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Abstract	

The three-dimensional (3D) metric reconstruction of a scene from two-

dimensional images is a fundamental problem in Computer Vision. The major bottleneck 

in the process of retrieving such structure lies in the task of recovering the camera 

parameters. These parameters can be calculated either through a pattern-based calibration 

procedure, which requires an accurate knowledge of the scene, or using a more flexible 

approach, known as camera autocalibration, which exploits point correspondences across 

images. While pattern-based calibration requires the presence of a calibration object, 

autocalibration constraints are often cast into nonlinear optimization problems which are 

often sensitive to both image noise and initialization. In addition, autocalibration fails for 

some particular motions of the camera. 

To overcome these problems, we propose to combine scene and autocalibration 

constraints and address in this thesis (a) the problem of extracting geometric information 

of the scene from uncalibrated images, (b) the problem of obtaining a robust estimate of 

the affine calibration of the camera, and (c) the problem of upgrading and refining the 

affine calibration into a metric one. In particular, we propose a method for identifying the 

major planar structures in a scene from images and another method to recognize parallel 

pairs of planes whenever these are available. The identified parallel planes are then used 

to obtain a robust estimate of both the affine and metric 3D structure of the scene without 

resorting to the traditional error prone calculation of vanishing points. We also propose a 

refinement method which, unlike existing ones, is capable of simultaneously 

incorporating plane parallelism and perpendicularity constraints in the autocalibration 
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process. Our experiments demonstrate that the proposed methods are robust to image 

noise and provide satisfactory results. 
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1 Introduction		

1.1 Context and motivation 

Structure from motion (SfM) is the process of recovering the three-dimensional (3D) 

structure of a scene and camera pose from image sequences taken by either a single 

moving camera or by multiple cameras from multiple view points. This process, which 

supports 3D modeling, visualization and scene measurement [Sturm et al., 2011], is 

critical for the success of many applications including tele-presence [Snow, 1996, 

Tachakra, 2001], [Welch et al., 2011], robot navigation [Cardon et al., 2005] to 

archeology [Ducke et al., 2011], [Pollefeys et al., 2008] and the study of materials 

[Groeber et al., 2006]. In this respect, numerous approaches, such as Stereo, Shape from 

Shading [Bouguet and Perona, 1998], Shape from Silhouette [Kato et al., 1994] and the 

Grid Projection approach [Proesmans and Van Gool, 1997], [Lhuillier, 2008], with 

variable levels of accuracy, speed and practicality have been proposed in the literature. 

The applicability of each approach is dependent upon the allowed amount of user 

intervention and the nature of the data at hand. For instance, the relevance and 

significance of the 3D information that is to be extracted from the reconstructed scene 

depends upon whether or not the internal geometry of the camera and its relationship to 

the scene (which both define its calibration parameters) are known. For instance, the 

metric three-dimensional structure of a scene, which is a scaled version of the original 

structure, can be obtained from two or more images as soon as the internal geometry of 

the camera, i.e. its intrinsic parameters, is known. The scale ambiguity is resolved when 
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the camera is fully calibrated, i.e. its extrinsic parameters which define its relationship to 

the scene are also known exactly.  

Camera calibration [Tsai, 1987] is traditionally carried out using a calibration 

pattern providing accurate 3D measurements and allowing the recovery of the scene-to-

image mapping and hence the intrinsic and extrinsic parameters of the camera. As the 

presence of a pattern in the scene is often either impossible or impractical, a flexible 

alternative which relies solely on point correspondences across images, known as camera 

autocalibration, has received particular attention in the past two decades. Camera 

autocalibration has turned out to be among the most challenging problems in the entire 

SfM pipeline and, as such, numerous approaches have been proposed in the literature; for 

example: [Maybank and Faugeras, 1992], [Heyden and Astrom, 1996], [Triggs, 1997], 

[Pollefeys and Gool, 1999], [Seo and Heyden, 2004], [Habed and Boufama, 2006] and 

[Pollefeys et al., 2008]. 

Indeed, autocalibration constraints are often cast into nonlinear optimization 

problems which are known to be sensitive to both image noise and initialization. Methods 

solely based on these constraints generally require long sequences of images to help cope 

with various numerical issues. However, no matter how many images are used, 

autocalibration constraints always fail for some particular classes of camera motion 

[Sturm, 1997], [Kahl et al., 2000], [Sturm, 2000], and [Gurdjos et al., 2010].   

The impracticality of pattern-based camera calibration on the one hand and the 

numerical issues of autocalibration methods on the other have led researchers to 

investigate an alternative approach in which scene constraints are used to support 

autocalibration [Liebowitz and Zisserman, 1999], [Pollefeys and Gool, 1999], [Sturm and 
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Quan, 1995], [Huynh and Heyden, 2005]. Such methods inherit the flexibility of 

autocalibration techniques as they rely on point correspondence across images and do not 

require the presence of a special pattern in the scene. Most of these methods are based on 

translating constraints (such as parallelism and orthogonality) on lines in the scene into 

constraints on their projections in an image. Indeed, as lines in the scene project onto 

lines in the image, such features can be easily identified and extracted: a quality which 

has made their use and investigation popular among researchers at the expense of other 

scene features such as planes. To our knowledge, except for the work [Huynh and 

Heyden, 2005] in which autocalibration and plane orthogonality are combined, no other 

method exploiting planes to support calibration has been reported in the literature. Unlike 

lines, scene planes cannot be identified from a single image since the entire scene 

projects onto one plane; the image plane, that is. However, planes are abundant in man-

made environments and, if identified, their 3D coordinates can be calculated much more 

robustly (using tens or even hundreds of points) than those of lines. As a consequence, 

devising robust methods to identify planar structures in a scene from images as well as 

investigating their use to support camera calibration have emerged as both promising 

directions and challenging problems we have chosen to address in this thesis. 

1.2 Scope of the thesis 

Previous works exploiting scene constraints to support uncalibrated SfM have mainly 

used (parallel or orthogonal) lines. In this thesis, we investigate the use of planes for the 

metric 3D reconstruction of a scene from uncalibrated images: a problem that has been 

overlooked in the Computer Vision community except for the case of exploiting 

orthogonal planes [Huynh and Heyden, 2005]. In particular, we propose a new SfM 
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pipeline, depicted in Figure  1-1, which exploits constraints on planes while minimizing 

user intervention.  

 

Figure  1-1. Proposed SfM pipeline 

 

In the proposed approach, planes and constraints on these are to be identified from 

point correspondences across images. The identified pairs of planes exhibiting 

parallelism or orthogonality are used to locate the plane at infinity and hence to affinely 

calibrate a moving camera with constant parameters. An estimate of the camera’s 

 

Projective reconstruction Plane constraints 
identification 

(parallelism or 
orthogonality) 

Estimation of the parameters of the camera 

Plane 
identification 
and matching 

Feature extraction and matching 

Refinement of the calibration of the camera by 
combining autocalibration, plane parallelism 

and orthogonality 

Metric reconstruction 

Bundle adjustment 
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intrinsic parameters can be linearly obtained at this point. Subsequently, all scene 

constraints (parallel planes and perpendicular ones) and camera autocalibration 

constraints are to be combined to obtain the optimal set of parameters of the camera. At 

this point the projective structure of the scene is upgraded into a metric one and a bundle 

adjustment procedure can optionally be carried out. 

In particular, we address in this thesis the following problems which make the 

applicability of such an SfM approach challenging. 

Identification of planar structures and their relationships: most methods 

incorporating scene constraints (whether using lines or planes) do so at the cost of 

involving the intervention of a user to identify the relationships between the features 

under consideration. In the case of planes, user intervention is additionally required to 

identify the features themselves, i.e. which image points are the projections of points that 

lie on the same plane in the scene. In this thesis, we address the problem of identifying 

planar structures in a scene using only point correspondences across images and without 

resorting to the intervention of a user. We also address the problem of identifying, with 

sufficient confidence and without user intervention, the relationship (such as parallelism 

or orthogonality) that may exist between planes. 

Exploiting plane parallelism: line parallelism has widely been exploited in the 

literature. Indeed, the projections of two lines that are parallel in the scene intersect in the 

image in a special point known as a vanishing point. A vanishing point is the projection 

of a point lying on a plane located at infinity in 3-space. Identifying the plane at infinity 

allows, in general, the recovery of the calibration of the camera. Parallel planes also 

intersect at infinity; in a line, that is. However, in general, this line cannot be physically 
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located in the image making the problem of exploiting parallel planes seemingly 

unnatural and certainly harder than using lines. In this thesis, we investigate the use of 

plane parallelism to support autocalibration as an alternative to the method [Huynh and 

Heyden, 2005] which exploits orthogonality between such entities. 

Incorporating both parallelism and orthogonality: existing methods for combining 

autocalibration and scene constraints have been designed to exploit either orthogonality 

or parallelism but not both at the same time. The reason is that parallelism is generally 

used to locate the plane at infinity and, unlike when using orthogonality, no known 

algebraic constraints directly relating parallelism and the parameters of the camera have 

been derived: a problem that we also address in this thesis.   

1.3 Contributions 

The main contributions presented in this thesis are as follows:  

1. Identification of planes from uncalibrated images: we have proposed a new 

method [Amintabar and Boufama, 2008] for extracting the major planar structures 

in a scene from uncalibrated pairs of images. This method contrasts with existing 

methods by not making any prior assumption on the co-planarity of points. It also 

performs plane identification and matching defined by sets of three points only 

instead of four. Once all possible planes have been identified, a merging stage is 

carried out to make sure that the same planes are associated with a single 

homography.  

2. Distinguishing virtual from physical planes: identifying planes from a pair of 

uncalibrated stereo images is a challenging problem as it can lead to extracting 

virtual planes instead of physical ones. We have proposed in [Amintabar & 
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Boufama 2009] a new homography-based approach to extract physical planes and 

to distinguish them from virtual ones in general scenarios.  

3. Identification of parallel planes: we have also proposed in [Habed et al., 2010b] 

a new method for identifying parallel planes in a scene from three or more 

uncalibrated images. By using the fact that parallel planes intersect at infinity, we 

were able to devise a linear relationship between the inter-image homographies of 

the parallel planes and the plane at infinity. This relationship is combined with the 

so-called modulus constraint for identifying pairs of parallel planes solely from 

point correspondences.  

4. Affine camera calibration: a new method to retrieve the affine structure of a 

scene from two or more images of parallel planes is presented in [Habed et al., 

2010a]. The proposed approach is solely based on plane homographies calculated 

from point correspondences and does not require the recovery of the 3D structure 

of the scene. Neither vanishing points nor lines need to be extracted from images.  

5. Incorporating plane parallelism and orthogonality into autocalibration: we 

also propose a new method, which we describe in Chapter 6, capable of 

simultaneously combining autocalibration constraints and both plane 

perpendicularity (orthogonality) and parallelism. The results of our experiments 

show that our proposed calibration method is efficient and robust to noise. 

Although nonlinear, our method has a very satisfactory convergence rate even 

when the optimization procedure is randomly initialized. 

1.4 Outline of the thesis 

The remainder of this dissertation is organized as follows.  
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 Chapter 2 provides the necessary background used to formulate the main 

contributions of this dissertation. It reviews concepts such as projective geometry, 

camera models, the relationships between multiple views, and the main 

reconstruction strata.  

 Chapter 3 describes the fundamentals of camera calibration including conics and 

quadrics. It also lists and discusses the constraints used in autocalibration 

approaches.  

 Chapter 4 deals with the identification of planes from a pair of uncalibrated 

images and the distinction between virtual and physical ones.  

 Chapter 5 elaborates on the proposed reconstruction-free identification of parallel 

planes. 

 Chapter 6 is dedicated to the problem of combining scene and autocalibration 

constraints. In this chapter, we present an affine camera autocalibration which 

requires only one pair of parallel planes in the scene but constant camera 

parameters. We also present a method which may employ different cameras 

altogether. Furthermore, a nonlinear metric autocalibration approach, which 

simultaneously combines autocalibration constraints with parallel and orthogonal 

planes, is presented.    

 Finally, Chapter 7 concludes this dissertation with further discussions of future 

work. 
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2 Geometry	in	3D	Reconstruction		

This chapter is an introduction to the main concepts covered in this dissertation. It 

introduces the projective geometry of two and three dimensional spaces. It also 

introduces the underlying geometric relationships between images: the homography 

induced by the projection of coplanar points and more general epipolar geometry relating 

corresponding points across pairs of images. Next, the planar geometry is described 

which is the basis of our contributions. The camera model and the 3D structure 

calculation from 2D images are also presented. This chapter is concluded by elaborating 

on the main 3D reconstruction strata encountered in Computer Vision. 

2.1 Projective Geometry  

Projective geometry is an essential tool in the modeling and analysis of 3D computer 

vision problems. As the main inputs to 3D computer vision algorithms are 2D images, 

projective geometry is widely used to model the projection of 3D scenes onto 2D image 

planes. Besides the linearization of the projection equations, an important advantage of 

embedding a scene into a projective space is that points which are infinity far from the 

camera may be treated as any other point that lies at a finite distance from it. In order to 

achieve this, geometric entities such as point, lines and planes are described by 

homogeneous coordinates. However, these advantages come at the expense of additional 

ambiguities in comparison to ordinary space. Indeed, unlike in ordinary space, in the 

projective space parallel lines do intersect. As a consequence, an object that is square-

shaped in ordinary space and which undergoes a projective transformation may change 

into an arbitrary quadrangle. In fact, angles, distances and ratios are not invariant under 
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projective transformation. The cross-ratio (the ratio of ratios) is however invariant under 

such transformation and, despite added ambiguities, this property alone has turned 

projective geometry into a powerful tool in the field of Computer Vision.  

2.1.1 Cartesian vs. homogeneous coordinates 

In an n-dimensional space, a Cartesian reference frame consists of a point OO, called the 

origin, and n linearly independent vectors ¡!v 1 ; : : : ; ¡!v n
¡!v 1 ; : : : ; ¡!v n  called the base. In this space a point 

PP is represented by ¡!O P = x 1
¡!v 1 + x 2

¡!v 2 + ::: + x n
¡!vn

¡!
O P = x 1

¡!v 1 + x 2
¡!v 2 + ::: + x n

¡!vn  where x1; x2; :::; xnx1; x2; :::; xn  are scalars 

known as the Cartesian coordinates of point P. In vector form, PP is given by its 

Cartesian coordinate vector of dimension n as follows 

 ~P = (x1; x2; :::; xn)T~P = (x1; x2; :::; xn)T
.  

One problem that arises when using the Cartesian representation is that only 

points at a finite distance from the origin can be expressed in this coordinate system. 

Therefore, homogenous coordinates are used so that points at infinity can also be 

represented. This is done by adding one more component to the representation of points 

(as well as other geometric entities). In an n dimensional space, the homogeneous 

coordinates of point P is represented by n+1 components as follows 

 P ' (t1; :::; tn; tn+1)
T or P ' ( ~P T ; 1)TP ' (t1; :::; tn; tn+1)
T or P ' ( ~P T ; 1)T .  

where ''  means equality up to one scalar parameter. Thus, the Cartesian coordinates of a 

finite P, i.e. HÁ(i)HÁ(i) can be recovered from their homogeneous counterparts as 

~P = (x1; :::; xn)T = (t1=t +1; :::; tn=t +1)
T~P = (x1; :::; xn)T = (t1=t +1; :::; tn=t +1)
T . In a homogeneous coordinate system 

spanning the n-dimensional space, a point at infinity P1P1 may be described by 
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 P1 = (t1; :::; tn; 0)
TP1 = (t1; :::; tn; 0)
T . (2.1) 

Points at infinity are also referred as ideal points in this dissertation. 

2.1.2 N-Dimensional Projective Space 

In this space, geometric entities such as points, lines, or planes, are all represented in 

homogenous coordinates. As a result, relations between these entities can be described in 

simple and unified manner as opposed to the Cartesian representation. The n-dimensional 

projective space, which we denote PnPn, is the set of points represented in homogeneous 

coordinates by  

 Pn = f(x1; :::; xn+1)
Tg ¡ f(0;0; :::; 0)T| {z }

n+1 zeros

gPn = f(x1; :::; xn+1)
Tg ¡ f(0;0; :::; 0)T| {z }

n+1 zeros

g, 

where the sign ” ¡¡ “ indicates that (0; :::;0)T(0; :::;0)Tdoes not define any point in PnPn, however PnPn 

includes finite points (including origin (0; :::; ¸)T ¸ 6= 0(0; :::; ¸)T ¸ 6= 0 of the reference frame as well as 

points at infinity(e.g. (x1; x2; :::; xn;0)
T(x1; x2; :::; xn;0)
T). 

2.1.3 The Dual of N-Dimensional Projective Space 

n linearly independent points in PnPn form a hyperplane. In P2P2, this hyperplane is a line as it 

is formed by two linearly independent points. In P3P3, the hyperplane is a plane as it is 

formed by three linearly independent points in P3P3. As a point in PnPn is represented by an 

(n + 1)-dimensional vector, a hyperplane defined by n linearly independent points is also 

represented by an (n + 1)-dimensional vector. This makes points and hyperplanes 

indistinguishable in this space. In other words, the vector (a; b; c)(a; b; c) can be interpreted both 

as a point or a line in P2P2. So are points and planes in P3P3.  
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Dual entities in n-space form a space of their own, that is the dual space generally 

denoted by P3P3. 

Thus, the dual space P¤nP¤n is the set of all hyperplanes defined by n points taken in 

PnPn. Similarly, PnPn can be viewed as the set of points formed by the intersection of distinct, 

linearly independent sets of n hyperplanes in P¤nP¤n. 

2.1.4 2-D Projective Space 

The 2-dimentioal projective space, P2P2, is represented by 3 homogeneous coordinates as 

P2 = f(x1; x2; x2+1)
Tg ¡ f(0; 0; 0)TgP2 = f(x1; x2; x2+1)
Tg ¡ f(0; 0; 0)Tg where points with x3 = 0x3 = 0 (e.g. (x1; x2;0)

T(x1; x2;0)
T ) are at 

infinity. These points, altogether, form a line that is called the line at infinity.  

Duality between points and lines in 2D 

Two distinct points, p1p1 and p2p2 in P2P2 define a line ll  in P¤2P¤2. The homogeneous coordinate 

vector of line ll  is obtained through the cross-product of the points defining the line 

 l ' p1 £ p2l ' p1 £ p2, (2.2) 

where  denotes the cross-product throughout this dissertation.  

Similarly, two distinct lines, l1l1 and l2l2, intersect in a unique point pp with homogeneous 

coordinate 

 p' l1£ l2 = [l1]£l2p' l1£ l2 = [l1]£l2,  

which is the dual of equation (2.2). 

Incidence in 2D 

Incidence refers to the relation between a point and its dual in space, which is line in two 

dimensional space. Point pp  is on a line ll  iff  
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 pT l = 0pT l = 0, (2.3) 

where pTlpTl denotes the inner product of pp  and ll . 

2.1.5 3-D Projective Space 

The 3-dimentioal projective space P3P3
 is similarly represented by 4 homogeneous 

coordinates as  P3 = f(x1; x2; x3; x4)
Tg ¡ f(0; 0; 0; 0)TgP3 = f(x1; x2; x3; x4)
Tg ¡ f(0; 0; 0; 0)Tg where points with x4 = 0x4 = 0 (e.g. 

(x1; x2; x3;0)
T(x1; x2; x3;0)
T ) are at infinity. These points, altogether, form a plane that is called the 

plane at infinity. The plane at infinity is denoted by 11 throughout this dissertation. 

Duality between point and planes in 3D 

Three distinct and linearly independent points P1; P2; P3 2 P3P1; P2; P3 2 P3 define a unique plane ¦¦  in 

P¤3P¤3, which is represented exactly the same way as its dual (a point): 

 ¦ ' (±1; ±2; ±3; ±4)
T¦ ' (±1; ±2; ±3; ±4)
T

,  

where ±1:::±4±1:::±4 are scalars. 

Incidence in 3D 

Point P 2 P3P 2 P3 lies on the plane ¦¦  iff  

 PT¦ = 0PT¦ = 0. (2.4) 

The equation (2.4) can be expressed as ¦TP = 0¦TP = 0 as well. 

2.2 Geometric transformations 

Geometry may be defined as the study of properties which remain invariant under groups 

of transformations [Klein, 2004]. We therefore describe projective geometry through 
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general transformations as well as the main specializations of these including the affine, 

metric and Euclidean transformations. A transformation is algebraically defined by 

matrix. Within Q¤1Q¤1 for instance, projective linear transformations are represented by (n+1) 

× (n+1) invertible matrices and form a group.  

2.2.1 Projective  

Projective transformations are linear transformations from one projective space into 

another or within the same space. In general, a projective transformation alters angles, 

distances and ratios of geometric shapes. The only properties which are guaranteed to be 

invariant are strangeness, incidence and cross ratios. A projective transformation T from 

PnPn to PmPm maps each point P 2 PnP 2 Pn to a new location in PmPm as P 7! T PP 7! T P  where T is an 

(m+1)×(n+1) matrix.  

Homography 

A homography H is a projective transformation within the same space: 

 
H : Pn ! Pn

P 7! HP;

H : Pn ! Pn

P 7! HP;
  

where H is a nonsingular (n+1)×(n+1) matrix. In P3P3, such transformation is described by 

a regular 4£ 44£ 4 matrix having 15 degrees of freedom. Homography is used very often in 

this dissertation. 

Homographies in dual space 

When space points undergo a projective transformation H from PnPn to itself, the dual 

primitives L in P¤nP¤n (recall lines in P¤2P¤2or planes P¤3P¤3), undergo a dual transformation H ¤H ¤ 

such that: 
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H¤ : P¤n ! P¤n

L 7! H¡T L:

H¤ : P¤n ! P¤n

L 7! H¡T L:
  

The dual transformation H ¤H ¤ is represented by the inverse of the transpose of the 

matrix representing H. In P3P3, a homography transformation H, is represented by a 4£ 44£ 4 

nonsingular matrix of the following form. 

 H '
·

A t

vT 1

¸
H '

·
A t

vT 1

¸
,
 (2.5) 

where A is any 3£ 33£ 3 nonsingular matrix and tt and vv are 3-vectors. 

2.2.2 Affine  

An affine transformation is a special projective transformation that leaves the hyperplane 

at infinity globally invariant. It therefore preserves parallelism and consequently the same 

direction ratios too. In P3P3, an affine transformation is represented by a 4£ 44£ 4 matrix ( for 

convenience its inverse is also provided): 

 TA '
·

A t

0T 1

¸
; T¡1

A '
·

A¡1 ¡A¡1t

0T 1

¸
TA '

·
A t

0T 1

¸
; T¡1

A '
·

A¡1 ¡A¡1t

0T 1

¸
,
 (2.6) 

where A is any 3£ 33£ 3 nonsingular matrix and tt is a vector. TATA  has 12 degrees of freedom. 

The last row is the coordinate vector of the plane at infinity in Euclidean space. The only 

difference with a projective transformation is that the vector v in (2.5) has been replaced 

with a null vector 0 in (2.6).  
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2.2.3 Metric (Similarity)   

It is a specialization of affine transformations that is composed of a translation, rotation 

and scaling. Such transformations preserve angles and ratios in any directions. In P3P3, a 

similarity transformation is represented by a 4£ 44£ 4 matrix: 

 TM '
·

¸R t

0T 1

¸
TM '

·
¸R t

0T 1
,̧ (2.7) 

where RR is a 3£ 33£ 3 rotation matrix in 3D, t = (t1; t2; t3)
Tt = (t1; t2; t3)
T  is a translation vector, and ¸̧ is 

a non-zero isotropic scale factor.TMTM  has 7 degrees of freedom. One rotation about each of 

the three axes, one translation in each of the three directions, and one global scale factor.  

