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Abstract

Nuclei are termed unreceptive if they are not amenable to solid-state NMR (SSNMR)

experimentation at standard magnetic field strengths due to (i) low natural abundances or

dilution; (ii) low gyromagnetic ratios; (iii) inefficient longitudinal relaxation; (iv) large

quadrupole moments; or (v) combinations of these factors.  This thesis focuses on applying

a variety of SSNMR methods to study unreceptive nuclei in a variety of systems.

The first portion of this thesis focuses upon ultra-wideline (UW) SSNMR of three

main group nuclei: 209Bi, 137Ba and 115In.  209Bi and 137Ba SSNMR were applied to a series of

systems with important structural motifs, while 115In SSNMR was applied to systems with

In in the +1 oxidation state.  Extremely broad SSNMR spectra were acquired at field

strengths of 9.4 and 21.1 T using frequency-stepped techniques.  In all cases, the electric field

gradient (EFG) and the chemical shift (CS) tensor parameters obtained from these spectra

are used to probe the metal coordination environments.  These data are complemented by

first principles calculations of the NMR tensors using molecular orbital (MO) and plane

wave density functional theory (DFT) methods.

The second portion of this thesis examines applications of SSNMR of unreceptive

nuclei to some practical problems.  First, 109Ag and 15N SSNMR experiments were performed

to study silver supramolecular frameworks, and structural changes which occur upon their

reactions with primary amines.  1H-109Ag cross polarization/magic-angle spinning (CP/MAS)

NMR spectra were used to differentiate Ag sites, and 1H-15N CP/MAS NMR spectra

provided measurements of 1J(109Ag, 15N) coupling constants, which are used to probe

bonding Ag-N bonding.  First principles calculations of silver and nitrogen CS tensors and
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1J(109Ag, 15N) constants aided in formulating the structural models for the new materials.

Second,  35Cl SSNMR spectra, single-crystal and powder X-ray diffraction data, and

ab initio calculations were utilized to study HCl pharmaceuticals and some of their

polymorphs. The sensitivity of the 35Cl EFG tensor parameters to subtle changes in the

chlorine environments is reflected in the powder patterns, which can be used for structural

interpretation, identifying and distinguishing polymorphs, and rapidly providing a spectral

fingerprint of each pure pharmaceutical and its polymorphs.
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Chapter 1 

Introduction

Over the last few decades, solid-state nuclear magnetic resonance (SSNMR) has

emerged as a very important technique in the characterization of a variety of materials

including, but not limited to, polymers,1 organic molecules,2-4 inorganic coordination

compounds,3,5,6 organometallics,7 pharmaceuticals8,9 and biological systems,10-14 etc. 

SSNMR is often used independently for characterization of systems such as glasses and

other amorphous solids,5 or as a complementary technique to single crystal and/or powder

X-ray diffraction (XRD).  It is also an excellent companion technique to solution NMR,

especially for cases where certain synthetic products are insoluble, or assume different

solution and solid state structures.  

In solution, fast molecular tumbling generally leads to the observation of

inherently narrow NMR lineshapes.  However, in solids, this isotropic molecular motion

is absent, causing the NMR lineshapes to be orders of magnitude broader due to the

contributions from different anisotropic NMR interactions.  Despite the reduction in

resolution and signal-to-noise ratio (S/N) in SSNMR spectra, these broad NMR patterns

carry a wealth of information about structural and dynamic properties of the sample

which cannot be obtained from solution NMR.  However, acquisition of SSNMR spectra

can be very challenging, and requires specialized hardware and pulse sequences.

SSNMR spectroscopy continues to undergo rapid technological and

methodological developments, and novel approaches for efficient spectral acquisition
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continue to appear in the literature.  For instance, the availability of ultra-high magnetic

field spectrometers and the sensitivity15-17 enhancement techniques enable the acquisition

of extremely broad NMR patterns, and have expanded the ability of SSNMR to meet the

unique challenges in characterizing a broad array of new solid state materials.  Wideline

NMR spectroscopy is a terminology that has traditionally been used to refer to the

acquisition of wide spectra with powder patterns of breadths ranging from tens of kHz up

to ca. 300 kHz.18-20  Many of these wideline SSNMR experiments have focussed on

studying molecular-level dynamics using nuclei such as 1H, 2H, 13C and 31P.18,21-39  Over

the last few decades, wideline NMR has extended to include the acquisition of very broad

NMR spectra with breadths larger than 300 kHz.  Such patterns cannot be acquired in

their entirety in a single experiment, and therefore, require special techniques and/or

hardware.  We designate such spectra as ultra-wideline (UW) NMR spectra, in order to

differentiate them from conventional wideline spectra.40,41  Acquisition of UW NMR

patterns is very challenging due to (i) limitations of the spectral excitation bandwidth

which can be attainable using standard 90Epulses, (ii) limitations on the probe detection

bandwidths and (iii) the inherently low S/N resulting from the spread of the signal over

wide frequency ranges.  Efficient acquisition of UW NMR patterns becomes even more

difficult for nuclei with low gyromagnetic ratios (γ) and/or low natural abundances, often

requiring specialized hardware and/or ultra-high magnetic fields.

Aside from the use of high-power rectangular pulses, a number of techniques have

been developed to acquire wideline and UW NMR patterns, including the variable-

frequency pulse (or stepped-frequency) technique, point-by-point techniques (including
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frequency-stepped and field-stepped), the piecewise technique (or variable-offset

cumulative spectra, VOCS) and adiabatic pulse techniques (vide infra).  We use the four

designations in italics above to avoid confusion among some of the techniques which are

similarly or redundantly named in the older literature.  

The variable-frequency pulse technique uses a train of low-power fixed-frequency

selective rf pulses.42,43  After the pulse is applied, a single data point is acquired, and the

transmitter frequency is changed.  The entire pattern is collected using a train of low

power pulses without waiting for the spin magnetization to go back to equilibrium after

each pulse.  There is a reduction in S/N in spectra acquired using this method compared

to conventional high-power spin echo techniques, due to the low B1 fields that are

applied.  This method has only been applied to acquire wideline NMR spectra (i.e., like

2H NMR spectra) up to ca. 300 kHz in breadth.

The point-by-point method involves stepping the transmitter frequency in even

increments across the desired spectral region at a fixed magnetic field, acquiring a spin

echo at each frequency utilizing high-power pulses, and plotting the intensity of the spin

echoes as a function of transmitter frequency to form the overall pattern (this is known as

a frequency-stepped acquisition).44,45  Alternatively, if the proper hardware is available,

one may fix the transmitter frequency and step the magnetic field strength (i.e., field-

stepped acquisition) in even increments to achieve the same effect (though this is less

common in practice).46,47  The field-stepped method has found more attention than the

variable-frequency pulse techniques and has been applied to study a number of nuclei (i.e,

27Al, 63/65Cu, 119Sn, etc) in different systems.45,48-51  The frequency-stepped technique has
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been used much more widely, since such experiments can be conducted on standard

NMR spectrometers.52-70  However, as in the case of variable-frequency pulse technique,

the point-by-point acquisition process (frequency- or field-stepped) can make UW NMR

experiment times impractically long, rendering acquisition of such spectra inefficient and

costly.  For example, Bastow reported a 137Ba frequency-stepped NMR spectrum of

BaCO3 which took more than 21 days to acquire.44

 In 1995, Massiot et al. introduced the piecewise acquisition (VOCS) technique71

which, at first sight, appears to be similar to the frequency-stepped point-by-point

technique, in that the transmitter frequency is stepped in even increments, and FIDs are

acquired at each point.  The major difference is that the FIDs are Fourier transformed to

produce sub-spectra, which are subsequently coadded71,72 or skyline projected73 to form

the full UW NMR pattern.  This technique has been proven to be the most efficient for

the acquisition of UW NMR spectra of a number of nuclei (i.e., 91Zr, 93Nb, 69/71Ga, 59Co,

139La, 209Bi, 79Br, 67Zn,14N, 53Cr,  etc.) in a variety of different systems.55,60,65-67,70,72,74-77  In

addition, the piecewise acquisition technique can be used in combination with a variety of

signal enhancing pulse sequences such as the quadrupolar Carr-Purcell-Meiboom-Gill

(QCPMG, see Chapter 2),57,60,65,67,78-88 and cross polarization (CP) pulse sequences,89-91 to

further reduce experimental times and obtain high S/N SSNMR spectra.

Recently, more sophisticated methods have been shown to have a great potential

for improving the efficiency of UW NMR spectroscopy.  One of these methods involves

the use of microcoils, which typically have an inner diameter smaller than 1.5 mm.40,92,93 

Microcoils are capable of generating large B1 rf fields from very modest power inputs; as
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such, the excitation bandwidths associated with microcoils are very large, and broad

spectral regions can be probed using conventional echo experiments.  The reduced sample

sizes, of course, lead to a reduction in sensitivity, but this is partially compensated for by

the extremely large, homogenous rf fields.  Further, microcoil experiments are very useful

when sample sizes are limited.

Another new methodology involves the use of WURST (Wideband Uniform Rate

Smooth Truncation) adiabatic pulses,94 which are able to achieve uniform excitation

bandwidths which are much larger than those achieved with standard rf pulses. 

Bhattacharyya and Frydman have demonstrated that WURST pulses can be utilized to

acquire UW NMR spectra of half-integer quadrupolar nuclei.  WURST-80 pulses can be

used in Hahn-echo or quadrupolar-echo type sequences to obtain undistorted, high S/N

central transition patterns, or to obtain frequency-encoded time domain patterns, which

when magnitude processed, resemble the Fourier transformed powder pattern.95  Our

group has extended this work by optimizing the power and sweep settings of the WURST

pulses, and implementing the WURST pulses in a QCPMG-like scheme.96  This

WURST-QCPMG pulse sequence is very beneficial for the acquisition of UW NMR

patterns,52,66,97,98 since the broadband excitation of adiabatic pulses is complemented by

the signal enhancement from QCPMG.  The development of these techniques plays a

significant role in expanding the applications of SSNMR spectroscopy to explore nuclei

with broad NMR lineshapes which once thought to be difficult to study by NMR.

The first part of this thesis deals with exploring the application of UW SSNMR to

a variety of unreceptive nuclei (i.e., 209Bi, 115In, 137Ba), which have received little attention



6

in the history of NMR.  Nuclei are designated as unreceptive if they are not amenable to

NMR experimentation at standard magnetic field strengths due to (i) low natural

abundances or nuclear dilution; (ii) low gyromagnetic ratios (γ); (iii) large longitudinal

relaxation time constants (T1); (iv) large anisotropic NMR interactions or (v)

combinations of these factors.

The second part of this thesis focusses upon SSNMR spectroscopy of unreceptive

nuclei such 109Ag, 15N and 35Cl.  While the powder patterns are not particularly broad for

these nuclei, they still present challenges for routine NMR experimentation due to their

low gyromagnetic ratios.  109Ag and 15N SSNMR are applied to the study of silver-

containing layered supramolecular frameworks and their interactions with primary amines

to form coordination complexes.  35Cl SSNMR is applied to examine a series of HCl

pharmaceuticals, and some of their solid polymorphs.  In order to understand the context

of this research, and to appreciate the challenges faced by a SSNMR spectroscopist when

acquiring NMR spectra of unreceptive nuclei, a brief discussion about NMR interactions

and methods of spectral acquisition is presented in Chapter 2.   

The results of the first systematic 209Bi SSNMR study reported in the literature are

discussed in Chapter 3.66  Extremely broad 209Bi SSNMR spectra were acquired and

analysed to obtain structural information about a variety of bismuth-containing systems.

This work had multiple aims: First, we demonstrated that the combination of

frequency-stepped NMR techniques, specialized pulse sequences and ultra-high magnetic

fields render 209Bi SSNMR spectroscopy a powerful method for structural

characterization.  Second, we established simple correlations between the molecular
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structure, symmetries of the bismuth coordination environments, and the 209Bi NMR

tensor parameters in periodic and molecular solids.  Finally, we demonstrated that the

combination of 209Bi SSNMR, 209Bi NQR experiments, first principles calculations and

X-ray crystallography is essential for this type of structural characterization, and that this

will provide future means for probing a variety of Bi materials.  

The application of 137Ba SSNMR to study a variety of barium-containing materials

is presented in Chapter 4.  137Ba UW SSNMR spectra of several barium-containing

systems were acquired at two different magnetic field strengths (9.4 and 21.1 T) using

frequency-stepped techniques.  It is demonstrated that the use of the WURST-QCPMG

pulse sequence96 is very beneficial for rapidly acquiring high S/N 137Ba SSNMR spectra. 

Analytical simulations of the 137Ba SSNMR spectra at both fields yield the quadrupolar

parameters, and in select cases, the barium chemical shift anisotropies (CSAs). 

Quadrupolar interactions dominate the 137Ba powder patterns, with quadrupolar coupling

constants, CQ(137Ba), ranging from 7.0 to 28.8 MHz.  The 137Ba electric field gradient

(EFG) parameters extracted from these spectra are correlated to the local environments at

the barium sites, via consideration of molecular symmetry and structure, and first

principles calculations of 137Ba EFG tensors performed using CASTEP software. 

Chapter 5 discusses the application of 115In SSNMR to study a variety of low-

oxidation state indium complexes.  Recently, interest in synthesising low oxidation state

complexes of main group elements has increased due to the potential use of such

complexes as new catalysts and materials precursors.99-103  Many of the low-valence

indium compounds are insoluble in most organic solvents, which limits their
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characterization by routine methods such as solution NMR and single crystal X-ray

diffraction; this renders SSNMR as the perfect technique for studying the structures and

dynamics of indium low-valence complexes.  In this chapter, we demonstrate the

usefulness of 115In NMR in characterizing a number of In(I) complexes, some of which do

not have known crystal structures.  115In static wideline and UW SSNMR spectra of

several In(I) complexes were acquired with moderate and ultra-high magnetic field

strength spectrometers (9.4 and 21.1 T, respectively).  115In magic angle spinning (MAS)

spectra were obtained with moderate and ultra-fast (> 60 kHz) spinning rates at 21.1 T. 

The 115In EFG and CS tensor parameters extracted from both the static and MAS spectra

are correlated to the electronic environments of the indium sites and provide key

information about the electronic environment and geometry around the indium.  In

addition, first principles calculations of 115In EFG and CS tensors were performed, in

order to investigate the relationships between the NMR tensors, their orientations, and

molecular structures. 

Multinuclear SSNMR spectroscopy, in combination with powder XRD

experiments and ab initio calculations, were utilized to probe the structures of the

materials formed after the reactions between primary amines and layered silver

supramolecular frameworks (Chapter 6).  The layered compounds are selective in their

reactions with amines, and may find future applications in separation technology. 

However, little was known about the intermolecular interactions involved in their specific

chemical selectivity.  109Ag, 15N  and 13C CP/MAS SSNMR experiments and first

principles calculations were very helpful in characterizing these materials and their
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interactions with amines.  Experimental NMR data are combined with theoretical

calculations in order to propose structural models for these materials.  This study

demonstrates the importance of combining complementary physical characterization

methods for obtaining a comprehensive understanding of the molecular structures

underlying new materials. 

The first application of 35Cl SSNMR experiments to study polymorphism in

hydrochloride (HCl) pharmaceuticals is discussed in Chapter 7.  35Cl NMR spectra are

presented for a series of HCl local anaesthetic (LA) pharmaceuticals and some of their

polymorphs.  The 35Cl NMR tensor parameters are extremely sensitive to the chlorine

anion environments, providing a fast count of the number of crystallographically distinct

chlorine sites, a probe of the hydrogen-bonding environments at the chlorine anions, and

a "fingerprint" spectrum for each polymorph. 35Cl NMR data acquired at both standard

(9.4 T) and ultra-high (21.1 T) magnetic field strengths were utilized for accurate

extraction of NMR parameters.  These data were supported by X-ray crystallography, 13C

SSNMR and ab initio modelling of the 35Cl  NMR tensors.  The methodology for

experimental acquisition and structural interpretation laid out in this work is of great

importance, providing a powerful means of screening for pharmaceutical polymorphs. 

Due to the success of this work and to the fact that HCl pharmaceuticals constitute more

than 50% of pharmaceutical salts and chlorine is present in ca. 25% of drugs, this

research was extended to include a variety of HCl pharmaceuticals (Chapter 8). 
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Chapter 2

Concepts and Techniques in Solid-State NMR 

2.1. Principles of NMR

Nuclei which possess a spin-angular momentum, as defined by the nuclear spin

number, I, are observable by NMR and are referred to as “NMR active nuclei”.  The

nuclear spin is an intrinsic property of the nucleus.  Three general rules are used to

determine whether the nucleus of a particular isotope is NMR active.  First if the atomic

mass and the number of neutrons are even, the nucleus has a nuclear spin of zero (I = 0)

and cannot be observed by NMR.  Second, if the atomic mass is even and the number of

neutrons is odd, the nucleus possesses an integer spin.  Lastly, the nucleus has a half

integer spin if the atomic mass is odd.1  The nuclear spin angular momentum, defined by

the vector I , gives rise to the nuclear magnetic dipole moment µ, which is aligned in the

direction of the spin axis:

where γ is the gyromagnetic ratio and £ is Planck's constant.  γ is related to the ratio of the

proton's charge and its mass and is expressed as: 

g is the nuclear g-factor and is unique for each isotope of each element.  The

gyromagnetic ratio is a very important quantity in NMR, since NMR spectroscopy
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ω0 ' !γB0 (2.3)

,̂NMR ' ,̂Z % ,̂rf % ,̂CS % ,̂D % ,̂J % ,̂Q (2.4)

depends on the precession of the nuclear spins in a magnetic field, B0, and the rate of this

precession, known as the Larmor frequency, ω0:

 where B0 is the external applied magnetic field.

2.2  NMR Interactions

NMR interactions are generally classified into two different types: internal and

external interactions.  The external interactions are those which depend on B0, and the

smaller oscillating field, B1, which is induced by an applied radiofrequency (rf) pulse and

solenoidal coil.  The internal interactions are those which arise from the magnetic and/or

electronic chemical environment of the nucleus, and include the chemical shielding,

direct spin-spin coupling, indirect spin-spin coupling and quadrupolar coupling.  Herein,

we focus on the interactions which are relevant to the work discussed in this thesis. 

Detailed discussions of these interactions are available from other sources.2-8

In terms of quantum mechanics, NMR interactions are described by the following

Hamiltonians:2,5,9,10

where  describe the Zeeman, radiofrequency, chemical,̂Z, ,̂rf, ,̂CS, ,̂D, ,̂J, ,̂Q

shielding, dipolar, J-coupling and quadrupolar interactions, respectively.
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,̂Z ' &£γB0IZ (2.5)

Em ' &mI£γB0  (2.6)

∆E ' γ£B0 ' £ω0 (2.7)

2.2.1.  External Interactions

2.2.1.1  Zeeman Interaction

The interaction of the nuclear spin with the applied external magnetic field, B0, is

known as the Zeeman interaction.  It is the basis of the NMR phenomenon, and is

represented in its Hamiltonian form as:9,11

where I Z is the projection of the nuclear spin angular momentum, I , along the z-axis,

which is the direction of B0.  When an active NMR nucleus with a nuclear spin quantum

number, I, is placed in an external magnetic field, the spin will precess about the

quantization axis, z (or B0), in one of the 2I + 1 possible orientations.  These orientations

or energy levels are described by different values of the nuclear spin magnetic quantum

number mI, where mI = I, I-1…, -I.   

For the spin-1/2 case, the spin precesses about the field, with one of the two energy

levels, mI = +1/2 (α-state), or mI = -1/2 (β-state) (Figure 2.1).  The difference in energy

between these levels (i.e., from α to β) depends on both B0 and γ.
9,6 

If ∆E increases as the result of increasing in B0 or γ, the population difference between

the energy levels increase. 
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∆E  = (£B0 = £ω0

B0 = 0

B0 … 0

)E = 0

mI = +1/2

mI = !1/2

Figure 2.1.  The splitting of the energy levels of a spin-1/2 nucleus in the presence of
a static applied magnetic field, B0.

At thermodynamic equilibrium, the non-degenerate energy states are not equally

populated, and the ratio of the population between adjacent energy levels is described by

the Maxwell-Boltzmann distribution as:6,12

where Nβ and Nα represent the populations of higher (β) and lower (α) energy levels

(when γ > 0), respectively, and k is the Boltzmann constant.  As a consequence of

longitudinal relaxation, at equilibrium,  there are slightly more spins in the α state than in

the β state, and as a consequence, there is a bulk magnetization, M 0, directed along the

direction of B0.
1  The difference between spin state populations is relatively small,

compared to other forms of spectroscopy, because of the small energy spacings between

the different levels.  As a result, NMR is an insensitive technique in terms of the
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,̂ rf ' &B1(t) cos[ωrft % φ(t)] j
i
γ

i
nI
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B1/2 B1/2

rotates at +Trf rotates at !Trf

x

y

Figure 2.2.  The two vector components of the
B1 field in the xy-plane. Adapted from Prof.
Schurko's NMR notes.
(http://mutuslab.cs.uwindsor.ca/schurko/nmrcou
rse/notes.html).

attainable signal-to-noise ratio (S/N).

2.2.1.2.  Radiofrequency Interaction

In NMR, a spin transition (i.e., the change of spin state from α to β or vise versa)

is induced by applying an rf field, B1, in the direction perpendicular to the static external

magnetic field, B0.  The rf Hamiltonian describes the interaction between the nuclear spin

and B1: 

where ωrf is the applied rf and φ is its phase.  The nuclear spins interact with B1 in a

similar fashion as they do with B0,

excepting that B0 is static and B1 oscillates

in time in the lab frame.  This oscillating

field, B1, can be visualized as vector with

two components rotating about B0 in

opposite directions (Figure 2.2 ).  The

effect of the B1 field can be easily

understood by transforming this system

into a rotating frame of reference which

rotates at the rf transmitter frequency, ωrf. 

In this rotating frame, the effect of the B0

field is depleted and the oscillating magnetic field, B1, appears stationary and has a
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θ ' τpγB1 ' ω1τp (2.10)

similar effect on the bulk magnetization as B0 does in the lab frame (i.e., the

magnetization precesses about B1 for an on-resonance pulse).  In the absence of an rf

pulse, the bulk magnetization, M 0, precesses along B0 at a ω0.  When an rf pulse is

applied along the x-axis of the rotating frame, the bulk magnetization, M 0, rotates

counterclockwise by an angle θ about the x-axis.  The angle θ is called the tip angle and it

is defined by:

where ω1 is called the nutation frequency.  If the applied pulse is on resonance

(i.e., ω0 = ωrf), then the bulk magnetization, M 0, appears stationary in the rotating frame

and B0 appears to be absent.  The only remaining field is B1, around which the

magnetization precesses.  In most NMR experiments, pulses are not applied on resonance. 

In such cases, the Larmor frequency is then reduced from ω0 to (ω0 !ωrf) and the field

along B0 does not vanish (as it is the case for an on resonance pulse).  Thus, in this case

there exist two fields, one along the z-axis with magnitude equal to B0(1 ! ωr/f/ω0)/γ and

the second of magnitude B1 along the x-axis.  The resultant effective field is the vectorial

sum of the two components and is denoted as Beff  (Figure 2.3) around which the nuclear

spin magnetization precesses.  In NMR, the allowed spin transitions are defined by the

selection rule ∆m = ±1.  After an rf pulse is applied, absorption of energy occurs causing

spin transitions between two different energy levels, and the populations of the two levels

become equal, this phenomenon is called saturation.  Once the pulse is turned off, the

magnetization returns to thermal equilibrium.  The system reaches the equilibrium state
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z

x
B1

B0(1 !!!!TTTTrf/TTTT0 )

Beff

Figure 2.3.  The magnetic fields present in the rotating frame.  In
the case of an on-resonance pulse (ω0  = ωrf), only B1 remains.

7

by releasing the acquired energy to the surroundings via a phenomenon called relaxation. 

There are two fundamental spin relaxation processes.  Longitudinal or spin-lattice

relaxation, whose time constant is denoted by T1, is the process by which the

magnetization returns back to the initial state of thermal equilibrium (along the z-axis),

and transverse or spin-spin relaxation, denoted by T2, is the magnetization dephasing or

loss of phase coherence in the xy-plane.  

2.2.2. Internal Interactions

2.2.2.1  Chemical Shielding Interaction

Chemical shielding is the interaction between the nuclear spins and the small local
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magnetic fields, Bind, which are generated by circulation of the surrounding electrons

induced by the static external magnetic field.  Chemical shielding is also referred to as

nuclear magnetic shielding or just nuclear shielding (NS).  We shall use the latter term to

differentiate its abbreviation from “chemical shift” (CS) which is discussed below.  These

local fields change the net magnetic field at the nucleus, leading to changes in its Larmor

frequency.  The degree of change of the precession frequency reflects the value of the

chemical shielding which depends on the total effective magnetic field, Beff, experienced

by the nucleus:

The magnitudes of these local magnetic fields depend on the strength of the external

applied magnetic field B0, but more importantly, upon the nature of the orbitals within the

atom or molecule.  The latter is what makes nuclear shielding a sensitive probe of subtle

changes in molecular structure.  The nuclear shielding Hamiltonian is expressed as10

where  is the nuclear shielding tensor, which is a 3 × 3 non-symmetric second-rankσ̈

tensor.  
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(2.14)

Here, we only consider the symmetric portion of the NS tensor, which contributes to

frequency shifts in NMR spectra to first order.  The anti-symmetric components

contribute only to relaxation processes, and are discussed elsewhere.13  This tensor can be

diagonalized by transforming it to its own principal axis system (PAS)

where σ11, σ22 and σ33 are the principal components of the NS tensor (Figure 2.4) and are

defined such σ11 # σ22 # σ33.  

Figure 2.4.  An ellipsoid portraying the three principal components of the NS tensor.

The trace of the NS tensor (i.e., the sum of the diagonal components), which is

non-zero, defines the isotropic nuclear shielding which is expressed by:9,11,14
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11 sin2θ cos2φ % σ

PAS
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PAS
33 cos2θ)) (2.16)

The nuclear shielding for a given orientation of the NS tensor in an external

magnetic field is described by the tip and azimuthal angles, θ and φ and it is expressed as:

where θ and φ are the polar angles defining the orientation of B0 in the PAS of the NS

tensor.  This equation indicates that the nuclear shielding depends on the orientation of

the NS tensor with respect to the magnetic field, and hence upon the orientation of the

molecules.  The orientation dependence of the symmetric part of the NS is referred to as

“anisotropy”or chemical shielding anisotropy (CSA).  In a microcrystalline sample, all

possible orientations of the crystallites, and hence the molecules, are present with respect

to B0, therefore all angles θ and φ are possible.  However, in solution, a small molecule

reorients through one radian at a rate on the order of 10!12 s-1.  Hence, if reorientation is

isotropic, over the course of a second, the NS tensor reorients with respect to B0 such that

all θ and φ are “visited”; hence, sharp peaks representing the average nuclear shielding

are observed, as opposed to a distribution of frequencies.  In contrast, in the solid state,

these different molecular orientations result in a distribution of local magnetic fields, and

thus, a range of NMR frequencies, yielding NMR powder patterns.3,11  The intensity of the

powder pattern at a given frequency is proportional to the number of molecular

orientations which have a particular nuclear shielding corresponding to this frequency. 
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Figure 2.5.  Representation of the nitrogen CSA in pyridine.  Different crystallite
orientations with respect to the external static magnetic field, B0, lead to different
nuclear shielding. (R.W. Schurko, NMR Course Notes, 2009.  Used with permission).

The principal components of the CSA tensor are readily obtained from discontinuities and

shoulders of the solid-state NMR patterns influenced only by CSA, which in turn gives us

information on the local electronic structure. 

To further understand CSA, we consider the nitrogen CSA in pyridine.  Three

different orientations of the pyridine molecule with respect to B0 are depicted in 

Figure 2.5.  Each of these orientations is associated with a different nuclear shielding. 

The combination of all possible orientations lead to the formation of the 15N powder

pattern.  

Due the anisotropic nature of the NS tensor, more information regarding the
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electronic environment around a nucleus can be obtained.  Such information can be

extracted from the powder pattern from the values of the span (Ω) and the skew (κ) which

are defined, following the Herzfeld and Berger convention, as:11,14,15 

The span describes the breadth of the powder pattern, determines the range of the CSA

(i.e., a larger span corresponds to a wider powder pattern breadth) and is reported in parts

per million (ppm).  The skew, which ranges from -1 to 1, defines the degree of axial

symmetry of the CSA tensor.  The tensor is said to be axially symmetric when the value

of the skew is 1 or -1 (Figure 2.6).16   For an axially symmetric CSA tensor, two of the

tensor components are equal and the third is distinct.  In the case where all of the

components are equal, only the isotropic chemical shift is observed.

In practice, chemical shielding or nuclear shielding is not measured directly in an

NMR experiment; rather, the chemical shift is measured, which is defined as the nuclear

magnetic shielding of the nucleus in the sample of interest with respect to that of some

reference compound.  The chemical shift is reported in ppm as:12

where νsample is the frequency of the signal for the nucleus in the sample of interest and νref
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Figure 2.6.  The shielding tensor components
determine the shape of the powder pattern.

is the frequency of the same nucleus in the standard compound.  The relation between the

chemical shift and the nuclear shielding is given by:12
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2.2.2.2.  Direct Dipolar Interaction  

The direct dipolar interaction, also known as the dipole-dipole interaction or direct

dipole spin-spin interaction, is the interaction between the magnetic moments of two

nuclear spins separated by a distance rij.  It arises from the through-space mutual

interactions of small local magnetic fields and is independent of the applied magnetic

field B0.  The dipolar coupling Hamiltonian is given by:9,11

where θij is the angle between the vector rij and B0.  RDD is called the dipolar coupling

constant and it is expressed in units of rad s-1.  Equation 2.21 indicates that the dipolar

interaction is inversely proportional to the cube of the distance between the two nuclei;

therefore, only nuclei which are relatively close in space experience a significant dipolar

interaction (i.e., for 1H- 13C = 1.0 Å, RDD = 30.2 kHz).  Also, the dipolar Hamiltonian

depends on the gyromagnetic ratios of the nuclei, so this interaction is more important for

nuclei with larger magnetic moments (i.e., 1H, 19F).  The dipole-dipole tensor is

symmetric and traceless.  In liquids the dipolar interaction vanishes, with the exception of

long range dipolar effects which are used for signal enhancement in the COSY Revamped
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with Asymmetric Z-gradient Echo Detection (CRAZED) magnetic resonance imaging

experiments,17 because of the molecular tumbling which averages out the (3cos2θij -1)

term to zero.

2.2.2.3.  Indirect Spin-Spin Interaction Or J-Coupling 

J-coupling or indirect spin-spin coupling describes the mutual interaction between

nuclear spins mediated via bonding electrons within a molecule.  This interaction is

independent of B0 and its Hamiltonian is expressed by:10,11

where  is the spin-spin coupling tensor.J̈

The magnitude of the J-coupling is independent of the magnitude of B0, and it is 

described by a second rank tensor.  In contrast to the dipolar tensor, the  tensor is notJ̈

symmetric and its trace does not vanish, so the J-coupling interaction does not average to

zero in solution NMR spectra.  Indirect spin-spin coupling between two spins, I and S,

causes a splitting of the peaks in the I and S spectra into 2S + 1 and 2I + 1 evenly spaced

peaks, respectively.  J-coupling is a very important probe of molecular structure, and is

useful for determining the connectivities between different nuclei.  The *J* is

proportional to the product of γIγs, but it is also strongly dependent upon the electronic

structure of intervening bonds between the nuclei (unlike RDD, which is through space). 

J-coupling is reported in Hz.  Therefore, to compare coupling constants of different

nuclei, it is convenient to use the reduced coupling constant, expressed by:18
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2.2.2.4. Quadrupolar Interaction

Quadrupolar nuclei are nuclei with spins I > 1/2.  They have a non-spherical 

positive charge distribution which gives rise to a nuclear electric quadrupole moment.

The electric quadrupole moment is unique for each nucleus, and is defined by a scalar

value, Q, which is measured in m2 or barn (10-28 m2).  The quadrupolar interaction is the

interaction between the nuclear electric quadrupolar moment and the local electric field

gradient (EFG) around the nucleus.  The EFG at the nucleus is caused by the surrounding

electronic charge distribution (i.e, electrons, atoms bonds, etc.); thus, the EFG is very

sensitive to small structural changes.  The EFG is described by a second-rank tensor as:

where Vxx, Vxy, Vzy, etc. represent the gradient of the electric field vector components in a

arbitrary reference frame.  The EFG tensor can be diagonalized by transforming the

matrix into its PAS:11
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These components are defined such that *V33* $*V22*$*V11* and this tensor is symmetric

and traceless (V11 + V22 + V33 = 0).14  These principal components provide useful

information about the spherical and axial symmetry of the EFG tensor through the

measurement of the nuclear quadrupolar coupling constant, CQ, and the asymmetry

parameter, ηQ, respectively.  The CQ is defined as:

and can also be expressed in terms of the quadrupolar frequency, νQ as:

The asymmetry parameter, ηQ, is expressed as.14,19

where ηQ varies from 0 to 1; when ηQ = 0, the EFG tensor is axially symmetric and 

V11 =  V22, while if V11 = V22 = V33 = 0, the nucleus is located in a site of perfect spherical

symmetry, and the CQ is equal to zero.  The CQ is normally reported in MHz and ηQ is

dimensionless.  The terminology distinct is used throughout this document to denote the

principal component of an NMR interaction tensor which is furthest in absolute

magnitude from the other two components (i.e., if ηQ = 0.1, then V33 is distinct, and V11
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and V22 are similar in absolute magnitude).  In the cases of perfect axial symmetry, the

terminology unique is utilized (i.e., if ηQ = 0, then V33 is unique and V11 = V22; if ηQ = 1,

then V11 is unique, and |V33| = |V22|).  

The quadrupolar Hamiltonian in angular frequency units is expressed by:11

where I  is the nuclear spin operator, and  is the EFG tensor.  In the case where theV̈

Larmor frequency is much larger than the quadrupolar frequency (ν0 » νQ), the

quadrupolar Hamiltonian can be treated as a perturbation on the Zeeman Hamiltonian,

which is known as the high field approximation.  The quadrupolar Hamiltonian can be

written as: :1

                   represent the first- and second-order quadrupolar Hamiltonians, respectively.

In most cases, both the first- and second-order quadrupolar interactions have effects on

the spectra of quadrupolar nuclei, and in some cases third-order terms can also contribute

to the NMR spectral lineshapes (we will neglect terms higher than second-order in this

thesis).1  The first- and second-order quadrupolar interactions cause large energy shifts in

all of the (2I + 1) pure Zeeman levels.

Consider the case of a quadrupolar nucleus with spin-3/2; there are four (2I +1)

quantized energy levels (-3/2, -1/2, +1/2, and +3/2, Figure 2.7).  The transition from 

,̂
(1)
Q , ,̂(2)

Q
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Figure 2.7.  The energy levels of spin-3/2 nuclei under Zeeman, first- and second-
order quadrupolar interaction (QI).

-1/2 to +1/2 is called the central transition (CT) and all others are known as satellite

transitions (ST).  

The CT is only affected by the second-order quadrupolar interaction while the STs

are affected by both the first- and second-order quadrupolar interactions.  The size of the

first-order effect is much larger than the second-order effect, and the STs span much

wider frequency ranges than the CT.  For this reason, the majority of NMR studies of

quadrupolar nuclei focus on observing the CT by applying selective 90E pulses (i.e., these

are pulses with lengths determined by the length of the non-selective solution pulse

widths scaled by a factor of (I + ½)–1).20  However, for higher half-integer spin nuclei (i.e.,

spin-9/2), the ST powder patterns can overlap with the CT (Figure 2.8).



35

20 10 0 -10 -20 MHz

Simulation without STs

Simulation with STs

Figure 2.8.  Analytical simulation of 209Bi SSNMR spectra at 9.4 T as an example of a
high half integer spin nucleus to show the effects of the STs on the powder pattern.  
CQ = 180 MHz and ηQ = 0.6.

 In solution, the first-order quadrupolar interaction averages to zero, and thus has

no influence on the frequency of the observed resonances.  However, it has an effect on

the quadrupole nuclear spin relaxation, which can lead to some degree of line broadening. 

However, in the solid state, the effects of the quadrupolar interaction dominate the NMR

spectra, and can lead to broad powder patterns with breadths of several MHz. The

magnitude of CQ describes the magnitude of the quadrupolar interaction and determines

the breadth of the NMR pattern.  Increasing the CQ, while keeping ηQ constant, will

increase the breadth of the pattern; however, changing ηQ while keeping CQ constant will
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Figure 2.9.  The effects of CQ and ηQ values on static SSNMR patterns

change the shape of the powder pattern (Figure 2.9).

2.2.2.5. Euler Angles

The Euler angles (α, β, γ) define the relative orientation of the CS and EFG

tensors, and along with the CS and quadrupolar parameters, all influence the appearance

of the SSNMR patterns.  All spectral analytical simulations of static spectra reported in

this work have been performed using WSolids,21 which uses counterclockwise rotation as

the positive direction.  In this dissertation, the rotation of the CS tensor from a fixed EFG

tensor frame into its own PAS is depicted in Figure 2.10.
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Figure 2.10. Rotation of the CS tensor from the fixed EFG tensor frame of reference 
(x, y, z) into the CS PAS (X, Y, Z).  Courtesy of Dr. Joel A. Tang 

2.3 Solid-State NMR Techniques

2.3.1  Magic Angle Spinning (MAS)

Rapid, isotropic, molecular tumbling averages the anisotropic NMR interactions

to zero in the solution state resulting in the observation of sharp resonances.  In

microcrystalline or disordered solids, anisotropic interactions broaden the NMR spectra,

and these powder patterns can provide very useful information on chemical systems. 

However, in the case where there are multiple resonance frequencies observed in a

spectrum, it becomes difficult to resolve individual NMR patterns and to extract any

useful chemical data.  Therefore, it is necessary to use techniques such as MAS to obtain

high resolution solid-state NMR spectra.22,23  In MAS, the sample is spun about an axis

oriented at the magic angle, β = 54.74E, with respect to B0 (Figure 2.11).  This technique
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Figure 2.11.  The position of the NMR
rotor with respect to B0 during the
MAS experiment.

<3cos2θ&1> '
1
2

(3cos2β&1)(3cos2χ&1) (2.32)

averages all first-order interactions (CS, dipolar and quadrupolar).  Rapid sample rotation

at the magic angle was used for the first time by

Andrew, Bradbury and Eades in 1958 to

average dipolar-broadened lines.22  The basis of

the MAS experiments is that most of the first-

order interactions have a geometrical spatial

dependence of the form (3cos2θ -1), where θ is

the angle between the z-axis of NMR

interaction tensor and the static magnetic field,

B0.
8  When spinning the sample at the magic

angle, the orientation of the tensor with respect

to the magnetic field varies with time and the

average orientation becomes:24,25

where χ describes the angle of the principal z-axis of the NMR tensor with respect to the

spinning axis, which is fixed for each individual spin.  Therefore, setting β to 54.74E

makes (3cos2β -1 ) = 0,  so <3cos2θ -1> will vanish, and the anisotropy first-order NMR

interactions are averaged to zero.

CSA is one of the main sources of inhomogeneous line broadening for spin-1/2

nuclei and can be averaged out completely by MAS provided that the spinning speed is
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larger than the CSA as measured in Hz; in this case, the isotropic peak will be the only

observable peak.  However, when the spinning speed is less than the CSA, the NMR

pattern will be divided into spikelets under which the intensities are localized.  These

spikelets are known as spinning sidebands and they flank the isotropic peaks at distances

equal to the spinning frequency.  Spinning sidebands arise because of the refocusing of

the magnetization after each rotor period.  After the dephasing of the magnetization, the

spins go back to their original positions after each rotor cycle leading to the formation of

what are called “rotational echoes” in the frequency spectrum.  Spectroscopists often

acquire SSNMR spectra of spin-1/2 at low to moderate spinning speeds to get as many

spinning sidebands as possible; the intensities of these sidebands are related to the

anisotropy of the chemical shift and are used to extract the CSA parameters.15 

Homonuclear and heteronuclear dipolar interactions also contain the angular term 

(3cos2θ - 1).  The dipolar interaction can be averaged out in solids if the sample is spun at

the magic angle, β.  Unlike the CS tensor, the dipolar tensor is traceless; thus, MAS can

completely average dipolar interactions to zero provided that the spinning frequency is

larger than the strength of the dipolar coupling. 

MAS only averages the first-order quadrupolar interaction.  Since the CT is only

affected to second-order by the quadrupolar interaction, it is only partially averaged by

MAS, owing to the distinct geometrical dependence of second-order NMR interactions.

The frequency of the CT to second-order under MAS is given by:8
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following Legendre polynomials, respectively.26

where χ represents the angle between the rotor axis and B0.  Spinning at the magic angle

causes the P2(cosχ) term to vanish but not the P4(cosχ) term which can only be zero either

at 30.56E or at 70.12E.  Thus, there is not a single value of χ which makes the P2(cosχ) and

P4(cosχ) terms go to zero simultaneously, and as a result, the linewidth of quadrupolar

powder pattern gets reduced under MAS, but an anisotropic powder pattern remains, even

at very high spinning speeds.  However, different techniques have been developed such as

multiple quantum MAS (MQMAS),27 double rotation (DOR),28 and dynamic angle

spinning (DAS),29,30 which provide high resolution spectra of  half-integer quadrupoles but

such techniques are beyond the scope of this thesis.

2.3.2.  Cross Polarization.

The cross-polarization (CP) technique was first introduced by Pines, Gibby and
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Waugh.31,32  It is a double-resonance experiment which is used to enhance the signal for

dilute (low natural abundant) spins in solid samples.  CP relies on the transfer of

magnetization from the abundant spins (i.e., 1H, 19F) to the dilute spins (i.e., 13C, 15N,

109Ag) which are dipolar coupled to one another.  CP can lead to a maximum theoretical

enhancement of the signal by a factor of γI/γS, where γI and γS are the gyromagnetic ratios

of the abundant and dilute spins, respectively (this is especially attractive for nuclei with

low gyromagnetic ratios).  Furthermore, CP helps in reducing the experimental time

significantly compared to single pulse experiments, since the spin lattice relaxation T1 of

the dilute spin plays no role in determining the recycle delay between acquisitions. 

Instead, the T1 of the abundant spins, which is usually much shorter than the T1 of the

dilute spins, is used to determine the delays between scans. 

