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ABSTRACT 

Fate and transport of chemicals of environmental concern throughout municipal 

wastewater treatment plants (MWTPs) affect the safety of human and environmental 

health.  Understanding of the fate of historic and emerging contaminants in MWTPs 

allows for consideration and prediction of potential environmental loadings and 

subsequent risk assessment.   The aim of this thesis was to develop a robust and 

reproducible method to discern partitioning of a suite of chlorobenzenes (CBs) to well-

characterized colloidal organic carbon (COC) of MWTP raw influents.   

Preliminary investigations support the use of MeOH cosolvent at volume fractions 

up to 1%.  Given that cosolvent may also interact with COC directly, a 0.01% MeOH 

volume fraction was used in all studies.  Henry’s law constants (HLCs) used to determine 

the partitioning coefficient must be accurate and exhibit marked variability in the 

literature, thus calculating experiment-specific HLCs was needed.  HLCs determined for 

the CBs ranged from 29.9–56.5 Pa m3 mol-1.   Ultrafiltration fractionation was used to 

separate colloidal fractions followed by various techniques to characterize the COC.  The 

major finding of size fractionation was the abundance of mass under the 1 kDa size 

fraction (ca. 70%).  Sample preparation and liquid-state 1H NMR has not been previously 

used and serves as a valuable evolution for sample processing and COC characterization   

The partitioning of CBs to MWTP colloids under 1.5 µm resulted in logKCOC 

values of 3.86, 3.89, and 3.19 for TeCB, PeCB, and HCB, respectively; these values did 

not follow trends based upon hydrophobicity.  Contrary to expectations based on 

literature investigations COC under 1 kDa participated in partitioning with logKCOC 

values of 4.30, 4.36, and 3.74 for TeCB, PeCB, and HCB, respectively.   
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1. Introduction 

Water is critical for all aspects of human and ecosystem health.  Water supply is 

finite, thus consideration of wastewater impact on receiving environments which are used 

as reservoirs for drinking water and other uses must be made prior to release.  Water is 

constantly recycled throughout the environment, however, many locations have 

inadequate supply of fresh waters due to human impacts on both the quantity (eg. water 

taken for agricultural use) and quality (eg. chemical contamination). Human impacts via 

wastewaters on water quality must be considered to protect sources both for now and for 

the future. 

Wastewater treatment is employed for waters collected from residential, 

commercial, and industrial sources which will be returned as environmental loadings via 

effluents and sludges or be destined for reuse in the face of declining freshwater 

resources.  As populations inevitably grow total discharges from all wastewater sources 

increase, therefore treatment must be extensive enough to ensure protection of both 

human and environmental health.  Historically treatment has only considered reduction in 

organic matter and pathogens.  More recently the additional goal of treating chemicals of 

concern (CHCs) has become of interest.  As water is cycled throughout the environment 

broad treatment of wastewater prior to release is essential. 

Treatment of wastewater has customarily been defined via nonspecific factors 

such as biochemical oxygen demand (BOD) and suspended solids (SS) (Levine et al., 

1985).  These nonspecific factors do not consider treatability of all organic constituents 

found in wastewater (Fig. 1).  Additionally, treatment of chemical compounds both of 

historic and emerging concern (Table 1) has not been traditionally considered in treatment  
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 5 

plant design (Shon et al., 2006).  Overall, the treatability of wastewater organic matter 

(OM) has shown to be dependent on size distributions (Levine et al., 1985), while the 

treatability of CHCs in wastewater has not been extensively studied. 

Extensive research on natural organic matter (NOM) in surface waters has been 

performed, including the potential role of partitioning of CHCs to NOM in chemical fate 

and transport (Backhus et al., 1990; Gustafsson et al., 1997; Laor and Rebhun, 2002; 

Shon et al., 2006).  Despite the extent and importance of this CHC–NOM relationship, 

few studies have considered wastewater CHC–OM partitioning (Holbrook et al., 2004).   

The OM of particular interest in wastewater are colloids, defined as particles 

‘immune to gravity’ (Graham, 1861).  These colloids have the ability to sorb CHCs, thus 

rendering CHCs inaccessible to degradation and other loss processes (Gustafsson et al., 

1997).  Freely-dissolved (unbound chemical) and colloid-bound CHCs can be readily 

transported via effluents into receiving waterbodies where they may negatively impact 

both humans and the general environment.        

1.1.Wastewater treatment processes 

Municipal wastewater treatment plants (MWTPs) treatment objectives have 

developed markedly from about 1900 to present day.  Original treatment objectives 

involved removal of organic matter, treatment of biodegradable organics, and elimination 

of pathogens (Tchobanoglous et al., 2001).  By the early 1980s these objectives became 

more stringent and necessitated the removal of nutrients including nitrogen and 

phosphorus which were found to be negatively affecting surface waters (Tchobanoglous 

et al., 2001).   



 6 

To meet these objective MWTPs use physical, chemical, and biological processes 

in various “reactors” (Tchobanoglous et al., 2001) including batch, completely-mixed, 

plug-flow, packed-bed, and fluidized bed.  These reactors are used in various 

configurations for primary, secondary, and tertiary treatment processes.  Primary 

treatment or primary sedimentation is a treatment process used to remove SS and the 

associated BOD.  Secondary treatments are used to substantially degrade the remaining 

organics via fixed-film processes (eg. trickling filters and rotating biological contactors) 

and suspended-growth processes (eg. activated sludge and lagoons).  Tertiary treatments 

or ‘polishing’ generally is a disinfection process (eg. chlorination, UV, and ozonation) 

that may be considered depending on effluent quality.  

Overall, these objectives are well met by use of an activated sludge-type treatment 

plant (Fig. 2).  This plant design includes physical, chemical, and biological treatment 

processes through preliminary grit removal, a primary settling tank, an aeration tank, and 

a secondary settling tank.  A tertiary advanced treatment process may also be included 

dependent on effluent parameters.  

Of current interest is specifically the primary treatment tank process (Fig. 2).  The 

primary tank volatilization and degradation are limited for many CHCs, including 

hydrophobic organic compounds (HOCs).  These HOCs have a high affinity for both 

solids and colloids.  Freely-dissolved and CHC–colloid chemicals are transferred to the 

aeration tank via primary effluents.  The CHC–colloid complexes render the chemical 

unavailable for degradation processes (Gustafsson et al., 1997).  These colloids do not 

settle readily and act to transport CHCs to the environment via MWTP effluents. 
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1.2.Wastewater organic constituents 

Wastewater organics constituents are shown in Fig. 1 which vary widely in 

physicochemical characteristics (Müller et al., 2000; Her et al., 2002; Leenheer et al., 

2003).  Knowing these characteristics is invaluable in optimization of MWTP processes 

(Shon et al., 2006).  The most valuable characterization is size distribution which affects 

rates of sedimentation, mass transfer, adsorption, diffusion, and biochemical reactions 

(Levine et al., 1985).  Size distributions have been reported for various MWTP processes 

(Manka et al., 1982; Vaillant et al., 1999; Holbrook et al., 2004; Sophonsiri et al. 2004).   

Unfortunately, a standard method of size fractionation has not been considered for 

MWTP samples making use and comparison of literature values difficult.   

Of particular interest is the distinction between suspended solids, colloids, and 

truly-dissolved (colloids unable to bind specific CHCs) since functional separation of 

these phases unclear in the literature.  Values chosen for lower cut-off of suspended solids 

or particulate organic carbon range from 0.45 – 1.5 µm (Tchobanoglous et al., 2001; 

Vaillant et al., 1999; Holbrook et al., 2004; Shon et al., 2006), while those chosen for 

upper cut-off for the truly-dissolved phase filter range from 500 – 1000 Da (Backhus et 

al., 1990; Gustafsson et al., 2001; Backhus et al., 2003; Holbrook et al., 2004).  The 

assignment of phases based primarily on filter sizes rather than actual OM 

physicochemical characteristics has been used extensively in the literature.  These 

arbitrary assignments of phases make the distinction of chemical sorption behaviour 

difficult to assess since they have no operational or functional basis.   
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1.3.   Organics size characterization 

Many analytical techniques are available to identify size fractions of MWTP 

organic constituents (Fig. 3).  With comparison of Fig. 1, it is apparent that many of the 

techniques are not able to detect all of the potential organic constituents.  Of special 

interest recently are the smallest size fractions, which could not be readily identified 

before advanced fractionation methods were introduced.  These include ultrafiltration, 

high pressure liquid chromatography, gel filtration chromatography, and flow field flow 

fractionation (Fig. 3).  The ultrafiltration method is particularly attractive since it allows 

separation of size fractions without sacrificing samples, allowing further characterization 

of the fractionated sample.  Additionally, when coupled with traditional membrane 

filtration methods this technique covers the entire organic constituent size ranges, thus 

allowing a single-type of technique to be used exclusively for size characterization of 

samples. 

1.4.Chemicals of concern 

Prior to the 1990s, U.S. Environmental Protection Agency priority pollutants were 

the focus of environmental concern for wastewater effluent (Shon et al., 2006).  These 

historic chemicals include the first six groups listed in Table 1.  These groups include 

HOCs such as the chlorobenzenes that are persistent in the environment.  The emerging 

chemical groups include the remaining nine groups listed in Table 1, including HOCs 

such as synthetic musks, polybrominated diphenyl ethers, and alkylphenols which have 

received little attention in effluents (Halling-Sørenson et al., 1998; Shon et al., 2006).   

Fate and transport of both historic and emerging chemicals through the MWTP 

process is important in elucidation of environmental loadings.  Partitioning of these 
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chemicals to colloids during the MWTP has not been considered extensively, despite the 

potential importance of the CHC–colloid relationship.  Given the availability of well-

defined physicochemical properties of HOCs, such as chlorobenzenes, they are an 

excellent chemical class to consider for partitioning experiments to better understand and 

quantify the importance of the CHC–colloid relationship.        

1.5.Chlorobenzenes 

The chlorobenzenes (CBs) are a diverse suite of chemicals with a well-defined set 

of physicochemical properties.  Currently, CBs are not known to be manufactured for any  

commercial uses (Wang et al., 1998; Barber et al., 2005; Bailey et al., 2009).  

Historically, only hexachlorobenzene (HCB) was used directly in industry and agriculture 

as a fungicide (Barber et al., 2005).  The remaining CBs (including HCB) were added as a 

chlorobenzene mixture to reduce the viscosity of PCB products employed for heat 

transfer (King et al., 2003) or as intermediates in process solvents in the manufacture of 

pesticides and chlorinated phenols (Wang et al., 1998).  Despite no longer being 

manufactured, all the chlorobenzenes are still being continually released into the 

environment via byproduct emissions, pesticide use, combustion processes, and 

degradation from dechlorination of other chlorobenzenes (Bailey et al., 2009).   

1.6.Organic compound sorption: Chemcentric viewpoint  

The partitioning of CHCs to OM is dependent on the affinity of the chemical to 

the OM.  This interaction is based on both the nature of the sorbent (OM) and the 

physicochemical properties of the sorbate (CHC) (Delle Site, 2001).  These interactions 

are grouped into physical, chemical and electrostatic.  These groups can be further 
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divided into van der Waals forces, hydrophobic bonding, hydrogen bonding, charge 

transfer, ligand-exchange and ion binding, ion-dipole and dipole-dipole, and covalent 

bonds (Weber et al., 1991).  These interactions are difficult or impossible to measure 

individually and/or directly, thus indirect sorption affinity can be found via a partitioning 

coefficient that can be determined experimentally.  This partitioning coefficient may be 

further investigated via characterization of OM and physicochemical properties of CHC 

and serves as an overall summation of the interactions mentioned previously. 

To investigate the potential partitioning behaviour a functional definition of 

colloids is needed to separate the ‘truly-dissolved’ (unable to bind CHCs) from the 

colloidal (able to bind CHCs) OM fractions.  In conjunction with the truly-dissolved 

definition, ‘freely-dissolved’ chemical is unbound to any OM making it accessible for 

potential loss processes.  Historically the separation of these fractions was based solely on 

filterable versus non-filterable segments which do not behave according to interactions 

mentioned above.  For aquatic colloids Gustafsson and Gschwend (1997) introduced a 

‘chemcentric’ sorption regime which includes a more operationally defined OM 

distinction based on chemical properties.  Currently, the lower cut-off for the colloid and 

truly-dissolved is debatable.  Previously, a range of 500 Da – 1 kDa has been considered 

acceptable for defining the truly-dissolved fraction for aquatic colloids based on the limit 

of current membrane size fractionation (Backhus et al., 1990; Gustafsson and Gschwend, 

1997; Gustafsson et al., 2001; Backhus et al., 2003).  Recently, Holbrook et al. (2004) 

have used a 1 kDa size as the cut-off to define truly-dissolved organic matter in a study 

related to MWTP colloids.  However the validity of a 1 kDa cut-off size is untested.  In 

the current study, the colloidal fraction is considered to be passing 1.5 µm and the truly-

dissolved passing 1 kDa a reasonable starting point for the chemcentric theory (Fig. 4).   
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2. Thesis Objective 

The main objective of this thesis was to investigate and quantify HOC partitioning 

to colloidal organic matter in municipal wastewater.  A suite of three chlorobenzenes 

(1,2,4,5-tetrachlorobenzene, pentachlorobenzene, hexachlorobenzene) was chosen and 

their partitioning to colloidal organic matter in primary effluent of Little River Pollution 

Control Plant was examined.  In standard methods of wastewater analyses a 1.5 µm filter 

is used to define the lower limit of suspended solids.  This size was used to define the 

upper limit of colloidal organic matter in the current study. 

2.1.Chapter 2  

Partitioning of CBs to colloids has been investigated via spiking of CBs in the 

cosolvent methanol (MeOH) into samples containing MWTP OM.  This cosolvent may 

impact both the solution phase as well as the OM directly (Bouchard, 2003).  Solid-phase 

microextraction (SPME) is a relatively new technique for determination of CHC 

partitioning in soils, sediments, and waterbodies (Potter et al., 1994; Artola-Garicano et 

al., 2003; Bruheim et al., 2003; Fernández-González et al., 2007).  HS-SPME is a 

modification of the technique which allows the sampling of the headspace (HS) which 

provides a direct measurement of vapour phase chemical concentrations.   

  The goal of the Chapter 2 study is to determine the effects of experimentally 

relevant volume fractions (fc) of the cosolvent MeOH on apparent solubility of 

chlorobenzenes.  These experiments used HS-SPME methods for batch studies using 

three chlorobenzenes (1,2,4,5-tetrachlorobenzene, pentachlorobenzene, 

hexachlorobenzene).  Further experiments include assessment of chemical stability over 



 15 

time in raw glass and silanized SPME headspace vials.  The results of these experiments 

will be considered in cosolvent behaviour for future MWTP partitioning research.     

2.2.Chapter 3  

Henry’s law constant (H) is a parameter which may be used to describe mass 

transfer between water and air which is important for use in environmental risk 

assessment and fate and transport models (ten Hulscher et al., 2006).  Accurate 

determination of H is needed, unfortunately, the quality of measured physicochemical 

data including H has been recently questioned (Goss et al., 2004; ten Hulscher et al., 

2006).  Accurate determination is needed to avoid misinterpretation and erroneous 

conclusions based upon incorrect parameters (Goss et al., 2004).    

The goal of the Chapter 3 is to establish H values for the three CBs using the gas 

sparging technique.  Given large variations in literature H values, determination of 

experiment-specific values is valuable in future use of gas sparging in the determination 

of partitioning behaviour in MWTP processes.     

2.3.Chapter 4  

Treatability of wastewater is strongly dependent on OM size distributions. 

Characterization of OM sizes is needed for both understanding of processes and in 

selection of potential treatment techniques (Levine et al., 1985).  After size distributions 

are determined, further characterization techniques can be used to correlate partitioning of 

CHCs to OM fractions.  Ultrafiltration is the only technique in which MWTP samples can 

be fractionated without sacrificing, allowing further characterization. When coupled with 
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membrane filtration, these two filtration techniques allow for determination of the entire 

MWTP OM distribution.  

Objectives of Chapter 4 are to develop a repeatable and robust size fractionation 

method for MWTP primary effluents which allows for further characterization of 

fractionated OM.  The overall goal is to increase the understanding of OM distribution 

and characteristics and partitioning of CHCs to various size fractions.  With this 

information fate and transport of CHCs may be determined via use of partitioning 

parameter.  For comparative purposes, Aldrich humic acid (AHA) samples were also 

characterized to determine their applicability as a standard reference for technique 

verification.   

2.4.Chapter 5  

CHCs in wastewater are a concern due to potential for environmental and human 

health risks.  Movement of these pollutants, bound or freely-dissolved, throughout the 

MWTP process is not well understood.  The term KCOC is used to define partitioning 

between water and colloidal organic carbon (COC; organic matter normalized by its 

carbon content).  Evaluation of CHC – COC sorption is especially needed for primary 

sedimentation effluents since bound CHCs are not removed via degradation pathways, 

volatilization, and/or sedimentation during secondary treatment, thereby released to 

natural systems via effluents into receiving water bodies (Holbrook et al., 2004).   

In Chapter 5, the sorption of three chlorobenzenes (1,2,4,5-tetrachlorobenzene, 

pentachlorobenzene, and hexachlorobenzene) to two organic matter sources (MWTP 

derived COC and Aldrich humic acids – AHA) is investigated.  The objectives of this 

study are (1) quantify KCOC for the MWTP primary tank effluent; (2) quantify KCOC of 
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AHA for comparison to historic values and methodology confirmation; (3) determine rate 

constants of partitioning for both effluents and AHA; (4) determine the potential 

interactions between the mix of chlorobenzenes with COC. 

2.5.Chapter 6  

A limitation to the determination of the truly-dissolved COC fraction has been the 

inability to separate COC experimentally.  Recently, the ultrafiltration technique has 

become widely used in isolation of both environmental (Wilding et al., 2004; Kottelat et 

al., 2008; Maskaoui et al., 2010) and MWTP colloids (Holbrook et al., 2004; Worms et 

al., 2010).   Ultrafiltration allows isolation of COC down to 1 kDa, which has been 

considered as the lower limit to OM colloidal matter (Gustafsson et al., 1997; Holbrook et 

al., 2004). 

The objective of the Chapter 6 is to determine if the 1 kDa limit to COC 

partitioning is valid.  Using the gas sparging technique, and various size fractions of 

organics for comparison, spiked chlorobenzene partitioning is investigated using the 

primary effluent of a MWTP which is chosen since CHCs partitioned to COC are not 

readily accessible for volatilization and degradation in the secondary MWTP treatment 

and may be carried to receiving environments through final MWTP effluents.    

2.6.Chapter 7  

The importance of determination of the fate and transport of CHCs throughout 

MWTP processes are of utmost concern for the safety of both human and environmental 

health.  The primary treatment process of the MWTP is crucial in determining the 

partitioning of CHCs to OM which affects transport processes.  The partitioning 
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behaviour can be better understood through the use of a chemcentric framework that is 

developed within this Chapter.     

The objective of Chapter 7 is to integrate results of the previous experimental 

chapters and discuss the implications of the research in the MWTP process.  After 

developing the framework for partitioning experiments, Chapter 7 outlines the relevance 

of primary wastewater treatment and the chemcentric viewpoint.  Chapter 7 will include 

overall conclusions of the thesis and relevant engineering significance.   
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1. Introduction 

Determination of hydrophobic organic compound (HOC) sorption to colloidal 

organic carbon (COC; organic matter categorized by carbon content) in municipal 

wastewater treatment plants (MWTP) and natural organic matter (NOM) in soils, 

sediments, and waterbodies is crucial for understanding chemical fate including transport, 

degradation, volatilization, and biological accessibility.  Historically, partitioning of HOC 

sorption to DOM/NOM has been investigated via spiking of HOCs in methanol (MeOH) 

into experimentally prepared samples containing organic material.  This method of 

spiking leads to addition of a cosolvent phase (MeOH) in addition to the HOC; this 

cosolvent may impact both the solution phase as well as the DOM/NOM directly, thus 

potentially affecting partitioning properties of HOCs (Bouchard, 2003). 

Solid-phase microextraction (SPME) is a relatively new technique for 

determination of HOC partitioning behaviour in soils, sediments, and waterbodies (Potter 

et al., 1994; Langenfeld et al., 1996; Porschmann et al., 1998; Ramos et al., 1998; Artola-

Garicano et al., 2003; Bruheim et al., 2003; Fernández-González et al., 2007).  A 

modification of the SPME technique allows the sampling of the headspace of a sample 

(HS–SPME), rather than the direct immersion of the fibre into the sample matrix.  HS–

SPME provides a direct measurement of vapour phase chemical concentrations assumed 

to be equilibrated with solution at the time of sampling and enables calculation of the 

freely-dissolved HOC concentration through use of the Henry’s law constant for the 

solute in question.  Owing to the very high capacity of the SPME fibre relative to the 

vapour phase, it is generally assumed that the entire chemical mass associated with HS-

SPME is rapidly scavenged onto the fibre negating need for measuring a separate SPME 
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fibre/air partition coefficient.  Using this approach, the freely dissolved water 

concentration can be assessed even in ‘dirty’ matrices, such as MWTP effluents and 

complex multi-phase solutions while maintaining clean analytical conditions (Vaes et al., 

1996).   

