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Abstract

This dissertation embodies a study of the concept of surprise as a base for con-

structing qualitative calculi for representing and reasoning about uncertain knowl-

edge. This document presents two functions, κ++ and z, which construct qualitative

ranks for events by obtaining the order of magnitude abstraction of the degree of

surprise associated with them. The functions use natural numbers to classify events

based their associated surprise and aim at providing a ranking that improves those

provided by existing ranking functions. This in turn enables the use of such functions

in an à la carte probabilistic system where one can choose the level of detail required

to represent uncertain knowledge depending on the requirements of the application.

The proposed ranking functions are defined along with surprise-update models

associated with them. The reasoning mechanisms associated with the functions are

developed mathematically and graphically.

The advantages and expected limitations of both functions are compared with

respect to each other and with existing ranking functions in the context of a bioin-

formatics application known as “reverse engineering of genetic regulatory networks”

in which the relations among various genetic components are discovered through the

examination of a large amount of collected data. The ranking functions are examined

in this context via graphical models which are exclusively developed or this purpose

and which utilize the developed functions to represent uncertain knowledge at various

levels of details.
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Chapter 1

Introduction

“I think you’re begging the question,” said Haydock, “and I can see looming ahead

one of those terrible exercises in probability where six men have white hats and six

men have black hats and you have to work it out by mathematics how likely it is that

the hats will get mixed up and in what proportion. If you start thinking about things

like that, you would go round the bend. Let me assure you of that!”

- Agatha Christie, The Mirror Crack’d

Probabilistic systems for reasoning about uncertain knowledge are well-studied in

Artificial Intelligence. Graphical models have been developed to perform evidential

reasoning by propagating the probabilities associated with domain variables. These

models have in some respects revolutionized AI techniques in that they provide means

to perform the kind of reasoning needed in expert systems much faster than when

resorting to using the full joint probability distribution, thus enabling the use of

probabilistic formalisms in AI applications.

As every good theory comes with shortcoming, so does the use of probabilities as

measures of uncertainty in AI systems; it is constrained by the ability to obtain the

probabilities required for the construction of the model (Parsons, 2001) and ensuring

that the numbers acquired are precise enough to guarantee an acceptable behaviour

1



Chapter 1 Surprise: An Alternative Qualitative Uncertainty Model

of the resulting system (Druzdzel and Van Der Gaag, 2000).

As a response to such difficulties, and motivated by the idea of incorporating rea-

soning about uncertainty in the set of capabilities to be modeled by a common-sense

reasoning framework (McCarthy, 1959), qualitative methods that abstract probabilis-

tic systems have been proposed. The aim is to perform uncertain reasoning in ways

that cope with either partial numerical information or a complete lack of numerical

information. These have been termed qualitative probabilistic methods in the sense

that they do not provide a precise description of an uncertain belief state (as in prob-

abilistic systems) but only provide a description that constrains the probability of

the uncertain belief to belong to some set (Wellman, 1994). As a result, they do not

require the specification of numerical probabilities.

At the time of writing, the literature contains a variety of such formalisms differing

in the way probabilities are made into qualitative notions. Some of these formalisms

provide an abstraction that captures how change in the various of probabilities af-

fects the overall behaviour of the system by capturing how probabilities influence

each other. Other formalisms captures notions such as the order of magnitude class

under which a probability falls under instead of its exact numerical value. A natural

consequence of this variety is that each qualitative formalism comes with its own set

of features and faults (Parsons, 2001), which is the motivation behind this work.

At the heart of this dissertation lies the idea that a good way to speak about

uncertainty without resorting numbers is done by making the notion of surprise the

central concept behind it. More specifically, we investigate the ability of surprise to

present better means for abstraction in formulating a qualitative uncertainty calculus

in instances where qualitative probability fails in providing a good representation.

We leave the question of what is good and what is surprise vague for the mo-

ment but note that the notion of surprise we are interested in captures the relative

unexpectedness of an event with respect to other events belonging to the same dis-

tribution and is therefore not merely that of the inverse probability. The usefulness

of this measure stems from the fact that unlike probability, it provides for a relative

measure and not an absolute one, which enables comparing the uncertainty attached

with events belonging to different distributions and therefore achieves distribution

2
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independence.

An important aspect of envisioning the ability of surprise in modeling uncertain

knowledge is that of considering its capability of managing changing information. By

envisioning, we mean the ability to hypothesize, to project into the future, or the

past or present. This is an important aspect of our hypotheses as existing qualitative

uncertainty calculi are not well-developed with respect to managing information that

is changing through time.

Another important aspect of envisioning this capability is to see if the calculus is

compatible with and is complementary to existing calculi in the sense that it can be

used in an à la carte framework where one is able to choose the qualitative uncertainty

calculus based on the level of abstraction required and the needs of the application.

This aspect comes directly from the fact that different abstractions are tailored to

meet different needs of the application domain as the literature review shows.

The last aspect of this vision is the examination of how well the theoretical benefits

discovered perform in a real-world application where the parameters involved are

complex and the uncertainty ubiquitous.

1.1 Motivation and Desiderata

This dissertation is motivated by the hypothesis that the concept of surprise is more

appropriate than probability for being utilized as a base to abstract uncertain knowl-

edge in a qualitative uncertainty formalism.

Hence, this dissertation is about presenting a common-sense notion of ‘surprise’

and incorporate it in a formalism that should:

1. Be capable of capturing the different epistemic states of events of being either

believed, disbelieved or neither.

2. Present a way for propagating uncertain knowledge correctly and efficiently.

3. Not suffer from undesirable characteristics not attributed to an equivalent nu-

merical representation of surprise.

3
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4. Not introduce more undesirable characteristics that existing qualitative methods

do not suffer from.

1.2 Objectives

It is now possible to state the objectives of this dissertation in a more detailed form.

They are given as follows:

1. Present an alternative to existing qualitative probabilistic calculi that is specif-

ically based on the idea of abstracting surprise rather than probability.

2. Demonstrate that the presented formalism is capable of representing uncertain

knowledge as in qualitative probabilistic formalisms.

3. Demonstrate that the new calculus retains the inference methods found in the

calculi that use a direct abstraction of probability theory.

4. Demonstrate that the presented calculus is epistemically better equipped to deal

with complete or partial lack of information than one that abstracts probability.

5. Demonstrate the flexibility of the surprise-based qualitative formulation for be-

ing used in conjunction with existing calculi to offer different forms and levels

of abstraction as needed by the application domain.

6. Demonstrate the capability of the formalism in being used to capture intricate

forms of uncertainty in a real-world application.

7. Demonstrate the possibility of using the proposed formalism in a calculus to

propagate uncertain knowledge through time.

1.3 Contributions and Expected Benefits

As noted earlier, the contribution of this work lies in being able to use the notion of

whether or not events are considered surprising in a qualitative calculus to represent
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uncertain knowledge. As the concept of surprise has not been previously explored with

respect to qualitative uncertainty reasoning, the ideas contained between the folds of

this dissertation represent a completely novel approach to qualitative probabilistic

reasoning.

This alternative view is useful in several ways. Before this work, the way to

go about formulating a qualitative uncertainty calculus has been to apply a chosen

abstraction method to an existing quantitative uncertainty calculus. The motivation

behind this is to have the resulting qualitative formalism retain the belief inference

capabilities and some of the useful semantics of the original calculi. In this work, the

surprise-based formalism is not directly based on abstracting probability but retains

the mechanism of belief propagation through conditioning offered by probabilistic

methods. What the alternative theory presented here offers is the elimination of the

undesirable implications that follow from abstracting probability theory. One of these

being the lack of relativity. For instance, let two events W1 and W2 be part of a set

of N events and have probabilities Pr(W1) = 0.43 and Pr(W2) = 0.47. Although

probability enables deducing that the event W2 is more probable than the event W1,

whether or not these two events are likely or less likely is not directly obtainable from

their numerical probabilities alone. In order to reach such knowledge, one must know

all the probabilities of the N events. In addition, if W1 and W2 were drawn from

two different distributions, then their probabilities cease to be representative of their

relative likelihood. This undesirable feature transfers itself to any direct abstraction

of numerical probability. A qualitative formalism that abstracts surprise instead will

not suffer from this issue as the dissertation demonstrates. Some of the details of this

calculus have been published in (Ibrahim et al., 2009c) and (Ibrahim et al., 2009b).

Another benefit lies in what this dissertation contributes to the application do-

main chosen as a test bed, which is the discovery of the various causal interactions

among cellular components by the examination of their genetic profiles under different

conditions and at different times. Apart from achieving a workable behaviour in this

environment, the studies performed in this work shed a light on the importance of

extracting the vast qualitative information embedded in the heaps of data collected

by biologists. The study we present here (Ibrahim et al., 2009a) is unprecedented
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in the sense that although there exist voices in the bioinformatics community that

present concerns with respect to using purely quantitative methods for dealing with

the large amount of data collected, our study goes a step further by shifting the focus

on demonstrating the abundance of qualitative knowledge in the collected data that

can be fully utilized with qualitative formalisms.

1.4 Dissertation Structure

The rest of the dissertation is structured as follows. The next two chapters present an

overview of the literature with respect to the various forms under which probability is

used as an uncertainty-handling framework in Artificial Intelligence. More specifically,

Chapter 2 provides an introduction to probabilistic reasoning to handle uncertainty

in Artificial Intelligence and the graphical representations used as tools to perform

the various reasoning tasks associated with it. The aim of the chapter is not to

merely provide an introduction to the field, but also to make visible some of the

difficulties that face probabilistic methods. The discussions of Chapter 2 also present

a motivation to research concerned with the various ways that probabilistic methods

can be reformulated to avoid the difficulties faced by probabilistic reasoning, which

is the topic of Chapter 3.

Chapter 3 is concerned with uncertainty-handling systems that are based on the

principles and calculations of probability theory but abstract away from actually using

numbers. These are systems that present an alternative where the precision required

by numerical probabilistic systems is either unattainable or unnecessary. The chapter

presents a taxonomy of the various calculi that differ by the form of abstraction

applied to probability calculus. As done in Chapter 2, Chapter 3 presents a critical

study of each formalism, outlining what it achieves over quantitative probabilistic

systems and the pitfalls it suffers from and uses these to motivate alternative work.

After these chapters, the dissertation shifts to introduce the proposed formalisms

of surprise-based qualitative uncertainty calculi in Chapter 4. The chapter proposes

two formalisms based on the idea of having a qualitative uncertainty calculus that

offers characteristics that are not available in the qualitative calculi that abstract
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probability.

Studying the features resulting from the proposed formalisms is done by formu-

lating a number of graphical models that use these formalisms to perform reasoning

tasks in a complex, real-life environment. While Chapter 5 is concerned with the

development of the graphical models that are used to test the newly-formulated qual-

itative calculi, Chapter 6 utilizes the models developed in a real-life application. The

application chosen for the purpose is in a bioinformatics setting and consists of pre-

dicting the relations among genetic components using gene expression data. The

chapter studies how the various graphical representations formulated in Chapter 5

are used to 1) study the advantages of the calculi proposed in Chapter 4 as improve-

ments over existing qualitative probabilistic methods 2) to provide results that are

comparable or better than ones available in the literature with respect to the problem

at hand. Chapter 7 summarizes the findings of this work and outlines the various

possible paths that future research can follow.

7



Chapter 2

Probabilistic Systems: A

Quantitative Perspective

When it is not in our power to determine what it true, we ought to follow what is

most probable

- René Descartes, Discourse on the Method

Probability theory has been used to represent uncertain knowledge for several

hundreds of years, taking various forms. It provides a systematic way to determine

the truth associated with the occurrence of events when prior knowledge and current

observations are not sufficient to do so categorically (Pearl, 1988).

Probability theory quantifies variables (representing events) by associating a nu-

merical value designating the degree of belief granted to a variable by some body of

knowledge (Pearl, 1990). Essentially, for any variable W drawn from Ω, the set of all

variables defined by the problem domain (Pearl, 1988), a probability distribution Pr

assigns to each value w of the variable W a probability measure Pr(W = w) ∈ [0, 1]

that estimates the degree to which w is the current true value of W . Accordingly,

a probability distribution Pr is a mapping from the set of all possible values of the
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variables to the unit interval [0, 1] and assigns to each value a probability Pr(w) (for

short). This probability value obeys a set of axioms that constrain its value and

enable the formulation of well-defined rules to combine and manipulate probabilities

of variables and deduce other useful probabilities.

Essentially, the probability distribution Pr is capable of answering many ques-

tions about the domain using rules to compute the probabilities of the conjunctions

and disjunctions of variables as well as rules to compute the conditional probabilities

of variables given other variables (Bayes’ rule). In practice however, a joint proba-

bility distribution can become intractably large causing the computations needed to

extract probability values increasingly intractable (Pearl, 1988; Parsons, 2001). As

this presented a limitation to the use of probability theory in Artificial Intelligence

(D’Ambrosio, 1999), research focused on creating formalisms that attempt to identify

various independence relations among the domain variables to make the computations

required more efficient.

This chapter introduces one such formalism, called Bayesian Networks (BNs).

A BN is a graphical representation whose structure and semantics explicitly model

the independence relations among the various variables in the domain in a way that

reduces the amount of computations required for the various queries. As a result,

BNs capture the uncertainty present in the domain in a more compact and efficient

way (relative to dealing with the complete joint probability distributions) (Pearl, 1988;

Russell and Norvig, 2003). The graphical representation is termed a Bayesian network

as it is based on the computations performed using Bayes’ rule and is introduced in

section 2.1 below.

In the discussions that follow, variables are denoted by upper-case letters (W )

and their values by lower-case letters (w). Bold-face upper-case letters (e.g. W )

denote a set of variables while a bold-face lower-case letter (e.g. w) denotes a set of

instantiations. Subscripts refer to the particular context that the variable refers to.
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2.1 Bayesian Networks

A Bayesian network (BN) is a compact graphical representation of a joint probability

distribution Pr (Pearl, 1988; Jensen, 2001) defined over a set of variables Ω. The

network consists of a directed acyclic graph (DAG) (also termed diagraph, for short)

where the nodes correspond to random variables and the arcs represent direct de-

pendencies between the linked variables (Pearl, 1988). The structure of the graph

describes the influences exerted among the variables and constitutes the qualitative

aspect of the BN. To fully specify a BN, the conditional probabilities of each variable

given its immediate predecessors are given, and form the quantitative part of the

BN (Pearl, 1986). Together, the qualitative and quantitative parts of a BN uniquely

define a joint probability distribution on the set of variables Ω under study.

Definition 1. Bayesian Networks:

Given a probability distribution Pr, a Bayesian network (BN) representation of Pr

is a directed acyclic graph G = (V (G), E(G)), where V (G) is the set of nodes capturing

the variables of the domain and E(G) is the set of arcs capturing the conditional

independence among the variables in the following way:

1. ∀ Wi,Wj ∈ V (G), if (Wi,Wj) ∈ E(G) then there exists a direct probabilistic

dependence relationship between Wi and Wj in which Wj is directly dependent

on Wi.

2. ∀ Wi,Wj ∈ V (G), if (Wi, Wj) ∈ E(G) then Wi is said to be an immediate

predecessor, or parent of Wj, Wi ∈ π(Wj), where π(Wj) is the set of all parents

of Wj.

3. ∀ W ∈ V (G), W is described in terms of a conditional probability distribution

Pr(W |π(W )) defined on W , where Pr(W |π(W )) reduces to an unconditional

distribution if π(W ) = ∅.

Example 1. Figure 2.1 shows a network that describes the factors affecting the con-

dition in which a civilian is found by rescue agents inspired by an example found in

(Korb and Nicholson, 2003). The age of the civilian (modeled by the variable A)
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affects both the civilian’s mental and physical health (modeled by MH and PH respec-

tively). An increase in the humidity (modeled by HM) and temperature (modeled by

T) may cause the development of Hyperthermia (modeled by H). Moreover, the civil-

ian’s mental health, physical health, her diagnosis with hyperthermia as well as the

efficiency of the rescue process (modeled by E) all influence the condition in which

the civilian is found (modeled by C).

In this network, V (G) = {HM, A, T, MH, PH, H, E, C}. E(G) reflects the

dependence relationships among the nodes of the network. Moreover, π(C) = {E, H,

MH, A, PH} while π(A) = φ for instance.

The conditional probabilities for the nodes are also shown in the figure. For the

sake of simplicity, we assumed that all variables are binary in the example given in

Figure 2.1. The values for each variable is given by High/Good (True) and Low/Bad

(False). Also, we only enlist the probabilities for the true case in the figure as the

probability for the false case can be directly inferred from it. Moreover, we only enlist

16 out of the possible 25 = 32 cases for the table showing Pr(C|E,H, MH, A, PH)

as it would be too large otherwise.

2.2 Independence Assumptions in Bayesian Net-

works

Bayesian networks establish a clear correspondence between the topology of the net-

work and the various types of independence relations that exist among the variables

in the network. More specifically, the concept of conditional independence can be

formalized via the topology of the BN. For any two nodes Wi and Wj, if they are

separated by a subset of nodes Wk ⊆ {V (G)/{Wi ∪ Wj}} in the network, then

this implies the independence of Wi and Wj given Wk. In other words, Wi and

Wj are said to be conditionally independent given the set of nodes Wk, given by:

Pr(Wi|Wj,Wk)= Pr(Wi|Wk). The idea of conditional independence is formalized

by the d-separation criterion. In essence, two sets of nodes Wi and Wj are condi-

tionally independent given set of nodes Wk if every path from any node in Wi to any
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node in Wj is blocked by Wk, where the notion of blocking is given in definition 2.

Figure 2.1: An example Bayesian Network DAG structure Inspired by one given

in (Korb and Nicholson, 2003). In the network: HM: Humidity; T: Temperature;

H: Hyperthermia; E: Rescue Efficiency; A: Age; MH: Mental Health; PH: Physical

Health; C: Condition When Found.

Definition 2. Blocking (Pearl et al., 1989) :

Given a directed acyclic graph G = (V (G), E(G)), let p be a path of arcs in E(G)

connecting two nodes Wi and Wj, where Wi,Wj ∈ V (G). Then p is said to be blocked
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by the set of nodes Wk⊆ V (G) iff either Wi or Wj is included in Wk or p contains

three consecutive nodes P1, P2, P3 for which one of the following conditions holds:

1. The arcs P1 ← P2 and P2 → P3 are on the path p, and P2 ∈ Wk. In this case,

P2 is said to be tail-to-tail with respect to the path from P1 and P2.

2. The arcs P1 → P2 and P2 → P3 are on the path p, and P2 ∈ Wk. In this case,

P2 is said to be head-to-tail with respect to the path from P1 and P2.

3. The arcs P1 → P2 and P2 ← P3 are on the path p, and σ∗(P2)∩ Wk= φ. In

this case, P2 is said to be head-to-head with respect to the path from P1 and P2.

Where σ∗(P2) denotes the set of nodes composed of P2 and all its descendants.

Figure 2.2: Blocking Conditions

The three conditions are illustrated in Figure 2.2. If one of the conditions is

satisfied, then Wk is said to block the path p between nodes Wi and Wj, otherwise

the path is said to be active.

Example 2. In the network shown in Figure 2.1, examples for the three blocking

conditions are:

1. Observing a value for A renders the nodes MH and PH independent. They are

dependent however, if A has not been observed. This is because observing A

blocks the tail-to-tail path between MH and PH.

2. Observing a value for H renders the nodes T and C independent, while they

remain dependent if no observation has been made. This is because observing H

blocks the head-to-tail path between T and C.
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3. Given no observation, the nodes T and HM are independent since they both

have no parent nodes. However, when observing H or any of its descendants,

this independence disappears.

Applying the concept of blocking to all the possible paths from Wi to Wj leads to

the concept of d-separation (Verma and Pearl, 1992), given in definition 3 below.

Definition 3. d-separation (Coupé and Gaag, 2002):

Given a directed acyclic graph G = (V (G), E(G)), let Wi, Wj, Wk ⊆ V (G). The

set of nodes Wk is said to d-separate the sets of nodes Wi and Wj in G, denoted

by 〈Wi| Wk|Wj〉dG, if for each node Wi ∈ Wi and each node Wj ∈ Wj, every path p

from Wi to Wj in G is blocked by Wk.

D-separation in a BN can be discovered using a linear time, depth-first-search-like

algorithm (Verma and Pearl, 1992; Pearl et al., 1989; Shachter, 1988).

Example 3. In Figure 2.1, observing H blocks all the possible paths from Temper-

ature to C and therefore renders the two d-separated. This is not the case when

observing MH. Although it does block the path {A-MH-C}, it does not render A and

C d-separated as the path {A-PH-C} is still active (even PH is observed), there re-

mains the active path {A-C}.

If every d-separation corresponds to a true independence in the probability dis-

tribution defined over the system, then the Bayesian Network is said to be an I-map

(short for an independence map) (Ghahramani, 1998; Pearl, 1988), which is formally

given in definition 4 below.

Definition 4. I-map (Coupé and Gaag, 2002):

Given a directed acyclic graph G = (V (G), E(G)) with a probability distribution

Pr defined on V (G), G is called an I-map for Pr if for all sets of nodes Wi, Wj,

Wk ⊆ V (G), we have:

If 〈Wi| Wk|Wj〉dG, then Wi and Wj are conditionally independent given Wk in

Pr.
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Hence, the independence relations of Pr are captured by the topology the graph

G in the following ways (Pearl, 1988):

1. A node is conditionally independent of its non-descendants, given its parents.

2. A node is conditionally independent of all other nodes in the network, given

its parents, children, and children’s parents (a nodes parents, children and chil-

dren’s parents are termed the nodes Markov blanket).

Example 4. In Figure 2.1, the conditional probabilities of the variable Mental Health

(MH) are only calculated with respect to its parent Age (A). The same applies for

all the other variables. This reflects the idea of independence given the values of the

parent nodes 1.

Given the conditional independence properties given above and the conditional

probabilities, the conditional probability of a node given its parents and the prior

probabilities of the root nodes are the only probabilities required to fully specify the

joint distribution represented by the network. Using this, the chain rule can be used

to recursively factorize the joint probability over all variables.

Pr(V (G)) = Pr(W1|W2, ..., Wn).P r(W2|W3, ..., Wn)......P r(Wn)

=
∏

Wi∈V (G)

Pr(Wi|π(Wi))

Where the above computation defines the joint probability distribution Pr for a

BN G whose set of nodes V (G) = {W1, ..., Wn} such that the variables are ordered

so that no variable Wi follows its immediate predecessors π(Wi) (Pearl, 1988), which

is how the acyclic nature of the graph is ensured (Ghahramani, 1998).

1It is worth noting that the number of probabilities to be calculated for a node is exponential with

respect to the number of parents it has. For example, when constructing the conditional probability

table for Condition When Found, it becomes necessary to assign a total of 25 = 32 for the complete

description of the joint probabilities of the variable (Condition When Found (C) has five parents,

all of which are binary variables).
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Moreover, it should be visible from the above equation that there are many ways

to factorize the variables in a joint distribution, which implies that more than one

BN can be constructed in consistency with a joint. Here, the concept of the I-map

(definition 4) ensures a correct structure for the generated Bayesian Network.

2.3 Inference in Bayesian Networks

The most common inference task in Bayesian networks is that of computing the poste-

rior marginal probability, which is performed through evidence propagation (Castillo

et al., 1996). This is the process of computing the posterior probabilities of a set

of variables in the network when the specific values of some other variables in the

network are observed. More formally, given a set of variables Y having been observed

to possess values y0, the task is to compute the posterior probability of another set of

(unobserved) variables X, Pr(X|Y = y0). The literature contains many algorithms

for evidence propagation and can be classified into algorithms that perform exact

inference, providing the exact posterior probability of the query variable, and those

that perform approximate inference by only producing a bound to which the correct

solution is guaranteed to belong.

Exact inference exploits the independence structure of the network to efficiently

propagate the evidence. There exist several algorithms for this task. One such algo-

rithm is the clique tree propagation algorithm (CTP) (Lauritzen and Spiegelhalter,

1988; Shafer and Shenoy, 1990; Jensen et al., 1990) which transforms a BN into a

secondary structure called the clique tree or junction tree. This secondary structure

allows the computation of the answers to all possible queries having one query variable

and a fixed set of observations (Jensen et al., 1990). Another algorithm is the variable

elimination algorithm (Zhang and Pool, 1996), which makes use of the fact that only

a subset of the variables present in the network is required for most queries and builds

a query-oriented method that can carry out inference in large networks that the CPT

algorithm cannot deal with. Variable elimination is related to a set of algorithms that

focus the inference on a small subset of the variables when the query at hand does

not requires the entire network (see for example (Li and D’ambriosio, 1994; Shachter,
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1990; Jensen, 1995; Dechter, 1996; D’ambrosio, 1994)). Despite the various efforts to

use the topology and independence assumptions present in the network however, all

the algorithms that perform exact inference are known to be NP-hard in the worst

case (Cooper, 1990; Chickering et al., 2004; Jensen et al., 1990).

Approximate algorithms on the other hand do not provide an exact solution, but

produce a bound to which the correct solution is guaranteed to belong to. Although

approximate inference in BNs has also been proven to be NP-hard in the worst

case (Dagum and Luby, 1993), they are likely perform in polynomial time (Dagum

and Luby, 1993; Haipeng Guo and William Hsu, 2002) and therefore constitute an

interesting alternative (when possible) to exact inference algorithms in large and

highly-connected networks because it becomes impossible to obtain results using exact

inference algorithms with such networks (Castillo et al., 1996; Cooper, 1990).

Complexity results for inference in Bayesian Networks can also be categorized

with respect to the topology of the Network. Essentially, BNs can be categorized as

either singly-connected or multiply-connected. A BN is said to be singly-connected

if for any node in the DAG, there exists at most one path to any other node in the

network (Wu and Butz, 2005). Despite the previous general consensus that inference

in singly-connected BNs is more efficient that in multiply-connected BNs (Kim and

Pearl, 1983), (Shimony and Domshlak, 2003; Wu and Butz, 2005) demonstrate that

evidence propagation is NP-hard even in multi-valued singly-connected BNs. More-

over, Wu and Butz (2005) show that the hardness of exact inference in BNs cannot

be determined exclusively based on the topological structure of the DAG of a BN.

2.4 Constructing Bayesian Networks

A central issue to the development of systems that use Bayesian Networks is the

construction of the network. Essentially, building a Bayesian Network for an appli-

cation domain involves three tasks. The first is to identify the variables required to

define the domain at hand, followed by identifying the relationships holding among

the variables in order to define the structure of the network and finally to find the

probabilities required to fully specify the quantitative part of the network (Druzdzel
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and Van Der Gaag, 2000).