The CP pulse sequence (Figure 2.12) begins with a 90o pulse applied on resonance 

along the x-axis on the I-spin (i.e. 1H) channel, which rotates the I-spin magnetization

along the negative y-axis in the doubly rotating frame (i.e, a frame that rotates according to

the employed rf frequencies).  Then, simultaneous on-resonance pulses are applied to the

dilute and abundant spins on both channels.  The effect of these long (normally in ms) low

power pulses is to fix the I magnetization along the y-axis of the rotating frame and allow

for the build up of S magnetization, this is known as “spin locking”.  
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Figure 2.12.  The cross polarization pulse sequence.

The amplitude of these pulses are set such that the Hartman-Hahn condition (γIBI  = γSBS,

or ωI = ωS, under non-spinning conditions) is satisfied (Figure 2.13 ).33,34  Then the S-spin

magnetization is observed by turning off the lock field on the S channel and keeping the

decoupling on the I channel to get rid of the I-S dipolar interaction during acquisition.
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Figure 2.13.  Explanation of the Hartmann-Hahn condition.  A shows the
difference between the 1H and 13C frequencies in the lab frame.  B shows that the
13C and 1H frequencies are matched so that the spin transitions can occur.

Magic-angle spinning at high rotational frequencies can greatly decrease the rate of

magnetization transfer from the abundant to the dilute spins because of the decoupling of

the dipolar interaction.  The Hartman-Hahn condition for a static sample is usually

Gaussian in shape and fairly broad.  However, under MAS, the Hartman-Hahn match

splits into a series of sidebands with maximal polarization transfer appearing at the integer

multiples of the rotor frequency, ω1I - ω1S = ± nωR  (n = 1, 2 for the most efficient

magnetization transfer).  This Hartman-Hahn condition holds reasonably well under

moderate MAS speeds.35   

Since the CP experiment depends on the dipolar interaction between the dilute and

abundant nuclei, and because this interaction is partially averaged when spinning at higher
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speeds, the efficiency of the CP experiment decreases.  Various CP modified pulse

sequences, such as the simultaneous phase-inversion CP (SPICP),36 ramped-amplitude CP

(RAMP/CP)37 and variable amplitude CP (VACP),38,39 were developed to decrease the

sensitivity of the matching condition to high MAS.  In this thesis, only the VACP was

used and will be discussed in more detail.

 In VACP, the 1H contact pulse consists of a series of pulses with the same phase

but different amplitudes.38-40  The amplitude of the step size between pulses is the same,

and the total amplitude variation is about 2ωR.  Using variable-amplitude pulses creates a

series of Hartman-Hahn conditions, which reduces mismatches between the two spin-

locking fields and decreases the loss of signal intensity in comparison to CP.

2.3.4.  Hahn-Echo and Quadrupolar Carr-Purcell Meiboom-Gill sequences

The Hahn-echo sequence (Figure 2.14) is the most widely used NMR pulse

sequence for the acquisition of NMR spectra of half-integer quadrupolar nuclei.41-43  This

technique is very useful for observing the quickly decaying signal of these nuclei by

applying a π-pulse after the π/2-pulse, which refocuses the magnetization in the xy plane. 

However, this sequence can be time consuming when acquiring UW NMR spectra,

particularly in case of unreceptive quadrupolar nuclei.

The quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) sequence (Figure 2.14)

was reintroduced in 1997 for the acquisition of broad NMR patterns of half-integer

quadrupolar nuclei under MAS or static conditions.44-56  
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Figure 2.14.  The echo and QCPMG pulse sequences.

In comparison to the Hahn-echo sequence, the QCPMG sequence is composed of

the first π/2 and π pulses which produce the first echo, and then a train of π pulses and

acquisition periods which are used to detect the signal.  Fourier transforming the FID

obtained using the QCPMG sequence produces a powder pattern which is composed of

“spikelets”.  The outer manifold of this pattern matches the manifold of the pure Hahn-

echo spectrum.  However, since all of the signal is localized beneath the sharp spikelets,

the S/N is greatly enhanced.57  In certain cases, sensitivity can be enhanced by an order of

magnitude or more.  The degree of signal enhancement depends on the experimental

acquisition time, τa, and the transverse relaxation time, T2 (a longer T2 results in a longer
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echo train, which in turn yields a higher S/N).

2.3.5.  Frequency Stepped Techniques and WURST-QCPMG

The breadths of the NMR powder patterns can extend up to several MHz, 

exceeding the excitation bandwidth achievable with a standard high power rectangular

pulse; hence, it is necessary to acquire such patterns using “stepwise” or “piecewise”

techniques.  Such techniques involve stepping the transmitter frequency across the entire

CT powder pattern in even increments, collecting the individual sub-spectra, and then co-

adding them to produce the total pattern (Figure 2.15).  Determining the correct offset

frequency is crucial for obtaining NMR patterns free of distortions.  Thus, it is necessary

to have a rectangular excitation profile in order to excite the whole pattern evenly.  The

following equation is used to calculate the excitation profile for a square pulse of

amplitude ω1 = γB1:
7

where ω1 is the strength of the B1 field and τp is the pulse length.    
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2000 1500 1000 500 0 -500 -1000 kHz

Figure 2.15.  Individual sub-spectra are acquired at even increments and co-added to
produce the whole pattern.  The arrows indicate the transmitter frequencies.

Figure 2.16.  The excitation profile for different offset frequencies.  The offset producing
a rectangular excitation (middle) provides non-distorted powder pattern.

Using this equation, it is possible to determine the optimum offset which leads to an

evenly excited NMR pattern.  An offset which produces a rectangular excitation profile is

the best choice (Figure 2.16).  A small offset provides a uniformly excited pattern but

unnecessarily increases experimental time; on the other hand, a large offset leads to
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distorted NMR pattern.  This frequency-stepped technique has been used in combination

with the Hahn-echo and QCPMG pulse sequences.

Adiabatic pulses58,59 are becoming increasingly popular in NMR due to their

efficacy in achieving broadband excitation.  Adiabatic pulses are amplitude-and

frequency-modulated pulses which generate a net magnetic field Beff that sweeps slowly

through all directions with respect to the external magnetic field, B0, and results in a much

wider excitation region in comparison to regular rf pulses.  Adiabatic WURST (wideband

uniform-rate smooth truncation) pulses were developed for excitation of wide frequency

ranges by Freeman and co-workers.60  Recently, Bhattacharyya and Frydman utilized

WURST pulses in echo sequences to acquire wideline NMR spectra of quadrupolar nuclei,

and have shown that this sequence yields uniformly excited powder patterns and

significant gains in S/N in comparison to standard Hahn–echo sequences.61  Our group has

extended this work by implementing the WURST pulses in a QCPMG-type pulse

sequence.62  This WURST-QCPMG sequence is very beneficial for the acquisition of UW

NMR patterns,55,63-65 since the broadband excitation of adiabatic pulses is complemented

with the signal enhancement from the QCPMG echo trains.  Due to the larger excitation

bandwidth of the WURST pulses, experimental time can be significantly reduced by

decreasing the number of individual subspectra which are needed to be acquired in order

to obtain broad powder patterns.

2.3.6.  Ab Initio NMR Calculations.

Experimental NMR powder patterns yield the NMR tensor components;
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however, they don't provide information about the orientation of these components with

respect to molecular structures or atomic coordinates (other than via inferences from

molecular symmetry).  Tensor orientations can be obtained either from single-crystal NMR

spectroscopy or first principles calculations.  Single-crystal NMR experiments are difficult

to perform, requiring specialized probes and large suitable crystals, which are often

unobtainable.66-68  Ab initio calculations are very useful for determining the orientations of

these tensors and how they are correlated to structure.  A large number of publications

involving calculations of the NMR tensors have been reported and proven that such

calculations are very useful in correlating the NMR parameters to molecular structure and

symmetry.69-79  A variety of methods, such as Hartree Fock (HF), density functional theory

(DFT) and the gauge-including projector augmented-wave (GIPAW) have been used to

predict the NMR tensor parameters.80-82  A detailed description of these methods as applied

to the calculations of NMR parameters are described elsewhere.83-88  

In this thesis, HF and B3LYP methods have been used to calculate the NMR

parameters using Gaussian03 and Gaussian09 software packages.89,90  Also, GIPAW

CASTEP calculations have been performed for systems whose structures are periodic in

nature.82  The accuracy of such calculations (i.e., agreement between experimental and

theoretical tensor parameters) depends on the methods and basis sets used, as well as the

correctness of the structural models applied.
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Chapter 3 

Application of Solid-State 209Bi NMR to the Structural
Characterization of Bismuth-Containing Materials

3.1.  Introduction

Bismuth is an element rarely found naturally in its pure form; however, it is

acquired as a byproduct of lead ore mining and is commonly encountered in bismuth

oxides1,2 and man-made coordination complexes.3,4  Recently, bismuth-containing

compounds have become important in a number of research areas, including synthesis of

pharmaceuticals,5-8 design of superconductors,2 and catalytic processes.9  With the

increased occurrence in the literature of bismuth-containing systems and associated

chemistry and materials science implications, methods of characterizing the structure and

bonding at the Bi sites are becoming increasingly important. 

While X-ray crystallography is useful for structural determinations in highly

crystalline systems, and 1H and 13C NMR experiments are routinely applied for

identification of bismuth coordination complexes in solution, characterization of bismuth

sites in solid materials has largely been limited to 209Bi nuclear quadrupole resonance

(NQR, vide infra).10-19  209Bi is the only naturally occurring isotope of bismuth and has a

nuclear spin of 9/2.  Despite its 100% natural abundance, moderate gyromagnetic ratio

and high receptivity with respect to 13C, i.e., DC(209Bi) = 848),20 209Bi NMR spectroscopy

is very limited because of its large nuclear quadrupole moment (Q).21  In all but the most

spherically symmetric Bi environments, the combination of the large Q and moderate

electric field gradients (EFGs) at the Bi site results in sizeable quadrupolar interactions. 
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These serve to severely broaden 209Bi NMR patterns, and drastically reduce both the T1

and T2 relaxation time constants, making routine NMR experimentation very challenging. 

To date, there are very few 209Bi NMR studies in the literature and no systematic SSNMR

study of 209Bi quadrupolar and chemical shift parameters.  Reports of 209Bi SSNMR have

largely focused on measurement of relaxation time constants and Knight shifts for 209Bi in

super- and semiconducting materials22-29 and on spectra of BiVO4 single crystals.30,31

Despite the aforementioned difficulties, there are reasons why 209Bi SSNMR

spectroscopy is an attractive technique for structural characterization.  209Bi SSNMR

experiments can be very useful for probing the local Bi environments, as well as for

increasing the understanding of structures and dynamics at the molecular/atomic level. 

Notably, 209Bi SSNMR may be especially valuable for characterization of disordered

solids or for microcrystalline solids for which crystal structures are unavailable.  The 209Bi

quadrupolar interaction is important in this regard: the EFGs at the 209Bi nucleus, which

arise from the surrounding atoms and bonds, are described by an EFG tensor, which is a

symmetric, traceless, second-rank (3 × 3) matrix with three principal components defined

as |V33| $ |V22|  $ |V11|.  The quadrupolar parameters derived from this tensor are the

nuclear quadrupolar coupling constant, CQ = eQV33/h, and the asymmetry parameter, 

ηQ = (V11 ! V22)/V33.  These parameters are sensitive to both major and minor structural

changes, with accurate measurements of CQ and ηQ providing information on the spherical

and axial symmetry, respectively, of the ground-state electronic environments at Bi sites.

Numerous bismuth-containing materials have been studied by 209Bi NQR, often

referred to as “zero-field NMR”, via measurement of CQ and ηQ.10-19  However, 209Bi NQR
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is very time-consuming, since extremely wide frequency ranges must be swept to detect

the frequencies of interest.  This could be alleviated somewhat by theoretical computation

of 209Bi quadrupolar parameters; unfortunately, reliable computational methods do not

currently exist for universally predicting 209Bi EFG tensor parameters with accuracy. 

Frequency-stepped NMR techniques have been shown to be very useful for the

acquisition of the ultrawideline (UW) NMR spectra for various nuclei in a variety of

materials.32-39  These techniques generally involve stepping the transmitter frequency (at a

constant field strength) in even increments, and acquiring individual sub-spectra with

limited excitation bandwidths, which are then coadded or projected to generate the final

UWNMR spectrum.  The S/N of these spectra can be very low due to their extreme

breadths.  Timely acquisition of high quality spectra is further exacerbated for nuclei with

low natural abundances and/or low gyromagnetic ratios.  This has been partially

addressed by the application of the quadrupolar Carr-Purcell Meiboom-Gill NMR

(QCPMG) sequence40 for acquisition of frequency-stepped UWNMR spectra.39,41  More

recently, wideband uniform rate smooth truncation (WURST) and WURST QCPMG

sequences have been shown to be very effective for rapid spectral acquisition,42-44 and

should be advantageous for the acquisition of high S/N 209Bi UWNMR spectra.

Herein, we demonstrate the effectiveness of 209Bi frequency-stepped UWNMR

techniques for the study of a variety of bismuth-containing materials.  To the best of our

knowledge, there is no methodical 209Bi SSNMR study of this sort reported in the

literature to date.  A set of well characterized bismuth complexes (i.e., either by NQR

and/or single-crystal XRD) with disparate bismuth environments is examined in order to
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start building a database of 209Bi NMR data, which may have use in future structural

studies of bismuth-containing systems.  First, the 209Bi SSNMR data for solid BiOX

systems (X = Cl, Br, and I), which have well-known quadrupolar parameters obtained

from NQR,13 are presented.  Then, 209Bi SSNMR data are shown for some Bi coordination

compounds for which 209Bi quadrupolar parameters have not been reported, including

bismuth nitrate pentahydrate, nonaaquabismuth triflate, and bismuth acetate.  Finally, we

discuss a preliminary investigation of theoretical 209Bi quadrupolar and chemical

shielding parameters obtained from both plane wave (CASTEP) and ab initio (Gaussian

03) methods.

3.2. Experimental

3.2.1 Sample Preparation.  

Samples of BiOI, BiOCl, Bi(NO3)3·5H2O, and Bi(OTf)3 were purchased from

Sigma-Aldrich Canada, Ltd., and used without further modifications. Bi(CH3CO2)3 was

purchased from Strem Chemicals Inc.  BiOBr was synthesized in our laboratory following

slightly modified literature procedures45 (our sample was heated at 160 EC in an oven for

eight hours).  Nonaaquabismuth triflate, [Bi(H2O)9](OTf)3, was obtained by rehydrating

Bi(OTf)3 in air at room temperature (Figure A.3.1, Appendix A).46

3.2.2 Solid-State NMR. 

 209Bi SSNMR experiments were carried out on a Varian Infinity Plus

spectrometer equipped with a 9.4 T (ν0(
1H) = 399.73 MHz) Oxford wide-bore magnet at
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the University of Windsor with ν0(
209Bi) = 65.455 MHz, and a 21.1 T (ν0(

1H) = 900.08

MHz) Bruker Avance II spectrometer (ν0(
209Bi) = 144.64 MHz) at the National Ultrahigh-

field NMR Facility for Solids in Ottawa, Canada.  In all cases, NMR powder patterns

were too broad to be uniformly excited with a single high-power pulse; hence, spectra

were acquired by stepping the transmitter frequency across the entire central transition

powder pattern in even increments, collecting the individual sub-spectra, and coadding

them to form the total pattern (see Tables A.3.1, A.3.2 for full experimental details).34,35 

In most instances, spectra were acquired using either the Hahn-echo or solid-echo pulse

sequences of the forms (π/2)x-τ1-(π)y-τ2-acq and (π/2)x-τ1-(π/2)y-τ2-acq, respectively, where

τ represents the interpulse delays.  In cases where the T2 is long enough, experiments at

9.4 T were performed using either the QCPMG40,47,48 or WURST-QCPMG43,44 pulse

sequences.  Bismuth chemical shifts were referenced to a saturated solution of

Bi(NO3)3·5H2O in concentrated HNO3 (δiso = 0.0 ppm).20  Analytical simulations of 209Bi

NMR spectra were performed using WSolids.49

Experiments at 9.4 T.  Samples were finely ground and packed into either 5 mm

o.d. zirconium oxide rotors or 5 mm glass NMR tubes.  209Bi NMR spectra were collected

using a Varian 5 mm double-resonance (HX) static probe.  For Hahn-echo and QCPMG

experiments, a central-transition selective π/2 pulse width of 0.75 µs (ν1 = 66.7 kHz) was

applied, with an optimized recycle delay of 0.025 s, and spectral widths ranging from 2 to

4 MHz.  In the QCPMG experiments, the number of Meiboom-Gill (MG) loops was set

to 40.  For WURST-QCPMG experiments, a 50 µs WURST pulse length, swept with an

offset of 2000 kHz at a rate of 40 MHz/ms, was used.  The number of echoes was set to
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20,  the spectral width to 2 MHz, and recycle delay to 0.1 s.  In all experiments, the

transmitter frequency offset was set between 100 to 150 kHz, in order to ensure uniform

excitation.  Experimental times ranged from 1 to 14 hours, depending upon the pattern

breadth, the number of sub-spectra collected, and the desired S/N.   In addition, NQR

experiments were performed using the same experimental parameters mentioned above

with the NMR probe positioned about 1 m away from the magnet.

Experiments at 21.1 T.  Samples were ground and packed into 4 mm o.d.

zirconium oxide rotors.  209Bi NMR spectra of all samples were acquired with a 4 mm HX

MAS probe, using the frequency-stepped Hahn-echo technique described above.  All

experiments were conducted with a selective π/2 pulse width of 1 µs (ν1 = 50.0 kHz),

spectral widths of either 2 or 4 MHz, and optimized recycle delays of 0.2 s.  Transmitter

frequency offsets of 500 kHz were used, and total experimental times ranged from 1 to 14

hours.  In samples with short T2* values, the full echo acquisition was often employed to

improve the S/N.

3.2.3  Ab Initio Calculations.  

209Bi EFG tensor parameters were calculated using both CASTEP software50 and

Gaussian 03.51  Ab initio plane-wave density functional theory (DFT) calculations for the

BiOX (X = Cl, Br, I) series were performed using the CASTEP NMR program50,52 in the

Materials Studio 4.3 environment on an HP xw4400 Workstation with a single Intel

Dual-Core 2.67 GHz processor and 8 GB DDR RAM.  Ultrasoft pseudopotentials52 were

used for 209Bi EFG calculations with a plane wave basis set cutoff of 610 eV in an
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ultrafine accuracy basis set with the Monkhorst-Pack k-space grid size of (6×6×3).  The

Perdew, Burke, and Ernzerhof (PBE) functionals were used in the generalized gradient

approximation (GGA) for the exchange-correlation energy.53,54  The magnetic shielding

tensors for 209Bi were calculated in ultrafine accuracy basis set using the projector-

augmented wave method (GIPAW) implemented in the CASTEP code.55,56  The CIF

crystal structure files used in the calculations are from the Crystallography Open

Database (COD)57 and built based on previously published results.58,59   CASTEP

geometry optimization of the BiOX structures did not show any significant changes in the

calculated NMR parameters; therefore, only results for nonoptimized structures are

presented for clarity (Table A.3.3, Appendix A).

Ab initio calculations using Gaussian 03 were performed on bismuth nitrate

pentahydrate, nonaaquabismuth triflate, and bismuth acetate on Dell Precision

workstations.  Atomic coordinates were input from the crystal structures reported in the

literature.60-62   For the first two compounds, calculations were carried out on clusters

composed of a central bismuth atom and coordinating organic moieties.  However, for

bismuth acetate, a larger structural unit was utilized (vide infra).  In some cases, hydrogen

atom positions were geometry optimized using the restricted Hartree-Fock (RHF) method

with the 18s15p9d3f (333333/33333/333/3) basis set63 on the bismuth atom and 3-21G*

basis set on lighter atoms (i.e., C, H, O).  Calculations of the EFG tensors were performed

using both the RHF and B3LYP methods with the 18s15p9d3f (333333/33333/333/3) and

15s12p8d4f (432222/42222/422/4)63 basis sets on the bismuth atoms and 6-31G* or

6-311G** on the lighter atoms.
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3.3 Results and Discussion

3.3.1 Solid-State 209Bi NMR.  

Bismuth Oxyhalides, BiOX (X = I, Br, Cl).  The bismuth oxyhalides were chosen

for preliminary 209Bi SSNMR experiments since they have high Bi contents and moderate

quadrupolar coupling constants (previously determined by NQR to be 91.26, 119.58, and

152.46 MHz for X = I, Br, and Cl, respectively).13  The 209Bi SSNMR spectra of the BiOX

samples and associated simulations are shown in Figure 3.1, with corresponding NMR

parameters summarized in Table 3.1.  The experimental times required to acquire these

spectra were relatively short (see Tables A.3.1 and A.3.2 for details).  The spectra reveal

that each of these samples has a single chemically distinct bismuth site, in agreement with

the crystal structures (Scheme 3.1).   The experimental values of CQ and ηQ are very close

to those determined with NQR,13 with the values of CQ(209Bi) increasing with increasing

Bi!X interatomic distance.  There are larger uncertainties associated with the parameters

obtained from NMR experiments than those from NQR due to the wide pattern breadths.

Table 3.1. Summary of the experimental 209Bi NMR parameters. 

*CQ(209Bi)*
/MHza

ηQ
b δiso/ppmc Ω/ppmd κe α/degf β/deg γ/deg

BiOI     91(3) 0.01(1)  3200(100)   1100(200)  0.8(2)  0   0  0
BiOBr   122(3) 0.03(3)  3500(200)   2000(300)  0.9(1)  0   2(2)  0
BiOCl   153(3) 0.01(1)  3500(400)   3000(500)  0.9(1)  0   3(3)  0
Bi(NO3)3·5H2O  78.6(8) 0.66(2)        0(100)   1500(300)  0.7(2)  50(10)   35(5)  95(20)
Bi(OTf)3 ·9H2O     90(1) 0.01(1)     -750(20)       240(40)  0.6(3)  0   0  0
Bi(CH3CO2)3 256(10) 0.30(6)  3200(500) 3400(1000)  0.9(1)  0   2(2)  0
a CQ  = eQV33/h; b ηQ = (V11 ! V22)/V33; 

c δiso  = (δ11  + δ22  + δ33 )/3; d Ω  = δ11  ! δ33; 
e κ = 3(δ22  ! δiso )/Ω. 

 f Conventions for the Euler angles are described in the WSolids software package.
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BiOBr
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4000 2000 0 -2000 -4000 kHz
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Simulation
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Figure 3.1. 209Bi SSNMR spectra of BiOI, BiOBr and BiOCl at a) 21.1 T and b)
9.4 T.  For BiOCl , simulations with and without satellite transitions are shown.  
The rolling baselines in some of these spectra arise from underlying satellite
transitions which have been partially excited. 
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Scheme 3.1. a) A schematic representation of the crystal structure of BiOCl.  The species
in the BiOX series (X = Br, Cl or I) are isostructural.  b) The coordination environment of
the Bi atoms consists of a staggered arrangement of four halides and four oxygen atoms
(left, side view; right, top view).

BiOI has the smallest CQ (91 MHz), and an axially symmetric (ηQ = 0) central

transition (CT) pattern with a breadth of ca. 1.1 MHz at 9.4 T.  The experimental time for

the spectrum acquired at 21.1 T is significantly reduced compared to that at 9.4 T due to

both increased sensitivity (S+ % B0
2) and the reduced spectral breadth of ca. 685 kHz.  The

contributions of the second-order quadrupolar interaction to the CT breadth scale as the

inverse of the applied magnetic field, whereas contributions of bismuth chemical shift
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anisotropy (CSA) are directly proportional to the magnetic field strength; hence, it is

possible to make relatively accurate determinations of bismuth CS tensor parameters with

NMR data at both fields.  The span and skew are found to be Ω = 1100 ppm and κ = 0.8

(see Table 3.1 for definitions of these parameters), and the Euler angles indicate that the

largest component of the EFG tensor, V33, is coincident with the most shielded component

of the CS tensor, δ33.  The CS tensor is almost axially symmetric, meaning that δ33 is

distinct, and δ11 . δ22, consistent with both the relative orientation of the CS and EFG

tensors and ηQ = 0.  The contribution of the CSA represents only ca. 165 kHz or 24% of

the breadth of the total powder pattern (Figure A.3.2); thus, accurate measurement of CS

tensors is more challenging for the remainder of the complexes discussed herein, all of

which have markedly large values of CQ and CT patterns dominated by second-order

quadrupolar contributions (Figures A.3.3 & A.3.4).

BiOBr and BiOCl have CQ’s of 122 and 153 MHz, respectively, and both possess

axially symmetric EFG tensors.  In addition, the 21.1 T data permits the measurements of

effectively axially symmetric CS tensors with significantly larger spans than that of BiOI. 

Interestingly, in the spectrum of BiOCl, the overlap of the CT and one of the satellite

transitions (ST) is observed in the 9.4 T spectrum.  The STs for spin-9/2 nuclei are

generally “packed” quite tightly about the CT; this foreshadows the increasingly

complicated spectra resulting from CT/ST overlaps that are observed for increasing

values of CQ.  Traces of the ST patterns are seen on the edges of the CT patterns in all

three cases.

It should be mentioned that the Hahn-echo sequence, and not QCPMG, was used
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for the acquisitions of these spectra due to the extremely short transverse relaxation time

constants, T2, of the 209Bi nuclei.  Fitting of CPMG echo intensities as a function of time

yielded T2 values of 97(6) µs, 59(7) µs, and 139(10) µs for BiOI, BiOBr, and BiOCl

(Figure A.3.5), respectively.  The transverse relaxation is likely to be dominated by the

quadrupolar relaxation mechanism; however, unlike in the extreme narrowing limit, there

is no clear correlation between the magnitude of CQ and the value of T2.  It is possible that

dipolar relaxation mechanisms may have some influence on the 209Bi T2 values, since the

magnitudes of the 209Bi!X dipolar couplings vary as RDD(209Bi, 79/81Br) > RDD(209Bi, 127I) >

RDD(209Bi, 35/37Cl), and T2(BiOBr) < T2(BiOI) < T2(BiOCl), and the NMR active isotopes

are 100% naturally abundant in each case.  1H MAS NMR spectra acquired for each

system (not shown) do not reveal significant amounts of proton-containing impurities that

could influence the transverse relaxation rates.

Finally, a comment on the bismuth isotropic chemical shifts should be made. 

While the CQ is extremely effective at differentiating the Bi environments in these

samples, the δiso is very similar in all three cases (within the large uncertainties),

reinforcing the notion that for samples with similar Bi environments, the quadrupolar

parameters are crucial for accurate structural characterization.  Bismuth chemical shift

differences will mainly be useful for differentiating very distinct Bi environments, as

noted from previous solution 209Bi NMR studies,64 and as discussed below.

Bismuth Nitrate Pentahydrate, Bi(NO3)3·5H2O.  Previous attempts to obtain a 209Bi

NQR signal for Bi(NO3)3·5H2O were unsuccessful.12  However, we were able to obtain

the 209Bi NMR spectra with relative ease using both the Hahn echo and the WURST-
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simulation  with ST
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simulation without ST

WURST-QCPMG

a)

Figure 3.2. 209Bi SSNMR spectra of bismuth nitrate pentahydrate at  a)
21.1 T and b) 9.4 T.  Not all of the satellite transitions were acquired in
order to shorten experimental time, more ST subspectra were acquired
in the WURST spectrum due to the shorter experimental time.

QCPMG43 pulse sequences (Figure 3.2).  It is possible to use the QCPMG-type

experiments since the T2 is much longer (1547(35) µs, Figure A.3.6) than those of the

BiOX series.  The spectrum reveals a powder pattern corresponding to a single bismuth

site, in agreement with the crystal structure.61  
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The bismuth atom is coordinated by ten oxygen atoms which form an irregular

polyhedron comprised of four H2O molecules, two nearly symmetrically bidentate NO3
-

ions (i.e., the Bi-O bond lengths are similar) and one asymmetrically bidentate NO3
-.61 

Nine of the Bi-O distances range from 2.32 to 2.67 Å and the tenth is 2.99 Å.  The

smaller CQ reflects the higher spherical symmetry of the electronic charge distribution

about the bismuth atom compared to those in the BiOX systems.  In addition, the value of

ηQ indicates that the EFG tensor is nonaxially symmetric, which is consistent with the Bi

atoms not being positioned on symmetry elements.  Since ηQ is nonzero, some minor

interference between ST and CT can be seen by comparison of simulations with and

without STs (Figure 3.2). 

Nonaaquabismuth Triflate, [Bi(H2O)9](OTf)3.  Quadrupolar parameters have not

previously been obtained for [Bi(H2O)9](OTf)3.  The 209Bi NMR spectrum (Figure 3.3)

was obtained in a very short time (i.e., about 1 h at 9.4 T) and reveals a powder pattern

corresponding to a single bismuth site, again in agreement with the crystal structure.62 

The Bi atom in the nonaaquabismuth cation is coordinated by nine H2O molecules, with

Bi!O distances of 2.448 or 2.577 Å.  The slightly larger value of CQ compared to that of

Bi(NO3)3·5H2O arises from a slightly less spherically symmetric environment and may be

due to the smaller bismuth coordination number; however, this is difficult to definitively

ascertain without a larger database of quadrupolar parameters and structures for

comparison.  The cation has a C3h symmetry, which is reflected by the axially symmetric

EFG tensor, with V33 as its unique component.  Bi(NO3)3·5H2O and [Bi(H2O)9](OTf)3

have similar values of δiso; however, these values are distinct from those of the BiOX
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Figure 3.3. 209Bi SSNMR spectra of nonaaquabismuth triflate at 
a) 21.1 T and b) 9.4 T.  The rolling baselines in these spectra arise
from underlying satellite transitions which have been partially
excited.  

series, suggesting that 209Bi nuclei in substantially different environments can be

differentiated by chemical shifts extracted from the broad 209Bi SSNMR spectra.
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Bismuth Acetate, Bi(O2CCH3)3.  Bismuth acetate has only one bismuth site in the

asymmetric unit, with a coordination environment described as an irregular, nine-vertex

polyhedron.  The lone electron pair of the bismuth atom occupies a considerable amount

of space (i.e., displays stereochemical activity), forcing the bidentate acetato ligands into

positions on one side of the Bi atom.60  As a result, the spherically asymmetric

distribution of atoms results in a large quadrupolar interaction, as reflected in the

expansive 209Bi NMR pattern (Figure 3.4).

The spectrum acquired at 9.4 T is extremely broad, requiring the acquisition of

143 QCPMG-subspectra to roughly span the CT and several closely spaced

discontinuities from some of the STs.  Some of the intensities are inconsistent with the

simulation, which could arise from variation in the transverse (T2) relaxation parameters

of the CT and STs, or more likely, differential excitation of the CT and STs (i.e., CTs and

STs have distinct nutation rates which can potentially give rise to different relative

intensities).65,66  It is also possible that these discrepancies may arise from the failure of

the high field approximation (i.e., ν0 » νQ), since the CQ of 256 MHz corresponds to a νQ

of ca. 10.7 MHz; however, the dominant quantization axis is still the Zeeman axis

(ν0(
209Bi) = 65.455 MHz at 9.4 T).  In contrast, the spectrum at 21.1 T (ν0(

209Bi) = 146.927

MHz) is constructed from 13 subspectra, and the CT and ST discontinuities match well

with simulations, suggesting that the high field approximation holds in this case.  The CQ

is much larger than those of the previous samples, due to the influence of the

stereochemically active lone pairs of the Bi atom.60  To further confirm the EFG

parameters, NQR experiments were performed and two of the transitions were found 
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Figure 3.4. 209Bi SSNMR spectra of bismuth acetate at a) 21.1 T
and b) 9.4 T. c indicate satellite transitions. 

(ν(7/2 to 5/2) =  32.086 MHz and ν(9/2 to 7/2) =  43.366 MHz).  From these transitions the CQ was

calculated to be 262.61(7) MHz and ηQ = 0.336(2), confirming our NMR results.
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We note that the δiso is similar to that of the BiOX series, despite the distinct Bi

chemistry; this can be attributed, in part, to the large errors associated with the

measurement of δiso.  There are very few reports of bismuth chemical shifts in the

literature available for comparison to our data.  Aside from several studies of 209Bi Knight

shifts,22,24-27,29  209Bi chemical shifts have only been reported for species such as the highly

symmetric BiF6
- anion in acetone,29 aqueous solutions of bismuth salts, and the

[Bi(H 2O)6]
3+ cation formed in solutions of Bi(NO3)3 in concentrated nitric acid.67  Since

the chemical shifts presented herein represent the majority of bismuth chemical shifts

reported in the literature, it is difficult to comment further at this time.  It is possible that

Bi may have a chemical shift range similar to that of antimony, which has been estimated

at ca. 3500 ppm.68

3.3.2 Theoretical Calculations of 209Bi EFG and CS Tensors.  

An appreciation of the relationships between solid-state structures and bismuth

NMR interaction tensors will be crucial for making future structural interpretations for

the multitude of Bi-containing materials.  To develop a basis for understanding these

relationships, we have conducted ab initio calculations of the 209Bi EFG tensors for all of

the systems discussed above, as well as 209Bi CS tensors for the BiOX series.  In this

section, we present an examination of the principal components and tensor orientations

with respect to the molecular coordinates.

CASTEP Calculations for the BiOX Series.  Compounds in the BiOX series

crystallize in a tetragonal unit cell with the P4/nmm space group.58,59  Their structures
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consist of metal-oxygen layers separated by two halide sheets (Scheme 3.1).  The bismuth

atoms are located on special positions, i.e., 4mm, and are coordinated by four oxygen

atoms and four halide atoms.  Due to the periodicity of these structures, CASTEP

software50 was used to calculate the 209Bi EFG parameters.  The calculated CQ’s 

(Table 3.2) are consistently lower than the experimental values, and values of ηQ are

axially symmetric in all cases.  The disagreement between experimental and theoretical

CQ’s may arise from either the nature of the Bi pseudopotential (a full investigation of

which is beyond the scope of this thesis) or the degree of uncertainty in the

experimentally measured and theoretically calculated 209Bi nuclear quadrupole moments. 

Biero½ and Pyykkö have pointed out that values of Q(209Bi) have been put forward that

range from !370 to !710 mb,21 with the most likely candidates being !370(26) mb69,70

and !500(80) mb.71  It is clear from the results for the BiOX species (Table 3.2), and also

for the molecular Bi species (vide infra), that arbitrary variation in the magnitude of

Q(209Bi) could certainly lead to better agreement in some cases, while simultaneously

diminishing agreement in others.  In this work, we have elected to utilize Q(209Bi) = !370

mb (0.37 × 10-28 m2) for all of our conversions from a.u. to MHz, since there are

numerous reports of Q(209Bi) close to this value, and since this provides uniformity in our

comparisons of experimental and theoretical data.  Nonetheless, the experimental trend of

increasing values of CQ in the series X = I, Br, Cl is replicated.

The CS tensor parameters have also been calculated for the BiOX series 

(Table 3.3).  We do not report the theoretical isotropic chemical shifts, as a reliable

computational reference standard has yet to be established.  
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Table 3.2. Comparison of the experimental and CASTEP 209Bi EFG tensor parameters of the BiOX series.

V11 /a.u. V22 /a.u. V33 /a.u. CQ(209Bi)/MHza 0Q

BiOI Exp. ----- ----- ----- 91(3) 0
BiOI Cal. 0.3381      0.3381      -0.6763      58.8 0
BiOBr Exp. ----- ----- ----- 122(3) 0
BiOBr Cal. 0.6067      0.6067      -1.2133      105.5 0
BiOCl Exp. ----- ----- ----- 153(3) 0
BiOCl Cal 0.7402      0.7402      -1.4805      128.7 0
a Theoretical values of CQ (CQ = eQV33/h) are calculated by converting from atomic units to Hz by multiplying V33 by (eQ/h)(9.7177 × 1021 V m-2),
where Q(209Bi) = -0.37 × 10-28 m2.  The absolute values of the experimental CQ’s are reported, while theoretical values are reported with the calculated
signs.

Table 3.3. Comparison of the experimental and CASTEP 209Bi CS tensor parameters of the BiOX series.

F11/ppm F22/ppm F33/ppm Fiso/ppma S/ppmb 6c "/deg $/deg (/deg

BiOI Exp. ----- ----- ----- ----- 1100(200) 0.8(2) 0 0 0
BiOI Cal. 6279.21 6279.21 7430.62 6663 1151 1 0 0 0
BiOBr Exp. ----- ----- ----- ----- 2000(300) 0.9(1) 0 2(2) 0
BiOBr Cal. 5689.54 5689.54 6766.67 6049 1077 1 0 0 0
BiOCl Exp. ----- ----- ----- ----- 3000(500) 0.9(1) 0 3(3) 0
BiOCl Cal. 5699.3 5699.3 6799.32 6066 1100 1 0 0 0
a F iso  = (F11  + F22  + F33)/3; b Span: Ω = σ33 - σ11; 

c Skew:  κ = 3
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Figure 3.5.  a) 209Bi EFG tensor orientations in a) BiOX series, b) Bi(NO3)3·5H2O  
c) [Bi(H2O)9](OTf)3 and d) Bi(CH3CO2)3.  

The theoretical span for BiOI matches very well with experimental data, while those for

BiOBr and BiOCl are overestimated.  In all cases, the bismuth CS tensors are predicted to

be axially symmetric, in good agreement with experiment.  The largest component of the

EFG tensor, V33, is aligned along the c axis of the unit cell, as expected (Figure 3.5a), and

the V11 and V22 are consistently oriented along the Bi!O bonds; however, given that the ηQ

= 0, the precise orientations of V11 and V22 are not terribly relevant in this case.  

Furthermore, the most shielded component of the CS tensor, δ33, is found to be collinear
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with V33, and the associated Euler angles are in excellent agreement with experiment.

Gaussian 03 Calculations for the Molecular Species. Calculations of the 209Bi

EFG tensors on the nonperiodic, molecular systems were performed using Gaussian 0351

software.  The basis sets and methods which are in best agreement with the experiment

are discussed separately for each system.  Little success was achieved with calculations of

209Bi CS tensors on these species, and hence these results are not discussed at this time.

 Both the RHF and B3LYP methods overestimate the values of CQ for

Bi(NO3)3·5H2O (Table 3.4); however, the B3LYP method predicts a nonaxially

symmetric tensor, in agreement with experiment.  The discrepancy between the

experimental and theoretically calculated CQ may be due to longer range interactions

which were not accounted for in the calculations, or possibly deficiencies in the Bi basis

sets.  The EFG tensor has an unusual orientation, with V22 oriented near the molecular

pseudo-threefold axis, and the distinct component, V11, pointing approximately in the

direction of one of the bidentate ligands (p(N!Bi!V11) = 18.4 o, Figure 3.5b).  

As for Bi(NO3)3·5H2O, the calculations on [Bi(H2O)9](OTf)3 using the B3LYP

method with (333333/33333/333/3) and 6-31G* basis sets yield CQ and ηQ values in good

agreement with the experimental values, suggesting that the Bi basis set may indeed be

suitable for such calculations, and/or that longer-range influences on the 209Bi EFG tensor

are less significant in this molecule.  
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Table 3.4. Comparison of the experimental and Gaussian 209Bi EFG tensor parameters.a

Method Basis sets 
(Bi, other atoms)b

V11 /a.u. V22 /a.u. V33 /a.u. CQ(209Bi)/MHzc 0Q

Bi(NO3)3·5H2O
Experimental ----- ----- ----- ----- 78.6(8) 0.66(2)
RHF A, 6-31G* -0.5317 -0.5654 1.0972 !95.4 0.03
RHF B, 6-31G* -0.5362 -0.5815 1.1178 !97.2 0.04
RHF A, 6-311G** -0.561 -0.5933 1.1544 !100.4 0.03
B3LYP A, 6-31G* -0.172 -0.9953 1.1674 !101.5 0.7
B3LYP A, 6-311G** -0.2088 -1.03 1.2388 !107.7 0.66

[Bi(H 2O)9](OTf) 3

Experimental ----- ----- ----- ----- 90(1) 0.01(1)
RHF A, 6-31G* 0.3997 0.403 -0.8027 69.8 0
RHF A, 6-311G** 0.3925 0.3955 -0.7881 68.5 0
B3LYP A, 6-31G* 0.4692 0.4782 -0.9474 82.4 0
B3LYP A, 6-311G** 0.4584 0.4664 -0.9248 80.4 0

Bi(CH 3CO2)3

Experimental ----- ----- ----- ----- 256(10) 0.30(6)
RHFd A, 6-31G* -0.3146 -0.9511 1.2658 !110.0 0.5
RHFd A, 6-311G** -0.3959 -0.968 1.3639 !118.6 0.42
RHFe A, 6-31G* -1.269 -1.8692 3.1383 !272.8 0.19
RHFe A, 6-311G** -1.3431 -1.8929 3.2361 !281.3 0.17
B3LYPe A, 6-31G* -0.9307 -1.1102 2.041 !177.4 0.09
B3LYPe A, 6-311G** -0.992 -1.1195 2.1115 !183.6 0.06
RHFf A, 6-31G* -1.1677 -1.7945 2.9622 !257.5 0.21
RHFf A, 6-311G** -1.2365 -1.7755 3.012 !261.9 0.18
B3LYPf A, 6-31G* -0.8791 -1.1977 2.0768 !180.6 0.15
B3LYPf A, 6-311G** -0.9341 -1.1875 2.1217 !184.4 0.12
a Definitions of parameters are given in Table 3.2. bA and B denote the basis sets (333333/33333/333/3) and (432222/42222/422/4), respectively.  c The absolute values
of the experimental CQ’s are reported while the theoretical values are reported with the calculated signs. d Calculations conducted on a cluster consisting of a single
bismuth atom and coordinated acetate ligands (Figure A.3.7a).  e Calculations conducted on a cluster consisting of three bismuth atoms and nine acetate ligands 
(Figure A.3.7b). f Calculations conducted on a cluster consisting of seven bismuth atoms with eighteen acetate ligands (Figure A.3.7c).
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V33 is the unique component of the EFG tensor and is oriented along the C3 axis (Figure

3.5c), akin to the orientations of metal EFG tensors in Co(acac)3 and Al(acac)3.
72,73  V11

and V22 are identical, as indicated by ηQ = 0.

For Bi(CH3CO2)3, calculations performed on small clusters (i.e., structural units

with one bismuth atom and coordinated acetate ligands, see Figure A.3.7) yield values of

CQ and ηQ that are in poor agreement with experiment.  Since bismuth acetate has a

polymeric structure,60 a larger cluster consisting of three bismuth atoms and nine acetate

ligands was used.  For this larger cluster, the RHF calculations predict CQ and ηQ values

in good agreement with experiment, and further increasing the size of the structural unit

to include seven bismuth atoms and eighteen acetate ligand produces even better

agreement.  These data are much better than those from similar B3LYP calculations;

however, it is unclear why the RHF calculations are superior in this instance.  The RHF

calculation, performed on the largest structural unit with the RHF method and the

(333333/33333/333/3) and 6-31G* basis sets (Table 3.4), predicts a nearly axially

symmetric tensor, with the distinct V33 component oriented close to the shortest Bi!O

bond (p(V33!Bi!O) = 159E) (Figure 3.5d).

