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Abstract

Language-processors that are constructed using top-down recursive-descent with

backtracking parsing are highly modular, and are easy to implement and maintain.

However, a widely-held inaccurate view is that top-down processors are inherently

exponential for ambiguous grammars and cannot accommodate left-recursive syntax

rules. It has been known that exponential time and space complexities can be avoided

by memoization and compact graph-structured representation, and that left- recursive

productions can be accommodated through a variety of techniques. However, until

now, memoization, compact representation, and techniques for handling left-recursion

have either been presented independently, or else attempts at their integration have

compromised modularity and correctness of the resulting parses.

Specifying syntax and semantics to describe formal languages using denotational

notation of attribute grammars (AGs) has been widely practiced. However, very lit-

tle work has shown the usefulness of declarative AGs for constructing computational

models of natural language. Previous top-down approaches fall short in accommodat-

ing ambiguous and general CFGs with arbitrary semantics in one pass as executable

specifications. Existing approaches lack in providing a declarative syntax-semantics

interface that can take full advantages of dependencies between attributes of syntactic

constituents to model linguistically-motivated cases.

This thesis solves these shortcomings by proposing a new modular top-down syn-
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tactic and semantic analysis system, which is efficient and accommodates all forms

of CFGs. Moreover, this system provides notation to declaratively specify semantics

by establishing arbitrary dependencies between attributes of syntactic categories to

perform linguistically-motivated tasks such as: building directly-executable natural-

language query processors, computing meanings of sentences using compositional se-

mantics, performing contextual disambiguation tasks, modelling restrictive classes of

languages etc.
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Chapter 1

Introduction

1.1 Introduction

We still lack systems that can help application developers to seamlessly build domain-

specific natural language (NL) processing applications that can accommodate a wide

range of linguistic phenomenon. One way to address this problem is by reducing

the gap between the notation that the developers are comfortable working with and

the theoretical foundations that are required for deep linguistic processing. The

goal of this thesis is to provide an efficient and modular framework for syntactic

and semantic analysis of natural languages. Here I describe the development of a

programming environment, which enables the construction of declarative descriptions

of natural languages as directly-executable specifications. (Project home-page: http:

//cs.uwindsor.ca/~hafiz/xsaiga/proHome.html)

An effective natural language processor should accommodate linguistic features such

as correct construction of syntactic analysis, ability to compute meanings of sentences

following linguistic theories, ability to accommodate syntactic and semantic ambiguities,

mechanisms for disambiguation, capability to impose constraints to express characteristics

beyond context-freeness etc. This thesis attempts to provide these features within a sin-

gle system. The foundation of this work is a new top-down parsing algorithm that solves

a forty-year-old problem by accommodating any form of context-free grammar (CFG) in-
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cluding ambiguous left-recursive grammars in polynomial time and space [1, 2]. This algo-

rithm employs a depth-checking and context-determining technique for left-recursive rules,

uses a variation of memoization for time efficiency, and represents the potentially expo-

nential number of ambiguous trees in a compact form for space efficiency. Our approach

has been adopted by Python programmers in developing the Python library parser LEPL

(acooke.org/lepl/implementation.html).

Specifying syntax and semantics to describe formal languages using denotational no-

tation of attribute grammars (AGs) has been practiced extensively. However, very little

work investigates the usefulness of declarative AGs for computational models of natural lan-

guage. I have extended our general syntax analysis approach to allow declaratively coupling

semantic rules with syntax. I have defined a set of combinators (higher-order functions)

that enable the syntactic and semantic description of natural languages, using the gen-

eral notation of AGs, as directly-executable specifications ([3, 4]. The underlying method

depends on referential transparency of purely-functional definitions and on the non-strict

evaluation strategy to establish arbitrary dependencies in semantic rules. The combinators

are implemented in the purely-functional programming language Haskell (haskell.org).

I have proposed an innovative technique [5] that allows parses to be pruned by arbitrary

semantic constraints. This new technique is useful in modelling NL phenomena by impos-

ing unification-like restrictions, accommodating long-distance and cross-serial dependencies,

and performing limited forms of disambiguation tasks which cannot be handled by CFGs

alone.

1.2 Thesis Statement

This report contains four papers addressing different aspects of the theme outlined above.

Collectively these papers and the appendixes prove the following thesis statement:

“It is possible to build an efficient environment for the modular construction of exe-

cutable specifications of arbitrary natural languages where syntactic and semantic rules can

be expressed in a declarative notation.”

The rest of this chapter introduces the four papers in general terms with some related

2



background information. Please see Appendix C for a list of all seven papers related to

this thesis that I authored/co-authored.

1.3 Top-down Parsing Algorithm for General Syn-

tax

Chapter 2 contains a paper that describes a new top-down parsing algorithm that can

accommodate any form of ambiguous context-free grammar (CFG) (including direct and

indirect left-recursive grammars) efficiently. A context-free grammar (CFG) G is 4-tuple

G = (N,T, P, S), where N is a finite set of non-terminals, T is a finite-set of terminals, P

is a finite-set of syntax rules, S is the start non-terminal , N ∩ T = φ and (∀pi ∈ P ) pi

is of the form a ::= b where a ∈ N and b ∈ (N ∪ T )∗. The foundation of the algorithm

is a traditional recursive-descent backtracking search, which normally fails to terminate

while processing left-recursive grammar rules that would call itself indefinitely unless no

method of prevention is taken. For example, consider the CFG, S ::= S S ‘a‘ | ε that

describes a language containing members of the set {a, aa, aaa, aaaa, aaaa, ...}. The naive

recursive descent approach fails for this grammar as the top-most symbol S will keep calling

itself endlessly. This grammar is highly-ambiguous (its ambiguity can be represented with

the Catalan number series [6, 7]), and even if left-recursion could be accommodated, the

traditional backtracking search would require exponential time to process this grammar and

exponential amount of space to represent the resulting parses.

The functional description of the top-down recursive-descent parsing algorithm treats

each rule of a grammar as a function-definition, which can contain left and right re-

cursion. Any rule or non-terminal of a CFG, say A, is in the form of A → α where

A ∈ {nonterminals}, and α ∈ ({nonterminals} ∪ {terminals})∗. The non-terminal A can

have more than one such definition, which are called alternative definitions. A recursive

rule can be direct (e.g., A ::= α1 A α2) or indirect (e.g., A ::= α1 B α2, B ::= α3 A α4

). The primary input arguments of these functions are the input tokens. By the end of one

successful function execution, the rule consumes some or all of the tokens. In case of a right

recursive rule, before rewriting to its own definition again, one non-terminal consumes one

3



or more input token, which ensures a finite number of recursive calls. On the other hand, a

left recursive rule does not consume any token before the next recursive call, and thus falls

into an infinite loop without giving all alternatives any chance to try to recognize or parse

any input. One way to accommodate left-recursion with top-down parsing is to convert the

left-recursive grammar into an equivalent right-recursive grammar [8]. But this technique

sacrifices the original syntactic structure that the left-recursive grammar would provide,

and as a result correct natural language semantic computations that utilizes syntactic con-

structs’ meanings may not be viable. Also, the transformation technique can introduce

many new rules in the grammar [9] that will require extra parsing time.

We can infer from the concept of accommodating all possible parses as the result, which

assumes that if all alternative definitions of a rule are applied to each input token then the

rules attempt to compute potentially ambiguous parses is correct (see Appendix A for more

discussion). This is possible when a left-recursive rule is stopped at a depth that provides

just enough of the remaining input for all alternatives to be applied to all of the remaining

input tokens systematically. In order to ensure this correct depth-restriction, our new top-

down algorithm keeps track of recursive calls for the current token and the length of the

input which is currently being processed. Each time a particular rule is being called during

recursive-descent, a ‘counter‘ is incremented by one indicating the depth of the parse. This

parse branch is curtailed when the counter exceeds the length of the remaining input and

the process backtracks to apply another alternative parse, if any exists.

This curtailment of left-recursive calls may cause the computation of incomplete results

for indirect left-recursive rules. This is because some non-terminals, that reside between

the curtailed path for an indirect left-recursive non-terminal, can compute different results

for the same input token in different contexts. As we use memoization to reuse a non-

terminal’s previously computed result for an input token, an intermediate non-terminal

may return a result containing an incomplete result for the current input, even though it

can potentially generates more elaborate result. To avoid this, we explicitly make sure that

the intermediate non-terminals are able to compare the previously-saved context (where the

result was computed) with the current context before reusing.

In this paper, termination of the parsing algorithm, and achieving polynomial time

and space complexity are discussed informally. Some experimental comparisons of the al-
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gorithm’s initial implementation with Tomita’s [10] and Earley’s [11] parsing algorithms,

using four practical natural-language grammars, are also performed. This comparison im-

plies that the time and space requirements of the algorithm match well against Tomita’a

and Earley’s, which suggests similar polynomial upper bound of complexities in these three

algorithms. The algorithm is also tested with four variations (i.e., non-memoized, memo-

ized left-recursive, memoized right-recursive, and highly-memoized versions) of a massively-

ambiguous grammar from Aho and Ullman [7], and it is evident that the algorithm can

generate billions of ambiguous parses compactly within a second when the grammars are

memoized, whereas the non-memoized version quickly runs out of space.

1.4 Efficient Combinators for General Syntax

In functional programming, use of a higher-order function as an infix operator in a function-

definition is known as a ‘combinator‘. A parsing method, which is constructed using combi-

nators, is called ‘combinatory-parsing‘ (as higher-order functions combine different parsers

together). A language-processor can be constructed by combining small processors with

combinators. Though the concept of combinatory-parsing was introduced by Burge in 1975

[12], it was Wadler [13] who first popularized this form of parsing. Wadler showed that

results (success or failure) of a recognizer can be returned as a list. Multiple entries of this

list represent ambiguous results, whereas an empty list represents a failure.

For programming languages, parsers are generated automatically using tools like Lex

and Yacc (for imperative languages) or Happy (for functional language Haskell). One

drawback of this approach is the user needs to learn a new language (Lex, Yacc or Happy)

to generate a parser. Parser combinators are written and used within the same program-

ming language as the rest of the program. As function application in functional languages

is juxtaposition, a language-processor written using combinators can be very close in struc-

ture to the BackusNaur Form (BNF) representation of a contextfree grammar. By nature, a

combinatory-parsing system is a top-down, recursive-descent (with full backtracking), which

is able to accommodate ambiguity. These parser-combinators are straightforward to con-

struct, readable, modular, well-structured, and easily maintainable and alterable. However,

a naive implementation also shares the same drawbacks of naive top-down parsing e.g., they
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exhibit exponential time and space complexities at worst case when processing ambiguous

inputs, and they do not terminate when used to represent a left-recursive production rule.

Moreover, the traditional combinators are mostly used as recognizers [14, 15], and not as

complete parsing system.

In Chapter 3 I have included our paper that describes a general top-down parsing

algorithm with the help of a set of combinators to take advantage of the modular, declarative

and directly-executable characteristics of parser-combinators. Combinators for sequencing

of symbols (i.e., *>) and for alternative grammar rules (i.e., <|>) are defined in the purely-

functional language Haskell ([16]) to form executable context-free syntax rules. Instead of

the more conventional input as a sequence of tokens, these definitions of combinators use

indices. Parser execution is now a mapping from the starting index of an input (Start) to

a set of ending indices (End) of the input. This optimized approached is further improved

by the use of a Haskell library IntMap for sets of integers.

This paper shows the systematic development of our combinators from recognizers to

fully fledged parsers. The underlying definitions of these combinators now include tech-

niques (from Chapter 2) for accommodating direct and indirect left-recursion, a memo-

ization to ensure efficiency while processing highly ambiguous grammars, and a recursive

data-structure to represent potentially exponential number of parses in a compact space.

The data-structure that represents the graph of parse trees is of the following form:

type Start/End = Int

data PTree Label = Leaf Label

| Branch[PTree Label]

| SubNode(Label, (Start, End))

The overall result of a non-terminal (that is commonly referred to as a parser) is a list

of the PTree instances - Result = [((Start, End), [PTree Label])]. We form a memo-table

with a list of parse names along with respective Results, and before every parser execution,

the parser checks this table to find a previously computed result for the current input.

This implies that every parser should have access to the most-current memo-table. The

members of a result have (Start, End) pairs that work as points to where to go next while
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constructing parse trees. Ambiguous entries are merged as one entry in the memo-table so

that they are shared between many other entries that have pointers to ambiguous entries.

As non-strict and pure functional languages (e.g., Haskell) do not permit side-effects

(such as: assignments, exceptions, continuation etc), it is relatively complex to perform

operations like IO, maintaining states, raising exceptions, error handling etc. The concept

of a monad, which abstractly describes mathematical structures (categories) and relations

between them, appears as an easy solution to these kinds of problems. Moggi [17] and

other researches demonstrated that maintaining states, raising exceptions, error handling

etc. can be structurally performed using monads. Wadler established monads as a conve-

nient tool for structuring functional programs [18]. As a continuously changing state (or

the memo-table) has to be maintained for all parser executions, we opt to use a version

of the state-monad so that function-definitions can abstract the updated memo-table as

a function parameter implicitly. A changing state-variable can be passed around within

monadic function-definitions without forcing the functions to explicitly operate on it. One

simple way to define a state-monad is as follows:

type State a = S -> (a, S)

unit :: a -> State a

unit x = \s -> (x, s)

bind :: State a -> (a -> State b)-> State b

m ‘bind‘ k = \x -> let (p, y) = m x in

let (q, z) = k p y in (q, z)

The unit and bind form the state monad. The output type of the unit is of type State a;

that means a value of type a is contained in a state. The bind takes two parameters - the first

one, the container m, is of type State a and the second one, k, which is a computation that

takes a value of type a (from m) and returns a new state with the result of the computation

on the value of the type a. Our definitions of combinators satisfy the definitions of unit

and bind, the contained value in state is now of the type memo-table, and the required

7



computations in the bind are now operations for *> and <|>.

The optimized implementation of the general top-down parsing algorithm as combi-

natory parsers and by using faster Haskell libraries helped us to perform experiments to

utilize our approach in parsing large-scale practical natural language grammars. For ex-

ample, while parsing the grammar for the Air Travel Information System maintained by

Carroll [19], that consists of 5,226 rules with 258 nonterminals and 991 terminals, our imple-

mentation needs, on average, 1.88 seconds to parse ambiguous sentences from the test-set

of 98 NL sentences.

1.5 Fully-General Attribute Grammars

Chapter 4 includes a paper where I describe the extension of the efficient and modular

parsing algorithm (chapters 2 and 3) not only for analyzing general context-free syntax but

also for accommodating declarative semantic rules. These semantic rules can be formed

by establishing arbitrary dependencies between syntactic constructs in a syntax rule of a

context-free grammar. Knuth [20] proposed a formalism, called Attribute Grammar (AG),

where the meaning of a formal language can be described in terms of the semantics asso-

ciated with the context-free syntax. In an AG, syntax rules of CFGs are augmented with

semantic rules to describe the meaning of the sentences of a context-free language. Although

different definitions are given, we prefer to define a general AG by imposing minimal re-

strictions on attribute dependencies. An AG is a 3-tuple AG = (G,A,R), where G is the

founding CFG, A is a finite set of attributes and R is a finite set of semantic rules. Each

X ∈ (N ∪ T ) is associated with a set of attributes A(X) ⊂ A, and each a ∈ A(X) can

be described by a function/expression r ∈ R. The set A(X) can be partitioned into two

sets Ai(X) and As(X), which represent inherited and synthesized attributes respectively.

A synthesized attribute is an attribute for the LHS non-terminal of a production rule, and

it can be computed using any attributes from the RHS terminals/non-terminals. Whereas

an inherited attribute is associated with a terminal/non-terminal that resides at the RHS

of the production rule, which can be computed attributes of terminals/non-terminals that

are on the right or on the left of the current non-terminal. In conventional term, inherited

attributes propagate downwards and synthesized attributes propagate upwards.
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AG-based systems have been mostly used for the specification and construction of com-

pilable parser-generators for programming languages [21, 22, 23, 24]. These systems do not

need to accommodate ambiguity, general CFGs, and the preservation of original syntactic

structures. We differ from them by providing a declarative notation to build AG-like exe-

cutable specifications that strictly preserve the syntactic structure of general and ambiguous

CFGs. Our intended outcome is to take advantage of the modular top-down analyzing ap-

proach to build natural-language specifications where syntax and semantic descriptions can

be constructed and executed piecewise without affecting the rest of the specification in a

one-pass evaluation. Note that, most of the existing AG evaluation techniques require in

two-passes that may require the evaluator to do extra work.

We provide a set of combinators that can be used to build directly-executable AGs fol-

lowing conventional notation. For example, a text-book description of an AG for computing

values of simple arithmetic expressions is:

expr(E0) ::= expe(E1) op (O0) expr(E2)

{E0.val ↑= O0.val ↑ (E1.val ↑, E2.val ↑)}

| num(N0)

{E0.val ↑= N0.val ↑}

op(O0) ::= +

{O0.val ↑= λxλy(x+ y)}

| ∗

{O0.val ↑= λxλy(x ∗ y)}

| etc.

num(N0) ::= 1

{N0.val ↑= 1}

| 2

{N0.val ↑= 2}

| etc.

In the above, the underlying CFG is left and right recursive, ambiguous, and each syntax

rule (e.g., expr(E0) ::= expe(E1) op (O0) expr(E2)) is coupled with a set of semantic rules

(e.g., {E0.val ↑= O0.val ↑ (E1.val ↑, E2.val ↑)}). The semantics can be evaluated by
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syntactic constructs’ upward-propagating values (i.e., synthesized attributes) or downward

propagating values (i.e., inherited attributes). Using the combinators <|>, *>, parser, nt

etc. we can create notationally-similar executable-specifications of the above AG as follows

(see Chapter 4 for the descriptions of these combinators):

expr = memoize Expr

(parser (nt expr E1 *> nt op O1 *> nt expr E2)

[rule_s VAL OF LHS ISEQUALTO applyBiOp [synthesized VAL OF E1

, synthesized B_OP OF O1

, synthesized VAL OF E2]]

<|>

parser (nt num N1)

[rule_s VAL OF LHS ISEQUALTO copy [synthesized Val OF N1]] )

op = memoize Op

(terminal (term "+") [B_OP (+)] <|>

terminal (term "*") [B_OP (*)] <|> etc.

)

num = memoize Num

( terminal (term "1") [Val 1] <|> terminal (term "2") [Val 2] <|> etc.

When expr is applied to inputs such as 1*2-3+5, the executable specification can pro-

duce either just the result of the arithmetic expression or complete parse trees with com-

puted values attached in respective nodes. Along with utilizing the efficient top-down

parsing algorithm and a new way to organize the data-structure to process both syntax

and semantics, our approach also depends on non-strict evaluation (or lazy-evaluation or

call-by-need evaluation) strategy that is an integral part of modern purely-functional lan-

guages such as Haskell [25]. This strategy ensures that a function is not evaluated until

it is actually needed, and implicitly shares results of computations (i.e., outermost graph

reduction [26]).
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We treat the attributes as unevaluated pure-functions, group synthesized and inherited

functions for respective non-terminals, and map the synthesized functions to the ending po-

sitions and inherited functions to the starting positions of respective non-terminals’ result-

sets. Now the result-set contains unevaluated semantic rules instead of attribute values, and

they are evaluated only when they are ultimately required in other functions’ executions.

This method allows to establish arbitrary dependencies (including dependencies from the

right, and except purely circular dependencies) between syntactic constituents in a syn-

tax rule, which is useful in creating linguistically motivated semantic rules. Utilizing this

technique, I have constructed domain-specific natural language query processor that is able

to answer hundreds of thousands of natural-language questions. See Appendix B for the

Haskell code for this query processor.

1.6 NLP Tasks with Modular AGs

Chapter 5 includes a paper that describes applications of our modular and executable

attribute grammars (AGs) (chapter 4) for various natural-language processing (NLP) tasks.

These tasks are performed with arbitrary semantics by establishing various dependencies on

syntactic constructs. This approach demonstrates declarative prototyping of compositional

semantics of natural language. During the nineteen seventies in a series of papers Richard

Montague advocated that syntax and semantics of natural languages should be treated

similar to formal languages. His approach (better known as Montague semantic) computes

meaning of a NL phrase by primarily applying higher-order predicate logic and lambda

calculus on syntactic phrases’ meanings. Using our declarative notation for AG, we show

how an efficient set-theoretic version of Montague’s compositional semantics [27] and the

associated CFGs can be integrated to build descriptions of English for computing meaning.

Constraint-based approaches [28, 29] have been used extensively in grammar formalisms

to fulfill many linguistic requirements. The main objective of these formalisms is to unify

grammatical information in atomic or composite grammatical units (e.g., words, phrases,

sentences) by checking or imposing equality expressions on their associated sets of attribute-

value pairs. We propose an innovative technique to impose unification-like restrictions

on the results of the top-down syntactic and semantic analysis. By taking advantages of
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declarative semantics, we introduce some special-purpose attributes for non-terminals that

are capable of discarding parses that are not satisfied by the condition-checking semantics.

This approach allows us to model unification-like formalisms as executable specification to

impose linguistic restrictions such as grammatical, and number/gender agreements etc.

This form of semantic-based pruning of syntactic structures can also be used to model

cross-serial and long-distance dependencies between syntactic categories that are necessary

for accommodating certain languages, which can not be modelled by CFGs [30]. For exam-

ple, cross-serial dependencies in Dutch, Swiss-German [31] and long-distance dependencies

in relative clauses need a slightly more powerful formalism than CFGs. We can write declar-

ative restrictive semantic to prototype processors for such languages by imposing conditions

on associated syntax rules. We also show that this type of agreement can be used to dis-

ambiguate some types of syntactic ambiguity by using linguistically-sound semantics.

In addition to the informal discussion on various properties of the overall top-down

analysis in individual chapters, Appendix A contains more elaborate discussions on these

properties. These properties include the termination analysis, time and space complexity

analysis, and correctness analysis of the parsing algorithm. As mentioned earlier, Appendix

B contains a sample natural-language database query application, which is constructed the

declarative notation described in this thesis. This application demonstrates the seamless

construction of language processors without mastering the underlying analysis technique.

The format of citations and references in the subsequent chapters are different to that in

the original papers. One uniform format for citations and references is used in all chapters to

conform to the university requirements for doctoral theses. Also, <|>, <+>, and ‘orelse‘

are used interchangeably to represent the combinator for alternative rules, and *> and

‘thenS‘ are used interchangeably to represent the combinator for sequencing of symbols

throughout the report.
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1.7 Distinguishing Features for Effective NLP Ap-

plications

In this section we discuss some of the features of our system that provide advantages to

software developers over other techniques in building effective natural language processing

applications.

Modularity of Top-down Parsing

A top-down process satisfies a fundamental requirement for effective software development

- modularity or separation of concerns. Components of a top-down process can be easily

added or edited without affecting the rest of the system. For example, in a top-down parser,

new alternatives (to a production rule) can be created and tested separately and then added

to a larger parser. In this way, the top-down parser can be constructed piecewise (see intro-

ductory examples in Chapter 5). In our top-down system, a new component consisting of

syntactic and the related semantic rules can be developed and tested separately and then

added as a new alternative. In comparison, a general bottom-up parsing technique requires

maintaining an action table, which needs global change whenever a new rule is added. In

order to accommodate the semantic rules associated with a new syntax rule, the developer

needs to make extensive changes to the whole parser. This dependency between one com-

ponent (the implementation of the processing of the syntax and semantics associated with

a new rule) and the existing parser code violates modularity.

Ambiguity w.r.t. Natural Language Processing

While parsing programming languages, the compiler constructs only one syntax tree. Am-

biguity is undesirable as it may generate more than one machine-code output for program.

However, natural language (NL) is inherently ambiguous. Many NL sentences have more

than one meaning. This is why we want to generate all possible parses while processing

a NL sentence. Each ambiguous parse can potentially generate a different meaning, and

semantic processing is needed to determine which meaning is most likely to be the one

intended. Converting a left-recursive grammar into a non-left recursive form can, in some

cases, cause the loss of some parses (e.g., missing left-branching parses; see the example in
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Chapter 2 at page 23), and as a result, we may miss the intended meaning of the sentence.

This is why we want to accommodate left-recursive rules directly rather than transform to

non-left-recursive form.

Declarative Specifications

Our declarative combinatory programming approach allows us to build language processors

as executable specifications of syntax and semantics, which are very similar to the standard

declarative Attribute Grammar notation that is frequently used in textbooks (for example)

to describe languages. Owing to the fact that declarative notation does not specify the

order in which the processing associated with the description is to be carried out, reasoning

about the specification is relatively straight forward as equational reasoning and inductive

proofs can be used, rather than more complicated reasoning systems such as temporal logic.

Lazy Evaluation

Owing to the fact that lazy (or non-strict) evaluation delays computations until their re-

sults are needed, our functional combinators allow us to specify arbitrary dependencies

between semantic attributes (including inheritance from the right, where an attribute of a

syntactic component on the right hand side of a production rule can be defined in terms

of an attribute of some syntactic component on its right). The declarative nature of the

programming language, together with lazy evaluation, frees us from considering the order

in which the computations will take place.

In addition, lazy evaluation means that no attribute computation takes place until

required. Therefore even though the semantic rules and the syntactic rules are tightly inte-

grated (each executable production rule can be tested separately) no semantic action takes

place unless a syntactic parse is successful, and only then when the user requires the result.

For example, suppose if the user only wants the results of the first successful parse, then no

other attribute computations are carried out. This can be achieved in a non-lazy language

only through having a two-pass process (create the syntax tree and then compute values

for chosen trees - which results in a separation of the syntax and semantics for each rule)

or implement a complex process that mimics laziness.
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The Kill Attribute

Our approach allows us to impose restrictions with the Kill attribute. As our evaluation

strategy is lazy, this Kill attribute prevents our one-pass parsing method from generating

unneeded trees, which would otherwise be generated if we had used a two-pass strategy.

Although some capabilities of the Kill attribute (phenomenon that can be accommodated

by CFGs e.g., number-gender agreements) can be achieved in a two-pass strategy by adding

extra grammar rues, that would require extra computational time for processing the added

rules.

Memoization

Memoization causes the reuse of results of functions that have been previously computed.

The use of the functional state-monad allows the procedural aspects of memoization to be

hidden in the executable specification. In fact, the developer of the executable specification

does not even require knowing that memoization is taking place. In particular, there is no

effect on the modularity of the specification, which mirrors the modularity of the grammar.

The use of memoization is quite different to dynamic programming where the developer

needs to think about which results are going to be reused and then develops the program

accordingly. Thus, the structure of the program is affected by the reuse of results. This is

not the case with memoization, which does not influence the structure of the program at

all (other than the insertion of the combinatory ”memoize” in front of functions which are

to be memoized.
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Chapter 2

Modular and Efficient Top-Down

Parsing for Ambiguous

Left-Recursive Grammars

This paper was published as:
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2.1 Introduction

Top-down parsers can be built as a set of mutually-recursive processes. Such implemen-

tations are modular in the sense that parsers for terminals and simple non-terminals can

be built and tested first. Subsequently, parsers for more complex non-terminals can be

constructed and tested. Koskimies (1990)[1], and Nederhof and Koster (1993) [2] discuss

this and other advantages of top-down parsing.

In functional and logic programming, top-down parsers can be built using parser com-

binators (e.g. see [3] for a discussion of the origins of parser combinators, and [4] for a dis-

cussion of their use in natural-language processing) and definite clause grammars (DCGs)

respectively. For example, consider the following grammar, in which s stands for sentence,

np for nounphrase, vp for verbphrase, and det for determiner:

s ::= np vp

np ::= noun | det noun

vp ::= verb np

det ::= ’a’ | ’t’

noun ::= ’i’ | ’m’ | ’p’ | ’b’

verb ::= ’s’

A set of parsers for this grammar can be constructed in the Haskell functional program-

ming language as follows, where term, ‘orelse‘, and ‘thenS‘ are appropriately-defined

higher-order functions called parser combinators. (Note that backquotes surround infix

functions in Haskell).

s = np ‘thenS‘ vp

np = noun ‘orelse‘ (det ‘thenS‘ noun)

vp = verb ‘thenS‘ np

det = term ’a’ ‘orelse‘ term ’t’

noun = term ’i’ ‘orelse‘ term ’m’

‘orelse‘ term ’p’

‘orelse‘ term ’b’
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verb = term ’s’

Note that the parsers are written directly in the programming language, in code which

is similar in structure to the rules of the grammar. As such, the implementation can be

thought of as an executable specification with all of the associated advantages. In particular,

this approach facilitates modular piecewise construction and testing of component parsers.

