University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2011

Effective Team Strategies using Dynamic Scripting

Robert Price
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Price, Robert, "Effective Team Strategies using Dynamic Scripting” (2011). Electronic Theses and
Dissertations. 416.

https://scholar.uwindsor.ca/etd/416

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/416?utm_source=scholar.uwindsor.ca%2Fetd%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Effective Team Strategies using Dynamic Scripting

by
Robert G. Price

A Dissertation
Submitted to the Faculty of Graduate Studies
through Computer Science
in Partial Fulfillment to the Requirements for
the Degree of Doctor of Philosophy at the
University of Windsor

Windsor, Ontario, Canada
2011
© 2011 Robert G. Price

Effective Team Strategies using Dynamic Scripting

by

Robert G. Price

APPROVED BY:

Dr. M. Katchabaw, External Examiner
The University of Western Ontario

Dr. M. Hlynka
Department of Mathematics and Statistics

Dr. D. Wu
School of Computer Science

Dr. Z. Kobti
School of Computer Science

Dr. S. Goodwin, Advisor
School of Computer Science

Dr. H. Maoh, Chair of Defense
Department of Civil & Environmental Engineering

29 September, 2011

Author’s Declaration of Originality

| hereby certify that | am the sole author of tthiesis and that no part of this
thesis has been published or submitted for pulbdicat

| certify that, to the best of my knowledge, mydisedoes not infringe upon
anyone’s copyright nor violate any proprietary tggand that any ideas, techniques,
guotations, or any other material from the worlotifer people included in my thesis,
published or otherwise, are fully acknowledgedaonaadance with the standard
referencing practices. Furthermore, to the extaatt thave included copyrighted material
that surpasses the bounds of fair dealing withenntlieaning of the Canada Copyright Act,
| certify that | have obtained a written permissioym the copyright owner(s) to include
such material(s) in my thesis and have includedesopf such copyright clearances to my
appendix.

| declare that this is a true copy of my thesisluding any final revisions, as

approved by my thesis committee and the Graduaidiet office, and that this thesis has
not been submitted for a higher degree to any diinérersity or Institution.

Abstract

Forming effective team strategies using heterogemegents to accomplish a task can be
a challenging problem. The number of combinatidnsctions to look through can be

enormous, and having an agent that is really gbadparticular sub-task is no guarantee
that agent will perform well on a team with membeith different abilities. Dynamic
Scripting has been shown to be an effective wagnpfoving behaviours with adaptive
game Al. We present an approach that modifiesahptsg process to account for the

other agents in a game. By analyzing an ageni&sadind opponents we can create better

starting scripts for the agents to use. Creatirttgbstarting points for the Dynamic
Scripting process and will minimize the numbertefations needed to learn effective
strategies, creating a better overall gaming erpes.

Dedication

This work would not have been possible without nifgywDivina. You helped me get to
the starting line, you were with me when | crossefinish line, and you were with me
at all the important points in between.

Acknowledgements

Thanks to Dr. Goodwin for all the help you haveypded over the years. Your topics
made me want to learn, and your sense of humopetiehake learning enjoyable. Your
patience and guidance through earlier drafts sfwiark helped make this better.

Thanks to the rest of my committee: Dr. Hlynka, Robti, Dr. Wu. Your suggestions
from when we met earlier provided ideas which helpe improve this work.

Thank you also to Dr. Katchabaw, for joining my cuitiee.
Very special thanks go to my friends. | would navé been able to complete this journey
without your support and kind words. Thanks topgkeple who inspired me by showing

that some teams just performed better than otkees) though the level of talent would
have suggested otherwise.

Vi

Table of Contents

Author’s Declaration of Originality

Abstract

\Y
Dedication v
Acknowledgements Vi
List of Tables IX
List of Figures X
Chapter 1: Introduction 1
The importance of games 1
Learning in games 1
Dynamic scripting 2
Problem topic 3
Thesis plan 4
Chapter 2: Background 6
Al in Computer Games 6
Evolutionary Algorithms 6
Bayesian Networks 7
Multi-agent systems 7
Balance in Games 8
Dynamic scripting in depth 9
Algorithm 1: Generating scripts for dynamic sciygfi 10
Algorithm 2: Weight Adjustment 12
Chapter 3: Experimental Design 16
NeverWinter Nights (NWN) overview 16
Characters in NWN 16
Roles and Abstraction 19
Experimental Design 22
Recreating the Arena 24
Use Dynamic Scripting in different situations 25
Find correlations between effective strategiesparticipating agents 26
Create new teams, and synthesize starting strategie 27
Verify strategies in the Arena 28
Chapter 4: Results 30
Discussion 45
Chapter 5: Conclusions, Future Work, and Limitatien 50

Vil

Appendix A: Rulebase

52

Appendix B: Synthesis of Starting Rulebases 55
Appendix C: Results 57
Text-only version 57
Wizard from FFCW v FFCW 57
Weights after 10 fights: 57
Weights after 50 fights: 58
Weights after 100 fights: 59
Weights after 250 fights: 60
Weights after 500 fights: 61
Weights after 750 fights: 62
Weights after 1000 fights: 63
Cleric from FFCW v FFCW 65
Weights after 10 fights: 65
Weights after 50 fights: 66
Weights after 100 fights: 67
Weights after 250 fights: 68
Weights after 500 fights: 69
Weights after 750 fights: 70
Weights after 1000 fights: 71
Appendix D: Results from NWN 73
Appendix E: Code Samples from NWN 74
Code Sample 1: 74
Code Sample 2: 77
Code Sample 3: 78
Code Sample 4: 81
Code Sample 5: 84
Appendix F: Wizard and Sorcerer spells 86
Appendix G: Bayesian Networks in Games 87
Introduction 87
Bayesian Networks 88
Using Bayesian Networks to Reconstruct the Envirenim 88
Difficulties with this approach 90
Using a Bayesian Network to model an agent’s belgef 91
Controlling Agents with Bayesian Networks 93
Implementation 94
Future Work 97
Conclusions 97
References 99
Vita Auctoris 107

viii

List of Tables

Table 1: GAME gENIEScoeeeeeeiiiiiii e s e e e e e e e e e e e e e e eeeeeeesrnnnnneeessssnnnnn s 6
Table 2: Example weights for spell PICKING. .. caaeeeieiiiiiiiiiiiee e 11
Table 3: White weights before normalization................ccoovviviiiiiiiciciicc e, 12
Table 4: White weights after normalization...............ueeiiiiiieeeee 13
Table 5: Black weights before normalization ... e, 13
Table 6: Black weights after normalizationeiiiiiiieeee 13
Table 7: Synthesis of selected starting weightd¥an FFCW v CCWW....................... 28
Table 8: Spell weights for Wizard in FFCW V FFCW e cooviiiiiiiiiiiieceeevie e 31.
Table 9: Spell weights for Cleric in FFCW V FFCW....ccoooiiiiieiee e 34
Table 10: Spell weights for Wizard in FFFW v FFFW ..., 38.
Table 11: Selected resultant weights of the "lag8t spell............ccoovrivveiiinnn. 42
Table 12: Results from FFCW vV FFCW 42
Table 13: Results from FFFW V FFFWuccceeiiiiiiieceeeeeeeeeee e 43
Table 14: Results from CCWW V FFCW ... 43
Table 15: Results from FFFW v FFFW compared to FFFEFS ..., 45
Table 16: Synthesis of starting weights for W irCWFv CCWWccoovviiiieeveiininnnn. 56
Table 17: Results from CCWW V FFCWcooiiiieiiiiiiiiiieiieeeeeeeeee e 73
Table 18: Comparison of Wizard and Sorcerer spells..............iiiiiiiiinnnniiinnnnn. 86

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:

List of Figures
Outline of updating script weights fro8pf03]

Rock-Paper-Scissors dynamic

One possible Fighter in NWN

17

A slightly different Fighter in NWN

17

A comparison of the two Fighters

19

A Rogue in NWN, and relative strengths

21

A Wizard in NWN, and relative strengths

21

A Cleric in NWN, and relative strengths

22

Wizard spell weights after 50 fights iRGW v FFCW

Wizard spell weights after 250 fightd=iCW v FFCW

Wizard spell weights after 1000 figm$-FCW v FFCW
Selected weights for W Spells (FFCW CW#H

Cleric spell weights after 50 fightsHRCW v FFCW

32
32
33
33
35

Cleric spell weights after 250 fightsHRCW v FFCW

35

Cleric spell weights after 1000 fights5FCW v FFCW

36

Selected weights for C Spells (FFCW CWHH

Wizard spell weights after 50 fights=iRFW v FFFW

37
39

Wizard spell weights after 250 fightd=iafFW v FFFW

Spell weights after 1000 fights in FFNWFFW

40
40

Selected weights for W spells (FFFW ¥¥%F

41

A sample Bayesian Network

Probabilities used for "Fire" node iguiie 21

89
89

The probabilities the server uses

92

The agent’s initial beliefs

92

The agent’s updated beliefs

93

A FSM to control a guard

94

Initial terrain

95

Increased plant growth

96

Less favourable conditions

96

Chapter 1: Introduction

The importance of games

Games are a good test-bed for artificial intelligeeifAl) research, since they can be
challenging, but easy to formalize. This make®gagible to measure how well new Al
methods are working, and to demonstrate that bebathat is generally thought to
require intelligence is possible without puttingran lives or property at risk. Recently,
inexpensive yet powerful computer hardware has nitguessible to simulate complex
physical environments, resulting in an explosiothefvideo game industry [Mii06].
Computer games provide an environment for contiratahdy advancement and a series
of increasingly difficult challenges [LaiO0]. Nonhly are video games an important test-
bed for Al, but advances in video games help iro#reas also. “Video games are
particularly important in this regard, becauseddition to their very realistic visual
images and great sound, they are also highly ictigeaand increasingly collaborative,
and thus a good launch pad for thinking about hewpte should best interact with all
kinds of computer applications as well as with eattter in the future” [Fri07]. Although
this research can directly benefit the Al in vidgones, advances in machine learning
and other Al techniques can have benefits in adheas as well.

Learning in games

“One of the main challenges for Al is to createlingent agents that adapt, i.e. change
their behaviour based on interactions with the mmment, becoming more proficient in
their tasks over time, and adapting to new situatias they occur.” [Sta06]

The following from [Sta05] states some of the prtips video games have that challenge
traditional reinforcement learning (RL) techniques.

1. Large state/action space. Since games usually several different types of objects and
characters, and many different possible actiorgssthate/action space that RL must explore
is high-dimensional. Not only does this pose thgalproblem of encoding a high
dimensional space (Sutton and Barto 1998), butrgaktime game there is the additional
challenge of checking the value of every possibt®a on every game tick for every agent
in the game.

2. Diverse behaviors. Agents learning simultangosisbuld not all converge to the same
behavior because a homogeneous population wouleé thekgame boring. Yet since RL
techniques are based on convergence guarantee® arad explicitly maintain diversity,
such an outcome is likely.

3. Consistent individual behaviors. RL depends arasionally taking a random action in
order to explore new behaviors. While this strategyks well in offline learning, players
do not want to see an individual agent periodicalbking inexplicable and idiosyncratic
moves relative to its usual behavior.