3.4 Conclusions

This is the first detailed account of solid-state 209Bi NMR spectroscopy of broad

central and satellite transition powder patterns.  Frequency-stepped techniques have been

shown to be very useful for the acquisition of extremely broad 209Bi NMR patterns. 

Acquisition of 209Bi NMR spectra at 9.4 T is possible, but is predicted to become
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increasingly inconvenient for the many systems with larger values of CQ(209Bi).  However,

acquisition of 209Bi NMR spectra at 21.1 T is much more rapid and should enable the

investigation of an enormous array of Bi-containing materials and compounds, providing

both quadrupolar and chemical shift data.  For extremely large CQ’s, it is possible that

209Bi SSNMR at 21.1 T or higher may be utilized to acquire UW “histogram” spectra74 to

provide rough estimates of quadrupolar parameters, thereby improving the efficiency of

complementary 209Bi NQR experiments, which can then be conducted to refine these

parameters in very short time frames as we showed for the bismuth acetate sample.

The 209Bi quadrupolar interaction dominates the shapes and breadths of the NMR

patterns; however, extraction of the quadrupolar parameters is relatively straightforward,

even in cases where there is overlap between the CT and STs.  The quadrupolar

parameters and (to a lesser degree) isotropic chemical shifts reflect the geometry,

symmetry, and coordination environment of the bismuth atom.  Theoretical calculations

of the 209Bi EFG and CS tensor parameters are in reasonably good agreement with the

experimental values and will help in structural predictions for which crystallographic data

are not available.  Clearly, our work suggests that some further effort is required on the

development of suitable basis sets for bismuth, as well as on the refinement of the value

of Q(209Bi).  Finally, the 209Bi EFG and CS tensor orientations within the atomic

coordinate systems/molecular frames provide us with a starting point for the

rationalization of the origin of these tensors and their correlations to molecular structure

and symmetry.  We hope that this work encourages future 209Bi NMR and NQR studies

on the ever expanding catalog of Bi-containing systems.
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Chapter 4

Solid-State 137Ba NMR Spectroscopy: An Experimental and
Theoretical Investigation of 137Ba Electric Field Gradient
Tensors and Their Relation to Structure and Symmetry

4.1 Introduction

The number of solid-state NMR (SSNMR) studies on quadrupolar nuclei

continues to grow due to the development of new pulse sequences, improvements in

NMR hardware and the ever-increasing availability of NMR spectrometers with ultrahigh

magnetic fields.  There is burgeoning interest in the characterization of structure and

dynamics at the molecular/atomic level from the perspective of quadrupolar nuclei, since

they account for approximately 73% of the NMR-active nuclei in the periodic table, and

are present in innumerable materials.  Many quadrupolar nuclei are difficult to study by

routine NMR methods, since they may have large quadrupolar interactions which result in

immense spectral breadths, presenting challenges for both uniform excitation and

detection and acquisition of high signal-to-noise (S/N) NMR spectra.  A variety of

techniques have been developed for the rapid and efficient acquisition of quadrupolar-

dominated powder patterns.1-4  Recently, much work has been dedicated to the SSNMR

spectroscopy of unreceptive quadrupolar nuclei (e.g., 79Br, 127I, 209Bi, 115In, 73Ge, 14N, 33S,

87Sr, 25Mg, 43Ca etc.),5-19 which are defined as nuclei which may have low gyromagnetic

ratios, low natural abundances, broad anisotropic patterns, long relaxation times, or

combinations of these characteristics.  These studies have shown that such SSNMR

spectra can provide rich structural information for a variety of materials; however,
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numerous challenges exist in acquiring broad powder patterns of high quality for

inherently unreceptive nuclei.

Barium has two NMR-active isotopes, 137Ba and 135Ba, both of which are

classified as unreceptive.  Both have nuclear spins of 3/2, large nuclear electric

quadrupole moments (Q = 24.5 and 16.0 fm2, respectively),20 small gyromagnetic ratios

(2.9930 × 107 and 2.6755 × 107 rad T&1 s&1, respectively) and low natural abundances

(11.3% and 6.6%, respectively).20  The combination of these properties renders the

routine acquisition of barium NMR spectra very difficult.  Despite the fact that 135Ba has a

smaller quadrupole moment, 137Ba NMR is more commonly applied due to its higher

receptivity (i.e., with respect to carbon, DC(137Ba) = 4.62 and DC(135Ba) = 1.93).  In spite

of the inherent difficulties encountered in 137Ba NMR experiments, the resulting spectra

can be very useful for probing the chemical environments of different barium sites, and a

significant amount of information on structure and dynamics at the molecular level can be

obtained.  In particular, the quadrupolar interaction which is manifested in the central

transition (+½ : -½) of 137Ba SSNMR spectra is very diagnostic.  The quadrupolar

interaction results from coupling of the nuclear quadrupole moment to the electric field

gradient (EFG) at the nuclear origin.  The EFGs are described by a symmetric, traceless,

second-rank (3 × 3) tensor with three principal components defined such that 

|V33|  $ |V22|  $ |V11|.  The nuclear quadrupolar coupling constant, CQ = eQV33/h, and the

asymmetry parameter, ηQ = (V11 - V22)/V33, are sensitive to both major and minor structural

changes, providing information on the spherical and axial symmetry, respectively, of the

ground state electronic environments at the Ba sites.
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137Ba SSNMR experiments could increase our understanding of the numerous 

barium-containing systems important in different applications such as glass

manufacturing, well-drilling fluids, emulsification of liquids, NO storage and the

development of ultrasonic and electronic devices.21-24  Notably, 137Ba SSNMR may be

especially valuable for characterization of materials for which crystal structures are

unavailable or unobtainable (i.e., disordered solids, sub-microcrystalline powders, etc.). 

However, of the relatively few 137Ba SSNMR studies reported to date, most have focused

on systems in which the barium sites exist in spherically symmetric environments, such

as in BaO,25 BaTiO3,
25-28 BaZrO3,

25 YBa2Cu3Oy
29,30 and BaxSr1-xTiO3 (0 # x #1),31 which

have small quadrupolar interactions and correspondingly narrow patterns.25-27  MacKenzie

et al. reported the 137Ba NMR spectra of several barium-containing systems acquired

under conditions of magic-angle spinning (MAS),32 which were challenging to acquire

due to the wide powder pattern breadths.  Recently, Sutrisno et al. demonstrated the

utility of 137/135Ba SSNMR experiments in probing the barium environment in β-barium

borate.33

 The problems associated with acquiring high S/N 137Ba SSNMR spectra can be 

solved in part by the use of ultrahigh magnetic field strength spectrometers (i.e., 21.1 T)

and/or the use of specialized SSNMR techniques such as the quadrupolar Carr-Purcell

Meiboom-Gill (QCPMG) pulse sequence,34 and the recently reported Wideband Uniform

Rate Smooth Truncation (WURST)-QCPMG sequence.35-37  In addition, high S/N ultra-

wideline (UW) NMR spectra (i.e., ranging from 300 kHz to several MHz in breadth) can

be rapidly acquired using stepwise (or piecewise) methods.34,35,37-39  Individual sub-spectra
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with limited excitation bandwidths are acquired by stepping the transmitter frequency in

even increments at a constant field strength, and then co-added or projected to obtain the

total UWNMR pattern.  The acquisition of such spectra can be very time consuming, and

this is further exacerbated for nuclei like 137Ba, which has both a low natural abundance

and low gyromagnetic ratio.  However, the combination of the WURST-QCPMG pulse

sequence and piecewise acquisitions at ultrahigh magnetic fields should enable the

acquisition of high quality spectra.

In this work, we present the first systematic 137Ba SSNMR study of a series of

barium-containing species using a combination of frequency-stepped NMR techniques

and the WURST-QCPMG pulse sequence.  The 137Ba NMR spectra of six barium-

containing compounds, including barium nitrate, barium carbonate, barium chlorate

monohydrate, barium chloride, barium chloride dihydrate and barium hydrogen

phosphate, have been acquired at two different field strengths (9.4 T and 21.1 T), and

anisotropic quadrupolar and chemical shift tensor parameters obtained via spectral

analysis are presented.  In addition, experimental data are complemented by a series of

theoretical 137Ba EFG tensors, calculated using plane-wave CASTEP methods,40 in order

to draw correlations between the experimental NMR parameters, the calculated NMR

tensors and the local Ba environments.

4.2 Experimental Details

Samples of barium nitrate (Ba(NO3)2), barium carbonate (BaCO3), barium chlorate

monohydrate (Ba(ClO3)2·H2O), barium chloride dihydrate (BaCl2·2H2O), anhydrous
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barium chloride (BaCl2) and barium hydrogen phosphate (BaHPO4), were purchased from

Sigma-Aldrich and their identities were confirmed using powder X-ray diffraction (XRD)

(Figures B.4.1- B.4.6, Appendix B).  Powder X-ray diffraction data were collected on a

Bruker Apex 2 Kappa diffractometer at room temperature, using graphite

monochromatized Mo Kα radiation (λ = 0.71073 Å).

4.2.1 Solid-State NMR. 

137Ba SSNMR experiments were performed on a Varian Infinity Plus spectrometer

at the University of Windsor equipped with a 9.4 T (ν0(
1H) = 399.73 MHz) Oxford wide-

bore magnet (ν0(
137Ba) = 44.422 MHz) and a 21.1 T (ν0(

1H) = 900.08 MHz) Bruker

Avance II spectrometer (ν0(
137Ba) = 100.02 MHz) at the National Ultrahigh-Field NMR

Facility for Solids in Ottawa, Canada.  In most cases, the NMR powder patterns were

much wider than the excitation bandwidth achievable with a standard high power

rectangular pulse; hence, spectra were acquired by stepping the transmitter frequency

across the entire central transition (CT) powder pattern in even increments, collecting the

individual sub-spectra, and co-adding them to form the total pattern41,42 (see Tables B.4.1,

B.4.2 in Appendix B for full experimental details).  Barium chemical shifts were

referenced to a 1 M aqueous solution of BaCl2 (δiso = 0.0 ppm).32  Analytical simulations

of 137Ba NMR spectra were performed using WSolids.43  The uncertainties in the NMR

tensor parameters were determined by visual comparison of the experimental and

simulated spectra, and bidirectional variation of single parameters from their values

corresponding to the best fit.
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Experiments at 9.4 T.  Samples were finely ground and packed into either 5 mm

o.d. zirconium oxide MAS rotors or 5 mm glass NMR tubes.  137Ba NMR spectra were

acquired using either a Varian 5 mm double-resonance (HX) static probe or a Varian 5

mm triple-resonance (HXY) MAS probe.  All spectra were collected using the WURST-

QCPMG pulse sequence.35,37   WURST-80 pulse shapes44 were used with a 50 µs

WURST pulse length, and swept at a rate of 10 or 40 MHz/ms with an offset of either

250 or 1000 kHz and an rf power of 28 kHz.  The number of echoes ranged between 40

and 160, depending on the transverse relaxation characteristics of 137Ba in each sample. 

A spectral width of either 500 or 800 kHz and an optimized recycle delay of 0.1 s were

used.  The frequency step size was set between 100 and 200 kHz, in order to ensure

uniform excitation.  Further experimental details are given in Table B.4.1.  High-power

proton decoupling was tested for all proton-containing samples (ν (
1H) = 35 kHz); the

only differences were observed for barium chloride dihydrate (vide infra).

Experiments at 21.1 T.  Samples were ground and packed into 7 mm o.d.

zirconium oxide rotors.  137Ba NMR spectra were acquired with a 7 mm static probe using

the frequency-stepped techniques outlined above, with a solid-echo pulse sequence of the

form (π/2)x-τ1-(π/2)y-τ2-acq, where the τ1 and τ2 represent interpulse delays.  Experiments

were conducted with a selective π/2 pulse width of 4 µs (ν1 = 31 kHz), spectral widths

between 250 kHz and 1 MHz, calibrated recycle delays between 0.2 s and 0.5 s and

transmitter frequency offsets of 100 kHz.  Further experimental details are given in 

Table B.4.2.  In the case of the barium hydrogen phosphate sample, the 137Ba NMR

spectrum was collected using the WURST-QCPMG pulse sequence.35,37   WURST-80
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pulse shapes44 with a 50 µs WURST pulse length, swept at a rate of 20 MHz/ms, a sweep

width of 1000 kHz and rf power of 6 kHz were used.  The number of echoes was set to

96.  A spectral width of 1000 kHz and recycle delay of 0.2 s were used.

4.2.2 Computational methods.  

137Ba EFG and CS tensor parameters were calculated for all structures.  Ab initio 

plane-wave density functional theory (DFT) calculations were performed using the

CASTEP NMR program40,45 in the Materials Studio 4.3 environment on a HP xw4400

workstation with a single Intel Dual-Core 2.67 GHz processor and 8 GB DDR RAM. 

Ultrasoft pseudopotentials were used for 137Ba EFG calculations with a plane wave basis

set cut-off of 550 eV in a fine accuracy basis set with the Monkhorst-Pack k-space grid

sizes of 4×4×4, 5×3×4, 3×3×3, 4×2×4, 3×3×5, 4×1×1 for barium nitrate, barium

carbonate, barium chlorate monohydrate, barium chloride dihydrate, anhydrous barium

chloride and barium hydrogen phosphate, respectively.  The Perdew, Burke and

Ernzerhof (PBE) functionals were used in the generalized gradient approximation (GGA)

for the exchange-correlation energy.46,47  The magnetic shielding tensors for 137Ba were

calculated in a fine accuracy basis set using the projector augmented-wave method

(GIPAW) implemented in the CASTEP code.48,49  Relativistic effects are included in

CASTEP calculations at the level of the scalar-relativistic zeroth-order regular

approximation (ZORA).50  The chemical shifts were calculated using δiso(sample) -

δiso(ref) = σiso(ref) - σiso(sample) where δiso(ref) and σiso(ref) are the 137Ba experimental

chemical shift (279 ppm)32 and the calculated chemical shielding (5262.28 ppm) of
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BaZrO3, respectively.  The CIF crystal structure files used in the calculations were

obtained from the literature.51-58  Proton positions were geometry optimized only in the

case of barium hydrogen phosphate, since the structures utilized in the calculations for

barium chloride dihydrate and barium chlorate monohydrate were determined from

neutron diffraction experiments.56 

4.3 Results and Discussion

4.3.1 Solid-State 137Ba NMR.  In this section, we discuss the 137Ba SSNMR data

for a series of systems in which the Ba atoms are in distinct coordination environments. 

The NMR spectra were acquired at two different magnetic field strengths to enable

accurate deconvolution of the contributions of the second-order quadrupolar interaction

and the barium chemical shift anisotropy (CSA).  The experimentally measured CQ’s

range from 7.0 to 28.8 MHz (Table 4.1), with central transition powder pattern breadths

ranging from 145 kHz to 4.0 MHz at 9.4 T.

Barium Nitrate.  Using the WURST-QCPMG pulse sequence,37 the NMR pattern

of barium nitrate was acquired very rapidly in a single experiment (11 minutes at 9.4 T

with a breadth of 145 kHz, Figure 4.1).  Analytical simulation of the spectrum reveals a

single barium site, which is consistent with the known crystal structures.51,52,58  The CQ is

7.0 MHz, in agreement with that measured by Weiden and Weiss from a 137Ba single-

crystal NMR experiment.59  This value is the smallest among the samples discussed

herein (Table 4.1), likely due to the high spherical symmetry around the barium atom

resulting from coordination to the twelve oxygen atoms of the nitrate groups arranged in a
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Figure 4.1 137Ba static SSNMR spectra of barium nitrate at two
different magnetic field strengths.

distorted cuboctahedron (Scheme 4.1a).52,58  The ηQ is 0, indicating the axially symmetric

electronic environment at the barium site (the V33 component of the EFG tensor is the

unique component and is therefore positioned along the threefold rotational axis of the

molecule).  
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Scheme 4.1.  The coordination environments of the barium atoms in a) barium nitrate,
b) barium carbonate, c) barium chlorate monohydrate, d) barium chloride dihydrate, 
e) anhydrous barium chloride,  f) barium hydrogen phosphate, site 1 and g) barium
hydrogen phosphate, site2

Table 4.1.  Summary of the experimental 137Ba NMR parameters. 

*CQ(137Ba)*
/MHza

ηQ
b δiso/ppmc Ω/ppmd κe α/degf β/deg γ/deg

Ba(NO3)2     7.0(1) 0.01(1)      -42(8)     25(20)   0.8(2) 40(20)   10(25) -----
BaCO3   17.4(6) 0.33(4)   50(200) 150(150)   0.5(5) -----  ----- -----
Ba(ClO3)2@H2O   25.4(6) 0.48(4)     0(200) 200(100)!0.8(2) ----- ----- -----
BaCl2@2H2O   28.8(3) 0.94(2) 150(100) 150(150)  -0.5(5) ----- ----- -----
BaCl2   28.7(3) 0.81(2) 200(200) 400(300)   0.5(5) ----- ----- -----
BaHPO4  site1 15.5(1.0) 0.85(4)  -120(60) ----- ----- ----- ----- -----
BaHPO4  site 2 22.5(1.0) 0.82(4)     0(200) ----- ----- ----- ----- -----
a CQ  = eQV33/h; b ηQ = (V11 ! V22)/V33; 

c δiso  = (δ11  + δ22  + δ33 )/3; d Ω  = δ11  ! δ33; 
e κ = 3(δ22  ! δiso )/Ω.. 

f Conventions for the Euler angles are described in the WSolids software package

This agrees with the earlier assumptions of Weiden and Weiss, who assigned (but did not

measure) an ηQ of 0 due to the molecular symmetry.  The high field spectrum allows for

the measurement of the barium CSA parameters (Figures 4.1 & B.4.7); however, the span
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(Ω) of the CS tensor is rather small, and represents a contribution of only 4 % of the total

breadth of the CT pattern.  This indicates that accurate measurement of barium CS tensor

parameters will be more challenging for complexes with larger values of CQ, where the

CT patterns are dominated by second-order quadrupolar contributions.

Barium Carbonate.  A static 137Ba SSNMR spectrum of barium carbonate was

previously obtained by Bastow, who reported an extremely long acquisition time (21 days

at 9.4 T using the stepwise echo technique),60 in spite of the large sample size that was

used (i.e., in a 10 mm transverse coil).  Our spectrum was obtained by collecting fifteen

and seven sub-spectra at 9.4 T and 21.1 T, respectively (total experimental times were

only 6.8 hours and 2.4 hours for the whole patterns at 9.4 T and 21.1 T, Figure 4.2). 

Simulations of both high- and low-field spectra reveal NMR parameters identical to those

obtained by Bastow.  The CQ is much larger than that of the nitrate sample, since the nine

coordinating oxygen atoms (Scheme 4.1b) are positioned such that there is great variation

in the Ba-O distances, and give rise to a non-spherically symmetric environment about the

Ba centre.53  In addition, the Ba-O distances are shorter in the carbonate than in the

nitrate, which may also augment the magnitude of CQ.  The value of ηQ indicates that V33

is the distinct component of the EFG tensor and should be oriented either along/within or

perpendicular to a molecular symmetry element (there is a single mirror plane in this unit,

which must also contain one of V11 or V22).  The slightly different values of V11 and V22

(and non-zero ηQ) correspond to the absence of a threefold (or higher) rotational

symmetry axis.  The barium CSA contribution is very small and its effect on the NMR

spectra at both fields is negligible.  This is confirmed by the ratio of the CT pattern
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Figure 4.2.  137Ba static SSNMR spectra of barium carbonate at two
different magnetic field strengths.

breadths at 9.4 T and 21.1 T, which is ca. 2.1:1.0; since the CT pattern breadths scale as

the inverse of the external magnetic field, it is clear that the second order quadrupolar

interaction is dominant.  
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It is also interesting to note that the shapes of the CT powder patterns indicate some

degree of disorder in the sample (the same phenomenon is observed in the spectrum

reported by Bastow), since they do not have the typical sharp discontinuities associated

with highly crystalline samples.  This is not surprising, since carbonates are known to

readily absorb water from the air.  The presence of water in the sample was confirmed via

1H MAS NMR experiments (Figures B.4.8, B.4.9). 

Barium Chlorate Monohydrate.  The 137Ba quadrupolar parameters of barium 

chlorate monohydrate were obtained by Nakamura and Enokiya from the Zeeman

splittings of 135Ba and 137Ba nuclei in a single crystal by using the proton signal

enhancement caused by the frequency crossing of νNQR(
135Ba or 137Ba ) with ν0(

1H); a

directly excited NQR signal was not observed.61  The low natural abundances of 135/137Ba

make these types of NQR experiments challenging, and as a result, large sample sizes

(i.e., on the order of 5 to 30 g) are traditionally utilized,61,62 rendering these experiments

impractical for cases in which sample sizes are limited.

We were able to obtain the 137Ba SSNMR spectra at two different magnetic fields. 

The spectrum acquired at 9.4 T shows overlap between 137Ba and 35Cl/37Cl powder

patterns (ν0(
35/37Cl) = 39.260 and 32.680 MHz, Figure 4.3).  The 35Cl EFG parameters

were previously measured by NQR spectroscopy (CQ = 58.687 MHz and ηQ = 0.027).63-65 

Using these parameters, analytical simulations reveal that the 35Cl and 37Cl NMR pattern

breadths exceed 30 MHz, and result in the observed overlap; unfortunately, it is very

difficult to obtain a precise fit of the overlapping patterns (Figure B.4.10).  Due to the

much higher natural abundance of chlorine ( n.a. = 75.5% and 24.5% for 35Cl and 37Cl,
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Figure 4.3 . 137Ba static SSNMR spectra of barium chlorate monohydrate at
two different magnetic field strengths.  Overlap  between the 35Cl CT and
37Cl satellite transition (ST) with the 137Ba spectrum is observed at 9.4 T.  
#: denote portions of the 137Ba STs.  The small distortions in the right-most
“shoulders” of each simulated spectrum are artefacts arising from a limited
number of angles in the total powder average.

respectively), as well as the difference in T2 characteristics between 137Ba and 35/37Cl, the

137Ba signal in the low frequency side of the pattern is obstructed by the 35/37Cl signals. 
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However, the 137Ba NMR spectrum acquired at 21.1 T displays no such overlap, since the

137Ba and 35Cl Larmor frequencies are further apart ν0(
35/37Cl) = 88.125 and 73.356 MHz,

and the CT pattern breadths scale as the inverse of B0 (though traces of interference from

the 137Ba satellite transitions are observed).  The barium ion in this site is surrounded by

one water oxygen and ten other oxygen atoms from different chlorate groups.54  The

larger CQ compared to that of the previous two samples is due to further reduction of

spherical symmetry at the barium site.  The shortest Ba-O bond of 2.731 Å is to the lone

water molecule in the arrangement of eleven oxygen atoms (the other ten Ba-O distances

range from 2.790 to 3.004 Å).  The ηQ = 0.48 indicates that V33 is the distinct component

of the EFG tensor, which is likely oriented along the twofold rotational axis of molecule,

which includes the lone Ba-OH2 bond (Scheme 1c).54

Dihydrate and Anhydrous Forms of Barium Chloride.  The 137Ba quadrupolar

parameters of barium chloride dihydrate were previously obtained from NQR

experiments on single crystal66 and polycrystalline samples.67  In the former case, the

extraction of the quadrupolar parameters was complicated by crystal twinning, while in

the latter case, a very large amount of crystalline sample was used (i.e., 25 g) in order to

obtain the signal (again, this can be inconvenient and impractical in many situations

where sample sizes are limited).  In contrast, our 137Ba SSNMR spectra were obtained at

9.4 T and 21.1 T using a small amount of a powdered sample (i.e., 0.2 g).  Simulations of

the spectra (Figure 4.4) reveal a single barium site, in agreement with the crystal

structure.56  The CQ value is similar to that obtained from NQR; however, the ηQ value of

0.78(14) is different.66,67  The ηQ value obtained from our NMR experiments is likely
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more accurate, since the previously reported ηQ value was estimated from calculations

and quadrupolar parameters of analogous systems, and not directly measured in the NQR

experiments (NQR experiments on spin-3/2 nuclei do not readily permit determination of

ηQ,68 unless special techniques are applied).69,70  The barium atom is coordinated to four

oxygen and five chlorine atoms (Scheme 4.1d), with Ba-O bond distances varying from

2.844 to 2.887 Å, and Ba-Cl distances varying from 3.131 to 3.340 Å.56  The chlorine and

oxygen atoms are arranged such that no simple geometrical assignments of shape can be

made; in fact, the arrangement of atoms has been described “approximately as a square

antiprism with one square face enlarged to accommodate the fifth Cl- ion.”56  The

complete absence of spherical/platonic symmetry, coupled with the different Ba-O and

Ba-Cl distances and distinct electronic characteristics of the Cl and O atoms give rise to

the largest CQ observed in this series.  Since the ηQ is close to 1.0, it is known that V11 is

the distinct component, and V22 and V33 are very similar in magnitude.  However, due to

the absence of any symmetry elements, it is difficult to make any postulations regarding

the orientation of the EFG tensor components.

The 137Ba SSNMR spectra of the anhydrous form at both fields (Figure 4.4)

indicate a single barium site, consistent with the crystal structure.55  Simulations of these

spectra reveal NMR parameters similar to those of the dihydrate sample.  The barium

atom in this case has a ninefold coordination to chlorine atoms forming a three-face

centred trigonal prism (Scheme 1e), and the Ba-Cl bond distances vary from 3.063 to

3.544 Å.55  Due to the difference between the barium chemical environments in the

anhydrous and dihydrate samples and the much larger Ba-Cl distances in the former, it is
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Figure 4.4.  137Ba static SSNMR spectra of barium chloride dihydrate (left) and
anhydrous barium chloride (right) at two different magnetic field strengths.  *: indicates
interferences from an FM radio frequency.

difficult to qualitatively rationalize the similarity of the CQ values (though certainly, the

aspherical environment yields a large CQ).  Again, the ηQ value of the anhydrous form

indicates that V11 is the distinct component; however, in this case, the V11 must be

oriented perpendicular to the mirror plane since V22 . V33. 

It would be very difficult to differentiate the Ba sites in the anhydrous and

dihydrate forms based on the values of CQ and ηQ alone.  However, there is a large

difference in their transverse relaxation times, T2(
137Ba), which are measured from the

QCPMG echo trains.  The T2 is much longer in the anhydrous form (13.2 ± 5.2 ms) than

in the dihydrate (3.1 ± 2.0 ms).  This difference arises from the presence of dipolar
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couplings between water protons and 137Ba nuclei in the dihydrate sample, which serve to

increase the efficiency of transverse relaxation; this was confirmed by applying 1H

decoupling during acquisition, which helps to reduce the dipolar contribution to the

overall transverse relaxation (T2 = 9.6 ± 5.7 ms).  In principle, one could differentiate

these sites in a mixed sample by acquiring QCPMG echo trains of varying lengths.

Barium Hydrogen Phosphate.  The acquisitions of the 137Ba SSNMR spectra of 

barium hydrogen phosphate were more challenging than those of the previous systems,

due to the presence of two overlapping powder patterns (Figure 4.5) resulting from two

crystallographically distinct barium sites, as well as substantially reduced transverse

relaxation times (and correspondingly shorter CPMG trains).  We were unable to obtain a

full, high S/N powder pattern at 9.4 T; however, a high quality spectrum was acquired at

21.1 T using the WURST-QCPMG pulse sequence.  The two sites have very different

NMR parameters which reflect the difference in their coordination environments57 and

demonstrate the sensitivity of the 137Ba NMR to the structural differences.  The two

barium sites are ninefold (Ba1) and tenfold (Ba2) (Scheme 4.1f, g) coordinated by oxygen

atoms, and are assigned to the smaller and larger CQ values, respectively, on the basis of

the higher spherical symmetry of the former (see computational section below for further

discussion).  The high ηQ values indicate the V11 is the distinct component of the EFG

tensor in both cases (vide infra).
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Figure 4.5.  137Ba static SSNMR spectrum of barium hydrogen phosphate and its
simulation at 21.1 T. *: indicates interferences from an FM radio frequency.

4.3.2 Theoretical calculations of 137Ba EFG and CS tensors.  

Ab initio calculations were performed in order to correlate the 137Ba EFG tensors

to the solid-state structure at the barium sites.  The development of such correlations is

crucial for future applications of 137Ba SSNMR spectroscopy and associated structural

interpretations for many barium-containing systems which are disordered or do not have

known crystal structures.  Due the periodic nature of the systems herein, CASTEP

software was used for the calculations of the NMR parameters (see computational

methods for details).  The results of all of these calculations are compared to the

experimental values in Tables 4.2 and B.4.3.  
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Table 4.2. Comparison of the experimental and CASTEP-calculated 137Ba EFG tensor
parameters

V11 (au) V22  (au) V33 (au) CQ(137Ba)/MHza ηQ

Ba(NO3)2 Exp. ---- ---- ----                 7.0(1)   0.01(1)
Ba(NO3)2 Cal.    0.0464    0.0464 !0.0927               !5.3   0.00
BaCO3 Exp. ---- ---- ----                 17.4(6)   0.33(4)
BaCO3 Cal. !0.1241 !0.1385    0.2626                 15.1   0.06
Ba(ClO3)2@H2O Exp. ---- ---- ----                 25.4(6)   0.48(4)
Ba(ClO3)2@H2O Cal.    0.0629    0.3868 !0.4497              !25.9   0.72
BaCl2@2H2O Exp. ---- ---- ----                 28.8(3)   0.94(2)
BaCl2@2H2O Cal.    0.0077    0.5490 !0.5567              !32.0   0.97
BaCl2 Exp. ---- ---- ----                 28.7(3)   0.81(2)
BaCl2 Cal.    0.0301    0.4688 !0.4989              !28.7   0.88
BaHPO4,  site 1 Exp. ---- ---- ----                 15.5(1.0)  0.85(4)
BaHPO4,  site1 Cal.    0.0123    0.2625 !0.2748             !15.8   0.91
BaHPO4,  site 2 Exp. ---- ---- ----                 22.5(1.0)  0.82(4)
BaHPO4,   site 2 Cal.    0.0882    0.3411 !0.4293              !24.7   0.59
a The signs of experimental CQ values are unknown; signs of theoretically calculated values of CQ are
determined from calculations.

Plotting the experimental CQ's versus the calculated values provides an excellent

linear correlation (Figure 4.6a); however, this correlation is only satisfactory for the ηQ

values (see Figure 4.6b and discussion below).  Since the anisotropic chemical shift

parameters have a minimal influence on the 137Ba CT NMR spectra, it is difficult to make

accurate comparisons of these data and the theoretically calculated magnetic shielding

tensors; hence, the barium CS tensor parameters is not discussed in detail herein (some

preliminary data is summarized in Table B.4.3).

CASTEP calculations were performed on the three different structures of barium

nitrate reported in the literature.51,52,58  The best agreement with experiment is obtained

from calculations utilizing coordinates based on the most recently reported structure by

Trounov et al. (Tables 4.2 and B.4.4).  While all calculations predict axially symmetric

EFG tensors (ηQ = 0), theoretically calculated values of CQ vary with subtle changes in
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Figure 4.6.  Correlations between the experimental and calculated
137Ba a) CQ and b) ηQ values.

molecular structure, demonstrating that even small displacements in O positions can lead

to significant changes in the magnitude of V33.  
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Figure 4.7.  Theoretically calculated 137Ba EFG tensor orientations in a) barium nitrate,
b) barium carbonate, c) barium chlorate monohydrate, d) barium chloride dihydrate and
e) anhydrous barium chloride.

Furthermore, geometry optimization of the structure and the use of varying degrees of

basis set flexibility in the EFG calculations did not result in significant variation in the

calculated values of CQ (Table B.4.4).  It is likely that limitations in the basis set or

density functional may account for discrepancies between experimental and calculated CQ

values, and not long range electrostatic interactions, since these are inherently taken into

account in the CASTEP calculations.  The largest component of the EFG tensor, V33, is

aligned along the threefold rotational axis of the molecule, in accordance with the axial

symmetry of the EFG tensor (Figure 4.7a), and consistent with our predictions based on

symmetry.
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The calculated CQ for barium carbonate is in good agreement with the

experimental value.   V33, the distinct component of the EFG tensor, is positioned within

the crystallographic mirror plane (Figure 4.7b), and lies close to an approximate plane

formed by four O atoms.  The theoretical value of ηQ is 0.06, which indicates that the

EFG tensor is essentially axially symmetric (V11 . V22), and that V11 and V22 are directed

into similar chemical environments.  This is surprisingly different from the

experimentally measured tensor, in which V11 and V22 are not similar.  We are uncertain of

the origin of this discrepancy; however, given the mirror plane symmetry of the BaO9

coordination environment, and the distinct V11 and V22 environments indicated by

symmetry and by calculated tensor orientations, we believe that the experimental value is

far more reliable.

The calculated CQ value in the barium chlorate monohydrate case is in excellent 

agreement with experiment; however, the calculated ηQ is slightly higher.  In this case, the

discrepancy between the experimental and theoretical ηQ values may result from the

observation of an “average” or “effective” ηQ, which results from librational motion of

the water molecules54 which may alter the magnitude(s) of V11 and/or V22.  As expected,

the largest component of the EFG, V33, is oriented along the Ba-Owater bond (p V33 &Ba &O

= 180E), which lies along the C2 rotational axis, with V11 and V22 oriented in different

environments (Figure 4.7c).

Both the CQ and ηQ values for barium chloride dihydrate are in good agreement

with experiment.  As discussed above, these large values of CQ result from the absence of

any sort of spherical/platonic symmetry about the barium centre.  In this case, V11 is the
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distinct component of the EFG tensor, and is oriented almost in the center of a distorted

pyramid formed by two Cl1, O1a and O2a atoms, and V22 is oriented at an angle with the

plane formed by O1a, O2a, and O2b (pV22-Ba-O2b = 67.36o, Figure 4.7d).  For the

anhydrous system, both the CQ and ηQ values are in excellent agreement with

experimental data.  Again, V11 is the distinct component, and as predicted, is oriented

perpendicular to a crystallographic mirror plane formed by one Cl2 and two Cl1 atoms,

and bisects two separate planes formed by one Cl1 and two Cl2 atoms (Figure 4.7e).  V22

and V33 are contained within the former plane, with the latter oriented very close (ca. 14o)

to the shorter in-plane Ba-Cl2 bond.  These two systems have very similar local barium

geometries in terms of atom positions, as evidenced by the similar values of CQ and

tensor orientations; however, the disparate ηQ values reflect the changing atom identities

(O vs. Cl) and bond lengths.

The calculated values of CQ and ηQ for barium hydrogen phosphate are in very

good agreement with experiment and confirm the assignment of the two sites based on

the NMR data.  The nine-coordinate Ba1 site has a crystallographic mirror plane which

contains the lone Ba-O-H arrangement of atoms; the O atoms are arranged in a distorted

monocapped square prismatic environment.  V11 is the distinct component, and is directed

perpendicular to this plane; V22 and V33 are positioned within the plane, oriented at ca. 11o 

and 101o, respectively, from the unique Ba-O(H) bond (Figure 4.8a).  The Ba2 site is in a

general position with no symmetry elements, and much lower spherical symmetry than

Ba1.  V11 is again the distinct component, and is oriented along the direction of the two

bidentate-bound phosphate groups, Figure 4.8b (i.e., V11-Ba-Pbident of 1.4o and 7.9o).  V22 
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Figure 4.8.  Theoretically calculated 137Ba EFG tensor orientations in BaHPO4.

and V33 are directed into similar environments comprised of a shallow pyramid of O

atoms from four monodentate phosphate ligands (one of them is nominally bidentate with

a much lengthier Ba-O bond, V22 lies ca. 6.7o from this bond).

4.4 Conclusions

Herein, we have shown that acquisition of 137Ba ultra-wideline SSNMR spectra of

barium-containing materials is feasible at moderate and ultrahigh magnetic field

strengths.  Using the WURST-QCPMG pulse sequence, along with frequency-stepped

acquisitions, the 137Ba NMR spectra can be rapidly acquired with high resolution and

reasonably good S/N.  Furthermore, using ultrahigh magnetic field strengths,

experimental times can be significantly decreased (or S/N enhanced) due to the reduction
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in the second-order quadrupolar pattern breadths resulting from their inverse dependence

on the external magnetic field strength.  

The shapes and breadths of the 137Ba NMR patterns are dominated by the

quadrupolar interaction.  The quadrupolar parameters, CQ and ηQ, which are extracted

from these spectra are extremely sensitive to the nature of the barium site geometries,

symmetries and coordination environments.  The values of CQ increase in magnitude as

the Ba environments become less spherically symmetric.  Theoretical calculations of the

137Ba EFG tensor parameters are generally in good agreement with the experimental

values, and will undoubtedly be helpful in future structural predictions for which

crystallographic data are not available.  Further to this, the 137Ba EFG tensor orientations

provide insight into the origin of these tensors and their correlations to molecular

structure and symmetry.  From this work, we hope that 137Ba SSNMR spectroscopy will

continue to be applied to characterize molecular structure (and potentially dynamics) in a

wide variety of barium-containing systems, aiding chemists and material scientists in

understanding these systems at the molecular level.
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Chapter 5

Solid-State 115In NMR Study of Low-Oxidation State Indium
Complexes

5.1 Introduction

There is increasing interest in exploring new compounds with metal elements in

low oxidation states for the synthesis of new catalysts or materials precursors.1-6 

Compounds with metal elements in lower oxidation states have significantly different

structural features and reactivities than corresponding higher oxidation state

compounds.7,8  For group 13 elements, the +3 oxidation state is usually the most stable,

and is commonly involved in complexes behaving as Lewis acids.  In contrast,

compounds containing group 13 elements in the +1 oxidation state are relatively rare, and

can behave either as Lewis bases or Lewis acids.9,10  In particular, In(I) compounds

exhibit unique behavior and redox properties which make them useful as either reagents

or catalysts used to affect several types of organic transformations.6,11-14  The majority of

In(I) salts are insoluble in most common organic solvents,7 which limits their structural

characterization by routine methods (i.e., single crystal X-ray diffraction and solution

NMR).

Indium has two NMR-active isotopes, 113In and 115In, which are quadrupolar nuclei 

(both have nuclear spins of 9/2).  They both have large nuclear electric quadrupole

moments (Q = 79.9 and 81.0 fm2, respectively),15 moderate gyromagnetic ratios 

(5.8845 × 107 and 5.8972 × 107 rad T&1 s&1, respectively) and natural abundances of 4.3%
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and 95.7%, respectively.15  Of the two isotopes, 115In is preferred for NMR due to its

much higher receptivity (i.e., with respect to carbon, DC(113In) = 88.5 and DC(115In) = 

1.98 × 103); however, its quadrupole moment is the largest among all NMR-active

isotopes of the main group elements.15  The large Q can lead to sizeable quadrupolar

interactions, resulting in very broad NMR patterns which are challenging to acquire.16 

The quadrupolar interaction is the interaction of the nuclear quadrupole moment with the

electric field gradient (EFG) at the nucleus.  The EFG is described by a symmetric,

traceless, second-rank (3 × 3) tensor with three principal components defined such that

|V33|  $ |V22|  $ |V11|.  These components provide information about the spherical and axial

symmetry of the ground state electronic environment at the nuclear site through

measurements of the quadrupolar coupling constant, CQ = eQV33/h, and the asymmetry

parameter, ηQ = (V11 - V22)/V33, respectively.  Measurements of the 115In EFG tensor

components, along with the indium chemical shift tensor parameters (which describe the

indium chemical shift anisotropy, CSA) provide useful information about the chemical

environments of the indium atoms.

Solution-state 115In NMR spectroscopy has been used to identify different indium

sites in a variety of In(III)-containing systems through measurements of the isotropic

chemical shifts, δiso.
17-26  However, in cases where indium sites are not in a highly

spherically symmetric environments, it is often difficult to observe the 115In NMR signal,

due to fast quadrupolar relaxation in solution.20  Many In(I) compounds are insoluble in

commonly used solvents, limiting the application of solution-state NMR spectroscopy for

their study.  115In solid-state NMR (SSNMR) is an excellent alternative for
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characterization of such systems, since the anisotropic NMR interaction tensors obtained

from these spectra provide rich structural information.  Most of the 115In SSNMR studies

reported to date have largely focused on indium materials which are used (or have the

potential to be used) as semi-conductors or conductors.27-34  Many of these studies report

indium Knight shifts, sometimes the quadrupolar parameters, and rarely, the chemical

shift (CS) tensor parameters.  In addition, most of these studies deal with indium

materials in which In is in the +3 oxidation state and/or exists in highly symmetric

environments.  Recently, Chen et. al have shown the utility of 115In SSNMR for studying

indium coordination complexes in which the indium is in the +3 oxidation state.16,35

Herein, we describe the first detailed 115In SSNMR study of low-oxidation state

indium compounds.  115In SSNMR data are obtained for eight samples with a variety of

structural motifs, including [In][GaCl4], InCl2, [In(15-crown-5)2][OTf], [In([18]crown-

6)][GaCl4], [In([18]crown-6)][AlCl4], [In][OTf], InBr and InI.  Static (i.e., stationary

sample) NMR spectra were acquired at both moderate and ultra-high magnetic field

strengths (9.4 and 21.1 T) in order to accurately measure the EFG and the CS tensor

parameters.  In addition, magic-angle spinning (MAS) spectra were obtained at 21.1 T in

order to average the contribution of indium CSA to the central transition (CT) pattern,

and to separate the central isotropic powder pattern from the spinning sidebands, thereby

allowing for accurate measurements of CQ, ηQ and δiso.  In most cases, the use of ultra-fast

(νrot $50 kHz) MAS was necessary, due to the sizeable anisotropic NMR interactions. 

There are very few reports of 115In MAS NMR in the literature;29,32,36,37 to the best of our

knowledge, this is the first report of 115In ultra-fast MAS NMR spectra.  Analytical
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simulations of the 115In static NMR spectra are used to determine the quadrupolar and CS

parameters, which are correlated to the local structure and symmetry.  Finally, first

principles calculations of the 115In EFG and nuclear magnetic shielding (NS) tensor

parameters are presented for systems for which structures are available, using the plane-

wave CASTEP methods.38

5.2 Experimental Details

5.2.1 Sample Preparations. 

Samples of [In][GaCl4], InCl2, InBr, and InI were purchased from Sigma-Aldrich. 

