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Abstract 

Fishes widely employ the olfactory sense for communication in most aspects of their life.  

The olfactory system of fishes contains olfactory sensory neurons (OSNs) of three 

polymorphisms – ciliated, microvillous and crypt.  This thesis describes various studies of the 

properties of OSNs, from the expression of polymorphisms to odour responses, receptor 

specificity and second messengers, in two species of invasive fish: the sea lamprey (Petromyzon 

marinus) and the round goby (Neogobius melanostomus).  I describe, for the first time, the 

expression of ciliated OSNs displaying polymorphisms in the sea lamprey, an ancient jawless 

fish.  In the round goby, I investigate the olfactory properties of several steroids that have been 

identified as released by the reproductive male (RM) round goby and are putative pheromones.  

Female gobies detect the novel steroids 11-oxo-etiocholanolone (11-O-ETIO) and 11-O-ETIO-3-

sulfate, but not 11-O-ETIO-17-sulfate or 11-O-ETIO-3-glucuronide.  In addition, these steroids 

act upon separate olfactory receptor mechanisms and are transduced via both cAMP and IP3.   

Female electro-olfactogram resposnes to methanol-extracted steroids from RM 

conditioned water increased following treatment of the RM with gonadotropin releasing 

hormone, but not saline.  In addition, there was a correlation between female reproductive status 

(as measured by gonadosomatic index) and response to NRM (but not RM) urine. 

We tested the possible modulation of olfactory responses by prostaglandin F2α (PGF2α).  

Perfusing PGF2α directly over the olfactory epithelium had no effect on olfactory responses.  

Olfactory responses had a tendency to increase 40 minutes following injection with PGF2α, 

although this was not a significant change. 
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To investigate the possibility that RMs release pheromones with endocrinological effects, 

we measured female testosterone release following exposure to RM or NRM conditioned water 

and found that testosterone was unaffected by exposure to male odours. 

This thesis describes olfactory properties for two fish species of ecological and 

taxonomic importance.  We conclude that these studies of wild fish make important contributions 

to the field of fish olfactory biology, which is lacking in studies investigating core olfactory 

biological properties in fish of diverse taxonomic groups or in wild-caught populations.  
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Chapter 1: 

 

Olfactory sensory neurons of fishes 
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1.1 General overview 

Fishes rely strongly on their olfactory sense for virtually all aspects of their life, from 

finding food to avoiding predation, to finding and choosing a mate, and to identifying kin.  

Considering this, it is not surprising that fishes have a well-developed olfactory system that they 

use widely for communication.  Fish communication is often accomplished via the use of 

pheromones, which are defined by Stacey and Sorensen (2006) as ―a substance, or mixture of 

substances, released by an individual, which evokes a specific and adaptive response in 

conspecifics, the expression of which does not require learning‖.  Specific types of pheromones 

are discussed further in section 1.7. 

This thesis discusses studies of the olfactory sense and olfactory sensory neurons (OSNs) 

of two species of fishes – the sea lamprey (Petromyzon marinus) and the round goby (Neogobius 

melanostomus).  I investigate properties of OSNs in these species including polymorphisms, 

receptor odour specificity and second messengers.  These studies of OSNs in the round goby are 

unprecedented for a wild-caught fish species. Here, the overall interest was how the olfactory 

epithelium of female round gobies responds to compounds released by the reproductive males.  

We were working under the hypothesis that males release steroids which function as 

reproductive pheromones.  I focus on responses to 5β- and 3α-reduced steroids released by 

reproductive males that are putative pheromones and on the urine and conditioned water that 

contains these compounds.  In addition to testing for olfactory sensory responses, I investigate 

whether endocrine changes in the receiver affect these olfactory responses, and start to ask if 

these putative pheromones subsequently have biological activity that directly affects the 

endocrine system of the receiver.   
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The purpose of this introductory chapter is to review what is currently known about the 

olfactory epithelium (OE) in fishes in terms of structure and function of the OSNs.    

1.2 Olfactory sensory neuron polymorphisms 

The naris – the external opening to the environment – leads to the nasal cavity, which 

contains the OE.  The OE is a pseudo-stratified ciliated epithelium consisting of bipolar OSNs, 

supporting cells and basal cells.  Axons of OSNs exit the OE by passing through the basal lamina 

into the underlying lamina propria and join together to form the olfactory nerve, which transmits 

information to the olfactory bulb (located in the brain), where OSN axons form synapses with 

mitral cells, the second order neurons in the olfactory system.  From the olfactory bulb, odour 

information is sent via the medial and lateral olfactory tracts to the telencephalon (reviewed by 

Laberge and Hara, 2001; Hansen and Reutter, 2004).  It is within the OE that odours first bind to 

their receptors and olfaction – smelling – begins to take place. The olfactory signal transduction 

cascades are demonstrated in Fig 1.1 and Fig 1.2.  Ultrastructural studies of the OE of fishes over 

the past 30 years or more have revealed that OSNs in fishes display polymorphisms that are tied 

to the chemical repertoire of these cells.  Polymorphisms have been specifically described in 

many species including – but not restricted to – channel catfish, Ictalurus punctatus (Caprio and 

Raderman-Little, 1978; Muller and Marc, 1984); goldfish, Carassius auratus (Muller and Marc, 

1984); other cyprinid fishes (Aplochelius lineatus, Xiphophorus helleri; Zeiske and Melinkat, 

1976); and salmonid fishes (Thommesen, 1983).  These polymorphisms differ in relation to their 

shape, position within the OE, and functionality (summarized in Table 1.1).  The first type, the 

ciliated OSN, has a cell body located deep in the OE, near the basement membrane.  Its dendrite 

is therefore long, and also quite thin, with a bulbous ending known as the olfactory knob, which 

bears cilia (reviewed by Hansen and Zielinski, 2005; Zielinski and Hara, 2007).  In the OE of 
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teleost fishes, ciliated OSNs are intermingled with the second morph, microvillous OSNs.  The 

cell bodies of microvillous OSNs are located in the middle third of the OE, and they have mid-

length, thick dendrites that end in microvilli.  The two polymorphisms are seen even in rainbow 

trout embryos (Salmo gairdneri), with ciliated OSNs appearing 8 days earlier than the 

microvillous type (Zielinski and Hara, 1988).  In addition to teleosts, the expression of both 

ciliated and microvillous sensory cells is seen in a primitive extant ray-finned fishes, the bichir 

(Polypterus senegalus and P. ornatipinnis; Zeiske et al., 2009) and sturgeons of the genus 

Acipencer (Zeiske et al., 2003). 

The final OSN morph is the crypt cell (Hansen and Zeiske, 1998). It lacks a dendrite, and 

instead has a cell body located in the superficial OE and the longest axonal length passing 

through the OE of the OSN morphs.  The crypt OSN gets its name from the crypt-like 

invagination at its apical surface which bares both microvilli and cilia (Hansen and Zeiske, 

1998).  The crypt cell appears to be widespread in teleost fishes (Hansen and Finger, 2000; 

Belanger et al., 2003; Castro et al., 2008; Bettini et al., 2009), sturgeons (Zeiske et al., 2003; 

Camacho et al., 2010), bichirs (Zeiske et al., 2009) and elasmobranchs (Ferrando et al., 2007; 

Ferrando et al., 2009). 
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Fig 1.1: Summary of the olfactory signal transduction cascade involving cAMP as a second 

messenger.  Upon binding of the odour molecule, the G-protein coupled to the receptor (R) is 

activated, releasing the α subunit which activates adenylyl cyclase (AC).  AC, in turn, leads to an 

increase in cAMP which binds to the cyclic nucleotide gated (CNG) channel.  Following opening 

of the CNG channel, positive ions flow into the cell, leading to action potential generation.  

Additionally, OSNs contain an unusually high intracellular Cl
-
 concentration, which flows out of 

a Ca
2+

 activated chloride channel to amplify the signal.  The flow of ions creates the summed 

generator potential that we record as the elctro-olfactogram. Adapted by permission from 

Macmillan Publishers Ltd: [NATURE] (Firestein), copyright (2001). 

 

 

 

 
Fig 1.2: Summary of the olfactory signal transduction cascade involving IP3 as a second 

messenger.  Odour binding causes an increase in IP3 via phospholipase C (PLC).  The increase in 

intracellular IP3 leads to the opening of Ca
2+

 channels and increased [Ca
2+

] activates non-specific 

cation channels and may activate a Ca
2+

-activated K
+
 channel.  Modified with permission from 

Springer.  Journal of Membrane Biology 181(2), copyright (2001). 
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The expression of OSN polymorphisms appears to follow an evolutionary pattern in those 

species that have been investigated.  In an ancient jawless fish (superclass Agnatha), the sea 

lamprey (Petromyzon marinus), only ciliated OSNs are seen (Vandenbossche et al., 1995); in 

elasmobranchs, these sensory cells only bear microvilli (Takami et al., 1994; Ferrando et al., 

2007; Schluessel et al., 2008; Ferrando et al., 2009; Ferrando et al., 2010); and the crypt cell 

appears in the OE (Ferrando et al., 2007; Ferrando et al., 2009).  By the divergence of the ray-

finned fishes, the OE was populated by all three OSNs (Zeiske et al., 2003; Zeiske et al., 2009; 

Camacho et al., 2010).  Overall, in fishes displaying all three morphotypes, ciliated cells 

predominate, with microvillous OSNs being fewer in number (e.g. Thommesen, 1983).  

Generally, crypt cells tend to be rare (eg. Bettini, 2009), and in some species, do not appear in all 

specimens (Belanger et al., 2003).  Considering their scarcity (e.g. Belanger et al., 2003), as well 

as the fact that their number may vary with season (Hamdani et al., 2008) and sex (Bettini et al., 

2009), it is not all that surprising that the crypt cells escaped detection for so long. 
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Table 1.1: Summary of OSN morphotypes and their various properties.  The dotted line in the 

first row designates the apical and basal surfaces of the olfactory epithelium (OE). 

 

 Ciliated  Microvillous  Crypt Cell 

 
OSN Morphotype 
 
 
 
 
 

   

Apical surface 

 
Olfactory knob with 
cilia 

 
Short olfactory 
knob with 
microvilli 

 
Submerged crypt 
with microvilli and 
cilia 

Dendrite Thin Thick Absent 

Cell body location in OE Lower third Mid region Upper third 

Taxonomy Agnathans,  
teleosts 

Elasmobranchs, 
teleosts 

Teleosts 

Odour 
Responses 

Amino acids Yes Yes Yes 

Bile acids Yes Unknown Unknown 

Steroids Unknown Unknown Unknown 

Receptor Expression OR-type V2R-type Unknown 

G protein Expression Gαolf Gαq/11 / Gαo / Gαi-3 Gαq/11 / Gαo 

Second messengers cAMP IP3 cAMP 

 

1.3 Olfactory sensory neurons – receptors 

OSNs express olfactory receptors, the binding sites for odourous molecules (Buck and 

Axel, 1991).  In fishes, as in mammals, the olfactory receptor is a seven transmembrane G-

protein coupled receptor (GPCR), first described for fishes in channel catfish (Ngai et al., 

1993b).  Compared to mammals, which have about 1,000 genes encoding olfactory receptors 

(Buck and Axel, 1991; Parmentier et al., 1992), fishes have about 100 olfactory receptor genes 

(Ngai et al., 1993b).  These receptors show no topography in the OE, rather they are randomly 

distributed throughout the OE (Ngai et al., 1993a). 

In goldfish, two multigene olfactory receptor families have been cloned (Cao et al., 

1998).  These families, termed GFA and GFB, contain homologs of olfactory receptors (OR) 

found in mammals (Buck and Axel, 1991), and mammalian vomeronasal organ receptors (V2R; 
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Buck, 2000), respectively.  These goldfish OR-type and V2R-type receptors are 7 

transmembrane GPCRs as mentioned above.  In fishes, ciliated OSNs express the OR-type 

receptors, so named because they resemble the ORs identified in mammals, while microvillous 

OSNs express the V2R-type receptors, which are similar to the receptors associated with 

vomeronasal organ of mammals (Cao et al., 1998; Buck, 2000; Hansen et al., 2004; Sato et al., 

2005).  In goldfish, OR-type and V2R-type receptors do not co-localize in the same cell morph 

(Hansen et al., 2004; Sato et al., 2005).  To my knowledge, there is no published study about 

what type of receptor might be expressed in the crypt cell.  In addition to the OR-type and V2R-

type receptors, a third type of receptor has been identified in teleost fish – the V1R-type, which 

the authors named ora and identified in zebrafish (Danio rerio) OSNs (Saraiva and Korsching, 

2007).  In mammals the V1R and V2R receptors are quite different in terms of sequence 

similarity with each other and the ORs, and expression pattern in the vomeronasal organ 

(reviewed by Ma, 2007). Neurons expressing V1R or V2R receptors project to different areas of 

the mammalian accessory olfactory bulb, and respond to different classes of molecules 

(Leinders-Zufall et al., 2000; Ma, 2007).  The final type of chemosensory receptor thus identified 

is the trace amine-associated receptor, which has been seen in many vertebrates, including 

zebrafish and Fugu (Gloriam et al., 2005), but has not yet been associated with any particular 

OSN morph. 

Very little is known regarding olfactory receptors in non-teleost fishes.  Few ancient 

fishes have the same genetic resources as the sea lamprey, which has a sequenced genome.  

Chemosensory receptor genes were detected in the sea lamprey, including 27 OR-type genes, 28 

TAARs and 4 V1R-type genes; and all three gene families were expressed in the olfactory 

system of different sea lamprey life stages – parasitic and adult (Libants et al., 2009).  
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1.4 Olfactory sensory neurons – G-proteins 

There have been two identified GPCR signal transduction cascades identified in the fish 

olfactory system: one stimulating cyclic adenosine monophosphate (cAMP) and one stimulating 

inositol-1,4,5-triphosphate (IP3, Restrepo et al., 1990). The canonical signal transduction cascade 

in OSNs is summarized in Fig 1.1.  As mentioned previously, the olfactory receptor is a GPCR, a 

G-protein coupled receptor.  An olfactory-specific G-protein was identified in 1989 by Jones and 

Reed.  This G-protein, named Gαolf, has since been identified in the OE of several species of 

fishes.  In fact, the expression of Gαolf is associated exclusively with the ciliated OSNs in teleosts 

(Belanger et al., 2003; Hansen et al., 2003; Hansen et al., 2004).  In addition, Gαolf 

immunoreactivity has been seen in sea lamprey OSNs, which are all ciliated (Frontini et al., 

2003).  Microvillous OSN G-protein expression is species-specific, and these neurons never 

express Gαolf.  In goldfish, microvillous OSNs express Gαo, Gαq or Gαi-3 (Hansen et al., 2004), 

while in catfish, this morph expresses Gαq/11 (Hansen et al., 2003), and in the round goby Gαo is 

associated with the microvillous cells (Belanger et al., 2003).  In the shark (Scyliorhinus 

canicula), and rabbit fish (Chimaera monstrosa) which only have microvillous cells, OSNs seem 

to express Gαo only (Ferrando et al., 2009; Ferrando et al., 2010).  Crypt cells express Gαo in 

round gobies (Belanger et al., 2003) and catfish (Hansen et al., 2003), and in the goldfish, crypt 

cells can express both Gαo and Gαq – the only published report of an OSN morphotype expressing 

more than one G-protein (Hansen et al., 2004).   

1.5 Olfactory sensory neurons – second messengers and odour responses 

As mentioned above, two second messenger pathways have been described in the 

olfactory system, one using cAMP and one using IP3, which was first described by Restrepo and 

colleagues in channel catfish in 1993 (reviewed in Zielinski and Hara, 2007).  Through 
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experiments using various physiological and histological techniques, these two second 

messengers have been associated with the transduction of different odour classes.  Table 1.2 

summarizes research identifying the second messenger and OSN type associated with odour. 

Table 1.2:  Summary of second messengers and OSN morphotypes associated with different 

odour classes based on electro-physiological and immunohistochemical studies in fish. 

Odour Class 
Second Messenger 

OSN morph 
cAMP IP3 

Amino acids 

Catfish (Hansen et al., 2003) 
Goldfish (Rolen et al., 2003) 

Mackerel (Vielma et al., 2008) 

Catfish (Hansen et al., 2003) 

Goldfish (Rolen et al., 2003) 

Zebrafish (Michel et al., 2003;      

Michel, 1999) 

Atlantic salmon (Lo et al., 

2003) 

Microvillous 
Catfish (Hansen et al., 2003) 

Rainbow trout (Sato and 

Suzuki, 2001) 

 
Crypt 
Mackerel (Vielma et al., 2008) 

Bile salts 

Catfish (Hansen et al., 2003) 

Goldfish (Rolen et al., 2003) 

Zebrafish (Ma and Michel, 

1998; Michel 1999) 

Atlantic salmon (Lo et al., 

1994) 

Ciliated 
Catfish (Nikonov and Caprio, 

2001; Hansen et al., 2003) 

Goldfish (Rolen et al., 2003) 

Rainbow trout (Sato and 

Suzuki, 2001) 

Pheromones 
or steroids 

Goldfish (Sorensen and Sato, 

2005) 

Not observed Unknown 

 

Generally speaking, amino acid odours – which represent food odours – are transduced via 

cAMP and/or IP3.  These responses appear to take place in microvillous OSNs and therefore 

involve G-proteins other than Gαolf (e.g. Gαo or Gαq).  The single study of crypt cells found that 

these responded only to amino acids and that these responses were mediated via cAMP (Vielma 

et al., 2008).  With the exception of the Atlantic salmon, bile salt odours (proposed to function in 

social interactions) are processed by ciliated OSNs using cAMP (via Gαolf).  Previous 

investigation of second messengers responsible for transducing pheromones (in this case a blend 

of steroids), found that cAMP transduced olfactory response to a mixture containing sex steroids 

(Sorensen and Sato, 2005). 
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 The second messenger cAMP binds to and activates a cyclic nucleotide gated channel, 

the opening of which allows an influx of positive ions.  This flow of ions creates the generator 

potential that we record as the electro-olfactogram, which is described further in section 1.8. 

1.6 Olfactory sensory neurons – summary 

 In the OE of fishes, there exists a relationship between form and function of the OSNs.  

The three OSN morphotypes (ciliated, microvillous and crypt) vary in their shape and position 

within the epithelium.  Along with this, they express different receptors (OR-type and V2R-type, 

as well as V1R-type and TAARs, though these last two have not been specifically associated 

with particular morphs) which are coupled to different G-proteins.  These OSN types also 

transduce different odour classes and utilize different second messengers to do so.  Studies of 

OSNs have revealed these characteristics in several species of fishes, but additional information 

– particularly for more diverse taxonomic groups of fishes – is still necessary to define the 

complete form and function of OSNs. 

1.7 Primer and releaser pheromones 

 Pheromones, defined in section 1.1., can be further divided into two types, based on the 

receiver‘s response.  Pheromones causing no behavioural effect, but instead having a 

physiological or endocrinological effect are termed primer pheromones, while pheromones 

which do elicit overt behavioural effects in the receiver are termed releaser pheromones (Wilson 

and Bossert, 1963).  In fishes, as in other animals, olfactory responses to releaser pheromones 

can recorded from the OSNs in the OE using electro-olfactogram (EOG, explained in section 

1.8).  Primer pheromones, however, do not necessarily have to evoke an EOG response – the 

EOG being indicative that the fish can smell the odour.  The best known example of this is the 

synchronization of the menstrual cycles of female humans as observed by McClintock (1971).  
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The females in this study could not smell the primer pheromone that was being released, but it 

had a physiological effect.  This classic example indicates that pheromones can function without 

conscious detection, but similar examples do not exist in fishes because researchers tend to 

measure the potential of a putative pheromone by its evoked EOG response.  However, Chung-

Davidson and colleagues (2008) found that in the goldfish, releaser pheromones also had 

neurogenic effects, as demonstrated by an increase in the number of cells dividing in the 

diencephalon of the brain. 

1.8 The Electro-olfactogram (EOG) 

 The EOG is a well-known tool for the study of olfaction in fishes particularly (Silver et 

al., 1976).  This electrophysiological technique records responses to odours as changes in the 

field potentials recorded from neuron ensembles.  This response is a slow, DC recording of 

summed generator potentials, which are graded responses to stimuli.   EOG responses to odours 

occur in a dose-dependent manner and are typically used to determine detection thresholds for 

odours.  Potency of an odour can be inferred from EOG recordings using the response magnitude 

in millivolts (i.e. the odour-evoked change in the field potential measured in millivolts) or the 

normalized response (i.e. the odour response in millivolts expressed relative to the response to a 

pre-determined standard odour).  In addition, the ability to block or reduce EOG responses using 

odours or pharmacological agents allows for the discernment of certain olfactory properties such 

as the receptor specificity or the second messenger involved.  Thus, the EOG is a very useful tool 

in the study of olfaction. 

1.9 Olfactory studies using wild fish populations 

The work described in this thesis all involves fish caught from wild populations that have 

not been bred in the lab, which is rare in the olfactory field, particularly in respect to electro-



13 
 

olfactogram (EOG) studies.  Working with a wild population of round gobies presents a number 

of difficulties.  For example, EOG recordings cannot be taken after about early to mid-October 

and behavioural responses to odours also decrease after the summer for reasons yet unknown. 