4. Fast adaptation. Players do not want to waitdfar agents to adapt. Yet a complex
state/action representation can take a long tinkeatm. On the other hand, a simple
representation would limit the ability to learn bagticated behaviors. Thus, choosing the
right representation is difficult.

5. Memory of past states. If agents remember pasits, they can react more convincingly
to the present situation. However, such memoryireglkeeping track of more than the
current state, ruling out traditional Markovian ads.

Machine learning is important in games, since it abow them to be more interesting

and realistic [Sta05]. Many games would benefitrfioaving characters that adapt to new
situations, as it would likely give the illusionattthe characters understand what they are
doing. Lately many games have improved visuallgating very realistic environments,
but the Al controlling the characters have not ioyad as much. “A game’s top-notch
graphics and sound manage to keep up a susperisigbelief quite well. However, the
behaviours of a character in a game are usuabyafferior quality. It is all too clear

that the characters are lifeless, mindless drooesaled by a computer with little
knowledge.” [Spr05]

At one point, all computer controlled agents weaedhcoded, which meant that the game
Al was implemented in the source code of the gdewdfi Therefore, a change regarding
the game Al required a re-compilation of the gatreelD8]. Since then the dominant
approach to programming game Al has been scripsinge they are easy to implement,
interpret, and modify. Scripts are basically tebesfencoding the behaviour of game
agents with if-then rules. Some modern games eageuhe players to change and add
content through the use of script editors and dib@s. [Szi09] lists some disadvantages
of scripts: They are labour-intensive, since thayehto be reasonably complex to be used
in a complex game environment, which causes thelpe time-consuming to implement
by hand, as they must be tested in many differiuritsons. Because of their complexity,
they are likely to contain undetected weaknessasctm be exploited. They are
predictable, and human players quickly recognizeepas in behaviours generated by
scripts. Finally, since they are static, they arahle to adapt to a human player’s style.

Spronk et al. [Spr06] investigated a novel gaméeAining technique called ‘dynamic
scripting’ (explained below). They also performeliterature survey and communication
with game developers to come up with computatianal functional requirements for
adaptive game Al to be applicable in practice: 8pé&dfectiveness, Robustness,
Efficiency, Clarity, Variety, Consistency, and Sataility. Dynamic scripting is a
reinforcement learning technique that learns effeggame Al scripts. For dynamic
scripting to work, the game Al needs to be avaglablthe form of scripts. This is the de-
facto standard in commercial computer games [LadQ8H08] also states dynamic
scripting “can only build scripts as good as thdartying rules. A bunch of bad rules
won’t magically combine into a good tactic just @ese they are put together by a
learning procedure.”

Dynamic scripting

[SprO6] uses the Neverwinter Nights (NWN, discussedle in Chapter 3) environment

to combine scripting with a reinforcement learnprgcess. This dynamic scripting
maintains several rule databases, one for each agen A new script to control the
behaviour of an agent is created from these rulgbdaes whenever an agent is
generated. This script has a number of rules flwardatabase, each one having a weight.
There is a linear relationship between the proligtalrule is selected and its weight.
After each fight the weights in the database adatgd, with rules that lead to success

getting increased. Over time, behaviours emerga fie characters that are more
effective.

Op}mem N - 1_1aer "
party i party

seriptad

_:) geneTate |
seript Generated control |

Bulebase for script for
computer- COmputeT-
controlled controlled

opponent A oppoment &

update weights by encounter results |

N Generated
Eulebasze for script for
computer- Ccompuier-
controlled controlled
opponent B opponent B
-, _ﬂ-f'/ s __/"'/-

Figure 1: Outline of updating script weights from [Spr03]
[Spr03] states “because of their complexity, Aligtsr are likely to contain weaknesses,
which can be exploited by human players to eagfeat supposedly tough opponents”,
and “because they are static, scripts cannot ddfalunforeseen tactics employed by the
human player and cannot scale the difficulty lexdiibited by the game Al to cater to
both novice and experienced human players.” Thatupgl of weights and having
successful characters more likely to be includefitare rounds is similar to the updating
of weights in neural networks and successful offgpbeing chosen more often.

One anecdote praising the effectiveness of this bfgearning comes from [Spr09]:

“BioWare has changed the Al in NeverWinter Nightmdicantly between
versions 1.29 and 1.31... What is kind of funny mtttme strategy now employed
by the opponents is very similar to the strate@y ttynamic scripting often

learned when pitted against the earlier Al. | finstriking that dynamic scripting
managed to discover in half an hour somethingBinaVare only added to the
game after it had been out for more than a yeahaddeen patched over a dozen
times.”

In Chapter 2, more information is provided abouttttynamic scripting works for an
individual agent.

Problem topic

Although the characters learning dynamic scriptiag learn effective rule orderings to
defeat a certain opponent, the strategies the cleasdearn are less effective against
different opponents. [Lad08] states “a script thatked well in one case may perform
very poor in another one”. Dynamic scripting hasrbshown to perform well for
individual agents against specific opponents, bdbés not accommodate changes in

opponents or teammates into account. While perfogmesearch for [Pril0], it was
observed that the rules did not seem to take tperggmt into consideration when
deciding what action to take. For example, onecgife rule is to cast a defensive spell
like “Globe of Invulnerability” at the beginning abmbat. The “Globe of

Invulnerability” spell makes the spellcaster immuoeertain spells cast at them by other
spellcasters. However, it was also noticed thatnaghé against a team that contaimed
spellcasters, the defensive spell was cast anyvmysis instance, casting this spell was
a complete waste since it could offer no benefit bad an opportunity cost as it
prevented the spellcaster from casting an offensped! that might have helped their
team in combat. This observation leads to the Wolg question:

Can dynamic scripting use information about teanesiand opposing agents to create a
better starting point for the script weights whiohurn can be used to learn an effective
rule ordering more quickly?

Dynamic scripting certainly provides an effectivayo learn strategies, but the
strategies learned become less effective whengherents change. Spronck’s work with
dynamic scripting was effective, but it does ndéetéghe other agents participating in the
fight into account when determining the best aditmtake. [SprO4] notes “experimental
evaluations indicated that, occasionally, the timreeded for dynamic scripting to generate
effective opponents becomes unacceptably long.”

Creating better starting points should shortemilmaber of iterations dynamic scripting
needs to go through to create an effective stra{@npn04] uses different rulebases for
different stages in a real-time strategy (RTS) gaene shows that taking context into
account can lead to more-effective results. [Lad@&{es that different agent classes have
their own rulebases since they can have differetnbr@s available to them, showing that
the effective rule orderings for one class do ngily similar rule orderings for other
classes. In this research we will explore havinggent use a different rulebase
depending on the other agents in the area, spaltyfibe opponents it will face and the
teammates it has. This research supports to tlenviolg thesis:

Taking other agents into consideration will allowiadividual agent using dynamic
scripting to perform better than current scriptimgplementations.

The optimal behaviour of an agent in a combat 8daoawill differ depending on the
teammates and opponents that are participatingaincombat. The following chapters in
this dissertation will demonstrate how the perfangeof dynamic scripting can be
improved by taking the other agents into account.

Thesis plan

The rest of this thesis will cover the followingtlie. In Chapter 2 we provide more
background and review dynamic scripting and gantenica in detail. In Chapter 3 we
discuss the experimental outline after giving aplaxation of the environment. In
Chapter 4 we provide the results of the experimetish indicate that agents perform
better with the new starting points, along with gasiscussion. Finally in Chapter 5 we

conclude that the performance of dynamic scripisnrgnhanced by this process, and
discuss how this research can be used in praelimeg with future work. By the end of
this dissertation we will have demonstrated thatgiknowledge from teammates and
other opponents will significantly improve the merhance of dynamic scripting, that
using roles to classify the agents can effectivetjuce otherwise impractically large
search spaces into manageable sizes, and the pafadstermining weights is robust,
and is not as sensitive to errors as hand-pickimgt@ants.

Chapter 2: Background

In this chapter we give an overview of select tefic provide the necessary background
required to understand this dissertation. It startls an overview of Al used in computer
games, followed by a description of some learniggrithms. A summary of selected
multi-agent-systems research highlights relevgpictthat emerge when teams of
agents, as opposed to just groups of individuatskwogether to accomplish a task. The
issue of balance in games is discussed, and tleerhtpter ends with an explanation of
dynamic scripting along with a walkthrough of araewle to show how dynamic
scripting updates weights in a script and changeatitions an agent will take.

Al in Computer Games

Computer games have been around for over 50 yaadshe field of game artificial
intelligence has existed “since the dawn of vidamgs in the 1970s” [Tou02]
Games can be classified into many categories, canones described in the table below.

Category Description Role of Al

Action Player uses mostly his or her reflexesGame Al controls individual
to win. agents

Adventure Player follows a path, solving puzzledlone — characters react in pre-
or quests to win. defined ways

Puzzle Players to solve puzzles. None

Role-Playing Player assumes the role of an in-gan@ame Al controls individual
character, and solves quests. agents

Simulation Players interact with a simulation. Gahmeontrols the

simulation

Strategy Player uses tactical skills to guide | Game Al controls lots of

agents to victory. agents

Table 1: Game genres

“Complex game Al is encountered mainly in role-pf@ygames and strategy games”
[Spr05]. In the past decade there have been gawetopers and game researchers tended
to live in their own communities. Recently that l@en improving, and there have been
conferences and tracks devoted to Game Al. Manyristi@am” Al techniques have

found their way into games. The following sectiougline some of these techniques.

Evolutionary Algorithms

Evolutionary algorithms are population-based optation algorithms that mimic the
process of natural evolution. Genetic algorithmgeametic programming are the most
popular forms of evolutionary algorithms. Neuratvmarks or artificial neural networks
(ANNSs) were partially inspired by biological neuratworks. These ANNs were first
discussed in [McC43]. Although they are modellg@rabiological neural networks,
ANNSs do not model all of the complexities of biologl neural systems. For example, in
an ANN, the individual output of a neuron is a $#engonstant value, whereas in a
biological system, the output of a neuron is a demperies of spikes over time.

Evolutionary algorithms can be used to update teights and structure of neural
networks, through the use of a fitness functiorol&vonary algorithms use parents to
generate successors through crossovers and mutdtiom crossover, two parents are
used and partial information is taken from eaclepgrand combined to form a new
ANN. In a mutation, one or more nodes are changedsingle network to form a new
ANN.

Individual agents learning strategies have beenapie in [Sta02], [Sta06], where neural
networks were used in a reinforcement learning garhe machine learning game
discussed in these papers requires the playet tgpsseenarios where agents can learn
the desired concepts in real time. The NeuroEvatudif Augmenting Topologies

(NEAT) is an algorithm for learning that adjustdiothe weights and the structure of
ANNSs, and was introduced in [Sta02]. NERO (Neur@ling Robotic Operatives) is a
game that uses an evolutionary algorithm usingnads function based on the player’s
input to train agents to perform tasks. The timakes the agents to learn how to perform
the tasks depends on how the player sets out dineithg tasks. An artificial neural
network trained on a single, isolated very diffidialsk is unlikely to learn it well [Car97].
The default agents that come with NERO have serigpmghere opponents are, but those
sensors do not distinguish between different oppotypes. This would prevent it from
learning to use different tactics based on the oppts it is facing. This problem could be
remedied by adding additional sensors, but thatadvimerease the time it takes for the
neural network to learn each task.

