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Abstract 

 

The primary purpose of this work is to evaluate and to improve the response of guardrail 

system during a lateral impact. The problem was analyzed in the first step at the 

component level, which consists of a single post embedded in a cohesionless soil and 

laterally loaded by an impactor. The lateral post response was evaluated during static 

and dynamic loading using a theoretical formulation able to predict the lateral load in 

static and dynamic modes. An improved subgrade method for soil-post interaction which 

includes the stiffness, damping and inertia effect involved during the crash, was 

proposed in this thesis. The improved model serves to study the effect of different design 

parameters on the post response and to evaluate the interaction between these different 

parameters during the dynamic loading using a Design of Experiments (DoE) approach.  

 

The results of parametric study and the Design of Experiment conducted on a single 

post were used to develop a new guardrail design that was implemented in a full-scale 

finite element model of a Chevrolet C1500 pick truck impacting a guardrail post. The 

new design consists of replacing the incompressible blockout by a crushable one. The 

results of the simulation show that the pickup truck was redirected safely with more 

reduced speed, less roll angle and plastic strain than those for the baseline 

configuration.   
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Chapter I 

Introduction 

 

1.1 Research background 

Canadians are among the most mobile people in the world. Statistics show that 74% of 

citizens aged 16 years or older own a motor vehicle and travelled an average of 16,000 

kilometres on Canada’s roadways during the year 2004, Transport Canada, (2006). The 

number of licensed drivers jumped from 17.1 million in 1988 to over 22.5 million in 2005, 

Transport Canada (2010). This level of mobility comes with a price. In fact, Statistics 

Canada shows that the number of accidents, though decreased during the last decade, 

still remains high as illustrated in Table 1.1. The number of fatalities decreased from 

4154 in 1988 to 2767 in 2007 whereas the number of serious accidents decreased from 

28031 in 1988 to 13723 in 2007.  The cost of the reported accidents in 2004 was 

approximately $63 billion Vodden et al., (2007). Because of the deaths and injuries, 

traffic collisions continue to be the major transportation safety problem in Canada and 

remain one of the leading contributors to years of lost life among Canadians, due in 

large part to deaths among young people, Transport Canada (2006). In the United 

States, Baker and Krueger (1992) reported that in 1985 motor vehicle accident injuries 

cost $49 billion dollars in hospital spending, therapy and indirect costs. 

 

The vehicles are subjected to different kinds of collision: full front, rear impact, side 

impact, rear angular impact, rollover etc... Accidents can happen in the city, at low 

speeds, or on the highways at higher speeds. In order to improve the vehicle 

performance and reduce the motor vehicle injuries and fatalities, government 

organizations issue regulations and safety standards. The reduction of injuries can be 

achieved either by enhancing the traffic regulation or by implementing more active safety 

features or by improving passive safety performance of the vehicle. 
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Table 1.1: Collisions and casualties (1) in Canada from 1988 to 2007 

 Transport Canada (2010) 

  COLLISIONS  VICTIMS  

Year Fatal(2) Personal Fatalities(4) Serious Injuries(6) 

  Injury (3)  Injuries(5) (Total) 

1988 3610 190094 4154 28031 278820 

1989 3651 192595 4238 27422 285178 

1990 3445 178515 3963 25183 262680 

1991 3228 170693 3690 26035 249217 

1992 3073 169640 3501 25521 249823 

1993 3121 168106 3615 23902 247593 

1994 2837 164642 3230 22830 241899 

1995 2817 161950 3313 21494 238458 

1996 2679 153966 3062 18737 227320 

1997 2617 147538 3033 17294 217403 

1998 2576 145612 2911 16409 213304 

1999 2635 148660 2984 16186 218437 

2000 2569 153273 2927 15579 222830 

2001 2432 148961 2776 15282 216441 

2002 2594 153850 2932 15906 222706 

2003 2486 150473 2768 15104 216089 

2004 2430 145256 2722 15605 206232 

2005 2558 145604 2905 15812 204751 

2006 2610 142508 2895 15861 199966 

2007 2469 138470 2767 13723 194177 
 

 (1) “Collisions and casualties” were revised from 1996 to 2006 based on submissions from 

one jurisdiction 
(2) “Fatal collisions” include all reported motor vehicle crashes that resulted in at least one 

death, where death occurred within 30 days of the collision, except in Quebec (8 days) 
(3) “Personal injury collision” include all reported motor vehicle crashes that resulted in at 

least one injury, but not death, within 30 days of the collision, except in Quebec (8 

days) 
(4) “Fatalities” include all those who died as result of a reported traffic collision within 30 

days of its occurrence, except in Quebec (8 days) 
(5)  “Serious injuries” include persons admitted to the hospital for treatment or observation. 

Serious injuries were estimated from 1988 to 2006 because several jurisdictions 

underreported these numbers 
(6) “Total injuries” include all reported severities if injuries ranging from minimal to serious. 
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In Canada, the Ministry of Transportation is the official entity that regulates vehicle 

safety. The Transportation Development Centre (TDC) is Transport Canada's central 

research and development branch, under the Policy Group's Transportation Technology 

and Innovation directorate. As Transport Canada's centre of expertise for research and 

development, it manages a multimodal R&D program aimed at improving the safety, 

security, energy efficiency, and accessibility of the Canadian transportation system, 

while protecting the environment. Its mandate is to enhance the department's 

technological capability, to address the department's strategic objectives and federal 

government priorities, and to promote innovation in transportation. 

 

Many studies have been conducted to investigate the safety effect of guardrails on 

accidents and the cause of harm in crashes involving guardrail contact. Transport 

Canada provides national leadership with the collection of traffic accident, the data 

analysis and the development of programs to reduce traffic accidents. Many programs 

and initiatives have been introduced for this matter, such as the drinking and driving laws 

in 1969, the mandatory seat belt usage laws and public education campaigns helped to 

decrease the annual traffic deaths, Transport Canada (2006). 

 

One part of the overall strategy for reducing the fatalities and improving the roadside 

safety has been the use of roadside safety appurtenances such as guardrails and 

median barriers in highways, (Ray and McGinnis 1997). The guardrails are one the 

common basic roadside devices used in Canadian highways. The main goal of the 

guardrail is to prevent the errant vehicle from leaving the roadside. The data of Table 1.2 

shows that the number of fatalities in accidents involving vehicles impacting the guardrail 

is higher than the number of fatalities of vehicles that run off the roadways, Transport 

Canada (2001). 
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Table 1.2: Statistics of vehicle involved in fatal collision by vehicle event (Transport 

Canada 2001) 

Event/Year 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 

           

Other/Unknown event 5049 5064 4993 4552 4314 4540 4198 4111 3853 3770 

Hit other vehicle 2974 3293 3087 2717 2683 2876 2677 2607 2332 2324 

Ran off the roadway 857 702 731 672 670 715 556 590 495 498 

Overturned 599 591 555 542 493 480 417 441 342 394 

Hit pedestrian 562 476 562 472 432 456 378 407 436 371 

Hit ditch, earth bank 552 422 428 386 397 408 358 375 316 352 

skidding sliding 421 483 404 400 412 428 384 378 349 388 

Hit rigid posts, pole 300 257 245 221 207 188 197 194 205 184 

Hit low rigid obstacle 174 160 130 120 120 116 120 98 111 86 

Hit guardrail, median 169 150 144 122 126 108 107 103 101 87 

Hit tree 128 119 100 132 126 126 99 109 99 111 

Hit bicycle 111 67 69 65 50 65 47 41 36 43 

Hit other object 96 99 99 107 89 87 63 87 75 74 

hit wall, road structure 94 74 61 53 59 50 46 42 46 45 

Fire, explosion 77 53 45 46 48 53 52 47 36 45 

Other non-collisions event 77 76 68 49 63 49 73 57 62 51 

Hit other vehicle type 74 94 85 84 56 55 82 59 53 63 

Hit barricade, fence 55 48 29 29 26 25 24 26 18 16 

Hot rock face 43 33 36 33 32 25 38 24 31 14 

Hit rail vehicle 42 62 38 46 52 32 39 27 53 26 

Submersion 39 29 37 35 37 33 43 43 28 36 

Hit snow bank, drift 20 34 20 14 16 23 3 25 25 26 

Hit tree, bush 19 21 17 18 17 16 14 24 15 14 

jack-knife 16 13 7 13 11 9 9 15 10 9 

Hit animal 12 11 22 20 18 22 18 26 24 11 

Hit other moving object 10 8 5 5 2 5 3 4 3 1 

Hit crash cushion 3 4 9 1 2 5 10 6 7 4 

 

In general, the best designs cannot eliminate all serious injuries and all fatalities. The 

guardrails are installed when the risk of striking an object on the highway is judged more 
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serious than striking the guardrails. The guardrail system is composed of a post 

embedded in the soil to hold the rail that is mounted at the top of the post. The post 

material is in generally made of wood with a circular or rectangular cross section or steel 

W shape beam. Other types of guardrail could be found in the highways, such as 

concrete barriers used as median barriers to prevent median crossover accidents. These 

barriers could be installed easily in narrow spaces and remain very effective in keeping 

vehicles from crossing into opposite lanes. Two main guardrail systems are implemented 

in Canadian and American highways: the weak-post barrier system and the strong-post 

barrier system. A very good summary of the advantages and disadvantages of each 

system was presented by Ray and McGinnis (1997) 

 

1.1.1 Weak-post guardrail system 

The weak-post guardrail consists of a post embedded in the soil to a certain depth and 

holding directly the W guardrail beam or tension cables as shown in Figure 1.1. The 

spacing between the posts is specified to be 5000 mm for the guardrail cable and 3810 

mm for the W beam. The primary objective of the weak-post guardrail is to gradually 

redirect the errant vehicle by dissipating the energy in stretching the cables and bending 

the posts. The deflection of the cables could reach 4 m which requires that free space 

should be available behind the barrier fence. The main advantages of the weak-post 

systems are (i) the relatively low cost of installation, (ii) the relatively good 

crashworthiness performance and (iii) no accumulation of the snow on the roadways in 

the cable type. However, the main disadvantages are (i) the relatively high repair cost in 

high-traffic highways, (ii) the restricted application to low volume traffic and (iii) the need 

to re-tension the cable periodically to keep the guardrail system functional. The W beam 

weak-posts are also relatively inexpensive to install but remain limited to roadways with 

a low traffic volume. The main disadvantage of this type of guardrail is the poor 

crashworthiness performance noticed during the impact with vans and pickup trucks. 

The weak-post passed the requirement of level 2 (TL2) of the report 350 (Ross et al., 

1993) but failed the higher test level 3 (TL3). To perform per design, the post should 

separate from the beam guardrail during the impact by failing the bolt attaching the 

beam to the post. By separating the post from the rail, the vehicle continues to interact 

with the rail and to be redirected. This failure mechanism can occur also when the snow 
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and ice are plowed against the barrier causing the rail to fall down which requires an 

immediate repair. When the rail is mounted on wood posts, the failure mechanism is not 

usually successful and the post can pull the guardrail to the ground during the impact 

which can result in the vehicle overriding the guardrail system. For this reason, the weak 

wood post is not recommended. In general, the poor performance of this system in full 

crash testing during the impact with a pickup truck raised a concern about the use of this 

system on highways. 

 

 

Figure 1.1: Weak-post W beam guardrail (Ray and McGinnis 1997) 

 

1.1.2 Strong-post guardrail system 

The strong-post guardrail system consists of a W beam or wood post embedded in the 

soil to a specific depth and holding a guardrail fence separated from the post by a 

separator called blockout. This blockout is either a W-shape beam or could be of wood 
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with a rectangular cross section as shown in Figure 1.2. M14 bolt attaches the post to 

the guardrail. A variety of posts and blockouts for the strong-post W beam are being 

used in Canada and in the USA. However, the most common posts are the W 150x12.6 

steel beams and the rectangular wood of 140 x 190 mm cross-section. The posts are 

spaced by 1905 mm and the height of the post above the ground is 730 mm. The strong-

post W beam has become the most popular guardrail system because of its relatively 

low cost. They could be implemented when very limited room is available.  

 

 

Figure 1.2: Strong-post W beam guardrail (Ray and McGinnis 1997) 
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Many full crash tests have been conducted to evaluate the crashworthiness of the 

strong-post with different options. One major concern that was noticed in most of the 

tests is the snagging of the wheel with the post that causes a severe damage to the front 

tire and the suspension of the impacted side. The test reported by Mak and Menges 

(1994) shows that a pickup truck rolls over after wheel snagging and the barrier did not 

meet the level TL3 of service. The failure mechanism of the W beam occurs because of 

the twisting of the post around the vertical axis then bending to the ground. In other 

tests, the wood blockout failed during the impact and the guardrail impacted directly the 

edge of the post which caused the complete shear and the failure of the guardrail. As a 

result, the pickup truck passed through the guardrail system. For the case of the wood 

post, tests show that posts rotated in the soil surrounding the post pushing the soil in the 

front of the post causing the soil failure. If the soil is dense, the post could fracture under 

ground level at the location of maximum bending moment. The soil conditions are very 

important factors and any variation on these parameters results in different post 

reactions. Patzner et al., (1999) found that the maximum guardrail deflection was 

relatively high for soils with a lower effective unit weight and as the effective unit weight 

of the soil initially increased, the maximum deflection decreased.  

 

The strong-post should be installed with enough length to protect the vehicles from 

localized hazardous situations (trees, culverts, etc). If they are short, the guardrail 

systems could not offer adequate resistance and can become even more hazardous 

themselves. In fact, full scale tests conducted by the State of California showed that the 

unanchored guardrail less than 19 m long was ineffective to redirect a 2000 kg large 

passenger vehicle travelling at 100 km/h and 25o angle of impact (Ray and McGinnis, 

1997).    

 

1.1.3 History of the crash test requirements for the guardrail system 

Since the installation of guardrails in the early fifties of the last century, the guardrail 

installation and testing procedures are constantly re-evaluated to accommodate the 

change in vehicle fleet and operating conditions. In 1958, California and General Motors 

conducted a series of full crash tests to assess the performance of the existing guardrail. 
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These tests put the first stone for the procedures of the full-scale vehicle crash testing of 

guardrails that was first published in 1962 (Highway Research Circular 482). This 

procedure was a one-page document where the vehicle mass, impact speed, and 

approach angle for the crash tests were specified. Circular 482 made the first step to 

measure the barrier performance and standardize the testing procedures.  

 

In 1974, National Cooperative Highway Research Program (NCHRP) published the 

second report entitled “Recommended Procedures for Vehicle Crash Testing of Highway 

Appurtenances," to address the gaps that were not covered in Circular 482. The 16-page 

report, called Report 153, was based on technical input from individuals and agencies. In 

1987, the American Association of State Highway and Transportation Officials 

(AASHTO) recommended to update Report 230 (Michie, 1981) AASHTO recognized the 

drastic changes in the vehicle fleet, the emergence of many new barrier designs in 

service at highways, the promulgation of new policies requiring the use of safety belts, 

the increasing interest in matching safety performance to levels of roadway utilization 

and the huge advances in computer simulation and other evaluation methods. NCHRP 

Report 350 (Ross et al., 1993) was published to present a comprehensive update and 

revision of the procedures for safety performance evaluation. It recognized that the 

larger passenger sedan is not present in the vehicle population. As reported in Report 

350, the changes implemented with regards to Report 230 are as follows: 

 

1. The report adopted the metric units in anticipation of the U.S. conversion to SI units of 

measurement. Hard conversions were made in the update process, which will alter the 

mass, speeds, and tolerances used in testing.  

 

2. It provides a wider range of test procedure to permit safety performance evaluations 

for a wider range of barriers, terminals, crash cushions, breakaway support structures 

and utility poles, truck-mounted attenuators, and work zone traffic control devices. 

 

3. It uses a 3/4-ton pickup truck as the standard test vehicle in place of the 4500-lb 

passenger car to reflect the fact that almost one-quarter of the passenger vehicles on 

U.S. roads are in the "light truck" category. This change was made recognizing the 
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differences in wheel bases, bumper heights, body stiffness and structure, front 

overhang, and other vehicular design factors. 

 

4. Report 350 defines other supplemental test vehicles including a mini-compact 

passenger car (700 kg), single-unit cargo trucks (8000 kg), and tractor-trailer vehicles 

(36,000 kg) to provide the basis for optional testing to meet higher performance levels. 

 

5. Report 350 includes a broader range of tests for each category of safety feature to 

provide a uniform basis for establishing warrants for the application of roadside safety 

hardware that consider the levels of use of the roadway facility. Six basic test levels are 

defined for the various classes of roadside safety features, and a number of optional test 

levels are defined to provide the basis for safety evaluations to support more or less 

stringent performance criteria. 

 

6. The report includes guidelines for the selection of the critical impact point for crash 

tests on redirecting-type safety hardware. 

 

7. It provides information related to enhanced measurement techniques related to 

occupant risk and it incorporates guidelines for device installation and test 

instrumentation. 

 

8. The three basic evaluation criteria categories remain the same and are defined as:  

a- The occupant risk criterion retains the use of the flail space model, but defines 

preferred and maximum levels of occupant impact velocity and acceleration.  

b- The lateral occupant impact velocity limits were altered to be equivalent to 

longitudinal limits to reflect recent research findings.  

c- The redirection criteria were altered to incorporate a limiting 12 m/s vehicular 

velocity change requirement in the longitudinal direction. 

 

9. Report 350 reflects a critical review of methods and technologies for safety-

performance evaluation, such as surrogate test vehicles and computer simulations, and 

incorporates state-of-the-art methods in the procedures. 

 

10. Report 350 provides optional criteria, established by others, for side impact testing. 
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1.1.4. Design requirements of the guardrail post 

 

Strong-post used in longitudinal traffic barriers could be designed and tested for one of 

six "test levels" as defined in Report 350 guidelines. A test level is defined by impact 

conditions (speed and angle of approach) and the type of test vehicle (ranging in size 

from a small car to a fully loaded tractor-trailer truck). In general the lower test levels are 

used to evaluate the feature designed and implemented on a low service level roadway 

such as a rural collector or local road while the higher test levels are applicable to 

evaluate the features used on higher service level roadways or at locations that require a 

special high-performance barrier (Ross et al., 1993). Test level 3 (TL-3) represents the 

basic level to which most existing hardware is designed to that level.   

 

As shown in Table 1.3, Test level 3 TL-3, recommends two tests for the evaluation of the 

guardrail system, Test 3-10 and Test 3-11. Test 3-10 consists of 820 kg passenger 

vehicle travelling at a nominal speed of 100 km/h and impacting the guardrail barrier at 

an angle of 20o while Test TL 3-11, consists of 2000 kg, pickup truck, travelling at a 

speed of 100 km/h and impacting the guardrail barrier at angle of 25o. The two tests 

cover the impact of most of the vehicle fleet with the guardrail system. The tests 

recommended are based on past experience and accidents data. It is obvious that TL3-

11 is harder to achieve because of the level of energy involved and the higher center of 

gravity of the vehicle. 

 

1.1.5. Full crash testing and simulations 

The objective of roadside safety engineers is to design the safest economical hardware 

able to absorb large amounts of energy and safely contain the impacted vehicle. 

Analyzing such system is complex because it involves dynamic loading, very large 

deformations, material failure and nonlinear elastic material. For all these conditions, it is 

impossible to derive the solution of the problem in a closed form. To solve the problem of 

designing roadside hardware, two established methods are often utilized: component or 

full scale testing and the nonlinear explicit finite element method (Bendidi, 2002) 
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Table 1.3: Test matrix for longitudinal barriers (Ross et al., 1993) 

 

 

 

The full scale and the component method remains the traditional design method that has 

been used for decades. It is an expensive method that needs extensive instrumentation 

and careful handling if dummies are incorporated. The main drawback of this method is 

that many parameters cannot be controlled before and during the test. These include the 

point of the impact, the contact between the post and the soil, the speed and angle of 

impact, failure of the wiring, bad channels…etc 

The literature dealing with the highway guardrail impact is very rich and diversified. The 

following review is a survey of the test conducted in the roadside safety area. 
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Bronstad and Burket (1971) described five full-scale crash tests performed in 1968 for 

the Ohio Department of Highways with a timber weak-post W-beam system. The 

purpose of these tests was to determine whether the system met the then-current crash 

test requirements. This system used timber posts connected to W-beam a guardrail. A 

full-size, 2000-kg, four-door sedan, impacted the system at a speed of 110 km/h and an 

impact angle of 25o. The post-rail connection in the test consisted of a 7.94 mm diameter 

bolt with front and rear washers and a nut behind the post. The connection was 

supposed to fail due to shearing the bolt but the bolt and rear washer were instead 

pulled through the post material. Even though the vehicle was redirected, loss of rail 

height and lack of sufficient post strength allowed it to straddle the rail which contributed 

to multiple rollovers. 

 

Ivey et al., (1986) performed full-scale crash tests with conventional W-beam and thrie-

beam guardrail systems that were impacted by heavy vehicles. Two crash tests were 

conduct with a bus at different speeds, 89.5 km/hr and 96.0 km/h and an impact angle of 

13.5o and 15.0o respectively. The bus weight was kept equal to 9081 kg for both tests. It 

was concluded that the two tests failed: the first test resulted in 90o roll over and the 

second test resulted in a penetration into the guardrail. Few countermeasures were 

introduced to the guardrail design consisting in raising the height of the barrier, 

increasing the blockout depth to 360 mm, increasing the depth of the post embedment 

and changing the rail to a thrie-beam guardrail. The modified guardrail was retested 

under the same loading condition and the results were considered satisfactory and no 

snagging was observed.  

 

Elvik (1995) reported the results of the analysis of 32 evaluation studies that have 

qualified the effect of guardrails and crash cushions on the probability and severity of 

accidents. His analysis showed that the guardrails reduce the number of accident fatality 

and their severity. This result applies both to new installations and to replacements. 

Results showed that the guardrails reduce the chance of sustaining a fatal injury by 

about 45%.  

 



 

                 

14 

Rosson et. al., (1996) assessed guardrail strengthening techniques by conducting crash 

tests on W-beam guardrails strengthened by nesting the W-beam and reducing the post 

spacing by half. The test results found that nesting the W-beam provided little benefit, 

whereas reducing the post spacing increased the guardrail performance considerably. 

Similar results were obtained in the crash tests performed in Japan by Seo et al., (1995). 

The authors modified the existing guardrails, to reduce the injury severity in high-speed 

collisions. They observed that the installed guardrails resulted in high injury severity due 

to the increased mileage of the national expressways and the increased speed limits 

adopted on these highways. The guardrails were modified by strengthening the posts, 

replacing the weak-posts by strong-posts and reducing the post spacing. The modified 

guardrails were found to perform well and respond favourably in high-speed impact 

collisions. 

 

Wright and Ray (1996) described the techniques for modeling steel materials in LS-

DYNA3D (Hallquist, 2006) software used to simulate guardrail materials. To validate the 

finite element model, quasi static laboratory tension tests were performed on guardrail 

steel coupons and compared to the results of finite element solutions. Two different 

material models were retained for modeling the guardrail steel, the kinematic/isotropic 

elastic-plastic material model (Type 3) and the rate-dependent tabular isotropic elastic-

plastic material model (Type 24). The authors came to the conclusion that “material 

Types 3 and 24 are not adequate for modeling strain rate effects for AASHTO M-180 

guardrail” and therefore, they did not include strain-rate effects in the models.  

 

Shukla (1997) investigated the quasi-static tension test for roadside hardware material 

using LS_DYNA3D and compared with the standard laboratory tests. The author 

simulated the soil with different material models. He showed that the material 

“Piecewise-linear-plasticity” model 24 is the most computationally but the most accurate 

as comparable to the test data.   

Plaxico et al., (1998) investigated the post-soil interaction. They discussed the finite 

element modeling of wooden guardrail posts and the interaction with the soil during 

impact events using the nonlinear finite element program LS-DYNA3D. They found that 
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their finite element results are comparable to pendulum tests. The post-soil interaction 

was modeled using the subgrade reaction approach which involves an array of nonlinear 

springs attached along the length of the post below grade. 

 

Kilareski and al., (1999) reported the results of three full-scale crash tests with the G2-

system performed in 1998 by the Pennsylvania Transportation Institute. These tests 

were at NCHRP Report 350 test level-3 conditions (i.e., a 2000-kg pickup truck, 100 

km/h, and 25o) The objective of the tests was to determine whether the weak-post W-

beam guardrail system meet the Report 350 level-3 requirements. The first two tests did 

not conform to test level-3 since the impact speed was much lower than the required 100 

km/h. The third test, however, did conform to test level-3 conditions. The test vehicle 

impacted the system between post 5 and 6. The rail ruptured at the splice at post 7 and 

the vehicle penetrated the barrier. The system performance was poor with a rail splice 

rupture occurring at the splice on post 7. The rupture occurred approximately 0.228s 

after impact and occurred when the right front corner of the test vehicle was between 

post 8 and 9. The maximum deflection was 1.5 m just before panel rupture. 

 

Reid (1999) developed a new post design of mailbox using nonlinear finite element 

analysis. The new breakaway concept consisted of modifying the existing anchor bolt 

configuration to include bolts fabricated from high strength and a lower percentage 

elongation. A Honda Civic full car model was used to impact the system.  The soil was 

assumed to be rigid. 

 

Bendidi (2002) evaluated the crash performance of G4-1S guardrail system with two 

different designs: post with routed and non-routed blockout. He developed a finite 

element model including the post, the soil, the W-beam and the impactor. The model 

was validated in the component level against available static and dynamic tests of a 

single I-beam embedded in gray clay soil. The full model was impacted by a pickup truck 

traveling at 100 km/h with 25o impact angle. LS-DYNA (Hallquist, 2006) was used as 

finite element code to perform the simulation. He showed that roll angles are greater for 

the guardrail system with non-routed than with the routed blockout.  
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Kennedy et al., (2004) evaluated the performance of new post and W beam system 

under impact conditions consistent with report 350 using finite element simulation. A 

finite element model of the guardrail was developed and the non-linear finite element 

program LS-DYNA was used to impact a 2000-kg pickup truck into the system. The soil 

was modeled in the analysis using the horizontal subgrade modulus approach in which 

the horizontal subgrade modulus was used to determine the properties of the nonlinear 

springs that simulate the soil resistance. The results of their analysis indicated that the 

system would safely contain and redirect the vehicle. 

 

Faller et al., (2004) conducted a full crash test for the development of the Midwest 

Guardrail System in order to provide increased safety for higher center-of-mass vehicles, 

provide reasonable barrier height tolerances, and reduce the potential for W-beam 

rupture. They evaluated guardrail stiffening and determined appropriate guardrail 

placement guidelines for shielding rigid hazards using full-, half-, and quarter-post 

spacing designs. They developed a guardrail-to-curb barrier combination that provides 

increased hydraulic capacity and placement farther in front of the rail face to reduce the 

frequency of snow plow damage to guardrails. All development and testing of the 

Midwest Guardrail System was conducted in accordance with Test Level 3 (TL-3) safety 

performance criteria set forth in NCHRP (Ross et al., 1993). The research study also 

included dynamic bogie testing on steel posts placed at various embedment depths and 

computer simulation modeling, using BARRIER VII software program, to analyze and 

predict dynamic guardrail performance. Recommendations for the placement of the 

original Midwest Guardrail System as well as its stiffened variations were also made. 

 

Wu and Thompson (2007): investigated the interaction of gravel and post through 

experiments and computer simulations. In the experimental research, the force applied 

directly to the post was measured to obtain the strength of the single post anchored in 

gravel. Two corridors were formed from the measured data of the quasi-static and 

dynamic tests. When a test was repeated using an identical post, the measured 

resistance force showed some differences probably because the degree of compaction 

of gravel around the post was not exactly the same. A parametric study was 

subsequently conducted to investigate the influence of the gravel stiffness on the soil–
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post interaction through computer simulations using LS-DYNA. The numerical results 

showed that the LS-DYNA soil and concrete model and the Cowper–Symonds steel 

model effectively captured the soil–post interaction since the calculated strength of the 

post agreed with the range of the test data. The input parameters for the soil and 

concrete material model were recommended for roadside gravel in crash analyses. 

 

1.2 Summary and objectives of the current study 

From the literature study it was found that many static tests have been conducted on 

posts embedded in the soil. The loading was in general very slow to assume that lateral 

loading was static. However, no correlation has been established between the static and 

the dynamic load as function of the soil stiffness and no study has been conducted to 

evaluate the maximum static load as function of the soil parameters and to develop a 

theoretical formulation for laterally loaded posts embedded in either cohesionless or 

cohesive soil under static conditions. 

 

The literature review shows increasing use of the finite element method. In fact, the 

impact simulation using the explicit nonlinear finite element code is becoming an 

effective tool in the stages of design and validation in the roadside area. The prediction 

accuracy of these models depends upon the inputs. Some work has been performed to 

study the interaction of the soil with the guardrail post on component and full scale 

levels. However, the model developed presented many limitations such as the absence 

of the soil inertia and soil damping when the subgrade model is used. 

To contribute to fill these gaps, the major contribution of this dissertation research is 

expected to help engineers in the roadside safety area to:   

 

- Understand the interaction of the guardrail post with the surrounding soil during 

static dynamic load.  

- Develop theoretical formulation for laterally loaded posts embedded in 

cohesionless soil under static condition. 
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- Develop a finite element model that encompasses all the soil parameters namely: 

stiffness, damping and inertia effects and able to predict accurately the dynamic 

tests.  

- To perform finite element simulation to understand the contribution of the 

different parameters in the post response.   

- To use the results of the parametric studies to develop a guardrail system, using 

crushable spacer offering better performance during the impact with a vehicle.   

 

1.3. Organization of the dissertation 

The following outlines the organization of this dissertation. 

Chapter I: Introduction provided a brief description on the importance of research on 

the area of roadside safety, a summary of the procedure and a description of different 

guardrail implemented in the highways in Canada and in USA. It also summarizes the 

literature review that les to the objectives of this thesis. 

 

Chapter II: Behaviour of Guardrail posts subjected to static lateral load. This 

chapter summarizes the computation of the ultimate load for different methods available 

in the geotechnical field. A new method based on the evaluation of the passive lateral 

earth pressure in 3D is developed and compared to field tests.  

 

Chapter III: Analysis of laterally impacted guardrail posts. In this chapter, a new 

model for guardrail posts embedded in soil and impacted dynamically was developed 

including all relevant soil components such as the soil stiffness, the soil damping and the 

soil mass involved in the dynamic impact. The two conventional methods for simulating 

the guardrail post were analyzed. The mass of the soil and the damping effect were 

introduced in the subgrade method to simulate more accurately the load deflection curve 

of the impactor. The approach developed initially for cohesionless soil was applied to the 

case of cohesive soil 
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Chapter IV: Parametric study of the post guardrail embedded in soil. In this chapter,   

the effects of the different test parameters on the interaction of the post and soil were 

evaluated. Five parameters were evaluated and analyzed, namely,: impactor speed, 

impactor mass, the post embedment depth, the blockout crushability and the soil 

density. A finite element model of a guardrail post was used to conduct the study which 

suggested design guidelines to improve the soil-post interaction for the full-scale crash 

test. Design of Experiment (DoE), a powerful statistical technique for the study of 

multiple variables simultaneously, was conducted to investigate the interaction between 

the different parameters and the contribution of each parameter to the guardrail post 

reaction. Taguchi method, extensively applied in industry, was selected among the 

various DoE methods available in practice to study the effects of experimental 

parameters.    

 

Chapter V: Full-Scale finite element model development and analysis. The main 

objective of this chapter was to implement the conclusions and recommendations of 

chapter III and the parametric and the design of experiment study to build a full-crash 

test model of a vehicle travelling at 100 km/h and impacting the guardrail with an angle 

of 25o as defined by NCHRP Report 350. A finite element model of the C1500 Chevrolet 

pickup truck was built and correlated dynamic frontal crash test conducted by NHTSA 

(National Highway Transport Safety Administration). 

 

Chapter VI: Conclusions and recommendations. This chapter discussed the 

conclusions of the present research and presented recommendations for future work. 
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Chapter II 

Behavior of Guardrail Posts Subjected to Static Lateral  

Load 

 

2.1. Introduction 

To understand the interaction between the guardrail post and the soil, researchers 

conducted experimental tests and computer simulations for both quasi-static and 

dynamic loading cases. These tests measured different parameters, such as the impact 

force and the post displacement. Many impact tests have been conducted on the 

guardrail system to determine its efficiency. It was found that the energy dissipation of 

the system and the ability to redirect an errant vehicle are influenced primarily by the 

soil-post interaction (Dewey, 1982). The post of the guardrail system embedded in the 

soil and impacted laterally by an impactor could be analyzed as a conventional problem 

of a pile embedded in the soil and loaded laterally. During the last decades, numerous 

methods have been proposed to analyze the problem of laterally loaded piles. These 

methods include simple approaches, using design charts, to more complex and 

sophisticated models. Such methods are very diverse but could be grouped into the 

following categories: 

1- Linear elastic procedure 

2- The subgrade method 

3- The P-Y method 

4- Limit analysis  

5- The Finite element method 

 

Most of these methods have been developed for the geotechnical problems where the 

failure criteria occur for small deformations. In the Canadian engineering practice, three 

failure modes of the vertical pile loaded horizontally could be defined (Canadian 

Geotechnical Society 2006), namely: 

 

1- The capacity of the soil may be exceeded, resulting in a large horizontal 

movement of the piles and failure of the foundation. 
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2- The bending moment and/or shear may generate excessive bending or shear 

stresses in the pile material, resulting in a structural failure of the piles and 

3- The deflections of the pile heads may be too large to be compatible with the 

superstructure. 