EOG recordings have only been reported for a small number of wild-caught fishes.  The 

EOG recordings from the sea lamprey are well-known and have been published for years (Li et 

al., 1995; Siefkes et al., 2003).  Recently, a study employing EOG recordings to investigate 

putative pheromones in wild-caught field specimens of peacock blenny (Salario pavo) has been 

published (Serrano et al., 2008). In addition to these species, EOG studies have been published 

using wild black bullhead catfish (Ameiurus melas, Dolensek and Valentincic, 2010) and wild-

caught hammerhead shark (Sphyrna lewini, Tricas et al., 2009).   Considering the vast number of 

EOG studies that have been published using fishes, this is a very small proportion – about 14% 

of results in one Pubmed search (though it was not exhaustive), and about 50% of these were sea 

lamprey.  This indicates that that not only is the overall number of EOG studies of wild species 

low, but the number of species represented in published studies is even lower because a large 

proportion of them use the sea lamprey.  

1.10 Non-reproductive females in the study of pheromones 

 All of the studies in this thesis used non-reproductive females, and this fact must be 

addressed.  Although reproductive females are ideal for EOG testing of putative pheromones, the 

difficulty in obtaining these females and our inability to maintain their reproductive status once 

brought in to our facility, make them an unreliable study subject.  Female round gobies are 

classified as ―reproductive‖ if they have a gonadosomatic index (GSI) of 8% or greater (Belanger 

et al., 2004) or ―non-reproductive if the GSI value is less than 8%.  The GSI is a measure of 

gonad weight expressed as a percentage of total body weight, and in most fishes, is the most 
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common means of assessing reproductive status of both males and females.  In females, a high 

GSI typically indicates that the female‘s ovaries are full of eggs.  Although reproductive female 

round gobies were seen to display greater EOG responses to male odours than non-reproductive 

females (Belanger et al., 2004), non reproductive females detect the same odours, though with a 

lower response magnitude.  Also, male and female round gobies did not show a difference in 

EOG responses to steroid odours (Murphy et al., 2001), though this study did not use 

reproductive individuals.  Overall, there is no evidence that an olfactory receptor for a 

pheromone might only be expressed during the fish‘s reproductive stage.  The number of 

olfactory receptors may increase with sexual maturity (Lai and Hong, 2010), which may lead to 

an increased olfactory response, but there is no reason to believe that the response would be 

absent in non-reproductive fish.  Finally, as our work is part of an overall project to develop a 

pheromone trapping method for the round goby, the ability to attract and trap all life phases of 

this invasive fish is helpful.  

1.11 Overview of thesis contents 

 

The chapters contained in this thesis seek to add to this body of research by investigating 

OSN properties in two vastly different, but ecologically and phylogenetically important species 

of fish – the sea lamprey and the round goby.  Both of these species are invasive to the Great 

Lakes regions.  In addition, the sea lamprey is an ancient jawless Agnathan fish, while the round 

goby is a fish of the order Perciformes, a highly derived and extremely diverse order of fishes.  

In Chapter Two we investigated OSN polymorphisms in the sea lamprey.  We 

hypothesized that OSNs are a conserved evolutionary trait in fishes, and that polymorphisms 

would be present in some form in Agnatha.  Although the sea lamprey has only ciliated OSNs, 
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these neurons could display morphologies similar to those seen in other fishes, in terms of 

somata location and dendrite length and width.  

Figure 1.3 outlines visually the round goby studies contained in this thesis, beginning 

with testing whole extracts of male conditioned water, to testing the identified compounds in the 

extracts and on from there.  Table 5.1 provides a summary of the steroids tested in this thesis, 

including their site of release and whether they are detected by EOG. 

 

Fig 1.3: Flow chart outlining the flow of round goby studies in this thesis.  Part 1 is the paper 

published by Katare et al. (2010) identifying released steroids that are putative pheromones.  Part 

2 concerns the EOG testing of the methanol extracted isolates that were prepared as part of the 

Katare paper.  From there, parts 3 and 4 concern EOG testing of detected and undetected steroids 

identified by Katare et al.  Part 5 relates to the possible modulation of odour responses while part 

6 seeks to investigate whether undetected steroids might have primer pheromone function.  

Finally, part 7 is the EOG testing of urine collected from RM and NRM round gobies.  RM = 

reproductive male; NRM = non-reproductive male; sGnRHa = salmon gonadotropin releasing 

hormone analogue. 

 

We had previously seen that by treating male round gobies with gonadotropin releasing 

hormone, we could increase the amount of putative pheromones released into the water (Katare 



16 
 

et al., 2011). We hypothesize that the olfactory system of round gobies has evolved specific 

strategies for reproduction involving the use of pheromones.  We predicted that the female 

smells the novel steroids being released by RMs (Fig 1.2), and that the signal transduction 

cascade functions in a specific manner for handling these compounds. 

In chapter three, we specifically hypothesized that we would see an increased olfactory 

response from females in response to the methanol extracts of conditioned water containing more 

of the identified putative pheromones.  

Chapter four describes the olfactory properties of the detected (i.e. ―smelled‖) putative 

steroid pheromones identified in the methanol-extracted conditioned water and urine of the male 

round goby.  In this chapter we described olfactory thresholds, receptor specificity and second 

messengers for these putative pheromones.   

Chapter five is an investigation of other identified putative steroidal pheromones which 

we classify as not detected by the OE.  In addition, we tested female olfactory responses to male 

urine, a source of substituted steroids which may be pheromones.  We hypothesized that females 

would exhibit a greater response to urine collected from reproductive males compared to non-

reproductive males. 

Chapter six describes a pilot study investigating the possible modulatory effects of 

prostaglandin F2α on OSNs.  We were interested in whether olfactory responses might be 

modulated by prostaglandin F2α which is associated with ovulation in female fishes.  It is 

possible that undetected steroids might be detected during ovulation if the OSNs become more 

sensitive during reproduction.  Based on previous literature, we expected to see an enhancement 

in olfactory responses recorded from female round gobies treated with prostaglandin F2α.  This 

preliminary study was not completed in full due to time constraints. 
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Finally, in chapter seven we sought to investigate the possible endocrine effects of male 

round gobies on females.  Steroids released by males that are not detected by the female OE may 

still function as primer pheromones, having an effect on the physiological state of the female.  

For this pilot experiment, females were exposed to male goby conditioned water with the 

expectation that we would see an increase in the female‘s release of steroid hormones.  We only 

performed a pilot study because we were initially disappointed not to see a change, and because 

we did not measure the appropriate steroids. 

 Overall, I describe the OSNs of these species in terms of morphology (sea lamprey), 

specificity of receptors for putative pheromones (round goby) and second messengers (round 

goby) as well as other properties of the round goby olfactory repertoire and biology, such as 

other putative effects of released steroids on the receiver. 
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Chapter 2: 

 

Olfactory sensory neurons in the sea lamprey display polymorphisms 
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2.1 Introduction 

 

In terrestrial vertebrates such as mammals, the olfactory system is composed of two 

functionally and physically distinct subsystems: the main olfactory system and the vomeronasal 

system.  Each contains sensory neurons of different morphologies: ciliated sensory neurons 

which are present in the main olfactory system and microvillous sensory neurons which are 

present in the vomeronasal system [1,2].  It is established in mammals that these ciliated and 

microvillous cells differ functionally, with the different cells responding to different odour 

classes [2,13].  However, the evolutionary origin of these subsystems is unknown.  A single 

morphotype, the ciliated olfactory sensory neuron (OSN) has been reported in lampreys [18,19] - 

ancient jawless fish phyletically removed from modern (teleost) fishes. The lampreys, including 

the sea lamprey, (Petromyzon marinus) occupy an important location at the base of the vertebrate 

evolution.   

All fishes lack a distinct vomeronasal system for detecting social cues such as 

pheromones; however there are parallels between the mammalian vomeronasal and main 

olfactory system and the teleost fish olfactory system.  Teleosts have three distinct morphotypes 

of OSNs intermingled in one olfactory epithelium: ciliated OSNs, microvillous OSNs and crypt 

receptor cells [10,8,14].  In teleosts, OSN morphotypes are distinguished by the location of their 

somata within the depth of the olfactory epithelium and the resulting length of their dendrites; 

both features lead to characteristic shapes.  The ciliated OSNs have basally situated somata and 

long, thin dendrites while microvillous OSNs have an overall stubby, fusiform shape, somata 

located midway in the epithelium, and intermediate-length dendrites with microvilli [14].  The 

entire crypt cell is located apically, is egg-shaped and contains an invagination which is filled 

with cilia that do not breach the surface of the epithelium [10,11].  The crypt cell is exclusive to 
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fishes, but appears to be a common feature amongst both bony fishes and elasmobranchs [3].  In 

fishes, there is also great deal of evidence suggesting that these neurons differ functionally, 

including their differential olfactory bulb projections [14,15,6], molecular properties [16,7] and 

physiological properties [17,9,5].  This indicates that though these cells may not be spatially 

distinct in the periphery as in the mammalian system, there may be a functional distinction 

related to the morphological and biochemical properties of the cells.  If this is the case, then 

evidence points to partitioning of the olfactory system in the processing of odour classes being a 

highly conserved trait.  

Using retrograde tract tracing, we sought to identify OSN polymorphisms in the olfactory 

epithelium of the sea lamprey.  The peripheral olfactory organ of lampreys comprises of the 

olfactory epithelium [18] and the accessory olfactory organ, which may also contain OSNs 

[4,20].  Additionally, as the sea lamprey exhibits a complex life cycle characterised by drastic 

physiological, anatomical and behavioural changes, we sought to elucidate differences in OSN 

distribution and morphology in two different life stages of the sea lamprey: metamorphic stage 

VII (post-metamorphosis but prior to parasitic feeding) [21], and the reproductively mature adult 

lamprey.  These stages were chosen because they represent periods in the life cycle where the 

animal is driven by two very different biological needs: feeding and mating.  The reproductively 

mature adult is the terminal life stage of the sea lamprey, and during this stage there is no sign of 

cell proliferation in the peripheral olfactory organ [12].  We employed two methods of retrograde 

labelling in the metamorphic stage VII lamprey specifically: biocytin tracing uses an ex vivo 

tissue preparation to investigate labelling in live tissue and DiI carbocyanine tracing uses fixed 

tissue. 
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2.2 Materials and Methods 

Reproductive adult (N=16, June-October, 2006) and metamorphic stage VII (N=10, 

November 2005-April 2006) sea lampreys used in this study were obtained from the Hammond 

Bay Biological Research Station. All sea lampreys were collected from wild populations in the 

Great Lakes region.  Initial experiments were conducted on metamorphic lampreys in the autumn 

and winter, when the reproductive phase was not available for study.  In accordance with the 

Canadian Council on Animal Care, fish were anaesthetised in 0.05 g/l MS222 (tricaine 

methanesulfonate; Argent Laboratories, WA, USA), decapitated and the olfactory epithelium and 

brains exposed.  Initially, two retrograde labelling techniques were used on the metamorphic 

phase lampreys: 1) the post mortem lipophilic tracer 1,1-dioctadecyl-3,3,3,3-

tetramethylindocarbocyanineperchlorate (DiI), and 2) biocytin dye loading of live tissue.  Both 

DiI (N=5) and biocytin (N=5) neuronal labelling strategies from these initial experiments in the 

metamorphic phase animals yielded identical polymorphic characteristics.  We chose to stay with 

the biocytin labelling for the remaining metamorphic and adult samples because tissue was 

available for analysis for an extended period with this technique.  

For carbocyanine labelling of post-mortem tissue, metamorphic stage VII stage sea 

lampreys (N=5) were anaesthetised and decapitated, and their brains were rapidly exposed and 

fixed in 4% paraformaldehyde.  Following fixation overnight, the rostral portion of the olfactory 

bulb was lesioned and small crystals of the lipophilic tracer 1,1-dioctadecyl-3,3,3,3-

tetramethylindocarbocyanine perchlorate (DiI) (Invitrogen, Canada) were inserted into the 

lesions.  The tissue was then incubated in 4% paraformaldehyde at 37
o
C for 9 days allowing for 

the diffusion of the dye.  Tissue was then sectioned at 40 – 50 μm on a vibratome and then 
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imaged using a Bio Rad 1024 confocal microscope system.  Stacked images were acquired and 

displayed as Z-series projections.   

For biocytin labelling, the exposed brain was bathed in cold lamprey Ringer‘s solution 

(130 mM NaCl, 2.1 mM KCl, 2.6 mM CaCl2, 1.8 mM MgCl2, 4 mM HEPES, 4 mM dextrose, 1 

mM NaHCO3, pH 7.4) and the medial rostral portion of the olfactory bulb was lesioned using an 

insect pin (Fig. 2.1) and 4% biocytin in 0.05 M tris buffer was injected into the lesion using a 

glass micropipette.  The general areas where lesions were made are main entry points of axons 

into the olfactory bulb, and were chosen in order to maximise the number of axons able to take 

up the dye.  The tissue was incubated for 4 hours at 7
o
C in cold oxygenated Ringer‘s solution 

replenished via gravity feed and aspiration.  Following incubation, the tissue was fixed in 4% 

paraformaldehyde (in 0.1 M phosphate buffer) overnight, cryoprotected and cryostat (Microm) 

sections were taken at 14 – 16 μm.  For secondary detection, slides were incubated in Alexa-

substituted streptavidin (1:100; Invitrogen, Canada) for 2 hours. The sections were imaged on a 

Bio Rad 1024 confocal microscope system. Stacked images were acquired and displayed as Z-

series projections. 

OSN morphology was classified based on the depth of the soma within the olfactory 

epithelium as previously described [5].  To determine depth, the olfactory epithelium was 

divided into 5 arbitrary horizontal layers of approximately equal size, the most apical layer being 

layer 1 and the most basal being layer 5 (Fig. 2.2A, Fig. 2.3A).  With this criterion, OSNs were 

grouped into one of three overall types [14]: tall OSNs were those cells whose somata were 

located in the deeper layers (3 or 4) of the epithelium, intermediate OSNs were those with 

somata in layer 2, and those cells with somata in layer 1 (the most superficial layer) were 

classified as short OSNs. 
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2.3 Results 

Though all OSNs in the lamprey are ciliated [18,19], these cells exhibited morphotypes 

similar to all three OSN types seen in teleost fishes.  Axonal processes extended to the base of 

the olfactory epithelium in all morphotypes. Tall OSNs were recognisable by their basally-

located somata and their long dendrites, and were similar to the ciliated OSNs of teleosts.  

Intermediate OSNs had somata located in the middle layers of the epithelium and a fusiform 

shape similar to that of teleostean microvillous OSNs.  Short OSNs were situated very apically 

and had an obvious egg shape and were similar to crypt receptor cells.  The tall OSN was the 

dominant morph, and was ubiquitous throughout the epithelium.  All three morphotypes were 

seen in both life stages examined and were the same regardless of the dye application shown in 

Fig. 2.1.   

 

Fig. 2.1.  A schematic diagram showing the location of the dye tracer loads in the primary 

olfactory pathway of the sea lamprey.  Olfactory epithelium (OE) lines lamellae, and follicles of 

the accessory olfactory organ (AOO) are located ventrocaudal to the olfactory epithelium.  The 

dye loads filled lesion sites made at the rostral edge of the olfactory bulb.  

 

Loads from all three sites at the rostral edge of the olfactory bulb filled OSNs dispersed 

throughout the olfactory lamellae, with no apparent pattern attributable to the large lesions in 
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either life stage.  Additionally, no differential distribution of OSN morphotype was observed in 

either life stage or from any loading location, with the more rare intermediate and short OSNs 

occurring in all parts of the olfactory epithelium.   

The cell bodies of tall OSNs were situated within layers 3 or 4 of the epithelium and the 

long dendrites reached the epithelial surface, where the high, prominent bulbous extension of the 

dendrite known as the olfactory knob projected cilia into the olfactory mucosa (Fig. 2.2A).  

Within the tall OSN population in the adult stage lamprey, there were two types - the tall thin 

OSN and the tall thick OSN - that were seen with enough regularity to question whether they 

may also represent different morphologies.  The tall thin OSN had a dendrite approximately half 

the relative width of the cell body (Fig. 2.2A, thin arrows).  The tall thick OSN had a dendrite the 

same relative width as the cell body (Fig. 2.2A, thick arrows).  The tall OSNs in the 

metamorphic stage VII lamprey were generally the thin type, displaying oval cell bodies and 

slender dendrites ending with the olfactory knob and often cilia were present (Fig. 2.2B).  Cell 

counts were not performed, but generally the tall OSN was the most frequently observed 

morphotype in both life stages.  

The intermediate OSNs displayed obvious axons, olfactory knobs and cilia (Fig. 2.3A).  

As is seen in the microvillous OSNs of teleosts, the intermediate OSNs had a stubby, slightly-

fusiform shape, with the cell body located in layer 2 of the epithelium.  Compared to the tall 

OSNs, the intermediate OSNs had lower, less obvious olfactory knobs (Fig. 2.3A, 2.3B, 

arrowheads), and a more tapered shape.  The shape and location of the intermediate OSNs were 

the same in the metamorphic stage VII and adult stages of the sea lamprey (Fig. 2.3). 

The short OSNs displayed the egg-shape characteristic of the crypt cells of teleosts [8] 

and the elasmobranch Scilyorhinus canicula [3] and also lacked dendrites due to their position in 
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the most superficial layer of the epithelium (Fig. 2.4A), as is the case in teleosts.  The tops of 

these short, rounded OSNs did not breach the surface of the epithelium, and often these cells had 

a single, slender projection which remained embedded in the olfactory epithelium (Fig. 2.4A, 

2.4B, asterisks).  The short OSNs in the metamorphic stage VII lamprey were the same as those 

of the adult stage lamprey (Fig. 2.4B), being situated in the most apical layer and showing the 

single, submerged projection.  We did notice some labelled cells located in layer 1 of the 

epithelium which did not have the rounded, egg-shape characteristic of the crypt receptor cell of 

teleosts.  Rather, these short cells had tapered bottoms and their apical end sometimes extended 

into the mucociliary matrix (data not shown). 

 

Fig. 2.2.  Tall OSNs labelled with retrograde tracers in the adult and metamorphic stage VII sea 

lamprey.   

A.  The division of the epithelium used for analysis is shown, demonstrating the 5 epithelial 

layers.  Tall OSNs in the adult stage had somata located in layer 3 or 4 of the olfactory 

epithelium and high, prominent olfactory knobs.  There were two subtypes of the tall OSN 

morphotype: the tall thin (thin arrows) and tall thick OSNs (thick arrows).  Cilia of many of these 

cells are evident (asterisks).   

B.  Tall OSNs in the metamorphic stage VII sea lamprey with somata in layer 3 or 4 of the 

epithelium.  Scale bars = 50 μm. 
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Fig. 2.3.  Intermediate OSNs labelled with retrograde tracers in the adult and metamorphic stage 

VII sea lamprey.   

A. Intermediate OSNs in the adult stage.  The small and relatively flat olfactory knobs, were 

clearly evident (arrowheads) and displayed cilia (asterisk).   

B.  Intermediate OSNs in the metamorphic stage VII sea lamprey.  These OSNs are the same as 

the intermediate OSNs of the adult stage sea lamprey.  Olfactory knobs (arrowhead) and cilia 

(arrows) are apparent in some. Scale bars = 50 μm. 

 

 

Fig. 2.4.  Short OSNs labelled with retrograde tracers in the adult and metamorphic stage VII sea 

lamprey.  The surface of the olfactory epithelium is indicated by a dotted line.   

A.  Short OSNs in the adult stage were egg-shaped and showed single apical projections 

(asterisks) which were submerged within the epithelium.   

B.  Short OSNs in the metamorphic stage VII sea lamprey, which also had the submerged 

projection which does not extend into the olfactory mucosa (asterisks).  Scale bars = 50 μm.   

 

2.4 Discussion 

This study demonstrates that OSNs in the sea lamprey exhibit polymorphisms similar in 

many ways to OSNs seen both in teleost fishes.  In addition to having the typical OSN 

morphotype – the tall OSN, the sea lamprey has OSN morphotypes similar to both the 

microvillous OSN and the crypt receptor cell seen in teleosts.  The sea lamprey is an early 

vertebrate phyletically removed from modern fishes, the olfactory system of which nonetheless 
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shows many similarities with that of teleosts.  This provides strong evidence for the evolutionary 

conservation of OSN polymorphisms and the conservation of the crypt cell.  Considering the 

many similarities in the olfactory system of fishes, it is highly likely that these are indeed crypt 

receptor cells, given their characteristic shape and position in the epithelial layer, as well as their 

scarcity in all species that contain this cell type.  We cannot completely rule out the possibility 

that these different morphs may be different developmental stages of the same type of cell; 

however, all three morphotypes were seen in both lamprey life stages examined and if they were 

related to age, we would expect to see differences in the adult sea lamprey which does not 

contain proliferating cells in the olfactory epithelium [12].  Both the lack of cellular proliferation 

in the adult stage and the close similarities seen in different piscine olfactory systems support our 

hypothesis that these are in fact different cell types.  Table 1.1 demonstrates the functional 

differences between different OSN morphotypes in terms of G-protein expression and second 

messengers used in signal transduction cascade.  These are also related to which odours may be 

processed by different OSN morphotypes.  It may be that fishes evolved a way to process 

different odours based on the OSN type, and that this ability emerged as early as the sea lamprey.  