Bayesian Networks

A Bayesian Network is a data structure that candsel to represent dependencies among
variables and to give a concise specification jofiret probability distribution. A Bayesian
Network is a directed acyclic graph with the valeéstrepresented as nodes in the graph,
with an edge between a parent node and a child ihtiie parent node directly influences
the child node. It is usually easy for a domainezkpo decide what influences exist in the
domain. A Bayesian Network representation can talieh less space to specify than a
joint probability distribution, and can also beieaso represent. A good introduction to
Bayesian networks can be found in [Cha91]. A DyraBayesian Network is a Bayesian
Network that represents a temporal probability nhodee example of a how a Bayesian
Network can be used in a game is explained in AQpeB.

Multi-agent systems

Multi-agent systems focus on how intelligent bebavican naturally arise from the
interaction between multiple agents that may caatpesr compete. The experiments run
in [Tim07] focus mainly on the interactions betwesgents that compete. The
experiments described in this paper deal with bgtles of interactions-agents
cooperating with their teammates and competingnatjiihe opposing team. Flocking
algorithms are an artificial life subcategory whefeike flocks result from coordinated
movements of multiple cooperating Al agents.

[Daw02] states "anytime a group is moving or wogkiagether it is expected to do so in
an orderly, intelligent fashion". [Hei08] discuss®sv static formations of agents are not

capable of adapting effectively to opponent tactegl demonstrate how formations of
agents can be formed dynamically to deal with chrapgircumstances. [Fal03] also
deals with changing formations in games, and sthtassystems that dynamically change
their strategy are sometimes criticized for beislgw to learn".

There has also been research done in agents foteantgs amongst themselves, either by
trust and reputation [Huy06], [Bar07], [Smi09], opeerating to accomplish tasks that the
agents cannot perform themselves[Kra03], and tehatsvork together to accomplish
goals based on joint intentions [Jen95], [Tam97].

[Jen95] distinguishes between a group of agentstwinidependently have a goal which
just happens to be the same and a group of agénth wuly share a common goal. This
distinction is important because the two relatigpsimply different consequences with
interaction: the former gives rise to competitibresources are scarce, whereas the latter
result in cooperation and coordination.

One domain where agents perform together is raimtes. Bowling et al. [Bow04]
noticed that “most robot soccer approaches invsingle, static, monolithic team
strategies” and “there have been examples of segyrsaperior teams being defeated by
unexpected opponent play”. Although robot soccelifferent than teams fighting in a
game, there are many similarities. In both caserethare well-defined goals that need to
be achieved in an adversarial setting by teamdidnag multiple members. The
environments are dynamic and unpredictable, anddd¢hat can coordinate plans among
several agents and adapt to changes often hawtvantage.

Many machine learning techniques involve the usa fithess function to evaluate
performance. A fitness function provides a meastfiteow well a solution is to achieving
its goals. [Lad08] mentions that in many gamedithess functions “comes down to
doing as much damage as possible on enemy agei¢saivthe same time trying to
avoid as much damage as feasible. Achieving thas iganore difficult than it sounds,
but at least makes the design of a fitness funstiunte straight forward.”

Balance in Games

The purpose of games is to “provide entertainmphdfa07] and be enjoyed. “Game Al

is all about fun...You have a customer who paid $0/6ur game and he or she expects
to be entertained.” [Tou02]. Adversarial type garnesome less enjoyable if one player
always wins or loses so for this reason, gametotinycorporate balance, so one type of
agent does not dominate over all others.

Consider the rock-paper-scissors game. In this gantvo players, each player chooses
one of three objects, and the result is eithee &ftthey both pick the same object) or a
win for one of the players otherwise (rock crusbgssors, scissors cut paper, paper
covers rock). Similar dynamics exist in many comeredrgames. In Microsoft’'s “Age of
Mythology”, infantry do additional damage to cayalcavalry do additional damage to
archers, and archers do additional damage to nyfant

Figure 2: Rock-Paper-Scissors dynamic

If one of the objects (rock, for example) were o against paper as well as scissors,
then a person could guarantee not losing by alwasng rock. That would make the
game unbalanced, and most people would find sw&iee to not be furit is generally
assumed that a balanced game has a higher entegtatinalue than one that is too easy
or too hard [Lan10].

If a game is too easy or too hard people loseesteDifferent approaches have been
used in the past to allow a player to change tfiedlty of a game. Some games have
cheat-codes that a player can use to help ougyffind the game too difficult, or they
have static difficulty levels (i.e.: easy, normahd hard) that the player can pick from at
the beginning of a game. In recent years, resdaslgone into varying the difficulty
level of a game dynamically to keep the game isterg for the player. “Auto-dynamic
difficulty refers to the ability of a game to autatitally adapt the difficulty level of
gameplay to match the skills and tolerances obgepl” [Bai05]

The rock-paper-scissors example is an extremelplsione, but serves as a good
illustration to explain balance. More discussioowtbalance and the rock-paper-scissors
game can be found in [Ada07], as well as a reas@vaid dominant strategies (a
dominant strategy refers to a strategy that religbbduces the best outcome a player
may achieve, no matter what the opponent does).

Dynamic scripting in depth

From a theoretical point of view, dynamic scriptimglongs to the family of
reinforcement learning methods (as it learns froaluative feedback), but its formalism
(assigning weights/credits to individual rulesaiso closely connected to learning
classifier systems [Szi09]. Dynamic scripting pa®s computer-controlled agents with
the ability to correct mistakes and respond to sgumations. It uses rules from knowledge
bases to create game scripts, along with a mecahanisrder the rules selected for the
scripts. The following paragraph from [Tim07] deberhow the weights get updated

After an encounter (i.e., a fight) between the haiplayer and an opponent,
the opponent’s knowledge base adapts by changengute-weight values in
accordance with the success or failure rate ofules that were activated
during the encounter (i.e., rules that occurreth@opponent’s script). The
new rule weight value is calculated\&stAW, whereW s the original rule
weight value. The weight adjustmexiVis expressed by the following
formula:

- P {F <b}

W= e
_— >
Ruax 7 (F 20}

Rmax andPrax are the maximum reward and maximum penalty

respectivelyp & <0, 1> is the break-even value, akde [0, 1] is the
opponent’s fitness. The fitness is a relative meaesfithe opponent’s
success, which is high for good results (victoreas) low for bad results
(defeats).

A simple example will help demonstrate how the \w&sgare updated. For this example,
two wizards will fight each other, and they willadbahave 10 spells to pick from. To keep
things separate, we will call one White and theep®lack. Each wizard will start with

50 hit points, and the fitness will be calculatechgpercentage of the remaining hit points.
The first step in the example is to pick the spislég will be used.

Algorithm 1: Generating scripts for dynamic scripti ng

(adapted from [Spr05])
rulesis an array with the possible actions and assetiaeights (actions that lead
to successful outcomes have higher weights)
scriptsize is the amount of rules to be placed in the script
maxtries to the maximum amount of tries to add a rule ®dbript

setsumweights to the sum of the weights of all of thaes
settriesto O

For every rule that needs to be added to the script
pick a random number between O aaawei ghts

go through each rule and add the weights uatilget to a rule that
increases the sum to a number greater than or tmjtle random one

if that rule hasn't been added to the scripthyat add it
increasdries by one

if tries >=maxtries then stop
end for

10

In our examplescriptsize is 3,maxtries will be 10, andules will be as described in the
following table, along with the initial weights.

Spell Description Weight| Percentage
Mage Armor Makes the mage harder to hit physicall§0 0-9.99
Magic Missile Damages opponent 10-25 hp 10 10-19.99
Melf's Acid Arrow | Damages opponent 2-8 hp, plusraxt | 10 20-29.99
damage subsequent rounds
Fireball Damages opponents 10-60 hp 10 30-39.99
Haste Doubles amount of physical attacks 10 4099.9
Stoneskin Absorbs physical damage 10 50-59.99
Ice Storm Damages opponents 5-30 hp 10 60-69.99
Chain Lightning Damages opponent 15-90 hp 10 70979.
Spell Mantle Absorbs damage from enemy spells 10 -83809
Horrid Wilting Damages opponents 15-90 hp 10 9(®99.

Table 2: Example weights for spell picking

Creating White’s script for round 1:

Sumweights = 100

Tries=0

White picks ‘random’ number 38 for the first spélireball is added to the script.
White picks ‘random’ number 73 for the second spg@liain Lightning is added to the
script.

White picks ‘random’ number 30 for the third spélireball is already in the script, so
just incrementries.

White picks ‘random’ number 64 for the third spédle Storm is added to the script.
There are 3 spells, so stop.

Creating Black’s script for round 1:

Sumweights = 100

Tries=0

Black picks ‘random’ number 3 for the first spéllage Armor is added to the script.
Black picks ‘random’ number 41 for the second spgddiste is added to the script.
Black picks ‘random’ number 95 for the third spélbrrid Wilting is added to the script.
There are 3 spells, so stop.

Combat now happens:

In the first round of combat, White casts FirebBlack is damaged by 13 hit points (37
remain). Black casts Mage Armor, which raises leifedse against physical attacks.

In the second round of combat, White casts Chaghthing. Black is damaged by 42
points (killing him). Black casts Haste, which wdulave increased the attack speed.

Combat is now over for this trial. The fitness Yhite’s script is 1 (White has all of his

initial hit points). The weights for the spells am@w adjusted, as described by the
algorithm below:

11

Algorithm 2: Weight Adjustment

(adapted from [Spr05])

adjustment is the amount a spell’s weight will be changedeldasn the last experiment. It
can be positive or negative, depending on whethapbthe last experiment was a win or
a loss. The magnitude of thdjustment depends on how decisive the win or loss was. A
close win will result in a sma#djustment, while a resounding win will result in a large
adjustment.

minweight is the smallest value we want a spell’'s weighidaset to

maxweight is the largest value we want a spell’s weighteasbt to

setadjustment to an amount based on the fitness results ofasteekperiment

For every rule in the script
adjust the weight by thexjustment

if the weight is belovminweight then set it tominweight

if the weight is aboveaxweight then set it tomaxweight
end for

normalize the weights in the rulebase.

The last step keeps the sum of all the weightsrulebase at 1. If a team won, the spells
it used will have their weights increased. Aftermalization, all the weights would be
lowered, resulting in the weights that were inceebstill having higher weights than
before the experiment, and the weights that weteised lowered, so they will have a
lower chance of being included in subsequent erparis. The adjustment maximum is
10% for the first spell, which is multiplied by 0@r subsequent rounds. It has been
found that the earliest actions have a greatectedfiie whether the team wins or loses. The
0.7 was determined to be effective during initigb@riments.