 Cosolvent effects have been thoroughly investigated for solvent/solute effects 

(Munz et al., 1986; Dickhut et al., 1989; Resendes et al., 1992; Nzengung et al., 1996; 

Bouchard, 1998; Fernández-González et al., 2007; Smedes et al., 2009).  The consensus 

of these studies is that an exponential increase in water solubility occurs for low and 

moderately soluble solutes with a linear increase in cosolvent volume fraction (v/v% 

denoted as fc).  Thus, increasing cosolvent fc results in increased apparent solubility of 

HOCs.  However, these effects are only considered significant above 10% (v/v), which is 

markedly higher than typical cosolvent volumes used in solubility and partitioning studies 

that use batch spiking experiments (Munz et al., 1986; Banerjee et al., 1988).  Despite this 

consideration of a high cosolvent volume ratio needed to affect solubility, many 

researchers have used the generator column technique, which omits cosolvents 

completely (May et al., 1978a; May et al., 1978b; Friesen et al., 1985; Friesen et al., 

1990; Hong et al., 1995; de Maagd et al., 1998).  Solubility’s measured using the 

generator column techniques has often produced lower solubility estimates than those 

reported using spiked samples (de Maagd et al., 1998).  Given these results appear to 

conflict with the 10% volume fraction hypothesis stated above, further examination of 

cosolvent effects at fc additions similar to those employed in solubility experiments are 

warranted.  With the addition of potential solvent/sorbent effects further affecting solute 

behaviour (Bouchard, 2003); the assessment of cosolvent effects is also important in 

determination of partitioning behaviour (KCOC) in studies that utilize spiking techniques. 
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A second consideration in spiked experimental designs is sorption of HOC to 

various vial surfaces as well as loses of solute from the system over time.  The 

predominant surface in these batch-type experiments are glass walls but also include 

PTFE-coated septa and cap surfaces.  If chemical is sorbed to glass walls, it may also be 

more easily hydrolyzed (Brown et al., 2005; Brown 2006).  Silanization of glass has been 

used historically as a means to reduce binding of HOCs (Potter et al., 1994; Langenfeld et 

al., 1996; Doong et al., 2000; Brachet et al., 2005).  Surface binding of chemical, and 

subsequent reduction in soluble chemical, is of great importance for batch-type samples 

that need extended equilibration times.  This includes spiked MWTP samples, which are 

typically given a 24 h equilibration period meant to mimic actual retention times in the 

MWTP system.    Chemical losses are not easy to quantify in batch type experiments, 

especially given that mass balances are not usually performed in these studies because 

only one phase (freely-dissolved concentrations) are measured and concentration of solute 

in the organic phase is estimated by difference.  Given these difficulties in quantification, 

potential for sorption of solute to vial walls and/or losses of solute during equilibration, it 

is of utmost importance to characterize systematic errors related to the above artefacts 

using batch experiments and HS-SPME methodologies. 

  The goal of this research is to determine the effects of experimentally relevant fc 

levels of the cosolvent MeOH on apparent solubility of chlorobenzenes under batch 

studies using HS-SPME methods commonly applied during measurement of KCOC values 

in wastewater samples.  The study focuses on three chlorobenzenes (1,2,4,5-

tetrachlorobenzene, pentachlorobenzene, hexachlorobenzene) which are historically 

significant HOCs and have well established solubility and partitioning behaviour within 

the literature.  Further experiments include assessment of chemical stability over time in 
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raw glass and silanized SPME headspace vials.  The results of these experiments will be 

considered in cosolvent behaviour for future MWTP partitioning research.     

 

2. Materials and Methods 

2.1. Chemicals  

1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB; 98% pure), pentachlorobenzene (PeCB; 

98% pure), hexachlorobenzene (HCB; 99% pure), and sodium azide (NaN3: 98% pure) 

were purchased from Sigma-Aldrich (Canada).    A stock solution mixture of 30, 10, and 

10 mg L-1 of TeCB, PeCB and HCB, respectively, was prepared in hexane and stored at 4 

°C.   

2.2.Vial preparation and silanization 

SPME 20 mL crimp-top headspace vials (Varian #854181U) were used with 

teflon/silicon septa (Varian #27454U).  Three silanization applications were considered 

including pre-silanized vials (VWR #69400-118), Sigmacote SL-2 (Sigma-Aldrich), and 

5% dimethyldichlorosilane (DCMCS – Sigma-Aldrich).  Both SL-2 and DCMCS were 

applied to vials as per product information available for SL-2 (Sigma-Aldrich) prior to 

use.  All vials were soaked overnight in 5% RBS solution (Thermo Fisher Scientific), 

rinsed three times with deionised water and dried in a 250 °C oven for 4 h after use (for 

reuse if applicable).    



 27 

2.3.Wastewater sampling 

A 2 L grab sample was taken from Little River Pollution Control Plant (LRPCP) 

in Windsor, Ontario, Canada.  The plant serves the eastern portion of the City of Windsor 

and the surrounding municipalities of Tecumseh, St. Clair Beach and Sandwich South, 

and has two parallel and similar activated sludge-type secondary wastewater treatment 

systems with a combined design capacity of 60 000 m3 d-1.  The sample was transported 

to the laboratory within one hour of collection and treated with ca. 100 mg L-1 sodium 

azide to inhibit microbial degradation.  The sample was allowed to settle (creating 

suspended solids – SS sample from the supernatant) and subsequently filtered through 

0.45 µm precombusted glass fibre filters (Whatman Type WCN).   

2.4. SPME apparatus 

The experimental setup for the SPME sampling is shown in Fig. 1.  All samples 

(12 mL) were placed into vials and spiked with 1.2 µL of the chlorobenzene mixture for a 

final MeOH concentration of 0.01% (v/v).  Final chlorobenzene concentrations for all 

samples were well below reported solubility limits at 600, 200, and 200 pg mL-1 of TeCB, 

PeCB, and HCB, respectively.  Small teflon coated flea bars were inserted, vials capped 

with teflon/silicon crimp tops, and stirred on a vortex for 2 min.  A manual SPME fibre 

holder loaded with a 100 µm PDMS fibre (Sigma-Aldrich #57432U) (conditioned as per 

manufacturer recommendations) was inserted into a pre-punctured hole in the septa and 

exposed to the headspace of the vial for 30 min at 40 °C and 1600 RPM.  The fibre was 

retracted and inserted into the GC injection port for 2 minutes for extraction (see below 

for GC-ECD conditions).  SPME experiments were optimized for maximum extraction  
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Fig.1:  SPME experimental apparatus for head-space microextraction. 
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efficiency of chemical by varying time, temperature, and stirring prior to start of 

experiments.   

2.5.Experiments 

Experimental treatments included cosolvent, long-term, silanization, and effluents.  

Each experiment adhered to the SPME apparatus conditions considered previously. 

2.6.Cosolvent effects 

MeOH standard was spiked into MilliQ water.  Subsequent volumes of MeOH 

were added to create additional treatments of 0.1, 1, 2, 5, and 10% methanol (v/v).  At 

least four replicates per treatment were performed for each experiment.  Cosolvent 

experiments were vortexed for complete mixing and immediately extracted. 

2.7.Long-term equilibration studies 

MeOH samples of 0.01 and 10% (v/v) (15 vials each) in MilliQ water were 

created as in the ‘Cosolvent’ section above.  Samples were equilibrated at room 

temperature on a shaker at ca. 60 RPM.  After 2, 24, 48, and 96 h three vials from each 

treatment were sacrificed and extracted using the SPME procedure.  Control samples (21 

vials), three replicates of 100% MeOH, were extracted at 2, 4, 6, 8, 24, 48, and 96 h to 

compare with 0.01 and 10% MeOH treatments.     

2.8.Silanization 

Silanization treatments included control (unsilanized vials), 24 h control, 

Sigmacote, 24 h Sigmacote, DCMCS, and 24 h DCMCS.  MeOH silanization samples 

included three replicates for all treatments at 0.01% MeOH (v/v) in MilliQ water.  24 h 
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samples were equilibrated at room temperature on a shaker at ca. 60 RPM before 

extraction.   

2.9.Effluent 

Effluent treatments included control (unsilanized vials), 0.45 µm filtered fraction, 

and SS fraction.  MeOH standard was spiked into four replicates for each treatment and 

allowed to equilibrate at room temperature for 24 h on a shaker at ca. 60 RPM until 

extraction.   

2.10. Analytical methods 

Analysis of all samples was carried out on a Varian 3600 GC equipped with 

split/splitless injector, a 30 m X 0.32 mm fused silica DB-5 column with a 0.25 µm film 

thickness (J&W Scientific) and an ECD detector.  The injector was maintained at 250 °C 

with a flow rate of 2 mL min-1 He.  The fibre was desorbed for 2 min in a 253 µm liner.  

During desorption the column was held at 140 °C.  Subsequently, the column was raised 

to 192 °C at 6.5 °C min-1 ramp.  Makeup flow rate was 29 mL min-1 N2 and detector 

temperature at 250 °C.  The limit of detection (LOD) is defined as the minimum amount 

of analyte which produces a peak with a signal-to-noise ratio equal to 3.   A PeCB 

standard was injected prior to and post all experimental runs as quality control and 

expected to fall within a standard deviation of standard curve values. 
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3. Results and Discussion 

3.1.Cosolvent limits 

Results of MeOH cosolvent experiments are presented in Fig. 2.  All three 

chemicals exhibit a log – linear decreasing relationship between solvent fraction and 

extracted mass vapour phase solute.  This result is similar to reduced headspace 

measurements for chlorobenzenes by Resendes et al., (1992), where increasing octanol 

volume ratio decreased measured headspace concentrations.  However, the octanol 

relationship was not log – linear since octanol is only partially miscible in water, while 

MeOH in the current study is completely miscible and should exhibit log – linear 

behaviour (Pinal et al., 1990).  Given that the HS-SPME method allows the calculation of 

freely-dissolved chemical after extraction of the headspace chemical (Vaes et al., 1996), 

the decrease in mass extracted must be considered as increased mass in liquid attributed 

to the increase in apparent solubility caused by the MeOH cosolvent.  In this case, the 

increase in apparent solubility has a similar effect as a sorbent to the HOCs according to 

solvophobic theory since there is an increase in overall liquid-phase capacity (Nkedi-

Kizza et al., 1985; Fu et al., 1986; Rao et al., 1989).  All 3 chlorobenzenes had 

statistically similar slopes (p>0.05; ANCOVA) (Fig. 2), which indicates the relationship 

between cosolvent and chlorobenzenes is constant.  This is in contrast to Resendes et al. 

(1992) where miscible-region slopes were variable.  Given the very similar molecular 

volumes of the 3 chlorobenzenes, differences in the cosolvent and solvent molecular 

interactions involving ‘cavity’ formation for chemical insertion would be minimal; 

therefore, similar slopes would be expected for these 3 chemicals with MeOH cosolvent.       
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Fig 2:  Mass of each chemical extracted via the SPME fiber in comparison to various 
volume fractions of MeOH. (a)TeCB; (b) PeCB; (c) HCB.   
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Cosolvents have been shown to increase the solubility of HOCs above solubilities 

in pure water (Dickhut et al., 1989; Dickhut et al., 1991; Yalkowsky et al., 1981).  MeOH 

in the current study increased the apparent solubility of chemical and reduced the vapour 

phase concentration in the headspace vials in a linear manner, but such effects only 

became noticeable within error at higher MeOH volume fractions.  At MeOH spiking 

volumes of 0.01, 0.1, and 1%, there were no significant differences (p>0.05; ANOVA for  

each chlorobenzene) in vapour phase chemical mass extracted from the control (0.01% 

MeOH).  However, the remaining concentrations 2, 5, and 10% exhibited statistically 

significant (p<0.05; ANOVA) lower vapour phase masses from the control (0.01% 

MeOH) volume fraction addition.  Given these results, any MeOH concentration 1% (v/v) 

and below should be considered reasonable for spiking of chlorobenzenes.  However, 

these experiments have not considered potential solvent/sorbent behaviour which has 

been shown to affect partitioning (Bouchard, 2003).  Therefore, spiking with the lowest 

possible MeOH concentration (0.01%) should be considered for partitioning experiments 

as an extra precautionary measure to avoid cosolvent artefacts.   

Generator column usage has been shown to be beneficial in accurate 

determination of aqueous solubilities (May et al., 1978a; May et al., 1978b; Friesen et al., 

1985; Friesen et al., 1990; Hong et al., 1995; de Maagd et al., 1998).  Unfortunately, due 

to low solubilities of HOCs in water coupled with very high capacity of organic phases 

added to samples in such experiments, cosolvents must be used in order to introduce high 

enough chemical mass in batch systems to achieve measurable aqueous concentrations in 

partitioning experiments. Most batch experiments performed to measure chemical 

partitioning to COC utilize cosolvent spiking apply cosolvent volumes that typically 

range from 0.01 – 1.0 % for literature values (Kopinke et al., 2001; Paschke et al., 2003; 
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ter Laak et al., 2005; Endo et al., 2008; Mei et al., 2009; Bohm et al., 2010), although few 

studies mention the importance of the cosolvent concentration or that it was investigated 

prior to conducting sorption and partitioning studies (Backhus et al., 1990; Backhus et al., 

2003).  This study supports the use of MeOH cosolvent at volumes applied in the above 

cases but such relationships may not hold for all solutes.  Experimental validation to test 

for cosolvent artefacts should be conducted and reported on a more routine basis in 

conjunction with batch experiment results which use cosolvent spiking as a means of 

adding the solute to the batch systems.  

3.2.Long-term and silanized batch vials 

Long-term MeOH experiments (24 h) were considered since MWTP samples must 

be given an appropriate time interval for partitioning to approach or reach equilibrium 

after spiking in laboratory.  This duration was considered for MWTP samples since it is 

reasonably close to actual hydraulic and solids retention times within municipal 

wastewater treatment plants.  Actual equilibrium  of chemical onto suspended solids may 

not be attained during this time period; however, equilibrium with COC may occur given 

literature suggestions for equilibrium between water/DOM components range from 

minutes to weeks (Kopinke et al., 2001; Ter Laak et al., 2005; Endo et al., 2008; Mei et 

al., 2009; Bohm et al., 2010).  Time periods exceeding 24 h equilibration are more 

suitable for solids (soils and sediments) since the HOC/particle contact time usually 

occurs over longer durations and the heterogeneity of particle matrices makes sorption 

kinetics very slow (Karickhoff et al., 1985).  

Results of longer-term MeOH chemical equilibration trials are shown in Fig. 3, 

with mass losses considered in Table 1.  Control samples (100% MeOH) were stable for  
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Fig. 3:  Unexplained loss of chemical: (a) 0.01% MeOH; (b) 10% MeOH; (c) 100% 
MeOH.  Symbols represent: TeCB – diamonds; PeCB – squares; HCB – triangles. 
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all chemicals over the duration of the study (Fig. 3c).  Both 0.01 and 10 % MeOH 

treatments demonstrated major chemical reductions in extracted headspace chemical mass 

over the four day time period, with faster declines observed in the 0.01% treatments.  

Reductions in chemical mass in headspace were exponential, with rates being similar for 

TeCB and PeCB, while the loss rate of HCB was slower (Fig. 3a,b).  After 96 h, only 

12.3, 16.8, and 40.4% of TeCB, PeCB, and HCB, respectively, were extracted in 

headspace compared to the 2 h time point in the 0.01% MeOH treatment (Table 1).  After 

the same time period, 30.4, 26.1, and 46.4% of TeCB, PeCB, and HCB, respectively, 

were extracted relative to the 2 h time point in the 10% MeOH treatment (Table 1).  

Similar losses have been reported by He et al. (2000), however, the sources of these 

losses were not considered.    

Given that in each case the chemical was introduced into the aqueous phase first, 

as opposed to introducing directly into headspace, the observed trends in vapour phase 

chemical concentrations are not consistent with equilibration kinetics and re-distribution 

due to partitioning.  Loss sources within the vial may include degradation and 

volatilization; additionally, HOCs may also partition to vial walls, stir bars and septa.  

Degradation was considered unlikely to be a major loss process due to the persistence of 

the chlorobenzenes in general, being long-term environmental pollutants with long half-

lives (Table 1).  Volatilization may occur via loss due to seal integrity and diffusion 

through the septa.  Seal integrity has been shown to be a potential area of concern, 

especially with elevated temperatures (Schumacher et al., 2000; Costanza et al., 2008).  

Diffusion through polymer membranes has been reported (Baker, 2004; Brown, 2006) 

and can be significant for volatile compounds at elevated temperatures.  Sorption has 

been extensively reported, especially to vial walls (Potter et al., 1994; Langenfeld et al., 
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1996; Ackerman et al., 2000; Costanza et al., 2008) and would be a major area for further 

investigation.  Degradation of persistent chlorobenzenes, especially over short term 

experiments, is unlikely.  Potential degradation mechanisms include hydrolysis, 

photolysis, and biodegradation.  Hydrolysis and biodegradation half-life values for 

chlorobenzenes can be found in the literature (Table 1); however, photolysis of 

chlorobenzenes has not been reported. Biodegradation is not considered in the current 

study since MilliQ water was used; additionally, sodium azide was used in MWTP 

samples which would inhibit biodegradation.  Vials were spiked and covered with foil 

during equilibration to inhibit potential photolysis.  The resultant foil-covered vials were 

found to exhibit similar losses to uncovered vials, therefore photolysis was not considered 

a major loss process.  Volatilization could be a potential loss process.  Another set of vials 

were spiked and sealed with a polyfilm layer placed into a 4 °C refrigerator overnight.  

Sampling was still considered at 40 °C; however, the vial was kept covered with polyfilm 

for the equilibration period.  These experiments were unsuccessful in reducing apparent 

losses related to reduction in solute headspace concentrations with time.  Sorption to vial 

walls, septa and stir bars has been previously studied.  To determine sorption, vials were 

processed for experiments as normal (24 h equilibration).  After processing, headspace 

samples were taken using a large-bore syringe and found to have negligible chemical 

content after SPME extraction.  Vials were subsequently opened, 10 mL of hexane was 

added, resealed and shaken for 2 h to extract sorbed and dissolved chemical.  

Approximately 50% of the lost chemical was extracted using this procedure.  However, 

samples left for longer durations declined to negligible concentrations.  Due to the 

persistence of the chlorobenzenes, a major potential chemical sink or escape pathway  
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Table 1:  Percentage of total mass available for SPME extraction after various 
equilibration times versus non-equilibrated samples.  Potential loss process half-lives for 
each chemical taken from Howard et al. (1991).  Sorption partitioning coefficients to stir 
bars, glass walls and septa are unavailable. 
 

 treatment    
 0.01%  10%  half-life, t1/2 

chemical time mass time mass hydrolysis photolysis biodegradation 
 (h) (%) (h) (%) (y)  (h) 
TeCB 0 100 0 100 900 nd 672–4320  
 2 85.4 2 96.8    
 24 51.6 24 64.6    
 48 31.8 48 44.8    
 96 12.3 96 30.4    
PeCB 0 100 0 100 900 nd 4656–8280  
 2 88.6 2 96.3    
 24 52.3 24 64.6    
 48 30.4 48 39.1    
 96 16.8 96 26.1    
HCB 0 100 0 100 nd nd 23256–50136  
 2 90.7 2 97.7    
 24 66.0 24 73.2    
 48 48.6 48 56.1    
 96 40.4 96 46.4    
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may be the vial septa, which would not be easily extracted due to chemical permeation 

through the septa material. 

The potential for sorption to glass walls has been well studied.  With sorption to 

walls, chemical may potentially degrade faster due to hydrolysis (Brown et al., 2005; 

Brown 2006).  Silanization of glass has been used extensively in an attempt to decrease  

binding of HOCs (Potter et al., 1994; Langenfeld et al., 1996; Doong et al., 2000; Brachet 

et al., 2005).  To determine effects of silanization, three silanization solutions were tested 

(see Methods).  Results of silanization headspace masses are presented in Fig. 4 (results 

of pre-silanized vials omitted for clarity due to similar results to Sigmacote).  Both 

silanization methods resulted in a statistically significant increase in adsorption to vial 

walls for both instantaneous and 24 h samples.  Sigmacote sorption was highest for HCB 

and lowest for TeCB for both instantaneous and 24 h samples, with reductions in 

headspace masses extracted ranging from 18 – 67% of control vial experiments (Fig. 4).  

DCMCS sorption was extremely high for all chemicals, ranging from 86.3 – 94.5% of 

control vial experiments.  Reasons for conflicting results of the current study with 

literature values are unknown and need further examination.        

3.3.Effluent samples 

Despite the inability to properly equilibrate MWTP samples for 24 h, samples 

were allowed to equilibrate for 2 min to determine if partitioning processes are occurring 

at relevant quantities for further studies.  Results indicate that rapid sorption to MWTP 

COC and suspended solids occurred in both sample types after this short interval, with 

major decreases in extracted mass in headspace of COC and SS containing vials relative 

to controls (Fig. 5).  SS samples sorption was greater than that of 0.45 µm samples, with  
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Fig. 4:  Mass of chemical extracted via SPME extraction.  Samples include two silanizing 
agents, Sigmacote and DCMCS.  Letters above each individual bar designate statistical 
results for each data series; like symbols indicate results being similar (p>0.05; ANOVA).   
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Fig. 5:  Mass of chemical extracted via SPME for control, 0.45 µm, and suspended solids 
samples.  Shading represents: TeCB – grey; PeCB – dots; HCB – angle.  Letters above 
each individual bar designate statistical results for each data series; like symbols indicate 
results being similar (p>0.05; ANOVA).   
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statistically greater sorption for PeCB and HCB.  Although not statistically significant for 

TeCB, sorption to SS samples was markedly higher (Fig. 5).  Results overall indicate that 

sorption of the chlorobenzenes over short equilibration times is significant but further 

study to deduce equilibration times is needed to establish partition coefficients.  

Unfortunately, significant losses observed during equilibration in long term incubation 

trials can strongly confound KCOC estimates, especially if a system mass balance is not 

completed at the end of the trial.  Given these concerns, HS-SPME is not considered a 

valid method for use in partitioning behaviour experiments in which extensive 

equilibration periods are needed. 

