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ABSTRACT 

 

Coastal defense structures currently make up more than half of the coastline in many 

regions, yet their ecological role is poorly understood. These structures represent novel 

habitat open to colonization and provide opportunity to investigate the various stochastic 

and deterministic processes driving community development on hard substrata in the 

marine environment. To investigate these processes, a series of breakwaters were studied 

in Dubai, UAE, where the addition of >65 km of breakwater has substantially increased 

the amount of hard-bottom habitat in the area. These were compared with those of natural 

reefs to determine whether processes structuring community development were 

comparable between reef types. Breakwater benthic communities appeared to follow a 

predictable sequence of successional development, becoming more similar to natural 

reefs with time. However, even the oldest breakwater community (31 yr) remained 

distinct from that of natural reefs. Breakwaters older than 25 yr had higher coral cover 

than natural reefs, but had lower coral diversity. Fish abundance, composition, and 

community structure was seasonally dynamic on >25 yr old breakwaters, resulting in 

divergence from natural reefs in the summer and fall, mainly as a result of adult 

migration and/or predation on breakwaters. Early benthic communities were comparable 

among tiles made of different breakwater materials. However, in areas of high coral 

recruitment, corals recruited preferentially to gabbro stone compared with concrete and 

sandstone. Wave exposure was an important determinant of coral community structure on 

breakwaters, with high post-settlement mortality resulting in a low cover coral 

community composed of few small colonies at sheltered sites. However, overall coral 
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recruitment, mortality, and growth rates were comparable among leeward and windward 

sites and natural reefs. A manipulative caging experiment indicated few biologically 

significant effects from fish or urchin grazing on benthic community development. 

Overall, this study indicates that breakwaters can develop diverse and abundant 

communities, but that they are not direct surrogates for communities on natural reefs. The 

results also suggest that the breakwater communities examined in this study are mainly 

structured by stochastic processes, although deterministic processes can play a role to a 

lesser extent. 
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Chapter 1 - Introduction 

Urban development along the world’s coastlines is increasing as populations grow and 

infrastructure is developed for human use (Svane and Peterson 2001; UNEP 2002). 

Large-scale structures such as breakwaters, sea-walls, and groynes, among others, can 

dominate the near-shore environment in many areas, making up more than half of the 

coastline in many regions (Bacchiocchi and Airoldi 2003; Airoldi et al. 2005; Hansen 

2005).  These structures are increasingly thought of as artificial reefs in reference to the 

ecological role that they play in urban marine ecosystems (Svane and Peterson 2001; 

Airoldi et al. 2005; Bulleri 2005b). They are rapidly colonized and often develop 

communities with comparable or higher abundance and diversity than in surrounding 

natural habitats (Bohnsack et al. 1994; Lincoln-Smith et al. 1994; Stephens et al. 1994; 

Pickering and Whitmarsh 1997; Rilov and Benayahu 2000; Pondella et al. 2002; Perkol-

Finkel and Benayahu 2004). Despite their ecological importance in coastal ecosystems, 

the processes structuring community development on coastal defense structures are 

poorly understood (Bacchiocchi and Airoldi 2003; Airoldi et al. 2005; Moschella et al. 

2005). Given that these structures represent ‘natural experiments’, they provide ample 

opportunity to investigate the relative importance of stochastic and deterministic 

processes structuring  marine colonization and succession. 

 

This dissertation explores these processes. The process of community colonization and 

development is the result of both stochastic processes resulting from variable larval 

dispersal and settlement success (Fager 1971; Talbot et al. 1978; Gaines and 
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Roughgarden 1985; Prince 1995; Bortone et al. 1997; Sandin and Pacala 2005; 

D'Alessandro et al. 2007; Briones-Fourzan et al. 2008), as well as deterministic processes 

relating to habitat availability and preference (Schmitt and Holbrook 1999; Schmitt and 

Holbrook 2000; Garpe and Ohman 2007), competition with resident organisms (Buss and 

Jackson 1979; Ebersole 1985; Robertson 1996), and predation (Steele and Forrester 2002; 

Almany 2004; Osman and Whitlatch 2004; Nydam and Stachowicz 2007). In this thesis I 

will examine how communities develop on these breakwaters and explore the processes 

that underlie community development through time. Breakwaters are an ideal means to 

approach such questions, as new breakwaters provide an opportunity to investigate the 

processes involved in initial colonization and development, while breakwaters 

constructed at staggered times in the same area allow an understanding of possible long-

term trends in community development.  

 

Colonization of new substrates in marine environments occurs rapidly (Lecchini 2003; 

Chapman and Clynick 2006; Jang et al. 2006). This is due to the two-phase life cycle of 

most marine organisms, where adults are generally sedentary, but their propogules can 

travel considerable distances (Shanks et al. 2003; Kinlan et al. 2005; Paulay and Meyer 

2006; Graham et al. 2008). Algal spores and animal larvae disperse from native reefs 

through hydrodynamic processes, as well as behavior in the case of animals (Leis 2002; 

Grantham et al. 2003; Reed et al. 2004; Hogan and Mora 2005; Thiel and Gutow 2005; 

North et al. 2008). However, mortality and offshore advection of propogules is thought to 

be quite high, sometimes resulting in the occurrence of recruitment limitation where there 
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is a shortage of individuals capable of recruiting into open space (Menge 1991; Doherty 

and Fowler 1994; Reed et al. 2004). Additionally, those organisms that do encounter 

substrates often exhibit habitat preference and will settle only if the habitat is suitable. 

Substrate characteristics are important for colonization of algal species (Diaz-Pulido and 

McCook 2004; Lee et al. 2004), and both vertebrate and invertebrate animals are known 

to preferentially select habitats based on characteristics such as depth, complexity, and 

substrate type (Rilov and Beniyahu 2002; Bulleri 2005a; Petersen et al. 2005; Adjeroud et 

al. 2007; Creed and DePaula 2007; Field et al. 2007). This chance supply of propogules 

and their differential settlement to substrates, in part, determines the final community 

composition.  

 

As the colonization process continues, the influence of the deterministic process of biotic 

interaction will become more important in development of these communities. Residents 

can affect colonizers through facilitation or inhibition, and these processes transcend 

taxonomic boundaries (Connell and Slatyer 1977). For example, turf algae can directly 

facilitate the settlement of sea-grass and kelp species by providing a habitat which 

entrains the propogules of later arrivals (Turner 1983; Bulleri and Benedetti-Cecchi 

2008), while urchins can provide protective biogenic habitat that directly facilitates the 

settlement of fish and invertebrates (Day and Branch 2002; Hartney and Grorud 2002). 

The grazing action of consumers such as fish, sea urchins, and gastropods can also 

indirectly facilitate settlement by clearing substrates of early successional species that 

inhibit later colonists (Anderson and Underwood 1997; Cebrian and Uriz 2006; Zabin 
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and Altieri 2007). Inhibition is also commonly observed in marine systems. For example, 

algae can trap sediments that inhibit colonization by corals and other benthos (Hata et al. 

2002; Birrell et al. 2005), territorial fish are known to directly inhibit settlement of 

competitors (Bay et al. 2001; Almany 2003; 2004), and direct and indirect effects of 

predation are known to affect settlement patterns of a variety of marine organisms (Steele 

1997; Osman and Whitlatch 2004; Nydam and Stachowicz 2007). The order of settlement 

is also important. Settlement of one space-limited species can prevent recruitment of its 

competitors (Sale 1978; Benedetti-Cecchi 2000; Dürr and Wahl 2004; Munday 2004) and 

initial settlement of consumers can inhibit recruitment of prey species (Sutherland 1974; 

Shulman et al. 1983; Almany 2003). These priority effects can significantly affect the 

composition of the communities that develop even with species recruited from the same 

pool (Drake 1990), and set communities off on divergent successional trajectories. Thus, 

species interactions also play a role in structuring communities in addition to recruitment 

supply and habitat selection. 

 

Thus, marine communities are structured by a combination of stochastic and 

deterministic processes. The relative role that these processes play is unknown, and likely 

varies in time and space and in the context of community composition (Menge 1991; 

Syms and Jones 2000; Lecchini and Galzin 2003). This is evident in the contrasting 

observations in marine systems worldwide, where there are examples of communities 

structured mainly by recruitment (Fager 1971; Talbot et al. 1978; Gaines and 

Roughgarden 1985; Prince 1995; Martin and Bortone 1997; McClanahan 1999), mainly 
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by deterministic processes (Buss and Jackson 1979; Ebersole 1985; Fletcher and 

Underwood 1987; Robertson 1996; Steele 1998; Bertness et al. 2004; Dürr and Wahl 

2004; Osman and Whitlatch 2004; Almany and Webster 2006; Kuffner et al. 2006; 

Nydam and Stachowicz 2007), or some mix of the two (Sutherland 1974; Menge and 

Sutherland 1987; Connolly and Roughgarden 1999; Munday et al. 2001; Webster 2003; 

Moore et al. 2004; Sams and Keough 2007). 

 

Artificial habitats could play a critical role in investigating the relative influence of these 

processes, and how they affect successional dynamics. While such research is beginning 

on traditional small-scale modular artificial reefs, it is important that these investigations 

are expanded to include such structures as quays, jetties, breakwaters, sea-walls and piers 

(Baine 2001). Such structures are ubiquitous in coastal urban areas and represent 

substantially more habitat upon which marine communities can develop. Given that many 

of these structures are engineered using standard construction techniques, their 

composition, orientation, relief, complexity, and other characteristics will be highly 

consistent both within and among sites, making them ideal candidates for comparative 

studies.  

 

While coastal defense structures do represent natural experiments that provide 

opportunity to understand community development processes, it is important that they are 

also compared with natural reefs. Artificial habitats are frequently promoted as surrogates 

for natural reefs on the assumption that they will enhance production of exploited species 
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or offset natural or anthropogenic damage to natural reefs (Baine 2001; Svane and 

Peterson 2001; Miller 2002; Seaman 2002; Bulleri 2005c). While there is debate 

regarding these underlying assumptions, particular with reference to the attraction-

production controversy (see Bohnsack 1989 for review), comparisons between these 

systems are ecologically relevant. Empirical comparisons of natural and artificial reefs 

are few (Carr and Hixon 1997; Bulleri 2005b), and are generally confounded by 

comparing natural reefs to artificial structures that are small and/or young (Bohnsack et 

al. 1994; Carr and Hixon 1997; Connell 1997; Tupper and Hunte 1998; Abelson and 

Shlesinger 2002; Chapman and Clynick 2006). Given that the size and age of a reef can 

influence community structure and function (Bohnsack et al. 1994; Connell 1997; Tupper 

and Hunte 1998), the results from analysis of small-scale, young artificial structures are 

not likely to apply to much larger coastal defense structures. As such, it is important that 

investigations of community development on large-scale artificial structures also includes 

comparison to natural reef systems to determine whether similar processes operate across 

these different habitats.  

 

The objective of this dissertation was to investigate the processes structuring community 

development on large-scale breakwater reefs using a series of observational and 

manipulative studies, and to compare these communities with those on natural reefs. 

These studies were conducted from 2006 through 2008 in the Persian/Arabian Gulf, an 

area that has been relatively understudied ecologically. Marine communities in this area 

are represented by a relatively simple subset of species from the Indian Ocean (Sheppard 
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1987; Sheppard et al. 1992; Coles 2003; Rezai et al. 2004), rendering them ideal for the 

exploration of the factors structuring community development. These studies will be 

important in developing our understanding of the marine system in this area, particularly 

given the extensive past, present, and future coastal development projects occurring 

throughout the Gulf (Price 1993; Rezai et al. 2004; Al-Jamali et al. 2005; Hansen 2005; 

Khan 2007). 

 

The Arabian Gulf is characterized by environmental extremes, mainly due to its shallow 

depths (averaging 35 m) and relatively enclosed nature (Sheppard et al. 1992; Carpenter 

et al. 1997). Water temperatures in this area regularly range over 20 °C, with recorded 

summer highs exceeding 37 °C and winter lows below 12 °C (Coles and Fadlallah 1991; 

Sheppard and Loughland 2002). Salinity values are also severe, with salinities exceeding 

45 ppt being recorded on various reefs in the southern basin of the Gulf (Coles 2003). As 

a result, coral species diversity in the Arabian Gulf is only about a tenth of the species 

diversity in the Indo-Pacific and less than half of that of the Red Sea, and is 

compositionally different with higher representation of taxa considered tolerant of 

environmental extremes (Sheppard and Sheppard 1991; Coles 2003). Fish diversity is 

also low compared with other biogeographic subsets of the Indian Ocean such as the Gulf 

of Oman and the Red Sea as a result of these environmental conditions (Randall 1995; 

Krupp and AlMarri 1996). Because the majority of coral reef ecosystems lie in the 

shallow southern basin of the Gulf where waters are generally less than 20 m depth and 

experience the most extreme environmental conditions (Sheppard et al. 1992; Coles 
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2003), coral reefs in this area experience recurrent mass mortality as a result of high and 

low water temperatures (Coles and Fadlallah 1991; Riegl 1999; Riegl 2001; Riegl 2002b; 

Riegl and Purkis 2009). As a result, most reefs in this area are not true reefs but a 

relatively discontinuous low-relief coral veneer overlaying exposed limestone caprock 

(Sheppard and Sheppard 1991; Riegl 1999; Purkis and Riegl 2005). 

 

The studies described in this dissertation were conducted in Dubai, United Arab 

Emirates, in the southern basin of the Arabian Gulf. Water depths in this area are shallow, 

with water depths of less than 15 m extending out more than 10 km from shore. The 

natural substrate in this area is almost entirely dominated by fine to coarse sands, and 

natural reefs are restricted to a discontinuous series of small (< 1000 m2) patch reefs 

associated with exposed caprock along a 10 km near-shore band in the vicinity of the 

Jebel Ali district to the southwest of the city. The near-shore environment in this area has 

been heavily developed for real-estate, shipping, and industrial purposes, adding more 

than 65 km of rocky breakwaters to the natural sand coastline (Hansen 2005). The 

construction of these breakwaters began in the late 1970s and continues today, providing 

opportunity for the comparison of community development on structures across a range 

of ages.  

 

The first data chapter of this dissertation (Ch. 2) describes the coral community 

associated with the natural reefs in the Jebel Ali area of Dubai. These natural reefs were 

substantially impacted by mass coral mortality events in both 1996 and 1998, and a lesser 
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event in 2002, as a result of elevated sea surface temperatures (Riegl 1999; Riegl 2002a; 

Rezai et al. 2004). These events modified community composition by reducing species 

richness and shifting dominance towards faviids and poritids, eventually resulting in the 

loss of over 90% of the framework building corals from the area (Riegl 1999; Riegl 

2002a). These reefs were further modified by the construction of a large near-shore 

residential development in the area commencing in 2002 (Rezai et al. 2004). However, 

there were signs of active coral recruitment by Acropora in the area in 1999 (Riegl 

2002a; Riegl 2002b), suggesting that coral cover and species dominance for the 

community described in the late 1990s was in a state of change. The purpose of Chapter 2 

was to document the contemporary community structure on the natural reefs in this area 

to gain an understanding of how these communities compare to those that were reported 

prior to the natural and anthropogenic impacts of the past decade. This information is 

essential for providing a natural reef baseline against which breakwater reef communities 

can be compared.   

 

There is little understanding of how benthic communities on artificial structures develop 

through time, or if and when these communities begin to resemble those on natural reefs. 

Those studies that have been performed have tended to focus on structures only in the 

early stages of colonization (Osman and Whitlatch 2004; Bulleri 2005a; Bulleri 2005c), 

or on those that have developed mature communities (Moschella et al. 2005). Few have 

compared these with communities on natural reefs (Bacchiocchi and Airoldi 2003; 

Airoldi et al. 2005). To gain an understanding of changes in community structure over 
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time, Chapter 3 describes a comparative study in which benthic communities associated 

with breakwaters ranging from 1 to 31 years of age were compared with each other, and 

to a natural reef community. Although not a true longitudinal study of community 

development, the use of breakwaters of differing age provides a ‘natural experiment’ in 

which temporal patterns of development can be inferred from contemporary 

communities. Information from this study is important for understanding the types of 

communities and the sequence of development to expect as breakwater reefs mature.  

This may have  implications for coastal management. 

 

Given the widespread construction of breakwaters around the globe, it is important that 

we understand the ecological role that these structures play in marine ecosystems as they 

mature. Coral and fish abundance are often higher on breakwaters than in surrounding 

natural habitats (Lincoln-Smith et al. 1994; Stephens et al. 1994; Pondella et al. 2002; 

Wen et al. 2007), and these structures have the potential to increase regional biomass and 

production in areas where hard-bottom habitat is limiting (Bohnsack et al. 1997; Carr and 

Hixon 1997). However, comparisons to natural reefs are few, and most have been 

confounded by focusing on small, immature artificial structures (Bohnsack et al. 1994; 

Carr and Hixon 1997; Connell 1997; Tupper and Hunte 1998). The purpose of Chapter 4 

was to compare coral and fish communities on several large, mature breakwater reefs 

with those on natural reefs to determine whether coastal defenses act as surrogates for 

natural reefs. In addition, fish abundance, recruitment, and age-class structure on 

breakwaters and natural reefs were compared to determine whether there is comparable 
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community functions between reef types, and whether breakwaters may be enhancing 

fish production.  

 

Differences in benthic community development among breakwaters and natural reefs 

may be the result of propogule supply, larval substratum preferences, or post-settlement 

processes. To assess the relative importance of substrate material in influencing early 

community development, in Chapter 5, coral abundance and overall benthic community 

structure were compared on tiles constructed from materials commonly used in the 

construction of breakwaters and artificial reefs (concrete, gabbro, and granite) as well as 

those from the natural reef (sandstone caprock), with terra-cotta included for comparison 

to other locations. An understanding of how substrate materials influences community 

development would inform the design of future breakwaters and artificial reefs to 

maximize coral cover and/or avoid development of communities dominated by nuisance 

species.  

 

The influence of design features on breakwater community development is poorly 

understood. In addition to material, the amount of wave exposure is likely to be one of 

the most important features affecting community development on breakwaters. Most 

coastal defense structures are constructed with a windward face designed to absorb the 

predominant wind-driven swell, with a leeward face in the shadow. Hydrodynamic 

changes along the length of a structure may result in differences in sedimentation rates 

(Purcell 2000; Walker 2007) as well as differences in larval supply (Roughgarden et al. 
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1988; Wilding and Sayer 2002; Arthur et al. 2006), presumably resulting in spatially 

distinct community development processes.  In Chapter 6 coral community composition, 

cover, size structure, recruitment, mortality, and growth rates were examined on a 

breakwater with differing levels of exposure to wave action, and these were compared 

with that of a natural reef. An understanding of how wave exposure influences coral 

community dynamics on breakwaters, and how these dynamics compare to those on 

natural reefs, can guide the appropriate design of coastal defense structures.  

 

Chapter 7 examines the role of grazing in structuring early benthic community 

development. Fish and sea urchins are widely recognized to alter the succession of algal 

communities through their grazing, but less is known about how they influence the 

development of the wider epifaunal assemblage. Even nominally herbivorous fish and 

urchins are known to consume fauna while grazing, occasionally having diets dominated 

by animal tissue (Choat et al. 2002; Cobb and Lawrence 2005; Crossman et al. 2005; 

Endo et al. 2007). Such grazing has the potential to strongly alter the benthic assemblage, 

perhaps influencing the successional trajectory of community development. A 

manipulative study was performed to assess the relative influence of grazing by fish and 

sea urchins on initial community development using a series of exclusion cages. An 

understanding of how these grazers influence community development on novel 

substrates will be of importance to marine management, particularly in areas where 

fishing pressure may be altering the abundance of these grazers.  
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Chapter 8 concludes this dissertation with a discussion of the results of these comparative 

and manipulative studies. These results will be discussed in the context of how these 

communities compare structurally and functionally to those on natural reefs, and the role 

that breakwaters are likely to play in coastal urban areas here and elsewhere with 

increasing development of the world’s coastlines.   
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Chapter 2: Recovery of corals a decade after a bleaching event in Dubai, United 

Arab Emirates 

  

Introduction 

Elevated sea surface temperatures (SST’s) resulting from El Ninõ events in the late 1990s 

were associated with mass coral bleaching throughout the world (Bruno et al. 2001; 

Mumby et al. 2001; Carriquiry et al. 2001; Aronson et al. 2002; Bena and van Woesik 

2004). Indian Ocean reefs were the most severely impacted, with bleaching resulting in 

regional loss of 50 to 90% of coral cover (Obura 2001; Stobart et al. 2005; Sheppard and 

Obura 2005; Arthur et al. 2006). As a biogeographic subset of the Indian Ocean, the 

Arabian Gulf was also impacted by these increased sea surface temperatures. 

 

The Arabian Gulf is characterized by environmental extremes. Salinity regularly exceeds 

45 ppt, and sea surface temperatures annually fluctuate from winter lows less than 12 °C 

to summer highs above 36 °C (Coles and Fadlallah 1991; Sheppard et al. 1992). These 

environmental conditions are selective for corals adapted to these extremes, with corals 

surviving in summer temperatures that would normally cause mortality in other areas 

(Coles 2003). As a result, dominant taxa in Arabian Gulf Reefs differ from those in the 

Indo-Pacific, where Gulf fauna are over-represented by more tolerant taxa such as faviids 

and siderastreids while more sensitive acroporids are under-represented (Coles 2003). 

Despite housing a relatively more tolerant sub-set of the Indo-Pacific fauna, extreme 

thermal events do occasionally result in bleaching and mortality. These events generally 
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result in differential mortality of Acropora species, while faviids and poritids are often 

negligibly impacted (Coles and Fadlallah 1991; Riegl 2002a; Sheppard and Loughland 

2002). 

 

Coral reefs in the Arabian Gulf were severely affected by thermal bleaching in both 1996 

and 1998 (Riegl 2002a). Summer conditions are the most extreme in the shallow southern 

basin of the Arabian Gulf (Sheppard et al. 1992), where sea surface temperatures reached 

37.7 °C during the 1998 bleaching event (Sheppard and Loughland 2002), a 4 to 8 °C 

increase over temperatures associated with bleaching elsewhere (Bruno et al. 2001; 

Mumby et al. 2001; Aronson et al. 2002; Sheppard 2003). These high temperatures 

caused extensive loss of coral cover from patch reefs located along the coastline in the 

United Arab Emirates (UAE) (Riegl 1999; George and John 1999; Sheppard and 

Loughland 2002; Sheppard and Loughland 2002). Dense coral patch reefs in the Saih Al-

Shaib and Jebel Ali areas of Dubai, UAE, were heavily impacted by a 2°C positive sea 

surface temperature anomaly in the summer of both 1996 and 1998 (Riegl 2002a). 

Bleaching virtually eliminated Acropora species that had constituted over 98.7% of the 

reef building coral in the area (Riegl 1999), and resulted in a complete loss of corals from 

a 7.8 km2 area in Jebel Ali alone (Riegl 2002a).  

 

Recovery from mass bleaching events can take a number of years to occur, if it happens 

at all. Recruitment levels are typically depressed for several years following bleaching 

(Aronson et al. 2002; Tamelander 2002; Sheppard and Obura 2005), due to the high 
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mortality in the reproductive population and the reduced fecundity of partially bleached 

survivors (Baird and Marshall 2002). Subsequent to thermal bleaching events, a shift in 

dominance can occur as a result of space preemption by opportunistic algal and 

invertebrate competitors (Carriquiry et al. 2001; Aronson et al. 2002; McClanahan et al. 

2002), or the coral community composition can change due to differential reproductive 

success in species less affected by bleaching (Tamelander 2002; Sheppard and Loughland 

2002; Sheppard and Obura 2005). Alternatively, assemblages may progressively recover 

to their pre-bleaching state due to the rapid growth rates of taxa that were most affected 

by bleaching (Baird and Marshall 2002; Arthur et al. 2005). Coral recovery can be highly 

site specific as a result of differences in proximity to seeding reefs, hydrodynamic 

conditions, and the extent of damage (Arthur et al. 2006), making it difficult to predict 

the extent and direction of recovery.  

 

This study describes the coral assemblages in Saih Al-Shaib nearly a decade after mass 

coral bleaching, and compares the present coral communities with those described in the 

area both before and soon after the mass mortality event to determine the extent to which 

these assemblages have changed since bleaching. Surveys performed through 2002 

indicated that coral cover remained low compared with pre-bleaching levels and was 

composed mainly of bleaching resistant Porites and faviid species (Riegl 1999; Purkis 

and Riegl 2005). However, recruitment of rapidly growing Acropora juveniles was also 

observed in the two years after the bleaching event (Riegl 2002). This indicated a 

potential return to Acropora dominance in the area and associated recovery of coral cover 
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to pre-bleaching levels within a matter of years. This study examined both the adult 

assemblage and patterns of juvenile recruitment to determine whether community 

composition is stable or if species dominance appears to be shifting. Coral communities 

in the Arabian Gulf are exposed to rapid and extreme sea-surface temperature elevations. 

It is important to understand whether the composition and condition of coral assemblages 

here are resilient to the bleaching that is likely to occur with increasing frequency in the 

coming decades. Information on these assemblages and their recovery from bleaching 

may be useful in predicting changes to coral community composition and potential 

recovery processes in other regions that are likely to be impacted by future increases in 

sea-surface temperatures.  

 

Methods 

The Dubai reef is composed of discontinuous coral patches associated with areas of 

exposed cap-rock approximately 0.5 – 1 km from shore, and are interspersed between 

areas of unconsolidated sands and  mixed algal assemblages. The size of coral patches 

differs, but each generally exceeded 1,000 m2. This series of patch reefs extends 

approximately 12 km along western Dubai from the Saih Al-Shaib through Jebel Ali 

areas (Figure 1). Pre-bleaching communities have been described for the entire area by 

Riegl (1999). Following the elevated sea surface temperatures of 1998, extensive loss of 

Acropora was reported on patch reefs sampled in the Jebel Ali area, while massive corals 

were negligibly impacted (Purkis and Riegl 2005; Riegl 2002). Similar bleaching 

response was observed in patch reefs in Saih Al-Shaib (Riegl, pers. comm.). To compare 
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current communities with those that had been described for Dubai before and after the 

1998 bleaching event, six sites in Saih Al-Shaib were selected for detailed evaluation of 

coral communities (Figure 1), and were sampled between 04 September and 23 October 

2006. The patch reefs described by Riegl (2002) for the Jebel Ali area could not be re-

sampled as they lie in a restricted area that is the site of extensive land reclamation 

activities. 

 

Figure 1: Map of study area in Dubai, United Arab Emirates. Sampling sites for the 
current study are marked with a black circle and labeled. Areas identified as containing 
dense live corals during preliminary surveys in Saih Al-Shaib are enclosed by a dashed 
line, but should not be considered exhaustive. In Jebel Ali, areas containing dense live 
corals (black) and dense dead corals (grey) following 1996/1998 thermal bleaching are 
indicated as classified from satellite imagery captured in 2001 (adapted from Purkis and 
Riegl 2005). Palm Island construction began in 2002 and is in progress. 
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Within each site six 30 m fibreglass tapes were placed approximately 5 m apart and laid 

parallel to the coastline. This length is representative of the scale of coral patches in these 

discontinuous habitats, and is appropriate based upon patch descriptions from earlier 

studies in the area (Riegl 1999). Depth varied negligibly (<0.5 m) among transects due to 

the low substrate relief in this area. A total of 21 quadrats were photographed on each 

transect at 1.5 m intervals, resulting in a total of 126 quadrats per site. Each quadrat 

enclosed an area of 0.25 m2. Photographs were taken digitally using a SeaLife DC500 5.0 

mega-pixel camera mounted on a PVC frame demarcating the photoquadrat area.  

 

Photoquadrats were analyzed using CPCe software, version 3.4 (Kohler and Gill 2006). 