It also allows parsers to be defined to return semantic values directly instead of intermediate

parse results, and parsers to be parameterized in order to accommodate context-sensitive

languages (e.g. [5]). Also, in functional programming, the type checker can be used to catch

errors in parsers attributed with semantic actions.

Parser combinators and DCGs have been used extensively in applications such as proto-

typing of compilers, and the creation of natural language interfaces to databases, search en-

gines, and web pages, where complex and varied semantic actions are closely integrated with

syntactic processing. However, both techniques are based on top-down recursive descent

search with backtracking. Commonly used implementations have exponential complexity

for ambiguous languages, cannot handle left-recursion, and do not produce compact repre-

sentations of parse trees. (Note, a left-recursive grammar is one in which a non-terminal p

derives an expansion p .. headed with a p either directly or indirectly. Application of a

parser for such a grammar results in infinite descent.) These shortcomings limit the use of

parser combinators and DCGs especially in natural-language processing.

The problem of exponential time complexity in top-down parsers constructed as sets

of mutually-recursive functions has been solved by Norvig (1991) [6] who uses memotables

to achieve polynomial complexity. Norvig’s technique is similar to the use of dynamic

programming and state sets in Earley’s algorithm [7], and tables in the CYK algorithm of

Cocke, Younger and Kasami. The basic idea in Norvig’s approach is that when a parser is

applied to the input, the result is stored in a memotable for subsequent reuse if the same

parser is ever reapplied to the same input. In the context of parser combinators, Norvig’s

approach can be implemented using a function memoize to selectively “memoize” parsers.

In some applications, the problem of left-recursion can be overcome by transforming

the grammar to a weakly equivalent non-left-recursive form. (i.e. to a grammar which

derives the same set of sentences). Early methods of doing this resulted in grammars
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that are significantly larger than the original grammars. This problem of grammar size

has been solved by Moore [8] who developed a method, based on a left-corner grammar

transformation, which produces non-left recursive grammars that are not much larger than

the originals. However, although converting a grammar to a weakly-equivalent form is

appropriate in some applications (such as speech recognition) it is not appropriate in other

applications. According to Aho, Sethi, and Ullman [9] converting a grammar to non-left

recursive form makes it harder to translate expressions containing left-associative operators.

Also, in NLP it is easier to integrate semantic actions with parsing when both leftmost and

rightmost parses of ambiguous input are being generated. For example, consider the first

of the following grammar rules:

np ::= noun | np conj np

conj ::= "and" | "or"

noun ::= "jim" | "su" | "ali"

and its non-left-recursive weakly equivalent form:

np ::= noun np’

np’ ::= conj np np’ | empty

The non-left-recursive form loses the leftmost parses generated by the left-recursive

form. Integrating semantic actions with the non-left-recursive rule in order to achieve

the two correct interpretations of input such as ["john", "and", "su", "or", "ali"] is

significantly harder than with the left-recursive form.

Several researchers have recognized the importance of accommodating left-recursive

grammars in top-down parsing, in general and in the context of parser combinators and

DCGs in particular, and have proposed various solutions. That work is described in detail

in section 2.3.

In this paper, we integrate Norvig’s technique with aspects of existing techniques for

dealing with left recursion. In particular: a) we make use of the length of the remaining

input as does Kuno [10], b) we keep a record of how many times each parser is applied to each

input position in a way that is similar to the use of cancellation sets by Nederhof and Koster
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[2], c) we integrate memoization with a technique for dealing with left recursion as does

Johnson [11], and d) we store “left-recursion counts” in the memotable, and encapsulate

the memoization process in a programming construct called a monad, as suggested by Frost

and Hafiz [12].

Our method includes a new technique for accommodating indirect left recursion which

ensures correct reuse of stored results created through curtailment of left-recursive parsers.

We also modify the memoization process so that the memotable represents the potentially

exponential number of parse trees in a compact polynomial sized form using a technique

derived from the chart parsing methods of Kay [13] and Tomita [14].

As an example use of our method, consider the following ambiguous left-recursive gram-

mar from Tomita (1985) in which pp stands for prepositional phrase, and prep for prepo-

sition. This grammar is left recursive in the rules for s and np. Experimental results using

larger grammars are given later.

s ::= np vp | s pp

np ::= noun | det noun | np pp

pp ::= prep np

vp ::= verb np

det ::= ’a’ | ’t’

noun ::= ’i’ | ’m’ | ’p’ | ’b’

verb ::= ’s’

prep ::= ’n’ | ’w’

The Haskell code below defines a parser for the above grammar, using our combinators:

s = memoize "s" ((np ‘thenS‘ vp) ‘orelse‘ (s ‘thenS‘ pp))

np = memoize "np" (noun ‘orelse‘ (det ‘thenS‘ noun)

‘orelse‘ (np ‘thenS‘ pp))

pp = memoize "pp" (prep ‘thenS‘ np)
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vp = memoize "vp" (verb ‘thenS‘ np)

det = memoize "det" (term ’a’ ‘orelse‘ term ’t’)

noun = memoize "noun" (term ’i’ ‘orelse‘ term ’m’

‘orelse‘ term ’p’

‘orelse‘ term ’b’)

verb = memoize "verb" (term ’s’)

prep = memoize "prep" (term ’n’ ‘orelse‘ term ’w’)

The following shows the output when the parser function s is applied to the input

string "isamntpwab", representing the sentence “I saw a man in the park with a bat”. It

is a compact representation of the parse trees corresponding to the several ways in which

the whole input can be parsed as a sentence, and the many ways in which subsequences

of it can be parsed as nounphrases etc. We discuss this representation in more detail in

subsection 2.4.4.

apply s "isamntpwab" =>

"noun"

1 ((1,2), [Leaf "i"])

4 ((4,5), [Leaf "m"])

7 ((7,8), [Leaf "p"])

10 ((10,11), [Leaf "b"])

"det"

3 ((3,4), [Leaf "a"])

6 ((6,7), [Leaf "t"])

9 ((9,10), [Leaf "a"])

"np"

1 ((1,2), [SubNode ("noun", (1,2))])

3 ((3,5), [Branch [SubNode ("det", (3,4)), SubNode ("noun",(4,5))]])

((3,8), [Branch [SubNode ("np", (3,5)), SubNode ("pp", (5,8))]])

((3,11),[Branch [SubNode ("np", (3,5)), SubNode ("pp", (5,11))],

Branch [SubNode ("np", (3,8)), SubNode ("pp", (8,11))]])

6 ((6,8), [Branch [SubNode ("det", (6,7)), SubNode ("noun",(7,8))]])

((6,11),[Branch [SubNode ("np", (6,8)), SubNode ("pp", (8,11))]])

9 ((9,11),[Branch [SubNode ("det", (9,10)),SubNode ("noun",(10,11))]])

"prep"
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5 ((5,6), [Leaf "n"])

8 ((8,9), [Leaf "w"])

"pp"

8 ((8,11),[Branch [SubNode ("prep",(8,9)), SubNode ("np", (9,11))]])

5 ((5,8), [Branch [SubNode ("prep",(5,6)), SubNode ("np", (6,8))]])

((5,11),[Branch [SubNode ("prep",(5,6)), SubNode ("np", (6,11))]])

"verb"

2 ((2,3), [Leaf "s"])

"vp"

2 ((2,5), [Branch [SubNode ("verb",(2,3)), SubNode ("np", (3,5))]])

((2,8), [Branch [SubNode ("verb",(2,3)), SubNode ("np", (3,8))]])

((2,11),[Branch [SubNode ("verb",(2,3)), SubNode ("np", (3,11))]])

"s"

1 ((1,5), [Branch [SubNode ("np", (1,2)), SubNode ("vp", (2,5))]])

((1,8), [Branch [SubNode ("np", (1,2)), SubNode ("vp", (2,8))],

Branch [SubNode ("s", (1,5)), SubNode ("pp", (5,8))]])

((1,11),[Branch [SubNode ("np", (1,2)), SubNode ("vp", (2,11))],

Branch [SubNode ("s", (1,5)), SubNode ("pp", (5,11))],

Branch [SubNode ("s", (1,8)), SubNode ("pp", (8,11))]]

Our method has two disadvantages: a) it has O(n4) time complexity, for ambiguous

grammars, compared with O(n3) for Earley-style parsers [7], and b) it requires the length

of the input to be known before parsing can commence.

Our method maintains all of the advantages of top-down parsing and parser combinators

discussed earlier. In addition, our method accommodates arbitrary context-free grammars,

terminates correctly and correctly reuses results generated by direct and indirect left recur-

sive rules. It parses ambiguous languages in polynomial time and creates polynomial-sized

representations of parse trees.

In many applications the advantages of our approach will outweigh the disadvantages.

In particular, the additional time required for parsing will not be a major factor in the

overall time required when semantic processing, especially of ambiguous input, is taken into

account.

We begin with some background material, showing how our approach relates to previous

work by others. We follow that with a detailed description of our method. Sections 2.5, 2.6,

and 2.7 contain informal proofs of termination and complexity, and a brief description of a

Haskell implementation of our algorithm. Complete proofs are available in the Appendix
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A, and the Haskell code are available from the author’s site cs.uwindsor.ca/~hafiz.

We tested our implementation on four natural-language grammars from Tomita (1986),

and on four abstract highly-ambiguous grammars. The results, which are presented in

section 2.8, indicate that our method is viable for many applications, especially those for

which parser combinators and definite clause grammars are particularly well-suited.

We present our approach with respect to parser combinators. However, our method

can also be implemented in other languages which support recursion and dynamic data

structures.

2.2 Top-Down Backtracking Recognition

Top-down recognizers can be implemented as a set of mutually recursive processes which

search for parses using a top-down expansion of the grammar rules defining non-terminals

while looking for matches of terminals with tokens on the input. Tokens are consumed from

left to right. Backtracking is used to expand all alternative right-hand-sides of grammar

rules in order to identify all possible parses. In the following we assume that the input is

a sequence of tokens input, of length l input the members of which are accessed through

an index j. Unlike commonly-used implementations of parser combinators, which produce

recognizers that manipulate subsequences of the input, we assume, as in Frost and Hafiz

(2006), that recognizers are functions which take an index j as argument and which return a

set of indices as result. Each index in the result set corresponds to the position at which the

recognizer successfully finished recognizing a sequence of tokens that began at position j .

An empty result set indicates that the recognizer failed to recognize any sequence beginning

at j. Multiple results are returned for ambiguous input.

According to this approach, a recognizer term t for a terminal t is a function which

takes an index j as input, and if j is greater than l input, the recognizer returns an empty

set. Otherwise, it checks to see if the token at position j in the input corresponds to the

terminal t. If so, it returns a singleton set containing j + 1, otherwise it returns the empty

set. For example, a basic recognizer for the terminal ’s’ can be defined as follows (note

that we use a functional pseudo code throughout, in order to make the paper accessible to
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a wide audience. We also use a list lookup offset of 1):

term_s = term ’s’

where term t j

= {} , if j > l_input

= {j + 1}, if jth element of input = t

= {} , otherwise

The empty recognizer is a function which always succeeds returning its input index in

a set:

empty j = {j}

A recognizer corresponding to a construct p | q in the grammar is built by combining

recognizers for p and q, using the parser combinator ‘orelse‘. When the composite recog-

nizer is applied to index j, it applies p to j, then it applies q to j, and subsequently unites

the resulting sets.:

(p ‘orelse‘ q) j = unite (p j) (q j)

e.g, assuming that the input is "ssss", then

(empty ‘orelse‘ term_s) 2 => {2, 3}

A composite recognizer corresponding to a sequence of recognizers p q on the right hand

side of a grammar rule, is built by combining those recognizers using the parser combinator

‘thenS‘. When the composite recognizer is applied to an index j, it first applies p to j,

then it applies q to each index in the set of results returned by p. It returns the union of

these applications of q.

(p ‘thenS‘ q) j = union (map q (p j))
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e.g., assuming that the input is "ssss", then

(term_s ‘thenS‘ term_s) 1 => {3}

The combinators above can be used to define composite mutually-recursive recognizers.

For example, the grammar sS ::= ’s’ sS sS | empty can be encoded as follows:

sS = (term_s ‘thenS‘ sS ‘thenS‘ sS) ‘orelse‘ empty

Assuming that the input is "ssss", the recognizer sS returns a set of five results, the

first four corresponding to proper prefixes of the input being recognized as an sS. The result

5 corresponds to the case where the whole input is recognized as an sS.

sS 1 => {1, 2, 3, 4, 5}

The method above does not terminate for left-recursive grammars, and has exponential

time complexity with respect to l input for non-left-recursive grammars. The complexity

is due to the fact that recognizers may be repeatedly applied to the same index during

backtracking induced by the operator ‘orelse‘. We show later how complexity can be

improved, using Norvig’s memoization technique. We also show, in section 2.4.4, how the

combinators term, ‘orelse‘, and ‘thenS‘ can be redefined so that the processors create

compact representations of parse trees in the memotable, with no effect on the form of the

executable specification.

2.3 Left Recursion and Top-Down Parsing

Several researchers have proposed ways in which left-recursion and top-down parsing can

coexist:

1) Kuno [10] was the first to use the length of the input to force termination of left-

recursive descent in top-down parsing. The minimal lengths of the strings generated by

the grammar on the continuation stack are added and when their sum exceeds the length
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of the remaining input, expansion of the current non-terminal is terminated. Dynamic

programming in parsing was not known at that time, and Kuno’s method has exponential

complexity.

2) Shiel [15] recognized the relationship between top-down parsing and the use of state

sets and tables in Earley and SYK parsers and developed an approach in which procedures

corresponding to non-terminals are called with an extra parameter indicating how many

terminals they should read from the input. When a procedure corresponding to a non-

terminal n is applied, the value of this extra parameter is partitioned into smaller values

which are passed to the component procedures on the right of the rule defining n. The

processor backtracks when a procedure defining a non-terminal is applied with the same

parameter to the same input position. The method terminates for left-recursion but has

exponential complexity.

3) Leermakers [16] introduced an approach which accommodates left-recursion through

“recursive ascent” rather than top-down search. Although achieving polynomial complexity

through memoization, the approach no longer has the modularity and clarity associated

with pure top-down parsing. Leermakers did not extend his method to produce compact

representations of trees.

4) Nederhof and Koster [2] introduced “cancellation” parsing in which grammar rules

are translated into DCG rules such that each DCG non-terminal is given a “cancellation

set” as an extra argument. Each time a new non-terminal is derived in the expansion of a

rule, this non-terminal is added to the cancellation set and the resulting set is passed on to

the next symbol in the expansion. If a non-terminal is derived which is already in the set

then the parser backtracks. This technique prevents non-termination, but loses some parses.

To solve this, for each non-terminal n, which has a left-recursive alternative 1) a function is

added to the parser which places a special token n at the front of the input to be recognized,

2) a DCG corresponding to the rule n ::= n is added to the parser, and 3) the new DCG

is invoked after the left-recursive DCG has been called. The approach accommodates left-

recursion and maintains modularity. An extension to it also accommodates hidden left

recursion which can occur when the grammar contains rules with empty right-hand sides.

The shortcoming of Nederhof and Koster’s approach is that it is exponential in the worst

case and that the resulting code is less clear as it contains additional production rules and

29



code to insert the special tokens.

5) Lickman [17] defined a set of parser combinators which accommodate left recursion.

The method is based on an idea by Philip Wadler in an unpublished paper in which he

claimed that fixed points could be used to accommodate left recursion. Lickman imple-

mented Wadler’s idea and provided a proof of termination. The method accommodates left

recursion and maintains modularity and clarity of the code. However, it has exponential

complexity, even for recognition.

6) Johnson [11] appears to have been the first to integrate memoization with a method

for dealing with left recursion in pure top-down parsing. The basic idea is to use the

continuation-passing style of programming (CPS) so that the parser computes multiple re-

sults, for ambiguous cases, incrementally. There appears to have been no attempt to extend

Johnson’s approach to create compact representations of parse trees. One explanation for

this could be that the approach is somewhat convoluted and extending it appears to be

very difficult. In fact, Johnson states, in his conclusion, that “an implementation attempt

(to create a compact representation) would probably be very complicated.”

7) Frost and Hafiz [12] defined a set of parser combinators which can be used to create

polynomial time recognizers for grammars with direct left recursion. Their method stores

left-recursive counts in the memotable and curtails parses when a count exceeds the length

of the remaining input. Their method does not accommodate indirect left recursion, nor

does it create parse trees.

Our new method combines many of the ideas developed by others: as with the approach

of Kuno (1965) we use the length of the remaining input to curtail recursive descent. Follow-

ing Shiel (1976), we pass additional information to parsers which is used to curtail recursion.

The information that we pass to parsers is similar to the cancellation sets used by Nederhof

and Koster (1993) and includes the number of times a parser is applied to each input posi-

tion. However, in our approach this information is stored in a memotable which is also used

to achieve polynomial complexity. Although Johnson (1995) also integrates a technique

for dealing with left recursion with memoization, our method differs from Johnson’s O(n3)

approach in the technique that we use to accommodate left recursion. Also, our approach

facilitates the construction of compact representations of parse trees whereas Johnson’s
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appears not to. In the Haskell implementation of our algorithm, we use a functional pro-

gramming structure called a monad to encapsulate the details of the parser combinators.

Lickman’s (1995) approach also uses a monad, but for a different purpose. Our algorithm

stores “left-recursion counts” in the memotable as does the approach of Frost and Hafiz

(2006). However, our method accommodates indirect left recursion and can be used to

create parsers, whereas the method of Frost and Hafiz can only accommodate direct left

recursion and creates recognizers not parsers.

2.4 The New Method

We begin by describing how we improve complexity of the recognizers defined in section

2.2. We then show how to accommodate direct and indirect left recursion. We end this

section by showing how recognizers can be extended to parsers.

2.4.1 Memoization

As in Norvig [6] a memotable is constructed during recognition. At first the table is empty.

During the process it is updated with an entry for each recognizer r i that is applied. The

entry consists of a set of pairs, each consisting of an index j at which the recognizer r i has

been applied, and a set of results of the application of r i to j.

The memotable is used as follows: whenever a recognizer r i is about to be applied to

an index j, the memotable is checked to see if that recognizer has ever been applied to that

index before. If so, the results from the memotable are returned. If not, the recognizer is

applied to the input at index j, the memotable is updated, and the results are returned.

For non-left-recursive recognizers, this process ensures that no recognizer is ever applied to

the same index more than once.

The process of memoization is achieved through the function memoize which is defined

as follows, where the update function stores the result of recognizer application in the table:

memoize label r_i j

= if lookup label j succeeds,
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return memotable result

else apply r_i to j,

update table, and return results

Memoized recognizers, such as the following, have cubic complexity (see later):

msS = memoize "msS"((ms ‘thenS‘ msS ‘thenS‘ msS) ‘orelse‘ empty)

ms = memoize "ms" term_s

2.4.2 Accommodating direct left recursion

In order to accommodate direct left recursion, we introduce a set of values c ij denoting

the number of times each recognizer r i has been applied to the index j. For non-left-

recursive recognizers this “left-rec count” will be at most one, as the memotable lookup

will prevent such recognizers from ever being applied to the same input twice. However,

for left-recursive recognizers, the left-rec count is increased on recursive descent (owing to

the fact that the memotable is only updated on recursive ascent after the recognizer has

been applied). Application of a recognizer r to an index j is failed whenever the left-rec

count exceeds the number of unconsumed tokens of the input plus 1. At this point no parse

is possible (other than spurious parses, which could occur with circular grammars — that

we want to reject). As illustration, consider the following branch being created during the

parse of two remaining tokens on the input (where N, P and Q are nodes in the parse search

space corresponding to non-terminals, and A, B and C to terminals or non-terminals):
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N

/ \

N A

/ \

N B

/ \

P C

/

Q

/

N

The last call of the parser for N should be failed owing to the fact that, irrespective of

what A, B, and C are, either they must require at least one input token, otherwise they must

rewrite to empty. If they all require a token, then the parse cannot succeed. If any of them

rewrite to empty, then the grammar is circular (N is being rewritten to N) and the last call

should be failed in either case.

Note that failing a parse when a branch is longer than the length of the remaining

input is incorrect as this can occur in a correct parse if recognizers are rewritten into other

recognizers which do not have “token requirements to the right”. For example, we cannot

fail the parse at P or Q as these could rewrite to empty without indicating circularity.

Also note that we curtail the recognizer when the left-rec count exceeds the number of

unconsumed tokens plus 1. The plus 1 is necessary to accommodate the case where the

recognizer rewrites to empty on application to the end of the input.

To make use of the left-rec counts, we simply modify the memoize function to refer

to an additional table called ctable which contains the left-rec counts c ij, and to check

and increment these counters at appropriate points in the computation: if the memotable

lookup for the recognizer r i and the index j produces a result, that result is returned.

However, if the memotable does not contain a result for that recognizer and that index, c ij

is checked to see if the recognizer should be failed because it has descended too far through

left-recursion. If so, memoize returns an empty set as result with the memotable unchanged.
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Otherwise, the counter c ij is incremented and the recognizer r i is applied to j, and the

memotable is updated with the result before it is returned. The function memoize defined

below, can now be applied to rules with direct left recursion.

memoize label r_i j =

if lookup label j succeeds

return memotable results

else if c_ij > (l_input)-j+1, return {}

else increment c_ij, apply r_i to j,

update memotable,

and return results

2.4.3 Accommodating indirect left recursion

We begin by illustrating how the method described above may return incomplete results

for grammars containing indirect left recursion.

Consider the following grammar, and subset of the search space, where the left and right

branches represent the expansions of the first two alternate right-hand-sides of the rule for

the non terminal S, applied to the same position on the input:

34



S ::= S then ..| Q | P | x S

P ::= S then . / \

Q ::= T S then .. Q

T ::= P | |

S then .. T

| |

P P

| |

S then.. S then ..

|

fail S

Suppose that the left branch occurs before the right branch, and that the left branch

was failed due to the left-rec count for S exceeding its limit. The results stored for P on

recursive ascent of the left branch would be an empty set. The problem is that the later

call of P on the right branch should not reuse the empty set of results from the first call

of P as they are incomplete with respect to the position of P on the right branch (i.e. if P

were to be re-applied to the input in the context of the right branch, the results would not

necessarily be an empty set). This problem is a result of the fact that S caused curtailment

of the results for P as well as for itself. This problem can be solved as follows:

1) Pass left-rec contexts down the parse space. We need additional information when

storing and considering results for reuse. We begin by defining the “left-rec-context” of a

node in the parse search space as a list of the following type, containing for each index, the

left-rec count for each recognizer, including the current recognizer, which have been called

in the search branch leading to that node:

[(index,[(recog label,left rec count)])]

2) Generate the reasons for curtailment when computing results. For each result we need

to know if the subtrees contributing to it have been curtailed through a left-rec limits, and

if so, which recognizers, at which indices, caused the curtailment. A list of (recog label,
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index) pairs which caused curtailment in any of the subtrees is returned with the result.

‘orelse‘ and ‘thenS‘ are modified, accordingly, to merge these lists, in addition to merging

the results from subtrees.

3) Store results in the memotable together with a subset of the current left-rec context

corresponding to those recognizers which caused the curtailment. When a result is to be

stored in the memotable for a recognizer P, the list of recognizers which caused curtailment

(if any) in the subtrees contributing to this result is examined. For each recognizer S which

caused curtailment at some index, the current left-rec counter for S at that index (in the

left-rec context for P) is stored with the result for P. This means that the only part of the

left-rec context of a node, that is stored with the result for that node, is a list of those

recognizers and current left-rec counts which had an effect on curtailing the result. The

limited left-rec context which is stored with the result is called the “left-rec context of the

result”.

4) Consider results for reuse. Whenever a memotable result is being considered for

reuse, the left-rec-context of that result is compared with the left-rec-context of the current

node in the parse search. The result is only reused if, for each recognizer and index in the

left-rec context of the result, the left-rec-count is smaller than or equal to the left-rec-count

of that recognizer and index in the current context. This ensures that a result stored for

some application P of a recognizer at index j is only reused by a subsequent application P’

of the same recognizer at the same position, if the left-rec context for P’ would constrain

the result more, or equally as much, as it had been constrained by the left-rec context for

P at j. If there were no curtailment, the left-rec context of a result would be empty and

that result can be reused anywhere irrespective of the current left-rec context.

2.4.4 Extending recognizers to parsers

Instead of returning a list of indices representing successful end points for recognition,

parsers also return the parse trees. However, in order that these trees be represented in

a compact form, they are constructed with reference to other trees that are stored in the

memotable, enabling the explicit sharing of common subtrees, as in Kay’s [13] and Tomita’s

[14] methods. The example in section 2.1 illustrates the results returned by a parser.
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Parsers for terminals return a leaf value together with an endpoint, stored in the mem-

otable as illustrated below, indicating that the terminal "s" was identified at position 2 on

the input:

"verb" 2 ((2,3),[Leaf "s"])

The combinator ‘thenS‘ is extended so that parsers constructed with it return parse

trees which are represented using reference to their immediate subtrees. For example:

"np" ......

3 ((3,5),[Branch[SubNode("det", (3,4)),

SubNode("noun",(4,5))]])

This memotable entry shows that a parse tree for a nounphrase "np" has been identified,

starting at position 3 and finishing at position 5, and which consists of two subtrees, corre-

sponding to a determiner and a noun.

The combinator ‘orelse‘ unites results from two parsers and also groups together trees

which have the same begin and end points. For example:

"np" .........

3 ((3,5), [Branch[SubNode("det", (3,4)), SubNode("noun",(4,5))]])

((3,8), [Branch[SubNode("np", (3,5)), SubNode("pp", (5,8))]])

((3,11),[Branch[SubNode("np", (3,5)), SubNode("pp", (5,11))],

Branch[SubNode("np", (3,8)), SubNode("pp", (8,11))]])

which shows that four parses of a nounphrase "np" have been found starting at position 3,

two of which share the endpoint 11.
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An important feature is that trees for the same syntactic category having the same

start/end points are grouped together and it is the group that is referred to by other trees

of which it is a constituent. For example, in the following the parse tree for a "vp" spanning

positions 2 to 11 refers to a group of subtrees corresponding to the two parses of an "np"

both of which span positions 3 to 11:

"vp" 2 (["np"],[])

((2,5), [Branch[SubNode("verb",(2,3)), SubNode("np", (3,5))]])

((2,8), [Branch[SubNode("verb",(2,3)), SubNode("np", (3,8))]])

((2,11),[Branch[SubNode("verb",(2,3)), SubNode("np", (3,11))]])

2.5 Termination

The only source of iteration is in recursive function calls. Therefore, proof of termination

is based on the identification of a measure function which maps the arguments of recursive

calls to a well-founded ascending sequence of integers.

Basic recognizers such as term ’i’ and the recognizer empty have no recursion and

clearly terminate for finite input. Other recognizers that are defined in terms of these basic

recognizers, through mutual and nested recursion, are applied by the memoize function

which takes a recognizer and an index j as input and which accesses the memotable. An

appropriate measure function maps the index and the set of left–rec values to an integer,

which increases by at least one for each recursive call. The fact that the integer is bounded by

conditions imposed on the maximum value of the index, the maximum values of the left-rec

counters, and the maximum number of left-rec contexts, establishes termination. Extending

recognizers to parsers does not involve any additional recursive calls and consequently, the

proof also applies to parsers. A formal proof is available in the Appendix A.1.2.
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2.6 Complexity

The following is an informal discussion. A formal proof is available in the Appendix A.1.3.