 

4. Conclusions  

Determination of partitioning behaviour of HOCs in MWTPs and other 

environmental matrices is important in analyzing chemical fate.  The ability to measure 

freely-dissolved fractions of ‘dirty’ matrices such as MWTP samples is invaluable to 

research on partitioning behaviour.  Many studies have relied on spiking of HOCs into 

matrices to discern partitioning behaviour.  Due to low solubilities of these HOCs, 

generator column produced freely-dissolved samples do not introduce sufficient solute 

mass to a system and therefore solvents must be used for spiking.  The role of these 

cosolvents has been investigated at higher volume fractions.  However, cosolvent effects 

have historically been considered as negligible at cosolvent spiking concentrations below 

1%.  This study validated use of MeOH volumes of 1% and lower, but significant 

cosolvent effects were noted at 2% and greater MeOH concentrations.  Given that 

cosolvent effects are often solute specific and may also interact with COC, it is suggested 
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that investigation and reporting of cosolvent effects be incorporated as part of the 

experimental design in standard batch study systems.  SPME is a valuable method in 

measuring freely-dissolved concentrations and has increased markedly as a tool in 

experimental sorption studies.  Despite its benefits, chemical loss processes in small 

headspace vials used for this method were significant and could not be elucidated 

following several experimental manipulations.  These chemical losses through time 

would have a confounding effect on the interpretation of sorption kinetics especially 

when chemical measurements are only made in the dissolved phase while the COC or SS 

associated chemical is extrapolated by difference.  Validation of the system specific 

chemical sorption and conduct of mass balance recovery experiments are therefore 

required when performing batch type experiments with headspace vials as examined in 

the present research.   

 

5. References 

Ackerman, A.H., Hurtubise, R.J. (2000) The effects of adsorption of solutes on glassware 
and teflon in the calculation of partition coefficients for solid-phase microextraction with 
1PS paper.  Talanta 52, 853–861. 
 
Artola-Garicano, E., Borkent, I., Hermens, J.L.M., Vaes, W.H.J. (2003) Removal of two 
polycyclic musks in sewage treatment plants: Freely dissolved and total concentrations.  
Environ. Sci. Technol. 37, 3111–3116. 
  
Backhus, D.A., Gshwend, P.M. (1990) Fluorescent polycyclic aromatic hydrocarbons as 
probes for studying the impact of colloids on pollutant transport in groundwater.  
Environ. Sci. Technol. 24, 1214–1223. 
 
Backhus, D.A., Golini, C., Castellanos, E. (2003) Evaluation of fluorescence quenching 
for assessing the importance of interactions between nonpolar organic pollutants and 
dissolved organic matter.  Environ. Sci. Technol. 37, 4717–4723. 
 
Baker, R.W. (2004) Membrane Technology and Applications. 2nd Ed. McGraw Hill, New 
York, NY, p. 42. 



 44 

 
Banerjee, S., Yalkowsky, S.H. (1988) Cosolvent-induced solubilisation of hydrophobic 
compounds into water.  Anal. Chem. 60, 2153–2155. 
 
Bohm, L., During, R.-A. (2010) Partitioning of polycyclic musk compounds in soil and 
aquatic environment–experimental determination of KDOC. J. Soils Sediments 10, 708–
713.  
 
Bouchard, D.C. (1998) Sorption kinetics of PAHs in methanol–water systems. J. Contam. 
Hydrol. 34, 107–120. 
 
Bouchard, D.C. (2003) Cosolvent effects on phenanthrene sorption–desorption on a 
freshwater sediment.  Environ. Toxicol. Chem. 22, 736–740. 
 
Brachet, A., Chaintreau, A. (2005) Determination of air-to-water partition coefficients 
using automated multiple headspace extractions. Anal. Chem. 77, 3045–3052. 
 
Brown, R.A., Fiacco, Jr. R. J., Lewis, R.L., Dablow, J. (2005) Thermally based 
contaminant destruction.  In: The Fourth International Conference on Oxidation and 
Reduction Technologies for In-Situ Treatment of Soil and Groundwater, Chicago, IL, 
October 23–27. 
 
Brown, R.A. (2006) Thermal activation of contaminant degradation. In: Proceedings of 
the Fifth International Conference on Remediation of Chlorinated and Recalcitrant 
Compounds, Monterey, CA, May.  Battelle Press, Columbus, ON. Paper F-01. 
 
Bruheim, I., Liu, X., Pawliszyn, J. (2003) Thin-film microextraction. Anal. Chem. 75, 
1002–1010. 
 
Costanza, J., Pennell, K.D. (2008) Comparison of PCE and TCE disappearance in heated 
volatile organic analysis vials and flame-sealed ampules.  Chemosphere 70, 2060–2067. 
 
de Maagd, P. G.-J., ten Hulscher, D. Th.E.M., van den Heuvel, H. (1998) 
Physicochemical properties of polycyclic aromatic hydrocarbons: Aqueous solubilities, n-
octanol/water partition coefficients, and Henry’s law constants.  Environ. Toxicol. Chem. 
17, 251–257.  
 
Dickhut, R.M., Andren, A.W., Armstrong, D.E. (1989) Naphthalene solubility in selected 
organic solvent/water mixtures.  J. Chem. Eng. Data 34, 438–443. 
 
Dickhut, R.M., Armstrong, D.E., Andren, A.W. (1991) The solubility of hydrophobic 
aromatic chemicals in organic solvent/water mixtures: Evaluation of four mixed solvent 
solubility estimation methods.  Environ. Toxicol. Chem. 10, 881–889. 
 
Doong, R.-A., Chang, S.-M., Sun, Y.-C. (2000) Solid-phase microextraction and 
headspace solid-phase microextraction for the determination of high molecular-weight 



 45 

polycyclic aromatic hydrocarbons in water and soil samples.  J. Chromatogr. Sci. 38, 
528–534. 
 
Endo, S., Grathwohl, P., Haderlein, S.B., Schmidt, T.C. (2008) Compound-specific 
factors influencing sorption nonlinearity in natural organic matter.  Environ. Sci. Technol. 
42, 5897–5903. 
 
Fernández-González, V., Concha-Graña, E., Muniategui-Lorenzo, S., López-Mahía, P., 
Prada-Rodríguez, D. (2007) Solid-phase microextraction–gas chromatographic–tandem 
mass spectrometric analysis of polycyclic aromatic hydrocarbons towards the European 
Union water directive 2006/0129 EC.  J. Chromatogr. A 1176, 48–56. 
 
Friesen, K.J., Sarna, L.P., Webster, G.R.B. (1985) Aqueous solubility of polychlorinated 
dibenzo-p-dioxins determined by high pressure liquid chromatography.  Chemosphere 14, 
1267–1274. 
 
Friesen, K.J., Vilk, J., Muir, D.C.G. (1990) Aqueous solubilities of selected 2,3,7,8-
substituted polychlorinated dibenzofurans (PCDFs). Chemosphere 20, 27–32. 
 
Fu, J.-K., Luthy, R.G. (1986) Effect of organic solvent on sorption of aromatic solutes 
onto soils.  J. Environ. Engg. 112, 346–366. 
 
Gobas, F.A.P.C., Zhang, X. (1994) Interactions of organic chemicals with particulate and 
dissolved organic matter in the aquatic environment. In: Hamelink JL, Landrum PF, 
Bergman HL, Benson WH (eds) Bioavailability: Physical, chemical and biological 
interactions. Lewis, Boca Raton, FL. 
 
He, Y., Wang, Y., Lee, H.K. (2000) Trace analysis of ten chlorinated benzenes in water 
by headspace solid-phase microextraction.  J. Chromatogr. A. 874, 149–154. 
 
Hong, C.-S., Qiao, H. (1995) Generator column determination of aqueous solubilities for 
non-ortho and mono-ortho substituted polychlorinated biphenyls.  Chemosphere 31, 
4549–4557. 
 
Karickhoff, S.W., Morris, K.R., (1985) Sorption dynamics of hydrophobic pollutants in 
sediment suspensions.  Environ. Toxicol. Chem. 4, 469–479. 
 
Kopinke, F.-D., Georgi, A., Mackenzie, K. (2001) Sorption of pyrene to dissolved humic 
substances and related model polymers. 1. Structure–property correlation.  Environ. Sci. 
Technol. 35, 2536–2542. 
 
Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., Michalenko, E.M. Eds. 
(1991) Handbook of Environmental Degradation Rates.  Lewis Publ. Inc., Chelsea, MI. 
 
Kukkonen, J., Oikari, A., Johnsen, S., Gjessing, E. (1989) Effects of humus 
concentrations on benzo(a)pyrene accumulation from water to Daphnia magna: 
Comparison of natural waters and standard preparations. Sci. Total Environ. 79, 197–207. 



 46 

 
Langenfeld, J.J., Hawthorne, S.B., Miller, D.J. (1996) Quantitative analysis of fuel-
related hydrocarbons in surface water and wastewater samples by solid-phase 
microextraction.  Anal. Chem. 68, 144–155. 
 
May, W.E., Wasik, S.P., Freeman, D.H. (1978a) Determination of the aqueous solubility 
of polynuclear aromatic hydrocarbons by a coupled column liquid chromatographic 
technique.  Anal. Chem. 50, 175–179. 
 
May, W.E., Wasik, S.P., Freeman, D.H. (1978b) Determination of the aqueous solubility 
behaviour of some polycyclic aromatic hydrocarbons in water.  Anal. Chem. 50, 997–
1000.  
 
Mei, Y., Wu, F., Wang, L., Bai, Y., Li, W., Liao, H. (2009) Binding characteristics of 
perylene, phenanthrene and anthracene to different DOM fractions from lake water.  J. 
Environ. Sci. 21, 414–423. 
 
Munz, C., Roberts, P.V. (1986) Effects of solute concentration and cosolvents on the 
aqueous activity coefficient of halogenated hydrocarbons.  Environ. Sci. Technol. 20, 
830–836.  
 
Nkedi-Kizza, P., Rao, P.S.C., Hornsby, A.G. (1985) Influence of organic cosolvents on 
sorption of hydrophobic organic chemicals by soils. Environ. Sci. Technol. 19, 975–979. 
 
Nzengung, V.A., Voudrias, E.A., Nkedi-Kizza, P., Wampler, J.M., Weaver, C.E. (1996) 
Organic cosolvent effects on sorption equilibrium of hydrophobic organic chemicals by 
organoclays.  Environ. Sci. Technol. 30, 89–96. 
 
Paschke, A., Popp, P. (2003) Solid-phase microextraction fibre–water distribution 
constants of more hydrophobic organic compounds and their correlations with octanol–
water partition coefficients.  J. Chromatogr. A 999, 35–42.  
 
Pinal, R., Rao, P.S.C., Lee, L.S., Cline, P.V. (1990) Cosolvency of partially miscible 
organic solvents on the solubility of hydrophobic organic chemicals. Environ. Sci. 
Technol. 24, 639–647. 
 
Porschmann, J., Kopinke, F.-D., Pawliszyn, J. (1998) Solid-phase microextraction for 
determining the binding state of organic pollutants in contaminated water rich in humic 
organic matter.  J. Chromatogr. A 816, 159–167. 
 
Potter, D.W., Pawliszyn, J. (1994) Rapid determination of polyaromatic hydrocarbons 
and polychlorinated biphenyls in water using solid-phase microextraction and GC/MS.  
Environ. Sci. Technol. 28, 298–305. 
 
Rao, P.S.C., Lee, L.S., Nkedi-Kizza, P., Yalkowsky, S.H. (1989) Toxic Organic 
Chemicals in Porous Media, p.176. Springer-Verlag, Berlin. 
 



 47 

Resendes, J., Shiu, W.Y., Mackay, D. (1982) Sensing the fugacity of hydrophobic organic 
chemicals in aqueous systems. Environ. Sci. Technol. 26, 2381–2387. 
 
Schumacher, B.A., Minnich, M.M., Zimmerman, J.H., Blasdell, J. (2000) Integrity of 
VOA-Vial seals. EPA/600/R-00/066.  United States Environmental Protection Agency, 
Solid waste and Emergency Response.  Washington, DC. 
 
Smedes, F., Geerstma, R.W., van der Zande, T., Booij, K. (2009) Polymer–water partition 
coefficients of hydrophobic compounds for passive sampling: Application of cosolvent 
models for validation.  Environ. Sci. Technol. 43, 7047–7054. 
 
Ter Laak, T.L., Durjava, M., Stuijs, J., Hermens, J.L.M. (2005) Solid phase dosing and 
sampling technique to determine partition coefficients of hydrophobic chemicals  in 
complex matrixes.  Environ. Sci. Technol. 39, 3736–3742. 
 
Urrestarazu-Ramos, E., Meijer, S.N., Vaes, W.H.J., Verhaar, H.J.M., Hermens, J.L.M. 
(1998) Using solid-phase microextraction to determine partition coefficients to humic 
acids and bioavailable concentrations of hydrophobic chemicals.  Environ. Sci. Technol. 
32, 3430–3435. 
 
Vaes, W.H.J., Urrestarazu-Ramos, E., Verhaar, H.J.M., Hermens, J.L.M. (1996) 
Measurement of the free concentration using solid-phase microextraction: Binding to 
protein.  Anal. Chem. 68, 4463 –4467. 
 
Yalkowsky, S.H., Roseman, T.J. (1981) Solubilization of drugs by cosolvents, in 
Yalkowsky, S.H., Ed., Techniques of Solubilization of Drugs, Marcel Dekker, New York, 
NY, p. 91–134. 

 



48 
 

CHAPTER 3 

 

 

 

 

 

Henry’s law constants and structure-property relationships of chlorobenzenes: 

Evaluation of the role of sorption to glass surfaces using a gas sparging system. 

 

 

 

 

Kerry N. McPhedrana, Rajesh Setha,*, and Ken G. Drouillardb  

 

 

 

 

aDepartment of Civil and Environmental Engineering, University of Windsor, 401 Sunset 

Avenue, Windsor, Ontario, N9B 3P4, Canada 

bGreat Lakes Institute for Environmental Research, University of Windsor, 401 Sunset 

Avenue, Windsor, Ontario, N9B 3P4, Canada 



 
 49 
 

1. Introduction 

Henry’s law constant (HLC) is a parameter used to describe the mass transfer of 

chemical between water and air.  HLC is an important factor used in environmental risk 

assessment and fate and transport models (ten Hulscher et al., 2006).  Additionally, HLC 

may also be used in fugacity models in conjunction with standard partition coefficients to 

calculate the fugacity capacity, reflecting a measure of the media/air partition coefficient 

(Mackay and Paterson, 1981a). Despite the need for an accurate determination of HLC, 

the quality and uncertainty of measured physicochemical data (including HLC) has 

recently been questioned (Goss et al., 2004;  Brachet et al., 2005; Jantunen and Bidleman, 

2006; ten Hulscher et al., 2006; Qian et al., 2011). Although, accurate determination of 

these data are demanding, accurate HLC values are needed to avoid misinterpretation and 

invalid conclusions based upon flawed parameters (Goss et al., 2004). 

HLC may be determined by many experimental and estimation methods.  In the 

absence of measured data, vapour pressure (P) and aqueous solubility (S) may be used to 

estimate HLC (HLC = P/S); this method is simply an estimate and may lead to incorrect 

values (ten Hulscher et al., 1992). Measuring HLC directly by experimental methods is 

considered the most reliable and several methods have been assessed and discussed 

previously (Mackay and Paterson, 1981a; Fendinger and Glotfelty, 1989).  In the current 

study, the gas sparging method is used.  Gas sparging has been used extensively for 

calculation of HLC for sparingly soluble and semivolatile compounds (Oliver 1985; Yin 

and Hassett, 1986; Warner, 1987; Dunnivant et al., 1988; ten Hulscher, 1992; Drouillard 

et al., 1998; Jantunen and Bidleman, 2006; ten Hulscher, 2006).  Determination of HLCs 

for hydrophobic organic compounds (HOCs), such as chlorobenzenes, may be difficult 
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due to low solubilities and low HLCs (ten Hulscher et al., 2006).  Additionally, 

experimental artefacts related to sorption of chemical to sparger glass walls (or any glass 

surfaces) is a known issue for HOCs and may lead to faster degradation (Brachet et al., 

2005; Brown et al., 2005; Brown 2006; ten Hulscher et al., 2006; Qian et al., 2011).  

Given the dynamic experimental system established in the sparger, some of these 

artefacts may be minimized in gas sparging systems as compared to batch systems.  

However, it is important to consider these potential sources of error both during 

experimentation and in subsequent calculations to establish accurate HLCs.      

An environmentally relevant suite of HOCs are the chlorobenzenes, some of 

which are listed as priority pollutants by the US Environmental Protection Agency 

(USEPA).  Chlorobenzenes are a suite of varying physicochemical properties (Table 1).  

Three compounds (1,2,4,5-tetrachlorobenzene – TeCB, pentachlorobenzene – PeCB, 

hexachlorobenzene – HCB) were chosen for the current study.  Each of these 

chlorobenzenes, especially HCB, have numerous literature HLCs available (see Table 2). 

The goal of the current study is to establish HLCs for the three chlorobenzenes using the 

gas sparging technique considering the potential of adsorption to glass surfaces.  Given 

the wide range of literature HLCs, determination of accurate HLCs are valuable in future 

use of gas sparging in the determination of partitioning behaviour with organic matter 

such as samples derived from MWTP or natural sources are to be considered in 

subsequent studies.   A secondary goal of this study is the determination of potential HLC 

correlation to various structural property relationships.       
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Table 1: Physicochemical properties of the chemicals at 25 °C 
 
 
 

 
 

aSuntio et al., 1988; bSurface area (SM) in angstroms: Sabljic, A. 1987;  cReferences found 
within Suntio et al. 1988 
 
  

 

 

 

 

 

 

 

      log Kow 
chemical MW CAS# Vp(Pa)a solub.(g m-3)a SM

b selected a rangec 
TeCB 215.9 95-94-3   9.86     1.27 175.2 4.5 4.46 – 5.05 
PeCB 250.3 608-93-5   0.88    0.65 192.3 5 4.88 – 5.79 
HCB 284.8 118-74-1   0.245    0.005 209.4 5.5 4.13 – 6.53 
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2. Theory 

Gas spargers are spiked with HOCs and allowed to reach equilibrium with sparger 

surfaces overnight.  Nitrogen gas is bubbled through the column height, allowing 

equilibrium between gas and water to occur.  HLC can be determined via (Drouillard et 

al., 1998): 

 

 (1) 

 

where V is the sparged water volume (L), R is the gas constant, T is temperature (K), F is 

the gas flow rate (L h-1), and kv is the first-order volatilization rate constant (h-1).  The 

volatilization rate constant (kv) can be found via (Dunnivant et al., 1988): 

 

            (2) 

 

where mw(o) is the initial mass in the sparger and mair is the mass captured at the sparger 

outlet.  A plot of ln(mw(o) – mair) versus t allows the kv term to be found via the slope.  

Two assumptions must be valid for these equations to hold: (1) the sparged gas 

must reach equilibrium with the water; (2) kv must be constant (linear) over the sparging 

duration (HLC is constant at a specified temperature). 

tkmm vairow  )ln( )(

F

VRT
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3. Materials and Methods 

3.1.Chemicals and reagents 

1,2,4,5-tetrachlorobenzene (98% pure), pentachlorobenzene (98% pure), 

hexachlorobenzene (99% pure), 1,3,5-tribromobenzene (TBB; 98% pure) and Amberlite 

XAD2 (20-60 mesh) were purchased from Sigma-Aldrich (Canada).    Stock solutions of 

10 mg L-1 TBB (internal standard) and a mixture TeCB, PeCB and HCB (30, 10, and 10 

mg L-1, respectively) were prepared in hexane and methanol, respectively, and stored at 4 

°C.   

3.2.XAD2 resin trap preparation and extraction 

XAD2 resins were cleaned prior to use using a flow-through column and distilled 

water, methanol, and hexane (ca. 20 times bed volume each at 1 mL min-1) successively.  

XAD2 resins were dried using a nitrogen stream following cleaning.  Resin traps 

consisted of pasteur pipettes (7 mm ID)  packed with ca. 3 cm of dried XAD2 and the 

adsorbent was contained using glass wool plugs at each end (see inset Fig. 1).  Teflon 

tubing was heated and pressure fit onto the pipette on each end.  A luer fitting was added 

to the downstream end of the pipette for connection of an electronic flow gauge during 

experimentation and a vacuum manifold for extractions.  XAD2 resin traps were stored at 

4°C and reused for each experiment once verified clean via hexane extraction and gas-

chromatography (see below).  XAD2 resin traps were spiked with TBB prior to 

experimental use as an internal standard to verify extraction efficiency.  Following  
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sampling, each sampler was extracted using three 10 mL aliquots of hexane at ca. 0.5-1 

mL min-1.  The first two aliquots were brought to 20 mL using hexane and placed into 30 

mL storage vials without further processing and stored at 4°C prior to analysis by GC-

ECD.  The third aliquot was used only for verification of full extraction and XAD2 resin 

cleaning via GC-ECD. 

3.3.Multi-sparger system 

A multi-sparger system (max. 6 simultaneous) was used for all experiments (Fig. 

1).  The apparatus consists of a high-purity nitrogen gas stream pre-wetted via a pre-

sparger delivered to a 6-port manifold (individually valved).  Each port delivers ca. 50 

mL min-1 nitrogen to a 1 L sparger (measured using an electronic flow controller).  

Spargers were kept at 25 °C (± 0.5 °C) via a circulating water bath. 