Each 0.25 m2 quadrat was examined using 50 randomly placed points, and the fauna 

underlying each point were identified to the lowest possible taxa (Veron 2000). 

Identification from photographs was confirmed visually in the field on subsequent 

surveys, and microscopically in the laboratory through examination of corallite structure. 

Specimens were cleaned using 5% sodium hypochlorite immersion for 4 hrs at 30° C 

(Clode and Marshall 2003). Juvenile corals were categorized as those with a maximum 

diameter of ≤4 cm, and were identified to the lowest taxonomic level possible. 

 

Quadrat data were pooled within each transect. Coral percent cover data was transformed 

using arcsine square root prior to analysis to normalize the data. Preliminary analysis 

indicated that one transect was an outlier (Transect B6: Ave Sørensen distance = 0.797, 

SD = 3.98), and was excluded from subsequent analysis (Tabachnick and Fidell 2001).  
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Species occurring in less than 5% of samples were removed prior to multivariate analyses 

as recommended by McCune and Grace (2002).  

 

Transects were grouped using hierarchical agglomerative cluster analysis. The flexible 

beta linkage method (β = -0.25) was applied, using a Sørensen (i.e. Bray-Curtis) distance 

matrix. Sørensen distance is generally preferred for analysis of community data, and is 

compatible with this linkage method (McCune and Grace 2002). The resulting 

dendrogram was scaled by Wishart's objective function converted to a percentage of 

information remaining (McCune and Mefford 1999). 

 

Indicator species analysis was used to determine the number of ecologically meaningful 

groups resulting from cluster analysis (Dufrene and Legendre 1997). This method 

combines information on both the fidelity and the relative abundance of species in a 

group, such that a species’ indicator value is maximum (IV = 100%) when all transects in 

a group are occupied by that species and it is only found in that group. Indicator values 

for each species were calculated for 2 to 20 possible groups resulting from the cluster 

analysis using PC-ORD (McCune and Mefford 1999), and statistical significance was 

evaluated using a randomly seeded Monte Carlo test with 1,000 iterations. The optimum 

number of groups was selected as that which provided the maximum number of 

significant indicator species, as well as the lowest average p-value compared with all 

other possible grouping combinations (Dufrene and Legendre 1997). The species with 
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significant indicator values were also subsequently used to characterize the coral 

communities in these groups.  

 

Univariate comparisons of substrate coverage employed the non-parametric Kruskal-

Wallis ANOVA and post-hoc Mann-Whitney U-tests. The diversity of each group 

identified from cluster analysis was examined by calculating the Shannon-Wiener 

diversity index, inclusive of rare species. Pair-wise comparisons between group indices 

were performed using the Shannon t-test (Zar 1996). To assess the adequacy of sampling, 

species-area curves were generated in PC-ORD (McCune and Mefford 1999), where the 

curve represents the mean number of species from 500 sub-samples for each possible 

sample size and associated estimates of standard deviation. The abundance of juvenile 

corals was compared among assemblages using a Kruskal-Wallis ANOVA and post-hoc 

Mann-Whitney U-tests. 

 

 

Results 

A total of 25 coral species were found in Saih Al-Shaib, with a mean richness of 12.8 ± 

2.1 species per transect (mean ± SD). The most common species were Porites harrisoni 

(23.5% of living coral), Porites lutea (22.2%), Cyphastrea microphthalma (13.4%), 

Acropora downingi (9.1%), Acropora clathrata (7.9%), and Platygyra daedalea (5.7%), 

with remaining species each representing less than 5% of coral cover. Overall coral cover 
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in Saih Al-Shaib was 35.0 ± 1.6 % (mean ± SE).A species area curve was generated to 

assess the adequacy of sampling. Species accumulation was asymptotic with ten transects 

capturing 90% of the maximum richness, indicating that the sampling design was 

sufficient to catalogue diversity in this area. 

 

Cluster analysis was used to group transects, and species indicator analysis was applied to 

optimize the number of biologically meaningful groups from cluster analysis. Five groups 

(clusters) yielded the lowest average p-value from Monte Carlo significance tests 

(average p = 0.091 for all species) and maximized the number of significant indicator 

species (17 of the 26 species) compared with all other grouping combinations examined. 

Trimming the dendrogram from cluster analysis at five groups provided a good 

compromise between information loss (approximately 53% retained) and summarizing 

affinities among groups (Figure 2). The biological characteristics of the five community 

groups are summarized in Table 1 and described below.  
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Figure 2: Dendrogram of transect groups generated from cluster analysis. Symbols 
correspond with community groups described in Table 1. The cut point is indicated by 
the dashed line, which represents the grouping combination with the highest number of 
significant species and lowest average p-value from indicator species analysis. Transects 
are indicated by the letter-number code (site-replicate). 
 



29 

 

Table 1: Biological characteristics of coral community groups identified from cluster 
analysis and ordination (Fig. 3 and 4). Assemblage description summarizes the 
ecologically and spatially dominant taxa associated with each group, along with their 
growth form. Indicator species are those which had significant indicator values (given in 
parentheses) compared with randomized values from Monte Carlo tests (p < 0.05). 
Indicator species are listed in descending order of each species’ indictor value to a group, 
not taxonomic affinity.  

Group 

Coral 
Cover  

(% ± SE) 

Assemblage 
Description Indicator Species Richness Shannon-

Wiener H 

Group 1 26.0 ± 1.6 

Small massive 
Porites with 
extensive Acropora 
rubble 

Acanthastraea echinata (50) 16 1.83 

Group 2 7.6 ± 0.6 
Sparse small 
massive Porites 
lutea 

None 16 1.69 

Group 3 41.9 ± 2.5 Dense tabular  
Acropora 

Acropora valenciennesi (60) 

Acropora clathrata (57) 

Acropora downingi (40) 

Leptastrea transversa (38) 

Platygyra daedalea (35) 

24 2.34 

Group 4 37.3 ± 2.4 Dense columnar 
Porites harrisoni P. harrisoni (49) 19 1.51 

Group 5 34.7 ± 2.1 Small massive 
faviids and Porites 

Coscinaraea monile (57) 

Favia pallida (56) 

Cyphastrea serailia (51) 

Platygyra lamellina (41) 

Psammocora contigua (41) 

Favia rotumana (38) 

Pseudosiderastrea tayamai (35) 

Turbinaria reniformis (32) 

P. lutea (31) 

18 1.91 
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Group 1: This community was characterized by small massive corals and extensive 

Acropora rubble. Live coral cover in this group was 26.0 ± 1.6%, mainly dominated by 

P. lutea (42.1 ± 5.4% of living coral cover), C. microphthalma (16.8 ± 0.8%), and P. 

daedalea (7.7 ± 1.1%). One species, Acanthastraea echinata, was characteristic of this 

assemblage having a species indicator value of 50 in this group, and was absent from all 

other groups (Table 1). This assemblage was distinct to Site A, a shallow (approx. 4 m 

depth) near-shore site where Acropora rubble was significantly more frequent (20.4 ± 

0.7% of space) than at any other site (overall mean: 4.6 ± 0.6%) (Kruskal-Wallis 

ANOVA: H (4, N= 35) = 23.1, p < 0.001; Post-hoc Mann-Whitney U-tests: p < 0.001 for 

each).  

 

Group 2: This assemblage is characterized by sparse massive corals separated by large 

areas of pavement and sand. Overall coral cover was significantly lower in this group (7.6 

± 0.8% of substratum) than in any other groups (overall mean: 36.5 ± 1.7%; Kruskal-

Wallis ANOVA: H (4, N= 35) = 23.0, p < 0.001; Post-hoc Mann-Whitney U-tests: p < 0.01 

for each.). P. lutea made up almost half of the live coral observed in this site (48.7 ± 5.2 

% of live coral cover). No species had significant indicator values in this group (Table 1), 

indicating that no species had high fidelity for this assemblage and/or none were common 

among transects representing this group. Bare pavement was significantly more common 

here (40.1 ± 5.7% of total substratum) than in other groups (overall mean: 5.9 ± 1.5%; 

Kruskal-Wallis ANOVA: H (5, N= 35) = 22.4, p < 0.001; Post-hoc Mann-Whitney U-tests: p 
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< 0.001 for each.). Although this group included only transects from Site B, this 

community was observed to be the most widespread  in the area. 

 

Group 3: Large tabular Acropora dominated this community, making up 32% of the 41.9 

± 2.5% live coral cover in this assemblage. Coral cover was significantly more abundant 

in this group than in groups 1 and 2 (Mann-Whitney U-tests: Z = -3.24, p < 0.01 and Z = 

-3.20, p < 0.01, respectively). Tabular Acropora spp. dominated this assemblage, with  

significantly higher coverage here than in any other group (Overall mean of other groups: 

2.1 ± 0.6; Kruskal-Wallis ANOVA: H (4, N= 35) = 30.1, p < 0.001; Post-hoc Mann-Whitney 

U-tests: p < 0.01 for each). Acropora colonies were generally larger than 1 – 1.5 m in 

maximum diameter. Three Acropora species  were significant indicators of Group 3 

(Table 1), including A. clathrata (IV = 57), A. downingi (40), Acropora valenciennesi 

(60). In addition P. daedalea (IV=35), and Leptastrea transversa (38)  were also 

common to this assemblage. This community included 24 of the 25 species observed in 

this study, with a Shannon-Wiener diversity index significantly higher than any other 

group (Table 1; Pair-wise Shannon t-tests, p < 0.05 for each). This assemblage was 

generally associated with low relief areas of sand covered limestone found at sites C, D 

and E, and it graded into the group 2 and group 4 assemblages. Coral rubble occupied 6.0 

± 1.1% of total space in this assemblage.  

 

Group 4: The columnar P. harrisoni dominated the Group 4 assemblage, making up two-

thirds of live coral cover (24.6 ± 1.2 of 37.3 ± 2.4%). This species had an indicattor value 
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of 49%, and was significantly more abundant in this group than in any other group 

(Overall mean of other groups: 3.8 ± 0.7%; Kruskal-Wallis ANOVA: H (4, N= 35) = 27.7, p 

< 0.001; Post-hoc Mann-Whitney U-tests: p < 0.01 for each). Despite having 19 of the 25 

species observed in this study, Shannon-Wiener diversity was significantly lower in this 

group than in any other group (Table 1; Pair-wise Shannon t-tests, p < 0.05 for each), 

reflecting low species evenness because of the dominance of P. harrisoni in this 

assemblage. This assemblage was generally associated with elevated limestone ridges 

found at Site C and Site D, and was usually located at the periphery of the Acropora 

dominated Group 3 assemblage. Surrounding substrate was mainly coarse sand with 

occasional limestone pavement outcrops. Coral rubble occupied 4.5 ± 1.0% of space.  

 

Group 5: This assemblage was characterized by shared dominance of faviids and poritids. 

Ten significant indicator species characterized this community: Coscinaraea monile (IV 

= 57), C. microphthalma (31), Cyphastrea serailia (51), Favia pallida (56), Favia 

rotumana (38), Platygyra lamellina (41), P. lutea (31), Psammocora contigua (41), 

Pseudosiderastrea tayamai (35), and Turbinaria reniformis (32) (Table 1). Acropora 

comprised 0.3 ± 0.1% of substrate cover. This assemblage was spatially distinct, with 

representation occurring only at Site F, where corals were associated with low relief 

limestone outcrops surrounded by pockets of sand. Although this assemblage was 

observed to be widely distributed in the area immediately surrounding Site F, it was not 

observed elsewhere in the survey area. Here, coral rubble occupied 5.5 ± 0.6% of 

substrates. 
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Mean density of juvenile corals across all assemblages was 0.8 ± 0.2 recruits m-2, and 

differed significantly among the assemblages described above (Kruskal-Wallis ANOVA: 

H (4, N= 35) = 21.1, p < 0.001). Groups 2 and 5 had the highest juvenile density, and did not 

differ significantly from each other (Mann-Whitney U-test). Group 1 had significantly 

fewer juveniles than Group 5, while Groups 3 and 4 had significantly lower density than 

all other groups based on post-hoc Mann-Whitney U-tests (p < 0.05; Figure 3a). Most 

juveniles were either Porites or faviids (59.4% and 16.7% of recruits, respectively). 

Acropora made up less than 2% of all juvenile corals observed. The relative composition 

of coral recruits generally reflected that of the current adult composition within each 

assemblage, with the exception of the Acropora dominated group 3 (Figure 3b). Here, 

Acropora recruits represented 12.5% of juvenile corals, despite representing almost a 

third of the live coral cover, and Porites represented 62.5% of juveniles compared with 

an adult population representing just over a third of live cover.  

 

 
 
 

Figure 3: Density and composition of coral juveniles in the five assemblages identified 
from cluster analysis. (a) Density of coral juveniles for each group (mean ± SE m-2). 
Letters indicate significant differences based on Mann-Whitney U-tests (p < 0.05) (b) 
Relative abundance of juveniles by family for each assemblage group, and the overall 
total.  
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Discussion 

Elevated sea surface temperatures during the summers of 1996 and 1998 resulted in 

extensive loss of corals from patch reefs along hundreds of kilometres of coastline of the 

United Arab Emirates (Riegl 1999; George and John 1999; Sheppard and Loughland 

2002). Similar to bleached reefs in other regions (Loya et al. 2001; Sheppard and Obura 

2005; Arthur et al. 2006), some coral species were more vulnerable to bleaching than 

others. In the Arabian Gulf, dominant Acropora species were virtually eliminated, 

resulting in stands of dead coral skeletons extending over large areas of patch reefs 

(Sheppard and Loughland 2002; Riegl 2002a). Faviids and Porites were less affected by 

mortality (Riegl 1999; Sheppard and Loughland 2002), and recovery of partially bleached 

colonies was common (George and John 1999). In the decade since the mass bleaching 

event, there are signs of extensive recovery of Acropora cover in parts of Saih Al-Shaib, 

and there is little evidence of a phase-shift in coral dominance in the area to those less 

affected by bleaching, except at site F (see below). 

 

Prior to the mass mortality event, coral cover in Acropora dominated assemblages in the 

Saih Al-Shaib area was 62 ± 24 %, and Acropora was represented by six species (Riegl 

2002a). Following the 1998 bleaching event, live coral cover fell to 22 ± 10% (Riegl 

2002a), and Acropora was virtually eliminated with only five partially bleached surviving 

A. clathrata colonies observed in the entire 37.7 km2 study area (Riegl 1999). Overall 

species richness fell from 34 to 27 species (Riegl 2002a). In the current study Acropora 

were observed in five of the six sites examined and dominated assemblages at three of 
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these sites. Coral cover in the Acropora dominated assemblage (Group 3) is now 41.9 ± 

2.5 %, nearly double that observed after the mass mortality event. This Acropora 

dominated assemblage is found in sites C, D, and E, areas formerly dominated by 

Acropora that had suffered substantial loss during the bleaching event (Riegl 1999). 

Although coral cover remains lower than pre-bleaching levels it is likely that recovery 

will continue barring any additional disturbances. Many Acropora colonies in this 

assemblage are approximately 1 m in diameter, supporting earlier growth rate estimates 

of 10 cm yr-1 for this genus in the Arabian Gulf (Coles and Fadlallah 1991). Coral cover 

will likely continue to increase for the next few years as the common A. clathrata and A. 

downingi colonies approach the 1.5 m size typical of these species (Fadlallah 1996). 

Similar recovery of coral cover through rapid re-growth of new Acropora colonies has 

been observed on bleached reefs elsewhere (Loya et al. 2001; Arthur et al. 2005; Arthur 

et al. 2006), even in cases where juvenile recruitment is depressed (Tamelander 2002). 

Rapid Acropora growth rates appear to compensate for the low recruitment levels 

observed in this assemblage in Saih Al-Shaib, allowing coral cover to recover quickly. 

Although coral cover is increasing, species richness remains depressed in this 

assemblage. Several Acropora species previously reported as common to Dubai (Riegl 

1999) were absent from the present study, including A. arabensis, A. horrida, A. florida, 

A. valida, and A. tenuis, and A. pharaonis is now uncommon. Similar diversity loss has 

followed bleaching in other areas (Loya et al. 2001; Sheppard and Loughland 2002; 

Tamelander 2002), with richness remaining depressed for years afterwards despite 

improvements in coral cover (Sheppard and Obura 2005; Lambo and Ormond 2006). 

Despite the loss of these species, over 85% of Acropora cover remains occupied by the 
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same species which had dominated Acropora assemblages in the Arabian Gulf prior to 

the bleaching event, A. clathrata and A. downingi (Fadlallah 1996; Riegl 2002a). The 

recovery of these dominant species indicates that although there has been a loss of 

species richness, long-term ecosystem function may not be substantially impaired as a 

result of the bleaching event.  

 

In this study the faviid/Porites dominated assemblage (Group 5) occupies an area that 

was dominated by Acropora before the mass bleaching events of the late 1990s (Site F; 

see map in Riegl 2002). Acropora now contributes less than one percent of coral cover in 

this area. Faviids and Porites have been widely reported to be among the most resistant 

taxa on reefs affected by thermal bleaching throughout the world (Loya et al. 2001; 

Obura 2001; Baird and Marshall 2002; Sheppard and Obura 2005). This was also true in 

Dubai, where the elevated sea surface temperatures in both 1996 and 1998 had negligible 

impact on the live coral coverage and species richness of faviids and Porites (Riegl 1999; 

Riegl 2002a). The differential survival and subsequent reproductive success of such 

bleaching resistant taxa has been suggested to contribute to shifts in coral dominance in 

an area (Tamelander 2002; Sheppard and Loughland 2002). This appeared to be 

occurring at site F. This site is now dominated by bleaching resistant taxa, and current 

coral cover of these bleaching resistant taxa (34.7 ± 2.1 %) is double that observed 

following the bleaching event in areas that were formerly Acropora dominated (mean: 17 

%, Riegl 1999), and in compositionally similar faviid dominated assemblages in the area 

both before and after the bleaching event (16 ± 4 %, Riegl 1999). This site also contained 



37 

 

the highest densities of coral juveniles in all of Saih Al-Shaib, and the composition of 

juveniles reflected the composition of adults with faviids, siderastreids, and poritids 

dominating recruitment. Acropora juveniles were not observed. These patterns of 

recruitment coupled with the increased coral cover compared with similar assemblages in 

1998 indicate that there has been a shift in coral dominance at this site in the decade 

following the mass bleaching event, and that it is unlikely that Acropora will regain 

dominance in the near future.  

 

The assemblage dominated by small massive corals and Acropora rubble (Group 1) 

appears to have experienced Acropora bleaching in recent years. Similar to the Acropora 

dominated Group 3 assemblage, the presence of several large (1 – 1.5 m) Acropora 

colonies indicate that this assemblage was recovering from the 1996 and 1998 bleaching 

event. However, extensive Acropora rubble covering approximately a fifth of the 

substratum compared with less than 5% in other assemblages, and the lack of standing 

dead Acropora skeletons known to persist for several years after bleaching (Riegl 1999, 

2002a; Sheppard and Loughland 2002) suggest that many Acropora were killed in the 

years since the 1998 bleaching event, most likely in 2002. Elevated sea-surface 

temperatures in the summer of 2002 were associated with coral bleaching events in the 

Arabian Gulf and surroundings (Dodge 2002; Wilkinson 2004), and coral bleaching was 

also observed on near-shore reefs in the Jebel Ali area, 10 km west of Saih Al-Shaib 

(Dodge 2002; B. Riegl, pers. comm.). It is likely that this 2002 bleaching event also reset 

recovery of Acropora on the patch reef at site A due to its shallow depth. This 
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assemblage occurs at a 3 - 4 m depth, while intact Acropora assemblages elsewhere in 

Saih Al-Shaib (Group 3) occur at approximately 6 m depth. Shallow depth has been 

related to increased levels of coral bleaching (Mumby et al. 2001; Sheppard and 

Loughland 2002; Bena and van Woesik 2004; Stobart et al. 2005), and this assemblage 

lies within the 3 – 5 m ‘critical depth’ associated with severe bleaching in the Arabian 

Gulf (Sheppard and Obura 2005), making it more susceptible to elevated sea-surface 

temperatures. This assemblage may recover Acropora dominance over time unless 

interrupted by future bleaching events or anthropogenic disturbance. Currently, there are 

several large Acropora colonies that appear to have survived the 2002 bleaching event, as 

well as a number of young colonies 30 – 40 cm in diameter which have likely recruited in 

the years since. Although Acropora juveniles are currently a minor component of the 

recruiting assemblage, we predict that Acropora recruitment will increase in the next few 

years as young colonies become reproductive, generally occurring at approximately 50 

cm (Hall and Hughes 1996). The rapid growth rates and increasing fecundity with size 

should contribute to the rapid recovery of Acropora in this assemblage, provided that 

there are no further disturbances.   

 

The recovery of the formerly dominant Acropora is highly site specific. In general, 

recovery is highest in western Saih Al-Shaib. This may be a reflection of either natural 

settlement processes or the influence of coastal development in the area. Early post-

bleaching Acropora recruitment in 1999 was observed to decline from west to east in 

Dubai (Riegl 2002a). This pattern of recruitment follows the direction of prevailing 
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coastal currents in the area (Wilkinson 2004; Smit et al. 2005), and suggests that this area 

is being seeded by reefs 30 km upstream which had Acropora survive the 1998 bleaching 

event (Riegl 2002a). However, it is also possible that large scale coastal development 

extending several kilometers east of Saih Al-Shaib may have affected recovery. The 

patch reef closest to this development is currently dominated by sediment tolerant faviids 

and poritids, and the more sensitive Acropora now account for less than 1% of the live 

coral cover a that site. Because this area was not sampled between 2002 and 2006, it is 

unknown to what extent either propogule supply or human influence has affected this 

recovery. Continued monitoring of the area is warranted.  

 

The remaining assemblages in Saih Al-Shaib are dominated by Porites. Porites are 

generally tolerant of elevated sea surface temperatures (Obura 2001; Loya et al. 2001; 

Baird and Marshall 2002; Sheppard and Loughland 2002; Sheppard and Obura 2005), 

and the sparse P. lutea and the dense P. harrisoni dominated assemblages in the Saih Al-

Shaib area were negligibly impacted by the 1996 and 1998 bleaching event (Riegl 1999; 

Riegl 2002a). In the intervening years, these assemblages have changed little in Saih Al-

Shaib. Coral cover has not increased in either of the Porites dominated assemblages 

(Groups 2 and 4) compared with pre-bleaching coverage. It is also unlikely that there will 

be substantial increases in coral cover for these assemblages in the near future due to the 

slow growth rate known for both Porites adults (Yap et al. 1998; Baird and Marshall 

2002; Flora and Ely 2003) and juveniles (Tamelander 2002). This is particularly true in 

the dense P. harrisoni assemblage which had the lowest recruit density of all 
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assemblages, indicating that any increases in coral cover will result mainly from 

vegetative growth of adult colonies. Like coral cover, composition and diversity in these 

Porites dominated assemblages remains comparable to that observed prior to the 

bleaching event (Riegl 1999; Riegl 2002a). Because the current juvenile composition in 

each assemblage reflects that of the adult population it is likely that the community 

composition is stable. Thus, coral coverage and composition in the sparse P. lutea 

assemblage (Group 2) and the dense P. harrisoni (Group 4) assemblages remain 

comparable to pre-bleaching levels.  

 

In the first five years following the 1998 bleaching event most impacted reefs worldwide 

showed little recovery of coral cover compared with pre-bleaching levels (Aronson et al. 

2002; Riegl 2002a; McClanahan et al. 2005; Stobart et al. 2005; Sheppard and Obura 

2005). However, the presence of abundant juvenile recruits (Tamelander 2002; Stobart et 

al. 2005; Sheppard and Obura 2005), with densities increasing through time (Aronson et 

al. 2002; Sheppard and Obura 2005), suggested that recovery was beginning in many 

areas. Ten years after the 1996 mass mortality of Acropora in Dubai (Riegl 1999; Riegl 

2002a), Acropora cover shows strong signs of recovery in parts of Saih Al-Shaib, and 

despite the loss of several species A. clathrata and A. downingi have recovered their 

former dominance. The resilience of this assemblage appears due, in part, to the rapid 

growth rates of the species dominating this assemblage. Other assemblages in Saih Al-

Shaib, dominated by more temperature-tolerant taxa such as faviids, P. harrisoni, and P. 

lutea, were negligibly impacted by the bleaching events of the late 1990s (Riegl 1999; 
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Riegl 2002a). The differential survival of taxa in these assemblages has not resulted in 

the predicted phase-shift in coral dominance in the area (Sheppard and Loughland 2002; 

Sheppard and Obura 2005), most likely because localized coral recruitment has resulted 

in self-seeding assemblages and because the slow growth rates of most bleaching 

resistant taxa inhibits competitive overgrowth of available substrates. There has also not 

been a phase-shift to dominance by macro-algae. Similar observations have been made in 

other areas recovering from bleaching (Arthur et al. 2005, 2006; Stobart et al. 2005), and 

macro-algae cannot achieve long-term dominance in this region due to seasonal die-offs 

(Ateweberhan et al. 2006).  

 

The patterns of resilience and resistance observed in Saih Al-Shaib have important 

implications both regionally and globally. The southern Arabian Gulf experiences 

repeated mass coral mortality on a 10 -15 year cycle due to recurrent thermal anomalies 

(Riegl 1999; Riegl 2001; Riegl 2002b; Purkis and Riegl 2005). This has resulted in corals 

which are acclimatized and adapted to extreme environmental conditions (Coles and 

Fadlallah 1991; Coles and Brown 2003; Coles 2003), capable of both enhanced survival 

through both high and low temperature extremes as well as relatively rapid recovery from 

bleaching events. The comparatively minimal loss of species richness in the Saih Al-

Shaib (11%) compared with other areas (>50%; Loya et al. 2001; Sheppard and Obura 

2005; Lambo and Ormond 2006), during the most extreme bleaching event on record 

(West and Salm 2003; McClanahan et al. 2005) provides further evidence of tolerance to 

temperature extremes. This is particularly true given that temperatures here were 4 – 10 
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°C higher than associated with bleaching elsewhere (Bruno et al. 2001; Wellington et al. 

2001; Mumby et al. 2001; Aronson et al. 2002; Sheppard 2003). Given that elevated sea-

surface temperatures are predicted to continue increase in both magnitude and frequency 

in the coming decades (Sheppard 2003; Coles and Brown 2003), such patterns of 

resistance and resilience may approximate what will occur in more stable reef 

environments in the tropics in the future. Those taxa more tolerant of high temperatures 

or more capable of rapid re-colonization and growth may come to dominate in areas 

affected by increasing sea-surface temperatures, while those less tolerant and slower 

growing species may eventually become regionally extinct. Like Saih Al-Shaib, reefs 

experiencing repeated bleaching may recover coral cover to pre-bleaching levels, but 

diversity will likely decline through time eventually becoming dominated by a low-

diversity subset of the original fauna which is more adapted to extreme conditions. The 

ability of species to acclimatize to increasing temperatures will also be important (Coles 

and Brown 2003). The predicted 5-year cycle of bleaching events expected to affect low 

latitude reefs may be too frequent to allow many populations to adapt (Sheppard 2003). 

However, the rapid recovery of corals following major stress events 2 to 4 years apart 

observed in this study does indicate that regional pockets of resilient taxa can withstand 

these perturbations.  

 

Coral patch reefs in the Saih Al-Shaib area exhibit both resistance and resilience to the 

impacts of high sea-surface temperatures, and are among the richest assemblages in the 

Arabian Gulf (Riegl 1999; Coles 2003). Such areas are considered a priority for coral reef 
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conservation and management efforts because they are likely to support recovery of 

regional reefs more affected by bleaching in the coming decades (West and Salm 2003). 