We begin by showing that memoized non-left-recursive and left-recursive recognizers

have a worst-case time complexities of O(n3) and O(n4) respectively, where n is the number

of tokens in the input. The proof proceeds as follows: ‘orelse‘ requires O(n) operations

to merge the results from two alternate recognizers provided that the indices are kept in

ascending order. ‘then‘ involves O(n2) operations when applying the second recognizer in a

sequence to the results returned by the first recognizer. (The fact that recognizers can have

multiple alternatives involving multiple recognizers in sequence increases cost by a factor

that depends on the grammar, but not on the length of the input). For non-left-recursive

recognizers, memoize guarantees that each recognizer is applied at most once to each input

position. It follows that non-left recursive recognizers have O(n3) complexity. Recognizers

with direct left recursion can be applied to the same input position at most n times. It

follows that such recognizers have O(n4) complexity. In the worst case a recognizer with

indirect left recursion could be applied to the same input position n * nt times where nt

is the number of nonterminals in the grammar. This worst case would occur when every

nonterminal was involved in the path of indirect recursion for some nonterminal. Complexity

remains O(n4).

The only difference between parsers and recognizers is that parsers construct and store

parts of parse trees rather than end points. We extend the complexity analysis of recognizers

to that of parsers and show that for grammars in Chomsky Normal Form (CNF) (i.e.

grammars whose right-hand-sides have at most two symbols, each of which can be either

a terminal or a non-terminal), the complexity of non-left recursive parsers is O(n3) and of

left-recursive parsers it is O(n4). The analysis begins by defining a “parse tuple” consisting

of a parser name p, a start/end point pair (s, e), and a list of parser names and end/point

pairs corresponding to the first level of the parse tree returned by p for the sequence of tokens

from s to e. (Note that this corresponds to an entry in the compact representation). The

analysis then considers the effect of manipulating sets of parse tuples, rather than endpoints

which are the values manipulated by recognizers. Parsers corresponding to grammars in

CNF will return, in the worst case, for each start/end point pair (s, e) , (((e - s) + 1) *
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t2) parse tuples, where t is the number of terminals and non-terminals in the grammar.

It follows that there are O(n) parse tuples for each parser and begin/endpoint pair. Each

parse tuple corresponds to a bi-partition of the sequence starting at s and finishing at e by

two parsers (possibly the same) from the set of parsers corresponding to terminals and non-

terminals in the grammar. It is these parse tuples that are manipulated by ‘orelse‘ and

‘thenS‘. The only effect on complexity of these operations is to increase the complexity

of ‘orelse‘ from O(n) to O(n2), which is the same as the complexity of ‘thenS‘. Owing

to the fact that the complexity of ‘thenS‘ had the highest degree in the application of a

compound recognizer to an index, increasing the complexity of ‘orelse‘ to the same degree

in parsing has no effect on the overall complexity of the process.

The representation of trees in the memotable has one entry for each parser. In the worst

case, when the parser is applied to every index, the entry has n sub-entries, corresponding

to n begin points. For each of these sub-entries there are up to n sub-sub-entries, each

corresponding to an end point of the parse. Each of these sub-entries contains O(n) parse

tuples as discussed above. It follows that the size of the compact representation is O(n3).

2.7 Implementation

We have implemented our method in the pure functional programming language Haskell.

We use a monad [18] to implement memoization. Use of a monad allows the memotable

to be systematically threaded through the parsers while hiding the details of table update

and reuse, allowing a clean and simple interface to be presented to the user. The complete

Haskell code is available from any of the authors.

2.8 Experimental Results

In order to provide evidence of the low-order polynomial costs and scalability of our method,

we conducted a limited evaluation with respect to four practical natural-language grammars

used by Tomita ([14]) when comparing his algorithm with Earley’s, and four variants of an

abstract highly ambiguous grammar from Aho and Ullman [19]. Our Haskell program was
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Input No. of Our algorithm (complete parsing)-PC Tomitas (complete parsing)-DEC 20 Earleys (recognition only)-DEC 20

length Parses G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4

Input from Tomitas sentence set 1. Timings are in seconds.

19 346 0.02 4.79 7.66

26 1,464 0.03 8.66 14.65

Input from Tomitas sentence set 2. Timings are in seconds.

22 429 0.00 0.00 0.03 0.05 2.80 6.40 4.74 19.93 2.04 7.87 7.25 42.75

31 16,796 0.00 0.02 0.05 0.09 6.14 14.40 10.40 45.28 4.01 14.09 12.06 70.74

40 742,900 0.03 0.08 0.11 0.14 11.70 28.15 18.97 90.85 6.75 22.42 19.12 104.91

Figure 2.1: Informal comparison with Tomita/Earley results

compiled using the Glasgow Haskell Compiler 6.6 (the code has not yet been tuned to obtain

the best performance from this patform). We used a 3GHz/1GB PC in our experiments.

2.8.1 Tomita’s Grammars

The Tomita grammars used were: G1 (8 rules), G2 (40 rules), G3 (220 rules), and G4

(400 rules). We used two sets of input: a) the three most-ambiguous inputs from Tomita’s

sentence set 1 of lengths 19, 26, and 26 which we parsed with G3 (as did Tomita), and

b) three inputs of lengths 4, 10, and 40, with systematically increasing ambiguity, chosen

from Tomita’s sentence set 2, which he generated automatically using the formula:

noun verb det noun (prep det noun)∗

The results, which are tabulated in figure 2.1, show our timings and those recorded

by Tomita for his original algorithm and for an improved Earley method, using a DEC-20

machine ([14]).

Considered by themselves our timings are low enough to suggest that our method is

feasible for use in small to medium applications, such as NL interfaces to databases or

rhythm analysis in poetry. Such applications typically have modest grammars (no more

than a few hundred rules) and are not required to parse huge volumes of input.

Clearly there can be no direct comparison against years-old DEC-20 times, and improved

versions of both of these algorithms do exist. However, we point to some relevant trends in

the results. The increases in times for our method roughly mirror the increases shown for
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Tomita’s algorithm, as grammar complexity and/or input size increase. This suggests that

our algorithm scales adequately well, and not dissimilarly to the earlier algorithms.

2.8.2 Highly ambiguous abstract grammars

We defined four parsers as executable specifications of four variants of a highly-ambiguous

grammar introduced by Aho and Ullman [19] when discussing ambiguity: an unmemoized

non-left–recursive parser s, a memoized version ms, a memoized left–recursive version sml,

and a left–recursive version with all parts memoized. (This improves efficiency similarly to

converting the grammar to Chomsky Normal Form.):

s = (term ’a’ ‘thenS‘ s ‘thenS‘ s)

‘orelse‘ empty

sm = memoize "sm"

((term ’a’ ‘thenS‘ sm ‘thenS‘ sm)

‘orelse‘ empty)

sml = memoize "sml"

((sml ‘thenS‘ sml ‘thenS‘ term ’a’)

‘orelse‘ empty)

smml = memoize "smml"

((smml ‘thenS‘

(memoize "smml_a"

(smml ‘thenS‘ term ’a’)))

‘orelse‘ empty)

We chose these four grammars as they are highly ambiguous. According to Aho and

Ullman [19], s generates over 128 billion complete parses of an input consisting of 24 ‘a’’s.

Although the left-recursive grammar does not generate exactly the same parses, it generates
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the same number of parses, as it matches a terminal at the end of the rule rather than at

the start.

Input No. of parses Seconds to generate the

length excluding packed representation

partial parses of full and partial parses

s sm sml smml

6 132 1.22 0.00 0.00 0.00

12 208,012 out of 0.00 0.00 0.02

space

24 1.29e+12 0.08 0.13 0.06

48 1.313e+26 0.83 0.97 0.80

Figure 2.2: Times to compute forest for n

These results show that our method can accommodate massively-ambiguous input in-

volving the generation of large and complex parse forests. For example, the full forest for

n=48 contains 1,225 choice nodes and 19,600 branch nodes. Note also that the use of more

memoization in smml reduces the cost of left-rec checking.

2.9 Concluding Comments

We have extended previous work of others on modular parsers constructed as executable

specifications of grammars, in order to accommodate ambiguity and left recursion in poly-

nomial time and space. We have implemented our method as a set of parser combinators

in the functional programming language Haskell, and have conducted experiments which

demonstrate the viability of the approach.

The results of the experiments suggest that our method is feasible for use in small to

medium applications which need parsing of ambiguous grammars. Our method, like other
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methods which use parser combinators or DCGs, allows parsers to be created as executable

specifications which are “embedded” in the host programming language. It is often claimed

that this embedded approach is more convenient than indirect methods which involve the

use of separate compiler tools such as yacc, for reasons such as support from the host

language (including type checking) and ease of use. The major advantage of our method is

that it increases the type of grammars that can be accommodated in the embedded style,

by supporting left recursion and ambiguity. This greatly increases what can be done in this

approach to parser construction, and removes the need for non-expert users to painfully

rewrite and debug their grammars to avoid left recursion. We believe such advantages

balance well against any reduction in performance, especially when an application is being

prototyped.

The Haskell implementation is in its initial stage. We are in the process of modifying it

to improve efficiency, and to make better use of Haskell’s lazy evaluation strategy (e.g. to

return only the first n successful parses of the input).

Future work includes proof of correctness, analysis with respect to grammar size, test-

ing with larger natural language grammars, and extending the approach so that language

evaluators can be constructed as modular executable specifications of attribute grammars.
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3.1 Introduction

In functional programming, higher order functions called parser combinators can be used to

build basic parsers and to construct complex parsers for nonterminals from other parsers.

Parser combinators allow parsers to be defined in an embedded style, in code which is sim-

ilar in structure to the rules of the grammar. As such, implementations can be thought of

as executable specifications with all of the associated advantages. In addition, parser com-

binators use a top-down parsing strategy which facilitates modular piecewise construction

and testing.

Parser combinators have been used extensively in the prototyping of compilers and

processors for domain-specific languages such as natural language interfaces to databases,

where complex and varied semantic actions are closely integrated with syntactic processing.

However, simple implementations have exponential time complexity and inefficient repre-

sentations of parse results for ambiguous inputs. Their inability to handle left-recursion is

a long-standing problem. These shortcomings limit the use of parser combinators especially

in applications with large and complex grammars.

Various techniques have been developed by others to address some of these shortcomings.

However, none of that previous work has solved all of them.

The parser combinators that we present here are the first which can be used to create

executable specifications of ambiguous grammars with unconstrained left-recursion, which

execute in polynomial time, and which generate compact polynomial-sized representations

of the potentially exponential number of results for highly ambiguous input.

The combinators are based on an algorithm developed by Frost, Hafiz and Callaghan

[1]. That algorithm combines memoization with existing techniques for dealing with left

recursion. The memotables are modified to represent the potentially exponential number of

parse trees in a compact polynomial sized representation using a technique derived from [2]

and [3]. A novel technique is used to accommodate indirect as well as direct left recursion.

This paper has three objectives: 1) To make the algorithm of Frost, Hafiz and Callaghan

known to a wider audience beyond the Computational Linguistics community. In particular

by the functional and logic programming communities both of which have a long history of
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creating parsers as executable specifications (using parser combinators and Definite Clause

Grammars respectively), 2) to introduce a library of parser combinators for immediate

use by functional programmers, and 3) to illustrate how a declarative language facilitates

the incremental implementation of a complex algorithm. Note that extension to include

semantics will be straightforward, and that this work can be seen as an important step

towards combinators that support general attribute grammars.

As example use of our combinators, consider the following ambiguous grammar from

Tomita (1986) [3]. The nonterminal s stands for sentence, np for nounphrase, vp for

verbphrase, det for determiner, pp for prepositional phrase, and prep for preposition. This

grammar is left recursive in the rules for s and np.

s ::= np vp | s pp np ::= noun | det noun | np pp

pp ::= prep np vp ::= verb np

det ::= "a" | "the" noun ::= "i" | "man" | "park" | "bat"

verb ::= "saw" prep ::= "in" | "with"

The Haskell code below defines a parser for the above grammar using our combinators

term, <+>, and *>.

data Label = S | ... | PREP

s = memoize S $ np *> vp <+> s *> pp

np = memoize NP $ noun <+> det *> noun <+> np *> pp

pp = memoize PP $ prep *> np

vp = memoize VP $ verb *> np

det = memoize DET $ term "a" <+> term "the"

noun = memoize NOUN $ term "i"<+>term "man"<+>term "park" <+> term "bat"

verb = memoize VERB $ term "saw"

prep = memoize PREP $ term "in" <+> term "with"

The next page shows the “prettyprinted” output when the parser function s is applied

to “i saw a man in the park with a bat”. The compact representation corresponds to

the several ways in which the whole input can be parsed as a sentence, and the many ways
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in which subsequences of it can be parsed as nounphrases etc. For example, the entry for NP

shows that nounphrases were identified starting at positions 1, 3, 6, and 9. Some of which

were identified as spanning positions 3 to 5, 8, and 11. Two were found spanning positions

3 to 11. The first of which consists of a NP spanning 3 to 5 followed by a PP spanning 5 to

11. (We define a span from x to y as consuming terminals from x to y - 1.)
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NOUN [1 ->[2 ->[Leaf "i"]]

,4 ->[5 ->[Leaf "man"]]

,7 ->[8 ->[Leaf "park"]]

,10->[11->[Leaf "bat"]]]

DET [3 ->[4 ->[Leaf "a"]]

,6 ->[7 ->[Leaf "the"]]

,9 ->[10->[Leaf "a"]]]

NP [1 ->[2 ->[SubNode NOUN (1,2)]]

,3 ->[5 ->[Branch [SubNode DET (3,4) , SubNode NOUN (4,5)]]

,8 ->[Branch [SubNode NP (3,5) , SubNode PP (5,8)]]

,11->[Branch [SubNode NP (3,5) , SubNode PP (5,11)]

,Branch [SubNode NP (3,8) , SubNode PP (8,11)]]]

,6 ->[8 ->[Branch [SubNode DET (6,7) , SubNode NOUN (7,8)]]

,11->[Branch [SubNode NP (6,8) , SubNode PP (8,11)]]]

,9 ->[11->[Branch [SubNode DET (9,10), SubNode NOUN (10,11)]]]]

PREP [5 ->[6 ->[Leaf "in"]]

,8 ->[9 ->[Leaf "with"]]]

PP [8 ->[11->[Branch [SubNode PREP (8,9), SubNode NP (9,11)]]]

,5 ->[8 ->[Branch [SubNode PREP (5,6), SubNode NP (6,8)]]

,11->[Branch [SubNode PREP (5,6), SubNode NP (6,11)]]]]

VERB [2 ->[3 ->[Leaf "saw"]]]

VP [2 ->[5 ->[Branch [SubNode VERB (2,3), SubNode NP (3,5)]]

,8 ->[Branch [SubNode VERB (2,3), SubNode NP (3,8)]]

,11->[Branch [SubNode VERB (2,3), SubNode NP (3,11)]]]]

S [1 ->[5 ->[Branch [SubNode NP (1,2), SubNode VP (2,5)]]

,8 ->[Branch [SubNode NP (1,2), SubNode VP (2,8)]

,Branch [SubNode S (1,5), SubNode PP (5,8)]]

,11->[Branch [SubNode NP (1,2), SubNode VP (2,11)]

,Branch [SubNode S (1,5), SubNode PP (5,11)]

,Branch [SubNode S (1,8), SubNode PP (8,11)]]]]

Parsers constructed with our combinators have O(n3) worst case time complexity for

non-left-recursive ambiguous grammars (where n is the length of the input), and O(n4)

for left recursive ambiguous grammars. This compares well with O(n3) limits on standard

algorithms for CFGs such as Earley-style parsers (Earley 1970). The increase to n4 is due
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to expansion of the left recursive nonterminals in the grammar. Experimental evidence

suggests that typical performance is closer to O(n3), possibly because few subparsers are

left recursive and hence the O(n3) term predominates. Experimental evaluation involved

four natural-language grammars from (Tomita 1986), four variants of an abstract highly-

ambiguous grammar, and a medium-size natural-language grammar with 5,226 rules. The

potentially-exponential number of parse trees for highly-ambiguous input are represented

in polynomial space as in Tomita’s algorithm.

We begin with background material followed by a detailed description of the Haskell

implementation. Experimental results, related work, and conclusions are given in sections

3.3.4, 3.3.5 and 3.3.6. Formal proofs of termination and complexity are available in the

Appendix 1.1 and 1.3., and the code of the initial Haskell implementation, are available at:

http://cs.uwindsor.ca/~hafiz/SyntaxParser/Demonstration.hs

3.2 Background

3.2.1 Top down parsing and memoization

Top-down parsers search for parses using a top-down expansion of the grammar rules.

Tokens are consumed from left to right. Inclusive choice is used to accommodate ambiguity

by expanding all alternative right-hand-sides of grammar rules. Simple implementations

do not terminate for left-recursive grammars, and have exponential time complexity with

respect to the length of the input for non-left-recursive ambiguous grammars.

The problem of exponential time complexity in top-down parsers constructed as sets

of mutually-recursive functions has been solved by Norvig [4]. His technique is similar to

the use of dynamic programming and state sets in Earley’s algorithm [5], and tables in

the CYK algorithm of Cocke, Younger and Kasami. The key idea is to store results of

applying a parser p at position j in a memotable and to reuse results whenever the same

situation arises. It can be implemented as a wrapper function memoize which can be applied

selectively to component parsers.
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3.2.2 The need for left recursion

Left-recursion can be avoided by transforming the grammar to a weakly equivalent non-

left-recursive form (i.e. to a grammar which derives the same set of sentences, but does

not generate the same set of parse trees). Such transformation has two disadvantages: 1)

it is error prone, especially for non-trivial grammars, and 2) the loss of some parses (as

illustrated in the example in [1]) complicates the integration of semantic actions, especially

in NLP.

3.2.3 An introduction to parser combinators

The details in this description have been adapted to our approach, and are limited to

recognition. We extend the technique to parsers later. Assume that the input is a sequence

of tokens input, of length #input the members of which are accessed through an index

j. Recognizers are functions which take an index j as argument and which return a set

of indices. Each index in the result set corresponds to a position at which the parser

successfully finished recognizing a sequence of tokens that began at position j. An empty

result set indicates that the recognizer failed to recognize any sequence beginning at j. The

result for an ambiguous input is a set with more than one element. This use of indices

instead of the more conventional subsequence of input is a key detail of the approach: we

need the positions to index into the memotables.

A recognizer term ’x’ for a terminal ’x’ is a function which takes an index j as input,

and if j is less than #input and if the token at position j in the input corresponds to the

terminal ’x’, it returns a singleton set containing j + 1, otherwise it returns the empty

set. The empty recognizer is a function which always succeeds returning a singleton set

containing the current position. A recognizer for alternation p|q is built by combining

recognizers for p and q, using the combinator <+>. When the composite recognizer is

applied to index j, it applies p to j, applies q to j, and subsequently unites the resulting

sets.

A composite recognizer corresponding to a sequence of recognizers p q on the right hand

side of a grammar rule, is built by combining those recognizers using the parser combinator
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*>. When the composite recognizer is applied to an index j, it first applies p to j, then it

applies q to each index in the set of results returned by p. It returns the union of these

applications of q. The combinators term, empty, <+> and *> are defined (in functional

pseudo code) as follows:

term t j =


{} , j ≥ #input

{j + 1} , jth element of input = t

{} , otherwise

empty j = {j}

(p <+> q) j = (p j) ∪ (q j)

(p *> q) j =
⋃

(map q (p j))

The combinators can be used to define composite mutually-recursive recognizers. For

example, the grammar s ::= ’x’ s s | empty can be encoded as

s = (term ’x’ *> s *> s) <+> empty. Assuming the input is “xxxx”, then:

(empty <+> term ’x’) 2 => {2,3}

(term ’x’ *> term ’x’) 1 => {3}

s 0 => {4, 3, 2, 1, 0}

The last four values in the result for s 0 correspond to proper prefixes of the input being

recognized as an s. The result 4 corresponds to the case where the whole input is recognized

as an s. Note that we have used sets in this explanation to simplify later development of

the combinators.
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3.3 The Combinators

3.3.1 Preliminaries

The actual implementation of the combinators *> and <+> for plain recognizers in Haskell is

straightforward, and makes use of a library for Sets of Ints. An excerpt is given below. In

this fragment and the ones that follow, we make some simplifications to ease presentation of

the key details. Full working code is available from the URL given in Section 3.1. We omit

details of how we access the input throughout this paper, treating it as a constant value.

type Pos = Int

type PosSet = IntSet

type R = Pos -> PosSet

(<+>) :: R -> R -> R

p <+> q = \r -> union (p r) (q r)

(*>) :: R -> R -> R

p *> q = \r -> unions $ map q $ elems $ p r

parse :: R -> PosSet

parse p = p 0

In the following we develop the combinators *> and <+> incrementally, by adding new

features one at a time in each subsection. We begin with memoization, then direct left recur-

sion, then indirect left recursion, then parsing (to trees). The revised definitions accompany

new types which indicate a particular version of the combinator. The modifications to <+>

are omitted when they are reasonably straightforward or trivial.

3.3.2 Memoizing recognizers

We modify the combinators so that a memotable is used during recognition. At first the

table is empty. During the process it is updated with an entry for each recognizer that is

applied to a position. Recognizers to be memoized are labelled with values of a type chosen

by the programmer. These labels usually appear as node labels in resulting parse trees, but
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more generality is possible, e.g. to hold limited semantic information. We require only that

these labels be enumerable, i.e. have a unique mapping to and from Ints, a property that

we use to make table lookups more efficient by converting label occurrences internally to

Ints and using the optimized IntMap library.

The memotable is a map of memo label and start position to a result set. The combina-

tors are lifted to the monad level and the memotable is the state that is threaded through

the parser operations, and consulted and/or updated during the memoize operation. We

use a standard state monad:

type ILabel = Int

type RM memoLabel = Pos -> StateM (State memoLabel) PosSet

data StateM s t = State {unState:: s -> (t, s)}

type State nodeName = IntMap (IntMap PosSet)

(*>) :: RM l -> RM l -> RM l

p *> q = \r -> do end_p <- p r

end_qs <- mapM q (elems end_p)

return $ unions end_qs

The memoize function makes the decision regarding reuse of results. It is implemented

as a “wrapper” around other parsers, hence any sub-parser can be memoized. The function

checks whether an entry exists in the memotable for the given parser label and position,

returning the stored result if yes, otherwise it runs the parser and stores the results before

returning them. update_table adds the new information to the table. Note that the update

effect is to “overwrite” the previous information. The insertWith...insert combination

merges into the outer table (insertWith) a new inner table that discards (insert) any

previous entry for that label and start position. This is necessary to update the stored

information as (left) recursion unwinds (see section 3.3.3):

memoize :: Enum l => l -> RM l -> RM l

memoize e_name parser pos

= do mt <- get

case lookupT i_name pos mt of

Just res -> return res

Nothing -> do res <- parser pos

56



modify (update_table res)

return res

where

i_name = fromEnum e_name

update_table :: PosSet -> State l -> State l

update_table res = insertWith (\_ prev -> insert pos res prev)

i_name (singleton pos res)

3.3.3 Accommodating direct left recursion

To accommodate direct left recursion, we use “left-rec counts” cij denoting the number of

times a recognizer ri has been applied to an index j. For non-left-recursive recognizers cij

will be at most one. For left-recursive recognizers, cij is increased on recursive descent.

Application of a recognizer ri to an index j is curtailed whenever cij exceeds the number

of unconsumed tokens of the input plus 1. At this point no parse is possible (other than

spurious parses from cyclic grammars — which we want to curtail anyway.) As an illus-

tration, consider the following portion of the search space being created during the parse

of two remaining tokens on the input (where N, P and Q are nodes in the parse search

space corresponding to nonterminals. A, B and C are nodes corresponding to terminals or

nonterminals):

N

/ \

N A

/ \

N B

/ \

P C

/

Q

/

N

The last call of the parser for N should be curtailed owing to the fact that, irrespective
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of what A, B, and C are, either they must require at least one input token, or else they must

rewrite to empty. If they all require a token, then the parse cannot succeed. If any rewrite

to empty, then the grammar is cyclic (N is being rewritten to N). The last call should be

curtailed in either case.

Curtailing a parse when a branch is longer than the length of the remaining input

is incorrect as this can occur in a correct parse if recognizers are rewritten into other

recognizers which do not have “token requirements to the right”. Also, we curtail the

recognizer when the left-rec count exceeds the number of unconsumed tokens plus 1. The

plus 1 is necessary for the case where the recognizer rewrites to empty on application to

the end of the input.

This curtailment test is implemented by passing a “left-rec context” down the invocation

tree. The context is a frequency table of calls to the memoized parsers encountered on the

current chain.

type L_Context = [(ILabel, Int)]

type LRM memolabel = L_Context -> RM memolabel

Only *> and memoize need to be altered beyond propagating the information down-

wards. memoize checks before expanding a parser p to see if it has been called more than

there are tokens left in the input, and if so, returns an empty result, otherwise continues

as before though passing a context updated with an extra call to p. The alteration to *>

controls what context should be passed to q: the current context should only be passed

when p has consumed no tokens, i.e. has done nothing to break the left-recursive chain.

(*>) :: LRM l -> LRM l -> LRM l

p *> q = \ctxt r -> do end_p <- p ctxt r

let pass_ctxt e | e == r = ctxt

| otherwise = []

end_qs<-mapM (\e-> q (pass_ctxt e) e)(elems end_p)

return $ unions end_qs

memoize :: Enum l => l -> LRM l -> LRM l
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memoize e_name p ctxt pos

= do mt <- get

case lookupT i_name pos mt of

Just res -> return res

Nothing | depth_cutoff i_name ctxt >

(length_input - pos + 1) -> empty

| otherwise -> do

.. p (increment i_name ctxt) pos ..

where i_name = fromEnum e_name

depth_cutoff i e = case lookup i e of Nothing -> 0

Just fe -> fe

Notice what happens when unwinding the left-recursive calls. At each level, memoize

runs the parser and adds the results to the table for the given label and start position. This

table update, as mentioned earlier, overwrites previous information at the start position,

and therefore the table always contains the “best results so far”. Note that the algorithm

accommodates cyclic grammars. It terminates for such grammars with information being

stored in the memotable which can be subsequently used to identify cycles.

3.3.4 Accommodating indirect left recursion

We begin by illustrating how the method above may return incomplete results for grammars

containing indirect left recursion. Consider the following grammar, and subset of the search

space, where the left and right branches represent the expansions of the first two alternate

right-hand-sides of the rule for the nonterminal S, applied to the same position on the input:

S ::= S ..| Q | P | x S

P ::= S .. / + \

Q ::= T S .. Q

T ::= P | |

S .. T

| |

P P
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| |

S .. S ..

|

curtail S

Suppose that the branch for the left alternative is expanded before the right branch

during the search, and that the left branch is curtailed due to the left-rec count for S

exceeding its limit. The results stored for P on recursive ascent of the left branch is an

empty set. The problem is that the later call of P on the right branch should not reuse

the empty set of results from the first call of P as they are incomplete with respect to the

position of P on the right branch (i.e. if P were to be reapplied to the input in the context

of the right branch, the results would not necessarily be an empty set.) This problem is a

result of the fact that, on the left branch, S caused curtailment of the results for P as well

as for itself.

Our solution to this problem is as follows: 1) Pass left-rec contexts downwards as in

subsection 3.3.3. 2) Generate the reasons for curtailment when computing results. For each

result we need to know if the subtrees contributing to it have been curtailed through any

left-rec limit, and if so, which recognizers caused the curtailment. 3) Store results in the

memotable together with a subset of the current left-rec context corresponding to those

recognizers that caused the curtailment at the current position, and 4) Whenever a stored

result is being considered for reuse, the left-rec-context of that result is compared with the

left-rec-context of the current node in the parse space. The result is only reused if, for each

recognizer in the left-rec context of the result, the left-rec-count is smaller than or equal to

the left-rec-count in the current context. This ensures that a result stored for application

P of a recognizer at index j is only reused by a subsequent application P’ of the same

recognizer at the same position, if the left-rec context for P’ would constrain the result

more, or equally as much, as it had been constrained by the left-rec context for P at j. If

there were no curtailment, the left-rec context of a result would be empty and that result

can be reused anywhere irrespective of the current left-rec context.