Duplicate or triplicate 1 L samples of MilliQ water were spiked with 50 µL of the 

chlorobenzene mixture (30, 10, and 10 ng µL-1 of TeCB, PeCB, and HCB, respectively), 

mixed via hand-shaking and allowed to equilibrate ca. 18–24 h in the water bath prior to 

commencing experiments.   Prior to initializing experiments, XAD2 resin traps were 

spiked with the TBB internal standard and placed at the outlet of each sparger.  Flow rates 

were corrected to 45 – 55 mL min-1 after changing each adsorbent (1 h intervals to 12 h, 4 

h intervals to 24 h, and 12 h intervals to 48 h) to allow for variability in flow 

characteristics given the shared manifold.  The overall sampling duration was reduced 

after initial experiments indicated a non-linear volatilization rate (see Results and 

Discussion) to 12 h with increased sampling accordingly (0.5 h intervals to 6 h, 1 h 

intervals to 12 h).  XAD2 resin traps were removed and replaced at the above sampling  
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Fig. 1:  Purging and XAD2 apparatus.  Valved manifold attaches to up to 6 individual 
spargers that allow simultaneous replicates of control and treatment solutions. 
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intervals.  Following removal, the resin trap was capped using polyfilm and placed in 

sealed bags at 4 °C until extracted as described above.  

3.4.Analytical methods 

Analysis of all samples was carried out on a Varian 3600 GC equipped with 

split/splitless injector, a 30 m X 0.32 mm fused silica DB-5 column with a 0.25 µm film 

thickness (J&W Scientific) and an ECD detector.  The injector was maintained at 250 °C 

with a flow rate of 2 mL min-1 He.  A 1 µL injection was made into a 253 µm liner and 

the column was held at 140 °C for 2 min.  Subsequently, the column was raised to 192 °C 

at 6.5 °C min-1 ramp.  The makeup flow rate was 29 mL min-1 N2 and detector 

temperature at 250 °C.  The limit of detection (LOD) is defined as the minimum amount 

of analyte which produces a peak with a signal-to-nose ratio equal to 3.   A PeCB 

standard was injected prior to and post all experimental runs as quality control and 

expected to fall within a standard deviation of standard curve values. TBB standard 

recovery was 100 ± 6% over all sparger experiments. 

 

4. Results and Discussion 

4.1.Theory validation 

The first assumption of the gas sparging technique is the sparging gas must reach 

equilibrium with the water phase.  The column height equilibration assumption has been 

extensively studied (Mackay et al., 1979; Matter-Mueller et al., 1981; Yin and Hassett, 

1986; Dunnivant et al., 1988; ten Hulscher et al., 1992; Drouillard et al., 1998).  For the 

current chlorobenzenes, a 40 cm column was determined to be adequate for equilibrium 
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(ten Hulscher et al., 1992); therefore, the current 60 cm water column height is considered 

acceptable for equilibrium and compares well with a recent 62 cm water column used by 

Jantunen and Bidleman (2006).   

The second assumption of a constant kv was investigated via plotting of eq. 2 and 

examining for breakpoints in the slope over time (Fig. 2).  As is clearly apparent by Fig. 

2, the volatilization rate exhibits three distinct regions, invalidating the assumption of a 

constant kv during the sparging duration.  Analysis of covariance (ANCOVA) was used to 

determine if the slopes differed between the three regions.  This analysis was possible 

because of the robustness of the experimental sampling procedure including numerous 

replications (15 total spargers) and extensive data points available to discern key slope 

changes.  The initial and transition zone regression line slopes did not differ statistically 

(p>0.05; ANCOVA).  However, the third zone slope was statistically different than both 

the initial slope and transition slopes (p<0.05; ANCOVA).  This statistical difference 

occurred for each chemical over each sparging experiment (typical experiment shown in 

Figs. 2 and 3).  Therefore, given kv is statistically different in the third slope region, use 

of the entire sparging data set would lead to a biased low HLC determination.   Further, 

using the initial kv to determine mair using eq. 2, the expected cumulative mass was 

calculated over time and plotted along side of the realized cumulative mass versus time 

curve (Fig 3a-c). The actual mass purged begins to deviate from the expected curve at ca. 

6 h and results in substantially less mass sparged material than theoretically expected 

based on the measured initial volatilization rate.   
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Fig. 2:  Least squares linear regression of the natural logarithm of initial (spiked) minus 
measured cumulative mass (trapped) over time.  Slope of initial regression line (see text 
for further detail) is the first-order volatilization rate constant (kv).  (a) TeCB; (b) PeCB; 
(c) HCB. 
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Fig. 3:  Typical gas sparging cumulative mass sparged over 48 h for a single experiment 
including three spargers.  Theoretical mass sparged (dotted lines) found using eq. 2 and 
the volatilization rate found in Fig. 2.  (a) TeCB; (b) PeCB; (c) HCB. 
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Both the statistical analysis and graphical examination of data indicate that the 

second assumption of the gas sparger technique was invalidated over longer sparging 

trials. This deviation is explained by considering that during equilibration chemical 

partitioned to sparger glass surfaces and the release of this material from glass surfaces 

occurs at a slower rate than volatilization of freely dissolved chemical.  Sorption to 

sparger or vessel surfaces has been observed for many HOCs (Brachet et al., 2005; ten 

Hulscher et al., 2006; Qian et al., 2011).  Unfortunately, despite observing this sorption 

behaviour, many authors used these materials without correction, leading to potentially 

erroneous published HLCs among other physicochemical parameters (Brachet et al., 

2005, Qian et al., 2011).          

Despite sorption to sparger walls, HLC can be determined using the initial phase 

of the sparging where release from bound sources would be minimal.  The kv rate is 

anticipated to be dependent on the freely-dissolved chemical during initial sparging until 

freely dissolved chemical becomes depleted.  In the present set of experiments, depletion 

of freely dissolved chemical occurred as quickly as 6 h following sparging even though 

this fraction only contributed between 30-50% of the total chemical added to the system. 

4.2.Henry’s law constants 

Calculated HLCs are shown in Table 2 along with reference value ranges found in 

the literature.  HLCs of all three chlorobenzenes were similar, ranging from 29.9–56.5 Pa 

m3 mol-1.  In comparison to literature values, TeCB in the current study (56.5 Pa m3 mol-

1) falls in the middle of reference ranges for all isomers reported elsewhere.  The 

reference range for the isomers was quite large, spanning an order of magnitude (Table 

2).  PeCB of the current study was approximately two times lower than measured 
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literature values and the Final Adjusted Value (FAV) of 72 Pa m3 mol-1 calculated by an 

internally consistent set of physical-chemical property data (Shen and Wania, 2005).  

Numerous HCB HLCs have been reported in the literature using various measurement 

techniques (Table 2).  The current HCB value of 29.9 Pa m3 mol-1 agrees well with three 

other gas sparging-type results (35 Pa m3 mol-1, Jantunen and Bidleman, 2006; 41 Pa m3 

mol-1, ten Hulscher et al., 1992; 49 Pa m3 mol-1, Oliver et al., 1985), a wetted wall column 

(24 Pa m3 mol-1, Altschuh et al., 1999), and a closed system (26 Pa m3 mol-1, Hansen et 

al., 1993).  Despite being similar to many studies, the current result is much lower than 

two other gas sparging-type results (130 Pa m3 mol-1, Atlas et al, 1982; 170 Pa m3 mol-1, 

Warner et al., 1987) and the FAV (65 Pa m3 mol-1, Shen and Wania, 2005). 

 Calculation of HLCs is of utmost importance to their subsequent use in the 

determination of partitioning behaviours and environmental fates.  Inaccurate 

determination of HLC may lead to erroneous determination of potential transfer of 

chemicals throughout various environments (including MWTPs) and lead to inaccuracies 

in the prediction of compound fates.  Gas sparging has been used, since first introduced 

by Leroi et al., (1977), to measure HLCs of numerous chemicals, including many 

chlorobenzenes (ten Hulscher et al., 1992).  Recently, the gas sparging technique has been 

criticized due to the potential for compounds to adsorb to gas bubbles and release to the 

gas phase when bursting (Shunthirasingham et al., 2007).  This phenomenon is not 

accounted for in the gas sparging theory and has lead to potentially high biased results.  

Given the size of the current compounds’ size, it was suggested that adsorption may not 

be a concern since it occurs more readily for larger compounds.  Additionally, the current 

results fall within or are slightly lower than published results, thus conflicting with the 
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Table 2:  Summary of Henry's law constants calculated using initial slope method from 
gas sparging results and comparison literature values. 
 
 
 
 

 
no. of spargers 

H (Pa m3 mol-1) 
chemical avg. range SE reference range 

TeCB 15 56.5 37.9 – 82.7 3.0 12 – 110a,b,c,d 
PeCB 15 33.3 16.9 – 56.5 3.1 59 – 85a,c,d,e 
HCB 15 29.9 16.4 – 51.4 2.8 35 – 170a,c,d,e, f,g,h,i,j 

 
aWeast, 1972; bMackay et al., 1981b; cOliver, 1985; dten Hulscher et al., 1992; eShen et 
al., 2005; fWarner et al., 1987; gAtlas et al., 1982; hJantunen et al., 2006; iHansen et al., 
1993; jAltschuh et al., 1999.  
Note: TeCB values include all isomers. 
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high biased consideration.   Extrapolation of the current methodology to other compounds 

should take potential adsorption to bubbles into consideration. 

4.3.Structure-property relationships 

A plot of log HLC versus chlorine number is shown in Fig. 4.  Literature values 

from ten Hulscher et al. (1992) and Oliver (1985) are included for comparison to the 

current study.  Log HLC markedly decreases with increasing chlorine number for all 

studies.  Despite the strong relationship between HLCs and chlorine number, there is 

variability among isomers of constant chlorine number; a similar trend has been found for 

PCBs and has been explained by substitution patterns of the chlorine atoms (Burkhard et 

al., 1985; Dunnivant et al., 1988; Brunner et al., 1990).  Correlations between log HLC 

and chlorine number (#Cl), total molecular surface area (TSA), and molecular weight 

(MW) all exhibit similar trends due to the inherent correlation between each of these 

values.  Predictive equations using the entire data set can be derived for each parameter. 

log HLC = 1.5523 – 0.1659(#Cl)  R2 = 0.65      (3) 

log HLC = 3.0549 – 0.0141(TSA)  R2 = 0.65      (4) 

log HLC = 1.8208 – 0.0044(MW)  R2 = 0.66      (5) 

Linear relationships for the entire data set improve markedly when the average 

isomer log HLC values are used; as well, improvements occur when each study is 

addressed independently.  Interestingly, when studies are separated trend lines are parallel 

to each other (and have R2 ≥ 0.80); this indicates that the trends are similar but are reliant 

upon the variability of study-dependent measured HLCs.  As a caveat to using calculated 

values, H values determined from vapour pressure and solubility in Weast (1972) do not  

 



 
 64 
 

 

 

 

 

 

lo
g 

H
 (P

a*
m

3 *
m

ol
-1

)

3                       4                       5             6

# of Cl atoms

2.5

2

1.5

1

0.5

0 

 
 
Fig. 4:  Dependence of log H values on the number of chlorines (chlorobenzenes).  
Current study data represented by box and whisker plots.  (+)  ten Hulscher et al. (1992); 
(X) Oliver et al. (1985).   
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follow any of the relationships developed herein with log HLCs of 1.09, 0.93, and 1.14 

for TeCB, PeCB, and HCB, respectively. 

 

5. Conclusions 

Recently adsorption of analytes onto sampling vessels has become a consideration 

in calculation of HLC and has subsequently led to questioning of the validity of published 

data for nonpolar compounds which have not considered adsorption potential (Brachet et 

al., 2005).  Further, Jantunen and Bidleman (2006) expressed the need for validation of 

differences in measurement techniques and methodologies which may be responsible for 

observed variations in values and large uncertainty.  Current research, including this 

study, has aimed to broaden the understanding of adsorption in experimental vessels 

(Qian et al., 2011).  This study demonstrated that adsorption of chlorobenzenes to 

glassware surfaces of the sparger caused a significant reduction in the freely dissolved 

chemical concentration, with depletion of the freely dissolved fraction occurring after 

approximately 6 h of sparging.  Following this depletion, apparent kv values decreased in 

two subsequent stages until glass/water desorption became the rate limiting step for 

chemical release from the sparger.  These artefacts are best evaluated through use of high 

resolution sampling during the sparger experiment and by verifying mass balance of 

cumulative mass of chemical released.  Unfortunately, many previous gas sparging-type 

studies were unable to assess these artefacts due to poor sampling resolution and/or 

minimal sparging duration to verify mass balance (ten Hulscher et al., 1992; Drouillard et 

al., 1998; Brachet et al., 2005; Jantunen and Bidleman, 2006).  Without critical 

consideration of these parameters the validity of HLCs for these studies may contain 
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technique biases related to glassware sorptive artefacts leading to biased HLCs under the 

experimental conditions of study.  Considering the robust replication of the current study, 

the HLCs determined from the present research were considered accurate and are to be 

further used to facilitate understanding of chemical partitioning in dissolved organic 

matter from MWTP matrices in subsequent research.   
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1. Introduction 

The movement of chemicals through a municipal wastewater treatment plant 

(MWTP), both during treatment and into final effluents and sludges, is important in 

transport of these chemicals of concern (CHC) into receiving environments.  An 

important aspect of this transport process is partitioning of these CHCs to various size 

fractions of organic matter. Of current interest are the smallest fractions, colloidal organic 

matter represented by colloidal organic carbon (COC), which appear in all MWTP flows 

and have not been widely researched.   CHCs partitioned to colloids can have several 

implications for the MWTP process including increased mass transfer from the primary to 

secondary stage and reduced accessibility of CHCs to loss processes including 

volatilization and degradation pathways.  Partitioning to colloids in the treated effluent 

exiting the secondary biological stage could further increase the mass of CHCs surviving 

the treatment process and entering receiving water bodies.  This is of concern both for the 

aquatic environment and human exposure via drinking water.  

Very limited studies have attempted to study the ability of CHCs to partition to 

COC within a MWTP.  Also, the distinction between various organic fractions including 

suspended, colloidal, and truly-dissolved (COC unable to bind specific CHCs) phases has 

been inconsistent.  Literature values for the lower cut-off of suspended solids or 

particulate organic carbon filters range from 0.45 – 1.5 µm (Tchobanoglous et al., 1991; 

Vaillant et al., 1999; Holbrook et al., 2004; Shon et al., 2006), while the upper cut-off size 

defining the truly-dissolved phase has been suggested to be 500 – 1000 Da (Backhus et 

al., 1990; Gustafsson et al., 2001; Backhus et al., 2003; Holbrook et al., 2004).  All size 

fractions have historically been based on filter availability rather than actual COC 
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characteristics.  Truly-dissolved OC cannot be strictly determined via filter size since it is 

reliant on both chemical size and physiochemical properties.   

Wastewater treatment efficiency has traditionally been defined via nonspecific 

factors such as reduction of biochemical oxygen demand (BOD) and suspended solids 

(SS) (Levine et al., 1985).  These simple parameters are inadequate to discern treatability 

of all the potential constituents found in wastewater (Fig. 1) and CHCs that can include 

endocrine disrupting chemicals, pharmaceuticals, personal care products, and other 

historic CHCs (Shon et al., 2006).  Treatability of wastewater is strongly dependent on 

size distributions of organic matter (OM), thus, characterization of OM size distributions 

is needed for both understanding of processes and in selection of potential treatment 

techniques (Levine et al., 1985).  OM characterization can be accomplished via various 

techniques (discussed below) and can also be useful for understanding the effect of and 

correlation with the partitioning behaviour of CHCs to the various COC fractions.  These 

correlations can further be considered in the understanding of MWTP chemical fate and 

transport where potential environmental loadings can be determined and possible need for 

mitigation investigated. 

Historically, OM size characterization has been accomplished using numerous 

methods (Fig. 1).  Focusing on the ability to investigate the smallest fractions, four 

techniques are available including flow field flow fractionation, gel filtration 

chromatography, high pressure liquid chromatography, and filtration.  Filtration 

(separated into typical membrane and ultrafiltration) is a valuable technique since it is the 

only method in which the sample can be fractionated without sacrificing, allowing further 

classification of size fractions and determination of partitioning behavior variation  
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between fractions. Ultrafiltration in the laboratory may be accomplished via traditional 

stirred-cells and the more recently developed membrane capsules based on cross-flow 

technique. Unfortunately direct comparison of the two techniques is lacking in the 

literature making direct comparisons of filtered size fractions potentially erroneous (Becht 

et al., 2008).  However cross-flow filtration capsules have much larger filter surface area 

which increases filtration capacity which is needed to generate the wastewater volume 

required for partitioning experiments.  Additionally, cross-flow filtration is a better 

representation of membrane systems used at commercial and industrial scales.    

A few characterization methods have been used previously for correlation of CHC 

binding to natural organic matter (Gauthier et al., 1987; Backhus et al., 1990; Chin et al., 

1992; Gustafsson et al., 1997; Chin et al., 1997; Laor et al., 2002).  Common 

characterization techniques include XAD fractionation, elemental analysis, and UV 

absorbance.  More recently, some studies have attempted to extend these correlations to 

MWTP COCs (Perminova et al., 1999; Vaillant et al., 1999; Holbrook et al., 2004; Ilani 

et al., 2005; Borisover et al., 2006; Worms et al., 2010; Navalon et al., 2011).  The value 

of XAD fractionation has recently been questioned due to inconsistencies in methods and 

results indicating lack of true separation of fractions (Labanowski et al., 2011; Navalon et 

al. 2011).  Elemental analysis has been used previously to correlate molecular ratios to 

binding efficiency, however, has shown to have poor correlation in comparison to other 

available methods (Perminova et al., 1999).  UV absorbance is an indicator of aromaticity 

which has been shown to correlate well with partitioning of various CHCs (Gauthier et 

al., 1987; Gustafsson et al., 1997; Perminova et al., 1999; Holbrook et al., 2004).   
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Nuclear magnetic resonance (NMR) was recently identified as an ‘emerging 

detection technique’ for environmental analysis by Koester et al. (2003).  Despite some 

criticism of the technique as inaccessible to researchers (Gustafsson et al., 2001; 

Holbrook et al., 2004), advances in sensitivity of instruments has made the technique 

viable (Koester et al., 2003) and it has been investigated over the past decade for 

environmental analysis (Koester et al., 2005).  Proton NMR or 1H NMR is a common 

application of the NMR technique which uses hydrogen nuclei to determine molecular 

structure. 

 1H NMR has been sparsely used for MWTP samples and results have exhibited 

high variability (Fujita et al., 1996; Navalon et al., 2011).  Aldrich humic acid (AHA) 1H 

NMR has been used historically for comparison to colloidal organic matter and serves as 

a good indicator of proper NMR experimental robustness.  Results of AHA 1H NMR 

spectra for two studies show that overall the spectra exhibit similar trends including 

significant peaks in the 0–3 ppm range, no peaks after 9 ppm, and a residual water peak at 

4.7 ppm.  However, the results exhibit that despite improvements in NMR sensitivity the 

spectral resolution is poor and the sample preparation and results interpretation are 

questionable.  Although peaks are found in the 0–3 ppm and 6–9 ppm ranges, they are 

inconsistent even within a single study (Hinedi et al., 1997).  Additionally, the water peak 

is poorly suppressed in both studies.  Actual MWTP sample 1H NMR results were 

recently shown by Navalon et al. (2011) for DAX8 and XAD4 fractionated samples (Fig. 

3).  However, Navalon et al. (2011) question the validity of the fractionation method used 

due to the larger overlap of spectra exhibited by fractions that are assumed to be mutually 

exclusive.   These various issues may in part explain its  
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Fig. 2: 1H NMR spectra of AHA.  (A) passing 0.45 µm filter various sample from Kang et 
al. (2002); (B)  molecular weight fractionated sample after 0.45 µm filter from Hinedi et 
al. (1997).  (a) 1000 amu, (b) 8000 amu, (c) unfractionated.   
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Fig. 3: 1H NMR spectra of wastewater effluents separated using DAX8 and XAD4 
fractions taken from Navalon et al. (2011). 
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limited application in wastewater analysis and exhibit the need for more robust NMR 

experiments.   

The objectives of this study were (1) to develop a repeatable and robust size 

fractionation technique for MWTP primary effluents; (2) develop a 1H NMR sample 

preparation method to simplify sample work-up, increase sensitivity, and reduce duration 

of instrumental usage; (3) further characterization of size fractionated OM using UV 

absorbance and developed technique for 1H NMR analysis; (4) to increase the 

understanding of OM distribution and characteristics and the potential partitioning of 

CHCs to various size fractions.  The fraction passing a 1.5 µm filter was considered to 

include the colloidal organic matter examined in the current study.  This is due to the use 

of this filter size in MWTP standard methods as the delineation between suspended and 

dissolved solids.  Aldrich humic acid (AHA) samples are used for comparison since they 

are widely used as a standard reference for colloidal organic matter.  Comparison of AHA 

to NOM, including MWTP OM is discussed to determine the efficacy of using AHA as a 

surrogate for MWTP OM.  

2. Methods 

2.1.Wastewater sampling 

Samples were taken from Little River Pollution Control Plant (LRPCP) in 

Windsor, Ontario, Canada.  The plant serves the eastern portion of the City of Windsor 

and the surrounding municipalities of Tecumseh, St. Clair Beach and Sandwich South, 

and has two parallel and similar activated sludge-type secondary wastewater treatment 

systems with a combined design capacity of 60 000 m3 d-1.  Approximately 10 L grab 
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samples were collected at the primary sedimentation tank using a 25 L pre-cleaned 

container during 2009 – 2011 under normal dry weather conditions.  Samples were 

transported to the laboratory within one hour of collection and treated with ca. 100 mg L-1 

sodium azide to inhibit microbial degradation.   