2.2.4 Euclidean  

A Euclidean or Isometric transformation is a specialization of the similarity 

transformation. It is composed of a translation and a rotation. Euclidean transformations 

model the rigid transformation of an object. Such transformations preserve angles and 

distances in any directions. In P3P3, a Euclidean transformation is represented by a 4£ 44£ 4 

matrix: 

 TE '
·

R t

0T 1

¸
TE '

·
R t

0T 1
,̧ (2.8) 

where RR is a 3£ 33£ 3 rotation matrix in 3D, therefore R¡1 = RT and det(R) = 1R¡1 = RT and det(R) = 1. 

t = (t1; t2; t3)
Tt = (t1; t2; t3)
T  is a translation vector.TETE  has 6 degrees of freedom. One rotation about 

each of the three axes, one translation in each of the three directions. The distortion 

effects of various transformations in 3D space are summarized in Table  2-1.  
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Table  2-1. Hierarchy of geometries in 3D 

Group Matrix Distortion Invariant properties 

 

 

Euclidean 6dof  

TE '
·

R t

0T 1

¸
TE '

·
R t

0T 1
 ̧

 

angles and distances in 

any directions 

Similarity 7dof  
TM '

·
¸R t

0T 1

¸
TM '

·
¸R t

0T 1
 ̧

 

angles and ratios in any 

directions 

 

 

Affine 12dof  

TA '
·

A t

0T 1

¸
TA '

·
A t

0T 1
 ̧

 

Parallelism of planes, 

volume ratios, centroids. 

The plane at infinity 11   

Projective  

15 dof  
T '

·
A t

vT 1

¸
T '

·
A t

vT 1
 ̧

 

Intersection and 

straightness 

 

If we compare the projective transformation matrices with the affine one in Table 

 2-1,we notice that the difference is in the vector v which is null in the definition of affine 

transformation. Therefore, an affine transformation retains the ideal points (x; y; z;0)T(x; y; z;0)Tat 

infinity: 

 
·

A t

0T 1

¸ 2664
x

y

z

0

3775 =

2664
x0

y0

z0

0

3775·
A t

0T 1

¸ 2664
x

y

z

0

3775 =

2664
x0

y0

z0

0

3775. (2.9) 

It also explains why an affine transformation leaves the (hyper)plane at infinity globally 

invariant. In the case of projectivity, the vector v = (v1; v2; v3)
Tv = (v1; v2; v3)
T  in (2.5) is responsible for 

the non-linear effects of the projectivity. If we map an ideal point (x; y; z;0)T(x; y; z;0)T  under a 



18 
 

projective transformation we see that the ideal point maps to a finite point, referred as 

vanishing point: 

 
·

A t

vT 1

¸ 2664
x

y

z

0

3775 =

2664
x0

y0

z0

v1x + v2y + v3z

3775·
A t

vT 1

¸ 2664
x

y

z

0

3775 =

2664
x0

y0

z0

v1x + v2y + v3z

3775. (2.10) 

This can be noticed by comparing the last row of calculated results in (2.9) with 

(2.10).  

2.3 Camera Model 

A camera maps the three-dimensional world onto a two-dimensional picture. The 

mapping under which a 3D scene maps onto a 2D space process is called perspective 

projection. This projection is described by a (3£4)(3£4) matrix which formulates the relation 

between a scene embedded in the 3D projective space P3P3 and its image embedded in a 2D 

projective space P2P2. 

 p ' MP; M =

24 m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

35p ' MP; M =

24 m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

35
,

 (2.11) 

where 3D points PP  and their 2D projection pp  are in their homogenous representation and 

m i;jm i;j are real numbers, i.e. mi;j 2 Rmi;j 2 R.  

The pinhole camera model describes the perspective projection of the scene in 

terms of various parameters describing the internal geometry of the camera and its 

relationship to the scene. This model is widely used as a good approximation to model 

digital cameras with CCD-like sensors. It models the central projection of 3D space 
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points onto a plane called image plane (or focal plane or retina). For simplicity we 

usually model a pinhole camera by placing the image plane between the center of 

projection (or focal point), towards which all light rays converge, and the object (frontal 

pinhole model), so that the formed image is not inverted (Figure  2-1). 

 

Figure  2-1. Pinhole camera model 

 

In Figure  2-1, the camera coordinate system, < XY Z; C >< XY Z; C >, is originated at the 

center of projection C. A scene point P is a 3D point whose definition in camera 

coordinate system is denoted by P = (Xc;Yc;Zc)P = (Xc;Yc;Zc). The line perpendicular to the image 

plane is called principal axis. The intersection of the principal axis with the image plane 

is called principal point o, which is the origin of the 2D coordinate system < xy;o >< xy;o >. x 

and y axes are parallel to X and Y of camera coordinate system respectively. So, referring 

to the right hand side of Figure  2-1, it can be seen that a 3D point PP is projected onto the 

point p = (x;y)p = (x;y) in the image plane by: 

 x = f
Xc

Zc

; y = f
Yc

Zc

x = f
Xc

Zc

; y = f
Yc

Zc

, (2.12) 
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where ff  is the distance of camera center C to the image plane, and is called focal length.  

In digital cameras (e.g. CCD/CMOS cameras), the image plane is a matrix of 

pixels where the horizontal and vertical inter-distances (dimension of pixels) may not 

necessarily be the same. To consider this in our camera model, we define a metric called 

aspect ratio which is the ratio of inter-pixel distances in horizontal direction divided by 

inter-pixel distance in vertical direction. Also in cameras the vertical columns of pixels 

may not be necessarily orthogonal to the horizontal rows [Kanatani, 2008]. We therefore 

say the skew factor may not be zero (Figure  2-2). Nevertheless, in today’s manufactured 

digital cameras the skew factor is close to zero. Another point to consider in the modeling 

of cameras is that the principal point is not always located in the center of the image as 

the latter may move during the focusing process due to the motion of the lenses (Figure 

 2-2).   

 

Figure  2-2. Left: Skew factor, aspect ratio Right: principal point is not always located in the 

center of image 

 

In digital imaging a common convention is to describe the coordinates of image 

points with respect to the top-left corner of the image (Figure  2-1). Therefore the pixel 

point ~p(u;v)~p(u;v) is defined as  
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 u =
x

®
+

y

¯
tanμ + uO; v =

y

¯
+ vOu =

x

®
+

y

¯
tanμ + uO; v =

y

¯
+ vO

,
 (2.13) 

 where (uO;vO)(uO;vO) is the location of principal point with respect to the coordinates < uv; o >< uv; o >

. ®® is the horizontal inter-pixel distance and accordingly ¯̄ is the vertical inter-pixel 

distance and ~p(u;v)~p(u;v) is the Cartesian representation of point p' (u; v;1)p' (u; v;1). μμ is the angle 

between uu and vv coordinates.  

Central projection using homogeneous coordinates  

If the scene and image points are represented by their homogeneous coordinates, then 

central projection is simply expressed as a linear mapping between them. Combining 

equations (2.12) and (2.13), one obtains  

 

24 u

v

1

35 '
24 f ¯

®
f ¯

®
tanμ u0

f v0

1

0
0
0

35
2664

Xc

Yc

Zc

1

3775
24 u

v

1

35 '
24 f ¯

®
f ¯

®
tanμ u0

f v0

1

0
0
0

35
2664

Xc

Yc

Zc

1

3775. (2.14) 

  

2.3.1 The intrinsic parameters 

The equation (2.14) may be written as 

 p 'K[I j O]Pcp 'K[I j O]Pc, (2.15) 

where P cP c  and pp  are the homogeneous vectors of scene point P defined in camera 

coordinate system and image point in the image coordinate system respectively. The 

matrix K is derived from (2.13) and is represented by a 3£ 33£ 3 matrix as 
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 K =

24 f ¯

®
f ¯

®
tanμ u0

f v0

1

35K =

24 f ¯

®
f ¯

®
tanμ u0

f v0

1

35. (2.16) 

It is a common practice in textbooks to represent the matrix K in a simpler form 

 

 K =

24 fu s u0

fv v0

1

35K =

24 fu s u0

fv v0

1

35, (2.17) 

 

where fufu and fvfv represent the focal length along the axis of the image. The aspect ratio is 

defined by fu=fvfu=fv, ss is for skew factor and (u0;v0)(u0;v0) are the pixel coordinates of the 

principal point. These parameters are referred to as the intrinsic parameters of the 

camera. 

Distortions 

The camera model described above is linear. That means it is assumed that straight lines 

are projected as straight lines which is not quite true for real lenses, especially cheap 

optics and for short focal lengths. The well-known nonlinear distortion is radial distortion 

discussed in [Vergauwen, 2006]. For more information on nonlinear camera models the 

reader can refer to [Sturm et al., 2011]. 

2.3.2 Extrinsic Camera Parameters 

In our previous discussion, the 3D scene points ~Pc(Xc; Yc; Zc)~Pc(Xc; Yc; Zc) was assumed to be 

described in the camera’s coordinate system. However, in general the coordinates of P 

are more conveniently available in another reference frame called the world (or scene) 
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coordinate frame ( ~P (X; Y; Z)~P (X; Y; Z) in Figure  2-3). In such case, for the validity of calculations, 

all the points including the camera center have to be also defined in that coordinate 

system. Let’s assume that the optical center of the camera is defined in the scene 

coordinate system by the Cartesian vector ~C~C . Then, the relation between the 

representation of P in the scene coordinate system and that of P in the camera coordinate 

system is given by. 

 

0@ Xc

Yc

Zc

1A = R(

0@ X

Y

Z

1A ¡ ~C)

0@ Xc

Yc

Zc

1A = R(

0@ X

Y

Z

1A ¡ ~C) (2.18) 

where vector ~C~C is defining the center of camera frame, the origin C, with respect to world 

frame. RR is a rotation matrix which represents the orientation of the camera coordinate 

system with respect to the world coordinate system.  

 

Figure  2-3. Extrinsic parameters 

 

Equation (2.18) implies that if the description of a 3D point is available in a world 

coordinate system XYZ and the R and ~C~C are also available (Figure  2-3), then the scene 

points can be defined in camera coordinate system as in (2.18). The parameters fR; ~CgfR; ~Cg 

are called extrinsic parameters of the camera and are defined with respect to camera 
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coordinate system. Replacing [Xc; Yc; Zc]
T[Xc; Yc; Zc]
T  in (2.14) with its equivalent in (2.18) and 

combining equations (2.14), (2.11) and (2.18) we obtain  
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3775,  

where  

 M = KR[I j ¡ ~C]M = KR[I j ¡ ~C] (2.19) 

is the factorization of the projection matrix which appears in (2.11) in term of the 

intrinsic and extrinsic parameters of the camera. 

2.3.3 Decomposition of projection matrix M 

 If only the 3×4 projection matrix M is known and not the individual parameters, it is still 

possible to derive the intrinsic and extrinsic parameters from it. Thus we are interested in 

decomposing M into intrinsic camera matrix K, and extrinsic matrices {R, t}. The process 

is as follows [Vergauwen, 2006]. We consider the upper left 3×3 sub-matrix of M. This 

matrix is on the form KRKR. The inverse of this matrix is RT K¡1RT K¡1 (as RT = R¡1RT = R¡1). The QR-

decomposition of a 3×3 matrix of rank 3 decomposes the matrix into two matrices: an 

orthonormal matrix on the left and an upper triangular matrix on the right. RR is a rotation 

matrix and thus orthonormal and K is modeled as an upper triangular matrix, so K¡1K¡1 is 

an upper triangular too. Now that K and R are known, the translation vector t can be 

easily computed by pre-multiplying the fourth column of M with ¡RK¡1¡RK¡1. 
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2.4 Epipolar geometry  

The relationship between the projections of points in two images of the same scene is 

described by the epipolar geometry. We assume here that two cameras are observing a 

scene and that the world coordinate system is attached to the first camera, Figure  2-4. 

Referring to equation (2.19), the Euclidean projection matrices of the two views are in the 

form: 

 M1 = [K1 j 0] and M2 = K2R2[I j ¡ t2]M1 = [K1 j 0] and M2 = K2R2[I j ¡ t2], (2.20) 

where t2t2 describes the location of the center of second camera, O2O2, in the coordinate 

frame of first camera and R 2R 2 describes the rotation of camera 2 with respect to camera 1.  

Epipole eijeij 

An epipole eijeij is a special point on the ithith image which is the projection of the optical 

center of camera j on the image plane of the camera i. Given two images of a scene, the 

epipole e12e12 on the first image is the projection of the optical center O2 ' (tT2 ;1)TO2 ' (tT2 ;1)T  of the 

second camera on the image plane I1I1 of the first camera e12 ' M1O2e12 ' M1O2 

 

Figure  2-4. Epipolar geometry 

 



26 
 

Similarly epipole e21e21 on image 2 is obtained by projecting O1 ' (0T ;1)TO1 ' (0T ;1)T  on image 2 

through e21 = M2O1e21 = M2O1. Therefore   

 e12 ' K1t2 and e21 ' ¡K2R2t2e12 ' K1t2 and e21 ' ¡K2R2t2. (2.21) 

Epipolar line 

Let p 1p 1 and p2p2  be the projections of a scene point P in two images. Point P lies anywhere 

on the optical ray ¡¡!O 1 p 1

¡¡!
O 1 p 1 . In turn, point p2p2  must lie anywhere on the line le21le21 which is the 

projection of ¡¡!O 1 P
¡¡!
O 1 P on the second image. The line lele contains the epipole e21e21 (projection of 

O1O1 on image 2) and point p2p2. Therefore, we have 

 le21 = e21 £ p2le21 = e21 £ p2 (2.22) 

The line le21le21 is referred to as the epipolar line associated to point p 1p 1. All epipolar lines 

intersect in the epipole. 

Fundamental Matrix and Epipolar constraint  

Two points p 1p 1 and p2p2 , corresponding to the projections of the same scene point P in two 

images are related by 

 pT
2 F12p1 = 0 or pT

1 F21p2 = 0; where F12 = FT
21pT

2 F12p1 = 0 or pT
1 F21p2 = 0; where F12 = FT

21. (2.23) 

The 3£ 33£ 3 matrix F12F12 is the so-called fundamental matrix [Faugeras et al., 1992]. This 

constraint is known as the epipolar constraint and arises from the coplanarity of the 

camera centers of the two views the images points and the space point, the points 

O1; O2; p1; p2O1; O2; p1; p2 and PP  in Figure  2-4. 

The fundamental matrix is singular and its rank is 2 and has 7 degrees of freedom.  
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Considering Figure  2-4, for each point p 1p 1 in image 1, F12F12 provides the epipolar line 

le21 ' F12p1le21 ' F12p1 in image 2 which contains the corresponding point p2p2 . 

Computation of fundamental matrix 

The relation (2.23) provides a linear equation in the entries of the matrix F. Therefore F 

can be computed from a set of point correspondences using one of the following 

methods. 

 The Eight-Point Algorithm [Longuet-Higgins, 1981] and its improved version in 

[Hartley, 1997]. 

 Non-Linear Least-Squares Approach [Luong et al., 1993] with respect to the 

coefficients of F, using an appropriate rank-2 parameterization. 

2.5 Planar geometry  

As this dissertation is concerned with the identification of planes and using them for 

calibration, a section of this chapter is dedicated to planar geometry. Consider that a 

single camera is observing a planar scene with a supporting plane not passing through the 

optical center of the camera. We already know that a mapping from a scene plane to 

image plane (2D entities), is a linear mapping from P2P2
 to P2P2

 and hence called a plane 

homography. We are particularly interested in the exact expression of the 3£ 33£ 3 matrix 

that represents such homography in terms of the intrinsic and extrinsic parameters of the 

camera. This will be explored in the following two cases: 

 scene plane is at infinity, 

 scene plane is at a finite distance from the origin of the reference frame. 
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2.5.1 Planes at infinity  

Let P1(X1; Y1;Z1;0)P1(X1; Y1;Z1;0) be a point on the plane at infinity, Figure  2-5. Its projection onto 

the image plane is pp  and is obtained by: 

 p ' KR[I j ¡ t]

2664
X1
Y1
Z1
0

3775 = KR

24 X1
Y1
Z1

35p ' KR[I j ¡ t]

2664
X1
Y1
Z1
0

3775 = KR

24 X1
Y1
Z1

35,  

 p ' H1

24 X1
Y1
Z1

35 ; H1 ' KRp ' H1

24 X1
Y1
Z1

35 ; H1 ' KR, (2.24) 

where H1H1 is called infinity-to-image homography, K is the camera matrix of that view 

and R is the rotation matrix denoting the ration between the camera reference frame and 

the scene reference frame. The projection of a 3D point P1P1, at infinity, can be a finite 

point of the image. 

 The projection of a 3D point at infinity does not depend upon the position of the 

camera with respect to the world reference frame. It depends only on the orientation of 

the camera and its intrinsic parameters. 

 

Figure  2-5. Plane to image homography 
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Planes at finite distance  

Let ¦¦  be a scene plane observed by a camera. We assume that ¦¦  is at a finite distance d ≠ 

0 from the origin of the reference frame and n¦n¦ is a normal vector of ¦¦ . Then the 

coordinates of ¦¦  is given by 

 ¦ ' (nT
¦;¡d)T¦ ' (nT
¦;¡d)T . 

A scene point P with coordinates P ' (X;Y;Z;1)TP ' (X;Y;Z;1)T  lying on ¦¦  satisfies the 

equation ¦TP = 0¦TP = 0, the incidence equation (2.4). Also the projection of P is defined as 

p ' M Pp ' M P , where M 'KR[I j ¡ t]M 'KR[I j ¡ t]. Therefore:  

 

8>>>>>>>><>>>>>>>>:
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¦
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1A = d
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Thus 

 p ' H¦

0@ X

Y

Z

1A ; H¦ ' KR ¡ 1

d
KRtnT

¦p ' H¦

0@ X

Y

Z

1A ; H¦ ' KR ¡ 1

d
KRtnT

¦, (2.25) 

where H1H1 is the (3£ 3)(3£ 3)infinity-to-image homography matrix described in (2.24).The 

(3£ 3)(3£ 3) matrix H¦H¦ represents the homography induced by plane ¦¦  and maps each point P 

on this plane to its projection on the image plane. The plane ¦¦  is located at finite distance 
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d from the origin, however if we move it to infinite distance then the equation (2.25) 

changes back to  

 lim
d!1

H¦ = H1lim
d!1

H¦ = H1. 

2.5.2 Inter-image homography  

Given two images of a same plane ¦¦  (Figure  2-6), we have 

 p1 ' H¦1

0@ X

Y

Z

1A ; and p2 ' H¦2

0@ X

Y

Z

1Ap1 ' H¦1

0@ X

Y

Z

1A ; and p2 ' H¦2

0@ X

Y

Z

1A, (2.26) 

from which we can easily deduce that 

 p2 ' H¦12p1 where H¦12 = H¦2H
¡1
¦1

p2 ' H¦12p1 where H¦12 = H¦2H
¡1
¦1

. (2.27) 

H¦12H¦12
 is the matrix representation of the inter-image homography between images 

1 and 2 induced by plane ¦¦ . H¦ 12H¦ 12
 is a 3 £ 33 £ 3 matrix with 8 degrees of freedom due to 

equality up to scale factor. 

 

Figure  2-6. Inter-image Homography 
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From equations (2.27) and (2.25) it can be noticed that for any inter-image plane 

homography H¦12H¦12 which relates the projection of points lying on ¦¦  onto the two views 

we have  

 e21 ' H¦12e12e21 ' H¦12e12, (2.28) 

where epipole e21e21 is the projection of camera center of view 1 onto image 2.  

Inter-image homography of plane at infinity  

If in the equation(2.27) we replace H¦1H¦1 and H¦2H¦2 with their equivalent from (2.25) the 

following expression will be obtained H¦12 ' (K2R2 ¡ 1

d
K2R2 t2 nT

¦) (K1)
¡1H¦12 ' (K2R2 ¡ 1

d
K2R2 t2 nT

¦) (K1)
¡1. In this 

equation d ≠ 0 is the distance of plane ¦¦  from the origin of the reference frame and n¦n¦ is 

a normal vector to ¦¦ . The following equation can be obtained for the inter-image 

homography of plane at infinity  

 lim
d!1

H¦12 = H112 ) H112 = K2R2K
¡1
1lim

d!1
H¦12 = H112 ) H112 = K2R2K

¡1
1 ,  

which implies that the inter-image homography of the plane at infinity only depends on 

the intrinsic parameters of the views and the rotation between them. The general form of 

this equation is 

 H11i = KiRiK
¡1
1H11i = KiRiK
¡1
1 , (2.29) 

where, RiRi is the rotation matrix of ithith camera with respect to fist view and KiKi is the 

camera matrix of ithith camera. 
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2.5.3 Homography and the plane in projective frame 

Assume that in projective space the projection matrices of two views are available and 

the world reference frame is attached to the first camera. Then 

 M1 = [I j 0]; M2 = [A j a]M1 = [I j 0]; M2 = [A j a] (2.30) 

where matrix A(3£3)A(3£3) and vector a(3£1)a(3£1) are real-valued. Also consider a projective 

plane with coordinate ¦ = (vT ;1)T¦ = (vT ;1)T , not passing the origin, and a point PP with 

coordinates P = (p1; ¸)TP = (p1; ¸)T , on this plane, i.e. ¦TP = 0¦TP = 0. From p1 ' [I j 0]Pp1 ' [I j 0]P  it can be 

observed that P could be any point with components P = (p1; ¸)TP = (p1; ¸)T . At the same time P is 

on the plane ¦ = (vT ;1)T¦ = (vT ;1)T . Therefore  

 (vT ;1)(p1; ¸)T = 0) ¸ =¡vTp1 ) P ' (p1; ¡vTp1)
T(vT ;1)(p1; ¸)T = 0) ¸ =¡vTp1 ) P ' (p1; ¡vTp1)
T . 

Projecting P on the second view, we have 

 

p2 = M2P

= [A j a](p1;¡vT p1)
T

= (A¡ avT )p1

p2 = M2P

= [A j a](p1;¡vT p1)
T

= (A¡ avT )p1 ,

 

which defines the homography induced by this plane, p2 = H12p1p2 = H12p1, is defined by  

 H¦12 = A¡ avTH¦12 = A¡ avT . (2.31) 

2.6 3D Reconstruction Formulation  

Suppose m cameras with Euclidean projection matrices M E
i (3 £ 4)M E
i (3 £ 4), i 2 f1::mgi 2 f1::mg are 

observing n 3D scene points PE
j (Xj; Yj; Zj; 1) 2 E3; j 2 f1::ngPE
j (Xj; Yj; Zj; 1) 2 E3; j 2 f1::ng in a scene, where the 

superscript EE  indicates that the points coordinates are in Euclidean space. Let 
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pij = (uij ; vij ; 1)pij = (uij ; vij ; 1) be the 2D projection of point P E
jP E
j  onto the image ii and is defined by the 

linear mapping:  

 pi;j 'ME
i PE

jpi;j 'ME
i PE

j . (2.32) 

Problem definition: 

In uncalibrated 3D reconstruction, neither the projection matrices M E
iM E
i  nor the 3D points 

PE
iPE
i  are available. It will be shown that if the only available inputs are the 2D image 

points, 3D reconstruction is possible only up to a projective ambiguity. Indeed, instead of 

PE
iPE
i  we can only recover P P

jP P
j which has the following relation with the original scene 

points  

 P E
j ' TP P P

jP E
j ' TP P P

j ,  

where TPTP  remains an unknown projective matrix. We can lower the ambiguity as we get 

more information about the cameras or the scene. The lowest level of ambiguity is when 

the cameras are somehow calibrated. In this case it is possible to recover the scaled 

version of the original scene, P M
jP M
j (e.g. a metric reconstruction):P E

j ' TMPM
jP E

j ' TMPM
j , where TMTM  

is a metric transformation matrix. The reason behind the reconstruction ambiguity is 

explained below. 