The required probabilities are mainly obtained from statistical data, the literature

pertaining to the domain at hand and human experts (Mani et al., 2005). Using the

data, BNs are constructed using one of two methods. The first is through knowledge

engineering sessions that involve domain experts who identify the important variables

along with the topology of the DAG and assess the prior and conditional probabilities

for the various nodes of the network. The second method is that of automatically

learning the structure and probabilities of the network from data (Buntine, 1994).

Algorithms for learning the DAG structure from data can be generally classified into

those that are based on constraint-based search (Pearl and Verma, 1991; Spirtes et al.,

1993) or through a Bayesian search for a graph that produces the highest probability

given the data (Cooper and Herskovits, 1992). Given the DAG structure, computing

the probabilities becomes a straightforward task (Druzdzel and Van Der Gaag, 2000).

Constructing the qualitative part of the network using either method, despite the

considerable efforts required, is considered achievable (Coupé and Gaag, 2002; Mani

et al., 2005). When the structure of the network is complete and the data is fully

available, then building the corresponding probability tables becomes an easy task

(Druzdzel and Van Der Gaag, 2000). On the other hand, for most real-life application,

the data is usually incomplete and constitutes only partial knowledge of the domain.

When this is the case, domain experts assess the required numbers with the aid of

the literature, available data and experience (see for example (Coopé et al., 1999) in

which an example of a common method for constructing BNs in medical diagnosis

is shown). This leads to an inevitable inaccuracy in the quantitative part of the

generated network and deems the assessments made from the network inaccurate

and possibly unreliable (Druzdzel and der Gaag, 1995). Algorithms for learning the

structure and parameters of BNs given incomplete data are also available, but are

also consequently imprecise as the result of the induced inaccuracy (Friedman, 1997;

Wong and Guo, 2006; Heckerman, 1995; Getoor et al., 2002; Li et al., 2005).

As a result, there has been various studies to analyze Bayesian Networks for sen-

sitivity to the inaccuracies induced by the construction process (Castillo et al., 1997;

Laskey, 1995; Jensen et al., 1995; Kwisthout and Gaag, 2008; Coupé and Gaag, 2002;
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Coopé et al., 1999). These studies have been generally termed sensitivity-analysis

and are concerned with “understanding the relationship between local network pa-

rameters and global conclusions drawn based on the network” (Chan and Darwiche,

2004). As different parameters of the network require different levels of accuracy to

provide an acceptable behavior from the resulting network (Coopé et al., 2000; Chan

and Darwiche, 2002), sensitivity analysis is used to evaluate the level of accuracy

that a parameter requires and subsequently fine-tune and then evaluate the resulting

network. The problem has been given several formal definitions (see (Jensen et al.,

1995; Coupé and Gaag, 2002; Chan and Darwiche, 2002; Jensen, 2001)). Here, we

enlist the one given in (Chan and Darwiche, 2004) in Definition 5 below.

Definition 5. Sensitivity Analysis (Chan and Darwiche, 2004):

Given a Bayesian Network G and a subset of network parameters, sensitivity anal-

ysis on G is the process of identification of the possible changes to these parameters

that can ensure the satisfaction of one or more of the following query constraints:

1. Given an event w and an evidence e, Pr(w|e) > p, for some p ∈ [0, 1]

2. Given two events w1 and w2 and an evidence e, Pr(w1|e)/Pr(w2|e) > k, for

some k > 0.

3. Given two events w1 and w2 and some evidence e, Pr(w1|e) − Pr(w2|e) > k,

for some k ∈ N.

Example 5. In the network given in figure 2.1, the network contends that being

diagnosed with Hyperthermia given that it is both hot and humid is twice as likely

as being diagnosed with Hyperthermia given that it is only humid, i.e. Pr(HM =

True, T = True|H = True)/Pr(HM = True, T = False|H = True) = 2, while a

domain expert may believe that the ratio should be at least 4. In this case, the question

becomes: which network parameters should be changed to enable obtaining the correct

ratio? and by how much?

Central to the problem of addressing the constraints are the following questions:
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1. What are the number of parameters to be systematically varied at a time for

every test? (Coupé and Gaag, 2002; Chan and Darwiche, 2004).

2. What are the conditional probabilities that are uninfluential to the parame-

ter (or set of parameters) under study? (Coupé and Gaag, 2002; Chan and

Darwiche, 2002)

There exist algorithms that perform different forms of sensitivity analysis. Chan

and Darwiche (2002) introduce a tool , called SAMIAM (Sensitivity Analysis, Model-

ing, Inference And More) that has many features, one of which is to perform sensitivity

analysis on a given network. It has been used to obtain some bounds on the impact

that the relevant parameters may have on the results of the queries (also studied in

(Renooij and Gaag, 2004)). Coupé and Gaag (2002) conduct a study that is based on

using the concept of conditional independence to reduce the number of parameters

to be tested when performing sensitivity analysis by discovering the parameters that

are irrelevant to a certain evidence. Despite the continuous efforts for more efficient

ways to perform the analysis, such studies remain a burn with respect to the com-

putational effort required (Kwisthout and Gaag, 2008; Coupé and Gaag, 2002; Chan

and Darwiche, 2004). In fact, the task of sensitivity analysis has been shown to be

NP-hard (Kwisthout and Gaag, 2008).
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Chapter 3

Qualitative Abstractions of

Probabilistic Systems

Common sense is a wild thing, savage, and beyond rules

- G.K. Chesterton, Charles Dickens: A Critical Study

The previous chapter introduced the basic concepts of probabilistic reasoning and

how it is used to deal with uncertainty by attaching probabilities to variables and

using these probabilities as measures of belief or likelihood. Bayesian Networks were

introduced as the main graphical representation used to perform probabilistic infer-

ence.

There are different opinions in regards to the use of numbers to represent uncer-

tainty. On the protestor’s side, the sources of the numbers assigned as probabilities

are questioned (Druzdzel and Van Der Gaag, 2000). For instance, there exist con-

cerns with respect to the ability of a domain expert to assess the probabilities because

even domain experts may not have sufficient information to establish valid subjective

probabilities (Parsons, 2001) or maybe reluctant to do so. This is because of the

difference between the categorical reasoning offered by their developed intuitions and

the precision required for the specification of the probabilities (Chard, 1991). For in-
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stance, medical experts maybe able to tell which disease is more likely than the other

given the symptoms and by how many times, but are not willing to say for instance

that Pr(disease1|symptoms) = .23 and Pr(disease2|symptoms) = 0.82. Moreover,

data for real-life applications in many domains tend to be incomplete, which implies

that only partial knowledge is available. Hence, the assessments obtained through

the different means are inevitably inaccurate (Druzdzel and der Gaag, 1995). Even

the most enthusiastic probabilists such as Cheeseman (1988), who despite his avid

defense of probabilities as being sufficient to reason about uncertainty when used

correctly (Cheeseman, 1985), questions the sources of the numbers used as probabil-

ities and their accuracy (Cheeseman, 1988). Moreover, as we have seen in Chapter

2, parameter tuning and analyzing BNs for sensitivity to noise in order to prevent

inconsistent results is an NP-hard task (Kwisthout and Gaag, 2008).

On the other hand, there exist domain-specific studies in which empirical evidence

shows the robustness of Bayesian techniques in some applications despite the large

amounts of random noise. For example, Henrion et al. (1996) demonstrate that

Bayesian medical diagnosis is relatively insensitive to noise. Also, Pearl (1988) reasons

that the numbers provided as probabilities are the ones most likely to be acquired

through experience and are even possibly represented in cognitive structures. Nikovski

(2000) has also proposed a method to obtain the necessary probabilities in the medical

domain by having experts estimate both the sensitivity and specificity for pairs of

findings and diseases, which has the advantage of physicians being more able to relate

to these measures and more capable of providing good estimates (Nikovski, 2000). In

addition, when the statistical data is available, systems that learn the probability

values required for the construction of the conditional probabilities of the BNs are

considered reliable as they have been heavily studied (see for example (Nachman

et al., 2004; Barash and Friedman, 2002; Getoor et al., 2002, 1999)).

Apart from all of the above, it is important to note that these systems are only

useful if either enough statistics exist for the values to be inferred with sufficient

accuracy or that there are experts available in the specific domain. This luxury is not

enjoyed by many applications for which a complete specification of the probability

values of the events constituting the model is not achievable. An example from the
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medical domain is that of skin diseases for children where no expert is currently

available, which renders any numerical information unattainable (Beumer, 2006).

Although overcoming the lack of real data by means of approximation (Ramezani

and Marcus, 2002) or synthesis (Hand, 2006) is possible for some applications, it is

not an option for many types of applications. For example, epidemiological data

describing factors influencing the occurrence of illnesses cannot be approximated or

synthesized when not sufficient. Another example is the problem of predicting the

topological structure of proteins, where the topology of very few proteins are currently

known, and available data is in general incomplete and uncertain, and approaches

using numerical probability have only been successfully used in the prediction of a

special class of proteins called transmembrane proteins (Kahsay et al., 2005).

In other applications, the data is available in heaps but is not verifiable for correct-

ness and tends to be filled with noise (Parsons and Mamdani, 1993). Such applications

may benefit from the added robustness that qualitative formulations can offer. A (pos-

sibly) surprising domain that fits this criterium is bioinformatics, where the nature

of and cost associated with current microarray technologies prevent the possibility

of repeating the experiments that are used to obtain the data, which make statis-

tical studies of a single measurement unattainable (Filkov et al., 2002). Therefore,

the numbers usually represent outcomes of a single, non-repeated experiment. There

exist several concerns with respect to this issue (D’hæseleer, 2000) whose treatment

remains an unanswered question (Friedman, 2004). Moreover, some applications may

not require the precise specification of probabilities. For example, for crime scene in-

vestigations and forensic applications, the objective is usually to provide a “justifiable

indication of the difference in magnitude of support for one hypothesis over another,

given the available evidence’ (Keppens, 2007) and not the exact probability of the

hypotheses.

Apart from the epistemic concerns, Bayesian Networks are known to have NP-

hard inference algorithms (Cooper, 1990; Chickering et al., 2004) as Chapter 2 has

shown. More efficient alternatives for reasoning exist but these usually pose funda-

mental tradeoff between efficiency and accuracy (Diez, 1996).

Hence, it is easy to see that the above problems necessitate alternative approaches
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for some application domains. This is especially so given that the most obvious ap-

proach of approximating probabilities is by allowing them to fall within intervals

rather than be constrained to mere points merely describing second-order distribu-

tions that do not achieve anything that point probabilities cannot (as argued by sev-

eral authors including (Kyberg, 1989))1. This chapter presents a number of systems

that aim at somehow abstracting probabilistic systems by using no or little quan-

titative information. The systems presented in this chapter are divided into three

classes (a taxonomy inspired by the one given in (Parsons, 2001)) and are: systems

of strict abstractions (Section 3.1), systems of order of magnitude (Section 3.2) and

symbolic abstractions. These systems have been proposed as stand alone systems as

well as systems to be used in conjunction with quantitative probabilistic ones (Ng

and Ong, 2000). A review of the literature with respect to systems of strict and

order-of-magnitude abstractions is given. Symbolic systems extend to a number of

formalisms from systems of argumentation (Benferhat et al., 1993; Darwiche, 1993;

Fox et al., 1992) to systems for nonmonotonic reasoning (Neufeld, 1990). However, a

deeper review of these systems is beyond the scope of this work 2.

3.1 Systems with Strict Abstractions

Systems of strict abstraction are based on the idea of replacing real number by three

quantities: positive, negative and zero with an aim to do away with the quantitative

details and perform more qualitative, large scale reasoning (Hayes, 1985a). This area

of research was initiated by Hayes’ näıve physics (Hayes, 1978, 1985a,b) that aimed at

formulating a new school of thought, focusing on studying the large-scale aspects of a

system and “put(ting) away childish things” (Hayes, 1985a) (in reference to abundant

numerical details). The general aim was to formulate a qualitative theory governing

1This has not altered the popularity of interval probabilities. The interested reader may refer to

(Choquet, 1953; Weichselberger and Pöhlmann, 1990; Dubois et al., 1992; Breeze and Fertig, 1991)

for more details. As interval-based probabilities extend much further than the scope of our work,

they will not be covered in this document.
2The interested reader may refer to (Parsons, 2001) for an elaborate discussion on symbolic

approaches.
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the behavior of liquids (Hayes, 1985a) based on the idea of describing the evolution of

their various properties as increasing (modeled by having a positive value), decreasing

(having a negative value) and non-changing (having a value of zero). Applying the

same reasoning with probabilities is the motivation behind this class of abstractions of

probability theory. The idea is to shift the attention from the numerical descriptions

of the point probabilities and instead study how the probability value changes with

respect to evidence by increasing, decreasing or remaining constant. Graphical models

to serve this aim have been formulated similarly to Bayesian Networks but having

the idea of strictly-qualitative change as a core. The two main graphical models

are Qualitative Probabilistic Networks (QPNs) (Neufeld, 1989; Wellman, 1990a) and

Qualitative Certainty Networks (QCNs) (Parsons, 2003) and are discussed in the rest

of this section.

3.1.1 Qualitative Probabilistic Networks (QPNs)

Qualitative probabilistic networks (QPNs) (Neufeld, 1989; Wellman, 1990a; Renooij

and Gaag, 2008) are graphical abstractions of Bayesian Networks (BNs) that comprise

of a directed acyclic graph capturing, as in BNs, the independence relations that hold

among the variables the network represents. Instead of the conditional probabilities

that BNs use however, QPNs replace the numerical probability tables defined on the

arcs of a BN by qualitative relations that describe how evidence given for one or more

nodes influences other nodes in the network (Wellman, 1990a) without resorting to

numerical probabilities. In other words, the abstraction that yields QPNs preserves

the DAG topology modeling the causal relations that exist among the variable while

replacing the numerical probabilities that regular BNs encode by qualitative relations.

The relations that the arcs of QPNs capture are qualitative in that they define a

partial order over the conditional values that would make up the conditional proba-

bility table which is replaced by the relations. Essentially, the only information they

capture is the direction of the influence exerted from a node (or a group of nodes) on

another node (i.e. whether the evidence makes a node more or less likely) and is hence

represented by its sign, being positive, negative, zero (constant) or unknown instead
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of the numerical representation given in BNs (Wellman, 1990a; Parsons, 2001).

A QPN is given by a pair G = (V (G),E (G)), where V (G) is the set of nodes

capturing the variables of the domain being represented and E(G) is the set of arcs

capturing the conditional independence relations holding among the variables as in

Bayesian Networks. For V (G), a total order on the values of each node W ∈ V (G)

is assumed (Renooij and Gaag, 2008). Also, conditional independence is captured in

the same way as in BNs via d-separation (Renooij and Gaag, 2008).

A QPN uses hyperarcs for the diagraph G that replace the conditional proba-

bility distribution and capture qualitative probabilistic relations among the variables

(Renooij, 2001) by finding monotonic characteristics in the conditional probability dis-

tribution based on the idea of first-order stochastic dominance (Bawa, 1975) (given

in definition 6 below) to establish order properties over the probabilities of events.

Definition 6. First-order Stochastic Dominance (Renooij, 2001):

Let Pr be a probability distribution defined over a set of variables {W1, ...Wn}.
For any variables Wi,Wj, 1 6 i, j 6 n with values < wi1 , ..., wim >,< wj1 , ..., wjk

>

where m is the total number of values Wi can have and k is the total number of

values Wj can have, then Wi exhibits a first-order stochastic dominance over Wj

if for every two values wik1
, wik2

of Wi with wik1
> wik2

, the cumulative conditional

probability distribution of node Wj, Pr(wj1|wik1
)∨ ...∨Pr(Wjm|Wik1

), lies, graphically

speaking, below the cumulative conditional probability distribution of Wj given wik2
,

i.e. Pr(wj1|wik2
) ∨ ... ∨ Pr(wjn|wik2

) or according to the inequality:

Pr(wj1|wik1
) ∨ ... ∨ Pr(wjn|wik1

) 6 Pr(wj1|wik2
) ∨ ... ∨ Pr(wjn |wik2

)

The above concept is used to devise a number of qualitative relations. The most

basic type of relations are qualitative influences (Wellman, 1990a); they exhibit prop-

erties that are used to define other types of qualitative relations in QPNs. For this,

we list them first, along with their properties, then shift out attention to other types

of qualitative relations.
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Qualitative Influences

Influences describe how the change of the value for one variable affects that of another,

and is the most important type of qualitative relations in QPNs as the definition of the

other types of relations are dependent on that of qualitative influences. Qualitative

influences can be of four types, positive, negative, constant or unknown (Wellman,

1990a).

A positive influence exists between two variable Wi and Wj (Wi is said to positively

influence Wj, written as I+(Wi,Wj)) if observing higher values for Wi makes higher

values of Wj more probable, regardless of the value of any other direct ancestor of

Wj which may directly influence its value (denoted by W and expressed by W =

πG(Wj)/{Wi}) as given in definition 7.

Definition 7. Positive Influence (Renooij, 2001):

Let G = (V (G), E(G)) be a directed acyclic graph and let Pr be a joint probability

distribution on V (G) such that G is the I-map for Pr. Let Wi, Wj ∈ V (G) be nodes

in G with Wi → Wj ∈ E(G). Let W = πG(Wj)/{Wi}. Then node Wi positively

influences node Wj, written as I+(Wi,Wj) iff for all values wj of Wj and all values

wi1 , wi2 of Wi, with wi1 > wi2 the following inequality holds

I+(Wi,Wj) iff Pr(Wj > wj|wi1 ,W ) > Pr(Wj > wj|wi2 ,W )

It is worth mentioning that the above inequality can be redefined for binary vari-

ables Wi and Wj by placing a partial order on their values such that for a variable

Wi with two values wi and ¬wi, wi > ¬wi. Negative and constant QPN influences

are similarly given in Definitions 8 and 9 below.

Definition 8. Negative Influence (Renooij, 2001):

Let G = (V (G), E(G)) be a directed acyclic graph and let Pr be a joint probability

distribution on V (G) such that G is the I-map for Pr. Let Wi, Wj ∈ V (G) be nodes

in G with Wi → Wj ∈ E(G). Let W = πG(Wj)/{Wi}. Then node Wi negatively

influences node Wj, written as I−(Wi,Wj) iff for all values wj of Wj and all values

wi1 , wi2 of Wi, with wi1 > wi2 the following inequality holds
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I+(Wi,Wj) iff Pr(Wj > wj|wi1 ,W ) 6 Pr(Wj > wj|wi2 ,W )

Definition 9. Constant Influence (Renooij, 2001):

Let G = (V (G), E(G)) be a directed acyclic graph and let Pr be a joint probability

distribution on V (G) such that G is the I-map for Pr. Let Wi,Wj ∈ V (G) be nodes in

G with Wi → Wj ∈ E(G). Let W = πG(Wj)/{Wi}. Then node Wi exerts a constant

influences node Wj, written as I0(Wi,Wj) iff for all values wj of Wj and all values

wi1 , wi2 of Wi, with wi1 > wi2 the following inequality holds

I+(Wi,Wj) iff Pr(Wj > wj|wi1 ,W ) = Pr(Wj > wj|wi2 ,W )

Example 6. Figure 3.1 shows the QPN equivalent of the Bayesian Network given

in Figure 2.1 of Chapter 2. As mentioned above, the nodes are ordered by their

values such that a True value is higher than a False value. G is defined by its set

of nodes V (G) = {Age, Mental Health, Physical Health, Temperature, Humidity,

Hyperthermia, Rescue Efficiency, Condition When Found} and its set of edges E(G)

defined by the directed arcs shown in the graph. The only information encoded in

the arcs are the signs of the influences from one node to another. For instance,

the Figure shows that node Temperature positively influences node Hyperthermia as

higher temperature increase the probability of causing hyperthermia, while the node

Age has a negative influence on Physical Health as one becomes increasingly weaker

as one’s age increases.

Properties of Qualitative Influences

QPN influences exhibit a number of properties that make possible their propagation

along paths in QPNs.

1. Symmetry: In a QPN G where a node Wi exerts a qualitative influence on a

node Wj, Wj exerts an influence of the same sign on Wi. In other words:

I%(Wi,Wj) ⇔ I%(Wj,Wi) % ∈ {+,−, 0, ?}.
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Figure 3.1: The QPN Equivalent to the Rescue Bayesian Network

It is important to note that the symmetry only applies to the signs of the

influences and not on their corresponding strengths (which differ considerably

in the two directions). The complete proof of the symmetry of qualitative

influence can be found in (Wellman, 1990a).

2. Transitivity: The property of transitivity dictates that if a QPN given by the

DAG G and containing three nodes Wi, Wj and Wk with (Wi,Wj) ∈ E(G),

(Wj,Wk) ∈ E(G), and I%1(Wi,Wj) and I%2(Wj,Wk), then the sign of the influ-

ence of node Wi on node Wk is the ‘product’ of the signs of the two influences,

that of Wi on Wj and that of Wj on Wk (Druzdzel and Henrion, 1993b). The

‘product’ of the signs is found via the
⊗

operator given in the left side of Table

3.1

This property allows the construction of the sign of the net influence along a

path of qualitative influences associated with the individual arcs.

3. Composition: The property of composition dictates that if a QPN given by
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the DAG G and containing three nodes Wi, Wj and Wk with (Wi, Wk) ∈ E(G),

(Wj,Wk) ∈ E(G), and I%1(Wi,Wk) and I%2(Wj,Wk), then the sign of the influ-

ence on node Wk is the ‘sum’ of the signs of the two influences, that of Wi on

Wk and that of Wj on Wk (Druzdzel and Henrion, 1993b). The ‘sum’ of the

signs is found via the
⊕

operator given in the right side of Table 3.1 and is

used to evaluate the net influence of parallel connections.

Table 3.1: Sign multiplication (
⊗

) and sign addition (
⊕

) Operators (Wellman,

1990a)

⊗
+ − 0 ?

⊕
+ − 0 ?

+ + − 0 ? + + ? + ?

− − + 0 ? − ? − − ?

0 0 0 0 0 0 + − 0 ?

? ? ? 0 ? ? ? ? ? ?

Example 7. In the rescue example given in Figure 3.1, the overall negative influence

of node Age on node Condition When Found is obtained by evaluating the combined

effect on Condition When Found via the three paths Age → Physical Health →
Condition When Found, Age → Condition When Found and Age → Mental Health

→ Condition When Found, which is given by:

I−(Age,Con. W. Found) =[I+(Age,Ph. Health)
⊗

I−(Ph. Health,Con. W. Found) ]
⊕

[I−(Age,Condition When Found) ]
⊕

[I+(Age,M. Health)
⊗

I−(M. Health,Con. W. Found) ]

= [−⊗
+]

⊕ − ⊕
[−⊗

+]

= −

Qualitative Synergies

Although qualitative influences define the basic interactions among variables, they are

not always sufficient to capture all the interactions that exist in the network (Parsons,
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2001). This is the case when it is necessary to identify the combined effect of a pair of

variables in union on another variable. For this, the concept of qualitative synergies

is created in order to model the interaction among the influences between three nodes

in a network’s diagraph (Renooij, 2001). Qualitative synergies are essentially of two

classes depending on the type of interaction, mainly additive and product synergies,

and can be positive, negative, constant or unknown as in the case for influences.

¦ Additive Synergies

Additive synergies express one way of how the value of two nodes jointly influ-

ence the probabilities of the values of a third node (Wellman, 1990a). Specifi-

cally, they describe the situations in which the combined influence of the parents

on their common child is greater than the individual influence of each parent

on the child. For example, a positive additive synergy of two nodes Wi and Wj

on their common child Wk, written as S+({Wi,Wj},Wk), exists if the sum of

their joint influence on WK is greater than the sum of their separate influence

regardless of the value of any direct ancestor W of Wk other than Wi and Wj

(i.e. W = πG(Wk)/{Wi, Wj}). Definition 10 formalizes the concept of positive

additive synergy 3.

Definition 10. Positive Additive Synergy (Wellman, 1990a):

Let G = (V (G), E(G)) be a directed acyclic graph and let Pr be a joint probability

distribution on V (G) such that G is the I-map for Pr. Let Wi, Wj,Wk ∈ V (G)

be nodes in G with Wi → Wk, (Wj,Wk) ∈ E(G). Let W = πG(Wk)/ {Wi,Wj}.
Then nodes Wi and Wj exhibit a positive additive synergy on node Wk, written

as S+({Wi,Wj},Wk) iff for any values wi, wj, wk of Wi,Wj,Wk, respectively,

we have:

Pr(Wk > wk|wi, wj,W ) + Pr(Wk > wk|wi, wj,W ) > Pr(Wk >
wk|wi, wj,W ) + Pr(Wk > wk|wi, wj, W )

Example 8. In the example given in Figure 3.1, both Temperature and Humid-

ity exhibit an additive synergy on their common child Hyperthermia (written as

3Definition 10 states positive synergies for binary variables and can be easily extended to infer

positive synergies for multi-valued variables.
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S+({Temperature, Humidity}, Hyperthermia)) as the presence of both parent

makes it more likely to catch hyperthermia as opposed to the situations where

the temperature is high without humidity or having a humid and a cold weather.

Negative and constant additive synergies are analogously defined. Moreover,

all nodes exhibit additive synergies on their common children in qualitative

probabilistic networks (Wellman, 1990a).

¦ Product Synergies

In product synergies, one studies how the value of two parent nodes influence

each other given as evidence the value of the two nodes’ common child. The

concept of product synergy was introduced in (Wellman and Henrion, 1991,

1993) while investigating the phenomenon explaining away, which was intro-

duced by Pearl (1988) “as the kind of reasoning in which on observing an event,

knowledge that makes one of its causes more likely makes another cause less

likely” (Parsons, 2001). For example, in the network give in Figure 3.1, observ-

ing a value False for Condition When Found (in other words, observing that

the civilian was in a bad state when rescued), then diagnosing the civilian with

hyperthermia (observing a True value for Hyperthermia) makes one conclude

that he/she was left in the debris for a relatively long time (i.e. a False value

for Efficiency of Rescue).

The above is an example of a negative product synergy. In general, stating that

nodes Wi and Wj exhibit a negative product synergy with respect to value w0 of

their common child Wk expresses the notion of, given w0, observing higher values

of Wi makes higher values of Wj less likely regardless of any other influence W

on Wk, and as a result explaining Wi as the most likely cause of the value w0

of Wk. Hence, product synergies describe the inter-causal dependence between

two causes Wi and Wj given an observation w0 of their common effect Wk.

Definition 11 below presents the notion of negative product synergy, which is

the concept behind the phenomenon explaining away.