2.2.Humic acid solution preparation 

An ca. 2 g L-1  concentration of humic acid sodium salt (Sigma Aldrich) was 

dissolved in MilliQ water, stirred using a Teflon stir bar for 1 h and filtered using a 1.5 

µm glass fibre filter (Whatman 934AH).  A stock buffer solution was prepared by 

dissolving 3.4 g of KH2PO4 and 3.5 g of K2HPO4 in 1 L of MilliQ water.  The humic acid 

solution was buffered to a pH of 6.7 and 100 mg of sodium azide was added to prevent 

potential degradation.   

2.3.Filtration 

Samples were filtered through a series of gravimetric filters in the following order: 

1.5 µm glass fiber filters (Whatman 934AH); 1.1 µm glass fiber filters (VWR Grade 

693); 0.45 µm cellulose nitrate filters (Whatman Type WCN); 0.22 µm cellulose nitrate 

filters (Fisher Scientific).  All filters were conditioned with distilled water (ca. 50 mL) 

and filtrate from the previous filter (ca. 50 mL) prior to sample collection.  The 0.22 µm 

sample (ca. 3 L) was further fractionated using Minimate 1 kDa, 30 kDa, and 100 kDa 

tangential flow filtration capsules (Pall Life Sciences) described in Section 2.4.  

2.4.Cross-flow ultrafiltration (CFUF) system 

The CFUF system consisted of parallel flow streams to Minimate tangential flow 

filtration (TFF) capsules (1, 30, and 100 kDa; Pall Scientific) with Omega ultrafiltration 
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membranes which are low protein-binding, modified polyethersulfone membrane 

(effective surface area 50 cm2) contained in a polypropylene outer housing and a 

Masterflex L/S peristaltic pump (Cole Parmer).  The pump, pressure gauges (feed and 

retentate ports), and individual filters were connected with 3.2 mm ID silicone tubing.  

Sampling mode (retentate returned to feed flasks) was used to process the samples under 

the following conditions:  feed inlet pressure 100–140 kPa, retentate outlet pressure < 70 

kPa psi, retentate flow rate 30 – 40 mL min-1, and permeate flow rate variable according 

to filter pore size.  Each TFF capsule was cleaned prior to and after experimental use with 

200 mL 0.1 N NaOH in recirculation mode for 2 h.  After cleaning, the filter was 

conditioned using 200 mL MilliQ water through both retentate and filtrate ports.  50 mL 

of sample filtrate was rejected prior to collection.  Cleaned capsules were tested for 

performance degradation using the normalized water permeability (NWP) section of the 

included manual.  Filters used passed the NWP test on each sampling occasion allowing 

for continued reuse.       

To determine filter membrane performance, a mass balance was performed on 

each TFF membrane prior and post use (blank analysis).  Each filter processed 150 mL of 

0.22 µm filtrate, with 100 mL passing the filter (filtrate) and 50 mL in the feed (retentate).  

COC measurements were taken for each flow and a mass balance performed to determine 

recovery.    

2.5.  Organic carbon measurement 

Aliquots of each filter fraction were quantified for total carbon (TC) and total 

inorganic carbon (TIC) using a Shimadzu TOC-5000 Analyzer (Shimadzu Scientific 

Instruments).  Each sample was run five times and the arithmetic average was taken for 
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further calculations.  Total organic carbon (TOC) was found using the following 

equation: TOC = TC – TIC.  TOC is equivalent to the COC parameter. 

2.6.UV absorbance measurement and molar extinction coefficient 

Aliquots of each filter fraction were quantified for UV absorbance at 280 nm 

using a Varian Cary 50 UV-vis spectrophotometer (Agilent Inc.).  Three measurements 

were taken for each aliquot and the arithmetic mean was used for further calculations.  

Molar extinction coefficients (e280) for each size fraction were calculated by dividing the 

absorbance by the COC concentration. 

2.7.1H NMR sample preparation and measurement 

All NMR methods may be used to quantify dilute samples using multiple 

sampling scans; however, using multiple scans is time consuming leading to increased 

cost for instrument usage (or fewer sample experiments). To shorten 1H NMR 

experimental duration to less than one hour, fractions were concentrated prior to 

preparation for NMR experiments.  Aliquots of 50 mL for each size fraction were placed 

in 100 mL crucibles and evaporated in an 80 °C oven.  Samples were mixed regularly to 

reduce solids drying onto crucible walls.  Deuterated water (1 mL) and 1 mg mL-1 sodium 

2,2-dimethylsilapentane-5-sulphonate (DMSO; 1 mL) were added to a 10 mL volumetric 

flask.  Once the sample evaporated to ca. 5 mL it was transferred to the volumetric flask 

and distilled water used to rinse the crucible and create a 10 mL final solution for NMR 

analysis using a Bruker DRX500 NMR spectrometer (Bruker Inc.).  Preliminary 

experiments to determine concentration technique efficiency included 1.5 µm samples in 

unconcentrated, 10X concentrated, and 20X concentrated treatments.  Further 
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experiments included 0.22 µm, and ultrafiltration samples (1, 30, and 100 kDa) 

concentrated 10X based on preliminary experiment results exhibited settling of COCs in 

20X concentrated treatments. 

 

3. Results and Discussion 

3.1.Cross-flow ultrafiltration (CFUF) 

Results from the overall mass balances are shown in Table 1.   Recoveries 

decreased (88.3% > 85.1% > 77.8%) according to membrane sizes (100 kDa > 30 kDa > 

1 kDa).  Losses in the current study are reasonable as compared to Wilding et al. (2004) 

for validation experiments using molecular probes (79–103%), as well as similar to a 

reverse osmosis fractionation mass balance of 75% by Ma et al. (2001).  Evaluation of the 

operational efficiency of cross-flow ultrafiltration using methods such as molecular 

probes has been well documented in the literature (Gustafsson et al., 1996; Larsson et al., 

2002; Wilding et al., 2004; Dalwadi et al., 2005; Kottelat et al., 2008; Schwalger et al., 

2009).  Given the variety of CFUF systems and applications, it is suggested that the 

performance of the system be evaluated prior to use for molecular weight cut-off, mass 

balances, and membrane cleaning efficiency when reused (Buessler et al., 1996; Wilding 

et al., 2004).  The current molecular weight cut-offs of the TFF membranes were 

considered accurate given previous verification experimental results of the current 

membranes (Dalwadi et al., 2005; Schwalger et al., 2009) and similar membranes 

(Gustafsson et al., 1996; Larsson et al., 2002; Wilding et al., 2004; Liu et al., 2005; 

Kottelat et al., 2008); however, it should be noted that similar 1 kDa membranes have 
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shown to have a cut-off closer to 2 kDa (Larsson et al., 2002; Wilding et al., 2004).   The 

current membranes were assessed for COC mass balance and membrane cleaning 

efficiency only.  All membranes had minimal COC concentration post-cleaning in all 

experiments (MilliQ blanks < 0.5 mg L-1).   

3.2.COC fractionation 

For clarity, filter sizes are all converted from kDa to µm (using the equation from 

Shon et al., 2006) for ease of graphing and comparison to other studies (Figs. 4 and 5).  

Overall, COC sample fractions showed reasonable consistency over the study duration, 

therefore, it appears that MWTP COC sizes are seasonally stable given the limited 

sampling regime (Table 2).  COC concentrations progressively decreased with each size 

fraction, starting from 49.7 mg L-1 for the 1.5 µm fraction to 33.1 mg L-1 for the 0.0005 

µm fraction.  For comparison, raw measured literature values for various MWTP flows 

are presented in Fig. 5 using both COC (mg L-1) and equivalent COD (mg L-1) 

measurements. (using COD = 3*COC, Mara and Horan, 2003).   Sophonsiri et al. (2004) 

also measured a primary effluent, with results similar to the current study in both 

distribution and magnitude (Fig. 4).  Holbrook et al. (2004) measured the mixed-liquor 

suspended solids, with results varying from the current study in both distribution (in the 

lowest size fractions) and magnitude.  The lower magnitude is expected considering the 

sample is equivalent to final effluents, which would have a lower COC content.   
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Table 1:  Mass balance analysis of CFUF membranes. 
 

 
 
 
 
 
 
 
 
 
 

 
 
*recovery (%)
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  membrane (kDa) 
flow units 1 30 100 
input conc (mg L-1) 48.3 48.3 48.3 

 mass (mg) 7.3 7.3 7.3 
filtrate conc (mg L-1) 32.6 37.5 40.1 

 mass (mg) 3.3 3.8 4.0 
retentate conc (mg L-1) 47.6 40.6 40.1 

 mass (mg) 2.4 2.4 2.4 
% recovery* 77.8% 85.1% 88.3% 
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Table 2: Summary of size conversions and COC and AHA size fractions.  COC size 
fractions represent multiple samples with standard error.  AHA size fractions represent 
stock solution. 
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msize   (Shon et al., 2006) 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

filter size 
(passing) 

size (µm)* 
(passing) 

COC (mg L-1) AHA (mg L-1) 
avg  (SE) avg  

1.5 µm 1.5 49.7 (3.6) 49.7 
1.1 µm 1.1 47.1 (4.4) 47.0 

0.45 µm 0.45 44.8 (4.3) 44.0 
0.22 µm 0.22 41.9 (4.1) 43.4 
100 kDa 0.01 39.3 (3.2) 20.9 
30 kDa 0.0015 36.7 (0.8) 5.5 
1 kDa 0.0005 33.1 (1.0) 2.3 



 
 85 
 

Fi
g.

 4
: M

as
s 

fra
ct

io
ns

 o
f f

ra
ct

io
na

te
d 

sa
m

pl
e:

 (
i) 

C
ur

re
nt

 st
ud

y 
–

pr
im

ar
y 

ef
flu

en
t; 

(ii
) 

H
ol

br
oo

k 
–

M
LS

S;
 (i

ii)
 S

op
ho

ns
iri

–
pr

im
ar

y 
ef

flu
en

t; 
(iv

) V
ai

lla
nt

–
in

flu
en

t. 
 

a 1
.2

 µ
m

 fi
lte

r; 
b 0

.1
 µ

m
 u

pp
er

 li
m

it;
 c 0

.0
01

1 
µm

 fi
lte

r.

 



 
 86 
 

However, Holbrook et al. (2004) used stirred-cell filtration, which may lead to poor 

passing of smaller size fractions (Dalwadi et al., 2005).  Therefore the results for their 

lowest size fractions were grouped for the current comparison (see discussion below; Fig. 

5).  The final comparison is Valliant et al. (1999) influents, which have a greater 

representation of the larger fraction.  AHA concentrations exhibited a less progressive 

decrease, with 58% of the mass concentrated in the > 0.22 µm size fraction and only 12% 

of the mass in the < 0.0015 µm size fraction.  Kang et al. (2002) found a similar 

distribution for AHA samples with 7% of mass found in the < 0.001 µm size fraction.  

Clearly the size distribution of AHA is markedly different than the current MWTP 

primary effluents.    

 Comparison between studies is difficult considering the vast differences in filter 

sizes used amongst researchers (Fig. 4).  To mitigate these differences and allow a better 

comparison, percent passing was considered for the fractionated sizes (Fig. 5).  The 

additional benefit of percent passing is that COD measurements conversion is 

unnecessary.  Although used regularly for sieve series of larger particles, to our 

knowledge this method has not been used for ultrafiltration/filtration analysis.  As shown 

in the first three Figures 5a-c, the regression lines are remarkably close in both slope and 

intercept.  Using the regression line equations, the 0.0005 µm fractions are 67.7%, 69.3%, 

and 66.4% for the current study, Sophonsiri et al. (2004), and Holbrook et al. (2004), 

respectively.  Using an analysis of covariance (ANCOVA), these slopes are found to be 

statistically similar (p > 0.05; ANCOVA).  These excellent similarities exhibit the 

consistency in size distributions between MWTP system COC fractions both in primary 

effluents and MLSS (essentially final effluents), with the only differences occurring in 
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magnitude, as would be expected after the aeration process.  Compared to the current 

study Figures 5d-f are statistically different (d: p < 0.05; e: p < 0.10; f: p < 0.10; 

ANCOVA).    

Aldrich humic acids have been used historically as a surrogate humic acid for 

comparison with NOM and COC (Fig. 5). The linear regression results in only 9.9% in 

the lowest size fraction; this result confirms that AHA should only be used for method 

comparison and does not correlate well with MWTP COC.  The influent sample E 

(Vaillant et al., 1999) linear regression results in 2.8% in the lowest fraction (Fig. 5).  As 

mentioned previously, much of the larger size fraction may be lost in the primary 

sedimentation, thus making direct comparison to the current study erroneous.  The final 

sample of secondary influents linear regression results in 28.9% in the lowest fraction 

(Fig. 5f).  However, filters used by Manka et al. (1982) for this fraction differed from 

more current studies and have not been thoroughly evaluated via molecular probes.   

The 0.0005 µm fraction is of most interest currently, since this it has been used most 

often as the truly-dissolved cut-off in the literature (Backhus et al., 1990; Gustafsson et 

al., 2001; Backhus et al., 2003; Holbrook et al., 2004) as well as being the smallest pore 

size cross-flow ultrafiltration capsule currently available. The fraction passing 0.0005 µm 

in the three studies of interest (Fig. 5a-c) are close to 70%, making this lowest size 

fraction the dominant proportion of the colloidal phase in municipal wastewaters.  Given 

this dominance, and a recent study exhibiting potential sorption capacity of this fraction 

(see Chapter 6), this fraction must be considered for further investigation. 
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3.3.UV absorbance and molar extinction coefficient 

Molar extinction coefficients (e280) for COC and AHA are shown in Fig. 6.  The 

linear regression between e280 and logarithmic fraction size exhibits excellent linearity (R2 

= 0.977) for COC, while no correlation between e280 and AHA was found.  The e280 

coefficients are within literature ranges for freshwater, marine, and MWTP studies (Chin 

et al., 1994; Gustafsson et al., 2001; Holbrook et al. 2004).  Correlations between UV 

absorbance and partitioning of HOCs have been shown in many environments (Gauthier 

et al., 1987; Chin et al., 1997; Perminova et al., 1999; Gustafsson et al., 2001; Holbrook 

et al., 2004).  The e280 is considered a descriptor of sample aromaticity, which has been 

positively correlated to sorption.  Holbrook et al. (2004) used a similar fractionation 

method as the current study and also measured e280 values.  However, unlike the current 

study, their e280 values showed no linearity.  Alternatively, Chin et al. (1994) found a 

direct correlation between aromaticity and molecular weight for humic acids and Imai et 

al., (2002) found a correlation between molecular weight and UV absorbance for effluent 

samples using UV absorbance at 260 nm.  Differences between AHA and COC are shown 

by the lack of correlation between AHA e280 and size fractions (Fig. 6) reiterating the 

inaccuracy of using AHA as a surrogate to COCs in experimental study.  
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3.4.1H NMR – Method validation 

Unconcentrated (Fig. 7A) and resuspended (Fig. 7C) COC spectra indicate similar 

overall peaks.  Dried and reconstituted NMR spectra peaks became very broad and less 

precise (Fig.7C).  The broad peaks lead to poorer resolution and inability to integrate 

individual peaks, thus allow the researcher to only report segment information which has 

limited use in further understanding of partitioning behaviour (Table 3).  Using the 

current method of analysis, unconcentrated samples (Fig. 7A) may be used directly for 

NMR analysis thus limiting sample work up and potential changes to the sample matrix 

caused by completely drying the sample.  However, for greater sensitivity NMR 

experiments must be run for a longer duration for unconcentrated samples. 

Unconcentrated spectra (Fig. 7A) correspond well with the concentrated spectra 

(Fig. 7B) and provide similar resolution as indicated by comparison to the DMS peak at 0 

which is equivalent for each spectrum.  Using the current method concentration of actual 

OM MWTP samples up to 10X was considered for further investigation.  Samples 

concentrated further lead to settling of OM due to solubility limitations in water.  The 

validity of the concentration was verified by comparison of 1H NMR spectra for 

unconcentrated, 10X concentrated, and resuspended experiments exhibiting the same 

individual peaks and similar relative percentages in each segment (Fig. 7; Table 3).  With 

concentrated samples the sensitivity of NMR experiments is increased allowing for 

shorter duration NMR experiments.   
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A

B

C

 
 

Fig. 7: 1H NMR spectra of effluent samples. (A) unconcentrated; (B) 10X concentrated; 
(C) dried sample.  Standard DMS peak at 0 ppm may be used to scale spectra for 
quantitative analysis (included in Table 3) and water peak shown at 4.7 ppm.    
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The current method of sample preparation and liquid-state 1H NMR has not been 

previously used, however serves as a valuable evolution for sample processing and 

provides two separate benefits.  The first benefit is the ability to use unconcentrated 

samples directly without sample work-up.  The second benefit is the ability to concentrate 

samples without affecting the sample integrity. 

3.5.1H NMR fractions - COC 

A representative 1H NMR series of spectra for various fractionated OM are shown 

in Fig. 8.  As indicated, seven individual peaks were determined with area counts relative 

to the DMS standard at 0 ppm.  The spectra in the 4.7 ppm section exhibit no peaks due to 

water suppression in the processing of the experiment.  However, peaks in this section 

were not shown in the dried spectra which exhibit minimal water peaks due to 

resuspension in methanol (Fig. 7C) and would not be expected in the concentrated 

spectra.  Of the seven peaks, three areas remain constant throughout the size fractions 

(0.7, 1.8, 2.9 ppm).  The remaining peaks all exhibit decreasing area trends with 

decreasing size fractions (0.9, 1.0, 2.0, 2.2 ppm).  Due to the overlapping nature of the 

size fractions it would be expected that some peaks would remain constant (indicating 

peaks of smaller size OM not filtered out) and others would decrease (indicating OM 

filtered out).  Given the ability to define individual peaks and exhibit changes in OM 

spectra with filter sizes the potential to attribute potential partitioning behaviour based on 

specific OM characteristics can be realized.  

Proportion of peak signals found within each chemical shift region is shown in 

Table 4.  Assignments for each region are aliphatic (0.5–1.9 ppm), neighbour to 
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A

B

C

D

 
Fig. 8: 1H NMR spectra of  various size fractions including:  (A) 0.22 µm; (B) 0.01 µm; 
(C) 0.0015µ m; (D) 0.0005µ m.  Peak at 0 ppm represents DMS standard with each 
sample peak area relative to standard area.  Water suppression used at 4.7 ppm. 
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unsaturated groups (1.9–3.1 ppm), O–CH (3.1–4.6), O–CH–O (4.6–6.0 ppm), and 

aromatics (6.0–9.0 ppm)   (Thorn, 1994; Santos et al., 2009; Navalon et al., 2011).  The 

majority of the current signal is found within the first two segments (0.5–1.9 ppm and 

1.9–3.1 ppm), with marginal quantities in the final segment (6.0–9.0 ppm).   The 0.5–1.9 

ppm segment has been identified as fatty acids, lipids or related compounds (Navalon et 

al. 2011).  Although compounds in this region are expected (Fig. 1), the large proportion 

in this region (ranging from 23.3 – 46.0 %) is higher than a reported value of ca. 10% for 

fats and oils (Shon et al., 2006).  The 1.9–3.1 ppm segment has been identified as 

proteins, peptides or amino acids (Navalon et al., 2011).  The range of values for this 

region (54.0 – 75.2 %) are marginally higher than a reported value of ca. 50% for proteins 

(Shon et al., 2006), and are once again expected in wastewater (Fig. 1).  The 6.0–9.0 ppm 

segment has been identified as aromatic compounds (Navalon et al., 2011) which have 

been reported as indicative of sorption behaviour (Perminova et al., 1999; Gustafsson et 

al., 2001; Holbrook et al., 2004), however they represent only a small fraction of the 

current wastewater composition (0 – 1.5 %).  The middle segments contain 3.3 – 3.9 ppm 

which is identified as the mono- and polysaccharides region (Navalon et al., 2011).  The 

absence of carbohydrates in the sample is unexpected since they are reported to represent 

ca. 40% of wastewater composition (Shon et al., 2006).  Given the lack of signal in this 

region over three distinct sampling periods, the reason for absence of carbohydrates from 

this MWTP is unknown.   

3.6.1H NMR fractions - AHA 

1H NMR spectra for AHA from the current study is shown in Fig. 9(A) in 

comparison to two previous studies (Fig. 9B,C).  Overall the spectra of all three studies  
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A

B

C

 
Fig. 9: 1H NMR spectra of AHA.  (A) current study passing 1.5 µm filter; (B) passing 
0.45 µm filter various sample from Kang et al. (2002); (C)  molecular weight fractionated 
sample after 0.45 µm filter from Hinedi et al. (1997).  (a) 1000 amu, (b) 8000 amu, (c) 
unfractionated.    
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exhibit similar trends including the majority of significant peaks in the 0–3 ppm range, a 

broad peak in the 6–9 ppm range, and no peaks after 9 ppm.  However, the spectra from 

Kang et al. (Fig. 9B) does not allow for much interpretation of peaks due to their broad 

nature and a large water peak (4.7 ppm) that has not been well processed.  The spectra 

from Hinedi et al. (Fig. 9C) have better resolution but appear to be inconsistent in peak 

area and locations of a fractionated sample.  For example, the 1000 amu spectrum is 

missing the 8.2 ppm peak and has gained a 7.2 ppm peak while the 0–2 ppm region peaks 

lack continuity between overlapping samples.  The proportion of peak areas found within 

each chemical shift region for the current AHA sample is shown in Table 3. The majority 

of the current signal is found within the first two segments (0.5–1.9 ppm and 1.9–3.1 

ppm).   The 0.5–1.9 ppm segment has been identified as fatty acids, lipids or related 

compound and 1.9–3.1 ppm segment has been identified as proteins, peptides or amino 

acids (Navalon et al., 2011).  The lack of peaks in the aromatic region was not expected 

(6.0 – 9.0 ppm) given that previous research has shown AHA to have a high aromatic 

content (Hinedi et al., 1997; Perminova et al., 1999; Kang et al., 2002).  However, the 

current AHA spectrum does exhibit a broad peak in this region that may be attributed to a 

variety of aromatic compounds rather than individual compounds. 