However, large-scale coastal development, land reclamation projects, and development of 

desalination facilities throughout Dubai are a threat to these patch reefs (Wilkinson 

2004). A number of these current and proposed developments are within several hundred 

meters of reefs surveyed in this study and are likely to directly affect these coral 

communities through burial or sedimentation, or indirectly through modification of near-

shore water movement and large-scale changes in coastal currents with related changes in 

accretion or erosion zones. It is possible that these direct and indirect impacts may inhibit 

or even eliminate the natural recovery and resilience capacity of even these hardy corals 

and coral reef communities. The immediate protection and conservation of surviving 

coral communities in this area is warranted. 
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Chapter 3: Long-term changes in benthic assemblages on large breakwater reefs 

and a comparison to natural reefs 

 

Introduction 

There has been increased urbanization of marine ecosystems as a result of growing 

human populations in coastal areas. Man-made coastal defense structures such as 

breakwaters, jetties, and groynes now dominate the near-shore environment in many 

areas, in some cases more than doubling the length of the natural coastline (Bacchiocchi 

and Airoldi 2003; Airoldi et al. 2005; Hansen 2005). Such structures represent large-scale 

unplanned artificial reefs in that they provide substantial hard-bottom habitat capable of 

developing diverse and abundant marine communities (Baine 2001; Svane and Peterson 

2001; Airoldi et al. 2005). Although not designed for ecological purposes, the relatively 

large size and ubiquity of such structures suggests that they are likely to play an 

increasingly important ecological role in coastal marine ecosystems as human 

populations continue to grow.  

 

Most investigations of community development on coastal structures have focused on 

fish (Lincoln-Smith et al. 1994; Pondella et al. 2002; Stephens and Pondella 2002; 

Guidetti et al. 2005b; Clynick 2006; Clynick et al. 2008), and have largely ignored the 

benthic assemblage. However, benthos is of particular ecological importance in providing 

food, settlement habitat, and shelter for most reef associated organisms, including fish 

(Elliott et al. 1995; Qian 1999; Crossman et al. 2001; Hartney and Grorud 2002; 
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Nishizaki and Ackerman 2004). The benthic community also contains many of the 

species considered important for their aesthetic or nuisance value to marine management 

(Airoldi et al. 2005). Despite this importance, relatively little is known about how benthic 

communities develop on these large-scale breakwater reefs or how they compare to 

assemblages on natural reefs.  

 

Studies of benthic community development on coastal defense structures has typically 

focused either on the very early stages of recruitment and colonization (Chapter 5; 

Osman and Whitlatch 2004; Bulleri 2005c; Bulleri 2005a) or on mature communities 

(Chapter 4; Moschella et al. 2005). There is little knowledge of how these communities 

develop over time, or if and when these structures begin to resemble benthic communities 

on natural reefs or rocky shores (Bacchiocchi and Airoldi 2003; Airoldi et al. 2005). An 

understanding of the types of communities to expect and the sequence of development is 

essential for addressing the ecological and management implications of these large-scale 

artificial reefs. 

 

Coastal defense structures can be viewed as ‘natural experiments’ on which to observe 

the development of communities through time. Adjacent structures are often designed 

with standardized materials, relief, and medium-scale complexity, and are generally 

deployed in comparable near-shore environments. Their staggered construction also 

results in structures immersed for different lengths of time, providing an opportunity to 

infer temporal patterns of community development by comparing assemblages on 
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structures of different known ages. Such natural experiments cannot account for 

confounding factors to the extent that is possible with true manipulative experiments, but 

they do allow examination of ecological processes at scales that would not be possible 

with a more controlled approach (Diamond 1986). In this study, the benthic communities 

on six breakwater reefs ranging from one to 31 years of age were compared to provide an 

understanding of community development on large-scale artificial structures over time. 

They were also compared to benthic communities on natural reefs to gain an 

understanding of how communities develop on these structures relative to natural 

habitats.   

 

Methods 

This study was conducted in Dubai, United Arab Emirates, in the south-eastern basin of 

the Persian Gulf. Six rocky-reef breakwaters ranging from 1 to 31 years of age were 

selected for study, with two sites sampled on each (Figure 1). All breakwaters were 

constructed of 1 – 3 m3 quarried rock blocks, with the exception of the Jebel Ali Port 

breakwater which was made of interlocked concrete jacks of comparable size. Six natural 

reef sites were also sampled for comparison to communities on breakwaters. Natural 

patch reefs exist only in areas south-west of the Palm Jebel Ali, with the remainder of the 

area dominated by course to fine mobile sands. Maximum depth to the natural substratum 

at all sites did not exceed 11 m.  
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Figure 1: Map of breakwater (●) and natural reef (▲) sampling sites. Site names and age: 
NR = natural reefs; WF = Dubai Waterfront (1.5 yr); PA = Palm Jebel Ali (3.5 yr); JP = 
Jebel Ali port (31 yr); PJ – Palm Jumeirah (5.5 yr); WD = The World (1 yr); DD = Dubai 
dry docks (25 yr).  
 

Composition of benthic communities was estimated using photo-quadrats. Six replicate 

30 m line transects were photographed at 3 m intervals using a Nikon D80 10 mega-pixel 

digital camera mounted on a PVC frame enclosing a 0.25 m2 area, for a total of 66 photo-

quadrats per site. Sampling was standardized to approximately 5 - 6 m depth on each 

structure. Benthic coverage from each photograph was estimated using 50 random point 

intercepts in CPCe image analysis software, version 3.5 (Kohler and Gill 2006). 
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Analyses were performed on substrate categories occurring in more than 5% of samples 

(McCune and Grace 2002), including coverage of scleractinian corals, turf algae, 

coralline algae, porifera, solitary ascidians, bivalves, gastropods, the echinoids Diadema 

setosum and Echinometra mathaei, as well as the amount of bare pavement. Preliminary 

analysis indicated that one natural reef site was an extreme outlier (NR2: Mean Bray-

Curtis distance = 0.77, SD = 2.62), and it was excluded from further analysis 

(Tabachnick and Fidell 2001). All data were pre-treated with arc-sine square-root 

transformations prior to multivariate analyses. 

 

Non-metric multidimensional scaling (NMS) on Bray-Curtis distances was used to 

ordinate benthic data for each site. The NMS autopilot mode of PC-ORD (McCune and 

Mefford 1999) performed a Monte Carlo significance test on the best of 40 runs of real 

data with 50 runs of randomized data to optimize the number of axes. To ease 

interpretation, ordinations were rotated to load the age of breakwaters on the first axis. 

Joint plots were superimposed on the ordination to illustrate the strength and direction of 

correlation of benthic members with ordination axes. Only benthos with a Pearson’s r > 

0.5 were included in the joint plot.  

 

To test for differences in benthic communities among breakwaters of different age and 

natural reefs, a one-way analysis of similarity (ANOSIM) was performed on benthic data 

from transects. ANOSIM is a multivariate randomization test analogous to a standard 

one-way ANOVA being performed on a distance matrix, but with a minimum of 
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assumptions (Clarke and Gorley 2006), and is appropriate for assessing groups that have 

been assigned a priori. ANOSIM produces a test statistic, R,  that assesses the null 

hypothesis that there are no differences among groups.  R  ≈ 0 when there are no 

significant differences among groups, with greater differences among groups indicated as 

R approaches -1 or 1. The significance of the R statistic is generated from randomization 

tests on the distance matrix. This was augmented with a one-way similarity percentage 

analysis (SIMPER) to determine the percent dissimilarity in benthic communities 

between reefs, and to identify benthic members which were driving these differences, 

where differences between groups had been shown to exist in ANOSIM.  

 

To further explore patterns of change in benthic variables among structures of different 

age, and with the natural reef, one-way ANOVA with post-hoc Tukey’s HSD tests were 

used to identify significant differences in benthic members that were related to 

community differences in multivariate analysis. 

 

Results 

Differences in benthic communities were indicated by separation of sites in NMS 

ordination (Figure 2), where a two-dimensional representation reduced stress 

significantly compared with randomized data (Real 2-D stress: 3.8, Stress in randomized 

data: 15.6; p < 0.05), with no significant further reduction in stress in a third dimension. 

The first axis represented 88% of variation and was aligned with differences in benthic 
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communities related to the age of breakwaters. There was a relatively tight clustering of 

breakwaters less than 5.5 years old to the left on this first axis, while breakwaters more 

than 25 years old and the natural reef sites were clustered to the right. In general, the 

distribution of sites on this axis changes sequentially with the age of breakwaters, 

becoming more similar to natural reefs with increased age. Pearson’s r indicated that 

younger breakwaters were strongly associated with turf algae (r = -0.90), bivalves (r = -

0.61), and sponges (r = -0.55), while older breakwaters and the natural reefs were 

strongly correlated with higher coverage of corals (r = 0.76) and coralline algae (r = 0.51) 

in the ordination. The second axis represented 9% of the variation, with sites spread 

across this axis based on the relative abundance of bare pavement (Pearson’s r = 0.95), 

bivalves (r = 0.58), and the urchin D. setosum (r = 0.58). The three sites most strongly 

associated with this axis (Site 1 of PA, PJ, and WD) represent the section of breakwater 

most exposed to the predominant wind-driven wave action on each of these structures 

(Sheppard et al. 1992; Smit et al. 2005), and this wave action may explain the increased 

bare pavement at these sites. In addition, differences in the relative abundance of D. 

setosum among sites was also associated with this axis, and its grazing action may have 

also contributed to the abundance of bare pavement that is the primary determinant of 

community divergence.  
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Figure 2: Ordination of benthic communities at sampling sites on breakwaters (●) and 
natural reefs (▲), with a joint plot of benthic components that were strongly associated 
with either axis.  Site name-number is given in capital letters, with age since construction 
(years) provided in parentheses for breakwaters.  
 

 

Benthic communities on breakwaters of consecutive age generally differed from one 

another, and the oldest artificial structure also differed from the natural reef (Table 1). Of 

all pair-wise comparisons, only reefs of 3.5 and 5.5 years (PA and PJ) had a non-

significant R-value; benthic communities on all other reefs compared differed 

significantly. Average percent dissimilarity values indicated that the youngest reefs (1.0 
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to 1.5 yr) had dissimilar communities, but that benthos became more similar through 5.5 

yr, where 3.5 and 5.5 yr reef communities did not differ from one another. The 5.5 and 25 

yr breakwaters, however, had highly dissimilar communities, likely as a result of the 20 

year difference in immersion time. Dissimilarity between the mature 25 and 31 yr reefs 

was lowest of  all significantly different groups. The oldest artificial reef (31 yr) had a 

benthic community that differed significantly from that on natural reefs, with a 

dissimilarity value that ranked third behind reefs that were 20 yr apart in construction 

(5.5 and 25 yr) or were just recently built (1.0 and 1.5 yr).  



55 

 

 

Table 1: Results of comparisons between benthic communities on breakwater sites of 
consecutive age and natural reefs, pooled for each location/age. The R-statistic and its p-
value for overall comparisons between groups is shown, with average percent 
dissimilarity (Mean δ (%)) where differences are significant. Percent cover of benthos 
discriminating these groups with their respective percent and cumulative percent 
contribution to the mean dissimilarity are shown for significantly different groups. 
Percent cover is based on raw data for ease of interpretation; all other results are based on 
arc-sine square-root transformed data. Only benthic variables with >10% contribution are 
shown. Calculations based on mean benthic cover across sites for each location.  

Groups 
Compared R p 

Mean 
δ (%) 

Benthic 
variable 

Group 1 
Cover 
(%) 

Group 2 
Cover 
(%) 

Contribution 
δ (%) 

Cumulative 
δ (%) 

1.0 & 1.5 yr 0.57 p < 0.001 33.9 Pavement 36.0 21.9 28.5 28.5 
    Turf algae 50.5 66.8 24.3 52.6 
    Porifera 4.3 0.3 12.0 64.8 
    Coral 0.03 2.6 11.3 76.2 
         
1.5 & 3.5 yr 0.50 p < 0.001 25.5 Turf algae 66.8 44.0 28.1 28.1 
    Pavement 21.9 39.9 25.8 53.9 
    Bivalves 1.7 7.5 15.8 69.7 
         
3.5 & 5.5 yr 0.11 p > 0.05 23.4 n. a.     
         
5.5 & 25 yr 0.92 p < 0.001 42.2 Coral 6.8 45.8 29.6 29.6 
    Turf algae 33.8 4.8 25.4 55.0 
    Bivalves 7.9 0.2 14.1 69.1 
    Pavement 44.2 34.5 12.1 81.2 
         
25 & 31 yr 0.75 p < 0.001 25.1 Pavement 34.5 13.8 26.7 26.7 
    Turf algae 4.8 10.1 20.6 47.3 
    Coral 45.8 56.0 12.3 56.7 
         
31 yr & NR 0.66 p < 0.001 25.6 Turf algae 10.1 1.0 25.8 25.8 
    Coral 56.0 36.5 25.3 51.1 
        Pavement 13.8 7.6 20.8 71.9 
 

 

In terms of specific benthic members which discriminated community groups, the results 

of SIMPER analyses augmented the patterns indicated by joint plot in the NMS (Table 2; 



56 

 

Figure 2). Dissimilarity among reefs less than 3.5 yr result mainly from differences in the 

relative abundance of bare pavement and turf, together contributing more than 50% of the 

cumulative dissimilarity. Because no difference was identified between reefs aged 3.5 

and 5.5 yr, no attempt was made to identify discriminating taxa. An increase in coral 

cover and a decline in turf algae with age were primarily responsible for the high 

dissimilarity shown between the 5.5 and 25 yr reefs. On 25 and 31 yr reefs, dissimilarity 

was caused mainly by differences in the relative abundance of pavement, turf, and coral. 

However, overall dissimilarity, as stated above, was lower here than in all other groups. 

Lastly, benthic differences between the oldest artificial reef (31 yr) and the natural reefs 

were mainly driven by lower cover of coral, turf, and bare pavement on natural reefs 

compared with the mature artificial reef.   

 

Changes in the cover of the benthic variables that were identified as discriminating reefs 

of different age are illustrated in Figure 3. One-way ANOVAs indicated significant 

difference in the cover of each benthic variable among reefs (ANOVA F(6,94): Turf = 59.5, 

Pavement = 15.1, Porifera = 8.4, Bivalves = 44.5, Coral = 295.7; p < 0.001 for each). 

Post hoc comparisons between reefs used Tukey’s unequal-N HSD tests.  

 

Turf algae generally declined with the age of breakwaters (Figure 3 a). There was no 

significant difference in turf on 1 and 1.5 year old reefs, but turf coverage declined 

significantly from 1.5 to 5.5 year old reefs (Tukey’s unequal N HSD test: p < 0.01) and 

again on reefs 25 years of age (p < 0.001). The oldest breakwaters (25 and 31 yr) and the 
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natural reefs did not differ in turf cover. The highest turf coverage occurred on 1.5 yr old 

reefs, with an average of almost 20% more cover than the temporally adjacent 1 yr and 

3.5 yr reefs. This increased turf cover corresponds with a proportional decline in the total 

of bare pavement, porifera, and bivalve cover on the same reef (Figure 3 b, c, d), 

suggesting that their decline in percent cover is a function of turf dominance on this 

artificial reef rather than age.  

 

The cover of bare pavement did not differ significantly between any of the five reefs aged 

1 to 25 yr, with the exception of the 1.5 yr old reef discussed above having less pavement 

than the 5.5 yr reef (Figure 3 b; p < 0.05). The oldest reef (31 yr) had the lowest bare 

pavement of all artificial structures, and this was significant compared with reefs aged 3.5 

to 25 yr (p < 0.05 each). Only this oldest reef (31 yr) had comparable bare pavement to 

the natural reef; all younger artificial structures had significantly more bare pavement 

than natural reefs (p < 0.05 for all).  

 

Porifera cover was highest on the youngest reef (1 yr), which had significantly more 

sponge than any other reef (p < 0.05 for all). However, porifera was not a dominant 

member of the benthos, with maximum coverage of only 4.3 ± 0.8%. There were no 

significant differences among any other reefs, with the exception that the 1.5 yr reef that 

was dominated by turf had less porifera cover than the 5.5 yr reef (p < 0.05). This 

explains the relatively weak, single appearance of porifera as a discriminating taxon in 

the SIMPER analysis (Table 1). 
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The cover of bivalves was low on the 1 yr reef and declined significantly on the 1.5 yr 

reef (p < 0.05), where the benthos was dominated by turf. Bivalve cover increased and 

peaked on the 3.5 and 5.5 yr reefs, which had significantly more bivalves than all other 

reefs examined (p < 0.05 for all). The lowest bivalve cover was on the mature 25 yr old 

reef, which did not differ from the 31 yr artificial reef nor the natural reef.  

 

In contrast to all other benthic variables which tended to decline with age, coral cover 

increased with the age of breakwaters. Coral coverage was virtually absent on 1 year old 

reefs with only one juvenile coral observed, but increased significantly on reefs 1.5 years 

old where they occupied 2.4 ± 0.4% of substrate (p < 0.001). Coverage increased 

significantly again on 5.5 year old reefs, as well as at each successive age (p < 0.001 for 

each). Coral cover was highest on the oldest reef (31 years of age), at 56.0 ± 1.4 %, and 

the rate of coral cover increase showed no indications of becoming asymptotic on older 

breakwaters. Natural reefs had 36.5 ± 1.7% cover, which was significantly higher than 

reefs ages 5.5 yr or less (p < 0.001), but was lower than the coral cover on mature 25 and 

31 yr breakwaters.  
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Figure 3: Mean percent cover (± SE) of benthic variables associated with breakwaters of 
different age (closed circles) and natural reefs (open circle; NR). Note difference in scale 
on vertical axis. 
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Discussion 

The long-term development of benthic communities on the large-scale breakwaters is 

poorly understood, and is likely to be of increasing importance with urbanization of 

coastal marine ecosystems worldwide. Although early benthic development on recently 

submerged structures has been relatively well studied, there is inadequate knowledge of 

how benthic assemblages develop over the long-term and how they compare with natural 

reefs over time. The results of this study suggest that benthic communities associated 

with breakwaters continue to change over periods exceeding 31 years, and that while 

there is a general convergence in community structure towards that on natural reefs with 

increasing breakwater age, the overall benthic community remains distinct. However, like 

all natural experiments the results of this study are qualified. This is not a longitudinally 

temporal study but a one-time comparison of breakwaters that were constructed at 

different times in different physical and biological conditions. Although there appears to 

be general trends in community development among structures of different age in this 

study, long-term monitoring of community development on each breakwater would be 

necessary to determine the temporal and spatial consistency of these patterns. 

 

The youngest artificial structures examined here were dominated by fouling organisms 

such as turf algae, bivalves, and sponges. Turf algae are among the earliest colonists on 

artificial structures, and are often dominant members of the benthos during the first few 

years (McClanahan 1997; Aseltine-Neilson et al. 1999; McClanahan et al. 2002). Here, 
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turf algae cover was greater on 1.5 year old reefs, where it occupied over two-thirds of 

the substratum, than on 1.0 year old reefs or on reefs of greater age.  This might suggest a 

temporal pattern in which algal abundance increases through at least the first 1.5 years of 

age, before declining.  It is unlikely, however, that the spike in abundance on 1.5 yr reefs 

is related to age as much as differences in environmental conditions. Cover of turf algae 

is usually highest shortly after immersion, and cover generally declines within a few 

months and remains relatively stable for several years thereafter (McClanahan 1997; 

Bacchiocchi and Airoldi 2003). Instead, the high coverage of turf algae on the 1.5 yr reef 

was likely due to coastal reclamation occurring within several hundred meters of this 

location during sampling. The suspension of sediments during dredging is known to 

increase nutrient loads in the water column (Lohrer and Wetz 2003; Cao et al. 2007), and 

such nutrient pulses are associated with increased turf algae cover (McClanahan et al. 

2002; McClanahan et al. 2003). The spike in turf algae was associated with a decrease in 

the amount of bare pavement available for colonization, and it is likely that competitive 

interference for settlement space explains the concomitant decrease in the abundance of 

sponges and bivalves on this 1.5 year old reef. Overall on the reefs younger than 5.5 

years as a whole, changes in the abundance of bivalves generally reflect patterns of 

bivalve development on artificial structures elsewhere. Bivalves are often common 

members of the early benthic community (Perkol-Finkel and Benayahu 2005), and 

generally increase in dominance over the first several years on artificial structures (Hirata 

1987; Aseltine-Neilson et al. 1999; Nicoletti et al. 2007). Bivalve cover peaked on the 3.5 

and 5.5 year old reefs examined here, and then declined on older reefs. Similarly, sponge 

abundance was highest on the youngest artificial reef, and declined thereafter. 
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The decline in turf, bivalves, and sponges on the oldest breakwaters coincided with an 

increase in coral cover. Corals were virtually absent on the 1 yr old artificial reef with 

only a single juvenile observed, but increased to 2.4 ± 0.4% cover on a reef just six 

months older. This relatively rapid increase in coral cover on young breakwaters is not 

unusual. Although coral recruits are known to settle to artificial materials within a matter 

of months (Glassom et al. 2004; Abelson et al. 2005), they are rarely observed in situ on 

artificial structures during their first year likely as a result of their small size and cryptic 

habitat preference (Abelson and Shlesinger 2002; Lam 2003). However,  observed 

densities generally increase rapidly within the first few months of the second year, as 

increased recruitment balances loss to mortality and the surviving juveniles grow to 

sufficient size for observation (Abelson and Shlesinger 2002; Lam 2003). Coral cover 

showed a near linear pattern of increase on reefs of subsequent age, with no indication of 

asymptote through 31 years in this study. Abelson and Shlesinger (2002) observed a 

similar linear increase in coral colonies over an eight year period on artificial reefs in the 

Red Sea. However, a series of studies of other artificial reefs in the Red Sea indicate that 

hard coral cover does tend to plateau over time. There, hard coral cover was 5.7% on 10 

year old reefs (Perkol-Finkel and Benayahu 2005), increasing to 16.6% on 14 year old 

reefs (Perkol-Finkel and Benayahu 2004), but stabilizing on seven reefs ranging from 

approximately 20 to over 100 years of age (mean: 33.4%; Perkol-Finkel et al. 2005). The 

lack of such an asymptote on reefs studied here may be due to reduced competition for 

space. In the Red Sea, soft corals preferentially recruit to artificial structures (Perkol-

Finkel and Benayahu 2007), and their cover increases significantly with age (Perkol-
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Finkel et al. 2005), frequently resulting in soft coral dominance on these man-made 

structures (Perkol-Finkel and Benayahu 2004). The competition for space between soft 

and hard corals may explain the asymptotic cover of hard corals on older artificial 

structures in the Red Sea. However, soft corals do not exists in the study area examined 

here (Riegl 1999), and the absence of these competitive interactions may have allowed 

the continued increase in hard coral cover on older breakwaters examined here. However, 

a variety of other mechanisms could also be involved in developing these patterns, and 

ascribing cause and effect would be speculative. Regardless of cause, there has been no 

plateau in coral cover up to 31 years on breakwaters, and coral cover on the 31 year old 

breakwater is higher than on the nearby natural reef suggesting that it may continue to 

increase on more mature breakwaters.  

 

Overall, the change in benthic communities on reefs of different age suggests a 

progressive convergence towards assemblages on natural reefs. It has been suggested that 

at least ten years are required for artificial structures to develop communities comparable 

to natural reefs (Aseltine-Neilson et al. 1999; Abelson and Shlesinger 2002; Perkol-

Finkel and Benayahu 2005). However, even the oldest 31 year old reef had a community 

distinct from those on natural reefs in this study. Although cover of turf, bivalves, 

sponges and bare pavement were comparable between the oldest artificial reef and the 

natural reefs, there was significantly higher coral cover on the mature artificial reef and 

this is driving multivariate differences between communities on these reef types. It is 

unknown whether coral cover will ever be comparable among these types of reef. These 



64 

 

natural reefs are in a low-relief area with substrates dominated by mobile sands and silts 

(Chapter 2; Riegl 1999) while the high-relief rocky breakwaters provide substantial 

opportunity for coral settlement, presumably with lower impacts from sedimentation 

stress. These habitat associated differences may result in continued divergence of natural 

reef and mature breakwater coral communities in this area as corals develop higher cover 

on breakwaters. In addition, the planned development of coastal real estate, ports, and 

desalination facilities near the natural reefs (Rezai et al. 2004) are likely to contribute to 

further divergence of these communities.  

 

The results of this study must be interpreted with caution. Although it appears that 

successional changes in benthic communities on breakwaters are resulting in a 

convergence towards those on natural reefs, the results are based on a single point in 

time. While it is possible that there is a spatially and temporally consistent sequence of 

community change taking place on these breakwaters, it is also possible that large-scale 

changes in hydrodynamics, nutrient loads, and other environmental parameters resulting 

from the extensive coastal developments in this area will result in divergent successional 

trajectories for benthic communities on reefs constructed at different points in time. 

Long-term monitoring of each artificial reef would be required to fully understand the 

dynamics of community change over time, with manipulations required to identify causal 

processes driving community development. Our continuing study of these communities 

will begin that these analyses. 
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Chapter 4: A comparison of natural reefs with large, mature artificial reefs 

 

Introduction 

Artificial reefs are often used to mitigate impacts from human activities in coastal 

ecosystems and to enhance commercial fisheries yield (Svane and Peterson 2001). They 

are rapidly colonized and usually develop fish and benthic communities with comparable 

or higher abundance and diversity than surrounding natural reefs (Bohnsack et al. 1994; 

Lincoln-Smith et al. 1994; Stephens et al. 1994; Pickering and Whitmarsh 1997; Rilov 

and Benayahu 2000; Pondella et al. 2002; Perkol-Finkel and Benayahu 2004). Artificial 

reefs may enhance regional biomass and production of commercial fisheries species by 

providing structure in areas where habitat is not present or is the limiting factor 

controlling populations (Polovina and Sakai 1989; Bohnsack et al. 1997; Carr and Hixon 

1997; Pickering and Whitmarsh 1997), or by creating new foraging opportunities for 

roving predators (Bohnsack et al. 1994). However, clear evidence in support of using 

artificial structures for production enhancement is limited, and many artificial reefs may 

simply attract fish from the surrounding natural area (Bohnsack 1989; Bohnsack et al. 

1994; Grossman et al. 1997; Pickering and Whitmarsh 1997). Attraction and aggregation 

of fish on artificial reefs can be problematic, as concentrated fishing efforts near artificial 

reefs could ultimately lead to declines in local populations (Bohnsack et al. 1997; 

Grossman et al. 1997). In addition, artificial reefs could potentially decrease regional 

productivity if they attract juvenile settlers that would have had better survivorship on 

natural reefs (Carr and Hixon 1997). Using artificial reefs to mitigate loss of natural reef 
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habitat is also problematic, as artificial reef communities can differ markedly from the 

natural reef communities they are built to restore or rehabilitate (Clark and Edwards 

1999; Rilov and Benayahu 2000). 

 

Artificial reefs must be compared with natural reefs if we are to assess their performance 

in meeting management goals and to understand their ecological role in the marine 

environment (Carr and Hixon 1997). Comparisons of community structure in the form of 

species composition and abundance can lead to an understanding of whether artificial 

reefs can act as replacements for natural reefs for mitigation purposes, while comparing 

functional community attributes such as recruitment patterns and size-class distribution 

can indicate whether artificial reefs are enhancing production (Carr and Hixon 1997).  

 

Many previous comparisons of artificial and natural reef communities have been 

confounded by inappropriate experimental design. Comparisons with natural reefs have 

often used small artificial structures covering only a few square meters of area (Bohnsack 

et al. 1994; Carr and Hixon 1997; Connell 1997b; Tupper and Hunte 1998; Abelson and 

Shlesinger 2002), where results are likely biased by size-related differences in diversity 

and abundance, as well as biased functional responses in predation pressure, recruitment 

patterns, and migration (Bohnsack et al. 1994; Connell 1997b; Tupper and Hunte 1998). 