Ambiguity in reconstruction 

Let HH be an arbitrary 4£ 44£ 4 non-singular matrix representing a projective transformation, 

as in equation (2.5). Let’s define M 0
i ' MiHM 0
i ' MiH  and the projective transformation of the 

scene points of equation (2.32) as P 0
j ' H¡1PjP 0
j ' H¡1Pj. Then the following structure can also be 

recovered from set of image points pijpij: 
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 pij ' M 0
iP

0
jpij ' M 0

iP
0
j .  

This means from known 2D image points p ijp ij  we can obtain solution set fMi; PjgfMi; Pjg 

or anything else like fMiH;H¡1PjgfMiH;H¡1Pjg which both are valid solutions of the equations 

(2.32)! This, in other words, means that from availability of only 2D image points we can 

reconstruct the scene up to a projective ambiguity HH, not a unique solution.  

To remove this ambiguity we inevitably need some information about the 

parameters of the cameras used or about the scene. Once that information is available, we 

can compute the matrix ¯̄ to eventually upgrade the projective structure to affine or 

ultimately to the similarity one. This reduces the projective ambiguity to a similarity 

ambiguity (i.e. Euclidean up to an arbitrary scale factor). In other words, a similarity 

reconstruction preserves all geometrical features of the scene except for an overall scale 

factor. 

2.6.1 Metric stratum   

A scene is referred to as metric if it differs from the true Euclidean one by a metric 

transformation. Therefore, if points P E
jP E
j  undergo a metric transformation TEMTEM , the 

projection matrices transform into T¡1
EMT¡1
EM  ( to keep the relation(2.32) valid). The set  

 fMM
i ; P M

j g ' fMET¡1
EM ; TEMP E

j gfMM
i ; P M

j g ' fMET¡1
EM ; TEMP E

j g  

is called the metric reconstruction of the original scene. The notation TEMTEM  refers to a 

metric transformation of form defined in equation (2.7) which transforms Euclidean 

frame to metric frame. 
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Metric projection matrices, canonical form 

Without loss of generality one can choose the matrix TEMTEM  that aligns the world reference 

frame with that of camera 1, thus bringing the metric projection matrices to the canonical 

form 

 MM
1 ' [K1j0] and MM

i ' [KiRijei1]MM
1 ' [K1j0] and MM

i ' [KiRijei1],  

where RiRi is the rotation matrix between the reference and the ithith camera. ei1ei1 is the 

projection of the center of camera 1 onto the ithith image (equation (2.21).   

2.6.2 Affine stratum   

 A scene is referred to as affine if it differs from a metric one by an affine transformation. 

Therefore, if scene points P M
jP M
j , defined in a metric frame, undergo an affine 

transformation TMA P M
jTMA P M
j , the metric projection matrices MM

iMM
i  transform to affine ones as 

follows: 

 fMA
i ; P A

j g ' fMM
i T¡1

MA; TMA P M
j gfMA

i ; P A
j g ' fMM

i T¡1
MA; TMA P M

j g,  

where the affine projection matrices of view i take the following canonical form. 

 M A
1 ' [I j0] and M A

i ' [H11ijei1]M A
1 ' [I j0] and M A

i ' [H11ijei1], (2.33) 

where H11iH11i is the inter-image homography of the plane at infinity between the reference 

and the ithith views. 

2.6.3 Projective stratum  

Similarly, a projective scene differs from an affine scene by a projective transformation 

TAPTAP : 
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 fMi; Pjg ' fMA
i T¡1

AP ; TAP P A
j gfMi; Pjg ' fMA

i T¡1
AP ; TAP P A

j g.  

If we define the projective transformation TAPTAP  as  

 TAP '
·

I 0
vT
1 1

¸
TAP '

·
I 0

vT
1 1

¸
,
 (2.34) 

where the v1v1 is the 3-vector of plane at infinity in 1 = (vT
1; 1)T1 = (vT
1; 1)T . Then the projective 

projection matrices of view i take the following canonical form: 

 M1 ' [Ij0] and Mi ' [H¦1ijei1]M1 ' [Ij0] and Mi ' [H¦1ijei1], (2.35) 

where H¦1iH¦1i is the inter-image homography of any arbitrary plane from image 1 to image 

i. Recall that the inter-image homography of the plane at infinity is related to the inter-

image homography of any arbitrary plane Π between any two images i and j by the 

relationship 

 H¦ij ' H1ij ¡ eijv
T
1H¦ij ' H1ij ¡ eijv
T
1. (2.36) 

Next chapter elaborates on the fundamentals of camera calibration including 

conics and quadrics.  
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3 Autocalibration	constraints	

Camera calibration is the process of determining internal camera parameters and is a 

necessary step for 3D reconstruction. A typical approach to calibrate a camera involves 

using one or several images of a set of 3D scene points with known Euclidean structure, 

called calibration pattern (Figure  3-1). Once a 3D to 2D correspondence has been 

established between the 3D points and their projections on the images, it is 

straightforward to recover the camera parameters [Boufama et al., 1993], The steps are 

listed in the Table  3-1. 

Camera autocalibration, on the other hand, determines camera parameters directly 

from multiple uncalibrated images with no need to use any special calibration objects in 

the scene. Most autocalibration approaches (also referred to as or self-calibration in the 

literature), make use, instead of a calibration pattern, a virtual pattern which present in all 

scenes and visible in all images. These virtual patterns are some special conics and 

quadrics with close ties to the plane at infinity. They play fundamental roles which will 

be discussed in the following section. 

 

Figure  3-1. Calibration object 

Table  3-1. Camera calibration using calibration grid 

1- Manually measure the 3D position of grid points on the calibration 

object( 5 or more general points) 

2- Set up the 3D-2D point correspondences between the picked points 

and their projection onto the images 

3- Set up the linear equations and solve using methods such as SVD. 
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3.1 Conics and quadrics  

Conics and quadrics are important geometric entities in camera autocalibration 

approaches. In the following section we elaborate on conics and quadrics and their 

invariant properties under geometric transformations. 

3.1.1 Conics 

A conic is a planar 2D entity described by a second-degree equation in its supporting 

plane. A conic is formed by the intersection of a cone with a plane. In Euclidean space 

this intersection can take the form of an ellipse, parabola, hyperbola or any of their 

degenerate forms which are all quadratic expressions of points in E2E2 (2D Euclidean 

space). A conic C is defined as the locus of 2D points p for which the homogeneous 

equation below is valid: 

 pT Cp = 0pT Cp = 0, (3.1) 

where C is a 3×3 symmetric matrix which, due to representing its points p = (x; y; 1)p = (x; y; 1) in 

homogeneous, is defined up to scale. Therefore instead of 6 parameters it can be defined 

with only 5 independent parameters. 
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where a6a6 is assumed to be none-zero. From (3.1) each point pp  places one constraint on 

the conic coefficients. Therefore, five points in general position are enough to determine 

a conic uniquely up to scale.  

Dual Conic.  

Like other entities in projective geometry, the conic has its dual too. As in P2P2 the dual of 

a point is a line, the dual of conic of points C defined in (3.1) is a conic of lines and is 

denoted by C¤C¤: 

 lT C¤ l = 0lT C¤ l = 0 (3.2) 

where l is a set of lines tangent to the points on the conic C. C¤C¤ is the adjoint (adjugate) 

matrix of C. If C is a nonsingular matrix its dual C¤C¤ is described by the inverse of matrix 

C: 

 C¤ ' C¡1C¤ ' C¡1. (3.3) 

Tangent to conic. 

 In P2P2, the line ll  tangent to conic C at a point p on C, is given by  

 l = Cp = CT pl = Cp = CT p,  

since C is symmetric. From the definition of tangent, p is the only common point on the 

conic C and the line l and therefore by referring to the equation (3.1)  

 pT l = 0; pTCp = 0 ) l = CppT l = 0; pTCp = 0 ) l = Cp. 
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Transformations of Conics 

If 2D points pp  transform to 2D points p0p0 under the 2D homography HH, p 0 = H pp 0 = H p  then the 

conic C formed by the locus of these points transforms to C0 = H¡TCH¡1C0 = H¡TCH¡1 :  

 pTCp = 0; p = H¡1p0 ) p0TH¡TCH¡1p0pTCp = 0; p = H¡1p0 ) p0TH¡TCH¡1p0 

and thus  

  C 0 = H¡T CH¡1C 0 = H¡T CH¡1.  (3.4) 

Similarly if points pp  transform to 2D points p0p0 under the 2D homography H(3£3)H(3£3),

p 0 = H pp 0 = H p  the line formed by points p transforms to l0 = H¡T ll0 = H¡T l. Therefore, the line conic 

C¤C¤ transforms to C¤0 = HC¤HTC¤0 = HC¤HT :  

 lT C¤l = 0; l = HT l0 ) (HT l0)T C¤(HT l0) = 0 ) l
0T HC¤HT l0 = 0lT C¤l = 0; l = HT l0 ) (HT l0)T C¤(HT l0) = 0 ) l
0T HC¤HT l0 = 0 

and therefore  

  C¤0
= HC¤HTC¤0
= HC¤HT .  (3.5) 

From equations (3.6) and (3.7) it can also be implied that C0¤ = C0¡1C0¤ = C0¡1 for 

nonsingular C. 

3.1.2 Quadric and its dual 

Quadrics  

As mentioned earlier, conics represent quadratic expressions of 2D points in P2P2, whose 

extensions to P3P3 are called quadrics. Quadrics are described by quadratic expressions in 

P3P3. Therefore a quadric QQ is a surface in 3D (not necessarily a flat one ). When 3D points 

P are represented by their homogeneous coordinates, a quadric QQ can be described by a 



41 
 

symmetric matrix. A general symmetric 4×4 matrix is described by ten parameters, but 

since points are represented in their homogeneous coordinates, out of ten parameters only 

nine are independent. A quadric QQ can be described in projective space P3P3 as follows 

 P TQP = 0P TQP = 0, (3.8) 

where Q is a point quadric which contains the 3D points P 2 P3P 2 P3. For brevity, point 

quadrics are also referred as quadrics in this desertion. 

Dual Quadric.  

As mentioned in Section  2.1.3, the dual of points are planes in projective space P3P3. 

Therefore the dual of a point quadric QQ is defined by a set of planes tangent to the points 

of quadric QQ. The dual of point quadric QQ is a plane quadric Q¤Q¤which is the adjugate of 

matrix QQ. In case QQ is nonsingular, Q¤Q¤ is the inverse of QQ: 

 ¦TQ¤¦ = 0; Q¤ = Q¡1¦TQ¤¦ = 0; Q¤ = Q¡1 (3.9) 

where plane ¦¦  is a plane tangent to a point on QQ.  

Transformation of quadrics.  

Transformations on quadrics and dual quadrics follow the same rules as for the conics 

and dual conics. Therefore if points P 2 P3P 2 P3 of equation (3.8) transforms to P 0 'HPP 0 'HP , 

the transformation of corresponding quadric QQ and dual quadric Q¤Q¤ are given by  

 
Q0 = H¡TQH¡1

Q¤0 = HQ¤HT

Q0 = H¡TQH¡1

Q¤0 = HQ¤HT
,
  (3.10) 
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where H in here is a  3D homography as opposed to H in (3.5) and (3.4) which is 

. 

3.2 Absolute Conic (AC) and Dual Absolute Quadric (DAQ) 

The Absolute Conic (AC) is a virtual squashed cone in 3D space located on the plane at 

infinity. A cone is a degenerate quadric so its representing 4×4 matrix does not have full 

rank. The AC was introduced to 3D Computer Vision by Faugeras [Faugeras and 

Maybank, 1990] and plays a key role in camera autocalibration. The recovery of the 

image of the AC or its dual in standard form results in the metric recovery of the entire 

scene structure.  

We denote the absolute conic with the symbol Ð1Ð1. In 3D Euclidean space E3E3, the 

absolute conic consists of points P = (xT ; 0)TP = (xT ; 0)T  on the plane at infinity which satisfy 

xTx = 0xTx = 0, where x = (x1; x2;x3)x = (x1; x2;x3). Therefore in Euclidean 3D space E3E3, it contains only 

imaginary points. This conic is called absolute as it resides in the plane at infinity and 

consequently is invariant ( and absolute) under the metric transformations: 

 T¡T
M Ð1T¡1

M ' Ð1T¡T
M Ð1T¡1

M ' Ð1, (3.11) 

where TMTM  is a metric transformation (equation (2.7)). The invariance of the AC under is 

an important property exploited in camera autocalibration as its position relative to a 

moving camera is constant.  

3.2.1 Dual Absolute Quadric 

The dual of the absolute conic is a degenerate dual quadric in 3-space and is called Dual 

of Absolute Quadric (DAQ) which we denote with the symbol Q¤
1Q¤
1. Any plane in the 
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envelope of the dual of absolute quadric Q¤
1Q¤
1 is tangent to the absolute conic Ð1Ð1. (Figure 

 3-2) 

 

Figure  3-2. The absolute conic on plane at infinity 

 

This terminology may sound unsuitable as the dual of a conic cannot be a dual 

quadric. Nonetheless, the terminology Dual Absolute Quadric is commonly used in 

literature and we stick with it too, otherwise Dual Absolute Conic has been used in some 

literature too [Cyganek et al., 2009].   

In practice it is often preferred to represent the Ð1Ð1 through its dual, Q¤
1Q¤
1. This way 

both the Ð1Ð1 and its supporting plane ¦1¦1, are expressed in one geometric entity. 

Algebraically Q¤
1Q¤
1 is represented by a 4×4 matrix of rank 3. The DAQ has the following 

canonical form in 3D Euclidean space: 

 Q¤E
1 =

·
I O

OT 0

¸
Q¤E
1 =

·
I O

OT 0
,̧ (3.12) 

where OO is a 3-null-vector. 
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Dual of Absolute Quadric under transformations  

In the following discussion, consider the definition of geometric 

transformations in Table  2-1 and transformation of quadrics in equation 

(3.10). 

Euclidean: Q¤E
1Q¤E
1  is invariant under Euclidean transformations.  

Metric: Q¤E
1Q¤E
1  is scaled under similarity transformations (i.e. Q¤E

1 ' ¸Q¤M
1Q¤E

1 ' ¸Q¤M
1 ). 

Affine: Q¤E
1Q¤E
1  takes the form Q¤A

1 =

·
ATA O

OT 0

¸
Q¤A
1 =

·
ATA O

OT 0
,̧ under affine transformations. 

Projective: Under projective transformations, Q¤E
1Q¤E
1  becomes an arbitrary symmetric 

positive semidefinite rank 3 matrix Q¤
1Q¤
1 [Triggs, 1997].  

Remark: Q¤
1Q¤
1 is a projective encoding of Euclidean and Affine structure of the scene. 

Euclidean as it encodes the intrinsic camera parameters, and affine as it also encodes the 

plane at infinity. This property makes DAQ the an important geometric entity of camera 

autocalibration on 3D computer vision. 

3.2.2 Properties of Dual Absolute Quadric  

The DAQ Q¤
1Q¤
1 has the following properties which can be considered in autocalibration 

approaches. The dual absolute quadric Q¤
1Q¤
1 is a degenerate quadric that has 8 degrees of 

freedom. The reason is that a symmetric 4×4 matrix has 10 independent entries. 

However, a 4×4 matrix which represents a quadric Q¤
1Q¤
1 in projective space has one less 

degree of freedom due to the scale stem from homogeneous coordinates. Also, as the 

DAQ is a degenerate quadric, it again reduces the degree of freedom one less to 8. 

Moreover,  

 Null vector of Q¤
1Q¤
1 is the plane at infinity denoted by 11: 
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 Q¤
11= 0Q¤
11= 0 (3.13) 

  Q
¤
1Q¤
1 is a projective entity which encodes the Euclidean angle between two planes 

ÁÁ  and '' represented in projective space: 

  cos(μ) =
ÁTQ¤

1'p
(ÁTQ¤1Á)('TQ¤1')

cos(μ) =
ÁTQ¤

1'p
(ÁTQ¤1Á)('TQ¤1')

  (3.14) 

Remark 1. The two planes ÁÁ  and '' are orthogonal if and only if  

  ÁT Q¤
1' = 0ÁT Q¤
1' = 0.  (3.15) 

 

Remark 2. Q¤
1Q¤
1 is not full rank, it is of rank 3. As a result its determinant is zero: 

  det(Q¤
1) = 0det(Q¤
1) = 0,  (3.16) 

The terms “Absolute Dual Quadric” and “ Dual of Absolute Quadric “ are used 

interchangeably in the literature [Zhu et al., 2009], [Triggs, 1997] and [Hartley and 

Zisserman, 2004], [Gurdjos et al., 2010], [Gurdjos et al., 2010], respectively. We stick 

with the latter (DAQ) in this thesis.     

3.2.3 The images of AC and DAQ 

As mentioned above, in Euclidean 3D space the absolute conic Ð1Ð1 is consist of a set of 

points on plane at infinity. Therefore it contains only points with complex coordinates. 

Projection of any complex 3D point P of Ð1Ð1 onto an image is also a complex point uu on a 

2D conic !!. !! is called the Image of Absolute Conic (IAC) and is represented by a full 

rank 3×3 symmetric matrix.  
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Similarly the projection of the dual of absolute quadric Q¤
1Q¤
1 onto an image yields 

a conic of lines [Hartley and Zisserman, 2004] which is the dual of image of absolute 

conic and is denoted by .  

 !¤i ' MiQ
¤
1MT

i!¤i ' MiQ
¤
1MT

i  (3.17) 

where  is the projection matrix of  view in projective space. This relationship is 

straightforward when the scene and cameras are given in the Euclidean or metric space. 

For instance, considering , the Euclidean (or metric) projection matrix of view i and 

!¤i!¤i  the projection of Q¤E
1Q¤E
1  onto the image I we have: 

 

ME
i Q¤

1ME
i

T ' Ki[R
T
i j ¡ RT

i ti]

2664
1

1
1

0

3775 [RT
i j ¡ RT

i ti]
T KT

i

= KiRiR
T
i KT

i

= KiK
T
i = !¤i ;

ME
i Q¤

1ME
i

T ' Ki[R
T
i j ¡ RT

i ti]

2664
1

1
1

0

3775 [RT
i j ¡ RT

i ti]
T KT

i

= KiRiR
T
i KT

i

= KiK
T
i = !¤i ;

 (3.18) 

where RR, the rotation matrix is an orthogonal matrix and therefore RRT = IRRT = I. KK is the 

intrinsic parameters matrix described in equation (2.17). Therefore, !¤!¤ becomes a 

symmetric positive semi-definite matrix. Since  is a symmetric matrix, it represents a 

conic. The good thing about this conic is that it only depends on the camera parameters of 

that view and nothing else.  

In projective space. In reality, the projection matrices and 3D structure of the scene that 

we can recover from multiple view feature matches are valid up to an arbitrary projective 

ambiguity. This means what we can obtain is the projective projection matrix. Projective 

projection matrices can be upgraded to Euclidean ones for some nonsingular  such that  
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 , (3.19) 

where  is the Euclidean projection matrix which models the Euclidean camera pin-

hole model that we expect to get. Likewise, the Dual of Absolute conic Q
¤
1Q¤
1 is not 

recovered in its canonical position (i.e. equation (3.12) ), but in its transformed position 

 

 . (3.20) 

  We will observe that although the DAQ has undergone a projective 

transformation and changed to an arbitrary symmetric matrix, its projection is the same as 

the projection of original Q¤E
1Q¤E
1  as in (3.18). In the following statements we replace MiMi with  

 from equation (3.19) and Q¤
1Q¤
1from equation (3.20), hence  

 

  

MiQ
¤
1M T

i = (ME
i H¡1)HQ¤E

1 HT (M E
i H¡1)T

= M E
i Q¤E

1 ME
i

T

' KiK
T
i = !¤i ;

MiQ
¤
1M T

i = (ME
i H¡1)HQ¤E

1 HT (M E
i H¡1)T

= M E
i Q¤E

1 ME
i

T

' KiK
T
i = !¤i ;

   

 which implies that regardless of the position of the Q¤
1Q¤
1, whether canonical or projective, 

the image of Q¤
1Q¤
1 is constant and depends only on the intrinsic camera parameters of that 

view 

  MiQ
¤
1M T

i ' KiK
T
i = !¤iMiQ

¤
1M T

i ' KiK
T
i = !¤i ,  (3.21) 

where Q¤
1Q¤
1 is now in any general projective position and  is projective projection 

matrix of view ii . Equation (3.21) is one of the most important equations for auto camera 

calibration as it relates the intrinsic camera parameters to the dual image of absolute 

conic. 
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A few remarks here: 

Remark 1: From equation (3.21), Q¤
1Q¤
1 is the same and constant for all the views, however 

its image in each view might be different. In other words, the back projections of each  

is a dual quadric in space, and the dual of absolute quadric Q¤
1Q¤
1 must lie in the 

intersection of all the dual quadrics. So Q¤
1Q¤
1 is part of the scene and remains constant 

regardless of changing camera motions and parameters.  

Remark 2: Q¤
1Q¤
1 depends on only two entities, the intrinsic parameters of the reference 

camera and the projective location of the plane at infinity with respect to the projective 

frame, that is: 

 Q¤
1 '

·
!¤ ¡(!¤v1)

¡(!¤v1)T vT
1!¤v1

¸
Q¤
1 '

·
!¤ ¡(!¤v1)

¡(!¤v1)T vT
1!¤v1

,̧ (3.22) 

where v1v1 is the 3-vector of plane 1 ' (vT
1; 1)T1 ' (vT
1; 1)T and !¤!¤ is the dual image absolute conic 

of reference view.  

 Remark 3: The dual of image absolute quadric (DIAC) in each view depends only on the 

intrinsic parameters of that view. Therefore if same camera with constant parameters is 

used to record all the images, DIACs of all views will be identical. 

Remark 4: !¤!¤ measures the 3D angle between planes that pass through the optical center 

of the camera. This property of !¤!¤ in 2D projective space P2P2 is similar to what Dual of 

Absolute Quadric (DAQ) provides in P3P3 for Euclidean angles between planes. 

Remark 5: From remark 2, the intrinsic parameter of camera K can be recovered from !¤!¤ 

in the equation below, by using the Cholesky decomposition [Trefethen and Bau, 1997] : 

  !¤ = KKT!¤ = KKT   (3.23) 
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It can be observed that a plane conic !¤!¤ has five degrees of freedom, so does the camera 

calibration matrix [Maybank and Faugeras, 1992].  

Remark 6: The Image of Absolute Conic and its dual, DIAC, can also be mapped from 

one image to another image by the homography of its supporting plane, the ¦1¦1:  

 !j ' H¡T
1ij!iH

¡1
1ij or !¤j ' H1ij!