In adults, the driving force behind behaviour is the need for the animal to reproduce.  In juvenile 

stages, it is the need to feed.  These two basic functions are related to specific odours and the 

relatively small behavioural repertoire of the sea lamprey may have facilitated the evolution of 

OSN morphological subtypes that respond to particular odour classes considering the lamprey is 

strongly driven by only a relatively few odours. The sea lamprey demonstrates polymorphous 

OSNs similar to those seen in modern fishes, indicating that OSN polymorphism is an 

evolutionary conserved trait. 
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Chapter 3: 

The Effect of Elevated Steroids Released by Reproductive Male Round Gobies 

(Neogobius melanostomus) on Olfactory Responses in Females. 
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3.1 Introduction 

Many fishes use hormonal products released into the water as reproductive pheromones 

(Stacey et al., 2003).  Gonadotropin  releasing hormone (GnRH) is an important step in the 

production and release of steroidal hormones, as it stimulates the release of luteinizing hormone, 

which is responsible for stimulating gonadal steroid release (reviewed by Zohar et al., 2010).  

Many studies have investigated the effect that GnRH has on circulating plasma steroid levels, but 

it has rarely been demonstrated that increased GnRH can lead to an altered chemical signal that 

affects the response of opposite-sex conspecifics through increased release of steroidal 

compounds functioning as pheromones.  Serrano et al., (2008) showed that treating male peacock 

blennies (Salaria pavo) with 11-ketotestosterone increased female olfactory responses to extracts 

of the gonads and anal glands.  The olfactory system of the round goby (Neogobius 

melanostomus) responds to steroidal compounds (Stacey et al., 2001), and reproductive females 

showed an increased olfactory response to water from reproductive males versus non-

reproductive males (Belanger et al., 2004).  Katare et al. (2011) observed that following injection 

with salmon GnRH analogue (sGnRHa), male round gobies increased the release of several 

steroids into the water, including 11-oxo-etiocholanolone (11-O-ETIO) and 11-O-ETIO-3-sulfate 

(11-O-ETIO-3-s), which are novel fish steroids and putative pheromones in this species.  Using 

electro-olfactogram recordings of female round gobies, I was interested in seeing how a surge of 

sGnRHa would affect the olfactory signal being released by the males.  

3.2 Methods and Materials 

3.2.1 Experimental Animals  

  Round gobies were angled from the Detroit River and Lake Erie in Windsor and 

Leamington Ontario, respectively.  Fish were separated by sex and held in the animal facilities at 
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the University of Windsor in flow-through aquaria with dechlorinated municipal tap water at 

ambient temperatures on a 16:8 photoperiod.  Fish were fed commercial food once daily 

(Aquatic Eco-systems, Apopka, FL, USA).  Generally, fish were held for a maximum of  one 

month.  All experimental procedures conformed to CCAC guidelines.  

3.2.2 Generation of Methanol Extracted Male Water   

The procedure for generating methanol extracts of water that held reproductive males 

(RM) has been described elsewhere (Katare et al., 2011).  Each RM goby (chosen on the basis of 

secondary sexual characters; Belanger et al., 2004) was isolated in 1 L of dechlorinated water 

which was collected after 4 hours (―pre-injection‖).  The RMs were injected with sGnRHa (Ova-

RH, Syndel Laboratories, Qualicum Beach, BC, Canada ) or 0.9% saline, immersed into fresh 

dechlorinated water (1 L) for 16 hr, and this water was collected (―post-injection‖).  Steroids 

were extracted from the water (1L) by passing through C18 cartridges (Sep-Pak, Waters, 

Milford, MA, USA) and eluting with 5 ml of methanol.  Stock solutions of methanol extracted 

steroids were produced by diluting 100 µL of extract into 10 mL of decholorinated water to 

approximate the original concentration released by RMs.  Individual stocks were diluted 100x 

further in dechlorinated water for EOG testing.  A custom immunoassay was used to measure the 

amount of immunoreactive free and substituted 11-O-ETIO in the methanol extracts (Katare et 

al., 2011).  Stock solutions (containing 100 µL extract) prepared from pre-injection extracts 

contained 11-O-ETIO immunoreactivity that averaged 0.085 + 0.026 ng.  In stock solutions 

prepared from post-injection extracts from saline and sGnRHa treated males the values for 11-O-

ETIO immunoreactivity were 0.15 + 0.092 ng and 1.29 + 0.34 ng, respectively.  All ELISA 

analyses were performed by Dr. Yogesh Katare.  

3.2.3 Electro-olfactogram (EOG) Recordings  
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I recorded summed generator potentials from the surface of the olfactory epithelium 

using a recording procedure adapted from Murphy et al. (2001) and Bélanger et al. (2004).  Non-

reproductive female gobies were anesthetized, immobilized and placed in a recording trough 

with water containing anesthesia perfusing the gills.  Glass capillary electrodes were placed in 

the anterior naris (recording electrode) and on the surface of the skin near the naris (reference 

electrode).  Dechlorinated municipal tap water (used as background water) was constantly 

dripped over the olfactory epithelium via a tube positioned over the posterior naris.  Odours were 

introduced into this water flow to avoid mechanical stimulation, as the flow of background water 

did not induce mechanical stimulation of the OSNs.  The standard odour, 10
-5

 M L-alanine 

(Sigma-Aldrich, Oakville, ON, Canada) was delivered periodically to monitor the stability of the 

recording.  We recorded responses to pre- and post-injection extracts.  EOG responses were 

recorded in millivolts (mV) and normalized by dividing them by the average response to L-

alanine.  I used a data acquisition system (PowerLab, ADInstruments, Colorado Springs, CO, 

USA) and computer to record and analyze the data.  Student‘s t-tests were used to analyze for 

statistical differences between pre-and post-injection extracts for the two treatments. Data were 

analyzed with SigmaStat 3.5 (Systat, San Jose, CA, USA). 

3.3 Results 

Methanol extracts of RM round goby conditioned water elicited robust olfactory 

responses from female round gobies (Fig. 3.1a).  Females had a greater EOG response to the 

methanol extracts following treatment of males with sGnRHa (t=6.25, P=0.001, N=6) but not 

saline (Fig. 3.1b). 
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Fig. 3.1. EOG responses to methanol-extracted conditioned water containing steroids, from 

reproductive males (RM) before and after injection with either sGnRHa or saline.  (A) typical 

EOG trace from female round gobies to pre-injection and post-injection (with sGnRHa) 

methanol extracts from an RM round goby.  (B)  female round gobies show an increased EOG 

response to the post-injection methanol extract of conditioned water when the RM goby has been 

treated with sGnRHa, but not saline.   

3.4 Discussion 

In order to synchronize spawning between the sexes, many fish species have evolved the 

use of hormonal products as pheromones, as these signals are indicative of the reproductive 

status of the sender.  In goldfish – who have the best characterized reproductive system involving 

identified pheromones – females experience a surge in gonadotropin II in response to 

environmental factors, which in turn induces the females to release 17, 20β-P (Stacey et al., 
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1989).  Release of 17, 20β-P in turn stimulates a gonadotropin increase in the males (Stacey et 

al., 1989), and leads to the initiation of reproductive behavior (DeFraipont and Sorensen, 1993).  

Thus, GnRH is the necessary first step leading to spawning in both males and females, at least in 

this model species.  Treating male gobies with sGnRHa causes an increased olfactory response 

from femals to male conditioned water, and it was previously shown that sGnRHa increases the 

release rate of putative pheromones (Katare et al., 2011).  While I have not investigated the 

biological consequences of this increased olfactory response in this study, behavioural responses 

are underway, and it is highly plausible that exposure to these extracts could cause 

endocrinological effects as well.  In goldfish, the reproductive system is reciprocal, with the 

males and the females stimulating each other via the release of different compounds into the 

water (reviewed in Stacey et al., 2003).  I provide the first evidence for a similar situation in the 

round goby.  I show that treating males with sGnRHa leads to a subsequent increase in female 

response to odours from these males.  While Belanger et al. (2004) showed an increased EOG 

response from reproductive females but not non-reproductive females to reproductive male 

waters, this dataset indicates that the products released by sGnRHa treated males affect even 

non-reproductive females.  We show that females may be attuned to – and subsequently 

stimulated by – endocrine changes in the male through release of chemical signals, providing 

additional evidence for the use of sex pheromones by the round goby. 
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Chapter 4: 

Female round gobies (Neogobius melanostomus) detect and discriminate between steroids 

released by male round gobies. 
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4.1 Introduction 

The round goby Neogobius melanostomus (Pallas) is a small benthic teleost fish, and a 

highly successful invasive species to the Laurentian Great Lakes.  This percid arrived via ballast 

water from the Ponto-Caspian region (Jude et al., 1992) and managed to invade all of the Great 

Lakes within five years of its introduction (Charlebois et al., 2001).  RMs establish nests, then 

attract females for spawning and aggressively guard the nests against predation.  The 

development of a biological control method employing pheromones to limit the spread of this 

species would be highly useful, as pheromones have the advantage of focussing on the target 

species (Corkum, 2004).   

While the teleost reproductive pheromone system has been most thoroughly investigated 

in the goldfish (Carassius auratus; reviewed by Stacey et al., 2003), one of the earliest 

observations of a gonadal steroid attracting conspecifics was made in the black goby (Gobius 

jozo) by Colombo et al. (1977; 1980), who observed that females were attracted to 3α-hydroxy-

5β-androstan-17-one 3-glucosiduronate (etiocholanolone glucuronide; ETIO-g), an androgen 

found in the gonads of this species.  Other studies have since investigated reproductive 

communication in other fishes of the order Perciformes, including tilapia, Oreochromis 

mossambicus (Miranda et al., 2005; Barata et al., 2008) and the peacock blenny, Salaria pavo 

(Serrano et al., 2008).  However, though fishes have long been used in the study of olfaction, 

most of what is currently known pertaining to the olfactory sense of fishes is confined to a few 

representative species including:  goldfish, (e.g. Rolen et al., 2003; Hansen et al., 2004; Hansen 

et al., 2005); zebrafish, Danio rerio  (e.g. Michel et al., 2003); channel catfish, Ictalurus 

punctatus (e.g. Hansen et al., 2003; Hansen et al., 2005), and Atlantic salmon, Salmo salar (Lo et 
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al., 1993; 1994).  These species have long been bred in the lab or aquaculture facilities, and 

studies involving wild teleosts are rare.   

In Ostariophysan fishes such as goldfish and the channel catfish, the cyclic adenosine 

monophosphate (cAMP) second messenger system mediates olfactory responses to amino acids 

and bile salts (Hansen et al., 2003; Rolen et al., 2003), and also to steroids in goldfish (Sorensen 

and Sato, 2005).  This olfactory transduction cascade has long-been known in mammals as well, 

and is associated with olfactory sensory neurons in the main olfactory epithelium (reviewed by 

Ma, 2007).  A transduction cascade utilizing phospholipase C (PLC)-stimulated inositol-1,4,5-

trisphosphate (IP3) was first identified in channel catfish (Restrepo et al., 1990), and has since 

been demonstrated to transduce amino acid odors in catfish (Hansen et al., 2003), as well as 

goldfish (Rolen et al., 2003) and zebrafish (Michel et al., 2003).  This second messenger cascade 

is seen in the olfactory sensory neurons of the mammalian vomeronasal organ. Interestingly, Lo 

and colleagues (1993; 1994) found that in Atlantic salmon both amino acids and taurocholic acid 

(a bile salt) stimulate the production of PLC but not adenylyl cyclase – the only report of a fish 

that does not use cAMP to transduce amino acid and bile salt odorants.  These studies provide 

strong evidence for roles for both cAMP and IP3 in fish olfactory transduction.  What is unclear, 

however, is whether more diverged fishes (such as the round goby) follow the trends seen in 

goldfish, zebrafish and catfish, with cAMP being the only second messenger seen to transduce 

bile salt odours, for example.   

The peripheral olfactory organ of the round goby is composed of a single lamella covered 

in olfactory epithelium (Belanger et al., 2003), which is strikingly different from the multi-

lamellar olfactory rosette seen in cyprinids and salmonids (Hansen and Zielinski, 2005).  

However, as in other teleost fishes, the olfactory epithelium of the round goby contains ciliated 
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olfactory sensory neurons expressing the Gαolf, the GTP binding protein associated with sensory 

transduction via cAMP, and microvillous and crypt olfactory sensory neurons expressing Gαo, 

which is associated with the phospholipase C/inositol triphosphate (IP3) transduction pathway 

(Belanger et al., 2003).  Recordings of summed generator potentials from the olfactory 

epithelium (electro-olfactogram, EOG) have revealed that round gobies detect a number of free 

and substituted 18- 19- and 21-carbon steroids representing putative pheromones (Murphy et al., 

2001). The novel 5β-reduced steroids 11-oxo-etiocholanolone (11-O-ETIO) and a sulphated 

conjugate, 11-O-ETIO-3-s (Fig 4.1) are produced in the testes and seminal vesicle of RM round 

gobies (Arbuckle et al., 2004; Jasra et al., 2007), and released into the water (Katare et al., 2011), 

where these may be detected by females and possibly function as reproductive females.  These 

steroids are considered novel as they have not been observed in any other fish species yet.  

 

Fig 4.1: Chemical structures of 11-O-ETIO and 11-O-ETIO-3-s.  Parts of this figure were 

originally published in Katare et al., 2011.  Biol. Reprod. 84(2). 

 

In this study I investigated the olfactory properties of the putative pheromones, 11-O-

ETIO and 11-O-ETIO-3-s.  I used electrophysiological methods to determine whether female 

round gobies could detect these compounds, and if so, what receptor mechanisms might be 

involved. I also investigated the odor potency of 11-O-ETIO and 11-O-ETIO-3-s on the goldfish 

(a representative of Cyprinid fish), to see if these putative round goby pheromones show signs of 

species specificity. 
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4.2 Materials and Methods 

4.2.1 Experimental animals 

Male and female round gobies (average weight: 11.9g; length: 9.5 cm) were angled or 

seined from the Detroit River and Lake Erie.  Fish of both sexes were housed in the animal 

quarters, Department of Biological Sciences, at the University of Windsor in 400 L flow-through 

tanks or 75 L static tanks with charcoal filters, provided with dechlorinated municipal tap water 

between 16 – 26
o
C (ambient temperatures).  Fish were maintained on a 16 hour light: 8 hour dark 

photoperiod and fed daily with commercial tropical flake food (Aquatic Eco-Systems, Apopka, 

FL).  Experiments were conducted using male and female round gobies between May and 

September in the years 2007-2010.  Males and females were differentiated according to the 

shape of the urogenital papilla.  Male round gobies have a long, pointed papilla while females 

have a short, wide two-lobed papilla (Bélanger et al., 2004).  Since no differences in EOG 

responses (to amino acids or steroids) between male and female gobies have been observed 

(Murphy et al., 2001; Laframboise, unpublished), we used both sexes in these studies.  Non-

reproductive females (NRF) were utilized for the dose-response and cross-adaptation studies, and 

non-RM (NRM) round gobies for the second messenger studies.  

Goldfish were also tested for EOG responses to the released round goby steroids.  These 

were purchased from a local pet store (Profish, Windsor, ON) and held in aquaria with re-

circulating filters under the same conditions as the round gobies.  All animal collection, housing 

and experimental procedures were in accordance with the guidelines of the Canadian Council on 

Animal Care. 
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4.2.2 Electro-olfactogram recording 

The electro-olfactogram (EOG) recording protocol was modified from that previously 

described (Murphy et al., 2001; Bélanger et al., 2004).  Round gobies were anaesthetized via 

immersion in tricaine methanesulfonate (MS-222; Finquel®, Argent Chemical Laboratories, 

Redmond, WA, USA; 100 mg/l) and immobilized with an intra-muscular injection of gallamine 

triethiodide (Flaxedil, Sigma-Aldrich, Oakville, ON, Canada; 150 mg/kg).  The test fish was then 

wrapped in a paper towel, placed in the recording chamber and a tube was inserted into the 

mouth providing dechlorinated water (with 20 mg/l MS-222) to the gills.  The EOG was 

recorded differentially using thin wall glass capillaries (1.0 mm OD, 0.75 mm ID #TW100-4; 

WPI, Sarasota, FL, USA) pulled to a tip diameter of 80-100 µm, filled with 8% gelatine in 0.9% 

saline, and bridged to Ag/AgCl pellets with 3M KCl. Dechlorinated water flowed over the 

olfactory epithelium through an odor delivery tube positioned over the posterior naris.  The 

reference electrode was placed lightly on the skin, near the anterior naris and the recording 

electrode was placed in the anterior naris and onto olfactory epithelium containing microvillous, 

ciliated and crypt olfactory sensory neurons (Belanger et al., 2003). The recording electrode was 

placed in the same general position with every recording, but the precise location of the electrode 

tip was not visible during recording and therefore was not necessarily entirely consistent. The 

electrical signal was amplified (model 7P122P, Grass Technologies, West Warwick, RI, USA), 

digitized (PowerLab model 4/30; ADInsturments, Colorado Springs, CO, USA) and displayed on 

a computer running Chart 5 software (AD Instruments, Colorado Springs, CO, USA).  Switching 

from background water to stimulus odor was accomplished using a solenoid-driven mechanism, 

eliminating any possible mechanical stimulation. The EOG responses were measured (in 

millivolts, mV) as the amplitude of the negative deflection recorded in response to odorous 
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stimulation.  Responses to water blanks were rare but when these occurred, the background 

response was subtracted from odor responses.  There were no EOG responses to the carrier 

solutions containing methanol (0.0001% methanol for 10
-8

 M steroids) or DMSO (0.01% DMSO 

for the pharmacological inhibitor U73122).  

4.2.3 Preparation of odors and pharmacological agents 

Synthetic 11-O-ETIO (A3460-000), 11-O-ETIO-3-s (A3500-000), ETIO (A3610-000), 

and estrone (E2300-000) were purchased from Steraloids (Newport, RI, USA), dissolved in 

100% methanol to make 10
-2

 M stock solutions and stored at -20
o
C, and on the day of testing the 

stimulatory solutions were prepared by serial dilution in dechlorinated water.  The 

pharmacological agents used for investigating olfactory transduction, U-73122 (used to block IP3 

production; Rolen et al., 2003) and SQ 22,536 (used to block cAMP production; Sorensen and 

Sato, 2005), were purchased from Sigma-Aldrich (Oakville, ON, Canada; #U6756 and #S153) 

and Calbiochem (San Francisco, CA, USA; #662035 and #568500), diluted according to vendor 

instructions and stored as aliquots of 10
-2

 M stocks.  The SQ 22-536 was prepared in double 

distilled water (used for its purity), aliquoted and frozen at -20
o
C until used, the U-73122 was 

dissolved in 100% DMSO, aliquoted and stored at -20
o
C.  On the day of the EOG testing, fresh 

test aliquots were diluted in the same dechlorinated water as the background water that was 

perfused through the nares of the experimental fish.  The 10
-2

 M
 
stock solutions of the standards 

L-alanine and taurocholic acid (TCA) were made up fresh each day in this dechlorinated water 

and diluted serially to their final EOG testing concentrations of 10
-5

 M and 10
-6

 M, respectively.  

Amino acids and TCA were purchased from Sigma-Aldrich (Oakville, ON, Canada, #A7627, 

#T4009).  
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4.2.4 General EOG recording protocol and dose-response experiments 

For all experiments, the EOG recordings conformed to methods previously described 

(Murphy et al., 2001; Rolen et al., 2003; Belanger et al., 2004). We used 5 second odor deliveries 

which typically resulted in 7-8 drops of odor being delivered to the epithelium, as well as shorter 

(1 second) deliveries, resulting in 2 drops being delivered, for the cross-adaptation experiments.  

Because of the nature of odor delivery systems for EOG recording, some researchers choose 

longer stimulus times in excess of 5 seconds (e.g. Miranda et al., 2005), while others use shorter 

durations of less than 5 seconds (e.g. Murphy et al., 2001).  We did not see a difference in the 

magnitude of the EOG response with the shorter odor delivery time (i.e. with fewer drops of odor 

being delivered).  At least 2 minutes were allowed between applications to avoid adaptation.  

The amino acid standard, 10
-5

 M L-alanine was delivered at the beginning and the end of the run, 

as well as after approximately every 10
th

 odor delivery, to monitor the integrity of the recording.  

For dose-response testing, odors were typically given in ascending order from the lowest to 

highest concentration and were delivered at least three times per fish.  To determine response 

thresholds, responses to odors (measured as mV) at each concentration were compared to 

responses to dechlorinated water using Student‘s t tests or Wilcoxin signed rank tests. 

 I also tested EOG responses to the putative round goby pheromones (11-O-ETIO and 11-

O-ETIO-3-s) on a phylogenetically distant fish species, the goldfish.  We followed the same 

EOG recording protocol as with the goby, with a few modifications.  The flap of skin covering 

the goldfish naris was completely removed, exposing the olfactory rosette, and the recording 

electrode was placed between two lamellae, near the raphe, as is typical for recording goldfish 

EOG (e.g. Rolen et al., 2003).  These preparations responded as previously described, to 10
-4

 M 
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L-serine (e.g. Hubbard et al., 2003), and to the steroid solution 10
-8

 M 17α,20β-dihydroxy-4-

pregnen-3-one, 17α,20β-P (e.g. Sorensen et al., 1995).  