Aldrich humic acid (Fig. 9A) and COC (Fig. 7) spectra in the current study are 

quite similar overall with most of the peak area in the < 4.0 ppm region.  Despite the 

similarities, the AHA spectrum only exhibited three major peaks as opposed to seven for 

COC samples.  Additionally the AHA spectrum had very few smaller peaks compared 

with the COC samples indicating a much more homogeneous group of compounds.  This 

result would be expected considering the diverse nature of COCs from a MWTP that is 
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unprocessed versus the standard processed AHA sample.  With further development of 

the NMR techniques identification of specific compounds will be invaluable in further 

comparisons and characterization.  

 

4. Environmental Significance 

Characterization of MWTP COC is important for the understanding of 

environmental loadings of both COC and HOCs, both bound and unbound, to the 

receiving waters.  The size fractionation technique, using membrane and ultrafiltration, 

presented here is robust and repeatable and could be considered as a standard method for 

size fractionation.  By considering a standard method in size characterization, researchers 

may more easily make comparisons between studies.  Size distributions are the first step 

in characterization, followed by various other techniques that serve to define the COC 

content.  UV absorbance is a simple and valuable technique, when coupled with COC 

concentrations, has shown to be useful in the correlation of HOC binding to COC.  NMR 

techniques are a more direct measure of actual COC constituents rather than a surrogate 

measure.  Given the simplicity of sample creation in the current study, any researcher 

without onsite access to NMR instruments can have the sample analysed by an NMR 

facility for a very low cost (a single sample run is 1 h for 1H NMR).  Further investigation 

of NMR results is needed for greater understanding of the technique for use in HOC – 

COC correlation through the MWTP process. 
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1. Introduction 

Trace organic pollutants in wastewater have recently become a concern 

considering the potential for human health risks.  Movement of pollutants both bound to 

organic matter (OM) and freely-dissolved, throughout the municipal wastewater treatment 

plant (MWTP) process is not well understood and must be further studied.  Hydrophobic 

organic compounds (HOCs) sorption to colloids has been well studied in natural 

environments (Backhus et al., 1990; Chin et al., 1992; Gustafsson et al., 1997; Chin et al., 

1997; Laor et al., 2002); however, few studies have investigated sorption to colloids from 

MWTP (Holbrook et al., 2004).  Generally, aquatic colloids are defined to comprise the 

size fraction from 1 nm – 1 µm (Gustafsson et al., 1997) and MWTP colloids are 

commonly denoted as the fraction below 0.45 µm (Shon et al., 2006) (Fig. 1).  The 

current study considers the defined colloidal range as the fraction below 1.5 µm which is 

the historic size fraction used for delineating colloidal and suspended solids in the MWTP 

process. 

MWTP OM contains many constituents (Fig. 1) originating from drinking water, 

domestic use, water and wastewater treatment disinfection and soluble microbial products 

from biological treatment processes (Shon et al., 2006).  Any of these constituents may 

have the ability to bind chemical pollutants throughout the treatment process.  A more 

thorough evaluation of HOC – colloid sorption is especially needed for primary 

sedimentation effluents since colloid-associated compounds may not be removed via 

degradation pathways, volatilization, and/or sedimentation during secondary treatment, 

thereby potentially be released to natural systems via effluents into receiving water bodies 

and irrigation of agricultural lands (Holbrook et al., 2004). 
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The term KCOC (unitless) is used to define the equilibrium partitioning relationship 

for a given HOC between the aqueous phase and colloidal organic carbon (COC; organic 

matter normalized by its carbon content).  Determination of KCOC is important in 

identification of the distribution of compounds within MWTPs and in environmental 

compartments beyond.  Methodologies for measurement of  KCOC have been reviewed by 

Mott (2002) including gas-aqueous partitioning, dialysis, reverse-phase liquid 

chromatography, liquid-solid partitioning, fluorescence quenching, apparent solubility 

enhancement and solid-phase microextraction (not included in Mott 2002).  Each of these 

methodologies have benefits and detriments, however, the current study uses the gas-

aqueous partitioning approach in the determination of partitioning behaviour.   

In conjunction with the KCOC parameter, other partitioning rates may be 

determined including the dissociation of chemical from COC-bound to aqueous phase 

(k12) and the sorption from aqueous phase to bound phase (k21).  These rates have been 

determined for many other environmental compartments (Canton et al., 1977; Hiraizumi 

et al., 1979; Wu et al., 1986; Herman et al., 1991; Rutherford et al., 1992; Koelmans et 

al., 1993; Lee et al., 2002; Birdwell et al., 2007), but are lacking for MWTP research.   

In this study, the sorption of three chlorobenzenes (1,2,4,5-tetrachlorobenzene, 

pentachlorobenzene, and hexachlorobenzene) to two organic matter sources (MWTP 

derived COC and Aldrich humic acids – AHA) is investigated.  The chlorobenzenes are 

persistent organic pollutants that have been used in various industrial and agricultural 

processes and serve as a good model of partitioning given their similar structure, but 

varying hydrophobicity (as determined by octanol-water partitioning coefficient).  Gas 

sparging has been previously used to determine gas-sparging specific Henry’s law 
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constants (Chapter 3) which will be used to determine KCOC in the current study,  The 

objectives of this study are (1) to quantify KCOC for the MWTP primary tank effluent; (2) 

to quantify KCOC of AHA for comparison to historic values and methodology 

confirmation; (3) to determine rate constants of partitioning for both effluents and AHA; 

and (4) to determine the potential interactions between the mix of chlorobenzenes with 

COC. 

 

2. Theory 

Historically, the binding of hydrophobic compounds to organic matter was 

considered linear over a wide concentration range (Carter and Suffet, 1982).  Although 

research has questioned the validity of this assumption (Laor et al., 2002), over a smaller 

concentration range the linearity may be considered valid and can be described by: 

          aq

coc
coc C

C
K 

     (1) 

where Ccoc is the bound concentration (ng m-3) and Caq is ‘freely dissolved’ (ng m-

3).  Similarly, the air/water partition coefficient (KAW; unitless) is defined as: 

     aq

g
AW C

C
K 

      (2) 

where Cg is the vapour phase concentration (ng m-3).    At equilibrium, with 

assumption of first-order kinetics a three phase (vapour, water, COC) closed system can 

be described by: 

g

k

k

aq

k

k

coc CCC
w

v







21

12

    (3) 
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where k12 (desorption), k21 (sorption), kv (volatilization), and kw (deposition) are 

first-order rate constants (d-1) describing mass transfer of chemical between 

environmental media.   

In the open environment of a gas-sparging system containing COC, water and 

vapour phase, an irreversible loss of compound in the system via gas stripping and 

volatilization will occur negating the k21 and kw mass transfer rates from eq 3.                              

Assuming the sparger has been optimized to create the condition of equilibrium between 

Caq and Cg based on bubble/water contact time and further assuming that k12 << kv,  

(Hassett and Milicic, 1985; Drouillard et al., 1998) the following expressions follow: 

From  eq 1 and eq 2:  

12

21

k
kKcoc =

     (4) 

And the total concentration (CT) and rate expressions follow: 

aqcocT CCC +=     (5) 

     
cocaq

coc CkCk
dt

dC
1221 −=

   (6) 

aqvcoc
aq CkkCk

dt
dC

)( 2112 +−=
    (7) 

     
aqv

T Ck
dt

dC
−=

     (8) 

     
aqv

g Ck
dt

dC
=

     (9) 

Hassett and Milicic (1985) state the following assumptions binding these 

equations: (i) the bound compound is non-volatile and (ii) COC does not affect kv.  Given 
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these assumptions, the equations are solved by Hassett and Milicic (1985) using three 

special cases and a general case.  The following cases are adaptations of the ‘Initial 

Slope’ variant used to determine Henry’s law constant and kv and the ‘Steady-State’ 

solution used for k12 and k 21.     

2.1.Initial slope solution 

Allowing the purge vessel to equilibrate before sparging (t = 0) and assuming kv 

>> k12, the following results from solving the initial conditions of eq 2 and 5 combined 

with eq 8: 

coc

Tcoctk

coc

T
T K

CKe
K

CC v

+
+

+
= −

11



    (10) 

In a COC-free vessel, Kcoc = 0, negating the second term.  The resultant equation 

can be plotted as Ct vs. 
tkve−
 yielding the Henry’s law constant volatilization rate, or first-

order rate constant kv, which can be used to determine the Henry’s law constant (H) via 

(Drouillard et al., 1998): 

F
VRTkH v=

     (11) 

where V is the sparged water volume (L), R is the gas constant, T is temperature 

(K), and F is the gas flow rate (L h-1).  After determination of kv, Kcoc may be determined 

for a purge vessel containing COC using the ratio of the intercept to slope of the plot of 

CT vs. 
tkve−
. 

And correcting for COC concentration: 

[ ])/( LmgCOC
KK coc

COC =
    (12) 



 
 112 
 

The initial slope method is valid during the early portion of gas sparging when CT 

contains Caq at concentrations in equilibrium or approaching equilibrium with sorbed 

phases.  However, as Caq becomes depleted due to volatilization, the bound fraction 

becomes released from sorbed phases causing the slope of the line to decrease as the rate 

of sorbed-phase dissociation increases.  Use of this region in the initial slope region will 

result in erroneous partitioning parameter calculations and the slope transition between 

the initial phase and released bound phase must be identified by careful evaluation of the 

curve. 

2.2.Steady state solution 

Under the condition where k12 <<< kv and when Caq effectively becomes 

exhausted following initial gas stripping, the rate limiting step to volatilization becomes 

controlled by k12.   Although the theory recognizes COC as a single phase, it should be 

recognized that k12 and k21 may be multi-phase in nature owing to different size fractions 

and COC compositions within the sparger matrix as well as sorptive associations of the 

chemical with sparger walls as was demonstrated in COC-free experiments that yield 

non-linear behaviour (see Chapter 3).  The latter artefacts would be minimized when 

desorption rates from HOC are slower than desorption from glass walls.  Again, careful 

evaluation of the sparger curve is necessary to deduce transition points from mass flux 

being controlled by volatilization against desorption rate controlled processes. 

When the mass flux of chemical loss to stripping equals k12, 0=dtdCaq .  

Therefore, using eq 5, 7, and 8 results in: 


T

v

v
T Ct

kkk
kkC lnln

2112

12 +
++

=
    (13) 
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 A plot of ln Ct vs. t, the slope of the linear portion is a function of kv, k12, and k21.  

Given kv and KCOC have been determined previously via the Initial Slope Solution, k12 and 

k21 can be obtained in conjunction with the slope and eq. 4.   

 

3. Materials and Methods 

3.1. Chemicals and reagents 

1,2,4,5-tetrachlorobenzene (TeCB; 98% pure), pentachlorobenzene (PeCB; 98% 

pure), hexachlorobenzene (HCB; 99% pure), sodium azide (NaN3: 98% pure), 1,3,5-

tribromobenzene (TBB; 98% pure) and Amberlite XAD2 (20-60 mesh) were purchased 

from Sigma-Aldrich (Canada).    Stock solutions of 10 mg L-1 TBB (internal standard) 

and a mixture TeCB, PeCB and HCB (30, 10, and 10 mg L-1, respectively) were prepared 

in hexane and methanol, respectively, and stored at 4 °C.  Physicochemical data for the 

three chlorobenzenes is included in Table 1. 

3.2.Wastewater sampling 

Samples were taken from Little River Pollution Control Plant (LRPCP) in 

Windsor, Ontario, Canada.  The plant serves the eastern portion of the City of Windsor 

and the surrounding municipalities of Tecumseh, St. Clair Beach and Sandwich South, 

and has two parallel and similar activated sludge-type secondary wastewater treatment 

systems with a combined design capacity of 60 000 m3 d-1.  Five sets of samples were 

collected on separate days under normal dry weather conditions, spaced over 2010.  On 

each sampling occasion, grab samples (ca. 10 L) were collected at the primary 

sedimentation tank using a 25 L pre-cleaned container.  Samples were transported to the  
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Table 1: Physicochemical properties of the chemicals at 25 °C. 
 

 

 

 

 

 

 

 

aChapter 3, bSuntio et al., 1988; cReferences found within Suntio et al. 
 

 

 

 

 

 

 

 

 

 

 

 

  
H (Pa m3 

mol-1)a 

  log Kow 

chemical MW 
vp 
(Pa)b 

solub.     
(g m-3)b 

selected 

b rangec 
TeCB 215.9 56.5   9.86     1.27 4.5 4.46 – 5.05 
PeCB 250.3 33.3   0.88    0.65 5 4.88 – 5.79 
HCB 284.8 29.9   0.245    0.005 5.5 4.13 – 6.53 
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laboratory within one hour of collection and treated with ca. 100 mg L-1 sodium azide to 

inhibit microbial degradation.  Samples were filtered through 1.5 µm precombusted glass 

fibre filters (Whatman 934AH).  Aliquots of the filtrate were used for further size 

fractionation and various other analysis including total and volatile suspended solids (TSS 

and VSS, respectively) as per “Standard Methods” (APHA, 1998).   

3.3.Humic acid solution preparation 

Humic acid sodium salt (Sigma Aldrich) (ca. 2 g L-1) was dissolved in MilliQ 

water, stirred using a Teflon stir bar for 1 h and filtered using a 1.5 µm glass fibre filter 

(Whatman 934AH).  A stock buffer solution was prepared by dissolving 3.4 g of KH2PO4 

and 3.5 g of K2HPO4 in 1 L of MilliQ water.  The humic acid solution was buffered to a 

pH of 6.7 and 100 mg of sodium azide was added to prevent degradation.  The final COC 

solution was 198.6 mg L-1 as determined by a Shimadzu TOC-5000 analyzer.  The 

solution was diluted using MilliQ to approximate primary effluent COC concentrations 

for use in experiments.      

3.4.Multi-sparger system 

A multi-sparger system design and method was used for all experiments as 

described previously in Chapter 3.  Duplicate or triplicate 1 L samples of three treatments 

included: MilliQ water, 1.5 µm effluent sample, and humic acids.  Samples were spiked 

with 100 µL of the chlorobenzene mixture (600, 200, 200 pg µL-1 of TeCB, PeCB, and 

HCB, respectively), mixed through shaking, sealed with polyfilm, and allowed to 

equilibrate ca. 18-24 h in a water bath prior to commencing experiments.  XAD2 resin 
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traps were spiked with TBB prior to experimental use as an internal standard to verify 

extraction efficiency.    For further methods please refer to Chapters 3 and 4. 

3.5.Analytical methods 

Analysis of all samples was carried out on a Varian 3600 GC equipped with 

split/splitless injector, a 30 m X 0.32 mm fused silica DB-5 column with a 0.25 µm film 

thickness (J&W Scientific) and an ECD detector.  The injector was maintained at 250 °C 

with a flow rate of 2 mL min-1 He.  A 1 µL injection was made into a 253 µm liner and 

the column was held at 140 °C for 2 min.  Subsequently, the column was raised to 192 °C 

at 6.5 °C min-1 ramp.  The makeup flow rate was 29 mL min-1 N2 and detector 

temperature at 250 °C.  The limit of detection (LOD) is defined as the minimum amount 

of analyte which produces a peak with a signal-to-nose ratio equal to 3.   A PeCB 

standard was injected prior to and post all experimental runs as quality control and 

expected to fall within a standard deviation of standard curve values.  XAD2 resin traps 

spiked with TBB prior to experimental use as internal standards had recoveries from 94 – 

106%.   

 

4. Results and Discussion 

4.1.Aldrich humic acid partitioning 

Table 2 shows results of AHA sparging experiments.  TeCB logKAHA average 

(4.10) and range (3.92 – 4.31) are higher than logKCOC values of the current study (Table 

3), but are similar to the 1,2,3,5-tetraCB isomer.  PeCB logKAHA average (4.57) and range 

(4.40 – 4.79) are higher than the current study logKCOC values (Table 3), but are within 
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the range of literature values (Table 2).  HCB logKCOC average (4.70) and range (4.51 – 

4.91) are markedly higher than logKCOC values within this study (Table 3), however, are 

similar to literature values (Table 2).  AHAs have been used extensively in the literature 

as a ‘surrogate’ of naturally occurring organics in the environment, since it is 

commercially available and pre-processed.  AHAs are interesting to use as a validation of 

experimental methods, as well as for a consistent source for comparison to various other 

organics in the MWTP process.  Use of commercial humic acids as representative of 

NOM has been criticized and any correlation to actual MWTP COC should be closely 

evaluated (Perdue et al., 1982; Malcolm et al., 1986; Raber et al., 1998; Niederer et al., 

2007). 

4.2.Theoretical validation 

The two assumptions made by Hassett and Milicic (1985) for the gas sparging 

technique must be validated prior to generating experimental data.  The first assumption 

is the sparging gas must reach equilibrium with the water phase before exiting the water 

column.  This column height equilibration assumption has been studied extensively 

(Mackay et al., 1979; Matter-Mueller et al., 1981; Yin and Hassett, 1986; Dunnivant et 

al., 1988; ten Hulscher et al., 1992; Drouillard et al., 1998).  For the chlorobenzenes in the 

current study, a 40 cm water column was previously determined to allow for equilibrium 

(ten Hulscher et al., 1992); therefore, the current 60 cm water column height is considered 

acceptable for equilibrium and compares well with a recent 62 cm water column used by 

Jantunen and Bidleman (2006) for a similar study.   

Prior to testing the second assumption, a representative set of depletion curves 

using a single TeCB experimental set of control and treatment spargers was plotted (Fig. 
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Table 2:  Summary of KCOC values for Aldrich humic acid sample calculated using initial 
slope method from gas sparging results and comparison literature values. 
 
 
  logKCOC 
chemical no. of spargers avg. range SE reference range 
TeCB 4 4.10 3.92 – 4.31 0.06 4.15 – 4.21a

PeCB 4 4.57 4.40 – 4.79 0.05 4.50 – 5.13a,b 
HCB 4 4.70 4.51 – 4.91 0.07      4.91 – 5.43a,b,c,d,e

 
aResendes et al., 1992; bUrrestarazu Ramos et al., 1998; cEnfield et al., 1989; dFreidig et 
al., 1998; eYabuta et al., 2004 
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2). All experiments and chemicals exhibited similar trends.  As found previously in 

Chapter 3, the control spargers exhibited three distinct regions, an initial slope phase (< 6 

h), transitional phase (6 ~ 12 h), and steady-state phase (> 12 h) (Fig. 2).  Treatment 

spargers also showed a similar trend, albeit with lower overall cumulative masses 

indicative of chemical being sorbed onto organic matter in the current study.  Given the 

similarity with the previous study (Chapter 3) where the volatilization rate was found not 

to be constant, it is expected that the current rate will also be variable.  To test the 

assumption of a constant kv a plot of the natural logarithm form of eq 11 for control 

spargers without COC was made (Fig. 3).  As is clearly indicated by Fig. 3, the 

volatilization rate exhibits three distinct regions, invalidating the second assumption of a 

constant kv.  Analysis of covariance (ANCOVA) was used to determine if the slopes 

differed between the three regions.  Despite graphical differences in the plots and marked 

differences in slopes and intercepts, especially between initial and steady-state phases, no 

statistical differences between slopes were found (p > 0.05).  Unfortunately, the strength 

of the statistical analysis was low due to only three points being available for analysis in 

the current study.  Previously, the Chapter 3 study was shown to be able to discern 

statistical differences due to the extensive set of data points available.  Of note for the 

current study, if the regression lines for the steady-state region are used to determine a 48 

h data point, the ANCOVA results in statistically different initial and steady-state regions. 

Despite a lack of statistical corroboration, it is apparent that the second 

assumption of constant kv is invalid over long sparging durations.  This result has been 

previously attributed to partitioning to glass surfaces within the sparger.  Despite the lack  
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of constant kv throughout sparging, the method of using the initial slope phase to 

determine partitioning parameters is valid considering kv is constant in this region and is 

much greater than the desorption rate k12.   

4.3.Primary effluent partitioning – Initial slope method 

A representative Ct vs. 
tkve−
graph for TeCB is shown in Fig. 4, which was used to 

determine KCOC using eq 11 via the slope and intercept.  Henry’s law values derived from 

kv for spargers were determined previously (Table 1), 12 XAD2 samples were used over a 

6 h interval to determine partitioning behaviour, resulting in excellent linearity over the 

initial slope range for all experiments (10 total spargers over 5 experiments).  Values for 

calculated logKCOC and reference logKoc ranges (for various organics) are shown in Table 

2.  Overall reproducibility was very good for each compound (TeCB, PeCB, and HCB) in 

the current study. 