In our example, the maximum fitness was attainedhe maximum adjustments will
occur. The weights for White before normalizatimewur below:

Spell Description Weight| Percentage
Mage Armor Makes the mage harder to hit physicall§0 N/A
Magic Missile Damages opponent 10-25 hp 10 N/A
Melf's Acid Arrow | Damages opponent 2-8 hp, plusraxt | 10 N/A
damage subsequent rounds
Fireball Damages opponents 10-60 hp 20 N/A
Haste Doubles amount of physical attacks 10 N/A
Stoneskin Absorbs physical damage 10 N/A
Ice Storm Damages opponents 5-30 hp 10 N/A
Chain Lightning Damages opponent 15-90 hp 17 N/A
Spell Mantle Absorbs damage from enemy spells 10 A N/
Horrid Wilting Damages opponents 15-90 hp 10 N/A

Table 3: White weights before normalization

12

After normalization, the following weights represdme weights for White’s spells.

Spell Description Weight| Percentage
Mage Armor Makes the mage harder to hit physicall$.55 0-8.54
Magic Missile Damages opponent 10-25 hp 8.55 8.669
Melf's Acid Arrow | Damages opponent 2-8 hp, plusraxt | 8.55 17.10-25.64
damage subsequent rounds
Fireball Damages opponents 10-60 hp 17.09 25.6P442.
Haste Doubles amount of physical attacks 8.55 421738
Stoneskin Absorbs physical damage 8.55 51.29-50.83
Ice Storm Damages opponents 5-30 hp 8.55 59.8468.3
Chain Lightning Damages opponent 15-90 hp 14583 3%82.91
Spell Mantle Absorbs damage from enemy spells 8.55 82.92-91.45
Horrid Wilting Damages opponents 15-90 hp 8.55 6048.99

Table 4: White weights after normalization
The next time spells are picked, the ones that weceessful will have a greater chance
of being included in future rounds. The originaligies for Black were the same for the
original ones for White. After the fight, the sgethat Black used will lowered, and the
pre-normalized weights are shown below (assumimaveight of 3).

Spell Description Weight| Percentage
Mage Armor Makes the mage harder to hit physically3 N/A
Magic Missile Damages opponent 10-25 hp 10 N/A
Melf's Acid Arrow | Damages opponent 2-8 hp, plusraxt | 10 N/A
damage subsequent rounds
Fireball Damages opponents 10-60 hp 10 N/A
Haste Doubles amount of physical attacks | 3 N/A
Stoneskin Absorbs physical damage 10 N/A
Ice Storm Damages opponents 5-30 hp 10 N/A
Chain Lightning Damages opponent 15-90 hp 10 N/A
Spell Mantle Absorbs damage from enemy spells 10 A N/
Horrid Wilting Damages opponents 15-90 hp 10 N/A
Table 5: Black weights before normalization
After normalization, the following weights represéme weights for Black’s spells.
Spell Description Weight| Percentage
Mage Armor Makes the mage harder to hit physicallg.49 0-3.48
Magic Missile Damages opponent 10-25 hp 11.63 3597
Melf's Acid Arrow | Damages opponent 2-8 hp, plusraxt | 11.63 15.18-26.74
damage subsequent rounds
Fireball Damages opponents 10-60 hp 11.63 26.75738.
Haste Doubles amount of physical attacks 3.49 381386
Stoneskin Absorbs physical damage 11.63 41.87-53.49
Ice Storm Damages opponents 5-30 hp 11.683 53.59(265.
Chain Lightning Damages opponent 15-90 hp 11.63 13%6.74
Spell Mantle Absorbs damage from enemy spells 11.6376.75-88.37
Horrid Wilting Damages opponents 15-90 hp 11.63 388&9.99

Table 6: Black weights after normalization

13

The next time spells are picked, the ones that wetsuccessful will have a lesser
chance of being included in future rounds, andratpells are more likely to be tried.

Dynamic scripting starts exploiting knowledge atiefiew trials and explores new
knowledge continuously. Dynamic scripting updatéstate-action rules through a
redistribution process, unlike Monte-Carlo learnigich updates state-action values
only after they have been executed. This may leatyhamic scripting not converging on
a solution. Non-convergence is essential for uggames, since the human player may
choose to switch tactics so the learning task naotisly changes. It can quickly respond
to a variety of behaviours, and the rule orderighgsamic scripting uses in successful
strategies can be learned automatically. [TimOpeexnents with three different rule
ordering mechanisms for dynamic scripting. Whil@aiyic scripting can learn effective
tactics, it has no built-in mechanism to improveetisity, so it tends to converge to static,
predictable scripts [Szi09].

One benefit of dynamic scripting worth highlightiisgthe fact that the scripts it creates
do not require game designers to produce complgptsto try and make agents act in
ways that appear intelligent. One example of hunmaling that produces inadequate
results can be found in [SprO5]:

“According to [Computer Role-Playing Game] traditjairagons are both
physically and mentally powerful creatures. Whilee[game] does not
require the player to fight dragons, the designestised that most players
will attempt to do so anyway. Therefore they crdatemplex game Al that
should be able to humiliate any player bold endioghittack a dragon. Soon
after the game’s release, weaknesses in the gamekldiscovered that
players could exploit to defeat any dragon in tamg, even with a weak
team. Furthermore, without exploiting game Al weadses, players could
still design superior tactics that, while unforeség the game developers,
allowed weak teams to take on dragons successfuitytrivial for a dragon
to recognise that its current behaviour is inadegjt@adeal with tactics used
by attackers that, according to its domain knowéedge no match for it.
Were the dragons controlled by adaptive game Akat of static game Al,
an answer to the superior and exploiting tactiedccbave been discovered
automatically, keeping up the challenge level efgame.”

Further explanation of static scripts producingeridr results occurs in Chapter 4.
Results.

Dynamic scripting can learn effective tactics, thase tactics are specific to the situation
being learned, which includes the teammates andragys whose actions affect the
effectiveness of the character’s actions. Charny#set teammates and opponents can
require new effective strategies to be learned.ghme can start using starting weights
that are “closer” to the weights of an effectivetgy, it will lessen the time needed to
learn an effective strategy and there will be dsance of a player encountering a
character performing actions that appear unintiigDynamic scripting is only useful in
a game where scripts are used to control agen®oEsPlaying, Action, and even

14

Strategy games could benefit from the following kvgPol10] demonstrates how
dynamic scripting can be used in a First-Persorotin@ame, and [Shal0] shows how a
companion controlled by a can learn the preferentaslayer in a non-combat scenario
(disarming traps) in a Role-Playing game.

The topics presented in this chapter will allow teader to understand the contributions
of this dissertation. Some assumptions need to tinoédfor this research to be useful.
Firstly, the game that it is being applied to netedsse scripts. This will not be an issue
in most cases, as scripts are used in most modenegy Since this research focuses on
team strategies of heterogeneous agents, a gatrentiidnas one character type or a
single character will not benefit from it. The fm¥ing chapter introduces the game used
in this study. It allows for thousands of combinas of players and millions of
combinations of teams, which makes it an ideal toothis research.

15

Chapter 3: Experimental Design

This chapter starts by providing a descriptionhef game that will be used for the
experiments that will show that using knowledgewlagent's allies and opponents will
allow better scripts to be created. It explainsdifferent character types, the large
number of possibilities a player has to choose frdmen creating a character, which
leads to an enormous amount of possible combirafmmeven a small team. It mentions
a valid abstraction in these experiments, roleschvban classify the characters based on
their abilities. This is a way of abstracting thestnrelevant details of a team allowing the
size of a game’s problem space be reduced to ageahke size. It then describes the
experiments that will be performed to support tiests.

NeverWinter Nights (NWN) overview

NWN is a Role-Playing Game (RPG) created by BioWaweportation. It is based on
rules from the Dungeons and Dragons game and hasnwdiple awards. NWN ships
with the Aurora Toolset, which gives the functiatyato create modules for the game.
The University of Alberta GAMES group created Stifigise, which uses pattern
templates that allows complex behaviours to bdyepsigrammed. The ScriptEase
project has many recent publications ([Cut08], [MdN and [Zha09] are a few). These
reasons make NWN a good tool for this research.

Characters in NWN

The NWN game allows you to make many choices wheating a character. To help
narrow down the search space, some analysis cdartgethat will limit the number of
potential characters that should be examined to foart of the team. To help understand,
we will start by examining the following two figheecreated in NWN.

16

Human, 2
Fighter (1)

|nt13“i;=_':n=_*.m_—:r::
Wisdom

Charisma

Human, Chaotic Good

Fighter (1)

Figure 4: A slightly different Fighter in NWN

—

LU E'j

17

By examining the differences between the abovedéguyou will notice the first fighter
has a higher Strength score (18, opposed to lfhéosecond fighter), which leads to a
larger Strength bonus (4, opposed to 3), resuitingrger “Attack bonus” and “Damage”
values (+5 and 1-3 +4, opposed to +4 and 1-3 #3k Makes the first fighter more
effective when it comes to melee combat. All chemecthat are created in NWN have the
same number of ‘points’ to spend raising the dédferattributes. In the above example,
the second fighter has higher Constitution and Wfisdcores than the first fighter (15
and 9, opposed to 14 and 8), but the bonusesdsetbcores in the last column are
identical, so there is no meaningful advantageHersecond fighter. There may be some
scenarios where the second fighter might be pedetbut for the purposes of the
following experiments that involve fighting in areaa, the second fighter can be
ignored.

A graphical comparison of these two fighters appéatow. To help with the analysis,
the characters are classified based on the follpabilities.

* Hit points (HP): These represent how much damagellaracter can take before
falling. Other things being equal, a character waithigh number of hit points will
outlast a character with a low number of hit pointa fight.

* Melee ability: This is a representation of how waettharacter fights physically. A
character with higher melee ability would be makell to hit an opponent with a
weapon.

* Armor class (AC): This represents how difficultgtto hit and damage the
character. A character with a high AC is diffictdtdamage because he is either
nimble and can avoid being hit, or can wear heamnoar.

* Magic resistance: A player with a higher magiastasice is more likely to avoid
most or all of the damage from an opponent’s offenspell.

» Helpful magic (healing): There are lots of spé#fiat are beneficial to the
members of a party. To help distinguish, we haveldd them into two groups.
The first type is ‘healing’, which returns HPs talaaracter that has been injured.
The second type removes a harmful effect thatriddring an ally. For example, a
character that has a high healing rating wouldidde & cast a spell that returns an
injured fighter to full health.

» Helpful magic (defensive): This group of spellsghalcharacter or team by
increasing various other abilities. These can ielmaking a character more
resistant to magic, increasing their AC so theymaoee difficult to hit, adding to
their attributes so their other skills and abiiteecome more effective.

» Offensive magic: A player with a high offensive ntagting can cast spells that
damage their opponents. For example, he mightacgigell called ‘Fire Ball’
which causes an explosion around his enemies.

» Special/non-combat: There are many abilities thanat directly related to
combat, but instead are useful to the player iemothays. For example, having the
ability to move silently (so the character mighoava fight), pick pockets (so a
character might be able to steal a key from a girstéad of needing to fight for
it), or barter (so the character can buy equiprokaaper, allowing them to

18

purchase more or better equipment than a chanadtesut that skill) would be
useful for some people to have. These skills appmant for gameplay, but due
to the experiments involving combat, these skililk mot play a role in the
outcome.