4.2.5 Olfactory cross-adaptation 

The olfactory cross-adaptation method compares the EOG response to an odor before and 

during adaptation to an adapting odorant. This test works under the assumption that if an odour 

receptor mechanism is separate from a compound that is mediating an adapting EOG response, 

its EOG response is unaffected by the adaptation (Caprio and Byrd, 1984; Sorensen et al., 1995; 

Sveinsson and Hara, 1990). Our cross-adaptation protocol followed that of Murphy et al. (2001).  

Firstly, to ensure that responses to steroid odors weren‘t naturally being reduced over time, we 

performed a sequential exposure experiment.  For this, 10
-8

 M steroids (11-O-ETIO, 11-O-ETIO-

3-s, and ETIO) were delivered in sequence.  After the test fish was left for 30 minutes (to more 

closely approximate the total recording time of a serious of cross-adaptation experiments) with 

background water perfusing over the olfactory epithelium, these steroids were tested a second 

time in the same sequence.  I evaluated whether previous exposure to each steroid odor reduced 

the response to the second exposure to that odor, by comparing the response of the second odor 

delivery (mV) to the response of the first delivery.  The second response was expressed as 

percent initial response (% IR) – a percentage of the response to the first odor delivery.  

The second part of the protocol comprised of the cross-adaptation experiment (Murphy et 

al., 2001).  Firstly, 10
-7

 M (1 L) of the adapting compound (ETIO, 11-oxo-ETIO or 11-oxo-

ETIO-3-S) was prepared, and was utilized both for adaptation and for diluting the odors tested 

for cross-adaptation.  Once the test fish was found to be responding stably to the standard 10
-5

 M 

L-alanine (i.e. after 3 consecutive exposures to L-alanine), cross-adaptation testing began.  The 

test steroid was delivered to the olfactory epithelium for 1 second at 10
-8

 M (pre adaptation), 
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followed by 2 minutes of continuous delivery of the adapting compound.   During adaptation 

(after 2 minutes of continuous exposure to the adapting compound), the test steroid was 

delivered a second time (10
-8

 M), in the presence of the adapting compound, and the EOG 

response was recorded.  The post adaptation recovery of the EOG response to the test steroid was 

measured following the flow of background water over the epithelium for approximately 5 

minutes.  This procedure was repeated for every combination of steroid (ETIO, 11-oxo-ETIO, 

11-oxo-ETIO-3-S) as adapting and test compound.  The EOG responses during adaptation were 

expressed as percentages of pre-adapted responses (as in the sequential exposure experiment).  

Although the data were expressed as the percent of the initial response (% IR) for statistical 

testing, all data (with one exception) passed tests of normality and equal variance, thus paired t-

tests were used to determine which, if any steroid responses were reduced following adaptation.  

In the one case where the % IR data failed the test of equal variance (ETIO adapted to ETIO), a 

Mann-Whitney non-parametric test was performed.  Data for all experiments were analyzed 

using SigmaStat 3.5 (Systat Software, Chicago, IL, USA). 

4.2.6 Investigation of second messengers 

I investigated the role of the second messengers cAMP and IP3 in round goby olfactory 

responses by testing the effect of antagonists previously used in telesot EOG preparations (e.g. 

Rolen et al., 2003; Sorensen and Sato, 2005).  The following representative odors were tested: L-

alanine (amino acid), taurocholic acid (TCA, bile acid), 11-O-ETIO (a novel androgen released 

by round gobies, Katare et al., 2011) and estrone (an estrogen odor detected by the round goby; 

Murphy et al., 2001; Belanger et al., 2006).  Odors were restricted to these representatives in 

order to simplify the testing procedure. Adenylyl cyclase activity was inhibited by perfusing the 

surface of the olfactory epithelium with 10
-4

 M SQ 22,536 for at least 2 minutes (Chen et al., 
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2000; Sorensen and Sato, 2005).  The PLC inhibitor U73122 (10
-6

 M) was delivered for 10 

minutes, in accordance with previous studies (Jin et al., 1994; Hansen et al., 2003; Michel et al., 

2003; Rolen et al., 2003).  Suppliers of SQ 22,536 list IC50 values of between 1.4 x 10
-6

 M to 80 

x 10
-6

 M depending on the preparation, and there is no specific IC50 value for this drug in 

olfactory sensory neurons, although it has been used in this way before.  The concentration used 

here (10
-4

 M) is obviously within this range, and is in line with previous literature (Rolen et al., 

2003).  Similarly, vendors report a range of IC50 values for U73122 depending on the cell type 

or preparation, and our concentration was based on previous studies.   

Each trial took place in three stages: first, (designated as ―pre‖) dechlorinated background 

water was run over the olfactory epithelium for 10 minutes and EOG responses to odors were 

tested; second, (designated as ―during‖) the chosen inhibitor was perfused over the naris for a set 

period of time (2 minutes for SQ 22-536 and 10 minutes for U73122) and the odor responses 

were recorded  again in the presence of the inhibitor; lastly (designated ―post‖) the recovery of 

the EOG odor responses was tested following the removal of the pharmacological agent by 10 

minutes of background water flow over the olfactory epithelium.  Trials were included in the 

data analysis only if the post-treatment (recovery) value was at least 30% of the pre-treatment 

value.  Pre and during measurements for each odor response under each inhibitor were compared 

using paired t-tests or Wilcoxen Signed Rank test (in one instance where the data were not 

normally distributed – alanine responses under SQ 22,536 treatment) to determine whether the 

inhibitor significantly reduced odor responses. 
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4.3 Results 

4.3.1 Round goby EOG responses to synthetic analogues of released steroids. 

Table 4.1 summarizes the results.  I tested olfactory responses to the novel steroids 11-O-

ETIO and 11-O-ETIO-3-s (Fig 4.1), which are synthesized by the gonads of the round goby 

(Arbuckle et al., 2005; Jasra et al., 2007) and released into the water (Katare et al., 2011).  These 

steroids have not been reported in any other fish species.  Female round gobies showed 

characteristic olfactory epithelial responses to the synthetic steroids in a dose-dependent manner, 

while goldfish failed to detect either 11-O-ETIO or 11-O-3-S at any of the three concentrations 

tested (Fig. 4.2A, B).  The EOG responses to 10
-8

 M  and 10
-9

 M 11-O-ETIO were 1.43 + 0.28 

mV and 0.927 + 0.08 mV respectively; both were significantly different than background 

responses (0.13 + 0.04 mV; P<0.01).  The response profile to 11-O-ETIO-3-s was similar to free 

11-O-ETIO (Fig 4.2B).  The EOG responses from these NRF round gobies were significantly 

different from background responses (0.15 + 0.04 mV) at 10
-8

 M 11-O-ETIO-3-s (1.53 + 0.25 

mV; P<0.05) and 10
-9

 M 11-O-ETIO-3-s (0.93 + 0.15 mV; P<0.01).  These findings indicate that 

11-oxo-ETIO and 11-oxo-ETIO-3-S are potent odors to the round goby, but not to the goldfish.  
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Fig. 4.2. Female round goby  and goldfish electro-olfactogram (EOG) responses to steroids 11-

O-ETIO and 11-O-ETIO-3-s (3-hydroxy-5-androstane-11,17-dione 3-sulfate) released by 

male round gobies.  (A) The round gobies respond to 11-O-ETIO in a typical dose-dependant 

manner.  The structure of 11-O-ETIO is shown, as is a representative EOG tracing (10
-8

 M).  

Goldfish did not detect 11-O-ETIO .  (B)  The structure of 11-O-ETIO-3-s is shown, along with 

a representative trace of an EOG response.  EOG responses of female round gobies to 11-O-

ETIO-3-s are dose-dependant, but responses were not observed in goldfish. Asterisks indicate 

that responses are statistically different from responses to background water.  The number of fish 

tested is indicated for each concentration. 

 

4.3.2 Olfactory cross-adaptation 

I investigated olfactory discrimination of 11-O-ETIO, 11-O-ETIO-3-s and ETIO by 

testing for olfactory cross-adaptation.  The control sequential experiment tested for the effect of 

prior exposure to an odor on subsequent EOG responses to the particular odor.  The three odors 

were not significantly reduced by prior exposure 30 minutes earlier (Fig. 4.3A; P>0.05).  Cross-

adaptation was investigated by observing if a steroid elicited an EOG response during adaptation 

to a second steroid.  When 11-O-ETIO was used as the adapting compound, olfactory responses 
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to the same steroid were significantly reduced to 35.2% (+ 3.2%) of their initial response 

magnitude (P<0.05), while responses to 11-O-ETIO-3-s (88.9 + 15.1%) and ETIO (115.1 + 

40.2%) were not significantly reduced (Fig. 4.3B; P>0.05).  When the olfactory epithelium was 

adapted to 11-O-ETIO-3-s (Fig. 4.3C), responses to 11-O-ETIO-3-s (23.3 + 8.6%) were 

significantly reduced (P<0.001), while responses to ETIO and 11-O-ETIO were not significantly 

reduced.  Similarly, continuous exposure to ETIO only had an effect on ETIO-evoked responses, 

reducing them to 36 + 7.7% (Fig. 4.3D; P<0.01).  These findings show that cross adaptation 

between ETIO, 11-O-ETIO and 11-O-ETIO-S did not occur, and indicate that all three steroids 

activate different receptor mechanisms. 

 

Fig. 4.3. Olfactory cross-adaptation.  Percent initial EOG responses (% IR) to 10
-8

 M 11-O-

ETIO, 11-O-ETIO-3-s and ETIO.  The adapting compound (10
-7

 M) is shown on the top.  (A) % 
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IR during the control sequential exposure experiment.  None of the steroids were significantly 

affected by 30 minute prior exposure to the odorant, though ETIO had a tendency to increase 

upon second odor delivery.  (B) During adaptation to 10
-7

 M 11-O-ETIO, EOG responses to 11-

O-ETIO were significantly reduced, while the other steroids were unaffected.  (C) While 10
-7

 M 

11-O-ETIO-3-s was the adapting compound, only the responses to 11-O-ETIO-3-s were 

significantly reduced.  (D) Adaptation to 10
-7

 M ETIO reduced EOG responses to ETIO, while 

leaving the other steroid responses largely unaffected.  The asterisks indicate that the changes 

during adaptation were significantly different from the change during the control experiment 

(Fig. 2B).   

 

4.3.3 Blocking of adenylyl cyclase/cAMP by SQ 22,536 

I recorded EOG responses to odors representing four different odor classes: amino acids 

(alanine), bile acids (TCA), androgens (11-O-ETIO, a putative pheromone specific to the round 

goby), and estrogens (estrone, an estrogen detectable by the round goby, Murphy et al. 2001), 

and compared EOG responses before and during treatment with the adenylyl cyclase antagonist 

SQ 22,536.  Two minutes of perfusing the adenylyl cyclase blocker SQ 22,536 (10
-6

 M) over the 

olfactory epithelium significantly reduced olfactory response amplitudes to 10
-6

 M TCA 

(P<0.01), 10
-8

 M 11-O-ETIO (P<0.05) and 10
-8

 M estrone (P<0.05) compared to the pre- SQ 

22,536 amplitudes (Fig. 4.3A).  However, responses to 10
-5

 M alanine were not significantly 

reduced by pre-treatment with SQ 22,536 (P>0.05).  These findings demonstrate that cAMP is 

used in the transduction of bile acids and steroids, but not amino acids. 

4.3.4 Blocking of PLC/IP3 by U73122 

In order to investigate the role of PLC-activated IP3 in olfactory signal transduction, I 

treated the olfactory epithelium with 10
-6

 M U73122 for 10 minutes.  This treatment significantly 

reduced olfactory responses to 10
-5

 M alanine (P<0.01), 10
-8

 M 11-O-ETIO (P<0.05), and 10
-8

 M 

estrone (P<0.05), indicating that amino acids, and steroid odors utilize the PLC/IP3 signalling 

cascade; however, TCA-evoked responses were not significantly reduced following U73122 

treatment (Fig. 4.4B).  
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Fig. 4.4. EOG responses to different odor classes during inhibition via antagonists of cAMP and 

IP3. Traces show EOG responses before, during and after treatment with U73122. The horizontal 

bars above each ―pre‖ tracing indicates the 5 second odor delivery. (A) Representative traces 

show EOG responses for all odors before and during exposure to SQ 22,536 and following a 10 

minute recovery.  Exposure of the olfactory epithelium to the cAMP antagonist SQ 22,536 

reduced responses to taurocholic acid (TCA), 11-O-ETIO and estrone, but not alanine. (B) 

Exposure to the IP3 antagonist U73122 caused a reduction in EOG responses to alanine, 11-O-

ETIO and estrone, but not TCA.  
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Table 4.1: Summary of results for these EOG experiments.  Where appropriate, results from 

Murphy et al., 2001 are included.  These data are indicated by asterisks (*). 

 

Odour EOG Threshold Receptor 
Second 

Messenger 

11-O-ETIO 10
-9

 M 
Some specificity for               

11-O-ETIO 
cAMP and IP3 

11-O-ETIO-3-s 10
-9

 M 
Some specificity for               

11-O-ETIO-3-s 
Not tested 

ETIO 10
-9

 M * 
Non-specific.  Detects ETIO-g, 

androstenedione and others* 
Not tested 

Estrone 10
-9

 M * 
Non-specific.  Detects 

estradiol* 
cAMP and IP3 

L-Alanine Not tested Not tested IP3 

TCA Not tested Not tested cAMP 

 

4.4 Discussion 

These findings provide supporting evidence of pheromone functionality for 11-O-ETIO 

and 11-O-ETIO-S, two androgens released by reproductive male (RM) round gobies (Katare et 

al., 2011).  Nanomolar 11-O-ETIO and 11-O-ETIO-3-s elicit field potential responses from the 

olfactory epithelium of conspecifics, but not from goldfish, and the round gobies are able to 

discriminate these steroids at the sensory level.  Additionally, olfactory transduction occurs via 

previously characterized second messengers  

Pheromone communication during reproduction was seen in the black goby over thirty 

years ago, when Colombo et al. (1977; 1980) reported that reproductive females are attracted to 

ETIO-G, a substituted steroid produced in the gonads of RMs.  Since RM round gobies build and 

maintain nests on the lake bottom, within which many females deposit eggs (Wicket and 

Corkum, 1998), pheromone communication is postulated for this species as well.  Investigation 

of the chemical identity of the round goby reproductive pheromones began with Murphy et al. 

(2001), who demonstrated olfactory epithelial field potential responses to several synthetic 
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steroids including ETIO, ETIO-G and other androgens (C19 steroids) with a 5,3-reduced 

configuration.  However, 11-O-ETIO is the dominant product when the testes and seminal 

vesicles of RMs convert androstenedione to 5,3-reduced steroids in vitro (Arbuckle et al., 

2005; Jasra et al., 2007).  Bélanger (2004) found that 11-O-ETIO is detected by round gobies as 

an odour, and most recently, Katare et al., (2010) demonstrated that free and substituted 11-O-

ETIO (including 11-O-ETIO-3-s) are released by RMs. Therefore, water that previously held 

RMs and is attractive to reproductive females (Gammon et al., 2005), and extracts of RM water 

that evokes strong EOG responses in reproductive females (Bélanger et al., 2004) likely contain 

11-O-ETIO and 11-O-ETIO-3-s.  Behavioural responses to mixtures of synthetic steroids that 

include 11-O-ETIO and 11-O-ETIO-3-s (Corkum et al., 2008) and to isolates with these 

compounds, collected from water that held RMs (Kereliuk, 2009) also support pheromonal 

function of these steroids.  

The EOG cross adaptation experiments in this study show that 11-O-ETIO and 11-O-

ETIO-S are discriminated at the sensory level.  It has long been suspected that the pheromone 

that attracts the reproductive females is likely to be a substituted rather than a free steroid.  When 

RM water extracts are separated on reverse-phase high-performance liquid chromatography 

(HPLC), reproductive females show significantly higher field potential responses from the 

olfactory epithelium (EOG) to fractions that correspond to the elution positions of substituted 

rather than free steroids (Bélanger et al., 2004).  Behavioural experiments also show that 

solutions containing 11-O-ETIO or 11-O-ETIO-3-s evoke different behavioural responses 

(Corkum et al., 2008; Kereliuk, 2009).  While the unsubstituted steroids are likely excreted 

continuously from the gills (Vermeirssen et al., 1996) thus creating an uninterrupted plume, it is 

well known that urine is the main route of excretion for substituted steroids in fish (Scott and 
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Vermeirssen,1994).  Meunier‘s (2009) observation that nesting RMs release more urine in the 

presence of females, and the discovery of 11-O-ETIO-3-s in the urine of RM round gobies 

(Katare et al., in press), also indicate that the urine (containing 11-O-ETIO-3-s) conveys specific 

chemical information to conspecific recipients.    

Ligand competition studies using field potential recordings from the olfactory epithelium 

(cross-adaption) show that both substituted and free ETIO (ETIO, ETIO-G, 11-ETIO-G) 

interact with the same receptor, and this one receptor also interacts with androstenedione 

(Murphy et al., 2001). On the other hand, 11-O-ETIO and 11-O-ETIO-3-s activate independent 

receptor mechanisms, an interesting distinction that may hint at the importance of these 

compounds as olfactory cues for the round goby. It may be that the ETIO receptor mechanism 

described by Murphy et al., (2001) represents a more generalized receptor responding to some 

androgens, conveying information to the female about the sex of the male.  If 11-O-ETIO and 

11-O-ETIO-3-s are indeed pheromones, they may convey more specific information about the 

reproductive status of the male. My results indicate that the round goby olfactory system 

discriminates between these odors, which could lead to different behavioral responses, as 

independent and specific olfactory receptor sites for pheromones appear to be important for 

initiating the appropriate behaviour (Poling et al. 2001, Sorensen et al., 1995). It is also possible 

that both steroids in a mixture could be necessary to elicit a reproductive response, as is the case 

in several species of moth (Linn et al., 1985).   

There have been few olfactory cross-adaptation studies of fish pheromones.  In the sea 

lamprey (Petromyzon marinus), separate compounds identified as migratory (Fine and Sorensen, 

2008; Li et al., 1995) and reproductive (Siefkes and Li, 2004) pheromones activate different 

olfactory receptors.  In the goldfish, the pheromones 17,20β-P and 17,20β- P-20-sulfate have 
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independent receptors (Sorensen et al., 1995), as well as different behavioral properties (Poling 

et al., 2001).  The prostaglandin pheromones PGF2α and 15-oxo-PGF2α also activate different 

receptor mechanisms in goldfish (Sorensen et al., 1988).  The sea lamprey, goldfish and round 

goby represent three different groups of fishes, but the possibility that pheromones have 

individual receptors is supported in all three species. 

This is the first study of teleost fish that investigates the olfactory properties of synthetic 

analogues of steroids released by reproductive conspecifics.  This strategy has been used for 

investigating sea lamprey pheromones (Li et al., 1995; Siefkes and Li, 2004).  Most current 

research takes one of two approaches: testing a specific compound and for possible biological 

activity (e.g. behavior or EOG) without knowing if it is released by the conspecifics (e.g. 

Giaquinto and Hara, 2008), or testing isolates of conditioned water or urine on opposite-sex 

conspecifics (e.g. Barata et al., 2008; Serrano et al., 2008).  

This is the third time that unique, released compounds have been proposed as 

pheromones in a perciform species, since Colombo identified ETIO-G as a pheromone in the 

black goby (1977; 1980), and Barata et al., (2008) tentatively identified a sterol-like compound 

released by male Mozambique tilapia (Oreochromis mossambicus) which the females may use to 

identify dominant males.  

Although many fish species have been investigated for the possible use of pheromones, 

species specificity has not been well-investigated in fishes (Sorensen and Stacey, 1999).  The 

round goby detects neither 17,20β-P nor prostaglandin F2α, both of which are important goldfish 

pheromones (Sorensen et al., 1988; Stacey et al., 1989) and are detected by other cyprinids, 

including zebrafish (e.g. Belanger et al., 2009).  Indeed, overall it appears as though F-

prostaglandins are more likely to have pheromonal actions in cyprinid fishes than in non-
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cyprinids such as the goby (Kitamura et al., 1994).  The cichlid fish Astatotilapia burtoni 

responds only to substituted steroids but not free steroids (Robinson et al., 1998).  Bile salt odors 

– which may be pheromones  in rainbow trout, Oncorhynchus mykiss (Giaquinto and Hara, 2008) 

– were shown to be equally potent odors in goldfish, Mozambique tilapia and European eel 

(Anguilla anguilla), indicating that bile salts may function as pheromones in a non-specific 

manner in many different fishes (Huertas et al., 2010).  Although I show that the goldfish 

olfactory system does not respond to the steroids released by the round goby, it is far too early in 

this investigation to say that these compounds are specific to only the round goby; however, the 

specificity of the steroids is important if they are to be used as a biocontrol method.  

