1 ATATT 
 219 T→C 1 ATTGT 
 223 A→C 1 TAAAG 

class II β1  211 A→G 3 AGACA 
 19 T→C 2 ACTCT 
 31 A→G 2 TCAAT 
 35 A→T,G 2 TAAGG 
 36 G→T,A 2 AAGGC 
 61 A→G 2 GCACT 
 78 T→C 2 GTTGG 
 114 A→G 2 GCATG 
 128 C→T 2 TCCTC 
 149 C→T 2 GGCGG 
 10 T→C 1 AGTTT 
 12 T→C 1 TTTAT 
 16 C→T 1 TACAC 
 17 A→G 1 AGACT 
 22 T→C 1 CTTAT 
 23 A→G 1 TTATG 
 24 T→C 1 TATGT 
 27 T→C 1 GTTTT 
 32 A→G 1 CAATA 
 42 A→G 1 GAATA 
 44 A→G 1 ATATA 
 49 A→G 1 TCAGA 
 50 G→T 1 CAGAT 
 53 T→C 1 ATTCA 
 57 C→T 1 AACAG 
 77 T→C 1 TGTTG 
 80 G→T 1 TGGAT 
 81 A→G 1 GGATA 
 89 A→T 1 TGAGC 
 97 T→C 1 GTGTG 
 98 T→C 1 TGTGA 
 100 A→G 1 TGAAG 
 101 A→G 1 GAAGA 
 104 A→G 1 GAATG 
 108 A→G 1 GCAGA 
 109 G→A 1 CAGAA 
 119 A→G 1 GAACA 
 121 A→G 1 ACAAA 
 122 A→G 1 CAAAG 
 123 A→C 1 GCACT 
 127 C→T 1 GTCCT 
 134 T→C 1 GCTGG 
 139 T→C 1 GTCAA 
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 141 A→G 1 CAAGA 
 146 A→C 1 GCAGG 
 152 A→G 1 GGAGC 
 163 T→C 1 GTTTC 
 164 T→C 1 TTTCT 
 169 T→A 1 GTAAG 
 177 C→T 1 AACGC 
 184 C→T 1 CTCTC 
 185 C→T 1 TCTCC 
 195 A→G 1 AGAGC 
 196 G→A 1 GAGCC 
 197 C→T 1 AGCCA 
 208 A→C 1 ACAAG 
 211 A→G 1 AGACA 
 213 A→G 1 ACA 
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APPENDIX B 

The nucleotide sequences of the 13 MH class I α1 alleles found in the study population of 

Chinook salmon from Chapter three. Nucleotide differences are in grey.  
 

 

 

                 1        10        20        30        40        50        60 

                 |        |         |         |         |         |         |  

Consensus        TTCTACACCGCATCTTCTGAAGTTCCCAACTTCCCAGAGTTCGTGGTTGTGGGGATGGTG 

 A1-Ots-M        TTCTTCACCGCATCTTCTGAAGTTCCCAACTTCCCAGAGTTCGTGATTGTGGGGATGGTG 

 A1-Ots-H        TTCTTCACCGCATCTTCTGAAGTTCCCAACTTCCCAGAGTTCGTGGTTGTGGGGATGGTG 

 A1-Ots-D        TTCTTCACCGCATCTTCTGAAGTTCCCAACTTCCCAGAGTTCGTGGTTGTGGGGATGGTG 

 A1-Ots-P        TTCTACACCACATCTTCTGAAGTTCCCAACTTCCCAGAGTTCGTGGTTGTGGGGATGGTG 

 A1-Ots-L        TTCTACACCGCATCTTCTGAAGTTCCCAACTTCCCAGAGTTCGTGGTTGTGGGGACGGTG 

 A1-Ots-T        TTCTACACCGCATCTTCTGAAGTTCCCAACTTCCCAGAGTTCGTGGTTGTGGGGACGGTG 

 A1-Ots-N        TTCTTCACCGCATCTTCTGAAGTTCCCAACTTCCCAGAGTTCGTGGTTGTGGGGACGGTG 

 A1-Ots-E        TTCTACACCGCATCTTCTGAAGTTCCCAACTTCCCAGAGTTCGTGGTTGTGGGGATGGTG 

 A1-Ots-C        TTCTACACCGCATCTTCTGAAGTTCCCAACTTCCCAGAGTTCGTGGTTGTGGGGATGGTG 

 A1-Ots-I        TTCTACACCGCATCTTCTGAAGTCCCCAACTTCCCAGAGTTCGTGGTTGTGGGGATGGTG 

 A1-Ots-R        TTCTACACCGCATCTTCTGAAGTCCCCAACTTCCCAGAGTTCGTGGTTGTGGGGATGGTG 

 A1-Ots-A        TTCTACACCGCATCTTCTGAAGTTCCCAACTTCCCAGAGTTCGTGATTGTGGGGATGGTG 

 A1-Ots-B        TTCTACACCGCATCTTCTGAAGTTCCCAACTTCCCAGAGTTCGTGGTTGTGGGGATGGTG 

 