[In([15]crown-5)2][OTf] and [In][OTf] were synthesized as described in the literature.12,39

Synthesis of [In([18]crown-6)][AlCl4]. Toluene (30 mL) was added to AlCl3

(0.251 g, 1.89 mmol) and InCl (0.284 g, 1.89 mmol) in a 100 mL Schlenk flask and

refluxed overnight, or until no traces of InCl were visible.  The solution was then brought

to room temperature and a toluene (10 mL) [18]crown-6 (0.500 g, 1.89 mmol) solution

was added to the reaction mixture.  Immediately upon addition of [18]crown-6, a colour

change was observed followed by the formation of a colourless product.  All volatile

components were removed under reduced pressure and the product was obtained as a

colourless powder after washing with pentane (84.5% yield).

Synthesis of [In([18]crown-6)][GaCl4]. Toluene (30 mL) was added to GaCl3

(0.333 g, 1.89 mmol) and InCl  (0.284 g, 1.89 mmol) in a 100 mL Schlenk flask and

refluxed overnight, or until no traces of InCl were visible.  The solution was then brought

to room temperature and a toluene (10 mL) [18]crown-6 (0.500 g, 1.89 mmol) solution
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was added to the reaction mixture.  All volatile components were removed under reduced

pressure, and the product was obtained as a colourless powder after washing with pentane

(89% yield).

5.2.2 Solid-State NMR. 

115In SSNMR experiments were performed on a Varian Infinity Plus spectrometer

equipped with a 9.4 T (ν0(
1H) = 399.73 MHz) Oxford wide-bore magnet ( ν0(

115In) =

87.59 MHz) at the University of Windsor and a 21.1 T (ν0(
1H) = 900.08 MHz) Bruker

Avance II spectrometer (ν0(
115In) = 197.23 MHz) at the National Ultrahigh-field NMR

Facility for Solids in Ottawa, Canada.  In some cases, the NMR patterns were much wider

than the excitation bandwidth achievable with an ideal high power rectangular pulse;

thus, spectra were collected by stepping the transmitter frequency across the entire CT

powder pattern in even increments, acquiring the individual sub-spectra, and co-adding

them to form the total pattern40,41 (see Appendix C, Tables C.5.1-C.5.3 for full

experimental details).  Indium chemical shifts were referenced to a 0.1 M solution of

In(NO3)3 in 0.5 M HNO3 (δiso = 0.0 ppm).16  Analytical simulations of 115In NMR spectra

were performed using WSolids,42 and MAS NMR spectra with spinning sidebands were

simulated using DMFIT.43

Experiments at 9.4 T.  Samples were finely ground and packed into either 5 mm

o.d. zirconium oxide rotors or 5 mm glass NMR tubes.  115In static NMR spectra were

acquired using a Varian 5 mm triple-resonance MAS probe (HXY).  Spectra were

collected using either the Hahn-echo sequence of the form (π/2)x-τ1-(π)y-τ2-acq (where the
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τ1 and τ2 represent interpulse delays), or the WURST-echo pulse sequence.44  For the

Hahn-echo experiments, CT selective π/2 pulse widths between 0.45 and 1.1 µs, an

optimized recycle delay of 0.1 s and a spectrum width of 1 or 2 MHz were used.  The

transmitter offset frequency was set between 35 and 150 kHz.  For the WURST-echo

experiments, WURST-80 pulse shapes45 were used with a 50 µs WURST pulse length,

and swept at a rate of 40 MHz/ms with an offset of 1000 kHz and rf power of 

17 kHz.  A spectral width of 2 MHz and recycle delay of 0.1 s were used.  The frequency

step size was set to 250 kHz, in order to ensure uniform excitation.  Further experimental

details are given in Table C.5.1.

Experiments at 21.1 T.  For the static 115In NMR experiments, samples were

ground and packed into 4 mm o.d. NMR glass tubes and spectra were acquired on a 4 mm

home-built static (HX) probe using a solid-echo pulse sequence of the form 

(π/2)x-τ1-(π/2)y-τ2-acq.  Experiments were conducted with a selective π/2 pulse width of 

1 µs (ν1 = 50 kHz), spectral widths between 200 and 1000 kHz, a recycle delay of 1 s.  In

cases where piecewise acquisition was necessary, the transmitter frequency offsets were

set between 60 and 150 kHz.  A 1H decoupling power of 55 kHz was applied for the

spectral acquisitions of proton-containing samples; however, decoupling did not seem to

alter the shape of the powder patterns compared to spectra acquired without decoupling. 

Further experimental details are given in Table C.5.2.  

MAS NMR spectra were acquired using either 4 mm or 1.3 mm Bruker double-

resonance probes, using the solid-echo pulse sequence with rotor-synchronized echo

delays.  Selective π/2 pulse widths of 0.5 (100 kHz) or 1 µs (ν1 = 50 kHz), spectral widths
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between 200 and 1000 kHz, a recycle delay of either 0.5 or 1 s were used, with spinning

speeds from 12.5 to 62.5 kHz (Table C.5.3).

5.2.3 Computational methods.

 115In EFG and CS tensor parameters were calculated for all systems with available

crystal structures.12,39,46-48  Ab initio plane-wave density functional theory (DFT)

calculations were performed using the CASTEP NMR program38,49 in the Materials

Studio 4.3 environment on a HP xw4400 Workstation with a single Intel Dual-Core 

2.67 GHz processor and 8 GB DDR RAM.  Ultrasoft pseudopotentials were used for 115In

EFG calculations with a plane wave basis set cut-off of 550 eV in an fine accuracy basis

set with the Monkhorst-Pack k-space grid sizes of (2×4×3), (3×3×3), (5×2×5), (6×2×5)

and (5×4×1) for [In][GaCl4], [In(15-crown-5)2][OTf], InI, InBr and [In][OTf],

respectively.  The Perdew, Burke and Ernzerhof (PBE) functionals were used in the

generalized gradient approximation (GGA) for the exchange-correlation energy.50,51  The

magnetic shielding tensors for 115In were calculated in fine accuracy basis set using the

projector augmented-wave method (GIPAW) implemented in the CASTEP code.52,53 

Relativistic effects are included in CASTEP calculations at the level of the

scalar-relativistic zeroth-order regular approximation (ZORA).54

5.3 Results and Discussion

5.3.1 Solid-state 115In NMR. 

In this section, the 115In SSNMR data are discussed for the eight samples.  The
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EFG and CS tensor parameters are summarized in Table 5.1.  We note that the MAS

NMR spectra were only obtained at 21.1 T; because the breadth of the CT NMR spectra

is inversely proportional to the applied magnetic field strength, it is possible to separate

the spinning sidebands from the isotropic powder pattern, and accurately determine CQ,

ηQ, and δiso.  In all cases (with the exception of the In(III) site in InCl2), the isotropic

chemical shifts are consistent with the indium sites being in the +1 oxidation state, since

the measured chemical shifts indicate that nuclei of the In(I) sites are much more shielded

than those reported of In(III) complexes in solution and in the solid state,16,24 and

consistent with chemical shifts of In(I) sites measured with solution 115In NMR

spectroscopy.22

Table 5.1.  Summary of the experimental 115In NMR parameters. 
*CQ(115In)*/

MHza
ηQ

b δiso/ppmc Ω/ppmd κe α/degf β/deg γ/deg

[In+][GaCl4]    22.0(6)  0.2(1)   !1115(10) 60(20)   0.7(3) 65(20) 8(6)    5(5)
InCl2 Site 1    10.0(15)  0.75(20)   !1080(5) 30(10) !0.5(3) 40(20)    30(10)    5(5)
InCl2 Site 2    29.5(15)  0.16(8)      80(10) 60(10)!0.6(3) 55(20)   90(5)    10(5)
[In([15]crown-5)2][OTf]    28.4(10)  0.18(10)   !1192(15) 75(15)   0.2(4) 50(30)    90(10)    5(5)
[In([18]crown-6)]GaCl4    57.0(15)  0.10(5)   !1110(20) 50(30)   0.2(6) 10(10)    20(10)    10(10)
[In([18]crown-6)]AlCl4    60.2(10)  0.07(6)   !1115(10) 45(30)   0.0(6) 30(20)    35(20)    20(10)
InI    44(1)  0.7(1)   !480(20) 110(50)   0.8(2) 45(40) 5(5)    0
InBr    67(2)  0.58(8)   !580(40) 140(40)   0.4(3) 30(20) 5(5)    30(20)
InOTf  80.5(15)  0.07(3)   !1045(15) 260(60)   0.3(2) 50(30) 3(3)    30(20)
a CQ  = eQV33/h; b ηQ = (V11 ! V22)/V33; 

c δiso  = (δ11  + δ22  + δ33 )/3; d Ω  = δ11  ! δ33; 
e κ = 3(δ22  ! δiso )/Ω.

f Conventions for the Euler angles are described in the WSolids software package

Indium Gallium Chloride, [In][GaCl4].  The 115In SSNMR spectra of [In][GaCl4] 

(Figure 5.1a) reveal a single indium site in agreement with the crystal structure.46  
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Figure 5.1.  115In SSNMR patterns of a) [In][GaCl4] and b) InCl2.  The MAS spectra were acquired with νrot = 18 kHz, and this
spinning speed is fast enough to separate the spinning sidebands from the isotropic powder patterns.   The spectra of InCl2

reveal two indium sites with different oxidation states.  *: impurity at  -1020(20) ppm, top and bottom traces are simulated and
experimental spectra, respectively.
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The indium site in this structure is coordinated by six chlorine atoms in a distorted

octahedral environment (Scheme 5.1a).  The CQ value (Table 5.1) is small, given the large

nuclear electric quadrupole moment of 115In, and in comparison to the large CQ values of

the six-coordinate indium(III) complexes reported by Chen et al.16,35  This small CQ is

similar to that of Na3In(III)Cl6 (CQ = 20.11 MHz), in which the indium atom is also in a

distorted octahedral environment.30  The non-zero ηQ value indicates the absence of a

threefold (or higher) rotational symmetry axis, and that the largest component of the EFG

tensor, V33, is distinct and is likely oriented along/within or perpendicular to the mirror

plane containing the four equatorial chlorine atoms.  Despite the fact that the NMR

pattern of [In][GaCl4] is dominated by the quadrupolar interaction, the CSA contribution

has a major effect on its shape, as clearly seen from the static spectrum acquired at 21.1 T

(Figure C.5.1, Appendix C).  The nearly null value of the Euler angle β indicates that V33

and the principal component of the CS tensor corresponding to the direction of the

highest shielding, σ33, are almost coincident.  

Indium dichloride, InCl2.  The empirical formula of InCl2 is deceiving since it

suggests that In is in the +2 oxidation state and the sample is paramagnetic.  However, it

has been suggested that this sample has monovalent and trivalent indium sites in 1:1 ratio

and the formula is better described as [In(I)]+[In(III)Cl4]
!;7,48,55 to date, the crystal

structure is still unknown.  Currently, there is still a debate in the literature concerning the

environment of the two indium sites, particularly the In(III) site.  In some reports, it is

believed that the In(III) is coordinated to four chlorine atoms in a slightly distorted

tetrahedral environment, as is the case for the Ga(III) in GaCl2 structure.56,57  
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Scheme 5.1.  The coordination environments of the indium atom in a) [In][GaCl4], b) [In([15]crown-5)2][OTf], c) the
structural model of [In([18]crown-6)]AlCl4 and [In([18]crown-6)]GaCl4, d) InI, e) InBr, and f) [In][OTf].  The blue bonds in f
are those within 3 Å from the indium, the solid black bonds are within 3.5 Å and the dashed ones are within 4 Å.
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However, other reports predict that the In(III) is coordinated to six chlorine atoms, which

is believed to be the most stable coordination state of In(III) with chlorine ligands.7,48,58 

Our 115In SSNMR spectra reveal two distinct powder patterns separated by more than

1000 ppm (Figure 5.1b); confirming the divalent nature of InCl2.  The powder patterns

have isotropic shifts of -1080 and + 80 ppm, and are assigned to the In(I) and In(III) sites,

respectively.  The In(III) site has an isotropic chemical shift and quadrupolar parameters

similar to those of In(III)Cl3 (δiso = 74(10) ppm, CQ = 28.8(5) MHz and ηQ = 0.11(10)),

measured by Bryce and co-workers,59 indicating that the In(III) site in InCl2 is very likely

to be coordinated to six chlorine ligands in a distorted octahedral environment (as is the

case for In(III)Cl3).  The near-zero ηQ value indicates that the EFG tensor is close to being

axially symmetric, consistent with a distorted octahedral environment.  The In(I) site in

InCl2 has a very small CQ, indicating that it is in an environment of higher spherical

symmetry than In(III).  It is possible that this indium site is in a less distorted octahedral

environment, or even more likely, it maybe coordinated to 10 or more chlorine atoms, due

to the tendency of In(I) to acquire a larger coordination number.48  The high ηQ value of

this site reveals the absence of a rotational symmetry axis and that the EFG tensor is not

axially symmetric.  This ηQ value is similar to that of Ga(I) site in GaCl2 (ηQ .1),59 in

which the Ga is coordinated to eight Cl atoms with an irregular dodecahedral geometry.60

Indium(I)-15-Crown-5-Sandwich Trifluoromethanesulfonate, [In(15-crown-

5)2][OTf].  This is the first reported compound with bonds between indium metal and

[15]crown-5; in addition, it is unusually soluble in toluene.12  The structure exhibits a

single indium site residing on an inversion center (Scheme 5.1b).  The 115In NMR spectra
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Figure 5.2.  115In SSNMR patterns of [In([15]crown-5)2][OTf].  The MAS spectrum was
acquired with νrot = 12.5 kHz. Top and bottom traces are simulated and experimental
spectra, respectively.

reveal the presence of a single indium site with a relatively small CQ (Figure 5.2), which

is consistent with its highly spherically symmetric environment.  The small non-zero ηQ

confirms the absence of a threefold (or higher) rotational axis and consistent with the

presence of an inversion center.  The indium CSA also makes a significant contribution to

the powder pattern (Figure C.5.2), with the Euler angle of β = 90E revealing that σ33 is

oriented in a direction perpendicular to V33.  However, the skew and other Euler angles do

not indicate the co-alignment of σ11 or σ22 with V33.

Indium(I)[18]Crown-6-Gallium Tetrachloride and Indium(I)[18]Crown-

Aluminum Tetrachloride, [In([18]crown-6)][GaCl4] and [In([18]crown-6)][AlCl4].  The

structures of these samples have not been obtained due to the difficulties in growing

crystals suitable for single-crystal XRD experiments.  Therefore, 115In SSNMR is an ideal

tool for providing insights into the electronic and bonding environments of the indium

sites, and the arrangement of the different ligands in these structures.  The NMR patterns
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of both samples (Figure 5.3) are much broader than those discussed above, due to the

larger quadrupolar interactions in these systems.  The large quadrupolar interactions yield

static CT patterns which must be acquired in a piecewise manner (three subspectra) at 

9.4 T; in addition, the MAS NMR spectrum acquired at 9.4 T would be very convoluted,

since there is overlap between the isotropic powder pattern and spinning sidebands (data

not shown).  Due to the inverse dependence of the CT pattern breadth on B0, it was

possible to acquire an MAS spectrum at 21.1 T using an ultra-fast MAS NMR probe 

(νrot = 50 kHz).  Further, the static 115In NMR spectrum could have been acquired at

21.1 T in a single experiment, but the spectrum was obtained in three pieces to ensure

uniform excitation.  The combination of the static NMR spectra at two fields, and the

simulation of the full MAS spinning sidebands manifold, allow for refinement of the

NMR tensor parameters. 

Simulations of the spectra reveal a single indium site in each of [In([18]crown-

6)][GaCl4] and [In([18]crown-6)][AlCl4] with similar NMR parameters, indicating that

these sites exist in similar chemical environments.  The large CQ, in comparison to that of

the [15]crown-5 complex, indicates a reduction in spherical symmetry at the indium sites,

and ηQ values indicate nearly axially symmetric EFG tensors.  The CSA contribution is

less important in these patterns due to the dominant quadrupolar interactions; however,

the static CT powder patterns could not be accurately simulated without the inclusion of

the CS tensor parameters (Figure C.5.3).  The stoichiometries for these systems are

different from that of the [15]crown-5 complex (i.e., there is only one crown per indium

site), suggesting that they may have very different structures and indium environments.  
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Figure 5.3.  115In SSNMR patterns of a) [In([18]crown-6)]GaCl4 and b) [In([18]crown-6)]AlCl4  The MAS spectra were
acquired with νrot = 50 kHz, and this spinning speed is fast enough to separate the spinning sidebands from the isotropic
powder patterns.  *: impurity  at 1130(100) ppm, top and bottom traces are simulated and experimental spectra, respectively.
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Given that the [18]crown-6 cavity is large enough to accommodate the In(I) ion,61 and

given the large CQ's and near-zero ηQ's, we propose a structural model pictured in 

Figure 5.1c.  The presence of GaCl4 and AlCl4 are confirmed by 71Ga and 27Al SSNMR

spectra (Figure C.5.4), based on their solution chemical shifts.24  However, further 115In

NMR experiments should be performed on similar well-characterized systems, which in

combination with first principles calculations, can be utilized to confirm the proposed

structures.

Indium(I) Iodide and Indium(I) Bromide, InI and InBr.  The structures of InI and

InBr are isomorphous, each having seven halogen atoms in the first coordination sphere

of In.62  The coordination geometry around the indium is described as a “7-octahedron”48

or as capped trigonal prismatic (Scheme 5.1d, 5.1e).  Simulations of the NMR spectra

(Figure 5.4) reveal a single indium site each case, in agreement with the structures.47,48 

The relatively large CQ values result in broad NMR patterns which necessitate the use of

ultra-fast spinning speeds (62.5 kHz) in order to obtain the MAS NMR spectra.  The CQ

of InBr is higher than that of InI, possibly due to the longer In-X distances in the latter. 

This trend was also observed for 209Bi CQ's in the isostructural BiOX (X = Cl, Br, I)

systems,63  69Ga CQ's in GaX systems, 75As CQ's in AsX3, 
121/123Sb CQ's in SbX3 and 93Nb in

(NbX5)y (y = 2 or 4) systems.64  In all of these cases, the CQ values increase with

increasing electronegativity of the halide atoms.  The CSA contributions are small in both

cases; however, the inclusion of the CS tensor parameters is again necessary in order to

achieve the best fits (Figures C.5.5 and C.5.6).  Finally, the nearly zero values of β

indicate that V33 and σ33 are almost coincident in both systems.  
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Figure 5.4. 115In NMR spectra of a) InI and b) InBr.  The MAS spectra were acquired at νrot = 62.5 kHz. Top and bottom
traces are simulated and experimental spectra, respectively.
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MAS 21.1 T Static 21.1 T Static 9.4 T

400 200 0 -200 -400 -600 kHz100 0 -100 -200 -300 -400 -500 kHz 0 -100 -200 -300 -400 kHz

*

Figure 5.5. 115In NMR spectra of a) [In][OTf].  The MAS spectra were acquired at 
νrot = 62.5 kHz.  *: Impurity, top and bottom traces are simulated and experimental
spectra, respectively.

Indium(I) Trifluoromethanesulfonate, [In][OTf].  The structure of [In][OTf] has

two indium sites with very similar geometry.34  The coordination environment of the

indium atoms consist of four short contacts (less than 3 Å) with oxygen atoms of different

triflate anions, and eight other oxygen and fluorine contacts within 4 Å.  The four short

contacts are arranged in an approximately “see-saw” geometry34 and are oriented to one

side of the indium atom (Scheme 5.1f).  The 115In NMR patterns (Figure 5.5) are the

broadest (i.e. 575 kHz at 9.4 T and 290 kHz at 21.1 T) of all of the spectra discussed so

far.  

Due to the structural similarities of the two sites, the NMR parameters are very similar,

and differing sets of parameters cannot be obtained from the spectra acquired at 21.1 T. 

Surprisingly, there is some evidence of the two separate sites in the static 115In NMR

spectrum acquired at 9.4 T.  Structurally similar sites are most often distinguished via
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slight differences in values of δiso, which are more easily differentiated at higher magnetic

fields due to the higher frequency dispersion of chemical shifts.  In this case, it is very

likely that the values of δiso for the two In(I) sites are identical, and therefore not resolved

at either field.  However, the CQ (and possibly ηQ) values are different enough that two

patterns can be partially resolved at 9.4 T, since the effect of the second-order

quadrupolar interaction on the CT pattern breadth scales as the inverse of B0. 

Unfortunately, we were not able to obtain reliable parameters from a two site fit, and

therefore only report one set of parameters with larger uncertainties (a two site fit of the

9.4 T spectrum is possible, but the parameters for each site are within the other site’s

experimental uncertainties, Figure C.5.7).  The CQ value of [In][OTf] is the largest among

those of all of the systems studied herein.  The almost zero ηQ value indicates that the

EFG tensor is axially symmetric and that V33 is the distinct component.  The span is also

the largest of the systems herein, but contributes only to ca. 9% of the total breadth of the

NMR pattern (Figure C.5.8).

5.3.2 Theoretical calculations of 115In EFG and NS tensors.  

First principles calculations of the 115In NMR tensor parameters were performed in

order to correlate the tensor orientations and parameters with molecular structure and

symmetry, and to provide a deeper insight into the physical origins of the NMR

interactions.  The development of such correlations will be helpful in modeling the

structures of indium containing systems for which single crystals suitable for XRD

experiments are unobtainable (i.e., amorphous and nano- or microcrystalline systems). 
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Due to the periodic nature of the most of the systems herein, CASTEP software was used for the calculations of the NMR

parameters.  The results of these calculations are compared to the experimental values in Tables 5.2.  The calculated CQ values

are consistently overestimated; however, certain experimental trends are replicated (vide infra).  

Table 5.2. Comparison of the experimental and theoretical 115In EFG and CS tensor parameters.

V11 (au) V22  (au) V33 (au) CQ(115IIn)/
MHza

ηQ δiso/ppm Ω/ppm κ α/deg β/deg γ/deg

[In+][GaCl4] Exp. ---- ---- ----     22.0(6)   0.2(1) -1115(10) 60(20) 0.7(3) 65(20) 8(6) 5(5)
[In+][GaCl4] Cal.  0.1074 0.1127 -0.2201    -41.9   0.02 -1115 112 0.83 90 5 90
[In([15]Crown-5)2][OTf] Exp. ---- ---- ----     28.4(10)   0.18(10) -1192(15) 75(15) 0.2(4) 50(30) 90(10) 5(5)
[In([15]Crown-5)2][OTf] Cal. -0.0959 -0.1466 0.2425     46.2   0.21 -1153 109 0.30 19 76 13
InI Exp. ---- ---- ----     44(1)   0.7(1) -480(20) 110(50) 0.8(2) 0 0 0
InI Cal.  0.0622 0.2443 -0.3065    -58.3   0.59 -545 29 -0.29 45(40) 5(5) 0
InBr Exp. ---- ---- ----     67(2)   0.58(8) -580(40) 140(40) 0.4(3) 0 0 0
InBr Cal.  0.0924  0.3525 -0.4449    -84.7   0.58 -583 120 0.94 30(20) 5(5) 30(20)
InOTf Exp. ----  ---- ----     80.5(15)   0.07(3) -1045(15) 260(60) 0.3(2) 50(30) 3(3) 30(20)
[In][OTf] Cal. Site 1  0.2066  0.3309 -0.5375    -102.3   0.23 -1083 236 0.44 51 2 22
[In][OTf] Cal. Site 2  0.2442  0.3292 -0.5734    -109.1   0.15 -1075 248 0.56 44 10 28
 a Values of CQ (CQ = eQV33/h) are calculated by converting from atomic units to Hz by multiplying V33 by (eQ/h)(9.7177 × 1021 Vm-2), where Q(115In) 
= 0.81 × 10-28 m2 .  The signs of experimental CQ values are unknown; signs of theoretically calculated values of CQ are determined from calculations. b

The calculated CS are reported with respect to [In][GaCl4] using the equation: δiso(sample)/ppm = σiso([In][GaCl4])/ppm ! σiso(sample)/ppm -1115 ppm
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Figure 5.6.  Correlations between the experimental and calculated 115In a) CQ and b) ηQ

values.

This could arise from either the limitations of the basis set or density functional, and/or

the degree of uncertainty in the experimentally measured and theoretically calculated 115In

nuclear quadrupole moments;65,66 however, plotting the experimental values of CQ versus

calculated values yields excellent linear correlation (R = 0.990, Figure 5.6a).  In tests of

several of the systems, the use of different basis sets did not result in significant variation

in the calculated values of CQ.   The correlation for the experimental and calculated ηQ

values is reasonable (R = 0.808, Figure 5.6b).  There are excellent correlations between

the experimental and calculated isotropic chemical shifts and spans (R(δiso) = 0.999 and

R(Ω) = 0.944, respectively); however, the correlation is only fair for the skew values 

(R  = 0.718, when the κ of InI is excluded, Figure 5.7).

 Investigating the orientations of the indium EFG and nuclear shielding (NS)

tensors with respect to the periodic (or molecular) solid-state structures is important for

understanding the origins of these tensors.  Some specific cases are discussed below.
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Figure 5.7.  Correlations between the experimental and calculated 115In a) chemical shift
(CS) , b) span (Ω) and c) skew (κ) values.

For [In][GaCl4], the largest component of the EFG tensor, V33, is the distinct

component and is positioned in the mirror plane containing the four equatorial chlorine

atoms, perfectly bisecting the angles p(Cl1-In-Cl2) and p(Cl3-In-Cl4) (Figure 5.8a), and

V11 bisects the angles p(Cl1-In-Cl3) and p(Cl2-In-Cl4).  In addition, the NS tensor is

nearly coincident with the EFG tensor (p(V11-In-σ11) = 0E, p(V22-In-σ22) = 5.02E, p(V33-In-

σ33) = 5.02E), in agreement with experimental predictions.  
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Figure 5.8.  The 115In EFG tensor orientations in a) [In][GaCl4], b) [In([15]crown-5)2][OTf], c) InI d) InBr, and f) [In][OTf]. 
The blue bonds in f are those within 3 Å from the indium, the solid black bonds are within 3.5 Å and the dashed ones are
within 4 Å.
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For calculations conducted upon [In(15-crown-5)2][OTf], the triflate anions were replaced

by fluorine atoms (i.e. fluorine atoms were positioned at the xyz coordinate of the triflate

sulfur atoms), due to the disorder in the triflate groups.  V33, the distinct component, is

oriented in the direction perpendicular to the fivefold pseudo-rotational axis, indicating

that the largest change in the EFG is in this direction (Figure 5.8b).  V11 and V22 are

similar in magnitude, with V11 aligned close to two of the In-O contacts (pV11-In-O1 =

5.95E).  The NS tensor is oriented such that σ33 is in the direction of  the pseudo-fivefold

rotational axis and thus nearly perpendicular to V33 (p(V33-In-σ33) = 76.06E), in agreement

with experimental findings.

The orientations of the EFG tensors in InBr and InI are similar, which is

unsurprising, since they are isostructural (Figure 5.8c, d).  In both cases, the ηQ values

indicate that all three components of the EFG tensor are different.  V33 is oriented exactly

along the shortest InX (X = I, Br) bonds.  V11 and V22 bisect the X-In-X angles, with V11

oriented at 90E from the longest equatorial In-X bonds, and V22 in the plane of these

bonds.  In the case of InI, the NS tensor components are oriented such that σ22 is aligned

with V22, and V33 is aligned with σ33, as expected from the experiment.  In the case of InBr,

V33 and σ33 are also coincident, in agreement with the experiment.  V22 and V11 are aligned

with σ11 and σ22, respectively.

 In the case of [In][OTf], the NMR parameters of both indium sites are very

similar; therefore, we only discuss the tensor orientation of site 2.  Each indium site has

four short In-O contacts from the four different OTf groups.  The four short contacts are

about a pseudo-twofold rotational axis (though there is no twofold rotational axis at the In
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site or in the overall cluster model).  V33 is oriented close to this pseudo-twofold axis

(Figure 5.8e), and V11 and V22 are oriented into similar environments, resulting in a near

zero ηQ value.  V33 is almost coincident with σ33, as predicted experimentally.

Finally, a comment should be made on the signs of the quadrupolar coupling

constants, and the importance of these signs in thinking about the relationships between

the tensor parameters, tensor orientations and local In environments.  CQ signs are not

available from SSNMR spectra of quadrupolar nuclei, though they are available indirectly

from SSNMR spectra of spin-1/2 nuclei which are J- and dipolar-coupled to quadrupolar

nuclei.67  However, the signs of CQ are available from first principles calculations, and do

provide some insight into the nature of the environment into which V33 is directed.  In all

of the complexes discussed herein, excepting [In([15]crown-5)2][OTf], the CQ values are

negative and the V33 components of the EFG tensor are oriented along short In-X (X = Cl,

O, I, Br) contacts.  Interestingly, in [In([15]crown-5)2][OTf], which has a positive value

of CQ, the V33 component is not aligned near any atoms, bonds or other sources of electron

density.  This is consistent with recent predictions from a detailed theoretical study of the

relationships between EFG tensor components, orientation, signs and local structure, in

which it is shown that negative electronic charge distributions that are stretched in a

particular direction generally produce negative EFGs along this direction, while the

absence of such charge distributions results in positive EFGs.68
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5.4 Conclusions

This work represents the first systematic study of low-oxidation state indium

complexes using 115In SSNMR.  115In SSNMR is proven to be a valuable tool for

characterization of a variety of low-oxidation state indium complexes, including

microcrystalline and/or multi-valence systems.  The NMR parameters extracted from the

115In SSNMR spectra provide information about the electronic environment, geometry,

symmetry and oxidation states of the indium sites.  Such information is particularly useful

for systems which are insoluble in most organic solvents (as is the case for most In(I)

complexes), and/or systems with unknown structures. 

Theoretical calculations of the 115In EFG and CS tensor parameters are, for the 

most part, in good correlation with the experimental values.  The orientations of the EFG

and CS tensor components provide insight into the origin of these tensors and their

correlations to molecular structure and symmetry.  These calculations will also be helpful,

in combination with experimental NMR, for proposing structural models in cases where

crystallographic data are not available.  We hope that this work will encourage the use of

115In SSNMR spectroscopy as a primary technique for probing the indium chemical

environments in a wide variety of indium-containing systems.
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Chapter 6

Investigation of Silver-Containing Layered Materials and
Their Interactions with Primary Amines Using Solid-State
109Ag and 15N NMR Spectroscopy and First Principles
Calculations

6.1  Introduction

Coordination network materials, also referred to as metal-organic frameworks

(MOFs), represent a compromise between wholly inorganic or organic solids, often

having the chemical and physical properties of the individual building blocks, as well as

new properties that result from their connectivity.1-6  Solid silver sulfonates are

representative of this subtle balance, as they are able to form stable layered networks

composed of sulfonate bridges between silver ions.7-12  The flexibility of their

coordination chemistry and the adaptability of their lamellar structures enable the

possibilities of selective reactivity or absorption of guest molecules.13-15

Shimizu and co-workers recently reported the synthesis and characterization of

several new layered materials formed by the reaction of silver sulfonates with primary

amines;13,15 interestingly, layered solids were not produced in reactions of silver

sulfonates with any other class of organic reactants.  It was proposed that the new layered

materials were likely formed from the intercalation of primary amines, on the basis of

interlayer distances determined by powder X-ray diffraction (XRD).  After publication of

this study, several questions arose regarding the nature of these materials and the

mechanism behind their synthesis.  First, does the formation of these new materials

actually result from the intercalation of primary amines?  Second, are there selective
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Scheme 6.1   Schematic representation of the crystal
structures of [Ag(4-pyridinesulfonate)]4 (1a , top) and
[Ag(p-toluenesulfonate)] (2a, bottom).  There are two
silver sites in 1a and only one site in 2a.  

interactions between the silver atoms and amine nitrogen atoms?  Finally, can a

combination of XRD methods and solid-state NMR of silver and nitrogen sites in these

materials lend insight into their structures and the nature of their formation?  While

detailed crystal structures are available for the silver sulfonate starting materials (Scheme

6.1), they are not available for many intercalation or layered solids, since most often, the

samples have long-range disorder and suitably sized single crystals cannot be isolated.  
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Solid-state NMR (SSNMR) represents a powerful complementary tool for the

characterization of structure, connectivity and dynamics in such systems; most notably,

the understanding of metal-ligand bonding interactions is crucial for the future rational

design of such materials.

While 15N NMR experiments on solid materials have become increasingly 

routine, solid-state silver NMR spectroscopy is infrequently applied despite the regular

occurrence and significance of silver sites in a variety of technologically important

materials.16-22  This is partly due to the fact that 107Ag and 109Ag (both spin-1/2) have low

gyromagnetic ratios (γ) and correspondingly low receptivities (0.198 and 0.28,

respectively, compared to 13C).  In addition, 107/109Ag nuclei in solids often have

exceedingly large longitudinal relaxation time constants (T1) which may be on the order

of minutes to hours, making acquisition of high-quality 109Ag NMR spectra very

challenging.22,23  Further, NMR experiments on low-γ nuclei (e.g., ν0 = 18.67 MHz at

9.4 T) are plagued by acoustic probe ringing, resulting in interference in the NMR free

induction decay (FID) which partially or wholly obliterates the signal.

The cross-polarization magic-angle spinning (CP/MAS) experiment can address

the sensitivity problems stemming from poor receptivity and long relaxation times;

however, there must be spatially proximate, dipolar-coupled, abundant nuclei present

(e.g., 1H, 19F, etc.).24,25  The experimental time can be reduced due to the signal

enhancement from CP (e.g., the maximum theoretical signal-to-noise ratio (S/N)

enhancement factor for 1H-109Ag CP/MAS NMR experiments is proportional to

((1H)/((109Ag) = 21.7) and the use of shorter recycle delays, since the CP/MAS NMR

experiment depends on the T1 of the abundant spin (which is typically much smaller than
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that of 109Ag).  If higher spinning speeds are required or weaker dipolar couplings are

present, the variable-amplitude CP (VACP) or RAMP-CP experiments can be used to

obtain optimal CP signal.26-30  However, all of the CP experiments place a significant

amount of stress on the solid-state NMR probes, since long contact times of 30 ms or

more are often needed to obtain reasonable CP to the low-gamma silver nuclides.  The

use of silver NMR is continuing to increase, due to the availability of new hardware for

low-γ nuclei,31,32 the development of pulse sequences for S/N enhancement,33-35 and the

recent proliferation of ultra-high field NMR spectrometers.36-40

Herein, we report upon the application of solid-state 109Ag, 15N and 13C NMR

experiments to the study of the molecular structure of silver-containing layered materials. 

The silver-containing systems include [Ag(4-pyridinesulfonate)]4 (1a), four samples of 1a

reacted with C12H25NH2 in different ratios,1:0.5, 1:1, 1:1.5 and 1:2, (1b, 1c, 1d and 1e,

respectively, where 1c and 1e were synthesized with 98% isotopically enriched

C12H25
15NH2),

15 [Ag(p-toluenesulfonate)] (2a),13 2a reacted with C12H25NH2 and

C9H19NH2 in a 1:2 ratio (2b and 2c, respectively),13 and [Ag(C12H25NH2)2]
+[NO3]G (3).41 

Due to the extreme sensitivity of silver chemical shift (CS) tensors to structural changes,42

109Ag NMR experiments can be used to probe structural differences between starting

materials and amine-containing samples.  109Ag and 15N NMR experiments on systems

synthesized with 15N-enriched dodecylamine are used to identify the nature of the silver-

nitrogen interactions, since they are crucial in the formation of these materials.43  Finally,

ab initio calculations of silver and nitrogen chemical shielding tensors, as well as one-

bond 109Ag-14/15N J-couplings, are presented to aid in proposing a tentative structural

model for these new materials.
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6.2  Experimental

6.2.1  Sample Preparation

All chemicals were purchased from Sigma Aldrich Chemical Co. and used as

received.  The 98% enriched 15N-dodecylamine was purchased from Cambridge Isotope

Laboratories.  C, N and H chemical analyses were obtained on a Control Equipment

Corporation Model 440 system, with samples weighed in ambient laboratory atmosphere. 

FT-IR data were obtained from KBr pellets on a Nicolet Nexus 470 Fourier transform

spectrometer.  DSC/TGA experiments were carried out on a Netzsch 449C  Simultaneous

Thermal Analyzer in a nitrogen atmosphere.  Samples (ca. 5 mg) were placed in

aluminum pans and referenced against an empty pan for the DSC measurements.  Typical

heating programs involved data collection between 25 and 450 ºC with heating rates of 

5 EC/min.

Synthesis of alkylamine materials.  Synthesis of 1b -1e. An appropriate

stoichiometric amount of dodecylamine (unlabelled or 98% 15N-enriched) was dissolved

in diethyl ether and added to 1a suspended in diethyl ether (e.g., for 1c, 1.0 mmol of

dodecylamine was added per silver center to produce the 1:1 complex).  The

heterogeneous mixture was stirred for 6 hours, after which time the ether was removed by

filtration.  No uptake of diethyl ether by the host was observed in either the presence or

absence of amine molecules (as determined by powder XRD and simultaneous thermal

analysis (STA)).  Samples of 1a, 2b, 2c and 3 were synthesized as described in the

literature.13,15,41

[Ag(4-pyridinesulfonate)]4 reacted with C12H25NH2 in 1:0.5, 1b.  Yield: 95%.

Anal.Calcd for AgC11H17.5N1.5SO3 (357.51 g/mol): C, 36.83; H, 4.92; N, 5.86. Found: C,
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36.12; H, 4.66; N, 5.68. DSC/TGA: 97 ºC (11.8 J g!1, endo), 132 ºC (28.5 J g!1, endo),

145 ºC to 215 ºC (68.5 J g!1, exo), 210 ºC to 280 ºC (112.5 J g!1, endo), !8.5 % obsd and

!25.6% calcd for loss of 0.5 eq C12H25NH2 in the first two mass loss combined, 290 ºC to

410 ºC (114.2 J g!1, endo, 5.5 J g!1, endo), loss of remaining amine molecules and

decomposition of the material.

[Ag(4-pyridinesulfonate)]4 reacted with C12H25NH2 in 1:1, 1c.  Yield: 93%. 

Anal. Calcd for AgC17H29N2SO3 (451.37 g/mol): C, 45.24; H, 6.92; N, 6.21.  Found: C,

44.65; H, 6.73; N, 6.01.  DSC/TGA: 95 ºC (12.0 J g!1, endo), 103 ºC (4.7 J g!1, endo),

128 ºC (39.9 J g!1, endo), 145 ºC to 215 ºC (70.5 J g!1, exo), 215 ºC to 280 ºC (116.5 

J g!1, endo), !22.0% obsd and !41.1% calcd for loss of 1.0 eq C12H25NH2 in the first two

mass loss combined, 280 ºC to 406 ºC (111.2 J g!1, endo; 9.2 J g!1, endo), loss of

remaining amine molecules and decomposition of the material.

[Ag(4-pyridinesulfonate)]4 reacted with C12H25NH2 in 1:1.5, 1d.  Yield: 97%.

Anal.Calcd for AgC23H44.5N2.5SO3 (544.05 g/mol): Calcd: C, 50.78; H, 8.24; N, 6.44.

Found: C, 50.69; H, 8.28; N, 6.40.  DSC/TGA: 96 ºC (15.6 J g!1, endo), 108 ºC (66.7 

J g!1, endo), 115 ºC to 250 ºC (77.9 J g!1, exo), !32.4% obsd and !51.1% calcd for loss

of 1.5 C12H25NH2, 255 ºC to 415 ºC (139.2 J g!1, endo; 50.9 J g!1, endo), loss of remaining

amine and decomposition of the material.

[Ag(4-pyridinesulfonate)]4 reacted with C12H25NH2 in 1:2, 1e.  Yield: 95%. 

Anal. Calcd for AgC29H54N3SO3 (632.69 g/mol): C, 55.05; H, 8.60; N, 6.64.  Found: C,

55.12; H, 8.77; N, 6.45.  DSC/TGA: 95 ºC (16.6 J g!1, endo), 114 ºC (66.7 J g!1, endo),

115 ºC to 254 ºC (94.2 J g!1, exo), !37.9% obsd and !58.3% calcd for loss of 2.0

C12H25NH2, 254 ºC to 416 ºC (152.2 J g!1, endo; 96.9 J g!1, endo), loss of the remaining
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amine and decomposition of the material.13,15,41

6.2.2  Solid-State NMR.  

All samples were finely powdered and packed into 5 mm outer diameter 

zirconium oxide rotors.  Solid-state 109Ag, 15N and 13C CP/MAS and VACP/MAS NMR

spectra were acquired using a Varian Infinity Plus NMR spectrometer with an Oxford 

9.4 T (ν0(
1H) = 400 MHz) wide bore magnet, operating at resonance frequencies of

ν0(
109Ag) = 18.61 MHz, ν0 (

15N) = 40.50 MHz and ν0(
13C) = 100.52 MHz.  A Varian-

Chemagnetics 5 mm triple resonance (HXY) MAS probe was used for all experiments. 

Probe tuning and matching for low-frequency 109Ag NMR experiments, and acquisition of

spectra with reduced acoustic ringing, were accomplished using a Varian low-gamma

tunning box and low-gamma pre-amplifier.  In addition, 15N CP/MAS NMR spectra of 1c

and 1e were acquired on a Bruker 900 MHz spectrometer using a 3.2 mm HX MAS probe

at the National Ultra-high Field NMR Facility for Solids in Ottawa, Ontario, Canada. 

The two-pulse phase modulation (TPPM) decoupling sequence 44 was used for all of the

CP/MAS experiments.

1H-109Ag CP/MAS NMR.  Silver chemical shifts were referenced to a 9 M

aqueous solution of AgNO3 (δiso = 0.0 ppm) by using solid silver methane-sulfonate,

AgSO3CH3, as a secondary reference (δiso = 87.2 ppm).20  Proton-decoupled 109Ag

VACP/MAS NMR spectra were acquired with spinning rates (νrot) ranging from 2.0 to 

8.0 kHz, and calibrated recycle times between 6 and 20 s.  Proton π/2 pulse widths ranged

between 3.75 and 5.5 µs.  Hartmann-Hahn matching24 fields of ν1(
1H) = 16.8 and 

27.8 kHz were applied with optimized contact times of 30 or 35 ms.  In one special case,
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proton-decoupled 109Ag{ 1H} Bloch decay (single-pulse) experiments were acquired, using

a 60o pulse widths of 8 µs and a recycle delay of 300 s.  Additional experimental

parameters and details are summarised in Table D.6.1, Appendix D).

1H-15N CP/MAS NMR.  Nitrogen chemical shifts were referenced to liquid NH3

(20 EC), δiso = 0 ppm, by setting the chemical shift of the ammonium peak of a doubly-

labeled solid 15NH4
15NO3 (98% 15N) sample to 23.8 ppm.45  The 1H-15N CP/MAS NMR

spectra at 9.4 T were acquired at νrot = 5 or 6 kHz with an optimized recycle delay of 4 s. 