TeCB logKCOC average (3.86) and range (3.66 – 3.98) both are within reference 

ranges for soils (2.79 – 4.5) and sediments (3.36 – 5.10), as well as being very similar to a 

suspended particulates measurement (3.94) (Table 3).  The current isomer AHA logKoc 

values are unavailable, however, in comparison with reported 1,2,3,5-tetraCB values 

(Resendes et al., 1992) the current logKCOC average and range both fall below literature 

AHA logKoc values.  PeCB logKCOC average (3.89) and range (3.65 – 4.13) are in 

reasonable agreement with soil logKoc range (3.81 – 4.49).  Reference logKoc ranges for 

sediments, suspended particulates, and AHA are all markedly higher than the current 

study’s average and ranges (Table 3).  HCB logKCOC average (3.19) and range (3.00 – 

3.43) fall within the wide logKoc of soil references (2.56 – 6.00).  Reference logKoc ranges  
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Given the availability of well documented partitioning to organics in natural 

environments (Table 3) and the lack of partitioning research in MWTPs, the current 

compounds’ logKCOC may only be compared in a relative nature.  Additionally, given the 

vast differences in organic sources, reference ranges of logKoc values are quite large even 

within each category presented (Table 3), as well as in natural water systems for other 

hydrophobic compounds (Gustafsson et al., 2001).  Gustafsson and Gschwend (1997) 

have found that partitioning of pyrene to the colloidal fraction of seawater is lower than 

that of literature values for sediments and soils.  These differences may be attributed to 

variability in size, aromaticity, and polarity (Gustafsson et al., 2001).  Translating these 

differences into the current MWTP COC, it would be expected that logKCOC values would 

be lower than logKoc of soils and sediments.    

Based on logKow values of 4.5, 5, 5.5 for TeCB, PeCB, and HCB (Table 1), it 

would be expected that logKCOC values would increase with higher hydrophobicity, thus 

TeCB < PeCB < HCB.  However, the current logKCOC values do not follow the expected 

pattern, with TeCB ~ PeCB > HCB.  HOC sorption mechanisms to COC may include 

molecular interactions including van der Waals dispersive, dipole-induced-dipole, dipole-

dipole, and hydrogen bonding (Schwarzenbach et al., 2003).   These sorption mechanisms 

may result in adsorption (surface phenomenon) or absorption (hydrophobic exclusion 

from water) partitioning behaviour.  Given the behaviour of chlorobenzenes reported in 

the literature (Table 3) (adhering to hydrophobicity partitioning expectations), 

mechanisms by which the current unexpected sorption to COC occur must be determined.   

Given the close similarity between the current chlorobenzenes, only vary by 

degree of chlorination, differences in partitioning due to electronegativity are unlikely.  
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Additionally, due to the rigid structure of a single benzene ring, changes in structural 

formation leading to varying partitioning are unlikely to occur.  Structural conformations 

have shown to be important in the partitioning behaviour of PCBs (Kukkonen et al., 

1990), with numerous isomers exhibiting varying degrees of partitioning.   

Potential variables that may affect partitioning behaviour may include molecular 

mass, compound competition, and COC characteristics.  Molecular masses of the 

chlorobenzenes are 216 Da (TeCB), 250 Da (PeCB) and 285 Da (HCB).  For partitioning 

to occur, the COC must be at least of similar mass and size as the partitioning chemical 

(Gustafsson et al., 2001).  Therefore, it may be deduced that TeCB would bind to a 

smaller size COC particle versus PeCB and HCB.  The current study COC fraction below 

1 kDa was a majority of the COC (67% of total mass).  In a recent study, Holbrook et al. 

(2004) found a similar trend of smaller size fractions for STP final effluents.  Given the 

large proportion of the small size fraction, with unknown actual sizes, the reduced 

potential for higher mass PeCB and HCB molecules to partition to smaller COC size 

fractions may result in their lower than expected logKCOC values compared to literature 

sources (Table 3).   

Competition for sorption sites between the chlorobenzenes may be occurring, with 

preferential binding of the smaller TeCB molecules.  Pan et al. (2007) have recently 

questioned the use of single-solute sorption experiments due to the unrealistic interactions 

that may occur in comparison to real-world polluted samples.  In their study, 

phenanthrene and pyrene showed distinct competition for sorption sites of AHA and peat 

humic acids at similar organic concentrations as in the current study (40 mg OC mL-1).  
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However, chemical concentrations were much higher than in the current study and the 

smaller size fractions were discarded (< 3 500 kDa) (Pan et al., 2007).  

A comparison of wastewater COC partitioning behaviour to natural organic matter 

may be erroneous.  Since the OC is generated from different sources, it may differ in size, 

structure and functionality, thereby exhibiting variable partitioning behaviour than that 

predicted by physicochemical properties (Ma et al., 2001; Drewes et al., 2002; Holbrook 

et al., 2004).  For example, the large contribution of the smaller size fraction to the overall 

COC mass is in contrast to other organic matter sources which typically have greater 

mass contributions from larger fractions (Perret et al., 1994).  Another example is the 

variation of humic acid, fulvic acid, and hydrophilic fractions between wastewater and 

river waters (Ma et al., 2001); such variation would impact partitioning behaviour. 

4.4.Rate constants - steady state 

A representative ln CT vs. t graph is shown for TeCB indicated by the dotted line 

(Fig. 3).  All spargers exhibited excellent linearity over the steady-state region (R2 > 

0.98).  Equations 4 and 21 were used in conjunction with the slope of Fig. 4 to determine 

rate constants.  Rate constants, both desorption (k12) and sorption (k21) are shown adjusted 

to current COC concentrations (L mg-1 h-1) in Table 4.  To our knowledge, this is the first 

study to determine rate constant data for a MWTP primary sedimentation tank.  

Desorption rates have been determined for many hydrophobic chemicals for sediments 

(reviewed in Birdwell et al., 2007), soils (Wu et al., 1986; Rutherford et al., 1992; Lee et 

al., 2002), phytoplankton (Canton et al., 1977; Herman et al., 1991; Koelmans et al. 1993) 

and zooplankton (Hiraizumi et al., 1979).  The current k12 range is in the order of 

magnitude of previous studies, which are uncorrected for COC concentration under the 
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assumption that the rate is unaffected by solids concentration   (Fig. 5).  Figure 5 shows 

data from soil and sediment studies found in literature in a log k12 versus log Koc plot, 

which has shown to exhibit a linear inverse relationship (Brusseau et al., 1990; 

Karickhoff et al., 1985).  All data points for AHA and 1.5 µm data in the current study fit 

well within the literature data; after addition to previous data the linear regression 

improved (r2 = 0.909 for Koelmans et al. 1993, r2 = 0.934 currently).  Phytoplankton data 

did not fit the linear model (Koelmans et al., 1993).  Despite the increased correlation, 

there was a marked difference in AHA and 1.5 µm data.  AHA data are biased towards 

faster desorption for a given Kp.  Since AHA are the only non-natural organics presented 

in the data, the partitioning behaviour may vary markedly with naturally occurring 

organics that have not been extensively processed and modified.  Removal of AHA data 

improves the linear correlation markedly (r2 = 0.956).  The 1.5 µm data for the three 

chlorobenzenes fall within the literature data, however, when considered independently, 

appear to not be linearly correlated.  However, upon inspection of the literature data, this 

trend appears to occur frequently and may be due to the inherent uncertainty of the k12 

determination.   

Sorption data (k21) are found as a result of eq 4.  This sorption constant is 

markedly faster than the calculated desorption constant (k12) (Table 4) and results from an 

18 – 24 h incubation period in which sorption occurs.  Hydrophobic organic compounds, 

such as HCB, have been shown to attain equilibrium over a very short period of 
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time (minutes to hours) (Yabuta et al., 2004; Poerschmann et al., 1997; Backhus et al., 

1990; Schlautman et al., 1994).  In the current study calculated sorption half-lives (t1/2) 

were 7.7, 18.8, and 63.9 min for TeCB, PeCB and HCB 1.5 µm treatments (Table 4).  In 

comparison, AHA half-lifes were all markedly faster with each being less than 10 min 

(Table 4).  For both AHA and 1.5 µm treatments, steady-state equilibrium was easily 

attained overnight.  In contrast to the current study, sediment equilibration duration may 

be considered for a much longer term (days to months) considering potential for a slower 

absorption in this media and the potential for longer term equilibrium.  Given the 

residence time of wastewater COC, increasing sorption times for a MWTP sample would 

be unadvisable. 

 

5. Environmental Significance  

 HOC removal from MWTP effluents is dependent on sorption to solids, 

biodegradation by biomass, and volatilization.  An important mechanism of HOC 

transport throughout the process is via COC, which does not settle and renders HOCs 

inaccessible for microbial degradation and volatilization.  Only the so-called freely-

dissolved fraction (unbound to COC) is available for these processes.  The primary 

effluent has reduced organics compared with influent primary, however, it has a much 

greater proportion of the COC fraction.  Through a determination of the partitioning 

behaviour, including logKCOC, k12, and k21, the sorption behaviour of three 

chlorobenzenes was determined.  Results may be used to investigate sorption of other 

chemicals of concern and to better represent partitioning behaviour in MWTP studies.  

Sorption of the chlorobenzenes was novel in comparison to other organic media, 
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requiring further study and expansion of knowledge beyond typical physicochemical 

property correlations.  As noted extensively in the literature, AHAs are not a comparable 

material to COC and cannot be used to reasonably determine partitioning.  Despite this 

caveat, AHAs are an excellent synthetic organic matter that may be used for validation of 

experimental methods.  Having this validation will add strength in the comparison of 

natural organic material between various studies and sources.     
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1. Introduction 

Many domestic and commercial chemicals, including hydrophobic organic 

chemicals (HOCs), are partially removed during municipal wastewater treatment plant 

(MWTP) processes.  Several HOCs may decrease in concentration to a level that is non-

toxic to the surrounding environments.  However, the fate of these HOCs is highly 

dependent on their sorption behaviour to dissolved organic carbon (DOC) throughout the 

system.  Sorption of HOCs depends on physicochemical properties of both sorbate (ie. 

hydrophobicity) and sorbent (ie. structure) (Karickhoff, 1985; Chin et al., 1992; 

Rutherford et al., 1992; Schlautman et al., 1993; Perminova et al., 1999; Gustafsson et al., 

2001; Poerschmann et al., 2001). 

Of major importance in the MWTP process is DOC in the form of colloidal 

organic carbon (COC).  Colloids are ubiquitous in the environment and can be defined as 

nanoparticles, macromolecules, or assemblages between 1 nm and 1 µm in size (Fig. 1; 

Lead et al., 2006). Colloids can be functionally described as particles “immune to 

gravity” (Graham, 1861) and having the ability to bind other compounds; therefore, 

assignment to specific size fractions may not fully encompass the entire colloid fraction.  

In sewage wastewater, historically a 1.5 µm filter has been used to delineate total 

suspended solids (greater than 1.5 µm) and total dissolved solids (passing 1.5 µm).  Given 

the use of this filter fraction in many standard methods, we conclude that it is a 

reasonable differentiation between particulate and colloidal organic matter during the 

wastewater treatment process.  However, the lower cut-off for the colloid (able to bind 

chemical) and truly-dissolved (unable to bind chemical) is debatable.  Currently a range 

of 500 – 1000 Da has been considered a cut-off below which sorption is negligible 
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(Gustafsson et al., 2001; Backhus et al., 1990; Backhus et al., 2003; Holbrook et al., 

2004).  However this range may only be a limit of current size fractionation methods (eg. 

ultrafiltration) rather than a truly ‘chemcentric’ limit thereby needing further study 

(Gustafsson et al., 1997).  In the current study, the colloidal fraction is considered to be 

passing 1.5 µm filters with the inclusion of the so-called ‘truly-dissolved’ fractions.   

A limitation to the determination of the so-called ‘truly-dissolved’ fractions 

historically has been the lack of methods to separate COC into size fractions.  Physical 

separation using filtration techniques started with gravimetric filter papers, improved with 

the introduction of stirred-cell ultrafiltration, and have recently been enhanced using 

tangential or cross-flow ultrafiltration (Gustafsson et al., 1997).   The ultrafiltration 

technique has become widely used in isolation of both environmental (Wilding et al., 

2004; Liu et al., 2005; Zhou et al., 2007; Maskaoui et al., 2007; Kottelat et al., 2008; 

Maskaoui et al., 2010) and MWTP colloids (Holbrook et al., 2004; Worms et al., 2010).   

The 1 kDa COC limit has been qualified as reasonable based on the size of HOCs in 

relation to colloid sizes, indicating that only COC of a specific size is able to truly act as a 

sorbent (Gustafsson et al., 1997).  However, small HOC chemicals, such as those within 

the current study including 1,2,4,5-tetrachlorobenzene, pentachlorobenzene, and 

hexachlorobenzene are markedly smaller than PAHs considered in other studies, leading 

to the assumption that the true lower limit for some HOCs lies below the 1 kDa limit. 
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The objective of the current study is to determine if the 1 kDa limit to COC 

partitioning is valid.  Using the gas sparging technique, and various size fractions of 

organics for comparison, spiked chlorobenzene partitioning was investigated using the 

primary effluent derived from a MWTP.  The primary effluent was chosen since HOCs 

partitioned to COC are not readily accessible for volatilization and degradation in the 

secondary MWTP treatment and may be carried to receiving environments through final 

MWTP effluents.   

 

2.   Theory 

The description of the gas sparging method is shown elsewhere (Chapter 5); the 

following is a brief overview relevant to the current study and the calculation of the 

partitioning coefficient, KCOC. After spiking, the purge vessel is equilibrated before 

starting the sparging (t = 0).  The first assumption is that the rate of volatilization initially 

is much greater than the dissociation rate, the following equation results from first 

principles (eq 13: Chapter 5): 

 

(1) 

where CT is the total concentration, Co
T is the initial concentration, and kv is the first-order 

volatilization rate.  In a COC-free vessel, K COC = 0, eq 1 reduces to: 

 

(2) 

Therefore, a plot of Ct vs. tkve− (or as the natural logarithm shown in Fig. 2) in 

COC-free water will yield the Henry’s law constant (H) calculated via: 

coc

Tdoctk

coc

T
T K

CKe
K

CC v

+
+

+
= −

11



tk
TT

veCC −= 
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 (3) 

where V is the sparged water volume (L), R is the gas constant, T is temperature (K), F is 

the gas flow rate (L h-1).  The H value is determined independently for each sparging 

experiment, however, the average value is shown in Table 1.  After determination of kv, 

Kcoc may be determined for a purge vessel containing COC using the ratio of the intercept 

to slope of the plot of CT vs. tkve−  by the following equations (in conjunction with eq. 1 

above): 

 

 (4) 

  

 (5) 

Solving eqs 4 and 5: 

 

 (6) 

And correcting for COC concentration: 

 

(7) 

where KCOC is the corrected partitioning coefficient and COC (mg/L) is the dissolved 

organic carbon concentration within the sparger.  During the initial phase of 

volatilization, the stripping process should be linear until freely dissolved chemical 

becomes depleted.  Subsequently, the slope is expected to decrease as volatilization 

becomes rate limited by the chemical dissociation rate. 

F
VRTkH v=

coc

T

K
Cm
+

=
1



coc

Tcoc

K
CKb

+
=

1



m
bKcoc =
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3. Materials and Methods 

3.1.Chemicals and reagents 

1,2,4,5-tetrachlorobenzene (TeCB; 98% pure), pentachlorobenzene (PeCB; 98% 

pure), hexachlorobenzene (HCB; 99% pure), sodium azide (NaN3: 98% pure), 1,3,5-

tribromobenzene (TBB; 98% pure) and Amberlite XAD2 (20-60 mesh) were purchased 

from Sigma-Aldrich (Canada).    Stock solutions of TBB (internal standard) and a mixture 

TeCB, PeCB and HCB were prepared in hexane and methanol, respectively, and stored at 

4 °C.  Solid NaN3 was added to all sewage samples (ca. 100 mg L-1) to prevent 

degradation.  Physicochemical parameters of the chlorobenzenes are shown in Table 1.  

3.2.Wastewater sampling 

Samples were taken from Little River pollution control plant (LRPCP) in 

Windsor, Ontario, Canada.  The plant serves the eastern portion of the City of Windsor 

and the surrounding municipalities of Tecumseh, St. Clair Beach and Sandwich South, 

and has two parallel and similar activated sludge-type secondary wastewater treatment 

systems with a combined design capacity of 60 000 m3 d-1.  Approximately 10 L grab 

samples were collected at the primary sedimentation tank using a 25 L pre-cleaned 

container during June and December, 2010 under normal dry weather conditions.  

Samples were transported to the laboratory within one hour of collection and treated with 

ca. 100 mg L-1 sodium azide to inhibit microbial degradation.   
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3.3.Filtration 

The sample was filtered through a series of gravimetric filters in the following 

order: 1.5 µm glass fiber filters (Whatman 934AH); 1.1 µm glass fiber filters (VWR 

Grade 693); 0.45 µm cellulose nitrate filters (Whatman Type WCN); 0.22 µm cellulose 

nitrate filters (Fisher Scientific).  All filters were conditioned with distilled water (ca. 50 

mL) and filtrate from the previous filter (ca. 50 mL) prior to sample collection.  The 1.1 

µm and 0.45 µm fractions were used for characterization studies (Chapter 4).  The 0.22 

µm sample (ca. 3 L) was further fractionated using an Ultrasette 1 kDa tangential flow 

filtration capsule (Pall Life Sciences) described below.   

3.4.TFF system 

The TFF system consisted of a Pall Ultrasette 1 kDa low protein-binding, 

modified polyethersulfone membrane (effective surface area 700 cm2) contained in a 

styrene acrylonitrile outer housing and a Masterflex L/S peristaltic pump (Cole Parmer).  

The pump and filter were connected with Pharmed 16 tubing (Cole Parmer) and silicone 

tubing.  Sampling mode (retentate returned to feed flask) was used to process the sample 

under the following conditions:  feed inlet pressure 15–20 psi, retentate outlet pressure < 

10 psi, retentate flow rate 1 L min-1, and permeate flow rate 50 mL min-1.  The TFF 

system was cleaned prior to and after the experiment using 5 L distilled water and 0.01 M 

NaOH, respectively in recirculation mode for 2 h.  After cleaning, the filter was 

conditioned using 5 L MilliQ water through both retentate and filtrate ports.  300 mL of 

filtrate was rejected prior to collection.   
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3.5.Multi-sparger system 

A multi-sparger system consisting of two control (MilliQ water), two 1.5 µm 

replicates, and two 1 kDa replicates or two SS replicates was employed.  The apparatus 

consists of a high-purity nitrogen gas stream pre-wetted via a pre-sparger delivered to a 6-

port manifold (individually valved).  Each port delivers ca. 50 mL min-1 nitrogen to a 1 L 

sparger (measured using electronic flow controller).  Spargers were kept at 25 °C (±0.5 

°C) via a circulating water bath.  Spargers were spiked with 100 µL of the chlorobenzene 

mixture, mixed through shaking and allowed to equilibrate ca. 18-24 h in the water bath 

prior commencing experiments.   XAD2 resins were prepared according to Chapter 3 

guidelines.  Prior to initializing experiments, XAD2 resins were spiked with the TBB 

internal standard and placed at the outlet of the sparger.  Flow rates were corrected to 45 – 

55 mL min-1 after changing each adsorbent (at 0.5 h intervals for 8 h) to allow for 

variability in flow characteristics given the shared manifold.  XAD2 resins were capped 

using polyfilm and placed in sealed bags at 4 °C until extracted.  

 

4. Analytical Methods 

Analysis of all samples was carried out on a Varian 3600 GC equipped with 

split/splitless injector, a 30 m X 0.32 mm fused silica DB-5 column with a 0.25 µm film 

thickness (J&W Scientific) and an ECD detector.  The injector was maintained at 250 °C 

with a flow rate of 2 mL min-1 He.  A 1 µL injection was made into a 253 µm liner and 

the column was held at 140 °C for 2 min.  Subsequently, the column was raised to 192 °C 

at 6.5 °C min-1 ramp.  The makeup flow rate was 29 mL min-1  N2 and detector 

temperature at 250 °C.  The limit of detection (LOD) is defined as the minimum amount 
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of analyte which produces a peak with a signal-to-nose ratio equal to 3.   A PeCB 

standard was injected prior to and post all experimental runs as quality control and 

expected to fall within a standard deviation of standard curve values. 

  

5. Results and Discussion 

5.1.Method validation 

Figs. 2–4 exhibit representative results for the 1,2,4,5-tetrachlorobenzene 1 kDa 

analysis only.  A cumulative mass purged versus time figure is shown in Fig. 2.  As 

shown previously (Chapter 5), the curves change slope at the 6 h point, which is when the 

dissociation rate becomes relevant compared to the volatilization rate.  Variation between 

the three experiments is apparent early in the sparging process, as the control sparger 

mass purged increases faster than the 1 kDa and 1.5 µm curves.  Of interest is the 1 kDa 

curve, which is markedly lower than the control spargers.  This trend exists for each of 

the chlorobenzenes and indicates that the COC below 1 kDa is a significant source of 

sorption for the CBs. 

To determine the kv constant, control spargers total mass sparged were plotted 

using eq 2 considering a 1 L total sparger volume (Fig. 3).  As shown by the linear 

regression coefficients (R2 = 0.994 and R2 = 0.985), the sparging rate was linear over the 

initial 6 h period.  H was calculated using eq 3 and is included in the average H (Table 1) 

considered over multiple experiments previously.  Using the kv value, Ct versus tkve−  is 

shown in Fig. 4.  As with Fig. 3, the linear regression coefficients (R2 = 0.978 and R2 = 

0.978) indicate sparging was linear  
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over the time period.  Using eqs 4-7, the KCOC and values may be determined (Table 2) 

and are discussed below.     

5.2. 1 kDa versus reference logKoc values 

TeCB logKCOC average (4.30) and range (4.27 – 4.33) both are within the 

reference ranges for soils (2.79 – 4.5) and sediments (3.36 – 5.10), but are slightly higher 

than suspended particulates measurement (3.94) and humic acids (Table 2).  PeCB 

logKCOC average (4.36) and range (4.30 – 4.53) are in reasonable agreement with all 

reference ranges, being marginally lower or higher in all cases (Table 2). HCB logKCOC 

average (3.74) and range (3.55 – 3.89) falls within the wide logKoc of soil references (2.56 

– 6.00).  Reference logKoc ranges for sediments, suspended particulates, AHA and ground 

water are higher than the current study’s average and range (Table 2).   