The scale for each of the axes on these radar gaptrelative, with 0 meaning no
ability in that area, and 5 meaning the best antbaglayers in that area. The fighters
have the best hit points of the characters undesideration, so they have the highest
value along that axis. Since the second fightaoisas good as the first fighter with
respect to melee ability, it has a lower rankinglaat axis. Since it has no extra abilities
to compensate, we can ignore the second fightenwrigang to form the best team.

Fighter 1 Fighter 2
hit point hit points
R R

specialnon-combat m Melee ability s pecialnon-combat i melee ability

offensive magic o — armor class offensive magic o armar class

helpful magic {defense) magicres istance helgful magic(defens e) magicres s tance

helpfil magic {hesling) helpful macic (healing:

Figure 5: A comparison of the two Fighters

Roles and Abstraction

In the NWN game, there are different races andather classes the player can choose
from, along with thousands of ways of assigningdtigbutes. The number of
combinations makes any exhaustive search of afliplesteams intractable. There are 7
different races a player can pick from, each witfetent bonuses or penalties, and 11
different character classes. Even if you only labkéethe 11 basic classes and looked at
teams of 4 characters, there would still b& bt 14641 combinations. A valid abstraction
can be used to remove detail from the representatiaking it simpler to find a solution.
One useful abstraction is to group similar charadiegether based on the roles they are
best suited for. The application of roles makeasate likely for this paper to be useful in
games like NWN with millions of possible team condtions, since a game with only a
few possible classes it might be able to deterraifiest’ strategy for every situation by
exhaustive search. Some games that ship have eelgydimited number of playable
characters that the player can choose to confrohd of the factors that influenced the
decision to ship these games was the need to thafgombinations of playable
characters, then this research may be used to ina&sier for the game makers to
include more playable characters in their games.

The concept of abstraction in games and other ctenpguience problems has been
explored by many others, including [Gil0O7] who uséstraction to reduce the
complexity of a poker game, and [Cla94] that udesdraction to create a representation
of a circuit with over 18 states so it could be verified.

19

The concept of roles is explained in [LuO5], whagents are classified by the capabilities
they can offer. To help simplify selection procesées can be used to guide search; first
the roles that appear in the best teams can bendatsl, and then best character types to
fill those roles can be found. Some character tgpesnore effective than others at
certain roles, and some can play more roles tHagrat The ‘Defender’, ‘Striker’,

‘Leader’, and ‘Controller’ roles are described 8ch09] and refer to characters in the
NWN game.

Roles can help simplify the search for the beshtess an example, a hockey coach
might not put his best six players on the ice, eslg if none of his top six players is a
goalie. The concept of a goalie simplifies the sleaince it limits the criteria for the
selection of that player to the abilities that ianportant for someone who is playing in
that position.

Characters are classified in a role based on Vhegtdre best at ‘doing’. For example, the
‘Defender’ role should be played by a character wghtough, able to take and dish out a
lot of physical damage, so the fighters descrildeal/a could easily fall into this role. By
examining the relative strengths of the team mes)bieis hoped that rule orderings
learned through dynamic scripting can be avoidesitirations where they will be less
useful. For example, it should not be the casedhaizard would cast a spell that protects
him against magic if none of the members on theosppyy team can cast offensive magic.
Also, some of the beneficial magic spells enhanceasacter’s other abilities. For
example, there is a spell called “Bull's Strengtithich makes a character stronger. This
spell will be most effective if it is used on an@aate that benefits from having a high
Strength score, like a fighter (reasons descrilbede), and not as useful if cast on a
Wizard.

Below are a few other characters created in NWHN,thair corresponding relative
abilities.

20

Human, True Neutral Rogue

hit points
5
specialnen-combat melee ability

| 2
_ Charisma % 12 | 1

AC 13 offensive magic u : armor class

HP 8/8
Unarmed
helpful magic (defense) magic resistance

helpful magic (healing)

Figure 6: A Rogue in NWN, and relative strengths

A rogue has several abilities that can aid a teatside of combat, like finding traps.
Under certain circumstances they can do well inlzatbut generally they are less
effective than a fighter due to limitations on #renour they can wear and the weapons
they can use. They also have fewer HPs than aefigand lack the ability to cast magic
spells.

Human, Lawful Neutral It
Wizard (1)
Strengt } 10| 0 hit points
specialinon-combat melee ability
offensive magic £ armar clas
elpful magic (defense) magic resistance
helpful magic (healing)

Figure 7: A Wizard in NWN, and relative strengths

21

A wizard is able to cast magic spells, and has pmveffensive spells. To balance this
they have the fewest HPs, cannot wear armour, @ngaor in melee combat.

Cleric

Human, Lawful Neutral
Cleric (1)

hit poirts

spedalnon-combat melee ability

AC q offensive magic armor class

HP 10/10

elpful magic (defense) magic resistance

|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII; E"

helpful magic (healing)

Figure 8: A Cleric in NWN, and relative strengths

A cleric can cast healing spells and other magt ihbeneficial to a party. They can also
wear good armour, and are fairly good in melee aimb

We will use roles to simplify the number of comhioas of team members. Fighters and
Rogues have similar actions to choose from in canWaards and Sorcerers can cast
the same spells, so if a spell has been found &dffbetive in a certain situation when a
Wizard is on a team, then that spell will also fieative if the team has a Sorcerer
instead. There is a large overlap in the spelldabla to a Cleric and the spells available
to a Druid and of the spells that are common th lotasses, the effective ones are
effective regardless of what character class hsisitca

Experimental Design

The purpose of these experiments is to see ifimébion about the other agents
(teammates and opponents) can be used to cre&te fod orderings faster, and to
perform better than current scripting implementatidSince the characters that can cast
spells have more options in their rulebases to shdmm, this research will focus on
their rule orderings (the fighters are effectiverbgving into combat and then attacking
with their sword until combat is finished, the nagsers have a large range of spells to
choose from, which allows more possible strategies)

We propose expanding the rulebase in dynamic sagipd have different weights
depending on the teammates and opponents the lrgnather than simply have a list of
scripts and associated weights. In most games thau&l be too many combinations of
agents to have an exhaustive list of possible teamwe use roles to keep the complexity

22

down. In our experiments, we create our team friomeet different character types: fighter
(F), cleric (C), and wizard (W). Briefly, a fightex a tough character that cannot use
magic, a cleric’s magic is mostly beneficial to team, and a wizard has offensive magic
that directly damages opponents. Should other cteartypes be used, they would be
grouped in the role that is closest to their cdfads — i.e., barbarian and monk types
could be classified as F since they do not pogsasggc and have good melee abilities
like a fighter. Experimental results will verifydhthis abstraction is effective in NWN.

At a high level, here are the steps that will béqrened:

Step 1: Recreate a simple model of the NWN aregav®iding the NWN graphical user
interface, results will be obtained faster. A tbased model of the NWN game will be
created with the relevant rules. Some assumpti@ne made when making the text-
based version. These assumptions include: Somesfieea spells damage all opponents;
Fighters cannot attack on the first turn. More agstions are listed in the next section. If
these assumptions do not hold in the NWN arertnas not mean that the results are
invalid, but only that the discovered strategyhia text-based arena is not a valid strategy
in the NWN arena. This step will allow results ®dwllected much faster than in the
actual NWN game, and will provide a complex envinemt with many character types
where the experiments that will support the theaisbe performed. It will also show that
the abstraction from an actual commercial gametéxtonly version is possible, which
will allow this research to be applicable to otbames

Step 2: Use dynamic scripting to come up with éifecrule orderings for various
scenarios (a team of magic users against oppondisut magic users, a team with a
wizard and many fighters against a team of magecs® team of magic users against a
balanced team). The results from each of theseasosnwill be saved and used to create
scripts in future steps. This step will also supploe claim that a rule ordering that
dynamic scripting creates for one character tygenet necessarily be effective for that
character in a different situation. Since otheralzes in the arena can be held constant
while one factor is changed (for example, the seammates against a different set of
opponents), any changes to the resulting scriptyr@amic scripting produces can be
attributed to the change of agents participating.

Step 3: Analyse the results and find correlatiogtsveen weights of rules and the agents
participating in combat (for example, it shoulddstermined that casting “Haste” on a
team with only wizards is less effective than eastt on a fighter, and that casting spells
that protect the user against magic are not effeetihen facing opponents without magic
users). The outcome of every battle is stochastoraling to the game rules. Even if both
teams use fixed tactics, all spell effects anddtdti damage have random factors. The
opponents’ behaviours will be determined by thgs$srEach time a decision needs to be
made, the rules are checked in order and theafiglicable rule will be executed. This
will help determine which rules are simply effeetivn most situations and those that are
most effective only in certain instances. Determgnihe situations where certain spells
are effective is necessary to support the clairhgbme spells are effective against
certain opponents or when certain teammates asemt.el he advantage that will arise

23

from this thesis will come from finding the speitat are most effective in certain
situations and incorporating them in the scriptstifimse situations.

Step 4: Create new random teams and opponentsXpaniments with them using rules
that should be effective against them based onethdts of step 3. Compare the results of
the teams with the static strategies delivered thiéhNWN game to those with strategies
created from the results of the dynamic scriptirgegiments. This step will verify that
scripts created with dynamic scripting can be n&ffective than those hand-created by
experts, and taking the agents into considerationcceate a better starting point.

Step 5: Verify the results by implementing the gicim the NWN arena, and comparing
them to the default learning strategies. If thepssrcreated by the above techniques can
find an effective strategy against an opponent maiekly than by the dynamic scripting
algorithm starting with the static scripts shippgth the game, we will be able to say that
dynamic scripting can create an effective rule ordemore quickly by using information
about opposing agents. This step will also showttha research can be applied to
improve a commercial game.

The steps are now described in more detail:

Recreating the Arena

As noted in [Tim06], by not using a graphical usgerface we can simulate a large
number of combats. Similar speed increases werafouthese experiments by using a
text-based simulation rather than using the adi¥dN game. While creating the text-
based simulation, some simplifying assumptions wesde based on observations
gathering information for [Pril0]. First observatisince the arena is small, area-effect
spells almost always affected all of the enemies tike text-based simulation, an area-
effect spell will hit every opponent. As there ae“obstacles” (walls, pillars, doors)
between the opponents, the rules about partialrcegee not implemented. Second
observation: when opponents had both melee (cloaeer) and ranged weapons (bows,
etc.), the melee weapons were almost exclusivedg,uend the strategies learned always
had the agents using their melee weapons insteth@iofranged weapons. For the text-
based simulation, the agents will only have meleapons. Third observation: ‘fighter’
agents (in this context, fighter refers to any €lakose primary function is to damage the
opponent by getting into melee combat rather thacdsting magic spells) would
advance towards the opposing team, and makehetogposing team in one round (a
round is the unit of combat used in NWN). If thgpoping team had ‘fighters’, they

would meet near the middle of the arena, and a’tetighters would not be able to
advance to the opponent team’s magic users uhtf gie opposing team’s fighters were
defeated. If there were no fighters on the oppotag, the fighters would be able to
make it to the opposing team’s magic users atideoé the first round. For the text-
based simulation, the fighters would not get aackton the first round (which would
represent the time it took to move into positiaryd then they would only attack the
opposing team’s fighters first, and then attackdpposing team’s magic users second. In
the event that one team had only magic users renggamd they ran out of spells, they
would move into melee combat and then attack viadir weapons. Some advanced rules

24

were not implemented — occasionally a fighter canck down an opponent after a hit,
some bonuses to hit could occur if an attacked tiaehit someone from behind, an extra
attack was allowed if someone tried to performaiaractions near an enemy. This kept
the text-only version of the arena a simplifiedresgntation of the NWN arena. In a two
dimensional world like the NWN arena, fighters abahoose different opponents to
attack if there were more than one nearby. Ingekelbased version, all attacks are
concentrated on a single enemy, which can eagilyecdifferent results.