Definition 11. Negative Product Synergy (Wellman, 1990a):

Let G = (V (G), E(G)) be a directed acyclic graph and let Pr be a joint probability

distribution on V (G) such that G is the I-map for Pr. Let Wi,Wj,Wk ∈ V (G) be
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nodes in G with Wi → Wk and Wj → Wk ∈ E(G). Let W = πG(Wk)/{Wi,Wj}
and let w be the combination of observed values for W. Then nodes Wi and Wj

exhibit a negative product synergy on node Wk, written as Y −({Wi,Wj},Wk) iff

for value w0 of Wk and any values wi, wj,w of Wi,Wj,W respectively, we have:

Pr(w0|wiwjw) . P r(w0|wiwjw) 6 Pr(w0|wiwjw) . P r(w0|wiwjw)

Note that product synergies are defined with respect to value and not their

respective variables as it only affects Wi and Wj when the specific value of Wk,

i.e. w0 is known. When this happens, Wi and Wj cease to be d-separated. In

the example given above, the relationship only holds knowing that Condition

When Found has been initialized. Also, Definition 11 assumes that all the

other ancestors of Wk have been instantiated (or W = φ). The definition of

product synergy where there are uninstantiated ancestor nodes can be found in

(Druzdzel and Henrion, 1993a). In our example, node Age and its descendants

should be initialized in order for the product synergy to hold.

Formal Definition of a QPN

As seen in the previous sections, a QPN is given by the graph it represents and a set

of hyperarcs that identify the qualitative relations governing the interactions among

its variables. As a result, we can now provide a formal definition of a QPN as in

Definition 12 below. .

Definition 12. Qualitative Probabilistic Network (Renooij, 2001):

A qualitative probabilistic network is a tuple A = (G, ∆) such that

• G = (V (G), E (G)) is a directed acyclic graph with nodes V (G) and arcs E (G).

• ∆ = I ∪ S ∪ Y is a set of hyperarcs for the graph G where:

– I is a set of qualitative influences for G such that

∗ I includes a qualitative influence I%(Wi, Y ) for every two nodes Wi,Wj ∈
V (G) with Wi → Wj ∈ E(G), where % ∈ {+,−, 0, ?} and
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∗ I is closed under the properties of symmetry, transitivity and compo-

sition.

– S is a set of additive synergies for G such that

∗ S includes an additive synergy S%({Wi,Wj},Wk) for every three nodes

Wi,Wj,Wk ∈ V (G) with (Wi,Wj), (Wj,Wk) ∈ E(G), where % ∈ {+,−, 0, ?}
and

∗ S is closed under the properties of symmetry, transitivity and compo-

sition.

– Y is a set of product synergies for G such that

∗ Y includes a product synergy Y %({Wi,Wj}, w0) for every three nodes

Wi,Wj,Wk ∈ V (G) with Wi → Wk,Wj → Wk ∈ E(G) and Wk is

known to have w0 as a value, where % ∈ {+,−, 0, ?} and

∗ Y is closed under the properties of symmetry, transitivity and compo-

sition.

Inference in QPNs

Observed evidence is propagated through the network via the qualitative operators

given in Table 3.1, producing the net effect of nodes on other nodes depending on the

topology of the nodes considered. The original QPN inference algorithm (Wellman,

1990a,b) is the qualitative equivalent of Shachter’s reduction algorithm for inference in

quantitative BNs (Shachter, 1986). It uses repetitive arc-reversal (using the property

of symmetry of qualitative influences with respect to their signs discussed in section

3.1.1) and node-reduction operators until the graph is reduced to having a singly-

directed link between the observed node and the one we want to study the effect

of the observation on (Wellman, 1990b). The algorithm suffers from the fact that

finding the optimal reduction sequence to minimize the ambiguity is of an unknown

computational complexity (Wellman, 1990b).

With the aim of obtaining an improved performance, Henrion and Druzdzel (1991);

Druzdzel (1993); Druzdzel and Henrion (1993c) present a sign-propagation algorithm

which relies on passing messages containing signs through the graph instead of the

34



Chapter 3 Surprise: An Alternative Qualitative Uncertainty Model

graph reduction algorithm presented above. The basic idea is to determine the effect

of an observation on other nodes in the network by passing messages between neigh-

boring nodes and using the properties of symmetry, transitivity and composition to

recursively propagate the signs of influences between the observed nodes and all other

nodes in the network. The algorithm results in the assignment of change signs that

indicates the effect of the observed node’s probability on all the nodes of the network

(Druzdzel and Henrion, 1993c).

The algorithm takes as input a QPN G, a set of previously observed nodes O, a

newly observed node o and a sign of the current observation of o. The sign is + for

an observation of true or − for false. Initially, the signs of all the nodes W ∈ V (G)

are set to zero. The algorithm proceeds by entering the appropriate sign for o which

is then used to update the signs for all its neighbors and every variable on which

it exerts an induced intercausal influence by passing them a message containing the⊗
sign-multiplication of the newly observed sign of o and the sign associated with

the arc traversed. When the node receives the message, it updates its sign with the⊕
sign-addition operator of the sign it receives and its original sign. This procedure

recursively propagates using the properties of symmetry, transitivity and composition

of influences until the net effect of the evidence is observed on the required node or

all the nodes are known to be visited twice by the algorithm (Druzdzel and Henrion,

1993c).

The efficient polynomial-time message-passing algorithm can be found in (Druzdzel

and Henrion, 1993c) and has been extended in (Druzdzel, 1993; Renooij and Gaag,

2002) to determine the effect of multiple observations at once as opposed to a single-

observation.

Issues in QPNs

Despite the efficiency of the polynomial time arc-based message-passing algorithm

for inference with QPNs (Druzdzel and Henrion, 1993c) compared to the NP-hard

reasoning in BNs (Cooper, 1990), QPNs may suffer from over-abstraction. This is

because the reasoning mechanism QPNs use is only concerned with finding the effect
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of new evidence on each node in terms of the sign of the change in belief (increase

or decrease) and does not take into account the strength of the effect, which may

lead to ambiguity that must be resolved to continue reasoning. For instance, when

a node receives two influences of conflicting signs through two parallel paths, the⊕
operator labels the resulting influence as ambiguous (?). The problem is that

ambiguous signs quickly spread throughout the network as the
⊕

and
⊗

operators

generate more ambiguous signs once they receive one as input. An example is given in

Figure 3.1 where applying the
⊕

operators to obtain the net influence of nodes Age,

Hyperthermia and Rescue Efficiency over node Condition When Found results in an

unknown influence ? (−⊕−⊕
+), which then propagates through the network as the

effect of Wk on W is computed via the
⊗

operator. The problem of ambiguous signs

has been attributed to two main causes (Renooij, 2001). The first is the existence of

trade-offs in which two nodes in the network are connected by multiple parallel paths

and the signs of the influences along these paths are conflicting as in the example

above, and is especially problematic in the case of inter-causal reasoning (Wellman

and Henrion, 1993). The second cause of ambiguity is that when influences are non-

monotonic, meaning that the sign of the influence from some node Wi to another node

Wj can only be determined when the value of a third node Wk is known (Renooij and

Gaag, 2000). The two problems are caused by the coarseness of the representation

and have been addressed separately in efforts listed below.

¦ Trade-off Resolution Mechanisms A trade-off occurs when two influences of

conflicting signs are exerted on one node as in the example given in the previous

section, and is due to the absence of any notion of strength in QPNs as only the

signs of influences are recorded (Renooij, 2001; Parsons, 2001). The literature

contains several approaches to resolving trade-offs. We summarize them below:

(a) Renooij and Gaag (2008) distinguish between strong and weak influences

(where a strong positive influence of Wi on Wj, termed I++(Wi,Wj), car-

ries more weight than a weak one, termed I+(Wi,Wj) (with the same

nomenclature used for negative, zero and unknown influences). Renooij

and Gaag (2008) also provide a method for comparing indirect qualitative

influences along different paths with respect to their strengths for trade-off
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resolution by retaining the length of the paths over which influences have

been multiplied. For this, every influence’s sign is augmented by a super-

script, called the signs multiplication index, and is used as an indicator

of its strength. Higher values of multiplication indices indicate a longer

path and as a result, a weaker influence. This enables generalizing the

message-passing algorithm of (Druzdzel and Henrion, 1993c) by adapting

the
⊕

and
⊗

operators to the different types of influences as given in

Tables 3.2 and 3.3.

Table 3.2: Enhanced Sign Addition (
⊕

) Operator (Renooij and Gaag, 2008)

⊕
++j +j 0 −j −−j ?

++i ++ij ++i ++i a) ? ?

+i ++j +i,j +i ? d) ?

0 ++j +j 0 −j −−j ?

−i b) ? −i −i,j −−i,j ?

−−i ? c) −−i −−i −−i,j ?

? ? ? ? ? ? ?

b) ++−i,j, ifj 6 i; ?, otherwise

c) −−i,−j, ifi 6 j; ?, otherwise

c) −−i,−j, ifj 6 i; ?, otherwise

Table 3.3: Enhanced Sign multiplication (
⊗

) Operator (Renooij and Gaag, 2008)

⊗
++j +j 0 −j −−j ?

++i ++i+j +j 0 −j −−i+j ?

+i +i +i+j 0 −i+j −i ?

0 0 0 0 0 0 0

−i −i −i+j 0 +i+j +i ?

−−i −−i+j −j 0 +j ++i+j ?

? ? ? 0 ? ? ?
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(b) Another approach is to concentrate on identifying nodes at which trade-offs

occur (Renooij et al., 2000), making it possible to establish automatically

that if the influence of Wi on Wk is greater than that of Wj on Wk then the

combined influence on Wi and Wj on Wk is I+(Wi∧Wj,Wk). This is done

by identifying a pivot and zooming to the part of the network where it

resides and subsequently identifying the information needed to resolve the

trade-off. A similar approach can be found in (Liu and Wellman, 1998).

(c) Renooij et al. (2003) propose the use of a ranking function to rank influ-

ences in terms of strengths and use the resulting rankings to resolve the

conflicts when trade-offs occur. The ranking function is the κ function (to

be discussed in section 3.2), which utilizes natural numbers to rank beliefs

such that the greater the number associated with a belief state, the less

believable (or more surprising) it is. The κ values associated with the in-

fluences of a QPN are then used to assign a value to the influence instead

of ? by adding strength factors to the
⊕

and
⊗

operators given in Tables

3.4 and 3.5. In the tables, each influence is associated with a minimum and

a maximum strength factor, which are updated as influences are combined.

The approach retains the efficiency of arc-based reasoning of QPNs while

reducing the unwanted coarseness in the representation by using κ values as

measures of strength of QPN influences and resorting to them for trade-off

resolution.

Table 3.4: Sign Addition (
⊕

) Operator for Combining Signs and Strength Factors

⊕
+[r, s] −[r, s] 0 ?

+[p, q] +[p + r + 1, q + s] −[p + r + 1, q + s] 0 ?

−[p, q] −[p + r + 1, q + s] +[p + r + 1, q + s] 0 ?

0 0 0 0 ?

? ? ? 0 ?

¦ Non-monotonic Influences
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Table 3.5: Sign Multiplication (
⊗

) Operator for Combining Signs and Strength Fac-

tors

⊗
+[r, s] −[r, s] 0 ?

+[p, q] +[u, v] a) +[p, q] ?

−[p, q] b) −[u, v] −[p, q] ?

0 +[r, s] −[r, s] 0 ?

? ? ? ? ?

[u, v] = [min{p, r}, min{q, s}]
a) +[p, q], ifp + 1 < s;

+[∞, q], ifp < s;

−[r, s], ifr + 1 < q;

−[∞, s], ifr < q

?, otherwise

b) see a) with + and − reversed

In the case of non-monotonic influences, the ambiguity of the influence is due

to the inherent ambiguity of the interactions among the variables and not due

to ignorance. In other words, the sign of the influence is not independent of

the variables of the network other than the two for which the influence exists

(Renooij et al., 2002).

Definition 13. Non-monotonic Influence (Renooij et al., 2002):

Let G = (V (G), E(G)) be a directed acyclic graph and let Pr be a joint probability

distribution on V (G) such that G is the I-map for Pr. Let Wi,Wj ∈ V (G) be

nodes in G with Wi → Wj ∈ E(G). Let W = πG(Wj)/{Wi}. The ambiguous

influence of node Wi on node Wj, written as I?(Wi,Wj) is a non-monotonic

influence iff for all values wj of Wj and all values wi1 , wi2 of Wi, with wi1 > wi2,

the following inequality yields contradictory signs for different combinations of

the value of W .

Pr(Wj > wj|wi1 ,W )− Pr(Wj > wj|wi2 , W )
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Given the specific value of W however, i.e. a specific state of the network, the

influence ceases to be ambiguous and has a specific sign of +, − or 0 (Bolt

et al., 2003a; Renooij and Gaag, 2000). Taking this thought further, Bolt et al.

(2003a,b) introduce the concept of a situational influence that provides the

nature of the influence given a specific state of the network. Definition 14

below introduces the concept of a positive situational influence. Negative, zero

and unknown situational influences are analogously defined.

Definition 14. Situational Sign (Renooij and Gaag, 2000):

Let G = (V (G), E(G)) be a directed acyclic graph and let Pr be a joint probability

distribution on V (G) such that G is the I-map for Pr. Let Wi,Wj ∈ V (G) be

nodes in G with Wi → Wj ∈ E(G). Let W = πG(Wj)/{Wi}. Let G be the

present state of G in which W = w. Node Wi exhibits a positive situational

influence on node Wj, written as I?(+)(Wi,Wj) iff for all values wj of Wj and

all values wi1 , wi2 of Wi, with wi1 > wi2 and for value w of W , the following

inequality holds.

I?(+)(Wi,Wj) iff Pr(Wj > wj|wi1 , w)− Pr(Wj > wj|wi2 , w)

Hence, while influences and synergies exhibit a validity that is general to the

network, the signs of situational influences hold for a specific state of the net-

work and depend on Pr. Bolt et al. (2003a) present an adapt sign-propagation

algorithm which is a modification of the elegant algorithm given in section 3.1.1

to incorporate situational signs in the original algorithm.

3.1.2 Qualitative Certainty Networks (QCNs)

The popularity of QPNs motivated work to extend the qualitative propagation mech-

anism to other uncertainty formalisms (Parsons, 2003) in an aim to use the approach

from QPNs to not only propagate qualitative probability, but also possibility (Zadeh,

1978; Dubois and Prade, 1988) and evidence theory (Shafer, 1988) in a uniform way.

The idea is to redefine the concept of qualitative influences so that they can be

used to abstraction probability, possibility and belief functions. As this document is

mainly concerned with abstracting probabilistic methods, the discussion of QCNs is
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constricted to its probabilistic interpretation. The reader may refer to (Parsons and

Mamdani, 1993) for the alternative interpretations.

Definition of a QCN

As in QPNs, a QCN is a DAG G = (V (G), E(G)) in which V (G) is the set of nodes

and E(G) is the set of arcs representing the dependencies among the nodes. The

set of influences defined over E(G) however, differ from those of QPNs in that they

express the change of probabilities in terms of the derivatives that relate the different

values of the variables together. More specifically, a positive qualitative derivative

relating two variables is given in Definition 15 below.

Definition 15. Qualitative Derivative (Parsons, 2003):

Let Pr be a probability distribution defined over a set of variables {W1, ...WN}.
For any variables Wi,Wj, 1 6 i, j 6 N each having multiple values, the qualitative

derivative [
∂Pr(wi1

)

∂Pr(wj1
)
] relating the probability of Wi taking value wi1 to the probability

of Wj taking value wj1 has the value [+], iff, for all other values wj2 of Wj and any

other variable W :

Pr(wi1|wj1 , W ) > Pr(wi1|wj2 ,W )

The square brackets surrounding the value of the derivative is used in (Parsons

and Mamdani, 1993; Parsons, 2003) to denote that it is the qualitative value we are

interested in. Derivatives having values [−] and [0] are defined by replacing the > in

the definition by 6 and = respectively. Moreover, a derivative is given a value [?] if

it cannot be determined to be [+], [−] or [0].

The immediately noticed difference between the qualitative derivative and an in-

fluence is that the former relates two values of two variables, whereas an influence

describes the general relation describing the behavior of the two variables. As a result,

while only one type of influence is present between a parent and a child in a QPN,

a set of qualitative derivatives relates the two in a QCN. However, it is worth not-

ing that when dealing with binary variables, QCN qualitative derivatives and QPN

influences become equivalent (Parsons and Mamdani, 1993; Parsons, 2001).
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Properties of QCN Derivatives

As in QPN influences, QCN derivatives exhibit a number of properties that make

possible their propagation along the networks various paths.

1. Symmetry: The qualitative derivative [
∂Pr(wi1

)

∂Pr(wj1
)
] is said to be symmetric, i.e.

[
∂Pr(wi1

)

∂Pr(wj1
)
] = [

∂Pr(wj1
)

∂Pr(wi1
)
] if:

a) [
∂Pr(wi1

)

∂Pr(wj1
)
] = [+] or [−], or

b) [
∂Pr(wi1

)

∂Pr(wj1
)
] = [0] and [

∂Pr(wik
)

∂Pr(wj1
)
] = [0] for all k 6= 1. (Parsons and Mamdani,

1993).

2. Transitivity: The property of transitivity dictates that the qualitative value

of QCN derivatives along multiple paths can be combined using the
⊗

operator

defined Table 3.1, similarly to QPN influences (Parsons, 2001).

3. Composition: The property of composition dictates that the qualitative value

of QCN derivatives along parallel paths can be combined using the
⊕

operator

defined Table 3.1, similarly to QPN influences (Parsons, 2001).

QCNs Versus QPNs

Given the properties of QCN derivatives in the previous section, they can be propa-

gated along the different paths of a given network in the same way that QPN influences

are. In fact, the same arc-reversal algorithm (Druzdzel and Henrion, 1993c) can be

used to propagate the qualitative signs of QCN derivatives.

Despite this, the discussion of QCNs has shown two fundamental differences with

QPNs summarized here. Apart from the fact that QCNs is general enough to admit

alternative formalizations to abstract other uncertainty formalisms, they define the

relations among the instantiations of variables and not among the variables them-

selves. This is different from QPN influences which define a general relation between

the variables (with non-monotonic influences being an exception).
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As a result, QCNs are less ambiguity-prone than QPNs. However, they still suffer

from over-abstraction, for which resolution is achieved by introducing strengths over

the derivatives’ qualitative values (Parsons, 2001).

3.2 Order of Magnitude Abstractions

The previous section introduced QPNs, which abstract regular BNs by capturing the

sign of change in probability given the evidence instead of the probability value. The

coarseness of the representation identified with QPNs has inspired a different class of

abstraction of quantitative systems (the coarseness experienced in QPNs is general to

systems of strict abstractions, including ones that do not aim at abstracting numerical

uncertainty calculi, see (Raiman, 1986) for an example in mechanics). Instead, these

systems deal with orders of magnitude or probability instead of point probability and

form calculi with built-in reasoning mechanisms.

This class of calculi aims at reducing the task of having to specify point proba-

bilities by providing a belief measure that is more abstract and intuitive than point

probability (Darwiche and Goldzmidt, 1994). The main idea is to abstract probability

theory by devising tentative rankings for beliefs consistent with their corresponding

probabilities. As a result, they escape having to assign the precise numerical value

of the corresponding probabilities. This type of abstractions has resulted in a series

of work in both philosophy and artificial intelligence (Huber, 2006; Spohn, 1988a;

Goldszmidt and Pearl, 1996; Shenoy, 1990).

This body of work is based on the definition of a function which maps the belief

state of a propositions to a natural number that can be interpreted as the order-of-

magnitude of the inverse of subjective probability (Goldszmidt and Pearl, 1996). This

number assigned by the function is descriptive of the epistemic state of a variable

in that the higher the number assigned, the less believable or more surprising the

corresponding variable is (Shenoy, 1990). Such function has been termed an ordinal

conditional function, a natural conditional function (Spohn, 1988b) and a disbelief

function (Shenoy, 1990) (the latter term is the one we are to use for the rest of

this review as it intuitively describes the semantics of the corresponding calculus).
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With the general aim of providing an intuitive ranking of propositions and beliefs,

the paradigm of ranking functions has been thoroughly studied and implemented

in applications such as diagnosis (Darwiche and Goldzmidt, 1994) and as complete

decision theories (Pearl, 1993; Wilson, 1995).

3.2.1 Ranking Theory

Given a universe of events Ω, with each event represented by a variable denoted

by W ∈ Ω, a disbelief function % (Spohn, 1988a,b; Shenoy, 1990) is defined as the

mapping from Ω to the set of non-negative integers N+:

% : Ω → N+

The mapping is defined in a way that ensures that % satisfies the following axiom

(Spohn, 1988a):

min
W∈Ω

%(w) = 0

Where w is a value of W . In other words, at least one out of all the variables

W ∈ Ω must have %(w) = 0 4 (with this being the smallest possible assignment since

% has the set of non-negative integers as a range).

The disbelief function defined above is a complete representation of the epistemic

state of a domain that also includes degrees of belief and disbelief regarding the vari-

ables of the domain; it achieves this via a set of properties that dictate the assignment

of an epistemic state to a variable (or a set of variables) as given below (properties

collected form (Spohn, 1988a,b; Shenoy, 1990)):

1. %(w) ∈ N+ for any value w of variable W ∈ Ω;

4In this discussion, we assume all the variables are binary with each variable W as having two

possible values, w and ¬w. The reason behind this is not for simplicity, but due to the fact that

ranking functions were created to be a part of a logical language. i.e. every variable is representative

of a variable.
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2. The higher %(w), the more disbelieved the statement W = w is;

3. There exists a configuration w ∈ Ω for which %(w) = 0;

4. %(true) = 0

5. %(φ) = +∞

6. %(
∨

W∈Ω

) = min
W∈Ω

%(w)

7. For each W ∈ Ω, either %(w) = 0 or %(¬w) = 0

Hence, we can deduce that if %(w1) > 0, then %(w1) can be interpreted as the

degree of disbelief in variable W1 having w1 as its truth value (Spohn, 1988a). This is

stated in the second property above which describes the ranking semantics of % in that

for two truth values w1 and w2, w1 is more disbelieved than w2 if %(w1) > %(w2) > 0.

Also, if %(¬w) > 0 then %(¬w) can be interpreted as the degree of belief for w, i.e.

w1 is more believed than w2 if %(¬w1) > %(¬w2) > 0.

Property 3 above not only defines 0 as the minimum value %(.) can have, but also

mandates that at least one configuration in Ω must have a ranking of 0. Since %(.) is

interpreted as the degree of disbelief in a variable, having a value of 0 indicates that

the variable is the least disbelieved, or the most believed i.e. having a true value,

which is stated in the property 4. %(.) takes this notion a step further and uses this to

ensure deductive closure in properties 3 and 6 which mandate that the minimum %(.)

value of a domain defined by Ω must always be zero (or in other words, the disjunction

of the %(.) values of a domain produces zero, because disjunctions of %(.) values are

obtained through the minimum operator as per property 5) (Shenoy, 1990).

It is important to note that % can also be extended to any non-empty subset W

of Ω as given below:

%(W) = min
W∈W

%(w) ∀W ⊆ Ω
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3.2.2 Probabilistic Interpretation, the κ Calculus

Despite the fact that ranking functions were proposed as a (alternative) theory of

change, there exists a strong relation between them and standard probability (Spohn,

1988a,b). Work on this relation resulted in the inception of a mapping that enables

the interpretation of %(.) in terms of probabilities (Spohn, 1988b; Goldszmidt and

Pearl, 1996; Giang and Shenoy, 1999) and was used to create a calculus enabled with

probability-like reasoning on ranking functions (Goldszmidt and Pearl, 1996).

The ranking provided by such functions is interpreted as the order-of-magnitude

of the inverse of probabilities (Huber, 2006) and can be imagined by projecting prob-

ability measures onto a quantized logarithmic scale and then treating beliefs that

map onto different quanta as being of different orders of magnitude (Goldszmidt and

Pearl, 1996) as shown in figure 3.2. This is achieved via a procedure which begins by

considering a probability function Pr defined over a set Ω of possible variables (or

states of the world) such that Pr : Ω → [0, 1] and representing the probability of each

value w of variable W ∈ Ω, Pr(w), by a polynomial function of one unknown, ε, an

infinitesimally small positive number (0 < ε < 1). For instance, possible assignments

are Pr(w1) = α, Pr(w2) = βε, Pr(w3) = γε2 (Parsons, 2001). The resulting rank of

a variable W , termed κ(w) (read kappa5), is represented by the power of the most

significant ε-term in the polynomial representing Pr(W ) (the lowest power of ε in

the polynomial). In other words, κ(w) = n such that n is the smallest integer that

insures that
Pr(w)

εn
is finite but not infinitesimal for infinitesimal ε (i.e. lim

ε→0
Pr(w)/εn

is nonzero (Goldszmidt, 1995)), or κ(w) = n if and only if Pr(w) is of the same order

of magnitude as εn . Accordingly, the relation between the probability Pr(w) and κ

values κ(w) can be described as given in the equation below (Goldszmidt and Pearl,

1996):

ε <
Pr(w)

εn
6 1 or equivalently: εn+1 < Pr(w) 6 εn

Where εn is the most significant ε-term of the polynomial representing Pr(w).

5While authors of (Goldszmidt and Pearl, 1996) and their collaborators use the term κ, the group

of Shenoy and others insists on the original % in their work.
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Another definition that explicitly specifies how n is obtained is:

κ(w) =





min{n such that lim
ε→∞

Pr(w)

εn
6= 0} iff Pr(w) > 0

∞ iff Pr(w) = 0

Figure 3.2: Mapping from Probabilities to Kappas Using ε = 0.1 (Parsons, 2001)

A direct consequence of how κ(w) is obtained is that since the most significant

term is that with the smallest n, it corresponds to the inverse of the likelihood of w ,

and is therefore representative of the degree of surprise associated with believing w ,

or the degree of incremental surprise or abnormality associated with finding w to be

true (Goldszmidt and Pearl, 1996). The value of κ(w) is assigned so that probabilities

having the same order of magnitude belong to the same κ class, and that κ(w) grows

inversely to the order of magnitude of the probability value p(w) as seen in figure 3.2.

Moreover, the κ(.) function supports classifying propositions into believed, disbe-

lieved and uncommitted, which is different from classical probability where proposi-

tions are merely graded by their probability value (Darwiche and Goldzmidt, 1994).
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This can be seen in a more intuitive manner in table 3.6 (obtained from (Goldszmidt

and Pearl, 1996)), which shows an example of how kappas can be mapped to linguistic

quantifiers of beliefs.

Table 3.6: Mapping κ Values to Linguistic Quantifiers

. . .

. . .

p(w) = ε0 w and ¬w are possible κ(w) = 0

p(w) = ε1 ¬w is believed κ(w) = 1

p(w) = ε2 ¬w is strongly believed κ(w) = 2

. . .