It is also likely that small artificial reefs will have negligible impact on local fisheries 

production given their limited volume relative to natural reef habitats (Bohnsack et al. 

1997). In addition to size, the age of the artificial reefs is also of importance but has 
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frequently not been considered. Many comparisons to natural reefs have focused on 

artificial structures deployed for less than three years (Bohnsack et al. 1994; Connell 

1997b; Tupper and Hunte 1998; Clark and Edwards 1999; Badalamenti et al. 2002; 

Chapman and Clynick 2006). Such structures will be dominated by fouling organisms 

during the initial stages of development (Perkol-Finkel et al. 2006), and benthic 

communities will continue changing for several years (Aseltine-Neilson et al. 1999; 

Perkol-Finkel and Benayahu 2005), perhaps taking decades to mature (Clark and 

Edwards 1999; Perkol-Finkel et al. 2005). Associated fish communities are also likely to 

change during this period due to obligate requirements for particular benthic organisms as 

food, shelter, or settlement habitat, making comparisons to established natural reefs 

during such early developmental stages premature and inappropriate.  

 

There is increasing recognition that man-made coastal defense structures such as 

breakwaters and sea-walls can act as large-scale unplanned artificial reef habitat (Svane 

and Peterson 2001; Bulleri 2005c). Although not designed to mitigate damage to natural 

reefs or enhance fisheries, they nonetheless provide significant hard-bottom habitat and 

three-dimensional structure in developed coastal areas, particularly compared with small-

scale, purpose-built artificial reefs, and they are likely to become increasingly common as 

human populations grow. As such, there is an interest in determining the ecological role 

that these artificial reefs play in coastal ecosystems (Lincoln-Smith et al. 1994; 

Bacchiocchi and Airoldi 2003; Airoldi et al. 2005; Moschella et al. 2005).  
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Such man-made rocky reefs are now an important part of the coastal environment in 

Dubai, United Arab Emirates. Here, approximately 200 km of man-made shoreline have 

been added to the 50 km of natural sandy coast, with over by 65 km of protective rocky 

breakwaters substantially increasing the amount of hard-bottom habitat in this area. The 

addition of this large-scale artificial habitat may be particularly important in Dubai as 

natural reefs are restricted to a series of discontinuous patch reefs isolated to a 10 km 

near-shore band in western Dubai, and the remaining coastal area is dominated by mobile 

sands and silt unsuitable for most hard-bottom organisms (Chapter 2; Riegl 1999). While 

some of these breakwaters have impacted natural coral reef habitat (Chapter 2), most 

were constructed in sand habitats with limited three dimensional structure.  

 

Coastal defense structures can potentially increase the regional production of reef-

associated fauna. By adding a substantial volume of hard-bottom habitat in areas with 

relatively little natural reef, these breakwaters may capture dispersive larvae of reef fauna 

that may otherwise have been lost to high planktonic mortality or advection away from 

suitable settlement habitats (Carr and Hixon 1997). This may be particularly applicable to 

these breakwaters as there are natural reefs up-current in Dubai and Abu Dhabi (Riegl 

2002a; EWS-WWF 2008), and no significant natural reefs down-current from them 

(Riegl 1999).  

 

The aim of this study is to determine whether the coral and fish communities that develop 

on large breakwaters that have been in place for decades are comparable to those on 
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natural reefs. This has important implications for marine management, as such structures 

may inadvertently mitigate impacts from coastal development if communities are 

comparable or they may enhance local diversity and abundance over the long term. A 

further goal of this study is to compare seasonal changes in fish abundance, recruitment, 

and age-class structure on artificial and natural reefs to determine whether functional 

attributes of the fish community are comparable between reef types. Such information is 

essential for understanding whether or not artificial reefs function similarly to natural 

reefs, and whether they may be enhancing fish production. 

 

Methods 

This study was conducted in Dubai, United Arab Emirates, in the south-eastern basin of 

the Persian Gulf. The sea bottom is typically shallow (<10 m) and low relief, with soft-

bottom, mobile sands covering most of the area. Hard substrate suitable for corals is 

found in areas with naturally emergent limestone caprock, as well as on numerous rocky 

breakwaters along the coastline. Natural patch reefs are found within 1 km of shore along 

the western 10 km of Dubai where emergent caprock exists, and generally cover areas of 

1,500 – 2,500 m2 each. Six natural reef sites were sampled in this study, along with a pair 

of sites on each of two breakwaters (Figure 1). The 2.8 km long Jebel Ali port breakwater 

was built in 1977 and is composed of approximately 420,000 m3 of 2 m wide concrete 

tetra-foil jacks, while the dry dock breakwater is made of approximately 400,000 m3 of 1 

m3 gabbro rock blocks and was constructed in 1982. Overall depth to the natural substrate 

was comparable between natural and artificial reefs (4 – 9 m), and sampling was 
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standardized at approximately 5 m depth for all sites, with only the windward face of 

breakwaters sampled. 

 

Figure 1: Map illustrating coral and fish sampling sites, with location names in bold. 
Other structures were not included in this study due to their relatively young (< 5.5 year) 
age.   
 

Coral sampling was conducted in October 2006. At each site, six replicate 30 m line 

transects were photographed at 1.5 m intervals using a SeaLife DC500 5.0 mega-pixel 

camera mounted on a PVC frame, for a total of 126 quadrats per site. Each photo-quadrat 

enclosed a 0.25 m2 area. Images were analyzed with 50 randomly placed points using 

CPCe, version 3.4 (Kohler and Gill 2006).  Fish were sampled quarterly from October 
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2006 to July 2007 to allow examination of seasonal changes in abundance. Abundance 

was visually estimated from twelve replicate 1 m wide and 30 m long belt transects, with 

all fish within 1.5 m above the substrate included. Width of transects was estimated with 

the use of a 1 m hand-held T-bar and speed was maintained at approximately 6 m min-1 

while maintaining height at approximately 50 cm above the substrate. Fish were 

categorized as juveniles, sub-adults, or adults where appropriate based on distinguishing 

characteristics described in Randall (1995).  

 

Coral coverage from quadrats was pooled for each transect. Mean coverage of corals and 

density of fish (10 m-2) from each site were calculated from transects. Coral data were 

arc-sine square-root transformed and fish data log(n+1) transformed to normalize the data 

prior to analysis. Species occurring in less than 5% of samples were removed prior to 

multivariate analyses. 

 

Both multivariate and univariate techniques were used to compare coral and fish 

assemblages on natural and artificial reef sites. Non-metric multidimensional scaling 

(NMS) on relative Sorenson (i.e. Bray-Curtis) distances was used to provide a graphical 

depiction of communities on natural and artificial reefs. The NMS autopilot mode of PC-

ORD (McCune and Mefford 1999) performed a Monte Carlo significance test on the best 

of 40 runs of real data with 50 runs of randomized data to optimize the number of axes. 

To illustrate the strength and direction of correlation of species with ordination axes, joint 

plots of species were superimposed on overall coral and overall fish community 
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ordinations. Only species with a Pearson’s r > 0.40 were included in the joint plot.  

Successional vectors were overlaid on an ordination of fish communities from the entire 

sampling year to illustrate gross seasonal changes in community structure, and ordination 

of fish communities was subsequently performed separately for each season. To ease 

interpretation, all ordinations were rotated to load reef type on the first axis.  

 

The significance of differences between natural and artificial reef groups illustrated in 

ordinations was calculated using non-metric Multi-response Permutation Procedure 

(MRPP). This is a non-parametric procedure for testing the hypothesis of no difference 

between community groups, and is particularly compatible with NMS results. The effect 

size, A, ranges from A = 0, when the heterogeneity within groups is equal to that expected 

by chance, to A = 1 when all samples are identical in a group. In community ecology,  A 

< 0.1 is common and A ≥ 0.3 is considered fairly high  (McCune and Grace 2002).  

Indicator species analysis (Dufrene and Legendre 1997) was used to identify species 

which had significant affinity for either natural or artificial reefs. This method calculates 

an indicator value based on a species’ relative abundance and fidelity in a group. This 

value ranges from 0 to 100, where 100 indicates a species is present at all sites in that 

group, and is not found elsewhere.  

 

One-way ANOVA were used to compare mean coral richness, overall coral cover, and 

cover of dominant coral species identified from multivariate analysis among reef types. 

Shannon Wiener diversity was compared using a Shannon t-test. For fish, interactions 
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between reef type and season were assessed using two-way ANOVA on mean richness, 

overall abundance, and abundance of dominant species, juveniles, and piscivores. Post 

hoc analysis unequal N HSD tests were used to identify different groups where ANOVA 

found significant differences among groups. Shannon Wiener diversity of fish was 

compared among reef types seasonally using pair-wise Shannon t-tests.  

 

During the course of this study (April 2007), three of the natural reef sites were destroyed 

by the construction of a causeway. As a result, fish data were available only for fall, 

winter, and spring at one site, and fall and winter at two sites. This incident would have 

no impacts on benthic data, as sampling had occurred several months earlier. To assess 

the impacts of the loss of these sites on fish data, preliminary analyses were performed 

with the three impacted sites excluded. This analysis gave the same general results as 

using all six sites (MRPP A = 0.26 and 0.27, respectively; p < 0.001 for both), so data 

from all sites were retained to enhance the precision of estimates. Only sites with data for 

the entire year were included in successional vector diagrams as the purpose was to 

illustrate seasonal changes in communities at each site over a full year. To account for 

differences in sample sizes among natural and artificial reefs, post-hoc unequal-N HSD 

tests were used for comparisons for univariate analyses of fish data.  

 

Results 

Coral communities 
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Diversity measures and overall coral cover for the 30 species of coral observed on natural 

and artificial reefs are listed in Table 1. Overall, natural reefs contained a higher total 

number of coral species but there was no difference in mean species richness between 

reef types (ANOVA: F(1) = 4.1). However, natural reefs did have significantly higher 

Shannon-Wiener diversity than artificial reefs (Shannon t-test: p < 0.01), reflecting higher 

evenness and richness on natural reefs compared with artificial reefs (Natural reef E: 

0.63; Artificial reef E: 0.50). On artificial reefs, three dominant species made up over 

three-quarters of coral cover, Cyphastrea microphthalma (42% of coral cover), Platygyra 

daedalea (20%), and Porites lutea (14%), while relative abundance and composition 

differed on the natural reef, with three quarters of cover made up by five species: P. lutea 

(23% of coral cover), Porites harrisoni (22%), C. microphthalma (14%), Acropora 

downingi (9%), and Acropora clathrata (8%). Artificial reefs contained 50.0 ± 3.3% 

coral cover, which was significantly higher than the 30.7 ± 5.5% coral cover on the 

natural reefs (ANOVA: F(1)=5.4, p < 0.05). 

 

Table 1: Coral richness (S), diversity (H’), and substrate coverage (%) on sites from 
natural and artificial reefs. The α symbol indicates significant difference at p < 0.05. 

Reef Type 
Total 

Richness 
Mean 

Richness 
Diversity 

(H') 
Coral cover 

(%) 
Natural 29 23.6 ± 1.7 2.3 ± 0.1 α 30.7 ± 5.5 
Artificial  20 18.8 ± 1.4 1.8 ± 0.1 50.0 ± 3.3 α 

 

 

Multivariate analyses indicated strong differences between coral communities on natural 

and artificial reefs, as illustrated by separation of reef types in ordination (Figure 2).  A 
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two-dimensional representation provided a significant reduction in stress compared with 

randomized data (Real 2-D stress: 4.4, Stress in randomized data: 26.8; p < 0.05), and 

adding a third dimension did not improve stress significantly. The axis aligned with reef 

type explained 48% of the variation. Pearson’s correlation indicated strong association 

between several coral species and artificial reefs on Axis 1, C. microphthalma (r=0.96), 

P. daedalea (r=0.83), and Siderastrea savignyana (r=0.79). These species were also 

found to be significant indicator species for artificial reefs (Indicator Value (IV)=71.9, p 

< 0.01; IV=74.3, p < 0.05; and IV=78.7, p < 0.05, respectively), indicating a strong 

affinity for this reef type. Natural reefs were strongly correlated with A. downingi 

(Pearson’s r = -0.61), P. harrisoni (r = -0.57), and Pseudosiderastrea tayamai (Pearson’s 

r = -0.50), and P. tayamai was also a significant indicator species on natural reefs 

(IV=83.2; p <0.01). MRPP analysis supported the groupings identified by ordination, 

showing that the coral communities on natural reefs and artificial reefs were significantly 

different groups (A = 0.27, p < 0.01).  The second axis, representing 46% of the variation, 

was related to compositional differences among natural reefs. Sites spread on this axis 

were strongly correlated with A. downingi (Pearson’s r = 0.83), P. harrisoni (r=0.80), and 

A. clathrata (r=0.78), or moderately with P. lutea (r = -0.48). The spread of natural reef 

sites on this axis contrasts with the tight clumping of artificial reef sites, indicating that 

natural reef sites were more dissimilar to one another than artificial reef sites on this axis. 

This reflects results of earlier studies which have found that there are several distinct 

coral assemblages associated with these natural reef sites (Chapter 3; Riegl 1999) 
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Figure 2. Ordination of natural and artificial reef sites in coral species space, with joint 
plot of coral species. The relative strength and direction of a species’ correlation with the 
ordination is indicated by the radiating lines.  
 

The composition of each reef type was compared using species found to have strong 

affinity with either reef type during multivariate analysis (above). ANOVA showed that 

cover of A. downingi and P. harrisoni, species associated with natural reefs in 

multivariate analysis, did not differ significantly from their cover on artificial reefs 

(F(1)=1.9 and 0.4, respectively). However, natural reefs did contain significantly more 

Pseudosiderastrea tayamai (F(1)=9.6, p < 0.05). Artificial reefs contained significantly 

more C.  microphthalma, P. daedalea, and S. savignyana than were observed on natural 

reefs (F(1)=31.9, 21.9, and 24.1, respectively, p < 0.01). 
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Fish communities 

Diversity measures for the 56 species of fish observed on natural and artificial reefs over 

the entire year are listed in Table 2. Overall, although artificial reefs contained a higher 

total number of fish species during the year of sampling, mean species richness and 

Shannon-Wiener diversity did not differ between reef types when averaged for the four 

seasons (Richness: ANOVA F(1) = 2.7; Diversity: Shannon t-test: p = 0.9). Seasonal 

changes in fish richness and diversity are illustrated in Figure 3. Two-way ANOVA of 

mean richness indicated that there was a significant interaction between reef type and 

season (F(3)=6.1, p < 0.01). Seasonally, richness was stable on natural reefs (ANOVA 

F(3)=0.3), but varied significantly on artificial reefs (Figure 3a; ANOVA F(3)=25.4, p < 

0.001). Unequal-N HSD tests showed significantly lower richness in the winter and 

spring than both fall and summer on artificial reefs, with summer having significantly 

higher mean richness than all other seasons (p < 0.05 for all). However, pair-wise 

comparisons of Shannon-Wiener diversity (H’) within and among reef types and season 

(Figure 3b) showed  no significant differences (Shannon t-tests, p > 0.05 for all), 

indicating that although richness was higher on artificial reefs in summer, evenness was 

low.  
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Table 2: Fish richness (S) and diversity (H’) on natural and artificial reefs. Means based 
on the average from four seasons (mean ± SE).  

Reef Type 
Total 

Richness 
Mean 

Richness (S) 
Mean 

Diversity (H') 
Natural 40 17.6 ± 0.6 2.5 ± 0.3 
Artificial  51 19.8 ± 1.3 2.6 ± 0.4 

 

 

 

Figure 3. Fish richness (a) and diversity (b) on natural and artificial reefs by season 
(mean ± SE).  
 

Indicator species analysis indicated that there were seasonal changes in the species that 

were associated with each reef type. During the fall and summer seasons there were a 

number of species with significant affinities for each reef type, while there were no 

species with significant indicator values during the winter and spring seasons (Table 3). 

Because significant indicator values demonstrate a species relative abundance and fidelity 

for a group, this indicates that while a number of species were strongly associated with a 

particular reef type during the fall and/or summer, these species were not strongly 

associated with either reef during the winter and spring. Only one of the 16 indicator 

species, Pomacentrus leptus, was found to switch habitats during the year, being 
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significant on natural reefs in the fall and then artificial reefs the following summer. All 

other indicator species showed fidelity for one particular reef type across seasons. 

 

Table 3: Seasonal indicator values for species with affinity for natural or artificial reefs. 
Only species with significant (p < 0.05) indicator values are listed. 

Reef 
Type Fish Species Fall Winter Spring Summer

Natural Cryptocentrus lutheri  93% None None  
 Halichoeres stigmaticus     100% 
 Lutjanus fulviflamma 84%    
 P. leptus 83%    

Artificial Cheilodipterus novemstriatus 70% None None 96% 
 Ecsenius pulcher  82%    
 Carangoides bajad  100%    
 Chaetodon nigropunctatus 75%   75% 
 Lutjanus ehrenbergii 90%   82% 
 Pomacenthus maculosus 76%   74% 
 Abudefduf vaigiensis    100% 
 P. leptus    96% 
 Pomacentrus trichourus    98% 
 Scarus ghobban    100% 
 Siganus canaliculatus 75%    
  Acanthopagrus latus 75%     100% 

 

Ordination of fish communities associated with natural and artificial reef sites throughout 

the sampling period indicated differences between reef types (Figure 4a; Stress: 12.7, p < 

0.05).  The first axis was aligned with reef type and explained 49% of the variation in fish 

communities. Pearson’s correlation indicated that the Arabian monocle bream, Scolopsis 

taeniatus (r = -0.53), was strongly associated with natural reefs, and the sordid sweetlip, 

Plectorhinchus sordidus (r = -0.45), and Luther’s shrimpgoby, C. lutheri (r = -0.48), 

moderately so. Species strongly associated with artificial reef sites included the 
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Ehrenberg snapper, L. ehrenbergii (r = 0.80), the pale-tail damsel, P. trichourus (r = 

0.75), the dark butterflyfish, C. nigropunctatus (r = 0.70), the twospot cardinalfish, C. 

novemstriatus (r = 0.68), and the Arabian angelfish P. maculosus (r = 0.54). These 

species were also been significant indicator species for artificial reefs, above (Table 3). 

MRPP analysis of natural and artificial reefs supported ordination results, showing 

significant difference between these groups (A = 0.20, p < 0.001). The second axis 

explained 41% of the variation and was mainly associated with the abundance of the dark 

damsel, Pomacentrus aquilus (Pearson’s r = 0.71). 

 

Figure 4. Ordination of fish communities on natural (●) and artificial (■) reef sites. (a) 
Fish communities at each site over the entire sampling period, with a joint plot of fish 
species (Stress: 12.7). Radiating lines indicate the relative strength and direction of 
correlation of each species with the ordination. (b) Fish communities at natural and 
artificial reef sites with successional vectors connecting consecutive sampling seasons (in 
series as Fall, Winter, Spring, Summer) (Stress: 11.4). Solid line and circles: natural 
reefs; dashed line and squares: artificial reefs. Species codes: PA: P. aquilus, PM: P. 
maculosus, CNI: C. nigropunctatus, LE: L. ehrenbergii, PT: P. trichourus, CNO: C. 
novemstriatus, ST: S. taeniatus, CL: C. lutheri, PS: P. sordidus.  
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Successional vectors were combined with ordination to examine the temporal changes in 

fish communities throughout the sampling year (Figure 4b; Stress: 11.4, p < 0.05). This 

analysis was limited to sites which had been sampled over the entire year. The ordination 

provided a significant reduction in stress over randomized data (Stress: 11.4 vs. 21.2 for 

randomized data, p < 0.05), with the axis aligned with reef type (Axis 1) representing 

55% of the variation. All sites, both on natural and on artificial reefs, showed community 

change during the year, with fish communities at each site showing most dissimilarity 

during the winter and spring, while summer samples returned to communities similar to 

those seen the previous fall. However, there appeared to have been substantial differences 

in the amount of community change over the year on natural and artificial reefs. The 

relatively tight clustering of each natural reef site indicates limited changes in fish 

communities with seasons, while the wide spacing between seasons on most artificial reef 

sites indicates substantial changes in community structure throughout the year. In 

addition, successional vectors indicated that artificial reef communities were dissimilar 

from natural reefs in the fall and the summer, but shifted towards natural reef 

communities through the winter and/or spring. Overall, these successional vectors 

indicate larger excursions in community structure on artificial reefs over the course of the 

year compared with natural reefs, but that each reef community tended to return to 

similar structure in the summer to what was observed the previous fall.  

 

Seasonal changes in fish communities were further examined by comparing natural and 

artificial reefs during each sampling period. Plots of fish communities by season 
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indicated that the strength of differences between natural and artificial reefs changed 

through the year (Figure 5). During the fall, fish assemblages on natural and artificial 

reefs clearly separated from each other, and were significantly different (Figure 5a; 

MRPP: A= 0.38, p < 0.01). Communities on natural and artificial reefs converged during 

the winter and spring (Figure 5b,c), resulting in no significant difference as a result of 

increased similarity (MRPP, Winter: A= 0.03, p > 0.05, Spring: A= 0.08, p > 0.05). 

However, with the onset of summer fish communities on natural and artificial reefs again 

diverged from one another, becoming significantly different (Figure 5d; MRPP: A= 0.27, 

p < 0.05).  

 

Figure 5. Ordinations illustrating seasonal changes in similarity of in fish communities on 
natural (●) and artificial (■) reefs.  
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Because multivariate analysis had indicated important seasonal changes in communities, 

univariate techniques were used to examine the relative contribution of different life 

stages to seasonal changes (Figure 6). Juvenile abundance was observed to increase in 

summer samples after a mass recruitment pulse in late spring (Figure 6a). A two-way 

ANOVA between season and reef type indicated that this seasonal change in juvenile 

abundance was significant (F(1)=20.1, p < 0.001), but that there was no difference 

between reef types (F(1)=3.1) nor an interaction among seasons and reef types (F(1)=0.1). 

The increase in abundance in summer was significant compared with all other seasons on 

both natural and artificial reefs (ANOVA F(3)=14.5 and 8.1, respectively; Unequal N 

HSD: p < 0.05). The increase in the abundance of juveniles on both reef types was 

associated mainly with one species, P. aquilus, which made up 64% and 68% of juveniles 

on natural and artificial reefs, respectively. This species had not been associated with 

either reef type during multivariate analysis, above (Table 3; Figure 4). A two-way 

ANOVA of sub-adult abundance between the main effects of season and reef type 

indicated that there were significant differences among seasons (F(3)=4.1, p < 0.05), but 

not between reef types (F(1)=2.7), and there was no interaction between main effects 

(F(3)=1.7). There were significantly fewer sub-adult fish during the spring season than any 

other season (Figure 6b; Unequal N HSD: p < 0.05 for each).  The abundance of adult 

fish differed between seasons and reef types (two-way ANOVA: F(3)=9.9 and F(1)=18.1, 

respectively, p < 0.001 each), and there was a significant interaction between these main 

effects (F(3)=3.1, p < 0.05). There were no significant differences in adult abundance 

among seasons on natural reefs (Figure 6c; ANOVA F(3)=1.6). However, the abundance 

of adults increased significantly on artificial reefs in the summer compared with winter 
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and spring (Figure 6c; ANOVA F(1)=8.7, p < 0.01; Unequal N HSD: p < 0.01 each), and 

this represented the largest numerical change in abundance observed between seasons for 

any age-classes on either reef type. The tripling in adult abundance on artificial reefs 

between spring and summer likely indicates a seasonal attraction of adults to these 

structures during this time period.  

 

 

Figure 6. Seasonal abundance of (a) juvenile (b) sub-adult, and (c) adult fish on natural 
and artificial reefs (mean ± SE).  
 

The increase in adult abundance on the artificial reefs in the summer (Figure 6c) was 

mainly associated with three species, together making up 55% of adults observed during 

the summer: the Ehrenberg snapper, L. ehrenbergii (24% of all adults), the two-spot 

cardinalfish, C. novemstriatus (18%), and the Arabian angelfish, P. maculosus (13%). 

These species were each strongly associated with artificial reefs in ordination (Figure 4a) 

as well as in indicator species analysis (Table 3), indicating that they were strong drivers 

of differences between natural and artificial reefs. ANOVA showed significant 

differences in seasonal abundance of L. ehrenbergii (F(3,12)=12.9, p < 0.001) and P. 

maculosus (F(3,12)=4.9, p < 0.05), with post-hoc Tukey’s tests showing significantly 
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higher abundance in the fall and summer over the winter and/or spring (p < 0.05). During 

the winter and spring the abundance of each of these species on artificial reefs had 

declined to the point that they were statistically indistinguishable from natural reefs, 

partially explaining both the convergence of natural and artificial reefs in ordination as 

well their lack of significance as indicator species during these seasons (L. ehrenbergii: 

F(1)=2.7,F(1)=3.8; P. maculosus: F(1)=0.0,F(1)=2.5; C. novemstriatus: F(1)=1.6,F(1)=1.0, 

winter/spring, respectively). The seasonal patterns of abundance of adults of these 

species, therefore, likely explain much of the seasonal change in community structure 

identified from multivariate analyses.  

 

Pooling all life stages illustrates seasonal differences in overall fish abundance on natural 

and artificial reefs (Figure 7a). Two-way analysis of variance found a significant 

interaction between reef type and season (F(3)=3.1, p < 0.05). Post-hoc unequal N HSD 

tests showed that on artificial reefs, there were significantly more fish in the summer than 

in the winter and spring (p < 0.001 each), while abundance did not change seasonally on 

natural reefs. In summer, there were significantly more fish on artificial reefs than were 

observed on natural reefs during any season (p < 0.05 for all). 
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Figure 7. Seasonal changes in abundance of all fish (a) and predatory fish (b) on natural 
and artificial reefs (mean ± SE). 
 

To investigate the role that predation may have played in altering abundance of fish, the 

abundance of piscivorous fish was compared on natural and artificial reefs through 

seasons (Figure 7b). Species were classified as piscivores on the basis of Randall (1995), 

and include the groupers Epinephelus coioides, Epinephelus stoliczkae, Cephalopholis 

hemistiktos, the jack C. bajad, and the barracuda Sphyraena flavicauda. A two-way 

ANOVA indicated significant interactions between reef type and seasons (F(3)=6.2, p < 

0.01). Subsequent one-way ANOVA’s showed that piscivore abundance was 

significantly higher on artificial reefs than natural reefs (F(1)=8.0, p < 0.01). In particular, 

abundance was significantly higher in the fall than in the winter or spring on artificial 

reefs, with predatory fish near an order of magnitude more abundant in the fall (ANOVA 

F(3)=5.8, p < 0.05; unequal N HSD tests: p < 0.05 for both). Abundance of predators 

subsequently increased during the summer on artificial reefs, but this did not differ 

significantly from the other seasons. On natural reefs, piscivores were stable throughout 

the year (ANOVA F(3)=0.7). These results suggest that seasonal changes in fish 

abundance on artificial reefs may, in part, be the result of predation.  
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Discussion 

Large-scale artificial reefs in the form of breakwaters, jetties, seawalls, and related 

coastal defense structures currently contribute more than half of the length of coastlines 

in many areas (Bacchiocchi and Airoldi 2003; Airoldi et al. 2005; Hansen 2005), and 

they are likely to become increasingly common with accelerated population growth in 

coastal areas. In Dubai, recent coastal development activities have lengthened the 

formerly rather straight, sandy shoreline from 50 km to >1600 km (Hansen 2005), of 

which >65 km are breakwaters. The results of this study indicated that abundant and 

diverse coral and fish communities can develop on the artificial reefs that result from 

such breakwaters, but that these communities differ from those on natural reefs.  