My investigation of olfactory sensory transduction of three odor classes (bile acids, 

steroids and amino acids) reveals similarities as well as differences between this process in the 

round goby (an Acanthopterygiid perciform) and the more commonly studied Ostariophysan 

fishes:  zebrafish (Ma and Michel, 1998; Michel, 1999), catfish (Hansen et al., 2003), and 

goldfish (Rolen et al., 2003); as well as salmonids (Lo et al., 1993; 1994).  TCA responses are 

not affected by treatment with the IP3 inhibitor, and though the power of this test was somewhat 

low, this result has been seen in other species and thus is likely to be correct despite the low 

power of the test.  The reliance of bile acid (TCA) odor transduction solely on cAMP as a second 

messenger in the round goby is in agreement with studies of Ostariophysan fish (Ma and Michel, 

1998; Michel, 1999; Hansen et al., 2003; Rolen et al., 2003).  It appears that the odor reception 

of bile salts represents a conserved mechanism across those fishes thus examined – with a single 

exception; Lo et al., (1994) reported that TCA signal transduction occurs via IP3 in Atlantic 

salmon.  A wealth of evidence has shown that olfactory responses to bile salts are mediated by 

ciliated olfactory sensory neurons possessing receptors which are coupled to a G protein 



63 
 

expressing the α subunit Gαolf and utilizing the adenylyl cyclase/cAMP cascade (Nikonov and 

Caprio, 2001; Sato and Suzuki, 2001; Hansen et al., 2003; Rolen et al., 2003; reviewed by 

Hansen and Zielinski, 2005).  In the round goby, ciliated olfactory sensory neurons expressing 

Gαolf are distributed within the olfactory epithelium (Belanger et al., 2003); which leads us to 

suppose that TCA also binds onto receptors on ciliated OSNs in this species.  

The use of second messengers in the transduction of amino acids shows diversity across 

taxa.  In the round goby, EOG responses to the amino acid L-alanine are unaffected by the 

adenylyl cyclase inhibitor, yet decline during treatment with U73122, indicating that 

transduction of alanine uses the PLC/IP3 pathway.  In zebrafish, IP3 singly transduces amino acid 

odors (Michel, 1999; Michel et al., 2003); however, both IP3 and cyclic AMP cascades transduce 

amino acids in catfish (Hansen et al., 2003) and goldfish (Rolen et al., 2003).  In these studies of 

catfish and goldfish amino acid mixtures were utilized for stimulating the olfactory epithelium; 

thus it is possible that different amino acids may use different second messengers.  However, Ma 

and Michel (1998) tested several different types of amino acids separately and found that in the 

zebrafish, all amino acid responses are reduced by blocking IP3 via ruthenium red or neomycin.  

It is possible that differences in methodology – namely, in the blocker used – may account for 

some differences in results, as the exact mechanisms of these antagonists are not always clearly 

defined.  For example, Sorensen and Sato (2005) found no effect on goldfish responses to amino 

acids using MDL-12,3330A to inhibit cAMP production, while Rolen et al., (2003) observed a 

decline in amino acid-evoked EOG responses with SQ 22,536.  In this study there was a non-

significant decrease in the amino acid odour with SQ 22,536 treatment, but the power of the test 

was appropriate, lending confidence to the results. As TCA is detected by ciliated OSNs, studies 

show that amino acids odors are processed at least in part by microvillous olfactory sensory 
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neurons in salmonids and cyprinids (e.g. Hansen et al., 2003; Sato and Suzuki, 2001).  Receptors 

on microvillous olfactory sensory neurons are coupled to the G protein subunit Gαo or Gαq/11 

(Hansen et al., 2003; Hansen et al., 2004).  In the round goby, microvillous OSNs are 

immunolabelled for the Gαo subunit and, like Gαolf, are distributed throughout the olfactory 

epithelium (Belanger et al., 2003).   It is likely, then, that the round goby detects amino acid 

odors through receptors found on microvillous olfactory sensory neurons.   

The results observed in this study point to unique properties for olfactory transduction of 

steroids in the round goby.  Inhibitors of cAMP and IP3 pathways suppress responses to 11-O-

ETIO and to estrone; indicating that both second messenger pathways are used in the olfactory 

transduction of these steroids, which differ considerably, with respect to chemical structure and 

biological activity.  Additionally there is no cross-adaptation between the estrogen and androgen 

steroids in the round goby (Murphy et al., 2001), indicating that these activate separate receptors.  

A different strategy is seen in goldfish, which uses cAMP, and not IP3 for transducing a solution 

containing a mixture of the steroidal sex pheromones, 17α,20ß-P, 17α,20ß-P sulfate and 

androstenedione (Sorensen and Sato, 2005).  17α,20ß-P, 17α,20ß-P sulfate fails to elicit olfactory 

activity in the round goby (Murphy et al., 2001), and although androstenedione (a precursor of 

11-O-ETIO) functions as an odorant to the round goby (Murphy et al., 2001), the second 

messenger(s) associated with androstenedione olfactory transduction in the round goby are not 

known.  As steroids appear to use both second messenger cascades in the round goby, this 

indicates that steroid odors could be activating different receptor proteins on both types of 

olfactory sensory neurons.  Despite the long-held convention that mammals detect pheromones 

through specific receptors located on olfactory sensory neurons of the vomeronasal organ, it is 
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now clear that the main olfactory epithelium also contains receptors capable of recognizing 

pheromonal odors (recently reviewed by Rodriguez and Boehm, 2009; Ma, 2007). 

In conclusion, I  present physiological evidence that the released steroids 11-O-ETIO and 

11-O-ETIO-3-s are reproductive pheromones in the round goby, and that these steroids may be 

perceived as individual odors.  While the round goby, like other teleosts transduces bile acid 

odors through a cAMP cascade; unexpectedly, the steroid odours may utilize both and cAMP 

and IP3 cascades. Overall, the results of this study support the view of diversity of olfactory 

function in teleost fish – especially with respect to the identity and transduction of reproductive 

pheromones.  Additionally, the round goby presents itself as a good study species for 

investigations of pheromones, given its ecological importance and phylogenetic positioning.  
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Chapter 5: 

Female round goby olfactory responses to male urine and synthetic analogues of steroids: 

11-O-ETIO-17-s, 11-O-ETIO-3-g, 3α,17β-dihydroxy-5β-androstan-11-one, cortisol, and 

cortisone. 
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5.1 Introduction 

The round goby (Neogobius melanostomus), native to the Ponto-Caspian region of 

Eurasia, is an invasive species in the Laurentian Great Lakes.  This small, benthic teleost inhabits 

dark, turbid environments where vision most likely does not function as a means of 

communication over distances for this colonial breeding species.  Reproductive male (RM) 

round gobies establish and guard nests and eggs (MacInnis and Corkum, 2000), and display 

prominent secondary sexual characteristic (Miller, 1984), while non-reproductive males (NRM) 

do not.  In addition, male round gobies exhibit different male morphs.  The large parental RMs – 

in addition to displaying secondary sexual characteristics – have gonads with large accessory 

glands (compared to the testes), while smaller sneaker males have large testes but small 

accessory glands (Marentette et al., 2009).  It is hypothesized that these sneaker males may act as 

female mimics and have larger testes in order to release more sperm to compete with the parental 

RM for fertilizations, while the parental RMs have larger accessory glands for the production of 

pheromones (Marentette et al., 2009).  It has been posited that the nesting RMs utilise novel 

steroidal pheromones as a means of attracting females.  Females are attracted to – and show 

increased olfactory responses to – RM conditioned water (Bélanger et al., 2004; Gammon et al., 

2004).  Round gobies detect diverse 18- 19- and 21-carbon steroids (Murphy et al., 2001) and are 

attracted to blends of free and substituted steroids (Corkum et al., 2008; Kereliuk et al., 2009).  

Reproductive male round gobies synthesize (Arbuckle et al., 2005; Jasra et al., 2007) and release 

(Katare et al., 2011) the novel 5β-reduced androgen 11-oxo-etiocholanolone (11-O-ETIO; Fig 

1A) in both free and substituted forms.  The substituted forms of 11-O-ETIO vary based on the 

positioning of the sulfate or glucuronide group, and the release of four substituted forms have 

been observed (Fig 5.1; originally published in Katare et al., 2011): 11-O-ETIO-3-sulfate (11-O-
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ETIO-3-s; Fig 5.1B), 11-O-ETIO-17-sulfate (11-O-ETIO-17-s; Fig 5.1E), 11-O-ETIO-3-

glucuronide (11-O-ETIO-3-g; Fig 5.1C), and 11-O-ETIO-17-glucuronide (11-O-ETIO-17-g; Fig 

5.1F; Katare et al., 2011).  When urine is probed by ELISA, the main immunoreactive conjugate 

is 11-O-ETIO-17-s, though 11-O-ETIO-3-g is also present in RM urine following injection with 

gonadotropin releasing hormone (Katare et al., 2011).  Electro-olfactogram (EOG) studies show 

that 11-O-ETIO and 11-O-ETIO-3-s are equally potent odourants (Chapter 4), but what of the 

other identified released compounds?  Substituted 11-O-ETIO is released via the urine (Katare et 

al., 2011).  Furthermore, nesting RMs release urine in pulses in the presence of reproductive 

females (but not non-reproductive females); this indicates that the RMs actively signal to the 

females by through urine release (Meunier 2009).   

Urine is a main route of pheromone release in fishes.  As a route of evacuating 

compounds from the body, urine contains many compounds, several of which may affect the 

EOG (such as proteins and ions).  It is known that urine can signal reproductive status and attract 

opposite sex conspecifics in cyprinid fishes like goldfish, Carassius auratus (reviewed by Stacey 

et al., 2003), and salmonids such as masu salmon, Oncorhynchus masou (Yambe et al., 2006).  

Urine also signals social dominance of males in Mozambique tilapia, Oreochromis mossambicus 

(Barata et al., 2008).  In Atlantic salmon (Salmo salar), female urine has been shown to have a 

priming effect on males, and may be used to synchronize reproduction (Waring et al., 1996).  

While it is known that pheromones are released via the urine, urine is also a route of release for 

many other compounds which may not act as pheromones and are merely being excreted from 

the body.   Whether female round gobies show an overall increased olfactory response to RM 

urine is unknown, but similar results have been seen in other species.  For example, in the 
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Mozambique tilapia, females had greater EOG responses to urine collected from dominant males 

compared to urine from subordinate males (Barata et al., 2008).    

When RM round gobies were treated with salmon gonadotropin releasing hormone 

analogue (sGnRHa), females showed an increased olfactory response to extracts from male-

conditioned water, but the responses to extracts did not increase when the RM gobies were 

injected with saline (Chapter 4).  This conditioned water contains compounds from several 

release routes: urine, mucus from the gills and feces.  In addition, given the stressful conditions 

of conditioned water collection and handling for treatment with sGnRHa, the males could be 

releasing cortisol, a glucocorticoid associated with stress, or cortisone, a metabolite of cortisol 

(Wysocki et al., 2006).  It cannot be ruled out that the olfactory potency of extracts of male 

conditioned water seen in Chapter 4 could be due, at least in part, to the presence of cortisol or 

cortisone in the extracts, although it was shown that injection with sGnRHa did not increase the 

release rate of cortisol, and in this study, release of 11-O-ETIO was about 20x greater than 

cortisol release (Katare et al., 2011).    

I olfactory responses recorded from female round gobies in response to synthetic 

analogues of steroids released by male round gobies (11-O-ETIO-17-s, 11-O-ETIO-3-g, 3α,17β-

dihydroxy-5β-androstan-11-one), as well as to cortisol, and cortisone.  Additionally, this chapter 

describes the responses of non-reproductive female round gobies to urine collected from 

reproductive and non-reproductive males following wild capture and without the influence of 

sGnRHa treatment.  
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5.2 Methods and Materials 

5.2.1 Experimental animals 

Male and female round gobies were angled or seined from the Detroit River in Windsor, 

Ontario during June – August, 2008 and 2009, and transported to the University of Windsor 

animal care facilities, where they were housed either in flow through tanks supplied with 

dechlorinated municipal tap water or in aquaria with  recirculating charcoal filters and 

dechlorinated municipal tap water.  Water temperatures were between 18 – 26
o
C (i.e. ambient), 

and the fish were kept on a 16:8 hr photoperiod.  Round gobies were fed once daily with 

commercial fish flakes (Aquatic Eco-systems, Apopka, FL, USA).  Males and females were 

sexed based on the shape of their urogenital papillae (Miller, 1984) and housed separately.  

Reproductive males (RMs) were differentiated from non-reproductive males (NRMs) based on 

their display of secondary sexual characteristics such as dark nuptial colouration, thick slime coat 

and puffy cheeks (MacInnis and Corkum, 2000).  Fish may have been held for up to one month 

before physiological testing, but most individuals were used within 2 weeks.  All procedures 

were in accordance with CCAC guidelines. 

5.2.2 Steroid and odour preparation 

Synthetic steroids were purchased from Steraloids (Newport, RI, USA): 11-O-ETIO-3-g 

(#A3470-000), 11-O-ETIO-17-s (#A3232-000), cortisol (#Q3880-000) and cortisone (#Q2500-

000).  The steroid 3α,17β- dihydroxy-5β-androstan-11-one (Fig 5.1D) was generated by Dr. 

Yogesh Katare and Dr. Alexander Scott by acid solvolysis of 11-O-ETIO-17-s as follows: 1 

mg/ml of 11-O-ETIO-3-s dissolved in methanol was evaporated in the speedvac.  The resulting 

residue was in distilled water and trifluoroacetic acid in ethyl acetate (1.4:100 v:v).  This solution 

was incubated at 45
o
C for 18 h, followed by evaporation of the solvent under nitrogen.  The 
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residue was reconstituted in dechlorinated background water and diluted to the appropriate 

concentration for testing (10
-8

 M).  The standard odour L-alanine was purchased from Sigma-

Aldrich (Oakville, ON, Canada).  Steroids were prepared initially as 1 mg/ml stock solutions in 

100% methanol and stored at -20
o
C.  On the day of testing, steroids were dissolved in 

dechlorinated background water to make 10
-4

 M solutions, and then serially diluted in 

dechlorinated water to the testing concentrations, the highest of which was 10
-8

 M.  This 

concentration of steroid is typically the most potent tested in EOG studies (e.g. Murphy et al., 

2001).   Stock solutions of 10
-2

 M L-alanine were made up fresh daily and diluted serially in 

dechlorinated water to the testing concentration of 10
-5

 M. 

Steroid stock solutions used for EOG testing were analyzed via mass spectrometry to 

establish that they were free of contamination (Appendix C).  The spectrum for the stock solution 

for 11-O-ETIO-17-S showed only one peak, while the spectrum for the 11-O-ETIO-3-G show 

two peaks, indicating some impurity.  This was confirmed through thin layer chromatography by 

Steraloids.  All mass spectrometry was performed by Miss Manika Gupta  
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Fig 5.1: Chemical structures of steroids relevant to this thesis.  Steroids specifically tested in this 

chapter are boxed.  Parts of this figure were originally published in Katare et al., 2011. Biol. 

Reprod. 84(2).  The release of all of these steroids was confirmed except for compound 1D 

which is a reactive intermediary that is probably not released. 

 

5.2.3 Urine collection and preparation 

EOG recordings were made in response to urine samples collected from RM round 

gobies in the field; kindly provided by Stan Yavno.  Following capture, the RMs were lightly 

anesthetized with clove oil and the urogenital papilla was tied tightly with dental floss.  The RMs 

were then isolated in buckets containing aerated river water for 4 hours, allowing for urine to 

collect in the bladder.  After 4 hours the males were given an overdose of clove oil and urine was 

extracted by puncturing the bladder though the skin with a 25 gauge needle.  These urine 

samples were stored at -20
o
C until use (Yavno and Corkum, 2010).  
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Thawed urine samples were diluted for EOG testing as follows: first, the amount of urine 

used for EOG testing was standardized by using 0.1 of the total volume of urine collected from a 

male goby.  For example, for urine # 18, we saved 8.8 µl for EOG testing, meaning that 88 µl of 

urine was collected from this fish (Appendix D).  A stock urine solution was prepared by diluting 

10x in dechlorinated water.  For example, for urine #18, the 8.8 µl was diluted in 79.2 µl of 

water (the volume of the urine stock solution was 88 µl).  The stock solutions were then diluted 

serially in dechlorinated water 100x, for EOG testing.  These dilutions were designated 100x, 

10,000x, 1,000,000x and 100,000,000x.  The amount of immunoreactive substituted 11-O-ETIO 

in each urine sample was measured by ELISA (Dr. Yogesh Katare, U. of Windsor; Appendix D).  

11-O-ETIO17-S accounts for the most immunoreactivity in the urine (Katare et al., 2011).  Thus, 

the estimated molarity of the urine samples was calculated based on the molecular weight of 11-

O-ETIO-17-s, which was 385 (Katare et al., 2011).  Because there are other steroids in urine 

detected by the ELISA, the molarity is only an estimate meant to give some context to the 

amount of substituted 11-O-ETIO in the urine.  Though we now are able to measure the amount 

of immunoreactivity of individual substituted forms of 11-O-ETIO separately, at the time these 

experiments were performed, immunoreactivy of separate forms of 11-O-ETIO were all 

measured together. Appendix D shows the amount of substituted 11-O-ETIO in the urine 

samples as measured by ELISA.  The amounts in the EOG-tested  solutions ranged from a 

minimum amount of 2.26 x 10
-12

 M 11-O-ETIO to a maximum of 8.89 x 10
-10

 M 11-O-ETIO.        

5.2.4 Electro-olfactogram (EOG) recording 

 The EOG recording protocol was adapted from those previously published (Murphy et 

al., 2001; Bélanger et al., 2004) and has been described in detail in Chapter 4 (section 4.2.2).  

Briefly, non-reproductive females were anesthetized in 100 mg/l MS-222 (Finquel, Argent 
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Chemical, Redmond, WA, USA) and immobilized with gallamine triethiodide (150 mg/kg, 

Flaxedil, Sigma-Aldrich, Oakville, ON, Canada).  Females were secured in a recording trough 

with dechlorinated water containing MS-222 flowing over the gills.  The EOG was recorded 

differentially using glass capillary electrodes (tip diameter 80 – 100 µm) filled with 8% gelatin 

dissolved in 0.9% saline.  Electrodes were bridged to Ag/Ag-Cl pellets via 3 M KCl.  Signals 

were amplified, digitized (Powerlab, AD Instruments, Colorado Springs, CO, USA) and 

displayed on a computer running Windows Vista.  EOG responses to odours were recorded as 

raw millivolt (mV) responses (for steroids) or normalized (for urine, to reduce some variability 

between individual test fish) by dividing by the average response to the standard 10
-5

 M L-

alanine.  Only fish that responded to the L-alanine standard were used. 

 To verify that these were not reproductive phase females, following recording of male 

urine responses, female gobies were sacrificed to calculate the gonadosomatic index (GSI), a 

measure of gonad weight as a percentage of total body weight, that is often used to estimate the 

reproductive status of fishes.  A female round goby is considered reproductive if the GSI value 

of 8% or greater.  It was determined that EOG responses were recorded only from 

nonreproductive females.  

5.2.5 Data handling and analysis 

The EOG responses to RM versus NRM urine samples were analyzed using Paired 

Student‘s t-tests (for all RM versus NRM data; Paired tests were used because each female was 

given an RM and NRM urine and those responses were compared) or regression analyses using 

GraphPad Prism 5.  Data were normally distributed and displayed equal variance.  For the 

synthetic steroids, each concentration was presented to a female at least 3 times and the 

responses were averaged for each concentration. Regarding the urine study, in a few instances, 
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female experimental fish were presented urine samples from the same donor males (see 

Appendix D).  If a particular urine preparation was tested on two females (e.g. urine #38), these 

two responses were averaged to generate one average response to that particular urine.  For 

example, responses to urine 38 by female -05 and -06 were averaged, and this value (average 

response to urine 38) was tabulated for each urine dilution that was tested (Appendix D).  

5.3 Results 

Only fish that responded to the positive control odour, L-alanine were used in this study.  

Female round gobies showed limited olfactory responses to the synthetic compounds tested in 

this study.  EOG responses were not observed when either 10
-12

 M - 10
-8

 M 11-O-ETIO-17-s 

(5.1E, Fig 5.2) or 10
-12

 M - 10
-8

 M 11-O-ETIO-3-g (5.1C, Fig 5.3) were tested.  Responses to 10
-

12
 M - 10

-8
 M 3α,17β-dihydroxy-5β-androstan-11-one (5.1D) were variable.  Of five tested fish, 

only one (F08-11-09) detected the compound consistently and in a dose-response manner (coded 

F08-11-09; Fig 5.4A).  The female F08-11-09 was also the only fish to detect 3α,17β-dihydroxy-

5β-androstan-11-one at more than one concentration (Fig 5.4A).  This inconsistency in responses 

led to the large amount of variability shown in the averaged EOG dose-response curve (Fig 

5.4B).  One fish was tested for an EOG response to cortisone and cortisol, as male round gobies 

may be releasing these stress hormones during the period of isolation when urine collects in the 

bladder or when we are collecting waters for further testing (e.g. generation of methanol extracts 

as described in Chapter 4; Katare et al., 2011).  The response of this fish to cortisol was low 

compared to other steroids (i.e. 0.4 mV EOG response to 10
-8

 M cortisol compared to 2.25 mV 

response to 10
-8

 M ETIO; Chapter 3; Murphy et al., 2001), and there were no responses to 10
-8

 M 

or 10
-9 

M cortisone (Fig 5.5).  Generally, if an odour elicits a change in the EOG recording 

greater than 0.2 mV it is considered a response (Murphy et al., 2001). 
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Fig 5.2: EOG dose-response relationship for the released steroid 11-O-ETIO-17-s (1E), recorded 

from non-reproductive female round gobies.  There was no response to this steroid at any 

concentration tested.  N for each concentration is listed. 