 

These conditions of failure are apparently not applicable to the case of the guardrail post 

loaded laterally where the post is not designed to hold a structure. The failure criteria are 

not related to the maximum displacement of the pile/post or to the capacity of the soil but 

to the capacity of the guardrail system to redirect errant vehicles. The problem of the 

post embedded in the soil is not similar to the conventional problem of the pile. Two 

types of posts are commonly used in highways namely: the circular wood post and the 

W152x13.5 steel beam. The wood post has an approximate diameter of 180 mm, an 

overall length of 1750 mm and an embedment length of 965 mm. The W beam has a 

length of 1830 mm and an embedment length of 1100 mm.  

 

Despite the abundant work conducted to evaluate the soil-pile interaction in the static 

and dynamic domain, very limited work has been conducted to study the guardrail post-

soil interaction with the conventional geotechnical method or to develop new analytical 

models for the laterally loaded post. In this Chapter, different conventional methods 

available in the literature to calculate the ultimate load of a horizontally loaded pile are 

reviewed and discussed to identify their limitations when applied to the special case of 

guardrail post. As a second step, a new analytical model is developed to analyze the 

guardrail post subjected to lateral load. The new model, based on the Rankine passive 

earth pressure, assumes a simplified soil pressure distribution along the post length. It 

takes into account the three-dimensional (3D) analyses of passive earth pressure, which 

is more suitable for the case of the guardrail post embedded in soil. The results are 

compared to data collected from the literature.  

 

In order to review such conventional methods, results of static and dynamic tests of the 

soil-post interaction for a cohesionless soil were collected from the literature and 

summarized in Table 2.1. The embedment of the post, the height of the applied load, the 

speed of the impactor and the maximum lateral load are collected for the tests. For static 

tests, the post is pulled laterally with very low speed. 
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23 

2.2. Literature Survey 

2.2.1. Linear elastic procedure 

Poulos (1971, 1974) published a general solution for a single pile loaded laterally within 

an elastic continuum. The pile is assumed to be a thin vertical strip of width d, length L 

and a constant flexibility EpIp. The pile is divided into (n+1) elements as shown in Figure 

2.1. The soil is assumed to be homogeneous, isotropic, incompressible and elastic, and 

applying a constant, uniform pressure on the pile. The Poisson’s ratio, νs, was 0.5 and it 

was assumed to have relatively little influence on the solution. Poulos (1971) published 

the solution for two cases namely: (i) the uniform soil, where the Young's modulus, Es, is 

constant and (ii) the non-uniform soil, where Young's modulus linearly increases with the 

depth. In the analysis, soil and pile displacements are evaluated and equated at the 

elements’ centers except for the two extreme elements, for which displacements are 

calculated at the top and the tip of the pile.  

 

Figure 2.1: (a) Stress acting on pile, (b) Soil adjacent to pile 

 

The soil displacements along the post may be expressed as:   

Equation Chapter 2 Section 1Equation Section 2 

 { }s s

s

d
y [I ]{p}

E
=    (2.1) 
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where {ys} and {p} are n+1 column vectors of the horizontal soil displacement and 

horizontal loading between soil and pile, respectively; [Is] is an (n+1)×(n+1) matrix of soil 

displacement-influence factors and d is the width pile. 

 

For the free-head or unrestrained pile, the displacement of the pile is calculated based 

on the differential equation for bending of a thin beam and the appropriate boundary 

conditions at the top and the tip of the pile. Poulos (1971) derived the following equation 

for the pile displacement at the centre of the element: 

  

 { }
4

p p p p

p4 4

E I n E I
p [D]{y } {A}

d L d L
− = +  (2.2) 

 

where  {yp } is a column vector of pile displacement, [D] is matrix of finite difference 

coefficients, {A} is a vector of vertical load, Ep is the modulus of elasticity of the pile, Ip is 

the moment of inertia of the pile, L is the length of the pile and d is the pile width. 

 

By equating the soil horizontal displacement, ys, and the pile displacements, yp, at each 

of these points and using appropriate equations of equilibrium, the horizontal 

displacement could be determined at each element as a function of the pile and soil 

properties.  

 

1) Soils having a uniform modulus, Es 

Poulos published the solution for the case of free-head floating pile, loaded horizontally 

by a force H at distance e. The soil is assumed uniform. The groundline displacement, y, 

is expressed as: 

 

 

H M
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E L L
y

F

ρ ρ

ρ

 
+ 

 =  (2.3) 

where H is the applied horizontal load, e is the load eccentricity (i.e.: height of the load 

above the ground), IρH and IρM are the elastic influence factors for a displacement caused 

by the horizontal load and the moment, respectively. For a constant Es, they are 
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determined from Figures 2.2 and 2.3. Fρ is the yield displacement factor determined by 

Figure 2.4 as function of H/Hu where Hu is the ultimate horizontal loading. 

 

The elastic influence factors, IρH and IρM defined in Equation (2.3), are functions of the 

ratio e/L and the pile flexibility factor, kR, defined as: 

 

 
p p

R 4

s

E I
k

E L
=  (2.4) 

 

The ultimate load is calculated as a function of the two expression the ratio e/L and 

Hu/(Pu d L) as shown in Figure 2.5 where Pu was defined previously as the ultimate 

horizontal load, Pu is the ultimate soil resistance at the tip of the pile and e is the height 

above the ground level where the force is applied. 

 

Figure 2.2: Iρh Value of free head flotting pile for a constant soil modulus (Poulos and 

Davis 1980) 



 

                 

26 

 

Figure 2.3: IρM and Iθh Values of free head flotting pile for a constant soil modulus 

(Poulos and Davis 1980) 

  

Figure 2.4: Yield displacment factor Fρ of free head flotting pile for a constant soil 

modulus Fρ and Py (Poulos and Davis 1980) 
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Figure 2.5: Ultimate Lateral resistance of unrestrained rigid pile  

(Poulos and Davis 1980) 

 

2) Soils with linearly increasing modulus 

Poulos (1974) published a similar solution for the free-head pile when the modulus of 

elasticity increases as function of depth. The deflection at the groundline is defined by: 
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+ 
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where H is the applied horizontal load, e is the height of the load above the ground, I’ρH 

and I’ρM are the elastic influence factors for a displacement caused by the horizontal load 

and the moment, respectively. For a varying modulus, Es, they are defined from Figures 

2.6 and 2.7. F’ρ is the yield displacement factor determined by Figure 2.8. The rate of 

increase of Es with depth is denoted Nh. 
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The elastic influence factors are functions of the ratio e/L and the pile flexibility factor, 

KN, defined as: 

 

 
p p

N 5

h

E I
k

N L
=  (2.6) 

 

The ultimate load is calculated as a function of the expression Hu/(Pu d L) and the ratio 

e/L as shown in Figure 2.5. 

 

  

Figure 2.6: I'ρM and I'θh Value of free head flotting pile for a linearly varying soil modulus 

(Poulos and Davis 1980) 
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Figure 2.7: I'ρh Value of free head flotting pile for a linearly varying soil modulus (Poulos 

and Davis 1980) 

 

Figure 2.8: Yield displacment factor F of free head flotting pile for a constant soil 

modulus F'ρ and Py (Poulos and Davis 1980) 
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3) Illustrative example of Poulos’ solution applied to a guardrail post 

Dewey (1982) conducted a static test with a post embedded 1117 mm in sand. The force 

applied to the post at a height of 533.4 mm above the ground level. The sand is 

assumed to have no cohesion c’ = 0 and a friction angle φ = 45o. The density of the soil 

is 19.2 kg/m3. The static test recorded a maximum load of 17.2 kN as shown in Table 

2.1. For the cohesionless soil, the Young modulus, Es, is assumed to vary linearly with 

depth. Nh is equal to 17500 kN/m3 (56 tons/ft3)  

The moment of inertia I of the W 152x13.5 post is 685.5 10-8 m4 

The Young modulus Ep of the steel post is approximately 210 GPa. 

The flexural rigidity of the post is EI = 1.438x106 Nm2 

From Equation 2.6, the flexibility factor of the post kN = 1.438x106/1.75 108 x (1.117)5  

kN = 0.047 

L/d = 1.117/0.100 = 11.17  

e/L = 0.533 / 1.117 = 0.477 

 

I’ρH and I’ρM  can be determined from Figure 2.6 and Figure 2.7 and are found to be 

 

I’ρH = 15,     I’ρM = 20 

 

From Figure 2.5 one can find that  

 u

u

H
0.15

P d L
=  

 

Pu  is calculated as suggested by the Broms’ method, Pu = 3kp σ’v (Broms, 1964) 

2 2
uP 3 x tan (45 45 / 2)x 0.558 x 19.2 187 kN / m= + =  

The ultimate force would be uH 0.15 x 187 x 0.1x 1.117 3.13 kN= =  

 

The results show a significant discrepancy between the actual static test result (17.2 kN) 

and the prediction (3.13 kN) from the elastic method. In fact, this method seems to have 

the advantage of taking into account the soil continuity. However, it has many 

disadvantages. One basic disadvantage is that it cannot be easily extended to a 

stratified soil medium. The soil is assumed to be homogeneous and isotropic, which is 
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not the case most of the time.  The method has considered a linearly varying modulus of 

elasticity which shows large discrepancy. Moreover, the case of the guardrail embedded 

in the soil presents very large deflections, which makes unrealistic assumption of the 

linear elastic behavior of the soil. 

 

2.2.2.  Method of subgrade reaction 

The theory of the subgrade reaction was expanded by Terzaghi (1955) where the 

problem of a pile embedded in the soil is simulated as a one dimensional beam having a 

bending stiffness EI and a length L and resting on a flexible foundation. The 

determination of the modulus of subgrade reaction is generally carried out by one the 

following methods (Poulos and Davis, 1980): 

 

1-Full-scale lateral-loading on a pile 

2- Plate loading tests 

3- Empirical correlations with other soil properties  

 

The use of an instrumented laterally loaded pile is the most direct and straightforward 

method to measure the pressure applied to pile and its deflection. This method is precise 

but expensive and time-consuming. The use of the plate loading test is an alternative of 

the full-scale testing which consists of loading plate then the load deflection curve is 

determined from the test result. This method has been discussed by Terzaghi (1955) 

which outlined that the main problem with this method is the extrapolation of the result of 

a plate to a pile. Terzaghi noticed that the value of the subgrade modulus depends only 

on the elastic properties of the soil and on the dimensions of the contact area. He 

suggested the following expression for the vertical subgrade coefficient:  

 

 

2
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 (2.7) 

 

where kv1 is the coefficient of the vertical reaction for a square plate having a width of 

30.48 cm (1 ft) as presented in Table 2.2 for different sand types and B is width of the 

pile.  
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Table 2.2: Proposed values of kv1 in tons/ft3 for 1-ft square plate or 1-ft wide beams 

resting on sand (Terzaghi, 1955) 

 

Relative Density of sand Loose Medium Dense 

Dry or moist sand 

Submerged sand 

40 

20 

130 

80 

500 

300 

 

The coefficient of the vertical subgrade reaction, Ks, is related to the horizontal subgrade 

Kv. Terzaghi (1955) assumed that the modulus of elasticity depends only on the 

overburden pressure and the density of the sand and showed that:  

 

 
h

A
n

1.35

γ
=  (2.8) 

where γ  is the soil density and A is a factor shown in the Table 2.3 

 

The coefficient of the horizontal subgrade reaction, kh, for a pile embedded in 

cohesionless media is found to be proportional to the depth, z, the constant of horizontal 

subgrade reaction, nh, on the width of the pile, B, and on the effective unit weight of the 

sand (Terzaghi, 1955). Typical values of the horizontal subgrade reaction are shown in 

Table 2.3. 

 

 
h h

z
k n

B
=  (2.9) 

 

Table 2.3: Values of the Constant of Horizontal Subgrade Reaction, nh, in tons/ft3 for a 

pile 1-ft Wide in sand (Terzaghi, 1955) 

Relative Density of sand Loose Medium Dense 

Adopted value of A 

nh for dry or moist sand 

nh for submerged sand 

200 

7 

4 

600 

21 

14 

1500 

56 

34 
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The determination of the subgrade modulus is used to solve the differential equation of 

the beam deflection expressed as: 

   

 
4

p p 4

d y
E I p

d x
=  (2.10) 

 

where y is the lateral displacement of the beam, Ep is the Young modulus of the beam, 

Ip is the moment of inertia of the beam, x is the distance along the beam, and p is the soil 

reaction force per unit length of the beam. 

 

The soil subgrade modulus, kh, is such that:  

 

 
h

p k y= −  (2.11) 

 

Combining Equations (2.10) and (2.11), the differential equation of the beam deflection 

curve is expressed as: 

 
4

p p h4

d y
E I k y 0

d x
+ =  (2.12) 

 

The solution of Equation (2.12) can be obtained either analytically or numerically. The 

analytical solution is available for the case of constant kh along the pile. For other kh 

distributions, solutions are conveniently obtained by the finite difference method. Several 

distributions have been employed. The most widely used was developed by Palmer and 

Thompson (1948) and has the form:  

 

n

h T

z
k k

L

 
=  

 
 (2.13) 

 

where kT is the value of kh at the pile tip and n is a positive empirical index. 

The coefficient n is zero for the clay, i.e. the subgrade modulus is constant along the 

depth of the pile whereas for cohesionless soil, n =1, that is, the subgrade modulus 

increases linearly with the depth (Poulos and Davis, 1980). No convenient closed form 
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solution is available for the cohesionless soil. However, Barber (1953) presented an 

approximate solution for a rigid pile as follows: 

 
2
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Or the force could be derived from Equation 2.14 a 
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 (2.15) 

Illustrative example 

The example used with the elastic approach to calculate the maximum load is 

reconsidered with the subgrade method. The test was conducted by Dewey (1982) using 

static load and the post was embedded 1117.6 mm in sand. The force applied at the top 

is 533.4 mm above ground level. The sand had c’ = 0 and φ’ = 45o. The density of the 

soil was 19.2 kN/m3 and the maximum load recorded was 17.3 kN. 

As presented before, the critical parameters are: 

e/L = 0.477 

nh    = 56 tons/ft3 

L    = 1.117 m 

 

Equation (2. 15) is applicable in the linear portion of the load defection curve where the 

pile head deflection is small. For a deflection of 10 mm, the force applied is therefore:  

2
(1.117 / 0.3048)

F 56 . 0.01/ 0.3048
18(1 1.33.0.477)

=
+

 = 0.84 tons = 8.35 kN. 

The results show that static test result (17.2 kN) is 2 times higher than the predicted 

force (8.35 kN) calculated for a displacement of 10 cm, considered to be above the 

elastic domain. 

 

2.2.3. The P-Y method 

When a pile or a post is loaded laterally, the soil surrounding the pile resists the applied 

force. The reaction depends on the soil parameters such as the friction angle, the 
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cohesion, in the case of the cohesionless soil; or the undrained shear strength, in the 

case of clay. The relationship between the soil pressure p and the deflection y is 

nonlinear. Taking into account this nonlinearity, McCelland and Focht (1958) developed 

the first p-y model based on the results of 0.609 m (24 in) pipe pile driven into the soil. 

The soil is modeled as a series of non-linear springs and a load deflection curve is 

defined for each spring. This method is a clear improvement over the previous model 

where the springs are considered linear.  

 

Figure 2.9 shows the concept of p-y curves. It is assumed that the pile is perfectly 

straight before the lateral loading. When the pile is driven by a lateral load with a 

displacement y, the soil reaction could be calculated by integrating the pressure around 

it. Once the set of springs is determined, the pile deflection, rotation, bending moment, 

shear and soil reaction could be determined by solving the beam equation.  

 

 

Figure 2.9: Model for pile loaded laterally with p-y curves 

 

Figure 2.9 implies that the behavior of the soil at a particular depth is independent of the 

soil behavior at other locations. Although this assumption is not strictly true, Reese and 
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Matlock (1956) stated that the experiments indicate that it is sufficiently true for practical 

purposes. The p-y curves are obtained, in general, experimentally by conducting full 

tests of piles subjected to lateral load. The pile should be instrumented with strain 

gauges that measure the strains of the pile during the test. Knowing the pile stiffness 

and pile curvature during the test, the bending moment along the pile could be 

calculated. The soil reaction curve is obtained by double differentiating the bending 

moment diagrams. The p-y curves could be determined for any combination of external 

load applied to the pile as an axial compression, lateral load or bending moment, thus 

the curves are fully nonlinear with respect to the distance x. 

 

The spring stiffness in the p-y curves is not defined only by the soil properties. It was 

found that the p-y curves are influenced by other factors, such as the pile cross-sectional 

shape and dimensions, the pile bending stiffness and pile head conditions. In fact, 

Ashour and Norris (2000), studied analytically the influence of some of these factors on 

p-y curves and found that the pile with square cross section in loose sand, dense sand 

or clay exhibited a soil-pile resistance higher than that of the circular cross section.  

Several p-y methods have been proposed in the literature to calculate the ultimate load. 

Most of these methods are derived from the tests conducted in the field on instrumented 

laterally loaded piles. Most of these methods are developed for monotonically increasing 

static load. Among the different available methods, the method of Reese et al., (1974) is 

presented for the sand in the next section.   

 

Calculations for piles in sand:  (Reese et al.,, 1974) 

A series of static and cyclic lateral load tests were performed on pipe piles driven in 

sands.  The p-y curve consists of four segments. The first portion of the curve is a linear 

segment from 0 to a defining the limit of the elastic portion. The second portion is an 

exponential variation of p with y from a to b where b is point located at 1/60 of the 

relative displacement of u/b. The third portion is a second linear range from b to c, while 

the last part is a constant resistance for displacements beyond c where c defines the 

limit of the second linear portion as shown in Figure 2.10. 

 

To build the p-y curves of a pile, the pile is divided into multiple segments. For each 

segment located at a depth z., the steps for constructing the p-y curve are as follows: 
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1- Determine the slope of the initial linear portion of the curve from the linear 

relation P k z=  where k is the linear stiffness of the soil obtained from Table 2.4  
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Figure 2.10: P-y curve proposed by Reese et al., (1974) 

 

 

Table 2.4 Representative values of k (pci) (Reese et al., 1974) 

Relative Density of sand Loose Medium Dense 

Dry or moist sand  
Submerged sand  

20 
25 

60 
90 

125 
225 

 

 

2- Determine the ultimate load as the smaller of the following equations: 

For the wedge failure: 

 

 ( ) '

max 1 2
p C z C b z= + γ  (2.16) 
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For the flow failure at depth z:  

 
'

max 3
p C b z= γ  (2.17) 

where the three constants C1, C2 and C3 are defined as: 
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tan
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tan( )

β
= − − ϕ

β − ϕ
 (2.19) 

 

 ( ) ( )4 2 8

3
C K tan tan tan 45 / 2 tan 1= ϕ β + − ϕ β −  (2.20) 

 

Where z is the depth below the ground, γ’ is the effective unit weight of the sand, Ke is 

the horizontal earth pressure coefficient chosen as 0.4 to reflect the fact that the 

surfaces of the assumed failure model are not planar, φ is the angle of internal friction, b 

is the width of the pile perpendicular to the loading direction and β is equal 45+ φ/2 

 

3- Compute the lateral resistance for the transition points c and b on the curve of 

Figure 2.10 from: 

 
b max

P A P=  (2.21) 

 
c max

P B P=  (2.22) 

where Pmax is defined from Equations (2.16) and (2.17).  

 

A and B are reduction coefficients from Figures 2.11 and 2.12, respectively, for the 

appropriate static or cyclic loading condition. The second straight line segment of the 

curve, from b to c, is established by the resistances Pb and Pc and the prescribed 

displacements of u = b/60 and 3b/30. The slope of the segment is given by 

 

 c b40(P P )
s

b

−
=  (2.23) 
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4 – Determine the exponential curve from a to b, defined by: 

 
1
nP C y=  (2.24) 

 

The parameters C, n, pa and ua of Figure 2.10 are obtained by assuming the continuity of 

the curve of the lateral resistance as a function of the relative displacement (Figure 

2.10).   

 

The p-y curves are based on the assumption that the lateral resistance p at any point on 

the pile is a function only of the lateral displacement y at that point. But since the 

displacement y must be known before the lateral resistance P can be evaluated, 

numerical iterative solutions to solve the discretized model are required. The solution 

proceeds as a succession of trials and corrections until forces and displacements are 

compatible at every node, Mosher and Dawkins (2000) 

 

Figure 2.11: Resistance reduction coefficient A as function of relative depth after Mosher 

and Dawkins (2000) 
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Figure 2.12: Resistance reduction coefficient B as function of relative depth after Mosher 

and Dawkins (2000) 

 
 

2.2.4. The ultimate capacity method 

The ultimate lateral capacity method focuses on the computation of the ultimate load 

applied to a laterally loaded pile. The method assumes that the soil around the pile 

reaches the state of plastic equilibrium. Thus, little or no additional load is required to 

produce more deformation in the soil and deflection of the pile.  

 

When the pile is moved towards the soil, the vertical stress in points A and B as shown 

in Figure 2.13 remains the same, however the lateral stress increases in point A and 

decreases in point B. The two points where the state of the stress was represented by 

the same Mohr circle have two different circles as shown in Figure 2.14. 
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P y
Pile

B A

Rankine active zone 

Rankine passive zone 

45+ φ/2
45 - φ/2

 

 

Figure 2.13: Slip planes within the soil mass at mid plane of pile (2D approximation) 

 

 

 

 

Figure 2.14: Mohr’s circles at rest, active and passive states 
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Figure 2.15: Mohr's circle of the failure envelope 

 

The condition for failure occurs when the stress reaches the failure envelope. The major 

and minor principal stresses shown in Figure 2.15 are defined as follows: 

 

 
' '

1
d OA AB OA(1 sin )σ + = + = + ϕ  (2.25) 

 
' '

3
d OA AB OA(1 sin )σ + = − = − ϕ  (2.26) 

 

 

This leads to:   

 
' '

' '

1 3 ' '

1 sin 1 sin
d 1

1 sin 1 sin

 + ϕ + ϕ
σ = σ + − 

− ϕ − ϕ 
 (2.27) 

 

Since d can be defined as: 

 

 
'

'

'

cos
d c

sin

ϕ
=

ϕ
, (2.28) 

 

 then  

σ1’ 

A 

B 

O 

 σ3’ 

d 

c’ 
φ’ 
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' '

' ' '

1 3 ' '

1 sin 1 sin
2c

1 sin 1 sin

+ ϕ + ϕ
σ = σ +

− ϕ − ϕ
 (2.29) 

or : 

 

 
' '

' ' 2 o ' o

1 3
tan 45 2c tan 45

2 2

   ϕ ϕ
σ = σ + + +   

   
 (2.30) 

 

If the cohesion c is null, the ratio of the lateral effective stress to the vertical effective 

stress is defined as: 

 

 
' ' '

2 o3

a ' '

1

1 sin
K tan 45

1 sin 2

 σ − ϕ ϕ
= = = − 

σ + ϕ  
 (2.31) 

 

Ka is also called the active lateral earth pressure coefficient. 

The passive earth pressure coefficient, Kp, and is such that: 

 

 
a

p

1
K

K
=  (2.32) 

 

1) Method of Broms (1964) 

Broms (1964) developed a method for short and long piles in cohesionless soil based on 

Rankine passive earth pressure. Broms’ method assumes that a short pile rotates about 

a centre point located close to the lower end of the pile. Within this approach the pile is 

assumed to deflect laterally, mobilizing the full passive resistance along the entire pile 

and reach failure. For short piles such as the case of highway posts, the post rotates as 

shown in Figure 2.16. The ultimate soil capacity is defiend by 

 

 
u p

P C z B Kϕ= γ  (2.33) 

 

where γ is the unit density of the soil, z is the depth of soil, Kp is the Rankine passive 

pressure coefficient defined as a function of the friction angle, 2 o

p
K tan (45 / 2)= + ϕ and 
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φ is the angle of friction. Cφ is a coeficient to account for the three dimensionnal effect of 

the failure wedge in the front of the pile. Broms assumed that Cφ = 3. 

 

 

 

Figure 2.16: Deflection load, shear and moment diagrams for a rigid pile in sand with 

unrestrained head displacement  

 

 

The curve describing the soil interaction with the post is shown in Figure 2.16. The 

equilibrium of the moments at the bottom of the pile is expressed as: 

 

 ( )u p

L L
P (e L) 3 B K L

2 3
+ = γ  (2.34) 

 
The value of the ultimate force Pu is determined as: 

 

3

p

u

B K L
P

2(e L)

γ
=

+
 (2.35) 

 
Where e is the height at which the force is applied to the post above the ground. 
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Illustrative example 

The same example used for the cohesionless soil conducted by Dewey (1982) is 

considered again: 

 - The load height is e = 533.4 mm 

- The total embedment of the pile is L = 1117.6 mm 

- The friction angle is φ’ = 45o 

- The soil density is γ = 19.2 kN/m3 

- The max load of the test is Pu = 17.3 kN. 

 

The value of the passive earth pressure coefficient kp is  

2 o

p
k tan (45 45 / 2)= + = 5.828 

Based on Equation (2.35), the ultimate load is calculated as follows: 

3

u

19.2 x 0.10 x 5.828 x1.117
P

2(0.533 1.117)
=

+
= 4.72 kN 

The ultimate load calculated by Broms’ method is low compared to the 17.2 kN 

experimental static ultimate load. 

 

2) Method of Meyerhof et al., (1981) 

When a rigid wall or a pile with a free head is partially embedded in layered soil and 

subjected to a horizontal load at the top, (Meyerhof et al., 1981) assumed that a passive 

earth pressure is developed initially at the front face above the point of rotation and an 

active earth pressure is developed at the opposite side of the wall. Below the point of 

rotation, the lateral distribution is reversed and has approximately triangular pressure. 

This method, developed for a rigid wall by Meyerhof et al., (1981), has been extended to 

lateral rigid piles loaded laterally. The ultimate lateral resistance per unit width of rigid 

pile is greater than that of a corresponding wall due to the shearing resistance on the 

vertical sides of the failure wedges in the soil. To account for the three dimensional 

effect for the pile, a shape factor S is introduced. This factor is not constant, as assumed 

by Broms, but varies with the depth and the friction angle of the sand. It can be defined 

as:  

 
o q

b

b

K Nz
S 1 sin

B K
= + ϕ ≤  (2.36) 
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where: B is the pile diameter, Ko is the lateral earth pressure coefficient at rest, Nq is the 

bearing capacity factor for a strip footing and kb is the net earth pressure coefficient for 

the pile defined as:  

 

 
2 o 2 o

b
k tan 45 tan 45

2 2

ϕ ϕ   
= + − −   

   
 (2.37) 

    
The ultimate lateral load resistance of the rigid pile is estimated for one homogenous 

sand layer by:  

 ( )2

u b2 b b bu 2 c2 c c cu
Q D K F r S c D K F r S B= γ +  (2.38) 

 

where  B is the pile diameter, D is the total pile embedment, Fb is the lateral resistance 

factor for the weight, Fc is the lateral resistance factor for the cohesion, Kc is the earth 

pressure coefficient due to the cohesion and Kb is the net earth pressure coefficient 

defined by Equation (2.37). The coefficient rb is a reduction factor defined by:  

 

 
b

1
r

e
1 1.4

D

=
 

+ 
 

 (2.39) 

 
When the cohesion is null, Equation 2.38 becomes: 
 

 ( )2

u b2 b b b
Q D K F r S B= γ  (2.40) 

 

 

The shape factor Sbu is defined from Figure 2.17: 
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Figure 2.17: Shape factors of laterally loaded pile in sand after Meyerhof et al., (1981) 

 

Illustrative example 

The example used for the cohesionless soil conducted by Dewey (1982) is considered 

again: 

 - The load height is 533.4 mm 

- The total embedment of the pile D is 1117.6 mm 

- The friction angle is φ’ = 45o 

- The soil density is γ = 19.2 kN/m3 

- The max load of the test, Pu, is 17.3 kN. 

 

The value of the passive earth pressure coefficient kp is  

2 o 2 o

b
k tan (45 45 / 2) tan (45 45 / 2)= + − − = 5.657 

From equation (2. 39), 
b

1
r

1 1.4(0.533 /1.11)
=

+
= 0.6. 

From Figure 2.17, Sb = 0.12 for D/B = 10 

The ultimate load is  2

u
P 19.2 x (1.11) x (0.12) x (0.6) x (5.657) x (4.8)= = 4.62 kN 

The ultimate load calculated by the Meyerhof method is low compared to 17.2 kN the 

ultimate load obtained from the static test. 
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3) Method of Prasad and Chari (1999) 

 

Prasad and Chari (1999) conducted a series of fifteen laboratory tests on fully 

instrumented rigid model piles buried in sand with different embedment ratios defined as 

a ratio of the embedded length of the pile to the pile diameter. The tests were conducted 

for various soil conditions and the soil was assumed to be uniform and homogenous for 

each test. Prasad and Chari found from the laboratory tests that the maximum earth 

pressure is located at a distance of approximately between 0.55 to 0.65 times the depths 

of the rotation point with an average of 0.6 (Figure 2.18 a). The stress distribution at any 

depth z was assumed to have a parabolic shape as shown in Figure 2.18b. 

 

Based on their results, they proposed new idealized stress distribution profile along the 

pile as shown in Figure 2.18a. The soil pressure is assumed to be zero at the ground 

and at the point of pile rotation. The maximum lateral pressure is located at 0.6 D, where 

D is the distance from the ground to the point of rotation. The pressure profile has a 

triangular shape distribution. It increases linearly from zero at the ground to the depth of 

0.6D then drops to zero at the point of rotation. The pressure continues to increase 

linearly from the other side of pile to reach 1.7 times the pressure at 0.6D at the tip of the 

pile as shown in Figure 2.18 a. 

 

The maximum pressure Pd at this depth is:  

 
d p

P S k d= γ  (2.41) 

 
where S:  is a shape factor 

γ is the soil density 

d is the diameter of the pile and 

kp is the Rankine passive earth pressure coefficient, defined as: 

 
' '

2 o

p '

1 sin
k tan 45

1 sin 2

 + ϕ ϕ
= = + 

− ϕ  
 (2.42) 

 

Prasad and Chari established a relationship between the shape factor S and the 

Rankine passive earth pressure with the friction angle defined as: 
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Figure 2.18: Pressure diagrams and pressure distribution around the pile after Prasad 

and Chari (1999) 

 

 
( )'

p

1.3 tan 0.3

S k 10
ϕ +

=  (2.43) 

 

The ultimate lateral load F is defined as:  

 
( )'
1.3 tan 0.3

F 0.24 .10 x B (2.7x 1.7L)
ϕ +

= γ −  (2.44) 

 
The distance x is calculated as:  

 
( )

0.5
2 2

(0.567L 2.7e) 5.307L 7.29e 10.541e L

x
2.1996

− + + + +
=  (2.45) 

where e is the eccentricity of the load and L is the embedment of the load in the ground.  
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Illustrative example 

For the same example described before: 

L = 1.117 m 

e = 0.533 m 

Equation (2.45) yields x = 0.81m 

The value of Pu is defined from Equation (2.44)  

P = 4.28 kN 

 

The ultimate load calculated by the method of Prasad and Chari is low compared to the 

17.2 kN ultimate load obtained from the static test. 

 

2.2.5. Summary of the literature review 

 

Different conventional methods, used to calculate the lateral load of piles, have been 

applied to the case of the guardrail post. The review of these methods indicated that 

most of them are not able to predict accurately the ultimate force. In fact, these methods 

are used mainly in the geotechnical field to calculate the ultimate force F used in the 

design of the pile with a safety factor to avoid reaching the ultimate load or deforming the 

pile above the tolerance limit.  

 

Although researchers developed different solutions for a variety of soil profiles and 

loading conditions, the use of these methods for real conditions is not straightforward. 

For the case of a highway post laterally loaded, the deflections are very large, which 

makes the problem highly nonlinear, thus, the assumption of linear soil behavior is not 

valid and any method making that assumption is not accurate.   