¤
i H

T
1ij!j ' H¡T

1ij!iH
¡1
1ij or !¤j ' H1ij!

¤
i H

T
1ij (3.24) 

Equation (3.23) gives a different definition to camera calibration, it implies that 

locating the DIAC is equivalent to calibrating the camera. 

 

3.3 Autocalibration  

Camera autocalibration is the process of determining camera parameters directly from 

multiple uncalibrated images with no special calibration object in the scene. Instead of a 

real calibration object, the IAC, the DIAC or the DAQ, which is naturally present in all 

scenes, are used to retrieve the camera parameters. The invariance properties of these 

special virtual objects and their relationship to the camera parameters are exploited to 

achieve this task. Imposing constraints in autocalibration approaches can be achieved in 

three ways, 1) constraints on the intrinsic camera parameters 2) constraints on motion 

parameters 3) scene constraints, where the contribution of this dissertation lies. The 

following main approaches are at the core of most autocalibration methods presented in 

the literature: 

 using Kruppa’s equations which are relate DIACs in two views through epipolar 

geometry, 

 retrieving the DAQ from equation (3.21), 
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 through stratified techniques by imposing the modulus constraint to locate the 

enclosing plane of the absolute conic, the plane at infinity. 

As mentioned above, the intrinsic camera parameters are related to the Dual Image 

of Absolute Conic by the equation (3.23) which is expanded below  

 !¤ = KKT =

2664
fu

2 + s2 + u0
2 s fv + u0 v0 u0

s fv + u0 v0 fv
2 + v0

2 v0

u0 v0 1

3775 ;!¤ = KKT =

2664
fu

2 + s2 + u0
2 s fv + u0 v0 u0

s fv + u0 v0 fv
2 + v0

2 v0

u0 v0 1

3775 ; (3.25) 

 where K is the upper triangular camera matrix defined as  

 K =

24 fu s u0

fv v0

1

35K =

24 fu s u0

fv v0

1

35. 
Equation (3.25) camera intrinsic parameters can be uniquely computed using 

Cholesky decomposition [Jennings et al., 1977] which simplifies in this case to 

 
u0 = !¤31; v0 = !¤32; fv =

p
!¤22 ¡ v2

0

s = (!¤12 ¡ u0v0)=fv; fu =
p

!¤11 ¡ (s2 + u2
0)

:

u0 = !¤31; v0 = !¤32; fv =
p

!¤22 ¡ v2
0

s = (!¤12 ¡ u0v0)=fv; fu =
p

!¤11 ¡ (s2 + u2
0)

: (3.26) 

3.3.1 Autocalibration using Kruppa equations  

Kruppa's equations were originally derived by Kruppa in 1913 [Kruppa, 1913]. However, 

the equations were introduced into Computer Vision in 1992 by Maybank and Faugeras 

[Maybank and Faugeras, 1992] for camera autocalibration. Their work is historically seen 

as the first autocalibration method. The Kruppa equations are two-view constraints that 

require only the fundamental matrix F and consist of two independent quadratic 

equations in the elements of DIAC. From a geometrical point of view, Kruppa’s 
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equations impose the constraint that the epipolar planes tangent to the AC project to 

corresponding epipolar lines tangent to the IAC in each view. Kruppa’s equations can be 

obtained from equation (3.24) by restricting the constraints to epipolar geometry 

[Pollefeys, 2004]: 

 [eji]
T
£!¤[eji] ' Fij!

¤F T
ij[eji]

T
£!¤[eji] ' Fij!

¤F T
ij , (3.27) 

where FijFij is the fundamental matrix between views ii and jj and ejieji the epipole in image jj 

which is the projection of center of camera ii. Three views are in theory sufficient to solve 

for the five internal parameters. However, solving the obtained six quadratic equations 

turned out to be difficult. Improved versions of that work can be found in [Zeller et al., 

1996] and [Luong and Faugeras, 1997].  

The problem with Kruppa equations is that they restrict the autocalibration 

constraints to the epipolar geometry which is equivalent to the removal of the plane at 

infinity from the equations, as seen in (3.27). This may lead to poor results [Sturm, 2000] 

as compared to other general autocalibration methods. For more information on Kruppa 

equations the reader is referred to [Hartley and Zisserman, 2004], or [Luong and 

Faugeras, 1997]. 

3.3.2 Direct Autocalibration from DAQ 

In practice it is preferable to work with DAQ [Heyden and Astrom, 1996], [Triggs, 1997] 

as it encodes both the dual image of absolute conic and the enclosing plane of AC in one 

geometric entity. Working with the DAQ allows to enforce the unity of the plane on 

which the AC lies and therefore enforce more constraints on the sought DIAC. Another 

advantage of using the DAQ is that the autocalibration equations involve plane at infinity, 
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the DIAC and the projective projection camera as described in equation (3.21). One of 

the early approaches in this class is proposed in [Triggs, 1997] for fixed camera 

parameters.  

The following are considered while taking DAQ based calibration approaches. 

Let’s the estimated DAQ be denoted by Q̂̂Q, a 4£ 44£ 4 symmetric matrix which has eight 

degree of freedom: 

 Q̂ =

2664
q1 q2 q3 q4
q2 q5 q5 q7
q3 q5 q8 q9
q4 q7 q9 q10

3775Q̂ =

2664
q1 q2 q3 q4
q2 q5 q5 q7
q3 q5 q8 q9
q4 q7 q9 q10

3775 (3.28) 

The computed Q̂̂Q has to meet the following properties of a DAQ matrix [Hartley and 

Zisserman, 2004].  

Property 1. It has to be of rank 3. Due to numerical error, it is test test the rank 3 of 

estimated Q̂̂Q. We instead, verify the necessary condition of rank deficiency, det(Q̂) = 0det(Q̂) = 0. 

Again, due to numerical error, we may not get exact zero. Therefore, we can check the 

ratio of smallest eigen value of Q̂̂Q over the second smallest eigen value. This quantity has 

to be very close to zero. Enforcing rank 3 can be done though SVD decomposition. 

Property 2. It is positive semi-definite, (or negative - depending on the homogeneous 

scale).All eigen values of Q̂̂Q must have same sign, all positive or all negative.  

It is common practice to imposed constraints on the intrinsic parameters of the 

camera, such as zero skew and unit aspect ratio to obtain an initial, computation of the C¤C¤ 

followed by a more comprehensive refinement, through a linear decomposition such as 

SVD or though nonlinear ones [Chandraker et al., 2007], taking into account some or all 

the properties of the DAQ.  



53 
 

 

 

3.3.3 Stratified autocalibration  

In a stratified autocalibration approach, first the location of plane at infinity is identified 

in projective space, upon which an affine reconstruction [Habed et al., 2010a] is obtained. 

This can be followed by computation of the cameras’ intrinsic parameters to upgrade the 

recovered affine structure to metric [Pollefeys and Gool, 1999]. This last step can be 

carried out using the inter-image homography of plane at infinity H1ijH1ij. Equation (3.24) 

can be reconfigured to a set of linear equations in the coefficients of image of absolute 

conic or its dual (DIAC) [Hartley, 1994a]. Finally, the intrinsic camera parameters can be 

retrieved from the IAC or DIAC either through Cholesky decomposition (3.26). 

For the identification of plane at infinity Moons et al. [Moons et al., 1996] 

proposed a method for pure translation camera motion. Later, Pollefeys et al. [Pollefeys 

and Gool, 1999] proposed an affine reconstruction method based on using modulus 

constraints for unknown but constant intrinsic camera parameters in views. Another 

method is introduced in [De Agapito et al., 1999] for identification of plane at infinity for 

a zooming camera.  

3.3.4 The modulus constraint 

The modulus of a real eigenvalue ¸̧ is its absolute value jj¸jj = p
¸2jj¸jj = p
¸2 . The modulus of a 

complex eigenvalue ¸̧ is the square root of multiplication of ¸̧ to its complex conjugate: 

 jj¸jj = p
¸£ ¸¤jj¸jj = p
¸£ ¸¤ , 
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where ¸¤¸¤ is the complex conjugate of ¸̧.  

The modulus constraint was first used for camera calibration by Pollefeys et al. in 1996 

[Pollefeys et al., 1996]. It states that if the camera parameters remain constant for all the 

views, the inter-image homography of plane at infinity will all have equal moduli. 

Recall the relation in equation (2.29) between the camera matrices and inter-image 

homography of the plane at infinity. Now that we assumed all the camera parameters are 

the same, equation (2.29) simplifies to:  

 H1i ' KRiK
¡1H1i ' KRiK
¡1, (3.29) 

where RiRi is the rotation matrix and K is the camera matrix. Since KRiK
¡1KRiK
¡1 is conjugate 

to rotation matrix, it has the same eigenvalues as of RiRi. Therefore the plane at infinity has 

eigenvalues f¸; ¸eiμ; ¸e¡iμgf¸; ¸eiμ; ¸e¡iμg which all have equal moduli f¸; ¸; ¸gf¸; ¸; ¸g.  

Remark. If we scale H1iH1i so that its determinant is unity,   

 H1i Ã H1i=det(H1i)
1=3H1i Ã H1i=det(H1i)
1=3.  

its eigenvalues will be exactly those of the rotation matrix relating the considered views, 

i.e. f1; eiμ; e¡iμgf1; eiμ; e¡iμg. Thus, when a constant parameter camera is used to capture the scene, 

the characteristic equation 

 det(H1i ¡ ¸I) = 0det(H1i ¡ ¸I) = 0 (3.30) 

must have roots (eigen values) with all equal moduli.  
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3.3.5 Chirality constraints 

In stratified autocalibration approaches, a projective reconstruction is first found and then 

upgraded to metric. The problem with the projective reconstructed scene is that the sene 

is often split by the plane at infinity[Hartley and Zisserman, 2004]. Some of the points 

locate in front of the camera and some behind it. The additional constraint which bounds 

the points to lie in front of the camera is called chirality constraint [Hartley, 1998] and is 

imposed by linear inequality constraints.  

This simple constraint is useful in determining quasi-affine reconstructions as an 

intermediate step towards affine and metric reconstruction [Hartley and Zisserman, 

2004]. The quasi-affine reconstruction with respect to camera centers is a projective 

reconstruction that does not contain any twisted pairs [Nistér, 2004]. However, with 

respect to the scene, the quasi-affine reconstruction is a projective reconstruction that 

preserves the convex hull of the scene [Chandraker, 2009]. In brief, this additional 

constraints to projective reconstruction gives us a projective reconstruction which is also 

a quasi-affine reconstruction.  

In nonlinear 3D reconstruction optimization approaches, chirality constraints are 

incorporated to automatically select an initial region which is guaranteed to contain the 

global minimum [Chandraker et al., 2010]. 

3.3.6 Constraints on intrinsic camera parameters 

Some constraints on the intrinsic parameters of a camera can be considered (e.g. square, 

or rectangular pixels, principal point in the center of the image, etc) during camera 

autocalibration. By imposing constraints on these parameters we intend to decrease the 

number of unknowns so that enough equation are available to solve the set of equations 
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parameters. As well, we can resolve ambiguities in the case of critical (or close to 

critical) motions. 

As introduced in Chapter 2, Equation (2.17), the five intrinsic parameters are 

embedded in a 3× 3 matrix K with intrinsic parameters. The combination of (3.25) and 

(3.21), MiQ
¤
1M T

i ' KiK
T
i = !¤iMiQ

¤
1M T

i ' KiK
T
i = !¤i , brings us to the following detailed equation  

 !¤i = KiK
T
i =

2664
fu

2 + s2 + u0
2 s fv + u0 v0 u0

s fv + u0 v0 fv
2 + v0

2 v0

u0 v0 1

3775
i

'MiQ
¤
1MT

i!¤i = KiK
T
i =

2664
fu

2 + s2 + u0
2 s fv + u0 v0 u0

s fv + u0 v0 fv
2 + v0

2 v0

u0 v0 1

3775
i

'MiQ
¤
1MT

i , (3.31) 

which implies that imposing constraints on the entries of the intrinsic parameters matrix 

provides us with simpler form of the autocalibration equations, possibly linear, or with 

fewer unknowns to eventually estimate the eight unknowns of the symmetric matrix dual 

absolute quadric P3P3.  

Frequently used constraints on camera internal parameters are based on the 

following assumptions. 

Same camera with varying parameters 

A helpful assumption is that it is typically the same camera that is used to take all images. 

This assumption results in dealing with fixed aspect ratio and fixed skew factor cameras 

in all sequences, but the focal length and principal point may change for each view. 

Same camera with constant parameters 

In recent years many researchers have been working on the scenarios where all the used 

cameras are assumed to have unknown but the identical intrinsic parameters. The earliest 

work in this group belongs to [Faugeras et al., 1992] in which Kruppa’s equations are 
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used. With the same assumption, [Triggs, 1997] proposes the use of quasi-linear 

constraints for the dual absolute quadric to minimize equation (3.21). Another approach 

is introduced in [Pollefeys and Van Gool, 1997] where the equation (3.24) is used to 

compute the DIAC from the homography of the plane at infinity. 

Pollefeys & Gool use the constant intrinsic camera parameters in a different 

approach [Pollefeys and Gool, 1999], [Pollefeys et al., 1996]. They incorporate the so-

called modulus constraint on the plane at infinity which is only valid upon the assumption 

of constant intrinsic camera parameters. 

The location of the principal point is known for all cameras 

A common approach in this category is to assume that the principal points are in the 

middle of images so that a linear initial solution can be found for the DAQ. The solution 

is later refined via a nonlinear optimization process during which the intrinsic parameters 

of the images are allowed to vary independently [Heyden and Astrom, 1996], [Heyden 

and Astrom, 1999]. 

Zero skew and unit aspect ratio 

Zero skew factor is a valid assumption in digital cameras manufactured today [Seo and 

Heyden, 2004]. Huynh & Heyden [Huynh and Heyden, 2005] assume use of a camera 

with zero skew and unit aspect ratio in their autocalibration approach. They also 

mentioned that even if the two entities are not known, they can at least be assumed 

constant when same camera is used throughout the sequence. As these two entities are 

known to be invariant under changes of focus and can be calculated beforehand. In their 

work, scene constraints are also incorporated with an assumption on identified orthogonal 
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planes in the scene. The orthogonality of planes is used in the nonlinear optimization and 

the bundle adjustment phase. 

3.3.7 Constraints on camera motion 

Many autocalibration approaches have been proposed for restricted camera motions, such 

as pure translation, often combined with constraints on the camera’s intrinsic parameters. 

In several cases, this restriction leads to simpler algorithms. However, considering the 

discussion on critical camera motion, not all of these algorithms could lead to a full 

calibration of cameras to metric [Pollefeys, 2004]. Moons et al. [Moons et al., 1996] 

proposed a method for pure translation camera motion for affine camera calibration. 

Hartley [Hartley, 1994b] reported a calibration method for pure rotations and in another 

approach Armstrong et al. [Armstrong et al., 1996] for planar motion [Espuny et al., 

2011].  

Camera motion constraints might be critical specifically for some autocalibration 

methods. For example in [Sturm, 2000], Strum reports a camera motion for which the 

Kruppa equation approach fails but does fine for other methods. That is if the optical 

centers of cameras locate on a sphere and the optical axes of those cameras pass through 

the sphere’s center. More information on relevant recent approaches can be found in 

[Sturm et al., 2011].  

3.3.8 Scene constraints 

In many scenarios, we cannot enforce enough constraints on the cameras, however some 

geometrical knowledge of the scene might be available to support calibration [Criminisi 

et al., 2000], [Gong and Xu, 2004], [Kawasaki and Furukawa, 2009]. In many approaches 
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the scene constraints are used in conjunction with other types of constraints such as 

camera constraints to autocalibrate cameras [Triggs, 1997], [Huynh and Heyden, 2005] 

and obtain more robust results. The constraints which can be imposed on the scene are 

based on the properties which are preserved under affine or metric transformations.  

Affine scene constraints  

Affine scene constraints are properties which are invariant under affine transformations, 

but may change under general projective transformations. Parallelism of planes (or lines) 

and relative distances between collinear points are affine scene constraints. For example, 

if a representation of a cube in projective frame is given. Knowing this is a cube, the 

three vanishing points, where parallel lines intersect, can be identified. The plane 

containing these 3 vanishing points is the plane at infinity. As explained earlier, once the 

plane at infinity is located in projective frame, the reconstruction can be upgraded to 

affine by the transformation which brings the plane at infinity to its canonical form. 

As another affine constraint, length ratios along a straight line define the point at 

infinity of that line. If three of such non-collinear configurations exist in the images, the 

location of plane at infinity can be recovered, and so the affine reconstruction. 

A recent approach is proposed in [Habed et al., 2010a] which uses parallel planes 

in the scene to affine calibrate the camera.  

To impose the aforementioned constraints one need to know whether they are 

available in the scene. One way would be to assume that a human operator specifies the 

constraints via a GUI program. This makes the calibration based on scene constraints a 

time consuming process. Therefore, a more preferable way is to use techniques that 

automatically identify those geometric constraints in the scene. In Chapter 5 of this 
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dissertation we elaborate on our proposed method which automatically detects parallel 

planes in a planar scene [Habed et al., 2010b].  

Metric scene constraints  

Metric scene constraints could be any geometric entity or property which is invariant 

under metric transformation and variant under lower level transformations (affine, 

projective). Distances, angles, orthogonality of lines or planes are examples of metric 

constraints. 

Bill Triggs proposed one of the earliest approaches of autocalibration with the 

incorporation of scene orthogonal planes [Triggs, 1997] in 1997. Liebowitz and 

Zisserman [Liebowitz and Zisserman, 1999], introduced their method to use projection of 

parallel and perpendicular scene lines for the estimation of vanishing points and the 

IAC/DIAC. Huynh & Heyden [Huynh and Heyden, 2005] propose an approach similar to 

[Triggs, 1997] for cameras with zero skew and unit aspect ratio. In [Huynh and Heyden, 

2005] also orthogonal scene planes are used as constraints for the estimation of the DAQ 

followed by bundle adjustment.  
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4 The	Distinction	Between	Virtual	and	Physical	

Planes		

In this chapter, identification of planes from a pair of uncalibrated images will be studied. 

Identification of planes from a pair of uncalibrated stereo images is a challenging 

problem as it can lead to extracting virtual planes instead of physical ones, especially for 

complex scenes. We propose a new homography-based approach to extract physical 

planes and to distinguish them from virtual ones for general scenarios. The proposed 

method takes two uncalibrated images as input, extracts and matches interest points and, 

then performs plane identification and matching defined by sets of three points only. 

Based on these three points, a plane homography is then calculated. Once all possible 

planes have been identified, a merging stage is carried out to make sure that same planes 

are associated with a single homography. This work uses non-coplanar points inside a 

plane to decide whether the plane is physical or virtual. Depending on the distribution of 

the points inside the convex hull of the plane, the plane is classified as likely virtual, 

likely physical, very likely virtual or very likely physical. To estimate homographies, we 

use our method which computes the homography for three points with no necessity to 

assume the fourth point being coplanar with the three. Experiments on real images 

demonstrate the validity of the proposed approach for general scenarios. 

4.1 Problem Statement and Related Work  

Man-made environment is abundant with planes which represent a major share of both 

indoor and outdoor scenes. Identifying planes helps us processing image pixels in groups 
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not individually. Planes are a high level information that could lead to faster and more 

accurate algorithms in applications such as robot navigation [Sugimoto and Okutomi, 

2007], camera calibration [Chuan et al., 2003], 3D reconstruction [Wang et al., 2005] 

[Pollefeys et al., 2008]and even curved surfaces partitioning [Su et al., 2007]. 

There has been a number of plane detection approaches proposed over the past 

decade. Vincent and Laganiere [Vincent and Laganiere, 2001]used groups of four points 

which are likely to be coplanar, to compute the homography. To pick the four points, the 

authors’ strategy is to select points lying on the two different edges in an image. 

Therefore the success of their approach depends on the coplanarity of the four points 

selected and is very dependent on the results of the edge-detector. Nicolas et al [Nicolas 

et al., 2005] proposed a method for computing the second homography provided the first 

homography is already given. In [Nicolas et al., 2005] it is mentioned that no need to 

consider the detection of different homographies as independent processes. This is due to 

the fact that the knowledge of first homography eases the detection of the second 

homography by using only three matched points. However, this technique suffers from a 

major drawback, if the first homography is not very accurate, the detection of the second 

homography will not be successful. A different approach is proposed in [Piazzi and 

Prattichizzo, 2006], where normal vectors are used to detect scene planes in a pair of 

stereo images. When two adjacent planes have the same normal they are merged. 

However, this method requires that the two cameras to be aligned to the same orientation 

with the same calibration parameters. In [He and Chu, 2006]a method is proposed to 

detect major planes in stereo images using the epipolar geometry and plane homography 

which is calculated using the 3 points and the epipole. The homography calculated with 
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using the epipole as 4th point could be very unstable as the epipole location is not usually 

accurate. In addition, their method did not address the issue of virtual planes. 

A major issue with the existing homography-based plane detection approaches is 

that the detected plane could be a virtual plane not physical (Figure  4-1. Virtual plane). In 

such approaches, homographies are generally computed from matched interest points of a 

pair of stereo images and are used to verify coplanarity of points. Then, each group of 

coplanar points is considered as a physical plane of the scene [Choi et al., 2007], [He and 

Chu, 2006], which is not always true. In fact, a group of scene interest points may be 

coplanar; however they may not lie on a physical plane of the scene. Few applications 

may work fine even if the extracted plane is virtual[Wang et al., 2008]. However, many 

applications such as navigation [Simond08], detection of independent moving objects 

[Kirchhof, 2008] and 3D reconstruction[Kawakam et al., 2006] fail and do not produce 

reliable results. 

 

Figure  4-1. Virtual plane 

 

In [Simond and Rives, 2008], extraction of physical planes is essential. Simond 

and Rives propose detection of the urban road plane from a sequence of uncalibrated 
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stereo images. For the initialization step, the authors assume that the detected plane with 

highest number of inliers is the road plane. This assumption may work for special scenes 

but is not a valid solution for general cases, such as if the road markers are blocked by 

cars ahead. In [Wang et al., 2005] the authors use the four point method [Hartley and 

Zisserman, 2004] with RANSAC to compute homographies. Lines are extracted from 

images and used for verification of plane boundaries. One of the problems with using 

lines [Zeng et al., 2008] is that if extracted lines are parallel with the epipolar lines, 

coplanarity of lines cannot be accurately verified.  

With a few exceptions [Kawakam et al., 2006], [Kirchhof, 2008] most of the 

existing plane extraction approaches did not elaborate on the possibility of existence of 

virtual planes [Choi et al., 2007], [He and Chu, 2006]. Kawakami et al [Kawakam et al., 

2006], propose an approach which is based on the idea that “if there is a plane in a scene, 

the points on that plane may be projected onto a small region in the image” and thus 

feature points in a cluster of points are likely laid on a physical plane. Therefore, for each 

region of points, the authors [Kawakam et al., 2006], pick different combinations of four 

points, compute the homography and keep the one which includes the most number of 

coplanar points. Finally, these coplanar points are excluded and the procedure is repeated 

for the rest of interest points. Two problems would appear to exist with this approach. 

First, experiments have shown that a cluster of feature points may be composed of both 

virtual and physical planes. Secondly, removing the inliers for the computation of 

subsequent planes would degrade the plane detection, as a point can belong to more than 

one physical plane at the same time. For example points on the intersection of two walls. 
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In our previous work [Amintabar and Boufama, 2008], we proposed a plane 

extraction approach which discards virtual planes by applying the idea that if any non-

coplanar point exists in the convex hull [Chan, 1996] of a plane, then the plane is virtual. 