 

 

 

 
 

Fig 5.3: EOG dose-response graph for the released steroid 11-O-ETIO-3-g (Fig. 1C).  Non 

reproductive female round gobies did not detect 11-O-ETIO-3-g, even at the highest 

concentration tested.  N=3 for each concentration. 
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Fig 5.4: EOG responses recorded from female round gobies upon exposure to the intermediate 

3α,17β-dihydroxy-5β-androstan-11-one (1D).  (A) Graph shows EOG responses from the five 

females.  Female F08-11-09 was the only fish to detect compound 1D at more than one 

concentration, and responded to it in a dose-response manner.  Females F06-08-098 and F08-12-

09 detected either 10
-8

 M or 10
-9

 M 3α,17β-dihydroxy-5β-androstan-11-one .  The females F08-

14-09 and F08-14-09-2 did not detect 1D at any concentration.  (B) The averaged responses to 

3α,17β-dihydroxy-5β-androstan-11-one (1D) from all 5 female round gobies shown in Fig 4A. 

 

 

 
 

Fig 5.5: EOG responses taken from one female in response to cortisol and cortisone.  The test 

fish was able to detect cortisol, but not cortisone.   
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Female round gobies exhibited robust EOG responses to RM and NRM urine samples, 

but overall there was no difference in female response to RM and NRM urines when the average 

responses to urine at each concentration were considered together (Fig 5.6; t=0.30, df=3, 

P=0.78).  The detection threshold was approximately 1,000,000x diluted urine, which 

corresponds to a maximal concentration of 8.89 x 10
-14

 M substituted 11-O-ETIO.  When testing 

the dose-response relationship, female responses to urine were highly variable and there was no 

difference in EOG magnitude between RM and NRM urine samples at any concentration (Fig 

5.7).  However, upon further analysis, it was found that the GSI values of the females that were 

responding to the urine were positively correlated with EOG response to NRM urine (Fig 5.8; 

r
2
=94, P=0.0011).  Surprisingly, the same relationship was not seen for RM urine (Fig 5.8; 

r
2
=0.52, P=0.10).   

 

 
 

Fig 5.6: EOG responses from female round gobies to reproductive male (RM) and non-

reproductive male (NRM) urines.  There is no significant difference in response to RM and NRM 

urine when responses to all concentrations are considered together. 
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Fig 5.7: Normalized EOG responses to reproductive male (RM) and non-reproductive male 

(NRM) urine.  There are no statistically significant differences in female response to RM on 

NRM urine.   

 

 

 

 

 
 

Fig 5.8: Relationship between female gonadosomatic index (GSI) and EOG response to urine 

samples.  There is a significant positive correlation between female GSI and EOG response to 

NRM urine, but not RM urine.  Urine samples were diluted 100x.   All urine samples were used 

to produce this graph. 
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Table 5.1:  The EOG responses to, and site of release of steroids released by male round gobies.  

Proposed routes of release are based on previous literature examining routes of release of odours.  

The substituted steroids are listed in decreasing order of abundance in which they are detected by 

ELISA in the urine (Katare et al., 2011).  11-O-ETIO-3-g has been tested before, but the sources 

of the steroid were different in the study be Bélanger (2003) than that used in this chapter.  

 

Steroid Proposed route of 
release 

Detected by EOG? Reference 

11-O-ETIO Gills Yes Chapter 4 

11-O-ETIO-17-s  Urine No This study 

11-O-ETIO-3-g Urine Yes 
No  

Bélanger, 2003 
This study  

11-O-ETIO-17-g Urine Unknown*  

11-O-ETIO-3-s Urine Yes Chapter 4 
* Synthetic 11-O-ETIO-17-g analogue is not commercially available 

5.4 Discussion 

  Male round gobies release a number of steroids that have a 5β-reduced and 3α-hydroxyl 

configuration (5β,3α) into the water where these may be detected by – and possibly be attractive 

to – females.  Table 5.1 provides a summary of steroids tested.  As described in Chapter 4, free 

11-O-ETIO and 11-O-ETIO-3-s are stimulatory to female round gobies.  The steroidal 

compounds tested in this study are not potent odourants to the round goby, and thus, are unlikely 

to be attractive releaser pheromones.  The 11-O-ETIO-17-s (5.1E) is not detected, but it is the 

main contributor to the 11-O-ETIO immunoreactivity of RM urine, with 11-O-ETIO-3-g 

occurring as the second most abundant of the measured steroids (Katare et al., 2011).  At this 

point the biological significance of this steroid (if any) is unknown.  It is possible that steroids 

and their metabolites may function as pheromones even if they do not evoke EOG activity.  

Priming pheromones do not elicit behavioural responses, but instead lead to endocrine responses 

in the receiver (e.g. Sorensen et al., 2004), such as the resulting release of gonadotropin, and 

stimulation of sperm production in male goldfish upon exposure to free and sulfated 17α,20β-

dihydroxy-4-pregnen-3-one (17α,20β-P and 17α,20β-P-20S).  In the case of goldfish, they do 
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detect 17α,20β-P and 17α,20β-P-20S via EOG (Sorensen et al., 1995), but this does not 

necessarily mean that compounds with priming actions must evoke EOG responses.  Sex steroids 

have the ability to be taken up by the gill epithelium, via sex hormone-binding globulin (Miguel-

Queralt and Hammond, 2008), which presents an alternate route for steroids released into the 

water to affect a receiver if not through the olfactory system.  However, there is not yet any 

direct evidence that an undetectable steroid could have priming effects. 

The round goby also doe not detect 11-O-ETIO-3-g (5.1C); however, analysis by mass 

spectrometry (Appendix C) shows two peaks when this compound is run, indicating some 

impurity or breakdown of this test compound.  If the steroid was impure or somehow damaged, 

that could account for the lack of response, as the round goby was previously shown to detect 11-

O-ETIO-3-s to a sample that was custom synthesized for Dr. A. P. Scott by an earlier supplier 

(Bélanger, 2003).  Different sources for this steroid could account for the differences in response 

between the earlier study and this one.   

Responses to 3α,17β-dihydroxy-5β-androstan-11-one (5.1D) yield the most inconsistent 

results.  This compound was tested because it may be an intermediary in the synthesis of 

substituted forms of 11-O-ETIO (see Fig 1, Katare et al., 2011).  The lack of olfactory activity 

could be due to the fact that it was synthesized in our own lab, and there might have been some 

contamination.  In addition, this compound is considered a highly reactive intermediate in the 

proposed biosynthetic pathway of some substituted forms of 11-O-ETIO and it is unlikely to be 

released (Katare et al., 2011).  Therefore, I do not consider this compound to be a putative 

pheromone.   

Responses to cortisol were only tested on one fish, which appeared to detect it, though at 

much lower magnitude than that of other steroids (Chapter 4; Murphy et al., 2001).  Cortisone is 
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not detected at all by the test fish.  Though the RM gobies are releasing some cortisol due to the 

stressful conditions of water collection (one male fish in 1 L of water), there is no significant 

increase in cortisol following injection of the males with salmon gonadotropin releasing hormone 

analogue (Katare et al., 2011), indicating that the olfactory potency of extracts of conditioned 

water from sGnRHa injected RMs (e.g. Chapter 3) is not due to the presence of cortisol. 

Female round gobies exhibit robust EOG responses to urine collected from RM and 

NRM round gobies. There were no significant differences between female EOG responses to RM 

and NRM urine.  The estimated molarity of immunoreactive substituted 11-O-ETIO contained in 

the urines is below the EOG detection threshold of free 11-O-ETIO and 11-O-ETIO-3-s (10
-9

 M, 

Chapter 3), even in the most concentrated urine samples tested, thus the urines are far more 

potent than individual synthetic steroids. The urine was collected from males that were not 

injected with sGnRHa to stimulate steroid production, and the stress of having their papillae tied 

may have caused them to reduce steroid production.  Stress such as this has been shown to 

reduce steroid production (Garcia-Lopez et al., 2007).  When the data were analyzed more 

closely, it became clear that the GSI of the female has some relationship to the olfactory 

response to urine, and in fact, is correlated positively with response to NRM, but not RM, urine.  

A confounding factor is the amount of substituted 11-O-ETIO in the urine samples, but no 

relationship between these amounts and EOG response is seen (data not shown). At this point, 

we have only measured 11-O-ETIO in the urine, and do not know what else may be in the urine 

that could account for this difference in female response, but urine contains a number of 

components such as ions (potassium, sodium, chloride), glucose and proteins (Erickson and 

Gingerich, 1986) that may affect the EOG response.  The increase in GSI could indicate that the 

females are nearing reproductive status, and could have been experiencing increasing egg 
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production or vittelogenesis, though we do not know how that could affect their olfactory 

responses to urine.  Pre-ovulatory reproductive female (i.e. eggs are ready for release but have 

not yet been released for fertilization) Mozambique tilapia (Oreochomis mossambicus) show 

greater EOG responses to urine from dominant males compared to subordinate males (Barata et 

al., 2008).  Our results seem to be contrary to this, although if reproductive status proves to be a 

critical factor in female response, a better measure of reproductive status than GSI must be 

established.  It would be beneficial to correlate GSI with the maturity of the ova and steroid 

levels in the female to create a clearer picture of reproductive status. 

The average amount of immunoreactive substituted 11-O-ETIO in the urine samples is 

greater in the RM than the NRM urine (Appendix D).  I have not seen a direct link between 11-

O-ETIO immunoreactivity and EOG response from either urine or methanol extracted steroids.  

Increasing male release of 11-O-ETIO increases female response to methanol extracted male 

water (Chapter 3), but female EOG response to methanol extracts do not correlate with the 

amount of 11-O-ETIO contained in the extracts (data not shown).  It is unknown exactly what in 

the NRM urine is causing the increased response from NRFs of a higher GSI.  The RM urine 

does have higher levels of substituted 11-O-ETIO than NRM urine; however, the 

immunoreactive conjugate tested here (11-O-ETIO-17-s) is not detected by the OSNs in the 

round goby.  The gobies do detect 11-O-ETIO-3-s, but this conjugate is not immunoreactive to 

the antibody used in this ELISA.  When the antibody was generated, bovine serum albumin was 

substituted to 11-O-ETIO at the 3 position, leading to the generation of an antibody that does not 

recognize 11-O-ETIO that contains substitutions at the 3 position, but it will recognize 

substitutions where the sulfate or glucuronide groups are located at the 17 position (Katare et al., 

2011); therefore it appears that the steroids that we are measuring using ELISA (prior to 
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sulfatolysis or glucuronidase treatment) are not necessarily the steroids that the round goby is 

capable of smelling.  Analysis of the urine by Katare et al., (2011) showing that there is more of 

the 11-O-ETIO-17-sulfate than the 11-O-ETIO-3-sulfate in the urine, used urine from RM gobies 

that had been injected with sGnRHa.  It is unknown if treatment with sGnRHa alters the 

composition of the male urine compared to what the composition would be normally.  That is to 

say, under natural conditions, the 11-O-ETIO-17-sulfate may not be the predominant form of 11-

O-ETIO released via the urine, and the quantities and timing of release may be important factors 

in any possible pheromonal activity of male urine or conditioned water.  

 There is one released conjugate of 11-O-ETIO that we have been unable to purchase, and 

that is 11-O-ETIO-17-g (Fig. 5.1F).  This steroid is immunoreactive (i.e. it is detected by the 

ELISA) and is present in urine (Katare et al., 2011).  Because we were unable to procure a 

synthetic form of 11-O-ETIO-17-g, I do not know if the female olfactory system can detect it. 

The NRFs of a higher GSI (> 4%, approaching ―reproductive‖, which is 8% or greater, 

Bélanger et al., 2004) have a greater EOG response to NRM urine than RM urine, while the 

opposite was true of the very low (< 4%) GSI females.  Why these higher-GSI females show a 

greater response to NRMs is unclear.  Urine samples used were classified as coming from RMs 

or  NRMs based on the GSI values of the males which were calculated after collecting the urine 

and sacrificing the males (Yavno and Corkum, 2010).  It is possible that NRMs classified as such 

may have just released sperm or guarded eggs and the urine composition may have been altered 

in a way to increase the olfactory potency.  It could be that the females are attracted to males that 

have fertilized eggs because the eggs are a possible food source or because it is indicative of the 

male‘s reproductive success (e.g. a male that has already fertilized eggs has already proven his 

fitness). 
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It is possible that the urine alone isn‘t necessarily a pertinent cue to the female during 

mate selection, when the animals are interacting from a short distance.  For example, Yavno and 

Corkum (2010) found that type of urine (RM or NRM) had no effect on the amount of time spent 

by reproductive females near an experimental nest containing a model of a male fish though it 

must be noted that in this study the females were in fairly close proximity to the males, and 

olfactory cues may not be as important under these conditions.  In addition, the RMs in the 

Yavno and Corkum (2010) study might not have been releasing elevated steroids, possibly 

because they were not treated with sGnRHa and they were under captivity stress. Urine alone 

may not be the source of reproductive pheromone(s), but that other compounds, perhaps released 

via the gills or in the feces, might also be important for mate selection.  Clearly, the relationship 

between male signal and female response is complex and requires more study.     

The final possibility is that the RMs caught in the field and sampled for urine just weren‘t 

producing pheromonal compounds that would elicit high olfactory responses.  The stress of 

captivity has been shown to negatively impact steroid production and gonadal maturity (Garcia-

Lopez et al., 2007).  This is why in previous studies (Chapter 3; Katare et al., 2011) the 

hypothalamic-pituitary-gonadal axis was stimulated with sGnRHa. 

It has been observed that some RM round gobies may be producing greater quantities of 

attractive pheromonal compounds while others are producing very little, leading to the 

classification of some males as ―studs‖ and others as ―duds‖ by Qureshi (2008).  The biological 

―dud‖ still exhibits the secondary sexual characteristics identifying it as reproductive, and it has a 

high GSI value, but for some undetermined reason, it is not producing pheromones.  When males 

were injected with sGnRHa and the methanol extracts were collected, overall sGnRHa increased 

11-O-ETIO release by a factor of 2.29 (as measured by ELISA), but 2 out of 5 treated RMs did 
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not increase their release of 11-O-ETIO (Quereshi, 2008).  Angling may select for the duds, as 

nest guarding round gobies (the males assumed to release the most pheromone) do not feed 

during this time (Miller, 1984; Charlebois et al., 2001); therefore the RMs that are being caught 

are feeding and may have already left their nests for some reason, for example, if they have 

already fertilized and guarded eggs (Quereshi, 2008).      

To conclude, none of the synthetic analogues of steroids released by RM round gobies 

tested here present themselves as good candidate releaser pheromones, compared to those 

released compounds tested in Chapter 4 (11-O-ETIO and 11-O-ETIO-3-s).  There certainly could 

be additional compounds released by males that we have yet to identify, and we haven‘t been 

able to test the olfactory potency of all the identified compounds (e.g. 11-O-ETIO-17-g, which is 

not commercially available).  In addition, urine is a composite of many compounds, and may not 

be the best test to use in behavioural or olfactory testing, as the response by females to these 

stimuli is difficult to interpret. 
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Chapter 6:  

 

The effects of prostaglandin F2α on female round goby olfactory responses 
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6.1 Introduction 

Prostaglandins (PGs) are a group of fatty-acid derived lipid compounds that have a 

variety of biological functions. In fishes, PGs are best known for their ability to initiate female 

spawning behaviours (for a recent review, see Munakata and Kobayashi, 2010).   Increased 

circulating levels of prostaglandin F2α (PGF2α) at the time of ovulation stimulate female 

spawning behaviours in goldfish, (Carassius auratus), (Stacey, 1976; Stacey and Peter, 1979; 

Stacey and Goetz, 1982), and PGF2α injection stimulates spawning behaviour in two fishes of the 

order Perciformes: a cichlid (Cichlasoma bimaculatum, Cole and Stacey, 1984), and the paradise 

fish (Macropodus opercularis, Villars et al., 1985).  In the goldfish, PGF2α is also a component 

of the pheromone released by females immediately preceding ovulation, and stimulates 

reproductive behaviours in males (Sorensen et al., 1988).   

In addition to these roles in fish reproduction (e.g. Sorensen and Goetz, 1993), PGs have 

a variety of other functions in other organisms.  For example, during nociception and pain in 

mammals, PGs mediate inflammatory responses by sensitizing neurons (reviewed by Meves, 

2006; Premkumar et al., 2006).  This sensitizing effect occurs through binding with G-protein 

coupled receptors (Narumiya, 2009), and PGs act directly on ion channels, lowering their resting 

voltage and thus increasing the probability of depolarization (Meves, 2006).  In embryonic rat 

dorsal root ganglion cells, PGs affected the production of cAMP (e.g. Nicol and Cui, 1994; Cui 

and Nicol, 1995). G-protein coupled receptors, ion channels and cAMP are possible sites for the 

sensitizing actions of PGs during the olfactory transduction, as well.  The olfactory receptor is a 

G-protein coupled receptor (Buck and Axel, 1991) and olfactory signal transduction relies upon 

the activation of a cyclic-nucleotide gated ion channel (Firestein, 2005). For example, PGs may 



96 
 

affect the generation of action potentials or the number of responding cells in the olfactory 

epithelium,  

Hormonal modulation of olfactory sensory neurons in the periphery is not unheard of. 

Some hormones affect responses of olfactory sensory neurons (OSNs).  Recordings taken from 

the olfactory epithelium (electro-olfactogram, EOG) of axolotls (Ambystoma mexicanum) were 

inhibited in the presence of gonadotropin releasing hormone (Park and Eisthen, 2003).  In 

addition, the satiation hormones leptin and insulin reduced EOG responses recorded from rats in 

response to the food odour isoamyl acetate (Savigner et al., 2009).      

In brown bullhead catfish (Ameiurus nebulosus) the amplitude of the EOG is correlated 

with the number of responding olfactory sensory neurons (Koce and Valentinčič, 2000), 

therefore we could postulate an increased EOG response magnitude if PGs are capable of 

sensitizing neurons within the olfactory epithelium.  For example, PG sensitization could lead to 

the recruitment of olfactory sensory neurons that would respond to an odour. 

The round goby (Neogobius melanostomus) was used to perform a pilot study 

investigating the possibility that PGF2α could act physiologically to increase the olfactory 

response of female fishes.  Female round gobies have been seen to exhibit a greater EOG 

response to male odours when they are reproductive versus non-reproductive (Bélanger et al., 

2004).  We hypothesized that this increased olfactory sensitivity might be related to higher levels 

of PGF2α associated with reproductive maturity (Stacey and Goetz, 1982).  

6.2 Methods and Materials 

6.2.1 Collection and housing of fish 

Non-reproductive female round gobies were angled from Lake Erie in Leamington, 

Ontario and transported to the University of Windsor where they were housed in the animal care 



97 
 

facilities in June through August, 2009.  Fish were held in flow through troughs supplied with 

dechlorinated municipal tap water, held at ambient temperatures on a 16:8 hr photoperiod.  Fish 

were fed once daily with commercial flake fish food (Aquatic Eco-systems, Apopka, FL, USA).  

Females were housed separately from male round gobies. 

6.2.2 Odour preparation  

 All compounds that were tested as odours were purchased from Sigma-Aldrich (Oakville, 

ON, Canada) or Steraloids (Newport, RI, USA).  For this pilot study, an odour blend containing 

representatives of different odour classes was used.  It contained: 10
-5

 M L-alanine (an amino 

acid), 10
-6

 M taurocholic acid (TCA, a bile acid), and 10
-8

 M 11-oxo-etiocholanolone (11-O-

ETIO, an androgen and putative pheromone).  L-alanine and TCA were prepared initially as 10
-2

 

M stock solutions in dechlorinated water, then diluted serially in dechlorinated water to their 

final test concentrations.  These were prepared fresh daily.  11-O-ETIO was prepared as a 10
-2

 M 

stock solution in 100% methanol and stored at -20
o
C until use.  On test days, 11-O-ETIO was 

diluted serially from the stock solution to its final test concentration (10
-8

 M).  The odours were 

combined to make a blend so that the final concentration of each individual odour in the blend 

was maintained as mentioned above.  

6.2.3 Recording of field potentials from the olfactory epithelium (electro-olfactogram, EOG) 

The method for recording summed generator potentials from the surface of the olfactory 

epithelium of round gobies (electro-olfactogram, EOG) has been described elsewhere in detail 

(Murphy et al., 2001; Bélanger et al., 2004; Chapter 4 of this thesis).  The EOG was recorded 

from anesthetized, immobilized non-reproductive female round gobies by placing a glass 

capillary electrode (filled with 8% gelatin in 0.9% saline) in the anterior naris.  The reference 

electrode was placed lightly on the skin surface near the anterior naris.  A glass odour delivery 
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tube was placed over the posterior naris and provided the olfactory epithelium with either a 

continuous flow of dechlorinated water or odours (introduced into the background flow of 

dechlorinated water periodically as 5 second pulses).  At least 2 minutes were provided between 

odour exposures in order to avoid adaptation of the olfactory sensory neurons.   

6.2.4 Treatment with prostaglandin F2α (PGF2α) and test protocol  

 Two experimental treatments and two types of prostaglandin F2α (PGF2α) were used in 

this study.  In Experiment One, the PGF2α was dripped directly on the olfactory epithelium in the 

exposure, as previously performed for GnRH modulation by Park and Eisthen (2003), and in  

Experiment Two, female round gobies were treated by PGF2α injection during EOG recording.   