Based on logKow values of 4.5, 5, 5.5 for TeCB, PeCB, and HCB (Table 1), it 

would be expected that logKCOC values would correlate to hydrophobicity, thus TeCB < 

PeCB < HCB.  However, the current logKCOC values do not follow the expected pattern, 

with TeCB ~ PeCB > HCB.  As shown in previous work (Table 2), the 1.5 µm fraction 

exhibited similar partitioning behaviour (with varying partitioning, discussed below); 

therefore mechanisms in which the current unexpected sorption behaviour to COC occur 

must be determined.   

Physicochemical properties for both sorbate and sorbent are important in the 

determination of the HOC–COC sorption behaviour.  Contrary to prior use of the Kow 

parameter as the benchmark for partitioning behaviour of HOCs in many other media, the  
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current MWTP effluent organics must differ from other organics resulting in the current 

partitioning behaviours.  Molecular mass, compound competition, and COC 

characteristics may impact the partitioning behaviour markedly based upon numerous 

studies in the literature discussing partitioning of various HOCs (Perret et al., 1994; 

Gustafsson et al., 2001; Ma et al., 2001; Drewes et al., 2002; Holbrook et al., 2004; Pan et 

al., 2007).  Alternatively, differences in electronegativity and structural formation may 

also be considered as influences on partitioning properties.   

5.3. 1 kDa versus 1.5 µm partitioning 

The partitioning coefficient increases from 1.5 µm to 1 kDa for each of the 

chlorobenzenes (Table 2) by a factors of 0.47, 0.53, and, 0.55 log units for TeCB, PeCB, 

and HCB, respectively.  Therefore, the 1 kDa fraction is both involved in chlorobenzene 

partitioning and exhibits greater partitioning coefficients for each chemical versus the 

total 1.5 µm fraction.  Given the availability of both size fractions simultaneously, the 

intermediate fraction less than 1.5 µm and greater than 1 kDa can be determined using the 

partition coefficients and COC masses.  As shown in Table 2, the partitioning to this size 

fraction was much lower than both the overall 1.5 µm and 1 kDa fractions.  

In contrast to previous work (Backhus et al., 1990; Gustafsson et al., 2001; 

Backhus et al., 2003; Holbrook et al., 2004), partitioning to the under 1 kDa fraction (and 

arguably 500 Da fraction given the partitioning increase) does indeed occur and this 

physical limit cannot be considered as the threshold for ‘truly-dissolved’ for all 

chemicals.  Gustafsson et al. (1997) suggested delineating the dissolved-colloidal 

boundary based upon a ‘chemcentric’ view.  Clearly, a chemcentric view would more 

appropriately describe partitioning behaviour for a wide range of chemicals based upon 
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total physicochemical properties rather than a more arbitrary physical size cut-off.  

Unfortunately, fractionation of colloids using current filtration techniques must improve 

to include smaller pore size ultrafilters.  Filter size availability has historically been a 

limitation to determination of a truly-dissolved phase and this would appear to be no less 

the case when considering ultrafiltration technologies currently available. 

Many studies have shown the omission of the smaller size fraction, such as a 1 

kDa fraction, from partitioning behaviour experiments, which can result in erroneous 

partitioning coefficients (Backhus et al., 1990; Holbrook et al., 2004).  For example, 

when the 1 kDa fraction is mathematically removed from total 1.5 µm fraction 

partitioning, there is an order of magnitude decrease in the partition coefficients for each 

chlorobenzene (Table 2).  Clearly the partitioning behaviour is quite variable between 

different size fractions and must be considered for each size fraction independently.  

However, the importance of the lower size fractions may decrease with increasing 

molecular size rather than mass.  Given the larger sizes of PAHs used in the previous 

studies, it can be suggested that the use of a 500 – 1 kDa may be appropriate for these 

compounds.  Alternatively, many such studies have used the ‘truly-dissolved’ fraction 

found in ultrafiltration filtrates for sample dilution.  Such use should only be considered 

with consideration of possible experimental artefacts created from partitioning to the 

filtrate.  

 

6. Environmental Significance 

Figure 1 shows the various organic constituents in a MWTP.  Given the wide 

range of constituents, and potential for variable partitioning behaviours, greater study is 
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needed in the determination of chemical fate through the MWTP.  The current study 

emphasizes the need for a more robust and consistent delineation of truly-dissolved, 

colloidal, and suspended solids beyond the historic aquatic colloids benchmark and with a 

chemcentric viewpoint not determinant on only filter fractions such as a 0.45 µm cut-off 

which has been extensively used (Shon et al., 2006).  Further physicochemical 

determinations of COC found in the MWTP are needed to discover potential mechanisms 

behind effluent partitioning behaviours. 
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1. General Discussion 

The importance of determination of the fate and transport of chemicals of concern 

(CHCs) throughout municipal wastewater treatment plant (MWTP) processes is of utmost 

concern for the safety of both human and environmental health.  An examination of the 

fate of historic and emerging contaminants in the MWTP process allows for the 

understanding and prediction of potential environmental loadings and subsequent risk 

assessment.  The major processes considered for the fate of chemicals during the 

commonly used activated sludge type secondary MWTP are shown in Fig. 1.  The 

partitioning to solids commonly considered and accounted for is that to solids larger than 

1.5 µm, called suspended solids.  Municipal wastewater has significant amounts of 

colloidal organic matter (solids < 1.5 µm) particularly in the early stages of the treatment 

process.  Partitioning to these solids is poorly understood and typically ignored in 

experimental analysis. 

The investigation started with selection of methods for experimental determination 

of partitioning.  Amongst the traditional methods, gas sparging was chosen since it allows 

simultaneous calculation of Henry’s law gas constant using colloid-free water, permits 

measurement of the freely dissolved chemical, is sensitive enough for determining 

sorption and desorption rates, and has been extensively used in the literature.  More 

recently, headspace solid-phase microextraction (HS-SPME) has been developed with 

many of the same advantages as gas sparging making it potentially useful for the current 

study.  However the methodology for application of HS-SPME for partitioning 

experiments is not well-tested or developed, especially for MWTP-type samples.  If found 

to be useful, advantages over long column include smaller sample volume which  
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decrease processing times, shorter experimental duration with high SPME phase chemical 

capacity, and eliminate the need for sample extraction since the fibre is used directly in 

GC detection.  It was therefore chosen for further investigation and development of a 

methodology for conducting the experiments prior to use in partitioning experiments. HS-

SPME was first used in Chapter 2 to determine the effects of co-solvent on the apparent 

solubility on a suite of three chlorobenzenes (CBs).  Results indicated that methanol 

concentrations up to 1% had no effect on the freely dissolved chemical.  However, given 

potential interaction of methanol with colloids, a lower concentration (0.01%) was 

considered for partitioning experiments.  Despite spending significant time and effort, 

application of HS-SPME for partitioning experiments was unsuccessful primarily due to 

significant loss of chemical mass from the small vial system.  Efforts to identify the 

sources for this loss and eliminate them were unproductive.  HS-SPME was abandoned 

for determination of partitioning and the gas sparging technique was used exclusively for 

the remaining experiments. 

Henry’s law constant (HLC) is a parameter used to describe the mass transfer of 

chemical between water and air.  HLC is needed for determination of partitioning in 

experiments, however, has a wide range of variability in the literature for the CBs.  Hence 

selection of values from literature is difficult as well as inappropriate for use in the 

partitioning experiments of the current study.  Chapter 3 HLC values were determined 

using the current gas sparging technique and served as control spargers for the remaining 

partitioning experiments.  Calculated HLCs for the CBs were 56.5, 33.3, and 29.9 Pa m3 

mol-1 for 1, 2, 3, 5-tetrachlorobenzene (TeCB), pentachlorobenzene (PeCB), and 

hexachlorobenzene (HCB), respectively.  During the course of the experiments, the effect 
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of sorption to glass surfaces was realized via non-linear volatilization rate in control 

spargers.  Given the robustness of the sparging experiments this non-linearity was readily 

identifiable via three distinctive phases of sparging including initial slope, transitional, 

and steady state regions.  In the initial slope region the volatilization rate is dominant, as 

the chemical is stripped from the water column desorption processes and volatilization 

rates converge in the transition region, and in the steady state region desorption rates 

becomes greater than volatilization rate.  Given these observations, only the preliminary 

linear sparging zone was used to determine HLC, while the remaining phases will be 

valuable for determination of desorption rates in partitioning experiments. Although 

contribution of glass sorption has been recognized in gas sparging experiments, its 

contribution has not been not been properly quantified.  Through use of the entire 

sparging region rather the initial slope previous researchers may have inaccurately 

determined HLC using the gas sparging technique.   

Prior to the commencement of partitioning experiments methods of fractionation 

and characterization of colloids were considered.  An important aspect of fate and 

transport of CHCs within a MWTP is partitioning of CHCs to various size fractions of 

organic matter.   Fractionation of colloids was accomplished by the use of typical 

membrane and ultra-filtration techniques.  Results of the fractionation indicated that ca. 

70% of the MWTP primary effluent sample was found in the smallest size fraction (1 

kDa).  Given the large quantity of colloids in this size fraction further use in partitioning 

experiments was considered necessary to determine the fractions’ role in partitioning.  

Previous studies neglected this size fraction since colloids under 1 kDa were considered 

truly-dissolved and unable to bind chemical.  Additionally, colloids in natural organic 
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matter and Aldrich humic acids exhibit much less mass under 1 kDa (under 10%) 

indicating significant variation with MWTP colloids.  Characterization methods 

considered included UV absorbance and 1H NMR.  While UV absorbance is a typical 

method, the 1H NMR technique was developed given the limited application in MWTP 

analysis and poor sensitivity and resolution of prior studies.  Results of UV absorbance 

indicated a linear relationship between colloid concentration and absorbance.  1H NMR 

results showed that the experimental development was successful in increasing sensitivity 

and resolution through sample processing which did not negatively impact sample 

integrity.  Further study of 1H NMR using the developed technique may be useful in 

determination of specific compounds which can aid in the determination of partitioning 

mechanisms. 

Given the positive results of the Chapter 2, 3, and 4 studies, partitioning 

experiments were conducted using MWTP primary effluents.  In a MWTP suspended 

solids are considered as the particles captured using a 1.5 µm filter.  Solids passing this 

filter are dissolved or colloidal organic matter, which has typically not been considered 

relevant in transport and fate of CHCs.  Given that ca. 50 mg L-1 of colloids (as organic 

carbon) are present in the primary effluent, lack of consideration of potential partitioning 

to this fraction is unadvisable.  It was therefore determined that the entire 1.5 µm fraction 

be used in the determination of partitioning of CBs.  Calculated partitioning results were 

logKCOC 3.86, 3.89, and 3.19 for TeCB, PeCB, and HCB, respectively.   These 

partitioning results (TeCB~PeCB>HCB) did not conform to expectations based upon 

hydrophobicity (TeCB<PeCB<HCB) and potential mechanisms for these differences 

were discussed.  Aldrich humic acids were used as a standard reference with results 
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following the expected trends based on hydrophobicity.  The lack of correlation with 

hydrophobicity (determined by KOW) in the current study was unexpected given 

numerous correlations found in the literature.  However, this result illustrates the 

differences between MWTP organics and both natural and Aldrich humic acids and the 

need for further study of this variation.  Additionally, the dependence of partitioning on 

chemical hydrophobicity has been recently questioned.  As found in Chapter 3, sparging 

results exhibited three distinct phases, initial slope, transition, and steady-state.  The 

steady-state region is indicative of desorption from colloids (and glass surfaces) and may 

be used to determine desorption and sorption rates.  The desorption rates were within an 

order of magnitude of literature values.  Sorption rates indicated that steady-state was 

reached by all samples in the allotted 18-24 h equilibration period.  Overall partitioning to 

colloids was significant and they should not be omitted in determination of fate and 

transport processes in a MWTP.   

With the determination that partitioning to colloids is significant the role of the 

smallest size fraction (< 1 kDa) was considered.  Given the results of Chapter 5 indicating 

the large percentage of colloids in this size fraction (ca. 70%), ad hoc dismissal of the 

importance of this fraction in partitioning is erroneous.  Despite this assertion previous 

researchers considered colloids under 1 kDa as being truly-dissolved and unable to 

partition with chemicals.  This assertion has been previously untested and was considered 

due to the current limits of filtration technology available.  To test this assumption, the 

Chapter 6 study used the less than 1 kDa fraction for partitioning experiments.  

Calculated partitioning results were logKCOC 4.30, 4.36, and 3.74 for TeCB, PeCB, and 

HCB, respectively.   As for the 1.5 µm fraction, these partitioning results 
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(TeCB~PeCB>HCB) did not conform to expectations based upon hydrophobicity 

(TeCB<PeCB<HCB).  For each of the CBs the partitioning increased versus the 1.5 µm 

fraction, exhibiting that not only is the 1 kDa involved in partitioning, it has a greater 

affinity as well.  Although previous research involved larger chemicals which may not 

partition to the smaller size fractions, omission of this size fraction or neglect of its 

potential role may be in error.   

 

2. Engineering Significance 

CHCs within the MWTP process can be found freely-dissolved, bound to 

colloids, and bound to solids.  CHCs bound to solids in the MWTP will settle throughout 

the MWTP in various processes.  However, CHCs found freely-dissolved and as CHC–

colloid can be found in MWTP effluents and released into the receiving environments.  

This thesis concentrated on the colloidal COC present in raw municipal wastewater which 

is carried through the primary treatment process (Fig. 1) of a typical secondary municipal 

wastewater treatment plant.  The investigation of the fate and transport of CHCs in this 

stage is important since the colloid associated CHCs are unavailable for sedimentation, 

volatilization, and/or biodegradation, and carried through with the effluent to the 

secondary treatment stage of the MWTP process.  This is especially relevant for HOCs, 

such as CBs, which have low volatilization and degradation rates and high octanol water 

partitioning coefficients which indicate high affinity for organic matter (or carbon).  

Additionally, the higher OM concentration of this stage allows for direct use of samples 

in laboratory experiments, thus negating potential effects of sample concentration using 

filtration techniques that lead to erroneous partitioning results due to removal of relevant 
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OM.  Partitioning coefficients found in this primary treatment tank process may then be 

considered as a valid first approximation for use in the remaining MWTP processes in 

STP modelling until further research on these stages is completed. 

In the present research, partitioning of a suite of CBs to colloidal organic matter in 

the primary effluent of a MWTP wastewater was investigated.  This partitioning was 

found to be significant and must be considered in the fate and transport of CBs (and other 

CHCs) in the MWTP.  To assess the potential impact of this partitioning to the primary 

stage of the treatment process, typical MWTP characteristics and primary treatment 

performance values were used (Table 1).  The primary stage distribution was considered 

using a mass balance with total chemical input and outputs including primary effluent and 

sludge.  Volatilization and degradation processes were negligible for the CBs and were 

not considered further.  Partitioning to solids was determined using H and Kow according 

to the relationship Kp = (0.8 + 0.2Kow).  A sample calculation using 1,2,4,5-TeCB is 

included in the Appendix.    

Results from this analysis indicate the overall contribution of including colloidal 

partitioning.  Increases in the apparent solubility (freely dissolved plus colloid-bound) of 

each chemical increase 26.7, 28.0, and 7.6% for TeCB, PeCB, and HCB, respectively.  

Given the current study results deviating from expected hydrophobicity related 

partitioning, the increase in HCB was markedly lower than both TeCB and PeCB.    

Results from this analysis are approximate given the solids partitioning is derived from 

the octanol water partitioning relationship (Kow) which may not truly represent actual 

partitioning to MWTP solids. 
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Table 1:  Typical MWTP properties and input chemical properties used to determine mass 
balance in the primary stage treatment tank. 
*ca. COC determined in current study. 
 
 
 
parameter variable units value 
influent flow 

TSS 
COC* 

m3 h-1 
g m3 
g m3 

1000 
200 
50 

primary tank solids removal 
TSS 

% 
g m3 

60 
50000 

chemical properties concentration 
H 

TeCB 
PeCB 
HCB 

logKow 
TeCB 
PeCB 
HCB 

logKCOC 
TeCB 
PeCB 
HCB 

mol h-1 

Pa m3 mol-1 

 

 

 

unitless 
 
 
 
unitless 

1 
 
56.5 
33.3 
29.9 
 
4.5 
5.0 
5.5 
 
3.86 
3.89 
3.19 
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C =        0 ng/L
P =    22.3 ng/L
FD = 44.0 ng/L

2
100 ng/L
1

3 S = 33.6 ng/L

C =    13.8 ng/L
P =     19.2 ng/L
FD =  38.0 ng/L

2
100 ng/L
1

3 S = 29.0 ng/L

a b

C =        0 ng/L
P =    32.0 ng/L
FD = 20.0 ng/L

2
100 ng/L
1

3 S = 48.0 ng/L

C =      7.2 ng/L
P =     29.7 ng/L
FD =  18.5 ng/L

2
100 ng/L
1

3 S = 44.6 ng/L

c d

C =        0 ng/L
P =    37.1 ng/L
FD =   7.3 ng/L

2
100 ng/L
1

3 S = 55.6 ng/L

C =      0.6 ng/L
P =     36.8 ng/L
FD =    7.3 ng/L

2
100 ng/L
1

3 S = 55.3 ng/L

e f

 

 
 
 
Fig. 2:  Mass balances of primary stage tanks. (a,c,e) represent absence of colloid 
partitioning.  (b,d,f) represent inclusion of a colloid partitioning parameter. S = solids; C 
= colloids; P = particulates; FD = freely dissolved. 
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3. Recommendations for Future Work 

• Determination of a KCOC parameter of raw wastewater influents for other HOCs and 

chemicals of emerging concern should be considered to improve understanding of 

chemical fate and transport throughout the MWTP process.  

• The COC concentration of secondary effluents and final effluents reduces 

substantially as compared to the primary treatment effluents.  Further study to 

determine the KCOC for HOCs in the remaining MWTP compartments is needed.   

• Assessment of HOC partitioning behaviour is invaluable in the evaluation of MWTP 

models used to determine chemical fate and transport.  Current models should be 

modified to include a KCOC parameter which can be easily implemented for the 

primary treatment tank process.  Additionally, more research is needed before 

consideration of a KCOC parameter for the secondary biological treatment process. 

• Cross-flow ultrafiltration is a valuable method for fractionating MWTP flows.  Given 

the importance of the 1 kDa fraction in the current study, ultrafiltration of COC to 

determine the magnitude of the smallest COC size fractions must be considered for all 

COC studies.  

• The NMR technique developed should be considered for future MWTP research to 

further develop the understanding of the correlation between functional groups on 

partitioning behaviour.  These correlations may then be used for determination of fate 

and transport especially in MWTP modelling. 

• In subsequent municipal wastewater investigations a 1.5 µm filter should be used as 

the delineation between suspended solids and colloidal matter.  This filter size is 

historically used in MWTP solids analysis and represents an excellent choice for the 
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suspended-solid to colloidal cut-off.  By using the same size fraction amongst studies 

more direct comparisons are readily made. 

• HOCs are released into aqueous environments via MWTP effluents as freely-

dissolved chemical and HOC-COC complexes.  The understanding of the potential for 

HOCs, and all CHCs, to interact with COC in the natural environments is needed to 

predict the fate and transport of chemical as well as their impact on aquatic 

organisms.    
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APPENDIX 

Mass Balance Calculation (1,2,4,5-TeCB example) 

 
OVERALL Mass Balance 

  Fugacity fp= E/(D2+D3+Dpv+Dpb) 
Stream 1 input E=  1 mol/h 

 Stream 2 processes D2= GW2*ZW+GS2*ZP+GCOC2*ZCOC 
Stream 3 processes D3= GS3*ZP+GW3*ZW 
Volatilization DPV= KLC*AP*ZW 

 Biodegradation DPB= KBP*VP*ZW 
 

    
 

Fugacity capacity equations 
  Liquid ZW= 1/H 

 Solids ZP= ZW(0.8 +0.2KOW) 
COC ZCOC= ZW*KCOC 

 
    

 
Input values 

  Chemical influx E= 1 mol/h 
Liquid mass flow rate GW2= 997.6 m3/h 
TSS mass flow rate GS2= 0.08 m3/h 
COC mass flow rate GDOC2= 0.05 m3/h 
Sludge solid mass flow rate GS3= 0.12 m3/h 
Liquid mass transfer coefficient KLC= 0.025 m/h 
Tank area AP= 266.7 m2 
Biodegradation rate KBP= 6.93E-06 /h 
Tank volume VP= 1013.46 m3 
Henry's law constant H= 5.65E+01 Pa*m3/mol 
Octanol/water partition coefficient KOW= 31623 

 COC/water partition coefficient KDOC= 7244 
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Results 

  fp= 2.15E-02 Pa 
 D2= 3.30E+01 mol/h/Pa 
 D3= 1.35E+01 mol/h/Pa 
 DPV= 1.18E-01 mol/h/Pa 
 DPB= 1.24E-04 mol/h/Pa 
 ZW= 1.77E-02 mol/m3/Pa 
 ZP= 1.12E+02 mol/m3/Pa 
 ZCOC= 1.28E+02 mol/m3/Pa 
 

        mass % 
FD (GW2*ZW) 38 
P (GS2*ZP) 19 
C (GCOC2*ZCOC) 14 
S (GS3*ZP+GW3*ZW) 29 
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