However, the scheme would fail if a dent region exists in the physical plane. For 

example, for a scenario in which a thick book is placed on a desk, the approach 

[Amintabar and Boufama, 2008], would imply that the desk’s plane is virtual and would 

discard it. In this chapter we extend our previous work [Amintabar and Boufama, 2008], 

so that it avoids virtual planes for more general scenes. Depending on the configuration 

of the points inside the convex hull of the plane, a few situations happen which include 

all general scenarios and lead to classifying the plane in four categories: likely virtual, 

very likely virtual, likely physical and very likely physical.  

4.2 Identification of planes 

This section presents our scheme to distinguish between virtual and physical planes in 

plane extraction approach. Although we have extracted and matched the interest points 

using Zhang[Zhang95] technique, pixel matching itself is not the primary goal of this 

work and therefore, we assume throughout this chapter that matched interest points are 

given. The proposed method extracts the planes using our method [Amintabar08], then 

verifies if the plane is physical and finally merges physical planes to improve the 

robustness. The steps can be summarized as follows: 

1. Find next set of three points (good triangle) 

2. Compute homography for the three points  

3. Calculate the homography-mapping errors for all the interest points.  

4. If the plane includes only small number of points goto 1. 
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5. If the good triangle is virtual goto step1  

6. If the plane is virtual, goto step1 

7. Refine the plane using DLT (Direct Linear Transformation).  

8. If the new plane became virtual goto Step 1 

9. Terminate if either for most of the feature points (e.g. %90) the underlying 

physical planes are determined or all the good triangles are visited. 

10. Merge the patch-planes of Steps (1-9) and re-compute the homography  

 

We first pick three points (good triangle) which meet the criteria explained in 

[Amintabar and Boufama, 2008] and one additional condition described in this chapter. It 

states that inside the triangle there has to be at least one feature point. This additional 

condition 1) helps improving the detection and discard of virtual planes in the subsequent 

steps of proposed approach, 2) saves CPU time as homography computation is done for 

fewer triangles. 

4.2.1 Three-point method for homography calculation  

This step of the proposed approach calculates the homography for a plane defined by a 

set of three points as opposed to a many existing approaches where four points are 

picked[Menudet et al., 2008]. Since computation of homography using only three points 

is not possible, like other methods all the points are used. However, the difference is that 

in our method we do not need to make any assumption on the coplanarity of a fourth 

point with the other three. In other words, we can pick any point from the rest of the 

interest points as the fourth point, form the projective basis and together with the rest of 

the points accurately compute the homography for the three points.  
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Let p1p1, p2p2 and p3p3 be 3 points in the left image with corresponding points in the right 

image being p01p
0
1, p

0
2p02 and p03p03. These image points are the projections of three space points, 

call them P1P1, P2P2 and P3P3 (See Figure  4-2).  

 

 

Figure  4-2. Three space points define a plane and therefore a homography 

 

Consider a 3D point P and let the virtual point Q be the intersection of the plane 

 with the line OP. The projection of Q on the right image, q', is given by Hp (p is 

the projection of Q on the left image and H is the plane homography mapping the left 

image of  to its right image). For each couple (pipi, p0ip
0
i), the relation Hpi ' p0iHpi ' p0i yields 

two independent linear equations in the nine unknown coefficients of H (only eight of 

which are independent). Thus, P1P1, P2P2 and P3P3 provide six linear equations that can be used 

to constrain and simplify H. By using two particular coordinate systems in the two 

images such that: 

p1 = (0, 0, 1)T, p'1 = (0, 0, 1)T, p2 = (1, 0, 0)T, p'2 = (1, 0, 0)T, 

p3 =(0, 1, 0)T, p'3 = (0, 1, 0)T, p4 = (1, 1, 1)T, p'4 = (1, 1, 1)T, H simplifies to 
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 H =

0@ ®

¯

°

1AH =

0@ ®

¯

°

1A. (4.1) 

Note that (p4 , p'4) was not used to simplify H since the space point P4P4 is not assumed to 

be on Ð123Ð123. The above matrix has three parameters, but only two of them are 

independent. Furthermore, none of these three parameters can be zero for a nonsingular 

homography. So, in the following we set  = 1. 

Let (x; y; t)T(x; y; t)T  and (x0; y0; t0)T(x0; y0; t0)T  be the known homogeneous coordinates of p and p', 

respectively. Then the coordinates of q' are given by  

 Hp ' q0 ' (®x; ¯y; t)Hp ' q0 ' (®x; ¯y; t) (4.2) 

Let (e'x, e'y, e't )
T be the unknown homogeneous coordinates of the epipole e' in the right 

image. It is clear from Figure  4-2 that q' belongs to the line (e'p') and therefore we have  

 

 (e0 £ p0):q0 = 0(e0 £ p0):q0 = 0 (4.3) 

where  is the cross product and · the scalar product.  

By expanding equation (4.3) and using the coordinates of q' given in equation 

(4.2), we obtain the following equation 

 (e0ty
0 ¡ t0e0y)®x + (t0e0x ¡ e0tx

0)¯y + (e0yx
0 ¡ y0e0x)t = 0(e0ty

0 ¡ t0e0y)®x + (t0e0x ¡ e0tx
0)¯y + (e0yx

0 ¡ y0e0x)t = 0. (4.4) 

Equation (4.4) has five unknowns; , , e'x, e'y and e't, only four of which are 

independent. So, in addition to the three couples of matched points used to simplify H, at 

least four couples of matched points in the two images are necessary to solve for the four 



69 
 

independent unknowns of equation (4.4). A linearization of the above equation can be 

done by adding one extra parameter. More details on this linearization can be found in 

[Amintabar and Boufama, 2008] where we have used the parallax idea to calculate the 

epipolar geometry. 

4.2.2 Coplanar points identification (Steps 3-4) 

A point p, mapped by a calculated homography H to the point Hp in the other image, is 

considered coplanar with the initial three points if the Euclidean distance d(p0;Hp)d(p0;Hp) is less 

than a threshold (e.g. 2 pixels), where p0p0 is the match of p. In this step, for each 

homography, a plane is formed which consists of a set of matched interest point couples 

{(p, p'), . . .} that have passed the mentioned mapping error test. Then only planes 

containing enough number of interest points are kept [Amintabar and Boufama, 2008]. 

The surviving planes must be checked to see whether they are virtual or physical planes.  

4.2.3 Physical vs. virtual planes distinction (Steps 5-6) 

First, the additional condition for a good triangle is used to see if the 3 points are 

potentially on a physical plane. It states that, if points inside the triangle are not coplanar 

with the 3 vertices then the resulting plane will not be physical, and no need to do further 

test on the entire plane ( saving CPU time). Next, the distribution of the points inside the 

plane determine whether the plane is likely virtual, very likely virtual, likely physical or 

very likely physical.  

Scenario 1. There is more than one point inside the convex hull of the plane and all are 

coplanar with the plane then the plane is very likely physical. (Figure  4-3) 
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(
ncop > 1

nnoncop = 0
) Very likely physical

(
ncop > 1

nnoncop = 0
) Very likely physical

                                                                   (4.5)
 

where ncopncop denotes the number of coplanar points inside the convex hull of the plane 

(excluding the vertices of the convex hull). Accordingly nnoncopnnoncop denotes the number of 

non-coplanar points inside the convex hull. 

 

 

Figure  4-3. Scenario 1, very likely physical 

 

Scenario 2. Inside the convex hull of plane there are more than one coplanar point and 

also one non-coplanar point. Then that single non-coplanar point might have been there 

due to computation error or noise, and therefore the plane is still physical but with less 

probability than that of Scenario 1, it is likely physical (Figure  4-4) 

 

Figure  4-4. Scenario 2, likely physical. 
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Scenario 3. Inside the convex hull of the plane there are coplanar points and also non-

coplanar points, but if the non-coplanar points form a single cluster completely isolated 

from planar points then the plane is likely physical. As shown in Figure  4-4, non-coplanar 

points are spread only in a cluster and isolated form planar points, then probably there 

was an object on that plane. The past two scenarios can be expressed as follows:  
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where COP denotes the set of coplanar points, NON refers to the set of non-coplanar 

points and cHall(NON) denotes the convex hull of non-coplanar points inside the plane. 

To detect this situation, the proposed method works in the following way. First, it 

computes the convex hull of non-coplanar points which are located inside the plane. 

Then, if inside the convex hull of non-coplanar points there is no coplanar point then the 

plane is likely physical, otherwise likely virtual.  
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Figure  4-5. Scenario 3, likely  virtual 

 

Scenario 4. Both non-coplanar and coplanar points exist inside the convexhull of plane. 

However, non-coplanar points cannot be isolated from coplanar ones by the convexhull 

of non-coplanar points. In this situation the plane is likely virtual (Figure  4-5).  

 

Figure  4-6. Scenario 4, very likely virtual 

Scenario 5. There is no point inside the plane, being coplanar or non-coplanar. This 

situation happens very rare in real images, nonetheless we elaborated on that to cover all 

the possible scenarios. If this happens, the plane is likely virtual (Figure  4-6). therefore 

the situations in which the plane is likely virtual are as follows:  
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Scenario 6. If all the points inside the plane are non-coplanar, then the plane is very likely 

virtual.   
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Very likely virtual                                                           (4.8) 

In can be noticed that, here as opposed to (5) with more confidence the approach lists the 

plane as physical. An example of this scenario is shown in Figure  4-6 where the virtual 

plane formed as a result of intersection of a virtual plane with the 3D object, the cube. 

4.2.4 Refining and merging (Steps 7-11) 

The aim of this step is to refine the plane homography of steps 1 to 4 to add as many 

points as possible to the plane. We first re-computed the homography this time by using 

DLT [Hartley and Zisserman, 2004] method including only the coplanar points from Step 

4 in computation. Then the homography-mapping error test is performed for all the 

neighboring feature points. That is the inliers from Step 3 and the rest of feature points 

which are close to these points to avoid extrapolation problem [Hartley and Zisserman, 

2004]. Then, again we check if this new plane is still physical or otherwise discard it. The 

final step is to merge the obtained sub-planes. Steps 1-9 are repeated for all the good 

triangles or until a desired number of interest points are included in planes (e.g. %90 of 

the interest points). As mentioned earlier, unlike many other methods [He and Chu, 2006, 

Kawakam et al., 2006], we do not exclude the inliers each time a plane is computed, as a 
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point can belong to more than one different physical planes at the same time. Removal of 

inliers at each iteration is necessary for existing approaches in [He06], [Kawakam06], as 

it makes the plane detection process converge. However, not removing inliers brings the 

advantage that same plane (or different patches of the same plane) may be computed 

several times with different sets of three initial points (good triangles). In [Amintabar and 

Boufama, 2008] we have described a novel method to merge patches of same plane to 

improve the robustness and accuracy of the algorithm. Finally, once a final plane has 

been constructed its associated homography is re-calculated with all its interest points. 

4.3 Experimental results and performance comparison 

In the experiments, the performance of the proposed method is compared with that of a 

general implementation of existing approaches. To highlight the improvement of the new 

approach the results are also compared with the output of our previous method 

[Amintabar and Boufama, 2008]. Finally, the robustness of proposed method was 

investigated by adding Gaussian noise to the feature points coordinates.  

The aim of the experiments is to extract physical planes which consist of at least 15 

interest points. Mapping error threshold is kept to 2 pixels, which were obtained through 

experiment with a range of input pair images. The proposed method is implemented in 

Borland C++ Developer Studio 2006 on Windows XP operating system. Same platform 

is also used for a general implementation of existing approaches [Kawakam06] with the 

following characteristics: 1) the plane with the highest number of inliers is picked first, 2) 

each time a plane is detected, its inliers are removed for next iteration. Extracted planes 

by applying three approaches are shown in Figure  4-7 and the intermediate results are 

presented in Table  4-1.  
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4.3.1 Performance Comparison   

Figure  4-7 compares the result of applying three different plane identification approaches 

on a pair of stereo images of an outdoor scene with three major planes. Figure  4-7.a 

shows the interest points on the right pair of stereo images. Figure  4-7.b depicts the three 

planes identified by a general implementation of [Kawakam et al., 2006]. Figure  4-7.c 

provides the identified planes using our previous approach [Amintabar and Boufama, 

2008] and finally Figure  4-7.d presents the result of our new approach. As seen in Figure 

 4-7.b, each time a plane is identified the inliers of that plane are removed for next 

iteration. Therefore, some of the points common with the second plane were also 

removed. As a result, the right edge of the second plane could not accurately be 

identified. Same thing happened to the third plane. Results improved in Figure  4-7.c as 

the merging process was applied and in 1.d even better result appeared. The reason is that 

in Figure  4-7.d each patch-plane has been refined before undergoing the merging step. In 

one case we can say that the traditional approaches performed better. That is for the 

second plane which was identified better than that of Figure  4-7.c and Figure  4-7.d, 

where that part of plane from the farther building is not included.  

Figure  4-7.e-h present a more complex scene with a texture-less background. 

Figure  4-7.f shows the results of applying a general implementation of existing 

approaches in which a plane with highest number of interest points is picked first and its 

inliers are removed for the identification of subsequent planes. As a result, after the 

identification of first plane next plane with highest number of inliers turned out to be 

virtual. So, the algorithm fails to identify more physical planes from this scene.   
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Figure  4-7. Comparing results 

 

Figure  4-7 compares the results as follows. a,e) interest points on second image. 

b,f) planes identified using [He and Chu, 2006], [Kawakam et al., 2006] on left pair. c,g) 

using our previous method [Amintabar and Boufama, 2008] d,h) planes identified by the 

proposed approach. It presents the result of applying our previous method [Amintabar & 

Boufama, 2008] in which a plane with even one non-coplanar points inside its convex 

hull is considered virtual. Due to consideration of distribution of points, results are 

improved in our new approach. As Figure 4-7.h shows, the plane of the left side of the 

house also improved. That’s because of the Step 7 which was added to the algorithm. 
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4.3.2 Noise Tolerance   

We add Gaussian random noise with zero mean ( = 0) and standard deviation () 0.6, 

1.0 (pixel) to each coordinate of the points independently to test the robustness of 

proposed approach for noisy inputs. The results are presented in the last four columns of 

Table  4-1 for the two scenarios, the building and the house. Table  4-1 also includes the 

intermediate results for all the three approaches. The number of interest points, number of 

good triangles whose homography estimated, number of patch planes which are merged 

to form final planes, number of final planes detected and the number of interest points 

which lie on the detected physical planes.  

It can be implied that the algorithm is robust to small noise in point coordinates. 

As seen, for  = 0.6 small changes happen to the outputs. Although fewer numbers of 

points are listed with physical planes, the detected planes are almost the same. The results 

change and fewer physicals planes can be detected when more noise is added to the 

points coordinates ( = 1 pixel and above). Our experiments also showed that the 

proposed approach degrades in complex scenes with too many interconnected planes. In 

this situation, only few of the physical planes can be detected and the algorithm rejects 

most of the detected planes as it thinks they are virtual planes. 
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Table  4-1. Intermediate results of applying the plane detection approaches 

 

 Method  

used 

Building House Building  (+ noise) House  (+ noise) 

Image size 569×461 511×514  = 0.6  = 1.0  = 0.6  = 

1.0 

Feature points  143 141 143 143 141 141 

Good triangles Previous  2001 7698     

New  1329 2453 1407 1598 2805 3780 

Patch planes Previous  92 54     

New  61 32 53 39 28 16 

Physical planes 

extracted 

Existing  3 1     

Previous  3 4 

New  3 4 3 2 4 3 

Feature points 

included by 

physical planes 

Existing  113 32     

Previous  96 103 

New  104 119 95 66 108 91 

 
A general observation on the results in  Table  4-1 and Figure  4-7 implies that the 

proposed plane identification approach outperforms the other two methods. First, no 

virtual plane detected wrongly instead of physical planes. Second, the planes’ boundaries 

have been identified better. Also the algorithm can tolerate noisy inputs for pixel errors 

up to 0.6 pixels with no considerable change in its performance. 

 

4.4 Conclusion 

A general solution is needed for the detection of physical planes in a scene using 

uncalibrated images for applications ranging from scene modeling to robot navigation. 

Unfortunately, in addition to real planes, non-desirable virtual planes are also extracted 

from the images, making any further processing more complex and more error-prone. We 

have presented a new scheme, in conjunction with homography-based plane detection 
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methods, for the identification of virtual plane so that they can be removed. The proposed 

approach uses non-coplanar points inside an extracted plane to decide whether the plane 

is physical or virtual. We have used our own method to estimate plane-homographies, 

where only three points are used for the calculation of each homography without the need 

for a fourth coplanar point. As a consequence, we were able to compute the 

homographies for all potential physical planes whose three points meet our criteria. After 

the removal of virtual planes, the remaining planes must undergo a merging process in 

order to remove redundancy and to improve the robustness of the results.  

The proposed approach does not give absolute answer to whether a plane is virtual or 

physical as this is not always possible. However, it does classify a plane into one out of 

four categories, i.e., likely virtual, very likely virtual, likely physical or very likely 

physical. The results of our experiments have shown that the proposed method was able 

to identify physical planes even for complex scenes, where the existing approaches may 

fail by detecting virtual planes instead. It has been also shown that by not removing 

inliers, each time a plane is detected, we were able to obtain a better identification for 

plane boundaries. Accurate identification of plane scenes is useful for our future work 

where edge points will be used to extract the actual facets of objects in the scene. Once 

such facets are identified, they can be reconstructed either in the 3D projective space or in 

the 3D Euclidean space (if some kind of camera calibration is available) to allow for 

some 3D modeling of scene. 
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5 Parallel	Planes	Identification	

This chapter proposes a new method for identifying parallel planes in a scene from three 

or more uncalibrated images. By using the fact that parallel planes intersect at infinity, we 

are able to devise a linear relationship between the inter-image homographies of the 

parallel planes and the plane at infinity. This relationship is combined with the so-called 

modulus constraint for identifying pairs of parallel planes solely from point 

correspondences. 

5.1 Problem Statement and Related Work 

As mentioned in earlier chapters, man-made environments are abundant with planes, 

some of which are parallel in both indoor and outdoor scenes, e.g. walls of hallways, 

buildings along a street. Consequently, the detection of parallel planes can highly 

contribute to the understanding of 3D structures of such scenes. In many scenarios, there 

is not much information available about the used camera. However, some geometrical 

knowledge of the scene such as parallelism of lines [Criminisi et al., 2000],[Kawasaki 

and Furukawa, 2009], [Xu et al., 2006], [Tournaire and Paparoditis, 2009],[Gasparini and 

Sturm, 2009], perpendicularity of planes [Heyden and Huynh, 2002] or plane 

parallelism[Tebaldini et al., 2008] are available. Khan and shah [Khan and Shah, 2009] 

use multiple imaginary planes parallel to a reference plane to tackle occlusion in tracking 

people in video surveillance applications. Cui and Zhu [Cui and Zhu, 2009] propose a 

calibration method for optical triangular porfilometry in which the test planes need to be 

parallel. Common to all these works are the uncalibrated cameras and the a priori 

knowledge requirement about parallel planes. Tebaldini et al. [Tebaldini et al., 2008] 
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utilize parallel planes in the scene to retrieve physically valid views for registration 

applications. In all of these approaches, parallel planes are either modeled mathematically 

or, if present in the scene, are assumed to be already known. Hence, to our knowledge 

none elaborated on the identification of such scene geometry, the plane parallelism.  

While line parallelism has been thoroughly investigated in the literature through the 

detection of vanishing points (see, for instance [Seo et al., 2006] and the references 

therein), we have found no work about the identification of the scene’s parallel planes 

from images. When cameras are calibrated, a 3D reconstruction of the scene makes it 

possible to identify such planes. However, when cameras are not calibrated, the scene can 

be reconstructed only up to a projective ambiguity that does not preserve parallelism. 

In this work, we investigate the automatic identification of a pair of parallel planes 

from images of a scene captured by a moving camera with unknown but constant intrinsic 

parameters. In particular, we show that there exists a linear relationship between the 

coordinates of parallel planes and the ones of the plane at infinity. This relationship 

remains true in the projective space and extends to the inter-image homographies of these 

planes. Consequently, we propose an image-based parallel planes identification method 

that combines the latter relationship and the so-called modulus constraint [Pollefeys and 

Gool, 1999] on the homography matrix of the plane at infinity. Our method uses only 

matched pixels across the images and neither calibration nor 3D reconstruction are 

needed. In this chapter we propose a novel approach to detect parallel planes from a 

sequence of images taken by a constant parameter camera. The camera is observing a 

scene in which a pair or more of parallel planes exist. Our method identifies those planes 
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even with the presence of noise. The proposed method is based on the moduli constraint 

of infinite homographies and is detailed below. 

5.2 Background 

Let the (3£4)(3£4) matrices Mi;(i =1::m)Mi;(i =1::m), represent the projective projection matrices for a 

sequence of images taken by a moving camera. Using existing methods all mm projection 

matrices can be calculated only from point matching between views [Rothwell et al., 

1995]. Assuming the scene is embedded in the a 3D projective space P3P3 and the reference 

frame is attached to the first camera, M1M1 simplifies to M1 = [I j 0]M1 = [I j 0] with 0 being the null 

3-vector and I is the (3£3)(3£3) identity matrix. All other projection matrices can be 

calculated up to the same projective ambiguity [Hartley and Zisserman, 2004] in which 

case the set of matrices is referred to as a consistent set. That is, the projective projection 

matrices are defined as  

                    M1 = [I j 0]; M2 = [A2 j a2]::: Mm = [Am j am]M1 = [I j 0]; M2 = [A2 j a2]::: Mm = [Am j am], (5.1) 

 where A(3£3)A(3£3) and a(3£1)a(3£1) are a matrix and a vector with real number elements.  

Let ¦ ' (vT
¦ 1)T¦ ' (vT
¦ 1)T  be the coordinate vector of a scene plane ¦ 2 P3¦ 2 P3 not containing 

the origin of the reference frame (If the plane contains one of the camera centers then the 

induced homography is degenerate). Let A P 2 P3P 2 P3
 be a 3D scene point which lies on the 

plane ¦¦. PP  is projected on the first view as p1 ' [I j 0]Pp1 ' [I j 0]P . This implies that PP  could be 

any point with components  

 P = (p1; ¸)TP = (p1; ¸)T ,  

where ¸̧ is a scalar. At the same time PP  is on the plane ¦¦, so it satisfies:  



83 
 

 ¦T P = 0¦T P = 0.  

Therefore  

 (vT ;1)(p1;¸)T = 0) ¸ =¡vTp1 ) P ' (p1; ¡vTp1)
T(vT ;1)(p1;¸)T = 0) ¸ =¡vTp1 ) P ' (p1; ¡vTp1)
T . 

Now PP  projects on the ithith view as  

 

pi ' MiP

' [Ai j ai](p1;¡vT
¦p1)

T

' (Ai ¡ aiv
T
¦)p1

pi ' MiP

' [Ai j ai](p1;¡vT
¦p1)

T

' (Ai ¡ aiv
T
¦)p1

 

Then  

 pi ' [Ij ¡ v¦]MT
i p1 i = 2:::mpi ' [Ij ¡ v¦]MT
i p1 i = 2:::m, (5.2) 

Note that in the equation (5.2) the only unknown is the 3-vecotor v¦v¦. Recall that PP  is 

only one of the multiple inliers of plane ¦¦, and p1; :::; pmp1; :::; pm are its projections on the m 

views. Using the projections of all such points we can compute the 3-vector linearly 

using, for example, SVD.  