Experiment One: The sensitization of olfactory sensory neurons by PGF2α perfusion directly over 

the olfactory epithelium was examined.  The PGF2α for perfusing over the naris was purchased 

from Sigma-Aldrich (#P0424), dissolved at 5 µg/10 µl in 0.9% saline, aliquoted and stored at -

20
o
C.  For testing, individual PGF2α aliquots were diluted serially in dechlorinated water to 10

-8
 

M PGF2α, since the PGF2α does not elicit an EOG response at this concentration in the round 

goby (Murphy et al., 2001).. The 10
-8

 M PGF2α was delivered to the olfactory epithelium 

continuously and the odour blend was delivered in 5 second pulses at 2, 4 and 6 minutes of 

PGF2α exposure.  The PGF2α did not evoke EOG responses (Murphy et al., 2001; A. 

Laframboise, personal observation).  Two animals were used in this pilot experiment. 

Experiment Two:  The ability of PGF2α to increase female olfactory response after systemic 

injection was investigated by using a commercial product, Lutalyse® (Vet Purchasing Company 

Ltd, www.vpcl.on.ca), which is PGF2α in a stabilizing vehicle, and is injected without additional 

preparation. We switched to Lutalyse due to its reliability and stability for Experiment Two on 

the recommendation of Dr. Norm Stacey (U. of Alberta).  The gobies were secured on the EOG 
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rig, and injected into the dorsal musculature with 10 µl of Lutalyse (containing approximately 

0.05 mg of PGF2α) solution.  The odour blend was tested once every 10 minutes for 30 minutes 

before injection with Lutalyse, and then once every10 minutes following the injection for up to 

60 minutes post-injection.  Experiment Two was performed on 5 fish.  Both experiments were 

performed in July 2009. 

6.2.5 Data handling and analysis 

 The EOG responses were recorded as millivolts (mV).  For Experiment Two, the 

responses by 5 females injected with Lutalyse were averaged for data analysis.  Data were 

analyzed using either linear regression analysis or repeated measures ANOVA (where 

appropriate) with GrapPad Prim 5. 

6.3 Results 

 The purpose of this pilot study was to investigate whether treatment with PGF2α has an 

effect on female round goby olfactory responses.  In Experiment One, the olfactory epithelium of 

the fish was perfused with PGF2α in an attempt to sensitize the olfactory sensory neurons directly.  

This pilot experiment was performed on two fish.  Fish 1 showed an immediate rise in EOG 

response 2 minutes after starting PGF2α  perfusion of the nasal cavity, after the 2 minutes, the 

response remained stable at this elevated level for EOG responses recorded during minutes 4 and 

6 of the PGF2α treatment (Fig 6.1).  The response of Fish 2 was the opposite; the response 

dropped at minute 2 of the  PGF2α treatment, dropped again during minute 4,  and then remained 

level during minute 6 (Fig 6.1). 
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Fig 6.1:  Experiment One.  EOG responses from two female round gobies in response to an 

odour blend (10
-5

 M L-alanine, 10
-6

 M TCA, 10
-8

 M 11-O-ETIO) before and during treatment of 

the olfactory epithelium with 10
-8

 M PGF2α. The time = 0 response was recorded before 

beginning the PGF2α perfusion.  The first response was recorded 2 minutes after perfusion with 

PGF2α began (time 2 on figure 6.1)    

 

In experiment two, PGF2α was injected intramuscularly into the female and the olfactory 

response to the odour blend was monitored for one hour.  For this pilot study, five fish were 

injected with PGF2α and one was injected with saline.  Female round goby EOG responses 

showed an increasing trend for 50 minutes following injection with PGF2α (Fig 6.2), however the 

slope of line connecting the response magnitude values was not significantly different from zero 

(r
2
=0.38, P=0.30), nor was it significantly different from the slope of the line for the EOG 

responses that were recorded 30 minutes preceding treatment (F=0.029, df=2, P=0.097).  The 

EOG responses recorded from single fish injected with saline (negative control) varied wildly 

over time.  As a further analysis, time bins were created by combining: (a) all the data for the 30 

minutes pre-injection (b) the data for 10 – 30 minutes post PGF2α injection (c) the data from all 
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fish for the 40 – 60 minutes post PGF2α injection (Fig 6.3).  When given the odour blend pre-

injection, females had an average EOG response of 2.88 mV, which was not significantly 

different from responses during the first 30 minutes post-injection, which were 2.92 mV on 

average.  EOG responses increased by nearly 1 mV, to 3.77 mV, in the time from 40 – 60 

minutes post-injection, but this was not significantly different from responses during the other 

two time periods (F=2.53, df=14, P=0.12).  There was a trend for odour responses to increase 

over time with PGF2α treatment. 

 

Fig 6.2:  Experiment Two.  EOG recordings in response to the odour blend (10
-5

 M L-alanine, 

10
-6

 M TCA, 10
-8

 M 11-O-ETIO) taken from female round gobies before and after injection of 

PGF2α.  Times -30 to -10 minutes indicate the three responses prior to injection, the injection 

occurred at time 0, and 10 – 60 minutes were recorded after the injection.  There was a non-

significant increase in response to the odour blend over time.  The blue line indicates the 

responses recorded from one fish injected with saline. 
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Fig 6.3: Experiment Two. Pooled EOG responses to odour blend (10
-5

 M L-alanine, 10
-6

 M TCA, 

10
-8

 M 11-O-ETIO) recorded from round goby females 30 minutes before injection with PGF2α 

(white bar), 0 – 30 minutes after injection (light grey bar), and 40 – 60 minutes post injection 

(dark grey bar).  There was a non-significant increase in EOG responses to the odour blend 

between 40 and 60 minutes post treatment with PGF2α.  N=5 

 

6.4 Discussion 

Prostaglandins have a variety of biological effects, during reproduction and otherwise.  

PGF2α induces reproductive behaviours in both female and male goldfish (Stacey et al., 2003) as 

well as females of some other fish species (Cole and Stacey, 1984; Villers et al., 1985; reviewed 

by Munakata and Kobayashi, 2010).  Nothing is known, however, about the effect of PGF2α in 

the round goby. Treating female round gobies with PGF2α does not significantly increase their 

olfactory response, though the results suggest that olfactory generator potentials may be affected.  

With refinement of the technique and additional replicates, one – or both – techniques may yield 

better results.  In experiment one, PGF2α was used in an attempt to sensitize olfactory sensory 

neurons from the luminal surface of the olfactory epithelium.  It is difficult to speculate as to 
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why the results for the two fish were contrary and it may be helpful to test this procedure again 

on additional fish.  

Research using embryonic rat dorsal root ganglion (DRG) cells grown in culture shows 

that treating the cells with prostaglandin E2 (PGE2) increases the number of bradykinin-induced 

action potentials (Nicols and Cui, 1994).  It could be that PGF2α does not exert the same 

sensitizing effect on neurons as PGE2, but this has never been investigated.  Structurally, PGE2 

and PGF2α are very similar and they are both used in mammals to induce labor (Kelly et al., 

2009).  PGE2 has a range of effects on different cell types (reviewed by Meves, 2006), but PGE2 

was not used here because it is PGF2α that has the established effects on fish reproduction 

(Stacey et al., 2003; Munakata and Kobayashi, 2010).  Perhaps the olfactory epithelial perfusion 

method of treatment should be repeated with PGE2 to investigate whether this type of PG can 

exert a sensitizing effect on olfactory sensory neurons as with other types of neurons.  

Additionally, the studies performed on rat DRG sensory neurons measured responses of 

individual cells (Nicols and Cui, 1994; Cui and Nicols, 1995), while the EOG records field 

potential changes (from neuronal ensembles).  It is possible that not all cells in the olfactory 

epithelium respond to PGs with sensitization; PGs have the ability to act on G-protein coupled 

receptors or directly on ion channels (Meves, 2006).  Since PGs do not elicit EOG responses 

directly (it is not an odorant; Murphy et al., 2001), we can assume that OSNs do not contain G-

protein coupled receptors for PGs, making ion channels a more likely site of action for PGs in 

the olfactory epithelium, but even if PGs bind onto ion channels, you would expect to see a 

change in the EOG.  The sensitizing effect, if it exists, could be diluted by the fact that the EOG 

records responses from so many cells, and the PG may be affecting the activity only of 

pheromone receptors, and we tested an odour blend.  One OSN could be affected, while another 
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is not, and since the EOG records responses from thousands of cells, the net result would be no 

change.  This type of test would best be performed when recording from single, or at least, fewer 

cells and using fewer odours.  In fact, the modulatory effects of leptin and insulin (Savigner et 

al., 2009) and PGE2 (Nicols and Cui, 1994; Cui and Nicols, 1995) on OSNs were discovered by 

recording from single neurons, not ensembles as in the EOG recording.   

PGF2α is known to induce spawning behaviours in female fishes within 1 hr of injection, 

though in goldfish it can happen as quickly as 30 minutes (Stacey, 1976; Cole and Stacey, 1984; 

Villers et al., 1985).  Unfortunately, there is no evidence that injecting a female fish with PGF2α 

can increase the fish‘s olfactory epithelial response to male pheromones.  It is likely that the 

behavioural effects of PGF2α in goldfish are due to its actions in the brain; in fact, injecting 

PGF2α directly into the brain is more effective at inducing spawning behaviours than 

intramuscular or intraperitoneal injection, though these other routes of administration do work 

(Stacey and Peter, 1978).  Central effects of PGF2α have been seen in male goldfish as well.  

Waterborne exposure to PGF2α has a neurogenic effect in the male goldfish diencephalon, and it 

increases brain levels of gonadotropin releasing hormone and choline acetyltransferase, which 

are associated with the neuroendocrine and motor-behavioural changes seen during the 

reproductive phase (Chung-Davidson et al., 2008).  It is also possible that no one has had the 

opportunity of investigating the possibility of PGF2α having a sensitising effect on neurons in the 

periphery, particularly since most of the research on prostaglandins has focused on goldfish, and 

there has been virtually no interest in female goldfish responses to male odours (Stacey and 

Sorensen, 2002); this is simply given the nature of the goldfish mating system, as females release 

pheromones which are attractive and stimulatory to the males.  There is evidence that treatment 

via androgen implantation can increase the EOG response of male tinfoil barbs (Barbonymus 
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schwanenfeldii, Cardwell et al., 1995) and male redtail sharkminnow (Epalzeorhynchos bicolour, 

Belanger et al., 2010) to pheromones, but similar evidence in female fishes is lacking.  Should 

this experiment be repeated successfully, ours could be the first study to show an increased 

peripheral olfactory response in female fish following treatment with PGF2α. 

It would also be interesting to attempt recording EOGs following injection with PGF2α in 

the goldfish or a similar cyprinid, simply because we know that PGF2α works to increase 

spawning behaviours in these fishes.  We still do not know if PGF2α has this behavioural effect 

on the round goby, though initial trials indicate that injecting non-reproductive female round 

gobies with Lutalyse does increase the strength of their behavioural response to fractionated RM 

round goby conditioned-water (Kereliuk, personal communication).  A logical first step in this 

experiment is to establish the behavioural effect of PGF2α on the female round goby, and then to 

continue with the electrophysiology.  This can be done quite easily by following the 

methodology outlined by Cole and Stacey (1984), where female round gobies are injected with 

Lutalyse, placed with reproductive males, and then monitored for spawning behaviours, which 

have been characterised (Meunier et al., 2009).  The difficulty here is to ensure that the fish are 

fully acclimated to the lab and that the proper environmental conditions are met.  Though this 

proposed experiment would be quick to run, the set-up for it would probably involve several 

weeks of preparation to ensure that the conditions are right and that the fish are not under any 

stress. 

It appears that the possible effect of PGF2α on olfactory responses does not occur until 

after 30 minutes and may take even longer.  EOG recordings from the round goby can often be 

taken for several hours, but tend to degrade.  It may be necessary to inject the fish with Lutalyse 

prior to beginning EOG recordings, but given the natural variability fish-to-fish, it would be very 
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difficult to see an effect without each fish having its own pre-injection period to serve as a 

control.  It is probably best to continue with the methodology described here, but it may need to 

be replicated many times in order to get enough fish surviving long enough to complete the trial.  

Rapid – within minutes or hours, not days or weeks – steroid effects on the olfactory 

system have never been demonstrated in any species of fish (previous studies have used long-

term exposure of a week or more; Cardwell et al., 1995; Belanger et al., 2010), but rapid steroid 

effects of 11-ketotesosterone and estradiol and have been seen in the auditory system of gulf 

toadfish (Opsanus beta; Remage-Healey and Bass, 2006) and the plainfin midshipman fish 

(Porichthys notatus, Remage-Healey and Bass, 2004).  The potential to demonstrate something 

similar in the olfactory system is highly exciting, and such a study would be incredibly novel.  

In conclusion, though these pilot experiments failed to find a significant effect of PGF2α 

on female olfactory responses, there is an opportunity for continued investigation in this area, as 

the results were promising.  The experiments described here – perfusion or injection with PGF2α 

– present themselves as an interesting direction of future research of a highly novel and exciting 

nature. 
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Chapter 7: 

Preliminary investigation of primer pheromone effects of reproductive male round gobies 

on female round gobies 
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7.1 Introduction 

It has long been known that fishes employ hormonal products released into the water as 

pheromones.  Recently, Stacey and Sorensen (2006) defined pheromones as ―a substance, or 

mixture of substances, released by an individual, which evokes a specific and adaptive response 

in conspecifics, the expression of which does not require learning‖.  Moreover, reproductive 

pheromones can be further divided into two types based on their actions: releasers and primers.  

Primer pheromones do not evoke behavioural responses, but instead induces changes in the 

endocrine system, while releaser pheromones elicit rapid behavioural effects (Wilson and 

Bossert, 1963). 

For example, directly preceding ovulation, the female goldfish (Carassius auratus) 

releases a primer pheromone (referred to as ―pre-ovulatory‖) consisting of 17α,20β-dihydroxy-4-

pregnen-3-one (17α,20β-P), 17α,20β-P-20β-sulfate (17α,20β-P-s) and androstenedione (AD).  

When male goldfish are exposed to this pre-ovlulatory primer mixture released by the females, 

the males respond by increasing  levels of serum gonadotropin (which stimulates the gonad to 

synthsize steroids), as well as milt volumes (Kobayashi et al., 1986; Stacey et al., 1989; Sorensen 

et al., 1995; Zheng and Stacey, 1997).  However, following ovulation, the female releases 

prostaglandin F2α (PGF2α) and its metabolite 15-keto-PGF2α (15K-PGF2α) into the water, where 

these comprise the post-ovulatory releaser pheromone, which stimulates spawning behaviours in 

the male (Sorensen et al., 1988). 

This pheromone system is very well-characterized in the goldfish, but pheromones in 

other fishes have not been well-investigated.  Primer pheromones in particular have received 

little attention.  There is evidence for primer pheromones in salmonids such as the rainbow trout, 

Oncorhynchus mykiss (Olsén and Liley, 1993), Kokanee salmon, Oncorhynchus nerka (Liley et 
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al., 1993), and Atalantic salmon, Salmo salar (Waring et al., 1996; Olsén et al., 2001).  

Additionally, primer pheromones have been investigated in one other species of cyprinid fish, 

Barilius bendelisis (Bhatt and Sajwan, 2001). Apart from these studies, the existence of primer 

pheromones has not been expressly investigated in other fish species, including any species of 

the order Perciformes.  A few studies have looked for releaser pheromones (e.g. Sorensen et al., 

2004), but there has been no published report of a compound with primer functions in a percid 

fish. 

The round goby (Neogobius melanostomus, order Perciformes, family Gobiidae) is an 

invasive species in the Laurentian Great Lakes system, where it has had negative impacts on 

native species and ecology (Charlebois et al., 2001).  Given that the round goby inhabits dark, 

turbid environments, it has been postulated that reproductive males (RMs), who establish nests 

and provide parental care, could employ reproductive pheromones to attract females into nests to 

deposit their eggs. Previously, we have found evidence for releaser pheromones at work in the 

round goby; for example, reproductive females (RF) have been found to be attracted to RM 

conditioned water (Bélanger et al., 2004; Gammon et al., 2005).  RMs that have been injected 

with salmon gonadotropin releasing hormone analogue (sGnRHa) release into the water several 

novel 5β-reduced androgens - 11-oxo-etiocholanolone (11-O-ETIO), 11-O-ETIO-17-sulfate (11-

O-ETIO-17-s), 11-O-ETIO-3-glucuronide (11-O-ETIO-3-g), 11-O-ETIO-3-sulfate (11-O-ETIO-

3-s), and 11-O-ETIO-17-glucuronide (11-O-ETIO-17-g) (Katare et al., 2011):   Female round 

gobies detect 11-O-ETIO and 11-O-ETIO-3-s, but not the other released steroids. The detected 

steroids are good candidates for releaser pheromones, but what of the undetected steroids?  RMs 

release them (sometimes in great quantities), and though they are not detected by the olfactory 

system, they might still function as primer pheromones.  The purpose of this experiment was to 
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create and test an experimental protocol for evaluating the possible primer effects of round goby 

male conditioned water (containing free and substituted 11-O-ETIO) on the female endocrine 

system.  As an endpoint, we tested testosterone released into the water by female round gobies 

following exposure to the conditioned water of RM gobies.  Testosterone has been shown to be 

increase prior to ovulation in at least one species of the order Perciformes, the flounder, 

Pseudopleuronectes americanus (Campbell et al., 1976).  Because this study was designed to be 

a rapid, initial investigation, we chose to measure testosterone because our lab was capable of 

measuring it using an established method for an enzyme linked immunosorbant assay. 

7.2 Methods and Materials 

7.2.1 Fish collection and housing 

 Male and female round gobies were angled from the Detroit River at Windsor, Ontario, 

Canada in July, 2008, during their breeding season.  Reproductive male (RM) round gobies 

exhibited prominent secondary sexual characteristics such as dark nuptial colouration and puffy 

cheeks (MacInnis and Corkum, 2000).  Non-reproductive males (NRM) and females (NRF) are 

not sexually dimorphic, and were differentiated based on the shape of their urogenital papillae.  

Males have a longer, pointed papilla, while females have a shorter papilla with the appearance of 

two lobes (Miller, 1984).  Males and females were housed separately at the University of 

Windsor animal care facilities, in flow through aquaria with dechlorinated municipal tap water at 

ambient temperature (20 – 24
o
C) on a 16 h light:8 h dark photoperiod.  Round gobies were fed 

daily with commercial flake food (Aquatic Eco-systems, Apopka, FL, USA).  All experiments 

performed were in accordance with the Canadian Council on Animal Care guidelines.  

7.2.2 Generation of male conditioned water 
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 Male conditioned water was prepared by combining two protocols previously described 

(Gammon et al., 2005; Katare et al., 2011).  We created three stimuli: RM conditioned water, 

NRM conditioned water, and dechlorinated water which had no fish odour.  For production of 

the RM conditioned water, two RM round gobies were removed from their tank, lightly 

anesthetized with 0.05% 2-phenoxyethanol (Sigma-Aldrich, Oakville, ON, Canada) and injected 

with 20 µg/kg of sGnRHa, Ova-RH, Syndel Laboratories, Qualicum Beach, BC, Canada) diluted 

in 0.9% saline, then placed individually in glass jars containing 1 l of dechlorinated water with 

an airstone and left for 4 hours (Gammon et al., 2005).  To create the NRM conditioned water, 

two NRM gobies were treated the same way, except that these were injected with 0.9% saline 

rather than sGnRHa.  After 4 hours the males were removed and the conditioned water was 

collected.  All of the injections were performed by undergraduate assistant Miss Zena Alyasha‘e.  

Odour stimuli presented to females were pooled from two males.  125 ml was collected from 

each jar; the two samples from RM gobies were mixed together to create 250 ml of RM 

conditioned water while the two samples from the NRMs were mixed together for 250 ml of 

NRM conditioned water.   

7.2.3 Exposure of females to male conditioned water 

 In order to test the possibility that males discharge pheromones with primer effects on the 

female round gobies, we exposed NRFs to the conditioned water generated by RMs injected with 

sGnRHa and NRMs injected with saline and tested for changes in the levels of testosterone in the 

females.  The conditioned water treatment protocol was based on that of Bhatt and Sajwan 

(2001), and Sorensen et al. (2005), and was developed with the help of Dr. Alexander Scott 

(CEFAS UK).  For exposing the female to male conditioned water, NRF gobies were placed 

individually in plastic buckets containing 1 l of dechlorinated water and an airstone.  Females 
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were left for 1 hour to acclimate.  Following acclimation, females were removed and placed into 

fresh buckets containing 950 ml of dechlorinated water mixed with 50 ml of one of the 

conditioned water treatments (RM or NRM conditioned water).  The amount of conditioned 

water used was above levels that have previously been shown to induce behavioural responses in 

round gobies (Gammon et al., 2005; Belanger et al., 2006).  For example, Gammon et al., (2005) 

observed behavioural responses from females exposed to 500 ml of water added to their 20 l 

tank.  Here we exposed females in only 1 l of water to 250 ml of stimulus.  Once the females had 

been moved into the conditioned water treatment, the water that held them during acclimation 

(pre-exposure female holding water) was collected for steroid analysis.  The females were 

immersed in the male conditioned water for 3 hours, then they were removed to buckets 

containing fresh dechlorinated water for a final 2 hours, and this water was collected for analysis 

of post-exposure steroid levels (post-exposure female holding water).  Only the water that held 

the females for the final 2 hours was collected, so that steroids in the male conditioned water 

would not interfere with the measurement of steroids released by the females.  The entire 

experiment - the collection of the male conditioned water, the immersion of females in this 

water, and collection of the female conditioned water – was conducted on the same day.   The 

males were injected in the morning, the male conditioned water was collected in the afternoon 

and the acclimated females immediately immersed into this male conditioned water.  Every day, 

at least one female round goby was exposed to each of the three experimental stimuli.  The 

experiment was replicated five times so that in total, 10 males were injected with sGnRHa or 

saline to collect cues (two males injected each time and waters pooled) which were tested on a 

total of five females each. 
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7.2.4 Water preparation and steroid analysis 

 Female holding water was collected before and after exposure to male conditioned water 

to measure the release of testosterone (T).  Water preparation followed the procedure of Katare, 

et al., (2010), and these ELISA analyses were performed by Dr. Yogesh Katare.  Steroids were 

extracted from water by running them through activated Seppak C18 cartridges (Waters, Milford, 

MA, USA), which were washed with 5 ml of distilled water before the steroids were eluted with 

5 ml of methanol.  Testosterone in the methanol extracts of female holding water was measured 

using enzyme-linked immunosorbant assay (ELISA) using a similar procedure to Katare et al. 