Consensus        GATGGTGTTCAGATGGTTCACTATGACAGCAACAGCCAGAGAGCGGTGCCCAAACAGGAC 

 A1-Ots-M        GATGGTGTTCAGATGGTTCACTATGACAGCAACAGCCAGAGAGCGGTGCCCAAACAGGAC 

 A1-Ots-H        GATGGTGTTCAGATGTTTCACTATGACAGCAACAGCCAGAGAGCGGTGCCCAAACAGGAC 

 A1-Ots-D        GATGGTGTTCAGATGGTTCACTATGACAGCAACAGCCAGAGAGCGGTGCCCAAACAGGAC 

 A1-Ots-P        GATGGTGTTCAGATGTTTCACTATGACAGCAACAGCCAGGGAGCGGTGCCCAAACAGGAC 

 A1-Ots-L        GATGGTGTTCAGATGTTTCACTATGACAGCAACAGCCAGAGAGCGGTGCCCAAACAGGAC 

 A1-Ots-T        GATGGTGTTCAGATGTTTCACTATGACAGCAACAGCCAGAGAGCGGTGCCCAAACAGGAC 

 A1-Ots-N        GATGGTGTTCAGATGTTTCACTATGACAGCAACAGCCAGAGAGCGGTGCCCAAACAGGAC 

 A1-Ots-E        GATGGTGTTCAGATGGTTCACTATGACAGCAACAGCCAGAGAGCGGTGCCCAAACAGGAC 

 A1-Ots-C        GATGGTGTTCAGATGGTTCACTATGACAGCAACAGCCAGAGAGCGGTGCCCAAACAGGAC 

 A1-Ots-I        GATGGTGTTCAGATGGTTCACTATGACAGCAACAGCCAGAGAGCGGTGCCCAAACAGGAC 

 A1-Ots-R        GATGGTGTTCAGATGGTTCACTATGACAGCAACAGCCAGAGAGCGGTGCCCAAACAGGAC 

 A1-Ots-A        GATGGTGTTCAGATGGTTCACTATGACAGCAACAGCCAGAGAGCGGTGCCCAAACAGGAC 

 A1-Ots-B        GATGGTGTTCAGATGGTTCACTATGACAGCAACAGCCAGAGAGCGGTGCCCAAACAGGAC 

 

Consensus        TGGATAAACAAGGCAGCAGAAACACTGCCACAGTACTGGGAGAGGAACACTGGGAATTNC  

 A1-Ots-M        TGGGTAAACAAGGCAGCAGA--C-C--C-ACAGTACTGGGAGAGGAACACTGGGAATGGC 

 A1-Ots-H        TGGATGAACAAGGCAGCAGAAACACTGCCACAGTACTGGGAGAGGAACACTGGGAATTGC 

 A1-Ots-D        TGGGTAAACAAGGCAGCAGA--C-C--C-ACAGTACTGGGAGAGGAACACTGGGAATTGC 

 A1-Ots-P        TGGATGAACAAGGCAGCAGAAACACTGCCACAGTACTGGGAGAGGGAGACAGGGAATTGC 

 A1-Ots-L        TGGATGAACAAGGCAGCAGAAACACTGCCACAGTACTGGGAGAGGGAGACAGGGATTGAC 

 A1-Ots-T        TGGATGAACAAGGCAGCAGA--C-C--C-ACAGTACTGGGAGAGGAACACTGGGAATTGC 

 A1-Ots-N        TGGATAAACAAGGCAGCAGAAACACTGCCACAGTACTGGGAGAGGGAGACAGGGATTTGC 

 A1-Ots-E        TGGATAAACAAGGCAGCAGAAACACTGCCACAGTACTGGGAGAGGAACACTGGGAATTTC 
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 A1-Ots-C        TGGATAAACAAGGCAGCAGAAACACTGCCACAGTACTGGGAGAGGGAGACAGGGATTTTC 

 A1-Ots-I        TGGGTAAACAAGGCAGCAGA--C-C--C-ACAGTACTGGGAGAGGAACACTGGGATTTTC 

 A1-Ots-R        TGGGTAAACAAGGCAGCAGA--C-C--C-ACAGTACTGGGAGAGGAACACTGGGAATTTC 

 A1-Ots-A        TGGATAAACAAGGCAGCAGAAACACTGCCACAGTACTGGGAGAGTGAGACAGGGAATTTC 

 A1-Ots-B        TGGATAAACAAGGCAGCAGAAACACTGCCACAGTACTGGGAGAGTGAGACAGGGAATTTC 

 

Consensus        AAGGGTGCCCAGCAGACTTTCAAAGCCAACATCGATATTGTAAAGCAG  
 A1-Ots-M        AAGGGTGCCCAGCAGACTTTCAAAGCCAACATCGATATTGCAAAGCAG 