 

The values of the ultimate load calculated from all the different methods: Meyerhof, 

Broms or Terzaghi are under-predicting the ultimate capacity value as obtained from the 

static test as shown in the previous examples.  

 

Most of the solutions and methods using the lateral earth pressure concept consider the 

problem of the post loaded laterally as a 2-D problem of passive earth pressure. The 
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shape factors used by such researchers as Broms (1964) and Meyerhof et al., (1981) to 

account for this effect are shown to be not appropriate. In the case of a guardrail post, 

the area B  x H is approximately 0.1 m  x 1m,  which clearly makes the problem a 3-D 

passive earth pressure problem and it is well known that the 3-D configuration has the 

effect of increasing the passive earth pressure exerted on the post (Škrabl and Macuh 

2005). 

 

2.3 Proposed Method for the Ultimate Lateral Load 

Estimation 

The goal of this approach is to develop a simple but accurate method for the analysis 

and the design of the post in the highway guardrail subjected to a lateral load in static 

conditions. To the best knowledge of the author, no simple method has been developed 

in the literature to assist engineers in calculating the force applied on the guardrail post 

based on the soil parameters. Dewey (1982) developed an iterative method to determine 

the lateral force and the moment assuming the height of the lateral load is known and 

constant. The post was divided in segments and three components of force were 

calculated on each segment namely: the resultant of the lateral earth pressure, the 

resultant of the horizontal shear stress around the perimeter of the shaft and the drag 

force exerted by the soil as the shaft segment rapidly moves through the soil. 

 

2.3.1. Guardrail post rigidity 

 

Posts used in the highway side hardware consist of the w-beam W152x13.5 steel cross 

section shown in Figure 2.19. They have a length embedded in the soil of approximately 

1.1 m. Piles are considered short if the applied lateral load at the head force the tip of 

the pile to rotate or translate. According to the definition of a short pile as defined by the 

US Corps of Engineers Manual (1991), the pile is considered to be short if L/T ≤ 2 where 

L is the length of the pile embedded in the soil and T is defined as:  

 

 

5

h

EI
T

n
=  (2.46) 
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where EI is the bending capacity of the beam and nh is the modulus of horizontal 

subgrade reaction increasing linearly with depth. 

 

 

 
Figure 2.19: a) Guardrail post in the soil. b) Guardrail post cross section 

 
For a cohesionless soil, nh = 56 lb/in3 (17.5 N/cm3) and 21 lb/in3 (6.72 N/cm3)  for dense 

and medium sand, respectively, according to Table 2.3. Since the guardrail post is made 

out of steel, its Young modulus E is approximately E = 210 GPa and the moment of 

inertia Ix is 685.5 cm4 for W152x13.5 as shown in Table 2.5. 

 

For the medium sand, Equation (2.46) gives T= 2.92 m   and L/T = 1.1/2.92 = 0.38 < 2. 

For the dense sand, Equation (2.46) gives T= 0.61 m   and L/T = 1.1/0.61 = 1.8 < 2. 

 Accordingly, the posts used in highway barriers are considered short and rigid.  

 

 

p 
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Table 2.5: W 152 x 13.5 beam properties 

Dimensions Moment of 
Inertia 

Section 
Modulus 

Depth 
D 

mm 

Width 
B 

mm 

Web 
Thickness 

mm 

Section 
area 
cm2 

Weight 
 

Kg/m 

Ix 
 

cm4 

Iy 
 

cm4 

Sx 
 

cm3 

Sy 
 

cm3 

150 100 4.3 17.3 13.5 685.5 91.8 91.4 18.4 

 

2.3.2. Theoretical background 

The proposed method is based on the ultimate capacity method where the post is 

embedded in the soil and subjected to a horizontal load at the top. In this case, a 

passive earth pressure is developed at the front face of the post above the point of 

rotation. At the same time, an active earth pressure is developed in the opposite side of 

the post below the centre of rotation. This assumption is similar to the approach of many 

researchers such as Meyerhof el al., (1981) and Prasad and Chari (1999) however the 

author proposed different pressure distribution. During the lateral loading, the post is 

acting as a rigid body and experiencing mainly a rotation around a point located under 

the ground. Almost no deformation on the post can be observed as has been noticed in 

many static tests (Dewey 1982). 

 

The method developed in the current study is inspired from the approach proposed by 

Prasad and Chari. The soil is assumed to be isotropic and homogeneous. The soil 

friction angle and the soil-structure friction interface δ are assumed to remain constant. 

When the post embedded in cohesionless at depth L soil is subjected to lateral loading 

at height H above the ground level, a passive earth pressure is developed in the front 

face of the wall above the point of rotation. The net pressure distribution can be 

assumed to be linear. Figure 2.20 shows the earth pressure distribution applied to the 

post. The pressure increases linearly from zero at the ground to the depth 0.6 a, where a 

is the distance from the ground to the point of rotation. The soil pressure drops after to 

zero at the point of rotation. The pressure continues to increase linearly on the other side 

of the pile to reach approximately the pressure at 0.6 a at the tip of the pile as shown in 
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Figure 2.20. For Prasad and Chari, the pressure at the tip of the pile was assumed to be 

1.7 the soil pressure at 0.6 a depth.  

 

Figure 2.20: Pressure diagrams and pressure distribution around the pile as proposed by 

Prasad and Chari (1999) 

 

To validate the assumption of the pressure distribution, a finite element model was built 

with Radioss software (Mecalog 2005) and was used for the same Dewey's test 

discussed previously. A guardrail post is embedded in the soil at depth of 1100 mm and 

an imposed displacement is applied to the post at the point of force contact located at 

550 mm above the ground. The loading mechanism consisted of two springs with very 

high stiffness to minimize the springs' elongations and attached to the post in each side. 

The springs are connected to a rigid body which is connected to a third spring with very 

high stiffness as shown in Figure 2.21. The horizontal force is calculated at the end of 

the spring for each displacement applied and a load deflection curve is determined for 

the prescribed displacement. The soil was modeled as cylindrical block using 8 node 

hexahedron elements where the post was embedded in the center of the block. The 

guardrail post is formed by 2020 shell elements and 2142 nodes. The block has a 

diameter of 2700 mm and a height of 2100 mm and the nodes located at lateral 

G 

L 
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perimeter of the block were constrained from displacement on the three directions 

whereas their rotation were unrestrained. The nodes at the base of the soil block were 

constrained only on the vertical direction z. Details of the model will be presented and 

discussed in the next section. The results of the finite element model are used just to 

confirm the validity of the assumptions used in this section. 

    

Figure 2.22 shows that the contour of displacement of the nodes after the force being 

applied to the post. It can be noted that the shape of the contour defined a cone with an 

apex located at a depth of 810 mm representing the center of rotation for the post.  

Figure 2.23, which represents the Von Mises stress distribution in cross section plane, 

shows that soil reaches the failure in front face of the post at the top and at rear face of 

the post at the tip. This stress distribution confirms the validity of the assumption used in 

the study.   

 

Based on the proposed pressure distribution which is different from Chari and Prasad's, 

the forces applied to the post for the current study (Figure 2.20) could be calculated as:  

 
2

1 p

(ax)
F B k

2
= γ  (2.47) 

 
2

2 p

x(1 x) a
F B k

2

−
= γ  (2.48) 

 
3 p

(xa) (L x)
F B k

2

−
= γ  (2.49) 

 

The resultant of the two forces F1 and F2 represents the passive earth pressure acting 

above the centre of rotation on the front face of the pile while F3 is the passive force 

developed below the point of rotation. The moment equilibrium expressed at the centre 

of rotation G leads to:  

 

 ( ) ( ) ( ) ( )1 2 3

1 2 2
F H a F xa 1 x a F 1 x a F L a

3 3 3

     
+ = + − + − + −     

     
 (2.50) 
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(a) 

 

  

(b) 

Figure 2.21: a) View of the finite element model set for the static loading of the post in 

cohesionless soil, b) Details of the load mechanism system attached to the post  
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Figure 2.22: Vertical cross section of the soil mobilized during lateral loading of the post 

 

 

 

Figure 2.23: Von-Mises stress distribution of the post embedded in the soil and 

subjected to lateral loading 



 

                 

58 

If Equations (2.47), (2.48) and (2.49) are combined with (2.50), we obtain: 

 ( ) ( ) ( )
22 2 2

p

(ax) 2 2 2
F H a B k xa 1 x 1 x a L a

2 3 3 3

    
+ = η γ − + − + −    

    
 (2.51) 

 

Equation (2.51) shows that the current method has three unknowns namely: the value of 

a representing the centre of rotation; the value of kp, representing the lateral earth 

pressure calculated in 3-D, and the force F applied to the post. 

 

The equilibrium of force could be considered to reduce the number of unknown in 

Equation 2.51. However this approach will lead to solve a polynomial equation higher 

degree.  

 

2.3.3. Determination of the rotation centre 

Many results in the literature show that the centre of rotation is located around 60% to 

70% of the length of embedment. Based on eight tests conducted by Bierman (1995), it 

was found that the ratio of the depth of rotation point to the embedment depth ranges 

from 0.62 to 0.72 with an average of 0.66 as shown in Table 2.6. 

 

Table 2.6: Static tests conducted in sand by Bierman (1995) 

Post Test 

(PT) 

Post       

Number 

Point of 

Rotation (in) 

Post 

Embedment (in) 

Ratio to the 

Embedment Depth 

1.1 12 29 44 66% 

1.2 13 31 44.25 70% 

5.1 20 30 44 68% 

5.2 21 30 44 68% 

6.2 10 28 44.5 62% 

7.1 11 30 50.5 60% 

10.1 18 27 44.5 61% 

10.2 19 32 44.5 72% 
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Plaxico et al., (1998) reported that in their simulation, the post began to rotate at 

approximately 812 mm below grade for a total embedment of 1118 mm, which gave a 

ratio to the embedment depth equal to 0.73. 

 

Dewey (1982) conducted three static tests in the sand as shown in Table 2.7. The ratio 

of the rotation point to the post embedment depth is approximately 73%.   

 

Table 2.7: Static tests conducted in sand by Dewey (1982)  

Post Test 

(PT) 
Post type 

Point of 

Rotation (in) 

Post 

Embedment(in) 

Ratio to the 

Embedment Depth 

1 Wood 28 39 73% 

2 Steel 28 39 73% 

3 Steel 32 44 72% 

 

 

Based on these data, it is assumed that the centre of rotation is located at 0.7 of the total 

embedment of the post. Therefore, it can be assumed for the new approach that: 

  

  a  0.7 L=  (2.52) 

 

2.3.4. Determination of kp passive earth pressure in 3D   

Most of the solutions discussed earlier considered the problem of the post loaded 

laterally as a 2-D problem of the passive earth pressure. As mentioned previously in 

section (2.2.4), many approaches have been adopted to take into account the 3D effect. 

Broms (1964) used a coefficient equal to 3 for the pressure distribution. Meyerhof el al., 

(1981) used a coefficient that depends on the friction angle and depth. In reality, the 

dimensions B x H of 100 mm x 1100 mm, (B= post width and H=height) make the 

problem a 3-D mainly because the plane strain assumption is not valid. It is well known 

that the 3-D configuration has the favorable effect of increasing the passive earth 

pressure exerted on the post (Škrabl and Macuh, 2005).  Few results are presented in 

the literature for the 3D problem (Blum, 1932 and Soubra and Regenass, 2000).  
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Horn (1972) proposed a linear relationship between the Kpγ(2D) and Kpγ(3D)  

 

 
p (3D) p (2D)

h
k   k A 1 C

b
γ γ

 
= + 

 
 (2.53) 

 

Where A is a scale factor equal to 2.5 for h = 0.10 m and 0.75 for h 1.5 m. Factor C is 

function of the soil friction angle φ as: 

  

 2
C  2.50 tan  - 0.48 tan 0.27= ϕ ϕ +  (2.54) 

 

where the soil friction angle φ is in degrees. 

 

This method is a simplified form and assumed a linear relationship between kp with B/H 

which is shown to be invalid. In fact Škrabl and Macuh (2005) presented a novel 

approach to the determination of passive soil pressures. They used the upper-bound 

method within the framework of the limit analysis theory. The method considered a 

three-dimensional, kinematically admissible failure mechanism for the calculation of the 

admissible solution. The failure mechanism is composed of a central and two lateral 

bodies that are connected by a common velocity field. This approach is similar to two-

dimensional stability analyses. Their solution is based on many hypotheses and 

limitations, such as: 

 

1- The pile is assumed to be vertical with an area of B x H 

2- The backfill is homogeneous, the soil is isotropic and considered as a Coulomb 

material. 

3- The resulting value of passive earth pressure Pp is defined by 

 

 
2

p p pc pq

h
p k k c h b k q h b

2
γ= γ + +  (2.55) 

 

where Kpγ is the coefficient of passive earth pressure due to soil weight, Kpc is the 

coefficient of passive earth pressure due to cohesion, Kpq is the coefficient of 
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passive earth pressure due to the surcharge loading, c is the soil cohesion, γ is 

soil density and q is the surcharge loading.  

 

4- The rotational failure mechanism is bounded by the log spiral in the region of the 

retaining wall and by the hyperbolic surfaces defined by the envelope of the 

connected hyperbolic half cones at the lateral sides. 

 

Škrabl and Macuh gave the coefficients Kpγ for 2D and 3D cases for different shear 

angles and friction quotients between the retaining structure and the backfill. Table 2.8 

shows that the value of kpγ increases when the ratio B/H decreases. In fact, if one 

considers the case of cohesionless soil with a soil's friction angle of 40o and a friction 

angle δ between the post and the soil = 0 so δ/φ = 0, the value of kpγ can range from 

7.155 for a B/H= 10 to 43.9 for B/H= 0.25. For the case of a highway post guardrail, B/H 

is approximately 0.1 (post embedment is generally 1100 mm and the post width is 100 

mm). The value of Kpγ for this ratio is not available from Table 2.8 and no data is 

available in the literature for this ratio of B/H = 0.1. 

 

In order to calculate the value of lateral earth pressure coefficient for H/B = 11, a method 

is developed for the current study by the author based on the extrapolation of the Table 

2.8 results. The first step is to sort Table 2.8 based on the same friction angle and 

variable B/H instead of constant B/Hand variable friction angle as shown in Table 2.9. 

The second step is to plot log(kp) as a function of log(b/h) for each friction angle and φ 

and a relative friction angle and δ. A second degree equation is found to give a good 

correlation between the log of kp and the log of B/Hand the R2 indicating the degree of 

correlation close to 1. The final step is use the second degree equation to determine the 

value of kp for B/H= 0.1. The relationship between kp and B/H could be expressed as: 

 

 

2

B B
log(kp) a log b log c

H H

 
= + + 

 
 (2.56) 

 

 

Table 2.9 shows that for any friction angle, the value of coefficient of lateral earth 

pressure kp increases with the mobilized friction between the soil and the pile (δ/φ) 
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where δ is the friction angle at the soil–structure interface and decreases with the value 

of B/H. For the same B/H, kp increases with the increase of the soil friction angle. 

 

As illustrative example, the curve of the variation of Log(B/H) vs. Log(Kp) is plotted in 

Figure 2.24 for the case of the friction angle of 15o and δ/φ = 1. The curve is a second 

degree equation with R2 equal to 0.99. Table 2.10 summarizes the coefficients of the 

second degree equation of each case of a friction angle and δ/φ. All the data show very 

good correlation and an R2 very close to 1.  

 

For B/H= 0.1, kp is extrapolated for each friction angle φ and δ/φ and summarized in 

Table 2.11. It can be noticed that for the same friction angle φ, the value of kp increases 

with the ratio δ/φ. For a friction angle of 15o to 25o, kp varies approximately linearly with 

δ/φ. However, the Kp is not linear when the friction angle is higher than 25o. For the 

same value of δ/φ, the value of Kp increases with the increase of the friction angle. The 

rate of increase is higher when the value δ/φ approaches the value of unity. 
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Table 2.8:  Kpγ for different values of B/Hand δ/φ after Škrabl and Macuh (2005) 

φ b/h
0 0.33 0.5 0.67 1

15 0.25 3.630 4.170 4.463 4.775 5.358
20 0.25 5.327 6.563 7.220 7.926 9.476
25 0.25 7.982 10.337 11.785 13.424 17.286
30 0.25 11.865 16.490 19.637 23.429 33.115
35 0.25 20.043 28.317 34.907 43.591 68.659
40 0.25 43.954 59.403 72.807 92.674 160.035
45 0.25 121.518 157.946 190.263 240.399 437.890
15 0.5 2.672 3.048 3.241 3.438 3.835
20 0.5 3.736 4.494 4.920 5.372 6.351
25 0.5 5.229 6.727 7.630 8.641 10.985
30 0.5 7.443 10.254 12.188 14.452 20.134
35 0.5 11.983 16.906 20.779 25.849 40.135
40 0.5 25.084 33.912 41.546 52.802 90.357
45 0.5 66.766 86.835 104.658 132.186 239.688
15 1 2.189 2.477 2.622 2.768 3.060
20 1 2.887 3.452 3.759 4.082 4.769
25 1 3.850 4.913 5.540 6.232 7.809
30 1 5.222 7.150 8.451 9.944 13.614
35 1 7.954 11.199 13.799 16.944 25.839
40 1 15.650 21.166 25.917 32.858 55.480
45 1 39.386 51.278 61.825 78.099 140.857
15 2 1.949 2.186 2.306 2.423 2.663
20 2 2.465 2.925 3.171 3.427 3.964
25 2 3.159 3.999 4.484 5.014 6.200
30 2 4.111 5.614 6.569 7.670 10.323
35 2 5.938 8.342 10.166 12.477 18.658
40 2 10.931 14.793 18.101 22.878 38.000
45 2 25.691 33.496 40.418 51.056 91.352
15 5 1.798 2.009 2.113 2.217 2.418
20 5 2.211 2.605 2.812 3.027 3.470
25 5 2.743 3.343 3.842 4.272 5.217
30 5 3.444 4.670 5.426 6.288 8.621
35 5 4.730 6.626 8.034 9.782 14.332
40 5 8.099 10.970 13.410 16.875 27.463
45 5 17.4663 22.8226 25.5741 34.8296 61.6482
15 10 1.749 1.949 2.048 2.146 2.336
20 10 2.126 2.497 2.691 2.891 3.303
25 10 2.604 3.258 3.625 4.021 4.885
30 10 3.222 4.352 5.041 5.821 7.643
35 10 4.327 6.053 7.320 8.879 12.857
40 10 7.155 9.695 11.845 14.876 23.929
45 10 14.7205 19.2635 23.2928 29.4204 51.7471
15 2D 1.698 1.889 1.982 2.074 2.252
20 2D 2.040 2.388 2.569 2.754 3.133
25 2D 2.464 3.070 3.407 3.767 4.548
30 2D 3.000 4.032 4.653 5.349 6.959
35 2D 3.690 5.445 6.599 7.972 11.387
40 2D 4.599 7.622 9.835 12.661 20.308
45 2D 5.8284 11.1974 15.6822 21.9144 40.6109

δ/φ  
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Table 2.9: Kpγ for different values of B/Hand δ/φ after Škrabl and Macuh (2005) sorted by 

friction angle 

φ  b/h
0 0.33 0.5 0.67 1

0.1

15 0.25 3.630 4.170 4.463 4.775 5.358
15 0.5 2.672 3.048 3.241 3.438 3.835

15 1 2.189 2.477 2.622 2.768 3.060
15 2 1.949 2.186 2.306 2.423 2.663

15 5 1.798 2.009 2.113 2.217 2.418

15 10 1.749 1.949 2.048 2.146 2.336
15 2D 1.698 1.889 1.982 2.074 2.252

20 0.25 5.327 6.563 7.220 7.926 9.476
20 0.5 3.736 4.494 4.920 5.372 6.351

20 1 2.887 3.452 3.759 4.082 4.769
20 2 2.465 2.925 3.171 3.427 3.964

20 5 2.211 2.605 2.812 3.027 3.470

20 10 2.126 2.497 2.691 2.891 3.303
20 2D 2.040 2.388 2.569 2.754 3.133

25 0.25 7.982 10.337 11.785 13.424 17.286
25 0.5 5.229 6.727 7.630 8.641 10.985

25 1 3.850 4.913 5.540 6.232 7.809
25 2 3.159 3.999 4.484 5.014 6.200

25 5 2.743 3.343 3.842 4.272 5.217

25 10 2.604 3.258 3.625 4.021 4.885
25 2D 2.464 3.070 3.407 3.767 4.548

30 0.25 11.865 16.490 19.637 23.429 33.115
30 0.5 7.443 10.254 12.188 14.452 20.134

30 1 5.222 7.150 8.451 9.944 13.614
30 2 4.111 5.614 6.569 7.670 10.323

30 5 3.444 4.670 5.426 6.288 8.621

30 10 3.222 4.352 5.041 5.821 7.643
30 2D 3.000 4.032 4.653 5.349 6.959

35 0.25 20.043 28.317 34.907 43.591 68.659
35 0.5 11.983 16.906 20.779 25.849 40.135

35 1 7.954 11.199 13.799 16.944 25.839
35 2 5.938 8.342 10.166 12.477 18.658

35 5 4.730 6.626 8.034 9.782 14.332

35 10 4.327 6.053 7.320 8.879 12.857
35 2D 3.690 5.445 6.599 7.972 11.387

40 0.25 43.954 59.403 72.807 92.674 160.035
40 0.5 25.084 33.912 41.546 52.802 90.357

40 1 15.650 21.166 25.917 32.858 55.480
40 2 10.931 14.793 18.101 22.878 38.000

40 5 8.099 10.970 13.410 16.875 27.463

40 10 7.155 9.695 11.845 14.876 23.929
40 2D 4.599 7.622 9.835 12.661 20.308

45 0.25 121.518 157.946 190.263 240.399 437.890
45 0.5 66.766 86.835 104.658 132.186 239.688

45 1 39.386 51.278 61.825 78.099 140.857
45 2 25.691 33.496 40.418 51.056 91.352

45 5 17.4663 22.8226 25.5741 34.8296 61.6482

45 10 14.7205 19.2635 23.2928 29.4204 51.7471
45 2D 5.8284 11.1974 15.6822 21.9144 40.6109

δ/φ  
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y = 0.16757x2 - 0.28396x + 0.49114

R² = 0.99717
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Figure 2.24: Fitting curve of the variation of Log(b/h) vs. Log(Kp) 
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Table 2.10: Values of the parameters of correlation 

A 0.15436 0.15807 0.16084 0.16514 0.16757

B -0.25119 -0.26115 -0.2672 -0.2744 -0.284

C 0.34601 0.399652 0.42405 0.44736 0.49114
R

2 0.9959 0.9965 0.9966 0.9966 0.99717

A 0.18147 0.18956 0.19158 0.19378 0.19857

B -0.31436 -0.32951 -0.336 -0.3428 -0.3574

C 0.46657 0.54388 0.58083 0.61655 0.68395
R

2 0.9981 0.9978 0.9979 0.9981 0.9984

A 0.21089 0.21481 0.21444 0.2165 0.2212

B -0.38018 -0.39508 -0.3981 -0.4064 -0.4245

C 0.59219 0.69489 0.74896 0.79999 0.8976
R

2 0.9986 0.99946 0.99889 0.999 0.9992

A 0.22928 0.23123 0.23104 0.23268 0.23439

B -0.43864 -0.44688 -0.4555 -0.465 -0.482

C 0.72304 0.85999 0.93168 1.00211 1.14049

R
2 0.9992 0.9992 0.9994 0.9995 0.9984

A 0.245 0.24497 0.24325 0.24533 0.24721

B -0.50931 -0.51208 -0.5171 -0.526 -0.5503

C 0.904411 1.05294 1.14164 1.23236 1.41501
R

2 0.9997 0.9997 0.9998 0.9998 0.99989

A 0.25188 0.25198 0.25187 0.25136 0.24965

B -0.59167 0.59127 0.59211 -0.5958 -0.6151

C 1.19601 1.32718 1.4151 1.5118 1.74186

R
2

0.99955 0.9999 0.9999 0.9999 0.9999

A 0.24508 0.24563 0.25115 0.24601 0.24435

B -0.67295 -0.67127 -0.6817 -0.6704 -0.6796

C 1.59409 1.7087 1.78488 1.89148 2.1472

R
2 0.9999 0.9999 0.9986 0.9999 0.9999

45

φ  

0 0.33

25

30

35

40

δ/φ  

15

20

0.5 0.67 1

 



 

                 

67 

Table 2.11: kp values for B/H= 0.1 for different friction angles 

 

φ  

0 0.33 0.5 0.67 1

15 5.644 6.590 7.113 7.707 8.763

20 9.171 11.560 12.835 14.229 17.374

25 15.250 20.173 22.985 26.476 34.940

30 24.601 34.522 41.517 50.093 71.927

35 45.574 64.564 79.794 100.849 163.136

40 109.537 148.057 181.585 228.518 404.250
45 325.177 422.280 522.084 642.584 1178.013

δ/φ  

 

 

 

 

Figure 2.25: kp values for B/H= 0.1 for different friction angles 
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2.4 Determination of the Force F 

Combining Equations (2.51) and (2.52) leads to:  

 

 ( ) 3

p
F H 0.7 L 0.0861 B K L+ = γ  (2.57) 

  

Equation 2.57 defines the relation between the force applied to the post and the 

embedment required. The solution to determine the embedment L can be found by 

solving a third degree equation. For a known embedment, the maximum force F could 

be determined as: 

 

 
( )

3

p
0.0861 B K L

F
H 0.7 L

γ
=

+
 (2.58) 

 

Example of Force Calculation 

If we assume that: 

B = 0.10 m 

γ = 19.2 kN/m3 

φ = 40o 

H = 0.5m 

 

From Table 2.11, Kp is equal to 109.5 for δ/φ = 0 and to 404.2 for δ/φ =1.Therefore, the 

force F is found to be 12.4 kN for the first case (δ/φ = 0) and 45.9 kN for the second 

case (δ/φ =1). According to the data published by NAVFAC (1982), the friction angle δ 

between the steel with the soil could range from 20o to 75% of the friction angle φ of the 

soil. This can lead to a value of δ ranging from 20o to 30o.  If one considers a value of δ 

equal to 2/3 φ, F is found to be 22.9 kN. 

 

Table 2.12 summarizes the prediction for the static tests of Table 2.1 using the same 

methodology presented previously.  
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Table 2.12: Comparison of the predicted maximum load with the maximum load of the static test  
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Figure 2.26: Relation of the maximum test load with the calculted test load for the static 

tests 

 

The maximum loads of static test are plotted as functions of the predicted ultimate loads 

in Figure 2.26, which shows very good agreement.  

 

 

2.5 Relation of Static and Dynamic Tests 

To establish a relationship between the peak load in the dynamic test and ultimate load 

in the static test, the Finite Element Method is used to calculate the lateral load for both 

cases and estimate the ratio between them. The static model was briefly presented 

previously in the section 2.3.2 and more details are available in Chapter III. 
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2.5.1 Dynamic loading 

For the dynamic tests, a rigid nose consisting of cylindrical shape is used to apply the 

dynamic lateral load on the post. Radioss software of Altair engineering (Mecalog, 2005) 

is used. The nose is normally attached to a rigid cart to minimize the energy dissipated 

in deforming or crushing. The soil and the post were modeled as described previously 

for the static condition. The displacement of the post was measured at the load 

application point by measuring the displacement of the rigid nose and the force is 

calculated at the interface of the post and the impactor. The complete finite element 

model is illustrated in Figure 2.27. The impact speed was 7.0 m/s. The data collected 

was filtered with CFC60 filter and the load-deflection curve is determined and plotted in 

Figure 2.28 with the results of the static loading. Further description and explanation of 

model used in the dynamic condition are presented in the Chapter III.  

 

 

 

 

Figure 2.27: View of the finite eloement model for the dynamic loading of the post in 

cohesionless soil 
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Figure 2.28: Load-deflection curve for static and dynamic cases 

 

2.5.2. Results and interpretation 

A finite element method was conducted to study the load deflection curve under the 

quasi-static and dynamic conditions. The curve of the static loading shows no peak 

developed and the maximum load reached was approximately 26.7 kN.  The maximum 

dynamic force was about 64.1 kN which is 2.4 times the measured maximum quasi-

static force for a same type of post embedded in the gravel. The maximum force was 

measured at the peak developed in the early stage of loading. The strain rate effects of 

the steel and the soil density were not considered in the study and need further 

investigation. The factor of 2.4 between the dynamic load and the static load is close to 

the factor of 2 found by Wu and Thompson (2007). In their field testing on post with 

Sigma (Σ) cross section shape, the measured maximum dynamic force was about twice 

the measured maximum quasi-static force for the same type of post embedded in gravel.  

To improve the prediction of the static load, the factor of 2.4 is applied to the Table 2.1 

only for the dynamic tests and the results of the dynamic tests and the prediction is 

illustrated in Table 2.13. 
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The results show that a net improvement in load prediction from the load predicted 

without a scale factor. However a discrepancy between the prediction and the test 

conducted in-situ is still present. The difference could be explained by the different 

parameters involved in the test such as soil confinement, test speed, soil friction angle, 

the height of load…etc. Another source of discrepancy is the test variability for both the 

static and dynamic tests. Wu and Thompson conducted repeated static loading tests 

under the same test conditions and identical steel post. They noticed that a corridor was 

formed from the measured data of the quasi-static tests. This could be explained by the 

fact that when a test was repeated using an identical post, the measured resistance 

force showed some differences probably because the degree of compaction of gravel 

around the post was not exactly the same. (Wu and Thompson 2007) 

 

2.6 Conclusions  

The ultimate lateral resistance of rigid vertical posts in homogenous soil has been 

calculated based on a simplified lateral earth pressure distribution. The computation of 

the ultimate load for the tests collected in the literature is based on the determination of 

the passive lateral earth pressure kp which is a function of the friction angle. However, 

many static and dynamic tests found in the literature did not conduct any geotechnical 

investigation to determine the soil properties including the friction angle, the density and 

the gradation and the geotechnical parameters have been estimated based on the 

technical properties of these materials.   
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Table 2.13: Comparison of the predicted maximum load and the maximum load 

obtained from dynamic tests 

 

Reference Embedment Test load Predicted load 

 (mm) kN kN 

Bronstad et al., (1988) 914 99.2 65.02 

Bronstad et al., (1988) 914 73.0 54.19 

Bronstad et al., (1988) 914 55.2 43.35 

Bronstad et al., (1988) 1118 59.6 35.24 

Bronstad et al., (1988) 1118 64.1 35.24 

Coon et al., (1999) 1118 64.0 43.93 

Coon et al., (1999) 1118 66.9 43.93 

Coon et al., (1999) 1118 67.0 46.13 

Coon et al., (1999) 1118 36.3 69.19 

Coon et al., (1999) 1118 38.8 65.90 

Coon et al., (1999) 1118 77.8 65.90 

Hollooway et al., (1996) 1118 35.6 63.83 

Jeyapalan at al., (1983) test 2 965 99.6 29.60 

Polivka et al., (2004) 1092 45.5 37.11 

Polivka et al., (2004) 1016 52.6 31.08 

Polivka et al., (2004) 940 60.7 25.63 

Wu and Thomson (2007) 1000 16.4 35.19 
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Chapter III 

Analysis of Laterally Impacted Guardrail Posts 

 

3.1. Introduction 

To evaluate the performance of roadside safety devices, engineers employ destructive 

full-scale crash testing. These tests are not only very expensive but also require an 

extensive setup, instrumentation, and destruction of a test vehicle. Moreover, conducting 

full-crash tests is not always possible, such as when concrete piers are found near the 

roadway shoulder (Polivka et al., 2004). In this case, other alternative approaches, such 

as the Finite Element method, could be applied to optimize the design. Finite Element 

Analysis has rapidly become a fundamental tool of the analysis and design of roadside 

safety hardware systems. This method is reliable and relatively not expensive. It 

provides valuable information during the impact event, such as the stress in the barrier 

and the vehicle, the strain and the energy dissipated. The method is capable of dealing 

with the highly nonlinear material behaviour, large deformations, and strain rate effects 

(Plaxico 2002). Finite Element method has been used extensively to study the vehicle 

interaction with a guardrail barrier and to study the vehicle impact with roadside 

hardware. Another advantage of the FEM is that it is easy to vary the parameters of the 

impact and conduct analysis to determine the integrity of the guardrail or to study the 

vehicle kinematics. This aspect is very important, especially when an iterative process is 

needed to study the effect of the parameters’ variation on the system response. Finite 

Element simulations must be validated to ensure that the predictions are realistic 

(Plaxico, 2002).  