. . .

Apart from the above mapping, it is important to note that Spohnian ranking

functions can be mapped to other quantitative formulations for reasoning about un-

certainty. For instance, (Dubois and Prade, 1991) shows that the basic disbelief

function presented in (Spohn, 1988a) can be interpreted as the negative of the log-

arithm of a possibility function (Zadeh, 1978). Hence, ranking functions in general

(and the κ function in specific) are considered “well-positioned in the web of quantita-

tive approaches to represent and reason about uncertain beliefs” (Giang and Shenoy,

1999). The reasons behind the extensive work on mapping the κ to probabilistic

measures will be discussed in section 3.2.3.

Reasoning in the κ Calculus

The mapping given above has been used to justify the properties of the κ calculus

using order-of-magnitude operations without appealing to probabilistic interpretation

(Spohn, 1988a). These properties are accordingly used for belief revision and update

as part of the κ reasoning system, which yields an integer-based calculus that enables

combining κ’s via rules that are derived from those of probability theory by replacing

48



Chapter 3 Surprise: An Alternative Qualitative Uncertainty Model

multiplication by addition and addition by minimum (Spohn, 1988a; Goldszmidt and

Pearl, 1996). The resulting properties are given below.

1. κ(Ω) = min
W |=Ω

κ(w)

2. κ(true) = 0

3. κ(w) ∨ κ(¬w) = 0

4. κ(w1 ∨ w2) = min(κ(w1), κ(w2))

5. κ(w1 |w2 ) = κ(w1 ∧ w2 )− κ(w2 )

The third property is to ensure deductive closure and is synonymous to having

the sum of the probabilities of the two values of the variable adding to one.

Reasoning with κ’s can then be performed using the above properties in one of

the following two ways:

1. Constructing a graphical causal model quantified with order-of-magnitude proba-

bilities instead of point probabilities and using the κ properties for updating be-

liefs according to evidence across the networks. The networks constructed, termed

Kappa Networks(Darwiche, 1992) are populated using κ values. The κ values can

either be obtained from their respective probabilities using algorithm 1 below, or

estimated when the probabilities are unknown or unavailable.

The case for using Kappa Networks when probabilities are unavailable should now

be clear to the reader. On the other hand, converting probability values to their

κ equivalents as per algorithm 1 has been justified as leading to a more robust

inference results (Darwiche and Goldzmidt, 1994; Darwiche, 1992) (when used cor-

rectly, as will be discussed in section 3.2.4) and computational simplicity from a

human perspective (Giang and Shenoy, 1999) as results given in κ’s are easier to

assess by human experts than numerical probabilities.

In terms of efficiency, (Goldszmidt, 1995) presents an algorithm for performing

prediction tasks across Kappa Networks. The algorithm Predict uses the structure
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Algorithm 1 An Algorithm for Finding a Solution to the Equation εκ+1 < Pr 6 εκ

to Translate a Probability Pr to a κ, taken from (Darwiche and Goldzmidt, 1994).

1. If Pr = 0, then return ∞
2. κ ← 0

3. Pr ← Pr/ε

4. If Pr > 1, then return κ, otherwise κ ← κ + 1

5. Go to 3

and quantification of the network to perform its prediction tasks and is of polyno-

mial asymptotic complexity (Goldszmidt, 1995), similarly to the polytree algorithm

given in (Pearl, 1988). The algorithm however, is sound but not complete. It is

sound in that a believed value produced by an algorithm will always match the

results obtained through ranking function manipulations. However, it may some-

times fail to recognize a believed result for a variable (Goldszmidt, 1995) and is

hence incomplete.

Ignoring the incompleteness of (Goldszmidt, 1995)’s algorithm, having a fast al-

gorithm for computing with κ ’s has also been used to map existing probabilities

to kappas and using them for fast belief update via the κ computation instead of

the probabilistic one (Goldszmidt and Pearl, 1992). This can be useful despite the

fact that the algorithm for exact inference with Kappa networks is in fact NP-hard

(Darwiche, 1992) similarly to exact inference in standard BNs (Cooper, 1990).

2. The feature of deductive closure combined with the ability to prioritizing defaults

has enabled using the κ calculus in a framework for reasoning about defeasible

beliefs in which κ’s serve the role of default priorities (Hunter, 1990, 1991) and

provide probabilistic semantics to the if-then rules used in monotonic reasoning as

done in (Goldszmidt and Pearl, 1996; Goldszmidt, 1992; Boutilier, 1997).

3.2.3 Using Rank-based Calculi

κ calculus provides an abstraction which only requires specifying the κ values of

propositions, which is an easier task than specifying the exact probabilities associ-

50



Chapter 3 Surprise: An Alternative Qualitative Uncertainty Model

ated with the specific value of the variable. This has made it an attractive choice

for representing and reasoning about uncertain knowledge in lieu of its quantitative

equivalents when they are not unobtainable or simply unknown.

In addition, when it is possible to obtain the probabilities required for an appli-

cation domain, the κ calculus remains tremendously useful. The results obtained for

queries conducted using standard BNs can be abstracted into well-defined ranks for

the purpose of being viewed by experts that may be reluctant to evaluate exact point

probabilities (Adams, 1975). This can serve a great role in evaluating the inference

mechanisms of the quantitative system with respect to specific applications (Darwiche

and Goldzmidt, 1994).

It is also worth noting that κ’s have been used not only as a stand-alone system,

but also in conjunction with other qualitative measures. For instance, (Renooij et al.,

2003) uses κ’s to capture the strength of qualitative influences in QPNs and hence

reducing the chance of having unknown influence by resolving tradeoffs across the

network. Moreover, (Tamma and Parsons, 2001) uses κ’s in conjunction with a sym-

bolic qualitative system (not covered in this review) to create a platform in which

arguments are ranked according to κ values associated with them.

3.2.4 Issues with Ranking Functions

Despite the above uses, an emphasis should be made with respect to the relation-

ship between κ’s probabilities in that it rests on the assumption that the ε used is

infinitesimal (Spohn, 1988a; Goldszmidt and Pearl, 1996). According to (Darwiche

and Goldzmidt, 1994), it is only when an infinitesimal ε is chosen that the following

computations are guaranteed to produce the same results (points below are taken

from (Darwiche and Goldzmidt, 1994)):

1. “Computing posterior probabilities using probability and then abstracting them

into κ rankings” (Darwiche and Goldzmidt, 1994)

2. “Abstracting probabilities into κ rankings and then computing posterior κ rank-

ings using the κ calculus” (Darwiche and Goldzmidt, 1994).
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The issue is that for infinitesimal ε values, the above two computations produce

a trivial value of κ (the actual output is zero) unless the equivalent probabilities

are arbitrarily high or low (for example, above 0.95 or below 0.05), in which case

meaningful κ values can be obtained.

Therefore, one is forced to use non-infinitesimal values of ε in practice for the

purpose of computations. This, however, presents a continuous task of monitoring

of how close ε is to zero and studying its effect on the above two computations

as practical studies of a car troubleshooting problem conducted by Darwiche and

Goldzmidt (1994); Henrion et al. (1994) show that the farther from zero the value of

ε is, the less dependable the mapping becomes as the above two computations will

cease producing identical results (Darwiche and Goldzmidt, 1994). This consequently

leads to discrepancies between the rankings produced by κ and the orderings implied

by quantitative systems, despite the fact that the results may be well-justified from a

defeasible reasoning perspective (Giang and Shenoy, 1999). To illustrate the problem,

consider the following example taken from (Giang and Shenoy, 1999).

Example 9. let Ω = {W1,W2,W3,W4} be governed by a probability distribution as

given in table 3.7. And let ε = 0.2 be the value used to extract the κ values of the

corresponding probabilities.

According to Giang and Shenoy (1999), letting A = {W2} and B = {W3,W4}
entails that Pr(A) < Pr(B), which disagrees with the results obtained after the trans-

formation with ε = 0.2 as it gives κ(A) = 0 < κ(B) = 1.

Table 3.7: Example Showing the Discrepancies between κ and Pr

W Pr(W = w) κε=0.2

W1 0.5185 0

W2 0.2308 0

W3 0.1538 1

W4 0.0969 1
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Motivated by the fact that the experiments performed in (Pearl, 1993; Henrion

et al., 1994) do not provide an ambiguous answer in regards to the value of ε that

resolves the tension between having a trivial κ and a consistent result, (Giang and

Shenoy, 1999) defines a transformation function T between κ ’s and probability values

and subsequently finds the most appropriate ε value for defining κ’s. T is given in

algorithm 2 for comparison with the initial transformation given in algorithm 1.

The procedure founded by (Giang and Shenoy, 1999) adds assertive power to the

computational simplicity offered by the κ function (which has also been supported

by the empirical results found in (Kahneman et al., 1982) with respect to decision

making using ranks). Moreover, it offers a bridge between reasoning using plain beliefs

and rational behavior, which can be considered as a response to theses stating that

rational behavior is based on probabilistic measures (See for example (Savage, 1972;

Neumann and Morgenstern, 1953)).

Algorithm 2 An Algorithm Transforming Probability Pr to a κ, taken from (Giang

and Shenoy, 1999).

Input: A sequence of probabilities (Pr1, P r2, ..., P rn).

Output A sequence of disbelief degrees (κ1, κ2, ..., κn).

r = 0 r is a disbelief counter, initially 0

M = 1 M is remaining mass, initially 1

for i = 1 to n

κi = r κi is disbelief degree of wi

M = M − Pri Pri is probability of wi

if Pri > M then r = r + 1

end

3.3 A Note on Qualitative Approaches

The previous sections have outlined the major schools of thought with respect to

qualitative approaches for abstracting probabilistic reasoning. It was found that such
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approaches can be of tremendous aid whether used independently (e.g. using QPNs in

medical diagnosis (Beumer, 2006) or the κ calculus in fault diagnosis (Darwiche and

Goldzmidt, 1994)) or in conjunction with quantitative probabilistic systems. How-

ever, this does not mean that these calculi aim at completely replacing standard

quantitative approaches as they can be very well used in conjunction with quanti-

tative probability. For example, (Lucas, 2005) uses QPNs for aiding the process of

constructing standard BNs.

The above uses for qualitative approaches are in addition to providing different

perspectives on the domain at hand. As we have shown, having a transformation that

enables shifting from probabilistic to qualitative abstractions (and other measures of

uncertainty) can be tremendously useful for the development of systems in which

experts may be reluctant to commit to numerical probabilities. This is especially

evident in the mapping between the κ values and possibility measures (Dubois and

Prade, 1991) which consequently leads to a mapping between the latter and proba-

bilistic measures, enabling an “à la carte” (Giang and Shenoy, 1999) system that can

be used by experts depending on the needs of the specific application. This capability

also enables developing systems that are capable of performing inference using the

qualitative and numerical information combined or separately and interpreting the

results in the manner the user is most comfortable with (Shenoy, 1998; Giang and

Shenoy, 1999).
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Chapter 4

Surprise-based Qualitative

Uncertainty Calculi 1

I know too well that these arguments from probabilities are imposters, and unless

great caution is observed in the use of them, they are apt to be deceptive.

- Plato, Phaedo

Semi-qualitative ordinal ranking functions exemplified by the κ function (Spohn,

1988a; Goldszmidt and Pearl, 1996) were introduced among the different qualitative

frameworks presented in Chapter 3. These functions use natural numbers to measure

the degrees of disbelief associated with events by capturing the order-of-magnitude

of the reverse of probabilities (Goldszmidt and Pearl, 1996; Spohn, 1988b; Darwiche,

1992; Huber, 2006) of the occurrence of the event. The κ function (Goldszmidt and

Pearl, 1996) provides a ranking that can be imagined by projecting the inverse of

the probability measures onto a quantized logarithmic scale and then treating beliefs

1This chapter incorporates the outcome of a joint research undertaken under the supervision of

Professors Ahmed Tawfik and Alioune Ngom. The key ideas, primary contributions, experimental

designs, data analysis and interpretation, were performed by the author, and the contribution of

co-authors was primarily through the provision of advice when needed.
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that map onto different quanta as being of different orders of magnitude (Goldszmidt

and Pearl, 1996). The power underlying the κ calculus stems from the ease of as-

signments of the ranking values to events as opposed to assigning probabilities and

the availability of robust mechanisms for belief updates via conditionality (Spohn,

1988b; Darwiche and Goldzmidt, 1994) and has resulted its repeated use in Artificial

Intelligence (Tamma and Parsons, 2001; Renooij et al., 2003).

Despite the features that κ offers, Chapter 3 showed that the consistency between

the ranking that it provides and that of probabilities is not guaranteed as it depends

on the choice of parameters involved in the abstraction. As a result, assigning κ’s

to events is always associated with careful tweaking and reevaluation. This calls for

alternative ranking functions, which is the motivation behind this chapter.

Hence, this chapter is concerned with formulating alternative order of magnitude

abstractions of probabilistic systems that do not fall into the same pitfalls as existing

frameworks, mainly the κ framework. It begins with outlining the concerns with κ

in Section 4.1 followed by the ideas behind the proposed frameworks in Sections 4.2

and 4.3. In sections 4.4, 4.5 and 4.6, two alternative ranking calculi are presented:

the κ++ and z systems. After the formulation of the proposed functions, a critical

evaluation of the ranking power of the new ranking systems with respect to each

other and the known κ calculus are given. The chapter ends with a brief summary in

Section 4.7

4.1 Epistemic Concerns with the κ Calculus

The κ function uses unsigned integers as an indication of the disbelief associated with

the occurrence of an event by assigning events that are likely to occur a rank of zero,

and giving a higher rank (higher integer value) to less likely ones. These semantics

are enforced in the κ calculus, not only for modeling purposes but also to ensure the

soundness of the calculus by establishing deductive closure (Goldszmidt and Pearl,

1996). κ(w1 ∨ ¬w1 ) = 0 formalizes such semantics for any binary variable W having

two values w and ¬w. The following are consequences of this semantics:
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1. Although κ provides a rich range of possible ranks for surprising events (κ(w) > 1),

all non-surprising (expected) events are given a rank of zero. For instance, if

κ(w1 ) = 4 we know that w1 is surprising and is therefore relatively disbelieved,

which renders ¬w1 to be more believable than not. However, the κ calculus does

not provide any means to obtaining a meaningful value for κ(¬w1 ) as it will au-

tomatically assign it a rank of zero. Moreover, this semantics does not seem to

distinguish between non-surprising events and expected ones, i.e. the average from

the anticipated, which is well-defined in numerical uncertainty formulations includ-

ing probability theory. On the level of reasoning, this makes belief propagation

difficult with such calculus and is especially noticeable if two propositions w1 and

w2 are considered, with κ(w2 ) = 1. In this case, both κ(¬w1 ) = 0 and κ(¬w2 ) = 0.

Although if taking ¬w1 and ¬w2 individually this would be a reasonable con-

clusion to reach, because the fact that w1 was labeled as surprising deems ¬w1

non-surprising and hence, having a κ value of zero (with a similar reasoning drawn

for w2 and ¬w2 ). It would seem awkward assigning both ¬w1 and ¬w2 the same

rank and having them to be equally normal despite the fact that the κ values of w1

and w2 indicate that w1 is much more surprising than w2 . This type of comparisons

lead to unwarranted ignorance that a richer representation would not suffer from.

2. This awkwardness is not only on the conceptual level, but also propagates to the

rules governing belief updates because beliefs and disbeliefs are not semantically

comparable because disbeliefs are given a much richer semantics than beliefs. Spohn

(1988a) deals with this problem by defining a belief function to complement the

disbelief function by assigning −κ(w1 ) as the belief rank of ¬w1 if κ(w1 ) > 0.

This, however, takes the value of the belief of ¬w1 outside the range of the ranking

function, and therefore, incorporating it into the reasoning system entails the use

of mechanisms outside the conditional propagation, which is the main source of

the power of the calculus. Because of this, Goldszmidt and Pearl (1996) did not

incorporate the belief function in their version of the κ calculus.

3. A direct consequence of the fact that κ abstracts the inverse of the probability

is that this order-of-magnitude measure suffers from the same problems as the

numerical inverse. More specifically, taking the inverse of the probability of an
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event as an indication of how ‘unlikely’ (Tawfik, 1997) it is does not make a good

indication because, for instance, one of equally-likely n events maybe very surprising

(or not) depending on n. However, in most situations, such occurrence should

not be surprising (Tawfik and Neufeld, 1996). In other words, the ‘unlikelihood’

captured by the probability inverse gives an absolute measure that does not take

into account the probabilities of the other events in the distribution.

4. How ‘good’ the ranking offered by κ rests on the assumption that ε is infinitesimal

(Spohn, 1988a; Goldszmidt and Pearl, 1996). As seen in the literature review, it is

only when an infinitesimal ε is chosen that the ranking offered by κ seems to agree

with the rankings provided by numerical probabilities (Darwiche and Goldzmidt,

1994). The problem is however, that when an non-infinitesimal ε is used, the

generated value for κ becomes mainly trivial (a κ value of 0 is produced more

often than desired) unless the equivalent probabilities are arbitrarily high or low

(for example, above 0.95 or below 0.05), in which case meaningful κ values can be

obtained. This has been demonstrated in Example 9 of Chapter 3.

As a result, one is forced to use an non-infinitesimal ε in practice, which presents

the continuous task of monitoring of how close ε is to one and studying its effect

on the resulting value of κ and any discrepancies between the ranking it offers and

that provided by probabilities, or how trivial it becomes.

As a result, κ is considered of a purely of an ordinal nature and not rich enough

to be used for decision making (Huber, 2006).

4.2 From Disbelief to Surprise

The epistemic problems identified in κ, along with the observation that using a notion

other than the inverse of probability is a better way to state how unlikely an event is

motivate this work.

More specifically, this dissertation investigates the possibility of creating ranking

functions that capture surprise instead of disbelief. Surprise is distinguished from
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pure disbelief here in that it provides a measure of the unexpectedness of the event

relative to others in the domain while pure disbelief is merely measured as the inverse

of the probability. This notion of surprise is expected to eliminate at least some of

the undesirable characteristics exhibited by κ listed in the previous section. Hence,

the objectives of this dissertation can be stated as:

To formulate alternative ranking functions that are based on the concept of ab-

stracting surprise, and to study their capabilities in eliminating at least some of the

less desirable properties of existing functions by:

1. Providing comparable semantical richness for the three epistemic states of events

of being 1) believed 2) disbelieved 3) neither believed or disbelieved.

2. Eliminating the mere ordinal nature of the ranking provided by κ and have a func-

tion whose ranks are semantically indicative of the relative strength or weakness

with respect to other events.

3. Assigning more meaningful ranks and improving the process of abstraction by not

being as sensitive to the value of auxiliary variables used to formulate the ranking

function (e.g. ε).

4. Offering a better ranking and minimizing the discrepancies between probability rank-

ings and their own.

4.3 Approach

The approach to be followed is that of investigating the creation of qualitative rank-

ing functions that are based on abstracting surprise measures instead of probability

inverse and examining the characteristics exhibited by the resulting ranking functions

theoretically and empirically. For each of the measures, the following procedures are

followed:

1. Derive the qualitative function.
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2. Extract the semantics embedded within the function.

3. Devise conditioning-based surprise propagation rules.

4. Examine the advantages and limitations induced by the function.

5. Empirically examine the features exhibited by the function.

4.4 Surprise Measures

Upon investigating several forms of surprise measures, two have prevailed: the Weaver

index (Weaver, 1948) and the relative predictive surprise measure (RPS) (Bayarri and

Morales, 2003; Bayarri and Berger, 1998). These will be the bases for the functions

devised in this dissertation and are introduced below.

4.4.1 The Weaver Index

This index defines surprise as the ratio of the expected value of the probability to

the probability of the event that actually occurs. This notion presents a measure

that takes into account the distribution to which the event belongs and is termed the

Weaver surprise index (Weaver, 1948) denoted by W(w) for an event w and is given

below.

W(w) =

I∑
i=1

p(wi)
2

p(w)
(4.1)

The values given by W(w) range from zero to infinity, with a value between zero

and one corresponding to a likely outcome (i.e. no surprise) while values greater than

one indicate a surprise, with the larger the index the more astonishing the event is

(Tawfik and Neufeld, 1996). As a result, the Weaver index offers a range of rankings

for both surprising and non-surprising events.
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4.4.2 The Relative Predictive Surprise Measure

This index is tailored to measure whether or not an observed event is unusual com-

pared to the most likely value (Bayarri and Morales, 2003) and is calculated by:

RPS =
p(w)

p(wmax)
(4.2)

Where wmax is the probability of the most likely outcome for W .

Small values (RPS < 1) indicate a surprise while large values (RPS > 1) indicate

an anticipated value.

4.5 Abstracting the Weaver Index: the κ++ Rank-

ing Function

Given a universe of events Ω, with each event ∈ Ω modeled by some variable W

having a well-defined set of values, we define κ++, a function that captures the order

of magnitude abstraction of the relative numerical surprise W associated with W

having some value w, written as κ++(w).

For a variable W with I possible values, κ++(W = w) is defined as the lowest

integer k such that lim
ε→0

W(w)/εk is nonzero, where ε is a small positive number less

than one. This makes κ++(w) = k of the same order of magnitude as W(w), where

W(w) is the Weaver index of (Weaver, 1948) given in Equation 4.1.

As a result, an order of magnitude abstraction of W(w), namely κ++(w), con-

strains W(w) as follows:

ε <
W(w)

εκ
++(w)

6 1 (4.3)
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4.5.1 Deriving κ++

The derivation of κ++ begins by presenting all the probabilities of the variables by

polynomials of ε’s. In this sense, let χn
w be the polynomial representation of p(w),

and for every other value wi of w , let χβi
wi

denote the polynomial corresponding to

p(wi), with n and βi being the minimum powers of ε in the polynomials respectively.

According to Equation (4.1), W(w) becomes:

W(w) =

I∑
i=1

p(wi)
2

p(w)
=

I∑
i=1

(χβi
wi

)2

χn
w

Since all the polynomials are to the base ε, it is possible to add the terms that

have equal exponents. This makes the above summation:

W(w) =
α1ε

2β1 + ... + αIε
2βI + αI+1ε

2φ1 + ... + αlε
2φk

χn
w

∀βi, 1 6 i 6 I, αiε
2βi is a term whose power is a candidate to be the minimum

power of the polynomial representing
I∑

i=1

(χβi
wi

) (i.e. the most significant term) as

each 2βi is the minimum power of (χβi
wi

)2. The φ terms in the equation above are non-

minimum terms and therefore, their number (l− (I +1)) and values are irrelevant for

our purpose.

Let m be such term, i.e. m = βi is the minimum of the minimum powers of the

polynomials 2βi. W(w) can now be represented only in terms of polynomials as:

W(w) =
χ2m

wi

χn
w

According to Equation (4.3), κ++(w) = lim
ε→0

W(w), which implies that:

κ++(w) = 2m− n (4.4)

Where m is the minimum of all minimum powers in the polynomial p(wi), 1 6
i 6 I, and n is the minimum power in p(w).
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Corollary 1. κ++(w) ∈ Z ∪ {+∞} for all values w of a variable W .

Proof.

• Case 1: Pr(w) = 0. In this case:

W(w) = +∞, which implies that κ++(w) = lim
ε→0

W(w) = +∞

• Case 2: w is such that Pr(w) 6= 0. In this case κ++(w) = 2m − n according

to Equation 4.4. Since both m and n ∈ N, 2m− n ∈ Z.

The ranking function is called κ++ as it is based on a concept similar to that

of κ but differs in that it abstracts surprise rather than the inverse of probability

in order to allow the explicit modeling of the degree of incremental surprise of both

variables and their complements and incorporate complements in conditional belief

propagation. κ++ explicitly models relative surprise, which is the notion we believe is

necessary for a richer semantics for the order-of-magnitude abstraction. We describe

κ++ as a general ranking function to distinguish it from the regular ordinal ranking

functions proposed so far in (Shenoy, 1990; Goldszmidt and Pearl, 1996; Huber, 2006)

as its semantics go beyond an ordinal description of suprrise.

4.5.2 Semantics of κ++

In a problem domain defined the universe of events Ω, let W be a non-empty subset

of Ω and let w be the set of all possible values of the variables in W. The elements

of w are called the configurations of W.

The general ranking function κ++ for a set of variables W is defined as a mapping

from the set of configurations w of W to the set of signed integers extended by infinity

κ++ : 2w → Z∪{+∞} as a function that assigns an integer value such that this value

is representative of the epistemic state of W as:
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Definition 16. General Form of κ++

κ++(W) =





+∞ , iff W = φ;

min
w∈W

{κ++(w)} , otherwise.

κ++ provides a comprehensive definition of the epistemic state of W that ensures

its consistency. An epistemic state of some set of variables W is defined by the

truth assignments of its constituent variables and is said to be consistent if all of the

variables it represents can be either believed, disbelieved or neither.

Interpreting κ++

κ++ as given in Equation 4.4 implies that large (positive) values indicate a greater

difference between 2m and n, and as a result, a greater surprise associated with

the event. Similarly, smaller the (negative) value of a κ++, the larger the difference

between 2m and n (with n > 2m in this case), and as a result, the more possible the

event is compared to other events in the distribution.

Hence, the signed integer representation of κ++(.) enables the function of providing

a continuous measure of the epistemic state that proposition falls under. The larger

the value of κ++(w), the greater the difference between its constituent quantities (2m

and n), and as a result the more surprising the event in question, w , is. Therefore,

the signed integer produced by κ++ carries the semantics defined by three possible

classes for its value.

Positive: (κ++(w) = 2m−n) > 0 implies that the event w is a lot less likely than the

other events gi (1 6 i 6 I) of the distribution, i.e. 2m > n. Hence, the occurrence

of w indicates a surprise. Moreover, the larger the value of κ++(w) (the greater the

difference is between 2m and n), the more surprising the event w is.

Zero: κ++(w) = 0 represents the normal world where both w and ¬w are likely to

occur as the order of magnitude of the probability of the variable w is comparable to

that of the distribution, i.e. 2m = n.

Essentially, κ++(w) = 0 separates surprising events from expected ones. a variable

W ∈ Ω is believed if its κ++ value falls under 0, is disbelieved if its κ++ value falls
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above 0 and is neither believed or disbelieved if its κ++ value is zero. Negative:

κ++(w) < 0 refers to the case in which having the event w to be false is surprising

as w becomes more likely than unlikely compared to other events in the distribution

(because n > 2m), which implies that ¬w is unlikely and its κ++(.) should indicate

a surprise. In this case, the smaller the value of κ++(.), the more surprising ¬w is.

Corollary 2. For any value w of W , ∀ W ∈ Ω:

1. κ++(w) > 0 → w is surprising and hence more disbelieved than believed.

2. κ++(w) < 0 → w is anticipated and hence more believed than disbelieved.