Similarly, Let the 3-vector v¦v¦ of a plane ¦¦ is given. The induced inter-image 

homography of ¦¦ between the reference camera and the camera i is given by 

 HT
¦i ' [I j ¡ v¦]M T

iHT
¦i ' [I j ¡ v¦]M T

i  (5.3) 

 

where HT
¦iHT
¦i is a (3£ 3)(3£ 3) homography matrix which relates the projections p1p1 and pipi of any 

3D point P lying ¦¦ onto images of reference view and the ithith view respectively.  

 pi ' H¦i p1pi ' H¦i p1.  
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Combining the equations (5.3) and the above relation provides us a set of linear equations 

to solve for the 3-vector v¦v¦: 

 pi ' [I j ¡ v¦]MT
i p1pi ' [I j ¡ v¦]MT
i p1. (5.4) 

5.3 Constraints due to parallel planes 

The plane at infinity which we denote by 11  is of particular interest to our work. In 

particular, when the intrinsic parameters of the camera are kept unchanged in two images, 

the eigenvalues of the inter-image homography of the plane at infinity have all equal 

moduli [Pollefeys and Gool, 1999].  

We show that there exist a linear relationship between parallel planes and the plane 

at infinity in P3P3
. This relationship extends to the planes’ inter-image homographies 

making it possible to identify the plane at infinity when the modulus constraint is 

included. 

Consider a 3D scene consisting of two distinct scene planes ¦E¦E  and ©E©E  which, for 

starters, are assumed to be embedded in the Euclidean space E3E3. ¦E ' (nT
¦ 1)T¦E ' (nT
¦ 1)T  and 

©E ' (nT
©1)T©E ' (nT
©1)T  are parallel to each other if and only if their respective normal directions 

n¦n¦ and n©n© satisfy  

 n¦'n©n¦'n©. (5.5) 

When the scene is observed by two or more uncalibrated cameras, the coordinates of the 

scene planes can be obtained only up to a projective ambiguity v¦v¦ and vÁvÁ. Thus the 

reconstructed scene is embedded in the projective space P3P3 in which parallelism is not 

preserved. Therefore the equation (5.5) is not valid for projective representation of 
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parallel planes ¦E¦E  and ©E©E , which we denote with ¦¦ and ©© respectively. However, even in 

projective space, since ¦¦ and ©© are parallel, they meet at infinity. Therefore planes ¦¦, ©© 

and the plane at infinity which we denote with 11  meet in a line (Figure  5-1). 

 
Figure  5-1. Two parallel planes meet in a line on plane at infinity 

 
The most we can get from uncalibrated images is a projective reconstruction of the scene 

with unknown projective mapping GG from the actual Euclidean reconstruction that we 

expect to get. When the scene points undergo an unknown projective mapping GG, planes 

are mapped to their new locations by its dual G¡TG¡T . For a 3D point PE 2 E3PE 2 E3 on plane ¦E¦E

and its transformed one, the 3D point P 2 P3P 2 P3on the plane ¦¦  

 

(
P T ¦E = 0

P = GXE

) (G¡1P )T ¦E = 0 ) P T (G¡T ¦E) = 0

(
P T ¦E = 0

P = GXE

) (G¡1P )T ¦E = 0 ) P T (G¡T ¦E) = 0, 

and thus 

 ¦ = G¡T ¦E¦ = G¡T ¦E. (5.6) 

Hence, based on equation (5.6), points at the intersection of planes ¦E¦E , ©E©E  and 

1 E1 E  are mapped to the intersection of the new locations ¦ ' (nT
¦ 1)T G¡T¦ ' (nT
¦ 1)T G¡T ,

© ' (nT
© 1)T G¡T© ' (nT
© 1)T G¡T and 1' (0T 1)TG¡T1' (0T 1)TG¡Tof these planes. Thus 11 ,¦¦ and ©© also intersect in 

a line, but this time in P3P3, i.e., their coordinate vectors are linearly dependent in this 

space:  
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 1 ' ®¦ + ©1 ' ®¦ + ©, 

where ®® is a scalar. 

Remark. Let ¦ ' (vT
¦ 1)T¦ ' (vT
¦ 1)T , © ' (vT

© 1)T© ' (vT
© 1)T  and 1' (vT

1 1)T1' (vT
1 1)T  be the coordinate vectors of 

our planes in P3P3 (none of ¦¦ and ©© and (obviously) 11  contains the origin), then we have 

 

 v1 ' ®v¦ + v© j ® 6= ¡1
® 6= 0

v1 ' ®v¦ + v© j ® 6= ¡1
® 6= 0

, (5.7) 

where ®® is a scalar considering the following principals.  

 If ® = ¡1® = ¡1, then 11  would contain the origin, which is not possible. 

 If ® = 0® = 0, then ©© would coincides with the plane at infinity 11  which is against the 

assumption that ©© is a scene plane. 

From (5.3), (5.7) and a set of consistent projective camera matrices Pi(3£4)Pi(3£4), the 

following relationship 

 H1i ' ®H¦i + H©i j ® 6= ¡1
® 6= 0

H1i ' ®H¦i + H©i j ® 6= ¡1
® 6= 0

 (5.8) 

holds for the same value of the scalar ®® throughout the sequence provided H¦iH¦i and H©iH©i 

are calculated as follows.   

 

(
HT

¦i ' [I j ¡ v¦]P T
i

HT
©i ' [I j ¡ v©]P T

i

(
HT

¦i ' [I j ¡ v¦]P T
i

HT
©i ' [I j ¡ v©]P T

i

 (5.9) 

Homography H¦iH¦i is induced from plane ¦¦ and relates projections of plane ¦¦ onto the 

reference image and ithith image.  
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Remark. To make sure the same ®® verifies equation (5.8) for all images, H¦iH¦i and H©iH©i 

must be obtained from projection matrices in which case v¦v¦ and v©v© are calculated through 

point correspondences. We will explain how it is possible only through point matching. 

5.4 Imposing Modulus Constraint  

The modulus constraint is a constraint on the projective location of the plane at infinity 

11  in P3P3
 in the case of constant intrinsic camera parameters. When the intrinsic 

parameters of the moving camera are constant, the eigenvalues of H1iH1i have equal moduli 

[Pollefeys and Gool, 1999]. For each camera ii, except the reference one, the 

characteristic equation of H1iH1i is given by 

det(®H¦i + H©i ¡ ¸I) = 0det(®H¦i + H©i ¡ ¸I) = 0, 

  which expands to  

  

 ai(®)¸3 + bi(®)¸2 + ci(®)¸ + di(®) = 0ai(®)¸3 + bi(®)¸2 + ci(®)¸ + di(®) = 0 (5.10) 

where the coefficients a; b; c and da; b; c and d  are in terms of the real unknown ®® (considering 

® 6=¡1 ; ® 6= 0® 6=¡1 ; ® 6= 0 required by equation (5.8) ). A necessary condition for the eigenvalues 

of H1iH1i to have equal moduli [Pollefeys and Gool, 1999] can be expressed as:  

  

 

8>>><>>>:
ai(®)c3

i (®)¡ bi(®)d3
i (®) = 0

® has to be a real number

® 6= ¡1

® 6= 0

8>>><>>>:
ai(®)c3

i (®)¡ bi(®)d3
i (®) = 0

® has to be a real number

® 6= ¡1

® 6= 0

 (5.11) 

 



88 
 

Each image i ; i 6= 1i ; i 6= 1, (except the first one chosen as reference), provides a sixtic 

polynomial equation (5.11) in the unknown ®®, the solutions of which are the eignevalues 

of the associated 6£ 66£ 6 companion matrix. The sought ®® is at the intersection of the 

solution sets of (5.11) obtained over all pairs of images. 

5.5 Proposed Parallel Planes Identification 

Briefly, we first identify major planes of the scene using our method [Amintabar and 

Boufama, 2008]. We then examine every pair of identified planes to see if they are 

parallel. The examination is based on the fact that if two planes are parallel, there exists a 

linear relationship between their homographies and the homography of plane at infinity. 

Therefore, for every picked pair of planes, we try to find such linear relationship. If that 

relationship exists then the two planes are our candidates. In order to do that calculation, 

we use the so the called modulus constraints [Pollefeys and Gool, 1999] which is valid 

only if a camera with constant parameters was used to capture all the images. In such 

case, the main property of an infinite homography is that all its three moduli are equal 

(Section  3.3.4). Therefore, if a linear combination of any two planes’ homographies has 

equal moduli, the two planes are potentially parallel. This necessary condition may be 

met by many non-parallel planes in the first two views of a typical planar scene. 

However, as we add more views at the end only the pair of parallel planes meet this 

condition.   

In the following, we assume a consistent set of projection matrices has been 

calculated [Hartley and Zisserman, 2004] and image points belonging to each plane have 

been identified as projections of co-planar 3D points. The latter assumption is possible 

using the method in [Amintabar and Boufama, 2009]which additionally distinguishes 
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physical from virtual planes. Our method seeks, for each pair of planes ¦¦ and ©©, the value 

®®, in (5.11), that minimizes the deviation from unity of the moduli of the eigenvalues of 

all the normalized inter-image homographies of the plane ®¦ + ©®¦ + ©. The pair of planes 

with the smallest deviation is identified as parallel. 

Deviation 

Given a set S of planes, a pair of planes (¦;©) 2 S £S;¦ À ©(¦;©) 2 S £S;¦ À ©, is identified as parallel, 

if, for some ®® satisfying (5.11), the deviation from 1 of the moduli of the eigenvalues 

calculated over all inter-image homographies, 

 

 e(¦; ©; ®; l) =
X

j>i; (i;j)2imgs£imgs

X
k=1;2;3

(k¸k(i;j)k ¡ 1)2e(¦; ©; ®; l) =
X

j>i; (i;j)2imgs£imgs

X
k=1;2;3

(k¸k(i;j)k ¡ 1)2 (5.12) 

is minimal. jj¸jjjj¸jj denotes ’s modulus and ¸k(i;j) (k = 1; 2; 3)¸k(i;j) (k = 1; 2; 3) are the eigenvalues of  

 ( ®H¦j + H©j )( ®H¦i + H©i )¡1a( ®H¦j + H©j )( ®H¦i + H©i )¡1a 

normalized such that its determinant is 1. Finally, imgsimgs is the set of all available images. 

Choosing ®® 

In the presence of pixel noise, finding a common value of ®® satisfying (5.11) often fails 

even if the considered planes are parallel. This could be either due to the fact that ®® is 

found with a different accuracy for each image or, worse, it turned into a complex 

solution for some of the images. Therefore, in the absence of knowledge about the two 

planes and when failing to locate a common ®®, no conclusion can really be drawn on 

whether the planes are parallel or not. Therefore, instead of seeking a common ®®, one can 

solve (5.11) for a number of images over a subset I μ fimgsgI μ fimgsg of the set fimgsgfimgsg (set of 
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all images). While a large II increases the chances of getting the right ®®, it significantly 

slows the algorithm down. For ”short” image sequences, I = fimgsgI = fimgsg is the safest choice 

while for longer ones, the size of II should be determined experimentally. 

Identifying parallel planes  

In order to find a pair of planes that minimizes the deviation (5.12) we maintain a 

jSj £ jSjjSj £ jSj ( where jSjjSj is the number of planes at hand) matrix DD of minimal deviations. 

The deviation D[¦;©]D[¦;©] associated to the two planes ¦¦ and ©© is updated every time a 

smaller deviation, for some value of ®® in the solution set obtained from the images in II, 

is found. The pair of planes for which D[¦;©]D[¦;©] is minimal is identified as parallel. If more 

than one pair of parallel planes is sought, then it is identified by the next smallest 

deviation in DD. 

Sequence length 

Given a sequence of three images taken by a constant intrinsic camera parameters it is 

possible to locate the plane at infinity in projective space. This involves for solving for 

the three parameters of plane at infinity 1 = (p1; p2; p3; 1)T1 = (p1; p2; p3; 1)T . Geometrically this is the 

problem of intersecting three quartic surfaces in projective space, so one should expect to 

get 64 solutions (64 = 4£ 4£ 4)(64 = 4£ 4£ 4) [Pollefeys et al., 1996]. However, in [Schaffalitzky, 

2000] it is shown that for a triplet of images, the number of planes whose inter-images 

homographies satisfy the modulus constraint does not exceed 21(including complex 

planes) [Schaffalitzky, 2000]. Any two scene planes intersecting one of those 21 planes 

in the same line could be mistakenly identified as parallel. Each additional image 

reduces, in general, the number of such planes until the plane at infinity is the only one 

left satisfying the modulus constraint for all inter-image homographies. 
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5.6 Experiments 

The goal of these experiments, using both simulated and real data, was to identify a pair 

of parallel planes from images using our proposed method.  

Experiments using simulated data: We have conducted two kinds of experiments with 

simulated data each with a varying number of images and noise added to pixel 

coordinates. In the first kind of experiments, the sought pair of planes was perfectly 

parallel. In the second one, noise was added to the angle between two initially parallel 

planes. Our method was tested using randomly generated scenes each consisting of 10 

planes two of which were either perfectly parallel or close-to-parallel. Each scene was 

created with its own set of randomly generated sequence of cameras. 100 such 

scenes/cameras were created for each number of cameras in the range 3 to 10. The 

identification of the pair of parallel (or close-to-parallel) planes was then carried out for 

varying levels of pixel noise. 

Scenes and cameras: Each of the 10 scene planes consisted of 50 randomly generated 

scene points scattered in a disc of radius 1. The first plane was placed on the Z = 0 plane 

of the reference frame with its points centered at the origin. The second plane was created 

parallel to the first one and located at a mean distance of 0.5 units from it with a 0.15 

standard deviation. For experiments with close-to-parallel planes, we have considered 

two scenarios where the second plane was rotated by a zero-mean randomly generated 

angle. The standard deviation of the angle was 0.5 degrees (about each axis) for one 

scenario and 1 degree for the other. In all the experiments, the center of the disc on each 

of the remaining 8 planes was placed at random locations, drawn from a uniform 

distribution on the unit interval, and orientations obtained by the Cayley transform of 
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randomly generated vectors (uniform distribution). The cameras were generated at a 

mean distance of 3 units and a 0.3 standard deviation from the origin of the scene’s 

reference frame. The optical axis of each camera was first oriented so it contains the 

origin before the camera was rotated by a zero-mean randomly generated angle with 3 

degrees of standard deviation about each axis. All cameras have been created with square 

pixels, no-skew, 800 pixels focal length and the principal point centered in a 512 × 512 

image. Zero-mean Gaussian noise with standard deviation from 0 to 2 pixels (with 0.5 

step) was added to pixel coordinates. 

The results. Tables 5-1, 5-2 and 5-3 summarize the results of our simulations with 

perfectly parallel (Table 5-1) and close-to-parallel (Tables 5-2 and 5-3) planes for varying 

sequence lengths and levels of pixel noise. For a given number of images and noise, the 

corresponding value in each table represents the number of scenes (out of the 100 

generated) for which the sought pair of parallel (or close-to-parallel) planes was 

successfully identified. In Table 5-2 and 3, the results were obtained after one of the 

parallel planes was rotated about each axis by an angle drawn from a zero-mean Gaussian 

distribution of 0.5 degrees (resp. 1 degree) standard deviation.  

The resulting planes made an angle of up to 2 degrees (resp. 4 degrees). The 

reported results in all tables confirm that chances of identifying a pair of parallel planes 

increase with the number of images and decrease with localization errors in the image. 

While the success rate of the method is quasi-perfect even with high levels of noise for 

longer sequences, it is also very good with short ones (86% on perfectly parallel planes 

with only 3 images and 2 pixels of noise). Also, the further our planes are from perfectly 

parallel, the more the method fails to identify them as such. However, even with angles of 
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2 and 4 degrees between the planes and high levels of noise, the success rate is very 

satisfactory. 

 

Table  5-1. Perfectly parallel planes. 

Pixel 

noise 
Number of images 

3 4 5 6 7 8 9 10 
0.00 100 100 100 100 100 100 100 100 
0.50 95 99 100 100 100 99 99 100 
1.00 92 97 99 100 98 100 100 100 
1.50 86 96 97 98 97 98 99 99 
2.00 86 97 91 97 98 100 98 99 

 
Table  5-2. Planes with 2 degrees angle. 

Pixel 

noise 
Number of images 

3 4 5 6 7 8 9 10 
0.00 87 95 96 98 96 96 98 98 
0.50 87 96 97 98 95 95 97 97 
1.00 82 93 94 98 96 95 95 97 
1.50 77 92 93 97 95 94 96 98 
2.00 78 91 96 96 93 93 93 96 

 
 

Table  5-3.Planes with 4 degrees angle. 

 
Pixel 

noise 

Number of images 

3 4 5 6 7 8 9 10 

0.00 80 88 90 93 89 90 89 90 

0.50 77 87 90 93 88 87 90 93 

1.00 71 88 89 90 85 89 90 88 

1.50 72 84 88 9 88 88 88 89 
 

 
 
Experiments using real images. We provide here five examples, Figure  5-2 to Figure  5-6. 

Figures 5-2 and 5-3 each with a contrived scene consisting of four letter size white sheets 
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of paper with black patterns. Only the planes labeled 1 and 3 (resp. 3, 4 and 5) are 

parallel in Figure 5-2 (resp. Figure 5-3) example. In each example, four 640×480 images 

were captured by a low-end digital camera (Sony Cyber-shot DSC-S930). Figures 5-2 

and 5-3 show 3 out of the 4 images used in each example. The example in Figure  5-2 

(resp. Figure  5-3) aimed at identifying one pair (resp. three pairs) of parallel planes. Only 

12 (resp. 16) points were detected (left image) and matched across the sequence. All four 

planes have been successfully identified using [Amintabar and Boufama, 2009] (middle 

image). Planes labeled 1 and 3 (resp. (3,4), (3,5) and (4,5)) were rightfully identified as 

parallel (right image). 

 

 

Figure  5-2. Planes 1, 3 and 4 are parallel  

 

Figure  5-3. Planes 3,4 and 5 are parallel 
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The indoor scene in Figure  5-4 is an office desk area of which 32 points (left 

image) lying on four distinct planes have been successfully detected and matched across 

four images. All four planes in Figure  5-4 have been identified (middle image) and the 

planes labeled 1 and 3 have been found parallel to each other (right image).  

The outdoor scene in Figure  5-5, the Royal Victoria College in Montreal. In this 

example, 33 points (left image) lying on three planes (middle image) have been matched 

across three images only. Yet our method has identified the planes labeled 2 and 3 to be 

parallel (right image). 

 

Figure  5-4. Indoor scene, planes 1 and 3 are detected as parallel 

 
 
 

Figure  5-5. Royal Victoria College (outdoor). 
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Figure  5-6. A rock, 3 views out of 4.  

 

Another outdoor scene is presented in Figure  5-6, the University of Windsor 

campus, in front of Erie Hall. In this example, 36 points (left image) lying on three planes 

(middle image) have been matched across four images. The pictures were taken using 

Canon powershot SD780IS camera was used. Our method has identified the planes 

labeled 1 and 3 to be parallel (right image). It can be seen that the plane was mislead by 

the algorithm [Amintabar and Boufama, 2009] to include one spot of plane 3 as its 

inliers. 

5.7 Conclusion 

In this chapter, we have proposed a novel method for parallel planes identification from 

point correspondences across three or more images. Our method neither requires the 

camera to be calibration nor a 3D reconstruction to be calculated. It relies on prior 

detection of planes and point correspondences only. The results of the numerous 

experiments we have conducted show that, the proposed method achieves its goal with a 

very high success rate even for high levels of noise on both image coordinates and angle 

between planes.  
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6 Combining	Scene	and	autocalibration	

constraints		

Autocalibration approaches are known to be challenging due to their nonlinear equations 

and sensitivity to noise. In autocalibration, the goal is to locate the plane at infinity and 

the camera intrinsic parameters, without using any calibration pattern. A classical 

approach to autocalibration, in the case of a single moving camera with constant but 

unknown parameters, is based on solving the Kruppa equations [Maybank and Faugeras, 

1992], which is known to be sensitive to noise [Luong and Faugeras, 1997]. One way to 

tackle the noise in autocalibration approaches is to incorporate scene constraints 

[Zisserman et al., 1998]. In this chapter we propose affine autocalibration methods which 

incorporates planar scene constraints and are robust to noise. 

Aside from the problem of sensitivity to noise, the applicability of camera 

autocalibration approaches highly depends on the issue of initialization. Since a nonlinear 

optimization is always required [Fusiello, 2001], convergence may be reached only if the 

cost function is initialized within a proper basin of attraction. A number of techniques are 

proposed for linear initialization of nonlinear calibration methods. These techniques are 

often based on assuming that principal points are located on the center of images [Hartley 

and Zisserman, 2004]. Such assumption can lead to a linear solution which is used as a 

starting point for the nonlinear optimizations.  

To address this issue, we propose a metric autocalibration method which does not 

require an accurate estimation of starting points, and converges even with a very 

inaccurate ones from random guesses. Thus, it does not need any assumption about the 
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principal points being in the center of images, which is usually used for estimating a 

linear starting point for nonlinear camera calibrations. It uses perpendicularity and 

parallelism of planes in the scene to impose constraints on the values of camera 

parameters. In particular, the proposed method combines the two constraints into a single 

nonlinear framework. The experimental results show that our approach successfully 

convergences even with the presence of two pixel noise.  

The proposed calibration approaches are applicable to urban area scenes which are 

rich in planar structures, e.g., buildings, streets and certain kinds of manufactured objects 

such as furniture. In particular, those urban scenes are abundant with parallel and 

perpendicular planes. 

6.1 Planar scene constraints in affine calibration 

Affine calibration (or affine reconstruction) is equivalent to locating the plane at infinity 

in projective space. This is a challenging task as it is very sensitive to noise [Hartley 

et al., 2002]. Most existing affine calibration methods are based on scene constraints or 

special motions [Manning and Dyer, 2001]. These motions are generally translations [Ruf 

et al., 1998], [Hammarstedt et al., 2006] as these make it possible to extract vanishing 

features from images. In general, the affine calibration of cameras is possible as soon as 

three vanishing points (in addition to the epipoles) can be extracted and matched across 

two or more images. Alternatively, one vanishing line and one vanishing point can also 

be used[Hartley and Zisserman, 2004]. It has already been shown in [Pollefeys and Gool, 

1999], [Sturm and Quan, 1995] that the affine calibration of a moving camera with 

constant intrinsic parameters is possible using only two images as soon as two vanishing 

points can be detected and matched across the views. In the latter case, a constraint on the 
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moduli of the eigenvalues of the homography of the plane at infinity compensates for the 

missing point. 

Vanishing points cannot always be extracted from images as they require the 

presence of parallel lines in the observed scene [van den Heuvel, 1999]. When these 

special points can be extracted, they often lack accuracy as small errors on the 

localization of (parallel) lines in images often result in large localization errors on the 

vanishing points. Best results are obtained when relying on a large number of parallel 

lines [Seo et al., 2006]. Most scenes, however, contain only a limited number, if any, of 

parallel lines. A vanishing line can be obtained from a pair of vanishing points in which 

case such line is poorly localized. Alternatively, a vanishing line can be obtained from the 

intersection of two parallel planes. The projection of the ”intersection” line of these 

planes cannot be calculated directly in the images. Instead, it is obtained by 

reconstructing, through triangulation, the parallel planes in a 3D projective space, and 

their intersection line is back-projected onto the images [Sturm and Quan, 1995]. In 

addition to localization errors on points matched across images, the coordinates of the 

projected line may very well be further deteriorated by triangulation errors. 