A proton π/2 pulse width of 3.75 µs, and a contact time of 2 ms were used, with the

collection of between 64 to 152 transients.  The 1H-15N CP/MAS NMR spectra at 21.1 T

were acquired with νrot = 10 kHz and a recycle delay of 20 s.  A proton π/2 pulse width of

2.5 µs, and contact time of 2 ms were utilized, with 1024 transients collected in each

experiment.  Additional experimental parameters are summarised in Table D.6.2. 

1H-13C CP/MAS NMR.  1H-13C CP/MAS NMR spectra have been acquired for

most of the systems for purposes of probing sample identity and purity; relevant spectra

are included in Appendix D (Figures D.6.1-D.6.3).  Carbon chemical shifts were

referenced to the high frequency chemical shift of solid adamantane (δiso = 38.57 ppm

with respect to tetramethylsilane, TMS).  Spectra with two different spinning speeds were

acquired for each sample, and optimized recycle delays of 6 to 12 s were applied. 

Additional experimental details are summarised in Table D.6.3.

Silver chemical shift parameters were obtained via simulations of experimental 

spectra using the WSolids software package.46
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6.2.3  Ab initio calculations.  

Ab initio calculations of chemical shielding and J-coupling tensors were 

performed using Gaussian 0347 on Dell precision workstations running Red Hat Linux as

well as on Alpha and Opteron workstations on SHARCNET.48  All of the calculations

were performed using the Restricted Hartree Fock (RHF) method with the valence

double-zeta plus polarization (DZVP) basis set49 on both the silver and nitrogen atoms50

and 6-311G** on all of the other atoms.  Molecular coordinates used in the calculations

on 1a15 and on [Ag(NH3)2]2SO4 (4),51 were taken from the crystal structure data, and those

used in the calculations on 1e and 2b are based on a structure similar to that reported by

Smith et al.43  In all cases, hydrogen atom positions were geometry optimized, using the

6-311G** basis set on all H atoms.  The nuclear magnetic shielding tensors were

calculated using the gauge-including atomic orbitals method (GIAO).52,53

6.3  Results & Discussion

6.3.1. Solid-state NMR. 

In this section, we will first discuss the 1H-109Ag CP/MAS NMR spectra of the

parent compound 1a, along with similar spectra of samples 1b to 1e, which are obtained

from the reaction of 1a with stoichiometric amounts of amine.  Then, 15N CP/MAS NMR

data are discussed for 1c (1:1) and 1e (1:2), in an effort to further refine our

understanding of the layered solids.  Third, 109Ag and 15N NMR data are presented for a

different series of layered materials, 2a to 2c, and compared to the first series of

materials, as well as to [Ag(C12H25NH2)2]
+[NO3]G (3).  Finally, a thorough discussion of

ab initio calculations of silver and nitrogen chemical shift tensors, silver-nitrogen 
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Figure 6.1  Solid-state 109Ag CP/MAS NMR spectra of 1a at two different spinning
speeds, (a) νrot = 2.9 kHz and (b) νrot = 2.0 kHz.  Isotropic peaks for the two distinct 
silver sites are designated as 1 and 2.  c designates spinning sidebands for site 2; all 
other peaks are sidebands of site 1.

J-couplings, and their use in defining and proposing a structural model for the layered

solids, is presented.

[Ag(4-pyridinesulfonate)]4 (1a).  1H-109Ag CP/MAS NMR spectra of 1a acquired

at two MAS speeds (Figure 6.1) reveal two peaks with isotropic chemical shifts of 283

and 25 ppm (silver CS parameters are summarized in Table 6.1).  

The two shifts indicate the presence of two crystallographically distinct silver sites, in

agreement with the known crystal structure of 1a.15  Since the Ag(1) nucleus, the pyridine

ligated center, is in a nearly linear environment (N-Ag-N = 168.62o) and the Ag(2)
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nucleus, the sulfonate ligated center, is in a distorted tetrahedral environment 

(Scheme 6.1), the assignment of the resonances is straightforward.  Ag(1) should have a

significantly larger CSA than Ag(2), since the magnetic shielding is distinct in directions

parallel and perpendicular to the N-Ag-N bonding arrangement.  On the other hand,

Ag(2) is in a relatively spherically symmetric environment by comparison, and the CSA is

reduced.  Therefore, Ag(1) and Ag(2) are assigned to the peaks at 283 ppm and 25 ppm,

respectively.  Herzfeld-Berger analysis54 was used to extract the silver CS tensor

parameters for site 1 using the slow-spinning spectrum (2.0 kHz), yielding a span and

skew of Ω = 1163 ppm and κ = 0.74, respectively.  The skew indicates that the shielding

tensor is nearly axially symmetric, from which it may be inferred that the distinct

component, δ33, is directed along or near the direction of the N-Ag-N bonding

arrangement.  An accurate CS tensor cannot be obtained from the small manifold of

sidebands for Ag(2), but an upper limit of Ω = 250 ppm can be estimated from ab initio

calculations (vide infra), which is comparable to experimentally measured silver CS

tensors for Ag nuclei in five- and six-coordinate silver atoms in AgSO3CH3
 (183.4(5)

ppm) and [Ag(p-toluenesulfonate)] (163(4) ppm), respectively.21

The 109Ag NMR spectrum acquired at νrot  = 2.9 kHz (Figure 6.1a) was processed 

with less line broadening than the slow-spinning spectrum, and fine structure is clearly

visible.  Closer examination of the pattern with δiso = 283 ppm reveals a quintet of

1:2:3:2:1 intensity (Figure 6.1, inset) which arises from indirect spin-spin coupling

between 109Ag and two 14N nuclei, 1J(109Ag, 14N), where 14N is a spin I = 1 nucleus 

(n.a. = 99.63%).  The magnitude of 1J(109Ag, 14N), 60(8) Hz (Table 6.2), is typical for a

silver atom bound to an sp2 nitrogen.21



157

Table 6.1.  Experimental 109Ag chemical shift parameters.a

Compounds δiso (ppm) b  Ω (ppm) c  κ d

1a  (site 1)            283(2) 1163(50) 0.74(5)

      (site 2)   25(2) ------- -------

1b  (site 1) 283(2) ------- -------

      (site 2)   25(2) ------- -------

      (site 3) 508(2)   991(50) 0.95(5)

1c  (site 1) 283(2) 1128(50) 0.90(5)

      (site 2)   25(2) ------- -------

      (site 3) 508(2)   991(50) 0.95(5)

1d  (site 1) 283(2) 1106(50) 0.99(1)

      (site 2)   25(2) ------- -------

      (site 3) 507(2) 1031(50) 0.99(1)

1e 507(2) 1031(50) 0.96(4)

2a   46(1) ------- -------

2b 457(2) 1497(50) 0.96(4)

2c 474(2) 1530(50) 0.99(1)

3 454(2) 1322(50) 0.99(1)
a The CS tensor is described by three principle components ordered such that δ11 $ δ22 $ δ33.
b δiso

 = (δ11 + δ22 + δ33
 )/3, c Ω = δ11 - δ33, 

d κ = 3(δ22 - δiso)/Ω

Table 6.2.  Experimental indirect spin-spin couplings.

Compounds 1J(109Ag, 14N) (Hz) 1J(109Ag, 15N) (Hz)a 1K(Ag, N)b (N A-2 m-3)

1a (site 1) 60(8) ------- -1.47663*1022

1e ------- 61(8)   1.07023*1022

2b 50(8) 70(5) -1.23053*1022

2c 50(8) ------- -1.23053*1022

3 50(8) ------- -1.23053*1022

a Values of 1J(109Ag, 15N) were measured from 109Ag and 15N NMR spectra of labeled complexes. b Reduced

coupling were calculated using (ref. 58)KXY ' 4π2
JXY

hγXγY
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Figure 6.2.   Solid-state 109Ag CP/MAS NMR spectra of 1a - 1e.  Isotropic peaks are
designated with asterisks (|).  Spectra of 1a, 1b and 1c were acquired at νrot   = 2.9 kHz
and spectra of 1d and 1e were acquired at νrot   = 2.0 kHz. 

Complex 1a reacted with C12H25NH2 in ratios of 1:0.5, 1:1 1:1.5 and 1:2, (1b, 

1c, 1d and 1e).  The 1H-109Ag CP/MAS NMR spectra of 1b, 1c, 1d and 1e are compared

to the parent sample, 1a, in Figure 6.2.  

As the loading level of the dodecylamine is increased, a new spinning sideband manifold

emerges with a distinct isotropic shift (ca. 507 ppm).  The intensity of this pattern
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Figure 6.3.  Solid-state 109Ag CP/MAS NMR spectra of 1e at three
different spinning speeds:  (a) νrot = 2.0 kHz.  (b) νrot =  2.9 kHz. (c) 
νrot = 8.0 kHz.  Isotropic peaks are designated with asterisks (|).

increases with increasing amine loading level until only this pattern remains (1e).  Silver

CS tensor parameters extracted from the lower-spinning speed powder patterns of 1e are

*iso = 507 ppm, Ω = 1031 ppm and κ = 0.96 (Figure 6.3a, 6.3b).  The higher frequency

shift (i.e., the 109Ag nucleus is deshielded relative to those in the parent compound), in

combination with the span and skew, suggest the existence of a distinct silver

environment from those of 1a. 

1H-109Ag CP/MAS NMR spectra of 1e were also acquired at a higher spinning 

speed (νrot = 8.0 kHz), revealing triplets of 1:2:1 intensity (Figure 6.3c).  The size of the

splitting is ca. 61(8) Hz, indicating that the 109Ag nucleus is J-coupled to two 15N nuclei in
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the sp3 environments of the dodecylamines.  The distinct multiplets arising from 

J-coupling to 14N nuclei of the pyridine rings are not observed, indicating that silver-

pyridine nitrogen bonds are absent.  The data indicate that, at loadings above one

equivalent of amine, the primary species present involves a major reconstruction of the

coordination polymer backbone.  The higher loadings of amine may enable a requisite

degree of swelling to allow the transformation, may displace the pyridine ligands directly,

or may likely lead to some combination of the two factors.  Clearly, simple intercalation

of the primary amine is not the only process occurring; rather, what is being witnessed is

the gradual formation of 1e, which has new silver coordination sites. 

1H-15N CP/MAS NMR experiments were conducted on 1c and 1e at 9.4 T and

21.1 T (Figure 6.4, Table 6.3).  The spectra are essentially identical, unlike their distinct

109Ag NMR spectra.  In the 15N NMR spectra acquired at 9.4 T, there are two higher

frequency peaks at 36.9 and 36.4 ppm, and two lower frequency peaks centered at 22.0

and 17.2 ppm, the latter of which are split due to 1J(109Ag,15N) = 61(8) Hz, in agreement

with splittings measured in the corresponding 109Ag NMR spectra of 1e.  

Table 6.3.  Experimental 15N chemical shifts.

Compounds δiso (ppm) of coordinated
nitrogen

δiso (ppm) of
uncoordinated nitrogen

1c  21.9(5), 17.2(5) 36.9(5), 36.5(5)

1e  21.9(5), 17.2(5) 36.9(5), 36.4(5)

2b 19.4(5), 14.0(5) minor species, 36.6(5) ppm
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Figure 6.4.  15N CP/MAS NMR spectra of 1c (1:1) and 1e (1:2) acquired at
two different fields.  The doublets around 36 ppm (shown in the inset)
correspond to different nitrogen sites of free amines.  The doublets at 17
and 22 ppm correspond to nitrogen sites coupled to silver atoms.  The insets
are expansions taken from 1e.

Due to the similarity of gyromagnetic ratios of 107Ag and 109Ag, the 1J(107Ag, 15N) and

1J(109Ag, 15N) could not be differentiated.  Integration of the 15N CP/MAS NMR spectra of

both samples reveals intensity ratios of 1:1 between these two regions (this was assessed

under multiple contact times).  The shifts and integrated intensities of all of the peaks, as
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well as the J-coupling observed for the low-frequency resonances, were confirmed by

experiments conducted at 21.1 T, since the difference in Hz for the peaks split by 

J-coupling is constant regardless of the field strength, and easily differentiated from peaks

with different chemical shifts, which are constant in ppm.  The high frequency peaks have

similar isotropic shifts to “free” dodecylamine (vide infra),55 and indicate the presence of

a non-coordinated amine species.  The low-frequency, J-split peaks are assigned to

nitrogen atoms of the dodecylamine which are interacting with silver atoms in the newly

formed material.22,41,56  Coordinative displacement of sulfonate ligands by high loadings

of amines has been observed.57  This assignment is consistent with the numerous negative

coordination shifts, , reported for coordination of amine ligands to∆δ ' δ
coord
iso & δ

free
iso

transition metals.45,58,59 

These data confirm the notion that 1e is gradually being formed from 1a and 

dodecylamine.  Previous XRD experiments15 conducted at room and higher temperatures

for 1c and 1e were proposed to reveal the “reversible” release of amine and the

regeneration of 1a for the former, while such behaviour was not observed for the latter.  It

is possible that the combination of “free” dodecylamine released upon heating 1c, along

with the remaining unreacted 1a, gave the impression that a reversible intercalation of the

amine was occurring.  In fact, the disparate set of 109Ag NMR spectra and identical set of

15N NMR spectra for these samples demonstrate that samples 1b, 1c and 1d are likely

simple mixtures of 1a and 1e.

However, this does raise some questions regarding the formation of 1e from 1a. 

Aside from the highly selective reaction at the silver site, which requires cleavage of two
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sub-2.0 Å Ag-pyridyl bonds in 1a and replacement by two amine molecules, it is likely

that the amine is playing a role in exfoliating the layers of 1a and “bowing” the layers

such that the silver sites are exposed to reaction with the primary amines.  Such layer

bending has been observed for more rigid molecular sheets such as those in graphite.60 

Unfortunately, the formation of a layered solid phase consisting of 1a and intercalated

amine would be very difficult to distinguish by NMR from 1a and free amine, and may

only exist transiently during the formation of 1e.  While the formation of a transitory

layered solid en route to the formation of 1e is plausible, and is somewhat consistent with

the 109Ag NMR data, the 15N  NMR spectra strongly suggest the constant presence of 1a

and 1e.

Complex 1e is clearly not an intercalation solid, and its structure must now be

considered.  Since 1e is known to have a layered structure from powder XRD patterns,15

and based on known structures of analogous silver systems, it is possible that the silver-

diamine cations form bilayers.41,61  However, since sample 1e has a 1:2 ratio of silver

atoms to dodecylamines, it seems that half of the silver sites are unaccounted for in this

model.  It is possible that the 1H-109Ag CP/MAS NMR experiments are unable to detect

silver sites which are not proximate to an abundant proton source.  Hence, lengthy

109Ag{ 1H} Bloch-decay MAS NMR experiments, run with a recycle time of 300 s, reveal

a sharp peak at 425 ppm (Figure 6.5) with no fine structure (∆ν1/2 = 78 Hz) which was not

observed in previously discussed 1H-109Ag CP/MAS NMR spectra.  The silver resonance

at 507 ppm in this spectrum, corresponding to the amine-coordinated silver, is broad and

more difficult to observe.  The new peak has a shift similar to those observed for silver



164

Figure 6.5.  Solid-state 109Ag MAS NMR spectrum of 1e at 9.4 T, νrot  = 8.0 kHz

sites in Ag2SO3 (between 409 and 466 ppm),21 likely corresponding to an isolated,

uncoordinated silver ion.  

We are cautious in our definition of “isolated” in this case: by isolated, we refer to a Ag

site which is not strongly coordinated by oxygen atoms (as in 1a), and there are no

coordination shifts indicating hydrogen bonding, nor fine structure to indicate the

presence of nearby NMR active nuclides.  Unfortunately, the integrated intensities of

these peaks (isolated:coordinated, 1.5:1.0) are not quantitatively representative of the

amount of silver, since the 109Ag relaxation time constants are different for each site, and

part of the broader, high frequency signal is lost due to the rapidly decaying FID.  In fact,
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the T2 associated with the broad resonance is so short that this resonance is not observed

in Hahn-echo experiments with interecho delays of τ = 125 µs; hence, only Bloch decay

experiments could be applied.

If the silver-diamine cations form bilayers, then the “free” dodecylamine

molecules, silver ions and pyridinesulfonate counteranions are likely positioned between

the layers, or perhaps among the alkyl chains of the dodecylamines;41,43,61 however, no

interactions of these species with the diamine cations are detected, and the precise

arrangement of these species is unknown at this time.  The structural positioning of the

uncoordinated dodecylamines could potentially be very interesting, as they could be

located among the layers in a variety of scenarios.  In addition, they may play a role in the

gradual conversion of 1a to 1e with addition of amine, since the 1:1 reaction does not

completely form a new layered solid.

Solid-state NMR spectra indicate that the structure of 1e is very different from

that of 1a: in the former, the silver atom is strongly coordinated to two dodecylamine

nitrogen atoms, as opposed to the nitrogen atoms in the pyridine-sulfonate moieties in the

latter.  The increased axial symmetry of the silver CS tensor also indicates that the 

N-Ag-N arrangement of atoms is increasingly linear in 1e in comparison to that in 1a.  A

reaction has occurred in which half of the dodecylamine molecules coordinate to silver

atoms to form silver diamine cations, while the remaining dodecylamine molecules do

not have strong bonding interactions with silver atoms.  A structural model is further

developed below, via comparison to data for other samples, as well as through theoretical

calculations on model systems.
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Figure 6.6.  Solid-state 1H-109Ag CP/MAS NMR spectra of (a) 2a, (b) 2b, (c) 2c and 
(d) 3 at νrot = 2.0 kHz.  Isotropic peaks are denoted with asterisks (|), remaining peaks
are spinning sidebands.  <: denotes impurity from the starting materials, 2a.

Ag(p-toluenesulfonate) (2a), and 2a reacted with C12H25NH2 and C9H19NH2 in

1:2 ratios (2b and 2c).  The 1H-109Ag CP/MAS NMR spectrum of 2a has one sharp

(FWHH of 100 Hz), isotropic peak at 46 ppm (Figure 6.6a).  

This isotropic shift is the same as per Penner and Li, who also reported silver CS tensor

parameters of Ω = 163 ppm and κ = 0.15.21  The observation of one peak for this sample

is consistent with the crystal structure, since the four silver atoms in the unit cell are
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related by an inversion centre, and are therefore chemically and magnetically equivalent. 

The arrangement of atoms around the silver site is described as trigonal prismatic,

featuring five oxygen atoms and two other silver atoms as nearest neighbours.13  The

structure of 2a is distinct from that of 1a in that the inorganic and organic moieties are

not contained within the same layer (Scheme 6.1); thus, 2a is classified as a hybrid

inorganic-organic solid, with the toluene moieties “pendant” into the interlayer region.13  

Sample 2a was reacted with two equivalents of unlabeled dodecylamine and

nonylamine to produce 2b and 2c, respectively.13  The 109Ag CP/MAS NMR spectrum of

2b has a single isotropic peak at 457 ppm, flanked by a large set of spinning sidebands

(Figure 6.6b).  The span is very large, Ω = 1497 ppm, and the CS tensor is axially

symmetric, κ = 0.96.  Once again, the high-frequency shift and CS tensor characteristics

indicate that the silver is in a linear or near-linear environment, suggesting the formation

of a diamine cation.  The 109Ag CP/MAS NMR spectrum of 2b acquired at νrot = 2.9 kHz,

and processed with no additional line broadening and two zero fills, provides enough

resolution to identify 1:2:3:2:1 multiplets with 1J(109Ag, 14N) = 50(8) Hz (Figure 6.7a)

confirming the proposed cation formation.  Similar results are observed for 2c (Figure

6.6c), demonstrating that the alkyl chain lengths do not have much influence on the 109Ag

NMR parameters.  Prior work indexing the powder XRD patterns of a nonylamine

intercalate was consistent with a layered AgRSO3 network where the amine defined the

interlayer region; however, as for the first series of compounds, it was not possible to

determine the nature of the amine's interaction with the layers.13
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Figure 6.7.  High resolution solid-state 109Ag CP/MAS NMR spectra of (a) 2b and 
(b) 3 (both processed with two zero-fills).  Isotropic peaks are denoted by asterisks (|),
and insets are expansions of areas indicated by rectangles. <: denotes impurity from the
starting materials, 2a.

A sample of 2b was made with 15N-labeled dodecylamine to confirm the binding

of the dodecylamine to the silver sites.  The 1H-109Ag CP/MAS NMR spectrum of the

labeled 2b reveals a single silver site with a spinning sideband pattern identical to that of

the unlabeled sample, with the exception of the presence of 1:2:1 triplets and 

1J(109Ag, 15N) = 70(5) Hz (Figure D.6.4).  The 1H-15N CP/MAS spectrum of the labeled 2b

(Figure 6.8) indicates that most of the dodecylamine is involved in direct coordination to

silver sites, with δiso of 19.4(5) and 14.0(5) ppm, and 1J(109Ag, 15N) matching the

corresponding 109Ag NMR spectrum.  However, unlike in the case of 1e, there is not a 1:1
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Figure 6.8.  1H-15N CP/MAS NMR spectrum of 2b.  The doublets at 14 and 19 ppm
correspond to nitrogen sites coupled to silver atoms.  The peak at 36 ppm corresponds 
to a small amount of unreacted dodecylamine. The low intensity peaks at 27 and 90 ppm
correspond to some impurity from the 15N labled dodecylamine sample.  Low intensity
peaks in the region of 20 to 30 ppm underlie the main resonances, and can be attributed
to either dodecylamines in differing environments or perhaps impurity phases.  The
asterisks denote an artifact resulting from Fourier transforming a truncated FID, which
was necessary to minimize the high-power decoupling and acquisition times.

ratio of coordinated and uncoordinated amine.  The peak at 36.6 ppm corresponding to

"free" amine is of very low integrated intensity, and now corresponds to a mere impurity,

along with several other peaks which are separate from or underlying the main resonances

at 19 and 14 ppm.

[Ag(C12H25NH2)2]
+[NO3]GGGG (3).  Further understanding of the structures of 2b and

2c can be made by considering the [Ag(C12H25NH2)2]
+[NO3]G (3) coordination compound. 

It has been proposed that the silver diamine cations of 3 consist of N-Ag-N in a near-

linear arrangement, and alkyl chains which adopt a “U-shape,” resulting in self-assembly
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Scheme  6.2.  A schematic representation showing possible layered arrangements
(interdigitated, non- interdigitated,and angled interdigitated) of the U-shaped
silver-dodecylamine cations in the structures of 1e and 2b.  Uncoordinated silver
cations, amines and pyridinesulfonate groups are omitted.  Three-dimensional
extension of these structures back into the page are omitted for clarity.

into a bilayered structure.41,61  The 1H-109Ag CP/MAS NMR spectrum of 3 (Figure 6.6d)

looks remarkably like those of 2b and 2c, with *iso = 454 ppm, Ω = 1322 ppm and 

κ = 0.99(1).  1H-109Ag CP/MAS NMR experiments on unlabeled 3 at νrot = 2.7 kHz and

processed with two zero fills and minimal line broadening (Figure 6.7b) reveal 1:2:3:2:1

multiplets with 1J(109Ag, 14N) = 50(8) Hz, confirming that each silver is bonded to two

dodecylamine molecules.

The similarity of the silver chemical shift tensors and J-coupling parameters of

2b, 2c and 3 suggests that they have comparable structures, with silver atoms in linear 

N-Ag-N arrangements.  The 109Ag and 15N NMR data, along with powder XRD data on 1e

and 2b, suggest that the structures of 1e, 2b, 2c and 3 all consist of silver-diamine cations

which adopt the proposed “U-shaped” structures and form bilayers (Scheme 6.2).  
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The “free” dodecylamines do not seem to be necessary for the stabilization and/or

formation of the layered structures, except in the case of 1e.  The positions of additional

species (including anions for all species and “free” dodecylamines for 1e) cannot be

directly probed with the 109Ag or 15N NMR experiments, though theoretical structural

modeling may be utilized to shed further light on these structural aspects.

6.3.2. Ab initio calculations. 

First principles calculations of silver and nitrogen chemical shielding tensors, as

well as 1J(109Ag, 14N) coupling constants, can be readily performed with modern

computational chemistry suites such as Gaussian 03.  In this section, we first present

calculations of silver CS tensor parameters and J-coupling constants on a model

compound for a well-characterized structure, [Ag(NH3)2]2SO4, in order to determine

which method and basis sets yield the best agreement between experiment and theory, as

well as to establish an approximate chemical shift scale (no absolute chemical shielding

standard has been reported for silver to date).  Second, calculations of NMR interactions

of structural models for 1a are presented (Figure 6.9a, 6.9b), since it has two well-

characterized, distinct silver sites.  Third, we discuss the computation of NMR parameters

for [Ag(NH2R)2]
+ units (Table D.6.4), which are used as structural models for 1e and 2b

(Figure 6.9c, 6.9d).  A preliminary exploration into the potential environments of

additional species, including “free” or non-coordinated amine and organic sulfonate

anions, is also presented.
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Figure 6.9.  Theoretically calculated silver chemical shielding tensor orientations in structural
models for 1a at sites (a) Ag(1) (model structure II ) and (b) Ag(2) (III ) and structural models
for (c) 2b ([Ag(NH2C3H7)2]

+, IV ) and (d) 1e ([Ag(NH2C3H7)2]
+@2(NH2C3H7), VI ).

[Ag(NH3)2]2SO4 is a reasonable starting model compound for choosing an 

appropriate method and basis sets, since it has a known crystal structure51 and silver CS

tensor parameters and 1J(109Ag, 14N) coupling constants have been measured.22  Following

Bowmaker et al., the model cluster [(Ag(NH3)2)3(HSO4)2]
+  (I ) is investigated, using

geometry optimized protons on the sulfonate groups.  The silver atom is coordinated to

two sp3-nitrogen atoms, similar to that in 1e and 2b.  The RHF method, with DZVP basis

sets49 on silver and nitrogen atoms49,50 and 6-311G** on all other atoms, yields the best

agreement with experimentally measured silver CS tensors and 1J(109Ag, 14N) (Table 6.4,

Table D.6.5), producing results similar to those of Bowmaker and co-workers,22 who used
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DFT calculations with the ADF suite, including zeroth-order relativistic approximation

(ZORA).22

Table 6.4.  Experimental and theoretical 109Ag chemical shift parameters and
 1J(109Ag, 14N) coupling values.

Structural Unit * r(Ag-N)
(Å)

σiso

(ppm)
δiso

(ppm)a,b
 Ω 

(ppm)
 κ 1J(109Ag,14N)

(Hz)

[Ag(NH3)2]2SO4
  (sample 4)

Experimental 2.11 -------     657(2)   1708(50) 0.62(5)47(8)

[(Ag(NH3)2)3(HSO4)2]
+ c  (I ) 2.11 3546 657   1652 0.84 41

Ag(PS) (sample 1a)

Experimental (site 1) 2.16 -------  283(2) 1163(50) 0.74(5) 60(8)

[Ag(py)2]
+ (II ) 2.16 3988  215    1100 0.87 38

Experimental (site 2) ------- ------- 25(2) ------- ------- -------

[Ag(SO3Me)4]
3!  (III ) ------- 4174 29    257 -0.53 -------

(sample 2b)

Experimental ------- -------     457(2) 1395(50) 0.92(5) 50(8)

[Ag(NH2C3H7)2]
+ (IV ) 2.10 3729 474 1366 0.93 42

[Ag(NH2C6H13)2]
+  (V) 2.10 3728 475 1370 0.93 42

(sample 1e)

Experimental ------- -------      507(2) 1031(50) 0.96(4) 43(8)

[Ag(NH2C3H7)4]
+ d (VI ) 2.10 3652  526 1231 0.83 38

[Ag(NH2C3H7)4]
+ d (VI ) 2.15 3741  452 1096 0.83 35

* The model structure formulae and reference numbers (in boldface Roman numerals) are listed below.
a The chemical shifts were calculated using δiso(sample) - δiso(ref) = σiso(ref) - σiso(sample) where δiso(ref)
and σiso(ref) are the 109Ag experimental chemical shift and the calculated chemical shielding, respectively.
b The δiso  of the Ag(2) site of 1a was set to 25 ppm as an approximate chemical shift reference.  See text
for details.  c This unit is taken from the reported crystal structure with adding two hydrogen atoms to avoid
the negative charge. d The positions of the uncoordinated amines were optimized.

To further test the consistency of the choice of method and basis sets, similar

calculations were conducted on model systems for 1a.  The structural unit used to model

site Ag(1) in 1a consists of a silver atom bonded to two pyridine rings, {Ag[py]2}
+ 

(II , Figure 6.9a), in which the sulfonate groups are replaced by hydrogen atoms to reduce

computational expense.  The calculated values of Ω and κ are in good agreement with

experimental data, and the CS tensor is oriented such that σ33 (the most shielded
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component) is near the Ag-N bonds (pσ33-Ag-N1 = 5.75Eand pσ33-Ag-N2 = 5.64E).  The

skew is not axially symmetric, since the N-Ag-N angle is not exactly 180o, and σ11 and σ22

are oriented in different environments, as predicted from experiment.  However, the

theoretical value of 1J(109Ag, 14N) is less than the experimental value, and the isotropic

shift is not accurately reproduced.  The structural model for site Ag(2), [Ag(SO3Me)4]
3-

(III , Figure 6.9b) is also based on the crystal structure; however, to reduce computational

expense, the pyridine moieties on the sulfur atoms were replaced by methyl groups. 

There are no experimental silver CS tensor data for this site; however, we found that by

setting δiso = 25 ppm (the experimental value) for the Ag(2) site, the relative chemical

shift values of all of the other model compounds scaled well with experimental values. 

This is by no means an endorsement of this particular model as an absolute chemical

shielding standard; a detailed experimental and theoretical determination of such a

standard is beyond the scope of this paper.

The 109Ag and 15N NMR spectra of 1e and 2b indicate that the silver sites are

coordinated to two dodecylamines; hence, one of the structural models used for these

species is [Ag(NH2C3H7)2]
+ (IV , Figure 6.9c).  The starting model for IV  was constructed

from a crystal structure reported by Smith et al.,43 with optimized proton positions.  In

order to reduce computational expense, the alkyl chains only have three carbons; this

feature of our model is justified by aforementioned 109Ag NMR data for 2b and 2c, as

well as calculations on [Ag(NH2C6H13)2]
+ (V, not pictured), both of which reveal that CS

and J-coupling parameters are not influenced to any great degree by chain length

differences.
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Figure 6.10.  1J(109Ag, 14N) coupling (#) and span (•) as a function of Ag-N bond
length in [Ag(NH2C3H7)]

+.

 Different structural parameters were varied in order to observe corresponding

changes in NMR parameters.  The variation of the silver CS span and 1J(109Ag, 14N) as a

function of internuclear distance (Figure 6.10, Table D.6.4) reveals that both the Ω and

1J(109Ag, 14N) increase with decreasing Ag-N bond length; this behaviour is expected for

the latter, since its magnitude is dominated by the Fermi-contact mechanism and

increasing s-character in the Ag-N bond.62  The best agreement between the theoretical

silver CS tensor parameters and those of 2b is observed at r(Ag-N) = 2.10 Å 

(Table D.6.4), while 1J(109Ag, 14N) is slightly underestimated.  This value of r(Ag-N) is a

reasonable equilibrium bond length for this structure, since there are a number of

analogous molecules having Ag-N(sp3) bond distances of ca. 2.1 Å 22,51,63-65 and similar

values of 1J(109Ag, 14N).22
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While model structure IV  may be adequate for describing 2b, the parameters are

clearly distinct from 1e, and simple geometrical adjustments to the [Ag(NH2C3H7)2]
+

coordinates (Ag-N bonds, as well as p(N-Ag-N) and p(C-N-N-C), Tables D.6.6 and

D.6.7) are insufficient for modeling this system.  Hence, calculations were conducted on

numerous structural models which include additional non-coordinated amine units and

pyridine sulfonate ions, all of which exert considerable influence on the CS tensors and 

J-couplings.  Interestingly, fairly good agreement was found in structural models

incorporating two additional propylamine units which are weakly coordinated (through

geometry optimization) to the silver atom, [Ag(NH2C3H7)2]
+@2(NH2C3H7) (Figure 6.9d,

VI ).  Specifically, calculations involving Ag-N bonds of 2.10 and 2.15 Å, and weakly

coordinated amines with Ag-N distances of 2.9 and 3.1 Å, yield reasonably good

agreement with experimental data for 1e, suggesting that weaker, long-range interactions

are key in determining the silver tensor characteristics, and hence, influencing its overall

structure.

Theoretical nitrogen chemical shifts are also of use in modeling the structure of

2b (Table 6.5).  Our experimental results indicate a coordination shift, ,∆δ ' δ
coord
iso & δ

free
iso

of between ca. !15 and !20 ppm in 1e and between ca. !14 and !22 ppm in 2b. 

Calculations are in excellent agreement, predicting coordination shifts of ∆δ = !16 to 

!22 ppm for coordination of two propylamine molecules to silver to form the cationic

diamine complex.  As expected, calculations predict that additional long-range

interactions between silver and propylamines will yield no noticeable change in isotropic

chemical shift, with ∆δ ranging from !0.2 to +1.0 ppm.
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Table 6.5.  Calculated 15N isotropic chemical shielding values and associated
coordination shifts relative to free propylamine in the structural models for 1e.

Structural Unit Ag-N (Å) σiso (ppm) ∆δ a

[Ag(NH2C3H7)2]
+ 2.10 273.7 -22.0

                              2.15 271.0 -19.3

2.20 268.5 -16.8

[Ag(NH2C3H7)4]
+  b (site 1) 2.10 272.2 -20.8

                               (site 2) 2.10 268.5 -17.1

                               (site 3) 2.90 251.6  0.2

                               (site 4) 3.02 250.4  1.1

[Ag(NH2C3H7)4]
+ b (site 1) 2.15 269.8 -18.2

                               (site 2) 2.15 266.2 -14.7

                               (site 3) 2.90 252.0  -0.1

                               (site 4) 3.02 250.7    0.9
a , where  is the 15N chemical shift of the nitrogen site coordinated to the silver∆δ ' δ

coord
iso & δ

free
iso δ

coord
iso

atom and  is the 15N chemical shift of free propylamine.  The RHF/6-311G** nitrogen σiso forδ
free
iso

propylamine is 251.7 ppm.  The coordination shift is defined as ∆δ . -∆σ. b The position of the third amine
was geometry optimized in this calculation.

Ab initio calculations of silver CS tensors, silver-nitrogen J-couplings and

nitrogen coordination shifts are all useful in the elucidation of the local structure of the

silver-dodecylamine cations in layered systems like 2b.  However, for systems like 1e, in

which there may be additional long-range interactions, the structures are more difficult to

model on the basis of NMR data; further investigations and structural refinement are

required.  It is possible that molecular dynamics/annealing simulations combined with

first principles calculations of silver and nitrogen NMR tensors may be useful for future

elucidation of the structures of these complex materials; notably, the nature of the long-
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range layered structure and counteranion positions.

6.4 Conclusions

Layered silver supramolecular frameworks reacted with primary amines have been

characterized using SSNMR, powder XRD and ab initio calculations.  109Ag and 15N

NMR spectroscopy have been utilized to demonstrate that new materials (1e and 2b) are

formed which consist of silver diamine cations, counteranions and, in the case of 1e,

“free” amine molecules and uncoordinated silver sites.  Amines are crucial in the

formation of these materials as both non-coordinative guests and highly selective

reactants at the silver sites.  109Ag and 15N NMR data, along with complementary NMR

parameters obtained from ab initio calculations, unequivocally demonstrate the formation

of silver diamine cations and the disappearance of the original metal-organic frameworks. 

The combined powder XRD and NMR data suggest that the silver diamine cations are

responsible for forming a bilayered structure.  Though the positions of the counteranions

are somewhat ambiguous, ab initio calculations demonstrate that additional amines that

are weakly coordinated to the silver sites may influence the silver CS tensors while not

producing an observable J-coupling, and suggest that these amines may be crucial in

stabilizing the layered structure of 1e.  In a broader view, this study demonstrates the

importance of combining complementary physical characterization methods for obtaining

a more comprehensive understanding of molecular structure underlying new materials.
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Chapter 7

Application of Solid-State 35Cl NMR to the Structural
Characterization of  Hydrochloride Pharmaceuticals and their
Polymorphs

7.1 Introduction

Polymorphs, which are distinct, stable phases of a pure substance resulting from a

minimum of two different arrangements of the molecules or atoms in the solid state, are

of great interest in many areas of chemistry.1,2  Most active pharmaceutical ingredients

(APIs) can adopt more than one polymorphic phase, and can also crystallize as

pseudo-polymorphs, in which the molecules are in distinct hydration or solvation

environments.  Identification of different polymorphs, or polymorph screening, is of great

importance in the pharmaceutical industry and associated laboratories,3-7 since (i) ca. 80%

of solid pharmaceuticals possess more than one polymorphic form,8 and (ii) different

polymorphs can have distinct physicochemical properties such as solubility, melting

point, dissolution rate, density, hardness and/or crystal morphology, all of which can

affect the bioavailability, handling, packing, shelf-life and/or patenting of a drug.9-11

Traditionally, single-crystal and powder X-ray diffraction (XRD) have been the

primary methods for solid-state characterization of pharmaceuticals.12,13  In many cases,

isolation of crystals suitable for single-crystal XRD studies is very difficult for standard

pharmaceuticals.  Powder XRD is useful for distinguishing polymorphs, but is often

limited for detection of slight structural/conformational changes,14,15 and for providing

specific information on the intra- and intermolecular origins of polymorphism. 
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Solid-state nuclear magnetic resonance (SSNMR) experiments are an excellent

complement to XRD methods,16,17 since they are sensitive to changes in the local

electronic environments of nuclei resulting from alterations in molecular structure such as

bond length and angle variation, hydrogen bonds and other intra- and intermolecular

interactions.18-20  SSNMR spectroscopy also provides the added benefit of being able to

examine disordered or non-crystalline phases of solid pharmaceuticals.  In general, 13C

SSNMR experiments have been key in probing pharmaceutical polymorphism, allowing

for the study of site-specific chemical changes, non-stoichiometric hydration and

solid-state dynamics in heterogeneous and disordered samples, as well as quantification

of mixtures of crystalline and/or amorphous forms.21  In numerous cases where 13C NMR

spectra are ambiguous, SSNMR of other nuclides in pharmaceuticals have proven useful,

including 1H, 2H, 15N, 31P and 19F, and even 23Na, all of which seem very promising for

probing polymorphism.22-28  

Chlorine SSNMR, to the best of our knowledge, has not been applied for the

investigation of pharmaceutical polymorphism, despite the plenitude of hydrochloride

(HCl) pharmaceuticals.  It is estimated that 50% of all pharmaceutical salts, which are

more soluble than non-ionic species and extremely useful in solid dosage forms, are HCl

pharmaceuticals, and that chlorine is present in final formulations of ca. 25% of drugs.29 

It has recently been demonstrated that chlorine NMR is an excellent probe of the Cl! ion

binding environment in HCl amino acids,30,31 and is very useful for distinguishing

pseudo-polymorphs of chlorine-containing coordination compounds.32  35Cl NQR has

been applied to study the temperature and phase dependence of 35Cl quadrupolar
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frequencies in numerous species;33-35 however, this technique is restricted to systems with

larger CQ’s, and not generally applicable for CQ < ca. 10 MHz.  Chlorine has two

naturally-occurring NMR-active nuclides, 35Cl and 37Cl, both of which are half-integer

quadrupoles (both spin 3/2, Q(35Cl) = -0.082 × 10-28 m2, Q(37Cl) = -0.065 × 10-28 m2)36,37

with low gyromagnetic ratios, and are regarded as unreceptive low-gamma nuclei, despite

their relatively high natural abundances (75.53% and 24.47%, respectively).  The recent

increase in the availability of ultra-high magnetic fields and signal-enhancing pulse

sequences has made routine 35/37Cl SSNMR experimentation a viable option for

investigating such systems.  Given the sensitivity of the 35/37Cl quadrupolar interaction to

site geometry and chemistry,30 and the relatively wide chlorine chemical shift range,38 

35/37Cl SSNMR should be an excellent probe of structure and polymorphism in HCl

pharmaceuticals.

One class of drugs prone to polymorphism is HCl local anaesthetics (LAs).  LA

molecules generally have common structural features which determine their

pharmaceutical activities, including a hydrophilic end group, which is normally a tertiary

or secondary amine, and a hydrophobic end group, which is usually aromatic.39  These

groups are linked by ester or amide bridges and possess one or more aliphatic chains as

substituents.40  While these structural features allow for conformational flexibility, which

undoubtedly influences the drug activity, they also account for the high possibility of

polymorph formation.39,40  The anionic chlorine sites, which adopt unique positions in the

unit cell, are expected to have distinct quadrupolar and chemical shift parameters.  This

suggests that 35Cl NMR spectra can serve as indicators and/or identifiers of different solid
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Scheme 7.1.  The structures of a) procaine HCl (PH), b) tetracaine HCl (TH), 
c) lidocaine HCl monohydrate (LH) and d) bupivacaine HCl monohydrate (BH). 

phases, providing rapid, unambiguous differentiation of structural polymorphs.  Notably,

35Cl SSNMR should find much utility in cases where 13C NMR data are indeterminate or

there is a disordered phase(s) unamenable to XRD characterization.

Herein, we report a preliminary study of the application of solid-state 35Cl NMR

spectroscopy for the structural characterization of HCl salts of procaine (PH), tetracaine

(TH), monohydrated lidocaine (LH) and monohydrated bupivacaine (BH) (Scheme 7.1)

as well as some polymorphs of LH and BH.  

Quadrupolar and chemical shift parameters extracted from 35Cl SSNMR spectra can be

used to distinguish different chlorine environments in these samples; of particular interest

is the relationship between the quadrupolar parameters and number of short Cl···H

hydrogen bonds.  These data are complemented by single-crystal structures, powder XRD
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patterns and 1H-13C CP/MAS NMR spectra.  We hope to demonstrate that the

combination of these methods will give us insight into relationships between the

structures of the solid pharmaceuticals and the NMR parameters, and that 35Cl SSNMR

spectroscopy is much needed as a routine screen for polymorphism in pharmaceutical

HCl species.