3. κ++(w) = 0 → w is normal: neither surprising nor anticipated.

Proof. By contradiction:

Let κ++(w) > 0 with w not being surprising.

κ++(w) > 0 ⇒ 2m− n > 0

⇒ 2m > n

Which implies that w is surprising (contradiction). Therefore, w is surprising.

The same reasoning can be used to prove the cases where w is anticipated and normal.

κ++ Complements

The κ++ value of events and their complements are related in the κ++ calculus.

Although this relation is not as strong as the one provided by probability theory, it

provides an indication to the values in concern. This relation is stated in Theorem 1

below.

Theorem 1. : Negation of κ++ Values

∃α : ∀w ∈ Ω : κ++(w) + κ++(¬w) = α.

65



Chapter 4 Surprise: An Alternative Qualitative Uncertainty Model

Proof.

The above rule can be more easily understood if one examines the probabilistic in-

terpretation of κ++ as follows.

Let p(w) = εn1 and p(¬w) = εn2 . In this case:

W(w) =
ε2n1 + ε2n2

εn1
and W(¬w) =

ε2n1 + ε2n2

εn2

When calculating κ++(w) + κ++(¬w), the following cases arise:

• Case 1: n1 < n2

κ++(w) = 2n1 − n1 = n1 and κ++(¬w) = 2n1 − n2.

⇒ κ++(w) + κ++(¬w) = 3n1 − n2:

• Case 2: n1 > n2

κ++(w) = 2n2 − n1 and κ++(¬w) = n2:

⇒ κ++(w) + κ++(¬w) = 3n2 − n1

• Case 3: n1 = n2 = n

κ++(w) = κ++(¬w) = n

⇒ κ++(w) + κ++(¬w) = 2n = 3n− n:

In all of the above cases, κ++(w) + κ++(¬w) = 3α1 − α2 = α, where α1 denotes

the larger exponent and α2 the lesser one.

The α value enables having an explicit description of the value of κ++(¬w) based

on that of κ++(w) as given in Definition 17 below.

Definition 17. Complements

κ++(¬w) =





min
wi∈Ω

κ++(wi) , iff κ++(w) = +∞;

α− κ++(w) , otherwise.
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4.5.3 Reasoning with κ++

Because the κ++(.) can be mapped to the order of magnitude abstraction of a prob-

abilistic measure, the operations used for propagating its values can be defined by

replacing numerical operators by order of magnitude equivalents as done in the κ

calculus. Hence multiplication is replaced by addition and addition by minimum

(Goldszmidt and Pearl, 1996). As a result, conditioning can be performed with the

aid of the following rules:

Rule Set 1. : κ++ Propagation Rules

R1: κ++(w1∧w2) = κ++(w1)+κ++(w2) If w1 and w2 are independent variables.

Theorem 2. (Conjunction) Given N independent variables W1, ..., WN drawn from

some distribution ζ, the probability of the conjunction of the N variables is equivalent

to the sum of the degrees of surprise, κ++, associated with the variables.

Proof.

We aim at demonstrating that the process of converting the probability of the

conjunction of the variables W1, ...,WN into a κ++ value replaces the product resulting

from the conjunction by a summation. For this purpose, we define a mapping ξ :

Pr → κ++ between the probability values and their κ++ equivalents. Hence, the task

is to prove that:

ξ[Pr(
N∧

c=1

Wc)] =
N∑

c=1

κ++(Wc)

Since the N are independent, the probability of their conjunction is equivalent to

the product of their corresponding probabilities as given below:

Pr(
N∧

c=1

Wc) =
N∏

c=1

Pr(Wc)

As a result, the problem reduces to finding the mapping between the product of

the probabilities of the variables to the sum of their corresponding κ++ values.
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Hence, the first step is to obtain an expression resulting form converting the

product of the probabilities of the variables to the product of the numerical surprise

W(.) associated with each variable, which are subsequently readily available due from

equation 4.1. The resulting expression is given by:

N∏
c=1

W(Wc) =
N∏

c=1

∑Ic

i=1 Pr(Wci
)2

Pr(Wc)
=

N∏
c=1

χ2mc
Wci

χnc
Wc

Where Ic is the number of possible values each variable Wc (1 6 c 6 N) has.

The next step is to obtain the expression in terms of the κ++’s associated with the

variables. According to Definition 4.4, the desired expression is obtained by finding

the limit of the expression given above as ε reaches zero.

lim
ε→0

N∏
c=1

W(Wc) =
N∑

c=1

lim
ε→0

χ2mc
Wci

χnc
Wc

=
N∑

c=1

2mc − nc

=
N∑

c=1

κ++(Wc)

R2: κ++(w1 ∨ w2) = min(κ++(g), κ++(¬g))

Proof.

The proof to the rule R2 is given in the theorem below.

Theorem 3. (Disjunction) Given N independent and mutually exclusive variables

W1, ..., WN drawn from some distribution ζ, the probability of the disjunction of the

variables equivalent to obtaining the minimum of degree of surprise, κ++, associated

with the variables.

68



Chapter 4 Surprise: An Alternative Qualitative Uncertainty Model

Proof.

We aim at demonstrating that the process of converting the probability of the

disjunction of the variables W1, ..., WN into a κ++ value replaces the summation re-

sulting from the disjunction by a minimum. For this purpose, we define a mapping

ξ : Pr → κ++ between the probability values and their κ++ equivalents. Hence, the

task is to prove that:

ξ[Pr(
N∨

c=1

Wc)] =
N

min
c=1

κ++(Wc)

Since the N are independent, the probability of their disjunction is equivalent to

the summation of their corresponding probabilities as given below:

Pr(
N∨

c=1

Wc) =
N∑

c=1

Pr(Wc)

As a result, the problem reduces to finding the mapping between the sum of the

probabilities of the variables to the corresponding minimum κ++ value.

As done in Theorem 2, we begin the process of conversion by obtaining a corre-

sponding expression for the W values of the N variables as given below.

N∑
c=1

(Wc) =
N∑

c=1

∑Ic

i=1 Pr(Wci
)2

Pr(Wc)
=

N∑
c=1

χ2mc
Wci

χnc
Wc

The corresponding κ++ value of the expression is that of the logarithm of the sum-

mation, which is given by:

lim
ε→0

N∏
c=1

W(Wc) =
N

min
c=1

lim
ε→0

χ2mc
Wci

χnc
Wc

=
N

min
c=1

2mc − nc

=
N

min
c=1

κ++(Wc)
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R3: κ++(w1|w2) = κ++(w1 ∧ w2)− κ++(w2)

Proof.

We aim at demonstrating that the process of converting the conditional probability

of W1 given W2 into a κ++ results in the desired expression. For this purpose, a

mapping similar to the ones of Theorems 2 and 3 is defined, ξ : Pr → κ++. As a

result, the task becomes proving the following:

ξ[Pr(w1|w2)] = κ++(w1 ∧ w2)− κ++(w2)

As done before, the process of conversion begins by obtaining the corresponding

W index for the conditional probability Pr(w1|w2).

W(w1|w2) =

I∑
i=1

J∑
j=1

Pr(wi|wj)
2

Pr(w1|w2)

=

∑ ∑
Pr(wi ∧ wj)

2/
∑

Pr(wj)
2

Pr(w1 ∧ w2)/Pr(w2)

=

∑ ∑
Pr(wi ∧ wj)

2

∑
Pr(wj)2

× Pr(w2)

Pr(w1 ∧ w2)

=
W(w1 ∧ w2)

W(w2)

As before, the κ++ equivalent of the conditional probability can be obtained find-

ing the limit of the above expression as ε approaches zero.

κ++(w1|w2) = lim
ε→0

W(w1 ∧ w2)

W(w2)

= lim
ε→0

W(w1 ∧ w2)− lim
ε→0

W(w2)

= κ++(w1 ∧ w2)− κ++(w2)

Example 10. To illustrate reasoning with κ++(.), we constructed the network given

in Figure 4.1 (inspired by one given in (D’Ambrosio, 1999)) and which describes the

elements involved in sneezing during Spring. The network advises that the events of
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the patient having cold (O) and that of the patient having an allergic reaction (R)

both increase the chances that she is sneezing (S). Moreover, the knowledge that there

is a cat in the house (C) effects the likelihood of (R). The figure also contains tables

illustrating the κ++ values associated with each node being true.

Using the surprise-propagation rules of κ++(.), we are able explain away the symp-

toms by answering queries such as “given that the patient is sneezing, how surprising

is it that she is suffering from a cold?”, which is achieved through obtaining a value

for κ++(O|S) using the conditional propagation rule R3 to compute the conditional

surprise as shown below.

κ++(O|S) = κ++(O ∧ S)− κ++(S)

= κ++(S|O) + κ++(O)− κ++(S)

= min[κ++(S|O, R), κ++(S|O,¬R)] + κ++(O)− κ++(S)

= min[κ++(S|O, R), κ++(S|O,¬R)] + κ++(O)−
min[κ++(S|O, R), κ++(S|O,¬R), κ++(S|¬O, R), κ++(S|¬O,¬R)]

= min[−6,−5] + 3−min[−6,−5,−3, +5]

= +3

It is important to note that the result κ++(O|S) = +3, which indicates a surprise,

is compatible with the probability Pr(O|S) = 0.0325 in terms of magnitude and sign.

4.5.4 Benefits of κ++

The previous sections introduced κ++ as a function that captures the notion of sur-

prise in a qualitative manner. The framework developed has several characteristics

which define semantics that eliminate some of the problems that κ suffers from. In

this section, we summarize how κ++ enables solving these problems.

Belief from Disbelief

The relation between κ++(w) and κ++(¬w) provides a direct way of assigning different

degrees of expectedness to complements of surprising events. This is in contrast to
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Figure 4.1: κ++ Network Representing Patients Information

the κ function where κ(¬w) is always given a value of 0 given that κ(w) 6= +∞ which

makes it unable to measure the degree of belief. In other words, Theorem 1 enables

modeling opposite states of belief numerically and providing meaningful ranks for

events and their negations, which is not possible in the κ calculus. Hence, although

κ++(w) provides a measure of the degree of disbelief in the occurrence of w as the

higher value of κ++(w) is, the less believable w becomes, it can also be used to obtain

an idea regarding the degree to which ¬w is believed.

Also, κ++ can be used to compare the believability of two propositions as given in

Example 11.

Example 11. Consider two variables W1,W2 ∈ Ω. Let κ++(w1 ) = +2 and κ++(w2 ) =

+5, and let α = 0 for W1 and α = 1 for W2. Given this information, it is possible to

induce that ¬w2 is more believable than ¬w1 by noting that the function ranks ¬w1

and ¬w2 by finding κ++(¬w1 ) = α − 2 = −2 and κ++(¬w2 ) = α − 5 = −4. Notice

that the κ calculus would have assigned a value of zero for both κ(¬w1 ) and κ(¬w2 ).
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The advantage of the above is being able to propagate κ++(¬w1 ) and κ++(¬w2 )

in addition to κ++(w1 ) and κ++(w2 ).

Better Ranking

As the literature review has demonstrated, κ assumes an infinitesimal ε for its ab-

straction. When a non-infinitesimal ε is used, the rankings given by κ tend to deviate

from those given by probability. Moreover, an infinitesimal κ gives trivial rankings

and is therefore not usable.

We investigated how good the ranking provided by κ++ compared that provided

by κ with respect to the ε. The results are shown in Figure 4.2. As the figure shows,

decreasing the value of ε causes the rank provided by κ to quickly degenerate to the

trivial case (zero), while the slope of the conversion to zero is less in the case of κ++.

Moreover, the larger the value of ε, the less meaningful the values of κ compared to

those of κ++ as they are closer to the trivial case (zero). As a result, κ++ provides a

more useful and less trivial ranking than κ.

Domain Independence

One important feature of the κ++ calculus is that the number it assigns is computed

while taking into account the expected value of probability of the distribution (as it

is part of computing the Weaver index). As a result, the rank assigned to the event is

not designated with respect to the absolute 1 but instead with respect to the average

probability expected for the domain. This entails that the κ++ rank assigned to the

event takes into account the relative distribution of surprise and non-surprise in the

domain, which makes its value of use other than in the ordinal sense if looked at

from outside the domain. This is obviously not the case for κ whose probabilistic

interpretation does not take into account the way the probabilities are distributed

among the events under consideration, causing its values to be of a mere ordinal

nature.
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Figure 4.2: κ++’s sensitivity to ε values compared to κ using different values of ε.

The Comparison is made for extreme and non-extreme values of probability ranging

between 0.05 and 0.45. The range is chosen so that only positive κ++ values are

generated in order to compare with the non-signed κ values. The curves are Bezier

interpolation of discrete values performed to demonstrate the difference between the

values of κ and κ++ in terms of 1) the slope of the curve, which indicate the speed of

degeneration to the trivial (zero) value 2) the range assumed by the function.

4.5.5 Limitations of the κ++ Calculus

Although in general, κ++ enables obtaining an idea regarding the degree of expect-

edness of κ++(¬w) from κ++(w), obtaining the exact value of the ranking of the

complement is not a straightforward process as it depends on the value of a third

variable α as Theorem 1 shows. More specifically, the value of α is the same for a
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Figure 4.3: Problems in κ++: 1) Range Bias: Positive κ++ values approach +8

while -4 is the minimum possible negative κ++ 2) Non-monotonic Section: From

Pr(w) = 0.84 to Pr(w) = 1, κ++(w) is increasing.

universe Ω of events but is unique to each pair of events as the proof of the theorem

indicates. Moreover, obtaining the value of α for each pair of events requires de-

tails that mandate referring to the numerical probabilities associated with the events.

Needless to say, this associated cost represents hurdles that can render the added

semantical richness offered by κ++ less attractive.

Moreover, although κ++ provides a richer semantics than κ, still does not provide

equally-rich semantics for surprising and expected events. This problem is illustrated

in Figure 4.3. In the figure, one can see that the range offered for surprising events

(the positive portion of the κ++ values) is much wider than that offered for expected

ones (the negative portion of the κ++ values). Added to this is the non-monotonic

behavior exhibited by the function for a small (yet existing) portion of its negative

range which can also be noted in the figure. In this portion (from Pr(w) = 0.84 to

Pr(w) = 1), the κ++ rankings are consistently disagreeing with probabilistic rankings.

Although this can be avoided algorithmically, it represents an inherent problem in

the semantics of κ++.
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4.6 Abstracting the Relative Predictive Surprise

Index: System z

The findings with respect to the limitations of the κ++ calculus created a motivation

to investigate alternative surprise indices as bases for ranking functions. This led

to the inception of the z (read: zed) calculus presented in this section and which

aims at achieving some of the advantages that κ++ has over κ without the added

disadvantages.

Given a universe of events Ω, with each event modeled by a variable W ∈ Ω

having a well-defined set of values, we define z, a function that captures the order of

magnitude abstraction of the RPS measure given in Equation 4.2 associated with W

having some value w, written as z(w) and given in equation 4.5 below.

Definition 18.

ε <
RPS(w)

εz(w)
6 1 (4.5)

Which defines z(W = w) as the lowest integer k such that lim
ε→0

RPS(w)/εk is

nonzero, where ε is a small positive number less than one. This makes z(w) = k of

the same order of magnitude as RPS(w) given in Equation 4.2.

4.6.1 Deriving z

As done with κ++, finding the range to which the values of z belong to is done by

representing all the probabilities p(w) of the variables by polynomials of ε’s (0 < ε <

1), p(w) = χm
w where m is the minimum power of ε in the polynomial. The results

obtained regarding z’s range are given in Theorem 4 below.

Theorem 4. z : Ω → Z+ ∪ 0

Proof. According to Equation 4.2, RPS(w) can be written as:
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RPS(w) =
p(w)

p(wmax)
=

χm
w

χn
wmax

(4.6)

Where χm
w is the polynomial of ε representing p(w) and having m as the power of

the dominant ε term, and χn
wmax

is the polynomial ε representing p(wmax) and having

n as the power of the dominant term.

According to Definition 18, z(w) is the order of magnitude abstraction of RPS(w)

and can therefore be written as:

z(w) = lim
ε→0

RPS(w)

= lim
ε→0

χm
w

χn
wmax

= m− n

Since n represents the minimum power of ε in the polynomial representing p(wmax),

it is guaranteed that: m >= n will always hold. As a result, z(w) is guaranteed not

to assume a negative value, which is further formalized in Corollary 3 below.

Corollary 3. m− n ∈ Z+ ∪ 0

Proof.

By Contradiction:

Let (w) ∈ Z−, i.e. m− n < 0

⇒ m < n

⇒ p(w) > p(wmax)

Which is impossible because p(wmax) defines the maximum probability associated

with any value of W .
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4.6.2 z Semantics

The findings of the previous section entail that the difference between z’s two com-

ponents give the ranking function the following semantics:

Positive: (z(w) = m− n) > 0 implies that the event w is less likely than the most

likely event wmax of the distribution, i.e. m > n. Hence, the occurrence of w indicates

a surprise. Moreover, the larger the value of z(w) (the greater the difference is between

m and n), the more surprising the event w is.

Zero: z(w) = 0 indicates no surprise. This happens when m = n or p(w) = p(wmax).

4.6.3 Reasoning with z

As done with κ++, this section will show that propagation of z values is done us-

ing rules similar to those of probability by replacing multiplication by addition and

addition by minimum. This will be illustrated by deriving the rules of conjunction,

disjunction and conditionality for z below.

Rule Set 2. : z Combination Rules

R4: z(w1 ∧ w2) = z(w1) + z(w2) If w1 and w2 are independent variables.

R5: z(w1 ∨ w2) = min(z(w), z(¬w))

Proof. The proof to rules R4 and R5 are given by Theorems 5 and 6 respectively.

Theorem 5. (z Conjunction) Given N independent variables W1, ..., WN drawn

from some distribution ζ, the probability of the conjunction of the N variables is

equivalent to the sum of the degrees of surprise, z, associated with the variables.

Proof.

As with κ++, we aim at demonstrating that the process of converting the probabil-

ity of the conjunction of the variables W1, ..., WN into a z value replaces the product
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resulting from the conjunction by a summation. For this purpose, we define a map-

ping ξ : Pr → z between the probability values and their z equivalents. Hence, the

task is to prove that:

ξ[Pr(
N∧

c=1

Wc)] =
N∑

c=1

z(Wc)

Since the N are independent, the probability of their conjunction is equivalent to

the product of their corresponding probabilities, which reduces the problem to finding

the mapping between the product of the probabilities of the variables to the sum of

their corresponding z values.

This, however, is readily available through Equation 4.6 and is find as:

N∏
c=1

RPS(Wc) =
N∏

c=1

Pr(Wc)

Pr(Wmax)
=

N∏
c=1

χmc
Wc

χn
Wmax

The next step is to obtain the expression in terms of the z’s associated with the

variables. According to Definition 18, the desired expression is obtained by finding

the limit of the expression given above as ε approaches zero, or:

lim
ε→0

N∏
c=1

RPS(Wc) =
N∑

c=1

lim
ε→0

χmc
Wc

χn
Wmax

=
N∑

c=1

mc − n

=
N∑

c=1

z(Wc)

Theorem 6. ( z Disjunction) Given N independent and mutually exclusive vari-

ables W1, ..., WN drawn from some distribution ζ, the probability of the disjunction of

the variables equivalent to obtaining the minimum of degree of surprise, z, associated

with the variables.
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Proof.

We aim at demonstrating that the process of converting the probability of the

disjunction of the variables W1, ..., WN into a z value replaces the summation resulting

from the disjunction by a minimum. For this purpose, we define a mapping ξ : Pr → z

between the probability values and their z equivalents. Hence, the task is to prove

that:

ξ[Pr(
N∨

c=1

Wc)] =
N

min
c=1

z(Wc)

Since the N are independent, the probability of their disjunction is equivalent to

the summation of their corresponding probabilities as given below:

Pr(
N∨

c=1

Wc) =
N∑

c=1

Pr(Wc)

As a result, the problem reduces to finding the mapping between the sum of the

probabilities of the variables to the corresponding minimum z value.

As done in Theorem 5, we begin the process of conversion by obtaining a corre-

sponding expression for the W values of the N variables as given below.

N∑
c=1

(Wc) =
N∑

c=1

Pr(Wc)

Pr(Wmax)
=

N∑
c=1

χmc
Wc

χn
Wmax

The corresponding z value of the expression is that of the logarithm of the summation,

which is given by:

lim
ε→0

N∏
c=1

RPS(Wc) =
N

min
c=1

lim
ε→0

χmc
Wc

χn
Wmax

=
N

min
c=1

mc − n

=
N

min
c=1

z(Wc)
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Rule Set 3. : z Propagation Rule

R6: z(w1|w2) = z(w1 ∧ w2)− z(w2)

Proof.

We aim at demonstrating that the process of converting the conditional probability

of W1 given W2 into a z results in the desired expression. For this purpose, a mapping

similar to the ones of Theorems 5 and 6 is defined, ξ : Pr → z. As a result, the task

becomes proving the following:

ξ[Pr(w1|w2)] = z(w1 ∧ w2)− z(w2)

As done before, the process of conversion begins by obtaining the corresponding

W index for the conditional probability Pr(w1|w2).

RPS(w1|w2) =
Pr(w1|w2)

Pr(w1max|w2max)

=
Pr(w1 ∧ w2)/Pr(w2)

Pr(w1max ∧ w2max)/Pr(w2max)

=
RPS(w1 ∧ w2)

RPS(w2)

As before, the z equivalent of the conditional probability can be obtained by taking

the limit of the above expression as ε approaches zero.

z(w1|w2) = lim
ε→0

RPS(w1 ∧ w2)

RPS(w2)

= lim
ε→0

RPS(w1 ∧ w2)− lim
ε→0

RPS(w2)

= z(w1 ∧ w2)− z(w2)

Example 12. Figure 4.4 shows the z calculus equivalent of the sneezing network

inspired by (D’Ambrosio, 1999). The tables provided show the probabilities along with

the z values associated with them.
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The query chosen for this example is “given that the patient is sneezing, how

surprising is it that she is suffering from an allergy?”. Finding an answer is achieved

though obtaining a value for z(R|S) using the conditional propagation rule R6 to

compute the conditional surprise as shown below.

z(R|S) = z(R ∧ S)− z(S)

= z(S|R) + z(R)− z(S)

= min[z(S|R, O), z(S|R,¬O)] + min[z(R|C), z(R|¬C)]− z(S)

= min[z(S|R, O), z(S|R,¬O)] + min[z(R|C), z(R|¬C)]−
min[z(S|O, R), z(S|O,¬R), z(S|¬O, R), z(S|¬O,¬R)]

= min[0, 3] + min[4, 8]−min[0, 1, 3, 10]

= 4

It is important to note that the result z(R|S) = 4 is compatible with the probability

Pr(R|S) = 0.53.

4.6.4 Features of the z System

Although z does not incorporate the richer range of values that κ++ enjoys, it does

possess a number of interesting features that render it favorable as a ranking function.

The fact that the rank assigned by z takes into account the maximum probability

value available entails that the rank assigned is done so with respect to the relative

distribution of surprise and non-surprise in the domain. This makes the values of

z, similarly to the ranks of κ++, domain independent and useful in ways that are

greater than in a purely ordinal sense (which is the case of κ). This idea can also be

utilized for comparing events belonging to different distributions by examining their

z rankings. Example 13 below further illustrates these ideas.

Example 13. Given two universes Ω1, Ω2 each containing a set of events, let W1 ∈ Ω1

and W2 ∈ Ω2 be two events. Let κ(W1) = 2, z(W1) = 0, κ(W2) = 2 and z(W2) = 1.

Examining the κ values associated with the events W1 and W2 does not provide

an indication of their relative surprise relative to each other because κ(W1) is only
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Figure 4.4: z Network Representing Patients Information

meaningful within Ω1 and κ(W2) is only meaningful in Ω2. Hence, despite the fact

that these two events have equal κ values, no conclusions can be made about whether

or not they are equally surprising in their respective universes.

In contrast, one is able to deduce that within their respective distributions, W2 is

more surprising than W1 by examining their z values as they describe the surprise

associated with the events relative to the the minimum surprise associated with the

domain (or the maximum probability).

The above example demonstrates another useful facet of z, which is its ability to

transform κ from a mere ordinal function to having a significant, domain-independent

meaning to its ranks. This is done by finding the κ value which corresponds to z = 0

for the domain and restating the κ values relative to the one found.

In addition to the above feature of z, experimental studies concerning the values

of z show that the range its values assume is bigger than that of κ. As a result,

the relative number of non-trivial rankings is bigger than that of κ, which makes z
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inevitably more useful than κ. It is important to note however that this behavior is

dependant on the maximum probability value in the domain. The closer this value is

to one, the closer the behavior of z is to that of κ. Figure 4.5 shows the range of z and

κ found for a domain containing probabilities ranging from 0.05 to 0.9 calculating

using the value ε = 0.23.
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Figure 4.5: The Range of z Compared to κ.

What makes z an attractive function is that it lies between κ and κ++ in usefulness

by being more expressive than κ while maintaining the monotonic behavior of surprise

not present in κ++.

4.7 Summary

This chapter presented two formulations of surprise-based ranking functions as al-

ternatives to the ordinal ranking function κ, mainly κ++ and the z calculus. The

aim of devising these calculi was to eliminate some of the disadvantages κ suffers

from as a result of being a direct order of magnitude abstraction of the reverse of the

probability.

For each proposed qualitative ranking function, this chapter presented its deriva-

tion from a numerical surprise measure, a thorough discussion of the resulting seman-
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tics and the formulation of its propagation rules through conditioning.

An analysis of the newly-devised qualitative functions showed that the ranking

offered by both is less sensitive to the infinitesimal nature of the ε used in the ab-

straction than in the κ function. As a result, the resulting functions are less prone to

degenerating to useless trivial values than κ, which in turn reduces the likelihood of

having to resort to values of ε that produce rankings that are inconsistent with those

of probability.

However, the chapter also discovers that the sought-after semantical richness is

not readily achievable at the level initially anticipated without hurdles. Although

the signed integers of κ++ calculus offer this semantical richness by establishing a

negative rank that is indicative of the anticipation associated with an event, this

range of possible negative values is limited compared to the range of positive values

that indicate a surprise and has some semantical issues. These problems are avoided

in the z calculus which although does not offer the same versatility of values as κ++,

offers a better ranking than κ in that it is less sensitive to the infinitesimal nature

of the ε used and offers a ranking which is more consistent with the one given by

probability than the ranking κ offers.
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Chapter 5

Graphical Models for Surprise 1

From the perspective of mere representation, the external world always remains only

a phenomenon.