This strategy extends the recognizer return type to include a set of labels that caused

curtailments during that parse. Note that we only collect information about curtailment for

the current position, so only collect results from q in the case where p consumed no input,
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i.e. where the endpoint of p is the same as the starting position.

type CurtailingNTs = IntSet

type UpResult = (CurtailingNTs, PosSet)

type State nodeName = IntMap (IntMap (L_Context,UpResult))

type CLRM memoLabel = L_Context -> Pos

-> StateM (State memoLabel) UpResult

(*>) :: CLRM l -> CLRM l -> CLRM l

p *> q = \ctxt r -> do (cut,end_p) <- p ctxt r

let pass_ctxt e | e == r = ctxt

| otherwise = []

merge_cuts e prev new

| e == r = union prev new

| otherwise = prev

join (prev_cut, prev_result) e

= do (new_cut, result) <- q (pass_ctxt e) e

return ( merge_cuts e prev_cut new_cut

, union prev_result result )

end_qs <- foldM join (cut, empty) end_p

return end_qs

The function <+> is modified to merge information from the subparsers:

(<+>) :: CLRM l -> CLRM l -> CLRM l

(p <+> q) inp cc = do (cut1,m) <- p inp cc

(cut2,n) <- q inp cc

return ( union cut1 cut2 , union m n )

When retrieving results, memoize compares the current context with the pruned stored

context. Reuse is only allowed if every label in the stored context appears in the current

context and is not less constrained in the current context. Otherwise, the parser is run

further in the current context to compute the results that were curtailed (and hence missing)

in the earlier call.

pruneContext :: CurtailingNTs -> L_Context -> L_Context
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pruneContext rs ctxt = [nc | nc@(n,c) <- ctxt, n ‘member‘ rs]

canReuse :: L_Context -> L_Context -> Bool

canReuse current stored

= and [ or [ cc >= sc | (cn,cc) <- current, sn == cn ]

| (sn,sc) <- stored ]

3.3.5 Building parse trees

Turning a recogniser into a parser is straightforward. A set of endpoints now becomes a

map of endpoints to lists of trees that end at that point. The memotable type is altered

to contain this new information: it stores tree results with their curtail set and a relevant

L context. The tree type is shown below.

data Tree l = Empty | Leaf Token | Branch [Tree l] | ...

type ParseResult memoLabel = [(Int, [Tree memoLabel])]

type UpResult memoLabel = (CurtailingNTs, ParseResult memoLabel)

data Stored memoLabel = Stored { s_stored :: UpResult memoLabel

, s_context :: L_Context

, s_results :: [(Int, Tree memoLabel)]}

type State memoLabel = IntMap (IntMap (Stored memoLabel))

type P memoLabel

= L_Context -> Pos -> StateM (State memoLabel) (UpResult memoLabel)

term parsers now return a list of leaf values with suitable endpoints. The empty parser

returns an empty tree. Alternative parses from <+> are merged by appending together the

lists of trees ending at the same point. The maps are held in ascending endpoint order to

give this operation an O(n) cost.

Sequences require *> to join all results of p with all results of q, forming new branch

nodes in the tree, and merging the resulting maps together. The former is achieved with

addP which combines a particular result from p with all subsequent results from q, and with

addToBranch which merges lists of trees from both the left and the right into a new list

of trees. Notice that this operation is a cross-product: it must pair each tree from the left

with each tree on the right. Tree merging or packing is done by concatenating results at

the same endpoint.

addP :: [[Tree l]] -> ParseResult l -> ParseResult l
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Test Set #Input #Parses Our method Tomita’s method

G1 G2 G3 G4 G1 G2 G3 G4

Tomita’s 19 346 0.02 4.79

sent.

set 1

26 1,464 0.03 8.66

Tomita’s 22 429 0.02 0.02 0.03 0.03 2.80 6.40 4.74 19.93

sent.

set 2

31 16,796 0.02 0.02 0.05 0.08 6.14 14.40 10.40 45.28

40 742,900 0.02 0.06 0.08 0.09 11.70 28.15 18.97 90.85

Figure 3.1: Informal comparison with Tomita’s results (timings in seconds)

addP left_result right_output

= [ (re , addToBranch left_result right_results)

| (re , right_results) <- right_output ]

addToBranch :: [[Tree l]] -> [[Tree l]] -> [[Tree l]]

addToBranch lts rts = [r ++ l | l <- lts, r <- rts]

The memoize function handles the rest of tree formation, both labelling and introducing

sharing to avoid an exponential number of trees. Labelling attaches the memo label to

the tree result. Sharing replaces the computed list of results with a single result that

contains sufficient information to find the original list which will be stored in the memo

table. This single result is then returned to higher parsers as a ‘proxy’ for the original

list. To avoid recomputation, we also store the proxy in the memotable to be retrieved by

subsequent parser lookups. This technique avoids exponential blow-up of the number of

results propagated by parsers. An example of the resulting compact representation of parse

trees has been given in Section 3.1.

It is important to note that the combinators support addition of semantics. The exten-

sion from trees to semantic values is straightforward via an “applicative functor” interface,

e.g. with operator (<*>) :: P (a -> b) -> P a -> P b. A monadic interface may also

be defined.
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3.4 Experimental Results

To provide evidence of low-order polynomial costs, we conducted a small scale evaluation

with respect to: a) Four practical natural-language grammars from Tomita ([3], Appendix

F, pages 171 to 184); b) Four variants of an abstract highly ambiguous grammar from Aho

and Ullman [6]; and c) A medium size NL grammar for an Air Travel Information System

maintained by Carroll [7].

Our Haskell program was compiled using the Glasgow Haskell Compiler 6.6. We used a

3GHz/1Gb PC. The performance reported is the “MUT time” as generated in GHC runtime

statistics, which is an indication of the time spent doing useful computation. It excludes

time spent in garbage collection. We also run with an initial heap of 100Mb and do not fix

an upper limit to heap size (apart from the machine’s capacity).

Note that the grammars we have tested are inherently expensive owing to the dense

ambiguity, and this is irrespective of which parsing method is used.

3.4.1 Tomita’ Grammars

The grammars used were: G1 (8 rules), G2 (40 rules), G3 (220 rules), and G4 (400 rules)

(Tomita 1986). We used two sets of input: a) the two most-ambiguous inputs from Tomita’s

sentence set 1 (page 185 App. G) of lengths 19 and 26 which we parsed with G3 (as

did Tomita), and b) three inputs of lengths 4, 10, and 40, with systematically increasing

ambiguity, from Tomita’s sentence set 2.

Figure 1 shows our times and those recorded by Tomita for his algorithm, using a

DEC-20 machine (Tomita 1986, pages 152 and 153 App. D). Clearly there can be no direct

comparison against years-old DEC-20 times. However, we note that Tomita’s algorithm was

regarded, in 1986, as being at least as efficient as Earley’s and viable for natural-language

parsing using machines that were available at that time. The fact that our algorithm is

significantly faster on current PCs supports the claim of viability for NL parsing.
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Input Length No. of parses s sm sml smml

6 132 1.22 - - -

12 208,012 * - - 0.02

24 1.289e+12 0.08 0.13 0.06

48 1.313e+26 0.83 0.97 0.80

Figure 3.2: Timings for highly-ambiguous grammars (time in seconds).

3.4.2 Highly ambiguous abstract grammars

We defined parsers for four variants of a highly-ambiguous grammar introduced by Aho and

Ullman [6]: an unmemoized non-left–recursive parser s, a memoized version ms, a memoized

left–recursive version sml, and a memoized left–recursive version with one sub-component

also memoized smml:

s = term ’x’ *> s *> s <+> empty

sm = memoize SM $ term ’x’ *> sm *> sm <+> empty

sml = memoize SML $ sml *> sml *> term ’x’ <+> empty

smml = memoize SMML $ smml *> (memoize SMML’ $ smml *> term ’x’) <+>empty

We chose these four grammars as they are highly ambiguous. The results in figure 2 show

that our algorithm can accommodate massively ambiguous input involving the generation

of large and complex parse forests. ‘*’ denotes memory overflow and ‘-’ denotes timings less

than 0.005 seconds.

3.4.3 ATIS – A medium size NL grammar

Here, we used a modified version of the ATIS grammar and test inputs generated by Carroll

[7], who extracted them from the DARPA ATIS3 treebank.

Our modifications include adding 634 new rules and 66 new nonterminals in order to

encode the ATIS lexicon as CFG rules. The resulting grammar consists of 5,226 rules with

258 nonterminals and 991 terminals. Carroll’s test input set contains 98 natural language
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sentences of average length 11.4 words. An example sentence is “i would like to leave on

thursday morning may fifth before six a.m.”.

Times to parse ranged from <1 second for the 5 shortest inputs, to between 12 and 19

seconds for the 5 longest inputs. The average time was 1.88 seconds. Given that our Haskell

implementation is in an early stage of development, these results suggest that it may be

possible to use our algorithm in applications involving large grammars.

3.5 Related Work

Our combinators implement the algorithm of Frost, Hafiz and Callaghan [1]. The relation-

ship of that algorithm to work by others on left recursion is discussed in detail in their

paper. The following is a brief summary: As in [8], the algorithm passes information to

parsers which is used in curtailment. The information passed is similar to the cancellation

sets used in [9]. The algorithm uses the memoization technique of Norvig [4] to achieve

polynomial complexity with parser combinators, as do Frost [10], Johnson [11], and Frost

and Hafiz [12]. Note that Ford [13] has also used memoization in functional parsing, but

for constrained grammars. Lickman [14] accommodates left-recursion using fixed points,

based on an unpublished idea by [15], but he does not address the problem of exponential

complexity. Johnson [11] integrates a technique for dealing with left recursion with memo-

ization. However, the algorithm on which we base our combinators differs from Johnson’s

O(n3) approach in the technique that we use to accommodate left recursion. Also, the

algorithm facilitates the construction of compact representations of parse results whereas

Johnson’s appears to be very difficult to extend to do this. As in [12] the algorithm inte-

grates “left-recursion counts” with memoization, and defines recognizers as functions which

take an index as argument and which return a set of indices. The algorithm is an improve-

ment in that it can accommodate indirect as well as direct left recursion and can be used

to create parsers in addition to recognizers.

Extensive research has been carried out on parser combinators. A comprehensive

overview of that work can be found in [16]. Our approach owes much to that work. In

particular, our combinators and motivation for their use follows from Burge [17] and Fair-

66



burn [18]. Also, we use Wadler’s [19] notion of failure as an empty list of successes, and

many of the ideas from Hutton and Meijer [20] on monadic parsing.

3.6 Concluding Comments

We have developed a set of parser combinators which allow modular and efficient parsers

to be constructed as executable specifications of ambiguous left-recursive grammars. The

accommodation of left recursion greatly increases what can be done in this approach, and

removes the need for non-expert users to painfully rewrite and debug their grammars to

avoid left recursion. We believe that such advantages balance well against any reduction in

performance, especially when an application is being prototyped, and in those applications

where the additional time required for parsing is not a major factor in the overall time

required when semantic processing, especially of ambiguous input, is taken into account.

Experimental results indicate that the combinators are feasible for use in small to medium

applications with moderately-sized grammars and inputs. The results also suggest that

with further tuning, they may be used with large grammars.

Future work includes proof of correctness, analysis w.r.t. grammar size, improvements

for very large grammars, detailed comparison with other combinators systems such as Par-

sec, reduction of reliance on monads in order to support some form of “on-line” computation,

comparison with functional implementations of GLR parsers, and extension of the approach

to build modular executable specifications of attribute grammars.
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Chapter 4

Lazy Combinators for Executable

Specifications of General Attribute

Grammars

This paper was published as:

Hafiz, R. and Frost, R. (2010) Lazy Combinators for Executable Specifications of Gen-

eral Attribute Grammars. Proceedings of the 12th International Symposium on Practical

Aspects of Declarative Languages (PADL), ACM-SIGPLAN, Pages : 167-182. January

2010, San Francisco, USA.
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4.1 Introduction

Attribute grammar (AG, [1]) systems have been constructed primarily as compilable parser-

generators for formal languages. Little work has been done where fully-general AGs have

been used to offer a platform for declaratively specifying directly-executable specifications

of natural languages (NL) to construct NL interfaces or NL database query processors.

Although it is highly modular, general top-down parsing is often ignored as it has been

traditionally categorized as expensive, and non-terminating while processing left-recursive

grammars. Also, no existing approach supports arbitrary attribute dependencies (including

dependencies from the right) in one-pass within a modular top-down system.

A platform that supports executable and declarative specifications of general AGs, offers

two benefits. From a practical viewpoint, application developers can specify and execute

their language descriptions directly without worrying about underlying evaluation methods.

Individual parts of descriptions can be efficiently tested piecewise, and modularity enables

systematic and incremental development. From a theoretical perspective, general AGs ac-

commodate ambiguity and left-recursion, which are needed for natural language processing.

As illustrated by Warren [2] and Frost et al. [3], transforming a left-recursive CFG to a

weakly equivalent non-left-recursive form may introduce loss of parses and lack of com-

pleteness in semantic interpretation. AGs with arbitrary attribute dependencies provide

unrestricted construction of declarative semantic rules, facilitating expression of complex

linguistic theories such as Montague semantics.

Frost et al. explained at PADL’08 [4] how top-down parsers can be constructed as un-

constrained executable CFGs. This paper describes an extension to accommodate semantics

with arbitrary attribute dependencies. We have achieved our objective by defining a set

of combinators for constructing modular, declarative and executable language processors,

similar to the denotational semantics textbook AG notation. Our combinators (e.g., <|>

and *> correspond to alternating and sequencing, rule_s and rule_i for synthesized and

inherited semantic rules, parser and nt for AG formation) are pure, higher-order and lazy

functions that ensure fully declarative specifications (Section 4.3.2 and 4.3.3).

We define attributes in terms of expressions (as our method is referentially transparent

and non-strict) that represent operations on syntax symbols, and these expressions are
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computed from the surrounding environment when required (Section 4.3.4). We execute

syntax and semantics in polynomial time using memoization to ensure that results for

a particular parser at a particular input position are computed at most once, and are

reused when required. We represent potentially exponential results for ambiguous input in

a compact and shared polynomial tree structure (Section 4.4).

We have provided a platform by implementing our algorithm in terms of higher-order

functions in Haskell. The declarative notation, arbitrary dependencies and non-strict evalu-

ation have the potential to allow us to discard unwanted parses using linguistic features such

as grammatical, semantic and number agreements, and this could extend the AG paradigm

by capturing characteristics of unification grammars, combinatory-categorical grammars

and type-theoretic grammars while being computationally efficient.

An Example: We illustrate our approach with a simple artificial repmax example [5, 6]

which we have extended to accommodate ambiguity, left-recursion and arbitrary attribute

dependencies in semantic rules. Our goal is to parse inputs such as “1 5 2 3 2” with the

ambiguous left-recursive CFG tree ::= tree tree num | num, num ::= 1|2|3|4|5|..., and to

extract all possible trees with all terminals replaced by the maximum value of the sequence

using sets of declarative semantics. The following example illustrates most of the aspects

of general AGs :

start(S0) :: = tree(T0)

{RepV al.T0 ↓ = MaxV al.T0 ↑}

tree(T0) :: = tree(T1) tree(T2) num(N1)

{MaxV al.T0↑ = Max(MaxV al.T1 ↑,MaxV al.T2 ↑,MaxV al.N1 ↑),

RepV al.T1 ↓ = RepV al.T0 ↓, RepV al.T2 ↓= RepV al.T0 ↓,

RepV al.N1 ↓ = RepV al.T0 ↓}

| num(N2)

{MaxV al.T0↑ = MaxV al.N2 ↑, RepV al.N2 ↓= RepV al.T0 ↓}

num(N0) :: = 1 {MaxV al.N0 ↑= 1}| ... |5{MaxV al.N0 ↑= 5}

According to this AG, there are two ambiguous outputs when start is applied to the

input sequence “1 5 2 3 2”:

72



tree

��
��

�
��

HH
HH

H
HH

tree

num

5

tree

��
��

HH
HH

tree

num

5

tree

num

5

num

5

num

5

tree

��
��

�
��

HH
HH

H
HH

tree

��
��

HH
HH

tree

num

5

tree

num

5

num

5

tree

num

5

num

5

Two parse trees for one input

Using our method, an “almost verbatim” executable specification of the above AG’s

representation can be constructed in Haskell as follows:

start = memoize Start parser (nt tree T0)

[rule_i RepVal Of T0 Is findRep [synthesized MaxVal Of T0]]

tree = memoize Tree parser

(nt tree T1 *> nt tree T2 *> nt num T3)

[rule_s MaxVal Of LHS Is

findMax [synthesized MaxVal Of T1

,synthesized MaxVal Of T2

,synthesized MaxVal Of T3]

,rule_i RepVal Of T1 Is findRep [inherited RepVal Of LHS]

........

<|> parser (nt num N1)

[rule_i RepVal Of N1 Is findRep [inherited RepVal Of LHS]

,rule_s MaxVal Of LHS Is findMax [synthesized MaxVal Of N1]]

num = memoize Num terminal term "1" [MaxVal 1] <|> ...

<|> terminal term "5" [MaxVal 5]

When the executable specification of start is applied to “1 5 2 3 2”, a compact rep-

resentation of ambiguous parse trees is generated with appropriate semantic values for re-
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spective grammar symbols. For example, tree parses the whole input (starting at position

1 and ending at position 6) in two ambiguous ways. The tree’s inherited and synthesized

attributes (represented with I and S) are associated with its start and end positions re-

spectively. The attributes are of the form attribute_type value e.g. RepVal 5. The

compact results have pointing sub-nodes (as node-name, unique-id pairs e.g. (Tree,T1))

with inherited and synthesized attributes:

Tree START at 1 ; Inherited atts: T0 RepVal 5

END at 6 ; Synthesized atts: T0 MaxVal 5

Branch

[SubNode (Tree,T1) ((1,[((I,T1),[RepVal 5])]),(4,[((S,T1),[MaxVal 5])]))

,SubNode (Tree,T2) ((4,[((I,T2),[RepVal 5])]),(5,[((S,T2),[MaxVal 3])]))

,SubNode (Num, T3) ((5,[((I,T3),[RepVal 5])]),(6,[((S,T3),[MaxVal 2])]))]

END at 6 ; Synthesized atts: T0 MaxVal 5

Branch

[SubNode (Tree,T1) ((1,[((I,T1),[RepVal 5])]),(2,[((S,T1),[MaxVal 1])]))

,SubNode (Tree,T2) ((2,[((I,T2),[RepVal 5])]),(5,[((S,T2),[MaxVal 5])]))

,SubNode (Num, T3) ((5,[((I,T3),[RepVal 5])]),(6,[((S,T3),[MaxVal 2])]))]

..................

Num START at 1 ; Inherited atts: N1 RepVal 5

END at 2 ; Synthesized atts: N1 MaxVal 1

Leaf (ALeaf "1",(S,N1))..................

START at 5 ; Inherited atts: N1 RepVal 5

END at 6 ; Synthesized atts: N1 MaxVal 2

Leaf (ALeaf "2",(S,N1))

This example illustrates that complex semantic rules can be accommodated. Our se-

mantic rules declaratively define arbitrary actions on the syntax symbols. For example, the

second semantic rule of tree is an inherited rule for the second parser T2, which depends

on its ancestor T0’s inherited attribute RepVal. The T0’s RepVal is dependent on its own

synthesized attribute MaxVal, and eventually this RepVal is threaded down as every num’s

inherited attribute.
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4.2 General AGs and Parser Combinators

In an attribute grammar, syntax rules of a context-free grammar are augmented with se-

mantic rules to describe the meaning of the sentences of a context-free language. Although

different definitions have been given [6, 7, 8, etc.], we prefer to define a general AG by im-

posing minimal restrictions on attribute dependencies: a CFG is 4-tuple G = (N,T, P, S),

where N is a finite set of non-terminals, T is a finite-set of terminals, P is a finite-set of

syntax rules, S is the start non-terminal , N ∩T = φ and (∀pi ∈ P ) pi is of the form a ::= b

where a ∈ N and b ∈ (N ∪ T )∗.

An AG can be formed from G as a 3-tuple AG = (G,A,R), where A is a finite set

of attributes and R is a finite set of semantic rules. Each X ∈ (N ∪ T ) is associated

with a set of attributes A(X) ⊂ A, and each a ∈ A(X) can be described by a function

r ∈ R. The set A(X) can be partitioned into two sets Ai(X) and As(X), which represents

inherited and synthesized attributes respectively. A synthesized attribute is an attribute

for the LHS symbol of a production rule, and an inherited attribute is associated with

a symbol that resides at the RHS of the production rule. We define the inherited and

synthesized expressions rai and ras (w.r.t. a syntax rule X0 ::= X1X2 . . . Xn), that generate

each ai ∈ Ai(X) and as ∈ As(X) respectively as:

rai : P(
⋃
A(X)) → Ai(Xx)

α 7→ operations on α

ras : P(
⋃
A(X)−A(X0)) → As(X0)

α 7→ operations on α

where 0 < x ≤ n and P is the power set

In functional programming, parser combinators have been used extensively [9, 10, 11,

etc.] to prototype top-down backtracking recognizers, which provide modular and exe-

cutable specifications of grammars that accommodate ambiguity. In basic recursive-descent

top-down recognition, rules are constructed as mutually-recursive functions, and after an

alternative rule has been applied, the recognizer backtracks to try another rule. Such rec-
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ognizers can be constructed as a set of higher order functions, each of which takes an index

j as argument and returns a set of indices. Each index in the result set corresponds to a

position at which the parser successfully finished recognizing a sequence of tokens (input)

that began at position j. An empty result set indicates that the recognizer has failed. The

result for an ambiguous input contains repetition of one or more ending indices. Using

the following basic combinators (termrec and emptyrec for terminals and empty symbols,

and <|>rec and *>rec for alternative rules and sequencing of symbols respectively) as infix

operators, recognizers for a subset of CFGs can be constructed as executable specifications:

termrec (t, j) =


{} , j ≥ #input

{j + 1}, jth token of input = t

{} , otherwise

emptyrec j = {j}

(p <|>rec q) j = (p j) ∪ (q j)

(p *>rec q) j =
⋃

(map q (p j))

However, recognizers constructed with these basic combinators share the shortcomings

of naive top-down parsing: 1) they do not terminate for the left-recursive grammars 2) they

require exponential time and space for ambiguous input in the worst case. These problems

have been addressed in [3, 4] by use of memoization and a technique that restricts the depth

of left-recursion.

4.3 Executable Specifications of General AGs

4.3.1 Preliminaries

We have extended the work of Frost et al. [4] to declaratively construct modular and exe-

cutable specifications of fully-general AGs by providing new combinators. Our executable

specifications map an input’s start position to a set of end positions with tree structures. We
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also thread attributes (i.e. purely-functional and lazy expressions) along with the start and

end positions so that they are available for dependencies that are specified in the semantic

rules.

We begin by defining some fundamental data structures. Note that from now on, we use

the term parser for an executable specification of an attribute grammar rule. At any point

in the computation, a parser may have a list of synthesized and inherited attributes Atts of

any user-defined type. A parser, represented by a label (e.g. Tree, Num etc.), may have

multiple occurrences in a syntax rule, and each occurrence may have different synthesized

and/ or inherited attributes. For correct identification, we declare each multiple occurrence

as an Instance, which is a pair of synthesize/inherited indicator and a unique parser id.

For example, an instance of parser Tree could be the pair (Synthesized or Inherited, T0).

All parsers except the root parser may have a list of inherited attributes for a start

position j, and a list of synthesized attributes associated with each successful end position.

To accommodate these attributes, we define data-type Start and End for a parser by

pairing the respective indices with a list of instances and attributes. By definition, a parser

produces parse-trees based on syntax rules to indicate correct derivations. We use a recursive

data-type PTree that compactly represents parse-trees with each component’s attribute

values and pointer for where to go next. The Result of a parser’s execution is a mapping

from Start to a list of Ends where each of the End results a list of PTree structures. A

memoization technique (section 4.4) is used to prevent redundant computations in order to

achieve polynomial time for ambiguous input. The memo-table State represents a memory

space with Results for parsers which have succeeded or failed. This table is systematically

threaded through parser executions using the standard state-monad [12].

data Atts = MaxVal {getAVAL :: Int}

| Binary_OP {getB_OP :: (Int -> Int -> Int)} ...

type InsAttVals = [(Instance, [Atts])]

type Start/End = (Int,InsAttVals)

type Result = [((Start, End),[PTree Label])]

data PTree v = Leaf (v,Instance) | Branch [PTree v]

77



| SubNode ((Label, Instance), (Start,End))

In the following sections, we describe our approach by defining some higher-order func-

tions with segments of Haskell code. The definitions’ syntax is straightforward in nature,

and can be followed by using a standard literature on Haskell syntax e.g., [13]. We have

defined the functions in a declarative manner so that it would be easier to follow for general

audience. The full prototype Haskell implementation can be found at the website mentioned

in section 4.6.

4.3.2 Combinators for Syntax

We use two basic concepts from [4] to accommodate syntax rules including direct and

indirect left-recursion :

• To accommodate direct left-recursion, a left-recursive Context is used, which keeps

track of the number of times a parser has been applied to an input position j. For

a left-recursive parser, this count is increased on recursive descent, and the parser is

curtailed whenever the “left-recursive count of parser at j exceeds the number of

remaining input tokens”.

• To accommodate indirect left-recursion, a parser’s result is paired with a set of cur-

tailed non-terminals at j within its current parse path, which is used to determine

the context at which the result has been constructed at j.

To maintain the flow of attributes when a parser is re-written by its definition, in

addition to being executed on the current Start and Context, we require that it must

pass down its unique id and a list of its own inherited attributes so that they can be used

when executing the succeeding parsers’ semantic definitions. These inherited attributes are

defined in terms of semantic rules when the current parser is part of its predecessor’s syntax

definition.

The current parser’s alternative definitions are formed with the combinator <|>, which

not only accommodates alternative syntax rules but also a list of semantic rules associated

with each syntax rule. The semantic rules include synthesized rules for the current parser
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and inherit rules for parsers in alternative syntax rules. Threading appropriate rules to

appropriate parsers is carried out by a combinator called parser (section 4.3.3). Both

alternative rules p and q are applied to the current position j and the current context,

and the id and inherited attributes of the current parser are also passed down so that

they are available to the parsers in both alternatives. All results from p and q are merged

together at the end. The operation of the combinator <|> can be expressed with the type

(<|>) :: NTType -> NTType -> NTType, where :

type M a = Start -> Context -> StateMonad a

type ParseResult = (Context, Result)

type NTType = Id -> InsAttVals -> M ParseResult

In each of the alternative of the current parser, multiple parsers can be sequenced

with the sequencing combinator *>. In the definition of *> for parsers p and q, p is first

applied to the current start position and the current context. Then *> enables p to compute

its inherited attributes using a combinator nt (section 4.3.3) from an environment of type

SemRule that consists of p’s precursor’s attributes, and the results of all parsers in sequence

with p. This Result contains sequencing parsers’ synthesized and inherited attributes that

are embedded in PTree structures. Because the attributes are treated as lazy and pure

expressions, p’s inherited attribute (or any other parser’s synthesized or inherited attribute)

computations take place only when they are required somewhere else. The next parser q is

then sequentially applied to the set of end positions returned by p. q also computes inherited

attributes from the same environment. A result from p is joined with all subsequent results

from q to form new branch nodes in the tree. The combinator *>’s input-output relation

can be expressed as type (*>) :: SeqType -> SeqType -> SeqType, where :

type SemRule = (Instance,(InsAttVals, Id) -> InsAttVals)

type SeqType = Id -> InsAttVals -> [SemRule] -> Result -> M ParseResult

The definitions of the AG combinators term token and empty that define the terminals

in the AG rules are analogous to their basic recognizer definitions (section 4.2.2). The

only difference is that the terminals are provided with static synthesized attributes. The
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term token makes sure that these attributes are passed up with the end positions with a

tree of type Leaf , only if the terminal successfully consumes an input token. In case of

empty, the synthesized attributes are passed upwards regardless.