These assumptions might make the strategies leamredlistic in some situations. The
assumption of area-effect spells hitting all oppaador example would be unrealistic if
the fighting was to occur in a large battlefieldtead of the arena. For the purposes of
these experiments, the assumptions should nott éiffecesults. Verification of the
strategies learned will occur in the last step witenfights are reproduced in the arena
with the strategies learned.

Use Dynamic Scripting in different situations

Different teams will fight, and effective strategieill be learned. This will be similar to
work described in [Spr0O5] and [TimO07]. It has attgdeen shown in [SprO6] that this
method will allow the agents of a team to learreHactive strategy against an opponent.
This step is required to collect the data needethimfollowing step, where the effective
strategies that the individual agents develop agalifferent teams will be analysed.
Optimal strategies will be learned with dynamidsiing for teams with different
amounts of fighters, clerics, and wizards, agaeatns that also have different amounts
of the above agents.

A rulebase will be initially set up and populatedlétting certain teams of agents play
against similar teams. Dynamic scripting will bedso come up with effective strategies
for the cleric and wizard classes. Dynamic scriptiill not be used for the fighter class,
as that class basically had one effective actiqretéorm: hit an opponent with its sword.
The spells for the cleric and wizard classes veltdéken from the default spell selection
that came with the characters created in the NWiNeg@ne exception will be made;
wizard spell “invisibility” will be switched for @ifferent spell of that level “web”, since
there was a documented issue with the implementafiGinvisibility” in the NWN
dynamic scripting module.

To come up with the initial weights for the rulaswell-rounded team (FFCW) will fight

a similar team for a thousand rounds five timeseAthis point, some rules with the
consistently lowest weights will be removed. Thellspthat ended up being removed
were the ones that did not have an effect on camipgtendix C contains a listing of the
spells that were removed. [Spr0O6] states thasitriperative that the majority of the rules
in the rulebase define effective, or at least $#@sagent behavior.” Rules that will not
affect combat will be removed since they have razfical value.

25

Find correlations between effective strategies and participating
agents

First, all of the strategies will be examined te #ecommon elements can be found (for
example, while watching fights in arena, it waseyled that there are certain situations
when a rule is always a good idea, or always a poer It is always a poor decision for a
character to run past enemy fighters, as thatalldw the fighters to get extra attacks
against the character, with bonuses from attackomg behind. It is always a poor
decision for a wizard to start a combat by moviloger to the enemies and attacking
with a melee weapon. A wizard can be much morect¥ie by casting an offensive spell.
It is a good decision for a cleric to heal a figlda the same team that is wounded,
regardless of the opponents being faced, as thipotentially allow the fighter to stay
on his feet longer, which will help the team winislalways a good idea to start combat
by casting a spell that improves the abilities thédam mate is using, as this will
maximize the amount of time the benefit will besfifect.

Since different scripts should be used in diffeightations, it is necessary to determine
what rules are more effective in the differentaitons. The goal of this research is to see
if the information about other agents can be usextdate better starting points for
dynamic scripting. There are two groups of agemis meed to be examined when
determining a strategy, an agent’s opponents arajant’s teammates.

Opponents

The teams will be categorized by their relativersgths and weaknesses (for example, we
may classify a team as having low melee abilig@grage AC, .and high offensive

magic ability, or having high melee abilities, higk,... and no offensive magic

abilities). An agent can come up with a strate@y th effective against one set of
opponents but not effective against another. Thaawo of a wizard casting a spell that
protects him from magic is effective against oppasé¢hat have offensive magic
capabilities, but not against opponents that haveffensive magic capabilities.

Teammates

The teammates of an agent will also be classifeedr@aing to strengths and weaknesses.
The most effective strategy a player can take negpedd on the abilities of allies. A
strategy for increasing the melee abilities ofesllon a team will be more effective if
there are teammates with high melee abilities torbeith. The scenario of a wizard
casting a spell that increases the speed of a tatanmeffective when there is a
teammate who is a fighter, but much less effeatitien all of the teammates are also
wizards.

Using roles and the three character types aboveawereate a partition that groups all
teams into one of seven sets depending on whethmata has fighters (hasF), clerics
(hasC), and wizards (hasW). An eighth partition rehadl 3 functions are false might
exist in a game — if the player was facing a marfsteinstance, but for our purposes we
will ignore this case. The abstraction of usingegols necessary to reduce the problem
space into a manageable size.

26

In our experiments our fights will contain teamdair agents verses four agents. A team
of four fighters (FFFF) would be the only team adl in the hasF=Y, hasC=N, hasW=N
set, whereas there are three teams in the hasksCAN, hasw=Y set (FFFW, FFWW,
FWWW). Similar classifications can be made for tipponent teams: oHasF would be Y
if the opponent team had fighters, and if an agexs fighting a team of FFWW, then
oHasF and oHasW would be Y and oHasC would be N.

If an action is beneficial in a certain situati@yardless of the teammates an agent has
(for example, casting a spell that protects it frememy magic), its weight should be
independent of the values of hasF, hasC, and h&gWarly, if an action is beneficial in
a situation regardless of the opponents (summamicrgature to help fight if there is no
fighters on your team), then it should have a Maglue in all situations of oHasF, oHasC,
and oHasW.

Create new teams, and synthesize starting strategie s

Teams that have not been used in the above stégsewireated, and starting strategies
will be created from the results in the above stdy starting strategies will be made up
of ‘common’ rules that are effective in all scenar{healing a teammate who is injured),
and of rules that have been found to be effectiv@milar situations (with similar
teammates or against similar opponents). Fightsteéh occur as usual, and we will be
able to determine the effectiveness of the newistpstrategies against the default
starting strategies. If the teams can consistestidlst with a dominant strategy using the
new starting points than with the default strategiben this will demonstrate the
usefulness of this technique.

Other teams fought each other (FFFW), and thendedrdifferent agents fought each
other (FCWW vs. FFWW, FFFW vs. FFCW, FCWW vs. CCWaA¢,). The different
teams and their weights were classified based»ofusctions hasF, hasC, hasW, oHasF,
oHasC, and oHasW. These classifications are usestitwe the large number of possible
combinations of character classes into a smallerhaun of groups to help determine the
best starting strategy.

The training process was done a total of threedifoeeach set of fights for verification
purposes. Although exact matches were not expéotethy of the weights, trends were
observed, and the top spells in any given scenaie often the same spells in other
scenarios, with slightly different weights. The ia#ions in the results between different
runs are expected as each round in combat has raadgm factors (whether or not a
fighter hits its opponent with a sword, or the amioaf damage a wizard does with an
offensive spell). This randomness also affectsire@amic scripting process, as the
weights that are updated depend on the fitnedsecdigents (whether or not the team won
or not, and how decisive the win was).

To synthesize the starting weights, the first s$efp look for matches from previous
training processes, and if no match is found toayethe weights from the nearest
neighbors. An example will help explain the procdsaining was performed with the
following test cases. The six letter code aftehdare corresponds to the hasF, hasC,

27

hasW, oHasF, oHasC, oHasW functions (in that ond&h) respect to the W in the first
group. Since the W in first case has an F and a {€amn-mates, but does not have a W,
the first letters are YYN. Since the opponent tées a member of F, C, and W, the last
letters are YYY.

1: FFCW vs. FFCW YYNYYY
2: FFFW vs. FFFW YNNYNY
3: FCWW vs. CCWW YYYNYY
4: FFWW vs. FFCC YNYYYN

Now for combat, we want to generate a startingpséor the W in the first team in

FFCW vs. CCWW. The corresponding code for this Wildde YYNNYY. As there is

no exact match, we compare this to the other cadddind that it matches 5/6 letters in
both test cases 1 and 3. We average the W weilggtsesulted from those two training
runs. A similar process can be used to come uptélstarting weights for the other
agents. A complete example is shown in Appendiariél some highlights are below. The
first column contains the names of some of thelspetilable to the Wizard. The second
column contains the weights for those spells frommWizard in the FFCW team when it
faced the FFCW team (row 1 above). The third colwomains the weights for those
spells from a Wizard in the FCWW team when it fateel CCWW team (row 3 above).
The fourth column contains the average weighttiosé two columns. In some cases, an
effective spell in all cases (horrid wilting or iseorm for example) continues to have a
high weight. In other cases, some spells havelawaght in one instance but not the
other, and in those cases the average is usduede tases, the dynamic scripting process
will cause the averaged weight will go up if thepells are effective in the new scenario,
or down if not. The spells that have a high weiglllikely be effective, and will appear
as an intelligent action to take. Any spells theatdna low weight in most cases not have a
high chance of being picked, since it is likelyntat be effective.

team FFCW FCWW FFCW
opponent FFCW CCww CCww

character W W W

classification YYNYYY YYYNYY YYNNYY
melf's acid arrow 0.1797 0.0011 0.0904
evard's black tentacles 0.1797 0.0011 0.0904
ice storm 0.1950 0.1988 0.1969
chain lightning 0.1950 0.0011 0.0980
summon creature 6 0.0011 0.0335 0.0173
horrid wilting 0.1950 0.1999 0.1974

Table 7: Synthesis of selected starting weights fa% in FFCW v CCWW

Verify strategies in the Arena

Strategies that have been learned in the abovebtesed’ simulation will be verified in
the NWN Arena. If the teams learn strategies teatgpm better than the opponent teams
faster than by starting using the default starsitigtegies, then the assumptions made in

28

the text-based simulation are justified, and tipigraach will have been demonstrated to
be effective in a commercial game.

29

Chapter 4. Results

The following pages contain results from the teasdd arena, which was used to quickly
simulate thousands of rounds of combat from the Ny#he. Results from the actual
NWN game start appearing in Table 12.

The step of populating the initial rulebase hadgbhgpose of verifying the

implementation of dynamic scripting, as weightg tha expected to be effective often
had higher weights, and spells we thought wouldoeo¢ffective ended up with lower
weights. This step helped catch a bug in our implaation, as one spell that should have
been effective ended up having a very low weights Bpell provided significant bonuses
to a teammate, and should have had a high weidter some troubleshooting, it was
found that the spell was actually providing the lses to an opponent instead of an ally,
and thus was detrimental to the caster. This uedess the premise in [SprO4] that
scripts can be complex and can contain errorstlatdlynamic scripting can account for
them.