  

The first step in analyzing a full crash test is to study a subcomponent level model 

consisting of one guardrail post being impacted by a bogie vehicle. The analysis serves 

to understand the dynamic interaction between the post and the soil. Two types of 

approaches are used to simulate the soil namely: the subgrade modulus approach and 

the continuum model. The subgrade approach consists of representing the soil by a 

series of non-linear springs. To identify the spring stiffness, Habibagahi and Langer 

(1984) used the concept of the bearing capacity and established a linear relation 

between the soil reaction and the lateral bearing capacity. The method is 

computationally efficient. However, it cannot capture the effect of the soil inertia 
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consisting of the first spike seen in the force time-history plots of the dynamic tests. The 

soil was treated as a massless medium although the soil inertia plays a major role, 

especially in the initial contact of the post-soil during the impact (Kennedy et al., 2004). 

Most of the studies conducted in the area of roadside impact do not consider the effect 

of the soil mass and the energy dissipation through damping in the soil. 

 

The second approach in modeling the soil in the Finite Element method is to represent it 

as continuum. This technique considers the soil as solid elements obeying a given 

constitutive law. The approach is more accurate than the subgrade model but 

computationally expensive. It automatically captures the soil-structure interaction and 

allows the analyst to study the effects of the backfilling and compaction. The accuracy of 

this method depends on many factors, the most important of which being the selection of 

the appropriate soil material model and its parameters. The soil behaviour is, in general, 

non-isotropic and nonlinear material and the soil properties can vary with the water 

content, degree of compaction and grain size, which makes the selection of the material 

model and its parameters more complicated. Drucker and Prager model is the simplest 

accurate constitutive law capable of simulating the main soil behaviour.  

 

A combination of the two methods, the subgrade method and the continuum method, 

has been used by Kennedy et al., (2004) in a full-scale model of a vehicle impacting a 

highway guardrail. The soil stiffness was modeled by nonlinear springs determined by 

the Habibagahi and Langer method. To introduce the effect of soil inertia, Kennedy et 

al., introduced the soil continuum model only in the impact region as shown in Figure 

3.1. The material parameters are determined such that the soil has the correct mass with 

a very low stiffness. Thus, in the impact area, the model includes the nonlinear springs 

to account for the soil stiffness and the soil block to account for the soil mass.  

 

In this chapter, an improvement of the subgrade model is developed and validated with 

the dynamic test conducted in sand by Coon et al., (1999). The proposed approach 

accounts for the stiffness of the soil and the inertial effect generated by the soil mass. 

The soil reaction is modeled as a system of springs and dampers attached to 

concentrated masses. The soil mass surrounding the post is added as lumped mass and 

connected to the post to simulate the effect of the soil inertia. A Finite Element model is 

developed using the continuum approach and validated using the dynamic test 
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conducted by Coon et al., These tests covered various ranges of impactor speeds with 

different types of post material and geometry and were used by other researchers. 

Therefore, the soil properties and test conditions for both modeling approaches are 

documented. The continuum method serves to determine different parameters of the 

new subgrade model. This approach, developed initially for the cohesionless soil, is then 

extended to clay. 

 

 

 

 

 

Figure 3.1: View of full-scale finite element model of guardrail system combining the 

subgrade with the continuum method (Kennedy et al., 2004) 

 

 

This chapter is organized as follows. Section 3.2 describes the baseline dynamic tests 

used to calibrate the finite element simulations. Section 3.3 describes the continuum 

model used to define parameters for the subgrade model. Section 3.4 describes the 

proposed simplified model for cohesionless soil whereas Section 3.5 is an application of 

this model to cohesive soil. 

 

3.2. Baseline Dynamic Test 

Coon et al., (1999) conducted a series of 17 dynamic tests with different size of post and 

impactor speeds to evaluate the load capacity of guardrail posts. The Midwest Roadside 
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Safety Facility (MwRSF) was used to conduct these dynamic load tests. The cart 

consisted of a rigid nose bogie vehicle with a mass of 946 kg, instrumented with an 

accelerometer to measure the lateral deceleration during the impact. Four tests were 

conducted with W 152mmx13.5mm beam cross section. The speeds of the tests were 

4.6, 5.4, 5.9 and 8.9 m/s. The soil density ranged from 1980 kg/m3 to 2240 kg/m3 with no 

moisture content in any of the four tests. The length of the post was 1830 mm with an 

embedment in the ground of 1100 mm. The point of impact of the bogie with the post 

was located at 550 mm above the ground level as illustrated in Figure 3.2. The results of 

these tests are presented in Table 3.1. Based on the response, it is clear that for speeds 

ranging from 4.6 m/s to 5.9 m/s, the impactor rebounds back. However, for the higher 

speed of 8.9 m/s the impactor overrides the post. Table 3.1 shows that the lateral 

travelling distance of the impactor and the lateral peak force increased with the speed. 
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Figure 3.2: Schematic representation of the dynamic test set-up used by Coon et al., 

(1999) 
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All the models in the current analysis were developed using the HYPERMESH and 

HyperCrash pre-processor software packages from Altair Engineering. The explicit code 

Radioss was used for the analysis. The post-processing analysis was performed using 

the Hyperview and Hypergraph software packages from Altair engineering.  

 

 

3.3. Continuum Approach 

3.3.1. Post and impactor modeling 

The posts used in the guardrail system are of a W150x13.5 structural shape. The length 

of the post is 1830 mm, its width is 150 mm and the embedment depth is 1100 mm. The 

continuum model consists of a post embedded in a soil block as shown in Figure 3.3. 

 

 

 

Figure 3.3 View of the finite element model of the post embedded in the soil 
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Material properties 

The material of the W150x13.5 beam is classified as AASHTO M-183 (AASHTA 1998)  

The W shapes rolled in Canada and most mills supplying the Canadian market have 

essentially parallel flanges. Furthermore, the web-to-flange fillet radius may vary slightly 

from mill to mill (Canadian Institute of Steel Construction 1991). The fillet radius has 

been ignored in the current model and the steel post has been modeled with 4-nodes 

shell elements. The model of the steel post (W152x 13.5) as shown in Figure 3.3 is 

formed by 2020 shell elements and 5720 nodes. The post was meshed with four-nodes 

using QEPH shell formulation (type 24) in Radioss, which is an improved formulation of 

Belyshko-Leviathan formulation because of their computation efficiency and their control 

of the hourglass (Mecalog, 2005). The Gauss quadrature numerical integration was used 

with five integration points through the thickness of the element. The material properties 

of the post are considered elasto-plastic material and include the strain rate effect (type 

44) in Radioss software (Mecalog 2005). The input data for the material is presented in 

Table 3.2 as been used by Plaxico (2002), Wright and Ray (1996) and Engstrand 

(2000). These material properties are typical and not very different from those used by 

Karlson (2000) or used by Atahan (2002) where the yield stress ranges from 350 to 450 

MPa and Poisson’s ratio ranges from 0.29 to 0.33. 

  

 
Table 3.2: Radioss material properties of the guardrail post, Engstrand (2000) 

 

Properties Value 

Young's Modulus (GPa) 210 

Poisson's Ratio 0.3 

Density (kg/mm3) 7.8 E-06 

Yield Stress (GPa) 415 
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Strain rate effect 

The plastic behaviour of some materials such as steel is sensitive to the strain rate 

which is known as material strain rate sensitivity or visco-plasticity (Jones, 1989). This 

phenomenon is encountered in many practical engineering problems, such as the 

guardrail post. The material strain rate sensitivity is independent of the structure and 

manifests itself as a strengthening effect in the structure and influences its response 

(Jones, 1989). To include the effect of the strain rate in analysis, many constitutive 

equations have been proposed. Cowper and Symonds (1957) suggested the following 

equation for the uniaxial case: 

 

 

1

'
qe

1
D

 
σ   = +   σ  

 

&
 (3.1) 

 

where σ and σ’ are the quasi-static and dynamic stress, respectively, and ė is the strain 

rate; q and D are the Cowper and Symonds' coefficients. For steel, the Cowper and 

Symonds' coefficients, q and D, are estimated to be 5 and 40.4, respectively (Jones, 

1989). 

 

The impactor has been modeled as a cylinder as shown in Figure 3.3 using 8-node 

hexahedron elements attached to a rigid body to eliminate the energy dissipated through 

the impactor. The cart used by Coon et al., consisted of thick steel cylinder filled with 

concrete which minimizes the energy absorbed by the impactor. An added mass was 

distributed on the impactor nodes to simulate the 946 kg cart mass used in the dynamic 

test. 

  

3.3.2. Soil modeling 

The soil surrounding the post is modeled as a cylinder block in which the post is 

embedded in its center as shown in Figure 3.3. A convergence study with various 

diameters has been conducted to determine the soil model size. The dimensions of the 

block are chosen such that the outer boundaries have minimum effects on the simulation 

results. The accuracy of the Finite Element model results depends on an adequate 

selection of the soil material parameters. The soil material can be modeled with solid 

element with different material laws. 
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 Soil constitutive model 

The most common engineering classification system groups the soils in three major 

groups: (1) coarse-grained soils (e.g. sand and gravel); (2) fine-grained soils (e.g. silts 

and clays); and (3) highly organic soils. Cohesive soils are characterized by the 

tendency of the particles to stick together because of their particle attraction or adhesion. 

Cohesionless soils are composed of gravel and sand, and the typical particle size of 

sand ranges from 0.06 mm to 2.0 mm and from 2 mm to 60.0 mm for gravel. For the 

cohesive soil, the particle sizes are, in general, less than 0.002 mm (Canadian 

Geotechnical Society, 2006). The fine-grained soils are not classified by grain size but 

according to their plasticity and compressibility.  

 

The soil recommended in roadside installations is the cohesionless soil formed by 

crushed limestone road base material. The soil should be well-graded and contains a 

maximum aggregate size between 25 mm and 50 mm (Bligh et al., 2004). Report 350 

(Ross et al., 1993) recommended that the standard soil meets AASHTO standard 

specifications (AASHTO 1990). The soil should be compacted in accordance with 

AASHTO Guide Specifications for Highway Construction. It is not easy to conduct 

traditional geotechnical tests on coarse soil such as triaxial tests or direct shear tests to 

determine the geotechnical soil parameters and, in particular, the friction angle and the 

cohesion property of the soil. To determine the friction angle, engineers use predefined 

correlations between the friction angle and geotechnical parameters such as the relative 

density, the gradation, and overburden pressure that could be measured on these soils. 

The simplest and most commonly used models in the area of geotechnical engineering 

are the Mohr-Coulomb and Drucker-Prager failure criteria. Mohr-Coulomb, where the 

failure occurs when the shear stress reaches a value under a normal stress σ, defines a 

hexagon. This failure criterion has a corner on the hexagon, which is not mathematically 

convenient and does not lend itself well to numerical solutions. 

 

The base for soil modeling for Radioss (Macalog, 2005) and Ls_Dyna3D (Hallquist, 

2006) is the work conducted by Krieg (1972) developed for cellular concrete and 

extended to the soil and rocks. Krieg proposed a cap model for cellular concrete based 

on Drucker and Prager failure criteria. The model is based on the assumption that for 

small strains, both in tension and compression, cellular concrete is linear elastic but as 

the strain s become larger, nonlinear stress-strain behaviour is noted and permanent set 
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occurs. The failure of the cell cavities in compression, however, is accompanied by 

development of cohesive strength so that finite shear strength remains while cells are 

being crushed and this shear strength grows as the pressure increases. This behaviour 

can be modeled with a yield surface in principal stress space which is a surface of 

revolution centered on the hydrostat and increasing in radius with increasing pressure. 

This behaviour is extended to rocks and soils and defined as Law 21 in Radioss and 

shown in Figure 3.4. 

 

Krieg (1972) expressed the stress state applied at a point of the continuum medium in 

terms of the Cauchy’ stress tensor σij written as: 

 

 
ij ij ij

S Pσ = + δ  (3.2) 

 

Where i and j are indices varying between 1 and 3, and Sij is the stress deviator tensor 

representing the state of pure shear; δij is the Kronecker delta tensor, and p is the 

hydrostatic stress tensor or spherical stress tensor, defined as:  

 

 
ij ij

1
P

3
= σ δ  (3.3) 

 

 
 

Figure 3.4: Yield criterion in the plane of 
2

J  and P 

 

The hydrostatic stress causes volume change whereas the deviatoric stress causes the 

change of shape. The general functional form of failure criteria may be written as a 

function of σ1, σ2 and σ3. However, an alternative convenient way of describing the 

failure is to utilize combinations of the stress invariants. Experimental data showed that 
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the failure criteria for the cohesionless soil depend only on the hydrostatic state of 

stress. The simple parameter I1 defined as the sum of the principal stresses describes a 

cylinder centered on the hydrostatic line. For the pressure-dependant material, the 

deviatoric cross section of the failure surface along the hydrostatic axis is different in 

size and is assumed to be similar in shape.  

 

The surface is capped by a plane that is normal to the hydrostatic line and moves 

outward only. The yield surface defined by Krieg(1972) is expressed as: 

 

 ( ) ( )( )2

2 0 1 2
P f J a a P a P 0φ = − − + + =  (3.4) 

 

Where P is the pressure in the medium, f is a function of the mean total strain, J2 is the 

second invariant of the stress deviator and a0, a1 and a2 are constants. 

 

Krieg (1972) expressed the yield stress by two functions, one describing a paraboloid 

and the other describing the plane normal to the hydrostatic line: 

 

 ( )p
P fφ = −  (3.5) 

 

 ( )2

s 2 0 1 2
J a a P a Pφ = − + +  (3.6) 

 

Φsis a function describing the paraboloid   

Φp is the surface perpendicular to the hydrostatic line.  

 

To ensure that the stress state remains inside the yield surface, the tensile fracture 

should not occur, that is: 

 

 P h≥  (3.7) 

 

where h is a constant defining the minimum cut-off pressure..  

 The second step is to determine Φp. 
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If  

 
p p

0 and 0φ = φ =&  (3.8) 

 

then volumetric plasticity occurs. Krieg (1972) showed that the integration of Equation 

3.8 leads to an elastic response. 

 

For the deviatoric tensor, the conventional plasticity theory is used. If  

 

 
s s s

0 or 0 and 0φ < φ = φ <&  (3.9) 

 

then the loading is considered to behave elastically in the deviatoric mode. In this case: 

 

 
ij ij

S 2G= ε& &  (3.10) 

 

where 
ij

S&  is the deviatoric stress rate. 

ij
ε& is the elastic strain rate component 

 

If the yield surface is reached and the loading conditions are applied: 

  s
ijs

ij

0 and S 0
S

∂φ
φ = ≥

∂
 (3.11) 

 

then, a deviatoric plasticity is taking place. The total strain rate could be decomposed 

into elastic (recoverable) and plastic (irrecoverable) components: 

 
pe

ij ij ij
ε = ε + ε& & &  (3.12) 

 

where 
p

ij
ε& represents the plastic strain rate component and 

e

ij
ε&  the elastic component. 

The elastic component is defined as: 

 
e

ij

ij

S

2G
ε =

&

&  (3.13) 
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The plastic strain rate is assumed to lie in a direction normal to the yield surface in the 

case of associative plasticity. This can be expressed as  

 
p

s

ij

ij
S

∂φ
ε = λ

∂
&  (3.14) 

where λ is a positive scalar. Krieg (1972) showed that λ is determined by: 

 

 
( )ij ij 1 2

ij ij

p
S a 2a p

2G

S S

ε − +
λ =

&
&

  (3.15) 

 

The deviatoric stress rate could then be calculated as: 

 

 
( )

. .

. .
ijij 1 2

ij ij ij

ij ij ij ij

S a 2a p p
S 2G 2G S

S S S S

 
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 (3.16) 

 

Soil material models parameters 

Considering the triaxial axial compression test under undrained condition, the initial 

stress state of triaxial compression test under undrained condition consists in applying 

uniform pressure ( v hσ = σ ). From this initial condition, the confining pressure is held 

constant and the axial loading is increased till the failure, defined by the maximum 

principal stress difference, occurs. At this point of failure, the values of I1 and J2 could be 

calculated: 

 ( )= σ − σ
2

2 1 3 f

2
J

3
 (3.17) 

 ( )= σ + σ2 1 3 f

1
I 2

3
 (3.18) 

 

Three triaxial tests with different compression pressure will define the curve of J2 as 

function of I1 and the coefficient a1, a2 and a3 could be determined from the curve.  

Another approach to determine the a1, a2 and a3 coefficient is to conduct unconfined 

compression test. In this case a1 = a2 = 0 and a0 =
2

y
/ 3σ .  
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Geometry and boundary conditions 

 

The size of the soil block used in the Finite Element model varies in the literature. The 

diameter varies from 1.5 m (Bligh et al., 2004) to 4.0 m (Wu and Thomson, 2007). 

Bendidi (2002) and Bligh et al., (2004) used an intermediate diameter of 2.7 m. The 

depth of the block ranged from 1.0 m (Wu and Thomson 2007) where they set the depth 

the same as the embedment length of the post, to 2.02m (Bendidi 2002). Bligh et al., 

(2004) used an intermediate depth of 1.6 m and considered this depth enough to provide 

ample depth of material below the post. The post embedment depth in the soil was 1118 

mm for Bendidi (2002) and Bligh et al., (2004). For all these models, the outer 

boundaries of the soil block are constrained with no-reflecting boundary around the outer 

face of the cylinder. The possible effect of stress wave reflection from outer boundaries 

was not considered in those previous studies. For the current study, the block has a 

diameter of 2700 mm and a height of 2100 mm.  

 

Mesh properties 

The soil is modeled using 8-node hexahedron elements which have been used by many 

researchers, such as Marzoughi et al., (2001), Bendidi (2002), Whitworth et al., (2004) 

and Mohan et al., (2005). The geometry of the soil mass interacting with the post is 

modeled as a cylinder with a post embedded at the center. The soil was divided into 

three coaxial cylindrical blocks having different mesh sizes. The mesh size of the soil 

was finer at the vicinity of the post to capture the soil deformation and coarser at the 

outer portion of the cylindrical block. Figure 3.5 illustrates the cross section of the soil 

blocks and steel post. The solid element formulation could have one integration to eight 

integration points or even higher with or without Corotational formulation. For this study, 

the inner soil block was selected to have a Corotational formulation with eight integration 

points. The middle and outer soil blocks are modeled with a Corotational formulation with 

one point of integration to optimize the computing time. 
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Figure 3.5: a) Horizantal cross section of finite element model of the soil and the post, b) 

Horizontal cross section of the finite element model of the inner soil and the post 

 

The formulation using one point of integration despite its efficiency can generate zero 

energy hourglass modes. A check of the hourglass energy generated in the model was 

conducted at the end of each simulation to assure that the hourglass energy was low 

with no affect on the results. To prevent the effect of stress wave reflection, a silent 

boundary condition is introduced at the outer surface of the soil cylinders.  

 

The soil-post interaction was simulated by an element-based surface to surface interface 

contact pair with a frictional contact (master-slave relationship). As the master surface 

(post) moved in contact with the slave surface (soil block), the normal and the shear 

forces were computed. The friction formulation is based on the Coulomb criterion. The 

nodes of the master surface are checked for penetration and if the penetration occurs, a 

force proportional to the penetration is applied on the node to push it back. A kinematic 

contact algorithm was used to enforce the contact constraints at the interfaces between 

the two surfaces. To prevent the intrusion between the thin edge of the post and the soil 
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mass, an edge to edge contact interface (type 11) is also used in the model. This type of 

interface is computationally demanding but unavoidable to prevent any penetration. 

Other interfaces were used in the model as the self impact interface for the soil and self 

impact interface for the post. These interfaces ensure that the elements of each part, soil 

and post, are not penetrating themselves during the crash (Radioss, 2005). 

 

The nodes located at the outer block were kinematically constrained in the three 

directions whereas their rotation remained unrestrained. The nodes at the base of the 

soil block were constrained only in the vertical direction z. The parameters of the 

Drucker and Prager model were determined from a literature (Wu, 2000) and are 

presented in Table 3.3. 

 

 

Table 3.3: Soil properties for the cohesionless soil 

 

Parameters Value 

Young Modulus (MPa) 0.997 

Poisson ratio 0.35 

a0 1.58 e -07 

a1 0.00012 

a2 0.024 

amax 0.024 

Pmin Cutoff pressure (MPa) 55 e -06 

 

 

 

3.3.3. Results of the continuum simulation 

The finite element simulation was conducted up to 200 ms and the results are 

summarized in Table 3.4 for the Finite Element simulation and the dynamic test for the 

different speeds. The load deflection curves obtained from the Finite Element simulation 

and the dynamic test show a good agreement. In fact, for the speed of 5.9 m/s for the 
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test #3, the average force was approximately 47 kN and the post displacement was 350 

mm for both the simulation and the dynamic test (Figure 3.6). These results indicate that 

the continuum method correlated well to the dynamic test in terms of peak force, 

average force and in post displacement.  

 

A review of the continuum model animation results shows that the displacement and the 

rotation in the direction of loading were dominant during the test as illustrated in Figure 

3.7. The centre of rotation is located at around 810 mm under the ground level. It is 

interesting to note that the soil elements located at the vicinity of the post were 

significantly deformed and distorted and the element located at the outer border are not 

deformed. The impactor decelerated until it stopped completely (reached a speed 0 

m/s); rebounded back at the time of 112 ms.   

 

Table 3.4: Comparison of the average force and maximum deflection between dynamic 

test and Finite Element simulation 

 

Maximum Deflection 

(mm) 

Average Force  

(kN) 

Peak Force  

(kN)  

Test Model Test Model Test Model 

Test #1 234 240 42.8 41.1 64.0 53.1 

Test #2 314 321 43.9 42.5 66.9 57.8 

Test #3 348 353 47.3 46.3 67.0 64.3 

Test #4* Override Override NA 55.3 104.7 97.2 

 

* The post used in test 4 is W150x23.5 instead of W150x13.5 
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Figure 3.6: Comparison of load-deflection curve of dynamic test # 3 and that obtained 

using the continuum method 

 

Figure 3.6 shows that the initial stiffness of the load deflection for the dynamic test is 

lower than that for simulation curve which explains the shift of approximately 15 mm 

between the two curves. The difference between the two curves could be explained by 

two possible reasons. The first explanation is the fact that the soil in contact with the 

post was not compacted enough in the test to load the post early, which results in less 

resistance to the post at the early stage of loading. In fact, to install the post in the 

cohesionless soil, an auger is used to dig a hole in the ground. After the soil is installed, 

the hole is backfilled and compacted. It is difficult to compact the area close to the post 

because of the risk to hit the post. Therefore, a slack is created in the system and the 

soil around the post showed less resistance. The second reason is the imperfection of 

the post’s straightness as noticed by Reid et al., (2009) in wood posts. They suggested 

that these imperfections created a gap that allowed the post to rotate with the fixture 

when the force is applied. Reid et al., (2009) concluded that these geometric 

imperfections cannot be easily modeled and the gap is added between the soil and the 

post. Several iterations were conducted in the current study to examine the effect of the 

gap on the results. In the present finite simulation study, the soil reacts to the post 
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movement instantaneously because of the small gap between the soil block and the 

post. This gap could also explain the difference of the initial stiffness observed between 

the finite element model and the dynamic test. The maximum load is reached 

approximately after 40 mm of impactor displacement for the FEA simulation and 75 mm 

in the dynamic tests as shown in Figure 3.6.  

 

 

 

Impactor at t=0 ms 

 

 

 

Impactor at t=40 ms 

 

 

Impactor at t=80 ms 

 

Impactor at t=120 ms 

 

Figure 3.7: Dynamic loading simulation results of the continuum model at initial and 

deformed state 
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Figure 3.8 shows the variation of the impactor force as a function of time for the finite 

element model simulation. It can be seen that the first peak is reached at 8.5 ms and the 

average load is maintained constant up to approximately 110 ms then the post started to 

rebound. 

 

Figure 3.9 shows the mass of the soil mobilized in the front of the post at 20 ms using 

contours representing the nodal displacement. The displacement of the soil mass ranges 

from appreciatively 160 mm at the vicinity of the post to 0 mm at the extremity of the soil 

block where the nodes are constrained to move. The shape of the soil mobilized for each 

displacement appeared as elliptical in shape with a maximum disturbed area at the 

ground level and zero at the center of rotation located at 810 mm under the ground level.  
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Figure 3.8: Variation of the impactor force as function of time obtained using the 

continuum method 
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Figure 3.9: View of the mass of soil mobilized at the top surface during impact 

obtained at 20 ms 

 

 

3.4. Improved Subgrade Method 

The method of horizontal subgrade has been used extensively in the area of 

geotechnical engineering to calculate the soil lateral resistance in presence of buried 

structures as explained previously in section 2.2. The lateral loading of piles embedded 

in soil subjected to lateral load or seismic excitation is a typical example of this 

application. The method consists of substituting the soil surrounding the structure by a 

set of springs attached to the post. The pile embedded in the soil is simulated as a one 

dimensional beam having a bending stiffness EI and a length L and resting on a flexible 

foundation. The springs are non-linear and the load deflection curves for springs are 

defined to match the pile reaction. This method is a clear improvement over the previous 

model where the springs are considered linear. 
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3.4.1.  Interpretation methods of soil-pile interaction under dynamic load   

 

The finite element model of a post embedded in the soil and subjected to a dynamic load 

could be considered as a single vertical pile loaded under horizontally dynamic 

excitation. Different models in geotechnical engineering were investigated by 

geotechnical engineers to study the case of a pile subjected to dynamic load induced by 

seismic loading. Different models, including the effect of soil damping and soil stiffness, 

have been proposed. 

 

In 1974, Novak simulated the soil-pile interaction for laterally loaded piles by 

independent-discrete elastic springs and viscous dashpots as illustrated in Figure 3.10. 

 

 

Figure 3.10: Winkler beam in springs and dashpot foundation for laterally loaded 

dynamic pile (Novak, 1974)  

 

The approach accounts for the energy dissipation inherent to material damping 

behaviour. Novak concluded that the soil-pile system response is controlled by four 

dimensionless parameters namely: (a) the mass ratio, ρ/ρp , where ρ and ρp  are the 

specific mass of the soil and the specific mass of the pile respectively, (b) the ratio of 

speed Vs/vc  where Vs is the shear wave velocity of the soil and vc is the longitudinal 
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wave velocity of the pile, (c) slenderness ratio, L/r0 , where L is the length of the pile L 

and r0 is the pile radius and (d) the frequency of the load, ω, expressed as a 

dimensionless parameter defined as: 

 
o

o

r    
a   

G

ω ρ
=  (3.19) 

where G is the shear modulus of the soil. 

 

Novak and Sheta (1980) developed a model that takes into account the nonlinear 

dynamic behaviour of the soil-pile interaction by dividing the soil medium into two 

regions namely: the inner and the outer field regions (Figure 3.11). The near field region 

in the vicinity of the pile shaft, where strong nonlinear soil response occurs, is 

represented by a set of nonlinear springs and dashpots. The soil around the pile is 

naturally weakened by the installation process and an imperfect bond between the soil 

and the pile interface takes place. The far field region, where the behaviour is primarily 

linear elastic, is represented by a series of springs and dashpots. A simpler model based 

on this approach was proposed by El Naggar and Novak (1995, 1996) and used by 

Mostafa and El Naggar (2002), consisting of a series of non-linear springs and dashpots 

for the inner field, and a series of linear springs and dashpots for the far field. They also 

included a lumped mass of the soil where the mass of the inner field is distributed 

among the two nodes of the inner field element but its value was not addressed in the 

aforementioned papers (Figure 3.12). 

 

Figure 3.11: Soil pile interaction for weakened soil around the pile circumference (Novak 

and Sheta, 1980)  
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A new Single degree of freedom (SDOF) interaction (macro-) element has been 

developed by Taciroglu et al., (2006). The model incorporates frictional forces and 

formation of gaps at the soil–pile interface as well as the damping behavior of the soil. 

The macro-element is an assembly of various basic elements, each of which 

incorporating a particular aspect of the soil–pile interaction. The assembly includes (1) a 

drag element to account for the friction between the pile and the soil, (2) a gap element 

to account for the gapping between the pile and the soil, and (3) an elastoplastic p-y 

element to account for the hysteretic response of the soil (Figure 3.13). Although the 

model accounts for the gap between the pile and the soil, it assumes the soil to be 

massless.  

 

 

 

 

 

Figure 3.12: Soil-post interaction model (El Naggar and Bentley 2000) 
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Figure 3.13: Configuration of soil-structure interaction (Taciroglu et al., 2006) 

 

A simplified lumped model, consistent with the Winkler hypothesis, was proposed by 

Pacheco-Crosetti (2007), where the pile-soil interaction is taken into account through 

three independent elements namely: a spring with stiffness ka, a mass ma, and a 

dashpot with a coefficient ca (Figure 3.14). The spring-mass-dashpot coefficients ka, ma, 

and ca that represent the soil can be obtained by means of simple equations. The 

approach has the advantage of including all soil components, stiffness, damping and 

inertia, but it assumes that the components remain constant along the pile depth.  

 

In conclusion, the literature review treating the subject of the pile-soil interaction under 

lateral loading shows that most of the widely used models consisting of modeling the pile 

as a series of beam elements and the soil as a group of unconnected, concentrated 

springs perpendicular to the pile. Some models considered the soil as a combination of 

dashpots and springs. The soil stiffness and damping properties are the only parameters 

included in the dynamic analysis but the effect of soil mass is generally ignored. 
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Figure 3.14: Interaction of pile with soil represented by spring, mass and dampers 

(Pacheco-Crosetti, 2007) 

 

 

3.4.2. Proposed subgrade method of highway post embedded in 

cohesionless soil  

Different empirical expressions are available in the literature for the modulus of subgrade 

reaction of different types of soil (Terzaghi 1955, Menard 1962 and Reese et al. 1974). 

Most of the relations are based on curve fitting of field load tests results and are, in 

general, conservative when the deflection is small. The method to calculate the modulus 

of subgrade reaction used in the current study refers to the work of Habibagahi and 

Langer (1984). The method is based on the bearing capacity concept and does not 

assume a constant horizontal subgrade reaction, kh. In fact the coefficient kh increases 

with depth and decreases with the increase of deflection as it has been demonstrated by 

load test data. This method was used by many researchers in the area of roadside 

safety engineering (Plaxico et al., 1998, Atahan 2002, Atahan and Cansiz 2005 and 

Kennedy et al., 2004) and correlated well with dynamic testing after the initial loading.  
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Most of the methods proposed in the area of roadside safety do not account for the soil 

damping or for the mass of the soil in front of the post. Plaxico (2002) and Kennedy et 

al., (2004) noticed that the dynamic test shows an initial peak recorded in the load 

deflection curve. They explained the absence of the initial peak loading in the Finite 

Element simulation by the absence of the inertial effect as in the real dynamic test. 

 

To include the effects of the stiffness, damping and inertia, a new model of the subgrade 

method is developed where the soil block is modeled as a system of spring-mass with a 

damper or dashpot as shown in Figure 3.15. The model is an upgrade of the traditional 

subgrade approach and it  accounts for the nonlinearity of the soil and the lumped mass 

and the damping properties vary with the depth. The model is also an extension over 

Pacheco-Crosetti’s model (2007). The lumped mass represents the mass of the soil 

being involved during the dynamic impact. The springs store the elastic energy and, 

hence, cause vibrations. The damper dissipates the energy and damps the mechanical 

system. Since the soil parameters vary with depth and in order to improve the accuracy 

of the simulation, the soil mass has been divided into thinner layers of 100 mm where 

the soil parameters are assumed to remain constant for each layer. This layer size of 

100 mm is inline with the tests instrumentation conducted by Rhode et al., (1999) in 

cohesionless and cohesive soils. Ten pressure transducers were mounted on steel and 

wood post with construction adhesive and spaced between 102 mm to 127mm. The post 

and the soil are represented by a post attached to a series of spring-mass-damper 

systems at every 100 mm interval where the soil mass/stiffness and damping factors are 

lumped at the interconnecting nodes of the post model. To describe the model, three 

parameters have to be defined: the stiffness of the spring, the damping factor and the 

lumped mass. The soil parameters dependent on the soil depth and density and take 

into account the separation of the soil-pile.  

  

3.4.3. Calculation of the spring stiffness  

The method used to calculate the stiffness of the spring in this study was proposed by 

Habibaghi and Langer (1984). For a cohesionless soil, the coefficient of subgrade 

reaction kh was found to increase with the depth and decrease with the deflection, 

Habibaghi and Langer (1984) proposed a simple relationship for the calculation of kh in 

kN/m3 based on the bearing capacity concept as follows:  
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h q

'
k N

y

σ
=  (3.20) 

 

where Nq is the lateral bearing capacity factor, y is the post lateral deflection and σ' is the 

effective overburden pressure defined as: 

 

n

i 1

' z

=

σ = γ∑  (3.21) 

 

where γ is the soil density, z is the soil depth and Nq depends on the deflection y and the 

depth z and is defined as: 

 
q

z
N A

B
= +  (3.22) 

 

where B is the width of the post (100 mm) and A is a constant that depends on the post 

deflection and the soil internal friction angle.  