4.3.3 Accommodating Arbitrary Dependencies in Semantics

Our syntax-directed evaluation allows semantic rules for a parser to be defined in terms of

potentially unevaluated attributes from the current parser, and its predecessor, successors

and sibling parsers. We map synthesized and inherited semantic rules associated with

parsers in a syntax rule to the starting and ending positions respectively in the parsers’

result-sets. Our method of constructing a result for a parser allows us to establish full call-

by-need based arbitrary dependencies between attributes - including dependencies from the

right and top. For example, when a parser pi with a syntax pi = pm *> pn is applied to

position 1 and successfully ends at position 5, one of pi’s input/output attribute relations

could be :

SubNode pi (inhpi1, synpi5) =

[..Branch[SubNode pm (inhpm1, synpm3) , SubNode pn (inhpn3, synpn5)]..]

where, assuming pm starts at 1 and ends at 3, pn starts at 3 and ends at 5, inhxy

and synxy represent inherited and synthesized attributes of parser x at position y respec-

tively. From this structure, semantic functions with arbitrary attribute dependencies such

as inhpmi ← f(inhpnj , synpik), (where f is a desired operation on the attributes) can derive

input arguments when required. Note that the output of the example AG from section 4.1

shows actual result structure. An approach based on strict evaluation, rather than lazy,

would not achieve this as it maintains a strict evaluation order.

Each AG rule is formed with a higher order wrapper function parser, which primarily

maps current parser’s synthesized rules to all ending points of the syntax result, and assists

each parser in the syntax rule to pass down their inherited rules for future use. A parser’s

synthesized rules are grouped with the identifier (Syn,LHS) from a set of semantics that

is associated with the current syntax. Assuming the syntax would eventually produce a

result-set newRes, the grouped synthesized rules are mapped to this result using a function
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mapSynthesize. This function computes synthesized attributes by applying the semantic

specifications on the succeeding parsers’ inherited and/ or synthesized attributes for all

PTree entries in the result:

parser :: SeqType -> [SemRule] -> Id -> InsAttVals -> M ParseResult

parser syntax semantics id inhAtts j context

= do s <- get

let ((e,res),s’) =

let sRule = groupRule (Syn, LHS) semantics

tempRes = syntax id inhAtts semantics res

((l,newRes),st) = unState (tempRes j context) s

groupRule id rules = [rule | (ud,rule) <- rules, id == ud]

in ((l, mapSynthesize sRule newRes inhAtts id),st)

put s’

return (e,res)

All parsers in a rule pass down their own identification and a list of inherited attributes

so that they can be computed or used in their own definition’s semantic rules, if required.

This task is done with a higher order function nt, which groups the inherited rules for the

current parser based on the pair (Inh, idx) (where idx is the unique Id of the parser x)

from semantics of current syntax. Then nt facilitates computations of inherited attributes

with a mapping function mapInherited by applying the grouped rules on a parser-provided

environment that consists of the predecessor idp’s and surrounding parsers’ synthesized and

inherited attributes. These attributes are to be collected from newRes. A parser may have

more than one inherited attribute for a particular starting position, which may result from

different alternatives. When these attributes are used in any succeeding parser’s semantic

calculation, they are grouped together under the current parser’s single identification so that

they are available to carry out desired tasks in the semantic definitions that may require

inter-alternative or local result dependencies.

nt :: NTType -> Id -> SeqType

nt currentParser idx idp inhAtts semantics newRes

= let inhRules = groupRule (Inh, idx) semantics

ownInAtts = mapInherited inhRules newRes inhAtts idp
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groupRule id rules = [rule | (ud,rule) <- rules, id == ud]

in currentParser idx ownInAtts

4.3.4 Declarative Executable Specifications of Semantic Rules

We follow a declarative format for the semantic specification which states that synthesized

or inherited attribute expressions of a parser can be formed by applying a desired operation

on any of the synthesized and/or inherited attributes of any of its surrounding parsers. We

define synthesized and inherited semantic expressions with a higher-order function rule,

which eventually applies user-defined function userFunction on lists of attribute values.

rule is the generalized version of the synthesized and inherited expression constructing

combinators rule_s and rule_i respectively, and would ultimately return a value of type

SemRule = (Instance,(InsAttVals, Id) -> InsAttVals) after attaching appropriate

type and id. The argument attributes for userFunction are also declaratively specified

as synthesized or inherited expressions in listOfExpr. These expressions are evaluated

with the help of a function valueOf , which identifies specified parsers in the user-defined

function’s argument-expressions either by LHS (i.e., when the current parser’s attribute is

used in the semantics) or by any other parser’s unique id in the syntax.

rule sORi typ idp userFunction listOfExp

= let formAtts id spec = (id, forNode id . spec)

forNode id atts = [(id, atts)]

newVal = userFunction (map valueOf listOfExp)

in formAtts (sORi,idp) (setAtt typ. newVal)

valueOf sORi typ id_specified id_current environment

| pIDspec == LHS = getAttVals (sORi , id_current ) environment typ

| otherwise = getAttVals (sORi , id_specified) environment typ

The user-defined function’s argument-expressions are applied to an environment of at-

tributes using a recursive function getAttV als to collect the specified parsers’ respective

attributes. As mentioned in the previous section the environment is formed and provided
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with the help of combinators parser and nt. The getAttV als function collects these at-

tributes by comparing the specified parser’s id, synthesized/inherited instance and the de-

sired attribute’s type with the similar categories from the environment. These comparison

factors are threaded down through the current syntax-directed execution path as unevalu-

ated instructions, and the actual comparison takes place only when the attribute values are

requested through user-defined functions.

getAttVals :: Instance -> InsAttVals -> (a -> AttValue) -> [AttValue]

getAttVals x ((i,v):ivs) typ =

let getAtts typ (t:tvs) = if (typ undefined) == t

then (t :getAtts typ tvs)

else getAtts typ tvs

getAtts typ [] = []

in if (i == x) then getAtts typ v else getAttVals x ivs typ

getAttVals x [] typ = [ErrorVal "ERROR no id found"]

The returned attributes are fed into the operations mentioned in the original semantic

rules. These operations are straightforward to define. The only requirement for the con-

struction is that these functions perform the desired task on a list of specifications, which are

eventually transformed to a list of attribute values. One example of these functions could

be findRep, which converts the specified synthesized maximum value (computed from the

predecessor’s alternatives’ result-set) to the current parser’s inherited replacement value:

findRep specs = \(atts,i) ->

RepVal (foldr (max) 0 (map (applyMax atts i) (x:xs)))

applyMax y i x = getAVAL (foldr (getMax)(MaxVal 0) (x y i))

getMax x y = MaxVal (max (getAVAL x) (getAVAL y))

Using these combinators and functions, we can now declaratively construct executable

language specifications as fully general attribute rules. For instance, all rules for the sec-

tion 4.1’s example AG are formed with combinators *>, <|>, parser, nt and rule.

One alternative syntax for tree(T0) ::= tree(T1) tree(T2) num(T3) is expressed with

tree = parser (nt tree T1 *> nt tree T2 *> nt num T3), and one of the inherited

semantics for this syntaxRepV al.T1 ↓= RepV al.T0 ↓ is represented with rule_i RepVal Of T1 Is findRep [inherited RepVal Of LHS].
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4.4 Use of Memoization

Norvig [14] first showed that Earley-like [15] polynomial time complexity can be achieved in

mutually-recursive top-down parsing by using memoization. Frost et al. [16, 3, 4] also em-

ployed similar techniques to parser combinators. We utilize a related memoization technique

to achieve polynomial time complexity for recursive grammars. We use a state-monad [12]

to systematically thread a memo-table of type [(Label,[(Start, (Context,Result))])]

through all parser executions whilst maintaining pure functionality.

All of our parsers are executed with a wrapper function memoize. If the current parser

passes the direct left-recursion depth-check test then a lookup is performed based on the

parser’s Label and current position j (which resides in Start) to retrieve the previously

saved Result. If there exists a saved result, then this result is returned if the indirect left-

recursion context-comparison test is satisfied. Otherwise, a new result-set is constructed

by applying the parser at j with an increased context and its own inherited semantics so

that they are available for succeeding parsers. The memoize function updates the memo-

table with this new result, inherited semantics and a subset of the current left-rec context

corresponding to curtailed non-terminals at the current j. The update operation overwrites

any previous entry for the current Label and j, since the current entry would subsume all

of the previously computed entries. memoize also groups local syntactic ambiguities under

j in a newly-formed result for a Tomita-like [17] polynomial compact representation, and

only returns a reference to this packed entry to the caller, instead of the complete result.

The other task of memoize is that, whenever a memoized parser returns a result (either

through a lookup or by constructing a new result), it makes sure that the parser’s inherited

attributes are integrated with the starting point and the synthesized attributes are accom-

panied with a correct parser id at the ending points in the result-set. When we group the

local syntactic ambiguities, we also merge synthesized attributes under the current parser’s

identifier.
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4.5 Complexity Analysis

Here we informally discuss the worst-case time and space requirements of our algorithm with

respect to the length of the input n. Memoization ensures that a non left-recursive parser is

applied to a start position only once. But a left-recursive parser can be applied to the same

start position at most n times due to the depth-check. According to [3], the sequencing

combinator *> performs O(n2) operations when applying the second parser to every end

position returned by the first parser. Therefore, if there were no semantics involved, then

a non left-recursive and a left-recursive parser would require O(n3) and O(n4) time in

the worst-case. While accommodating semantics, we have altered the ambiguity-grouping

requirement by collecting distinct attributes resulting in a common end position. This

assures the fact the syntactic ambiguity may not necessarily represent semantic ambiguity.

In theory, a semantic rule may result in unambiguous attribute values when applied to a

group of syntactically ambiguous results, each of whose identical syntactic component may

have distinct attribute values. One of the alternative syntax rules r ::= p *> q may have

at most n syntactic ambiguities, because two parsers’ ending positions can be chosen from

n start positions in n ways. Overall, the number of multiset results for r is increased from

n to n2. The number of ambiguities arising from a single alternative rule with multiple

parsers would depend on the number of parsers in sequence, not only on n. Hence this

factor has not been considered in our analysis. If the above parser r is associated with m

semantic rules, then *> needs to perform extra m ∗ n2 operations. Although p or q’s all

start-end position pairs may be partitioned into multiple multisets, they depend on p or q’s

syntactic definitions, which are not considered here as operations related to current parser

r. Given a fixed number of semantics, and the highest degree of operation under r is still

n2, the time complexities of non left-recursive and left-recursive parsers remain at O(n3)

and O(n4) respectively.

Our PTree structure allows us to save results as a list of one-level-depth branches with

attribute values attached to pointing sub-nodes. In the memo-table, for each parser’s n

input positions, we can store n branches corresponding to n end positions. As mentioned

earlier, for a branch p *> q, there are n possible ambiguities. Hence, we need O(n3) space

in the worst-case w.r.t. the length of the input. The time and space requirements can be
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reduced further if we generate only the final semantic value, instead of all possible decorated

parse trees, because lazy evaluation would only evaluate those parts of the parse space that

are required by the current semantic expression. We suspect that many applications (similar

to the one in the next section) would fall under this category.

4.6 Implementation and an Example Application

We have implemented our one-pass top-down AG evaluation algorithm by constructing a

set of combinators (as discussed in section 4.3) in a lazy and purely functional language

- Haskell. Using these combinators, declarative specifications can be constructed and exe-

cuted directly without knowing much about Haskell. To test the usability of our system,

we have developed a simplified natural language interface. The syntax of the underlying

AG is a fully general CFG that has 15 non-terminals and 32 AG rules, and all syntax

rules are associated with a subset of a set-theoretic version of Montague semantics that

we have extracted from Frost and Fortier [18]. Our interface is able to answer hundreds

of thousands of questions about a particular domain - the solar system. More information

about the implementation and this application, and a version of demo code can be found

at http://cs.uwindsor.ca/~hafiz/fullAg.html.

We define an attribute type as a set of alternative attributes, where each has its own

function type. These attributes are the type-definitions of semantic expressions, which

propagate up or down during parser executions. For example:

data Att = TERMPHJOIN_VAL {getTJVAL :: ((ES -> Bool) ->

(ES -> Bool) -> (ES -> Bool))}

| QUEST_VAL {getQUVAL :: String}....

Next we construct a dictionary to define syntactic categories and their meanings e.g.,

dictionary = [("man", Cnoun, [NOUNCLA_VAL set_of_men])

,("orbit", Tverb, [VERB_VAL (tran_verb rel_orbit)]),

,("human", Cnoun, meaning_of nouncla "man or woman" Nouncla)

,...]
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Then we modularly define a complete AG specification for the solar system application.

For example, part of the definitions of term-phrase and noun-clause are:

jointermph =

memoize Jointermph

parser (nt jointermph S1 *> nt termphjoin S2 *> nt jointermph S3)

[rule_s TERMPH_VAL Of LHS Is

appjoin1 [synthesized TERMPH_VAL Of S1

, synthesized TERMPHJOIN_VAL Of S2

, synthesized TERMPH_VAL Of S3]]

<|>

parser (nt termph S4)

[rule_s TERMPH_VAL Of LHS Is

copy [synthesized TERMPH_VAL Of S4]]

snouncla =

memoize Snouncla

parser (nt adjs S1 *> nt cnoun S2)

[rule_s NOUNCLA_VAL Of LHS Is

intrsct1 [synthesized ADJ_VAL Of S1

, synthesized NOUNCLA_VAL Of S2]]

<|> ...

Being right and left recursive, the parser jointermph expands to both right and left.

The semantic expressions are declaratively defined e.g., jointermph’s first semantic rule

expresses that jointermph’s synthesized attribute TERMPH_VAL is formed by joining the

synthesized attributes of the r.h.s parsers S1,S2 and S3. The operations, which are applied

to syntactic symbols’ attributes, are defined based on a set-theoretic version of Montague

semantics. For example, snouncla’s attribute NOUNCLA_VAL is obtained by intersecting sets

of adjectives and common-nouns.

An example session with our interface is as follows:

which moons that were discovered by hall orbit mars => [phobos deimos]

every planet is orbited by a moon => [false]
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how many moons were discovered by hall or kuiper => [4]

did hall discover deimos or phobos and miranda => [no, yes]

etc.

Note that the last answer is ambiguous due to the right and left branching of jointermph,

hence are separated by a comma.

4.7 Related Work

The primary use of AGs has mostly been the specification and construction of compilable

parser-generators for programming languages [19]. The classical definition of an AG has

often been modified to support the needs of such languages. Swierstra et al. introduced the

idea of higher order attributes [20, 21] by treating syntax as a part of semantic functions’

input and output in a semantics-driven analysis. De Moor et al. [6] achieved semantic

modularity by treating attributes as first-class objects. Boyland [22], described an efficient

method - collections for remote attribute dependencies. JustAdd [23] is a compiler-compiler

AG system for Java that supports circular referential dependencies with conditional rewrit-

ing of ASTs using lazy-evaluation. The Silver specification language [24] has been developed

primarily based on forwarding (a concept similar to higher-order attributes) and other ex-

tensions mentioned above. Kats et al. [25] describe attribute decorators that support many

AG extensions. Similar to JustAdd, they use memoization for efficient attribute evaluation.

Our approach differs from these approaches by offering a platform that strictly pre-

serves the syntactic structure of ambiguous CFGs (which includes direct and indirect left-

recursions). Our top-down syntax-driven parsing strategy provides a set of non-strict com-

binators for constructing fully declarative semantic expressions with arbitrary dependencies.

In addition to eliminating redundant computations, our use of memoization technique has

been specialized to perform extra tasks such as keeping track of non-terminals’ context

information, merging syntactic ambiguity, mapping and grouping attributes etc.

Even though use of lazy-evaluation to build AG systems has been around for a long time

[26, 27, etc.], little work has been done using AGs for natural language processing tasks:

Levison and Lessard [28] used AGs to impose some degree of grammatical and semantic
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agreement by propagating only inherited attributes downwards while generating natural lan-

guage text. In the template-based natural language generating system YAG [29], AGs have

been used to correct partially-specified input by imposing grammatical/number restrictions

[30]. Their multi-pass evaluating process begins by initializing inherited attributes with

values from the input, then evaluating the rest of the input.

Our approach differs from the last two approaches by being a complete one-pass parsing

system that can return either compactly-represented parse trees with attribute values in

nodes or just the final answer(s). This is in contrast to the template-based text generators

which receive structured input, not natural languages sentences, and don’t use AGs for

full-blown parsing. By being lazy, we achieve general attribute dependencies by providing

more flexible input/output attribute relations. Also, along with declarative semantics, our

syntax is highly modular because of the systematic use of parser-combinators as basic

building blocks.

4.8 Concluding Comments

We have developed a framework where general CFGs (including ambiguous and left-recursive

grammars) can be integrated with semantic rules with arbitrary attribute dependencies as

directly-executable and modular specifications. Our approach is based on a top-down pars-

ing method implemented as a set of non-strict combinators resulting in declarative speci-

fications. We utilize a memoization technique for polynomial time and space complexities.

In the future we aim to process syntactic and semantic ambiguities based on grammatical

and number agreement, type checking and conditional restrictions. By taking advantage of

arbitrary attribute dependencies, we plan to model NL features that can be characterized

by other grammar formalisms such as unification grammars, combinatory-categorical gram-

mars and type-theoretic grammars. We are constructing formal correctness proofs, and

optimizing the implementation for using with very large grammars. We believe that our

work will help computational linguists build and test their theories and specifications with-

out worrying about the underlying computational methods, and will also help non-experts

create NL interfaces to their applications.
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Chapter 5
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ral Language Processors. Computational linguistics Applications Conference, Jachranka,

Poland, 2011
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5.1 Introduction

Traditionally top-down processing has been used for generative grammars (e.g., definite

clause grammars (DCGs)[1], and context free grammars (CFGs)) to model natural lan-

guages. From a computational point of view, top-down analysis of languages showed early

potential by being modular, and by accommodating a wide range of linguistic phenomenon

that are essential for deep analysis. Moreover, modular top-down analysis allows construc-

tion of larger language processors by piece-wise combination of smaller components. This

type of construction is especially useful when processors (e.g., natural language interfaces)

compute meanings of sentences using compositional semantics such as Montagovian se-

mantics. Specifying syntax and semantics to describe formal languages using denotational

notation of attribute grammars (AGs) has been practiced extensively. However, very little

work has shown the usefulness of declarative AGs for computational models for natural

language. Previous work falls short in accommodating ambiguous CFGs with left-recursive

rules, and providing a declarative syntax-semantics interface that can take full advantages

of dependencies between syntactic constituents to model linguistically-motivated cases.

In this paper we show that a unique top-down parsing approach can be used to build

a system 1 in a purely functional language Haskell [2] where application developers can

specify syntactic and semantic descriptions of natural languages using a general notation

of AGs as directly executable specifications. The underlying top-down analysis method

parses ambiguous sentences with general CFGs efficiently and allows coupling semantic

rules with syntax declaratively. This system can be used not only to produce compact

representation of the potentially exponential number of parses using polynomial time and

space, and to compute meanings of sentences using compositional semantics, but also to

model linguistic properties that may require more restricted generative formalisms than

context-free grammars. Some of these properties we demonstrate by only using upward

propagating synthesized attributes include characteristics of unification-based formalisms

(e.g., subject-verb agreements), unbounded syntactic dependencies in sentences for some

form of disambiguation, and generative formalisms that can process cross-serial dependen-

cies and duplicate languages. We also emphasize how executable language processors can

1Visit cs.uwindsor.ca/~hafiz/xsaiga/fullAg.html for the system code.
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be constructed by integrating compositional semantics with a context-free backbone.

Our technique relies on 1) constructing a set of higher-order pure functions that allow

the construction of modular and directly-executable specifications of syntax and semantics

rules, 2) a context and depth-aware top-down parsing algorithm for general CFGs, and 3)

a variation of explicit memorization for time and space efficiency. The lazy-evaluation pro-

cedure is the necessary technique for us to impose constraints to model targeted languages,

which implicitly makes sure that computations are carried out when they are asked for

(call-by-need) and, a particular computation is performed at most once and its result is

recalled whenever it is needed again. Our declarative notation allows designers to specify

what the description of the language is, what relationships exist between components, and

what restrictions are needed to be imposed, rather than how these procedures actually work.

5.2 General Notation

Here we introduce the notation that we will use in our system to represent directly-

executable specifications of AGs.

5.2.1 Operators for Syntactic Analysis

Consider the following context-free grammar (in BNF) for a segment of English that contains

sentences such as bob saw a nightingale:

sent ::= tp vp

tp ::= pnoun |det np

vp ::= verb tp

np ::= noun pnoun::= ′bob′

noun ::= ′nightingale′

verb ::= ′saw′ det::= ′a′

Example CFG 1
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In the above grammar, a nonterminal sentence (sent) is a term phrase(tp) followed by

a verb phrase (vp). A tp can be expanded using two alternative rules - one rewrites tp to a

proper noun pnoun, and in the other one tp is formed by a determiner (det) followed by a

noun phrase (np). The alternatives are separated with a | and terminals are in single quot.

When sent is applied to bob saw a nightingale, it will unambiguously produce a single

parse tree.

In our system for executable specifications, we provide a set of higher order functions or

combinators to modularly denote syntactic descriptions similar to the above example. We

use the combinators <|> and *> to denote alternating and sequencing of syntax symbols,

and term to represent a terminal. We will gradually increase this set of combinators or

operators to accommodate other linguistic properties. Using these basic combinators, we

can represent CFG 1 as the following executable specification:

sent = memoize Sent (tp *> vp)

tp = memoize Tp (pnoun <|> det *> np)

vp = memoize Vp (verb*> tp)

np = memoize Np noun

pnoun = term "bob"

noun = term "nightingale"

verb = term "saw"

det = term "a"

In this executable specification, each expression is a function for a non-terminal that

maps an index representing the current input position (Start) to a parse-tree of the re-

cursive data-type PTree (see below) that indicates the structure of the current parse that

successfully ends at the position End. The final result of complete parsing is a list of these

PTrees with their starting and ending positions. The embedded (Start, End) pairs in trees

work as as pointers to indicate where to go next, which allows the trees in the result set

to be one-level-depth branches, sub-nodes or leaves. The trees that start and end at iden-

tical positions are shared between all non-terminal entries. Note that each non-terminal’s

functional definition is memoized with a wrapper function memoize that ensures that a

non-terminal (identified by a unique label e.g., Sent) is executed at a input position at
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most once.

type Start/End = Int

data PTree Label = Leaf Label

| Branch[PTree Label]

| SubNode(Label, (Start, End))

type Result = [((Start, End), [PTree Label])]

The compact and memoized result for all successful parses is systematically threaded

through parser-executions. As pure functional combinators do not have side effects, the

threading of the memoized table is done with a state monad [3].

We can extend CFG 1 by adding rules for prepositional phrases pp so that we can parse

a wide range of sentences such as bob saw a nightingale with a telescope. We can

also add more terminals according to the target language that we want to model:
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sent ::= tp vp

tp ::= pnoun |det np

pp ::= prep tp

vp ::= vp pp |verb tp

np ::= np pp |noun

pnoun ::= ′bob′

noun ::= ′nightingale′ |′telescope′

prep ::= ′with′ |′on′ |etc.

verb ::= ′saw′ |′see′ |etc.

det ::= ′the′ |′an′ |′a′

Example CFG 2

This extended CFG 2 now contains left-recursive rules (e.g., vp::=vp pp), and it can ac-

commodate ambiguity. For example, when we parse the sentence bob saw a nightingale

with a telescope starting from the non-terminal sent using a general parsing algorithm

we get the following two parses:

sent

��
��

HH
HH

tp

pnoun

bob

vp

��
��

HH
HH

verb

saw

tp

�
��
�

H
HH

H

det

a

np

�
��
�

H
HH

H

np

noun

nightingale

pp

��
�

HH
H

prep

with

tp

�� HH

det

a

np

noun

telescope
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sent
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verb
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det

a

np

noun

nightingale

pp

�
��

H
HH

prep

with

tp

�� HH

det

a

noun

telescope

Ambiguous input results two parse trees

As our system allows piecewise integration of smaller components to form a larger

description, we can seamlessly extend our previous executable specification of syntax to

model CFG 2 (as shown below). This form of modular construction also allows testing and

editing of individual components separately without affecting other parts.

sent = memoize Sent (tp *> vp)

tp = memoize TP (pnoun <|> det *> np)

pp = memoize PP (prep *> tp)

vp = memoize VP (verb *> tp <|> vp *> pp)

np = memoize NP (noun <|> np *> pp)

pnoun = memoize "pnoun"term "bob"

noun = memoize "noun" term "nightingale" <|> term "telescope"

prep = memoize "prep" term "with"<|> etc.

verb = memoize "verb" term "saw" <|> etc.

det = memoize "det" term "a" <|> etc.

This specification can be executed directly using our general top-down parsing algorithm

([4]) to accommodate a subset of English that contains ambiguity. When the starting nonter-

minal sent is applied at the first token position of the sentence bob saw a nightingale
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with a telescope, it produces two parses that are embedded in the following pretty-

printed compact format. Two different parses can be extracted if we follow the (Start, End)

pointing pairs starting from the Sent’s entry. Notice that ambiguities arise from two of the

vp’s entries where the verb phrase starts at position 2 and ends at position 8 for the sub-

string saw a nightingale with a telescope using two different sub-tress. Each entry in

this compact representation is shared i.e., they are entered exactly once in the result set.

For example, the prepositional phrase pp that starts at position 5 and ends at position 8,

is shared by the vp and the np.

"Sent" (Start: 1,End: 8) Branch [SubNode ("tp", (1,2)), SubNode ("vp", (2,8))]

"VP" (Start: 2,End: 8)[Branch [SubNode ("verb",(2,3)), SubNode ("tp", (3,8))]

,Branch [SubNode ("vp", (2,5)), SubNode ("pp", (5,8))]]

(Start: 2,End: 5) Branch [SubNode ("verb",(2,3)), SubNode ("tp", (3,5))]

"TP" (Start: 1,End: 2) SubNode ("pnoun", (1,2))

(Start: 3,End: 8) Branch [SubNode ("det",(3,4)), SubNode ("np", (4,8))]

(Start: 3,End: 5) Branch [SubNode ("det",(3,4)), SubNode ("np", (4,5))]

(Start: 6,End: 8) Branch [SubNode ("det",(6,7)), SubNode ("np", (7,8))]

"NP" (Start: 4,End: 8) Branch [SubNode ("np", (4,5)), SubNode ("pp", (5,8))]

"PP" (Start: 5,End: 8) Branch [SubNode ("np", (5,6)), SubNode ("pp", (6,8))]

"pnoun" (Start: 1,End: 2) Leaf "bob"

"verb" (Start: 2,End: 3) Leaf "saw"

"det" (Start: 3,End: 4) Leaf "a"

"noun" (Start: 4,End: 5) Leaf "nightingale"

"prep" (Start: 5,End: 6) Leaf "with"

"det" (Start: 6,End: 7) Leaf "a"

"noun" (Start: 8,End: 9) Leaf "telescope"
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5.2.2 Operators for Semantic Analysis

5.2.2.1 Computing Meaning

Our system is ideally suited to incorporate compositional semantics that have a one-to-one

correspondence between the rules defining syntactic constructs and the rules stating how

the meaning of phrases are constructed from the meanings of their constituents. Richard

Montague, who was one of the first to develop a compositional semantics for English, sug-

gested to treat natural language semantics similar to formal language semantics as purely-

functional lambda(λ) expressions where larger expressions are constructed by composing

smaller expressions. As the original proposal is computationally intractable, we use an

efficient set-theoretic version [5].

Alongside with piecewise syntactic extension, we can glue together semantics rules for

corresponding syntax rules to compute meanings of a larger set of languages. We extend

the set of combinators to integrate semantics with syntax as directly-executable specifica-

tions of general attribute grammars. Consider a subset of CFG 2 sent ::= tp vp, vp ::=

verb tp, tp ::= pnoun|det noun that can parse the sentence bob saw a nightingale. Fol-

lowing the suggestions of [5], we define an AG where syntax rules are accompanied by sets

of semantic rules, which are Montague-style compositional semantics as (λ) expressions:

sent(S0) ::= tp(T0) vp(V0)

{S0.V AL ↑ = (λp p T0.V AL ↑)V0.V AL ↑}

tp(T0) ::= pnoun(P0)

{V0.V AL ↑ = P0.V AL ↑}

| det(D0) noun(N0)

{T0.V AL ↑ = (λp D0.V AL ↑ p) N0.V AL ↑}

vp(V0) ::= verb(V1) tp(T1)

{V0.V AL ↑ = (λp V1.V AL ↑ p)T1.V AL ↑}

pnoun(P0) ::= ′bob′

{P0.V AL ↑ = (λp ′bob′ ∈ p){human}}

noun(N0) ::= ′nightingale′

{V0.V AL ↑ = {nightingales}}
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verb(V0) ::= ′saw′

{V0.V AL ↑ = (λz z(λxλy applytransvp(y, x)))}

det(D0) ::= ′a′

{D0.V AL ↑ = λpλq(p ∧ q) 6= φ}

Attribute Grammar 1.