 

Coral communities 

Coral cover on artificial structures in this study was significantly higher than on nearby 

natural reefs. Habitat differences between the natural and artificial reefs examined here 

likely explain the difference in coral cover between these reef types. The lower coral 

cover on the natural reef compared with the artificial reefs likely results from higher 

sedimentation rates. Corals in the natural reef grow on low relief caprock sheets that are 

overlain by fine to course mobile sands (Chapter 2; Riegl 1999), which frequently 

partially or fully cover coral colonies on these reefs (pers. obs.; Riegl 1999). Such 

sedimentation impairs juvenile recruitment and survivorship (Babcock and Mundy 1996; 
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Clark and Edwards 1999; Dikou and van Woesik 2006), as well as adult respiratory 

activity (Riegl and Branch 1995), and has been suggested as a leading cause of coral 

mortality on these natural reefs in Dubai (Riegl 1999). In contrast, the artificial reefs 

examined here are elevated above the sandy substratum and are exposed to the flushing 

action of waves. It is likely that these differences in environmental conditions are at least 

partially responsible for the higher coral cover on these artificial reefs compared with the 

natural reefs. 

 

These observation of higher coral cover on artificial reefs than natural reefs here contrast 

many earlier studies which have compared natural and artificial reefs in tropical systems, 

where artificial reefs have generally contained significantly less hard-coral cover than 

natural reefs (Abelson and Shlesinger 2002; Edwards and Smith 2005; Perkol-Finkel and 

Benayahu 2005). However, in each of these cases, the artificial reefs being compared 

with natural reefs were less than 10 years old. Given that mature coral communities may 

take decades to develop (Perkol-Finkel et al. 2005; Perkol-Finkel et al. 2006), these 

studies are likely underestimating the amount of corals that may develop on artificial 

structures. Similar to results here, mature artificial breakwater reefs  in north- and south-

western Taiwan  have been found to contain 25 to 40% cover, exceeding  that of the 

surrounding area (Wen et al. 2007), and 119 year old reefs in the Red Sea contain 47% 

hard-coral cover (Perkol-Finkel et al. 2006), indicating that mature artificial reefs can 

develop coral cover that is comparable or higher than adjacent natural reefs if enough 

time passes. If the purpose of examining coral cover on artificial reefs is to compare it 
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with natural reefs, these results indicate that more than three decades of immersion may 

be necessary to allow the coral community on artificial structures to develop sufficiently. 

 

In addition to coral cover, coral community composition and diversity were found to 

differ between artificial reefs and natural reefs. Diversity of the artificial reef coral 

community was lower than on the natural reefs. This echoes results from studies in the 

Red Sea, where artificial reefs that had been immersed for at least 30 years still contained 

lower hard-coral diversity than adjacent natural reefs (Perkol-Finkel and Benayahu 2004; 

Perkol-Finkel et al. 2005; Perkol-Finkel et al. 2006). In addition, similar to the findings 

here, community composition often differs between artificial and natural reefs both for 

corals (Perkol-Finkel and Benayahu 2004), and the wider assemblage (Bulleri 2005c; 

Edwards and Smith 2005). Differences in community composition and diversity on 

artificial reefs and natural reefs is often suggested to be the result of differences in habitat 

characteristics such as structural material, orientation, and complexity (Clark and 

Edwards 1999; Abelson and Shlesinger 2002; Edwards and Smith 2005; Perkol-Finkel et 

al. 2005; 2006; Creed and DePaula 2007). The natural reefs and the artificial breakwater 

reefs do offer distinct habitats that differ in each of these respects, and coral planulae are 

known to differentially settle as a result of preferences for different habitat characteristics 

(Chapter 5; Babcock and Mundy 1996; Petersen et al. 2005; Creed and DePaula 2007; 

Field et al. 2007), perhaps explaining the community differences. However, differences 

in composition and diversity may also be a result of differential larval supply. The natural 

reefs in Jebel Ali lie closer to larger natural reefs in Abu Dhabi (Riegl 1999; EWS-WWF 
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2008), and may be receiving a higher influx of larvae than the artificial reefs which are 

more isolated. Further research is needed to determine the cause of community 

differences among reef types.  

 

Fish communities 

The community structure of fish on artificial reefs has often been found to differ from 

that of natural reefs in the same area. Artificial reefs generally contain higher fish 

densities than adjacent natural reefs (Bohnsack 1989; Bohnsack et al. 1994; Rilov and 

Benayahu 2000; Abelson and Shlesinger 2002), and this is also true for rocky breakwater 

reefs (Stephens et al. 1984; Lincoln-Smith et al. 1994; Stephens et al. 1994; Pondella et 

al. 2002; Perez-Ruzafa et al. 2006). They also tend to support distinct assemblages that 

differ in species composition (Clark and Edwards 1999; Rilov and Benayahu 2000; 

Edwards and Smith 2005; Clynick et al. 2008), and  artificial reefs generally contain 

more species of fish than is observed on natural reefs (Lincoln-Smith et al. 1994; Carr 

and Hixon 1997; Rilov and Benayahu 2000; Abelson and Shlesinger 2002; Perez-Ruzafa 

et al. 2006). The results of this study also found higher fish abundance and species 

richness on artificial reefs, and different community composition from natural reefs, but 

only during certain seasons.  

 

Differences in fish communities between natural and artificial reefs changed seasonally. 

In terms of multivariate community structure as well as richness and overall abundance, 
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fish communities on natural reefs were relatively stable through the year while those on 

artificial reefs were dynamic. During the warmer summer and fall seasons there were 

significant increases in fish abundance and richness on artificial reefs, but not on natural 

reefs. These seasonal changes in abundance were driven mainly by adults. Although there 

was a substantial increase in juvenile abundance from spring to summer (Figure 6a), 

these represent only a small proportion of the increase in total abundance on the artificial 

reefs (Figure 7a), while adult abundance more than tripled during the same period to 

make up over four-fifths of the total abundance during the summer (Figure 6c). The 

relatively small increase in sub-adult abundance during the fall likely results from the 

maturation of juveniles that had recruited during the preceding summer. Piscivore 

abundance increased in the summer in concert with juvenile recruitment on artificial reefs 

and remained in high densities during the fall (Figure 7b), and predation is likely to have 

contributed to the decline in abundance of sub-adults and smaller adult fish (Figure 6b 

and c). The abundance of piscivores on artificial reefs declines to its lowest level during 

the winter and spring in concert with the decline in other adult fish (Figure 7b; Figure 

6c).  Overall, these results suggest that differences between natural and artificial reef fish 

communities are associated mainly with the movement of fish on and off of artificial 

reefs, and that predation may also play a role in decreasing the abundance of smaller age-

class fish on artificial reefs. Similar seasonal changes in abundance have been observed 

elsewhere in the Arabian Gulf, where migration of fish has been suggested to cause peak 

fish abundance on off-shore reefs during the summer and fall, and subsequent declines in 

abundance during the winter and spring over a two year period (Coles and Tarr 1990). 
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This is not the only study to note dynamic seasonal changes in fish communities on 

artificial reefs. In a two year study of fish communities on breakwaters in Australia, 

Lincoln-Smith et al. (1994) also found breakwaters to have higher fish abundance and 

richness than natural reefs, but that breakwater fish communities often varied 

considerably over time compared with natural reefs. Recruitment and migration are often 

tied to the dynamics of community structure on artificial reefs. Tupper and Hunte (1998) 

reported that fish assemblages on artificial reefs tended to differ most from natural reefs 

during the summer following recruitment, while Fujita et al. (1996) similarly noted that 

natural reefs and artificial reef fish communities differed most during the summer, but 

suggested that it was mainly the result of fish returning to artificial reefs after emigrating 

during the spawning season. Bohnsack et al. (1994) also found abundance to change 

seasonally on artificial reefs over two years in Florida, with total abundance increasing 

during the summer as fish recruited to the reefs and predators immigrated. Similar to 

what was observed here, abundance declined in subsequent seasons as a result of 

predation and emigration of fish from the artificial reefs (Bohnsack et al. 1994). These 

findings, in concert with what was observed in this study, suggest that dynamic changes 

in composition and abundance are common on artificial reefs and can result in seasonally 

convergent or divergent community structure compared with natural reefs. 

 

Overall, the results of this show that artificial reefs can develop diverse and abundant fish 

communities, but seasonal changes in community structure make for temporally 

inconsistent similarity with natural reef communities. In addition, abundance of fish on 
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these artificial structures appears primarily to change as a result of migration of adults 

that are attracted to these structures, rather than through larval recruitment. However, this 

result must be interpreted with caution, as it represents only one year of sampling. Further 

investigation is warranted to determine whether these patterns are consistent over longer 

time periods.  

 

In closing, increasing coastal development in Dubai, and in other areas, is resulting in the 

substantial loss of natural reef habitat (Chapter 2; Wilkinson 2004), and over-exploitation 

of marine resources is decimating commercial fisheries here as abroad (Grandcourt et al. 

2005; 2006; 2007). Proponents suggest that artificial reefs may be a means to mitigate 

these impacts by providing alternative habitat on which hard-bottom communities can 

develop as replacements for natural reefs. The results of this study indicate that the 

artificial structures examined in this study support substantive, diverse, and dynamic reef 

communities, with higher coral cover and seasonally higher fish abundance than observed 

on natural reefs. However, these communities are not mirrors of those on natural reefs. 

Both coral and fish community composition differed between natural and artificial reefs, 

and temporal changes in fish communities indicated functional differences between 

assemblages on different types of reef. This suggests that the promotion of artificial reefs 

as replacements for natural reef habitats needs to be approached with caution. These 

results also suggest caution when comparing natural and artificial reefs. Coral cover on 

artificial structures may take decades to develop, and examination of benthic or 

associated fish assemblages on young structures is clearly inappropriate despite being 



96 

 

fairly common. In addition, the dynamic seasonal changes in fish abundance indicate that 

censusing should be repeated seasonally, rather than annually, to understand changes in 

community structure on artificial reefs.  

 

References 

Abelson A, Shlesinger Y (2002) Comparison of the development of coral and fish communities on rock-
aggregated artificial reefs in Eilat, Red Sea. Journal of Marine Science 59: 122-126 

Airoldi L, Abbiati M, Beck MW, Hawkins SJ, Jonsson PR, Martin D, Moschella PS, Sundelof A, 
Thompson RC, Aberg P (2005) An ecological perspective on the deployment and design of low-
crested and other hard coastal defence structures. Coastal Engineering 52: 1073-1087 

Aseltine-Neilson D, Bernstein B, Palmer-Zwahlen M, Riege L, Smith R (1999) Comparisons of turf 
communities from Pendleton Artificial Reef, Torrey Pines Artificial Reef, and a natural reef using 
multivariate techniques. Bulletin of Marine Science 65: 37-57 

Babcock R, Mundy C (1996) Coral recruitment: Consequences of settlement choice for early growth and 
survivorship in two scleractinians. Journal of Experimental Marine Biology and Ecology 206: 
179-201 

Bacchiocchi F, Airoldi L (2003) Distribution and dynamics of epibiota on hard structures for coastal 
protection. Estuarine Coastal and Shelf Science 56: 1157-1166 

Badalamenti F, Chemello R, D'Anna G, Heriquez R, P, S.Riggio (2002) Are artificial reefs comparable to 
neighbouring natural rocky area? A mollusc case study in the Gulf of Castellammare. Journal of 
Marine Science 59: 127-131 

Bohnsack J (1989) Are high densities of fishes at artificial reefs the result of habitat limitation of behavioral 
preference? Bulletin of Marine Science 44: 631-645 

Bohnsack J, Harper D, McClellan D, Hulsbeck M (1994) Effects of reef size on colonization and 
assemblage structure of fishes at artificial reefs off southeastern Florida, U.S.A. Bulletin of Marine 
Science 55: 796-823 

Bohnsack JA, Ecklund AM, Szmant AM (1997) Artificial reef research: is there more than the attraction-
production issue? Fisheries 22: 14-16 

Bulleri F (2005) Role of recruitment in causing differences between intertidal assemblages on seawalls and 
rocky shores. Marine Ecology-Progress Series 287: 53-65 

Carr M, Hixon M (1997) Artificial reefs: The importance of comparisons with natural reefs. Fisheries 22: 
28-33 

Chapman MG, Clynick BG (2006) Experiments testing the use of waste material in estuaries as habitat for 
subtidal organisms. Journal of Experimental Marine Biology and Ecology 338: 164-178 

Clark S, Edwards AJ (1999) An evaluation of artificial reef structures as tools for marine habitat 
rehabilitation in the Maldives. Aquatic Conservation-Marine and Freshwater Ecosystems 9: 5-21 

Clynick BG, Chapman MG, Underwood AJ (2008) Fish assemblages associated with urban structures and 
natural reefs in Sydney, Australia. Austral Ecology 33: 140-150 

Coles S, Tarr A (1990) Reef fish assemblages in the western Arabian Gulf: A geographically isolated 
population in an extreme environment. Bulletin of Marine Science 47: 696-720 

Connell SD (1997) The relationship between large predatory fish and recruitment and mortality of juvenile 
coral reef-fish on artificial reefs. Journal of Experimental Marine Biology and Ecology 209: 261-
278 

Creed J, DePaula A (2007) Substratum preference during recruitment of two invasive alien corals onto 
shallow-subtidal tropical rocky shores. Marine Ecology-Progress Series 330: 101-111 



97 

 

Dikou A, van Woesik R (2006) Survival under chronic stress from sediment load: Spatial patterns of hard 
coral communities in the southern islands of Singapore. Marine Pollution Bulletin 52: 1340-1354 

Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible 
asymmetrical approach. Ecological Monographs 67: 345-366 

Edwards RA, Smith SDA (2005) Subtidal assemblages associated with a geotextile reef in south-east 
Queensland, Australia. Marine and Freshwater Research 56: 133-142 

EWS-WWF (2008) Coral reef investigations in Abu Dhabi and eastern Qatar: final report. Emirates 
Wildlife Society - World Wide Fund for Nature, Abu Dhabi, UAE 

Field S, Glassom D, Bythell J (2007) Effects of artificial settlement plate materials and methods of 
deployment on the sessile epibenthic community development in a tropical environment. Coral 
Reefs 26: 279-289 

Fujita T, Kitagawa D, Okuyama Y, Jin Y, Ishito Y, Inada T (1996) Comparison of fish assemblages among 
an artificial reef, a natural reef and a sandy-mud bottom site on the shelf off Iwate, northern 
Japan46: 351-364 

Grandcourt E, Al Abdessalaam T, Francis F, Al Shamsi A (2007) Population biology and assessment of the 
white-spotted spinefoot, Siganus canaliculatus (Park, 1797), in the southern Arabian Gulf. Journal 
of Applied Ichthyology 23: 53-59 

Grandcourt EM, Al Abdessalaam TZ, Al Shamsi AT, Francis F (2006) Biology and assessment of the 
painted sweetlips (Diagramma pictum (Thunberg, 1792)) and the spangled emperor (Lethrinus 
nebulosus (Forsskal, 1775)) in the southern Arabian Gulf. Fishery Bulletin 104: 75-88 

Grandcourt EM, Al Abdessalaam TZ, Francis F, Al Shamsi AT (2005) Population biology and assessment 
of the orange-spotted grouper, Epinephelus coioides (Hamilton, 1822), in the southern Arabian 
Gulf. Fisheries Research 74: 55-68 

Grossman GD, Jones GP, Seaman WJ (1997) Do artificial reefs increase regional fish production? A 
review of existing data. Fisheries 22: 17-23 

Hansen B (2005) Artificial islands reshape Dubai coast. Civil Engineering 75: 12-13 
Kohler K, Gill S (2006) Coral Point Count with Excel extensions (CPCe): a Visual Basic program for the 

determination of coral and substrate coverage using random point count methodology. Computers 
and Geoscience 32: 1259-1269 

Lincoln-Smith M, Hair C, Bell J (1994) Man-made rock breakwaters as fish habitats: Comparisons between 
breakwaters and natural reefs within an embayment in southeastern Australia. Bulletin of Marine 
Science 55 

McCune B, Grace J (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, 
OR 

McCune B, Mefford M (1999) PC-ORD: Multivariate analysis of ecological data. MjM Software Design, 
Gleneden Beach, OR 

Moschella PS, Abbiati M, Aberg P, Airoldi L, Anderson JM, Bacchiocchi F, Bulleri F, Dinesen GE, Frost 
M, Gacia E, Granhag L, Jonsson PR, Satta MP, Sundelof A, Thompson RC, Hawkins SJ (2005) 
Low-crested coastal defence structures as artificial habitats for marine life: Using ecological 
criteria in design. Coastal Engineering 52: 1053-1071 

Perez-Ruzafa A, Garcia-Charton JA, Barcala E, Marcos C (2006) Changes in benthic fish assemblages as a 
consequence of coastal works in a coastal lagoon: The Mar Menor (Spain, Western 
Mediterranean): Recent developments in estuarine ecology and management. Marine Pollution 
Bulletin 53: 107-120 

Perkol-Finkel S, Benayahu Y (2004) Community structure of stony and soft corals on vertical unplanned 
artificial reefs in Eilat (Red Sea): comparison to natural reefs. Coral Reefs 23: 195-205 

Perkol-Finkel S, Benayahu Y (2005) Recruitment of benthic organisms onto a planned artificial reef: shifts 
in community structure one decade post-deployment. Marine Environmental Research 59: 79-99 

Perkol-Finkel S, Shashar N, Barneah O, Ben-David-Zaslow R, Oren U, Reichart T, Yacobovich T, Yahel 
G, Yahel R, Benayahu Y (2005) Fouling reefal communities on artificial reefs: does age matter? 
Biofouling 21: 127-140 

Perkol-Finkel S, Shashar N, Benayahu Y (2006) Can artificial reefs mimic natural reef communities? The 
roles of structural features and age. Marine Environmental Research 61: 121-135 

Petersen D, Laterveer M, Schuhmacher H (2005) Innovative substrate tiles to spatially control larval 
settlement in coral culture. Marine Biology 146: 937-942 



98 

 

Pickering H, Whitmarsh D (1997) Artificial reefs and fisheries exploitation: A review of the 'attraction 
versus production' debate, the influence of design and its significance for policy. Fisheries 
Research 31: 39-59 

Polovina J, Sakai I (1989) Impacts of artificial reefs on fishery production in Shimamaki, Japan. Bulletin of 
Marine Science 44: 997-1003 

Pondella D, Stephens J, Craig M (2002) Fish production of a temperate artificial reef based on the density 
of embiotocids. Journal of Marine Science 59: S88-S93 

Randall J (1995) Coastal Fishes of Oman. University of Hawaii Press, Honolulu 
Riegl B (1999) Corals in a non-reef setting in the southern Arabian Gulf (Dubai, UAE): Fauna and 

community structure in response to recurring mass mortality. Coral Reefs 18: 63-73 
Riegl B (2002) Effects of the 1996 and 1998 positive sea-surface temperature anomalies on corals, coral 

diseases and fish in the Arabian Gulf (Dubai, UAE). Marine Biology 140: 29-40 
Riegl B, Branch G (1995) Effects of sediment on the energy budgets of four scleractinian (Bourne 1900) 

and five alcyonacean (Lamouroux 1816) corals. Journal of Experimental Marine Biology and 
Ecology 186: 259-275 

Rilov G, Benayahu Y (2000) Fish assemblage on natural versus vertical artificial reefs: the rehabilitation 
perspective. Marine Biology 136: 931-942 

Stephens J, Morris P, Pondella D, Koonce T, Jordan G (1994) Overview of the dynamics of an urban 
artificial reef fish assemblage at King Harbor, California, USA, 1974-1991: A recruitment driven 
system. Bulletin of Marine Science 55: 1224-1239 

Stephens J, Morris P, Zerba K, Love M (1984) Factors affecting fish diversity on a temperate reef: the fish 
assemblage of Palos Verdes Point, 1974–1981. Environmental Biology of Fishes 11: 259-275 

Svane I, Peterson J (2001) On the problems of epibioses, fouling and artificial reefs, a review. Marine 
Ecology 22: 169-188 

Tupper M, Hunte W (1998) Predictability of fish assemblages on artificial and natural reefs in Barbados. 
Bulletin of Marine Science 62: 919-935 

Wen K, Hsu C, Chen K, Liao M, Chen C, Chen C (2007) Unexpected coral diversity on the breakwaters: 
potential refuges for depleting coral reefs. Coral Reefs 26: 127 

Wilkinson C (2004) Status of coral reefs of the world: 2004. Australian Institute of Marine Science, 
Townsville 



99 

 

Chapter 5: Coral recruitment and early benthic community development on several 
materials used in the construction of artificial reefs 

 

Introduction  

The majority of the world population currently lives within 100 km of a coastline, and 

coastal populations are projected to continue growing (UNEP 2002). This increases 

pressure on marine ecosystems adjacent to urban areas through over-exploitation of 

marine resources and destruction of coastal habitats by development and pollution. 

 

Artificial reefs are increasingly being promoted as a means to mitigate impacts from 

human activities in coastal areas (Svane and Peterson 2001). Such structures are known 

to develop diverse and abundant benthic and fish communities (Lincoln-Smith et al. 

1994; Rilov and Benayahu 2000; Pondella et al. 2002; Perkol-Finkel and Benayahu 

2004), and may increase production of commercial species in areas where reef habitat is 

limiting populations (Bohnsack et al. 1997). In coastal urban areas, perhaps the most 

important artificial reefs come in the form of man-made coastal defense structures such 

as breakwaters, sea-walls, and jetties. These structures contribute substantially more 

hard-bottom habitat than is provided by traditional artificial reefs, in some cases making 

up more than half of the coastal length in an area (Bacchiocchi and Airoldi 2003; Airoldi 

et al. 2005; Hansen 2005), and they are likely to become increasingly common with 

coastal urbanization. Although coastal defenses can also support diverse and abundant 

communities (Lincoln-Smith et al. 1994; Stephens et al. 1994; Pondella et al. 2002; 
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Moschella et al. 2005; Wen et al. 2007), the development of communities on such 

structures is not well understood (Baine 2001; Airoldi et al. 2005; Moschella et al. 2005). 

Basic design-related research is needed to address the possible ecological and 

management implications that such large-scale artificial reefs may play.  

 

Most attention in artificial reef research has been given to enhancement of fisheries. As a 

result, design of artificial structures has tended to focus on issues relating to habitat 

complexity and configuration, factors known to strongly affect fish diversity and 

abundance (Baine 2001; Abelson and Shlesinger 2002; Charbonnel et al. 2002; Sherman 

et al. 2002). In regions where these structures are likely to be colonized by major habitat-

forming sessile fauna such as corals and sponges, attention needs to be paid to the  

suitability of materials used in the construction of artificial structures. Yet the importance 

of substrate remains relatively understudied (Baine 2001). Many benthic organisms are 

selective of the geochemical signatures provided by substrates, and differences in larval 

preference can result in development of divergent communities where different substrate 

materials are used to construct man-made reefs. Given that the benthos provides food, 

shelter, and settlement habitat for a variety of reef-associated organisms, including fish 

(Elliott et al. 1995; Qian 1999; Crossman et al. 2001; Hartney and Grorud 2002; 

Nishizaki and Ackerman 2004), construction material may have an impact on the reef 

communities that develop on these structures and therefore have management 

implications.  
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The purpose of this study was to examine the influence of materials commonly used in 

the construction of artificial reefs and coastal defense structures on benthic community 

development. We deployed standard-size tiles made from concrete, gabbro, granite, 

sandstone, and terra-cotta. The first four materials are commonly used in construction of 

breakwaters both here and abroad, while terra cotta is commonly used in research studies 

that assess benthic recruitment (Mundy 2000; Baird et al. 2003; Adjeroud et al. 2007), 

and was included for comparison with other studies. Both the abundance of juvenile 

corals and the composition of the overall benthic community were compared among 

materials.  

 

Methods 

This study was conducted in Dubai, United Arab Emirates, in the south-eastern basin of 

the Persian Gulf. Two natural reef sites and two breakwater reef sites were selected for 

comparison (Figure 1). The natural reefs (NR1 and NR2) are associated with areas of 

exposed cap-rock formed from consolidated sand that emerge from the sandy bottom. 

Coral on natural reefs in this area averages 35% cover (Chapter 2), and exist as low-relief 

patches typically <1000 m2 in area on an otherwise sandy floor. Both the Dubai Dry 

Dock (DDD) and the Jebel Ali Port (PRT) breakwaters were constructed over 25 years 

ago, and each reef contained > 40% coral coverage when sampled in 2007 (Chapter 3; 

Chapter 4). The DDD breakwater is composed of 4 – 6 ton limestone blocks, while the 

Port breakwater is made of interlocked concrete tetra-foil jacks of similar size. Both 

breakwaters exceed 400,000 m3 volume. All study sites are surrounded by a substratum 
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mainly dominated by mobile sands and silts and are of comparable depth, with maximum 

depths of approximately 8 m 

.  

 

Figure 1: Location of sites where substrate tiles were deployed. NR: Natural reef; PRT: 
Jebel Ali port breakwater; DDD: Dubai dry dock breakwater. 
 

Five materials were compared in this study, including concrete, gabbro, granite, 

sandstone, and terra cotta. To allow assessment of recruitment on standard surface areas, 

blocks of each material were machined to a tile size of 100 x 100 x 15 mm using a 

diamond-tipped rock saw. Each was provided with a central hole 10 mm in diameter to 

facilitate attachment to the substratum. Although there were geological differences in 

texture, the surfaces were generally comparable among materials.  
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At each site, 25 tiles of each material were individually bolted to the substratum with the 

aid of a pneumatic drill, for a total of 125 tiles per site. This technique has both statistical 

and practical advantages over the use of tile racks, and provides similar results (Mundy 

2000). Tiles were deployed in random order at approximately 4 m depth, and were spaced 

1 – 3 m apart. A plastic washer was used to maintain each tile 10 – 15 mm above the 

substrate, providing a ‘gap habitat’ for settling fauna. Tiles were installed parallel to the 

reef surface so that the natural range of substrate orientations was represented. Tiles were 

deployed in April 2007 before coral spawning events occurring from May through 

October in this region (Shlesinger and Loya 1991; Fadlallah 1996; Shlesinger et al. 

1998), and were retrieved a year later. In total, 95% of tiles were recovered with the 

remainder lost to wave action.  

 

Overall community cover and the density of coral recruits on the bottoms of tiles were 

examined in the laboratory. Only the bottom surfaces of tiles were included, as benthic 

organisms typically recruit to tile bottoms in higher densities (Nzali 1998; Adjeroud et al. 

2007). Image analysis was used to examine community structure. The bottom of each tile 

was photographed with a 10 mega-pixel Nikon D-80 digital camera fitted with a macro 

lens. Community structure was examined using CPCe image analysis software (Kohler 

and Gill 2006), with benthic coverage tabulated from 50 random point intercepts per tile. 

Due to the small size of <1 year old coral recruits and their relatively limited coverage, 

density of coral juveniles was tabulated separately. Following photography for 

community analysis, tiles were immersed in bleach for 24 hrs to remove organic tissue. 
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The number of coral recruits was subsequently tabulated on the bottom of each tile using 

an Olympus DP-70 stereo-microscope.  

 

Mean densities of coral recruits were estimated for each material at each site, and data 

were log(n+1) transformed prior to analysis. Despite transformation, data were 

significantly non-normal (Shapiro-Wilk’s W = 0.61, p < 0.001). Therefore, non-

parametric Kruskal-Wallis ANOVAs were used to test for differences in coral 

recruitment among sites and among materials at each site. Where significant differences 

were shown, pair-wise Mann-Whitney U-tests were performed to identify different 

groups.  