 

Using test data from the field, Habibaghi and Langer (1984) recommended the value of 

A to be 5, 9, 12 and 15 for deflections of 2.54, 6.35, 12.7 and 25.4 mm, respectively.  

 

Plaxico et al., (1998) extrapolated the value of A above the limit of 25.4 mm proposed by 

Habibaghi and Langer (1984) to use it for the large deformation of the post during the 

component testing. A relationship between A and the lateral deflection y based on the 

method of least squares was proposed. The relationship shows that A has a maximum 

value of 15.27 when the deflection became significant. A is defined as: 

 

 
( )0.1245y

A 15.276 14.09 e
−

= −  (3.23) 

 

To calculate the stiffness of the springs along the post, the post is divided into layers of 

100 mm; the effective overburden pressure is calculated for each layer. The value of A is 

determined by Equation 3.23 and the lateral bearing capacity Nq is determined by 

Equation 3.22. Figure 3.16 shows certain spring stiffnesses at different depth for the post 

configuration studied before by Coon et al., (1999). 
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Figure 3.15: Proposed dynamic model for lateral post response 
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Figure 3.16: load deflection curve of the unidirectional spring calculated by Habibagahi 

and Langer approach for Coon et al., (1999) test 
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3.4.4. Evaluation of the lumped mass  

The lumped mass of each mass-spring system is the mass per layer involved during the 

impact which is not known a priori. Pacheco-Crosetti (2007) defined the lumped mass to 

be uniform along the pile and defined by: 

 

 
2

a 0 mm r= π ρ α  (3.24) 

where r0 is the diameter of the pile, ρ is the soil density and αm is a factor defined as 

function of the Poisson’s coefficient.  

 

The lumped mass defined by Equation (3.24) is not realistic since it assumes that the 

inertia effect is constant for a guardrail post. In fact, the deflection post is large especially 

close to the ground level and in consequence, the effect of the inertial force developed 

along the post is not constant.  

 

In the current study, it is proposed to use the results of the continuum method to 

determine the size of the mass block involved during the impact. The displacement 

contours of the nodes of the soil block are shown in Figure 3.9. A cross section of the 

soil block shows that the iso-displacement defined a cone with an apex located at the 

centre of rotation and the base at the ground level as shown in Figure 3.17. As a first 

approximation, a displacement (d) is assumed to represent the criterion to determine the 

lumped mass: any soil mass with a displacement higher than d is involved in the inertial 

force and could be called “active mass”. Any mass with a lower displacement is 

assumed to be too far from the post to have any effect in inertial force. This cone is 

divided into layers of 100 mm, representing the space between the springs. The mass of 

each layer is then assessed and lumped to the system of mass-spring. 

 

A parametric study was conducted to define the displacement threshold to be used. The 

results of this parametric study show that using a very small displacement of 0.25 mm 

results in a large active soil mass added to the spring-damper system. In the opposite, if 

the displacement threshold is increased to 10 mm, the active mass became smaller 

which reduced the peak load and the inertia effect. Figure 3.18 shows the variation of 

the impactor load as a function of time for different displacement limits. It can be seen 

that the peak load increased to 105 kN in the first 10 ms for a mass associated to a 
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displacement of 0.25 mm. However, for the criterion of 10 mm displacement, the peak 

load disappears from the post response which is equivalent to no inertia effect. Table 3.5 

summarizes the results of the different criteria. The results of simulation show that 

increasing the lumped mass has a small effect on the impactor displacement and a 

major effect on the peak load. Based on the parametric study, a displacement of 2 mm 

was found to give the best results and correlation to the dynamic tests of Coon et al., 

(1999) in terms of average load, impactor displacement and peak load.  

 

 

 

 

Figure 3.17: View of the finite element model vertical cross-section of the soil mass 

mobilized during the impact at 20 ms 
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Figure 3.18: Comparison of dynamic test load-deflection curve for different displacement 

criteria 

 

 

Table 3.5: Comparison of the post reaction parameters for different threshold 

displacement  

Displacement 
threshold (mm) 

Energy 
dissipated( kJ) 

Max load 
(kN) 

Max displacement 
(mm) 

Average  
load (kN) 

0.25  12.29 53.9 330 49.3 

2.0  12.63 66.5 336 44.8 

10.0 13.34 105.4 340 43.6 

Dynamic test -- 67.0 348 47.3 

 

 

Figure 3.9 presents the ground plan of the mass involved in the calculation. It was 

approximated by an ellipse with dimensions of the top area approximately 580 mm by 

502 mm which represents approximately 5.8 B and 5.0 B where B is the width of the 
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post. The depth of 810 mm represents 73.6 % of the total embedment of 1100 mm. The 

size of the mass involved is normally related to the friction angle of the soil. In fact, the 

higher the friction angle the larger the soil mass involved in the calculation and the 

higher is the spike of the deflection curve. No data is available to correlate the active 

mass and the friction angle. A simple but approximate method to determine the active 

mass for post loaded laterally could start by assuming that the active mass defines a 

cone with its apex located at a depth of 0.7 D where D is the total embedment of the 

post in the soil. The base at the ground level is defined by an ellipse where the major 

and minor radii are 3B and 2.5 B, respectively, where B is the width of the post.  

 

 

Figure 3.19: Approximate cross section of active mass at the ground level mobilized in 

the guardrail post test 

 

 

Table 3.6 shows the mass calculation and the damping coefficients for each layer 

calculated for three damping factor. The column # 4 containing the value of Cc, critical 

damping ratio, is obtained as km.2 .The mass distribution along the post is clearly not 
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uniform. It can be seen that most of the active mass is located at the first 300 mm close 

to the ground surface and the smallest is close to rotation center.  

 

Table 3.6 Parameters of springs and dampers calculated for the Model with lumped 

mass for the test of Coon et al., (1999) 

 

Z Mass K Cc 5% Cc 20% Cc 12% Cc 

Mm kg kN/mm N/s       

100 34.08 2.39 18.05 1.81 2.71 2.26 

200 25.61 2.39 15.65 1.56 2.35 1.96 

300 18.35 4.95 19.06 1.91 2.86 2.38 

400 12.30 7.62 19.36 1.94 2.90 2.42 

500 7.46 10.37 17.59 1.76 2.64 2.20 

600 3.83 13.13 14.19 1.42 2.13 1.77 

700 1.41 16.09 9.53 0.95 1.43 1.19 

800 0.20 19.04 3.92 0.39 0.59 0.49 

900 0.65 22.12 9.38 0.76 1.13 0.95 

 

 

3.4.5.  Calculation of the damping factor  

The damping of the soil is, in general, the result of the friction of solid particles against 

each other within the skeleton and also the result of relative motion between the solid 

skeleton and the pore fluid (Karl et al., 2006). The soil damping ratio has been 

determined for different type of soils. Karla et al., used the Seismic Cone Penetration 

Testing to determine the soil damping ratio from time histories measurement. The values 

calculated are in the range of 0 to 20% with an average value for the sand of 9.6% and 

7% for sandy silt. No experimental data is available for the case of Coon et al., tests to 

calibrate the subgrade model. Therefore, a parametric study was conducted to 

determine the proper level of damping for the model. The criterion was to measure the 
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energy absorption for each damping ratio and compare it with the energy absorbed 

during the actual dynamic test. In fact, the damper is the element responsible for the 

energy dissipation and any change in the damping parameter should be reflected in the 

energy absorption. 

 

In the current study, the soil is assumed homogeneous and has one damping ratio, ξ for 

the entire soil block and, by consequence, for all the subsystems, the damping ratio, 

expressed in terms of critical damping, cc, is defined by:  

 

 
c

c

c
ξ =  (3.25) 

 

Figure 3.20 shows the predicted impactor displacement time histories for different 

damping level assumptions. The curves show that the model with a high damping ratio 

had less impactor displacement. Using the test results of the peak impactor 

displacement equal to 348 mm, the appropriate damping level comes out to be 12% of 

the critical value.  

 

Figure 3.20: Variation of the Impactor displacement as function of the time for different 

damping ratio 
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The results of the simulation also show that a damping factor, ξ, of 20% has an average 

load of 44.1 kN (Figure 3.21) and an energy absorption of 11.79 kJ whereas a damping 

factor of 5% shows an average load of 42.2 kN and an energy absorption of 14.47 kJ.  

 

 

 

Figure 3.21: Variation of the impactor load as function of the time for different damping 

ratios 

 

 

3.5. Analysis of the Upgraded Subgrade Method Results  

The results of the subgrade model for the impact speed of 5.9 m/s show that the steel 

post did not bend or twist during the impact, which is similar to the behaviour of the post 

in the continuum model and the dynamic test. The post shows a combination of lateral 

displacement and the rotation at the point located around 830 mm under the ground 

level similar to what was observed in the continuum model and the dynamic test. The 
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impactor decelerated with time until it reached zero speed then rebounded back at the 

time of 110 ms. The results of the simulation show that the impact recorded a peak load 

value of 64 kN, an average force of 47.3 kN and a maximum impactor displacement of 

almost 338 mm before the rebound of the impactor. Table 3.7 compares the Finite 

Element simulation and the dynamic test results. The results show that the upgraded 

subgrade method has comparable results to the dynamic tests in the term of peak force, 

average force and post displacement. This indicates that the upgraded subgrade method 

correlated well with the dynamic test. Figure 3.22 shows that the load deflection curves 

of both the continuum and the upgraded subgrade models, presenting very close results.  

 

In Table 3.6, the value of the damping ratio decreases with the depth. These results are 

inline with the tests of Kokusho (1980) which showed that the confining stress has the 

tendency to decrease the damping ratio. The model of the soil-post in the new approach 

was calibrated with results of corresponding speed of 5.9 m/s. Coon et al., (1999) 

conducted in the same site three dynamic tests with different speeds of 4.6 m/s, 5.4 m/s 

and 8.9 m/s. The subgrade model developed was then validated for these three dynamic 

tests. Table 3.7 summarizes the results of the simulations of the different speeds 

compared to dynamic test results. A good agreement can be seen between the dynamic 

test and the simulation. These results prove that the new subgrade model, developed 

with the incorporation of the active mass and damper effects, predicts accurately the 

behaviour of the post during impact.  

 

Table 3.7: Comparison of the average force and maximum deflection between dynamic 

test and the simplified Finite Element simulation 

Maximum Deflection 
(mm) 

Average Force 
(kN) 

Peak Force 
(kN)  

Test Model Test Model Test Model 

Test #1 234 233 42.8 43.0 64.0 53.1 

Test #2 314 296 43.9 45.9 66.9 57.8 

Test #3 348 338 47.3 47.9 67.0 64.3 

Test #4* Override Override NA 56.3 104.7 97.2 

 
* The post used in test #4 is W150x23.5 instead of W150x13.5 
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The initial stiffness of the load deflection curves (Figure 3.22) for the two simulations, 

continuum and simplified models, is higher than the initial stiffness of the dynamic test. 

This can be explained by the fact that the soil just in contact with the post was not 

compacted enough to load the post early, which result in less resistance to the post at 

the early stage of loading in the dynamic test. However, in the Finite Element simulation 

(continuum approach), the soil is considered homogenous with a small gap (2.1 mm) 

between the soil mass and the post, which implies that it reacts to the post movement 

instantaneously. In the subgrade model, the spring is attached to the post. 

Consequently, the spring/mass reaction is instantaneous. To improve the correlation of 

the load deflection relationship for the last case between the subgrade simulation and 

the dynamic test, the effect of mass was delayed by introducing a gap between the 

springs and the post. In this case, the two parts, the post and spring, are not sharing the 

same nodes. Therefore, a contact interface is defined between the springs and the post 

as illustrated in Figure 3.23. The response of the dynamic test and the spring model with 

a gap of 15 mm is presented in Figure 3.24. The introduction of the initial gap improved 

the prediction of the initial stiffness of the system and a good agreement between the 

simulation and the test results is obtained.   

 

Figure 3.22: Comparison of the dynamic test load-deflection curve obtained using both 

the subgrade and continuum methods 
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Figure 3.23: Post-soil model with initial interface gap 

 

 

Figure 3.24: Comparison of the dynamic test load deflection curve obtained using the 

upgraded subgrade method with initial gap 
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To confirm the assumption that the initial peak seen in the load deflection curve is 

attributed to the inertial effect, the results of the analysis without the lumped mass are 

compared with the added mass. Figure 3.25 shows the results for the two simulations. In 

the case of model with springs and no added mass, the curve filtered at 60 Hz presented 

a smooth shape with no peak whereas in the case of added mass the load reaches a 

peak of 63 kN at 7 ms then drops to 34 kN at 14 ms. The two curves, however, seem to 

be similar after the first 60 ms. These results clearly confirm that the initial peak is 

affected by the soil inertia. The result also confirms that the proposed approach is able 

to reproduce the load deflection curve of the impact tests.  

 

Table 3.8 compares the simulation computation time for the continuum method with the 

spring method and lumped mass for the same run time of 180 ms. The simulation was 

conducted using the same computer power. The simulation time of the spring method is 

only 8% of that of the spring method modeled without damper and lumped mass, which 

indicates that the new subgrade method is computationally efficient. This result is very 

promising for the simulation of the full guardrail system which involves few posts, and 

used to suffer from the incapacity of the traditional subgrade method to include the 

inertia effect and the high computation time of the continuum method.  

 

Figure 3.25: Comparison of the impactor force as function of time for the base model 

and the base with lumped mass approach 
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Table 3.8: Simulation statistics for simulation of the different models 

 

Model Continuum Method Spring model Spring/Damper 

Simulation time (ms) 180 180 180 

Run time compared to Spring model 8.49 T T 1.07 T 

 

 

3.6. Improved Subgrade Method for Cohesive Soil 

The proposed method was extended to the case of cohesive soils. The test conducted 

by Dewey (1982) is used as a baseline to correlate the simulation with the dynamic test. 

Dewey conducted a series of static and impact tests to evaluate the load capacity of 

guardrail posts. The dynamic tests used a cart instrumented with an accelerometer to 

measure the lateral deceleration during the impact with the post. The cart was very rigid 

to minimize the energy dissipated in deforming or crushing. The measured displacement 

of the post was determined by double integration of the deceleration of the cart. A high 

speed camera (408 frames/second) was used to confirm the displacement and to 

determine the speed of contact. The displacement of the posts was measured at two 

locations in the post namely: at the point of load application and the ground surface. 

 

 The objective of Dewey’s study was to perform a series of dynamic load tests on two 

types of guardrail posts (steel and wood posts) to determine whether the steel guardrail 

post can perform satisfactorily without the concrete footing. The post used in the study 

had a different length and different embedment depths in cohesive and cohesionless 

soils. The static tests were performed on W6x8.5 (W152x13.4) steel having length of 75 

in (1905 mm) with an embedment of 44 in (1117.6 mm). The dynamic tests were 

conducted with the same steel post having a length of 69 in (1752.6 mm) with an 

embedment of 38 in (965.2 mm). The dynamic cart used had a weight of 5190 lbs (2353 

kg) and impacted the post with an average speed of 24 ft/sec (7.32 m/s). The point of 

load impact is located at 21 in (533.4 mm) from the ground surface. Figure 3.26 

illustrates the test setup. The results of the Finite Element model are compared to the 
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experimental results for the four tests for the peak load, the average force and travelling 

distance. 

 

3.6.1 The continuum method 

To build the Finite Element model, the material properties, such as the mass density of 

the soil, the elastic modulus E, Poisson’s ratio ν and yield stress σy and the steel 

properties should be determined. Dewey (1982) determined only the cohesion cu and the 

friction angle φu of the clay. The model of the post in the cohesive soil is developed using 

the same approach explained for the post in sands (section 3.3). The clay could be 

simulated using Drucker and Prager material law. 

 

The work of Bendidi (2002) was used to determine the remaining properties of the soil 

and the steel. The soil properties used in the model are those determined by 

Vickers(1983) and used by Bendidi (2002). The data are summarized in Table 3.9. 

 

Table 3.9: 

 Soil properties for the cohesive soil used by Bendidi (2002) 

Soil Parameters Value 

Young Modulus (GPa) 0.01 

Poisson ratio 0.304 

a0 0.0079 

a1 0 

a2 0 

amax 0.0079 

Pmin Cutoff pressure (MPa) -0.14 

 

a0 , a1 , a2 are constant defined previously in section 3.3.2. 

 

3.6.2. The subgrade method with the new approach 

The soil is simulated as a system of springs-mass-dampers. To get better simulation 

results, the soil has been divided into layers of 100 mm to represent the variation of the 
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soil parameters with the depth, the same way as in the cohesionless soil. The soil 

parameters were assumed to remain constant within each layer. 

 

Calculation of the spring stiffness  

The lateral load P of the cohesive soil is calculated according to the method developed 

by Matlock (1970):  

 

1/3

u

c

y
P 0.5 P

y

 
=  

 
 (3.26) 

Where y is the actual lateral displacement, yc is the lateral displacement at one half of 

the ultimate resistance and Pu is the ultimate lateral resistance and is defined as: 

 

 
u p u

P N C D=  (3.27) 

Where Cu is the undrained shear strength of the clay, D is the width of the post and Np is 

a non dimensional coefficient which increases with depth. Np is bounded between the 

two values of 3 at the ground and 9 at the critical depth defined by Xr.  
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p

N 9=   if X >Xr              (3.30) 

 

γ’ is the effective unit weight of clay soil. If the soil is not homogenous, γ’ is the average 

effective unit weight from the ground surface to the depth x. 

 

Matlock (1970) defined the value of I experimentally and he found that "I" is 0.5 for soft 

clay and 0.25 for medium clay. For yc, the lateral displacement at one half of the ultimate 

resistance is defined as: 

 

 

 c cy 2.5 b= ε  (3.31) 
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where εc is the strain at 50% of the ultimate strength from a laboratory stress–strain 

curve and is dependant on the consistency of the clay. The typical value used is, in 

general, equal to 0.01. 

 

Dewey (1982) conducted a geotechnical study and found that the value of undrained 

shear strength is not constant but varies with the depth as shown in Table 3.10. The 

curves of the lateral load deflection show that the stiffness at the depth 100 mm is higher 

than the stiffness at the depth of 200 mm or 400 mm. This fact is due to the over-

consolidation of the ground crest which offers a higher undrained shear strength and a 

higher soil stiffness. Another approach consists of the calculation of the spring stiffness 

using the average undrained shear strength along the soil depth Cu ~ 77.56 kPa.  
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Figure 3.26: Dynamic testing Set-up used by Dewey (1982) 
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The calculation of the spring stiffness with the current soil properties is more accurate 

than using an average value of the undrained shear strength Cu. 

 

Table 3.10: Variation of undrained shear strength of the clay as function of the depth for 

the Dewey’s test (1982) 

  

Depth 

(m) 
0.15 0.30 0.46 0.61 0.98 

Undrained shear strength 

Cu (kPa) 
95.8 76.6 67.0 71.8 76.6 

 

Evaluation of the lumped mass 

As described for the case of cohesionless soil, the results of the continuum model are 

used to estimate the lumped mass at each spring. The total volume of the soil involved 

during the impact is divided into layers of 100 mm representing the space between the 

springs and lumped to the post. The calculation of the lumped mass for each layer and 

the damping coefficient were calculated with same procedure explained for the 

cohesionless soil and the results are tabulated in Table 3.11. It can be seen that most of 

the active mass is located close to the ground surface and the minimum is close to the 

centre of rotation. Based on the parametric study, the displacement of 1 mm is selected 

for the criterion retained for the calculation. The curves of the spring stiffness are shown 

in Figure 3.27.  

 

Evaluation of the damping factor 

Adopting the same approach described before in section 3.3.3, a parametric study was 

conducted to determine the damping factor ξ. The active mass was calculated along the 

depth Z and a parametric study was conducted to determine the parameter ξ. A value of 

ξ  equal to 10% was found the best results in matching the load defection curve. The 

impactor overrides the post for all values of the damping factor.  
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Table 3.11: Parameters of the springs-mass-dashpot system used to correlate the 

Dewey (1982) test 

 

Depth  Mass K Cc 5% Cc 15% Cc 10% Cc 

mm Kg kN/mm N/s       

100 36.08 3.98 23.96 1.20 3.59 2.40 

200 27.12 4.35 21.71 1.09 3.26 2.17 

300 19.43 4.71 19.14 0.96 2.87 1.91 

400 13.02 5.08 16.27 0.81 2.44 1.63 

500 7.90 5.45 13.12 0.66 1.97 1.31 

600 4.06 5.81 9.71 0.49 1.46 0.97 

700 1.49 6.18 6.08 0.30 0.91 0.61 

800 0.21 6.55 2.36 0.12 0.35 0.24 

900 0.86 6.84 4.85 0.24 0.73 0.49 

 

3.6.3. Analysis and Results for the case of clay  

Figures 3.28 and 3.29 show that the current subgrade method captures the effect of soil 

inertia developed at the early stage of the dynamic impact. The maximum dynamic load 

registered is around 40 kN at 4ms corresponding to a displacement of approximately 

25mm. The simulation and the dynamic test curves show good agreement, especially 

after the peak load. The peak load of the Finite Element simulation is lower than the 

dynamic test. The curve reported by Dewey (1982) didn’t contain all the data of the 

curve but just a few points from the test, which does not explain whether the dynamic 

test data has been filtered. For the current curve, all data has been filtered with SAE 60 

filter to eliminate the noise. 
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Figure 3.27: Load deflection curves of the unidirectional springs calculated for the test 

(Dewey, 1982) 

 

Figure 3.28: Comparison of the Dewey dynamic test load time history with the curve 

obtained using the improved subgrade method 



                          

         

122 

3.7. Conclusions  

An improved subgrade model was developed which includes all relevant soil 

components such as the soil stiffness, the soil damping and the soil mass involved in the 

dynamic impact. Two methods for simulating the soil have been compared namely: the 

continuum method where the soil is modeled as a solid element and the improved 

method of subgrade approach where the soil is modeled as a mass-spring-damper 

system. The mass of the soil and the damping effect are being introduced in the 

subgrade method to simulate more accurately the load deflection curve of the impactor. 

The traditional study conducted in the field of roadside safety used to simulate the soil 

reaction only as a simple spring and ignored the effect of its mass and damping. 

 

In the new subgrade method, the spring stiffness is calculated based on the subgrade 

reaction method. The lumped mass and the damping coefficients are calculated through 

a simple procedure. The lumped mass is calculated as the active mass involved during 

the impact and is calculated based on the continuum method where the displacements 

of 0.01-0.02 B and greater defined the volume of the active mass. The mass is then 

distributed to the different layers and lumped to the springs. The damping factor is 

calculated with a parametric study and shows that ξ = 0.12 gave the best correlation in 

this case of cohesionless soil. 

 

The simulation results of the new subgrade method were compared to the dynamic test. 

The load deflection curve showed a peak comparable to the old subgrade method, which 

demonstrates that the inertia effect is captured by the new method. The correlation 

between these models in term of impactor force or displacement is very satisfactory.  

 

The new subgrade method developed here can be a good tool for guiding the design of 

a new post as well as conducting parametric studies for improving a given vehicle design 

for road side impact safety. The power of the present new subgrade method is attributed 

to its accuracy and efficiency since it takes significantly less time than the continuum 

method 

  

The method developed for the cohesionless soil has been extended to the cohesive soil 

and shows that it can predict the load deflection curve accurately.  
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Chapter IV 

Parametric Study of the Post Guardrail Embedded in Soil 

 

4.1. Introduction 

The analysis of the guardrail system involves very highly nonlinear material behaviour 

and large deformations caused by the dynamic impact load. This system is too 

complicated for standard linear-elastic analytical methods and closed-form solutions 

(Plaxico et al., 1998). To assess the behaviour of the guardrail system and the guardrail 

post, the finite element analysis method appears to be the best tool that offers full control 

over all parameters and thus has become an essential tool in guardrail system analysis 

and the design of roadside safety hardware. These different parameters can be 

evaluated through an optimization process in order to improve the design of guardrail 

system to reduce the risk of truck rollover (Tabiei and Wu, 2000). For this purpose, finite 

element models representing the full-scale crash test or the component testing should 

be first successfully correlated to physical tests before they can be applied to new 

design proposals. The finite element analysis effectiveness is confirmed at the end by 

conducting a dynamic test with the new design. This approach is very reliable and is 

relatively inexpensive and provides more control over the impact conditions. It also 

provides detailed information about the mechanics of the impact event (Tabiei and Wu, 

2000).  

 

The purpose of this Chapter is to use a finite element model that has been calibrated to 

study the guardrail post reaction under different design conditions. For cohesionless soil, 

the resisting shear stress increases with the shear displacement until the failure shear 

stress is reached. After failure, the residual shear strength decreases (Coon, 1999). 

Therefore, the soil exhibits a peak stress then it drops to residual pressure that remains 

the same for the rest of the deformation. The resultant force, which has a direct effect on 

the force applied to the post, depends on many parameters such as the speed of impact, 

the embedment of the post and the mass of the impactor.  

 

Sennah et al., (2003) compared the vehicle response impacting guardrail system with 

different post configuration. The post cross-section and material type were the 
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parameters of the study. A parametric study was conducted by Elmarakebi et al. (2006) 

to evaluate the effects of key parameters on the response of the pole embedded in soil 

when impacted by vehicles. These parameters included soil type (clay and sand), pole 

material type (steel and aluminum), embedment length of the pole, and vehicle 

impacting speed. This study highlighted the effect of the different parameters on the 

vehicle response. However, it considered only the case of small vehicles.  

 

Due to the limited amount of research conducted to evaluate the effects of the different 

test parameters on the interaction of the post and soil for different test conditions, five 

different parameters were evaluated and analyzed: impactor speed, impactor mass, the 

post embedment depth, the blockout crushability and the soil density. A finite element 

model of a guardrail post impacted by an impactor travelling with an initial velocity was 

built and used to investigate the effects of the different test parameters on the interaction 

of the post and soil to compare the load deflection curve for the different parameters with 

the baseline results. Design guidelines to improve the soil-post interaction for all different 

conditions and for the full-scale crash test is recommended.  

To achieve this goal different parameters have been considered for this study:   

1- Effect of the sand density 

2- Effect of the impactor speed 

3- Effect of the blockout crushability 

4- Effect of the impactor mass 

5- Effect of the post depth 

6- Effect of the clay undrained strength 

 

4.2. Baseline study 

The test results reported by Coon et al. (1999) were used as a baseline for the 

evaluation of the different parameters. As described in Chapter II, a steel post is 

embedded in sandy soil at a depth of 1118 mm (44 in). Coon et al. (1999) conducted a 

series of 17 dynamic tests with different post sizes and impactor speeds to evaluate the 

load capacity of guardrail posts, including steel and wood posts.  The cart consisted of a 

946 kg rigid nose bogie vehicle, instrumented with an accelerometer to measure the 

lateral deceleration during the impact. Four tests were conducted with W-section 

(150×13.5 mm) posts. The tests were conducted with 4.6, 5.4, 5.9 and 8.9 m/s speeds. 
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The soil density ranged from 1980 to 2240 kg/m3 and the moisture content was kept at 

zero level for all tests. The impact point of the bogie with the post was located at 550 

mm above ground level. The results of the tests showed that for speeds ranging from 4.6 

to 5.9 m/s, the impactor rebounds back. However, for the higher speed of 8.9 m/s the 

impactor slides over the post.  As discussed earlier, a finite element model was built to 

study the guardrail post behaviour. The steel post (W152x13.5), 1830 mm long and 152 

mm wide, is modeled by 2020 shell elements and 2142 nodes.  The post was meshed 

with four-nodes using the Radioss QEPH shell formulation. This method was chosen 

because of its computational efficiency and control of the hourglass (Mecalog 2005). The 

impactor is modeled as a solid element with added mass distributed to the nodes. The 

overall mass of the impactor is 948 kg.  

 

4.3. Parametric study 

4.3.1. Effect of the impactor speed 

In the literature reporting impact test results of the guardrail posts, the impactor speed 

varied significantly from 4.6 m/s (Coon et al.,1999) to 9.4 m/s (Polivka et al. 2004). To 

study the effect of the speed on the post guardrail response, a speed range of 3 to 10 

m/s was used in the current study. Three dynamic tests conducted by Coon et al. (1999) 

with different speeds were used to validate the simulation model as explained in Chapter 

3. The model simulations have been conducted for a time period of 150 ms and the 

summary of the results is shown in Table 4.1.  

 

From Figure 4.1, it can be seen that the peak load increases with the increase of the 

speed. The peak load increases from 43.3 kN at 3.0 m/s to 106.6 kN at 10.0 m/s. The 

maximum displacement increases from 130.1 mm at 3 m/s to 795.9 at 10.0 m/s as 

illustrated in Figure 4.2. At speeds higher than 9 m/s the impactor was not stopped by 

the post reaction and it continued its travel to override the post. The variation of the 

impactor maximum displacement with the initial impactor speed follows a second degree 

equation as shown in Figure 4.3. This trend can be modeled as: 

 

 2

max
D  = 5.2972 V  25.839 V+  (4.1) 
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Table 4.1: Summary of the simulation results of impactor hitting the post embedded in 

the soil with different impact speeds 

Speed 

(m/s) 

Peak load 

(kN) 

Maximum 

displacement (mm) 

Average load 

(kN) 

Observation in 

the post 

3 43.3 130.1 35.4 Stopped 

4 50.7 191.4 40.4 Stopped 

4.6 53.8 233.1 42.9 Stopped 

5.4 58.1 294.6 46.2 Stopped 

5.9 64.1 336.0 48.1 Stopped 

7 77.9 435.6 51.9 Stopped 

8 88.7 540.1 55.0 Override 

8.9 97.2 645.5 57.3 Override 

10 106.6 795.9 59.6 Override 
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Figure 4.1: Variation of the impactor load as function of time for different speeds 
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Figure 4.2: Variation of the impactor displacement vs. time for different speed 

 

Figure 4.3: Variation of the impactor displacement as function of the speed 
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For speeds lower than 3 m/s the strain rate effect seems to be limited. The first peak is 

lower than the maximum load as shown in Figure 4.1 whereas the displacement 

increases continuously with the speed. If only the first peak load is considered, the 

maximum load has a linear correlation with the speed defined by:   

 

 
max

F 10.795 V=  (4.2) 

   

The average load also follows a linear relationship with a = 3.439 and b = 26.863 as 

shown in Figure 4.4. 

 

Avg _load = 3.439 V + 26.863
R² = 0.982

Max_load = 10.795 V
R² = 0.9918
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Figure 4.4: Variation of the maximum impactor load and average load as function of the 

impactor speed 

 

The results show that in all the simulations the post did not bend or develop a plastic 

hinge and no plastic strain was noticed. Therefore, most of the energy absorbed by the 

post is elastic as shown in Figure 4.5 and the post sprung back after the test. The post 
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was continuously pushed in the direction of the loading, developing a rotation centre 

located around 800 mm under ground level.   

 

The strain rate effect could be attributed to the combination effect of the soil and the 

steel post. For the soil, the strain rate effect is not homogeneous along the post and the 

top of the post is experiencing the maximum strain rate effect while the centre of the post 

is experiencing the minimum effect (Rhode et al., 1996). However, different studies 

showed that the shear strength parameters of cohesionless soil are not significantly 

affected by the strain rate. Prakash and Venkatesan (1960) conducted direct shear tests 

on two different types of sand and reported that the friction angle varied in a narrow 

range and concluded that the strain rate has no effect on the internal friction angle. 

Similar results have been reported by Whitman and Healy (1962) who conducted triaxial 

tests on Ottawa sand. The specimens of dry and saturated sands were strained to failure 

in duration time ranging from 5 minutes to 5 milliseconds. They used different void ratios 

to investigate the strain-rate effect on the strength of dry and saturated sands. The peak 

friction angle of three sand types was found to vary by less than 10% as the failure-time 

decreased. 

 

The steel post behaviour is, however, influenced by the strain rate effect due, in general, 

to the rate of dislocation through the crystal structure. The strain rate effect has been 

defined by the Cowper and Symonds equation (1957): 

  

 

1

'
qe

1
D

 
σ   = +  σ   

 

&
 (4.3) 

  

Where σ and σ’ are the quasi-static and dynamic stresses, respectively, and ė is the 

strain rate variable and q, D are estimated to be 5 and 40, respectively (Jones, 1989).  
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80 ms 160 ms 

 

Figure 4.5: Plastic strain of the guardrail post at 80 ms and 160 ms 

 

The use of different impact speed in the component testing raises the question about the 

appropriate speed to use especially that the results of the tests depend on the speed 

used. Report 350 (Ross et al. 1993) of NHRCP stated that, in the full-scale testing, the 

vehicle should be positioned such that the initial impact point for a redirective device 

should be selected to establish a worst-case testing condition, that is, the critical impact 

point (CIP) or the point with the greatest potential for causing failure of the test whether 

by excessive wheel snag, excessive pocketing, or structural failure of the device. 