7.2 Experimental

7.2.1 Sample preparation and XRD.  

Samples were purchased from Sigma-Aldrich Canada, Ltd.  Crystals of PH were

obtained directly from the bottle, whereas crystals of LH, TH and BH were grown by

slow evaporation from acetone, isopropanol and a solution of water/acetone,41

respectively.  Commercial BH was heated in an oven at 120EC for one day to form

polymorph BH1, and was also heated at 170EC for 12 hours using a silicon oil bath to

form BH2.  Monohydrated lidocaine HCl polymorph (LH1) was synthesized by

dissolving approximately 1 g of the commercial lidocaine HCl (LH) monohydrate in

acetonitrile (30 mL) and a small amount of MgSO4 was added.  The mixture was left to

stir under nitrogen overnight.  The sample was filtered and acetonitrile was then removed

under reduced pressure.  Elemental analysis on LH1 was performed by Atlantic

Microlabs, Inc. (Anal Cald. for LH1: Cl, 12.27%; C, 58.22%; H, 8.72%; N, 9.69%; O,

11.08%.  Found: Cl, 12.22%, C, 58.16%; H, 8.85%; N, 9.61%; O, 11.10%). 

Single crystal and powder X-ray diffraction. Single crystals were covered in Nujol

and placed into the cold N2 stream of a Kryo-Flex low-temperature device.  The
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experiments were performed using the SMART42 data collection software on a Bruker

APEX CCD diffractometer using a graphite monochromator with Mo-Kα radiation 

(λ = 0.71073 Å) source at a temperature of -100 ºC.  A hemisphere of data was collected

using a counting time of 30 s per frame.  The data reductions were performed using

SAINT43 and absorption corrections were applied using SADABS.44  The structures were

solved by direct methods and refined by full-matrix least-squares on F2 with anisotropic

displacement parameters for all non-H atoms using the SHELXL software package.45 

Powder XRD patterns were collected using a D8 DISCOVER X-ray diffractometer

equipped with an Oxford Cryosystems 700 Cryostream Plus Cooler.  This diffractometer

uses a Cu-Kα (λ = 1.54056 Å) radiation source with a Bruker AXS HI-STAR area

detector running under the General Area Detector Diffraction System (GADDS).

TGA and MS.  Thermal gravimetric analysis with mass spectrometric detection of

evolved gases was conducted on a Mettler Toledo TGA SDTA 851e that was attached to

a Pfeiffer Vacuum Thermostar mass spectrometer (1-300 amu) via a thin glass capillary.

Helium (99.99%) was used to purge the system with a flow rate of 30 mL/min.  Samples

were held at 25 °C for 30 min before being heated to 125 °C at a rate of 2 °C/min. A mass

range between 15 m/z and 100 m/z was constantly scanned at a frequency of about 1.6

scans per second. 

7.2.2 Solid-State NMR. 

 35Cl SSNMR experiments were carried out on a Varian Infinity Plus

spectrometer equipped with an Oxford 9.4 T (ν0(
1H) = 400 MHz) wide-bore magnet with
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ν0(
35Cl) = 39.26 MHz.  The 35Cl isotope was chosen instead of 37Cl because of its higher

receptivity.  High-field 35Cl NMR data were collected on an ultra-wide bore 900 MHz

(21.1 T) built-in-house superconducting NMR magnet (ν0(
35Cl) = 88.125 MHz) at the

NHMFL in Tallahassee, Florida, as well as on a 900 MHz Bruker Avance II spectrometer

at the National Ultrahigh-field NMR Facility for Solids in Ottawa, Canada.  All spectra

were acquired using the Hahn-echo pulse sequence, and chlorine chemical shifts were

referenced to NaCl(s) (δiso = 0.0 ppm), following Bryce and co-workers.31,38

Experiments at 9.4 T.  Samples were finely ground and packed into 5 mm o.d.

zirconium oxide rotors.  35Cl NMR spectra were collected on a double resonance (HX)

static probe.  Central-transition selective π/2 pulse widths between 1.0 and 2.3 µs were

applied with an optimized recycle delay of 0.5 s.  In cases where NMR powder patterns

were too broad to be uniformly excited with a single pulse, spectra were acquired by

stepping the transmitter frequency across the entire central transition powder pattern in

even increments, collecting individual sub-spectra, and co-adding them.46,47  Experimental

times at 9.4 T ranged from 5 to 80 hours, depending upon the desired S/N, pattern breadth

and the number of sub-spectra collected. Further experimental NMR details can be found

in the supporting information (Table E.7.1-E.7.3, Appendix E).

1H-13C CP/MAS NMR spectra of BH and LH were acquired at νrot = 9.0 and 

9.9 kHz, respectively, on a 5 mm HXY probe at 9.4 T.  A 1H π/2 pulse width of 3.25 µs,

optimized contact time of 4 ms, recycle delay of 4 s and 1H decoupling fields of ca. 

62 kHz, using the TPPM sequence,48 were applied.  Carbon chemical shifts were

referenced with respect to TMS using the high frequency chemical shift of solid
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adamantane (δiso = 38.57 ppm) as a secondary reference.

Experiments at 21.1 T.  35Cl NMR spectra of BH obtained in Ottawa were

acquired on a Bruker HX 3.2 mm MAS probe.  The 35Cl MAS NMR experiment on BH

was performed with a spinning frequency of νrot = 15 kHz.  MAS and static spectra were

acquired using selective π/2 pulse widths of 3.6 and 6.0 µs, respectively, and optimized

recycle delays of 1.0 s.  The 35Cl MAS NMR experiments conducted at the NHMFL were

performed with νrot . 22 kHz on a built-in-house HX 3.2 mm MAS probe.  Selective π/2

pulse widths of 2.3 or 3.3 µs with 1H  decoupling fields of ca. 60 kHz and optimized

recycle delays of 1.0 or 2.0 s were employed.  For static 35Cl NMR experiments, samples

were packed in a rectangular glass container (7.5 × 5 × 11 mm) and spectra were acquired

on a low-E rectangular-flat coil HX probe.49  Selective π/2 pulse widths of ca. 2.0 µs with

proton decoupling rf fields of ca. 60.0 kHz were used.  Analytical simulations of 35Cl

NMR spectra were performed using WSolids.50

7.2.3  Ab initio calculations. 

 35Cl EFG and CS tensor parameters were calculated using Gaussian 0351 on Dell

Precision workstations and the SHARCNET grid of high performance clusters.52  Atomic

coordinates were input from the crystal structures obtained in our laboratory.  All

calculations were carried out on clusters comprised of a central chlorine atom and

surrounding organic moieties. Hydrogen atom positions (within 3.6 Å of Cl atoms) were

optimized using the B3LYP method,30 since crystallographic proton positions are

estimated during structural refinement.  EFG calculations were performed using the
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Restricted Hartree Fock (RHF) method with the cc-pVTZ basis set on Cl atoms and 

cc-pVDZ or 6-31G* basis sets on the other atoms (following Bryce et al.),30 and with the

6-311+G* on all atoms (for comparison).  CS tensor parameters were calculated using the

B3LYP method with the aug-cc-pVDZ basis set on the chlorine atom and cc-pVDZ basis

set on the other atoms.30  The nuclear magnetic shielding tensors were calculated using

the gauge-including atomic orbitals method (GIAO).53,54  The EFG and CS tensor

parameters were extracted from the Gaussian output using EFGShield program.55 

7.3 Results and Discussion

7.3.1 Crystal structures.  

Single-crystal X-ray diffraction (XRD) structures of PH56 and LH,57 and a

structure of TH from synchrotron powder XRD data,58 have previously been reported. 

Newly refined single-crystal XRD structures for PH, TH and LH were determined in our

laboratory, and we also report the crystal structure for monohydrated bupivacaine (BH). 

The crystallographic parameters for these samples are listed in Table 7.1, and partial

crystal structures are shown in Figure 7.1.  Powder XRD patterns were obtained for all

four parent samples, and found to match very well with simulated powder XRD patterns,

ensuring the purity of the bulk samples (Figures E.7.1-E.7.4).  Structural features of these

systems will be addressed in the NMR discussion below.
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Table 7.1. Crystal structure data for the HCl local anaesthetics.

Procaine HCl
Tetracaine
HCl

Lidocaine HCl·
H2O

Bupivacaine
HCl· H2O

empirical formula C13H21ClN2O2 C15H25ClN2O2 C14H25ClN2O2 C18 H31C N2O2

formula weight (g/mol) 272.77 300.82 288.81 342.90

temperature (K) 173(2) 173(2) 173(2) 173(2)

wavelength (Å ) 0.71073 0.71073 0.71073 0.71073

crystal system, space group
Orthorhombic,
Pbca

Triclinic, P -1
Triclinic, P1 21/n
1

Orthorhombic,
Pbca

unit cell dimensions (Å, deg)
a (Å) 14.009(2) 7.3436(10) 8.391(2), 18.5429(18)
b (Å) 8.2472(12) 8.5082(12) 7.0150(17) 7.2296(7)
c (Å) 24.853(4) 13.6340(19) 26.163(6) 28.476(3)

α (deg) 90.0
105.5420(10)    
 

90.0 90.0

β (deg) 90.0 91.8630(10) 91.414(3)        90.0
γ (deg) 90.0 99.5810(10) 90.0 90.0
volume (Å3) 2871.4(7) 806.60(19) 1539.5(6) 3817.4(6)

Z 8 2 4 8

calculated density (g cm-3) 1.262 1.239 1.246 1.193

absorption coefficient (mm-1) 0.263 0.241 0.249 0.211

F(000) 1168 324 624 1488
crystal size (mm) 0.3 × 0.2 × 0.2 0.2 × 0.1 ×0.1 0.2 × 0.1 × 0.1 0.2 × 0.1 × 0.1
θ range for data collection(deg) 1.64 to 28.3  2.53 to 28.20 1.56 to 28.27 1.43 to 28.23

limiting indices
-18 # h # 18,  
-10 # k # 10,   
-32 # l # 32

-9 # h # 9,
-10 # k # 10,
-17 # l # 17 

-11 # h # 10,
-9 # k # 9,
-33 # l # 33

-23 # h # 24,
-9 # k # 9,
-37 # l # 37

reflections collected/unique
30086/3433
[R(int) =
0.0447]

8886/3614         
 [R(int) =
0.0268]

15806/3503          
  [R(int) = 0.1231]

39005/4472
[R(int) =
0.0986]

refinement method Full-matrix least-squares on F2

data/restraints/parameters 3433/0/175 3614/0/189 3503/0/188 4472/0/224

goodness-of-fit on F2 1.089 1.239 1.457 1.173

final R indices [I > 2σ (I)]a
R1 =0.0428,     
  wR2 =  
0.1161

R1 = 0.0599,      
 wR2 = 0.1399

R1 = 0.1396,         
 wR2 = 0.2690

R1 = 0.0808,    
      wR2 =
0.1671

R indices all data
R1 = 0.0621,
wR2 = 0.1231

R1 =0.0677,
wR2 = 0.1462

R1 = 0.1897,
wR2 = 0.2812

R1 = 0.1342, 
wR2 = 0.1970

largest diff, peak & hole (e Å-3)
0.323 &
-0.229

 0.317 & -0.372  0.585 & -0.357
0.413 &
-0.280

a R1(F) = E(*Fo* - *Fc*)/E*Fo*for reflections with Fo >  4(F(Fo)); wR2(F2) = {Ew(*Fo*
2 -

*Fc*
2)2/Ew*Fo*

2)2} 1/2 where w is te weight given for each reflection.
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Figure 7.1.  Partial crystal structures of a) PH, b) TH, c) LH, and d) BH, which focus on the chlorine atom positions.  The
short chlorine-hydrogen contacts are indicated in red, and longer contacts are marked with dashed lines.  For TH and LH, some
atoms are deleted for clarity.
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7.3.2 Solid-state 35Cl NMR.  

In this section, solid-state 35Cl NMR spectra of the four parent compounds, as well

as polymorphs of LH and BH, will be discussed.  Magic-angle spinning (MAS) NMR

spectra were acquired at 21.1 T, in order to separate the central isotropic powder pattern

from the spinning sidebands, thereby allowing for the accurate determination of the

quadrupolar coupling constants, CQ, asymmetry parameters, ηQ, and isotropic chemical

shifts, δiso (see Table 7.2 for definitions and conventions).  Static 35Cl NMR spectra were

acquired at both 9.4 and 21.1 T, in order to deconvolute spectral contributions from the

electric field gradient (EFG) and chemical shielding (CS) tensors, and to extract the

anisotropic chlorine CS parameters. 

 Table 7.2. Summary of the experimental 35Cl NMR parameters. 
CQ/MHza ηQ

b δiso/ppmc Ω/ppmd κe α/E β/E γ/E

PH   4.87 (7)   0.28(4)     96(6)  125(25)   !0.4(3)   95(15)     3(2)   32(8)
TH  6.00(10)   0.27(4)     71(6)    80(15)     0.4(3)    60( 8)     8(5) 10(10)
LH    4.67(7)   0.77(3)   100(4)  110(15)!0.85(3)     12(3) 40(10)   80(3)
LH1 site 1  2.52(12)   0.95(5)   85(10)    20(10)   !0.8(2)   90(40) 50(50) 60(40)
LH1 site 2 5.32 (10) 0.32(10) 110(10)    45(10)     0.8(2)       5(5) 50(15) 40(40)
BH 3.66 (10)   0.72(8)   96(10)  100(25)     0.2(4) 105(20)  90(5)     5(5)
BH1 site 1  4.75(20) 0.65(10) 118(10)  160(40)     0.9(1)   10(10)     3(1)     0(2)
BH1 site 2  5.85(20)   0.26(4)   95(10)  160(40)   !0.2(1)     18(4)   50(5)   80(5)
BH2   4.58 (5)   0.56(6)   118(5)  120(10)     0.8(1)   10(10)     0(2) 50(50)
a Theoretical values of CQ (CQ = eQV33/h) are calculated by converting from atomic units to Hz by
multiplying V33 by (eQ/h)(9.7177 × 1021 Vm-2), where Q(35Cl) = -0.082 × 10-28 m2; b ηQ = (V11 ! V22)/V33; 
c δiso  = (δ11  + δ22  + δ33 )/3; d Ω  = δ11  ! δ33;  

e κ = 3(δ22  ! δiso )/ Ω.

PH and TH.  PH has been recrystallized from a variety of solvents and stored at

high humidity, but no polymorphic forms have been observed.59  TH, unlike PH, is

known to form polymorphs arising either from heating or different recrystallization
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processes.59  However, for the purpose of this work, PH and TH polymorphism will not

be discussed further; rather, these compounds will serve as benchmarks for comparison of

35Cl NMR parameters with structural data for HCl LA salts and other analogous

chlorine-containing systems.

According to our single crystal X-ray structure of PH (Figure 7.1a), there is one

crystallographic Cl site with a close Cl···HN contact of 2.150 Å and seven longer Cl···H

contacts between 2.545 Å and 3.087 Å, similar to the previously reported structure.56  35Cl

NMR spectra (Figure 7.2a) show powder patterns corresponding to a single Cl site with

parameters similar to those of cocaine HCl (CQ = 5.027 MHz, ηQ = 0.2)60 and

quinuclidine HCl (CQ = 5.25 MHz, ηQ = 0.05).61  Both have chlorine environments similar

to that of PH, with each Cl surrounded by eight H atoms, and single close contacts

(Cl···HN = 2.098 and 1.888 Å, respectively).62  

A crystal structure of TH was obtained in our laboratory after recrystallization of

commercial TH from isopropanol (Figure 7.1b).  This new structure is similar to a

previously reported one,58 and has a single short Cl···HN contact of 2.112 Å and six

longer Cl···HC contacts ranging from 2.794 to 3.044 Å.  35Cl NMR spectra of TH 

(Figure 7.2b) reveal similar NMR parameters to those of PH.  The slightly larger CQ for

TH is consistent with its shorter Cl···HN contact; clearly, short, single Cl···H contacts

dominate the magnitude of V33, the largest component of the EFG tensor.31  For both PH

and TH, static NMR spectra acquired at 21.1 T allow for refinement of the quadrupolar

parameters, as well as the determination of the principal components of the chlorine CS

tensors and the relative orientation of the CS and EFG tensors (Table 7.2).  
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Figure 7.2.  35Cl SSNMR spectra of a) PH, b) TH,  c) LH and d) polymorph LH1.  Top
and bottom traces are simulated and experimental spectra, respectively.

The chlorine chemical shift anisotropy (CSA) parameters are in the range of those

reported in the literature for similar systems.38 

LH & polymorph LH1.  The crystal structure of LH determined in our laboratory

(Figure 7.1c) is different from that previously reported;57 however, they both have only

one chlorine site in the asymmetric unit.  The Cl! ion in our structure has two hydrogen
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bonds (Cl···H = 2.206 and 2.402 Å) and seven more distant Cl···H contacts (ranging from

2.7 to 3.1 Å).  35Cl NMR spectra (Figure 7.2c) of this sample reveal a value of CQ close to

that of PH; however, the ηQ is distinct from those of PH and TH.  The higher ηQ for LH

indicates a reduction in the axial symmetry of the 35Cl EFG tensor, which possibly results

from the presence of two short Cl···H contacts, as opposed to the single contacts in PH

and TH.

It is well known that the presence of coordinating or non-coordinating water

molecules can influence the solid-state structures of hydrated pharmaceutical solids.22,63,64 

There have been no other reports of LH polymorphs; nevertheless, a new form (LH1) was

made in our laboratory.  Thermal gravimetric analysis (TGA) and solution 1H NMR

experiments confirm that both the commercial LH and LH1 samples are monohydrates. 

TGA curves (Figure E.7.5) show that the water molecules are lost at different

temperatures (at 65 ºC for LH and 50 ºC for LH1), implying structural differences

between these forms.  LH1 has a distinct powder XRD pattern from LH, but a crystal

suitable for single-crystal XRD could not be obtained.  The 1H-13C CP/MAS NMR

spectra are slightly different, with similar groupings of peaks on a coarse chemical shift

scale, but clear distinctions on a finer scale (Figure 7.3).  While this data combination is

indicative of polymorphism, little insight into the actual differences between LH and LH1

is readily available.

On the other hand, the 35Cl NMR spectra of LH1 reveal two overlapping

second-order patterns, which are especially apparent in the static spectra (Figure 7.2d &

E.7.6).  
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Figure 7.3.  13C NMR of the monohydrated lidocaine hydrochloride (LH) samples
acquired at B0 = 9.4 T, νrot = 9.9 kHz: a) polymorph LH1, b) commercial LH.  LH has
one molecule per asymmetric unit, while LH1 has two molecules per asymmetric unit,
as clearly seen in the splitting of the chemical shift of the carbonyl group (165 ppm). 
*: denote spinning sidebands.

These spectra indicate the presence of two chlorine environments with quadrupolar

parameters distinct from that of LH.  Site 1, which is distinguished by a narrower central

pattern, has a small CQ, a high ηQ and a small span, all of which are similar to analogous

parameters reported for L-cysteine methyl ester HCl,61 which has a Cl! ion with three

short Cl···HN contacts (ranging between 2.256 and 2.389 Å).65  Site 2 has a broad pattern

with two clearly visible discontinuities, arising from a larger CQ and ηQ closer to zero, and

a slightly larger span.  These values are similar to those measured for PH, TH and

quinuclidine HCl,61 all of which have a Cl! ion with only one short Cl···H contact,

suggesting that site 2 is of a similar nature.  The identification of these two structurally
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unique Cl sites confirms that LH and LH1 are polymorphs, and intimates two

possibilities: (i) LH1 is a single phase with two crystallographically distinct Cl sites; or

(ii) LH1 is a mixture of two phases, each with a crystallographically distinct Cl site; the

TGA data suggests that the former is highly probable.  Information obtained from 35Cl

SSNMR in this case is invaluable in considering options for refinement of powder XRD

data, additional 13C and 1H NMR experiments, etc., for further polymorph

characterization; of course, full discussion of this complete characterization is beyond the

scope of the current work.

BH and polymorphs BH1 and BH2.  The crystal structure of anhydrous BH has

been reported in the literature;41 however, the commercial BH is monohydrate. 

Recrystallization of the commercial BH, and ensuing refinement of single-crystal XRD

data, reveals a single chlorine site with two hydrogen bonds (Cl···HO  = 2.106 Å and

Cl···HN = 2.374 Å) and six other Cl···HC contacts ranging between 2.835 and 3.045 Å. 

35Cl SSNMR spectra of BH (Figure 7.4a) reveal a smaller CQ and a higher ηQ than those

of the LAs discussed above.  The Cl···HN contact in BH is the longest of the four

pharmaceuticals, and the Cl···HO contact is short by comparison.  As a result, the

quadrupolar parameters for BH are extremely different from the complexes discussed

thus far, with V33 no longer dominated by a short Cl···HN contact.

BH is known to form polymorphs when heated, or solvates when recrystallized

from different solvents.66  Heating the BH sample to 120 ºC leads to the formation of a

polymorph, BH1, whose structure is unknown.  The 35Cl NMR spectra indicate the

presence of two distinct chlorine sites with environments different than those in the
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Figure 7.4.  35Cl SSNMR spectra of monohydrated bupivacaine HCl (BH) and its
polymorphs:  a) commercial BH, b) BH1 is a polymorph obtained from the BH sample
by heating it to 120E, c) BH2 is a polymorph obtained from the BH by heating it to 170E. 
Top and bottom traces are simulated and experimental spectra, respectively.

commercial BH (Figure 7.4b & E.7.7).  In addition, the spectral discontinuities are not as

sharp as in NMR spectra of highly crystalline samples, indicating some degree of

disorder.  

However, the fact that discontinuities are observed at all is consistent with some

crystallinity, as confirmed by the corresponding powder XRD patterns and 13C NMR data

acquired by us (Figure 7.5) and others.66  Both sites have larger quadrupolar interactions

than that of BH: site 1 (CQ = 4.75 MHz) is similar to the chlorine site in LH (two Cl ···H
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Figure 7.5.  Powder XRD (left) and 13C NMR spectra (right) acquired at 9.4 T, νrot = 9.0
kHz: a) commercial BH. b) polymorph BH1 (heated to 120 EC), c) polymorph BH2
(heated to 170EC).  *: denote spinning sidebands.

bonds), whereas site 2 (CQ = 5.85 MHz) indicates a coordination environment similar to

that in TH (one Cl ···H bond).

Heating the BH sample to 170 ºC leads to the formation of another crystalline

polymorph, BH2.66  Comparisons of powder XRD patterns and 13C NMR spectra 

(Figure 7.5) of BH1 and BH2 indicate subtle differences between the two samples, but are

inconclusive with regard to polymorphism, and are not particularly useful for any

structural interpretation.  However, 35Cl NMR data (Figure 7.4c) indicate that BH2 has

only one chlorine site, with quadrupolar parameters that are similar to site 1 of BH1.  In

addition, the discontinuities in the 35Cl NMR powder patterns of BH2 are sharper than

those of BH1, consistent with indications of higher crystallinity of BH2 indicated by both

sharper powder XRD peaks and 13C NMR peaks (Figure 7.5).  In comparing 35Cl NMR

data for BH1 and BH2, it is surmised that (i) BH1 is a mixture of a non-crystalline phase
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with one type of chlorine environment and a crystalline phase with a second distinct

chlorine environment, and (ii) BH2 is comprised solely of one crystalline phase. 

Therefore, heating from room temperature to 120 ºC produces new crystalline and

disordered phases in BH1, the latter of which is detected by 35Cl NMR but not by powder

XRD.  The disordered phase disappears after heating to 170 ºC, leaving only a unique

crystalline phase, BH2, which is similar, but not identical to the crystalline phase in BH1. 

In this instance, the 35Cl NMR data are crucial in demonstrating that BH1 and BH2 are

distinct polymorphs, and reveal a phase undetectable by XRD techniques.

7.3.3 Theoretically calculated NMR interaction tensors.  

An appreciation of the relationships between solid-state structures and chlorine

NMR interaction tensors will be crucial for making future structural interpretations for

the many HCl pharmaceuticals for which crystal structures are unavailable.  To develop a

basis for understanding these relationships, we have conducted ab initio calculations of

the 35Cl EFG and CS tensors of the four parent pharmaceuticals, and carefully examined

the principal components and tensor orientations with respect to the molecular

coordinates.  Following the work of Bryce et al.,30 RHF calculations were found to

provide the closest agreement with experiment for EFG tensor parameters, and B3LYP

calculations were considerably better for CS tensor parameters (full details on the basis

sets are given in the Experimental Section and Appendix E, with key results are

summarized in Tables 7.3 & E.7.4).  In all calculations, the molecular coordinates were

taken from single-crystal structures, and only proton positions were geometry optimized.
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Table 7.3. Comparison of the experimental and theoretical 35Cl EFG and CS tensor
parameters.

CQ/MHz 0000Q ****iso/ppm SSSS/ppm 6666 """"/EEEE $$$$/EEEE ((((/EEEE
PH Exp. 4.87(7) 0.28(4) 96(6) 125(25) !0.4(3) 95(15) 3(2) 32(8)
PH Cal. !5.41 0.286 96 114.4 !0.16 21 6 72
TH Exp. 6.0(1) 0.27(4) 71(6) 80(15) 0.4(3) 60(8) 8(5) 10(10)
TH Cal. !6.11 0.20 105 103.4 0.49 51 31 57
LH Exp. 4.67(7) 0.77(3) 100(4) 110(15) !0.85(3) 12(3) 40(10) 80(3)
LH Cal !4.097 0.437 120 115.05 !0.52 50 78 75
BH Exp. 3.66(10) 0.72(8) 96(10) 100(25) 0.2(4) 105(20) 90(5) 5(5)
BH Cal. 3.91 0.84 108 117.24 !0.1 164 85 4.2
a  Definitions of parameters are given in Table 7.1.  b All theoretical EFG parameters are obtained from
RHF calculations featuring cc-PVTZ on the Cl atoms and 6-31G* on all other atoms.  Other calculations
producing reasonable agreement with experiment are included in Appendix E, Table E.7.4.  Only the
signs of the theoretical CQ's are reported, since the signs of the experimental values can not be
determined form the 35Cl NMR spectra.

In general, the agreement between the experimental and theoretical 35Cl EFG

parameters is quite good, with the only significant discrepancy being the values of ηQ for

LH (expt. 0.77, theor. 0.44).  It is instructive at this point to consider the EFG tensor

orientations and local atomic coordinates to understand the origins of the 35Cl quadrupolar

parameters.  PH and TH, as noted earlier, both feature single, short Cl···HN contacts, with

the shorter contact distance corresponding to the larger value of CQ in TH.  Visualization

of the tensor orientation aids in understanding these EFG parameters: in each case, V33 is

found to be oriented close to the Cl···HN bond axis (p(V33-Cl-H) = 4.6o and 24.8o, in PH

and TH, respectively), accounting for its dependence on contact length (Figure 7.6a,

7.6b).  Since there are no other short contacts, V11 and V22 are similar to one another, and

the value of ηQ is closer to zero than to one.

LH and BH both possess two short hydrogen-bonding contacts: Cl···HN and

Cl···HO.  These environments are distinct from those of PH and TH, as reflected in the
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Figure 7.6.  35Cl EFG tensor orientations in a) PH, b) TH, c) LH and d) BH.  The diagrams
above are magnifications of the chlorine sites pictured in Figure 7.1.

higher values of ηQ.  For LH, V33 is again oriented very near to the Cl···HN bond axis

(Figure 7.6c, p(V33-Cl-H) = 11.6o), and the r(Cl···H) is very similar to that in PH,

accounting for their similar values of CQ.   However, V11 and V22 are differentiated from

one another by the presence of the short Cl···HO contact with an H2O molecule.  

Rapid motion of the H2O molecule and variation in proton coordinates very likely

accounts for the discrepancy between experimental and theoretical values of ηQ.  The

Cl···HN contact in BH is the longest of the four pharmaceuticals (2.374 Å, geom. opt.

2.182 Å), and the Cl···HO contact is short by comparison (2.106 Å, geom. opt. 2.087 Å). 
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As a result, the 35Cl EFG tensor is oriented differently from all of the other cases

discussed: V11, the most distinct component, is aligned close to the Cl···HO bond 

(p(V11-Cl-H) = 24.4o), and V22 is near the Cl···HN bond (p(V22-Cl-H) = 13.0o).  Not only is

the value of V33 reduced in comparison to the other systems, but the theoretically

determined sign of V33 is observed to be opposite, which is consistent with V33 being

oriented approximately perpendicular to the NH···Cl···HO plane.67  As further

experimental and theoretical 35Cl NMR data are accumulated for well-characterized HCl

pharmaceuticals, it is anticipated that ab initio calculations will play a major role in

structural characterization of polymorphs.

Examination of the theoretical CS tensor parameters also reveals good general

agreement with experimental data.  There are no simple correlations between basic

structural features and CS tensor parameters, with one exception: we note that for PH and

TH, the Euler angles indicate that V33 and the most shielded component of the CS tensor,

σ33, are nearly coincident, while for LH and BH, the higher values of β indicate non-

coincidence of these components (Figure E.7.8).  This is consistent with one short contact

dominating the CS tensor components in the former cases, and two short contacts

resulting in a change in tensor orientation in the latter cases.  Of course, a wider spread of

complexes will have to be examined in a forthcoming study to get a better handle on the

relation of chlorine CSA to structure, since the origin of CS tensor parameters are

somewhat more complex than those of the EFG tensor; nonetheless, these results show

promise for future detailed structural investigations.
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7.4 Conclusions

This study represents the first application of 35Cl SSNMR for the structural

characterization of and identification of polymorphism in solid pharmaceuticals.  35Cl

SSNMR spectroscopy is clearly a powerful complementary technique to XRD and 13C

SSNMR experiments, providing clear information on the number of chlorine sites, and

showing great utility for identifying sites in non-crystalline, disordered or even impurity

phases, especially in cases where the solid-state 13C NMR spectra or powder XRD

experiments cannot unambiguously differentiate polymorphs.  The use of ultra-high field

NMR spectrometers is crucial for the success of such work, for both fast acquisition of

high S/N NMR spectra and accurate determination of anisotropic quadrupolar and

chemical shift parameters.  The sensitivity of the 35Cl EFG and CS tensor parameters to

the chlorine chemical environment allows for prediction of the number of short hydrogen

bonds around the Cl! ion.  Theoretically calculated chlorine EFG and CS tensors are in

good agreement with experimental data, and will help to improve the predictive abilities

of the solid-state 35Cl NMR experiments.  Consideration of the tensor orientations in the

molecular frames provides a deeper understanding of the correlation between NMR

parameters and chlorine-hydrogen bonding environments in LAs, and holds strong

promise for application to a wide array of HCl pharmaceuticals and related systems.
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Chapter 8

Solid-State 35Cl NMR Spectroscopy of Hydrochloride
Pharmaceuticals

8.1 Introduction

Chlorine is present in ca. 25% of known pharmaceuticals, and HCl drugs

constitute more than 50% of pharmaceutical salts.1,2  The ubiquity of chlorine anions in

many classes of pharmaceuticals suggests that they may play important roles as NMR

probe sites for structural characterization.  An understanding of the structure of

pharmaceuticals in the solid state is crucial in the consideration of the molecular origins

of a number of their properties, including bioavailability, handling, packing, shelf life,

and/or patenting of a drug.3-8  In addition, the definitive identification of structural

polymorphs, solvates and hydrates of various pharmaceuticals is important in all of these

respects.

Single-crystal X-ray diffraction (XRD) crystallography and high-resolution NMR

spectroscopy both play pivotal roles in the characterization of the molecular structures of

pharmaceuticals and their polymorphs;9,10 however, these techniques are limited in terms

of the types of systems that can be characterized, and/or the level of clear structural

information that is available.  For instance, isolation of crystals suitable for single-crystal

XRD studies is often very difficult or simply impossible for many standard

pharmaceutical solids.  Further, amorphous/disordered solids are not subject to

characterization via XRD.  While solution NMR is useful for structural characterization,
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there are many cases in which the molecular structures of pharmaceuticals in solution are

different from the solid-state structures (and solution NMR does not address issues

surrounding any of the bulk solid properties listed above).11,12  Solid-state NMR

(SSNMR) spectroscopy is an excellent complementary technique for structural

characterization, and can also function as a standalone technique in cases where XRD and

solution NMR are not applicable.12,13  SSNMR is sensitive to subtle changes in the local

electronic environments of nuclei resulting from alterations in molecular structure such as

variation in bond lengths and angles, hydrogen bonding and other intra- and

intermolecular interactions.  SSNMR spectroscopy is able to probe molecular structures

of disordered or non-crystalline phases of solid pharmaceuticals, or other samples

unsuitable for XRD experiments, and is capable of providing information on differences

in molecular structure, reactivity, stability and polymorphism.

Traditionally, 13C SSNMR experiments have been key in probing pharmaceutical

solids, allowing for the study of site-specific chemical changes, hydration, solid-state

dynamics, and quantification of mixtures of crystalline and/or amorphous phases.11  In

cases where 13C NMR spectra are ambiguous in their meaning, SSNMR of other nuclides

has been applied, including 1H, 2H, 15N, 31P and 19F, and 23Na.14-20  In the previous chapter

and recent publication,21 we demonstrated that 35Cl SSNMR spectroscopy is a very useful

probe of the different anionic chlorine sites present in local anesthetic HCl drugs and their

polymorphs.  35Cl SSNMR provides clear information on the number of chlorine sites

(and potentially their structural environments) and shows great utility for distinguishing

sites in microcrystalline, non-crystalline, disordered and/or even impurity phases.  The
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sensitivity of the chlorine chemical shift (CS) and electric field gradient (EFG) tensors to

small changes in the ClG environments is reflected in the striking differences between the

35Cl SSNMR powder patterns.   35Cl SSNMR is very useful in cases where solid-state 13C

NMR spectra or powder XRD data are indeterminate; of course, it can be used to

complement or support results from these techniques as well.  We have now extended this

research to include a variety of HCl pharmaceuticals.

Chlorine has two NMR-active isotopes, 35Cl and 37Cl, which are both half-integer

quadrupoles (both spin = 3/2, Q(35Cl) = -0.082 × 10-28 m2
 and Q(37Cl) = -0.065 × 10-28

m2)22,23  Due to their low gyromagnetic ratios, they are classified as unreceptive,

low-gamma nuclei, despite their relatively high natural abundances (75.53% and 24.47%,

respectively).   SSNMR experiments on 35Cl are more common due to its higher

receptivity.  The recent availability of ultra-high magnetic field spectrometers and

signal-enhancing pulse sequences (vide infra) has made 35/37Cl SSNMR experimentation a

viable option for the routine investigation of a variety of chlorine-containing systems.  In

part, the work of Bryce et al. on HCl salts of amino acids was the inspiration for our work

in this area.24-27  A wide range of applications of 35Cl SSNMR has been recently reviewed

by Bryce et. al.,28,29 and we refer readers to these articles for further details.

Herein, we describe the application of solid-state 35Cl NMR spectroscopy for the

structural characterization of HCl salts of adiphenine (AD), buflomedil (BU), trigonelline

(TR), ranitidine (RA), amantadine (AM), acebutolol (AC),  isoxsuprine (IS), dibucaine

(DI), and mexiletine (ME) (Scheme 8.1).  These drugs are used in the treatment of a

variety of medical conditions or diseases such as hypertension, arrhythmias, vasodilation, 
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viral infections, peptic ulcers, etc.  35Cl magic angle spinning (MAS) SSNMR spectra

were acquired at 21.1 T, and static spectra were acquired at both 21.1 T and 9.4 T.  Our

previous work has shown that the use of ultrahigh-field NMR spectrometers is crucial for

both the fast acquisition of high S/N NMR spectra and the accurate determination of

anisotropic quadrupolar and chemical shift parameters.  The WURST-QCPMG pulse

sequence30,31 is very beneficial for the acquisition of broad, static 35Cl NMR powder

patterns, combining the uniform broadband excitation of WURST pulses32,33 with

dramatic signal enhancement of the QCPMG protocol.34  Quadrupolar and chemical shift

(CS) parameters extracted from 35Cl SSNMR spectra are used to distinguish different

chlorine environments in these drugs; in particular, the quadrupolar parameters are related

to the number of short Cl···H hydrogen contacts with the chlorine ions, as well as the

local geometry.  These data are complemented by first principles calculations of EFG and

nuclear shielding (NS) tensors, in order to correlate the local chlorine environments with

the local structure and symmetry, and to develop a basic understanding of the origins of

the chlorine NMR interaction tensors.

8.2 Experimental

8.2.1 Powder XRD.  

All samples were purchased from Sigma-Aldrich Canada, Ltd. and their purities

and crystal structures were confirmed using powder XRD.  Powder XRD patterns were

collected using a D8 DISCOVER X-ray diffractometer equipped with an Oxford

Cryosystems 700 Cryostream Plus Cooler.  A Cu-Kα (λ = 1.54056 Å) radiation source
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with a Bruker AXS HI-STAR area detector running under the General Area Detector

Diffraction System (GADDS) were used.

8.2.2 Solid-State NMR.  

Static 35Cl SSNMR spectra were acquired on a Varian Infinity Plus spectrometer

equipped with an Oxford 9.4 T (ν0(
1H) = 400 MHz) wide-bore magnet at the University

of Windsor with ν0(
35Cl) = 39.26 MHz.  Ultra-high field 35Cl NMR experiments were

carried out on an ultra-wide bore 900 MHz (21.1 T) home-built superconducting NMR

magnet (ν0(
35Cl) = 88.125 MHz) at the NHMFL in Tallahassee, Florida.  Spectra were

acquired using either a Hahn-echo or WURST-QCPMG pulse sequence,30,31 and chlorine

chemical shifts were referenced to NaCl(s) (δiso = 0.0 ppm).31  Analytical simulations of

35Cl static and some MAS NMR spectra were performed using WSolids.35  Simulations of

35Cl MAS NMR spinning sideband manifolds were generated with SIMPSON,36 using 10

gamma angles and powder averaging over 4180 crystal orientations calculated using the

Zaremba Conroy Wolfsberg (ZCW) method. 

Experiments at 21.1 T.  For the MAS experiments, samples were finely ground

and packed into 3.2 mm zirconia rotors.  35Cl MAS NMR experiments were performed

with spinning speeds (νrot) ranging from 20 to 23.4 kHz on a home-built HX 3.2 mm

MAS probe.  Selective 35Cl π/2 pulse widths ranged between 2.0 and 2.2 µs.  1H

decoupling fields of ca. 90 kHz and optimized recycle delays between 1.0 and 3.0 s were

utilized.  For static 35Cl NMR experiments, samples were packed in a rectangular glass

container (7.5 × 5 × 11 mm) and spectra were acquired using a low-E rectangular-flat coil

HX probe.37  Selective π/2 pulse widths of 2.5 µs with proton decoupling rf fields of ca.
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62 kHz were employed.  Additional experimental NMR details are included in Appendix

F (Tables F.8.1 and F.8.2).  

Experiments at 9.4 T.  Samples were finely ground and packed into either 5 mm

o.d. zirconium oxide rotors or glass NMR tubes.  35Cl NMR spectra were collected on

either a double resonance (HX) static probe or a triple resonance MAS (HXY) probe.  For

the Hahn-echo experiments, central-transition selective π/2 pulse widths between 1.5 and

2.2 µs and an optimized recycle delay of 0.5 s were used.  A 50 kHz 1H decoupling field

was applied in most cases.  For the WURST-QCPMG30 experiments, spectra were

collected using the WURST-80 pulse shape.32  The WURST pulse length was set to 50 µs

and swept at a rate of 10 or 12 MHz/ms with an offset of either 250 or 300 kHz and rf

power of 14 or 18 kHz.  A 1H decoupling field of 42 kHz was applied in these

experiments.  The number of echoes ranged between 35 and 120, depending on the

transverse relaxation characteristics of 35Cl in each sample.  A recycle delay of 0.5 s and a

spectral width of either 500 or 800 kHz were used.  Further experimental NMR details are

included in Appendix F (Table F.8.3).

8.2.3 Ab initio calculations.  

35Cl EFG and NS tensor parameters were calculated using and Gaussian 0938 on

the SHARCNET grid of high performance clusters.39  Atomic coordinates were taken

from the crystal structures reported in the literature.40-49   In some cases, calculations were

carried out on clusters comprised of a central chlorine atom and surrounding organic

moieties which have protons within 3.6 Å from the chlorine anions.  In certain cases (BU,
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AC, AM, DI and ME), more than one chlorine atom was included in the calculation (vide

infra).  Hydrogen positions were optimized using the B3LYP method.25  EFG calculations

were performed using the Restricted Hartree Fock (RHF) method with the cc-pVTZ basis

set on Cl atoms and 6-31G* basis sets on the other atoms.25  NS tensor parameters were

calculated using the B3LYP method with the aug-cc-pVDZ basis set on the chlorine atom

and cc-pVDZ basis set on the other atoms,25 using the gauge-including atomic orbitals

method (GIAO).50,51  The EFG and NS tensor parameters were extracted from the

Gaussian output using EFGShield program.52  Calculated isotropic NS values were

converted to isotropic CS values using the following equation: δiso(sample)/ppm = σiso(HCl,

g)/ppm ! σiso(sample)/ppm + 28 ppm + 45.37 ppm, where σiso(HCl, g) = 952.62 ppm

(from a B3LYP/aug-cc-pVDZ(Cl) calculation on HCl), 28 ppm is the chemical shift of

HCl53 and 45.37 ppm is the difference between the chemical shift of NaCl (s) and 

NaCl (R).26

EFG calculations on RA were also performed using CASTEP NMR program54,55

in the Materials Studio 4.3 environment on an HP xw4400 workstation with a single Intel

Dual-Core 2.67 GHz processor and 8 GB DDR RAM.  Ultrasoft pseudopotentials were

used for 35Cl EFG calculations with a plane wave basis set cut-off of 450 eV in a coarse

accuracy basis set with the Monkhorst-Pack k-space with a grid size of 1×2×1.  The

Perdew, Burke and Ernzerhof (PBE) functionals were used in the generalized gradient

approximation (GGA) for the exchange-correlation energy.56,57 
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8.3 Results and Discussion

In this section, the 35Cl SSNMR data for the HCl pharmaceuticals are presented

followed by a discussion of the ab initio calculation results.  The discussion is organized

such that the samples are grouped based on the number and type of Cl···H contacts and/or

the number of chlorine sites.

8.3.1 Solid-state 35Cl NMR.   

 The HCl pharmaceuticals are listed in Table 8.1, along with short hydrogen-bond

contacts, quadrupolar coupling constants, CQ, asymmetry parameters, ηQ, and isotropic

chemical shifts, δiso. 
  



221

Table 8.1: A comparison of short Cl...H contacts and experimentally determined NMR
parameters.