 

Data on benthic communities were pre-screened prior to multivariate analyses. To 

eliminate the effects of rare benthos, only taxa observed in more than 5% of samples 

were considered. In addition, outlier analysis was used to identify tiles which were 

greater than two standard deviations from the mean and these were excluded (Tabachnick 

and Fidell 2001). Mean coverage of benthos was obtained by pooling results for each 

material from individual tiles at each site. To prepare for analysis, samples were 

standardized as a percent of total cover to account for differences in benthic coverage and 

were normalized using square root transformations. 
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The benthic composition of each treatment and site was ordinated using non-metric 

multidimensional scaling (NMS) on Bray-Curtis distances. The NMS autopilot mode of 

PC-ORD (McCune and Mefford 1999) performed a Monte Carlo significance test on the 

best of 40 runs of real data with 50 runs of randomized data to optimize the number of 

axes. To identify taxa associated with community differences, a joint plot was over-laid 

on the ordination to illustrate the strength and direction of correlations with ordination 

axes. Only taxa with a Pearson’s r ≥ 0.5 were included in the joint plot.  

 

A two-way similarity percentage analysis (SIMPER) was performed to determine the 

percent contribution of each site and material to average Bray-Curtis dissimilarity. In 

addition, pair-wise analyses of similarity (ANOSIM) were used to test the significance of 

difference between sites and materials sampled. ANOSIM is a multivariate 

randomization test analogous to a standard one-way ANOVA being performed on a 

distance matrix, but with a minimum of assumptions (Clarke and Gorley 2006), and is 

appropriate for assessing groups that have been assigned a priori. ANOSIM produces a 

test statistic, R,  that assesses the null hypothesis that there are no differences among 

groups, with R  ≈ 0 when there are no significant differences among groups, with greater 

differences among groups indicated as R approaches -1 or 1. The significance of the R 

statistic is generated from randomization tests on the distance matrix. Analyses of 

variance and post-hoc Tukey’s tests were used to identify significant differences among 

benthos identified as important in multivariate analyses.  
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Results 

Corals 

A total of 675 coral juveniles had recruited on the bottoms of all tiles examined in this 

study. However, Kruskal-Wallis ANOVA indicated significant differences in the overall 

abundance of coral recruits among sites (Table 1), with significantly higher recruit 

densities at the Dubai dry dock site than each other site (Mann-Whitney U-tests: PRT: 

U=2304.5, Z=9.1;  UNU1: U=2739, Z=8.8;  UNU2: U=2144, Z=9.2;  p < 0.001 each), 

and no differences among the remaining sites.  

Table 1: Results of Kruskal-Wallis ANOVA comparing mean coral recruit abundance per 
tile at each site.  

Coral Density (mean ± SE) Kruskal-Wallis ANOVA 
Site DDD PRT NR1 NR2 df H-value p-value 
Density 4.9 ± 0.5 0.1 ± 0.04 0.3 ± 0.1 0.1 ± 0.03 3, 474 197.1 p < 0.001 

 

Figure 2 illustrates the abundance of coral recruits on each material for each sampling 

site. There were significant differences in the abundance of coral recruits among tile 

materials at the Dubai dry docks (DDD) site where the recruit densities were highest 

(Kruskal-Wallis ANOVA H(4,125) = 11.1, p < 0.05; Table 1). At the dry docks, recruit 

density was highest on gabbro rock (Figure 2), which contained significantly more 

juvenile corals than concrete and sandstone (Mann-Whitney U = 190.5 and 170.5, Z = 2.4 

and -2.8, respectively, p < 0.01 each). Sandstone also contained significantly less corals 

than terra-cotta (U = 202.5, Z = 2.1, p < 0.05).  However, there were no differences in 

recruit densities among substrata at any of the remaining sites (Kruskal-Wallis ANOVA: 
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PRT H(4,115) = 4.9; UNU1 H(4,123) = 5.9; UNU2 H(4,112) = 2.7), likely due to high 

variability associated with the relatively low recruit densities at these sites.  

 

 

Figure 2: Comparison of coral recruit densities on tiles of different substrata at each 
sampling site. Bars with the same letter are not significantly different (Mann-Whitney U-
test, p < 0.05).  
 

Overall benthic community 

The total of live cover varied among materials, but differences were not significant as a 

result of high variability (mean ± SE: concrete: 79.2 ± 2.8; gabbro: 80.2 ± 5.7; granite: 

85.3 ± 6.5; sandstone: 65.4 ± 8.5; terracotta: 74.5 ± 6.3). To account for these differences, 

community data were standardized prior to analyses. Separation of samples in ordination 

indicated differences in benthic communities on tiles (Figure 3), with grouping patterns 

indicating that similarity was more related to site than to differences in substrate material. 

Two dimensions in NMS provided a significant reduction in stress compared with 
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randomized data (Real stress: 12.5, Randomized stress: 17.5; p < 0.05). The first axis 

represented 42% of the variation and was mainly associated with differences in the 

relative abundance of colonial and solitary ascidians (Pearson’s r = -0.81 and -0.76, 

respectively) or sponges (r = 0.59), while the second axis was associated with coverage 

of coralline and turf algae (r = 0.61 and 0.65, respectively), or bryozoans (r = -0.55), and 

explained 20% of variation.  

 

 

Figure 3: Ordination of benthic communities on each tile material at each sampling site, 
with a joint plot of benthic taxa that were strongly associated with either axis. Labels 
refer to Site_Material, where materials include concrete (C), gabbro (Gb), granite (Gr), 
and terra-cotta (TC).  
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Both SIMPER and ANOSIM procedures supported the findings from the NMS. Overall, 

tile communities were more dissimilar among sites than among different materials (Table 

2). Percent dissimilarity among sites ranged from 23.8% between the two natural reef 

sites to 39.3% between the Jebel Ali port and the Dubai dry dock breakwaters. This site-

site dissimilarity was consistently higher than any pair-wise comparisons of communities 

between substrate materials (ranging from 11% to 17.8%, Table 2), indicating that sites 

were more important in explaining dissimilarity among benthic communities than were 

differences among substrata. This reflects the spread of points in the ordination plot 

(Figure 3), where points appear to separate more as a result of site than substrate material. 

The R-values from ANOSIM support the suggestion that differences in communities are 

more related to site than to material (Table 2), with significant differences in tile 

communities observed among all sites compared, but not among any materials.  

 
Table 2: Pair-wise comparisons of benthic communities on tiles from different sites or 
materials for percent dissimilarity (δ) from SIMPER analyses and R-statistics and p-
values from ANOSIM.  

Factor Groups δ (%) R Significance 
Site DDD & PRT 39.3 0.99 p < 0.01 
 DDD & NR1 32.0 0.94 p < 0.01 
 DDD & NR2 30.1 0.99 p < 0.01 
 PRT & NR1 30.0 0.84 p < 0.01 
 PRT & NR2 35.7 0.99 p < 0.01 
 NR1 & NR2 23.8 0.94 p < 0.01 
Material Concrete & Gabbro 17.0 -0.18 p > 0.05 
 Concrete & Granite 17.8 -0.32 p > 0.05 
 Concrete & Sandstone 17.4 -0.20 p > 0.05 
 Concrete & TerraCotta 14.5 -0.27 p > 0.05 
 Gabbro & Granite 17.5 -0.29 p > 0.05 
 Gabbro & Sandstone 16.4 -0.16 p > 0.05 
 Gabbro & TerraCotta 17.8 -0.24 p > 0.05 
 Granite & Sandstone 14.3 -0.16 p > 0.05 
 Granite & TerraCotta 15.1 -0.26 p > 0.05 
  Sandstone & TerraCotta 11.0 -0.25 p > 0.05 
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All benthos that were related to community differences between sites in ordination 

showed significant difference among sites in univariate analysis (Figure 4; ANOVA 

F(3,16): coralline algae = 13.2, turf algae = 5.9, Porifera = 20.7, Bryozoa = 12.9,colonial 

ascidians = 35.6, solitary ascidians = 8.5; p < 0.01 for each). However, there were no 

differences among tile materials for any benthos (ANOVA F(4,15): coralline algae = 0.5, 

turf algae = 0.2, Porifera = 0.2, Bryozoa = 0.4,colonial ascidians = 0.2, solitary ascidians 

= 0.9). Post-hoc comparison of benthos among sites supported the site associations 

identified in multivariate analyses (see Figure 3). Both coralline algae and turf algae were 

significantly more abundant at the natural reef site NR1 than at any other of the other 

sites examined (Tukey’s HSD test: p < 0.05, respectively, for all comparisons). The other 

natural reef site, NR2, contained significantly more porifera than all other sites, with 

sponges making up more than three times as much of the benthos as elsewhere. 

Bryozoans were more common at the dry dock breakwater and the natural reef site NR2 

than at the Jebel Ali port (p < 0.001 each), while the other natural reef site, NR1, differed 

only from the dry docks (p < 0.05). Colonial ascidians were not observed on the natural 

reef site NR2; They were significantly more common on the Jebel Ali port site than at the 

remaining locations (p < 0.001).  Likewise, solitary ascidians were significantly more 

common on the Jebel Ali port site than on either natural reef site (p < 0.01).  
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Figure 4: Percent cover of benthos associated with tiles at each sampling site. Bars with 
the same letter are not significantly different. 
 

Discussion 

Artificial structures deployed in the marine environment often develop diverse and 

abundant benthic communities, but there is little understanding of the mechanisms 

driving community differences among artificial structures or natural reefs. The results of 

this study indicated that while differences in substratum used in the construction of 

traditional artificial reefs and coastal defense structures can impact the recruitment of 

corals where recruitment is high, differences among sites is far more important in 

determining coral recruitment rates. In addition, substrate material did not play an 

important role in driving wider benthic community differences, at least during the early 

stages of development. 
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Coral recruitment 

Coral recruit densities differed among sites. Juvenile coral density was more than an 

order of magnitude higher at the dry docks site (4.94 ± 0.5 per 100 cm2) than at the other 

three sites examined (0.09 ± 0.03 to 0.25 ± 0.05 recruits per 100 cm2). The three sites 

with low recruitment are located in an area that was impacted by a bleaching event while 

the experiment was on-going (Tupper et al. 2007).  No bleaching was observed at the dry 

docks, perhaps because of deeper surrounding waters (J. Burt, pers. obs.). Coral 

bleaching is an indication of physiological stress, and the lower recruitment at these three 

sites may be the result of a combination of decreased adult fecundity or increased pre- or 

post-settlement mortality resulting from high water temperatures in that area. Coral 

recruitment is often spatially and temporally variable (Glassom et al. 2004; Adjeroud et 

al. 2007; Mangubhai et al. 2007), and further monitoring of recruitment in these areas is 

on-going to determine whether this pattern remains consistent.  

 

In terms of substrate material, gabbro stone was found to have the highest densities of 

recruits at the DDD site, although the low recruit densities precluded finding statistically 

significant differences at any other sites. Gabbro rocks have a course-grained geological 

texture (Sen 2001), and such geochemical signatures are known to influence the 

development of biofilm and larval settlement in a variety of marine organisms (Rodriguez 

et al. 1993; Apilanez et al. 1998; Qian 1999). Given that coral planula are known to 

preferentially settle on surfaces with rougher texture (Carleton and Sammarco 1987; 
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Harriott and Fisk 1987; Petersen et al. 2005), the granular surface of the gabbro tiles may 

explain the high densities of coral recruits observed on this material at the dry docks.  

 

The lowest density of coral recruits at the dry docks occurred on caprock sandstone tiles. 

This was unexpected given that this material had the greatest roughness of all substrates 

examined, and is the same substratum that forms the foundation of natural reefs in this 

area (Chapter 2; Riegl 1999). Tiles cut from cap-rock blocks, however, were extremely 

friable compared with the other materials, and many showed signs of having sloughed 

particles from their surface during their year of immersion. It is possible that the low 

recruit abundance on sandstone tiles reflects post-settlement loss of recruits as the surface 

layer of tiles disintegrated, taking recent recruits with it. It is also likely that this explains 

the low cover of other benthos on tiles of this material. This process would not be as 

problematic on the sandstone substrate in the natural reefs, where the substratum is 

exposed to near constant abrasive action of wave-induced mobile sands, resulting in a 

relatively consolidated surface upon which corals can recruit and grow.  

 

Coral recruitment to concrete on the dry docks was lower than on gabbro, but not 

different from that on the other materials, while recruitment on granite was similar to that 

on all materials examined. This echoes results from a study which compared substrate 

preference in two invasive azooxanthelate corals in Brazil. This study found that 

Tubastraea coccinea recruited in similar densities among concrete, granite, and terra-

cotta tiles, and T. tagusensis recruitment was similar among concrete and granite tiles 
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(Creed and DePaula 2007). These results are somewhat counter-intuitive based on the 

mineralogy of concrete and granite. Corals prefer to settle to alkaline substrates, and the 

leaching of calcium hydroxides from the cement in concretes should provide a more 

chemically attractive substrate for coral settlement (Anderson 1996). Alternately, the 

silicon-based radicals associated with the high quartz content in granite are known to 

negatively affect benthos (Cerrano et al. 1999), and should impair the recruitment of 

corals to granite tiles. It is likely that these geochemical cues were tempered shortly after 

immersion, resulting in similar recruitment patterns among geologically distinct 

substrates. Biofilm rapidly colonizes novel substrates placed in the marine environment 

(Wieczorek and Todd 1998), and their on-going metabolic processes can modify the 

geochemical signatures of the surface material (Petersen et al. 2005). In addition, 

chemically reactive cues are generally strongest only shortly after exposure of new 

substrate, with limited biological impacts over time if new surfaces are not exposed 

through abrasion (Cerrano et al. 1999). Such processes can mollify the chemical cues 

being released from the substratum and reduce the preferences of larvae to settle or avoid 

certain substrates, providing a probable explanation for the recruitment patterns observed 

here. 

 

Terra-cotta tiles are commonly used as an artificial substrate with which to quantify 

spatial and temporal patterns of coral recruitment (Mundy 2000; Baird et al. 2003; 

Adjeroud et al. 2007). In this study, the density of coral recruits on terra-cotta tiles did 

not differ from gabbro, granite, or concrete. These materials commonly form the 
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foundation of natural rocky reefs and/or coastal defenses and other artificial reefs (Baine 

2001; Guidetti et al. 2004; Creed and DePaula 2007), indicating that terra-cotta is a 

representative substratum upon which to assess patterns of coral recruitment in many reef 

settings. These results support the continued use of this inexpensive material in studies of 

coral recruitment. 

 

Benthic community development 

The mature benthic assemblages associated with the natural reefs, the Jebel Ali port 

breakwater, and the Dubai dry dock breakwater were found to differ from one another in 

an earlier study (Chapter 3). The natural reef has a sandstone caprock substrate, while the 

breakwaters were constructed from concrete (Jebel Ali port) and gabbro (Dubai dry 

dock), and these differences in substrate composition provide a possible explanation for 

the differences in the adult benthic assemblage. The results of this study, however, 

indicate that the substratum material had no influence on the development of benthic 

communities during their first year. Differences in community structure were observed 

among each of the sites examined in this study that were unrelated to substratum, 

indicating that other site-specific processes such as the supply of larvae or environmental 

conditions are of more importance in early benthic community development.  

 

The similarity of benthic communities among the different substrate materials reflects the 

results of a study by Creed and DePaula (2007), who found no difference in the benthic 
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communities among cement, granite, and concrete tiles over a 17 month period. Although 

others have suggested that benthic communities can differ between substrates of different 

material (Connell and Glasby 1999; Glasby 1999), these results are likely confounded by 

use of materials of different arrangement, complexity, and immersion time. Those that 

have monitored benthic development over periods longer than the first few months on 

different materials cut as standardized tiles have reported that physical aspects of the tile 

orientation or placement method have far more influence on benthic composition than 

substrate material (Glasby 2000; Qiu et al. 2003; Field et al. 2007), and this is echoed by 

field studies which have compared these variables (Anderson and Underwood 1994; 

Connell 1999; Chapman and Clynick 2006). Overall, this suggests that inherent 

characteristics of the substrates examined here are unlikely to impact development of the 

overall benthic community. 

 

Recommendation for design of artificial reef structures 

These results have important implications for the design of artificial reefs as well as 

coastal defense structures. Currently, the majority of artificial reefs around the world are 

constructed from concrete (Baine 2001), and sea-walls, jetties, and breakwaters are also 

made from quarried granite and sandstone (Bulleri 2005c; Moschella et al. 2005; Creed 

and DePaula 2007). Gabbro, however, has received less use, despite having one of the 

most widespread geologies on earth (Sen 2001). If artificial reefs or coastal defense 

structures are to be designed to encourage recruitment of corals, the results here indicate 

that gabbro should be used preferentially over concrete and sandstone where it is feasible, 
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but that granite may serve as a suitable alternative in areas where it is the dominant stone. 

The results of community analyses indicate that using materials more amenable to coral 

recruitment is unlikely to have any negative consequences for the recruitment of other 

fauna, and early benthic communities are likely to develop similarly regardless of what 

material is used. However, the findings from this study are based on the first year of 

benthic community development and must, therefore, be interpreted with caution. It is 

possible that long-term successional processes could lead to convergence of coral 

communities or to divergence of the overall benthic community on substrates of different 

materials over time. Further research would be required to address the long-term 

dynamics of benthic communities on different substrate materials.   

 

This study also highlights the importance of site selection. Both the density of coral 

recruits and the composition of the benthic community were more affected by differences 

among sites than by differences among materials, reflecting findings elsewhere (Harriott 

and Fisk 1987; Glasby 2000). This suggests that pilot assessments of potential 

deployment sites should be an integral part of the planning process in designing artificial 

structures to be added to marine systems. It also indicates the importance of spatial 

replication in marine research. A number of published studies examining the impacts of 

substrate material on benthic development have been limited to a single site (Qiu et al. 

2003; Brown 2005; Creed and DePaula 2007; Field et al. 2007). The results here suggest 

that benthic community development and coral recruitment differ from sites to site and 
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that the use of multiple sites is warranted for a wider understanding of community 

development.  
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Chapter 6: Coral community dynamics on a breakwater and natural reef 

 

Introduction 

Coastal defense structures such as breakwaters, groynes, and sea-walls are becoming 

increasingly common features in coastal urban areas. Such structures now make up more 

than half of the coastline in many regions (Bacchiocchi and Airoldi 2003; Airoldi et al. 

2005; Hansen 2005; Wen et al. 2007), providing a substantial amount of hard-bottom 

habitat upon which diverse and abundant fish and benthic communities develop (Lincoln-

Smith et al. 1994; Pondella et al. 2002; Bulleri 2005c; Guidetti et al. 2005b; Moschella et 

al. 2005). In tropical areas, such structures develop extensive coral communities which 

can provide food, settlement habitat, and shelter for a variety of reef organisms (Chapter 

3; Chapter 4; Wen et al. 2007), and increase the aesthetic appeal and recreational value of 

coastal defenses for human use (Airoldi et al. 2005). Such artificial structures can also be 

of value in replacing or enhancing natural coral reefs that have been degraded by natural 

or anthropogenic stress (Clark and Edwards 1999; Miller 2002), and may increase 

productivity in areas where natural reef habitat is limiting (Carr and Hixon 1997). 

 

In recognition of the important ecological role that coastal defense structures play in the 

marine system, there is increasing interest in understanding how design features can 

influence the development of communities associated with these artificial structures 

(Baine 2001; Airoldi et al. 2005). One of the most basic aspects of design which is likely 
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to influence community development is exposure to wave action. Wave exposure can 

substantially influence the composition and abundance of epifaunal communities that 

develop on coastal defense structures in temperate environments (Southward and Orton 

1954; Moschella et al. 2005), and has been associated with differences in coral 

community structure on natural coral reefs in the tropics (Riegl and Piller 1997; Reinicke 

et al. 2003; Steiner 2003). However, the influence of exposure on the development of 

coral communities on coastal defense structures is unknown.  

 

The purpose of this study is to investigate the influence of wave exposure on the 

development of coral communities associated with breakwaters in Dubai, UAE. 

breakwaters are a dominant feature of the marine environment in Dubai, where over 65 

km of rocky breakwater have been added to the coastline in the past decade. The addition 

of this artificial hard-bottom habitat may be particularly important here, where corals are 

generally restricted to a 10 km near-shore band of small, discontinuous patch reefs in 

western Dubai, and the remaining coastal area is dominated by mobile sands and silt 

unsuitable for coral reef development (Chapter 2; Riegl 1999). Coral community 

composition, cover, size structure, demographics, and growth rates were compared 

between leeward and windward breakwaters to explore the influence of wave exposure 

on coral community development, and these were compared with those on a natural coral 

reef to gain an understanding of how community structure and dynamics compare 

between these artificial and natural habitats.  
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Methods 

This study was conducted in Dubai, United Arab Emirates. The sea-bed in this area is 

dominated by mobile sand and silt substrates (Riegl 1999), with natural reefs restricted to 

isolated areas of exposed cap-rock which occur mainly to the south-west of the city 

(Figure 1). Large-scale (> 2 km long) breakwaters also provide a substantial amount of 

hard-bottom habitat upon which coral communities develop (Chapter 3, Chapter 4). One 

such breakwater, on the Palm Jumeirah, is composed of approximately 225,000 m2 of 

quarried rock, with an estimated volume exceeding 1.2 million m3 (Figure 1). Sampling 

was conducted at two leeward (PJ1 and PJ4) and two windward (PJ2 and PJ3) sites on the 

Palm Jumeirah breakwater, as well as at a natural reef site (JR; Figure 1). The leeward 

breakwater sites have a substrate that is mainly dominated by turf algae and bivalves, 

with higher water turbidity than at the windward sites (pers. obs.). At the windward sites 

the sea urchin, Echinometra mathai, is found in higher densities and bare pavement is 

more common than at the leeward sites (pers. obs.). The substrate on the natural reef is 

composed mainly of a veneer of fine to course mobile sands overlaying caprock, and 

fleshy algae is rare.  
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Figure 1. Map of study sites on leeward (PJ1 and PJ4) and windward (PJ2 and PJ3) 
breakwaters and on the natural reef (NR). 
 

Ten permanent 0.25 m2 quadrats were installed at approximately 5 – 6 m depth at each 

site. Stainless steel bolts were installed to mark the corners of each permanent quadrat 

using a Chicago Pneumatic CP-9 hammer-drill, and quadrats were spaced 3 – 5 m apart. 

Because the natural reef has little vertical relief (Chapter 2; Riegl 1999), quadrats on the 

breakwater were installed only on approximately horizontal substrates for consistency.  

 

Quadrats were photographed quarterly from July 2007 through July 2008 to obtain 

seasonal estimates of coral cover, demographics, and growth rates. Photographs were 

captured with a Nikon D-80 10 mega-pixel digital camera mounted on a PVC frame 
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outlining the quadrat area.  The perimeter of individual coral colonies was traced 

seasonally to calculate total colony area (cm2) using CPCe image analysis software 

(Kohler and Gill 2006). All statistical comparisons were performed using coral area. 

However, in some cases the diameter of colonies was also calculated for comparison to 

other studies, where the diameter of coral colonies was estimated from colony area using 

the formula D = 2·√(A/π), assuming circular colonies.  

 

Seasons were defined as Summer (July to October 2007), Fall (October 2007 to January 

2008), Winter (January to April 2008), and Spring (April to July 2008). Coral cover was 

estimated at the end of each season. Size-frequency distributions were created using the 

mean number of colonies in each size-class across seasons, with juveniles defined as 

those with an area < 12.5 cm2, equating with a circular colony < 4 cm in diameter. 

Demographic changes and growth rates were measured as the change from the preceding 

season. Recruitment was defined as the appearance of a new colony within quadrats, 

while mortality was defined as the permanent loss of a colony from a quadrat. Mobile 

coral rubble was excluded from analysis, and colonies which were partially or fully 

obscured by the quadrat frame during any season were not included in demographics or 

growth rate analysis to avoid confounding these estimates.  

 

All data were transformed prior to analyses. Percent coral cover were converted to 

proportion and arc-sine square root transformed, while a log(n+1) transformation was 
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applied to estimates of recruitment and mortality. A cube-root transformation was applied 

to growth data to account for the occurrence of negative coral growth rates.  

 

Reef types were classified as leeward breakwater, windward breakwater, or natural reef 

for analysis. Repeated measures ANOVAs were used to test differences in coral cover 

and coral growth rates between reef types and seasons, with post-hoc unequal-N HSD 

tests used to identify significantly different groups. A frequency distribution of coral 

colony sizes was created for each reef type using mean colony surface areas across 

seasons. Demographics were analyzed using non-parametric tests as log(n+1) 

transformations failed to normalize data. Seasonal differences in coral recruitment and 

mortality were tested with pair-wise Friedman’s ANOVAs, while differences among reef 

types were tested seasonally using Kruskal-Wallis ANOVA by Ranks. Linear regression 

was used to test the relationship between colony size and growth rates, averaged across 

seasons.  

 

Results 

There was comparable coral species richness between the breakwaters and natural reef 

with 10 and 12 species observed on each, respectively. However, species dominance 

differed between reef types, with coral cover on the breakwater dominated by Favia 

pallida (52.1% of coral cover), Porites lobata (19.5%), and Porites lutea (13.1%), while 

the natural reef was dominated by P. lutea (35.8% of cover), Porites harrisoni (31.3%) 
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and Cyphastrea microphthalma (23.4%). The relative proportion of P. lobata and P. lutea 

did not differ with exposure on the breakwater reef (repeated measures ANOVA: F(1,37) = 

0.7 and 3.8, respectively). However, F. pallida was significantly more common on the 

windward breakwater sites than at leeward locations (repeated measures ANOVA: F(1,37) 

= 19.3, p < 0.001).  

 

Repeated measure ANOVA of coral cover indicated a significant interaction between reef 

type and season (Pillai’s F(6,90) = 7.9, p < 0.001). Post hoc Tukey’s unequal-N HSD tests 

indicated that the leeward breakwater had significantly lower coral cover than the natural 

reef during each season (p < 0.05 each), but that coral cover on the windward breakwater 

did not differ from either the leeward breakwater or the natural reef during any season 

(Figure 2). In addition, coral cover did not change through the year on the leeward 

breakwater, while seasonal changes in cover were observed on the windward breakwater 

and the natural reef (Figure 2). There was a significant increase in the amount of coral 

cover on the windward breakwater at the end of the year compared with the previous 

summer (Figure 2; Unequal N-HSD: p < 0.001). However, on the natural reef, coral cover 

increased significantly from summer to winter (p < 0.001), and then declined in the 

spring such that it did not differ from any previous season (Figure 2). Several large 

breakwaters were  constructed within a kilometer of this natural reef site during the 

spring season, and the decline in live coral cover during this period likely reflects impacts 

from sedimentation on corals in the natural reef.  

 



128 

 

 

Figure 2. Seasonal coral cover (mean ± SE %) on the leeward and windward breakwaters 
and the natural reef. Bars with the same letter are not significantly different (Unequal-N 
HSD test, p < 0.05). 
 

The relative frequency of coral colony size classes on each reef type is illustrated in 

Figure 3. Juvenile colonies (< 12.5 cm2 area; < 4 cm diameter) were the most common 

size class observed at each location. However, the relative abundance of juveniles 

differed between locations. Juveniles made up over three-quarters of all colonies 

observed on the leeward breakwater, and few colonies were observed in larger size 

classes (Figure 3), indicating that few colonies survive to reach adulthood here. On the 

windward breakwater face there was a better representation of colonies through medium 

(< 75 cm2) size classes, with the result that there was a decline in the relative frequency 

of juveniles in the overall community here (Figure 3). The relatively infrequent 

occurrence of large (>75 cm2) colonies on either the leeward or windward breakwaters is 

not surprising, given the relatively young (5.5 yr) age of this breakwater. There was a 
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more equitable distribution of corals in medium to large colony size-classes on the 

natural reef, with an eighth of all colonies falling into the largest size class (> 125 cm2).  

 

Figure 3: Frequency distribution of mean (±SE) coral colony sizes among leeward and 
windward breakwaters and the natural reef.  
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Overall, seasonal densities of new recruits averaged 0.5 ± 0.2 m-2 across sites, with new 

recruits accounting for 9.5% of all corals observed during the course of the study. 