According to the NHCRP requirements, the critical impact distance is estimated at 1.3 m 

for the case of level of service 3-11 where the impact conditions are defined by 100 km/h 

impact speed, 25o angle of impact and standard ¾-ton pickup trucks as the type of test 

vehicle. The data of F.E. analysis and the full-scale crash test data showed that the truck 

speed for this level of service is reduced from 100 km/h to approximately 90 km/h and 

the impact angle is reduced from 25 deg to 22 deg. These results suggest that it is 

appropriate to use a speed of 7-9 m/s for the component testing instead of the 11.74 m/s 

representing the normal component of the speed (100 km/h) applied to the guardrail 

system by the impactor at the time of contact.   
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4.3.2. Effect of the embedment depth 

Simulations of the post model placed in the soil were conducted to evaluate the effect of 

the embedment depth on the impactor reaction. The depth range was from 800 mm to 

1300 mm. Since the stress applied to the post increases with depth, the study used a 

W152x23.8 post (W6x16) instead of the W6x9 post to minimize the post yielding and 

provide a better comparison of the post response with different embedment depths. The 

two posts, W152x23.8 and W152x13.4, have the same width of 100 mm but the 

W152x23.8 post has higher cross section parameters as well as web thickness, section 

area and moment of inertia. This approach has also been used by Kuipers and Reid 

(2003) who used a higher post (W152x23.8) to determine the dynamic properties of soil-

post at various embedment depths under impact loading conditions. They conducted 10 

dynamic bogie tests on the embedded steel posts at different depths. The speed for all 

tests was around 9 m/s and the embedment varies from 864 mm to 1092 mm with a 

bumper height of 630 mm. For a deeper post, the spring stiffness was calculated for 

each 100 mm with the same method described earlier. The results of the different 

simulations are summarized in Table 4.2. 

 

Table 4.2: Summary of the simulations results of the impactor with the post located at 

different depths of embedment 

 

Depth 

 

(mm) 

Peak load 

 

(kN) 

Maximum 

displacement 

(mm) 

Average load 

 

(kN) 

Observation in 

the post 

800 35.98 636.4 26.4 Override 

900 46.01 486.1 33.7 Override 

1000 56.17 400.3 40.7 Stopped 

1100 65.1 329.0 48.3 Stopped 

1200 70.14 293.1 54.5 Stopped 

1300 81.41 259.7 60.9 Stopped 
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The peak load increases with the depth from 35.9 kN for a depth 800 mm to 81.4 kN for 

a depth of 1300 mm as shown in Figure 4.6. The relationship between the embedment 

depth, Z, and the maximum load force, Pmax, and the average load Pavg are illustrated in 

Figure 4.7 and are defined as: 

 

 
max

P = 0.088  Z - 33.347  (4.4) 

where depth Z is in mm. 

 

 

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140

Im
pa

ct
or

 L
oa

d 
(k

N
)

Time (ms)

Depth 800 mm

Depth 900 mm

Depth 1000 mm

Depth 1100 mm

Depth 1200 mm

Depth 1300 mm

 

 

Figure 4.6: Variation of the impactor load vs. time for different depth embedments 
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Figure 4.7: Variation of the impactor maximum load vs. post embedment 

 

The curves of the impactor displacement (Figure 4.8) as function of time show that the 

distance decreases with the depth from 636.4 mm at 800 mm embedment to 259.7 mm 

at 1300mm. In fact, adding more embedment is equivalent of adding more springs to the 

post and dissipating more energy in the soil. For embedment depths of 800 and 900 

mm, the impactor overrides the post. The latter was pulled out of the ground with no 

apparent deformation, which concurs with the results of Kuipers and Reid (2003). The 

post shows a rotation centre around Z = 644 mm below ground level for the case of an 

800 mm depth. The variation of the maximum impactor displacement vs. the post 

embedment Z, plotted in Figure 4.9, shows that the relationship follows a power function 

defined by: 

 

 
-1.8332

max 
D = 0.4088 Z   (4.5) 

where Z is in m. 
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Figure 4.8: Variation of the impactor displacement as function of time for different depth 

embedment 
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Figure 4.9: Variation of the impactor maximum displacement vs. post embedment 
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The peak load rose from 64.1 kN for the baseline study to 70.1 kN at a depth of 1200 

mm and 81.4 kN for a depth of 1300 mm. This indicates that increasing the embedment 

depth is not necessarily the right solution in the presence of medium to high density soil 

since the post reaction becomes very high and exceeds by far the target reaction of 50 

kN. A shorter post has less interaction with the soil, which results in the impactor 

overriding the post and large impactor displacement. For the baseline study where the 

average force is around 50 kN, the depth of 1100 mm seems to be adequate and this 

agrees with the conclusion of Kuipers and Reid (2003)   

 

The energy dissipated through the soil, calculated for different embedment shows that 

the internal energy cumulated in the springs, is constant for the case the impactor is 

stopped and the energy is higher than for the case where the impactor is being 

overridden as shown in Figure 4.10.  
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Figure 4.10: Energy dissipation of the guardrail at different embedment 

 

This fact is due to the fact that for the case where the impactor overrides the post, the 

total energy of the springs is totally mobilized whereas for the case where the impactor is 
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stopped, a portion of the internal energy is still not dissipated. The rate of energy 

dissipation rate increases with the depth because more springs are used. The internal 

energy of the post is constant for all depths where the impactor is stopped. The profile of 

the force–deflection curves of the test indicates that the forces acting on the post are 

almost uniform over the duration of the impact. The animation results show that the post 

had not undergone considerable plastic strain (<3%) as shown previously on Figure 4.5.  

 

The extending of the guardrail post embedment could be a remediation for the case of a 

poor post-soil interaction in loose sand or for the case of guardrail post implemented 

close to the embankments where the risk of overriding the barrier can lead to a potential 

catastrophic accident for the occupants. This countermeasure can be combined with 

other actions, such as reducing the post spacing and changing the guardrail height, to 

improve the guardrail reaction.  

 

4.3.3. Effect of sand friction angle 

Sand could be classified as loose, medium, dense or very dense depending on its 

density which typically varies with the friction angle. A typical friction angle range is 

defined in Table 4.3 in relation to the sand density. 

 

Table 4.3: Typical friction angle for different sand densities 

 

Relative Density Friction angle (o) 

Loose  <30 

Medium  31-35 

Dense 36-40 

Very Dense >42 

 

 

The value of the friction angle (φ) depends on many factors, such as soil density, 

gradation, soil compaction and particle angularity. A typical value of the internal friction 

angle can range from 30o to 35o for poorly graded sand to 40o to 45o for dense sand.  
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This value is computed from the slope of the straight line drawn through the origin and 

tangent to the Mohr circle representing the stress at the failure. 

 

The soil reaction increases with the friction angle. If the soil-post interaction is simulated 

by a nonlinear spring, the stiffness of a spring located at each depth increases with the 

value of φ. Three densities have been considered in this study: loose, medium and 

dense. In each case of the sand density, the springs of the soil at different depths have 

been calculated according to the method of Habibagahi and Langer (1984).  

 

The soil with density different than the one defined in the baseline represents, in fact, a 

new model whose parameters need to be determined, namely the spring stiffness, the 

damping ratio and the concentrated mass. As a first approximation, the damping ratio 

and the concentrated mass are assumed to be the same as in the base model. These 

parameters could be calculated but no data is available to correlate the finite element 

model. To calculate the spring stiffness, Plaxico et al. (1998) defined a density-

dependent modification factor, MF, following a linear relationship with the friction angle: 

 

 
2

MF ( 30) 1
3

= ϕ − +  (4.6) 

 

The modification factor, MF, adjusts the value of lateral subgrade reaction, kh, calculated 

by Habibagahi and Langer (1984) according to the value of the friction angle: 

 

 A A. MFϕ =  (4.7) 

where A was defined previously as:  

 

 ( )0.1245y
A 15, 276 14.09 e

−
= −  (4.8) 

 

y is the lateral deflection of the post. 

 

The lateral bearing capacity, Nq, is related to A by: 
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q

z
N A

B
= +  (4.9) 

where B and z are the post width and depth, respectively. 

 

Figures 4.11 and 4.12 for the three different densities show that the peak load reaches 

values of 88 kN, 64.5 kN and 30 kN for the dense, medium and loose sand, respectively, 

whereas the maximum displacements were approximately 736 mm, 336 mm and 243 

mm. The impactor overrode the post for the case of loose sand and stopped for medium 

and dense sand. The amount of energy dissipated in the case of the dense sand is 

higher than in the case of the other densities. Most of this energy is dissipated during the 

impact as the post pivots in the ground causing the soil to fail. 

 

These results show that the medium density sand offers the best soil interaction as the 

load level remains around 50 kN. The dense sand shows a high interaction between the 

soil and the post, which might cause the vehicle impacting the guardrail to rollover. The 

low density sand shows a poor interaction between the soil and the post which might 

result in the vehicle overriding the guardrail system.     

 

Figure 4.10 shows that the peak load increases with the friction angle, φ. This result is 

based on the approach used by Plaxico et al. (1998) to adjust the horizontal subgrade 

method for different densities to account for the effect of the friction angle. The springs, 

representing the soil stiffness, could be calculated by different methods. Table 4.4 

summarizes the values of the horizontal subgrade modulus using different available 

approaches including Bowles (1982), Terzaghi (1955), Zurabov and Bugayeva (1949), 

Soletanche (1982), Reese et al. (1974), the NAVFAC (1982) and Plaxico et al. (1998).  
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Figure 4.11: Variation of the impact load as function of time for different sand densities 

 

Figure 4.12: Variation of the impactor dispacement as function of time for three sands 

densities of sand 
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For Terzaghi (1955), Zurabov and Bugaeva (1949), Soletanche (1982), and the 

NAVFAC (1982), the value of the lateral subgrade reaction is presented as function of 

the friction angle as shown in Table 4.4. However, for the rest of the references the 

lateral subgrade reaction is presented for the different densities of the sand and no value 

of friction angle. A friction angle of 30o for the loose sand, 35o for the medium sand and 

40o for the dense sand were assumed when no friction angles were available. All the 

data consider the sand to be dry and located above the water table level. In order to 

compare the current approach of the different methods, a modification factor (MF) is 

defined as the ratio of the lateral subgrade at angle φ to lateral subgrade at 30o. 

 

 h

h(30)

k
MF

k

φ
=  (4.10) 

 

The lateral subgrade modulus is plotted as a function of the friction angle for all the 

discussed methods. Figure 4.13 shows that all the curves have a similar trend of 

increasing modification factor with the friction angle. The Figure shows also that 

Equation (4.6) defined by Plaxico et al. (1998) is very similar to that of the NAVFAC. This 

result is expected since equation of Plaxico et al. (1998) is derived from the data of the 

NAVFAC using a pile of an embedment of 500 mm. It can also be seen that while 

Terzaghi’s (1955) curve is the closest to that of Plaxico et al. (1998), the curve of Bowles 

(1982) is the most different. For a dense sand (φ ~ 40o), the modification factor, MF, 

could range from 8, calculated by Plaxico et al. to 2 calculated by Bowles. This large 

difference suggests that equation established by Plaxico et al. (1998) is the most 

conservative method. As concluded by Plaxico et al. (1998), an extensive study of the 

post guardrail embedded in different soils is required to develop a more accurate 

relationship between the value A and the friction angle φ.  

 

For most civil engineering problems, the common practice is to tolerate only small 

strains within the sand mass. For that reason, it is appropriate to use the value of the 

friction angle based on the peak of the stress-strain curve. However, in the case of 

guardrail posts, the soil deformation in front of the post can be large. Therefore, it is 

more appropriate to use the angle under constant volume or residual angle φcv (Lambe 

and Whitman, 1969).     
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Figure 4.13: Variation of the modification factor (MF) as function of the friction angle by 

different models 

 

 

4.3.4. Effect of the impactor mass 

The literature review shows that dynamic testing of steel posts embedded in the soil was 

conducted with different impactor mass to evaluate the post behaviour. Table 4.5 

presents a non-exhaustive list of impactors used in the literature. The mass of the 

impactor could range from 878 to 2324 kg. The impactor consists, in general, of a rigid, 

thick steel pipe, sometimes filled with concrete, mounted to the front of a bogie vehicle or 

a pendulum at a given height above ground level.  

 

To assess the effect of the impactor mass, simulations of the guardrail post embedded in 

the soil and impacted by a cart with different weights were conducted. The baseline 

model used in this study is the same as the one defined and calibrated by Coon's test 

(1999), consisting of a cart travelling at 5.9 m/s and having a mass of 946 kg. The spring 

stiffness representing the soil reaction, the damping coefficient of the soil and the 
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calculated concentrated masses were assumed to remain constant for all the 

simulations. The impactor mass varies from 500 to 3000 kg to cover the range of 

masses used in the literature. Table 4.6 summarizes the results of the conducted 

simulations.  

 

Table 4.5: Impactor mass used in the literature 

Reference Impactor mass (kg) Type of impactor 

Dewey (1982) 2324 Cart guided on rail 

Calcote and Kimball (1978) 1814 Pendulum 

Rhode et al. (1996) 1388 Rigid frame bogie vehicle 

Polivka et al. (2004) 1014 Rigid frame bogie vehicle 

Coon  et al. (1999) 946 Rigid frame bogie vehicle 

Kennedy et al. (2004) 878 Pendulum 

 

Table 4.6: Results of the energy dissipation with different mass impactor 

Mass (kg) Max energy dissipated(kJ) peak acceleration (g) 

500 8.14 60.7 

946 15.39 64.1 

1500 23.46 66.4 

2000 29.46 67.2 

2500 34.43 67.7 

3000 37.33 68.0 

 

The load deflection curve of different impactors is shown in Figure 4.14. It can be seen 

that the post rail undergoes more displacement with the heavier mass than with the 

lighter mass because of the initial kinetic energy and all curves are following a similar 

pattern. Figure 4.15 shows that the barrier with a 500 to 1500 kg mass reaches a 
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maximum displacement then rebounds back, which prove that the barrier was stopped. 

However, the impactor overrides the post for a mass above 2000 kg. The maximum 

displacement of the impactor increases linearly with the mass impacting the post 

following the relation: 

 

 
impactor

D 0.3494 M=  (4.11) 

 

where D is the maximum displacement of the impactor (mm) and Mimpactor is the mass of 

the impactor (kg). The maximum load increases slowly with the impactor mass from 60.7 

kN for a mass of 500 kg to 68.0 kN for the heavier impactor (3000 kg). The curves of the 

dissipated energy for each simulation versus the impactor displacement show that the 

dissipated energy is highest for the heavier mass and increases linearly with the mass 

as shown in Figure 4.16. However, the rate of energy dissipation remains the same for 

all impactor weights, which implies that the post response is independent of the impactor 

mass.  
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Figure 4.14: Effect of the impactor's mass on the load-deflection the guardrail post 
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Figure 4.15: Variation of the impactor displacement as function of time for mass impactor 
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Figure 4.16: Energy dissipation of the guardrail post for different mass impactor 
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4.3.5. Effect of crushable post blockout 

One of the major challenges in road safety is to design the guardrail system with the 

adequate safety level. To provide the appropriate safety levels for an errant vehicle 

hitting the guardrail system, the safety barrier should be designed to keep the impact 

force level lower than 50 kN and to absorb as much energy as possible through the 

deformation of the soil and guardrail system and maintain the integrity of the system 

(Ren and Vesenjak, 2005).  In order to better control the deceleration of the vehicle, new 

design of collapsible blockout system is attached to the post. The current blockout 

consists of a block of rectangular wood posts (200 x 150 x 100) or steel W posts and 

serves only as a spacer between the post and the impact vehicle with no energy 

dissipation capacity.   

 

The new shape of the blockout consists of a longitudinal column member that offers the 

highest degree of energy absorption per unit of mass and guarantees a stable folding 

pattern during the impact. This approach is inspired from the concept used widely in the 

automotive crashworthiness where the front rails are designed to absorb the maximum 

of the frontal impact. Fundamental theoretical research in the area of mechanics of thin-

walled structures has been conducted in the past by Wierzbicki and Abramowick (1989), 

Jones (1983, 1989), Abramowicz and Wierzbicki (1989) and Mahmood and Paluszny 

(1981). In these references, a simple relation between the wall thickness, the shape 

geometry and material properties was derived. When a thin-walled column is subjected 

to uniform axial compression, it develops a state of unstable equilibrium and buckles in a 

well defined pattern after the column reaches its elastic or inelastic buckling stress. The 

tube develops buckling waves in the post-collapsing region that are function of the 

section geometry and material properties. The crash energy of a tube crashed axially are 

characterized by a folding mechanism and a bending collapse identified by plastic 

hinges. The structure of a post-blockout should be designed to efficiently absorb part of 

the kinetic energy in case an errant vehicle hits the guardrail system. The approach of 

the design has to be such that the post blockout, conventionally in block of wood or W 

shape, deforms enough to absorb the impact energy and contribute to reduce the 

vehicle speed and soften the impact against the guardrail.  
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Five models with different cross sections and thicknesses have been designed and 

implemented in the baseline guardrail post model as shown in Figure 4.17. The 

dimensions of these models were selected in such a way that the same space between 

the post and guardrail is kept, knowing that the increase of the gap between the post 

and the guardrail should reduce the snagging of the wheel during the full side model 

impact. Mild steel has been used for all the design scenarios to build the blockout 

system. The steel properties are presented in Table 4.7. This steel was chosen for its 

relatively low price while providing material properties that are acceptable for many 

applications, its relative ductility and its welding capability. To achieve a better 

performance in controlling the impact load, these models could be optimized in 

geometry, thickness and material. Only five models have been chosen either because of 

the simplicity of manufacturing, ease of installation or the expected high energy 

absorption. Similar approaches have been adopted by Vesenjak and Ren (2007) and 

Elmarakbi et al. (2005) where different shape of space were studied to improve the 

vehicle response during the impact with the guardrail system.  In both cases, the study 

was conducted in full scale test and no component study has been conducted.  

 

To minimize the mesh pattern sensitivity on crash simulation results, the same mesh 

pattern was used. The triggers used in the blockout design were simulated by removing 

elements from the compressible system. The element size was chosen to be 

approximately twice that of the sheet thickness (Simunovic et al. 2003), which offers the 

best trade off between crash simulation and computational efficiency. 

 

Table 4.7: Properties of the Steel Material 

Properties Value 

Material 

Young modulus E (GPa) 

Poison coefficient ν 

Yield strength σy  (MPa) 

Tensile Strength σt (MPa) 

Elongation (%) 

MS 

203 

0.30 

206 

330 

36 
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(a) (b) 

(c) 
(d) 

(e) 

 

(f) 

 

Figure 4.17: Different blockout layout to absorb energy during the impact 
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The five blockout components considered in this work consisted of a simplified crash box 

for frontal impact with a square section. Figure 4.17 shows the different considered 

designs: 

 

Blockout 1 consists of 3 square tubes of 60x60 mm cross section and a wall thickness 

of 2 mm. The side length of the enclosed square section was 150 mm. The 3 tubes are 

sandwiched between two metal plates of 2 mm thickness from the same material as the 

square tube (Figure 4.17a).  

 

Blockout 2 is the same as blockout geometry # 1 but with a wall box thickness of 1.5 

mm Figure (4.17b). 

 

Blockout 3’s geometry is the same as blockout #1 and #2. To ensure a desirable folding 

mechanism of the tubes and reduce the peak load of the impactor, the design is pre-

triggered symmetrically in both sides of the tube as shown in Figure 4.17 c. The triggers 

consist of a cut-out material executed on all sides of the tube. The wall thickness of the 

tube is 1 mm in this case as shown in Figure 4.17c.  

 

Blockout 4 consists of attaching to the post a 100 x 150 x 200 mm rectangular tube 

(Figure 4.17.e) with a wall thickness of 2.5 mm and the same material as blocks 1-3. The 

block was attached to the post with 2 bolts simulated as 2 springs with no possibility of 

failure criteria.  

 

 Blockout 5 is similar to blockout #4 with a wall thickness of 3.5 mm 

 

The performances of the different blockout systems are very different as shown in Table 

4.8. Blockout #3, consisting of 3 longitudinal tubes and triggered on both sides, absorbs 

the maximum energy (5.31 kJ) whereas the same design with a 2 mm thickness was 

reacting very close to the baseline, having a maximum load of 66.8 kN, an average load 

of 48.4 kN and a maximum displacement of 330 mm. The vertical tube with a thickness 

of 2.5 mm absorbs 3.6 kJ within the first 50 ms as shown in Figure 4.18, then makes 

contact with the post, recording a load spike of 80 kN as shown in Figure 4.19. The 

lowest average load was 38.9 kN.  The same design with 3.5 mm absorbs less energy, 
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0.71 kJ, because only a localized deformation was created at the lower part of the 

blockout as shown in Figure 4.20. The average load decreases compared to the 

baseline from 48.4 kN to 47.9 kN and the maximum impactor displacement remains 

similar to the baseline 336 mm.  

 

Table 4.8: Results of the energy dissipation with different blockout design 

Design # Energy 

Dissipated (kJ) 

Maximum 

Load (kN) 

Average load 

(kN) 

Impactor 

displacement (mm) 

Blockout 1 0.25 66.8 48.4 329.8 

Blockout 2 4.44 65.2 48.2 331.6 

Blockout 3 5.31 50.3 43.9 378.3 

Blockout 4 3.64 80.0 38.9 456.6 

Blockout 5 0.71 62.5 47.9 336.3 

Baseline 0 64.1 48.1 336.0 

 

As shown in Figure 4.20, the triggers helped initiate a stable asymmetric crushing mode.  

In fact, the main advantage of a well-designed trigger in the blockout structure is to force 

the buckling to initiate at the trigger hole locations during crashing. This helped attenuate 

the first peak load effectively from 64.1 kN to 50.3 kN and reduced the load transferred 

to the guardrail structure. The triggers control effectively the buckling folding pattern 

which helped in reducing the crash mode variations and instability due to imperfections 

originated from material heterogeneity, part geometry or manufacturing processes.  

 

The crushable system was able to reduce the average load to 43.9 kN and to absorb an 

energy of 5.3 kJ with an impactor displacement of 378.3 mm. This suggests that this 

crushable blockout can reduce the impactor load transferred to the post during a full 

crash system of a vehicle hitting the guardrail.  
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Figure 4.18: Internal energy dissipation as function of time for the blockout design 
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Figure 4.19: Variation of the Impactor load as function of time for different crushable 

blockout systems 
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T = 0 ms T = 35 ms T = 50 ms 

(a) 

 
 

 

T = 0 ms T = 35 ms T = 50 ms 

(b) 

   

T = 0 ms T = 35 ms T = 50 ms 

(c) 
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T = 0 ms T = 35 ms T = 50 ms 

(d) 

 

   

T = 0 ms T = 35 ms T = 50 ms 

(e) 

 

Figure 4.20: Behaviour of the crushable system as function of time 

 

4.3.6. Effect of the clay undrained shear strength 

As noted in chapter 3, the guardrail post could be embedded directly in cohesive soil 

characterized by the undrained shear strength, Cu, which correlates most of the cohesive 

soil properties. The method developed by Matlock (1970) is used to calculate the lateral 

resistance since it is used by many researchers in the area of roadside safety 

engineering when dealing with cohesive soil.  The actual force P of the soil is defined as:  



154 

 

                 

 

1/3

u

c

y
P 0.5 P

y

 
=  

 
 (4.12) 

where y is the lateral actual displacement, yc is the lateral displacement at one half of the 

ultimate resistance and Pu is the ultimate lateral resistance.  

 

Fine-grained soils can be classified in relation to the undrained shear strength going 

from very soft to hard consistency as shown in Table 4.9. From each category of 

consistency, an average value of undrained shear strength has been chosen in the 

model to assess the performance of the post during the impact. In practice, an SPT test 

is conducted in-situ and the consistency is determined based on the number of blows to 

drive a split spoon 30 cm in depth.  

  

For the present study, the test conducted by Dewey (1982) was used as a baseline to 

evaluate the effect of the clay consistency on the guardrail post reaction. The average 

undrained shear strength Cu of the clay was estimated to be 77 kPa and the spring 

stiffness was determined using this average. The mass and damping properties of the 

soil were assumed to be constant for all the consistency runs. The results of the finite 

elements models are shown in Table 4.10. 

 

The peak load and the average load increase with the undrained shear strength 

following a linear function shown in figure 4.21 and defined as :   

 

 
max u

P a C b= +  (4.13) 

 

where a = 0.19 and b = 21 kN for the case of the peak load and a = 0.224 and b = 7.33 

for the average load. The maximum displacement decreases with the undrained shear 

strength. The average and the peak load for the hard clay is above 70 kN, indicating 

high interaction between the post and soil. The behaviour of the hard clay is similar to 

the cohesionless soil with high density.   
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Table 4.9: Consistency and undrained shear strength of the cohesive soils 

Consistency Undrained Shear Strength 

(kPa) 

Undrained Shear Strength used 

in the model (kPa) 

Very Soft <12 10 

Soft 12-25 20 

Firm 25-50 36 

Stiff 50-100 72 

Very Stiff 100-200 144 

Hard >200 288 

 

 

Table 4.10: Summary of the simulations results of the impactor with the post embedded 

in different cohesive consistency 

Undrained 

shear strength 

(kPa) 

Peak load 

 

(kN) 

Maximum 

displacement 

(mm) 

Average load 

 

(kN) 

Observation in 

the post 

10 23.7 1062 7.2 Over Ride 

20 24.5 998 10.4 Over Ride 

36 26.4 902 15.5 Over Ride 

72 38.2 712 25.1 Over Ride 

144 53.4 447 40.6 Stopped 

288 76.6 257 71.1 Stopped 



156 

 

                 

 

Figure 4.21: Variation of impact load as function of time for different cohesive 

consistency 

 

 

Figure 4.22: Variation of impact displacement as function of the time for different 

cohesive consistency 
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4.4. Summary of the Parametric Study 

The upgraded mass-spring system of a post embedded in soil was used to conduct an 

exhaustive parametric finite element study and investigate the effects of the different 

parameters on the guardrail post reaction. The response of the guardrail post was 

determined under different loading conditions and the load deflection curve for the 

different parameters was determined and compared to the baseline. Such parameters 

include the sand density, the undrained shear strength of the clay, the impactor speed 

and mass, the post depth and the crushable blockout system were studied and the load 

and the impactor displacement were calculated for each case. 

 

The study shows that that the peak load and the impactor displacement are increasing 

with the speed following a linear equation. For high speeds, greater than 9 m/s, the 

impactor was not stopped by the post reaction whereas for lower speeds, less than 3 

m/s, the effect of the strain rate effect seems to be limited.  

   

The results of the simulation with different densities of cohesionless soil and cohesive 

soils show that the peak load and the impactor displacement increase with the sand 

density and to undrained shear strength for the cohesive soil. The impactor overrode the 

post for the loose sand and clay consistency varying from very soft to stiff and was 

stopped for medium and dense sand and clay consistency higher than stiff. These 

results show that medium-density sand and hard clay offer the best soil interaction as 

the load level remains around 50 kN.  

 

The crushable system implemented instead of the conventional rigid blockout system 

was able to reduce the peak load to 50 kN and the average load to 43.9 kN and absorb 

an energy of 5.3 kJ with an impactor displacement of 378.3 mm. This suggests that this 

crushable blockout can reduce the impactor load transferred to the post during a full 

crash system of a vehicle hitting the guardrail. The triggered design crushed better than 

simple blockout boxes. The triggers helped initiate a stable asymmetric crushing mode. 

In fact, the main advantage of well-designed triggers in the blockout structure is to force 

the buckling to initiate at the trigger hole locations during the crash. This helped 

attenuate the first peak load effectively and reduced the load transferred to the guardrail 

structure.  
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The peak load increases with the depth following a first degree equation whereas the 

impactor displacement decreases with depth following a power function. For embedment 

depths less 1000 m, the impactor overrides the post and for depths higher than 1000 

mm, the post did not show any plastic strain higher than 3%. 

 

The post rail undergoes more displacement with the heavier impactor than with the 

lighter one. However, the maximum load remains quasi constant with a slight increase 

with the impactor mass. The impactor with mass 500 kg to 1500 kg was stopped but the 

impactor overrides the post for an impactor mass above 2000 kg. The maximum 

displacement of the impactor increases linearly with the mass. The rate of energy 

dissipation remains the same for all impactor weights.  

 

The analyses of guardrail post impacted with an impactor having a speed were limited to 

a specific type of soil and a W-post (152x13.4). The soil is assumed to be homogenous. 

However, this assumption is not realistic as the soil is, in general, heterogeneous. The 

conclusions presented in the parametric study regarding the impactor overriding or 

stopped by the post were calculated based on the specific case of Coon et al. (1999) 

impactor displacement curves and speeds. Moreover, the vehicle impacts the guardrail 

system with an angle. Therefore, the post experiences two components: longitudinal and 

lateral. For these reasons, the guidelines proposed in the parametric study based solely 

on the results of those analyses should be taken as directive path and need to be 

validated with a full crash guardrail system. 

 

4.5. DoE and Taguchi Method Applied to the Problem of 

Guardrail Post. 

Design of Experiments (DoE) is powerful statistical technique for studying multiple 

variables effect simultaneously. This technique can be used to solve problem whose 

solution lies in the proper combination of factors or variables rather than a single 

identifiable cause (Roy 2001).  

 

Design of Experiments (DoE) is a better alternative to the approach of best-guess or 

one-factor-at-a-time experiments which are not only costly but also not always efficient. 

The best-guess approach is used in practice by engineers and could work because the 
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experiments have certain technical, theoretical and practical background of the system 

under investigation. The best-guess approach has two main disadvantages. The first is 

that it is time consuming especially if the initial best-guess DoEs not produce the desired 

results and the second is the necessity of experimental planning especially if the first test 

produces acceptable results. The one-factor approach is the technique of selecting a 

baseline set of factors then studying the response of the system by varying each factor 

over each range with the other factor kept constant. The major disadvantage of this 

strategy is that it fails to consider any possibility of interaction between the factors 

(Montgomery 2005). 

 

While, it is essential to have a detailed investigation of the different impact parameters 

on the guardrail post reaction, it is impractical to optimize all parameters and to establish 

the best possible conditions by inter-relating all parameters, as this involves numerous 

experiments to be carried out with all possible combinations. Design of Experiments 

(DoE) is a better alternative to the approach of best-guess or one-factor-at-a-time 

experiments which are not only costly but also inefficient for many cases. In fact, DoE, a 

powerful statistical technique for studying multiple variables simultaneously, will be 

conducted to investigate the interaction between the different parameters and the 

contribution of each parameter to the guardrail post reaction. Statistical experimental 

design methods offer an efficient tool for planning experimentation which involves 

different control factors simultaneously. These methods can investigate the interactive 

effects among the control factors and the results could be used to optimize the 

operational variables. The Taguchi method was selected among the various design-of-

experiment (DoE) methods available in practice to study the effects of experimental 

parameters. This method, extensively applied in industry, has the advantages to 

optimize many factors and to extract quantitative information by conducting reasonable 

but enough number of tests. 

 

The Taguchi method involves the establishment of a large (enough) number of 

experimental situations described as orthogonal arrays (OA) to reduce experimental 

errors and to enhance the efficiency and reproducibility of laboratory experiments. The 

result expresses performance in quantitative terms; it alone DoEs not give an 

understanding of the level of achievement of the objective (Roy 2001). Criteria of result 
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desirability should be defined. The Quality Characteristic (QC) has three options: Bigger 

is best, Smaller is best or Nominal is best. Optimization methodology adopted in this 

study was performed using a modified version of Prakasham et al., 2005 that was 

divided into four phases (with various steps), viz., planning, conducting, analysis, and 

validation. The schematic representation of the designed methodology is depicted in 

Figure 4.23. Each phase has a separate objective, interconnected in sequence to 

achieve the overall optimization process 

 

Determine the factors

Identify test conditions

Identify control and noise factors

Design the matrix experiments (OAs)

Define the analysis procedure

Conduct designed experiments

Analyze the data

Predict the performance at factor level

Individual   

factor 

contribution

Relative      

factor    

Interaction

Determination  

of  optimum 

level for factors

ANOVA and  

S/N analysis

Performance 

under optional 

conditions

Validation experiment

Phase 1

Phase 2

Phase 3

Phase 4

 

Figure 4.23: Steps involved in the use of Taguchi methodology 
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4.5.1. Phase 1: Planning of the DoE 

The first step in Taguchi DoE approach is the planning. In fact before conducting any 

experiments, an exhaustive evaluation of all factors that could have any effects the 

behaviour of the post during the impact was carried out. These factors are divided in two 

groups: the noise factors and control factors, which could be controlled during the test. 