Below are the results of the text-based experimetasting with the weights for W spells
in FFCW versus FFCW. These numbers in each rovespand to the weights of the
wizard spell in the left-hand column after the fighthe top of that column. For example,
after 10 fights, the ‘magic missile’ spell had a@% chance of being included in a script,
but by fight 100 it had about a 0.1% chance of p@éncluded. Some spells have weights
of 0. During preliminary testing, those spells wdetermined to be ineffective regardless
of the scenario, so were removed. Further explanasi given in Appendix C.

30

after fight: 10 50 100 250 500 750 1000
daze 0 0 0 0 0 0 0
light 0 0 0 0 0 0 0
ray of frost 0.0126 | 0.0020 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
resistance 0.0774 | 0.0310 | 0.0355 | 0.0554 | 0.0667 | 0.0351 | 0.0123
mage armor 0.0126 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
summon creature 1 0.0015 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
magic missile 0.0821 | 0.0161 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
Identify 0 0 0 0 0 0 0
sleep 0 0 0 0 0 0 0
ghostly visage 0.0126 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
melf's acid arrow 0.0844 | 0.1153 | 0.1474 | 0.1685 | 0.1555 | 0.1744 | 0.1797
summon creature 2 0.0023 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
Knock 0 0 0 0 0 0 0
web (WAS invisibility) 0.0074 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
fireball 0.0031 | 0.0019 | 0.0011 | 0.0011 | 0.0123 | 0.0011 | 0.0011
clarity 0.0078 | 0.0047 | 0.0015 | 0.0011 | 0.0011 | 0.0299 | 0.0198
summon creature 3 0.0268 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
haste 0.0335 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
dispel magic 0.0063 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
stoneskin 0.0605 | 0.0050 | 0.0016 | 0.0011 | 0.0011 | 0.0011 | 0.0011
elemental shield 0.0836 | 0.0171 | 0.0064 | 0.0255 | 0.0011 | 0.0011 | 0.0011
evard's black tentacles 0.0877 | 0.1964 | 0.1964 | 0.1987 | 0.1746 | 0.1967 | 0.1797
ice storm 0.0885 | 0.1964 | 0.1964 | 0.1346 | 0.1742 | 0.1465 | 0.1950
minor globe of

invulnerability 0.0126 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
lesser spell mantle 0.0264 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
summon creature 5 0.0126 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
cloudkill 0.0694 | 0.0040 | 0.0013 | 0.0011 | 0.0011 | 0.0011 | 0.0011
greater shadow

conjurations 0 0 0 0 0 0 0
chain lightning 0.0531 | 0.1964 | 0.1964 | 0.1960 | 0.1880 | 0.1967 | 0.1950
greater spell breach 0.0068 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
summon creature 6 0.0055 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
mordenkainen's sword 0.0123 | 0.0011 | 0.0011 | 0.0011 | 0.0120 | 0.0011 | 0.0011
spell mantle 0.0239 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011
horrid wilting 0.0859 | 0.1964 | 0.1964 | 0.1970 | 0.1941 | 0.1967 | 0.1950
melee 0.0009 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011

Table 8: Spell weights for Wizard in FFCW v FFCW
Selected weights from the previous table appe#rariigures below. Even though all of

the spells started with equal weights initiallyteafonly 10 fights some of the effective
spells were already getting higher weights.

31

chain lightning
20%

harrid wilting
20%

Other
; %
Iice starm
20% resistance
3%

melfs acid arrow
129%

evard's black tentacles
20%
Figure 9: Wizard spell weights after 50 fights in FCW v FFCW

After 50 fights, the wizard has already learnedrtigst effective spells. From a starting
point where the 29 spells had similar weights, dyicascripting has already raised the
weights of some spells and lowered the weightpelis of others.

chain lightning

20%

harrid wilting
20%

ice storm
13% Other
2%
resistance
6%

evard's black tentacles .
20%

melfs acid arrow
17%

elemental shield
3%

Figure 10: Wizard spell weights after 250 fights iFfFCW v FFCW
After 250 fights, the weights have changed, budrgpscreated from the most effective
spells still remains fairly similar to the one deshafter 50 fights.

32

chain lightning
19%

horrid wilting
19%

Other

ice storm 6%

19%

melfs acid arrow
18%

evard's black tentacles
18%
Figure 11: Wizard spell weights after 1000 fightsn FFCW v FFCW
In the last three figures the weights have changedn though the scripts created after
these fights would be different, the top 5 speksild have been present in all of the
scripts.

0.20
0.18
0.16

0.14

0.12 —m—resistance

melfs acid arrow

010 ——— evard's black tentacles

Weight

—s#—ice storm
—a— chain lightning
—+— horrid wilting

0.08

0.06

0.04

0.02

0.00

10 50 100 250 500 750 1000
Fight #

Figure 12: Selected weights for W Spells (FFCW v REW)

33

Figure 12 contains the weights of 6 of the spdtlsravarious fights. All of the spells
started with an equal weight. Most of the spellseneot effective, and their weights fell
down to the minimum. From this figure it is easysé® how effective spells quickly can
be identified after only a few fights. Some vaoatin the order of spells in a script
occurs as more trials are completed. This typeaagtion is beneficial in a game, as it
allows for different behaviours, and can compengatehanges in a player’s behaviour.

The weights for the C spells using the same te&REYV v FFCW) appear below:
after fight: 10 50 100 250 500 750 1000
inflict minor wounds 0.0062 | 0.0021 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
cure light wounds 0.0129 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
inflict light wounds 0.0359 | 0.0011 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
bless 0.0071 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
cure moderate wounds 0.0129 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
inflict moderate wounds 0.0509 | 0.0202 | 0.0024 | 0.0011 | 0.001 | 0.0011 | 0.0011
aid 0.0402 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0071
cure serious wounds 0.0583 | 0.0836 | 0.0679 | 0.1899 | 0.1826 | 0.1609 | 0.1816
inflict serious wounds 0.0009 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
remove
blindness/deafness 0 0 0 0 0 0 0
remove disease 0 0 0 0 0 0 0
dispel magic 0.0327 | 0.0022 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
animate dead 0.0129 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
hammer of the gods 0.0468 | 0.1549 | 0.1639 | 0.1795 | 0.1755 | 0.1925 | 0.1955
inflict critical wounds 0.0085 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.002
freedom of movement 0.0427 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
cure critical wounds 0.0374 | 0.001| 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
divine power 0.0396 | 0.001 | 0.001 | 0.0351 | 0.1826 | 0.1925 | 0.145
dismissal 0.0494 | 0.1418 | 0.1735 | 0.1899 | 0.0685 | 0.0553 | 0.0011
heal 0.0513 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
slay living 0.0449 | 0.001 | 0.001 | 0.0347 | 0.001 | 0.0011 | 0.0011
flame strike 0.0536 | 0.0021 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
cirle of doom 0.0201 | 0.0022 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
spell resistance 0.0256 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0471
harm 0.0244 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
blade barrier 0.0129 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
banishment 0.0576 | 0.1886 | 0.1891 | 0.0011 | 0.001 | 0.0011 | 0.0011
control undead 0.017 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
destruction 0.0731 | 0.1886 | 0.1891 | 0.1563 | 0.1826 | 0.1797 | 0.1955
greater restoration 0 0 0 0 0 0 0
regenerate 0.0009 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011
fire storm 0.051 | 0.1886 | 0.1891 | 0.1882 | 0.1826 | 0.1925 | 0.1955
earthquake 0.0715 | 0.0053 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0069
melee 0.0009 | 0.001 | 0.001 | 0.0011 | 0.001 | 0.0011 | 0.0011

Table 9: Spell weights for Cleric in FFCW v FFCW

34

destruction
19%

fire storm
19%

banishment
Other

19% |-
3%
_inﬂict moderate wounds
2%
‘_cure serious wounds
8%
dismissal e
14% hammer of the gods

16%

Figure 13: Cleric spell weights after 50 fights ilFFFCW v FFCW
Similar to the wizard spell weights in Figure % ttleric has already learned some
effective spells after only 50 fights. Unlike thé&zerd weights, some spells (banishment)
that appeared effective in early rounds will ngbegr in the scripts created after later
rounds.

destruction
16%

slay living

3% fire storm

19%

dismissal
1994, Other
3%
divine power . q
49 cure serious wounds

19%

hammer of the gods
18%

Figure 14: Cleric spell weights after 250 fights iFFCW v FFCW

35

The cleric scripts created by dynamic scriptingadmore between fights than those of
the wizard.

destruction
20%

fire storm
20%

spell resistance

5%
Other
4%
divine power
15%

cure serious wounds
18%

hammer of the gods
20%
Figure 15: Cleric spell weights after 1000 fightsn FFCW v FFCW
After 1000 fights, only three out of five spellatlappeared to be most effective after 50
fights remain.

36

\/ —&— Cure serious wounds
0.12 —a— hammer of the gods
//// A divine power
01 dismissal
—#— banishment
- /’\ —a&— destruction
z// \I \ —+—fire storm

0.02 \
\/ g N g

10 50 100 250 500 750 1000
Fight #

Figure 16: Selected weights for C Spells (FFCW v KFW)
There is a lot more movement in the weights ofdleeic spells which resulted in more
variation in the created scripts than the wizandhe same fights. See Figure 12 for a
comparison, where there is not as much movemantigure 16, which has some spell
weights that change from very high to very low mewersa throughout the experiment.

Weight

These results are important since they show thert &vough no hand-coding of weights
were used to signify importance of the spells, e weights were learned and more-
powerful spells ended up with higher weights tHairtlesser-powerful counterparts. The
spell casters were able to determine which spai®effective and learned strategies that
were successful on their own, even when a pooctefeof spells resulted in a loss. Also
of importance is to note that a spell that is naffgctive in one scenario is not

necessarily going to be as effective when there#rer teammates or opponents. Those
results are demonstrated in the trials below.

It is worth noting that spells like Banishment didmissal (both of which instantly get
rid of summoned creatures on the opposing teamhiwgweights during the first half of
the fights, since these spells are very effectgaresst summoned creatures. These
weights were so effective that the opponent tearights for the summon creature spells
were driven to the minimum weights. After opponesttypped trying to summon
creatures, the weights for Banishment and Dismuhsgdped (from dynamic scripting
reacting to changes in opponents’ strategies).