Mortality resulted in a loss of an average of 0.8 ± 0.3 colonies m-2 each season across 

sites, representing 16.2% of all colonies over the year. 

 

Coral recruits were observed exclusively in the fall season on breakwaters, and also had 

highest densities on the natural reef during this period (Table 1). Pair-wise Friedman’s 

ANOVA indicated that recruitment was higher during the fall period than any other 

season (Fall-Summer χ = 13.0, Fall-Winter χ = 9.3, Fall-Spring χ = 10.3; p < 0.01 each), 

and these other seasons did not differ from one another. However, Kruskal-Wallis 

ANOVA by Ranks indicated that there were no differences in recruitment among reef 

types during any season (H(2,42): Summer= 0.0, Fall=5.1; Winter=3.3;Spring=3.3).  There 

were also significant seasonal differences in coral mortality (Table 1; Friedman’s 

ANOVA χ = 15.6, p < 0.01). The highest mortality occurred during the spring, when 

mortality was significantly higher than in the summer and fall (Friedman’s ANOVA: χ = 

14.0 and χ = 6.3, respectively, p < 0.05 each). Mortality was also higher in the winter 

than summer (χ = 4.5, p < 0.05). The high incidence of mortality in the spring was mainly 

due to the five-fold increase in mortality on the natural reef compared with previous 

seasons (Table 1), likely as a result of increased sedimentation associated with nearby 

coastal development. There were no differences in mortality in the earlier seasons on the 

natural reef when mortality on the natural reef during the spring was excluded to account 

for potential anthropogenic effects (Friedman’s ANOVA χ = 0). Coral mortality did not 
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differ among the leeward and windward breakwaters and the natural reef during any 

season (Table 1; H(n=43): Summer = 6.7, Fall = 7.5, Winter = 0.6, Spring = 4.2). 

 

Table 1. Seasonal coral recruitment and mortality (mean ± SE colonies m-2) at each 
location.  

  Recruitment Mortality 
Location Summer Fall Winter Spring Summer Fall Winter Spring 
Leeward 
breakwater  1.6 ± 0.5    0.5 ± 0.4 0.8 ± 0.4 1.6 ± 0.5 

Windward 
breakwater  0.9 ± 0.7    0.2 ± 0.2 0.9 ± 0.5 0.9 ± 0.4 

Natural 
reef 

  3.2 ± 1.6 0.8 ± 0.8 0.4 ± 0.4 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 4.0  ± 1.7 

 

Although there were no differences in the overall density of corals lost to mortality 

among locations, mortality affected different proportions of the population as a result of 

differences in overall population sizes. Mortality resulted in the loss of nearly a third of 

all corals on the leeward breakwater during the year, compared with less than a tenth on 

the windward breakwater, when represented as a percent of the total number of coral 

colonies at each location (Figure 4). The natural reef lost approximately a fifth of its 

corals to mortality over the year, but two-thirds of this mortality was during the spring 

(light shading, Figure 4) in association with nearby marine construction activity, 

indicating probable anthropogenic influences.  
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Figure 4. Mean (± SE) percentage of colonies lost to mortality out of the whole coral 
community at each location over one year. Light shading on natural reef indicates percent 
lost in spring alone. 
 

 

Mortality was entirely restricted to juvenile corals on both the leeward and windward 

breakwaters, and to all but one colony on the natural reef. A frequency distribution of 

mortality versus colony size indicates that coral mortality is highest in new recruits less 

than 1.5 cm2 in area, or 0.7 cm in diameter (Figure 5). On the leeward breakwater, coral 

mortality was almost entirely restricted to colonies <3 cm2, or <2 cm diameter, while 

mortality affected relatively more larger colonies on the windward breakwater and the 

natural reef.  
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Figure 5: Relationship between colony size and percent mortality (mean ± SE) on 
leeward and windward breakwaters and the natural reef.  
 

Two species were responsible for all demographic change on breakwaters. Siderastrea 

savignyana made up 90% of all recruits on breakwaters, and were the only recruits 

observed on the windward sites. This dominance in recruitment was balanced by high 

mortality, with 70% of all breakwater mortality occurring in this species. F. pallida made 

up the remainder of breakwater recruitment and mortality, with 10% of recruitment and 

30% of mortality occurring in this species. On the natural reef, demographic change was 

more evenly divided among three species. Recruitment was evenly divided between P. 

harrisoni, P. lutea, and Coscinaraea monile, at 27. 3% of recruitment each. This 

recruitment was nearly balanced by mortality in P. lutea and C. monile (31.3% of 

mortality each), although mortality was lower in P. harrisoni at 18.8% of mortality.  
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The annual coral growth rate, averaged across all sites and seasons, was a 4.5 ± 3.0 cm2 

yr–1 increase in area, or a 2.4 ± 2.0 cm yr-1 increase in diameter. However, there were 

fluctuations in coral growth rates among seasons and reef types, with coral growth rates 

sometimes negative as a result of partial colony mortality resulting in colony shrinkage 

(Figure 6). Repeated measure ANOVA showed significant a significant interaction 

between seasonal growth rates and location (Pillai’s F(6,332) = 3.4, p < 0.01). 

 

 

Figure 6. Mean (± SE) seasonal coral growth rates for each reef type. Growth rates 
provided as change in area (left axis) and diameter (right axis). Note differences in axes 
scale. Sample size indicated in parentheses. 
 

Post-hoc Tukey’s unequal-N HSD tests were used to explore differences in growth rates 

among reef types and seasons. In terms of differences among reef types, growth rates on 

the windward breakwater were significantly higher than those on the natural reef during 

the summer and the spring (Figure 6; p < 0.05 and p < 0.01, respectively). However, coral 
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growth rates did not differ between leeward and windward breakwaters, nor between 

leeward breakwaters and natural reefs, during any season. In terms of seasonal 

differences, coral growth rates on the leeward breakwater were negative during the winter 

as a result of partial colony mortality during the cool winter months when water 

temperatures are regularly in the teens (Figure 6; G. Cavalcante, pers. comm.), but 

growth rates did not differ significantly among seasons. Coral growth rates also declined 

in the winter on the windward breakwater (Figure 6), with coral growth rates in the 

winter and spring significantly lower than during the summer (p < 0.001). On the natural 

reef there were no significant changes in coral growth rates until the spring, when coral 

growth rates declined significantly (p < 0.01). The rapid negative growth rate (colony 

shrinkage) on natural reefs during the spring corresponds to nearby coastal development 

(see above), and was associated with partial colony mortality in 61.5% of colonies 

compared with 36.5 ± 2.2 % of colonies in earlier seasons.  

 

Linear regression showed that there was a significant positive relationship between 

colony size and mean annual growth rate on the windward breakwater (F(1,91) = 65.6, p < 

0.001; r = 0.65), but not on the leeward breakwater (F(1,17) = 0.8; r = 0.20) nor the natural 

reef (F(1,45) = 0.3; r = 0.08). However, there was a significant relationship between colony 

size and mean annual growth rates on natural reefs when the spring season was excluded 

to avoid probable confounding effects from coastal development impact during this 

season (F(1,45) = 4.6, p < 0.05; r = 0.3).  
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Discussion 

Coastal defense structures such as breakwaters, jetties, and sea walls are increasingly 

common features in coastal urban areas as human populations grow. These structures can 

develop diverse and abundant benthic and fish assemblages (Lincoln-Smith et al. 1994; 

Pondella et al. 2002; Bulleri 2005c; Guidetti et al. 2005b; Moschella et al. 2005), with 

potential benefits to ecosystem productivity and related economic activity. The results of 

this study indicate that breakwaters can develop coral communities that are comparable in 

many respects to those on natural reefs, but that design features of the breakwaters 

themselves can particularly influence the processes structuring their coral community 

development.  

 

The leeward breakwater appears to offer a suboptimal habitat for coral community 

development compared with the windward breakwaters and natural reef. Coral cover on 

the leeward breakwater was low compared with the natural reef. This low cover appears 

to be primarily the result of high early post-settlement mortality. Examination of colony 

sizes indicated high mortality during early life on the leeward breakwater where only a 

quarter of corals survived to adulthood (Figure 3), compared with over half of colonies 

on the windward breakwater and the natural reef. This is reflected in the relationship 

between colony size and mortality (Figure 5), where coral mortality on the leeward 

breakwater was almost entirely restricted to recent recruits less than 3 cm2 (2 cm 

diameter). In addition, mortality had a disproportional effect on the leeward breakwater 

community due to the low coral abundance, resulting in the annual loss of nearly a third 
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of all colonies here compared with less than a tenth on the windward breakwater (Figure 

4). Coral recruitment rates and growth rates were comparable among all reef types, and 

growth rates were unrelated to colony size on the leeward breakwater, indicating that 

these processes likely had little influence on the low coral cover on the leeward 

breakwater. Overall, these results suggests that the low coral cover on the leeward 

breakwater results from high early post-settlement mortality, resulting in a low 

abundance community made up primarily of small colonies.  

 

These results suggest that the leeward areas on this breakwater represent a suboptimal 

habitat compared with the windward breakwater and the natural reef. Leeward and 

windward natural reef faces often have coral communities that differ in cover and 

composition (Riegl and Piller 1997; Reinicke et al. 2003; Steiner 2003), and breakwater 

exposure is also known to affect benthic communities in temperate areas (Moschella et al. 

2005). The leeward sites examined in this study have a significant wave height that is half 

of that on the exposed windward face (Smit et al. 2005), and have the high levels of 

turbidity and sedimentation that are characteristic of sites protected from wind driven 

waves (Purcell 2000; Walker 2007). More than three-quarters of the substratum on the 

leeward breakwaters is dominated by turf algae and bivalves, and little bare space is 

available for colonization (unpubl. data). In contrast, bare pavement makes up almost half 

of the substrata on the windward breakwater (Chapter 3). The high turf abundance on 

leeward sites likely results from the low densities of sea urchins here (pers.obs.), with 

urchin recruitment and survivorship likely impaired by the high sedimentation rates 
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characteristic of these sheltered breakwaters (Purcell 2000; Walker 2007). As both 

sedimentation and algae can inhibit coral recruitment, growth, and survival (Hodgson 

1990; McCook et al. 2001; Birrell et al. 2005; Crabbe and Smith 2005; Box and Mumby 

2007; Birrell et al. 2008), it is likely that the physical and biological conditions resulting 

from low wave action explain the low coral cover, skewed size distribution, and 

proportionately high mortality of corals on the leeward breakwater. Further investigation 

of these factors is warranted. 

 

Despite the evident differences in coral demography between windward and leeward 

breakwaters, this study confirms that the processes structuring coral community 

development on the windward breakwater sites are comparable to that of the natural reef 

during this year. After only 5.5 years since construction, the windward breakwater has 

developed 9.8% coral cover compared with 24.1% on the natural reef site, and coral 

recruitment, mortality, and growth rates were comparable between these reef types. 

However, this one year may not be representative of longer term changes in these 

communities. On the windward breakwater there is likely to be an increase in recruitment 

in the coming years as these colonies reach puberty, with fecundity increasing as colonies 

grow larger (Soong and Lang 1992; Sakai 1998; Kai and Sakai 2008), perhaps 

contributing to increased coral cover on windward reefs in the coming years. It is also 

likely that community structure and dynamics will change on the natural reef. These 

natural reefs are exposed to recurrent mass mortality every 10 – 15 years (Riegl 1999; 

Riegl 2002b; Riegl and Purkis 2009), and are currently in the process of recovery 



139 

 

(Chapter 2). Such events particularly affect the taxa associated with natural reefs in this 

area and have minimal impacts on the faviids and poritids which dominate breakwaters 

(Riegl 1999; Riegl 2002a; Sheppard and Loughland 2002), suggesting bleaching events 

predicted to occur with increasing frequency and magnitude in this region (Coles and 

Brown 2003; Sheppard 2003) are likely to differentially impact coral community 

structure and dynamics on natural reefs. In addition, coastal development is likely to 

exacerbate these effects. There is evidence from this study that the development of 

breakwaters adjacent to this natural reef was associated with a more than fourfold 

increase in whole colony mortality, a near doubling of partial colony mortality, and a 

decline in coral growth rates such that colonies were shrinking by 25 cm2 year-1 during 

the season following construction. It is likely that on-going and planned coastal 

developments adjacent to these natural reefs will continue to have negative impacts on 

these coral communities in the coming years. Overall, this suggests that while coral 

community dynamics on the windward breakwater and the natural reef are currently 

comparable, natural and anthropogenic changes are likely to result in divergence in the 

long term.  

 

In addition to spatial differences in coral community dynamics among reef types, this 

study also highlights the importance of season for these high-latitude assemblages. The 

Arabian Gulf is characterized by temperature extremes, with water temperatures here 

regularly exceeding 35 °C in the summer and declining below 16 °C in the winter (Coles 

2003). Although corals in this region have adapted to withstand these temperature 
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extremes (Coles 2003; Coles and Brown 2003), mass coral bleaching and mortality  have 

been associated with both high and low sea-surface temperatures here (Coles and 

Fadlallah 1991; Riegl 2002a; Sheppard and Loughland 2002), indicating that these corals 

are living at the margins of their thermal tolerance limits. In this study, coral mortality 

was highest, and colony growth rates typically lowest, during the winter or spring 

seasons, suggesting that these seasons represent a more stressful environment for corals. 

However, this is likely the result of seasonal competition with algae rather than 

temperature differences. Benthic algae are highly seasonal in this region, with most 

growth occurring during the winter before dying off with the onset of warm summer 

water temperatures (McCain et al. 1984; Coles and Fadlallah 1991; Ateweberhan et al. 

2006). Competition with algae is known to decrease coral growth rates and partial- and 

whole-colony survivorship (Birrell et al. 2005; Box and Mumby 2007; Titlyanov et al. 

2007; Birrell et al. 2008), and the extensive winter/spring growth of algae in this region 

has been suggested to be a leading cause of coral mortality on reefs here (McCain et al. 

1984; Coles 2003).  Most significant differences in coral growth rates and all significant 

differences in coral recruitment and mortality observed in this study were related to 

differences among seasons rather than differences among locations, suggesting that 

season may be more important in influencing these community dynamics than reef types.  

 

Overall recruitment densities of 1.9 ± 0.7 recruits m-2 yr-1 were observed across sites in 

this study, which is comparable to recruit densities observed on natural substrates in the 

Caribbean (Chiappone and Sullivan 1996), the Red Sea (Abelson et al. 2005), and the 
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Great Barrier Reef (Connell et al. 1997). The higher annual recruitment observed on the 

natural reef (4.4 recruits m-2 yr-1) than on the breakwater (1.3 ± 0.5 recruits m-2 yr-1) is 

likely a reflection of the higher proportion of larger, and presumably reproductive, 

colonies on the natural reef compared with the breakwater. In addition, the overall growth 

rates of corals associated with the breakwater and natural reefs currently average 4.5 ± 

3.0 cm2 yr-1 (2.4 ± 2.0 cm yr-1 diameter). This is comparable to average overall growth 

rates of corals in the Caribbean (3.4 ± 0.2 mm yr-1, Edmunds 2007) and the Red Sea (4.9 

mm yr-1, Glassom and Chadwick 2006), and slightly faster than corals from subtropical 

Australian reefs (0.6 to 2.0 mm yr-1, Wilson and Harrison 2005). Overall, this suggests 

that despite the severity of environmental conditions in the Arabian Gulf, coral 

recruitment and growth rates are comparable to those in other areas. Interestingly, coral 

growth rates were positively correlated with colony size in this study, while studies 

elsewhere generally show reduced growth rates in larger colonies (Chadwick-Furman et 

al. 2000; Edmunds et al. 2004; Goffredo et al. 2004; Bramanti et al. 2005). This likely 

reflects the relatively small size of colonies in this study versus in other areas. There were 

very few colonies > 125 cm2 (12.6 cm diameter) on either the breakwater or natural reef 

sites examined in this study as a result of the young breakwater age or the ongoing 

recovery from bleaching, respectively. As a result, many of the colonies examined here 

have not yet reached puberty. Given that coral growth rates generally decline as colonies 

become reproductive (Richmond 1987; Ward 1995; Guzman and Tudhope 1998; Mendes 

2004), it is likely that the current positive relationship between size and growth will 

change in the coming years as these colonies become reproductive.  
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Overall the results of this study highlight the importance of breakwaters as an artificial 

reef habitat on which coral communities can develop. With appropriate design, such 

structures can develop coral communities with comparable coral cover, demographics, 

and growth rates to natural reefs. This study also highlights the potential impacts of 

coastal development on coral community dynamics, where partial- and whole-colony 

mortality increased and average colonies shrank on the natural reef in association with 

nearby breakwater construction. Although it could be suggested that breakwater 

construction may mitigate these impacts by creating novel hard-bottom habitats upon 

which coral communities will develop, the results of this and other studies (Chapter 4) 

indicate that the composition of these breakwater coral communities is distinct 

throughout their development, and that breakwater coral communities are not surrogates 

for natural reefs. 
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Chapter 7: The influence of fish and sea-urchin grazing on early benthic community 

development 

 

Introduction 

Colonization of new substrates in marine environments occurs rapidly due to the two-

phase life cycle of most marine organisms, where adults are generally sedentary but their 

propogules can travel varying distances in the water column (Mora and Sale 2002; 

Shanks et al. 2003; Kinlan et al. 2005). The chance supply of larvae capable of colonizing 

novel substrates determines, in part, the resultant community which develops. However, 

as the community matures the patterns of colonization are often tempered by post-

settlement processes as residents facilitate or inhibit the recruitment of new species into 

the assemblage (Connell and Slatyer 1977). Such interactions can drastically modify the 

composition of the developing assemblage, setting communities onto divergent 

successional trajectories.  

 

Consumers are one of the primary determinants of post-settlement community change in 

marine systems (Bertness et al. 2004; Osman and Whitlatch 2004; Almany and Webster 

2006; Nydam and Stachowicz 2007). In hard-bottom benthic communities the grazing 

action of fish and sea urchins removes sessile benthic organisms, directly and indirectly 

affecting recruitment of subsequent colonists (Hata et al. 2002; Osman and Whitlatch 

2004; Cebrian and Uriz 2006). Numerous studies have demonstrated the impact of fish 
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and sea urchin grazing in structuring algal assemblages (Hixon and Brostoff 1996; 

Leinaas and Hartvig 1996; McClanahan 1997; McClanahan et al. 2002; Wright et al. 

2005; Gobler et al. 2006), but their impact on the wider benthic epifaunal community is 

not well understood.  

 

The ‘bulldozing’ action of sea urchins is suggested to be among the most important cause 

of early post-settlement mortality in sessile  invertebrates (Gosselin and Qian 1997; 

Maldonado and Uriz 1998), and several studies have shown that even nominally 

herbivorous sea urchins can have diets dominated by animal tissues (Cobb and Lawrence 

2005; Endo et al. 2007), in some cases specialized on particular invertebrate prey 

(Briscoe and Sebens 1988). Likewise, large fish often consume invertebrates directly as 

part of a specialist diet or as secondary foods by grazing herbivorous fish (Choat et al. 

2002; Crossman et al. 2005). As such, both sea urchin and fish grazing can substantially 

impact the structure of epifaunal assemblages (Himmelman et al. 1983; Relini et al. 1994; 

Miller and Hay 1996; Hill 1998; Connell and Anderson 1999), particularly on recently 

colonized substrates (Hurlbut 1991; Osman and Whitlatch 1996; Osman and Whitlatch 

2004). Thus, both fish and sea urchins are likely to play a role in structuring epifaunal 

community development, but the relative importance of each is poorly understood.  

 

The purpose of this study was to examine the importance of the grazing action of fish and 

sea urchins on early benthic community succession using a series of exclusion cages. 

Novel substrates in the form of breakwaters, jetties, and sea-walls are increasingly being 
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added to coastal ecosystems in urban areas, with some areas having more coastal defense 

than natural shoreline (Bacchiocchi and Airoldi 2003; Airoldi et al. 2005; Hansen 2005; 

Wen et al. 2007). Understanding the role that grazing fish and sea urchins play in 

structuring benthic communities develop on these structures has implications for marine 

management, particularly in areas where fishing pressure may be altering the populations 

of these consumers.  

 

Methods 

This study was conducted from February to September 2008 on the windward face of the 

Palm Jumeirah breakwater in Dubai, United Arab Emirates. This area is protected from 

commercial fishing. The numerically dominant large grazing fish in this area include the 

angelfish Pomacanthus maculosus, the rabbitfish Siganus canaliculatus, and the 

parrotfish Scarus ghoban, in order of abundance; Echinometra mathai is the numerically 

dominant urchin, while Diadema setosum is present in lower densities (unpubl. data).  

 

A caging experiment was used to determine the influence of grazing on benthic 

community development. Terra-cotta was used as the experimental substrate as it is 

inexpensive, has a standard size and shape (10 x 10 x 1 cm), and develops comparable 

benthic communities to other materials (Chapter 5). Each tile was held mid-water on a 

stainless steel bolt inside a standardized cage measuring 23 cm x 23 cm x 19 cm (D x W 

x H) constructed from PVC pipe. Cages were modified to represent one of four 

treatments (Figure 1): (a) ‘full cages’ (FC) were completely wrapped in PVC garden 
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fencing (2 x 2 cm mesh size) to reduce grazing of all organisms with a body width larger 

than 2 cm width, (b) ‘fish exclusion’ cages (FE) were enclosed in PVC fencing fitted with 

small (< 5 cm) holes on the sides and bottom to prevent grazing by larger fish but 

allowing access of smaller bodied grazers such as E. mathai urchins, (c) ‘urchin 

exclusion’ cages (UE) which were open on to fish grazing from above and below, but had 

inverted funnels fixed to the side of the cage to prevent urchin access, and (d) ‘control’ 

cages (C) which were unmodified.  

 

To allow monitoring and maintenance access, a hinged opening held together with 

industrial-grade plastic Velcro TM was fitted to the full- and fish-exclusion cages. Four 

cages representing each grazing treatment were mounted on a PVC rack and each rack 

was bolted to the substratum using a pneumatic drill operated on SCUBA. Although 

independent cages would have been preferable from a statistical perspective (Mundy 

2000), the logistic difficulty of drilling individual cages into the dense rock at this site 

necessitated the use of racks. Six replicate racks were spaced approximately 3 – 5 m 

apart, for a total deployment of 24 cages, with the order of treatments randomized on 

each rack. Racks and cages were cleaned of fouling organisms approximately biweekly 

through the course of the experiment.  
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Figure 1. Photographs of experimental cages used for grazer exclusion. (a) Full cage, (b) 
fish exclusion, (c) urchin exclusion, and (d) control.  
 

To monitor benthic development through time, the upper and lower surface of each tile 

was photographed at 2, 4, 8, 12, and 24 weeks. Each tile was removed from the cage by 

its sides and placed on frame-mounted bolt designed to hold tiles at a standardized 

distance and angle from the camera. Photographs of each tile surface (and its label) were 

captured with a Nikon D80 digital camera fitted with a macro lens at 10 mega-pixel 

resolution. Images were analyzed using CPCe version 3.4 (Kohler and Gill 2006), with 

all benthos under 50 randomly placed points identified to the lowest possible taxonomic 

level to generate percent cover estimates.  
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Communities associated with the upper and lower surfaces of the tiles were examined 

separately to avoid possible confounding effects of orientation. Data were pre-treated 

prior to analyses. Only benthos present in more than 5% of samples were included in 

analysis to avoid the influence of rare taxa (Tabachnick and Fidell 2001). Outlier analysis 

was performed to identify any samples that were more than two standard deviations from 

the mean. Three of the 238 samples were identified as outliers and these were removed 

from subsequent analysis. All data were normalized using square root transformations.  

 

A repeated measures analysis of variance (ANOVA) was used to compare the cover of 

individual benthic components among grazing treatments and sampling dates. To avoid 

violations of assumptions of sphericity and compound symmetry associated with 

univariate analyses, Pillai’s Trace multivariate test for repeated measures was used to 

assess interactions.  

 

In addition to changes in individual benthos, changes in overall community structure 

were explored using multivariate analyses. To separate the effects of treatment and 

immersion time any differences among treatments were tested at each sampling period, 

while a separate test of differences among time periods was performed within each 

treatment using one-way analyses of similarity (ANOSIM) and illustrated using non-

metric multidimensional scaling (NMS) ordinations. A two-way ANOSIM test crossing 
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time and treatment would be inappropriate as the repeated measures of tile benthos are 

not independent and would represent pseudo-replicates for such an analysis. ANOSIM is 

a multivariate randomization technique which uses a distance matrix to test for 

differences between groups assigned a priori; it is analogous to ANOVA but with 

minimum assumptions (Clarke and Gorley 2006). ANOSIM assesses the null hypothesis 

of no difference between groups based on an R-statistic, with R ≈ 0 when there are no 

significant differences among groups and greater differences among communities 

indicated as R approaches ±1. Randomization tests are used to assess the significance of 

the R-value. An R-value of <0.25 indicates that groups are barely separable, even if they 

are found to be significantly different due to large sample sizes (i.e. Type I error) (Clarke 

and Warwick 2001).  

 

Results 

Observation of the exclusion cages over the course of the study indicated that the cages 

were effective in excluding target organisms while allowing other grazers. The two 

species of sea urchin here, Echinometra mathai and Diadema setosum, were never 

observed within the urchin exclusion treatment nor inside the full exclusion cage, with 

the exception of a single E. mathai recruit that was removed from a full cage. Likewise, 

the fish exclusion treatment was designed to prevent access to fish >5 cm body width, 

and none were observed grazing within these cages or the full exclusion treatment. 

However, fish were observed grazing on the control and urchin exclusion treatment tiles, 

and sea urchins were observed grazing within the fish exclusion and control tiles.  
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Benthic communities, pooled across grazing treatment and time since immersion, differed 

in composition and coverage between the upper and lower tile surface (Table 1). The 

upper tile surface was mainly dominated by turf algae and bare tile which covered over 

90% of the substrates. A higher number of benthic taxa were observed on the underside 

of tiles, and cover was more equally distributed among benthic categories compared with 

the upper surface.  

 

Table 1. Percent cover of benthic categories (mean ± SE) associated with upper and 
lower surface of tiles pooled across all grazing treatments and times since immersion. 
Only taxa present in more than 5% of samples are included.  

 Benthos Upper tile Lower tile 
Coralline algae 3.7 ± 0.7 13 ± 1.3 
Turf algae 71.9 ± 2.6 12.4 ± 1.8 
Serpulid tubeworms 0.9 ± 0.2 12.7 ± 1.4 
Spirorbid tubeworms - 0.7 ± 0.1 
Cirripedia - 6 ± 0.9 
Bivalves 2.2 ± 0.8 16.4 ± 2.7 
Gastropods - 1.2 ± 0.3 
Bryozoans - 3 ± 0.6 
Solitary ascidians - 2.3 ± 0.8 
Colonial ascidians - 4.7 ± 1.6 
Bare tile 20.1 ± 2.3 25.6 ± 2.9 

 

Upper tile community 

Changes in the cover of individual benthos on the upper surface of tiles over time in each 

grazing treatment are illustrated in Figure 2. Repeated measures ANOVA showed 

significant interactions among grazing treatments, time since immersion, and individual 

benthos (Pillai’s trace F(48,21) = 5.4, p < 0.001).  

 



153 

 

 

Figure 2. Changes in percent cover of benthic components on the upper surface of tiles 
over time for each grazing treatment.  
 

Differences among grazing treatment, immersion time, and benthos were further explored 

using post-hoc Tukey’s HSD tests. Turf algae dominated the benthos across sampling 

periods, but its cover varied among weeks and grazing treatments (Figure 2). The highest 

turf cover was found in urchin exclusion treatments, which contained significantly more 

turf than fish exclusion and full cages over every sampling period (p < 0.05 each). 