Another way to position the plane at infinity is to enforce the modulus constraint 

which was discussed in Section  3.3.4 of this dissertation. In [Pollefeys et al., 1996] one of 

the first approaches is proposed to compute all the 64 solutions to modulus constrains. 

However, out of these solutions only 21 could physically be valid [Schaffalitzky, 2000]. 

The author’s approach is to imposing cheirality constraints on the points and camera 

centers. Cheirality constraints is imposed to bound a rectangular region inside which the 

3-vector v1v1 representing the plane at infinity 1= (vT
1;1)T1= (vT
1;1)T  must lie. Then a brute force 
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search is undertaken to locate the elusive plane at infinity in P3P3 within this region 

[Hartley et al., 2002], [Chandraker, 2009].  

To address the problem of accurate identification of the plane at infinity, we 

propose a method that uses parallel planes in the scene. This is justified by the fact that 

man-made environments are abundant with geometric structures where parallel planes are 

very common (walls of hallways, buildings on both sides of streets,. . . etc.). In this work, 

we investigate the use of parallel planes for the affine calibration of cameras. In 

particular, we propose two methods that only use the inter-image homographies of 

parallel planes in the scene and do not require 3D reconstruction. Both methods require 

neither the extraction nor the detection of vanishing features (neither points nor lines) in 

images.  

We only rely on point correspondences of the projections of scene points across 

images with the sole assumption that parallel planes are identified. Our first method deals 

with the case where at least two images of only one pair of parallel planes are available 

and the camera parameters are constant. The second method makes no assumption 

whatsoever about the cameras as these can be altogether different. The latter method is 

linear and assumes the presence of two or more pairs of parallel planes (with different 

directions) in the scene. in the third method we use a pair of parallel planes and a pair of 

perpendicular ones. 

6.2 Planar scene constraints in metric calibration 

In metric autocalibration approaches ( or simply autocalibration ) one more step needs to 

be taken compared with affine calibrations. As well as locating the plane at infinity, the 

camera intrinsic parameters are also required to be computed during the calibration 
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process. One way is to directly compute the Dual of Absolute Quadric [Heyden and 

Astrom, 1996]. This approach is of interest as it encodes both the Dual Image Absolute 

Conic (DIAC) and its enclosing plane, the plane at infinity, in one geometric entity, 

(3.22). Recall that the DIAC itself embodies the camera intrinsic parameters, (3.21). 

One of the first approaches in this class is proposed in [Triggs, 1997]. One of the 

problem with Triggs’ method and similar ones is that it would not converge if a 

combination of enough rotation about two non-parallel axes and translation in sequences 

of images is not available [Hassanpour and Atalay, 2004].   

To address the above issue and provide more robust results Zisserman et al. 

[Zisserman et al., 1998] suggest to use all the available geometric constraints. 

Fortunately, geometric scene constraints are abundant in man-made environments. 

Examples are perpendicularities [Boufama and Habed, 2007] and planar constraints 

[Liebowitz and Zisserman, 1999, Menudet et al., 2008, Cui and Ngan, 2010]. One of the 

earliest planar based calibration methods is proposed in [Triggs, 1998] which requires at 

least five views of a planar scene. In our work we focus on the scenes with parallel and 

perpendicular planes. 

Huynh and Heyden [Huynh and Heyden, 2005] incorporated orthogonal scene 

plane constraints in the dual of the absolute conic, which is a parameterization originally 

introduced by Triggs [Triggs, 1997]. Incorporation of the scene orthogonality is 

conducted through a nonlinear optimization framework. However, the numerical 

minimization requires an starting point, which is obtained from a linear solution. The 

linear solution itself is obtained from the assumption that the principal point is in the 

middle of the image.  
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In general, since the camera autocalibration is nonlinear, the problem of choosing 

the initial values of parameters is often difficult. In addition, initializing the optimization 

procedures close to the ground truth does not necessarily guarantee the convergence to 

the desired solution [Boufama and Habed, 2007]. For instance, when the candidate plane 

at infinity contains one of the camera centers, the optimization fails even if the motion of 

the camera is not degenerate. Fusiello et al. [Fusiello, 2001] proposed a globally 

convergent method that uses interval analysis in order to bound the values of the camera 

parameters. However, the excessive running time of this method makes it inappropriate 

for most applications. 

To address the issues above, we propose a method to use geometric constraints to 

improve the stability of nonlinear calibration yet not requiring any estimation of starting 

point. Our method uses perpendicularity and parallelism of planes in the scene to impose 

constraints on the values of camera parameters. The proposed method combines the two 

constraints into a single nonlinear framework. The method does not require accurate 

starting points and convergences even with a very inaccurate ones from random guesses. 

Thus, it does not need any assumption about the principal points being in the center of 

images. The results of our experiments show that our proposed method converges almost 

all the times. 

6.3 Proposed methods 

Throughout this discussion we assume that a projective reconstruction of the scene 

described by 

 pi;j 'MiPjpi;j 'MiPj (6.1) 

is already available as follows  
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 nn reconstructed 3D points in projective space Pj; j =1::nPj; j =1::n, 

 projective projection matrices of mm views Mi; i = 1::mMi; i = 1::m, 

 projection of j
thjth

 point onto i
thith view denoted by pi;jpi;j. 

Also, world coordinate is attached to the first view coordinate so M1 ' [I j 0]M1 ' [I j 0]. The 

projective projection of the rest of views is defined with respect to the first view as 

Mi ' [Ai j ai]Mi ' [Ai j ai], where AiAi is a 3£ 33£ 3 matrix and aiai is a 3- vector. 

In section  5.3 we showed that the linear dependency of planes can be translated into a 

linear relationship between the inter-image homographies induced by the corresponding 

planes. Three planes are linearly dependent if and only if they intersect in a line. If ¡; ¦¡; ¦ 

and ©© are three such planes, the linear relation  

 ¡ = c1¦ + c2©¡ = c1¦ + c2©, (6.2) 

is valid for the scalars c1c1 and c2c2. Therefore, same relation is valid for their induced 

homographies 

 H¡i = c1H¦i + c2H©iH¡i = c1H¦i + c2H©i, (6.3) 

where the matrices H¡iH¡i, H¦iH¦i and H©iH©i are those of the inter-image homographies induced 

by ¡¡, ¦¦ and ©© respectively, between the reference image and the ithith one.  

Remark 1. Three parallel planes also meet in a line; that is, a line that lies on the plane at 

infinity. 

Remark 2. The scalars c1c1 and c2c2 in equations (6.2) have the same value in equation (6.3) 

provided the homographies are calculated through the steps explained in Section  5.2. This 

helps to calculate the scalars from  

Remark 3. The equations (6.2) and (6.3) can also be written in the following forms: 
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 ¡ ' (c1=c2)¦ + ©; H¡i ' (c1=c2)H¦i + H©i¡ ' (c1=c2)¦ + ©; H¡i ' (c1=c2)H¦i + H©i,  

where c1=c2c1=c2 is replaced by ®® in the subsequent discussions.  

The relationship (6.3) is true for intersecting planes and parallel planes as well. 

Because, two parallel planes intersect the plane at infinity in a line, these planes and the 

plane at infinity, 11, are linearly dependent and so are their inter-image homographies. 

For two orthogonal planes, there is no such linear relationship. However, the two are 

related by the dual absolute quadric, Q¤
1Q¤
1 in the following manner: 

 ¦1Q
¤
1¦T

2 = 0¦1Q
¤
1¦T

2 = 0, (6.4) 

where ¦1¦1 and ¦2¦2 are two orthogonal planes.  

In the subsequent discussions we propose approaches to incorporate the scene 

constraints imposed by parallel planes and orthogonal ones in autocalibration approaches. 

Parallel planes are affine invariant scene constraints which are used in affine calibrations. 

Similarly, orthogonal planes remain orthogonal only under metric transformations. 

Therefore plane orthogonality are used in the proposed metric camera calibration 

approach. 

6.3.1 A pair of parallel planes 

Affine camera calibration is equivalent to locating the plane at infinity or calculating its 

homography. In this section, we present two such calibration methods using only parallel 

planes in the scene. Our first method is dedicated to the case where only one pair of 

parallel planes is available and images are captured by a moving camera with constant 

intrinsic parameters.  
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One pair, ¦¦ and ©©, of parallel scene planes defines the plane at infinity (up to an 

arbitrary scale factor) up to a one-parameter family of planes 1 ' ®¦ + ©1 ' ®¦ + ©. With 

1 = (vT
1 1)T1 = (vT
1 1)T

 in P3P3, we have 

 (vT
1 1)T ' ®(vT

¦ 1)T + (vT
© 1)T ) v1 ' 1

1 + ®
(®v¦ + v©)(vT

1 1)T ' ®(vT
¦ 1)T + (vT

© 1)T ) v1 ' 1

1 + ®
(®v¦ + v©)  

or 

 v1 ' ®v¼ + vÁ j ® 6= ¡1
® 6= 0

v1 ' ®v¼ + vÁ j ® 6= ¡1
® 6= 0

 (6.5) 

where ®®  is a scalar considering the following principals.  

 If ® = ¡1® = ¡1, then 11  would contain the origin, which is not possible. 

 If ® = 0® = 0, then ©© would coincides with the plane at infinity 11  which is against the 

assumption that ©© is a scene plane. 

 H1(i) ' ®H¼(i) + HÁ(i) j ® 6= ¡1
® 6= 0

H1(i) ' ®H¼(i) + HÁ(i) j ® 6= ¡1
® 6= 0

 (6.6) 

holds for the same value of the scalar ®® throughout the sequence provided H¼(i)H¼(i) and 

HÁ(i)HÁ(i) are calculated as follows.   

 

(
HT

¼ (i) ' [I j ¡ v¼]PT
i

HT
Á (i) ' [I j ¡ vÁ]P

T
i

(
HT

¼ (i) ' [I j ¡ v¼]PT
i

HT
Á (i) ' [I j ¡ vÁ]P

T
i

 (6.7) 

Homography H¼(i)H¼(i) is induced from plane ¦¦ and relates the two projections of plane ¦¦ 

onto the reference image and ithith image. Additional images do not introduce new 

unknowns as long as the homographies are scaled as suggested in Remark 2. Assuming 
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the parameters of the camera are kept constant, the eigenvalues of H1(i)H1(i) must have equal 

moduli [Pollefeys and Gool, 1999]. For each camera i, except the reference one, the 

characteristic equation of H1(i)H1(i) is given by det(®H¼(i) + HÁ(i) ¡ ¸I) = 0det(®H¼(i) + HÁ(i) ¡ ¸I) = 0 which 

expands to  

 ai(®)¸3 + bi(®)¸2 + ci(®)¸ + di(®) = 0ai(®)¸3 + bi(®)¸2 + ci(®)¸ + di(®) = 0 (6.8) 

where the coefficients a; b; c and da; b; c and d  are in terms of the real unknown ®® (considering 

® 6= ¡1 ; ® 6= 0® 6= ¡1 ; ® 6= 0 required by equation (5.8) ). A necessary condition for the eigenvalues 

of H1(i)H1(i) to have equal moduli [Pollefeys and Gool, 1999] can be expressed as:  

  

 

8>>><>>>:
ai(®)c3

i (®)¡ bi(®)d3
i (®) = 0

® has to be a real number

® 6= ¡1

® 6= 0

8>>><>>>:
ai(®)c3

i (®)¡ bi(®)d3
i (®) = 0

® has to be a real number

® 6= ¡1

® 6= 0

 (6.9) 

 
Each image i ; i 6= 1i ; i 6= 1, (except the first one chosen as reference), provides a sixtic 

polynomial equation (5.11) in the unknown ®®, the solutions of which are the eignevalues 

of the associated 6£ 66£ 6 companion matrix. The sought ®®  is at the intersection of the 

solution sets of (5.11)obtained over all pairs of images. 

6.3.2 Two pairs of parallel planes 

Our second affine calibration method can be used as soon as two pairs of parallel planes 

are present in the scene and makes no assumption about the camera parameters. 

When two images, captured by two different cameras, the modulus constraint and the 

method described in previous section is no longer applicable. In the following, we 
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propose a method that makes use of two pairs of parallel planes observed by two or more 

cameras with possibly distinct intrinsic parameters. 

 

Figure  6-1. Two pairs of parallel planes meeting plane at infinity 

 

If three planes, two of which are parallel, are linearly dependent, then the third 

plane either is parallel to the other two or coincides with the plane at infinity. Consider 

two pairs (¦;©)(¦;©) and (ª;¡)(ª;¡) of parallel planes: ¦¦ parallel to ©© and ªª parallel to ¡¡ but 

neither ¡¡ nor (obviously) ªª are parallel to any of ¦¦ or ©©. Furthermore, consider a fifth 

plane ¥¥ that is simultaneously linearly dependent upon (¦;©)(¦;©) and (ª;¡)(ª;¡). 

Assuming ¥¥ not at infinity, it suggests that ¥¥ must be simultaneously parallel to 

two unparallel planes which is obviously impossible. Therefore, ¥¥ must necessarily 

coincide with the plane at infinity, ¥ ´ 1¥ ´ 1. As a result, only the plane at infinity satisfies 

1 = ®¦ + ¯©1 = ®¦ + ¯© and 1 = °© + ±ª1 = °© + ±ª. Thus, given the coordinates of ¦¦, ©©, ªª and ¡¡in P3P3,the 

unknown coordinates 11 and the values of scalars ®; ¯; °®; ¯; °  and ±± can be obtained by 

solving a linear system of equations (for example through singular value decomposition). 

Alternatively, the homography of the plane at infinity can also be obtained from the ones 

induced by our four planes:  
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8>>>><>>>>:
Mi

"
I

¡vT
1

#
= ®H¦i + ¯H©i

Mi

"
I

¡vT
1

#
= °Hªi + ±H¡i :

8>>>><>>>>:
Mi

"
I

¡vT
1

#
= ®H¦i + ¯H©i

Mi

"
I

¡vT
1

#
= °Hªi + ±H¡i :

 (6.10) 

Therefore, v1; ®; ¯; °v1; ®; ¯; ° and ±± can be obtained by solving a linear system of equations (also 

using SVD in practice). For a given pair of planes, each image does not introduce new 

unknowns (see Remark 2). However, each additional pair of planes introduces its own 

unknown coefficients that also need to be calculated. Fortunately, most scenes contain 

only a limited number of parallel planes. 

6.3.3 Metric reconstruction from plane parallelism and orthogonality 

The recovered structure described in (6.1) is projective. That means for any pair of 

fMi; PjgfMi; Pjg, the pair fMiT; T¡1PjgfMiT; T¡1Pjg also satisfies the equation (6.1): 

 pi;j ' Mi TT¡1Pjpi;j ' Mi TT¡1Pj,  

where TT  is any nonsingular 4£ 44£ 4 matrix. To search for a particular rectifying matrix TT  

which upgrades the recovered projective structure to metric, there are two main 

approaches, stratified and direct. In stratified one, we first affine reconstruct the scene by 

locating the plane at infinity and the upgrade it to metric by computing the image of 

absolute conic [Pollefeys and Gool, 1999]. In direct approaches, we compute both the 

location of plane at infinity and the image of absolute conic at the same time. Direct 

methods are generally done by calculation of dual absolute quadric which embodies both 

entities [Triggs, 1997]. 
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In projective space the DAQ is not in its canonical position Q¤E
1Q¤E
1  given by equation (3.12) 

but in a transformed position: 

 Q¤
1 ' TQ¤E

1 T TQ¤
1 ' TQ¤E

1 T T . (6.11) 

Therefore, we compute DAQ in projective space first and then decompose it to equation 

(6.11) to obtain that rectifying matrix TT  which takes the projective DAQ back to its 

canonical form. The obtained TT  also upgrades the entire scene to metric [Hartley and 

Zisserman, 2004]. 

To compute DAQ in projective space, we start from the following relation 

KiK
T
i = !¤i ' M iQ

¤
1M T

iKiK
T
i = !¤i ' M iQ

¤
1M T

i  between the absolute dual quadric Q¤
1Q¤
1 and its images !¤i!¤i  

projected on views. Since we want the modolus constraints to be valid, we assume the 

camera parameters are the same for all the views. Therefore, all views will have the same 

dual of image of absolute conic and the mentioned relation is simplified to: 

 KKT = !¤ ' MiQ
¤
1MT

iKKT = !¤ ' MiQ
¤
1MT

i  (6.12) 

where KK  denotes the camera matrix and MiMi is the projective projection matrix for view ii. 

There are two types of solutions to computer Q¤
1Q¤
1 from (6.12), the linear solution and the 

nonlinear one which is the main contribution of this work. 

Existing linear solution  

The goal in this approach is to obtain a set of linear relations from equation (6.12) which 

can be solved using linear approaches such as SVD. One way is to assume that the 

principal point of each view is in the middle of the image of that view [Pollefeys et al., 
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2004]. Using at least 3 views the dual absolute conic Q ¤
1Q ¤
1  can be linearly computed as a 

4£44£4 symmetric matrix: 

 Q¤
1 =

2664
q1 q2 q3 q4
q2 q5 q5 q7
q3 q5 q8 q9
q4 q7 q9 q10

3775Q¤
1 =

2664
q1 q2 q3 q4
q2 q5 q5 q7
q3 q5 q8 q9
q4 q7 q9 q10

3775  

 such that

(
Q¤
1is positive semidefinite

Q¤
1is rank 3

such that

(
Q¤
1is positive semidefinite

Q¤
1is rank 3

 (6.13) 

which is defined by 10 unknowns out of which only 8 are independent. 

A positive semidefinite matrix[Marcus and Minc, 1988] is a Hermitian matrix all 

of whose eigenvalues are nonnegative. Q̂̂Q is a symmetric matrix, therefore Q̂̂Q = Q̂TQ̂T , and 

that means Q̂̂Q is a Hermitian matrix. Thus, the positive semidefeinetness of a symmetric 

matrix is met when all the eigen values have the same sign. 

The rank deficiency is verified when the det(Q¤
1) = 0det(Q¤
1) = 0. This can be forced 

through SVD decomposition of Q ¤
1Q ¤
1  where the smallest eigen value is set to zero. The 

ratio of smallest eigen value to the second smallest eigen value is an indication of the 

accuracy of the estimated Q ¤
1Q ¤
1 . 

Once the linear solution is available it can be used as an starting point for 

nonlinear approaches which usually deliver better accuracy. This way of obtaining linear 

solution is used in [Huynh and Heyden, 2005] as a starting point for the nonlinear 

optimization where orthogonal scene plane constraints are incorporated.  

Proposed approach 

In our proposed nonlinear approach, as opposed to existing approaches [Huynh and 

Heyden, 2005], [Pollefeys et al., 2004] we do not need any initial linear solutions, neither 
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do we need to make any assumption about the location of principal points. In this 

approach a pair of scene parallel planes and orthogonal planes are incorporated in the 

autocalibration equations described in (6.12). We solve for the dual absolute quadric 

(DAQ) via the optimization of the following nonlinear system: 

 f(u0; v0; fx; fy; s; v1) =
mX

i=2

KKT

jjKKT jjF ¡
MiQ

¤
1MT

i

jjMiQ¤1MT
i jjF

f(u0; v0; fx; fy; s; v1) =
mX

i=2

KKT

jjKKT jjF ¡
MiQ

¤
1MT

i

jjMiQ¤1MT
i jjF

, (6.14) 

 such that

(
para(¦1;¦2)

orth(¦4;¦3)
such that

(
para(¦1;¦2)

orth(¦4;¦3)
  

where ¦1¦1 and ¦2¦2 are a pair of parallel plane in the scene. There is a third plane, ¦3¦3, which 

is orthogonal to the previous ones. Instead of the third plane being orthogonal to the other 

two, we could also assume there are two separate orthogonal planes. jj:jjjj:jj denotes the 

Frobenius norm of the matrix concerned. The planes are defined in projective frame as 

follows:  

¦1 ' (v1; 1)T ; ¦2 ' (v2; 1)T ; ¦3 ' (v3; 1)T¦1 ' (v1; 1)T ; ¦2 ' (v2; 1)T ; ¦3 ' (v3; 1)T
. 

The unknowns u0; v0; fx; fy; su0; v0; fx; fy; s are the camera intrinsic parameters and 

v1 = (p1; p2; p3)v1 = (p1; p2; p3) is the 3-vector of plane at infinity in 1 ' (vT
1 ; 1)T1 ' (vT
1 ; 1)T

. The two functions 

orth(¦1;¦3)orth(¦1;¦3) and para(¦1;¦2)para(¦1;¦2) define the nonlinear constrains which we elaborate more.  

From the previous discussions The DAQ can be parameterized by the DIAC of 

the reference view !¤!¤ and the plane at infinity of that view 1 ' (vT
1 ; 1)T1 ' (vT
1 ; 1)T as: 

 Q¤
1 '

·
!¤ ¡(!¤v1)

¡(!¤v1)T vT
1!¤v1

¸
Q¤
1 '

·
!¤ ¡(!¤v1)

¡(!¤v1)T vT
1!¤v1

¸
,
 (6.15) 
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where v1 = (p1; p2; p3)v1 = (p1; p2; p3), which means 3 unknowns. However, we already assumed that 

the two planes ¦1¦1 and ¦2¦2 are parallel. Hence, from our discussion in previous chapter, 

this relation holds:   

 1' ¦1 + ®¦2 ) v1 =
1

1 + ®
(v1 + ®v2)1' ¦1 + ®¦2 ) v1 =

1

1 + ®
(v1 + ®v2), (6.16) 

which transforms a relation with three unknown to same relation with one unknown only. 

This reduces the number of unknowns in the equation (6.14) to six only. Hence, in our 

proposed approach we solve the following nonlinear constrained equation:  

 f (u0; v0; fx; fy; s; ®) =
mX

i=2

KKT

jjKKT jjF ¡
MiQ

¤
1MT

i

jjMiQ¤1MT
i jjF

f (u0; v0; fx; fy; s; ®) =
mX

i=2

KKT

jjKKT jjF ¡
MiQ

¤
1MT

i

jjMiQ¤1MT
i jjF

, (6.17) 

 such that

(
para(¦1;¦2)

orth(¦4;¦3)
such that

(
para(¦1;¦2)

orth(¦4;¦3).
  

 In other words, our proposed method combines planes orthogonality and 

parallelism in a single optimization framework.  

The set of nonlinear equations are formed by the expansion of the equation (6.17) 

as follows. From KKT = !¤ ' MiQ
¤
1MT

iKKT = !¤ ' MiQ
¤
1MT

i  and considering K as 

 K =

24 fu s u0

fv v0

1

35K =

24 fu s u0

fv v0

1

35  
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we get 

 2664
fu

2 + s2 + u0
2 s fv + u0 v0 u0

s fv + u0 v0 fv
2 + v0

2 v0

u0 v0 1

3775 'Mi

·
!¤ ¡(!¤v1)

¡(!¤v1)T vT
1!¤v1

¸
MT

i ; i : 2::m

2664
fu

2 + s2 + u0
2 s fv + u0 v0 u0

s fv + u0 v0 fv
2 + v0

2 v0

u0 v0 1

3775 'Mi

·
!¤ ¡(!¤v1)

¡(!¤v1)T vT
1!¤v1

¸
MT

i ; i : 2::m,(6.18) 

where the v1v1 is replaced by its equivalent in equation (6.16).  