(2010).  A solution of testosterone-BSA conjugate was used to coat Pierce amine-binding maleic 

anhydride activated plates (Thermo Scientific Inc.), following by incubation with primary 

antibody (provided by Dr. Alexander Scott), then secondary antibody.   

7.2.5 Data analysis 

 NRF round goby release rates of T before exposure to male conditioned water were 

compared to T release rates after exposure to the male conditioned water using paired Students t 

tests.  Data were analysed using GraphPad Prism 5. 

7.3 Results 

NRF round gobies were exposed to one of two treatments: conditioned water from RMs 

injected with sGnRHa, conditioned water from NRMs injected with saline.  None of these 

treatments had any effect on female T release (Fig 7.1). The raw data for T release rates are 

shown in Table 7.1. 
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Fig 7.1:  Release rate of testosterone (T) measured in female holding water, before and after 

exposure to male conditioned water.  RM = water from reproductive males injected with GnRH.  

NRM = water from non-reproductive males injected with saline.  Neither stimulus led to an 

increase in the release rate of T as measured in holding water. 

 

Table 7.1: Pre- and post-exposure testosterone (T) release rates for individual females.   

 

Stimulus 
type 

 T release rate (ng/l/hr)  

Female # Pre-exposure Post-exposure Change 

RM 

1 0.322055 1.33 1.01 

2 0.852774 0.539641 -0.31 

3 0.499536 0.541894 0.04 

4 1.030195 0.366763 -0.66 

5 0.566939 0.531054 -0.04 

NRM 

6 0.278993 0.177075 -0.10 

7 0.25075 0.305816 0.06 

8 1.039183 0.339101 -0.70 

9 1.392678 1.644765 0.25 

10 1.982625 2.653852 0.67 

 

 

 



117 
 

7.4 Discussion 

We were unable, at this time, to find any primer effect of male water on female round 

gobies.  There are several issues to consider. 

Following exposure to male conditioned water, we measured levels of T being released 

by females.  Female fish are known to synthesize T, which may increase (as in the flounder, 

Pseudopleuronectes americanus, order Pleuronectiformes, Campbell et al., 1976) or decrease (as 

in the sea bream, Pagrus major,order Perciformes, Matsuyama et al., 1988) prior to ovulation 

and spawning.  Thus, the role of T in female maturation is at least somewhat dependent upon 

species, and having performed no studies to characterize the endocrine system or production of 

steroids in the round goby, we have no idea whether T might be low or high prior to ovulation.  

In addition, there is no evidence that T levels may change in a female fish following exposure to 

a male fish.  Experiments looking at primer effects typically measure gonadotropin levels (e.g. 

Stacey et al., 1988).  In females, it would be best to consider changes in a maturation-inducing 

hormone such as 17α,20β-P, or better yet, 4-pregnen-17,20β,21-triol-3-one (20β-S), which 

appears to be the maturation-inducing hormone used by perciformes (Thomas, 1994; King et al., 

1997; Pãtino et al., 2001; Sorensen et al., 2005).  We measured T due to technical constraints at 

the time, but T is obviously not an appropriate indicator of male primer effects on females in the 

round goby.     

The next thing to consider is the fact that we chose to measure T levels in water and not 

in the blood.  We use this method mainly for technical reasons: it is very difficult to blood 

sample the round goby, particularly small, non-reproductive females.  Fish this size often simply 

do not yield enough blood to analyze for steroids and typically the blood sampling is fatal and 

samples from more than one fish have to be pooled for analysis.  Generally, measuring steroids 
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in water is an acceptable proxy for measuring steroid levels in plasma, and where it has been 

studied, steroid release rates have a positive relationship with steroid levels in plasma (reviewed 

by Scott and Ellis, 2007; Scott et al., 2008).  Therefore, we can propose that the levels of T 

measured here are related to the levels of T circulating in NRF round gobies, but there was no 

increase following exposure to male conditioned water. 

In order to assure that the RMs were releasing the steroids which are putative 

pheromones, we injected these with sGnRHa, which has been shown to increase their release rate 

of free and substituted forms of 11-O-ETIO (Katare et al., 2011).  Therefore, we can assume that 

the RMs were releasing these steroids.  It might be that the four hours post injection was not long 

enough to allow for the release to reach a peak rate, or that it was not enough time to allow for 

sufficient amounts of steroids to collect in the conditioned water.  When RMs were previously 

injected with GnRH, 16 hours were allowed to elapse before water collection (Katare et al., 

2011).  However, following injection with human chorionic gonadotropin, goldfish experience 

an increase in androstenedione release after only 2 hours (Sorensen et al., 2005) so at least in this 

case, only 2 hours is sufficient for steroid release.  It is also possible that for some reason one – 

or neither – of the males might not have reacted to the GnRH injection, though the cases of 

males not reacting to the GnRH injection were rare (Katare, unpublished data).  If the experiment 

is to be repeated, it might be best to use methanol extracted steroids that have already been 

analysed for 11-O-ETIO immunoreactivity using ELISA.  That way, we can expose females to 

extracts with known levels of 11-O-ETIO.  We could have exposed the females to synthetic 11-

O-ETIO, but we wanted to make sure we had the best chance to see an effect, so we decided to 

start by using the water conditioned by the RMs.  Ideally, it would be best to start with whole 

water and if an effect is seen, exposures to individual compounds could follow in order to 
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determine the exact steroids responsible for any primer effects.  Ideally, exposure to one key 

pheromone could stimulate the same response as exposure to RM conditioned water, which 

serves as a substitute for exposure to the RM himself.  For example, male goldfish exposed to 

PGF2α treated females (to simulate spawning conditions) release adrostenedione at rates similar 

to males exposed to just 17α,20β-P (the pre-ovulatory primer pheromone; Sorensen et al., 2005). 

In conclusion, though this experiment did not yield any positive results, it was still 

important for several reasons.  We have now established that we can use ELISA to measure 

released T by females using plates and reagents that we already have in our lab.  Should we need 

to measure release rates of T in the future, we have already used this protocol successfully.  Also, 

we could have been measuring the wrong steroid.  For future experiments, the investigator 

should consider anlyzing the release of different steroids: 17α,20β-P (which we have previously 

measured in our lab using ELISA, Katare et al., 2011) or 20β-S, which is a maturation-inducing 

steroid in other teleosts (Thomas, 1994; King et al., 1997; Pãtino et al., 2001; Sorensen et al., 

2005), and may be a maturation-inducing steroid in the round goby.  Further investigation would 

help not only to elucidate the possible biological role of 11-O-ETIO release by RM round gobies, 

but would also provide us with more information about the reproductive and endocrine systems 

in this very interesting species. 
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Chapter 8: 

Concluding Remarks 
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Not enough is known about olfactory biology of fish species other than those which have 

historically been used as ―model‖ species: goldfish (Carassius auratus), zebrafish (Danio rerio) 

and channel catfish (Ictalurus punctatus).  The work described in this thesis adds to an extensive 

body of work relating to olfaction in fishes, and identifies and helps to fill gaps in the literature 

as far as studies on wild fish species and studies using fishes of more diverse taxonomic groups.  

This thesis has described several studies on the basic olfactory biology of two highly relevant 

species of fishes. The sea lamprey (Petromyzon marinus) and the round goby (Neogobius 

melanostomus) are both invasive species within the Great Lakes.  In addition, they occupy vastly 

different phylogenetic positions; the sea lamprey is an ancient jawless vertebrate of the 

superclass Agnatha, while the round goby is a member of the diverged fish order Perciformes.  

Some of the data here, therefore, can be presented in an evolutionary context.  Olfactory sensory 

neurons (OSNs) in fishes display polymorphisms, even in the sea lamprey which has only 

ciliated OSNs.  These three distinct neuronal shapes are seen in fishes as ancestral as the sea 

lamprey and as diverged as the round goby. The fact that we have seen these polymorphisms in 

the sea lamprey has highlighted the possibility that OSN polymorphisms could be an 

evolutionarily conserved feature of the piscine olfactory system.  Possibly these polymorphisms 

respond to separate odors, as seen in teleost fish. 

The studies described in this thesis also investigate the olfactory properties of the round 

goby.  Fig 8.1 shows the results of the studies contained in this thesis, using the same flowchart 

format in Fig 1.3, which outlined the flow of ideas and experiments stemming from Katare et al. 

(2010).  Little olfactory research has focussed on fishes other than the goldfish or the zebrafish, 

which are both order Cypriniformes, and even fewer studies have used fishes of the order 

Perciformes, the most speciose fish order.  The implication of which is that we don‘t really know 
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all differences that may exist in the olfactory system between Cypriniform and Perciform fishes.  

Previous data, as well as data shown in this thesis, demonstrate that Perciform fishes employ 

different pheromones than Cyprinids, they use different second messengers to transduce these 

pheromones, olfactory sensitivities to prostaglandins are different and they may use different 

prostaglandins than Cyprinid fishes.  Studies in this thesis use the round goby to investigate core 

features of fish olfactory biology including receptor specificity and second messengers, which 

until now have only been described in a few species.   

 

Fig 8.1: Flow chart outlining the results of round goby studies in this thesis, relating to the ideas 

shown in Fig 1.2.  Part 1 is the paper published by Katare et al. (2010) identifying released 

steroids that are putative pheromones. RM = reproductive male; NRM = non-reproductive male; 

sGnRHa = salmon gonadotropin releasing hormone analogue.   

 

We had previously shown that injecting reproductive males with salmon gonadotropin 

releasing hormone analogue (sGnRHa) increases their release rate of putative steroidal 

pheromones.  In conjunction with that, I tested female responses to methanol extracts collected 
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before and after males were treated with sGnRHa and found that there was an increased female 

response to the post-injection extract.  This is very interesting because it demonstrates how the 

cue released by the male can change with his reproductive status.  This increase in steroids may 

account for the increased attraction of reproductive female to reproductive male odours and this 

study is one of the first studies to experimentally demonstrate an increased olfactory response 

that is associated with a change in endocrine status that has been experimentally induced. 

Chapters 4 and 5 describe the olfactory properties of several novel steroids which are 

released by reproductive male round gobies.  Of these, we have identified two (11-O-ETIO and 

11-O-ETIO-3-s) which present themselves as putative releaser pheromones based on their 

potencies, species specificity, receptor specificity and second messengers.  We have also 

eliminated released steroids that – while they may have other biological functions – do not 

appear to serve as attractive releaser pheromones (e.g. 11-O-ETIO-17-s and others).  

Experiments in this thesis, as well as current publications from our lab, describe a pheromone 

system for a Perciform fish; one of only a handful of studies investigating pheromones in this 

diverse order.  Our work, as well as that of others, shows that pheromone systems in the 

Perciforms have diverged from those of the Cypriniforms.  Many fishes of the Cypriniformes 

appear to share the same pheromonal compounds (i.e. those discovered in the goldfish), while in 

at least two species of Perciforms studied (the round goby and the Mozambique tilapia, 

Oreochromis mossambicus), putative pheromonal steroids are different from the identified 

goldfish pheromones.    

We have also shown that these putative pheromones act upon separate and specific 

olfactory receptor mechanisms, indicating that the fish is able to discriminate between these 

compounds.  This indicates these two steroids (11-O-ETIO and 11-O-ETIO-3-s) could be 
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different pheromones (as opposed to being two components making up one pheromone mixture 

that requires both elements for a response) eliciting different behavioural responses in the 

female. 

Our study on second messengers in olfactory signal transduction highly similarities and 

differences in the round goby olfactory system compared to other fishes.  For example, the 

transduction of bile acids via cAMP only appears to be a conserved mechanism in fishes, with 

only one exception (the Atlantic salmon, Salmo salar).  Ours is only the second study to show 

signal transduction mechanisms for steroids (and putative pheromones) and we found that 

steroids use both second messengers whether they are putative pheromones or general steroids.  

Ours is the first study to investigate these types of key olfactory mechanisms in a Perciform fish 

or wild-caught fish. 

Our investigation of female olfactory responses to male urine yielded unexpected 

findings, with non-reproductive male urine inducing larger olfactory responses than the 

reproductive male urine, but it alerted us to the fact that there may be something in the urine of 

non-reproductive males that we have not yet identified, that accounts for its olfactory potency.   

This study showed that using male urine as an odour source may not be the best choice for EOG 

or behavioural studies, as it elicited unpredictable responses from the non-reproductive females 

and we cannot account for all of the components of the urine. 

In addition to these studies on the olfactory properties of OSNs and released steroids, I 

have performed pilot experiments involving other aspects of round goby olfactory biology.  

Chapter 6 is an initial investigation into the possibility of modulating olfactory responses via 

prostaglandins.  There have been no similar studies described in any other female fish species, 

and if this experiment is successfully completed, it would be extremely novel. 
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We have developed a protocol for evaluating the possible male primer pheromone effects 

on female round gobies.  This protocol is described in chapter 7.  Although we saw no effect, we 

have established, at least, that we can measure testosterone in the water, and the protocol is 

easily adapted to the measurement of other steroids.  Even the measurement of testosterone is 

interesting, as we currently have no idea about natural steroid levels in the female round goby.  

The ELISA assay is straightforward to perform and the exposure protocol is simple; thus, this 

experiment presents itself as an easy and quick project, suitable for an undergraduate.  The 

ability to identify primer pheromones in the round goby may assist us in further study, if we can 

help induce the females to produce eggs and reach reproductive status by exposing them to male 

odours. 

Overall, this thesis has made significant contributions to the field of olfactory biology by 

investigating olfactory sensory neurons in two diverse species of fishes occupying diverse 

phylogenetic positioning.  Our studies of the round goby highlight differences between a wild 

species and the previously studied fish species that have been bred in the lab over many 

generations.  Very few studies have looked at pheromones other than established goldfish 

pheromones in any species of fish, and ours is one of only two (to my knowledge) that have 

identified novel substances that are putative pheromones in a fish species.  Our work is also of 

note due to the round goby‘s status as an invasive species in the Great Lakes.  The eventual 

establishment of a pheromone trapping biocontrol method could prove highly advantageous and 

beneficial to the future health and ecology of the lakes.  Additionally, a better understanding of 

the reproductive endocrinology of this species would make future lab studies more productive.  

In conclusion, it is our belief that the work presented here has made a significant and unique 

contribution to the fields of olfactory biology and chemical ecology.  
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Appendix A 

List of Reagents 

 
ITEM SUPPLIER CATALOGUE # BATCH/LOT # 

Steroids 

11-O-ETIO Steraloids  A3460-000 Multiple 

11-O-ETIO-3-s Steraloids A3500-000 Multiple 

11-O-ETIO-17-s Steraloids A3232-000 Multiple 

11-O-ETIO-3-g Steraloids A3232-000 B0791 

ETIO Steraloids A3610-000 Multiple 

Estrone Steraloids E2300-000 B0294 

Cortisol Steraloids Q3880-000 Unknown 

Cortisone Steraloids Q2500-000 Unknown 

17α,20β-P Sigma-Aldrich P6285 Unknown 

 

Pharmacological Agents 

Diltiazem  Calbiochem 309866 D00046189 

Forskolin Calbiochem 

Sigma-Aldrich 

Tocris 

344270 

F6886 

1099 

D00069272 

126K5063 

3A/99397 

SQ, 22 536 Calbiochem 

Enzo Life Sciences 

Sigma-Aldrich 

568500 

BML-CN140 

S153 

D00066942 

3-W5184k 

116K4072 

U73122 Calbiochem 

Enzo Life Sciences 

Sigma-Aldrich 

662035 

BML-ST391 

U6756 

D00051672 & 84502 

3-W5104g 

027K46141 

 

Miscellaneous  

L-alanine Sigma-Aldrich S4500 117K0835 

Taurocholic Acid Sigma-Aldrich T4009 087K0745 

Lutalyse Vet purchasing co ltd Unknown Unknown 
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Appendix B 

Raw data 

Responses to 3α,17β-dihydroxy-5β-androstan-11-one (1D) 

 

FISH ID 10
-5

 M Ala MOLAR CONCENTRATION 

  -8 -9 -10 -11 -12 

F06-08-09 1.38 0.52 0.48    

  0.27 0.00    

  0.60 0.00    

F08-11-09 2.20 0.75 1.25 0.67 0.84 0.00 

  1.82 0.96 0.63 0.00 0.00 

  1.80 1.16 0.54 0.00 0.00 

F08-12-09 2.96 0.00 1.10 0.00 0.00  

  0.00 1.21 0.00 0.00  

  0.00 0.68 0.00   

F08-14-09 1.12 0.00 0.00 0.00 0.00 0.00 

  0.00 0.00 0.00   

  0.00 0.00 0.00   

F08-14-09 2.32 0.00 0.00 0.00   

  0.00 0.00 0.00   

  0.00 0.00 0.00   

 

Methanol extracted isolates used for analysis 

 

Extract Codes Female tested on  (EOG) 

sGnRHa Treated 

Both pre-and post-treatment 

 

16/7/2007 G1 

16/7/2007 G2 

16/7/2007 G3 

18/7/2007 G1 

18/7/2007 G3 

23/5/2007 G2 

G068, G072, G073 

G072, G073, G077 

G068, G073, G077 

G084 

G089 

G087 

Saline Treated 

Both pre-and post-treatment 

 

16/7/2007 S 

18/7/2007 S 

23/7/2007 S 

G068, G072, G073, G077, 

G084, G089 

G087 
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Appendix C 

Mass spectra of steroid odours 

Mass spectra for 11-O-ETIO-3-g steroid stocks used for EOG testing.   

Expected peak is 383, but the mass spectra for two different steroid stock solutions run show no 

peak at 383, but large peaks at 192, 288 and a smaller peak at 316, indicating that there is some 

contamination and that the compound my have broken down.  

 

Stock #1 
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Appendix C 

Mass spectra of steroid odours 

Mass spectra for 11-O-ETIO-3-g steroid stocks used for EOG testing.   

Expected peak is 383, but the mass spectra for two different steroid stock solutions run show no 

peak at 383, but large peaks at 192, 288 and a smaller peak at 316, indicating that there is some 

contamination and that the compound my have broken down.  

 

Stock #2 
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Appendix C 

Mass spectra of steroid odours 

Mass spectra for 11-O-ETIO-3-s steroid stock used for EOG testing.   

The expected peak for 11-O-ETIO-3-s is at 383 as shown here.  Run as positive control during 

MS run for 11-O-ETIO-3-g. 
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Appendix D 

Amount of immunoreactive substituted 11-O-ETIO as measured by ELISA in the urine 

samples tested for EOG responses. 

The starting volume of urine used for EOG testing was standardized so that the volume used 

represents 1/10
th

 of the total volume of urine collected after 4 hours.  The amount of substituted 

11-O-ETIO is the amount (in ng) contained in the pure urine before dilution for EOG testing.  

The estimated [substituted 11-O-ETIO] in the 100x dilution tested on females by EOG is the 

estimated molarity of substituted 11-O-ETIO in the 100x dilution; this estimation was based on 

the molecular weight of the most abundant conjugate in the urine, 11-O-ETIO-17-s, which is 385 

kDa.   

 

 

Urine 

code 

Total 

urine 

vol (µl)  

Amt 

substituted         

11-O-ETIO in 

the EOG 

volume (ng) 

Est. substituted 

11-O-ETIO in the 

100x dilution 

tested by EOG    

(X 10
-10

 M) 

Avg EOG 

response 

(mV) 

Female 

GSI (%) 

Female 

code (EOG) 

RM 

18 8.8 0.53265194 1.57 0.91 1.37 AL2008-09 

38 73.8 25.35975378 8.89 
2.11 
0.40 

6.48 
4.02 

AL2008-05 
AL2008-06 

58 8.8 0.38906622 1.15 1.71 5.51 AL2008-07 

165 29 0.93945993 0.841 
1.00 
1.35 

0.57 
0.79 

AL2008-17 
AL2008-20 

NRM 

107 39.8 0.24140638 0.157 
4.93 
1.01 

6.48 
4.02 

AL2008-05 
AL2008-06 

114 23.3 0.1048706 0.117 3.17 5.51 AL2008-07 

115 16.3 0.01419166 0.0226 0.48 1.37 AL2008-09 

133 27.9 0.06933814 0.0646 
0.30 
0.47 

0.57 
0.79 

AL2008-17 
AL2008-20 
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Appendix E 

Written permission from co-authors to include content which is the result of collaborations 

in this thesis 
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