- Wilhelm Dilthey

Having established the theoretical base for the proposed ranking functions, the

remainder of the dissertation is concerned with examining their performance em-

pirically. The approach followed here is to involve the ranking functions proposed

in a number of graphical models that abstract probabilistic system and perform a

comparative study for each with respect to a real-life application. This chapter is

concerned with the creation of the graphical models that will be used as test beds for

the comparative studies.

The graphical models developed here represent different levels of abstractions but

all use the ranking functions proposed in Chapter 4 to either 1) perform the reasoning

required by the graphical model 2) provide conflict resolution to more abstract forms

1This chapter incorporates the outcome of a joint research undertaken under the supervision of

Professors Ahmed Tawfik and Alioune Ngom. The key ideas, primary contributions, experimental

designs, data analysis and interpretation, were performed by the author, and the contribution of

co-authors was primarily through the provision of advice when needed.
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of qualitative uncertainty propagation (e.g. QPNs). The probabilistic models chosen

to be used as bases for the abstraction are:

1. Bayesian Networks (BNs)

2. Dynamic Bayesian Networks (DBNs)

3. Hidden Markov Models (HMMs)

These models were chosen because of their avid use in Artificial Intelligence as

well as the importance they have been shown to have with respect to the application

domain Chapter 6 is concerned with. More specifically, each has a number of model-

specific properties that make it an attractive choice with respect to the application

discussed in Chapter 6 and which will be discussed separately for each model.

The remainder of the chapter introduces the three qualitative graphical represen-

tations of the models chosen. In Section 5.1, a Qualitative Probabilistic Network that

uses κ++’s used as strength factors is introduced. The idea is extended to formulat-

ing a qualitative equivalent of Dynamic Bayesian Networks in Section 5.2. The last

model introduced in Section 5.3 is a Qualitative HMM uses ranking functions instead

of numerical probabilities for the specification of its various parameters. The chapter

ends with a summary in Section 5.4.

5.1 Surprise-based Qualitative Probabilistic Net-

works

In this section, an examination of the power of the ranking functions with respect to

reasoning similar to that performed in Bayesian Networks is introduced. The model

presented here is a Qualitative Probabilistic Network (Section 3.1.1) that uses κ++’s

to define its influences and uses the resulting rankings as strength factors for conflict

resolution. Before the model is introduced, several points pertaining to the choice of

the model are given below.
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1. The ranking function is not used directly to perform conditional propagation the

way probabilities are used in Bayesian Networks but are instead used as a base

to define qualitative influence relations among the networks variables similarly

to Qualitative Probabilistic Networks. This is done because a network that

performs node-based reasoning by replacing probabilities with either κ++’s or

z’s will not enjoy the added efficiency of arc-based reasoning of the other forms of

abstractions of Bayesian Networks (i.e. QPNs). This is evident from the analysis

of the complexity of reasoning of κ-based networks presented in (Darwiche,

1992) which shows that its evidence propagation algorithms are NP-hard in

the worst case, similarly to Bayesian Networks. The added efficiency is essential

to the model presented here as it was designed to be used in the application

domain presented in Chapter 6, which pertains to a complex environment with

data of an exponential size captured by a large number of variables.

2. The model presented here uses only κ++ as a base for the definition of its various

constructs. We do not present a model which uses z for the formation of the

strengths of its influences. The reason behind this is the similarity between z

and κ with respect to the range of their ranking values (of being constricted to

unsigned integers). A QPN that uses z as strength factors will be theoretically

identical to a QPN using κ’s, which is an-already existing model available in

(Renooij et al., 2003). This is not to say that comparing the effectiveness of κ’s

and z’s as strength indicators is not worthy of investigation as it is studied in

Chapter 6 using the model given in (Renooij et al., 2003) and replacing κ by z.

The idea here is to present a model that may possess additional properties due

to the increased range of κ++ rankings.

5.1.1 QPNS with κ++-based Strength Indicators

The sign-magnitude features of κ++ make it an attractive choice for modeling influ-

ences in a Qualitative Probabilistic Network (Section 3.1.1). Using κ++, it is possible

to redefine the partial order relations representing influences to possess not only a

sign, but instead a sign-magnitude pair.
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As a result, the signed integer representing κ++ can be used to evaluate the relative

strength of influences and to propagate them across the network. Tradeoff resolution

comes natural in this case because conflicting signs can be resolved by assessing the

magnitude of the influences in conflict. The result is a κ++ network capturing the

semantics of conditional independence that can be used to propagate beliefs quali-

tatively and has a built-in conflict-resolution mechanism. In what follows, we define

the notion of κ++-based influences.

κ++-based Influences

Four types of κ++-based influences are defined, analogous to those defined over QPNs.

They are positive, negative, zero and unknown. This section is restricted to discussing

the first three types of influences as a discussion of unknown influences is delayed to

section 5.1.1.

Positive Influences: A binary variable Wi is said to positively influence another

binary variable Wj if the degree of conditional surprise associated with Wj being true

given that Wi is observed is lower than that of Wj being true given that Wi is not

observed regardless of the value of any other variable which may directly influence

Wj. This implies that for any values wi of Wi and wj of Wj, the conditions given in

Definition 19 must hold in order to accomplish a positive influence.

Definition 19. I+δ
κ++(Wi,Wj) iff κ++(wj|wi,W )− κ++(wj|¬wi,W ) < 0

W represents any variable other than Wi which has a direct influence on Wj,

and maybe written as π(Wj)\{Wi} (where there is more than one such variable, W is

thought of as the conjunction of the possible values of such variables (Parsons, 2001)).

The influence is denoted by I+δ
κ++(Wi,Wj) where δ represents the magnitude of the

influence where the + denotes that it is a positive one. The subscript κ++ enforces

the idea that the influence is defined over κ++ values and not probability values as in

QPNs. The same nomenclature is followed for negative, zero and unknown influences.

It is important to see that the semantics of κ++ guarantee that the constraints
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given by the definition holds, which is what we show in Proposition 1.

Proposition 1. For two binary variables Wi and Wj :

I+δ
κ++(Wi,Wj) → κ++(wj|wi,W )− κ++(wj|¬wi,W ) = δ ∈ Z−

Proof.

There are essentially two cases that result from the inequality κ++(wj|wi, W ) <

κ++(wj|¬wi,W ):

• Case 1: κ++(wj|wi,W ) ∈ Z− and κ++(wj|¬wi,W ) ∈ Z+

In this case, the fact that κ++(wj|¬wi,W )− κ++(wj|wi,W ) ∈ Z− is intuitive.

• Case 2: Both κ++(wj|wi,W ) and κ++(wj|¬wi,W ) ∈ Z+

In this case, the semantics of κ++ enforces that for κ++(wj|wi,W ) to be less

surprising than κ++(wj|¬wi,W ), it must possess a smaller magnitude, which

will guarantee the result.

• Case 3: Both κ++(wj|wi,W ) and κ++(wj|¬wi,W ) ∈ Z−

In this case, the semantics of κ++ enforces that for κ++(wj|wi,W ) to be more

anticipated than κ++(wj|¬wi,W ), it must possess a higher magnitude, which

will guarantee the result.

Negative Influences Similarly to positive influences, a binary variable Wi neg-

atively influences another binary variable Wj if the degree of conditional surprise

associated with Wj being true given Wi is observed, κ++(wj|wi), is higher than that

of Wj being true given that Wi is not observed κ++(wj|¬wi) regardless of the value of

any other variable which may directly influence Wj as given in Definition 20 below.

Definition 20. I−δ
κ++(Wi,Wj)

iff κ++(wj|wi,W )− κ++(wj|¬wi,W ) > 0

Similarly, the semantics of κ++ guarantee that the constraints given by the defi-

nition holds as in Proposition 2.
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Proposition 2. For two binary variables Wi and Wj :

I−δ
κ++(Wi,Wj) → κ++(wj|wi,W )− κ++(wj|¬wi,W ) = δ ∈ Z+

Proof.

There are essentially two cases that result from the inequality κ++(wj|wi, W ) >

κ++(wj|¬wi,W ):

• Case 1: κ++(wj|wi,W ) ∈ Z+ and κ++(wj|¬wi,W ) ∈ Z−

In this case, the fact that κ++(wj|¬wi,W )− κ++(wj|wi,W ) ∈ Z+ is intuitive.

• Case 2: Both κ++(wj|wi,W ) and κ++(wj|¬wi,W ) ∈ Z+

In this case, the semantics of κ++ enforces that for κ++(wj|wi,W ) to be more

surprising than κ++(wj|¬wi,W ), it must possess a greater magnitude, which

will guarantee the result.

• Case 3: Both κ++(wj|wi,W ) and κ++(wj|¬wi,W ) ∈ Z−

In this case, the semantics of κ++ enforces that for κ++(wj|wi,W ) to be less

anticipated than κ++(wj|¬wi, W ), it must possess a smaller magnitude, which

will guarantee the result.

Zero Influences are defined in the same manner and is given in Definition 21.

Definition 21. I0
κ++(Wi,Wj)

iff κ++(wj|wi,W )− κ++(wj|¬wi,W ) = 0

Although the influences given in this work are defined over binary variables, the

definitions can be naturally extended to multi-valued variables as we have adopted

the order of wi > ¬wi to denote that a true value has a higher value than a false one.

Influence Propagation

To combine influences, the
⊕

and
⊗

operators are redefined in order to accommodate

the signed integer nature of the κ++-based influences.

91



Chapter 5 Surprise: An Alternative Qualitative Uncertainty Model

Chained Influences: As done in (Druzdzel and Henrion, 1993b; Renooij et al.,

2003; Wellman, 1990a), we propagate influences along chains using the order of mag-

nitude multiplication operator. Since our influences include sign and magnitude com-

ponents, these components are handled separately to obtain the net effect on the

variables.

The sign portion of the influence is dealt with using sign multiplication as in

(Wellman, 1990a) while the magnitude portion is handled in accordance with the rules

of order of magnitude multiplication by adding the corresponding values (since the

magnitude represent the difference between two κ++ values, which are in essence order

of magnitude abstractions of the numerical surprise associated with the variable). The

result is presented in the table below.

Table 5.1: The
⊗

Operator Combination Rules

⊗
+ve −ve 0 ?

+u +(u + v) −(u + v) 0 ?

−u −(u + v) +(u + v) 0 ?

0 0 0 0 0

? ? ? ? ?

Parallel Influences: For influences in parallel chains, the net effect is decided

by that of the strongest influence incident on the node. Accordingly, the effect is

achieved via the
⊕

operator, presented in the table given below.

Example 14. Figure 5.1 shows a fictitious network whose influences are defined using

κ++. In the figure, when nodes A and C are received as evidence, the discovery of

the influences in the network propagates as follows. The net influence of node A on

node E through B is given by -1
⊗

+2 = -3 because this influence consists of two

influences in a chain whose effect is obtained via the
⊗

operator. Similarly, Node D

receives evidence from both A and C with the net influence being evaluated as +4
⊕

-5 = +4 because node D has two arcs incident on it, which implies that the net effect

on D is obtained through the discovery of the combined influences in parallel, which
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Table 5.2: The
⊕

Operator Combination Rules

⊕
+ve −ve 0 ?

+u + min{u, v} a) +u ? a) = +u, if u < v

−u b) −min{u, v} −u ? = −v, otherwise

0 +v −ve 0 ? b) = −u, if u < v

? ? ? ? ? = +ve, otherwise

is achieved through the
⊕

operator. Similarly, the net influence of A and C on E

through D is given by +4
⊗

+5 = +9. Finally, node E receives as a net influence -3⊕
+9 = -3. As a result, the net influence of observing A and C on E is a negative

one.

Figure 5.1: Reasoning with a κ++-based Qualitative Probabilistic Network

The Case of Unknown Influences

Because influences only exist when one is able to establish a partial order on the

conditional κ++ of two variables (Parsons, 2001), it is a weak concept that may

not be defined when such order does not exist. However, the more versatile range for

strength factors used in κ++ networks makes the reaching an unknown influence a less

likely outcome compared to κ-based QPNs (which is empirically studied in Chapter

6). Moreover, since our networks are based on κ++ values, it is not necessary to resort
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to probabilities when an unknown influence is reached and is sufficient to go back to

node-based inference on the κ++-level. Although this reduces the efficiency of the

inference, it is a necessary last resort when orders are not definable. Moreover, the

network retains its qualitative nature as we are still dealing with κ++’s, which are

easier to assess than numerical probabilities.

5.2 Temporal Extension of Surprise-based QPNs

The last model presented in this chapter is a temporal extension of QPNs that uses

surprise as its uncertainty base. The model is built so that applications that require

dealing with time-series data can make use of the propagation rules formulated here.

5.2.1 Terminology

Let U be a set of n events drawn from some distribution Pr and let T be a totally

ordered set of m temporal slices such that T1...Tm ∈ T . We denote the set of events in

each temporal slice by U t (1 6 t 6 m) and the set of n events in U t by At
i (1 6 i 6 n).

A static snapshot of U is termed a temporal snapshot and is given in Definition 22.

Definition 22. Temporal Snapshot:

Let G = (V (G), A(G)) be a directed acyclic graph (DAG) such that G is an I-

map for Pr, the joint probability distribution defined on U2. An instance Gt of G

represents a temporal snapshot of G in time slice Tt such that Gt retains the DAG

structure of G.

Example 15. Figure 5.2 represents a fictitious graph G capturing the I-map for Pr,

the joint probability distribution on U = {A1, A2, A3, A4}. Each instance Gt of G

(1 6 t 6 3 in the figure) represents a snapshot of G, where the variables in each

temporal slice are given by: Ut = {At
1, A

t
2, A

t
3, A

t
4}.

An instance of the temporal snapshot of G is termed a dynamic instance of the

graph G and is defined below.

2G is the qualitative probabilistic network representing U
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Figure 5.2: An Example of G

Definition 23. Dynamic Instance:

Let Gt be as given in Definition 22. Gt defines a dynamic instance of the QPN

whose structure is defined by G and is given by Gt = (V (Gt), {A(Gt)
⋃

T (Gt)}) 3,

where V (Gt) and A(Gt) are instants of V (G) and A(G) respectively at time slot t,

and T (Gt) describes the inter-slot conditional dependence between variables in V (Gt)

and its immediate neighbor V (Gt+1).

Example 16. In the graph given in Figure 5.2, for each Gt, V (Gt) = Ut, A(Gt) =

{(At
1, A

t
3), (A

t
2, A

t
3), (A

t
3, A

t
4), (A

t
2, A

t
4)} and T (Gt) = {(At

4, A
t+1
1 )}.

Both of A(G) and T (G) encode a set of hyperarcs for G to capture a set of

qualitative relations representing how variables influence each other. For this, the set

of qualitative influences are re-defined to express inter-slot relations in addition to

within-slot ones. Before introducing the new set of influences however, it is necessary

to define the proposed Temporal Qualitative Probabilistic Networks (TQPN) below.

Definition 24. Temporal QPN:

Let (G1 = (V (G1), Q(G1)), ..., Gm = (V (Gm), Q(Gm))) be a total ordering of the

m instances of G such that T (Gt) 6= φ ∀ 1 6 t 6 m− 1. Then the compound graph of

G1, ..., Gm defines a Temporal Qualitative Probabilistic Network over G and is given

by:

m⋃
t=1

Gt = (
m⋃

t=1

V (Gt),
m⋃

t=1

Q(Gt))

3For readability purposes, we will refer to {A(Gt)
⋃

T (Gt)} as Q(Gt) in this work.
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5.2.2 Qualitative Influences in a TQPN

Definition 25. Positive TQPN Influence:

Let Gt and Gt+1 be two adjacent subgraphs of the TQPN defined over G. Further,

let B and C be such that B, C ∈ V (G). A direct positive influence is exerted by node

B over node C, written as S+(B,C) iff for all values cx
i of C and by

j , b
y
k of B with

by
i > by

k, and for all integer values x and y such that 1 6 x, y 6 m and x− y ∈ {0, 1}
we have:

ϑ(C > cx
i |by

j , w)− ϑ(C > cx
i |by

k, w) = γ ∈ Z−

Where ϑ is an order of magnitude ranking function and γ is as in Section 5.3, the

strength of the influence exerted by B on C.

Where w represents any combination of values for the set of nodes W which

represent all other direct influences on C other than B. The superscripts x and y

denote the temporal slot to which the instances ci, bj and bk belong. The definition

necessitates that variables can only directly influence other variables that belong to

the same temporal slot (x = y) or those that belong to the next immediate slot

(x− y = 1). Negative, zero and unknown influences are analogously defined.

In order to resolve the likely-to-occur ambiguities, we mimic the mechanisms given

in (Renooij and Gaag, 2008) and define indirect influences that are augmented with

two levels of strength and a multiplication index as given in Definition 26.

Definition 26. Strongly Positive TQPN Influence:

Let B and C be two nodes in the TQPN defined over G. Furthermore, let tr be

a trail from B to C. Let W be all the other nodes that can influence C and that do

not belong to the trail from B to C. Then the qualitative influence from node B to

node C along trail tr is strongly positive with multiplication index µ, µ ∈ N, written

as S++µ
(B, C, tr) iff for all values cx

i of C and by
j , b

y
k of B with by

i > by
k:

ϑ(C > cx
i |by

j , w)− ϑ(C > cx
i |by

k, w) = γ 6 αµ
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Moreover, the qualitative influence of B on C along trail tr is weakly positive with

multiplicative index µ, µ ∈ N, written as S++(B, C, tr) iff:

0 > ϑ(C > cx
i |by

j , w)− ϑ(C > cx
i |by

k, w) > αµ

Where w represents any combination of values from the set W and x− y ∈ {0, 1}.
The value µ is given by the length of the trail tr and α = [0− 1] is the cut-off value

used for distinguishing between strong and weak influences and which can be chosen

by an expert 4. In addition to the cut-off value α which distinguish strong from weak

influences, influences of the same strength can be compared using their µ value, where

higher values indicate a longer trail tr, and as a result, a weaker influence (Renooij

and Gaag, 2008).

As a result, surprise-propagation in TQPNs offers multi-level conflict resolution.

On the one hand, influence’s sign is augmented by the signs multiplication index

superscript, and is used as an indicator of its strength. Higher values of multiplication

indices indicate a longer path and as a result, a weaker influence. This level of detail

enables the use of using the Enhanced QPN
⊕

and
⊗

operators described earlier in

Tables 3.3 and 3.2 of Chapter 3 to the different types of influences. On top of this,

each influence is given a value γ that indicates its ranking strength and is calculated

at the time the influence is evaluated. γ is in turn used to resolve conflicts using the

propagation rules given in Tables 5.2 and 5.1 when propagation using Tables 3.3 and

3.2 gives an ambiguous sign.

5.3 Qualitative Hidden Markov Models

Hidden Markov Models (HMMs) (Rabiner, 1989) are probabilistic graphical models

that capture the dependencies between random variables in time-series data. HMMs

can be regarded as a special case of Dynamic Bayesian Networks (Smyth, 1997) that

are not as powerful as they are but are far more efficient. The well-known first-order

HMM has been particularly successful in several areas of artificial intelligence such

4The choice of α is experimentally determined.
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as speech recognition (Rabiner, 1989; Rosti and Gales, 2003), robotics (Fox et al.,

2006), pattern recognition (Lovell, 2003) and several areas of bioinformatics, such

as transmembrane protein classification (Kahsay et al., 2005), to perform predictive

and recognitive tasks. The power of HMMs stems from the provision of efficient and

intuitive algorithms to perform inference due to the first-order nature of the model as

each variable is only dependent on its equivalent in the previous temporal slice and

no other variable.

While variations of traditional HMMs proved to be practical in applications where

it is feasible to obtain the numerical probabilities required for the specification of

the parameters of the model and the probabilities available are descriptive of the

underlying uncertainty, the capabilities of HMMs remain unexplored in applications

where this convenience is not available (Huang et al. (2001) present an example in

Economics). Motivated by such applications, this section presents a HMM that does

away with probabilities and instead uses ranking functions for the specification of its

various parameters. The ranking-based HMM presented here is a general one in the

sense that it is defined for a hypothetical ranking function that can be substituted by

κ, κ++, z or any other ranking function. Substituting the general qualitative HMM by

one that is specific to a ranking function is done in Chapter 6 where the capabilities

of the different ranking functions are put to practice.

Section 5.3.1 below provides an introduction to standard Hidden Markov Models

before the Qualitative HMM model is presented starting in Section 5.3.2.

5.3.1 Hidden Markov Models

Hidden Markov Models (HMMs) (Rabiner, 1989) are probabilistic graphical models

used to represent the behavior of a system which is known to possess a number of

states. The states of the model are hidden, in the sense that their operations can

only be studied through discrete time series of the observed output produced by the

states.

Formally, a HMM={S,V,π,A,B} is defined by the following parameters:
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1. A finite set of n unobservable (hidden) states S={s1,...,sn}

2. A finite set of m observable outputs, or the alphabet of the model: V =

{v1,...,vm} that may be produced by the states given in S at any time t.

3. The vector π of the the initial state probability distribution, i.e. the probability

of the system being at state si at time 0: P (q0=si), ∀ si ∈ S (1 6 i 6 n).

4. The matrix A = [aij]16i6n which describes the transition probability distribution

among associated states. For each entry aij in A, aij = P (qt = si|qt−1 = sj), ∀
16 i, j 6 n, which describes the probability of the system being in state si at

time t given that it was in state sj at time t− 1. This formulation reflects the

Markov property which dictates that the next state is only dependent on the

current state, and is independent of previous states. This property also implies

that the transition probabilities must satisfy:

n∑
i=0

n∑
j=0

P (qt = si|qt−1 = sj) = 1

5. The matrix B = {bj(ot), 1 6 j 6 n} of the emission probabilities of the observ-

able output at a given state P (ot = vi|qt = sj), which describes the probability of

the system producing output vi at time t given that it is in state sj (1 6 i 6 m).

This information reflects the assumption that the output at a given time is only

dependent on the state that produced it and is independent of previous output.

In other words:

m∑
i=0

P (ot = vi|qt = sj) = 1

Hence, a HMM can be described by a doubly stochastic structure. The first

stochastic process provides a high-level view of the system and is operated by a

Markov chain (described by the transition matrix A) governing the transitions among

the hidden states. The second stochastic process, on the other hand, is the one

governing the production of observable output independently by each state (described

by the emission matrix B). This structure provides HMMs with a high degree of

flexibility, which makes them attractive for sequential data analysis.
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5.3.2 A Qualitative HMM

Having introduced HMMs, it is now possible to define the semantics of its qualitative

equivalent, HMMϑ. It is a HMM which uses a qualitative ranking function that

abstracts numerical probabilities, ϑ, as a measure of the surprise associated with its

transitions. This section will assume the existence of λ = (S,V,π,A,B), a Hidden

Markov Model with n possible hidden states and m observable outputs, and whose

structure and parameters are specified, and uses it to define the semantics.

Semantics

Introducing ϑ values to the transitions of λ gives the model the following semantics:

1. ∀πi ∈ π, 1 6 i 6 n, πi represents the degree of surprise associated with having

state i to be true at time 0:

πi = ϑ(q0 = si)

2. ∀aij ∈ A, where 1 6 i, j 6 n, aij represents the degree of surprise associated

with state si holding at time t given that state sj was true at time t − 1. The

resulting matrix A is called the transition ϑ matrix.

aij = ϑ(st = qi|st−1 = qj)

3. ∀bj(ot = vi) ∈ B, where 1 6 i 6 m and 1 6 j 6 n, bij represents the degree

of surprise associated with state sj being responsible for producing observable

output vi at time t. The resulting matrix B is called the emission ϑ matrix.

bj(vi) = ϑ(ot = vi|qt = sj)

Independence Assumptions

The semantics of order of magnitude abstractions of probability are used to refor-

mulate the independence assumptions to go along with the semantics of λ. The

reformulations are presented below.
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1. The limited memory assumption: states that the degree of surprise asso-

ciated with observing output vi at time t being generated by state sj is only

dependent on the degree of surprise associated with state sj, with any other

state or output being irrelevant. This is represented as:

ϑ(ot = vi|qt = sj, qt−1 = sk, ..., q1 = sl,

vt−1 = om, ...., v1 = on) = ϑ(ot = vi|qt = sj). (5.1)

Accordingly, the emission ϑ matrix should satisfy:

m

min
i=0

ϑ(ot = vi|qt = sj) = γ (5.2)

Where:

γ =





0 , iff ϑ : Ω → Z+ ∪ {+∞}
min
v∈V

{ϑ(v)} , otherwise.

The above assigns a value of zero to γ if the ranking function used has positive

(unsigned) integers as range (as in the case of κ and z), and the minimum

ranking value associated with the domain otherwise (as in the case of κ++).

2. The Markov assumption: dictates that the degree of surprise associated

with observing state si at time t is only dependent on the degree of surprise

associated with the previous state, i.e. state sj at time t − 1, with all other

states and output being irrelevant. This is represented as:

ϑ(st = si|qt−1 = sj, qt−2 = sk, ..., q1 = sl,

vt = om, ...., v1 = on) = ϑ(qt = si|qt−1 = sj) (5.3)

Again, having this assumption in conjunction with the semantics of ϑ yields the

following:
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n

min
i=1

ϑ(qt = si|qt−1 = sj) = γ (5.4)

Where:

γ =





0 , iff fϑ = κ or z;

min
s∈S

{ϑ(s)} , otherwise.

Additional Properties

Two interesting concepts arise from the introduction of the semantics of λ. They are:

1. Output generator: A state si , 1 6 i 6 n is the generator of output vj,

1 6 j 6 m at time t iff si is the state associated with the minimum degree of

surprise of having produced vj

ϑ(ot = vj, qt = si|λ) =
n

min
i=1

ϑ(ot = vj, qt = si|λ) (5.5)

2. State generator: A state si , 1 6 i 6 n at time t is the generator of state sj,

1 6 j 6 n at time t + 1 iff si is the state holding at time t which is associated

with the minimum degree of surprise of having preceded state sj at time t + 1

ϑ(qt+1 = sj, qt = si|λ) =
n

min
i=1

ϑ(qt+1 = sj, qt = si|λ) (5.6)

5.3.3 Inference in HMMϑ

There are essentially three problems associated with HMM inference. They are:

• Evaluation: Given a HMM, λ, and a sequence of observed output O, the

evaluation problem is concerned with determining the likelihood of O being a

valid sequence produced by λ.
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An efficient algorithm, the forward algorithm Rabiner (1989) finds a solution

to the evaluation problem by performing induction on the length of the output

sequence O=o1, o2, ..., ot as follows.

An inductive variable, called the forward variable is defined to capture the

likelihood of observing the output sequence O of length t and having state si

(1 6 i 6 n) to be the state that produced the last output of the sequence, ot.