Although turf algae was lower in control treatments than in urchin exclusion treatments 

during week 2 (p < 0.05), it had increased to comparable levels by week 4 and did not 

differ for the remainder of the study. By week 8 turf algae in the control treatment had 

become significantly higher than in the full cage and fish exclusion treatments and 

remained so during each subsequent sampling period (p < 0.05 each). Although there 

appears to be a decline in turf algae cover from week 12 to 24 in all treatments, this was 

significant only in fish exclusion cages (p < 0.05).  
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The amount of bare tile cover generally inversely reflected changes in the growth of turf 

cover over time (Figure 2). With the exception of a decline in bare tile from week 2 to 

week 4 in the control group (Tukey’s HSD: p < 0.05), there were no significant changes 

in bare tile over time in any treatments. Due to the dominance of turf in the urchin 

exclusion and control treatments (Figure 2), these treatments had significantly lower bare 

tile than the fish exclusion treatment at the close of the experiment. 

 

The remaining taxa observed on the upper tile surface, coralline algae, serpulid 

tubeworms, and bivalves, did not vary significantly among grazing treatments and/or 

weeks since immersion (p > 0.05 for all).  

 

In addition to changes in individual benthos, ANOSIM showed that overall community 

structure differed significantly among grazing treatments during several sampling periods 

on the upper tile surfaces (Table 2). During weeks 2, 8, and 12, benthic communities 

differed significantly among grazing treatments. Pair-wise comparisons among 

treatments show significant differences in overall community structure in many of the 

same treatment-time combinations where significant differences in turf cover were 

observed with repeated measures ANOVAs, above. During week 2, significant 

differences in community structure were observed between urchin exclusion treatment 

and all other treatments. By week 8, both the urchin exclusion and control treatments 
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differed significantly from the full cage and fish exclusion treatments, and the urchin 

exclusion treatment remained significantly different from these latter treatments through 

week 12. The similarity of the results from ANOSIM and repeated measures ANOVA 

reflects the dominance of turf in the benthic assemblage, and indicates that this group is 

driving overall community differences.  

 

Table 2. Comparison of benthic communities among all grazing treatments (overall) for 
each time period on the upper tile surface from ANOSIM. Pair-wise R-values are 
provided where significant. Asterisks indicate significance (p<0.05: *; p<0.01:**; 
p<0.001:***).  
Time period Overall comparison  Pair-wise comparisons 
  R-value p-value  C-FC C-FE C-UE FC-FE FC-UE FE-UE 

Week 2 0.22 p < 0.01    0.74**  0.26* 0.47** 
Week 4 0.08 ns        
Week 8 0.40 p < 0.001  0.38* 0.78**   0.39* 0.84** 
Week 12 0.22 p < 0.01      0.34** 0.37* 
Week 24 0.12 ns        

 

 

It should be noted, however, that the overall R-values during week 2 and week 12 were 

low (Table 2), indicating substantial overlap in benthic community structure among 

grazing treatments during these time periods, despite being significantly different. 

Likewise, there is only a moderate difference among treatments in week 8. The relatively 

weak strength of differences between communities are reflected in the considerable 

overlap among treatments in NMS ordinations during any of the time periods examined 

on the upper tile surface, including those that were shown to be significantly different in 

ANOSIM (Figure 3). Overall, these results indicate that although there were statistically 

significant differences in individual community components and in overall community 
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structure among grazing treatments, these differences are unlikely to be biologically 

significant.  

 

 

Figure 3. NMS ordinations of upper tile benthic communities among grazing treatments 
by week since immersion.  
 

The only significant difference related to grazing in univariate and multivariate analyses 

was due to differences in turf cover, and this was likely the result of caging effects. 

Univariate results indicated higher turf abundance in the control and urchin exclusion 

treatments with tiles open to the surrounding water column, while turf cover was low and 

bare tile high in the fish exclusion and full exclusion treatments which were surrounded 

by caging (Figure 1; Figure 2), and there were no differences in other benthos. Overall 

community structure weakly reflected these patterns in multivariate analyses. There was 

no evidence of difference in benthos among grazing treatments, full exclusion, and 
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control tiles consistent with impacts of either fish or sea urchin grazing on the upper tile 

surface. 

 

 

Lower tile community 

Changes in the cover of benthos on the undersides of tiles over the course of the study for 

each treatment are shown in Figure 4. Turf algae did not consistently dominate the lower 

tile surface as it had the upper surface, and the community was represented by a wider 

variety of taxa. Repeated measures ANOVA indicated that there were significant 

differences in cover among benthos and time since immersion (Pillai’s F(10,180) = 313.8 

and F(4,72) = 8.8, p < 0.001, respectively), but that there were no differences among 

grazing treatments (F(3,18) = 1.4) nor an interaction (F(120,720) = 1.1). These results indicate 

that while there were successional changes in community structure over time as the 

community developed, these changes were unrelated to grazing by fish or urchins.  
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Figure 4. Changes in percent cover of benthic components on the undersides of tiles over 
time for each grazing treatment.  
 

Post-hoc Tukey’s HSD tests were used to examine the changes in relative abundance of 

benthos over time. During the first sampling period, week 2, most of the tile surface was 

uncolonized; bare tile represented over four-fifths of the substratum, and was 

significantly more common than any of the live benthos (p < 0.001 each). By week 4 the 
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amount of bare tile had declined significantly (p < 0.001) as serpulid tubeworms grew to 

occupy a third of the tile area, more than all other living organisms (p < 0.001 each), 

except coralline algae. At two months (week 8), benthic cover was dominated by 

serpulids as well as turf and coralline algae, and each of these groups were significantly 

more abundant than all other fauna except Cirripedia (p < 0.05 for all). Serpulids declined 

significantly over the next month to Week 12 (p < 0.001). During this time, turf algae and 

bivalves increased in abundance, although not significantly, to cover significantly more 

space than all fauna except coralline algae, colonial ascidians, and bryozoans (p < 0.01). 

By the close of the experiment three months later (week 24), however, the cover of 

serpulid tubeworms and turf algae that had previously dominated the benthos had 

declined significantly from their peak to occupy less than 1% of the cover in combination 

(p < 0.001). This decline was associated with a significant increase in the relative 

abundance of bivalves from week 12 to week 24 (p < 0.001), where bivalves covered 

over two-thirds of the substrate at the close of the experiment – an order of magnitude 

higher than any other benthos, and significantly higher than any other benthic category (p 

< 0.001). 

 

Just as cover of individual taxa failed to differ among grazing treatments, multivariate 

ANOSIM found few changes in overall community structure related to grazing over the 

course of the study. The only significant differences were observed during the first 

sampling period, week 2 (Table 3), when the benthic community on the underside of the 

control group tiles differed from all other treatments, while the urchin exclusion and fish 
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exclusion treatments differed from one another. However, these differences were weak (R 

= 0.29) and are not consistent with any direct influence of grazing. No significant 

differences among treatments were observed thereafter. The absence of grazing effects 

were reflected in NMS ordination (Figure 5) which show little separation of communities 

among grazing treatments during all time periods. Overall, the results of both univariate 

and multivariate analysis show no evidence that the benthic community on the undersides 

of the tiles were impacted by grazing activity.  

 

 

 

Table 3. Results from ANOSIM analysis of differences in benthic communities among 
grazing treatments on lower tile surfaces. R- and p-values are provided for the overall 
comparison among treatments, as well as separate R-values for pair-wise comparisons 
between treatments. Asterisks indicate significance (p<0.05: *; p<0.01:**; p<0.001:***).  
Time period Overall comparison  Pair-wise comparisons 
  R-value p-value  C-FC C-FE C-UE FC-FE FC-UE FE-UE 

Week 2 0.29 p < 0.01  0.55** 0.33* 0.28*  0.46**  
Week 4 0.06 ns        
Week 8 0.09 ns        
Week 12 0.07 ns        
Week 24 0.12 ns              
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Figure 5. NMS ordinations of the benthic communities on the undersides of tiles among 
grazing treatments by week since immersion.  
 

 

Discussion 

There were differences in the composition of the benthic community between the upper 

and lower tile surfaces. On average, over 90% of the upper tile surface was covered with 

turf algae or was bare, while 11 benthic taxa had relatively equitable cover on the lower 

tile surface. This is typical of benthic tile communities in tropical systems, where upper 

tile surfaces are generally low in diversity and dominated by algae while tile bottoms 

generally contain higher densities and diversity of benthos as a result of differential larval 

settlement preferences and/or post-settlement survival among tile surfaces (Nzali 1998; 

Thomason et al. 2002; Adjeroud et al. 2007).  
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Observations of fish and sea urchin grazing in the field indicated that treatments were 

effective in excluding or allowing fish and sea urchin grazing on tiles as designed. 

However, there was no evidence that early benthic community development was 

influenced by fish or sea urchin grazing. Univariate and multivariate analysis of the upper 

and lower tile communities indicated that significant differences relating to treatments 

were few, and were not consistent with impacts due to grazing. These results suggest that 

the grazing action of fish and sea urchins do not play a substantial role in structuring 

these tile communities.  

 

The only significant benthic component that showed any significant difference relating to 

treatment was turf algae on the upper surface of tiles. However, this difference was likely 

the result of caging artifacts. Univariate analysis indicated that there was higher turf algae 

cover in the control and urchin exclusion treatments than in the fish exclusion and full 

cage treatments from the first month. Both the control and urchin exclusion treatment 

tiles were open to the surrounding water column (see Figure 1), while the fish exclusion 

and full cages were surrounded by mesh caging material. Mesh caging material can 

reduce water flow, increase sedimentation rates, and decrease light intensity (Schmidt 

and Warner 1984; Kennelly 1991; Connell 1997a; Miller and Gaylord 2007). These cage 

effects could result in lower supply of algal spores, decreased growth or higher mortality 

of turf algae, providing a probable explanation of the lower abundance of turf in the full 

cage and fish exclusion treatments. The lack of consistent differences in turf cover 

between the control tiles, the urchin exclusion, and the full cage, which also would have 
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excluded urchins, indicates that these differences were likely unrelated to grazing 

activity. These differences in turf cover drove changes in multivariate community 

structure among treatments as well. However, the few significant differences between 

treatments were weak, and there was considerable overlap of communities among grazing 

treatments in ordination. Altogether, these results indicate that differences in turf algae 

among treatments resulted from caging effects, and that there were no consistent effects 

of grazing by either fish or urchins on the wider benthic community.  

 

In the absence of impacts by grazers, benthic community succession was consistent 

among treatments. On the upper tile surface, turf algae dominated the benthic community 

within a month of immersion and remained dominant through the course of the study. 

Such long-term dominance by turf algae is common on substrates where grazing pressure 

is limited (McClanahan 1997), further supporting the suggestion that there was limited 

grazing activity on the tiles during this study. However, community development on the 

lower tile surface was much more dynamic. A month after immersion, the amount of bare 

tile declined as serpulid tubeworms established dominance. Serpulids are frequently 

among the most abundant early colonists (Chalmer 1982; Lin and Shao 2002; Manoudis 

et al. 2005) and settle preferentially to bare surfaces (Dean 1981). Serpulids remained 

relatively abundant during the following month, while cover of turf and coralline algae 

had increased to comparable levels. By the third month, however, the relative abundance 

of serpulids had declined, while turf algae and bivalve cover increased such that they 

were more common than almost all other benthos. Serpulid abundance commonly 
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declines as benthic communities develop through time (Lin and Shao 2002; Manoudis et 

al. 2005), and it is likely that their decreased abundance here reflects decreased 

availability of its preferred bare settlement substrates (Dean 1981) as well as the increase 

in relative abundance of turf and bivalves. Bivalves are considered a later successional 

species as a result of their low abundance in early community development (Chalmer 

1982; Greene and Grizzle 2007), with increased abundance over time likely resulting 

from their preference for biogenic settlement substrates (Dean 1981; Lindsay et al. 2006). 

The larvae of the oyster, Pinctada radiata, which dominated this bivalve community 

exhibits preference for carbonate shells (Al-Sayed et al. 1997), and it is likely that the 

presence of the earlier serpulid colonists facilitated their entry into the tile community. 

Once bivalves establish in the benthic community they can often come to dominate the 

substrates by preventing recruitment of earlier successional colonists (Dürr and Wahl 

2004; Lindsay et al. 2006) or attracting gregarious conspecific settlers (Chalmer 1982; 

Al-Sayed et al. 1997; Johnson and Geller 2006). By six month, bivalves covered two-

thirds of the tile substrates examined here and were significantly more abundant than any 

other benthos. As well, cover of the serpulid tubeworms and turf algae which had 

dominated during earlier periods has virtually disappeared, indicating that their presence 

likely does inhibit the growth and/or recruitment of these taxa. Overall, these results 

show that while grazing did not impact community development, there was a consistent 

successional sequence on these tiles.  
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Chapter 8: Discussion 

 

Over 65 km of rocky breakwater have been added to the coastline of Dubai, UAE. This 

has substantially increased the amount of hard-bottom habitat in the area, where most of 

the substrate is dominated by sands and silts, and natural reefs are isolated to a series of 

discontinuous patch reefs  in a 10 km near-shore band to the south-west of the city. The 

results of the preceding study indicates that these breakwaters act as large-scale artificial 

reefs, supporting diverse and abundant reef communities.  

 

Breakwaters as artificial reefs 

Mature breakwaters in Dubai have higher coral cover and seasonally higher fish species 

richness and abundance than nearby natural reefs (Chapter 4). These breakwaters 

represent a suitable habitat for juvenile recruitment, with juvenile fish densities 

comparable to those of natural reefs (Chapter 4), and coral recruitment on one mature 

breakwater was more than an order of magnitude higher than on natural reefs (Chapter 5). 

The colonization of these breakwaters occurs early, and community development appears 

to follow a sequence in which young structures are mainly dominated by a series of 

fouling communities that change over the first few years of immersion, with coral 

dominated structures resulting after 25 years. New substrates are colonized by a variety 

of benthic taxa within weeks of immersion, and benthic community structure begins to 

change rapidly as early successional species are replaced by later colonists and slower 
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growing organisms over the following months (Chapter 7).  The early benthic community 

structure is consistent across a number of different materials used in the construction of 

breakwaters (Chapter 5). Over time spans ranging from 1 to 31 yr benthic communities 

associated with breakwaters appear to follow a predictable sequence of development, 

with the benthic community becoming more similar to that on natural reefs as coral cover 

increases with age and other fouling organisms decline in relative abundance (Chapter 3). 

Corals recruit preferentially to gabbro (Chapter 5), the dominant material used in the 

construction of breakwaters in this area, indicating that these breakwaters provide a 

suitable substratum for the development of coral reefs. Corals are among the earliest 

colonists on breakwaters, with recruits appearing within a year of construction (Chapter 

3). Within 5.5 yr, coral communities on breakwaters have patterns of recruitment, 

mortality, and growth that are comparable to those of natural reefs (Chapter 6), and coral 

cover increases linearly with age such that it exceeds that of nearby natural reefs within 

25 yr (Chapter 3).  

 

Breakwaters versus natural reefs 

While breakwaters do represent a substantial artificial reef ecosystem in Dubai, they are 

not surrogates for natural reefs. Fish species composition and overall community 

structure differed between breakwaters and natural reefs seasonally, and there is evidence 

that fish communities function differently between reef types (Chapter 4). Breakwaters 

had a fish community that was more dynamic than that on natural reefs, mainly due to 

seasonal movement of adults onto and off of the breakwaters as well as higher seasonal 
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abundance of predators on breakwaters. In addition to fish communities, overall benthic 

community structure associated with each breakwater examined in Dubai differed from 

that of natural reefs, regardless of age (Chapter 3). Even on mature breakwaters, coral 

community composition differed from that of natural reefs, and there was lower diversity 

than on natural reefs both in terms of species richness and Shannon-Wiener diversity 

(Chapter 4). Divergence of coral communities on breakwaters from those on natural reefs 

can be further exacerbated on breakwaters with low wave exposure. Leeward breakwater 

coral communities had high post-settlement mortality compared with natural reefs, 

resulting in a low cover coral community characterized by fewer, smaller colonies than 

those on natural reefs (Chapter 6). Thus, although some aspects of community structure 

and function are comparable between reef types, there are also substantial differences 

between breakwater and natural reef communities.  

 

The results of this study increases our understanding of the role that these artificial 

structures play in the marine environment. This is of particular importance, given the 

growing demand for coastal development as well as the degradation of natural reefs both 

here and around the world.  

 

The importance of breakwaters in coastal ecosystems 

Breakwaters currently dominate the near-shore marine environment in many areas, and 

are likely to become more common. Over 65 km of breakwater are currently in place in 
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Dubai, and this is projected to increase substantially with the completion of several on-

going offshore developments. Such development is common in the Arabian Gulf. Over 

40% of the Gulf coastline of Saudi Arabia has been developed (Price 1993), and there has 

been a dramatic rise in the number and volume of breakwaters constructed for 

developments in Bahrain, Qatar, and Kuwait (Rezai et al. 2004; Al-Jamali et al. 2005). 

The prevalence of coastal defense structures is not isolated to this region, with 

breakwaters and related urban structures making up more than half of the coastline in 

parts of Europe and the Mediterranean (Cencini 1998; Bacchiocchi and Airoldi 2003; 

Airoldi et al. 2005) and over a quarter of the coastline in Australia’s New South Wales 

(Beeton et al. 2006). Thus, breakwaters are a common feature of coastal areas around the 

world and can be expected to play an increasingly important role in marine ecosystems 

with growing development of coastal urban areas.   

 

Implications for community development on breakwaters 

The results of the preceding study inform our understanding of how marine communities 

are likely to develop on these structures. Breakwaters and other off-shore coastal defense 

structures are typically built in areas dominated by sand, silts, or mud (Baine 2001), and 

thus represent island-habitats that must be colonized from elsewhere. Due to the two-

phase life cycle of most marine organisms, where adults are relatively sedentary but 

produce larvae which travel varying distances from their natal habitats (Shanks et al. 

2003; Kinlan et al. 2005; Paulay and Meyer 2006; Graham et al. 2008), larval supply is 

one of the main factors controlling early community development.  
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Several lines of evidence observed in this study suggest that the supply of invertebrate 

larvae available to colonize these breakwaters is site-specific. Tiles made of different 

materials developed benthic communities that showed stronger differences among sites 

than among materials, with each site developing significantly different communities 

(Chapter 5). This indicates that site-specific patterns of larval supply were more 

important that substrate material in determining early benthic community structure. 

Similar site-specific patterns were also observed with corals. Juvenile coral composition 

on the natural reef sites closely resembled that of the surrounding adult assemblages 

(Chapter 2), and the composition of recruits and juveniles on the Palm Jumeirah 

breakwater resembled that of the community associated with surrounding cap-rock 

outcrops (Chapter 6), suggesting localized recruitment in both cases. In addition, the 

abundance of coral recruits on settlement tiles composed of different materials differed 

by more than an order of magnitude among sites, indicating that the supply of recruits 

was far more important in driving early development of the coral community than were 

differences among tile materials, which were apparent at only one site. Such site-specific 

development has also been observed in other regions, where colonizing assemblages on 

coastal defense structures differed depending on their location and their distance from 

natural hard-bottom reefs (Airoldi et al. 2005). These results indicate that at least during 

the early stages of development, localized patterns of recruitment are likely to be 

important in determining the structure of the benthic communities associated with newly 

constructed breakwaters. 
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The localized recruitment patterns structuring early benthic community development 

reflect the relatively limited dispersal time and distances of many benthic invertebrates 

(Kinlan and Gaines 2003; Shanks et al. 2003). However, fish generally have much longer 

pelagic larval durations and larger dispersal distances than benthic invertebrates (Shanks 

et al. 2003), with most reef fish populations considered more open than closed (Mora and 

Sale 2002), resulting in patterns of recruitment that are often decoupled from their local 

populations. As a result, the localized patterns of recruitment observed for benthic 

invertebrates may not necessarily apply to fish. Abundance and composition of fish 

recruits observed here were comparable across two breakwaters and six natural reef sites 

spanning over 30 km of coastline (Chapter 4), suggesting that recruitment to breakwaters 

was independent of the distinct adult assemblages observed between breakwaters and 

natural reefs. This suggests that recruitment patterns of fish on breakwaters are less likely 

to be associated with site-specific patterns of adult abundance than with stochastic 

recruitment of pelagic larvae from elsewhere. However, hydrodynamic features of 

breakwaters may result in eddies which retain larvae close to their natal sites. Given that 

breakwater do represent large impediments to coastal flow (Smit et al. 2005), such 

retentive eddies are likely and may result in more localized recruitment than is typically 

observed on natural reefs. Further exploration of fish recruitment patterns on breakwaters 

is warranted.  
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Differences in environmental conditions related to wave exposure are likely to further 

modify recruitment-driven differences in community structure on newly constructed 

breakwaters. Although coral recruitment was comparable between windward and leeward 

sites associated with breakwaters examined here, there was proportionally higher early 

post-settlement mortality on leeward sites likely due to increased sedimentation rates 

and/or associated grazing pressure (Chapter 6). As a result, coral communities on the 

leeward sites were distinct from those on exposed sites, and were characterized by having 

a low-cover coral community made up of less abundant and smaller colonies compared 

with windward areas. Unpublished data indicate that these differences extend to the wider 

community, with leeward sites tending to have higher abundances of turf algae and 

bivalves than do windward areas on a number of breakwaters in the area. This reflects 

findings of a study examining the influence of exposure on breakwater benthic 

communities throughout Europe, where windward and leeward sites were found to 

consistently differ in benthic community structure (Moschella et al. 2005). Differences in 

exposure have also been associated with differences in fish community structure on 

breakwaters (Clynick 2006), although this was not examined in the current study. 

Overall, these results indicate that the level of exposure is likely an important factor 

structuring community development on breakwaters. Further research is necessary to 

determine the mechanisms driving these differences.  

 

The benthic communities associated with breakwaters will continue to change over time 

as these structures mature. The benthic communities associated with the youngest 
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breakwaters in the area were dominated by turf and sponges, while those several years 

older had developed substantial bivalve communities (Chapter 3). This reflects 

colonization sequences observed on artificial reefs and breakwaters in other areas 

(Aseltine-Neilson et al. 1999; Bacchiocchi and Airoldi 2003), suggesting this to be a 

typical pattern of community development. In tropical regions, slower growing corals 

begin to recruit early in benthic community development (Abelson and Shlesinger 2002; 

Lam 2003), but may take decades to become dominant members of the benthic 

assemblage (Perkol-Finkel and Benayahu 2005; Perkol-Finkel et al. 2005). Here, corals 

were observed recruiting to tile substrates within months of immersion (Chapter 5), and 

on breakwater substrates within a year (Chapter 3). There was a linear increase in coral 

cover on breakwaters of different age, with no signs of asymptote on the oldest 

breakwaters, with coral cover exceeding that of natural reefs after 25 yr. This reflects 

findings on breakwaters and artificial reefs in other areas, where the fouling and coral 

communities continued to change over periods exceeding a decade (Abelson and 

Shlesinger 2002; Perkol-Finkel and Benayahu 2005; Pinn et al. 2005). Overall, this 

suggests that newly constructed breakwaters will develop benthic communities that can 

be expected to continue changing over periods of years, and that more than three decades 

may be required for development of a relatively stable benthic community structure.  

 

Fish communities associated with breakwaters are also likely to follow successional 

patterns over time, although the sequence may be more dynamic. Following initial 

immersion, fish communities associated with breakwaters and other artificial structures  
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generally show increased species richness and diversity with time (Clark and Edwards 

1999; Abelson and Shlesinger 2002; Perez-Ruzafa et al. 2006). With the development of 

the benthic community, particularly corals, it is likely that fish species associated with 

particular benthic organisms for food, shelter, or settlement habitat will follow similar 

successional patterns. However, breakwaters and other artificial structures often have 

dynamic patterns of recruitment and have an adult assemblage that often changes 

significantly due to seasonal migration, as was observed here (Chapter 4; Bohnsack et al. 

1994; Lincoln-Smith et al. 1994; Stephens et al. 1994). Such stochastic patterns may 

result in a sequence of community change that is less predictable than that of the benthic 

assemblage.  

 

Grazers were predicted to impact benthic community development (Chapter 7). Both sea 

urchins and fish are common on breakwaters here and abroad (Guidetti et al. 2005a), and 

are known to strongly affect the development of communities on natural reefs and other 

artificial substrates (Relini et al. 1994; Hata et al. 2002; Osman and Whitlatch 2004; 

Cebrian and Uriz 2006). These grazers can directly consume and inhibit early 

successional species, opening space for less competitive but slower recruiting later 

successional species (Hurlbut 1991; Osman and Whitlatch 1996; 2004). However, the 

results of the grazing experiment conducted here indicate that the grazing action of fish 

and sea urchins have limited effects on the development of the benthic community. 

Further exploration of the factors structuring these communities is warranted. 
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There has been limited understanding of the role that breakwaters play in marine systems 

and how their communities develop. Results here indicate that the development of 

benthic breakwater communities is likely to be site-specific during the early stages as a 

result of differences in propogule supply and environmental conditions. Over the period 

of decades, long-term community development is likely to result in assemblages that 

become more comparable with those of natural reefs. However, such structures will 

remain distinct from natural reefs. Community structure of both coral assemblages and 

the wider benthic community was found to differ between breakwaters and natural reefs, 

even on the most mature 31 yr old breakwater in this area. This long-term difference in 

community structure between reef types has been observed in the Red Sea, where 

differences in coral and benthic community composition and abundance continue for over 

thirty years on artificial structures compared with natural reefs (Perkol-Finkel and 

Benayahu 2004; Perkol-Finkel et al. 2005; 2006). Similar differences in community 

structure between breakwaters and natural reefs were observed seasonally for fish. 

Breakwaters and other coastal defense structures are known to contain fish communities 

that differ in composition and abundance from those on natural reefs in a wide variety of 

temperate and tropical locations (Clark and Edwards 1999; Rilov and Benayahu 2000; 

Edwards and Smith 2005; Clynick et al. 2008), suggesting this to be a widespread 

phenomenon. Overall, this indicates that breakwater communities are likely to remain 

distinct from those on nearby natural reefs for periods of decades or longer.  
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Overall the results of this work suggest that the breakwater communities examined in this 

study are structured mainly by stochastic processes. The chance supply of larvae was the 

primary determinant of both coral recruitment and wider benthic community 

development on tiles (Chapter 5), and coral recruitment to natural reefs was also highly 

site-specific (Chapter 2). Benthic community development on tiles was also highly 

variable, with no strong and consistent influence from the grazing action of fish and sea 

urchins suggested to determine community structure in other areas (Chapter 7). However, 

the results of this work also indicate that deterministic processes can also play a role in 

structuring these communities, but to a lesser extent. Coral recruitment to tiles can be 

structured by the type of material available in the substrates in areas where recruitment is 

high, but stochastic differences in recruitment among sites appears to be more important 

in structuring communities (Chapter 5). Wave exposure can also be an important 

determinant of community structure, with leeward breakwater sites having low-cover 

coral communities dominated by small colonies with relatively high mortality (Chapter 

6). Thus, a combination of stochastic and deterministic processes have been shown to 

structure communities on these breakwaters, with chance processes playing a more 

important role in this systems.   

 

Implications for the future 

The difference in community structure between breakwaters and natural reefs is of 

importance given that natural reef systems are becoming increasingly degraded around 

the world due to overfishing, deteriorating water quality, and climate change (Carpenter 
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et al. 2008; Maliao et al. 2008; De'ath et al. 2009). With the impacts of climate change 

expected to increase in frequency and magnitude over the coming decades (Sheppard 

2003), it is likely that natural reefs will continue to be degraded. The results of the studies 

conducted here indicate that breakwaters may partially mitigate these impacts by 

providing alternative habitat for the development of marine communities, perhaps 

reducing impacts on commercially important organisms such as fish. However, 

communities associated with breakwaters differ from those on natural reefs, and will not 

serve as surrogates for communities on natural reefs.  
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