In the above AG, non-terminals are identified with labels (e.g. V0, N0 etc.), and these

non-terminals have synthesized attributes (e.g. V0.V AL↑) that propagate upward. If in-

herited attributes are needed that propagate downward then we can mark them with ↓s.

The semantics for non-terminals are correctly-typed pure functions, and some of them are

higher-order functions. For example, the semantic rule for the transitive verb saw, which

is identified with the V0.V AL, is a function that receives two functions - one defines the

term phrase a nightingale and the other defines the proper noun bob as input arguments.

The semantics for saw eventually passes the input arguments into a user-defined function

applytransvp that determines the authenticity of the transitive verb’s relation between the

subject and the object.

We extended our set of combinators to accommodate AGs like the above, which are

descried in section 5.4. We have built combinators rule_s and rule_i to form synthesized

and inherited semantic rules, wrapper functions parser and nt to form a complete AG

expressions, and we refer to syntactic constructs by their unique labels (e.g., V1, P1 etc.)

in order to use them as semantic functions’ arguments. By allowing any syntactic construct’s

attributes that are available in a syntax rule as a semantic functions’ arguments, we can

form arbitrary dependencies between these constructs that are necessary for many linguistic

phenomena. The above AG can be described declaratively with our notation in Haskell‘s

syntax to form a directly-executable specification. Below we show only a few AG rules (the

rules for nonterminals sent, tp, and vp) to introduce our notation for integrating semantic

rules with syntax rules:

1. sent = memoize Sent

2. (parser (nt tp T0 *> nt vp V0)
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3. [rule_s val OF LHS EQ applytp

4. [synthesized VAL OF V0, synthesized VAL OF T0]]

5. tp = memoize TP

6. (parser (nt det D0 *> nt noun N0)

7. [rule_s val OF LHS EQ applydet

8. [synthesized VAL OF D0, synthesized VAL OF N0]]

9. <|>

10. parser (nt pnoun P0)

11. [rule_s Ref OF LHS EQ copy

12. [synthesized Ref OF P0]])

13. vp = memoize VP

14. (parser (nt verb V1 *> nt tp T1)

15. [rule_s val OF LHS EQ applyvp

16. [synthesized VAL OF V1, synthesized VAL OF T1]]

......

In the above specification, lines 2, 6, 10, and 14 are syntax rules for sent, tp, and vp,

and the rest are sets of associated declarative semantics. For example, the synthesized VAL

attributes of non-terminals (which are identified by LHSs) are computed with user func-

tions (such as applytp) by supplying the required syntactic constructs’ attributes (such as

synthesized VAL OF V0). These user functions perform similar tasks that are mentioned

as λ expressions in Attribute Grammar 1. We have constructed sample NL interfaces us-

ing our declarative AG notation that uses context-free syntax and compositional semantics.

These applications can answer hundreds of thousands of questions about particular domains

(see the web-link at footnote 1 for a sample application implementation).

5.2.2.2 Using Semantics for Disambiguation

Here we provide a simple example to show an innovative use of our declarative semantic

notation to perform one form of natural language disambiguation.

The sentence bob saw a nightingale with a telescope that we parsed using CFG 2,

which produced two syntax trees, can be interpreted in more than one way. In a preposi-

tional phrase pp, a preposition demonstrates an adjectival or adverbial property by quanti-

fying either the noun phrase np or the verb phrase vp. According to the first parse, the np’s
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head noun nightingale is quantified by the preposition with, which can be misinterpreted

as “a telescope carrying nightingale”. But in the second parse, the with quantifies the verb

saw from the vp, which is semantically more meaningful. Based on this argument, we can

make sure that the first parse is discarded while generating only the second parse by using

the following attribute grammar:

sent(S0) ::= tp(T0) vp(V0)

tp(T0) ::= det(D0)) np(N0)| pnoun(N1)

pp(P0) ::= prep(P1) tp(T0) {P0.Ref ↑ = T0.Ref ↑}

vp(V0) ::= vp(V1) pp(P0)

{V0.Ref ↑ = V1.Ref ↑

, V0.Kill ↑ = V1.Ref ↑ /∈ P0.Ref ↑}

|verb(V1) tp(T1))

{V0.Ref ↑ = V1.Ref ↑}

np(N0) ::= np(N1) pp(P0)

{N0.Ref ↑ = N1.Ref ↑

, N0.Kill ↑ = N1.Ref ↑ /∈ P0.Ref ↑}

|noun(N1)

{N0.Ref ↑ = N1.Ref ↑}

pnoun(N0) ::= bob

noun(N0) ::= nightingale {N0.Ref ↑ = bird}

|telescope {N0.Ref ↑ = used to see}

verb(V0) ::= saw {N0.Ref ↑ = to see}

prep(V0) ::= with

det(D0) ::= a

Attribute Grammar 2.

In the above AG, we added semantic rules for agreements with the verb phrase vp and

the noun phrase np that result in rejection of the sub-parse that produces an attribute Kill

of the value true. According to our approach, when a sub-parse is rejected, then the entire
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parse is rejected too. These rejection rules check to see whether prepositional phrase pp is

meaningfully quantifying the neighbouring verb phrase and noun phrase by matching their

upward propagating Ref attribute values. In this artificial example, we wanted to enforce

the requirement that the noun telescope has a meaningful match with the verb saw (i.e., the

saw’s attribute belongs to the telescope’s attribute), but not with the noun nightingale. In

subsequent sections we describe the working mechanism of our approach. The above AG can

be described modularly with our notation to create the following declarative specification

(we only show the rule for verb phrase vp):

vp = memoize VP

(parser (nt vp V1 *> nt pp P1)

[rule_s Ref OF LHS EQ copy [synthesized Ref OF V1]

,rule_s Kill of LHS EQ notElemOf

[synthesized Ref OF, synthesized Ref OF P1]]

<|>

parser (nt verb V1 *> nt tp T1)

[rule_s Ref OF LHS EQ copy [synthesized Ref OF V1]

,rule_s Kill of LHS EQ False ])

Here the second semantic rule for vp can discard a parse by checking whether the

Ref OF V1 is a member of Ref OF P1 with the function notElemOf . When this vp rule is

placed with other rules to form the complete executable AG, and when the root non-terminal

sent is applied to our example sentence, then it will only generate one compactly-represented

parse tree similar to the “Parse Tree 2” on the previous page.

5.3 Background

In this section we briefly describe some related grammar formalisms [6] and the general

top-down parsing technique.
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5.3.1 Grammar Formalisms

Our approach is based on a context-free backbone. That means the targeted natural lan-

guage can be generated, recognized, parsed and computed using context-free generative

syntax rules. A context-free grammar (CFG) G is 4-tuple G = (N,T, P, S), where N is a

finite set of non-terminals, T is a finite-set of terminals, P is a finite-set of syntax rules, S

is the start non-terminal , N ∩ T = φ and (∀pi ∈ P ) pi is of the form a ::= b where a ∈ N

and b ∈ (N ∪ T )∗.

In an attribute grammar (AG, [7]), syntax rules of CFGs are augmented with semantic

rules to describe the meaning of the sentences of a context-free language. Although different

definitions are given in [8, 9, 10], we prefer to define a general AG by imposing minimal

restrictions on attribute dependencies. An AG is a 3-tuple AG = (G,A,R), where G is the

founding CFG, A is a finite set of attributes and R is a finite set of semantic rules. Each

X ∈ (N ∪ T ) is associated with a set of attributes A(X) ⊂ A, and each a ∈ A(X) can

be described by a function/expression r ∈ R. The set A(X) can be partitioned into two

sets Ai(X) and As(X), which represent inherited and synthesized attributes respectively.

A synthesized attribute is an attribute for the LHS non-terminal of a production rule, and

it can be computed using any attributes from the RHS terminals/non-terminals. Whereas

an inherited attribute is associated with a terminal/non-terminal that resides at the RHS

of the production rule, which can be computed attributes of terminals/non-terminals that

are on the right or on the left of the current non-terminal. In conventional term, inherited

attributes propagate downwards and synthesized attributes propagate upwards.

From the viewpoint of pure functions and lazy-evaluation, semantics rules and attributes

are interchangeable. When we refer to an attribute we either refer to a value - static

semantics, or to an unevaluated expression - dynamic semantics.

5.3.2 Top-Down Parsing with Parser Combinators

Parser combinators have been used extensively ([11, 12, 13] etc.) to prototype top-down

backtracking functional recognizers and parsers to provide modular and piecewise construc-

tion of executable specifications of grammars that can accommodate ambiguity. In basic
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recursive-descent recognition, syntax rules are constructed as mutually-recursive functions,

each of which maps an starting input position to a set of indices corresponding to a set of

ending positions at which the parser successfully finished recognizing a sequence of input

tokens. An empty result set indicates that the recognizer has failed. After an alternative

rule has been applied, the recognizer backtracks to try another rule. The result for an

ambiguous input contains one or more ending indices. In the case of parsing, indices in the

result set are replaced by tree structures to show successful parsing structures.

However, top-down recognizers constructed with basic combinators do not terminate for

left-recursive grammars, and when extended to parsers they require exponential time and

space for ambiguous input in the worst case. We have addressed these problems [14] by

the use of a technique that restricts the depth of left-recursive calls, curtails a parse when

left-recursive call exceeds the number of remaining input tokens, and that tracks curtailed

indirect left-recursive non-terminals to determine the context at which the result has been

constructed. We also use memoization techniques for parsers (a technique similar to [15])

that ensures O(n3) and O(n4) worst-case time complexities for non left-recursive and left-

recursive CFGs respectively. For space efficiency, the potentially exponential number of

ambiguous results are represented compactly in a directed acyclic graph with polynomial

size space where entries are one-level-depth branches or sub-nodes, and ambiguous entries

are grouped under common nodes. These nodes have referencing pointers to construct

complete parse trees whenever needed (similar to [16]).

5.4 Declarative and Executable Attribute Gram-

mars

5.4.1 Forming Arbitrary Dependency

In [17], we demonstrated how declarative semantics rules can be integrated with CFGs’

syntax rules in top-down parsing by describing the implementation of combinators in the

purely functional language Haskell that enable the formation of language specifications
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with modular syntax and semantic. The new parser2 now has a set of attributes, which

are computed from other terminals/non-terminals’ attributes that belong to the current

parser’s syntax definition(s).

Even if a parser contains semantic rules as well as semantic rules, the result of a parser’s

execution is still a mapping from a start position of input to a set of parse-tree structures

with end points. A recursive parse-tree can be a single leaf (to represent a terminal), a

sub-node (to represent a non-terminal), or a branch (to represent combinations of terminals

and non-terminals, which models more complex syntax). The primary change in the tree

data structure is how attributes are represented and threaded so that they are available

for dependencies that are specified in the semantic rules. These attributes are essentially

purely-functional lazy expressions. For example, the BinaryOP attribute in the example

below is a function that computes an integer by applying a binary operation to two input

integers.

type Start/End = (Int, [Attributes])

data Attributes = MaxV al {getAV AL :: Int}

| BinaryOP {getBOP :: (Int→ Int→ Int)}

Synthesized and inherited semantic rules associated with a parser are mapped onto the

starting and ending positions respectively in the parser’s result-set. This facilitates the

overall syntax-directed evaluation and allows semantic rules to be denoted in terms of po-

tentially unevaluated attributes from the environment of the current parser, its predecessor,

successors, and sibling parsers. For example, when a parser pi with a syntax rule pi = pm

*> pn is applied to position 1 and successfully ends at position 5, one of pi’s input/output

attribute relations might be:

pi(inhpi1,synpi5)

�
��

��

H
HH

HH

pm(inhpm1,synpm3) pn(inhpn3,synpn5)

where, assuming pm starts parsing at 1 and ends at 3, pn starts parsing at 3 and

ends at 5, inhxy and synxy represent inherited and synthesized attributes of parser x at

2From now on we shall refer non-terminals of attribute grammars as parsers.
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position y respectively. From this structure, semantic functions with arbitrary attribute

dependencies (like the one below) can acquire input arguments whenever required while

they are integrated with the syntax rule:

pi = pm *> pn

inhpmi ← function(inhpnj , synpik)

5.4.2 Construction of Combinators for Executable AGs

Here we informally discuss the construction of the combinators. The alternative combinator

<|>’s inputs p and q are alternative syntax with lists of respective semantic rules. p and q

are executed with the current start position and a context (for left-recursive calculation),

and they pass down their ids and inherited rules so that they can be used in a succeeding

parsers’ semantics. The associated semantic rules include synthesized rules for the parent

parser (referred as LHS) and inherited rules for parsers that are in the associate syntax

rule. Threading appropriate semantic rules to the appropriate syntax symbol is done with

the combinator parser. All results from alternative parsers are merged together at the end.

Terminals or non-terminals (say p and q) can be sequenced with the combinator *> to

form compound a syntax. This combinator enables p to be applied to the current start

position and context, and to compute its inherited attributes non-strictly using the combi-

nator nt from an environment that consists of p’s precursor’s attributes, and the result of

the current syntax. This result (a tree structure) contains all sequencing parsers’ synthe-

sized and inherited attributes. The next parser q is then sequentially applied to the set of

end positions returned by p, and computes inherited attributes from the same environment

using the combinator nt. A result from p is united with all subsequent results from q to

form new branches in the tree.

The higher-order function nt forms a non-terminal of an AG that enables parsers to

pass down their own identification and a list of inherited semantic rules so that they can

be used in subsequent AG definitions. These rules are evaluated by applying them on an

environment that consists of the predecessor’s and surrounding parsers’ attributes. This

function ultimately maps the current parser’s inherited attributes to the starting point

of a result so that other inquiring parsers know where to look if needed in the future.
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The wrapper function parser forms a complete AG rule by mapping the current parser‘s

synthesized rules to the ending points of the result, and by assisting each parser in the

current syntax rule to have an access to a common environment for their own semantic

rules’ future needs.

Static synthesized attributes are provided within the definitions of the AG combinators

terminal and empty that define the terminals in the AG rules, and these attributes are

passed upward with the end positions in a tree of type leaf only if the terminal successfully

consumes an input token. Declarative synthesized and inherited rules are constructed with

the help of the function rule by applying a desired user operation to a list of synthesized

and/or inherited expressions from surrounding parsers. This function helps to find match-

ing expressions from the parser and nt provided environment of attributes by threading

some comparison factors through the current syntax-directed execution path as unevalu-

ated instructions. These comparison factors are collected from the user-defined function’s

argument list of expressions either as LHS (i.e., when the current parser’s attribute is used

in the semantics) or as any other parser’s unique id in the syntax.

Using the combinators described above, general attribute grammars that we mentioned

in this paper can be constructed as executable specifications of language descriptions.

5.5 Modeling Unification-Based Formalisms

As with CFGs, unification-based formalisms [18] are language describing machines with

added capabilities to impose linguistically motivated restrictions. These formalisms use an

information-domain of feature structures, which are partial functions from features to their

values where the values can be atomic or feature structures. A NL phrase is associated with

a feature structure to guarantee its category and properties. Unification is a declarative

process of restrictive combinations of information from two feature structures to form a new

structure, and if the combination fails then the formalism does not recognize the current

input. Using unification, phrases such as a group of boys are attending the seminar for boy

scouts is accepted, while James are sleeping is rejected.

The general notation of AGs that we introduced earlier can be utilized for modular

110



and declarative modeling of unification. We can compare feature structures with a set of

synthesized or inherited expressions. The unification takes place by comparing evaluated

values of these attributes according to the restriction that is needed to model linguistic

correctness. We introduce a special-purpose synthesized attribute Kill of type bool for

all syntax symbols in an AG. The one-pass syntax and semantic analysis algorithm is

modified so that when the set of synthesized expressions for a non-terminal has an expression

dedicated for the Kill attribute, and when this attribute is evaluated to True then the entire

current result is discarded. This step is required to ensure that if a condition or restriction

in the semantics fails then the current parse should not be a member of the result. When the

expression for Kill Bool is mapped onto the current result, a predefined operation nomatch

tries to determine whether all input argument expressions are evaluated to the same value

or not:

nomatch(e1 : e2 : inputExps, environment)

= do let att1← e1(environment), att2← e2(environment)

if att1/ = att2 then return Kill True

else return nomatch(inputExps, environment)

nomatch([e1, e2], environment)

= do let att1← e1(environment), att2← e2(environment)

if att1/ = att2 then return Kill True else return Kill False

These input expressions form restricted dependencies that can be used to impose lin-

guistically motivated conditions in conjunction with compositional semantics. The following

simple directly executable AG shows that phrases such as moons that spin is recognized as

a grammatically correct sentence, but if we test the input is the phrase moons that spins

then the parse fails because of the grammatical disagreement that sets Kill True for the

sentence.

sent = memoize Sent

(parser (nt termph S1 *> nt relpro S2*> nt vbph S3)

[rule_s Kill OF LHS EQ nomatch

[synthesized VAL OF S1, synthesized VAL OF S3]
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,rule_s SENT_VAL OF LHS EQ apply_termphrase

[synthesized TERMPH_VAL OF S1

,synthesized RELPRO_VAL OF S2

,synthesized VERBPH_VAL OF S3]])

termph = memoize Termph (terminal (term "moons")

[TERMPH_VAL set_of_moons, VAL "plural"]

<|> terminal (term "planets")

[TERMPH_VAL set_of_planets, VAL "plural"])

vbph = memoize Vbph (terminal (term "spin")

[VERBPH_VAL set_of_spin, VAL "plural"]

<|> terminal (term "spins")

[VERBPH_VAL set_of_spin, VAL "singular"])

relpro = memoize Relpro

(terminal (term "that") [RELPRO_VAL intersect]

<|> terminal (term "who") [RELPRO_VAL intersect])

Note that the other semantic rules are constructed based on the set-theoretic version

of Montague’s compositional semantics. Our declarative notation for compositional seman-

tics allows us to establish unbounded dependency that exists in relative clause sentences.

According to Montague, relative pronouns (relpro) act as a conjunction (i.e. and) for two

surrounding phrases p and q (i.e., and = λpλq(λz(p z ∧ q z))). In the set-theoretic version,

the and is defined as set intersection between two phrases, which are computed as sets too.

In the above example, relative pronouns (that, who) have a synthesized attribute intersect,

which is a function that expects two sets as input to perform the set intersection operation.

This attribute is propagated upwards to the sent’s definition as RELPRO_VAL. The sent

computes the final SENT_VAL through an apply termphrase function that provides two sets

(TERMPH_VAL and VERBPH_VAL) to RELPRO_VAL from two surrounding phrases - term phrase

and verb phrase.

In [19] Correa systematically compared properties of attribute grammars and unification

grammars, and demonstrated that attribute grammars are more general than unification
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grammars in terms of expressive power and computational efficiency. He also mentioned

difficulties in implementing generalized attribute grammars because of problems related to

attribute evaluations. As our parsing strategy is non-strict, our attribute evaluation order is

demand driven and untangled by nature. Moreover, unlike unification-based notations, we

can refer to unevaluated expressions as attributes in semantic dependencies, which enriches

the overall declarativeness and modularity of the language description.

5.6 Accommodating Phenomena Beyond Context-

Free

It has been well-documented that a few instances of natural language (e.g., some sentences

from Dutch or Swiss German) may not be accommodated by context-free grammars; rather

they need a stronger formalisms that are often referred to as mildly context-sensitive gram-

mars (MCSGs) [20]. MCSGs are strictly stronger than CFGs and strictly weaker than

context sensitive grammars in terms of generative power. Many formal formalisms strictly

or weakly satisfy characteristics of MCSG such as tree adjoining grammar (TAG), combina-

tory categorial grammar (CCG), linear indexed grammar (LIG) etc. (see [21] for the proof

of their equivalence). Common characteristics that define MCSG formalisms include 1)

that they contain all context-free languages, 2) that the membership problem is solvable in

polynomial time, 3) that a member language grows constantly, and 4) that these formalisms

contain the following non context-free languages [22] -

L1. multiple agreement

{anbncn|n ≥ 0}

L2. crossed agreement

{anbmcndm|n,m ≥ 0}

L3. duplication

{ww|w ∈ {a, b}∗}

We now show how to take advantage of arbitrary attribute dependencies to model above

languages. As AGs generate languages that are founded on context free grammars, it is

113



not directly possible to generate the above non context-free languages, but it is possible

to non-strictly filter out sentences that do not belong to the target language by imposing

semantic restrictions that guarantee only acceptance of members of L1, L2, and L3. A CFG

S ::= As*> Bs*> Cs, As ::= As*> a|a, Bs ::= Bs*> b|b, Cs ::=Cs*>c|c that generates a

set of sentences (in the form of any number of as followed by any number of bs then any

number of cs) can also potentially include sentences generated by L1. But, if we can enforce

that the As, Bs, and Cs can be expanded or recursively re-write themselves exactly the

same number of times (i.e., n) then this CFG is restricted to a grammar only for L1. This

restriction is shown with the following example AG by checking As, Bs, and Cs’s count

attribute value. Each time the As, Bs, or Cs accepts a token (e.g., a, b, or c respectively),

their synthesized count attribute’s values increase, and at the root non-terminal S these

counts are compared with nomatch. If any mismatch is found then the S’s Kill attribute

is set to True, and the current parse is entirely discarded.

s = memoize Ss

(parser (nt as S0 *> nt bs S1 *> nt cs S2 )

[rule_s Kill OF LHS EQ nomatch

[synthesized Count OF S0, synthesized Count OF S1

,synthesized Count OF S2]])

as = memoize As (parser (nt as S0 *> nt term_a S1 )

[rule_s Count OF LHS EQ increment

[synthesized Count OF S0]]

<|> parser (nt term_a S1)

[rule_s Count OF LHS EQ copy

[synthesized Count OF S1]])

bs = memoize Bs (parser (nt bs S0 *> nt term_b S1 )

[rule_s Count OF LHS EQ increment

[synthesized Count OF S0]]

<|> parser (nt term_b S1)

[rule_s Count OF LHS EQ copy

[synthesized Count OF S1]])

cs = memoize Cs (parser (nt cs S1 *> nt term_c S1 )
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[rule_s Count OF LHS EQ increment

[synthesized Count OF S1]]

<|> parser (nt term_c S1)

[rule_s Count OF LHS EQ copy

[synthesized Count OF S1]])

term_a = memoize TA (terminal (term "a") [Count 1])

term_b = memoize TB (terminal (term "b") [Count 1])

term_c = memoize TC (terminal (term "c") [Count 1])

Note that in the above example increment and copy are user-defined functions (like

nomatch) that increment and make a copy of an attribute value whenever demanded. Using

a similar concept, an AG for L2 can be constructed declaratively by using another user

defined function crossmatch to impose cross serial dependencies. The crossmatch’s four

argument expressions’ count values are now used to decide whether the root non-terminal’s

Kill value is True or False:

crossmatch([e1, e2, e3, e4], environment)

= do let count1← e1(environment), count2← e2(environment)

count3← e3(environment), count4← e4(environment)

if count1 == count3 and count2 == count4

then return Kill False else return Kill True

The application of crossmatch in AG the for the L2 can be shown with the following

partial executable specification:

s = memoize Ss

(parser (nt as S0 *> nt bs S1 *> nt cs S2 *> nt ds S3 )

[rule_s Kill OF LHS EQ crossmatch

[synthesized Count OF S0, synthesized Count OF S1

,synthesized Count OF S2, synthesized Count OF S3]]).....

To model the duplicate or 2-place copy language L3 with our notation of AGs we can use

a stack or list-like data structure as an attribute type. The backbone CFG that potentially
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can contain members of L3 along with other unwanted sentences can be represented as

follows:

S ::= W*>W

W ::= a*>W | b*>W | ε

The definition for W satisfies generating {a, b}∗, but one W following another does

not guarantee generating L3. If W had an attribute as a list of indicators representing all

accepted as and bs by the current W , and if we can set the root S’s Kill value to True when-

ever two lists of indicators for two consecutive W s are not identical then unwanted sentences

will be discarded. We can accomplish this objective with our notation for AG as shown with

the partially-complete example below. Assume that new user function nomatchList checks

equality of two operand lists, and addToList attaches the first argument to the second,

which is a list originated as an empty list from the alternative empty.

s = memoize Ss (parser (nt w S0 *> nt w S1)

[rule_s Kill OF LHS EQ nomatchList

[synthesized List OF S0, synthesized List OF S1]])

w = memoize W (parser (nt term_a S0 *> nt W S1 )

[rule_s Count OF LHS EQ addToList

[synthesized Val OF S0, synthesized List OF S1]]

<|> parser (nt term_b S0 *> nt W S1 )

[rule_s Count OF LHS EQ addToList

[synthesized Val OF S0, synthesized List OF S1]])

<|> terminal (empty) [List []].....

The above example specifications of executable AGs for languages L1, L2, and L3 could

also have been constructed differently by utilizing different variations of semantics constrains

by introducing new inherited and/or synthesized attributes.
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5.7 Concluding Comments

We have demonstrated how the declarative notation for general AGs can be used to cre-

ate executable specifications to modularly prototype many NLP tasks. Our approach is

founded on a top-down parsing technique that accommodates any form of CFGs coupled

with declarative semantics. The overall evaluation technique is non-strict and treats at-

tributes as unevaluated functions, and as a result arbitrary dependencies between syntactic

components can be described in the semantics. We have shown that restrictions can be im-

posed using special-purpose attributes and customizable semantic functions to model natu-

ral language properties such as unification, and phenomena that cannot be accommodated

with only CFGs. In the future we plan to investigate further incorporating dependencies in-

volving inherited attributes along with synthesized attributes to construct general-purpose

natural language interfaces where compositional semantics would compute meanings. We

are intending to investigate many other forms of natural language disambiguation using

our declarative restrictive capability. We also believe that our transparent syntax-semantic

interface can used effectively for syntax-based machine translation applications.
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Chapter 6

Conclusion

6.1 Concluding Comments

This thesis shows that it is possible to construct modular natural language processors as

directly-executable specifications. Notation is introduced that facilitates the declarative

specification of languages as context-free grammars (CFGs), and meaning as compositional

semantics that can define arbitrary dependencies among syntactic constructs. The resulting

language description is realized using of a set of purely-functional and non-strict combina-

tors, which are implemented in the modern functional language Haskell (haskell.org).

When language specifications are constructed with these combinators and applied to a (po-

tentially ambiguous) natural language sentence or query, the underlying processor generates

either a compact representation of parses (with semantic values attached with respective

syntactic constructs), or just the final result. Besides deep syntactic and semantic analysis of

natural languages, the overall declarative approach also accommodates linguistic features

(such as long-distance and cross-serial dependencies) that may need a more constrained

formalism than CFGs.

This thesis has presented four peer-reviewed papers, which address various aspects of

the overall problem. Chapter 2 describes a general top-down parsing algorithm that in-

corporates techniques for accommodating ambiguity, and direct and indirect left-recursive

grammars in polynomial time and space. Even though problems related to accommodating
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ambiguity, left-recursion in polynomial time and space have been previously addressed sepa-

rately, this is the first approach that incorporates all of these features within one algorithm.

The algorithm keeps track of the depth of left-recursive parses and curtails the search when

there is no possibility of constructing a valid parse, records the context for computing parses

with indirect left-recursion in order to prevent missing parses, employs a memoization tech-

nique for time efficiency, and represents the potentially exponential number of ambiguous

parses in a compact space as a directed acyclic graph (DAC).

Chapter 3 describes a modular approach to implement the parsing algorithm of Chap-

ter 2 for building executable syntactic descriptions of natural languages. Pure functional

languages enable the construction of executable top-down recursive descent parsers us-

ing combinators (higher-order functions) as infix operators. This approach has been ex-

tended to incorporate properties described in Chapter 2 by defining a set of combina-

tors, which can be used to prototype any form of CFG. The combinators are used to

modularly sequence grammar symbols for forming a rule with multiple symbols, and to

define multiple alternative rules. The method for accommodating left-recursive gram-

mars, which has been described in Chapters 2 and 3, has already been applied in prac-

tice. The technique has been adopted by the developers of the widely-used LEPL parser

library which is written in the Python programming language. More can be found at

http://www.acooke.org/lepl/implementation.html about the LEPL parser library.