Key Cl···H Contacts  
(Experimental) (Å) a

Key Cl···H Contacts
(Theoretical) (Å) b

CQ/MHz 0Q *iso/ppm

AD Cl···HN 2.05 2.037 5.94(6) 0.18(3) 128(5)
BU Cl···HN 2.184   1.951  5.67(13) 0.18(6) 75(10)
TH c Cl···HN 2.112 1.899 6.00(10) 0.27(4) 71(6)
TR Cl···HO 1.909 1.878 7.50(12) 0.05(3) 70(10)
RA Cl···HN 2.132 2.017 4.70(10) 0.92(3) 75(5)

Cl···HN 2.366 2.208
LH c Cl···HN 2.206 1.995 4.67(7) 0.77(3) 100(4)

Cl···HOH 2.402 2.246
AM Cl···HN 2.076 2.122 2.90(4) 0.68(3) 131(5)

Cl···HN 2.184 2.117
Cl···HN 2.319 2.182

CM c Cl···HN 2.256 ------- 2.37(1) 0.81(3) 94
Cl···HN 2.269 -------
Cl···HN 2.389 -------

GA c Cl···HO 2.073 ------- 3.61(1) 0.65(2) 102(1)
Cl···HN 2.107 -------
Cl···HN 2.137 -------

AC Cl···HN 2.162 2.11 4.57(5) 0.50(4) 95(5)
Cl···HN 2.408 2.267
Cl···HO 2.197 2.103

HM c Cl···HN 2.165 ------- 4.59(3) 0.46(2) 93(1)
Cl···HN 2.265 -------
Cl···HO 2.233 -------

IS Cl···HO 2.328 2.171 5.50(15) 0.25(5) 120(10)
Cl···HO 2.36 2.183
Cl···HN 2.34 2.146
Cl···HN 2.529 2.402 5.4(1) 0.94(2) 99(10)

TE c Cl···HN  2.3 -------
Cl···HN 2.351 -------
Cl···HO 2.206 -------
Cl···HO 2.313 -------

DI site 1 Cl···HN ------- 2.01 4.65(20) 0.86(7) 105(15)
Cl···HN ------- 2.361

DI site 2 Cl···HN ------- 1.928 4.00(20) 0.93 (7) 95(15)
Cl···HN ------- 2.254
Cl···HOH ------- 2.111

ME site 1 Cl···HN 2.227 2.013 5.45(10) 0.40(8) 90(5)
Cl···HN 2.288 2.103

ME site 2 Cl···HN 2.284 2.101 3.10(10) 0.55(10) 130(5)
Cl···HN 2.323 2.121
Cl···HN 2.455 2.307
Cl···HN 2.486 2.355

a This is a list of the shortest Cl···H contacts in this series of HCl pharmaceuticals.  The upper threshold is
2.60 Å.  b This is a list of the shortest Cl···H contacts as determined via first principles energy minimization
and geometry optimization.  See the experimental section for details. c These systems are included for
comparison. 
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These parameters were obtained for all samples from numerical/analytical simulations of

35Cl MAS SSNMR spectra which were acquired at 21.1 T in order to reduce/remove

overlap between the isotropic pattern and its spinning sidebands, and to average the

effects of chemical shift anisotropy (CSA).  Static 35Cl NMR spectra were acquired at

both 9.4 and 21.1 T, in order to deconvolute the effects of the EFG and CS tensors on the

powder patterns and accurately measure the CS tensor parameters.  A complete listing of

all of the EFG and CS tensor parameters extracted from the simulations of the 35Cl NMR

spectra are summarized in Table 8.2.

Table 8.2. Summary of the experimental 35Cl NMR parameters. 

CQ/MHz a ηQ
b δiso/ppmc Ω/ppmd κe α/EEEE β/EEEE γ/EEEE

AD 5.94(6) 0.18(3) 128(5) 155(20)  0.60(20) 10(10) 13(2) 35(15)
BU 5.67(13) 0.18(6) 75(10) 125(30) -0.60(20) 5(5) 8(4) 45(10)
TR 7.50(12) 0.05(3) 70(10) 120(30)  0.80(20) 30(20) 12(5) 50(15)
RA 4.70(10) 0.92(3) 75(5) 70(15)  0.30(30) 55(10) 95(10) 10(10)
AM 2.90(4) 0.68(3) 131(5) 50(5)  0.60(20) 80(10) 80(10) 20(20)
AC 4.57(5) 0.50(4) 95(5) 95(10) -0.30(30) 15(5) 15(5) 60(5)
IS 5.50(15) 0.25(5) 120(10) 50(20)  0.50(40) 40(20) 55(15) 20(20)
DI site 1 4.65(20) 0.86(7) 105(15) 100(20) -0.26(60) 70(15) 80(50)90(10)
DI site 2 4.00(20) 0.93(7) 95(15) 80(20) -0.20(60) 95(15) 100(50) 10(10)
ME site 1 5.45(10) 0.40(8) 90(5) 80(20) -0.80(20) 40(30) 100(20) 0
ME site 2 3.10(10) 0.55(10) 130(5) 75(20)  0.80(20) 10(10) 5(5) 0
a CQ (CQ = eQV33/h) where Q(35Cl) = -0.082 × 10-28 m2; b ηQ = (V11 ! V22)/V33; 

c δiso  = (δ11  + δ22  + δ33 )/3;
d Ω  = δ11  ! δ33;  

e κ = 3(δ22  ! δiso )/ Ω.

Systems with single Cl- sites with one short Cl···H contact: Adiphenine (AD),

Buflomedil (BU) and Trigonelline (TR) Hydrochlorides.  The crystal structures of AD

and BU both have single Cl sites involved in only one short hydrogen contact (Cl···HN),

(Table 8.1 and Figures 8.1a, 8.1b).41,42  
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Figure 8.1.  Partial crystal structures of a) AD, b) BU and c) TR which focus on the chlorine atom positions.  The short
chlorine-hydrogen contacts are indicated in red, and longer contacts are marked with dashed lines.  Hydrogens attached to
carbon atoms and away (>3.0 Å) from the chlorine ion are deleted for clarity.  
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** *

60 20 -20 -60 kHz

Figure 8.2.  35Cl SSNMR spectra of a) AD, b) BU, and c) TR.  The top patterns are
simulations and bottom ones are experimental.  *: indicates spinning sidebands.

The 35Cl NMR spectra of each of these pharmaceuticals (Figures 8.2a, 8.2b) indicate a

single chlorine site, in agreement with the known structures.  Simulation of these spectra

reveal EFG and CS tensor parameters which are similar to those of tetracaine

hydrochloride (TH), in which the chlorine ion is also engaged in a single hydrogen

contact of similar length (Table 8.1).21  The ηQ value, which is the same for both AD and

BU, indicates a nearly axially symmetric 35Cl EFG tensor, also similar to the case of TH. 
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The crystal structure of TR also has a single Cl! site engaged in only one short

hydrogen contact with the COOH group (Table 8.1, Figure 8.1c).40  Such distances are in

the lower limit of the range of typical Cl···H hydrogen bonds in organic HCl salts.25  The

35Cl NMR spectra (Figure 8.2c) indicate the presence of a single chlorine environment, in

agreement with the crystal structure.  Simulation of these spectra reveal a CQ (Table 8.2)

which is the largest of all of the 35Cl CQ values of hydrochloride salts reported to date,28

the second largest being that of aspartic acid hydrochloride (CQ = 7.1 MHz).27  The ηQ

value near zero indicates an axially symmetric 35Cl EFG tensor; this means that the largest

component of the EFG tensor, V33, is unique, and most likely oriented along (or close to)

the Cl···HO hydrogen bond.

It is obvious from these data that for HCl drugs with single short Cl···H contacts,

the CQ values increase with decreasing Cl···H distance; this trend is consistent with our

previous observations.21  Thus, the larger CQ in TR in comparison to those of AD and BU

is likely due to the much shorter Cl···HO contact.  The chlorine CS tensor parameters in

these systems are consistent with those of HCl salts.  The Euler angle β, in all three cases,

is close to zero, indicating that the largest component of the EFG tensor, V33, is almost

coincident with the largest CS tensor component, δ33.

Systems with single Cl- sites and multiple Cl···HN contacts: Ranitidine

Hydrochloride (RA) and Amantadine Hydrochloride (AM).  There are several crystal

structures for RA reported in the literature.43,58,59  Based on the powder XRD diffraction

pattern (Figure F.8.1, Appendix F), our sample has the same crystal structure as that

reported by Hempel et al.,43 which has a single Cl! engaged in two hydrogen bonds
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(Cl···HN, Table 8.1 and Figure 8.3a).  The 35Cl NMR spectra reveal a single chlorine site

(Figure 8.4a).  The values of CQ and ηQ are similar to those of lidocaine HCl (LH), where

the chlorine site is in a similar environment; making two short hydrogen contacts.21

The single chlorine site in the AM structure has three short hydrogen contacts

with protons of different NH3 groups (Figure 8.3b).44  35Cl NMR spectra reveal a single

chlorine site in agreement with the crystal structure (Figure 8.4b).  Simulation of the

narrow central transition pattern yields a CQ value between those of L-cysteine methyl

ester (CM) and L-glutamic acid  (GA).24,26  In the case of CM, the chlorine anion is

involved in three hydrogen bonds arranged in a similar manner to the chlorine ion in AM,

but with longer Cl···HN distances (Figure 8.3c).60  In the structure of GA, the chlorine is

also engaged in three hydrogen contacts (one Cl···HO and two Cl···HN, Figure 8.3d)

which are shorter than those of AM and CM.61   The slightly larger CQ of GA in

comparison to those of AM and CM is likely due to the shorter Cl···H distances and/or the

drop in spherical symmetry around the chlorine anion (due to fact that one of these

distances is associated with an OH group).  In comparing the NMR parameters of RA and

AM, it seems possible that the CQ value may decrease with an increasing number of

hydrogen bonds, unless these bonds are arranged in a non-spherically symmetric

environment around the chlorine.  The high ηQ value indicates that V11 is the distinct

component of the EFG tensor (i.e., V22 . V33).  The CS tensor parameters are also in the

range of those of HCl salts, and the Euler angle β is close to 90Eindicating that the

direction of the largest shielding is perpendicular to V33. 
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Figure 8.3.  Partial crystal structures of a) RA, b) AM, c) CM, and d) GA which focus on the chlorine atom positions. 
The short chlorine-hydrogen contacts are indicated in red, and longer contacts are marked with dashed lines. 
Hydrogens attached to carbon atoms and away (>3.0 Å ) from the chlorine ion are deleted for clarity.  
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Figure 8.4.  35Cl SSNMR spectra of a) RA and b) AM.  The top patterns are simulations and bottom ones are experimental.  
*: indicates spinning sidebands.
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Systems with single Cl- sites with multiple Cl···HN and Cl···HO contacts: Acebutolol

Hydrochloride (AC) and Isoxsuprine Hydrochloride (IS).  The chlorine anion in AC

is involved in three hydrogen contacts (one Cl···HO and two Cl···HN, Figure 8.5a).  The

35Cl SSNMR spectra of AC (Figure 8.6a) reveal a single chlorine site in agreement with

the crystal structure.47  Simulation of the NMR spectra reveals EFG and CS tensor

parameters similar to those of L-histidine HCl monohydrate (HM),27 which also has a

single chlorine site, three short hydrogen contacts (one Cl···HO and two Cl···HN, 

Figure 8.5b) and a local geometry similar to that in AC.62  AM, AC and HM all have

similar local Cl- environments; however, the significantly larger values of CQ in AC and

HM compared to that of AM likely result from the presence of the single short Cl···HO

contacts in the former two systems which lead to non-spherically symmetric

environments around the chlorine sites.  This is considered further in the theoretical

section below.

The structure of IS has a single chlorine site involved in four short hydrogen

contacts (Figure 8.5c).48  Simulations of the 35Cl NMR spectra (Figure 8.6b) reveal

parameters which are similar to those of threonine HCl (TE),27 indicating comparable

chlorine hydrogen environments: the Cl ion is also involved in four hydrogen bonds (two

Cl···HO and two Cl···HN contacts, Figure 8.5d).49  The ηQ indicates an EFG tensor

approaching axial symmetry, with V33 as the distinct component.  The large CQ in this

system may arise from the arrangement of hydrogen bonds to one side of the chlorine

anion, which produces a non spherically symmetric electronic distribution and larger EFG

.
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Figure 8.5.  Partial crystal structures of a) AC, b) HM c) IS and d) TE, which focus on the chlorine anion positions.  The short
chlorine-hydrogen contacts are indicated in red, and longer contacts are marked with dashed lines.  Hydrogens attached to
carbon atoms and greater than 3.0 Å from the chlorine ion are deleted for clarity.
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Figure 8.6.  35Cl SSNMR spectra of a) AC and b) IS  The top patterns are simulations and bottom ones are experimental. 
*: indicates spinning sidebands.
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Systems with multiple Cl- sites: Dibucaine Hydrochloride (DI) and Mexiletine

Hydrochloride (ME).  The crystal structure of DI has two chlorine sites in the

asymmetric unit.45,46  Cl1 and Cl2 are engaged in two and three hydrogen contacts,

respectively.  All of the hydrogen positions were not determined in the crystal structure;

therefore, computational geometry optimization was utilized to predict their positions

(Figure 8.7a, b).  While reasonably good simulations of the high-field MAS and low-field

static spectra could be obtained with consideration of only a single chlorine site, the

high-field static spectrum clearly reveals the presence of two overlapping powder patterns

with very similar chemical shifts and ηQ values, but a noticeable difference in CQ 

(Figures 8.8a and F.8.2).  This illustrates both the importance and advantage of obtaining

NMR spectra under different experimental conditions, and exemplifies the improvements

in resolution that high magnetic fields can offer when studying quadrupolar nuclei.  The

pattern with a larger CQ value is assigned to Cl1 (two H contacts) and that of a smaller CQ

is assigned to Cl2 (three H contacts, vide infra).  The NMR parameters of Cl1 are similar

to those of RA and LH,21 in which the chlorine sites also make two short hydrogen

contacts.  The CQ value of Cl2 is close to that of GA, in which the chlorine is also

involved in three short hydrogen contacts with a similar local geometry (Figure 8.3d). 

The Cl2 site has a smaller CQ value in comparison to Cl1; this corresponds well to the

higher spherically symmetric local environment of the former.

 The Cl1 and Cl2 sites in ME have two and four hydrogen bonds, respectively

(Figure 8.7c, d).63  
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Figure 8.7.  Partial crystal structures of a) DI (chlorine site 1), b) DI (chlorine site 2), c) ME (chlorine site 1) and d) ME
(chlorine site 2) monohydrate which focus on the chlorine atom positions.  The short chlorine-hydrogen contacts are indicated
in red, and longer contacts are marked with dashed lines.  Hydrogens attached to carbon atoms and away (>3.0 Å ) from the
chlorine ion are deleted for clarity.
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**
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40 20 0 -20 kHz 100 0 -100 kHz60 40 20 0 -20 -40 kHz

Figure 8.8.  35Cl SSNMR spectra of a) DI and b) ME.  The top patterns are simulations and bottom ones are experimental. 
*: indicates spinning sidebands.
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In agreement with the structure, the 35Cl NMR spectra reveal two overlapping chlorine

patterns (Figure 8.8b) with distinct NMR parameters which are easily distinguished,

unlike in the case of DI.  The larger CQ value is assigned to the Cl1 site which has two

hydrogen contacts, and the smaller CQ is assigned to Cl2 which has four hydrogen

contacts, and is in an environment of increased spherical symmetry compared to Cl1.  The

CQ for Cl1 is larger than those of RA in which the Cl ions are each also involved in two

hydrogen contacts; this is likely due to the shorter average hydrogen contact for Cl1.

In summary, in systems where the chlorine ion is involved in a single hydrogen

contact, the CQ value seems to increase with decreasing the Cl···H distance.  This trend

still applies for structures with multiple Cl···H contacts, but the arrangement of the short

hydrogen contacts around the chlorine ions must also be taken into account.  In all cases,

increasingly spherically symmetric arrangements of hydrogen atoms result in reduced

values of CQ.

8.3.2 Theoretically calculated NMR interaction tensors.  

Ab initio calculations of the 35Cl EFG and nuclear shielding (NS) tensors have

been performed to examine the relationships between chlorine NMR tensors and the

solid-state structures of the pharmaceutical compounds.  Understanding such

relationships will be crucial for making future structural interpretations for the many HCl

salts for which crystal structures are unavailable or unobtainable.  Previous work by our

group21 and by Bryce et al.25 demonstrated that RHF calculations provide consistent

agreement with experiment for EFG tensor parameters, and B3LYP calculations are better
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for the NS tensor parameters.  In all cases, the molecular coordinates were taken from

single-crystal structures.40-49  Proton positions were geometry optimized, since proton

positions obtained from X-ray crystal structures are generally unreliable.  This is crucial

for accurately calculating the NMR tensor parameters; particularly, this is important for

the EFG tensors, which are strongly dependent on longer-range electrostatic interactions. 

Details on all of the clusters and datasets used are in the experimental section.

The calculated 35Cl NMR parameters are generally in agreement with the

experimental values (Table 8.3).  There is good correlation (R = 0.976) between the

calculated and experimental CQ values (Figure 8.9a), with the exception of BU (R = 0.983

when excluding BU).  For BU, increasing the cluster size for the EFG calculation failed

to improve agreement.  The ηQ values are also in reasonable agreement with experimental

values, though with a lower correlation than for CQ (R = 0.455 or R = 0.808 when

excluding RA).  This is likely due to the proportionality of CQ to only V33, while ηQ

depends on accurate calculation of all three tensor parameters.  The theoretical NS tensor

parameters are also in reasonable agreement within the experimental values and in most

cases are within experimental uncertainty (Figures 8.10a, 8.10b and 8.10c).  The slight

discrepancies in certain cases could be due to the long range interactions which are not

accounted for in the calculations (for EFG tensors) or inadequacies in basis sets (for the

CS tensors).  Nonetheless, these calculations seem to provide good enough EFG tensor

data for meaningful comparison with experiment, and explorations of the relations

between NMR interaction tensors and the local structure and symmetry. 
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Table 8.3. Comparison of the experimental and theoretical 35Cl EFG and CS tensor parameters.a, b

CQ/MHzc ηQ δiso/ppm Ω/ppm κ

AD Exp.  5.94(6) 0.18(3) 128(5) 155(20)   0.60(20)
AD Cal. -5.88 0.42 126 139   0.94
BU Exp.  5.67(13) 0.18(6) 75(10) 125(30)  -0.60(20)
BU Cal. -6.66 0.13 58 112  -0.39
TR Exp.  7.50(12) 0.05(3) 70(10) 120(30)   0.80(20)
TR Cal. -7.91 0.24 71 173   0.44
RA Exp.  4.70(10) 0.92(3) 75(5) 70(15)   0.30(30)
RA Cal. -4.43 0.35 58 81   0.11
AM Exp.  2.90(4) 0.68(3) 131(5) 50(5)   0.60(20)
AM Cal.  2.83 0.98 160 64   0.22
AC Exp.  4.57(5) 0.50(4) 95(5) 95(10)  -0.30(30)
AC Cal. -4.52 0.82 102 83  -0.015
IS Exp.  5.50(15) 0.25(5) 120(10) 50(20)   0.50(40)
IS Cal.  5.05 0.05 128 42   0.44
DI site 1 Exp.  4.65(20) 0.86(7) 105(15) 100(20)  -0.26(60)
DI site 2 Exp.  4.00(20) 0.93(7) 95(15) 80(20)  -0.20(60)
DI site 1 Cal. -4.69 0.61 102 105  -0.26
DI site 2 Cal.  4.11 0.64 106 92  -0.19
ME site 1 Exp.  5.45(10) 0.40(8) 90(5) 80(20)  -0.80(20)
ME site 2 Exp.  3.10(10) 0.55(10) 130(5) 75(20)   0.80(20)
ME site 1 Cal. -5.4 0.64 104 94  -0.47
ME site 2 Cal. -3.95 0.75 143 78   0.96
a  Definitions of parameters are given in Table 8.2.
b All theoretical EFG parameters are obtained from RHF calculations featuring cc-PVTZ on the Cl atoms and 6-31G* on all other atoms. cValues of CQ

(CQ = eQV33/h) are calculated by converting from atomic units to Hz by multiplying V33 by (eQ/h)(9.7177 × 1021 Vm-2) where Q(35Cl) = -0.082 × 10-28 m2  

Only the signs of the calculated CQ values are reported since the experimental signs can not be determined.
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Figure 8.9.  Correlations between the experimental and calculated a) CQ values
and b) ηQ values.
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Figure 8.10.  Correlations between the experimental and calculated a) δiso , b) Ω and c) κ values.
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In examining all of the NMR tensor data summarized in Tables 8.2 and 8.3, it is

clear that there is significantly more variation in the EFG tensor parameters than the NS

tensor parameters.  It seems that local variation in hydrogen bonding does not produce

much variance in the CS tensor parameters; further, no real trends relating structure and

NS tensor parameters can be discerned.  Therefore, we focus upon examining the EFG

tensor orientations with respect to local atomic coordinates, in order to better understand

the origins of the 35Cl quadrupolar parameters, and their dependence on the local structure.

The chlorine anions in AD, BU and TR all have single short Cl···H contacts.  In all

of these cases, V33 is the distinct component of the EFG tensor and is oriented close to the

direction of the hydrogen bond (p(V33-Cl-H) =  8.7o, 2.6o and 3.9o in AD and BU, TR,

respectively, Figures 8.11a, 8.11b, and 8.11c).  The chlorine ions in RA and AM have two

and three short Cl···HN contacts, respectively.  The CQ value for RA is in excellent

agreement with the experiment, however, the ηQ value is significantly underestimated,

which may arise from incomplete treatment of the long range interactions (i.e., insufficient

cluster sizes).  It is interesting to note that our CASTEP DFT calculation on this system,

which takes into account the longer range electrostatic interactions, was successful in

predicting ηQ, while overestimating the value of CQ (CQ = 5.72 MHz and ηQ = 0.86).  All

three components are oriented into different environments, with V22 approximately bisects

the angle formed by the two short hydrogen contacts (p(V22-Cl-H1) = 125.55o and p(V22-

Cl-H2) = 131.83o, Figure 8.12a).  The theoretical CQ value for AM is also in excellent

agreement with the experiment; however, ηQ is overestimated in this case. 
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Figure 8.11.  35Cl EFG tensor orientations in a) AD,  b) BU and c) TR.  The diagrams above are magnifications of
the chlorine sites pictured in Figure 8.1.
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 Each of the three hydrogen atoms on each nitrogen atom make short contacts with

different chlorine ions; thus, in order to ensure that the proton positions are in energy

minimized positions, and that the EFG tensors are calculated according to the best model,

it was necessary to include multiple chlorine sites in the calculation input file.  The EFG

tensors are oriented such that V11 is aligned close to the shortest Cl···HN bond (p(V11-Cl-

H) = 5.6o, Figure 8.12b), and V33 approximately bisects the angle formed between the

chlorine and the other two nearby hydrogen atoms.

AC and IS both feature multiple Cl···HN and Cl···HO contacts.  The calculated

EFG tensor parameters for both are in good agreement with experiment; however, their

parameters and tensor orientations are very different due to the distinct arrangements of

these short contacts.  In AC, which has three short H contacts, each of the EFG tensor

components are distinct (in agreement with experiment), with V11 positioned near the

Cl···H1 bond (p(V11-Cl-H1) = 26.81o) and nearly perpendicular to the Cl···H2 bond (p(V11-

Cl-H) = 92.49o).  V22 almost bisects the (H1-Cl-H2) angle and V33 is oriented near both the

Cl···H2 and the Cl···H3 bonds (p(V33-Cl-H2) = 26.24o and p(V33-Cl-H3) = 33.38o, Figure

8.12c).  In IS, which has four short H contacts (Figure 8.12d),  V11 and V22 point into

similar environments: V11 is oriented very close to a Cl···HO contact (p(V11-Cl-HO) =

14.13o) and a Cl···HN contact (p(V11-Cl-HN) = 12.55o), and V22 is also close to two

different Cl···HO and Cl···HN contacts (p(V11-Cl-HO) = 26.2o and p(V11-Cl-HN) = 28.8o).   

V33 is directed into a completely distinct environment, not oriented near any of the short H

bonds, which may account for the value of ηQ near zero.
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Figure 8.12.  35Cl EFG tensor orientations in a) RA,  b) AM c) AC and d) IS.  The diagrams above are
magnifications of the chlorine sites pictured in Figures 8.3 and 8.5.
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Both DI and ME have two crystallographically distinct chlorine sites, both of

which have to be included in the input files for the calculation of the EFG tensors.  The

calculated CQ and ηQ values for both systems are in good agreement with experimental

values.  For Cl1 in DI, which is involved in two hydrogen bonds, V11 and V33 are oriented

close to the short hydrogen contacts, (p(V33-Cl-H1) = 8.61o and p(V11-Cl-H2) = 18.26o,

Figure 8.13a), similar to the Cl- environment in RA.  For Cl2, which is engaged in three

hydrogen contacts, V11 and V22 are oriented close to the short hydrogen bonds, with V22

near the shortest contact (p(V22-Cl-H1) = 14.76o and p(V11-Cl-H2) = 21.34, Figure 8.13b). 

For the Cl1 site in ME, V11 is oriented such that it nearly bisects the angle formed between

the chlorine ion and its closest hydrogen atoms, with V22 nearly perpendicular to this plane

(Figure 8.13c).  In the case of Cl2, V33 is oriented near the direction of the two short

hydrogen contacts ((p(V33-Cl-H1) = 14.77o and (V33-Cl-H2) = 27.28o)) and V11 is

positioned near the longest hydrogen contact ((V11-Cl-H3) = 32.82o, Figure 8.13d).
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Figure 8.13.  35Cl EFG tensor orientations in a) DI (chlorine site 1), b) DI (chlorine site 2), c) ME (chlorine site 1) 
and d) ME (chlorine site 2).  The diagrams above are magnifications of the chlorine sites pictured in Figure 8.7.
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8.4 Conclusions

A series of HCl pharmaceuticals with a variety of chlorine hydrogen-bonding

environments have been studied using 35Cl SSNMR spectroscopy.  Extraction of the EFG

and CS tensor parameters from these spectra aids in the elucidation of correlation between

the 35Cl EFG tensor parameters to chlorine anion environments.  For Cl environments with

single short Cl···H contacts, the magnitude of CQ is largely governed by the interatomic

distance.  The EFG-structure relationships for Cl environments with multiple short Cl···H

contacts are somewhat more complex.  Of course, spherically asymmetric arrangements of

H atom positions with short Cl···H distances result in larger CQ values.  Interestingly, the

orientations of principal components of the EFG tensor are often constrained in directions

near to the short contacts; however, in this limited data set, a general statement for all such

complexes cannot be made at this time.  Continued work in this area is necessary in order

to provide the means to make reliable predictions of structure at the local chlorine sites;

nonetheless, each pattern acts as a unique NMR fingerprint for each solid pharmaceutical.

 The use of ultra-high field NMR spectrometers was crucial for the success of this

work, for both rapid collection of high S/N NMR spectra and accurate determination of

anisotropic quadrupolar and chemical shift parameters.  Theoretically calculated chlorine

EFG and CS tensors are in good agreement with experimental values, and help in

analyzing and confirming the data obtained via solid-state 35Cl NMR experiments. 

Consideration of the tensor orientations in the molecular frames contributes a better

understanding of the relationship between NMR parameters and chlorine-hydrogen

bonding environments in these pharmaceuticals, and holds strong promise for application
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to a wide array of HCl pharmaceuticals and related systems.



248

8.5 Bibliography

(1)  Council, C. C. "The Benefits of Chlorine Chemistry in Pharmaceuticals," Global

Insights, 2006.

(2)  Bighley, L. D. B., S. M.; Monkhouse, D. C. In Encyclopedia of Pharmaceutical

Technology; Swarbrick, J. B., J. C., Ed.; Marcel Dekker, 1995; Vol. 13, pp 453-499.

(3)  Byrn, S. R.; Pfeiffer, R. R.; Stephenson, G.; Grant, D. J. W.; Gleason, W. B. Chem.

Mat. 1994, 6, 1148-1158.

(4)  Giron, D. J. Therm. Anal. Calorim. 2001, 64, 37-60.

(5)  Giron, D. J. Therm. Anal. Calorim. 2003, 73, 441-457.

(6)  Giron, D. Am. Pharm. Rev. 2005, 8, 32, 34-35, 37.

(7)  Giron, D. Am. Pharm. Rev. 2005, 8, 72,74,76,78-79.

(8)  Giron, D. Pharmacokinetic Profiling in Drug Research: Biological, Physicoche 2006,

307-329.

(9)  Maiwald, M. Am. Pharm. Rev. 2006, 9, 95-99.

(10)  Brittain, H. G. Polymorphism in Pharmaceutical Solids; Marcel Dekker: New York,

1999; Vol. 95 pp 227-278.

(11)  Harris, R. K. J. Pharm. Pharmacol. 2007, 59, 225-239.

(12)  Harris, R. K. Analyst 2006, 131, 351-373.

(13)  Berendt, R. T.; Sperger, D. M.; Munson, E. J.; Isbester, P. K. Trends Anal. Chem.

2006, 25, 977-984.

(14)  Vogt, F. G.; Brum, J.; Katrincic, L. M.; Flach, A.; Socha, J. M.; Goodman, R. M.;

Haltiwanger, R. C. Cryst. Growth Des. 2006, 6, 2333-2354.

(15)  Li, Z. J.; Abramov, Y.; Bordner, J.; Leonard, J.; Medek, A.; Trask, A. V. J. Am.

Chem. Soc. 2006, 128, 8199-8210.

(16)  Wawer, I.; Pisklak, M.; Chilmonczyk, Z. J. Pharm. Biomed. Anal. 2005, 38, 865-

870.

(17)  Chupin, V.; De Kroon, A. I. P. M.; De Kruijff, B. J. Am. Chem. Soc. 2004, 126,

13816-13821.



249

(18)  Smith, E. D. L.; Hammond, R. B.; Jones, M. J.; Roberts, K. J.; Mitchell, J. B. O.;

Price, S. L.; Harris, R. K.; Apperley, D. C.; Cherryman, J. C.; Docherty, R. J. Phys. Chem.

B 2001, 105, 5818-5826.

(19)  Wenslow, R. M. Drug Dev. Ind. Pharm. 2002, 28, 555-561.

(20)  Griffin, J. M.; Dave, M. R.; Steven, B. P. Angew. Chem., Int. Ed. Engl. 2007, 46,

8036-8038.

(21)  Hamaed, H.; Pawlowski, J. M.; Cooper, B. F. T.; Fu, R.; Eichhorn, S. H.; Schurko,

R. W. J. Am. Chem. Soc. 2008, 130, 11056-11065.

(22)  Pyykko, P. Mol. Phys. 2001, 99, 1617-1629.

(23)  Harris, R. K.; Becker, E. D.; Cabral de Menezes, S. M.; Goodfellow, R.; Granger, P.

Solid State Nucl. Magn. Reson. 2002, 22, 458-483.

(24)  Bryce, D. L.; Gee, M.; Wasylishen, R. E. J. Phys. Chem. A 2001, 105, 10413-10421.

(25)  Bryce, D. L.; Sward, G. D. J. Phys. Chem. B 2006, 110, 26461-26470.

(26)  Bryce, D. L.; Sward, G. D.; Adiga, S. J. Am. Chem. Soc. 2006, 128, 2121-2134.

(27)  Chapman, R. P.; Bryce, D. L. Phys. Chem. Chem. Phys. 2007, 9, 6219-6230.

(28)  Widdifield, C. M.; Chapman, R. P.; Bryce, D. L. Annu. Rep. NMR Spectrosc. 2009,

66, 195-326.

(29)  Chapman, R. P.; Widdifield, C. M.; Bryce, D. L. Prog. Nucl. Magn. Reson.

Spectrosc. 2009, 55, 215-237.

(30)  O'Dell, L. A.; Schurko, R. W. Chem. Phys. Lett. 2008, 464, 97-102.

(31)  O'Dell, L. A.; Rossini, A. J.; Schurko, R. W. Chem. Phys. Lett. 2009, 468, 330-335.

(32)  Kupce, E.; Freeman, R. J. Magn. Reson. Ser. A 1995, 115, 273-276.

(33)  Bhattacharyya, R.; Frydman, L. J. Chem. Phys. 2007, 127, 194503/194501-

194503/194508.

(34)  Larsen, F. H.; Jakobsen, H. J.; Ellis, P. D.; Nielsen, N. C. J. Phys. Chem. A 1997,

101, 8597-8606.

(35)  Eichele, K.; Wasylishen, R. E.; WSolids NMR Simulation Package, 1.17.30 ed.;

Dalhousie University: Halifax, CA, 2001.

(36)  Bak, M.; Rasmussen, J. T.; Nielsen, N. C. J. Magn. Reson. 2000, 147, 296-330.



250

(37)  Gor'kov, P. L.; Chekmenev, E. Y.; Li, C.; Cotten, M.; Buffy, J. J.; Traaseth, N. J.;

Veglia, G.; Brey, W. W. J. Magn. Reson. 2007, 185, 77-93.

(38)  Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;

Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,

H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.;

Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;

Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J.,

J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;

Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.;

Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.;

Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin,

A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;

Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A.

D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Revision A.02 ed.;

Gaussian, Inc.: Wallingford CT, 2009.

(39)  This work was made possible by the facilities of the Shared Hierarchical Academic

Research Computing Network (SHARCNET:www.sharcnet.ca) and Compute/Calcul

Canada.

(40)  Szafran, M.; Koput, J.; Dega-Szafran, Z.; Katrusiak, A.; Pankowski, M.; Stobiecka,

K. Chem. Phys. 2003, 289, 201-219.

(41)  Guy, J. J.; Hamor, T. A. J. Chem. Soc., Perkin Trans. 1973, 942-947.

(42)  Ravikumar, K.; Sridhar, B. Acta Crystallogr., Sect. E: Struct. Rep. 2006, E62,

o4832-o4834.

(43)  Hempel, A.; Camerman, N.; Mastropaolo, D.; Camerman, A. Acta Crystallogr., Sect.

C: Cryst. Struct. Commun. 2000, C56, 1048-1049.

(44)  Belanger-Gariepy, F.; Brisse, F.; Harvey, P. D.; Butler, I. S.; Gilson, D. F. R. Acta

Crystallogr., Sect. C: Cryst. Struct. Commun. 1987, C43, 756-759.

(45)  Hayward, B. S.; Donohue, J. J. Cryst. Mol. Struct. 1978, 7, 275-294.

(46)  Donohue, J.; Hayward, B. S. J. Cryst. Mol. Struct. 1980, 10, 157-161.



251

(47)  Carpy, A.; Gadret, M.; Hickel, D.; Leger, J. M. Acta Crystallogr., Sect. B: Struct. Sci.

1979, B35, 185-188.

(48)  Yathirajan, H. S.; Nagaraj, B.; Narasegowda, R. S.; Nagaraja, P.; Bolte, M. Acta

Crystallogr., Sect. E: Struct. Rep. 2004, E60, o2228-o2229.

(49)  Sivy, J.; Kettmann, V.; Fresova, E. Acta Crystallogr., Sect. C: Cryst. Struct.

Commun. 1991, C47, 2695-2696.

(50)  Ditchfield, R. Mol. Phys. 1974, 27, 789-807.

(51)  Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251-8260.

(52)  Adiga, S.; Aebi, D.; Bryce, D. L. Can. J. Chem. 2007, 85, 496-505.

(53)  Gee, M.; Wasylishen, R. E.; Laaksonen, A. J. Phys. Chem. A 1999, 103, 10805-

10812.

(54)  Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.;

Payne, M. C. Z. Kristallogr. 2005, 220, 567-570.

(55)  Profeta, M.; Mauri, F.; Pickard, C. J. J. Am. Chem. Soc. 2003, 125, 541-548.

(56)  Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.

(57)  Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1998, 80, 891.

(58)  Ishida, T.; In, Y.; Inoue, M. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1990,

C46, 1893-1896.

(59)  Mirmehrabi, M.; Rohani, S.; Murthy, K. S. K.; Radatus, B. J. Cryst. Growth 2004,

260, 517-526.

(60)  Gorbitz, C. H. Acta Chem. Scand. 1989, 43, 871-875.

(61)  Sequeira, A.; Rajagopal, H.; Chidambaram, R. Acta Crystallogr., Sect. B: Struct. Sci.

1972, 28, 2514-2519.

(62)  Fuess, H.; Hohlwein, D.; Mason, S. A. Acta Crystallogr., Sect. B: Struct. Sci. 1977,

B33, 654-659.

(63)  Kiss, A.; Repasi, J. Analyst 1993, 118, 661-664.



252

Chapter 9

General Conclusions and Future Outlook

 
In this thesis, it has been demonstrated that solid-state NMR (SSNMR) methods

such as the WURST-QCPMG pulse sequence and piecewise spectral acquisitions, along

with specialized hardware and ultra-high magnetic fields, are extremely important for the

study of unreceptive nuclei in a myriad of different materials.  Many unreceptive nuclei

were once thought to be impossible or impractical to study with SSNMR; however, we

have demonstrated that it is possible to acquire high quality spectra, and obtain NMR

interaction parameters which can shed light on structure and dynamics at the molecular

level.  The combination of SSNMR data with powder- and single-crystal X-ray

diffraction (XRD) techniques, and first principles calculations of NMR interaction

tensors, provides information about the electronic and chemical environment of metal and

halogen nuclei, and will be useful in future structural characterizations of a variety of

systems for which crystallographic data are not available and/or obtainable (i.e.,

amorphous/disordered solids, micro- and nanocrystals, nanoparticles, etc.).

In Chapter 3, the development and application of 209Bi SSNMR were discussed,

and from this work, a number of future applications become apparent.  The sensitivity of

the 209Bi NMR parameters to the bismuth chemical environment, and the predictive power

of theoretically calculated NMR tensor parameters, strongly imply that 209Bi SSNMR may

be useful for the characterization of a variety of Bi-containing materials and compounds. 

There is increasing interest in synthesizing a variety of bismuth-containing systems which
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have applications or potential applications as pharmaceuticals,1-3 catalysts,4 nanowires and

nanoparticles,5 and electronics and solar energy technologies.6  Since our work is the first

of its kind involving 209Bi SSNMR reported in the literature, there is a paucity of 209Bi

NMR data from which structural interpretations can be made.  It is of great importance to

conduct 209Bi SSNMR experiments on a wide variety of bismuth complexes with known

crystal structures, in order to built a database of 209Bi NMR tensor parameters.  This

database can then be used to study bismuth-containing materials with unknown structures

such as bismuth subsalicylate,7 which is the active ingredient of Peptobismol; Bi2S3

nanomaterials,5,8,9 which are important for thermoelectric devices, and bismuth borate

glasses,6 which are utilized in solar energy technologies.  Many of these materials are not

amenable to study via single-crystal XRD, and little is known about their molecular-level

structures.  209Bi SSNMR can provide useful information regarding the number of

bismuth sites, and their coordination environments, local geometries and symmetries. 

Based on our 209Bi NMR data and on previous 209Bi NQR studies,10 the 209Bi

quadrupolar coupling constant, CQ, can be very large leading to extremely broad NMR

patterns.  In such cases, it is not practical to obtain whole ultra-wideline (UW) SSNMR

patterns, since such experiments will be very time consuming, and only the key

discontinuities and shoulders are necessary to extract the quadrupolar parameters;

therefore, NMR experiments will be performed at ultra-high magnetic field strengths to

obtain the key features of the NMR spectra using the histogram-style spikelet method

outlined by Kirkpatrick and co-workers.11  These spectra can be simulated to obtain a

rough estimate of the quadrupolar tensor parameters, which can then be used to identify
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the range of NQR frequencies.  Finally, NQR experiments can then be rapidly conducted

to refine the parameters (as we demonstrated for bismuth acetate).  This combination of

UW SSNMR and NQR experiments is the most efficient way to obtain the quadrupolar

parameters, since time-consuming scans of large NQR frequencies ranges will be

rendered unnecessary.

The 137Ba SSNMR study presented in Chapter 4 shows that 137Ba SSNMR spectra

can be efficiently acquired using UW NMR methods.  As with the 209Bi SSNMR study,

this work is the first of its kind showing the feasibility of acquiring UW 137Ba NMR

spectra at moderate and ultra-high magnetic field strengths in reasonable time frames. 

This study will open up the application of 137Ba SSNMR to study a wide variety of

barium-containing systems.  

Barium titanate is one of the most prominent of all piezoelectric and ferroelectric

materials, and has been extensively studied due to its significance in the electroceramics

industry for its potential use in transducers and capacitors.12,13  Barium titanate exhibits a

variety of different phases and forms (i.e, crystalline, microcrystalline, nano-powders and

films).14,15  Doping barium titanate and other barium perovskites with a variety of

different metals (i.e., indium, yttrium, strontium, iron etc.) has yielded improved

electronic properties16-20 which will lead to a number of potential applications, such as

pyroelectric sensors, gas detection sensors and microwave voltage tunable devices,21 and

as such, there is an increasing interest in synthesizing a wide variety of such systems.  A

number of techniques have been used to characterize barium titanate in its pure and doped

forms such as XRD, scanning electron microscope and transmission electron
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microscopy.14,15,22,18  Several 137Ba SSNMR studies have been reported on barium titanate

in its pure forms.23-31  In most of these studies, the barium sites exist in highly spherically

symmetric environments, leading to sharp 137Ba NMR resonances.  However, there are

very few 137Ba SSNMR studies involving doped barium perovskites,32-34 in which the

barium sites exist in a variety of different environments.  Our methodology should aid in

expanding the investigations of these systems, since such techniques are not limited to

narrow 137Ba lineshapes.  The measurements of the NMR tensor parameters will provide

information about the different barium environments in these systems, including their

coordination environments and local geometries.

 In Chapter 5, it was demonstrated that 115In SSNMR spectroscopy is useful for

probing In(I) and In(III) sites in solid-state compounds, and is an excellent

complementary tool in combination with XRD techniques and 115In solution NMR

spectroscopy.  Most of the 115In SSNMR studies reported in the literature have primarily

focused on indium systems which are used (or have the potential to be used) as semi-

conductors or conductors and in which the indium atoms are in the In(III) oxidation

state.35-42  Solution-state 115In NMR spectroscopy has been used to identify a wide variety

of In(III)-containing systems through measurements of the isotropic chemical shifts.43-52 

However, the majority of InI salts are insoluble in most common organic solvents,53 which

limits their structural characterization by single-crystal XRD and solution NMR.  Our

work represents the first systematic 115In SSNMR study of low-oxidation state indium

complexes, and shows that 115In NMR parameters are very sensitive to the indium

coordination environment, symmetry and geometry.  Due to the increasing interest in
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exploring new low-oxidation state indium compounds,54-58 this work should be a great

help in further characterizing newly synthesized indium-containing systems, particularly

in case where XRD technique and solution NMR can not be applied.  The combination of

NMR experiments with first principles calculations should be key in proposing structural

models for non-crystalline systems; such work is currently underway in our research

group.