 

The analysis of the post embedded in soil and impacted by a dynamic cart can be 

related to many factors suspected to have an influence on the post reaction. The list of 

potential factors is: the soil type (sand or clay), the soil moisture, the post embedment, 

the post material, the post geometry, the impactor speed, the impactor mass, the impact 

height and the impactor head stiffness. 

 

For the current study, only the cohesionless soil was considered and five factors have 

been selected as shown in the table 4.11. Mass impactor, post embedment, impactor 

speed, blockout crushability and soil friction angle are retained as the most important 

factors that affect the guardrail post performance in the cohesionless soil.  

 

Table 4.11: Factors and levels used in DoE layout 

Level  1 2 3 4 

Soil friction angle  32 37 42   

Mass impactor  (kg) 500 1000 1500 2000 

Post depth (mm) 900 1000 1100 1200 

Crushability  Yes No     

Speed Impactor (m/s) 4 6 8 10 

 

Four levels have been chosen for the mass impactor ranging from 500 kg to 2000 kg 

with a step of 500 kg. The impactor speed ranges from 4 m/s to 10 m/s with a step value 

of 2 m/s. The depth of the post ranges from 900 mm to 1200 mm with a step of 100 mm 

whereas the friction angle has only three levels: 32o, 37o and 42o. Only two state of 

crushability have been considered as shown in figure 4.24, the post with rigid blockout 

which represents the incompressible state and the post with compressible blockout 

which consists of 3 square tubes of 60x60 mm cross section and a 2 mm wall thickness. 
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The side length of the enclosed square section was 150 mm. The 3 tubes are 

sandwiched between two metal plates of 2 mm thickness from the same material as the 

square tube. To ensure a desirable folding mechanism of the tubes and reduce the peak 

load of the impactor, the design is pre-triggered symmetrically in both sides of the tube 

as shown in Figure 4.24. The triggers consist of a cut-out material executed on all sides 

of the tube.  

  

Factors included in the study have different level and requires a combination design 

technique to make the arrays compatible with all levels of the factors (Roy 2001). 

Qualitek-4 software (Nutek Inc., MI) for automatic Design of Experiments using the 

Taguchi approach was used in the present study to generate an L16 orthogonal 

distribution array. The automatic design option allows Qualitek-4 to select the array used 

and assign factors to the appropriate columns.  

 

   

 

 

 

Figure 4.24: crushable and non crushable blockout post 

 

The vertical alignments are called the column of the array and in each column; fraction 

of all possible combinations involved as shown in Table 4.12. Four levels, three level 

and the two level parameters have respectively 3 degrees, 2 degrees and one degree of 

freedom, (No. of levels-1). The total degree of freedom of the (DOF) required was (3x3 + 

2+1) The most appropriate array in this case L16 OA with offers a maximum of 15 (16-1) 

DOF defined as the total number of results of all trial minus 1. The L16 array is given in 

Table 4.12. Column 1 of Table 4.12 contains the three levels of soil friction angle. 
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Column #2 and 3 are empty, reserved for the interaction study. Column #4, 5, 6 and 7 

contain respectively the post embedment, post crushability, the impactor speed and post 

mass.   

 

Table 4.12: L16 Orthogonal array of the current study 

  1 2 3 4 5 6 7 

Run   1 1 0 0 1 1 1 1 

Run   2 1 0 0 2 1 2 2 

Run   3 1 0 0 3 2 3 3 

Run   4 1 0 0 4 2 4 4 

Run   5 2 0 0 1 1 4 3 

Run   6 2 0 0 2 1 3 4 

Run   7 2 0 0 3 2 2 1 

Run   8 2 0 0 4 2 1 2 

Run   9  3 0 0 1 2 2 4 

Run 10 3 0 0 2 2 1 3 

Run 11 3 0 0 3 1 4 2 

Run 12  3 0 0 4 1 3 1 

Run 13 1 0 0 1 2 3 2 

Run 14 1 0 0 2 2 4 1 

Run 15 1 0 0 3 1 1 4 

Run 16 1 0 0 4 1 2 3 

 

     

4.5.2. Method of evaluation 

The capacity of the guardrail to absorb the vehicle impact is related to the post 

interaction with soil surrounding the post. A good interaction should generate a load level 

less than 50 kN, a higher energy absorption and acceptable level of post deflection. 

Thus, four variables criteria have been selected as design criteria: 
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Peak load: Peak load of 50 KN was chosen as the first criterion of the DoE results 

evaluation. The Quality characteristic (QC) is defined for this case as nominal is better. 

 

Average load: Average load of 40 kN was chosen as second criterion of the results 

evaluation. This load corresponds to the value of 50 kN peak load. The Quality 

characteristic (QC) is defined as nominal is better 

 

Energy dissipation: The third criterion of evaluation was the percentage of energy 

dissipated expressed as: 

Energy dissipated in the system
% Energy  

Initial kinetic energy
=  

 

If the total initial kinetic energy of the impactor is dissipated during the impact, the 

percentage of energy will be equal to 1. The quality characteristic defined for this case is 

Nominal is better. 

 

Post deflection: The last criterion was the post deflection at the point of impact. Even 

though no requirement is specified in the literature about this value, a value of 600 mm 

was chosen as a criterion with a QC smaller is better. This value represents the 

displacement that the impactor will travel freely above the post 

 

4.5.3. Phase II: DoE results 

The simulations of different runs were conducted and the results of the peak load, the 

average load, the maximum deflection and the energy absorbed are presented in Table 

4.13.   

 

 

4.5.4.  Analysis of the L16 DoE  results: 

The influence of the different parameters (Impactor mass, impactor speed, post 

embedment, blockout crushability and soil friction angle) which highly influence the 

performance of guardrail post in the cohesionless soil was analyzed using L16 

orthogonal array. The performance was analyzed in the form of average load, maximum 

displacement, peak load, and energy dissipation 
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Table 4.13: Results of the DoE Study 

Runs Peak load Average load Max displacement Energy dissipated 

 kN kN mm kJ 

Run   1 28.71 10.07 322 4.07 

Run   2 29.41 17.88 792 15.17 

Run   3 80.82 30.62 1043 32.56 

Run   4 108.61 43.76 1197 51.75 

Run   5 57.70 48.23 890 58.82 

Run   6 60.57 52.71 876 59.31 

Run   7 63.25 37.01 201 9.02 

Run   8 58.50 44.04 177 8.06 

Run   9 107.12 86.10 474 35.87 

Run 10 108.70 66.51 143 12.11 

Run 11 115.40 37.10 850 34.66 

Run 12 105.10 68.98 283 15.89 

Run 13 69.71 21.36 1013 21.05 

Run 14 89.65 21.55 913 22.40 

Run 15 30.55 20.99 675 13.48 

Run 16 33.39 23.25 938 24.23 

 

 

Table 4.13 shows the maximum displacement of the post are obtained for runs 3, 4, 13 

and 14 and is approximately 1000 - 1200 mm where the friction angle is 32 degrees 

whereas the minimum displacement are obtained for the runs 7,8 and 10. The maximum 

peak load is 115.4 kN recorded for Run 11 representing a combination of speed of 10 

m/s and a friction angle of 42 degrees. The lowest peak load of 28.71 KN and energy 

absorbed of 4.07 kJ is obtained for Run 1 which combined a friction angle of 32 degrees 

with an embedment of 900 mm, a speed of 4 m/s and impactor mass of 500 kg. This 

represents the run which combined all lowest values of the DoE. Run 6 is the case which 

absorbed the highest energy level of 59.31 kJ.  

 

ANOVA (Analysis of Variance) of the different parameters has been performed and the 

results are presented in Tables 4.14, 4.15, 4.16 and 4.17. Table 4.14 shows the 
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percentage P for the peak load criteria. The value of P, for each factor, is defined as 

fraction of the net variation of the factor A to total variation (Taguchi 1991). The 

percentage P calculated in the last column has been collected in unique Table 4.15 

where it summarizes the percentage P of each factor in the response of guardrail post 

with regards to the four quality criteria selected for the study. It can be seen that the 

speed is the most important factor that has an influence on the post behaviour with a 

percentage influence of 45.7 % in the energy dissipation, 48.9 % on the post 

displacement  whereas the soil density and the impactor mass have a very close 

influence factor of approximately 22%. It is interesting to note that the crushability plays 

little role in the energy dissipation by contributing only 1% as shown in Table 4.15. This 

factor could be pooled out of the table and the analysis conducted only with the four 

parameters. 

 

Table 4.16 shows the interaction of the different parameters during the post loading 

defined by the severity index (SI) calculated for each two factors. Table 4.16 shows that 

the interaction between the post crushability and the soil friction angle is the highest 

interaction with an SI ranging from 90.9 % for the peak load to 56.46 % for the energy 

absorption. The interaction between the post crushability and the post depth is also high 

with an SI ranging from 61.8 % of the post deflection to 34.03% for the energy 

absorption. The column number (4) indicated under the column labelled Col represents 

the column where the interaction effect of the factors was present such as the effect of 

the interaction of density and the crushability. Table 4.17 shows the optimum condition 

for different parameters. It can be seen that the optimum condition for the peak load are 

obtained for friction angle of 32 degrees, a post embedment of 900 mm, a crushable 

post blockout, an impactor speed of 4m/s and a mass impactor of 1000kg. The optimum 

post defection is obtained for a speed of 4m/s, an impactor mass of 500 kg combined 

with the a friction angle of 42 degrees, a post embedment of 1200 mm and no 

crushability.  
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4.5.5. Conclusion 

The L16 OA study shows that the speed and the soil friction angle are individually the 

most influential parameters of the post behaviour as shown in Table 4.15. When the 

interaction is taken in account, the post crushability and the soil friction angle show the 

highest interaction for the different quality parameters. The optimum post defection is 

obtained for a speed of 4 m/s an impactor mass of 500 kg combined with the a friction 

angle of 42 degrees, a post embedment of 1200 mm and no crushability. These 

conditions causing the minimum post displacement and loads levels represent also the 

lowest energy input from the impactor to the guardrail system. These conditions do not 

represent the frequent condition of impact and the DoE study needs to be refined with 

real impact condition by taking the mass and the speed of the impactor as constant input 

for the DoE study.  

 

4.6. L9 Orthogonal Array  

 

4.6.1. Phase 1: Planning of the DoE 

In the second step of the DoE study, the mass and speed of impactor are kept constant: 

1000 kg and the speed 7 m/s. The study is focusing in the evaluation of the different post 

design parameters during the impact of the post under the same impact energy.. The 

remaining three factors have been kept from the first DEO study i.e.. the post 

embedment, the blockout crushability and the soil friction angle. Different levels were 

chosen in this study for selected three factors as shown in Table 4.18. Three level of 

crushability have been considered in the current study instead of two used in the 

previous DoE. An intermediate crushability level has been added. The new level “low 

crushability”, is assumed through a design similar to level 2 but with a thicker tube of 

1.5mm.   

 

It can be seen from Table 4.19, each column contains the same number of 1’s 2’s and 

3’s and that these numbers follow certain pattern and not distributed randomly.  This 

balance of the test matrix assure that each level of factor have equal opportunity to 

influence to the results (Roy, 2001). 
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Table 4.18: parameters and steps of the current study 

 

Level  1 2 3 

Soil friction angle (o) 32 37 42 

Post depth (mm) 1000 1100 1200 

Crushability No  High Low 

 

 

 

The three three-level parameters have 2 degrees of freedom, (No. of levels-1), i.e., the 

total degree of freedom of the (DOF) required was (3x2).  The most appropriate array in 

this case L9 OA which offers a maximum of 8 (9-1) DOF defined as the total number of 

results of all trial minus 1. The assignment of parameters to the columns of the L9 OA is 

given in Table 4.19.  

 

Table 4.19: L9 Orthogonal array of the current study 

Factor level 
Run # 

1 2 3 

Run   1 1 1 1 

Run   2 1 2 2 

Run   3 1 3 3 

Run   4 2 1 2 

Run   5 2 2 3 

Run   6 2 3 1 

Run   7 3 1 3 

Run   8 3 2 1 

Run   9  3 3 2 
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4.6.2. DoE results and discussion  

 

The results of the different simulations are presented in Table 4.20. 

 

Table 4.20: Results of the DoE Study 

Run  Peak Load Average load Max Displacement Energy Dissipated 

# kN kN mm kJ 

Run 1 60.40 20.50 764 16.94 

Run 2 48.01 41.50 432 17.61 

Run 3 109.90 53.10 215 14.07 

Run 4 75.96 52.50 439 24.70 

Run 5 112.10 66.30 193 14.20 

Run 6 40.80 26.77 855 22.45 

Run 7 116.40 77.10 272 23.05 

Run 8 40.70 26.78 777 21.40 

Run 9 75.70 54.70 318 16.15 

 

The influence effect of different parameters (embedment, blockout crushability and soil 

friction angle) which highly influence the performance of guardrail post in the 

cohesionless soil was analyzed using L9 orthogonal array. The performance was 

analyzed in the form of average load, maximum displacement, peak load, and energy 

dissipation 

 

Table 4.20 shows the minimum displacement of the post are obtained for runs 3 and 5 

and 7 and is approximately 200 mm where the friction angle is 42 degrees whereas the 

maximum displacement are obtained for the runs 1, 6, and 8 which corresponds to the 

low soil friction angle of 32 degrees. The peak load reached the load value of 116 kN 

and 112 kN for the runs 5 and 7 corresponding also to the highest friction angle of 42 

degrees.  However, the smaller peak load was 40 kN to runs 6 and 8 corresponding to 

soil friction angle of 32 degree combined with a low or high degree of crushability of the 

blockout. The energy dissipated was higher for the Run 4 with total energy dissipation 
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close to 1 whereas the lowest degree of energy dissipation is obtained for Run 5 where 

58% of the energy is dissipated.   

 

The optimum conditions predicted by the analysis of Taguchi L9 experimental design are 

shown in the Table 4.21. The optimum conditions to target 50 kN are an embedment of 

1000 mm with high crushability blockout and small friction angle. The predicted peak 

load is 35.9 kN (50 kN – 14.1 kN). For the post deflection, the predicted optimum value 

is 197 mm obtained with high friction angle of the soil, an embedment of 1200 mm with 

low crushability of the block out. For the average load, the optimum condition is obtained 

for the combination of an embedment of 1000 mm, low friction angle and low crushability 

of the blockout. Finally for the energy dissipation, the optimum condition is obtained for 

an embedment of 1100mm, a low friction angle and no crushable post.  

 

ANOVA (Analysis of Variance) of the different parameters has been performed and the 

results of the peak loads have been collected in Table 4.22.  The percentage P of each 

factor in the response of guardrail post is summarized for the four quality criteria 

selected for the study. The analysis based on individual factor L9 experimental design 

shows that the friction angle plays individually the main role in the guardrail post reaction 

in respect of peak load, average load and maximum post displacement. In fact the 

influence factor of these different parameters ranges from 86 % to 99 % as shown in 

Table 4.22. Similar results were obtained by Plaxico et al. (1998) who conducted a 

parametric study to determine the role that wood and soil strength play in guardrail 

system. The rail height deflection at failure of the post was found to be a function of the 

soil strength parameter, φ, for many different post strengths and an increase in the value 

of the friction angle φ leads to an increase in soil strength and a decrease on the post 

deflection. The post embedment and the post crushability have less impact of the post 

reaction and their influence remains lower than 6% for peak load and post deflection. 

This conclusion confirms the test results of Kuipers and Reid (2003) where the initial 

peak force, the average load and post deflection were similar for two embedments of 

1092 mm and 1016 mm. The force level and the energy absorption were reduced only 

when the embedment depth was reduced to 940 mm. The DoE shows also that the main 

contribution of the embedment and the blockout crushability appears in the energy 
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dissipation parameter where their contributions are respectively determined as 42.1 % 

and 37.3 %.    

 

Table 4.23 summarized the interaction of the different parameters selected for the study. 

It can be viewed that for the post deflection and average load, the different parameters 

have very limited interaction and the maximum value of SI is less 15.26. It is interesting 

to note that, the post crushability have 52.58 % and 54.46% interaction with the depth 

and the friction angle respectively and the depth have 31.4 5 and 32.05% interaction 

with the depth and the crushability respectively.   

 

The friction angle as shown in Table 4.22 has influence factor above 86 % which 

individually seems to play the main role in the guardrail post reaction. In general, with a 

contribution of less than 5%, one of the common practices of statisticians is to pool the 

parameter out of the study and conducted a second analysis of variance with the 

remaining parameters in respect to criteria of evaluation (Roy 2001) of peak load, 

average load and maximum post displacement. 

 

However, the same factor of the soil friction angle shows an interaction factor with the 

blockout crushability expressed with a severity index (SI) higher than 54 % for the 

energy dissipation and 15 % for the average load. For the peak load, the soil friction 

angle has an interaction with the post depth of 32%. These results are suggesting that 

these parameters cannot be pulled out of the study even, individually, the parameters 

seem having minor effect on the results as suggested by the one-at-time method. 

Friction angle which is influencing the results more than 90% is accomplishing this 

performance with interaction with the other factors.  The crushability of the blockout and 

the post depth have minor influence in affecting the behavior of the post or getting the 

optimum condition for the different factors however these are influencing the results by 

their interaction with the different quality criteria. This study unveils clearly how the 

factors directly and indirectly influence the final results.   
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Another interesting result, which could be considered using the Qualitek software, is the 

determination of the optimum post deflection and the identification of the individual 

influence factor on the post reaction. In Taguchi’s method, quality is measured by the 

deviation of a characteristic from its target value, and a loss function [L(y)] is developed 

for the deviation as represented by L(y) = k(y - m)2, where k denotes the proportionality 

constant, m represents the target value and y is the experimental value obtained for 

each trial. In case of smaller is better QC, the loss function can be written as L(y) = ky2 

and the expected loss function can be represented by the results obtained from the data 

processing shown in Figure 4.25. 

 

 

 

Figure 4.25: Variation reduction plot for smaller post deflection 

 

As shown in Table 4.21, the expected post deflection at the optimum condition is 197.22 

mm calculated for a post embedment of 1200 mm in soil with a friction angle of 42 

degrees and low compressibility blockout. To accomplish similar performance of post 

displacement of 200 mm using one-at-time parametric study, a speed of 4 m/s is 
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required for the baseline condition of loading as shown in Table 4.1 in the parametric 

study. This speed is low and DoEs not represent a realistic speed of contact. The current 

speed of 7 m/s applied to the baseline condition yields a 435.6 mm displacement which 

is two times higher than the one determined by the DoE value. By using Taguchi 

analysis design, and keeping the conditions of 7 m/s and the impactor of 1000 kg, the 

post displacement was minimized to 197 mm. This improvement of performance in the 

post deflection could be viewed in Figure 4.25 which shows that targeted value of 197 

mm was achieved at optimum condition predicted from L9 Experimental design.  

 

4.7. Conclusions 

 

The purpose of this chapter is to study the contribution of the different design 

parameters of the guardrail post to the reaction during lateral dynamic impact using the 

Taguchi method. The guardrail post depends on the soil to provide the required 

foundation support. The interaction between the post and the soil depends on many 

factors such as the soil friction angle, the post depth and the post blockout crushability.  

Hence, the reaction force recorded is very much related to all conditions implemented in 

the post design. The L-9 OA design compared to a conventional one-at-a-time-approach 

has been evaluated in the present investigation. The experimental data depicted the 

edge in identifying the influence of individual factors and establishing the relationship 

betweenvariables and operational conditions as well as for the selection of optimal levels 

for best performance. It can be concluded that:  

 

- The soil friction is the most important factor in guardrail post reaction during the 

lateral impact and plays a major role with respect to the peak load, average load 

and maximum post displacement. 

 

- The post embedment and the post crushability seem individually to have less role 

in the impact of the post reaction and their influence is lower than 6% for peak 

load and post deflection. However, the interaction of these factors with the soil 

friction angle is important and can influence the test results.  
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- The optimum conditions predicted by the analysis of Taguchi L9 experimental 

design shows that the crushability of the blockout post is an important factor to 

achieve an optimal condition. 
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Chapter V 

Full-Scale Finite Element Model Development and Analysis  

5.1. Introduction 

 

Most of the roadside hardware evaluation has been achieved by conducting destructive 

full-scale crash testing to evaluate performance of roadside safety devices. The result 

and the analysis of the test is used to identify potential safety problems. However full-

scale testing suffers from many shortcomings, as many parameters are not controlled 

efficiently and the test is costly. The need for full crash testing evolved from the 

requirement to meet the NCHRP Report 230 (Michie, 1981) to NHCRP 350 (Ross et al., 

1993). One major change was the replacement of the 2044 kg passenger car by a 2000 

kg pickup truck under NCHRP Report 350 guidelines (Ross et al., 1993). The C1500 

pickup truck has been the main test vehicle for the majority of roadside hardware 

evaluation and certification crash tests (Marzoughi et al., 2004).  

 

As computer processing power has increased and finite element analyses become more 

accessible and affordable, these analyses play a major role for the design of roadside 

hardware. Computer simulations reduce the development cost by optimizing different 

design alternatives prior to any full-scale destructive crash testing. However, the 

accuracy of simulation depends upon the development of reliable models of each distinct 

component of the guardrail system as well as the integration of all these parts in the 

same global model (Plaxico, 2002). On the other hand, the accuracy of the finite element 

models should not penalize the full model in terms of time computation. For example, 

most of the bolt connections should be modeled as springs in lieu of dense mesh of the 

geometry details.   

 

In order to implement the results of the parametric study, finite element model of a full-

scale crash test is built representing the impact of a pickup truck travelling at 100 km/h 

and impacting the guardrail with an angle of 25o as required by NCHRP Report 350. The 

model is used to study the interaction of the posts with the vehicle during the full-scale 

crash test and compare the results with those obtained from the component crash 

model. The model serves also to review the vehicle behaviour and the post reaction 
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under different blockout designs, crushable and non-crushable, and compare it to the 

baseline vehicle reaction. The modeling of each component of the guardrail system is 

presented with validation. 

 

5.2. Finite Element Modeling 

5.2.1. Guardrail modeling 

The W-beam guardrail model used in this study consists of corrugated sheet steel 

beams as shown in Figure 5.1. The cross section is 312 mm height and 83 mm width 

and 2.66 mm thickness. Details of the guardrail section are presented in Figure 5.1. The 

model consisted of guardrail beams of 3820 mm length each overlapped over 320 mm 

between each two adjacent beams. The guardrails located at the central portion and 

subjected directly to the impact of the vehicle are meshed with fine mesh since the 

deformations are expected to be significant while the guardrail beams located at the two 

ends of the guardrail and subjected only to pure tension, and they are meshed with a 

coarse mesh to balance adequately the simulation response of the beam guardrail and 

the computation time consuming.   

 

The W-beam rail material is classified as AASHTO M-180 Class A Type II (ASSHTO, 

2000). The material is defined as linear elasto-plastic with kinematic strain hardening, 

material type 36 in Radioss. The material properties of the guardrail needed for the finite 

element model are determined from the tests conducted by Hamilton (1999) who 

performed a series of three tensile tests on steel coupons taken from guardrail posts. 

The material properties used are summarized in Table 5.1. These properties are similar 

to those properties presented by Wright and Ray (1996). 

 

The guardrail was meshed with four-node, as illustrated in Figure 5.2, using 

Quadrilateral Elasto Plastic Hourglass Control shell formulation known as QEPH shell 

elements (Mecalog 2005) which is one Gauss point of quadrature numerical integration. 

The under-integration formulation can reduce the computation time but have the risk that 

it can lead to zero-energy hourglass modes depending on the mesh and the geometry. A 

review of the hourglass energy was conducted after each finite element simulation to 

ensure that no numerical instabilities are created and the percentage of hourglass 

energy is kept under an acceptable level of the total energy. From the automotive best 
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practice, 2% is chosen as criterion for acceptable level. The shell element has five 

integration points through the thickness of the element.   

  

Figure 5.1: Guardrail cross-section of the W beam after AAHTSO (2000) 

 

 

Table 5.1: Material properties for modeling guardrail steel (Plaxico, 2002) 

Material Property                                                                  Value 

Material Type                        AASHTO M-180  

Density kg/m3                                          7890 

Poisson’s ratio                                          0.30 

Yield Stress (MPa)                                          415 

Strain (%)               0       0.02      0.08       0.165       0.330       0.495      0.66        1.00 

Stress (MPa)         0.0      415       548         585          591          595        600         600 
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Figure 5.2: Finite element meshing of the W-beam  

 

It is acknowledged that the strain rate effect has a significant influence on the dynamic 

impact behaviour of the steel. The yield criterion which governs the plastic flow in the 

structural problem is dependent of the rate of stain (Jones 1989). The post is modeled 

using an elasto-plastic material with strain rate effect. The strain rate effect has been 

defined by Cowper and Symonds equation (1957): 
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σ and σ’ are the quasi-static and dynamic stresses and ė is the strain rate and q, D are 

the Cowper and Symonds coefficients, for the steel, q and D are estimated to be 5 and 

40 as mentioned previously in Chapter 3. 

 

5.2.2. Guardrail post modeling 

The posts used in the guardrail system model are W150x13.5 beam where the cross 

section was described earlier in Chapter 3 (Section 3.2). The steel post is 1.8 m long 

and has two symmetric holes located 178 mm from the top of the post to attach the 

blockout with a M16 bolt. In the current study, these holes were filled since the bolt was 
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modeled as spring.  A Detail of the finite element model of the post is shown in Figure 

5.3. 

 

Following the same strategy of balancing the computational time and the results 

accuracy, two finite element models of the post were developed. The first model 

consisted of a coarse mesh and used for the non-impact zone located close to the two 

ends of the guardrails and the second with a fine mesh for the impacted zone.  The fine 

model for the W150×13.5 (W6×9) steel post consists of 2020 elements and 2142 nodes 

whereas the coarse model consists of 819 elements and 896 nodes. As stated by 

Plaxico (2002) the W150x13.5 posts are weak in torsion and tend to twist during impact, 

which consequently reduces the lateral bending stiffness of the posts so the fine mesh 

was necessary in the impact region due to the large deformations of those posts during 

impact. 

 

The post was meshed with four-node QEPH shell elements. This type of element uses 

one Gauss quadrature numerical integration and five integration points through the 

element thickness. The material properties are illustrated in Table 5.2. 

 

Table 5.2: Material properties for modeling guardrail post steel  

(Wright, A. and Ray, M.H. 1996) 

 

Material Properties                                                                                                 Value 

Density kg/m3                                        7890 

Young modulus (GPa)                   200                      

Poisson’s ratio                                         0.29 

Yield Stress (MPa)                                         336 

Strain    (%)           0     0.024      0.042     0.057     0.141      0.213     0.250       1.00 

Stress (MPa)         0.0       336         401        434         527          589        675        677 

 

 

Plaxico (2002) recommended using more than three integration points through the 

thickness for the guardrail post to capture the stress profile through the thickness of the 
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elements. In fact, when a shell element is subjected to pure tension or compression, the 

stress and strain calculated at the point is uniform through the thickness of the element 

and the number of integration points is not important. On the other hand if a shell 

element is subjected to bending and might develop plastic strains, the number of 

integration points through the thickness plays a significant role in the accuracy of the 

results. If the number of integration points is reduced to three, the entire section might 

become plastic too early and the deflection will be overestimated (Plaxico 2002).  

  

(a) Mesh 1 (b) Mesh 2 

 

Figure 5.3: Finite Element meshing of the post guardrail  

 

5.2.3. Soil-post interaction 

The simulation of the soil-post interaction is very critical to assess the response of the 

guardrail and the vehicle during a lateral impact event. For the finite element analysis of 

the full guardrail model, two approaches are utilized as described in Chapter 3: the 

continuum finite element approach where the soil is modeled as solid elements; and the 

subgrade reaction approach where the post is attached to an array of springs 

representing the soil resistance. For the current study, the soil reaction was modeled as 
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a system of springs and dampers attached to concentrated masses using the subgrade 

method developed in section 3. In this approach, the soil is modeled as an array of 

unidirectional uncoupled nonlinear springs acting on both cross sections of each post at 

100 mm. The stiffness of the springs is determined by the method proposed by 

Habibagaha and Langer (1984). The proposed approach accounts for the damping 

effect of the soil and the inertial effect generated by the soil mass which were ignored in 

previous studies. The soil mass surrounding the post was added as lumped mass and 

attached to the post to simulate the effect of the soil inertia.  This approach ignores the 

torsional moment induced by the impactor about the axis of the post (about Z-direction). 

The torsional moment is the result of the non-coincidence of the centre of mass and the 

centre of rigidity because of the asymmetry of structure elements or uneven mass 

distribution (Canadian Geotechnical Society, 2006).  

 

The post-soil interaction was validated with the dynamic impact test conducted by Coon 

et al. (1999) for test speeds of 4.6 m/s, 5.4 m/s, 5.9 m/s and 8.9 m/s. The soil density 

ranged from 1980 kg/m3 to 2240 kg/m3 and the length of the post was 1830 mm with an 

embedment of 1100mm. The point of impact of the bogie with the post was located at 

550 mm above the ground level. Figure 5.4 illustrates the modelling of the post-soil 

interaction as discussed previously in Chapter III. 

 

5.2.4. W beam rail to the post connections 

The post guardrail is fastened to a W-beam with a M16 bolt going through the blockout 

and a slotted hole in the beam. The shear of the bolt and the loss of connection with the 

blockout were observed in many dynamic tests due to the high forces applied on the 

bolt. This behaviour is very important to simulate accurately the kinematics of the vehicle 

impacting the barrier and the post. In fact, if the connections between the post and the 

W-beam are too strong, the W-beam is most likely to follow the post during the impact 

and be pulled to the ground with the post which results in the errant vehicle overriding 

the guardrail. On the other hand, if these connections are too weak, the rail can be 

pulled away from the post under relative low force very early causing the separation of 

the post from the guardrail which allows the rail to drop and the vehicle to penetrate the 

system (Plaxico, 2002). Following Tabiei and Wu (2000) and Plaxico (2002), a spring 

with nonlinear load-deflection constitutive law is used to simulate the behaviour of the 

connection.  
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Figure 5.4: Subgrade modelling of the post-soil interaction 

 

To determine the behaviour of the connection, Tabiei and Wu (2000) considered two 

cases of the bolt location. In the first case the bolt was located at the centre of the slot of 

the W-beam and in the second case the bolt was located at the edge of the slot. The test 

results from finite element simulations  showed that the maximum forces required to pull 

the bolt through the beam was around 30 kN and 80 kN for the bolt at the centre and the 

edge respectively. Plaxico (2002) conducted quasi-static laboratory tests to estimate the 

beam/bolt connection using a 1780 kN capacity Tinius Olsen axial load testing machine. 

Four cases of loading were investigated: 

 

-  One layer of W-beam with the bolt positioned in the center of the slot in the W-

beam. 

-  One layer of W-beam with the bolt positioned at the edge of the slot in the W-

beam. 

- Two layers of W-beams with the bolt positioned at the center of the slots in 

both sections.  
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- Two layers of W-beams with the bolt positioned at the edge of the slots in both 

sections.    

 

The test results showed that the minimum pull-out force required to break the connection 

in case 1 has an average value of 18 kN whereas the maximum pull-through force in 

cases 2,3 and 4 has an average value of 28.7 kN, 41.0 kN and 64.7 kN which are close 

to the value determined by Tabiei and Wu (2000). For the current study, the nonlinear 

springs is the best approach to simulate the bolt connection and the force-deflection 

characteristics in the full finite element model are the obtained through component 

testing of Plaxico (2002) with no failure criteria. 

 

5.2.5. Blockout modeling 

The blockout could be made of solid block of wood or steel W-beam. For the case of 

wood, the blockout consists of parallelepiped with rectangular cross section (150 x 200 

mm, height 360), modeled using 8-node hexahedron. To optimize the computing time, 

the blockkout located in the area of impact were selected to have a Corotational 

formulation with eight integration points whereas the remaining blockout located in the 

non-impact zone close to the two ends of the guardrails, are modeled with a Corotational 

formulation with one point of integration. For the case of crushable blockout, similar 

formation as defined in Chapter IV is used. 

 

5.2.6. Vehicle model development 

A finite element model of the Chevrolet C-1500 pickup truck available from National 

Crash Analysis Center (NCAC) was used in this study representing the 2000P pickup 

truck. The model was developed to offer a simplified version of the detailed model to 

reduce time computation (Marzoughi et al., 2004).  Although most of the parts of the 

reduced model were crudely modeled, it has been extensively used by many 

researchers; to list a few Bendidi (2002) Whitworth et al. (2004), Plaxico at al (2002), 

Plaxico (2002) and Atahan (2002). The truck model contained approximately 62,300 

nodes and 56,000 elements. In order to improve the quality of the truck model and to 

capture better kinematics of the interaction guardrail post with the truck, several 

modifications were implemented in this study:  
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- The quality of the model has been improved by cleaning the model from most of the 

penetration and the intersection.  