 A1-Ots-H        AAGGGTGACCAGCAGACTTTCAAAGCCAACATCGATATTGTAAAGCAG 

 A1-Ots-D        AAGGGTGACCAGCAGACTTTCAAAGCCAACATCGATATTGTAAAGCAG 

 A1-Ots-P        AAGGGTGACCAGCAGACTTTCAAAGCCAACATCGATATTGCAAAGCAG 

 A1-Ots-L        AAGGGTGCCCAGCAGACTTTCAAAGCCAACATCGATATTGTAAAGCAG 

 A1-Ots-T        AAGGGTACCCAGCAGACTTTCAAAGCCAACATCGATATTGTAAAGCAG 

 A1-Ots-N        AAGGGTACCCAGCAGACTTTCAAAGCCAACATCGATATTGTAAAGCAG 

 A1-Ots-E        AAGGGTGCCCAGCAGACTTTCAAAGCCAACATCGATATTGCAAAGCAG 

 A1-Ots-C        AAGGGTGACCAGCAGACTTTCAAAGCCAACATCGATATTGCAAAGCAG 

 A1-Ots-I        AAGGGTAACCAGCAGACTTTCAAAGCCAACATCGATATTGCAAAGCAG 

 A1-Ots-R        AAGGGTGACCAGCAGACTTTCAAAGCCAACATCGATATTGCAAAGCAG 

 A1-Ots-A        AAGGGTGCCCAGCAGACTTTCAAAGCCAACATCGATATTGTAAAGCAG 

 A1-Ots-B        AAGGGTGCCCAGCAGACTTTCAAAGCCAACATCGATATTGTAAAGCAG 
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APPENDIX C 

The nucleotide sequences of the 4 MH class II β1 alleles found in the study population of 

Chinook salmon from Chapter three. Nucleotide differences are in grey. 
 

            1        10        20        30        40        50        60 

            |        |         |         |         |         |         |  

Consensus   GGTATAGAGTTTATAGACTCTTATGTTTTCAATAAGGTTGAACATATCAGATTCAACAGC 

 B1-Ots-A   GGTATAGAGTTTATAGACTCTTATGTTTTCAATAAGGCTGAATATATCAGATTCAACAGC 

 B1-Ots-B   GGTATAGAGTTTATAGACTCTTATGTTTTCAATAAGGTTGAACATATCAGATTCAACAGC 

 B1-Ots-C   GGTATAGAGTTTATAGACTCTTATGTTTTCAATAAGGTTGAAAATATCAGATTCAACAGC 

 B1-Ots-D   GGTATAGAGTTTATACACTCTTATGTTTTCAATAAGGTTGAACATATCAGATTCAACAGC 

 

Consensus   ACTGTGGGGAGGTATGTTGGATACACTGAGCTGGGTNTGAAGAATGCAGAAGCATGGAAC 

 B1-Ots-A   ACTGTGGGGAGGTATGTTGGATACACTGAGCTGGGTGTGAAGAATGCAGAAGCATGGAAC 

 B1-Ots-B   ACTGTGGGGAGGTATGTTGGATACACTGAGCTGGGTCTGAAGAATGCAGAAGCATGGAAC 

 B1-Ots-C   ACTGTGGGGAGGTATGTTGGATACACTGAGCTGGGTGTGAAGAATGCAGAAGCATGGAAC 

 B1-Ots-D   ACTGTGGGGAGGTATGTTGGATACACTGAGCTGGGTCTGAAGAATGCAGAAGCATGGAAC 

 

Consensus   AAAGGTCCTCAGCTGGGTCAAGAGCAGGCGGAGCTGGAGCGTTTCTGTAAGCCTAACGCT 

 B1-Ots-A   AAAGGTCCTCAGCTGGGTCAAGAGCAGGCGGAGCTGGAGCGTTTCTGTAAGCCTAACGCT 

 B1-Ots-B   AAAGGTCCTCAGCTGGGTCAAGAGCAGGCGGAGCTGGAGCGTTTCTGTAAGCCTAACGCT 

 B1-Ots-C   AAAGGTCCTCAGCTGGGTCAAGAGCAGGCGGAGCTGGAGCGTTTCTGTAAGCCTAACGCT 

 B1-Ots-D   AAAGGTCCTCAGCTGGGTCAAGAGCAGGCGGAGCTGGAGCGTGTCTGTAAGCCTAACGCT 

 

Consensus   GCTCTCCACTACAGAGCCATACTGGACAAGA 

 B1-Ots-A   GCTCTCCACTACAGAGCCATACTGGACAAGA 

 B1-Ots-B   GCTCTCCACTACAGAGCCATACTGGACAAGA 

 B1-Ots-C   GCTCTCCACTACAGAGCCATACTGGACAAGA 

 B1-Ots-D   GCTCTCGAGTACAGAGCCATACTGGACAAGA 
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