Hence the forward variable captures the probability P (O, qt = si|λ). Induction

is then used to derive the probability associated with increasing the length of

the output sequence by one (i.e. observing one more letter, ot+1 at time t + 1),

and calculating the resulting probability, i.e. P (O, ot+1, qt = si, qt+1 = sj|λ).

• Decoding: Given the observation sequence O = o1, o2, ..., ot of length t and a

model λ=(A,B,π), the decoding problems is concerned with finding the sequence

of states q = q1, q2, ..., qt that was most likely to have produced the observation

sequence O.

• Learning: Given an HMM λ with unknown parameters. The learning problem

is concerned with finding out the values of A, B and π from data.

This section presents algorithms for the evaluation and decoding algorithms of

HMMϑ.

Evaluating Observed Output

The evaluation problem for HMMϑ can be formulated as follows. Given the structure

and parameters of a HMMϑ, λ, and an output sequence O of length t, the task is to

find the likelihood of the sequence O being produced by λ by computing the degree

of surprise associated with O given λ.

We redefine the forward variable ft(i) to be the inductive variable capturing the

degree of surprise associated with observing the output sequence O of length t and

having state si (1 6 i 6 n) to be the state that produced the last output of the

sequence, ot at time t, i.e. ϑ(O, qt = si|λ).
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ft(i) = ϑ(O, q1, q2, ..., qt−1, qt = si|λ) (5.7)

If ot is indeed a valid output generated by state si of λ, then state si is the output

generator of ot. This enables writing equation (5.7) as a variation of (5.5), which

amounts to the following:

ft(i) =
n

min
i=1

ϑ(o1, ..., ot, q1, ..., qt−1, qt = si|λ) (5.8)

The Qualitative Forward Algorithm

The algorithm finds the solution by solving for ft(i) inductively as follows:

1. Initialization:

f1(i) = ϑ(o1, q1 = si|λ) (5.9)

= ϑ(o1|q1 = si, λ) + ϑ(q1 = si, λ) (5.10)

= bi(o1) + πi (5.11)

The initialization step applies the inductive variable to the base case for which

the length of the output sequence is 1. The conditional propagation associated

with ϑ transforms the variable f1(i) given in (5.9) to the expression given in

(5.10). In (5.10), ϑ(o1|q1 = si, λ) is the emission ϑ value associated with the

only output o1 being produced (by state si) at time 0 and ϑ(si, λ) is the initial

degree of surprise associated with state si, which amounts to the expression

given in (5.11).

2. Induction:

The inductive step applies the inductive variable to the case where the sequence

O is of length t + 1 and where state sj is responsible for producing the output

ot+1. We hence devise a new variable f(t+1)(j) which represents the degree of

surprise associated with observing an output sequence of length t+1 with state
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sj being the one that produced o(t+1), given that ft(i) holds at time t. The

inductive variable f(t+1)(j) is given in equation (5.12) and is derived below.

Starting with the forward variable obtained in equation (5.8), and using order

of magnitude conditional propagation, ft+1(j) can be rewritten by assigning ψ

the values of o1, ..., ot, q1, ..., qt and φ those of o(t+1), q(t+1) = sj, λ as given below.

ft+1(j) =
n

min
j=1

[ϑ(o1, ..., ot, o(t+1), q1, ..., qt, q(t+1) = sj|λ))

=
n

min
j=1

[ϑ(o1, ..., ot, q1, ..., qt| o(t+1), q(t+1) = sj, λ)+

ϑ(o(t+1), q(t+1) = sj, λ)]

The above equation is further rewritten using two properties, one is property

(5.1) of HMMϑ, making the term ϑ(o1, ..., ot, q1, ..., qt|o(t+1), q(t+1) = sj, λ) simply

ϑ(o1, ..., ot, q1, ..., qt|λ) because the elements of o1, ..., ot, q1, ..., qt are independent

of o(t+1) and q(t+1) according to the memoryless independence assumption. The

second property is order of magnitude conditional propagation rule with ψ being

o(t+1) and φ being q(t+1) = sj.

ft+1(j) =
n

min
j=1

[ϑ(o1, ..., ot, q1, ..., qt|λ) + ϑ(o(t+1) |q(t+1)= sj, λ)+

ϑ(q(t+1) = sj, λ)]

The inductive hypothesis dictates that in order for ft+1(j) to be true, ft(i)

must have been true. This makes the state that held at time t to be si, and the

resulting equation is shown below.

ft+1(j) =
n

min
j=1

[ϑ(o1, ..., ot, q1, ..., qt = si|λ)+ϑ(o(t+1)|q(t+1) = sj, λ)+

ϑ(q(t+1) = sj|q(t) = siλ)]
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In the above equation, it can be clearly seen that the first term is the inductive

variable ft(i), the second term is aij, while the third is bj(o(t+1)), which is only

one value, and hence is taken out of the sum to give equation (5.12) given below,

which is the final form of the inductive step.

ft+1(j) =
n

min
i=1

[ft(i) + aij] + bj(o(t+1)) (5.12)

As made clear in the derivation, the inductive step of equation (5.12), which

computes ft+1(j), is only executed if at time t, the degree of surprise of hav-

ing state si producing output ot, given output sequence O and the complete

specification of the structure and parameters of λ has been computed by ft(i).

3. Termination:

Given that the inductive step computes the forward variable at every time step

until t, starting with the base case at time 1, the inductive algorithm correctly

terminates at step t, by calculating ft(i), ∀ 1 6 i 6 n, and consequently find-

ing the degree of surprise associated with observing the last output ot of the

sequence O.

ϑ(O|λ) =
n

min
i=1

ft(i) (5.13)

The Decoding Problem

Given the observation sequence O = o1, o2, ..., ot of length t and a model λ=(A,B,π),

the decoding problems is concerned with finding the sequence of states q = q1, q2, ..., qt

that is associated with the minimum surprise ϑ of having produced the observation

sequence O.

In order to evaluate candidate sequences of states, we require a quantity represent-

ing the degree of surprise associated with the most-likely sequence being one which

ends with state qt = i. We denote this quantity by δt(i).

δt(i) = minq1q2...,qtκ(q1...qt−1, o1...ot, qt = i) (5.14)
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In order to use the score function to find the best sequence q, we should be be able

to answer the question: what is the degree of surprise associated with the most-likely

sequence being one which ends with state qt+1 being state j, given that the degree

of surprise associated with the most-likely sequence being one which ends with state

qt = i is δt(i)? The answer is found by induction on the length of the sequence q as

shown below.

σ(t+1)(j)= minπ1,...,πtκ(o1...ot,q1, ..., qt, ot+1,qt+1=j)

= minq1,...,qt [κ(ot+1,qt+1 = j | o1...ot, q1, ..., qt)+ κ(o1...ot,q1, ..., qt)]

Taking into account Markov and Independence assumptions

and redistributing the rest:

= minq1,...,qt [κ(ot+1,qt+1 = j | qt)+κ(o1...ot−1,q1, ..., qt−1, ot, qt)]

However, the sequence that minimized the degree of surprise was the

one that ended with state i and which was given by the equation 5.14.

This makes the above:

= mint[ κ(ot+1,qt+1 = j|qt = i) + minq1q2...,qtκ(q1...qt−1, o1...ot, qt = i)

= mint[ κ(ot+1,qt+1 = j|qt = i) + σt(i)]

= bj(ot+1) + mint [aij + σt(i)]

σt+1(j) = bj(ot+1) + mint[aij + σt(i)] (5.15)

A Qualitative Viterbi Algorithm

The algorithm keeps track of the argument which has minimized 5.15 at every

time t and state j. For this, a vector %t(j) is used. Hence, the qualitative viterbi

algorithm can be described via the following steps:

1. Initialization

σt(i) = πi + bi(o1), 1 6 i 6 N (5.16)

%1(i) = 0 (5.17)
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2. Recursion

σt(j) = bj(ot) + min16i6N [aij + σt−1(i)] 2 6 t 6 T, 1 6 j 6 N (5.18)

%t(j) = argmin16i6N [aij + σt−1(i)] 2 6 t 6 T, 1 6 j 6 N (5.19)

3. Termination

P ∗ = min16i6N [σT (i)] (5.20)

q∗T = argmin16i6N [σT (i)] (5.21)

4. Path (state sequence) Backtracking

q∗t = %t+1(q
∗
t+1) t = T − 1, T − 2, ..., 1 (5.22)

5.4 Summary

This chapter introduced three graphical models, surprise-based QPNs, their temporal

extensions (TQPNs) and a surprise-based Hidden Markov Model (HMMϑ). These

models incorporate the ranking functions defined in Chapter 4 as either bases for the

specification of the various model parameters or as a conflict resolution mechanism.

The aim was to create a set of models that enable the use of the ranking functions

in a real-life applications. Hence, having developed the three models, the next chapter

devises a set of experiments that test the capabilities of the ranking functions as well

as examine their use in a complex application domain.
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Chapter 6

Qualitative Aspects of Genetic

Regulation 1

As far as the laws of mathematics refer to reality, they are not certain; and as far as

they are certain, they do not refer to reality.

- Albert Einstein, answering the question: “how can it be that mathematics, being

after all a product of human thought which is independent of experience, is so

admirably appropriate to the objects of reality?”

In this dissertation, the use of qualitative uncertainty formalisms has been moti-

vated by having substitutes to quantitative methods when the precision they offer is

either unattainable or unnecessary to perform plausible reasoning. This is especially

evident in the discussion at the beginning of Chapter 3. This chapter is concerned

with presenting the application domain chosen to implement the ideas presented so

far: bioinformatics. This domain is intriguing as it does not have the lack of numeri-

cal information at the heart of its current problems; on the contrary, it suffers from

1This chapter incorporates the outcome of a joint research undertaken under the supervision of

Professors Ahmed Tawfik and Alioune Ngom. The key ideas, primary contributions, experimental

designs, data analysis and interpretation, were performed by the author, and the contribution of

co-authors was primarily through the provision of advice when needed.
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the opposite issue: the abundance of numerical data.

Besides personal interest in bioinformatics, the reason behind choosing it as an

application domain is to demonstrate that qualitative methods for dealing with un-

certainty are not only an alternative for when data is not available, but are also

useful where quantitative approaches have been proposed and successfully used. This

is because qualitative equivalents of the quantitative methods available can serve as a

guide for a better analysis of the available methods to obtain more biological insight,

given that the large amount of data is what has made formulating mechanisms to

provide better biological insight work in progress (Friedman, 2004). In other words,

they can be used to perform an initial analysis to filter the data available, which aids

in reducing the complexity of the full analysis performed by the quantitative methods.

This chapter presents two studies that aim at performing types of analysis on

microarray gene expression data (introduced in Section 6.2). These studies represent

the results of implementations that test the models developed in Chapter 5 and aim

at 1) examining the ranking power of the functions formulated in Chapter 4 2) ex-

amining how well are the advantages supported in a real-life complex environment 3)

demonstrating that a qualitative analysis can provide a good aid to existing quan-

titative approaches with respect to the application domain and improve the results

available in terms of accuracy and efficiency.

The chapter is structured as follows. Sections 6.1 - 6.3 introduce concepts that

are essential to the application domain along with the vocabulary associated with

it. In Section 6.4, a set of findings that motivate the use of qualitative approaches

for handling uncertainty in the domain of choice are introduced. Sections 6.5 - 6.6

contain the studies conducted to test the three aims given above. The chapter ends

with a summary given in Section 6.7.

6.1 Gene Expression in the Cell

With only a few exceptions, every cell in the body of an organism contains a full

set of chromosomes containing identical genes. Modeling the interactions of genetic
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Figure 6.1: The Gene Expression Process

information in the cell have received increasing attention in recent years. The general

aim is to study the variables making up the internal state of the cell in order to

determine its general behavior by studying the interactions taking place on the gene

level. More specifically, the process by which inheritable information located on the

genes, i.e. DNA, is made into a functional end product (protein) is studied. This

enables studying the behavioral properties of living organisms as the protein end

products perform most of the critical cellular functions.

The process by which information from a gene is used in the synthesis of a func-

tional gene product, or protein, is called gene expression (Hunter, 2004). The different

proteins synthesized from different genes perform virtually every function within the

cell and are essential for its survival. Hence, the process of gene expression is contin-

uously taking place at the cell, producing the protein products necessary to perform

the diverse functions that the cell requires to adapt to its changing needs (Someren

et al., 2002).

A simplified model of the expression process is shown in Figure 6.1 and consists of

three stages, each ending with the actualization of an end-product. First, genes tran-

scribe the information contained within the DNA into RNA, which is then processed

into messenger RNA (mRNA). mRNA is in turn receptive to other chemical products

that translate it into functional protein, which performs most of the critical functions

of cells. The process of expressing the information located on the DNA of a single

gene to a functional protein is so important to modern biology that it is called the

Central Dogma of molecular biology (Crick, 1970) and serves as the base for studying

the flow of information during the cellular life cycle in order to understand biological

systems at the cellular level (Hunter, 2004).

The expression process is triggered by many factors including chemical cellular

factors (e.g. change in PH level, temperature, etc...) and the expression of other
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genes. More specifically, the protein end products resulting form the expression of

many genes trigger the expression of other genes. The result is a complex web of

interactions among the genetic components and end-products (Pisabarro et al., 2008).

6.2 Measuring Expression Levels: Microarray Tech-

nology

Under any set of conditions, only a fraction of the genes are active, or expressed, and

it is this subset that delivers the unique properties to each cell type and perform the

functions required at the time. Gene expression is a highly complex and tightly regu-

lated process that allows a cell to respond dynamically both to environmental stimuli

and to its own changing needs. This mechanism acts as both an activation/supression

switch to control which genes are expressed in a cell as well as a volume control that

increases or decreases the level of expression of particular genes as necessary. As a

result, in order to obtain insight to how the cell responds to the changing needs of

itself and the environment, one must measure the expression level of the different

genes during different time slots or under different cellular conditions (D’hæseleer,

2000).

As an organism’s genome may consist of tens of thousands of genes, identifying

the genes that are expressed under any conditions entails the need for simultaneously

measuring the expression levels of a large number of genes and a method for dis-

tinguishing those genes that are expressed form those that are not. This is usually

performed via experiments that are conducted using Microarray technology. A mi-

croarray is a tool for analyzing gene expression that consists of a small membrane or

glass slide containing thousands of spots, each containing a single-stranded DNA se-

quence of one gene (also called cDNA, for complementary DNA) (Horak and Snyder,

2002). Hence, the thousands of spots of a microarray contain single DNA strands

for thousands of genes. Each spot in the microarray enables the measurement of the

expression level of the corresponding gene as will be explained in the example below.

Example 17. Figure 6.2 shows an example of an experiment aiming at discovering
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Figure 6.2: A Experiment for Measuring Gene Expression Levels

the expression profile (i.e. which genes are expressed and which are repressed) of a

certain cell culture under a certain set of conditions (e.g. the absence of Oxygen).

The experiment starts by obtaining a cellular sample from the culture after allowing

it to be in the condition being examined (and as a result, given the organism the

chance to adapt to the conditions by launching the expression of the genes required

for the set of conditions). mRNA molecules corresponding to the expressed genes are

then extracted from the cellular culture 2 and is colored with a fluorescent for ease of

detection. Then, the extracted mRNA is poured over the microarray containing the

DNA of the respective cellular culture. If the DNA at a certain spot has a correspond-

ing mRNA in the extracted cellular sample, it is bound to it 3 and the corresponding

spot on the microarray is illuminated with the fluorescent that the mRMA was col-

ored with. Hence, the simultaneous measurement of mRNA hybridization to cDNA

strands enables their use as indications of the expression level of the corresponding

gene Friedman (2004).

2Details pertaining to the technical biological aspects will not be covered here. The interested

reader may refer to (D’hæseleer, 2000) for an elaborate discussion.
3The process is called hybridization (D’hæseleer, 2000).
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6.3 Networks Representing Genetic Interactions

The data obtained from microarray experiments is presented as collections of gene ex-

pression patterns that can be used to study the effects of certain treatments, diseases,

and developmental stages on gene expression. As the presence of certain proteins and

expression of certain genes can have an activating or repressing effect on the ex-

pression levels of other genes, making sense out of the data involves understanding

the mechanisms controlling the expression and the causal relations that exist among

genes (Ram et al., 2006) in which the expression of one or more genes causes the

expression (or inhibition) of other genes. The general aim is to reach a functional

understanding of the mechanisms governing the interactions among the cellular ge-

netic components. Such understanding is linked to medical breakthroughs such as

a general classification of clinical entities, e.g. different tumor types (Khan et al.,

1998; Alizadeh et al., 2000), and the inception of novel techniques for the prevention

and treatment of human diseases Hood et al. (2004) by changing the diagnosis pro-

cess to focus on causes rather than symptoms (as many diseases are characterized by

abnormal gene expression (Lubovac and Olsson, 2003)).

The large size of the data and the large number of interactions have motivated the

use of graphical models to ease the process of capturing the complex relations among

the genes and end products (Friedman, 2004). These models are generally termed

genetic networks and are directed graphs in which every node represents a gene or a

functional protein and every edge represents a regulation relationship Noveen et al.

(1998). The network models how genes influence (through activation or inhibition)

other genes in a complex web of interactions and are useful for analyzing genomes

as they make explicit different types of interactions among genetic elements, which

enables their usage as a road map for functional studies of the genomes of different

organisms (Pisabarro et al., 2008).

Uncovering the topology of the network from the kind of data available is a chal-

lenging problem for which many techniques exist (Wessels et al., 2001). Specifically,

the complexity of the task stems from the fact that not only the kind of data avail-

able is of high dimensionality and suffers from great noise (Friedman, 2004), but also
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because the data, termed microarray expression data, provides the expression lev-

els of a large number of genes (usually tens of thousands) at different but relatively

few (usually a few dozens) experiments 4. Hence, it is usually sparse, which makes

uncovering causal relations more difficult.

The above issues of microarray expression data, along with the stochastic nature

of the gene regulatory system have motivated Bayesian approaches for learning the

structure of genetic networks (Murphy and Mian, 1999; Friedman, 2004; Zou and

Conzen, 2005a; Zhang et al., 2007), which have been successfully used to learn large

scale networks. For instance, Roland (2004) use learned Bayesian networks to uncover

the mechanisms underlying the progressive genetic changes in the development of

urothelial bladder cancer. However, approaches using BNs remain far from being

efficient, specially given the data’s large size (Chickering et al., 2004), which has

motivated different other approaches and their conjunction with the Bayesian model.

For example, Zainudin and Deris (2008) use k -means clustering to establish clusters of

co-expressed genes and then learns the corresponding BNs of the discovered clusters.

6.4 Motivating the Use of Qualitative Probability

The relative success of Bayesian approaches to reconstruct genetic networks moti-

vated this search for alternatives. On the one hand, (Dynamic) Bayesian Networks

have been successfully used to detect conditional (in)dependence and time-delay rela-

tions that help uncover the structure of the gene expression networks (Liu and wing

Kin Sung, 2006; Murphy and Mian, 1999). However, it is the qualitative nature of

the information extracted from the data that brought about many of the benefits of

the model, e.g. the type of the effect one gene having on another being activating or

repressing. Hence, if one is to formulate a model that is specifically tailored to rep-

resent this information (in addition to other qualitative information the quantitative

Bayesian approaches may not be able to capture), then more insight maybe obtained

regarding the functional interactions governing the data.

4The reasons behind this difference between the number of genes and the number of experiments

will be made clear in section 6.4
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In light of the above, the next sections present a taxonomy of reasons to raise

concerns with respect to using Bayesian techniques to discover the various interactions

among the genes of the network. The taxonomy is the result of a comparative study of

the literature that addresses fundamental concerns regarding the use of quantitative

methods in general and Bayesian techniques in specific.

6.4.1 Robustness

1. Apart from being intrinsically noisy and difficult to analyze, microarray data do not

correspond to the expression levels of protein end-products as microarray measures

the amount of cRNA (or cDNA) hybridization to target mRNA transcripts (Friedman,

2004). Therefore, the numbers used as probabilities in current studies assume a direct

correlation between mRNA and protein expression levels. This assumption however,

is until now not well supported as current studies of this type of correlations have

given varying results depending on 1) the technology used and 2) biological factors

that remain poorly understood (Nie et al., 2006; Pascal et al., 2008; Guo et al., 2008),

and as a result mRNA to protein expression correlations vary from being poor (Pascal

et al., 2008) to moderately good (Guo et al., 2008). Moreover, each mRNA transcript

may correspond to a number of functionally different proteins by undergoing a post-

translation chemical modification, where the type and number of proteins resulting

from a single mRNA depend on different cellular and chemical factors (D’hæseleer,

2000). This renders the interpretation of mRNA expression levels as probabilities a

less than an ideal alternative.

It is worth nothing that large-scale protein expression measurements are currently

present but tend to be extremely noisy and lack a great deal of sensitivity and speci-

ficity (D’hæseleer, 2000). This however, makes protein expression data a good can-

didate for a qualitative formalism.

2. Analyzing microarray data for accuracy is difficult as the nature of and cost as-

sociated with current microarray technologies represent obstacles for repeating the

experiments, which make statistical studies of a single measurement unattainable

(Filkov et al., 2002). Therefore, it is difficult to rely on the numbers as they repre-
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sent outcomes of a single, non-repeated experiment. This is especially important in

determining how dependable the data is given the sparse nature of the resulting mea-

surements as a single experiment yields very small number of samples (intervals under

which the experiment is performed) especially when compared to the number of vari-

ables involved (the number of genes studied can reach tens of thousands for a single

experiment) (D’hæseleer, 2000). Also, the dynamic nature of the expression process

and the fact that it depends on factors that may not be known (D’hæseleer, 2000)

makes the numbers more untrustworthy because it is currently not known whether

the variables affecting the expression at different intervals are constant through the

experiment (Pisabarro et al., 2008). Therefore, building a network that involves thou-

sands of genes from dozens of examples of their expression levels does not assure the

distinction between true gene-to-gene correlation and spurious ones (Friedman, 2004).

6.4.2 Possibility for Extension

Biological pathways are intricate in nature, and their discovery remains an ongoing

challenge. Moreover, it is now accepted that in order to obtain a biological insight,

it is viable to examine data from different view points in the aim of forming an

integral examination of cellular interactions, e.g. gene expression and protein-protein

interactions (Friedman, 2004). Given this, discovering a biological pathway may

require information for which there does not exist quantitative information (even

noisy information). Having a model that can do away with this type of information

makes it more portable and more capable of dealing with the surprises that may

encounter the discovery process (Iyenga and McGuire, 2007).

In order to perform such integral studies, we must first understand the biological

principles that couple the measurements. In fact, it has been shown through stabil-

ity analyses of gene expression models that describing models of gene networks re-

quires information on both mRNA and protein levels (Hatzimanikatis and Lee, 1999).

Hence, while awaiting the development of acceptable large protein chip technology, a

qualitative model can present a viable alternative.
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6.4.3 The Abundance of Qualitative Information

The uncertainty surrounding microarray data does not prevent the extraction of useful

qualitative information that can be used to uncover the underlying genetic interac-

tion and effectively reason about it to obtain biological insight. In fact, microarray

data contains information pertaining the conditional independence among the genes

in question, variable time delays and the combined effects of complexes of end prod-

ucts over genes. Although this information can be modeled correctly using Bayesian

networks (as done in (Liu and wing Kin Sung, 2006)), there are other information

of a strictly qualitative nature that can be extracted from the data. For instance,

the sought-after relations among the genetic components are monotonic in nature,

i.e. a gene or a set of genes, represented by variables, exhibit one type of influence

on another set of genes of either stimulation or inhibition given a set of conditions.

This has been further studied in bioinformatics and a set of gene expression network

motifs (Milo et al., 2002) have been uncovered. These are the basic building blocks

that define patterns of interconnections that recur in many different parts of a gene

expression network at high frequencies.

Therefore, instead of constructing the joint distribution governing the conditional

probabilities of genes given other genes, qualitative formalisms such as Qualitative

Probabilistic Networks (Wellman, 1990a) are capable of explicitly modeling the in-

fluences underlying the conditional probabilities in a explicit way and can be used to

either uncover the network model or perform inference on an existing one in a more

efficient (see section 6.4.4) and robust (see section 6.4.1) manner.

6.4.4 Computational Efficiency

The dynamic nature of microarray time-series data requires the use of Dynamic

Bayesian Networks as regular Bayesian Networks (Murphy and Mian, 1999). Despite

the recent efforts to develop algorithms that are tailored to provide more efficient

computations for uncovering genetic interactions (Murphy and Mian, 1999; Zou and

Conzen, 2005b; Zhang et al., 2007), inference in Dynamic Bayesian Networks remains

NP-hard (Chickering et al., 2004) as opposed to the polynomial-time arc-traversal
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algorithm for inference in QPNs (Druzdzel and Henrion, 1993c).

6.5 The First Study: A Qualitative HMM for Gene

Expression Data

In this section, qualitative HMM models are implemented to conduct an analysis

of gene expression data. Traditional HMMs have been used to cluster time-series

of gene expression data in the aim of finding the correlations among different genes

(e.g. (Schliep et al., 2003), (Zeng and Garcia-Frias, 2006)). The qualitative HMM

constructed in Chapter 5 can be applied to the same problem, and serve to create

pre-clusters that the existing quantitative HMMs can use as a guide for a better

analysis.

6.5.1 Aim

The aim of the experiments conducted in this section is to demonstrate the advantages

of κ++ and z over κ as measures of surprise by comparing the HMMs that use κ, κ++

and z (denoted in this section by HMMκ, HMMκ++ and HMMz) and the classification

capabilities of their associated qualitative forward algorithms.

Moreover, the experiment conducted here also aims producing results that can at

least be used as a pre-clustering model that may be used to obtain useful insight about

the data without having deal with the numerical aspects of the expression process.

The qualitative HMMs can be useful in the following ways.

1. HMMκ++ and HMMz can be used as a pre-clustering medium that guides the

initial stages of clustering using quantitative HMMs for very large time-series

gene expression data.

2. HMMκ++ and HMMz will not suffer from the assumption that the actual num-

bers labeled in expression levels (which are the the levels of mRNA hybridiza-

tion) are dealt with as the probability of expression of a certain gene. With
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HMMκ++ and HMMz, the expression level merely measures the degree of sur-

prise of a gene being expressed; a less strict statement than that made by the

probability-based assumption.

6.5.2 The Structure of the HMMs

Given a matrix M< n,m > corresponding to a time-series microarray data set, con-

struct a HMM to model the stochastic behavior of the matrix M as follows:

• Construct the set of states S = {s1, ..., sn}, where ∀si ∈ S : si represents the

hidden behavior of gene i (1 6 i 6 n), i.e. the behavior governing the time-series

for gene i.

• Construct the set of observation variables O = {o1, ..., om}, where ∀ot ∈ O : ot

represents the expression level of some gene at time t (1 6 t 6 m). Hence, the

matrix B = {bj(ot), 1 6 j 6 n} represents the observed expression level of gene

j at time t.