In Chapter 6, multinuclear (i.e., 109Ag, 15N, and 13C ) SSNMR experiments were

utilized to characterize silver-containing layered networks and their interactions with

primary amines, and provided valuable information above and beyond that obtained by

powder XRD experiments, leading to the development of the correct structural and

chemical models for these systems.  The structures of the parent supramolecular networks

are known from single crystal data; however, their interactions with primary amines lead

to the formation of new layered materials for which single-crystal X-ray structures cannot

be obtained.  Solid-state 109Ag, 15N and 13C CP/MAS NMR experiments, in combination

with powder X-ray diffraction experiments and ab initio calculations, provide

comprehensive information regarding the structures of these new materials, revealing that

they are not intercalation solids as originally supposed, but rather, silver coordination

complexes (silver diamine molecules).  109Ag CS tensor parameters aided in identifying

the different silver sites in these materials, and measurements of indirect spin-spin

coupling constants, 1J(109Ag, 15N) and 1J(109Ag, 14N), accurately distinguished the nature of

Ag-N bonding in each system.  First principles calculations of silver CS tensors and

1J(109Ag, 14N) coupling constants in model complexes aided in formulating the proposed
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structural models for the new materials, which are largely comprised of layers of silver-

diamine cations.  The methodology outlined in this work should be applicable not only to

silver-containing layered materials, but also to silver-containing nanoparticles, nanowires,

etc.

There is great interest in nanoparticles, since they exhibit novel characteristics that

are different from their bulk materials.59  Nanoparticles have many current and potential

applications in a wide variety of areas such as biomedicals engineering (i.e., bioimaging,

drug delivery, and transplants),60-62 information storage,63 catalysis,64 optical sensing

biosensors,65,66 and surface enhanced Raman scattering (SERS).67,68  Silver nanoparticles

are widely studied due to their biocompatibility (i.e., their use as labeling agents for

imaging of cells and organisms) and antibacterial properties.69,70  Capping silver

nanoparticles with amine functional groups is a common synthetic approach, since

amines protect and stabilize the nanoparticles, causing them to be more uniform in size

and shape.71-80  Based on data from FTIR spectroscopy and thermal gravimetric analysis

(TGA), it is proposed that the silver ions are linked to the organic ligands through the

amine groups; however, the nature of the interactions of the amine with the silver atoms

is not fully understood.

 A variety of techniques have been used to characterize nanoparticles;81,82 however,

109Ag SSNMR spectroscopy has been sparingly applied.83-86  Since the 109Ag CS tensor

parameters are sensitive to the electronic and chemical environments of the silver sites,

and the combination of 109Ag and 15N SSNMR experiments will be key in understanding

the type of interactions between the silver and the nitrogen atoms.   It may be possible to



258

use 109Ag SSNMR to differentiate core and surface silver sites, as well as identifying

interactions between surface Ag sites and surrounding ligands.   In particular, 1H-109Ag

CP/MAS NMR experiments will be very useful for transferring polarization from

protonated surface ligands to surface sites,87 thereby enhancing the signal at these sites,

identifying the bonding interactions, and helping to further describe core and surface Ag

sites.

Polymorphism is a critical issue in the pharmaceutical industry since (i) ca. 80%

of solid pharmaceutical drugs possess more than one polymorphic form,88 and (ii)

different polymorphs can have distinct physicochemical properties which can affect the

performance and characteristics of a drug.89-91  Identification and characterization of

different polymorphs is crucial for the isolation of new polymorphs with improved

physicochemical properties such as solubility, dissolution rate, and/or hardness,92-96 as

well as aiding in securing patents for different active pharmaceutical ingredients. 

Traditionally, single-crystal and powder X-ray diffraction experiments have been the

primary methods for characterization of solid pharmaceuticals and their polymorphs. 

However, in many cases, isolation of crystals suitable for single-crystal XRD experiments

is very difficult.  Further, powder XRD is limited in that (i) Rietveld refinements of

powder XRD data which provide detailed structural information are usually not possible

(or, if they are possible, very time consuming), and (ii) it fails to detect slight structural

changes among polymorphs,97,98 and (iii) it is not useful for amorphous solids.  Earlier

SSNMR studies on pharmaceuticals focused on nuclei such as 1H, 2H, 13C, 15N, 31P and

19F.99-107  In Chapters 7 and 8, we have shown that 35Cl SSNMR experiments can provide
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spectra that act as accurate and rapid probes of chlorine ion environments in a variety of

HCl pharmaceuticals, and can act as a fingerprinting tool for identifying different

hydrochloride polymorphs.  We believe that adaptation of these techniques is crucial for

the pharmaceutical industry, since HCl drugs constitute more than 50% of pharmaceutical

salts and chlorine is present in ca. 25% of known pharmaceuticals.108,109   

The sensitivity of the 35Cl quadrupolar NMR parameters to the local chlorine

environment allows for the prediction of the number of short Cl···H contacts, which is

crucial for identifying the structural differences between the polymorphs.  Due to the

large number of HCl pharmaceuticals, this work will be continued, in order to study a

wide range of HCl pharmaceuticals with different chlorine ion environments, and to build

a database of NMR tensor parameters from which definitive trends between the NMR

parameters and chlorine environments can be established.  In addition, to confirm our

predictions of the number of short Cl···H contacts, newly developed high-resolution 1H

SSNMR techniques110 using the Combined Rotation and Multiple-Pulse Spectroscopy

(CRAMPS)111,112 pulse sequence, along with ultra-fast MAS (up to 70 kHz) can be used to

identify the different hydrogen sites.  Furthermore, high-resolution two-dimensional (2D)

heteronuclear correlation spectra113 will be used to estimate the distances between the

chlorine atom and its nearby protons.  Lastly, our newly developed 14N SSNMR

methodology114,115 will be applied to these systems; 14N UW SSNMR spectra may play a

similar role to 35Cl SSNMR, providing accurate fingerprinting and structural

characterization of a wide range of pharmaceuticals.  35Cl and 14N NMR data, along with

pXRD patterns, will be used to build structural models on which first principles
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calculations can be performed, in order to predict the solid-state structures for the

different polymorphs.

In conclusion, the studies reported in this thesis should open up new opportunities

for NMR spectroscopists to examine and explore other unreceptive nuclei in the periodic

table (i.e. 53Cr, 101Ru, 73Ge, 87Sr, 95Mo etc.), as well as other nuclei that may be of

importance in the pharmaceutical industry such as 23Na, 39K, 25Mg and 195Pt.  Libraries of

NMR tensor data for these nuclei will provide new insights into structure, reactivity and

dynamics that will enable chemists and materials scientists to apply new levels of rational

design in the synthesis and preparation of new compounds and materials.
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Appendices

1. Appendix A:  Supplementary Information for Chapter 3

Figure A.3.1.  Experimental (top) and simulated (bottom)1 powder XRD patterns of
nonaaquabismuth triflate. *: indicates a small impurity from the anhydrous bismuth
triflate sample.  Experimental pattern was collected using a D8 DISCOVER X-ray
diffractometer equipped with an Oxford Cryosystems 700 Cryostream Plus Cooler.  
This diffractometer uses a Cu-Kα (λ = 1.54056 Å) radiation source with a Bruker AXS
HI-STAR area detector running under the General Area Detector Diffraction System
(GADDS).
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Table A.3.1.   209Bi NMR Experimental Parameters at 9.4 T

pw90 (µs)
 MG

Loops
τ1 − τ4

(µs)

Recycle
Delay 

(s)

Offset
Frequency

(kHz)

Scans per
Piece

Total
Number of

Pieces

Echo

BiOI 0.75 -- 30-20 0.025 150 87568 15

BiOBr 0.75 -- 30-20 0.025 125 106144 19

BiOCl 0.75 -- 30-20 0.025 115 35984 30

Bi(NO3)3·5H2O 0.75 -- 30-20 0.025 100 16656 33

Bi(OTf)3 ·9H2O 0.75 -- 30-20 0.025 100 12048 14

QCPMG

Bi(CH3CO2)3 0.75 40 20 0.025 100 10368 143

WURST
QCPMG

Bi(NO3)3·5H2O 50 20 -- 0.1 150 7316 34

Table A.3.2.   209Bi NMR Experimental Parameters at 21.1T

pw90 (µs)
τ1 − τ2

(µs)

Recycle
Delay 

(s)

Offset
Frequency

(kHz)

Scans per
Piece

Total
Number of

Pieces

Echo

BiOI 1 30-10 0.2 500 10240  2

BiOBr 1 30-10 0.2 500 20480  3

BiOCl 1 30-10 0.2 500 20480  5

Bi(NO3)3·5H2O 1 30-10 0.2 500 40960  3

Bi(OTf)3 ·9H2O 1 30-10 0.2 500 20480  2

Bi(CH3CO2)3 1 30-10 0.2 500 20480 13

Table A.3.3. Comparison of the CASTEP 209Bi NMR parameters of the optimized and
non-optimized structure of  BiOCl

*CQ(209Bi)*/MHz ηQ δiso/ppm Ω/ppm κ

BiOCl (not optimized)    128.7 0 6066 1100 1
BiOCl (optimized) 133 0 5989 1051 1
For BiOCl, maximum forces observed in the CASTEP calculations were 0.6 eV/Å before and less than
0.02 eV/Å after the geometry optimization.  At the same time, all calculated 209Bi NMR parameters were
found to be within ca. 5% of one another.
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Figure A.3.2.  Effects of the 209Bi CSA on the powder pattern of BiOI.
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Figure A.3.3.  Effects of the 209Bi CSA on the powder pattern of BiOBr.
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Figure A.3.4.  Effects of the 209Bi CSA on the powder pattern of BiOCl.
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Figure A.3.5.  Plots of 209Bi transverse relaxation (T2) behaviour in a) BiOI, b)BiOBr and
c) BiOCl.
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Figure A.3.6. a) 209Bi transverse relaxation (T2) behaviour in Bi(NO3)3·5H2O. b) train of
echoes used in the T2 calculations.
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Figure A.3.7. The clusters which were input in the 209Bi EFG calculations of bismuth
acetate.  The reported EFG parameters are those of the central bismuth atoms.

References For Appendix A

(1) Frank, W.; Reiss, G. J.; Schneider, J. Angew. Chem., Int. Ed. Engl. 1995, 34,
2416-2417.
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Figure B.4.1.  Simulated (top)1 and experimental (bottom) powder XRD patterns of
barium nitrate. 
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Figure B.4.2.  Simulated (top)2 and experimental (bottom) powder XRD patterns of
barium carbonate. 
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Figure B.4.3.  Simulated (top)3 and experimental (bottom) powder XRD patterns of
barium chlorate monohydrate. 
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Figure B.4.4.  Simulated (top)4 and experimental (bottom) powder XRD patterns of
barium chloride dihydrate. 
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Figure B.4.5.  Simulated (top)5 and experimental (bottom) powder XRD patterns of
anhydrous barium chloride. 
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Figure B.4.6.  Simulated (top)6 and experimental (bottom) powder XRD patterns of
barium hydrogen phosphate.
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Table B.4.1.   137Ba NMR Experimental Parameters at 9.4 T

rf power
(kHz)

Echo size
 # of echoes

acquired

Recycle
Delay 

(s)

 Frequency
step size
(kHz)

Scans per
Piece

Total
Number of

Pieces

Ba(NO3)2 25.8 400 50 0.1 ----- 6776 1
BaCO3 29.5 200 80 0.1 100 16404 15
Ba(ClO3)2@H2O 27.8 100 40 0.1 200 52352 15
BaCl2@2H2O 29.5 50 90 0.1 200 12440 46
BaCl2 27.8 100 160 0.1 200 16072 25

Table B.4.2.   137Ba NMR Experimental Parameters at 21.1T

rf power
(kHz)

Εcho delay 
(µs)

Recycle
Delay 

(s)

 Frequency
step size
(kHz)

Scans per
Piece

Total
Number of

Pieces

Ba(NO3)2 31 50 0.5 ----- 4096  1
BaCO3 31 50 0.2 100 6144  7
Ba(ClO3)2@H2O 31 50 0.2 100 6144 17
BaCl2@2H2O 31 50 0.2 100 12288 22
BaCl2 31 50 0.2 100 12288 21
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Figure B.4.7. The NMR spectrum of barium nitrate at 21.1 T and its simulations with 
and without CSA.
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Figure B.4.8. 1H MAS SSNMR spectrum of barium carbonate.
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Figure B.4.9. 137Ba NMR spectra of BaCO3 before and after drying: a) dried in the oven
at 200EC, b) dried under vacuum while heated to 100EC  and c) commercial sample. 
Drying the sample helps in getting rid of most of the water but the shape of the 137Ba
spectrum basically remains the same; nevertheless, the powder XRD pattern 
(Figure B.4.2) confirms that our sample has the same crystal structure as the one reported
by Antao.2  A range of 1H decoupling powers were utilized; the edges of the pattern did
not sharpen even at higher decoupling powers.
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Figure B.4.10. 37Cl and 35Cl NMR spectra of barium chlorate monohydrate are simulated based on the EFG parameters
obtained from NQR, these simulated spectra are then added to the 137Ba simulated spectrum and the sum is compared with the
experimental pattern to show the overlap of the 37Cl satellite transitions and the 35Cl central transitions with the 137Ba spectrum. 
These simulations are rough estimate to the positions of the chlorine signals with respect to the barium spectrum and clearly
prove the possible overlap between the chlorine and the barium signals.



287

Table B.4.3. Comparison of the experimental and CASTEP-calculated 137Ba CS tensor parameters.

F11/ppm F22/ppm F33/ppm Fiso/ppma *iso/ppmb S/ppmc 6d

Ba(NO3)2 Exp. ----- ----- ----- ----- !42(8) 25(20)   0.8(2)
Ba(NO3)2 Cal. 5484.30 5484.30 5534.38 5501.00   40 50.08   1.0
Ba(CO3)2 Exp. ----- ----- ----- -----   50(200) 150(150)   0.5(5)
Ba(CO3)2 Cal. 5369.02 5370.48 5502.40 5413.96   127 133.38   0.98
Ba(ClO3)2@H2O Exp. ----- ----- ----- -----   0(200) 200(100) !0.8(2)
Ba(ClO3)2@H2O Cal. 5524.12 5531.21 5547.55 5534.29   7 23.43   0.4
BaCl2@2H2O Exp. ----- ----- ----- -----   150(100) 150(150) !0.5(5)
BaCl2@2H2O Cal. 5388.47 5360.98 5302.62 5350.70   190 85 !0.36
BaCl2 Exp. ----- ----- ----- -----   200(200) 400(300)   0.5(5)
BaCl2 Cal. 5220.00 5271.16 5389.17 5293.44   248 169.16   0.4
BaHPO4 Exp.  site1 ----- ----- ----- ----- !120(60) -----   -----
BaHPO4 Exp.  site2 ----- ----- ----- -----    0(200) -----   -----
BaHPO4 Cal.  site1 5460.08 5449.53 5392.90 5434.17    107 67.18 -0.68
BaHPO4 Cal.  site 2 5443.18 5496.17 5558.26 5499.20    42 115.08   0.07
a F iso  = (F11  + F22  + F33)/3; b The chemical shifts were calculated using *iso(sample) - *iso(ref) = Fiso(ref) - Fiso(sample) where *iso(ref) and Fiso(ref) are
the 137Ba experimental chemical shift (279 ppm)7 and the calculated chemical shielding (5262.28 ppm) of BaZrO3, respectively. c Span: Ω = σ33 - σ11; 
d Skew:  κ = 3(σiso-σ22)/Ω 
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Table B.4.4. Comparison of the CASTEP 137Ba EFG tensor parameters for the three published crystal structures of barium
nitrate

Reference Basis set accuracy CQ 
(MHz)

ηQ k space 
(MP grid size)

Basis set cut off energy
(eV)

Average Ba-O
distance (Å)

8 Fine -14.4 0 4×4×4 550 2.917
9 Fine -11.2 0 4×4×4 550 2.91
10 Fine -5.3 0 4×4×4 550 2.905

Exp. 7 0
9 Coarse -11.1 0 2×2×2 450 2.91
9 Medium -11.9 0 2×2×2 500 2.91
9 Fine -11.2 0 4×4×4 550 2.91
9 Ulrafine -11.3 0 4×4×4 610 2.91
9 Fine, geom opt -11.9 0 4×4×4 550 2.91

References For Appendix B

(1)  Trounov, V. A.; Tserkovnaya, E. A.; Gurin, V. N.; Korsukova, M. M.; Derkachenko, L. I.; Nikanorov, S. P. Tech. Phys.
Lett. 2002, 28, 351.
(2)  Antao, S. M.; Hassan, I. Phys. Chem. Miner. 2007, 34, 573.
(3)  Sikka, S. K.; Momin, S. N.; Rajagopal, H.; Chidambaram, R. J. Chem. Phys. 1968, 48, 1883.
(4)  Padmanabhan, V. M.; Busing, W. R.; Levy, H. A. Acta Crystallogr. B 1978, B34, 2290.
(5)  Busing, W. R. Trans. Amer. Crystallogr. Ass. 1970, 6, 57.
(6)  BenChaabane, T.; Smiri, L.; Bulou, A. Solid State Sci. 2004, 6, 197.
(7)  MacKenzie, K. J. D.; Meinhold, R. H. Ceram. Int. 2000, 26, 87.
(8) R. Birnstock, Z. Kristallogr. 1967, 124, 310-334.
(9) H. Nowotny, G. Heger, Acta Crystallogr. C, 1983, 39, 952-956.   
(10) V.A. Trounov, E.A. Tserkovnaya, V.N. Gurin, M.M. Korsukova, L.I. Derkachenko, S.P. Nikanorov, Tech. Phys. 
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3. Appendix C:  Supplementary Information for Chapter 5

Table C.5.1.   115In Static NMR Experimental Parameters at 9.4 T

rf power
(kHz)

Recycle
Delay  

(s)

Spectral
Width 
(kHz)

Number of
Pieces

Offset
frequency

(kHz)

Number of
Scans per

Piece

[In+][GaCl4] 67 0.1 1000 1 ---- 8544
In(II)Cl 2 45 0.1 2000 5 35 1584
[In([15]Crown-5)2][OTf] 77 0.1 1000 1 ----     579152
[In([18]crown-6)]GaCl4 111 0.1 1000 3 150  18848
[In([18]crown-6)]AlCl4 111 0.1 1000 3 150   66288
InI 67 0.1 2000 6 100  17824
InBr 67 0.1 2000 8 125 8544

WURST-Echo

In[OTf] 17 0.1 2000 5 250   15736

Table C.5.2.   115In Static NMR Experimental Parameters at 21.1T

rf power
(kHz)

Recycle
Delay  

(s)

Spectral
Width 
(kHz)

Number pf
Pieces

Offset
Frequency

(kHz)

Number of
Scans per

Piece

[In+][GaCl4] 50 1 200 1 ---- 1024
In(II)Cl 2 50 1   1000 3   110 1024
[In([15]Crown-5)2][OTf] 50 1 200 1 ---- 2976
[In([18]crown-6)]GaCl4 50 1 500 3 60 2048
[In([18]crown-6)]AlCl4 50 1 500 3 60   16384
In[OTf] 50 1   1000 3   120 2048
InI 50 1 500 1 ---- 1782
InBr 50 1   1000 1 ---- 5557

Table C.5.3. 115In MAS NMR Experimental Parameters at 21.1T
νrot (kHz) rf power (kHz) Recycle Delay

 (s)
Spectral Width

(kHz)
Number
of Scans

[In+][GaCl4] 18 50 1 200 2200
In(II)Cl 2 18 50 1 500 5836
[In([15]Crown-5)2][OTf]    12.5 50 0.5 200 4096
[In([18]crown-6)]GaCl4 50   100 0.5   1000   20480
[In([18]crown-6)]AlCl4 50   100 0.5   1000     136000
In[OTf]    62.5   100 0.5   1000   16000
InI    62.5   100 0.5   1000   10240
InBr    62.5   100 0.5   1000   16400
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Figure C.5.1.  The contribution of 115In CSA on the NMR pattern of In[GaCl4]
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Figure C.5.2. The contribution of 115In CSA on the NMR pattern of
[In([15]crown-5)2][OTf].
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Figure C.5.3. The contribution of 115In CSA on the NMR pattern of
[In([18]crown-6)]GaCl4
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Figure C.5.4.  Static 71Ga SSNMR spectrum of [In([18]crown-6)]GaCl4 and 27Al SSNMR
spectra of AlCl4 and [In([18]crown- 6)]AlCl4  at 9.4 T
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Figure C.5.5. The contribution of 115In CSA on the NMR pattern of InI
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Figure C.5.6. The contribution of 115In CSA on the NMR pattern of InBr
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Figure C.5.7. Simulation of 115In NMR pattern of [In][OTf] at 9.4 T with parameters of
two indium sites
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Figure C.5.8. The contribution of 115In CSA on the NMR pattern of [In][OTf]
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4. Appendix D:  Supplementary Information for Chapter 6

Table D.6.1.  109Ag  NMR Experimental Parameters 
 Compound Spectral

Frequency
(MHz)

Spinning
Speed
(kHz)

pw90H
(µs)

CP Power
(kHz)

Contact
Time
(ms)

Recycle
Delay
(s)

Spectral
Width
(kHz)

Number of
Scans

1a 18.607141 2.0/2.9 5.5 16.8 35 10 40 2000/1292
1b 18.607141 2.9 5.0 18.6 30 6 40 27732
1c 18.607141 2.9 5.5 16.8 35 10 40 5932
1d 18.609046 2.0/3.1 5.5 16.8 30 10 100 6628/8512
1e 18.609046 2.0/2.9/8.0 5.0 18.6/27.8 35 10 100 4692/15660
1e (MAS) a 18.609369 8.0 ------- ------ ----- 300 40 796
2a 18.602978 2.0 3.75 16.8 30 20 50 2288
2b 18.607661 2.0/3.5 5.0 16.8 35 6 100 13468/25824
3 18.612367 2.0/2.7 5.0 18.6 30 8 100 10644/11468

a this spectrum was acquired with 1-pulse sequence using a 8 µs pulse on the 109Ag channel.

Table D.6.2.  15N NMR Experimental Parameters 
 Compound Spectral

Frequency
(MHz)

Spinning
Speed
(kHz)

pw90H
(µs)

Decoupling
Power
(kHz)

Contact
Time
(ms)

Recycle
Delay 
(s)

Spectral
Width
(kHz)

Number
of Scans

1b 40.506222 5.0 3.75 60 2 4 15 672
1e 40.506222 5.0 3.75 60 2 4 15 744
1b 91.221550 10.0 2.50 100 2 20 30 1024
1e 91.221550 10.0 2.50 100 2 20 30 1024
2b 40.506222 6.0 3.80 70 2 4 100 1872

Table D.6.3.  13C NMR Experimental Parameters 
 Compound Spectral

Frequency
(MHz)

Spinning
Speed
(kHz)

pw90H
(µs)

Decoupling
Power
(kHz)

Contact
Time
(ms)

Recycle
Delay
 (s)

Spectral
Width
(kHz)

Number
of Scans

1a 100.52683 5.0/7.0 4.6 40 15 10 50 500/5480
1b 100.52353 5.0/7.0 2.5 42 12 6 50 244/132
1c 100.52683 5.0/7.0 2.5 42 12 10 50 168/156
1d 100.52683 5.0/7.0 2.5 42 12 10 50 144/144
1e 100.52683 5.0/7.0 2.5 42 12 10 50 148/160
2a 100.52683 5.0/7.0 2.5 42 12 10 50 184/128
2b 100.51982 5.0/7.0 2.5 34 12 10 50 44/108
3 100.52683 5.0/7.0 4.0 34 5 12 50 192/176
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Figure D.6.1.  Solid-state 1H- 13C CP/MAS NMR spectra of 1a at two different spinning
speeds.  (a) νrot = 7.0 kHz.  (b) νrot = 5.0 kHz.  There are four isotropic peaks in the 1H-13C
CP/MAS NMR spectrum at 120.5, 123.9, 152.6 and 154.8 ppm which have an intensity
ratio of 1:1:1:2 (for different contact times).  These resonances are assigned to carbon
nuclei which are meta, meta, para and ortho to the nitrogen atom, respectively.1-3  
|: isotropic peaks. 
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Figure D.6.2.  Solid-state 13C CP/MAS NMR spectra of (a) 1a, (b) 1b, (c) 1c, (d) 1d 
and (e) 1e at νrot = 7.0 kHz.  |: isotropic peaks.  There are five peaks corresponding to 
the carbon atoms of the dodecylamine which are at 45.3, 33.6, 30.6, 25.2 and 15.1,
respectively.4  These peaks correspond to C1, C2-C9, C10, C11 and C12 in the chain.
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Figure D.6.3.  Expanded pyridine region of the 13C CP/MAS NMR spectra of (a) 1a, (b)
1c, and (c) 1e  at νrot. = 7.0 kHz.  Close examination of the region from 115 to 160 ppm
reveals subtle differences in carbon chemical shifts between the parent material (1a) and
the new layered solid (1e).  The carbon chemical shifts in 1e are similar to those for 
4-pyridine sulfonic acid;5 notably, there are only three distinct high-frequency resonances
and one low-frequency resonance.  This data supports the cleavage of the silver-nitrogen
bond and the presence of the pyridinesulfonate anions.  Interestingly, the 13C NMR
spectrum of the 1:1 sample, 1c, has resonances present in both the spectra of 1a and 1e,
confirming that 1c is comprised of a mixture of materials.
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Figure D.6.4. 1H-109Ag CP/MAS NMR spectrum of 15N-labeled 2b at νrot  = 2.9 kHz.
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Table D.6.4.  Theoretical 109Ag chemical shift parameters and 1J(109Ag, 14N) coupling
values as a function of Ag-N bond length in [Ag(NH2C3H7)2]

+.
Ag-N
(Å)

σiso

(ppm)
δiso

(ppm)
 Ω (ppm)  κ 1J(109Ag, 14N)

(Hz)
SCF Energies
 (107 kJ/mole)

1.95 3414 786 1806 0.91 45 -14553961.0800000

2.00 3528 671 1646 0.92 44 -14554007.7853353

2.05 3633 566 1500 0.92 43 -14554043.5010371

2.10 3729 470 1366 0.93 42 -14554070.3998895

2.15 3817 382 1245 0.94 40 -14554090.2246470

2.20 3897 302 1134 0.94 38 -14554104.3539070

2.25 3970 228 1034 0.94 36 -14554113.9689872

2.30 4038 161 943 0.95 34 -14554119.9091549

2.35 4100 100 860 0.95 32 -14554122.9175055

2.40 4156 43 785 0.95 30 -14554123.5781863

2.45 4207 -8 717 0.95 28 -14554122.3660454

2.50 4254 -55 655 0.95 26 -14554119.6697356

2.55 4297 -98 598 0.95 24 -14554115.8089114

2.60 4336 -137 546 0.94 22 -14554111.0475145

2.65 4372 -173 497 0.94 21 -14554105.6034088

2.70 4405 -206 453 0.94 19 -14554099.6559947
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Table D.6.5.  Theoretical 109Ag chemical shift parameters and 1J(109Ag, 14N) coupling
values of 4 using different basis sets.

Basis Seta σiso

(ppm)
δiso (ppm)  Ω (ppm)  κ 1J(109Ag, 14N)

(Hz)
6-311G** / STO-3G 3747 452 1705 0.67 26

6-311G**/ Ahlrichs
Coulomb Fitting

865 3334 1081 0.15 0.1

6-311G**/ DeMon
Coulomb Fitting 

3759 440 795 0.90 76

6-311G**/ DGauss A1
DFT Exchange Fitting

3617 582 251 0.42 26

6-311G**/ WTBS 3810 389 1244 0.87 32

6-311G**/ Stuttgart
RSC 1997 ECP

213 3986 154 0.58 0.06

6-311G**/ cc-pVDZ-PP 209 3990 160 0.60 0.06

6-311G** DZVPb 3546 653 1652 0.84 41

6-311G** DZVPc 3206 993 1978 0.74 33
a The first basis set was used on all the atoms except the silver on which the second basis set was used.
b This calculation was done using the DZVP basis set on both the silver and nitrogen atoms.
c Calculation was done using the B3LYP method while all of the other ones were done with RHF.

Table D.6.6. CS tensor parameters and J-coupling a span as a function of pN-Ag-N in
[Ag(NH2C3H7)]

+

pN-Ag-N Ag-N (Å) σiso (ppm) δiso (ppm)a  Ω (ppm)  κ 1J(109Ag, 14N)
(Hz)

160E 2.15 3817 382 1223 0.92 39.2

165E 2.15 3817 382 1245 0.94 40

175E 2.15 3817 382 1268 0.95 40.6

180E 2.15 3817 382 1274 0.96 40.6

Table D.6.7. CS tensor parameters and J-coupling a span as a function of pC-N-N-C in 
[Ag(NH2C3H7)]

+

pC-N-N-C Ag-N (Å) σiso (ppm) δiso (ppm)a  Ω (ppm)  κ 1J(109Ag, 14N)

62E 2.15 3817 382 1244 0.94 39.9

-180E 2.15 3831 368 1295 0.82 38.4

 0E 2.15 3837 362 1260 0.78 38.3

-62E 2.15 3846 353 1265 0.85 38.4
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Table D.6.8.  Atomic coordinates of the structural unit used to calculate the 109Ag CS
tensor parameters of Ag(1) in 1a.

x y z
Ag 0.002715 -0.199543 0.000445
C -2.678406 1.098652 0.368297
C -4.051086 1.230409 0.578582
C -4.871953 0.199546 0.165421
C -2.956061 -0.975488 -0.612982
C -4.336514 -0.903115 -0.467958
C 2.680873 1.100008 -0.383903
C 2.963255 -0.960866 0.623617
C 4.343545 -0.887182 0.477674
C 4.876465 0.208571 -0.169669
C 4.053243 1.232225 -0.595859
H -2.071708 1.824824 0.62323
H -4.437856 2.02522 1.001767
H -5.837651 0.248122 0.325012
H -2.547999 -1.76141 -1.032757
H -4.904095 -1.622524 -0.815381
H 1.779214 1.457328 -0.524372
H 2.556983 -1.742324 1.053346
H 4.912066 -1.605867 0.825059
H 5.843252 0.262048 -0.320872
H 4.405433 2.030299 -1.042445
N -2.140445 0.011113 -0.184971
N 2.145385 0.018352 0.183141
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Table D.6.9.  Atomic coordinates of the structural unit used to calculate the 109Ag CS
tensor parameters of Ag(2) in 1a.

x y z
Ag -0.134211 -0.000001 -0.000003
C 2.818352 3.836477 -0.554325
C -2.591248 3.836482 -0.554317
C -2.591254 -3.83647 0.554318
C 2.818346 -3.836473 0.55432
H 2.04755 4.316113 -0.274478
H 3.497927 4.307355 -0.086402
H 3.188887 3.816049 -1.428846
H -3.36205 4.316116 -0.274469
H -1.911673 4.307358 -0.086392
H -2.220713 3.816059 -1.428838
H -3.362056 -4.316103 0.274468
H -1.911679 -4.307347 0.086394
H -2.22072 -3.816046 1.428839
H 2.047544 -4.316107 0.274471
H 3.497921 -4.30735 0.086396
H 3.18888 -3.816049 1.428842
O 3.478861 1.351925 -0.867848
O 1.30799 1.864211 0.104508
O 3.31982 2.215955 1.39967
O -1.930739 1.351929 -0.86785
O -1.930742 -1.351927 0.867853
O 1.307988 -1.864225 -0.104511
O -4.10161 1.864214 0.104506
O -2.08978 2.215959 1.399668
O -4.101612 -1.864219 -0.104504
O -2.089782 -2.215947 -1.399667
O 3.478858 -1.351932 0.867845
O 3.319818 -2.215951 -1.399665
S 2.725901 2.159873 0.080561
S -2.683699 2.159877 0.080558
S -2.683702 -2.159874 -0.080557
S 2.725898 -2.159877 -0.080554
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Table D.6.10.  Atomic coordinates of [Ag(NH2C3H7)2]
+ unit used in the calculation

x y z
Ag -0.01204 -1.12846 -0.09423
C -2.76663 0.079637 -0.07365
C 2.744011 0.141647 0.314711
C -2.13403 1.418427 0.244625
C 2.105261 1.391937 -0.20992
C -2.83508 2.6009 -0.40699
C 2.760513 2.680991 0.256815
H -2.79719 -0.03917 -1.03593
H -3.67811 0.069535 0.258609
H 2.68435 0.130204 1.282853
H 3.682913 0.133357 0.07124
H -2.13719 1.542986 1.205959
H -1.21001 1.402864 -0.04782
H -3.76332 2.611174 -0.12146
H -2.82484 2.480116 -1.36961
H 2.12557 1.36731 -1.17903
H 1.174001 1.401646 0.063075
H 3.703837 2.658057 0.03467
H 2.68155 2.748181 1.221467
H 2.415037 3.419254 -0.26903
H -2.50097 3.422125 -0.01347
H -2.45549 -1.89975 0.294608
H -2.02299 -0.93139 1.530588
H 2.33099 -1.13861 -1.20292
H 2.451496 -1.86309 0.23803
N -2.01405 -1.03055 0.532148
N 2.082125 -1.05849 -0.23418

References for Appendix D

(1)  Gallego, M. L.; Cano, M.; Campo, J. A.; Heras, J. V.; Pinilla, E.; Torres, M. R.;
Cornago, P.; Claramunt, R. M. Eur. J. Inorg. Chem. 2005, 4370.
(2)  Buston, J. E. H.; Claridge, T. D. W.; Heyes, S. J.; Leech, M. A.; Moloney, M. G.;
Prout, K.; Stevenson, M. Dalton Trans. 2005, 3195.
(3)  Contakes, S. M.; Klausmeyer, K. K.; Rauchfuss, T. B. Inorg. Chem. 2000, 39, 2069.
(4)  Eggert, H.; Djerassi, C. J. Am. Chem. Soc. 1973, 95, 3710.
(5)  May, L. J.; Shimizu, G. K. H. Chem. Mat. 2005, 17, 217.
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5. Appendix E:  Supplementary Information for Chapter 7

Table E.7.1.   35Cl MAS NMR Experimental Parameters at 21.1 T.

νrot 

(kHz)
pw90 
(µs)

Decoupling
Power 
(kHz)

Recycle Delay
 (s)

Spectral
Width 
(kHz)

# of
Scans

PH 22.1 2.3 58.1 1.0 166.67 4400
TH 22.2 2.3 58.1 1.0 166.67   12000
LH 22.1 2.3 58.1 2.0 166.67 5120
LH1 22.1 3.3 62.0 1.0 166.67   10240
BH 15.0 3.6 0.0 1.0 300.00 512
BH1 22.1 2.3 58.1 1.0 166.67     51200
BH2 22.1 3.3 62.0 1.0 166.67   6400

Table E.7.2.   35Cl Static NMR Experimental Parameters at 21.1 T.

pw90 
(µs)

Decoupling
Power (kHz)

Recycle Delay
(s)

Spectral Width
(kHz)

# of
Scans

PH 2.1 60.0 1.0 166.67 5200
TH 2.1 60.0 1.0 166.67 3600
LH 2.1 60.0 3.0 166.67 5120
LH1 2.0 62.0 1.0 166.67 9200
BH 6.0 100 1.0 300.00 2696
BH1 2.1 60.0 1.0 166.67 3200
BH2 2.0 62.0 1.0 166.67 3048

Table E.7.3.   35Cl Static NMR Experimental Parameters at 9.4 T.

pw90 
(µs)

Decoupling
Power 
(kHz)

Recycle
Delay
 (s)

Spectral
Width
(kHz)

Offset
Frequency

(kHz)

# of
Scans

# of pieces
acquired

PH 2.3 58.8 0.5 800.00 31 36352 2
TH 1.5 42 0.5 800.00 70 59248 3
LH 2.3 58.8 0.5 800.00 57 137072 2
LH1 2.3 58.8 0.5 800.00 ------ 90704 1
BH 1.0 27.4 0.5 800.00 ------ 111952 1
BH1 2.3 58.8 0.5 800.00 40 51760 6
BH2 2.3 58.8 0.5 800 36 144352 4
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Figure E.7.1.  Simulated and experimental powder XRD patterns of procaine HCl (PH).  
a) Calculated XRD pattern obtained from the reported crystal structure.1  b) Calculated
XRD pattern obtained from the crystal structure acquired in our laboratory.  c) Powder
XRD pattern of the commercial PH. 
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Figure E.7.2.  Simulated and experimental powder XRD patterns of tetracaine HCl (TH)
samples. a) Calculated XRD pattern obtained from the reported crystal structure.2  
b) Calculated XRD pattern obtained from the crystal structure acquired in our laboratory
after recrystallization from isopropanol.  c) Powder XRD pattern of the commercial TH
recrystallized from isopropanol.  d) Powder XRD pattern of the commercial TH.
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Figure E.7.3.  Simulated and experimental powder XRD patterns of the commercial
monohydrated lidocaine HCl (LH) and its polymorph.  a) Calculated XRD pattern
obtained from the reported crystal structure.3  b) Calculated XRD pattern obtained 
from the crystal structure acquired in our laboratory after recrystallization from acetone.  
c) Powder XRD pattern of the commercial LH recrystallized from acetone.d) Powder
XRD pattern of the commercial LH.  e) Powder XRD pattern of the LH polymorph.
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Figure E.7.4.  Simulated and experimental powder XRD patterns of bupivacaine HCl
(BH) samples.  a) Calculated XRD pattern obtained from the reported crystal structure 
of anhydrous BH.4  b) Experimental pattern of the commercial BH.  c) Experimental
pattern of the commercial BH heated to 120EC.  d) Experimental pattern of the
commercial BH heated to 170EC.
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Figure E.7.5.  TGA curves of monohydrated lidocaine hydrochloride (LH) and its
polymorph (LH1) (top), and simultaneous MS analysis of evolved gases between 
15-100 m/z (bottom).  Shown are the ion intensity curves at m/z = 18 (H2O).
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Figure E.7.6.  Deconvolution of the two 35Cl NMR patterns in LH1.
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Figure E.7.7.  Deconvolution of the two 35Cl NMR patterns in BH1 (heated at 120EC).
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Table E.7.4.  Summary of theoretical 35Cl EFG tensors (different basis sets).

Basis Seta V33(au) CQ/MHzb ηQc

PH  Experimental -----     4.87(7)    0.28(4)
cc-pVTZ/ 6-31G* -0.281945 -5.409  0.286
cc-pVTZ /cc-pVDZ -0.275383 -5.283  0.338
6-311+G* -0.238951 -4.584  0.461

TH Experimental -----   6.0(1)     0.27(4)
cc-pVTZ/ 6-31G* -0.318306 -6.107  0.197
cc-pVTZ /cc-pVDZ -0.303549 -5.824  0.199
6-311+G* -0.305163 -5.855  0.218

LH Experimental -----    4.67(7)     0.77(3)
cc-pVTZ/ 6-31G* -0.213556 -4.097   0.437
cc-pVTZ /cc-pVDZ -0.213080 -4.088   0.425
6-311+G* -0.206542 -3.962   0.557

BH Experimental -----       3.66(10)     0.72(8)
cc-pVTZ/ 6-31G*   0.203813 3.91 0.84
cc-pVTZ /cc-pVDZ   0.200183 3.84 0.82
6-311+G*    0.183848 3.53 0.71

a The first basis set was used on the chlorine atom while the second was used for all the other atoms;  
b Theoretical values of CQ are calculated by converting from atomic units to Hz by multiplying V33 by
(eQ/h)(9.7177 × 1021 Vm-2), where Q(35Cl) = -0.082 × 10-28 m2; c ηQ = (V11 - V22)/V33.
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Figure E.7.8.  35Cl EFG and CS tensor orientations in a) PH, b) TH, c) LH and d) BH. 
The diagrams above are magnifications of the chlorine sites pictured in Figure 7.1.

References for Appendix E
(1)  Dexter, D. D. Acta Crystallogr., Sect. B: Struct. Sci. 1972, 28, 77.
(2)  Nowell, H.; Attfield, J. P.; Cole, J. C.; Cox, P. J.; Shankland, K.; Maginn, S. J.;
Motherwell, W. D. S. New J. Chem. 2002, 26, 469.
(3)  Hanson, A. W.; Roehrl, M. Acta Crystallogr., Sect. B: Struct. Sci. 1972, 28, 3567.
(4)  Csoeregh, I. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1992, C48, 1794.
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6. Appendix F:  Supplementary Information for Chapter 8

Table F.8.1.   35Cl MAS NMR Experimental Parameters at 21.1 T.

νrot (kHz) pw90 (µs) Decoupling
Power 
(kHz)

Recycle Delay
 (s)

Spectral Width
(kHz)

# of Scans

TR 23.33 2.1 90 1.0 250 6144
AD 22.31 2.1 90 1.0 250 6144
BU 22.35 2.1 90 1.5 250 5120
DI 21.00 2.2 90 3.0 125   19008
RA 22.20 2.0 90 1.0 167   10240
ME 22.46 2.0 90 1.0 167   10240
AM 20.06 2.2 90 1.0 125 3200
AC 21.72 2.2 90 2.0 125 6144
IS 21.11 2.2 90 1.0 125 6144

Table F.8.2.   35Cl Static NMR Experimental Parameters at 21.1 T.

pw90 (µs) Decoupling
Power (kHz)

Recycle Delay (s) Spectral Width
(kHz)

# of Scans

TR 2.5 62 1.5 250          2048
AD 2.5 62 1.5 250          2048
BU 2.5 62 1.5 250          2048
DI 2.5 62 1.5 250          2048
RA 2.5 62 1.0 167          20480
ME 2.5 62 1.0 167          10240
AM 2.5 62 1.0 250          1600
AC 2.5 62 1.5 250          2048
IS 2.5 62 1.0 250          1600

Table F.8.3.   35Cl Static NMR Experimental Parameters at 9.4 T.

pw90 
(µs)

# of echoes Decoupling
Power 
(kHz)

Recycle Delay (s) Spectral Width
(kHz)

# of Scans

Echo
ME 2.2 1 50 0.5 800 63424
AM 1.5 1 50 0.5 250 20000
AC 2.0 1 0 0.5 500 23872
DI 1.5 1 50 0.5 400 139120

WURST-QCPMG
RA 50 1 0 0.5 500 115064
TR 50 120 42 0.5 800 2142
BU 50 35 42 0.5 500 7483
AD 50 35 42 0.5 500 114624
IS 50 35 42 0.5 500 8409
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Figure F.8.1.  Experimental (top) and simulated (bottom) powder XRD patterns of
ranitidine hydrochloride
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Figure F.8.2.  Deconvolution of the NMR patterns of the two different chlorine sites in
DI. a) simulated spectrum of site 1, b) simulated spectrum of site 2, c) convolution of the
two patterns and d) experimental spectrum.
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