Nonlinear constraints 

The scene planes parallelism and perpendicularity were transferred to the calibration 

equations through the following nonlinear constraints  

 Para(¦1;¦2) = jjQ¤
1¦1 ¡Q¤

1¦2jj2Para(¦1;¦2) = jjQ¤
1¦1 ¡Q¤

1¦2jj2 (6.19) 

as 1 ' ¦ 1 + ®¦ 2 ; Q ¤
11 = 01 ' ¦ 1 + ®¦ 2 ; Q ¤
11 = 0. The equation (6.19) enforces constraints on the two 

planes by bounding the value of function Para(¦1;¦2)Para(¦1;¦2) around zero. Similarly, the value 

of the function below in equation (6.20) is hold close to zero by enforcing orthogonality 

constraints on planes during the optimization process.  

 Orth(¦4;¦3) =
¦T

4 Q¤
1¦3p

¦T
4 Q¤1¦4:¦T

3 Q¤1¦3

Orth(¦4;¦3) =
¦T

4 Q¤
1¦3p

¦T
4 Q¤1¦4:¦T

3 Q¤1¦3

 (6.20) 

Planes orthogonality constraint could be implemented in an easier form used in 

existing approaches [Huynh and Heyden, 2005, Triggs, 1997] as simple as ¦T
4 Q¤

1¦3¦T
4 Q¤

1¦3. 

However, we found (6.20) more stable to noise (due to the devision by the expersion at 

the denomerator) . 
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6.4 Experiments  

We have conducted experiments using both simulated data and real images. The goal in 

all the experiments was to assess the quality of the affine and metric 3D reconstruction 

obtained using each of the three methods proposed. The results of experiments are 

demonstrated in two sections. First using only parallel constraints, second using both 

parallel and orthogonal scene constraints. The implementation is done in Matlab using 

the default optimization toolbox.  

6.4.1 Using parallel planes constraints  

In the following, the affine calibration method (described in Section 4.1) using a camera 

with constant parameters is referred to as C1. The method (in Section 4.2) that considers 

cameras with possibly different intrinsic parameters will be referred to as D2. 

Simulated data: Our experiments with simulated data were carried out for a varying 

number of images and various levels of noise added to image coordinates. We have tested 

our methods C1 and D2 on perfectly parallel planes and with noise added to the angles 

between pairs of parallel planes. In each experiment, a scene, consisting of randomly 

generated pairs of parallel planes, was projected onto the image planes. 

Each plane consisted of 50 randomly generated scene points scattered in a disc of radius 

1. Parallel planes were generated at a mean distance of 0.75 units with a 0.25 standard 

deviation from each other. In each pair of parallel planes, the disc of one plane was 

centered in the origin of the scene’s reference frame. Method C1 was tested on scenes 

each consisting of only one pair of parallel planes. Method D2 was tested with two pairs 

of parallel planes making an angle of 25 degrees about each axis with 5 degrees standard 

deviation. Noise on the angle between a pair of parallel planes was added by rotating one 
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of the planes by a zero-mean randomly generated angle with 1 degree standard deviation 

about each axis. The cameras were generated at mean distance of 2 units and a 0.3 

standard deviation from the origin of the scene. The camera’s were roughly oriented 

towards the origin of the scene’s reference frame. Zero-mean Gaussian noise with 

standard deviation in the range 0 to 2 pixels was added to the pixel coordinates. Camera 

parameters were kept constant for experiments using method C1. Using D2, they were 

varied by a random amount in the range -15% to +15% of their original values. 

 

 

Figure  6-2. Relative RMS 3D error using methods C1 (a and c) and D2 (b and d). 
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The recovered affine 3D structure was aligned with the original data and the 

relative RMS error was used as a quality measurement of our reconstruction. The results 

of our experiments using methods C1 and D2 with perfectly parallel planes are reported 

in Figure  6-2.a and Figure  6-2.b respectively. Those of our experiments with noise on the 

angles between parallel planes are reported in Figure  6-2.(c) and Figure  6-2.d for 

methods C1 and D2 respectively. Method D2 was also tested in minimal conditions with 

2 images and the results are reported in Figure  6-3 for both perfectly parallel planes and 

perturbed ones.  

In all these figures, each point is the average of 1000 independent trials for a 

given noise level in pixel coordinates and a given number of images (3, 5, 7 and 9 

images). The results we have obtained show that, for both methods, the quality of the 

affine reconstruction improves with the increasing number of images and progressively 

deteriorates with the amplitude of errors in point localization in images (image noise). 

However, the relative errors remain within acceptable bounds even with 3 images and 2 

pixels of noise: about 4% with both methods when using perfectly parallel planes. The 

results of our experiments with noise added to the angles between parallel planes (Figure 

 6-2.c and Figure  6-2.d) suggest that the planes need not be perfectly parallel for both 

methods to provide acceptable results. 
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Figure  6-3. Two pairs of perfectly/perturbed parallel planes and 2 images (method D2). 

 

Method D2 is more sensitive to errors on the angles as, unlike C1, it relies on 

plane parallelism only. When using only 2 images with method D2, Figure  6-3., the 3D 

errors have reached 18% with 2 pixels of noise with perturbed parallel planes and a little 

more than 16% with perfectly parallel planes. 

Real images 

We have used the parallel front walls of two buildings, Figure  6-4, to affinely calibrate a 

low-end Sony Cybershot DSC-S930 camera from 3 images with our C1 method. We have 

successfully recovered the 3D affine structure of the scene and upgraded it to a metric 

one (Figure  6-3. right). The reconstructed points were detected and matched across all 

three images (12 points on each wall as marked in Figure  6-3. left).  
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Figure  6-4. Method C1 with 3 images, 3D metric reconstruction (right). 

 

Our second example, is a scene consisting of two pairs of parallel sheets of paper with 

three black rectangles on each (12 points on each plane as marked in Figure  6-5.left). We 

have used method D2 to obtain the affine 3D reconstruction of this scene from only two 

images. Two different cameras have been used: the camera used in the ”buildings” 

example and the camera of a cell phone. The resulting affine reconstruction in given in 

Figure  6-5.right. The 3D reconstruction results we have obtained in these examples and 

others as well were very satisfactory. 
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Figure  6-5. Method D2 with 2 images, 3D affine reconstruction (right). 

 

 

6.4.2 Using parallel and perpendicular scene constraints  

The performance of the proposed camera calibration method using parallel and 

perpendicular scene constraints is investigated under extensive simulations with synthetic 

data and with real uncalibrated images from low-end cameras. The goal in these 

experiments was to investigate that whether incorporating planar scene constraints allows 

our method to converge from pretty much anywhere, which is not the case when using 

the unconstrained method.   

Simulated data 

In these set of experiments with simulated data, the scene configuration is very similar to 

that of Section  6.4.1 except that the scene contains orthogonal planes too. The 
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experiments were carried out for a varying number of images and various levels of noise 

added to image coordinates. Therefore, zero-mean Gaussian noise with standard 

deviation in the range 0 to 2 pixels was added to the pixel coordinates. In each 

experiment, a scene, consisting of randomly generated pair of parallel planes and a third 

plane which was orthogonal to the two was generated and projected onto the image 

planes. 

Each plane consisted of 50 randomly generated scene points scattered in a disc of 

radius 1. Parallel planes were generated at a mean distance of 0.5 units with a 0.2 

standard deviation from each other. In each pair of parallel planes, the disc of one plane 

was centered in the origin of the scene’s reference frame. A third plane was placed 

perpendicular to the other two with the distance of 0.2 standard deviation from the scene 

origin (Figure  6-6 ). 

 

Figure  6-6. Scene configuration for simulated data 

 

The cameras were located at mean distance of 2 from the origin with standard deviation 

0.3. The camera’s were roughly oriented towards the origin of the scene’s reference 

frame so that the entire scene is visible for all cameras. Zero-mean Gaussian noise with 
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standard deviation in the range 0 to 2 pixels was added to the pixel coordinates. The 

image sizes were 640 ££ 480 for all the views during the entire experiment. The camera 

intrinsic parameters were set known values and kept constant during each trial to access 

the quality of results afterwards. The focal length was 900 units and the aspect ratio 

varied from 0.5 and 2. The principal point (u0; v0)(u0; v0) was randomly picked from anywhere 

within the average distance of 50 pixels from the middle of the image. The skew factor is 

generally very close to zero especially for recently manufactured digital cameras. 

However, to cover the exceptional cases in our simulation we let the skew factor vary 

from -0.5 to 0.5.  

As quality measurements to evaluate our calibration method, the relative RMS 

error of internal camera parameters from the true values were calculated. Also the 

recovered 3D structure was aligned with the original data to measure the 3D RMS 

reconstruction error.  

The first set of results of conducted experiments is reported in Figure  6-7, where 

the camera internal parameters are plotted in 2D graphs. In all these figures, each point is 

the average of 200 independent trials for a given noise level in pixel coordinates and a 

given number of images (3, 5, 7 and 9 images). The obtained results show that the quality 

of the metric camera calibration improves with the increasing number of images and 

progressively deteriorates with the amplitude of errors in point localization in images 

(image noise). However, the relative RMS errors remain within acceptable bounds even 

with 3 images and 2 pixels of noise at about 8%.  
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Figure  6-7. Camera parameters vs image noise (pixel) for 3 to 9 views 

 

The 3D reconstruction RMS error was also measured during same experiment and 

the results are reported in Figure  6-8. It can be seen that the proposed approach can 

recover the 3D structure with acceptable accuracy even with the presence of two pixel 

noise which is too high for real world scenarios. 
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Figure  6-8. 3D RMS error of metric reconstruction 

 

To investigate the effect of incorporating planar scene constraints on calibration we 

conducted the following experiment. 

1- The optimization was run for both constrained method that we proposed and un 

constrained method starting from ground truth. 

2- The optimization was also run for both method starting from initial guesses. In the case 

of starting from initial guess, if a method converges towards the same result 

as starting from ground truth, this is counted as a success, a failure otherwise. The 

success rate of both methods is reported in Figure  6-9. The results show that starting from 

anywhere, with our proposed method, is pretty much like starting from ground truth. 
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Figure  6-9. Comparing initial guess with ground truth 

 

Real images 

To evaluate the performance of the proposed metric calibration method in real world 

applications, we conducted experiments using real images as well. To evaluate the 

accuracy of recovered 3D model, we use same method applied in [Lourakis and Deriche, 

2000]. That is the validity of results is demonstrated by calculating angles in the 

recovered 3D model, and comparing to the real angles of the actual scene. We provide 

four examples here, Figures 6-10 to 6-13.  

Boxes. Figure 6-10 presents a contrived scene consisting of five letter size white sheets of 

paper with black patterns pasted on the faces of two packaging boxes. In this example, 60 
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points (left image) lying on five planes (middle image) have been matched across four 

images. The planes labeled 1 and 3 and 5 are parallel to each other and perpendicular to 

the other two planes labeled 2 and 4. The four 640×480 images were shot by a low-end 

digital camera (Sony Cyber-shot DSC-S930). Since this scene contains multiple parallel 

and perpendicular planes, several experiments were conducted each time using different 

groups of planes.  

In the first experiment with this scene, planes labeled 2 and 4 were taken as input 

parallel planes ¦1; ¦2¦1; ¦2 and the plane labeled 3 as the plane ¦3¦3 perpendicular the other 

two. The angles between the planes of the reconstructed model were computed and 

reported in the Figure 6-10.a. As seen, the computed angles between the two planes 2 and 

3 are 93.34 degrees which is close to orthogonal. However the computed quantity was not 

supposed to be exactly 90 degrees, as the actual angle is in fact 92 degrees (Table  6-4).  

In another experiment, Figure 6-10.b, same planes labeled 2 and 4 were taken as 

input parallel planes ¦1; ¦2¦1; ¦2 but this time plane labeled 1 was taken as ¦3¦3. It can be 

noticed that in first experiment the angle between planes labeled 2 and 4 was computed 

0.70 degrees and this time the computed angle between same planes was reported 0.29 

degrees. We expect the two quantities to be same, however picked planes are not 

perfectly parallel neither perfectly perpendicular. Yet, the results are satisfactory and 

better than that of Pollefeys method [Pollefeys, 2004], where scene constraints were not 

incorporated ( Table  6-4). Same experiment was repeated this time for difrent planes and 

results are demonstrated in Figure 6-10.c. In Figure 6-10.d, the reconstructed model from 

the implementation of Pollefeys method [Pollefeys, 2004] is illustrated as a reference 

point to evaluate the performance of our method.  
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Table  6-4 Repost the accuracy of the proposed method. It computed angles from 

the reconstructed models with the corresponding actual angles of the real scene, which 

were measured manually. It also compares the accuracy of our proposed method with the 

method proposed in [Pollefeys, 2004] and nonlinear unconstrained method as well. 

Results clearly demonstrate better performance of the calibration algorithm with the way 

we incorporated the scene constraints. 

Three of four views 

 

a. Results of proposed method using parallel planes 2 and 4 and the orthogonal plane 3  
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        Side view                                                                               Top view 

b. Results of proposed method using parallel planes 2 and 4 and the orthogonal plane 1  

 

         Side view                                                                               Top view 

c. Results of proposed method using parallel planes 1 and 3 and the orthogonal plane 3  

 

 Side view                                                                                   Top view 

d. Results of Pollefeys method [Pollefeys, 2004] 

Figure  6-10. Patterned sheets of paper pasted on the faces of packaging boxes 
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The three tables Table  6-1 to Table  6-1 report the angle between entire scene 

planes of scenario 1 in Figure  6-10. Table  6-1 reports the results when planes 2 and 4 are 

picked as parallel ones and the pair of planes 2 and 3 are picked as the perpendicular 

ones.  Table  6-1 reports the results when the pair of planes 2 and 4 are assumed to be 

parallel and the planes 2 and 1 are assumed to be perpendicular. To compare the 

performance of the proposed algorithm the results of applying Pollefeys’ method to same 

scene is reposted in Table  6-1 As seen, the results of the proposed method are clearly 

better than those obtained from Pollfeys’ method in [Pollefeys, 2004]. 

Table  6-1. The angle between  the planes for boxes in Figure  6-10. a (in degree) using the 

proposed constrained method 

Plane# 2 4 3 1 5 

2 0 0.7 93.34 98.99 99.95 

4 0.7 0 92.7 98.37 99.33 

3 93.34 92.7 0 6.14 7.58 

1 98.99 98.37 6.14 0 1.62 

5 99.95 99.33 7.58 1.62 0 
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Table  6-2. The angle between  the planes for boxes in Figure  6-10. b (in degree) using the 

proposed constrained method 
 

Plane # 2 4 1 3 5 

2 0 0.29 92.79 87.59 93.96 

4 0.29 0 93.02 87.82 94.2 

1 92.79 93.02 0 6.07 1.66 

3 87.59 87.82 6.07 0 7.7 

5 93.96 94.2 1.66 7.7 0 

  

Table  6-3. The angle between  the planes for boxes in Figure  6-10. b (in degree) using 

Pollefeys’ method 

Plane # 2 4 1 3 5 

2 0 3.91 97.34 98.85 96.21 

4 3.91 0 100.22 101.73 99.09 

1 97.34 100.22 0 1.53 1.13 

3 98.85 101.73 1.53 0 2.65 

5 96.21 99.09 1.13 2.65 0 
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Office. In another experiment an indoor scene was tested on the proposed metric 

calibration approach. It is an office desk area of which 32 points (left image) lying on 

four distinct planes have been successfully detected and matched across four images. All 

four planes in Figure  6-11 have been identified. Planes labeled 1 and 3 are paralel and the 

plane labeld 2 is perpendicualr to the two. Here also the results demonstrate the success 

of the proposed approach to deliver an acceptable calibration. 0.93 degree was obtained 

for the angle between parallel planes and 89.58 for the perpendicular ones. The 

unconstrained method failed on this scene (Table  6-4). 

 

 

Figure  6-11. Planes labeled 1 and 3 are paralel. Plane labeld 2 is perpendicualr to the two. 

 

 College. The outdoor scene in Figure  6-12, the Royal Victoria College in Montreal. In 
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reconstruction of the real scene. The unconstrained nonlinear approach failed on this 

scenario and did not return meaningful results. For this scene, the actual angles of the real 

scene are not available, however it would appear that the angle between the perpendicular 

walls is closer to 90 degrees than 77 which was obtained from Pollefeys’ method (Table 

 6-4). 

 

 

 

Figure  6-12. Royal Victoria College in Montreal. Planes 2,3 are both orthogonal to plane 1 
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across four images. The pictures were taken using iPhone 4 rear camera. The images 
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real scene in this scenario as well. The unconstrained nonlinear approach and Pollefeys’ 

method also delivered acceptable results in this particular experiment.  

 

Front view upside-down                                           Top view 

 

Figure  6-13. Table salt and business cards 
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Table  6-4. Experiments with real images.  
 

Scene Boxes Office College  Table salt 

# planes 5 4 3 3 

# points 12 8 11 12 

         Planes 

Method 

\¦1;¦2\¦1;¦2

parallel 
\¦1;¦3\¦1;¦3 \¦1;¦2\¦1;¦2

parallel 
\¦1;¦3\¦1;¦3

 
\¦1;¦2\¦1;¦2

parallel 
\¦1;¦3\¦1;¦3

 
\¦1;¦2\¦1;¦2

parallel 
\¦1;¦3\¦1;¦3

 

Pollefeys 3.91O 97.34O 4.47O 77.56O 3.93O 87.03O 1.49O 88.75O 

Unconstrained 0.13O 54O failed failed failed failed 4.21O 88.19O 

Constrained  0.70O(a) 93.34O(a) 0.93O 89.58O 2O 89.64O 0.06O 92.39O 

Actual angles 2O 92O 1.3O 90O NA NA 1.5O 91O 

 

 

6.5 Conclusion  

In this chapter, we have proposed autocalibration methods for both affine and metric 

calibration of cameras. Two methods are proposed for the affine calibration of cameras 

from parallel planes. The first method works with a minimum of one pair of parallel 

planes and a moving camera with constant parameters. Our second method is linear and 

works even with images captured using different cameras. This method works with a 

minimum of two images and two pairs of planes (in different directions) and no other 

constraints. The results of our extensive experiments have demonstrated that the affine 

3D reconstruction is very good. 

We have also propose a metric calibration method that combine geometric 

constraints with an existing autocalibration method. It uses perpendicularity and 

parallelism of planes in the scene to impose constraints on the values of camera 

parameters. The proposed method particularly combines the two constraints into a single 
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nonlinear framework. The method does not require accurate starting points and 

convergences even with a very inaccurate ones from random guesses. Thus, it does not 

need any assumption about the principal points being in the center of images, which is 

usually used for estimating a linear starting point for nonlinear camera calibrations. The 

simulation results showed that our method with minimal constraints (a pair of parallel 

planes and a pair of perpendicular ones) has very good convergence properties. 

In all experiments with real scene, low end cameras were used to take the 

pictures. As well, the images were resized down to 640££480 or smaller then the matching 

phase was conducted. Shrinking the image before matching usually leads to lower the 

accuracy of matched feature points. Yet, all proposed methods in this dissertation 

delivered very good results on real images. 
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7 Conclusion	and	Remarks	

This dissertation aimed at achieving two main goals: the identification of plane-based 

geometric properties in a scene from uncalibrated images and, their use for recovering the 

three-dimensional structure of the scene. The proposed approaches are suitable to urban 

area scenes which are abundant in planar structures, e.g., buildings, streets and certain 

kinds of manufactured objects such as furniture. Such scenes provide numerous 

constraints for camera calibration and 3D reconstruction. In particular, these man-made 

environments contain plenty of planes that are generally either parallel or perpendicular 

to each other. 

A general solution was proposed in Chapter 4 for the automatic identification of 

physical planes in a scene using uncalibrated images. We have overcome the problem of 

existing homography-based approaches where in addition to real planes, undesirable 

virtual planes are also extracted from images. We have presented a new scheme, in 

conjunction with the homography-based plane detection method, for the identification of 

virtual plane so that they can be removed. The proposed approach uses non-coplanar 

points inside an extracted plane to decide whether the plane is physical or virtual. As a 

consequence, we were able to compute the homographies for all potential physical 

planes.  

In Chapter 5, we have proposed a novel method for parallel planes identification 

from point correspondences across three or more images. Our method neither requires the 

camera to be calibrated nor a 3D reconstruction to be calculated. It relies on prior 

detection of planes, the outcome from Chapter 4, and point correspondences only. The 
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results of the numerous experiments we have conducted have shown that the proposed 

method achieves its goal with a very high success rate, even for high levels of noise. 

In Chapter 6, we have proposed affine and metric camera calibration methods 

using the results from Chapters 4 and 5. Our first affine camera calibration method uses a 

minimum of one pair of parallel planes and a moving camera with constant parameters. A 

second affine calibration method was proposed for the case of images taken by different 

cameras, i.e., non-constant intrinsic parameters. The method uses a minimum of 2 images 

and 2 pairs of parallel planes (with different orientations). The obtained results have 

clearly demonstrated that both proposed methods yield very good 3D affine structure of 

the scene. A metric calibration method was also proposed in this chapter. In this method, 

we have combined scene geometric constraints, arising from parallel and/or 

perpendicular planes, with existing autocalibration methods. In particular, the two 

geometric constraints were translated into a single nonlinear framework. We have 

obtained very good results for the metric reconstruction on both simulated and real 

images. Although we have low end cameras for all our real experiments, the quality of 

the obtained results have exceeded our expectations. 

In brief:  

 We proposed a 3-point homography-based method to identify major scene planes 

from images. In that work a merging phase was proposed  to obtain robust results. 

A general scheme was introduced to distinguish between virtual and physical 

planes.  

 A novel reconstruction free method was introduced to identify the scene parallel 

planes. 



137 
 

 The parallel planes were used to recover the affine structure of the scene for  1) 

using a camera with constant parameters 2) using various cameras to shoot 

pictures 

 We also proposed a novel nonlinear autocalibration method which combines both 

planes orthogonality and parallelism in a single optimization framework. The 

method upgrades the existing projective structure to a metric one directly. 

Although nonlinear, our method has a satisfactory convergence rate even when 

the optimization procedure is randomly initialized. 

Futurework  

Accurate identification of plane scenes is useful for our future work where edge 

points will be used to extract the actual facets of objects in the scene. Once such facets 

are identified, they can be reconstructed using the proposed refinement method to allow 

for an accurate and fast 3D modeling of palanar scenes. The obtained results from this 

dissertation can help advance computer vision research towards its ultimate goal, total 

image understanding. In particular, the extraction of planes can be combined with edges 

to obtain physical facets that will lead to the semantic segmentation of the scene. In 

addition, the automatic detection of parallelism and perpendicularity will help in deriving 

semantic relationships between facets and objects. Our proposed plane identification 

method [Amintabar and Boufama, 2008] was referred to by [Dornaika and Elder, 2010]. 

The authores use the plane identification to ease the process of image registration in 

registering high-resolution, small field-of-view images with low-resolution panoramic 

images provided by a panoramic catadioptric video sensor. In another work, our plane 

identification method was cited by [Wang, Z. and Zhao, 2011]. The authors mention our 
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approach to detect and discarding virtual planes using convex set theory and a voting 

strategy. 
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