6.5.3 Data Set

For the purpose of the initial examination of the performance of HMMκ++ and HMMz

embodied in this section, two data sets are used. The first is a small set of simulated

time-series data describing the expression levels of 550 genes for a 5-step time series,

whose usage aims at testing the models a small-sized data set. The second is the

Escherichia coli time-series data set, for which the algorithms designed in Chapter 5

are evaluated by comparing the results obtained to those given in the literature.

6.5.4 Obtaining HMMκ++ and HMMz

Ideally, we would like the HMM to be trained with ranking values instead of numerical

probabilities. This, however, requires a qualitative version of the learning algorithms,

which is currently under development. Therefore, the HMM was trained with the
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well-known Baum-Welch algorithm Rabiner (1989), which iteratively searches for the

HMM parameters by maximizing the likelihood of the observations given the model,

P (O|λ). We use the Baum-Welch to obtain a HMM = (S,V,π,A,B) that uses regular

probabilities. The κ++ and z values of the corresponding qualitative HMMs are then

obtained from the probability values of the π vector, the A and B matrices by mapping

the probability values to κ++ and z as given in Equations 4.3 and 4.5 of Chapter 4.

6.5.5 Experiment and Analysis

This experiment aims at testing the classification capability of the qualitative forward

algorithm associated with HMMϑ using three different ranking functions κ, κ++ and

z. Two separate experiments are performed using two data sets. The first is that

of simulated while the second is the much larger Escherichia coli data set. The

experiments are performed by running the qualitative algorithm on each data set

using different values of ε for each ranking function (and hence varying the level of

abstraction of the probability values).
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Figure 6.3: HMM Classification Results Using an Artificial Data Set

The results are summarized in Figures 6.3 and 6.4. Both figures compare the

classification of the different rank-based HMMs for infinitesimal and non-infinitesimal

ε values using differently-sized portions of the data sets. In both figures, z performs

the best classification while κ averages as the worst. Also, unlike the other two
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functions, the performance of κ++ fluctuates. This is an expected behavior given

the non-monotonic behavior of κ++ for some of its negative range, which makes the

performance of κ++ sensitive to the values given as rankings in the data set and causes

the fluctuation depending on whether or not the rankings included in the data set

are within the non-monotonic range.
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Figure 6.4: HMM Classification Results Using the Escherichia Coli Data Set

Moreover, the results can be analyzed in terms of the following parameters:

Infinitesimal vs. Non-infinitesimal ε:

When an infinitesimal ε is used (as in Figures 6.3a and 6.4a), κ’s performance is

at times comparable to that of κ++ (apart from the fluctuation). However, when a

non-infinitesimal ε is used (as in Figures 6.3b and 6.4b), κ’s performance drastically

deteriorates as the number of correctly-classified cases decreases considerably. As for

κ++, using a non-infinitesimal ε seems to increase the fluctuation in its classification

quality.

Synthetic vs. Real Data

A close examination of Figures 6.3a and 6.4a shows that the difference in performance

between experiments where infinitesimal ε values are used and those where non-
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infinitesimal ε values are used is much greater in real data than when using artificial

data. This is evident even when conducting experiments on data sets of comparable

sizes. For instance, the difference between the percentages of correctly-classified data

of Figures 6.3a and 6.3b for HMMz when a data set of size 500 is used (approximately

88% in Figure 6.3a and %79 in Figure 6.3b) is much smaller than the difference

between the percentages of correctly-classified data using HMMz for a data set of the

same size as Figures 6.4a and 6.4b show (approximately %89 in Figure 6.4a and %75

in Figure 6.4b).

6.6 The Second Study: Discovering Genetic Net-

work Motifs Using TQPNs

As Section 6.3 demonstrated, gene expression networks tend to be very complex with

a large number of nodes and arcs connecting them. This has motivated studies that

define simple patterns of interconnections between small groups of nodes. These pat-

terns appear at high frequencies in naturally-occurring networks (including biological

networks) and tend to increase in number monotonically as the size of the network

increases. This is in contrast to synthetic, randomly-generated networks in which

such patterns tend to sharply decrease in number as the size of the network grows

(Shen-Orr et al., 2002). Hence, these patterns define subgraphs that occur at high

frequencies in the network and which can serve as building blocks of the network.

Such patterns have been termed regulatory network motifs (Shen-Orr et al., 2002;

Milo et al., 2002) and have been shown to carry significant information about the

network’s overall organization and functionality (Hinman et al., 2003). The motifs

present a way of uncovering the structural design principles of gene expression net-

works is by breaking down their complex wiring into basic components.

Shen-Orr et al. (2002) identify three motifs that occur frequently in gene expres-

sion networks that have been shown to appear at frequencies greater than 10 standard

deviations greater than their mean number of appearances in randomized networks

(Shen-Orr et al., 2002). These motifs are the feed-forward , in which a node X reg-
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Figure 6.5: (a) The Feed-forward loop motifs (b) The Bi-fan motif (c) The Single-

input Module Motif.

ulates another node Y such that they both regulate a third node Z, bi-fan motifs,

in which two nodes concurrently regulate two other nodes, and single-input module

motifs which define a set of nodes under the control of the same type of regulation

(positive or negative) of one node, and are shown in Figure 6.5.

The study presented in this section can be summarized as using TQPN influences

defined in Chapter 5 for the modeling and discovery of genetic network motifs and

testing the method for the identification of network motifs using time series gene

expression data of Saccharomyces Cerevisiae (yeast). It consists of three experiments

whose specific aims, descriptions and results are discussed in the respective sections.

6.6.1 Using Influences to Define Genetic Network Motifs

If one to represent the gene-to-gene interactions in an expression experiment using

a TQPN, where each subgraph Gt, 1 6 t 6 m represents a snapshot of the genetic

interactions of the cell during time slot Tt modeled by a QPN, then At
1, ..., A

t
n ∈ U t

represents the expression levels of all the genes involved at slot Tt. In this context, a

qualitative influence naturally corresponds to a regulatory relation between two nodes

(genes). As a result, defining the motifs given in Figure 6.5 is directly obtained from

the construct of the TQPN 5 as given in Definitions 27 - 29 below.

Definition 27. Feed-forward loops A feed-forward loop exists in a genetic network

5The reader can refer to Section 5.2 of Chapter 5 for a rehash of the concepts of TQPN.
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modeled by a TQPN defined over G iff for two subgraphs Gt and Gt+1
6:

Sδ1(At
i, A

t+1
i , tr1)∧ Sδ2(At

i, A
t+1
i , tr2), where tr1 6= tr2

Where δ1, δ2 ∈ {++,−−, +,−, ?, 0}. The above definition states that a feed-

forward loop exists on a variable (gene) Ai if it influences its own expression through

two different trails (by stimulating different genes that will subsequently stimulate its

expression). Bi-fans are similarly defined below.

Definition 28. Bi-fans

A bi-fan among four genes At
a, A

t
b, A

t+1
c andAt+1

d exists in a genetic network mod-

eled by a TQPN defined over G iff for two subgraphs Gt and Gt+1

Sδ1(At
a, A

t+1
c , 1) ∧ Sδ2(At

b, A
t+1
c , 1)∧ Sδ3(At

a, A
t+1
d , 1) ∧ Sδ4(At

b, A
t+1
d , 1).

Where δ1, δ2, δ3 and δ4 ∈ {++,−−, +,−, ?, 0}.

Definition 29. Single Input Module (SIM)

A SIM motif of a gene Xt on n other genes At+1
1 , ..., At+1

n exists in a genetic

network modeled by a TQPN defined over G iff for two subgraphs Gt and Gt+1

Sδ(Xt, A
t+1
1 , 1) ∧ .... ∧ Sδ(Xt, A

t+1
n , 1)

Where δ ∈ {++,−−, +,−, ?, 0}.

6.6.2 The First Experiment: Uncovering the Network Motifs

Using TQPNs

We conducted a set of experiments to verify the mapping between qualitative influ-

ences and the motifs formalized in definitions 27, 28 and 29. The data set used for the

6Note that only two time slots are sufficient for the definition of the loop as TQPNs naturally

preserve the Markov property.
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Table 6.1: Nodes = Number of Nodes (Genes) in the Run, Edgeavg = Average Number

of Edges for 10 Runs of Networks of Size N Feed-forward = Average Number of Feed-

forward Motifs for the 10 Runs, Bi-fan = Average Number of Bi-fan Motifs for the

10 Runs

Nodes Edgeavg Feed-forward Bi-fan

85 154 16 209

185 372 18 430

285 518 21 825

385 698 29 1092

485 912 46 1437

585 997 52 1745

purpose is based on the YPD (Yeast protein database) (S2) and was obtained from

the data set used in (Milo et al., 2002) and contains 1079 interactions of 688 genes

describing the regulation relationships of the transcriptional regulatory network of

Saccharomyces Cerevisiae. The data comprises of three columns representing regu-

lating genes, regulated genes and the mode of regulation. Not only that the number

of motifs detected by our influences matches those of (Milo et al., 2002), but also upon

retesting the hypothesis with differently-sized subsets of the data set, the number of

motifs discovered by our influences was found to monotonically increase with the size

of the data (as expected in real biological networks) as Table 6.1 shows.

The latter finding was achieved by constructing six additional experiments each

testing the hypothesis for a subset of the full data set having a specific size. Each

experiment consisted of 10 runs, all of the same size (number of nodes) but differ in

connectivity (number of arcs). The algorithm describing the mapping of Section 5.2.2

was tested on each of the 60 resulting runs and used to output the number of feed-

forward loops and bi-fan motifs in each run. The results given in Table 6.1 visibly

show the monotonic increase of the number of motifs with the number of nodes in

the interaction data set.
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6.6.3 The Second Experiment: Discovering the Overall Motif

Sign Using Surprise-based QPNs

Having developed a method for discovering network motifs in the previous section,

this section’s experiment is tailored to evaluate the strengths of the ranking provided

by κ, κ++ and z in evaluating the net sign and strength of the motifs discovered.

Hence, the experiment described here does not aim at devising a model of a practical

use but is merely of an importance with respect to assessing the range of values

assigned as rankings for each of the functions. Devising the experiment involved the

following steps:

1. A QPN is implemented such that it uses a ranking function for the definition of

its influences and uses the resulting strength assigned by the ranking for conflict

resolution. The resulting three implementations are QPNκ, QPNκ++ and QPNz.

2. For each motif discovered, the signs and strengths of its arcs are mapped into

a binary influence of the QPN under consideration.

3. For each motif, the net influence’s magnitude and sign are evaluated.

The results of the experiment are shown in Figure 6.6, where Part 6.6a shows

the number of ambiguous bi-fan motifs while Part 6.6b shows the number of feed-

forward loop motifs for the motifs discovered and displayed in Table 6.1. In both

cases, the QPN using κ++ as an indicator of influence strength leads in terms of

minimizing the number of motifs evaluated as ambiguous. κ performs very poorly

while z’s performance lies somewhere in between. The results reflect the advantages

of the signed-integer values used in κ++ in increasing the range of values that the rank

can hold, which leads to decreasing the possibility of a sign conflict whose causing

influences have equal strengths. Also, the fact that QPNz had a better performance

than QPNκ supports the discussion given in Section 4.6.4 (and shown in Figure 4.5),

which demonstrated that z assumed a wider unsigned-integer range than κ, because

it is this wider range that reduces the chance of obtaining equal magnitudes to two

influences of conflicting signs.
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Figure 6.6: The Number of Ambiguous Motifs Using QPNκ, QPNκ++ and QPNz

6.6.4 The Third Experiment: Reconstructing the Genetic

Network from Expression Data

The second set of experiments were conducted to build qualitative influences between

genes by examining their expression levels, map the relevant influences to network

motifs and use them to guide the construction of a DBN. The aim of the experiment

is to assess the accuracy of the approach in recovering the structure of the DBN

from the expression data with the aid of the discovered motifs by comparing it to the

unguided DBN approach of Zou and Conzen (2005a).

For this experiment, we used the Saccharomyces Cerevisiae time series data from

Choo et al (Cho et al., 1998), which contains data for ten time points. The first

step was to examine the microarray data to investigate the strength of the various

regulatory interactions by assigning each pair of genes a correlation coefficient γ

capturing the degree to which two genes are co-expressed. We used cut-off values of

γ+ > 1.2 for a positive regulation and γ− 6 0.7 for a negative regulation to separate

possible direct regulation from spurious interactions and used an approach similar to

that of (Zou and Conzen, 2005a) to identify potential regulators and regulees. The

cut-off values were chosen to match those of (Zou and Conzen, 2005a) for a controlled

experiment.
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We then designed an algorithm that reads through the collected pairs and their

normalized expression levels and builds a database of qualitative influences that are

detected by examining the genes pair-wise. We constructed an M ×M matrix of in-

fluences exhibited among the genes. Each cell in the matrix contains the information

required regarding the possible influence of a sign, a rank calculated from the expres-

sion levels (we collected both κ++ and z ranks). In our experiment, an unknown or a

zero sign given in cell m[i][j] designates a no correlation between the respective genes

(at locations i and j ). The mapping presented in Section 5.2.2 is used to construct

the set of feed-forward loop motifs discovered in the data.

The set of motifs constructed is then used as prior knowledge to guide the construc-

tion of the yeast gene regulatory network using (Zou and Conzen, 2005a)’s method,

referred to in this work as DBNZC . We evaluated the method in terms of accuracy

of the reconstructed network. More specifically, the guidance provided by the motifs

discovered increased the specificity 7 as Table 6.2 shows.

Table 6.2: The Result of comparing the analysis provided by DBNZC with the same

method guided with our qualitative network motifs for the yeast transcription dataset

comprising of 116 genes. The only prior knowledge included is the knowledge of our

qualitative motifs and nothing about the yeast cell cycle is given to test the hypothesis

of an improved detection of regulator-target relations and a better construction of the

target network. I = Identified Relationships, M = Misidentified Relationship, S =

Specificity

Method I M S

DBNZC 17 3 9.8%

DBNZC + Qualitative Motifs 26 2 10.7%

7Specificity is the percentage of correctly predicted known gene relationships out of the total

number of predicted gene relationships.
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6.7 Chapter Summary

This chapter presented two studies and four experiments that examine the perfor-

mance of the ranking functions in a bioinformatics setting.

The first study uses qualitative HMMs to classify gene expression data by mapping

their expression levels to tentative rankings that are used to cluster the genes into

functional groups. The experiment is performed for the three qualitative HMMs

devised in Chapter 5, mainly HMMκ, HMMκ++ and HMMz in an aim to evaluate

the ranking capabilities of the three functions in this environment. The experiment

shows that the ranking capability of z precedes the other two functions in terms of

performance while κ generally performs the worst.

The second study consists of three experiments all revolving around the idea of

the identification of simple network motifs making up the building blocks of the gene-

to-gene interactions in large gene regulatory networks. While the first experiment

presented in Section 6.6.2 describes a procedure that successfully discovers the ele-

mentary network motifs by mapping them to TQPN influences (introduced in Chapter

5), the second experiment presented in Section 6.6.3 evaluates the semantical richness

of the ranking functions by using them to find the overall motif sign and strength

for the motifs discovered in Section 6.6.2. Since the performance of the function in

this experiment relies on the width of the range assigned as ranks, κ++ performed

best as it produced the minimum number of ambiguities compared to κ and z, while

κ once again performed the worst due to its limited range (even compared to z).

The last experiment uses the models developed to reconstruct genetic networks from

expression data and uses both z a κ++ as strength indicators. The method described

in 6.6.4 has a performance that exceeds that of quantitative methods present in the

literature.
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Chapter 7

Conclusions, Loose Ends and

Vision

A mathematician is a machine for turning coffee into theorems.

- Paul Erdõs

In this dissertation, we have presented surprise as an alternative notion for defining

order-of-magnitude abstractions of probabilistic systems and used it to construct

several graphical models that use qualitative surprise instead of qualitative probability

to perform plausible reasoning. The main contributions this work has resulted are

the following:

1. Two surprise-based ranking functions κ++ and z whose main features are improving

the semantics and ranking capabilities of existing rank functions. The two functions

succeed in achieving the aims to different degrees and but overall, they represent an

improvement to existing ranking functions. The functions use order of magnitude

abstractions of conditional propagation rules for revision and update and each have

different semantics and range based on the numerical surprise measure that each

function abstracts.
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2. A qualitative probabilistic network (QPN) that uses κ++ and z to define its in-

fluences instead of probabilities. The QPN model defines qualitative influences as

having both a sign and a strength factor that are based on the semantics of the

ranking function used to define the QPN. Experimental results show that the richer

semantics of κ++ and z contribute to a better conflict-resolution mechanism for the

QPN model proposed compared to using other ranking functions such as κ.

3. A temporal extension of the QPN model given above termed TQPNs. In addition to

associating strength factors to its influences using the sign-magnitude pair, TQPNs

use another level of influence strength measure based on the length of the trail

through which the influence is exerted. These two levels of conflict resolution are

implemented because the number of possible ambiguous signs increases in large

networks, specially ones that model causality through time.

4. A qualitative Hidden Markov Model (HMM) that uses order of magnitude ranking

functions instead of probabilities for the specification for its parameters. Along

with the HMM come two algorithms that use the qualitative framework to perform

recognition and prediction tasks.

5. A method for discovering elementary network motifs of gene regulatory networks

by mapping the motifs structure to TQPN influences and constructing the latter

from gene expression data.

6. An algorithm for reconstructing genetic regulatory network from microarray gene

expression data that constructs tentative rankings from the expression data and

maps them to TQPN influences and learning the regulatory network accordingly.

The algorithm’s performance has been empirically shown to be accurate and more

efficient than existing quantitative bayesian methods.

7.1 Limitations and Loose Ends

1. As various discussions throughout the dissertation have shown, the semantics envi-

sioned for ranking functions of having not only different levels of surprise associated
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with events but also different levels of expectedness turned out not to be an easily

achievable task. This is because a qualitative function that is based on a sur-

prise index whose definition seems to promise this added richness suffers from some

drawbacks including biased ranges for levels of surprise and expectedness as well as

exhibiting non-monotonic behavior for some of its values. As a result, it becomes

inevitable that the ranking offered by the function will not agree with that provided

by probabilities with respect to the values for which the ranking function exhibits

a non-monotonic behavior. Therefore, instead of increasing the type of values in-

cluded in the ranking (of being surprising or expected), we have opted to devising

a ranking function that increases the range of surprise measures. This made having

a better and more versatile ranking that does not assign equal surprise classes to

states that should belong to different classes a key point to the advantages. In

addition to this, the new ranking functions offer domain independence as a key

feature so that it becomes possible to compare the surprise associated with events

that belong to different distributions.

2. Although this dissertation has demonstrated different ways of incorporating the

proposed formalisms with other qualitative probability frameworks, combining the

functionalities achieved here with quantitative probabilistic methods, which was

initially part of the original vision, has not yet been studied. This aspect of the

original plan is left as part of the future research and is discussed in the next section.

7.2 Vision for Future Directions

This section outlines some of the questions while developing the dissertation. We

discuss them briefly here as possible directions for future research.

7.2.1 Collaboration with Quantitative Formalisms

Although qualitative formalisms can present a good alternative when efficient and

less data-intensive methods are required for reasoning, the real power lies not in the

use of qualitative and quantitative methods independently, but it is when they are
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used in collaboration to achieve a certain goal by using probabilistic methods where

appropriate and substituting them with qualitative approaches when the task at hand

requires so. Identifying the conditions under which each formalism is used and the

steps required to go from one level of abstraction to the other (or subsequently, to no

abstraction) is currently an open problem.

7.2.2 Qualitative Entropy

The quantitative surprise measure used for bases of formulating the new ranking

functions are closely related to the notion of information gain. This gives rise to the

interesting question: is it possible to define the notion of qualitative entropy?

7.2.3 Better Regulation

We are currently working on the realization of a model for completely reconstructing

gene regulatory networks using TQNs. We are at the stage of incorporating time

lags into the model and testing the hypothesis of ‘the full specification of conditional

probabilities is not necessary to reconstruct the regulatory relations in a gene regula-

tory network and only a subset of the quantitative data available is required. Because

TQPNs deploy arc-based reasoning, they are expected to be much more efficient than

their quantitative equivalents.
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Networks for the Functional Study of Genomes. Briefings in Functional Genomics

and Proteomic, 7(4):249–263, 2008.

149



Lawrence Rabiner. A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition. Proceedings of the IEEE, 77(2):257–289, 1989.

Olivier Raiman. Order of Magnitude Reasoning. In National Conference on Artificial

Intelligence, pages 100–104, 1986.

Ramesh Ram, Madhu Chetty, and Trevor Dix. Causal Modeling of Gene Regulatory

Network. In IEEE Symposium on Computational Intelligence and Bioinformatics

and Computational Biology, pages 1–8, 2006.

Vahid Ramezani and Steven Marcus. Estimation of Hidden Markov Models: Risk-

Sensitive Filter Banks and Qualitative Analysis of their Sample Paths. IEEE Trans-

actios on Automatic Control, 47(12):1000–2009, 2002.

Silja Renooij. Qualitative Approaches to Quantifying Probabilistic Networks. PhD

thesis, Proefschrift Universiteit Utrecht, 2001.

Silja Renooij and Linda Van Der Gaag. Exploiting Non-monotonic Influences in

Qualitative Belief Networks. In International Conference on Information Processing

and Management of Uncertainty, pages 1285–1290, 2000.

Silja Renooij and Linda Van Der Gaag. Propgation of Multiple Observations in QPNs

Revisited. In European Conference on Artificial Intelligence, pages 665–669, 2002.

Silja Renooij and Linda Van Der Gaag. Evidence-Invariant Sensitivity Bounds. In

International Conference on Uncertainty in Artificial Intelligence, pages 479–486,

2004.

Silja Renooij and Linda Van Der Gaag. Enhanced Qualitative Probabilistic Networks

for Resolving Trade-offs. Artificial Intelligence, 172(12-13):1470–1494, 2008.

Silja Renooij, Linda Van Der Gaag, Simon Parsons, and Shaw Green. Pivotal Pruning

of Tradeoffs in QPNs. In International Conference on Uncertainty in Artificial

Intelligence, pages 515 – 522, 2000.

Silja Renooij, Linda Van Der Gaagand, and Simon Parsons. Context-specific Sign

Propagation in Qualitative Probabilistic Networks. Artificial Intelligence, 140:207–

230, 2002.

150



Silja Renooij, Simon Parsons, and Pauline Pardieck. Using Kappas as Indicators

of Strength in Qualitative Probabilistic Networks. In European Conference on

Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pages 87–

99, 2003.

Conrad Christianand Erfle Holgerand Warnat Patrickand Daigle Nathalieand Lrch

Thomasand Ellenberg Janand Pepperkok Rainerand Eils Roland. Automatic Iden-

tification of Subcellular Phenotypes on Human Cell Arrays. Genome Research, 14

(6):1130–6, 2004.

A. Rosti and M. Gales. Factor Analysed Hidden Markov Models for Speech Recogni-

tion. Technical Report 453, Cambridge University Engineering Department, 2003.

Stuart Russell and Peter Norvig. Artificial Intelligence a Modern Approach. Prentice

Hall, Second Edition edition, 2003.

Leonard Savage. The Foundations of Statistics. Dover, Second edition, 1972.

Alexander Schliep, Alexander Schönhuth, and Christine Steinhoff. Using Hidden

Markov Models to Analyse Gene Expression Time Course Data. Bioinformatics,

19(1):i255–i263, 2003.

Ross Shachter. Evaluating Influence Diagrams. Operations Research, 34(6):871–882,

1986.

Ross Shachter. Bayes-ball: The Rationall Pastime for Determining Irrelevance and

Requisit Information in Belief Networks and Influence Diagrams. In International

Conference on Uncertainty in Artificial Intelligence, pages 48–487, 1988.

Ross Shachter. An Ordered Examination of Influence Diagrams. Networks, 20(5):

535–563, 1990.

Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1988.

Glenn Shafer and Judea Pearl. Readings in Uncertain Reasoning. Morgan Kaufmann

Publishers Inc., 1990. ISBN 1-55860-125-2.

151



Glenn Shafer and Prakash Shenoy. Probability Propagation. Annals of mathematics

and Artificial Intelligence, 2:283–306, 1990.

Shai Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network Motifs in the

Transcriptional Regulation Network of Escherichia Coli. Nature Genetics, 31:64–68,

2002.

Prakash Shenoy. On Spohn’s Theory of Epistemic Beliefs. In International Conference

on Information Processing and Management of Uncertainty in Knowledge-Based

Systems: Uncertainty in Knowledge Bases, pages 2–13, 1990.

Prakash Shenoy. Uncertain Reasoning. Technical Report BUS934, School of Business,

University of Kansas, 1998.

Solomon Shimony and Carmel Domshlak. Complexity of Probabilistic Reasoning in

Directed-path Singly-connected Bayes Networks. Artificial Intelligence, 151(1-2):

213–225, 2003.

Padhraic Smyth. Belief Networks, Hidden Markov Models, and Markov Random

Fields: A unifying view. Pattern Recognition Letters, 18(11-13):1261–1268, 1997.

Eugene Van Someren, Lodewyk Wessels, Eric Backer, and Marcel Reinders. Genetic

Network Modeling. Pharmacogenomics, 3(4):507–25, 2002.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Predication and

Search. Springer Verlag, 1993.

Wolfgang Spohn. A General Non-Probabilistic Theory of Inductive Reasoning. In

International Conference on Uncertainty in Artificial Intelligence, pages 149–158,

1988a.

Wolfgang Spohn. Ordinal Conditional Functions. A Dynamic Theory of Epistemic

States. Causation in Decision, Belief Change, and Statistics, 2:105–134, 1988b.

Valentina Tamma and Simon Parsons. Argumentation and Qualitative Probabilistic

Reasoning Using the Kappa Calculus. In European Conference on Symbolic and

Quantitative Approaches to Reasoning with Uncertainty, pages 680–691, 2001.

152



Ahmed Tawfik. Changing Times: An Investigation in Probabilistic Temporal Rea-

soning. PhD thesis, Deaprtment of Computer Science, University of Saskatchewan,

1997.

Ahmed Tawfik and Eric Neufeld. Surprises in Probabilistic Reasoning. In Florida

Artificial Intelligence Symposium, pages 45–50, 1996.

Thomas Verma and Judea Pearl. An Algorithm for D eciding if a Set of Observed

Independencies Has a Causal Explanation. In International Conference on Uncer-

tainty in Artificial Intelligence, pages 323–330, 1992.

William Weaver. Probability, Rarity, Interest and Surprise. Scientific Monthly, 67:

390–392, 1948.
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