- The four tires were re-meshed and the volume between the tires and the rim has 

been defined as monitored volume with a net internal pressure of 35 psi. This will 

improve the interaction of the tire with the ground. 

- The front suspensions were upgraded to improve the response of the vehicle’s 

dynamic behaviour during impact with barrier. Tiso (2002) showed that the 

implementation of the suspension to the C1500 Pickup Truck Finite Element Model 

gave more realistic vehicle kinematics. A detailed component of the front 

suspension has been integrated to the pickup model as shown in Figure 5.5. 

- The impact side of the truck, directly in contact with the W-rail and the posts, was re-

meshed with a finer mesh as shown in Figure 5.5. 

- The element formulation of many parts has been changed and 5 integration points 

through the thickness were chosen.  

- The overall weight of the truck was 2023, by adding 211 kg distributed over the 

model. 

 

All these modifications were necessary to increase the accuracy of the finite element 

model in capturing the actual crash test performance of the guardrail system.  

 

The model’s accuracy has been improved by Zaouk et al. (1997) where several 

coupons from parts such as the engine cradle, fender, hood, bumper, rails, door and 

door frame were tested to obtain their properties. The pickup truck is regular-cab with a 

wheelbase of 334 cm, an overall length of 543.5 cm a weight of 2000 kg, close enough 

to the recommended properties of the 2000P truck as recommended in the NCHRP 

Report as shown in Table 5.3.  

 

The available original model developed in LS-DYNA (Hallquist, 2006) model was 

converted to Radioss format. The conversion was done using Hypercrash software 

which is able keep the geometry, the thickness, the rigid bodies, and to convert the 

material properties defined as piecewise elastic-plastic (LAW24) in LS-DYNA to the 

equivalent material (LAW36) in Radioss. A review of the different parts (connectivity, 

mass, gravity, added mass) is necessary to assure that the finite element model is 

accurate and representative to the vehicle. The shell formulation was converted to the 
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default shell formulation in Radioss so it has changed to QEPH formulation as stated 

before due to its computation efficiency and control of the hourglass energy.  

 

 

Figure 5.5: Detailed finite element model of pickup C1500 

 

Table 5.3: Comparison of the C1500 between the NHTSA test and simulation model 

Parameters Finite Element Model NHTSA test 

Overall weight (kg) 2023 2023 

Wheelbase (mm) 3382 3340 

Total length of the vehicle at CL (mm) 5428 5428 

Ride height measured at wheel house 

lip (mm) 

 825/888 

CG in the X direction (mm) 1430 1557 

Engine Type V6 4.3 L V6 4.3 L 

Weight split Front (%) 

Rear (%) 

 53.4 

46.6 
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5.3. Validation of the Pickup Truck Model  

5.3.1 Full frontal crash testing 

To validate the truck model, a full front test vehicle conducted by NHTSA (National 

Highway Traffic Safety Administration) on Chevrolet C1500 pickup was used. The 

vehicle was equipped with a 4.3 litre inline engine, an automatic transmission, power 

steering and power brakes. The 56 km/h frontal barrier impact test is part of the New Car 

Assessment Program (NCAP) conducted for the National Highway Traffic Safety 

Administration (NHTSA) in August 1992. The test was conducted under contract No 

DTNH22-90-22121. The test consists of hitting the vehicle against a rigid barrier and 

recording the dummies’ injury data parameters on the driver and passenger sides. The 

vehicle’s test weight was 2023 kg and the Vehicle impact speed was 55.8 kph. The 

vehicle was instrumented with 9 accelerometers located in different strategic points in 

the vehicle to measure the vehicle longitudinal axis accelerations. The accelerometers 

located at the rear seat cross members was used to calculate the vehicle response. 

 

The response of the occupant is related to the vehicle kinematics and structure 

response, commonly referred to as the crash pulse. The crash pulse could be defined as 

the basic characteristic of a vehicle response in crash testing simulation (Huang 2002). 

The pulse is identified by installing an accelerometer on the rocker at the B-Pillar or by 

calculating the load applied on the rigid wall. The data recorded by the accelerometers 

and the load cells, referred to as wideband data were filtered through digital filtering 

technique to remove the noise recorded and obtain useful signals.    

 

Figure 5.6 shows the force applied by the pickup truck on the rigid wall for the test 

conducted by NHTSA compared to the finite element simulation. The rigid wall of 

NHTSA test was instrumented by a set of loadcells covering the area of the impact and 

the test force was calculated by adding the force recorded the loadcells. For the 

simulation, the impact force is recorded as an input of the rigid wall. A good agreement 

could be noticed between the two pulses indicating that the model is capturing the 

kinematics and the reaction of the vehicle accurately in the frontal crash of the truck 

against a rigid barrier. The two curves show similar behaviour. The first peak represents 

the load applied by the two rails which reached a load of approximately 400 kN for the 

two cases. The second peak represents the impact of the engine against the wall which 
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results in a spike of the engine deceleration time history and force recorded by the front 

barrier.  The two peaks occurred at a similar time 15 ms and 50 ms indicating a good 

agreement between the simulation and the NHTSA test results. 

 

 

Figure 5.6: Load cell force time histories at front barrier of the NHTSA test and the Finite 

element simulation 

 

Another useful datum to compare is the engine deceleration time history. In fact, during 

the full front crash, the engine block running initially with the same speed of the vehicle 

56 km/h get stopped against the wall resulting in high peak in the deceleration time 

history curve. The C1500 truck NHTSA test was instrumented with two accelerometers 

at the top and bottom of the engine block. The experimental deceleration curves were 

compared to the finite element simulation results and shown in Figure 5.7.  
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Figure 5.7: Engine deceleration time histories for NHTSA test and the finite element 

simulation 

 

Figure 5.8 illustrates an overview comparison of the vehicle post crash between the finite 

element simulation and the dynamic test. No video is available in the NHTSA website to 

compare the crash test during the impact and have a better qualitative comparison. 

Thus, we are limited to the post crash pictures. The two tests show that the frame of the 

underbody structure bends in the two cases and the vehicle exhibits a similar pitch and 

drops. The hood buckles and the lateral crush lines have similar shapes. The post crash 

visual inspection shows an acceptable agreement between the finite element simulation 

and the NHTSA crash test. 

 

5.3.2 Validation of the truck model in side crash 

A side angular test was conducted on a Chevrolet pickup C1500 travelling with a speed 

of 100 km/h and an angle of 25 degrees against a 107 cm (42 inches) vertical block of 

New Jersey Concrete barrier. Since the dynamic test was conducted with C2500 pickup 

truck instead of C1500 pickup truck used in the simulation, an adjustment of 300 kg has 

been adopted in the simulation model to reflect the weight difference between the V8 5.7 

L and V6 4.3 L. Table 5.4 summarizes the test data. 
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Figure 5.8: Comparison of the vehicle C1500 after crash for the NHTSA test and the 

finite element simulation. 
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Table 5.4: Description of the impact of C2500 truck against the barrier concrete 

 

Test Number DTFH61-95-C00136 

Test date October 19, 1995 

Vehicle type Chevrolet C2500  

Engine type V8 capacity 5.7 L 

Transmission Type Automatic 

Vehicle speed 100 km/h 

Angle of impact 25o 

 

 

Figure 5.9 and Figure 5.10 show four snapshots from the sequences of the impact test 

taken from two views: a top view taken from a camera attached to a pillar mounted on 

the truck and the second is a front view captured by a camera on the ground and aligned 

with the concrete barrier. The sequences of the view covered a range of time from initial 

state to time where the truck was stopped. Figure 5.9 shows that the vehicle impacted 

the concrete barrier at t=0 then the right corner of the front bumper hits the barrier and 

the right front tire starts to climb the lower part of the barrier. At time t = 120 ms, the 

dynamic test and the simulation show that the pickup truck angle of impact starts to be 

reduced and the truck is aligned parallel to the barrier at 225 ms.  

 



198 

 

Time  (ms) Simulation Dynamic test 

0 

  

75 

  

120 

 

 

225 

 
 

 

Figure 5.9: Sequential overhead of impact event of NHTSA test and finite element 
simulation 
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Figure 5.10: Sequential frontal view of impact event of NHTSA test and finite element 
simulation 
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5.4. Impact of the Pickup with the Guardrail System: Baseline 

Model 

5.4.1 Full Scale finite element model 

A finite element model consisting of a guardrail system with wood blockouts and 

impacted by Chevrolet pickup truck C1500 was developed using the methodology 

illustrated in section 5.3. The model consists of 30 posts spaced t 1.905 m embedded at 

a depth of 1.100 m and connected to guardrail W-beams of a length of 3.810 m. The 

post is connected to a series of springs to simulate the soil reaction. The guardrail rails 

are joined with bolts simulated as rigid connections since no failure occurred between 

the rails. Figure 5.11 illustrated the position of the pickup truck with regards to the 

guardrail system. 

 

 

 

 

 

 

(a)  

 

 

(b) 

 

Figure 5.11: Finite element model of pickup truck impacting the guardrail system (a) Side 

view, (b) top view. 

 

The impact of the pickup created a lateral load which is carried in part by the tension in 

the guardrail. This tension force pulled the guardrails at its ends therefore an accurate 
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modeling of the end constraints of the rail is required. The response of a guardrail 

system to impact is sensitive to end constraints of the rail and the stiffness of the ends 

could serve as parameter data to calibrate the full-scale test.  For the current case, the 

ends consisted of Modified Eccentric Loader Terminal (MELT) ends where the 

displacements Subgrade modelling of the post-soil interaction are in general very limited. 

The MELT Terminals are designed to prevent the end rail spearing an errant vehicle. 

The end of the MELT is curved away from the traffic face and a buffered end section is 

installed to prevent spearing, the rails were selected to be constrained in displacement 

at the two ends.  

                                                                                                                                                                                                                   

The truck was positioned at the post # 14 and let to impact the guardrail beam at an 

angle of 25o. The parameters of the soil used in the study replicate the test conditions of 

the test conducted by the Texas Transportation Institute (TTI) on November 16, 1995 

(Test 405421-1). The test consisted of a guardrail with a total length of 53.3 m and 

impacted at the post# 12 with a Chevrolet pickup traveling at a speed of 101 km/h and 

an angle of 25.5o.  The guardrail has a central portion 30.5 m long with W-beam 

guardrail system and two, 11.4 m long MELT terminals at both ends. The finite element 

test was conducted over 800 ms duration.  

 

5.4.2 Comparison between finite element simulation and full-scale crash 

test 

In order to compare the performance of the finite element simulation with the full-scale 

dynamic test conducted by TTI, the speed of the truck during the impact, the roll, yaw 

and the pitch angles are calculated and the pictures at different time instances have 

been taken. 

 

Figure 5.12 shows a comparison of the speed time history of the simulations and the 

dynamic tests. It can be noticed that the two curves present a small plateau for the first 

20 ms then decrease almost linearly from the speed of 101 km/h to 60 km/h at 300 ms. 

The simulation shows that the pickup truck is exiting the guardrail system with slightly 

higher speed than in dynamic test. Overall, the simulation is capturing accurately the 

deceleration of the pickup.  
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Figure 5.13 shows the roll angle of the vehicle traced over the centre of the gravity. The 

roll angle is defined as the angle measured from the horizontal axis (x axis) of the 

vehicle which could be visualized as the difference in level between the tires of the same 

axle. The roll angle is calculated at the centre of the vehicle and compared to the 

dynamic test. Figure 5.13 shows that the finite element simulation captures the 

kinematics of the vehicle and have similar behaviour especially after 250 ms. The roll 

angle of the simulation and the full-scale test presents two humps where the first 

occurred between 0 to 280 ms and the second from 280 ms to 600 ms. The maximum 

roll angle for both cases was approximately 11o occurring at 500 ms. 

 

 

Figure 5.12: Velocity-time history at the C.G. of the vehicle for the dynamic test and the 

finite element analysis 

 

 

Figures 5.14 and 5.15 show a sequential view of the impact for the finite element and the 

dynamic test taken from different angle: frontal, side and overhead. From these views, 

the finite element shows a good agreement with the dynamic test in terms of vehicle 

position with regards to the guardrail and interaction with the barrier. 
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The Finite element simulation shows the pickup located in the front of the guardrail 

barrier at time 0 ms. The vehicle impacted the guardrail at the speed of 101 km/h and 

angle of 25.5o. The front bumper is the first component that impacted the guardrail and 

started to deform at 40 ms. The left tire contacted the post # 13 at 90 ms and the post # 

14 at 180 ms. The tire started to deform and the left fender shows severe deformation 

after 170 ms. The vehicle became totally aligned with the guardrail with a intrusion of 

525 mm at time of 250 ms. The speed is reduced to 60.5 km/h and the roll angle to 8.5o.  

At 360 ms the pickup started exiting with a constant speed of 60 km/h and an exit angle 

of 18o. 

 

 

Figure 5.13: Roll angle displacement-time history at the C.G of the vehicle for the 

dynamic test and the finite element analysis 
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Time (ms) Simulation Dynamic test 

 

 

 
Figure 5.14 Sequential frontal view of impact event of NHTSA test and finite element 

simulation  
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Time (ms) Simulation Dynamic test 

 
 
 

Figure 5.15 Sequential overhead of impact event of dynamic test and finite element 
simulation 
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5.4.3 Results of the base model and analysis 

The pickup impacted the guardrail with an initial angle of 25o. During the impact the 

angle of the pickup and the guardrail was reduced to reach approximately zero at 250 

ms where the vehicle became parallel to the guardrail. The component of the force 

perpendicular to guardrail beam is created by the impact force of the truck and by the 

friction of the vehicle against the guardrail. This force acts on the guardrail and induces 

the post deflections in the longitudinal and transversal direction are plotted in Figure 5.16 

and 5.17. Only for the posts involved in the crash event, post # 11 to post # 16, are 

considered the main posts responsible for the guardrail system reaction. The curves 

show that post # 11 and post # 16 deflections are lower than 50 mm whereas post # 12 

and post # 15 are more involved and the maximum post deflection is about 160 mm. The 

major reaction of the posts came mainly from post # 13 and post # 14 located in front of 

the truck where the deflections in the longitudinal direction were 650 mm and 620 mm in 

the longitudinal (X) direction respectively. 

 

The speeds of the impact in the longitudinal and transversal direction of post #13 and 

#14 are plotted in Figure 5.18. It can be seen that the post # 13 reaches a speed value 

of 16.8 m/s and 16.6 m/s in the x and y directions and the post # 14 reaches a peak 

value of 8.8 m/s and 10.6 m/s in the X (longitudinal) and Y (Transversal) directions. 

These speeds are found to be higher than the speed used in the component testing 

where the speed remains in general under 10 m/s as discussed in section 4.3.1. Figure 

5.16 shows that post # 13 deflected about 200 mm at the time of 80 ms, time of contact 

with the left tire and Figure 5.19 shows that the blockout and the cross section of the 

post didn't remain normal to the x direction as in the initial state and as in the component 

testing which is suggesting that speed is not representative of the component testing.      

 

The initial speed of 100 km/h of full-scale testing could be decomposed in two 

components: the normal component to the guardrail is equal to 42 km/h (11.6 m/s) and 

the tangential component of 91 km/h (25.2 m/s). At time of contact with post #13, the 

speed was reduced to 90 km/h as shown in Figure 5.12 and the angle of impact is 

reduced from 25o to 20o .These new conditions of loading could be decomposed in two 

components: one normal component of 31.4 km/h (8.7 m/s) and a tangential component 

of 86.4 km/h (24.0 m/s). These conditions are not reproduced when compared to the test 
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of a single post with an impactor which seems unable to reflect the condition of the full-

scale testing in terms of speed and boundary conditions.  

 

The force generated at the interface of the post guardrail is plotted in Figure 5.20. Post 

#12 shows that the force level reaches 120 kN whereas the other posts are barely 

loaded. This level of force is approximately two times greater than the force recorded in 

the test. This level of force is due to the rotation of the blockout before the impact with 

the pickup.      

 

The predicted roll angle when compared to the full-scale test results shows overall good 

agreement with some discrepancies at the beginning of the test (0-100 ms) and between 

(500-600 ms) as shown in Figure 5.13. It is important to mention that the mesh truck 

model study is coarse and many important parts are not included.  At the same time, if 

two identical full-scale tests are conducted with the same test conditions, it is very 

unlikely that the results in term of crash pulse or structure response or occupant injury 

values be identical. This variability in testing is due to the existence of many 

incontrollable variables 

 

Figure 5.16: Post deflections of the guardrail system in the longitudinal axis (X) during 

the pickup impact 
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Figure 5.17: Post deflections of the guardrail system in the transversal axis (Y) during 

the pickup impact 

 

Figure 5.18: Speed of the posts in the longitudinal and transversal axis during the pickup 

impact 
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(a) (b) 

Figure 5.19: a) Side view of post # 13 at 80 ms.  b) Top view of the post #13 at 80 ms 

  

 

Figure 5.20: Force applied on the posts during the crash event of the full scale crush test 
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5.4.4 Results of the base model with crushable blockout 

The full-scale model was built by implementing a crushable blockout on the posts. Only 

six posts located at the vicinity to the pickup truck and judged to be involved in the 

impact have the blockout replaced while the other posts remain with the same 

configuration because the effect of the impact on them is marginal. The crushable 

system, as described earlier in Chapter 4, consists of 3 square tubes of 60x60 mm cross 

section and a wall thickness of 2 mm. The side length of the enclosed square section 

was 150 mm as illustrated in Figure 4.17. The pickup truck impacted the guardrail with 

speed of 100 km/h and an initial impact angle of 25o at the same location of the base 

model and the impact was conducted up to 800 ms. 

 

As it can be noticed from Figure 5.21, the pickup was redirected safely for the guardrail 

system with the crushable blockout and exited the guardrail at 370 ms traveling at a 

speed of 53.3 km/h at an angle of 16.6 degrees. Figure 5.22 shows a comparison of the 

pickup speed obtained by finite element model including the compressible system and 

the base model. It can be seen that the speed of the pickup is reduced for the case of 

the compressible blockout from 61.4 km/h to 53.5 km/h. The roll angular displacement 

time history of the vehicle model is plotted as in Figure 5.23. The roll angle is reduced 

from a maximum of 10o for the base model to 5o for the crushable system, which 

represents a net improvement for the safety and stability of the truck. This improvement 

in the truck stability is due mainly to the energy absorbed by the guardrail system which 

has become more compliant with the implementation of the compressible blockout. 

Similar results were obtained by Elmarakbi et al. (2005) who conducted a finite-element 

to evaluate a circular and hexagonal distance spacers made of steel and aluminum 

materials. It was found that the hexagonal spacers made of aluminum material absorbed 

more energy than other proposed designs which would reduce the deformation of the 

vehicle and enhanced vehicle occupant. Vasenjek and Ren (2007) found that the 

hexagonal distance space provided the highest level of the crash energy absorption 

because of its geometry which assures him a controllable deformation. 

 

Figure 5.24 shows the blockout of posts # 12 to #15. It can be concluded that post #12 

was not loaded and the blockout kept its integrity. The blockouts of post # 13 to post #14 

are completely crushed following the folds initiated by the triggers in the tubes. Since 

more crushing was developed in the guardrail system, more intrusion of the pickup truck 
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into the barrier was developed as the vehicle was able to be more in contact with the 

post. The benefit of reducing the speed and the roll angle has been counterbalanced by 

the danger of the wheel snagging noticed in posts # 12, 13 and post 14 whereas the 

problem snagging was limited to only the post #13 for the case of the baseline 

simulation. The displacements in the X (longitudinal) and Y (transversal) directions are 

plotted for the post #13 and 14 compared to the baseline model and shown in Figure 

5.25 and Figure 5.26. 

 

It can be seen that the post # 13 for the case of the crushable blockout shows more 

longitudinal and lateral deflections than the baseline model. Post # 14 shows more 

deflection in the Y direction due to the impact with the front tire. In order to check the 

development of tearing in the guardrail, the plastic strain is calculated for both models 

with and without crushable system. Plastic strain is used as an indicator of failure of the 

guardrail since it is a measure of the cumulative material damage to the material 

(Engstrand 2000). Radioss software can include the plastic strain as failure condition for 

the element of the model. When the effective plastic strain of the element reaches a 

certain value, the stress is set to be null and the element is removed form the part. For 

the current full-scale study, no failure condition was included to be able to monitor the 

area of stress concentration and identify the location of a possible tear.  

 

The analysis of the finite element baseline model shows that the maximum plastic strain 

reaches 18.0 % for element 82651 located close to post # 13 as shown in Figure 5.27. 

The high strain occurred when the guardrail is dragged up against the sharp edge of the 

blockout. Similar observation was reported by Engstrand (2000) who found that during 

the full-scale test and the simulation, a tear at the lower edge of the rail is developed. 

The full-scale simulation revealed that the nick was created when the rail was dragged 

up against the post over the sharp flange of the top of the twisted post. 

 

 The simulation of the full-scale with crushable blockout shows that the maximum  plastic 

strain didn’t exceed 10.56% recorded at element 83156, as illustrated in Figure 5.28, 

located close to the post # 13. This result is showing that the guardrail with the crushable 

blockout is more protected against the tearing and offer better performance than the 

baseline model. This improvement is due to the energy dissipation through the blockout 

that reduces the energy absorbed by the guardrail and the severity of the impact.    
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Figure 5.21: Sequential frontal and side views of the finite element simulation of the 

C1500 impacting the guardrail system with crushable blockout 
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Figure 5.22: Velocity time-history at the C.G. of the vehicle for the dynamic test and the 

finite element analysis for crushable un-crushable blockout 

 

 

Figure 5.23: Roll angle as function of time history at the C.G of the vehicle for the 

dynamic test and the finite element analysis for crushable and non-crushable blockout 
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Post # 12 

 

Post # 13 

 

Post 14  

Post # 15 

Figure 5.24: Crushable blockout of the post 12 to 15 during the impact 

 

 

Figure 5.25: Deflection of the Posts 13 and 14 in the transversal axis (X) during the 

pickup impact for base and the crushable models 
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Figure 5.26: Deflection of posts 13 and 14 in the transversal axis (Y) during the pickup 

impact base and the crushable models 

 

 

 

 

Figure 5.27: Plastic strain of the guardrail at 100 ms for the baseline model 
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Figure 5.28: Plastic strain of the guardrail at 100 ms for the baseline with crushable 

blockout 

 

 

5.5. Conclusions 

 

The present chapter discussed the finite element modeling of C1500 vehicle impacting 

guardrail posts and the posts interaction with the soil during the impact event using the 

nonlinear finite element program Radioss. The post-soil interaction was modeled using 

the subgrade reaction approach which involves an array of nonlinear springs attached 

along the post. The interaction has considerable influence upon the response of the 

system and these components must be modeled accurately to capture the kinematics of 

the vehicle and the post. The finite element model of C1500 2000-kg pickup truck was 

validated in two different modes: Full front crash test and side crash. The full front test 

vehicle was conducted by NHTSA (National Highway Traffic Safety Administration). The 

test consists of hitting the vehicle against a rigid barrier with an impact speed was 55.8 

kph. The side angular test was conducted on a Chevrolet pickup C1500 travelling with a 

speed of 100 km/h and an angle of 25 degrees against a 107cm vertical block of New 

Jersey Concrete barrier. The simulations results show good agreement between the 
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crash test and the finite element simulation with respect to velocity histories, event timing 

and exit conditions.  

 

The full-scale baseline model was used to investigate the effect of replacing the 

incompressible blockout by crushable blockout which consists of 3 square tubes of 

60x60 mm cross section and a wall thickness of 2 mm. The side length of the enclosed 

square section was 150 mm. The pickup truck impacted the guardrail with speed of 100 

km/h and an initial impact angle of 25o at the same location of the base model and the 

impact was conducted up to 800 ms. The results of the finite element simulation show 

that the pickup was redirected safely for the guardrail system with reduced speed and 

roll angle than the baseline.   

 

The simulation shows that Figure 5.24 shows the blockouts involved in the crash are 

completely crushed following the folds initiated by the triggers in the tubes whereas the 

remaining blockout kept their integrity. The results show that the maximum plastic strain 

with the crushable system is lower than the baseline model which shows that the 

compressible blockout offers more protection against the tearing and offer better 

performance than the baseline model.  
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Chapter VI  

Conclusions and Recommendations 

5.6. Introduction 

The current dissertation research dealt with the study of the interaction between the 

guardrail post and the soil under different loading conditions using the finite element 

method. Finite Element Analysis has rapidly become a fundamental tool in the analysis 

and design of roadside safety hardware systems instead of the traditional method of the 

destructive full-scale crash testing. The method is not only reliable but also relatively 

inexpensive and can provide valuable information during the impact event, such as the 

stress in the barrier and the vehicle, the strain and the energy dissipated during the 

crash. The behaviour of the guardrail post embedded in cohesionless soil was analyzed 

for two cases: a single post impacted by an impactor cart and a guardrail system formed 

by a set of posts impacted by a pickup truck. The study was conducted in order to 

analyze the effect of the different loading parameters on the post behaviour and to 

propose design guidelines to improve vehicle safety in highways. The recommended 

design proposals are based on the results of the Design of Experiments (DoE) approach 

and on full-scale crash test simulations.  

5.7. Summary of the Research 

The interaction of a single post in the cohesionless soil has been reviewed using 

different available methods in the geotechnical field. These methods have been used to 

determine the ultimate lateral resistance of statically loaded, rigid vertical posts. The 

predicted lateral load was compared to data collected from the field. Based on a 

simplified lateral earth pressure distribution along the post length, an analytical model 

was developed to analyze the guardrail post subjected to lateral load. The new model, 

based on the Rankine passive earth pressure, takes into account the three-dimensional 

(3D) effect, which is important for the case of the guardrail posts embedded in soils. The 

results of the new model are compared to data collected from the literature and show a 

good agreement. To simplify the modeling behaviour of an embedded post subjected to 

impact forces, it is proposed to calibrate the finite element model using static analysis. 

The maximum forces obtained from a static analysis were compared with the results of 
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simulation of the dynamic loading. A parametric analysis showed that a calibration factor 

of 2.4 can be used to estimate the dynamic force from the static analysis. 

  

To develop the finite element method, two methods for simulating the soil have been 

evaluated namely: (i) the continuum method where the soil is modeled as solid elements 

and (ii) an improved subgrade method which includes all relevant soil components such 

as the soil stiffness, soil damping and soil mass involved in the dynamic impact. The 

mass of the soil and the damping effect are being introduced in the improved subgrade 

method to simulate accurately the post reaction during the impact. Previous conventional 

studies used to ignore the effect of the soil mass and damping and account only for the 

soil stiffness. The lumped mass and the damping coefficients of the masses are 

calculated using a simple procedure. The simulation results of the improved subgrade 

method were compared to the dynamic test and the load deflection response showed a 

good agreement between the experimental and simulation results, especially in the early 

stage of loading, which demonstrates that the inertia effect is captured properly by the 

improved subgrade method. The correlation between these models in terms of impactor 

force or displacement is found to be satisfactory. The improved method has been 

extended to cohesive soils and the results were also in good agreements with the 

experimental findings.  

 

The results of the improved subgrade method have been used to conduct an extensive 

parametric finite element study where the effects of the different parameters on the 

guardrail post reaction have been investigated. These parameters include the sand 

density, the impactor speed and mass, the post depth and the crushable blockout 

system and the undrained shear strength of the clay. The study showed that the peak 

load, the average load and the post deflection increase with the speed of the impactor, 

the friction angle and the embedment depth. However, the effect of the mass impactor 

was marginal. The crushable system implemented instead of the conventional rigid 

blockout system was able to reduce the peak load by approximately 21% and the 

average load by 10%.  

 

A DoE was conducted to evaluate the contribution of the different design parameters of 

the guardrail post on the reaction during lateral dynamic impact using the Taguchi 

method. An L9 Orthogonal Array design compared to a conventional one-at-a-time-
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approach has been evaluated in the present investigation. The experimental data 

identify the influence of individual factors and establish the relationship between 

variables and operational conditions as well as the selection of optimal levels for best 

performance. The results showed that the soil friction is the most important factor in 

guardrail post reaction during a lateral impact and plays a major role with respect to the 

peak load, average load and maximum post displacement. The results showed that the 

crushability of the blockout post is an important factor to achieve the optimal condition by 

interacting with the other different parameters: the soil friction angle and the embedment 

depth. 

 

Recommendations based on the parametric and the design of experiment studies were  

implemented to build a full-crash test model of a vehicle travelling at 100 km/h and 

impacting the guardrail with an angle of 25o as defined by NCHRP Report 350. A finite 

element model of the C1500 Chevrolet pickup truck was built and correlated to dynamic 

frontal crash test conducted by NHTSA. The full-scale baseline model was used to 

investigate the effect of replacing the incompressible blockout by crushable blockout. 

The results of the finite element simulation show that the crushable blockout redirected 

the pickup truck safely by reducing the speed and roll angle than the baseline.   

 

5.8. Future Work 

As of January, 2011, all new highway hardware testing must be evaluated using MASH 

08, Manual for Assessing Safety Hardware (AASHTO 2009), crash test criteria for use 

on the National Highway System (NHS). MASH 09 (AASHTO 2009) is the new state of 

the practice for the crash testing which updates and supersedes NCHRP Report 350. 

(Ross et al., 1993)  

 

The need for updated crash test criteria was motivated primarily by the changes in the 

vehicle fleet. Most of the new pickup trucks and passenger vehicles in the market have 

increased in size and the new trucks have raised the bumper heights since 1993, when 

the NCHRP Report 350 criteria were adopted. The Insurance Institute for the Highway 

Safety (IIHS) noticed that the bumper height of the new light trucks is higher than those 

of the old trucks and decided to include this fact into their side crash testing protocol. 

The deformable barrier used by IIHS is 1,676 mm wide and has a height of 759 mm and 
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a ground clearance of 379 mm when mounted on the test cart compared to 330 mm of 

ground clearance used by NHTSA. 

 

The implementation plan for MASH 08 required that all highway safety hardware 

accepted prior to its adoption – using criteria contained in NCHRP Report 350 – may 

remain in place and may continue to be manufactured and installed. In addition, highway 

safety hardware accepted using NCHRP Report 350 (Ross et al. 2009) criteria is not 

required to be retested using MASH criteria (AASHTO 2009). However, new highway 

safety hardware must use MASH criteria for testing and evaluating. The major change 

with regards to the current study was to upgrade the weight of the light trucks and small 

cars from 2000 kg and 820 kg to 2270 kg to 2000 kg, respectively. The impact angle 

remains 25o for the light trucks and increased for the small cars from 20o to 25o. The 

speed remains 100 km/h even though some highways post speed limits above 110 km/h 

(65 mph) because the speeds are in general reduced due to the pre-crash application of 

brakes. These new requirements need a new pickup truck model that should be 

validated and correlated to crash tests. The component tests will remain valid. However, 

a very important step is to build a suitable full-scale model and more work is still required 

to understand the interaction of the post statically and dynamically. For all these 

reasons, the following is a list of urgent topics that need to be addressed: 

 

- Extend the approach developed to predict the peak load during the static loading 

condition to cohesive soils characterised by the undrained shear strength. The 

relationship should include the undrained shear strength, the value of the passive earth 

pressure determined in the tridimensional assumption and the embedment of the post in 

the soil.   

 

- Conduct component dynamic tests with cohesionless soil by varying the different test 

parameters such as the impactor speed, the impactor mass and the soil friction angle. 

These dynamic tests will serve to establish a relationship between the lumped mass and 

the damping ratio with the different parameters. This study will improve the finite element 

model calibration and contribute to a better prediction of the dynamic loads. 

 

- Conduct component dynamic tests with baseline design consisting of a post with the 

conventional blockout, embedded at 1100 mm in sand and a dynamic test with the 
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parameters defined from the DoE consisting of a post embedded in dense soil at a depth 

of 1200 mm with a crushable blockout. This study will be used to verify the DoE results.  

 

- For the full-scale testing, the first step should consist of building more sophisticated 

truck finite element models that replace the crude one used up-to-date in the roadside 

safety area. The model should reflect the actual bumper and door stiffness by including 

all the door hardware in the model such as the door inner sheet metal, the glass 

mechanism and the door beams. The model should reflect also the new regulation 

defined in MASH 08 (AASHTO 2009). The second step would be to conduct a full-scale 

dynamic test implementing the crushable blockout to check the energy dissipation 

capability. 

 

- The complete model could serve to assess the response of occupants during the 

impact and the severity of the injury. Different anthropomorphic test device (ATD) could 

be investigated such as ES2 dummy, SID2s or Child.   
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