As pure functions do not permit side effects, an abstraction technique called a monad

is used to systematically thread the table containing parsing results through parsers’ exe-

cutions so that the memoization technique is properly employed. Recursive data structures

are used to represent parsing results compactly. The combinators are implemented in the

pure functional programming language Haskell (visit cs.uwindsor.ca/~hafiz/xsaiga/

imp.html for the implementation), and using the combinators executable syntactic descrip-

tions can be constructed without mastering the underlying details of the parsing algorithm.

The implementation has been tested successfully to support the claim of polynomial time

of space complexities by experimenting with practical natural-language grammars (e.g.,

ambiguous grammar with 5,226 rules), and with some massively-ambiguous artificial gram-

mars.

Chapter 4 describes a new technique to integrate declarative semantics with the gen-
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eral top-down syntax analysis in one pass. In order to achieve the declarativeness of general

attribute grammars (AGs), the extended approach uses a non-strict evaluation technique to

enable the specification of semantics by establishing arbitrary dependencies among the syn-

tactic categories. The previous set of combinators was extended to integrate the declarative

semantics with the syntax so that a large language-description can be built by piecewise com-

bination of smaller syntactic and semantic specifications. The dependencies in semantics,

which produces upward or downward propagating meanings, are especially useful for mod-

elling compositional semantics of natural language. Prototype database query processors

are constructed (visit cs.uwindsor.ca/~hafiz/xsaiga/fullAg.html or the Appendix B

for the implementation) with Montague-style compositional semantics as executable speci-

fications. These processors can answer thousands of questions.

An innovative technique is introduced in Chapter 5 that describes how to impose re-

strictions on the generative power of the target language using declarative semantics. This

technique non-strictly uses conditional pruning so that many linguistically-motivated re-

quirements can be accommodated. This chapter is based on a paper that has been accepted

in Computational Linguistics - Applications 2011 conference. An improved and modified

version of this paper has recently been accepted for presentation in a peer-reviewed inter-

national conference - The 10th Mexican International Conference on Artificial Intelligence,

the proceedings of which will be published in a special issue of the Springer LNAI series.

Appendix A discusses some formal properties of the approach. Termination of the ap-

proach is established (Appendix A.1) by showing that there exists an well-founded ordering

throughout the syntactic and semantics analysis with a least value and a finite upper limit.

Appendix A.2 represents the syntax-analysis algorithm as a deduction system with a few

new inference rules (for accommodating left-recursion) in order to prove the correctness of

the algorithm. Appendix A.3 discusses time and space complexities of the parsing algorithm

w.r.t. the input length and the size of a the grammar. The changes in complexity of the

approach when semantics are integrated, is discussed in the Section 4.5 of the Chapter 4.

Below is a list of features that distinguish this thesis from previous work -

• This is the first general top-down recursive-descent parsing algorithm that accommo-

dates direct and indirect left-recursive ambiguous grammars.
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• Memoization has been used with to-down parsing for time efficiency. However, this

work is the first that uses shared forest (compact representation technique) with a

general top-down parsing for polynomial space complexity.

• This work accommodates fully-general attribute dependencies among syntactic com-

ponents in declarative semantics (including inheritance from the right) in one pass.

• This thesis now contains formal proofs of correctness, termination and complexity for

the general top-down parsing.

• The top-down analysis system has been implemented in Haskell and made available

to the Haskell community.

• This thesis includes experimental results that were conducted using as set of diverse

test cases, which support theoretical claims.

In the future, I plan to further investigate the usefulness of arbitrary attribute depen-

dencies to build general-purpose (potentially web-based) natural-languages interfaces and

database query processors. I believe that the notion of Montague’s compositional seman-

tics can be implemented, and expanded efficiently utilizing my current work. I am also

interested in expanding the syntax-semantic interface for building syntax-based machine-

translation applications. I have just begun exploring a limited form of the disambiguation

task. I plan to take advantage of the context-awareness and restrictive capability of my

approach to incorporate a wide range of syntactic, semantic and word-sense disambiguation

in natural language processing applications. Another important NLP task is error detec-

tion and correction. My approach fails for erroneous input, my approach simply returns an

empty list indicating a failure. However, as our parsing process builds a memo-table that is

filled with information, potentially it can be used to detect errors and to make suggestions

for correction. The correctness analysis proof (Appendix A) of top-down parsing does not

explicitly consider the context-matching condition when dealing with indirect left-recursion.

In future I intend to provided a more complete proof. I have shown that the declarative

semantics can be used to impose restrictions to model some languages that are beyond

context-free. I plan to perform a formal analysis about the restrictive capability for the

wide coverage of grammars.
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Appendix A

Formal Properties of Our

Approach

A.1 Termination

We discuss termination by adopting a technique for termination analysis of recursive func-

tions where the key idea is to ensure that there exits an well-founded ordering so that

the argument of each recursive call establishes an inequality with the corresponding inputs.

This comparison is done in terms of a measure (an element of the well-founded set), which

changes after each recursive call. A measure-function maps a data-object (which is related

to the corresponding recursive-functions input) into a member of a well-founded ordered

set. For example, consider a recursive function definition f(x1) = ...f(xi).... To show that

f terminates, the first task would be to define a measure function |.| that maps some data

related to the input (here, the input to f) to a measure (the output of |.|, which is a natural

number). The next step is to define a well-founded order (�, with the least element 0)

of decreasing measures for all executions of f until f(xk), which is the last recursive call

- |x1|... ≥ ...|xi|.. ≥ ...|xk|. If the above inequality holds, then the function f terminates.

Note that a well-formed order can be also formed with the ≤ inequality too as long as there

is a least element and a finite upper bound exist in the ordering.
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In [1], Giesl described the following four general steps to prove termination of an algo-

rithm of the form f(x∗) = ...f
′
(y∗)..., where f and f

′
are mutually and/ or nested recursive

functions:

1. Generating a measure-function |.| and a well-founded ordering �.

2. Generating an Induction Lemma IL: |∃yi ∈ y∗| � |f
′
(y∗)|.

3. Proving the Induction Lemma.

4. Proving the inequality |x∗| ≥ |y∗| or |y∗| ≥ |x∗|

For our purpose, we recall a few of the terms and definitions that we described in earlier

chapters. We represent a left-rec counter (Chapter 2) for a parser Pi at position j with

cij , where 1 ≤ i ≤ P# (the P# is the length of the set of parsers) and 1 ≤ j ≤ input#

(the input# is the length of the input). We also recall that an entry of a parser’s Result is

of the form ((Start, End), [PTree Label]) where Starts and Ends are list of starting and

ending indices with associated inherited and synthesized attributes respectively, and that

the memo-table is a list of parse names along with respective Results, which also include a

Context that keeps track of cij (Chapter 4).

Definitions 2.1: Our measure function |.| maps a parser’s input arguments to a natural

number. Without loss of generality, we can state |.| :: (Start, (Context,memo table)) →

starting indexj in Start+ # of attributes in Start+cij ∈ Context.

Lemma 1.1: From Chapters 2 and 3 we recall that the starting position j ranges from

1 ≤ j ≤ input#, and the range of left-rec counter cij is 0 ≤ cij ≤ (input# − j + 1). From

these ranges we can identify that the least value of |.| is 1 + atti + 0 (where atti is the num-

ber of inherited attributes for a parser), and maximum value is also finite - 1+atti+input#.

Induction Lemma IL:

[((Start
′
, End), [Tree])], (Context

′
,memo table)) ← ∀px ∈ P ,

px (Start, (Context,memo table))
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⇒ Result = [] ∨

∀(i, atti) ∈ Start,∀(j, atts) ∈ End,∀(i′ , atti′ ) ∈ Start
′
,

1. j ≥ i ∧

2. (j + # of atts) + (i
′
+ # of atti′ ) ≥ (i+ # of atti) ∧

3. ∀cxj ∈ Context
′ ≥ ∀cxj ∈ Context

where atts and atti are sets of synthesized and inherited attributes of px respectively.

Proof by Induction on px ∈ P :

In the base case, if px is an empty symbol or just a terminal, then

1. j > i (definition of terminal, increases starting positions is upon successful accep-

tances), or j = i ∧ (definition of empty, which does not increases is upon successful

acceptances).

2. By definition, there are no inherited semantic rules for terminal or empty (i.e.,

# of atti = 0). This condition and the IL 1 proves IL 2.

3. In cases of terminal or empty, no recursion takes place, which results no changes in

left-rec counts (Chapter 2). Hence IL 3 holds.

As the inductive hypothesis, we assume that IL holds for a set of parsers P . Now, we

have to show that IL also holds for P ∪ {py}.

Case 1: Let py = memoize parser(nt pm *> nt pn) (attspy ∪ attipm ∪ attipn ), for some

pm, pn ∈ P , where attspy is a set of list of synthesized semantics for py, and attipm and attipn

are sets of inherited semantics associated with parsers pm and pn. IL 1, 2, and 3 stay valid

as follows:

1. From the hypothesis pm’s any output position ≥ pm’s input position (which is also

py’s input position i), and from the definition of *> (Chapter 3) and the hypothesis
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pn’s output positions (∀j, which is also output positions of py ) ≥ pn’s input positions

(which are also pm’s output position). Hence, ∀j ≥ i, for the py.

2. The definitions of parser and nt (Chapter 4) ensure the mapping of synthesized and

inherited semantic rules to respective parsers’ starting and ending positions in their

result sets. Definitions of pure functions and lazy evaluation allow us to consider #

of the set of semantic rules = # of the set of attributes. Note that, this equivalence

is only possible when the attribute grammar is well-formed i.e., there is no cyclic

dependency in the semantics. This equivalence and IL 1 proves IL 2.

3. Regardless of whether py is left, right or non recursive, as IL 3 holds for pm and pn

(from the hypothesis) and from the definition of memoize, IL 3 also holds for py. In

general, if py is left-recursive then it’s cyj will be increased for the same input position

j, and this change is recorded in the Context. Otherwise, cyj will will remain the

same.

Case 2: Let py = memoize parser(pm att <+> pn att
′
) , for some pm, pn ∈ P , and

where att and att
′

are sets of semantic rules for py that are associated with alternatives pm

and pn respectively. IL 1,2, and 3 for py can be proven using similar logic from the case 1,

and from the definitions of parser, <+>, and the inductive hypothesis.

Hence, IL for P ∪ {py} holds from IL for P and IL for py.

Proof of Termination:

We have to show that an inequality holds for consecutive recursive parser-executions that

ensure an well-founding ordering according to the definition of the measure function |.|. Let

some px ∈ P rewrites to (pk *> px′ ) (attspx ∪ attipk ∪ attipx′ ) in its definition. Assuming, pk

is applied with (Start, (Context,memo table)) at i and returns

([Result],(Context
′
,memo table

′
)), and from the definition of *>, px’s recursive call, px′ is

executed on ∀j (the end-points of pk that are in the Result). According to the induction

lemma, each of these recursive calls results in the following cases:

Case 1: Regardless of the whether px’s calls are left-recursive or right-recursive, IL 2 always

holds as as the number of attributes and number of semantic rules are constant and equal

for a parser.
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Case 2: When j > i and ∀cxj ∈ Context
′ ≥ ∀cxj ∈ Context, px’s recursive call’s are right-

recursive as some left-most tokens are consumed before the next recursive call and the the

left-rec context for input-positions does not increase.

Case 3: When j = i and ∀cxj ∈ Context
′ ≥ ∀cxj ∈ Context, the px’s recursive call’s are

left-recursive as no input is consumed and the left-rec context continues to increase until

the left-recursive parse is correctly curtailed.

From the above cases and the definition of |.|, for all recursive executions of px, the

following holds - |arguments to px′ | � |arguments to px|, and according to the Lemma 1.1

this is a well-founded ordering.

A.2 Correctness Analysis

In order to prove that our top-down parsing algorithm is correct, we have to show that it is

sound and complete. As mentioned in Chapter 3 of [2], for a grammar G (that describes a

language L(G)) and every input sentence w, a parsing algorithm is sound if the algorithm

accepts input sentence w, then w is in L(G); and is complete if the algorithm accepts all

sentences w is in L(G), then .

Pereira and Warren [3] and Shieber et al. [4] demonstrated how traditional parsing

algorithms, including the top-down recursive-descent parsing algorithm, can be expressed as

deduction systems. The primary advantage of expressing a parsing algorithm as a deduction

system is that a deduction system excludes control techniques, data-structures etc. that

are primarily needed for implementation. Hence, deduction systems are very useful for

discussing formal properties of parsing algorithms. As the conventional top-down parsing

does not terminate while parsing with left-recursive grammars, here we extend the deduction

system to incorporate our technique (which accommodates left-recursive grammar rules).

In a deduction system, an inference rule specifies a single parsing step that is used to

derive statements about the grammatical status of input strings from other such statements.

The general form of an inference rule is:

antecedents
consequent side conditions
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A grammatical deduction system is defined by a set of rules of inference and a set of

axioms given by appropriate formula schemata. A derivation of a formula B (consequent)

from assumptions A1, .. , Am (antecedents), when side conditions hold, is a sequence of

formulas S1, .. , Sn such that B = Sn. Shieber et al. [4] expressed a top-down recursive-

decent algorithm as the following deductive system:

Item form: [•β, j]

Axioms: [•S, 0]

Goals: [•, n]

Inference Rules

Scanning:

[•wj+1β, j]

[•β, j + 1]

Prediction:

[•Bβ, j]
[•γβ, j]

B→ γ

Given a context-free grammar (CFG) G = 〈N,Σ, S, P 〉 and an input string w = w1..wn

to be parsed, item [•β, j] asserts that a sub-string of the input up to the length j (1 ≤ j ≤ n)

forms a sentential form of the language S
∗⇒w1w2...wjβ by subsequent applications of

the scanning and the prediction rules starting from the axiom [•S, 0]. The scanning and

prediction rules show how to logically infer a new token and a new rule respectively. The

goal item [•, n] asserts that the complete input (i.e., S
∗⇒w1w2...wnβ ) has been accepted

by the given grammar. This deduction system is not capable of producing a goal item

when the given CFG contains left-recursion. This is owing to the fact that, in the inference

rule for a production, the side-condition will be B → B..., which results non-termination.

Following the technique discussed in Chapters 2 and 3, we add two more inference rules for

the production (we call them curtailment rules) that ensure proper accommodation of the

left-recursive grammars:

Additional Inference Rules

Curtailment 1:

[•Bcβ, j − 1]

[•Bc+1β, j − 1]
B→ Bγ

′ |γ′′
, c < n− j

Curtailment 2:

[•Bcβ, j − 1]

[•γ′′
β, j − 1]

B→ Bγ
′ |γ′′

, c ≥ n− j
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where, c represents how many times a left-recursion (e.g., B → Bγ
′ |γ′′

)

has been applied at the current position j, and c’s initial value is 0.

Below we discuss how these curtailment inference rules also generate the same item by

satisfying the parsing assumptions when β
′

is left-recursive.

Lemma 2.1: If some rule B → Bγ
′ |γ′′

is left-recursive then in the case of applying a

production inference rule, either curtailment inference rule 1 or 2 applies. We inductively

show (on the length of the input left to parse l = n − j) that these rules are just enough

to allow a left-recursive non-terminal’s alternatives to compute results. Note that n is the

total length of the input.

When n − j = l = 1 (i.e., only one token is left), curtailment rule 1 is applied, and it

increases the left-rec counter c for the current left-recursive non-terminal B from the initial

0 to 1). This recursion lets the recursive depth grow one level only for this one token. The

increment of c satisfies the condition c ≥ n − j of the curtailment inference rule 2, and

allows the alternatives (γ
′′
) of B to be applied at the current position for the left token only

once. Allowing more recursive depth will cause excessive applications of alternatives, and

less recursive depth will cause missing parses that could generate from the alternatives.

From the inductive hypothesis, if the lemma holds for l = n − 1, then we just have to

show that for l = n, the alternatives are given at most one chance to parse the last token.

This last statement directly follows from the base case of the induction. Hence, Lemma

2.1 states that the added curtailment inference rules ensure right recursive depth for left-

recursive parses for an input of any length.

Correctness of Our General Top-Down Parsing: Given a CFG G = 〈N,Σ, S, P 〉,

and an input w1..wj ..wn with any wj ∈ Σ, to prove that our parsing algorithm is correct,

we have to show that the algorithm is sound i.e., [•β, j] ⇒ S
∗⇒w1w2...wjβ, and the al-

gorithm is complete i.e., S
∗⇒w1w2...wjβ, ⇒ [•β, j]. In other words, we have to show

S
∗⇒w1w2...wjβ, ⇔ [•β, j]. Below, we provide a sketch proof (in accordance with [4]) of

these properties using induction on input length (i.e., on j).
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In the base case, when j = 0, we have to show that S
∗⇒β ⇔ [•β, 0]. We have [•S.0] as

an axiom, and applying one
∗⇒ on S, we have [•β, 0] (completeness). On the other hand,

[•β, 0] states that there is a scanning rule that does not consume any token, and from the

axiom [•S.0] we infer that S
∗⇒β (soundness).

As the inductive hypothesis, we assume that for some j
′
(where 0 ≤ j′ < j ), S

∗⇒w1w2...wj′β,

⇔ [•β, j′ ] holds.

For completeness, if S
1⇒w1w2...wjβ, then the rule S →w1w2...wjβ must be in the

grammar G, and one application of this prediction rule and j applications of the scanning

rules on the axiom [•S.0] will generate the item [•β, j]. If S
+⇒w1w2...wjβ, then assume

that S
∗⇒w1w2...wj′β

′ 1⇒w1w2...wj′β, where β
′ → wj′+1..wjβ. From the induction hypoth-

esis, from S
∗⇒w1w2...wj′β

′
the item [•β′

, j
′
] will be generated. If the definition for β

′
is

not left-recursive then after applying the production inference rule for β
′

in [•β′
, j

′
] and

j − (j
′
+ 1) scanning applications the item [•β, j] will be generated. But, if the definition

for β
′

is left-recursive then after j − (j
′
+ 1) applications of the curtailment inference rule

1, one application of the curtailment inference rule 2, and j − (j
′
+ 1) applications of the

scanning rules the item [•β, j] will be generated (from the Lemma 2.2).

On the other hand, for soundness, we have to show [•β, j] ⇒ S
∗⇒w1...wj′ ..wjβ. From

the hypothesis, for the item [•wjβ, j − 1], a grammatical sentential form S
∗⇒w1...wj−1β

exists. In order to apply the scanning inference rule on β in [•wjβ, j − 1] to consume the

token wj , there must be a grammatical rule in the CFG G for β that can be used as a

production inference rule’s side condition. This rule can be left or right recursive, or a

non-recursive rule that accepts wj at the left-most position. Hence, after applying one

production and one scanning inference rules in [•wjβ, j − 1], we find S
∗⇒w1...wj′ ..wjβ.

131



A.3 Complexity Analysis

In this section we used the big O notation to represent the worst case upper bound. Theo-

retically the O is a set of functions i.e., O(g(n)) = {f(n)|0 ≤ f(n) ≤ cg(n)}. Here we have

slightly abused the notation for simplicity i.e., we used O(g(n)) = cg(n) = f(n) where f(n)

is the worst performing function from the set.

A.3.1 Time Complexity w.r.t. the length of input n

We show that the worst-case time complexity of parsing an input (of length n) is O(n3) for

non left-recursive grammars and O(n4) for left-recursive grammars where n is the length of

the input. We begin with a few assumptions that are drawn from Chapters 2 and 3:

Assumptions:

1. Merging two result-sets, curtailment-condition check, and incrementing left-rec counter

requires O(n) time.

2. Operations related to manipulating context and reason (to decide reusing for non-

terminals that are in the path of indirect left-recursion ) need O(n) time.

3. Parsers constructed with only terminals require O(n) time.

4. Memo-table update and lookup require O(n) time.

5. Functionalities for creating pointers and grouping ambiguity need O(n) and O(n2) time

respectively.

6. Creating n-ary branches requires O(n) time.

Lemma 3.1: The alternative combinator requires O(n2) time.

Application of memoize(pp <|> pq) at start-position j involves the following steps (assum-

ing parsers pp and pq have already been applied on j and their results are available):

1. One memo-table lookup + create pointer requires O(n)

2. If the lookup fails:

2.1 Condition for curtailment check requires O(n)

2.2 If 2.1 permits:

2.2.1 Merging two results returned by pp and pq) requires O(n) (merging reasons de-
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pends on # of non-terminals)

2.2.2 Ambiguity packing of new result + updating the packed result to memo-table +

create pointer requires O(n2)

The above time complexities directly follow from the assumptions. Hence, the worst case

complexity remains O(n2).

Lemma 3.2 The sequencing combinator requires O(n2) time.

In case of memoize(pp *> pq) at start-position j, in the worst-case pp may returns a set of

results of length n and according to the definition of *> (Chapter 2), pq has to be applied to

every (end-position +1) of pp’s result-set and each pointer of pp‘s result-set needs to create

an n-ary branch with a pointer-set returned by pq’s application to each (end-position + 1)

of pp. Application of *> involves the following steps (assuming pp and pq had already been

applied and their results are available):

1. One memo-table lookup + creating pointer requires O(n)

2. If the lookup fails:

2.1 Condition for curtailment check requires O(n)

2.2 If 2.1 permits:

2.2.1 Application of pq on pp’s result set + forming the n-ary branching between each

pointer of pp with the corresponding pointer-set of pq + merging their results and reasons

to form new result requires O(n ∗ n) = O(n2).

2.2.2 Ambiguity packing of the new result + updating the packed result in the memo-

table + creating the pointer requires O(n2).

The above time complexities follow from the assumptions. Hence, the worst case com-

plexity remains at O(n2).

Applying the arguments below, we can conclude that a non left-recursive parser and a

left-recursive parser require O(n3) and O(n4) time respectively:
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Non left-recursive parsers need O(n3) time: Given an input of length n and a parser-set

(i.e., nonterminals in the grammar) P of size P#, each non left-recursive parser, p ∈ P is

applied to a particular start-position j ∈ n at most once, as at least one left-most token

of current input would be consumed before recursive execution of p again. Irrespective of

how many times the *> combinator is used in each of the parser’s alternative definition,

all parsers in the sequence can be applied sequentially to at most n start positions. So,

from Lemma 3.2, each alternative definition formed with the *> combinator would require

at most n ∗ O(n2) or O(n3) time. Also, multiple occurrences of alternative rules (formed

with <+> combinator) need O(n2) time (from Lemma 3.1). Hence, the worst case time

complexity for non left-recursive parsers is O(n3).

Left-recursive parsers need O(n4) time: On the other hand, a direct left-recursive parser

is applied to a particular start-position j ∈ n at most n times (follows from the condition

for curtailment), and an indirect left-recursive parser at most n ∗ P# times. Therefore,

the total number of times a left-recursive parser can be executed is n2. Hence, following

Lemmas 3.1 and 3.2., a left-recursive parser needs n2 ∗ O(n2) or O(n4) time for the worst

case.

A.3.2 Parsing complexity w.r.t. the size of the grammar p

Here we informally discuss how the size of the grammar affects the worst case complexities.

We consider the number of non-terminals (p) of a context-free grammar as the size of the

grammar, because we need to have production rules for all of these non-terminals.

Consider a production rule for a non-terminal pi of the form pi = (pa... *> ...pm) (where

1 ≥ a, i,m ≥ p), which has k number of alternatives that are constructed with the combi-

nator <|>. In theory, any finite number of terminals and nonterminals can be sequenced

together to form each of pi’s alternatives. However, in the worst case, each of the gram-

matical symbol that participates in the formation of the rule must consume at least one

input token. Hence, there can be at most n non-terminals in a sequence (i.e., m = n in pi’s

definition), where n is the length of the input.
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According to the definition of memoization, one non-terminal computes results at any

input position j at most once, and considering p (total number of non-terminals) in the

calculation, *> and <|> need O(pn2) time in the worst case. So, if pi’s alternative definition

is non left-recursive and if it has at most n nonterminals then, from the discussion in the

previous section, the worst case time requirement is n ∗O(pn2) or O(pn3). Whereas, if pi’s

one alternative definition is left-recursive and if it has at most n nonterminals then, from the

discussion in the previous section, the worst case time requirement is n∗n∗O(n2) or O(pn4).

The number of alternatives k for a non-terminal pi is independent of the length of the

input or the grammar size as we have defined it. Hence, for the number of non-terminals p,

the worst case time complexity is p ∗O(pn3) ∗ k or O(kp2n3) for the non left-recursive case,

and p ∗O(pn4) ∗ k or O(kp2n4) for the left-recursive case.

A.3.3 Space Complexity w.r.t. the length of the input n

As mentioned in Chapters 2 and 3, the memo-table used for parsing is of type {(parser name

, {(start position, (left rec context, {result}))}}, and the result is of type (start position,

end position+ 1), {tree}). Each parser has at most n memo-table entries and each of them

has a result-set of size at most n. Hence, the total number of entries is p∗n2, where n is the

length of the input, and p is the number of parser. However, each entry of the result-set can

be paired with a tree of size at most n ∗ c . Here c is a constant that depends on number

of symbols on the right-hand side of a rule, or the type of the definition of the right-hand

side symbols (e.g., whether they rewrite to an empty terminal) etc., but not on the length

of the input. Hence, the final size of the memo-table is O(p ∗ n3).
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Appendix B

Example NL Query-Processor

Using the New Combinators

Here we demonstrate the usefulness of our approach by building a directly-executable lan-

guage processor. We use the modular and declarative notation of our approach, which we

described in the previous chapters, by piece-wise integration of smaller syntactic and se-

mantic components to form the larger NL query processor. This is a domain-specific sample

application, which is capable of answering numerous questions about the solar system.

B.1 The Dictionary

We begin by constructing a dictionary to define members of syntactic categories and their

meanings. These are the terminals or words that build an input natural-language query.

For example, a planet is a common noun that shares meaning with a set of planet. It is

also possible to define meaning of some words by relating them to phrases or words that

have equivalent meanings. For example, the meaning of the common noun discoverer can

be assigned by computing the phrase person who discovered something.
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dictionary =

[("man", Cnoun, [NOUNCLA_VAL set_of_men]),

("men", Cnoun, [NOUNCLA_VAL set_of_men]),

("thing", Cnoun, [NOUNCLA_VAL set_of_things]),

("things", Cnoun, [NOUNCLA_VAL set_of_things]),

("planets", Cnoun, [NOUNCLA_VAL set_of_planet]),

("planet", Cnoun, [NOUNCLA_VAL set_of_planet]),

("woman", Cnoun, [NOUNCLA_VAL set_of_woman]),

("women", Cnoun, [NOUNCLA_VAL set_of_woman]),

("sun", Cnoun, [NOUNCLA_VAL set_of_sun]),

("moon", Cnoun, [NOUNCLA_VAL set_of_moon]),

("moons", Cnoun, [NOUNCLA_VAL set_of_moon]),

("satellite", Cnoun, [NOUNCLA_VAL set_of_moon]),

("satellites", Cnoun, [NOUNCLA_VAL set_of_moon]),

("atmospheric", Adj, [ADJ_VAL set_of_atmospheric]),

("blue", Adj, [ADJ_VAL set_of_blue]),

("blue", Adj, [ADJ_VAL set_of_depressed]),

("solid", Adj, [ADJ_VAL set_of_solid]),

("brown", Adj, [ADJ_VAL set_of_brown]),

("gaseous", Adj, [ADJ_VAL set_of_gaseous]),

("green", Adj, [ADJ_VAL set_of_green]),

("red", Adj, [ADJ_VAL set_of_red]),

("ringed", Adj, [ADJ_VAL set_of_ringed]),

("vacuumous", Adj, [ADJ_VAL set_of_vacuumous]),

("exist", Intransvb, [VERBPH_VAL set_of_things, VAL 2]),

("exists", Intransvb, [VERBPH_VAL set_of_things, VAL 1]),

("spin", Intransvb, [VERBPH_VAL set_of_spin, VAL 2]),

("spins", Intransvb, [VERBPH_VAL set_of_spin, VAL 1]),

("the", Det, [DET_VAL function_denoted_by_a]),

("a", Det, [DET_VAL function_denoted_by_a]),

("one", Det, [DET_VAL function_denoted_by_one]),

("an", Det, [DET_VAL function_denoted_by_a]),

("some", Det, [DET_VAL function_denoted_by_a]),

("any", Det, [DET_VAL function_denoted_by_a]),

("no", Det, [DET_VAL function_denoted_by_none]),

("every", Det, [DET_VAL function_denoted_by_every]),
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("all", Det, [DET_VAL function_denoted_by_every]),

("two", Det, [DET_VAL function_denoted_by_two]),

("mars", Pnoun, [TERMPH_VAL (test_wrt 12), VAL 1]),

("bernard", Pnoun, [TERMPH_VAL (test_wrt 55)]),

("bond", Pnoun, [TERMPH_VAL (test_wrt 67)]),

("venus", Pnoun, [TERMPH_VAL (test_wrt 10)]),

("cassini", Pnoun, [TERMPH_VAL (test_wrt 65)]),

("dollfus", Pnoun, [TERMPH_VAL (test_wrt 63)]),

("Fouuntain", Pnoun, [TERMPH_VAL (test_wrt 62)]),

("galileo", Pnoun, [TERMPH_VAL (test_wrt 56)]),

("hall", Pnoun, [TERMPH_VAL (test_wrt 54)]),

("herschel", Pnoun, [TERMPH_VAL (test_wrt 64)]),

("huygens", Pnoun, [TERMPH_VAL (test_wrt 66)]),

("kowal", Pnoun, [TERMPH_VAL (test_wrt 57)]),

("kuiper", Pnoun, [TERMPH_VAL (test_wrt 69)]),

("larsen", Pnoun, [TERMPH_VAL (test_wrt 61)]),

("lassell", Pnoun, [TERMPH_VAL (test_wrt 70)]),

("melotte", Pnoun, [TERMPH_VAL (test_wrt 60)]),

("nicholson", Pnoun, [TERMPH_VAL (test_wrt 59)]),

("perrine", Pnoun, [TERMPH_VAL (test_wrt 58)]),

("pickering", Pnoun, [TERMPH_VAL (test_wrt 68)]),

("almathea", Pnoun, [TERMPH_VAL (test_wrt 21)]),

("ariel", Pnoun, [TERMPH_VAL (test_wrt 47)]),

("callisto", Pnoun, [TERMPH_VAL (test_wrt 25)]),

("charon", Pnoun, [TERMPH_VAL (test_wrt 53)]),

("deimos", Pnoun, [TERMPH_VAL (test_wrt 20)]),

("dione", Pnoun, [TERMPH_VAL (test_wrt 40)]),

("earth", Pnoun, [TERMPH_VAL (test_wrt 11)]),

("enceladus", Pnoun, [TERMPH_VAL (test_wrt 38)]),

("europa", Pnoun, [TERMPH_VAL (test_wrt 23)]),

("ganymede", Pnoun, [TERMPH_VAL (test_wrt 24)]),

("hyperion", Pnoun, [TERMPH_VAL (test_wrt 43)]),

("iapetus", Pnoun, [TERMPH_VAL (test_wrt 44)]),

("io", Pnoun, [TERMPH_VAL (test_wrt 22)]),

("janus", Pnoun, [TERMPH_VAL (test_wrt 36)]),

("jupiter", Pnoun, [TERMPH_VAL (test_wrt 13)]),
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("jupitereighth", Pnoun, [TERMPH_VAL (test_wrt 32)]),

("jupitereleventh", Pnoun, [TERMPH_VAL (test_wrt 31)]),

("jupiterfourteenth", Pnoun, [TERMPH_VAL (test_wrt 34)]),

("jupiterninth", Pnoun, [TERMPH_VAL (test_wrt 33)]),

("jupiterseventh", Pnoun, [TERMPH_VAL (test_wrt 29)]),

("jupitersixth", Pnoun, [TERMPH_VAL (test_wrt 27)]),

("jupitertenth", Pnoun, [TERMPH_VAL (test_wrt 28)]),

("jupiterthirteenth", Pnoun, [TERMPH_VAL (test_wrt 26)]),

("jupitertwelfth", Pnoun, [TERMPH_VAL (test_wrt 30)]),

("luna", Pnoun, [TERMPH_VAL (test_wrt 18)]),

("mercury", Pnoun, [TERMPH_VAL (test_wrt 9)]),

("mimas", Pnoun, [TERMPH_VAL (test_wrt 37)]),

("miranda", Pnoun, [TERMPH_VAL (test_wrt 46)]),

("neptune", Pnoun, [TERMPH_VAL (test_wrt 16)]),

("nereid", Pnoun, [TERMPH_VAL (test_wrt 52)]),

("oberon", Pnoun, [TERMPH_VAL (test_wrt 50)]),

("phobos", Pnoun, [TERMPH_VAL (test_wrt 19)]),

("phoebe", Pnoun, [TERMPH_VAL (test_wrt 45)]),

("pluto", Pnoun, [TERMPH_VAL (test_wrt 17)]),

("rhea", Pnoun, [TERMPH_VAL (test_wrt 41)]),

("saturn", Pnoun, [TERMPH_VAL (test_wrt 14)]),

("saturnfirst", Pnoun, [TERMPH_VAL (test_wrt 35)]),

("sol", Pnoun, [TERMPH_VAL (test_wrt 8)]),

("tethys", Pnoun, [TERMPH_VAL (test_wrt 39)]),

("titan", Pnoun, [TERMPH_VAL (test_wrt 42)]),

("titania", Pnoun, [TERMPH_VAL (test_wrt 49)]),

("triton", Pnoun, [TERMPH_VAL (test_wrt 51)]),

("umbriel", Pnoun, [TERMPH_VAL (test_wrt 48)]),

("uranus", Pnoun, [TERMPH_VAL (test_wrt 15)]),

("venus", Pnoun, [TERMPH_VAL (test_wrt 10)]),

("discover", Transvb, [VERB_VAL (trans_verb rel_discover)]),

("discovers", Transvb, [VERB_VAL (trans_verb rel_discover)]),

("discovered", Transvb, [VERB_VAL (trans_verb rel_discover)]),

("orbit", Transvb, [VERB_VAL (trans_verb rel_orbit)]),

("orbited", Transvb, [VERB_VAL (trans_verb rel_orbit)]),

("orbits", Transvb, [VERB_VAL (trans_verb rel_orbit)]),
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("is", Linkingvb, [LINKINGVB_VAL id]),

("was", Linkingvb, [LINKINGVB_VAL id]),

("are", Linkingvb, [LINKINGVB_VAL id]),

("were", Linkingvb, [LINKINGVB_VAL id]),

("that", Relpron, [RELPRON_VAL intersect]),

("who", Relpron, [RELPRON_VAL intersect]),

("which", Relpron, [RELPRON_VAL intersect]),

("and", Verbphjoin,[VBPHJOIN_VAL intersect]),

("or", Verbphjoin,[VBPHJOIN_VAL union]),

("and", Nounjoin, [NOUNJOIN_VAL intersect]),

("or", Nounjoin, [NOUNJOIN_VAL union]),

("by", Prep, [PREP_VAL id]),

("and", Termphjoin,[TERMPHJOIN_VAL termph_and]),

("or", Termphjoin,[TERMPHJOIN_VAL termph_or]),

("and", Sentjoin, [SENTJOIN_VAL sand]),

("does", Quest1, [QUEST1_VAL yesno]),

("did", Quest1 , [QUEST1_VAL yesno]),

("do", Quest1, [QUEST1_VAL yesno] ),

("what", Quest2, [QUEST2_VAL whatq]),

("who", Quest2, [QUEST2_VAL whoq]),

("which", Quest3, [QUEST3_VAL whichq]),

("what", Quest3, [QUEST3_VAL whichq]),

("how", Quest4a, [QUEST3_VAL howmanyq]),

("many", Quest4b, [QUEST3_VAL howmanyq]) ]

++

[("human", Cnoun, meaning_of nouncla Nouncla "man or woman"),

("person", Cnoun, meaning_of nouncla Nouncla "man or woman"),

("discoverer", Cnoun, meaning_of nouncla

Nouncla "person who discovered something"),

("discoverers", Cnoun, meaning_of nouncla

Nouncla "person who discovered something"),

("humans", Cnoun, meaning_of nouncla Nouncla "man or woman"),

("people", Cnoun, meaning_of nouncla Nouncla "man or woman"),

("orbit", Intransvb,meaning_of verbph Verbph "orbit something"),

("orbits", Intransvb,meaning_of verbph Verbph "orbit something"),

("anyone", Indefpron,meaning_of detph Detph "a person"),
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("anything", Indefpron,meaning_of detph Detph "a thing"),

("anybody", Indefpron,meaning_of detph Detph "a person"),

("someone", Indefpron,meaning_of detph Detph "a person"),

("something", Indefpron,meaning_of detph Detph "a thing"),

("somebody", Indefpron,meaning_of detph Detph "a person"),

("everyone", Indefpron,meaning_of detph Detph "every person"),

("everything", Indefpron,meaning_of detph Detph "every thing"),

("everybody", Indefpron,meaning_of detph Detph "every person"),

("nobody", Indefpron,meaning_of detph Detph "no person"),

("noone", Indefpron,meaning_of detph Detph "no person")]

B.2 Executable Attribute Grammars

Next, we specify the syntax of the query language about the solar system with context-

free rules. These syntax rules are accompanied by semantic rules to compute meanings of

the phrases that are accepted by the corresponding syntax. Using the declarative notation

we described in Chapters 3 and 4, we build this language description as an executable

specification of an attribute grammar as follow:

snouncla

= memoize Snouncla

(parser

(nt cnoun S3) [rule_s NOUNCLA_VAL OF LHS EQ

copy [synthesized NOUNCLA_VAL OF S3]]

<|>

parser (nt adjs S1 *> nt cnoun S2)

[rule_s NOUNCLA_VAL OF LHS EQ

intrsct1 [synthesized ADJ_VAL OF S1

,synthesized NOUNCLA_VAL OF S2]] )

----------------------------------------------------------------

relnouncla

= memoize Relnouncla

(parser (nt snouncla S1 *> nt relpron S2 *> nt joinvbph S3)
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[rule_s NOUNCLA_VAL OF LHS EQ

apply_middle1[synthesized NOUNCLA_VAL OF S1

,synthesized RELPRON_VAL OF S2

,synthesized VERBPH_VAL OF S3]]

<|>

parser (nt snouncla S4)

[rule_s NOUNCLA_VAL OF LHS EQ

copy [synthesized NOUNCLA_VAL OF S4]])

----------------------------------------------------------------

nouncla

= memoize Nouncla

(parser (nt relnouncla S1 *> nt nounjoin S2 *> nt nouncla S3)

[rule_s NOUNCLA_VAL OF LHS EQ

apply_middle2 [synthesized NOUNCLA_VAL OF S1

,synthesized NOUNJOIN_VAL OF S2

,synthesized NOUNCLA_VAL OF S3]]

<|>

parser (nt relnouncla S1 *> nt relpron S2 *> nt linkingvb S3 *> nt nouncla S4)

[rule_s NOUNCLA_VAL OF LHS EQ

apply_middle3 [synthesized NOUNCLA_VAL OF S1

,synthesized RELPRON_VAL OF S2

,synthesized NOUNCLA_VAL OF S4]]

<|>

parser (nt relnouncla S1)

[rule_s NOUNCLA_VAL OF LHS EQ

copy [synthesized NOUNCLA_VAL OF S1]])

----------------------------------------------------------------

adjs

= memoize Adjs

(parser (nt adj S1 *> nt adjs S2)

[rule_s ADJ_VAL OF LHS EQ

intrsct2 [synthesized ADJ_VAL OF S1

,synthesized ADJ_VAL OF S2]]

<|>

parser (nt adj S3)

[rule_s ADJ_VAL OF LHS EQ
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copy [synthesized ADJ_VAL OF S3]])

----------------------------------------------------------------

detph

= memoize Detph

(parser (nt indefpron S3)

[rule_s TERMPH_VAL OF LHS EQ

copy [synthesized TERMPH_VAL OF S3]]

<|>

parser (nt det S1 *> nt nouncla S2)

[rule_s TERMPH_VAL OF LHS EQ

applydet [synthesized DET_VAL OF S1

,synthesized NOUNCLA_VAL OF S2]])

----------------------------------------------------------------

transvbph

= memoize Transvbph

(parser (nt transvb S1 *> nt jointermph S2)

[rule_s VERBPH_VAL OF LHS EQ

applytransvb [synthesized VERB_VAL OF S1

,synthesized TERMPH_VAL OF S2]]

<|>

parser (nt linkingvb S1 *> nt transvb S2 *> nt prep S3 *> nt jointermph S4)

[rule_s VERBPH_VAL OF LHS EQ

drop3rd [synthesized LINKINGVB_VAL OF S1

,synthesized VERB_VAL OF S2

,synthesized PREP_VAL OF S3

,synthesized TERMPH_VAL OF S4]])

----------------------------------------------------------------

verbph

= memoize Verbph

(parser (nt transvbph S4)

[rule_s VERBPH_VAL OF LHS EQ copy [synthesized VERBPH_VAL OF S4]]

<|>

parser (nt intransvb S5)

[rule_s VERBPH_VAL OF LHS EQ copy [synthesized VERBPH_VAL OF S5],

rule_s VAL OF LHS EQ copy [synthesized VAL OF S5]]

<|>
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parser (nt linkingvb S1 *> nt det S2 *> nt nouncla S3)

[rule_s VERBPH_VAL OF LHS EQ applyvbph [synthesized NOUNCLA_VAL OF S3]])

----------------------------------------------------------------

termph

= memoize Termph

(parser (nt pnoun S1)

[rule_s TERMPH_VAL OF LHS EQ copy [synthesized TERMPH_VAL OF S1],

rule_s VAL OF LHS EQ copy [synthesized VAL OF S1]]

<|>

parser (nt detph S2)

[rule_s TERMPH_VAL OF LHS EQ copy [synthesized TERMPH_VAL OF S2]])

----------------------------------------------------------------

jointermph

= memoize Jointermph

(parser (nt jointermph S1 *> nt termphjoin S2 *> nt jointermph S3)

[rule_s TERMPH_VAL OF LHS EQ

appjoin1 [synthesized TERMPH_VAL OF S1

,synthesized TERMPHJOIN_VAL OF S2

,synthesized TERMPH_VAL OF S3]]

<|>

parser (nt termph S4)

[rule_s TERMPH_VAL OF LHS EQ copy [synthesized TERMPH_VAL OF S4],

rule_s NUMBA OF LHS EQ copy [synthesized NUMBA OF S4]])

----------------------------------------------------------------

joinvbph

= memoize Joinvbph

(parser (nt verbph S1 *> nt verbphjoin S2 *> nt joinvbph S3)

[rule_s VERBPH_VAL OF LHS EQ

appjoin2 [synthesized VERBPH_VAL OF S1

,synthesized VBPHJOIN_VAL OF S2

,synthesized VERBPH_VAL OF S3]]

<|>

parser (nt verbph S4)

[rule_s VERBPH_VAL OF LHS EQ copy [synthesized VERBPH_VAL OF S4],

rule_s NUMBA OF LHS EQ copy [synthesized NUMBA OF S4]])

----------------------------------------------------------------
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sent

= memoize Sent

(parser (nt jointermph S1 *> nt joinvbph S2)

[rule_s SENT_VAL OF LHS EQ

apply_termphrase [synthesized TERMPH_VAL OF S1

,synthesized VERBPH_VAL OF S2],

rule_s VAL OF LHS EQ

nomatch [synthesized VAL OF S1

,synthesized VAL OF S2]])

two_sent

= memoize Two_sent

(parser (nt sent S1 *> nt sentjoin S2 *> nt sent S3)

[rule_s SENT_VAL OF LHS EQ

sent_val_comp [synthesized SENT_VAL OF S1

,synthesized SENTJOIN_VAL OF S2

,synthesized SENT_VAL OF S3]] )

----------------------------------------------------------------

question

= memoize Question

(parser (nt quest1 S1 *> nt sent S2 )

[rule_s QUEST_VAL OF LHS EQ

ans1 [synthesized QUEST1_VAL OF S1

,synthesized SENT_VAL OF S2]]

<|>

parser (nt quest2 S1 *> nt joinvbph S2)

[rule_s QUEST_VAL OF LHS EQ

ans2 [synthesized QUEST2_VAL OF S1

,synthesized VERBPH_VAL OF S2]]

<|>

parser (nt quest3 S1 *> nt nouncla S2 *> nt joinvbph S3)

[rule_s QUEST_VAL OF LHS EQ

ans3 [synthesized QUEST3_VAL OF S1

,synthesized NOUNCLA_VAL OF S2

,synthesized VERBPH_VAL OF S3]]

<|>

parser (nt quest4 S1 *> nt nouncla S2 *> nt joinvbph S3)
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[rule_s QUEST_VAL OF LHS EQ

ans3 [synthesized QUEST3_VAL OF S1

,synthesized NOUNCLA_VAL OF S2

,synthesized VERBPH_VAL OF S3]]

<|>

parser (nt two_sent S1)

[rule_s QUEST_VAL OF LHS EQ

truefalse [synthesized SENT_VAL OF S1]]

<|>

parser (nt sent S1)

[rule_s QUEST_VAL OF LHS EQ

truefalse [synthesized SENT_VAL OF S1]])

quest4 = memoize Quest4

(parser (nt quest4a S1 *> nt quest4b S2)

[rule_s QUEST3_VAL OF LHS EQ copy [synthesized QUEST3_VAL OF S1]] )

----------------------------------------------------------------

query = memoize Query

(parser (nt question S1)

[rule_s QUEST_VAL OF LHS EQ copy [synthesized QUEST_VAL OF S1]])

B.3 Functions for Attribute Evaluation

To compute meanings of larger phrases from the meaning of smaller phrases in the above

AG’s semantic rules, we define some application-specific operators and functions. For the

current application, these functions are constructed following an efficient set-theoretic ver-

sion of Montague’s compositional semantics:

intrsct1 [x, y]

= \atts -> NOUNCLA_VAL (intersect (getAtts getAVALS atts x)

(getAtts getAVALS atts y))

intrsct2 [x, y]

147



= \atts -> ADJ_VAL (intersect (getAtts getAVALS atts x)

(getAtts getAVALS atts y))

applydet [x, y]

= \atts -> TERMPH_VAL ((getAtts getDVAL atts x)

(getAtts getAVALS atts y))

applytransvb [x, y]

= \atts -> VERBPH_VAL ((make_trans_vb (getAtts getBR atts x))

(getAtts getTVAL atts y))

applyvbph [z] = \atts -> VERBPH_VAL (getAtts getAVALS atts z)

appjoin1 [x, y, z]

= \atts -> TERMPH_VAL ((getAtts getTJVAL atts y)

(getAtts getTVAL atts x)

(getAtts getTVAL atts z))

appjoin2 [x, y, z]

= \atts -> VERBPH_VAL ((getAtts getVJVAL atts y)

(getAtts getAVALS atts x)

(getAtts getAVALS atts z))

apply_middle1 [x, y, z]

= \atts -> NOUNCLA_VAL ((getAtts getRELVAL atts y)

(getAtts getAVALS atts x)

(getAtts getAVALS atts z))

apply_middle2 [x, y, z]

= \atts -> NOUNCLA_VAL ((getAtts getNJVAL atts y)

(getAtts getAVALS atts x)

(getAtts getAVALS atts z))

apply_middle3 [x, y, z]

= \atts -> NOUNCLA_VAL ((getAtts getRELVAL atts y)

(getAtts getAVALS atts x)

(getAtts getAVALS atts z))

drop3rd [w, x, y, z]

= \atts -> VERBPH_VAL ((make_trans_vb (invert

(getAtts getBR atts x)))

(getAtts getTVAL atts z))

apply_termphrase [x, y]
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= \atts -> SENT_VAL ((getAtts getTVAL atts x)

(getAtts getAVALS atts y) )

sent_val_comp [s1, f, s2]

= \atts -> SENT_VAL ((getAtts getSJVAL atts f)

(getAtts getSV atts s1)

(getAtts getSV atts s2))

ans1 [x, y]

= \atts -> QUEST_VAL ((getAtts getQU1VAL atts x)

(getAtts getSV atts y) )

ans2 [x, y]

= \atts -> QUEST_VAL ((getAtts getQU2VAL atts x)

(getAtts getAVALS atts y))

ans3 [x, y, z]

= \atts -> QUEST_VAL ((getAtts getQU3VAL atts x)

(getAtts getAVALS atts y)

(getAtts getAVALS atts z))

truefalse [x]

= \atts -> if (getAtts getSV atts x) then (QUEST_VAL "true.")

else (QUEST_VAL "false.")

-- Functions used to define meanings of transitive verbs in terms of relations

make_trans_vb rel p = [x | (x, image_x) <- collect rel, p image_x]

trans_verb x = x

passtr_verb x = x

-- Functions used to define meanings of term phrase conjoiners

termph_and p q = g where g x = (p x) && (q x)

termph_or p q = g where g x = (p x) || (q x)

-- Functions used to define sentence conjoiners

sand True True = True

sand any any’ = False

-- Functions denoted by determiners

function_denoted_by_a xs ys = length( intersect xs ys ) > 0
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function_denoted_by_every xs ys = includes xs ys

function_denoted_by_none xs ys = length( intersect xs ys ) == 0

function_denoted_by_one xs ys = length( intersect xs ys ) == 1

function_denoted_by_two xs ys = length( intersect xs ys ) == 2

-- Set and List operators

collect [] = []

collect ((x,y) : t) = (x, y:[e2 | (e1, e2) <- t, e1 == x]) :

collect [(e1, e2) | (e1, e2) <- t, e1 /= x]

invert = map swap where swap (x, y) = (y, x)

includes as bs = (as \\ bs) == []

The semantic attributes or meanings, which can be computed using the above attribute

grammar’s semantic rules, are the type-definitions of semantic expressions, which propagate

up or down during parser executions. For example:

data AttValue =

NOUNCLA_VAL {getAVALS :: ES}

| VERBPH_VAL {getAVALS :: ES}

| ADJ_VAL {getAVALS :: ES}

| TERMPH_VAL {getTVAL :: (ES -> Bool)}

| DET_VAL {getDVAL :: (ES -> ES -> Bool)}

| VERB_VAL {getBR :: Bin_Rel}

| RELPRON_VAL {getRELVAL :: (ES -> ES -> ES)}

| NOUNJOIN_VAL {getNJVAL :: (ES -> ES -> ES)}

| VBPHJOIN_VAL {getVJVAL :: (ES -> ES -> ES)}

| TERMPHJOIN_VAL {getTJVAL :: ((ES -> Bool)

-> (ES -> Bool)

-> (ES -> Bool))}

| SENTJOIN_VAL {getSJVAL :: (Bool -> Bool -> Bool)}

| DOT_VAL {getDOTVAL :: String}

| QM_VAL {getQMVAL :: String}

| QUEST_VAL {getQUVAL :: String}

etc.
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B.4 The Database

We use the following definitions of data (where the integers representing entities are linked

to strings) for use in the set-theoretic compositional semantics in AGs:

-- THE UNIVERSE OF DISCOURSE

set_of_things = [8..70]

-- SETS DENOTED BY COMMON NOUNS

set_of_sun = [8] set_of_planet = [9..17]

set_of_moon = [18..53] set_of_men = [54..70]

set_of_woman = []

-- SETS DENOTED BY ADJECTIVES

set_of_red = [12, 13, 14, 22] set_of_blue = [11, 14, 15, 16]

set_of_green = [11, 15, 16] set_of_brown = [9, 10, 17]

set_of_ringed = [13, 14, 15, 16] set_of_gaseous = [13, 14, 15, 16]

set_of_solid = (union set_of_planet set_of_moon)

set_of_atmospheric = [ 10, 11, 12, 22, 42 ]

set_of_vacuumous = (union set_of_planet set_of_moon)

-- SETS DENOTED BY INTRANSITIVE VERBS

set_of_spin = [8..53]

-- BINARY RELATIONS

rel_orbit =

[(9,8),(10,8),(11,8),(12,8),(13,8), (14,8),(15,8),(16,8),(17,8),(18,11)

,(19,12),(20,12),(21,13),(22,13),(23,13),(24,13),(25,13),(26,13),(27,13)

,(28,13),(29,13),(30,13),(31,13),(32,13),(33,13),(34,13),(35,14),(36,14)

,(37,14),(38,14),(39,14),(40,14),(41,14),(42,14),(43,14),(44,14),(45,14)

,(46,15),(47,15),(48,15),(49,15),(50,15),(51,16),(52,16),(53,17)]

rel_discover =

[(54,19),(54,20),(55,21),(56,22),(56,23),(56,24),(56,25),(57,26),(57,34)

,(58,27),(58,29),(59,28),(59,30),(59,31),(59,33),(60,32),(61,35),(62,35)

,(63,36),(64,37),(64,38),(64,49),(64,50),(65,39),(65,40),(65,41),(65,44)
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,(66,42),(67,43),(68,45),(69,46),(69,52),(70,47),(70,48),(70,51)]

name_list =

[("bernard", 55),("bond", 67), ("venus", 10),("cassini", 65)

,("dollfus", 63),("Fouuntain", 62), ("galileo", 56),("hall", 54)

,("herschel", 64),("huygens", 66), ("kowal", 57),("kuiper", 69)

,("larsen", 61),("lassell", 70), ("melotte", 60),("nicholson", 59)

,("perrine", 58),("pickering", 68), ("almathea", 21),("ariel", 47)

,("callisto", 25),("charon", 53), ("deimos", 20),("dione", 40)

,("earth", 11),("enceladus", 38), ("europa", 23),("ganymede", 24)

,("hyperion", 43),("iapetus", 44), ("io", 22),("janus", 36)

,("jupiter", 13)

,("jupitereighth", 32),("jupitereleventh", 31)

,("jupiterfourteenth", 34),("jupiterninth", 33)

,("jupiterseventh", 29),("jupitersixth", 27)

,("jupitertenth", 28),("jupiterthirteenth", 26)

,("jupitertwelfth", 30),("luna", 18)

,("mars", 12),("mercury", 9)

,("mimas", 37),("miranda", 46)

,("neptune", 16),("nereid", 52)

,("oberon", 50),("phobos", 19)

,("phoebe", 45),("pluto", 17)

,("rhea", 41),("saturn", 14)

,("saturnfirst", 35),("sol", 8)

,("tethys", 39),("titan", 42)

,("titania", 49),("triton", 51)

,("umbriel", 48),("uranus", 15)

,("venus", 10) ]

B.5 Sample NL Input Query

The example NL query processor we described here is capable of answering hundreds of

thousands of questions asked in natural-language. For example:

i1 = "which moons that were discovered by hall orbit mars"
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i2 = "who discovered a moon that orbits mars"

i3 = "did hall discover every moon that orbits mars"

i4 = "how many moons were discovered by hall and kuiper"

i5 = "how many moons were discovered by hall or kuiper"

i6 = "every moon was discovered by a man"

i7 = "which planets are orbited by a moon that was discovered by galileo"

i8 = "which moons were discovered by nobody"

i9 = "is every planet orbited by a moon"

i10 = "which planets are orbited by two moons"

i11 = "who was the discoverer of phobos"

i12 = "hall discovered a moon that orbits mars"

i13 = "which moons that orbit mars were discovered by hall"

i14 = "every moon orbits every planet"

i15 = "every planet is orbited by a moon"

i16 = "a planet is orbited by a moon"

i17 = "does phobos orbit mars"

i18 = "did hall discover deimos or phobos and miranda"

i19 = "did hall discover deimos or phobos and miranda or deimos and deimos"

When these questions are applied as the input of the top-most definition of the attribute

grammar, the language processor returns only the computed answers of the questions, in-

stead of the complete parser trees. For example:

main inputNo = meaning_of question Question inputNo

main i1 => [phobos deimos]

main i9 => [false]

main i5 => [4]

main i18 => [no, yes]

etc.
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