Next we removed the C from each team and repldcegith another F, leading to a

situation where there is only 1 spellcaster on @aam, and no ability for the characters
to heal themselves. Some of the damaging spellsimitar, and a defensive spell that

37

helps against physical damage (stoneskin) hashehigeight. The results of these fights
appear in the table below:

after fight: 10 50 100 250 500 750 1000
daze 0 0 0 0 0 0 0
light 0 0 0 0 0 0 0
ray of frost 0.0266 | 0.0201 | 0.0441 | 0.0684 | 0.0987 | 0.0585 | 0.001
resistance 0.0292 | 0.0011 | 0.0013 | 0.0011 | 0.0023 | 0.0325 | 0.0058
mage armor 0.0482 | 0.0011 | 0.0013 | 0.0424 | 0.0364 | 0.0011 | 0.001
summon creature 1 0.0096 | 0.0251 | 0.0011 | 0.0011 | 0.0023 | 0.0011 | 0.001
magic missile 0.0284 | 0.0085 | 0.0013 | 0.0011 | 0.0023 | 0.0572 | 0.0388
identify 0 0 0 0 0 0 0
sleep 0 0 0 0 0 0 0
ghostly visage 0.0372 | 0.0481 | 0.0779 | 0.0444 | 0.0312 | 0.0023 | 0.001
melf's acid arrow 0.0152 | 0.0011 | 0.0011 | 0.0346 | 0.0356 | 0.0011 | 0.001
summon creature 2 0.0109 | 0.0011 | 0.0013 | 0.0011 | 0.0012 | 0.0011 | 0.001
knock 0 0 0 0 0 0 0
web (WAS invisibility) 0.0252 | 0.0049 | 0.0013 | 0.0011 | 0.0214 | 0.0011 | 0.001
fireball 0.0284 | 0.0437 | 0.0566 | 0.0458 | 0.0332 | 0.0548 | 0.0649
clarity 0.0254 | 0.031| 0.029 | 0.0673 | 0.0143 | 0.0255 | 0.0417
summon creature 3 0.0315 | 0.0014 | 0.0011 | 0.0011 | 0.0023 | 0.0011 | 0.001
haste 0.0298 | 0.0369 | 0.0698 | 0.0144 | 0.0364 | 0.0606 | 0.001
dispel magic 0.0576 | 0.0396 | 0.0571 | 0.0925 | 0.0801 | 0.0778 | 0.0666
stoneskin 0.0403 | 0.0032 | 0.046 | 0.0687 | 0.0367 | 0.0011 | 0.0432
elemental shield 0.0434 | 0.0892 | 0.0449 | 0.0011 | 0.0223 | 0.0581 | 0.001
evard's black tentacles 0.0638 | 0.0766 | 0.1108 | 0.0466 | 0.0346 | 0.0643 | 0.0607
ice storm 0.0617 | 0.0808 | 0.1219 | 0.1025 | 0.1029 | 0.058 | 0.1223
minor globe of

invulnerability 0.0666 | 0.006 | 0.0041 | 0.0011 | 0.0663 | 0.0011 | 0.001
lesser spell mantle 0.0645 | 0.0905 | 0.0429 | 0.0537 | 0.046 | 0.0441 | 0.001
summon creature 5 0.0699 | 0.0818 | 0.0011 | 0.0011 | 0.0023 | 0.0011 | 0.001
cloudkill 0.05 | 0.0107 | 0.0014 | 0.0452 | 0.0142 | 0.0011 | 0.0579
greater shadow

conjurations 0 0 0 0 0 0 0
chain lightning 0.0129 | 0.0547 | 0.0465 | 0.0613 | 0.0668 | 0.0977 | 0.1185
greater spell breach 0.0064 | 0.0448 | 0.0407 | 0.0011 | 0.0154 | 0.0011 | 0.0647
summon creature 6 0.0295 | 0.054 | 0.0339 | 0.0612 | 0.0653 | 0.0011 | 0.001
mordenkainen's sword 0.0039 | 0.0022 | 0.001 | 0.032 | 0.0325 | 0.1001 | 0.1229
spell mantle 0.0401 | 0.0824 | 0.0458 | 0.0011 | 0.0023 | 0.0848 | 0.0578
horrid wilting 0.0428 | 0.0585 | 0.1135 | 0.1063 | 0.0937 | 0.109 | 0.1186
melee 0.001| 0.001| 0.001| 0.001| 0.001| 0.001| 0.001

Table 10: Spell weights for Wizard in FFFW v FFFW

38

greater spell breach
4%

chain lightning
5% summaon creature B

5%
summon creature 5
8% spell mantle

8%

lesser spell mantle

99, horrid wilting
o

6%

Other

4%
ray of frost
sumfibn creature 1
3%
/" ghostly visage
5%

ice storm
8%

evard's black tentacles

e}
- fireball

; it %6
| tal shiald Clﬂrlt‘_l,-"
¢ emeng:{j e dispel magif@ste 3%
4% 4%
Figure 17: Wizard spell weights after 50 fights iFFFW v FFFW
After 50 fights, there is much more variation ie script created by dynamic scripting for
this wizard compared to the one from FFCW v FFCWigure 9.

39

cloudkill o y
5%, chan ighining summaon creature G

6%

lesser spell mantle o,
mordenkainen’s sword

59
3%
":‘31 Et;rm horrid wilting
o]
11%
evard's black tentacles Other
% 3%
; ray of frost
stoneskin 79
7%
mage armor
49
dispel magic ghostly visage

9% 4%
clarity fireball _
7% 5% melfs acid arrow
3%
Figure 18: Wizard spell weights after 250 fights ilFFFW v FFFW
Some of the spells that were effective in the FFCIAFCW fights are also effective here,

but others (like dispel magic) will appear in thesépts but not others.

mordenkainen’s sword
12%

greater spell breach
6%

spell mantle
6%

chain lightning horrid wilting

12% 12%
Dther
cloudkill 2%
6% magic missile
4%
fireball
_ 6%
Ice storm
129, clarity

4%
evard's blau:':jktentaclea shinsskin dispel magic
Figure 19: Spell weights after 1000 fights in FFFW FFFW

40

Compared to Figure 11, the weights learned angtsagenerated by this wizard are
significantly different than those learned by theard in FFCW v FFCW. Some of the
most effective spells are identical and will appeahe wizard’s scripts for both fights,
but there are also quite a few new spells in tisespts that would appear in FFFW v
FFFW but not FFCW v FFCW.

0.14

0 /\\ /
—a—fireball

0.08 o —m— stoneskin

- ice storm
chain lightning
A —s#— mordenkainen's sword
0.06

= —a— spell mantle
V —+— horrid wilting
0.02

10 a0 100 260 500 750

Fight #

Figure 20: Selected weights for W spells (FFFW v FRW)

Weight

1000

The weights for the spells were much different tttase of the wizard from Figure 12,
showing that a small change in the compositiorhefteam can have a big difference in
the spells that appear in the scripts created bgmiyc scripting.

After the most effective scripts were learned i@ tixt-based arena, the scripts were used
in the NWN arena to verify their effectiveness.

Spells that received a high weight after one tregmun had similar weights after similar
training runs, and some spells were effective imyrstuations and had high weights
after various training runs. The important condegtighlight is some spells were very
effective in some situations, but less effectivetiners. Table 11 shows the weights of
the “Ice Storm” spell. “Ice Storm” is a W spell trdamages the opponents on the other
team. The “Team” and “Opponent” columns show thenégjthat were in the combat.
This type of variation would be hard to reprodudde weights were all hand-coded. The
people hand-coding the weights would have to emtexlue for every spell for different
combinations of teams that were fighting, whiclmaduces the chance of a game-
designer introducing an error.

41

Team | Opponents| Weight
FFCW | FFCW 19.6%
FFFW | FFFW 15.7%
CCWW | FCWW 4.2%

Table 11: Selected resultant weights of the "Ice 8tm" spell

In cases where one team lost a significant propoxi the fights, the weights were more
varied. This is to be expected, since if a teasigsificantly inferior, dynamic scripting
will continue to attempt to find different strategito help the team win.

Table 12 contains the results from the FFCW v FH@Ms. The first row contains the
results of 100 fights with both teams using thead#flogic that came with the NWN
module. The results do not add up to 100 sincestiverre a few ‘ties’, where the last
player on each team died simultaneously. The seammaontains the results of having
the Wizard on each team used the weights learoed thhe text-based version. The third
row contains the results when the Wizard and Clamieach team used the weights from
the text-based version. The final two rows one teasd the default logic and the other
used the weights from the text based versionsf@mtiose two rows we can say with a
95% confidence level that the strategy learned filoentext-based version performed
better than the team using the default logic. T¢taa weights for the Wizard are in
Table 3, and the weights for the Cleric are in €abl

FFCW FFCW
White (W) | Black
Wins (B) Wins
Default Logic - Both Teams 49 46
Wizard using synthesized starting point - Both Team 55 41
Wizard and Cleric using synthesized starting poBoth
Teams 54 41
White Team using text-based Wizard. Black Teamgisin
Default Logic. 67 28
White Team using text-based Wizard and Cleric. BlBgam
using Default Logic. 64 34

Table 12: Results from FFCW v FFCW

Table 13 shows the results from FFFW v FFFW. WihenWizard used the weights from
Table 5, it performed significantly better thanusing the default-logic strategy. These
results highlight the fact that hand-coded valuesnat necessarily better (as we can state
with a 95% level of confidence that the strategymed from dynamic scripting
significantly outperforms the strategy that shippeth the game), and that following one
strategy for all opponents is not always effecta®the default strategy had various

levels of effectiveness against different teams.

42

FFFW FFFW
White (W) | Black (B)
Wins Wins
Default Logic - Both Teams 57 41
Wizard using text-based starting point - Both Teams 53 35
White Team using text-based Wizard. Black Teamgisin
Default Logic. 97 3

Table 13: Results from FFFW v FFFW

The above two tables show results from balancegdamyhnting each other. In many
situations, one team might be stronger than theroth such a case, dynamic scripting
may continue to try different strategies to comenifh one that is effective.

In the following table, the rules for the “Dynan$cripting Starting Point” were
synthesized using the method explained in Tabléh2.results below show that the
scripts created from the dynamic scripting methedgsmed better than the scripts
created by the game designers of NWN.

ccww % Wins | FFCW Remaining Hit Points
Default Starting Point 3.4 116.52
Dynamic Scripting Starting Point 7.8 69.64

Table 14: Results from CCWW v FFCW
The complete results are in Appendix D.

To test the validity of using roles as an abstaacin these experiments, trials were run
where a character on a team was switched withferelift character type that can fulfill

the same role, and then ensure the results wérapgilicable. The Sorcerer class is
similar to the Wizard class, as they have the sgpeds to pick from. A major difference
between the two classes is the number of spelfsdéue cast daily, and whether or not
they need to prepare them at the beginning of #iye Al level 15 Sorcerer can cast 6
spells from each of levels 1-6, and 4 level 7 spdlhese spells can be picked right before
they are cast from a list of spells the sorceremks1 A level 15 Wizard can cast 4 spells
from each of levels 1-5, 3 level 6 spells, 2 lekapells, and 1 level 8 spell. These spells
must be picked at the beginning from the spellsatizard knows.

The complete list of spells for the two classdssted in Appendix F.
The following script was created for the W in FFRAVWFFW.
if (GetHasSpell(SPELL_ICE_STORM))

ActionCastSpellAtLocation(SPELL_ICE_STORMGTarget);
o}

if (GetHasSpell(SPELL_CHAIN_LIGHTNING))

43

{

!

if (GetHasSpell(SPELL_HORRID_WILTING))
{

)

if (GetHasSpell(SPELL_ MORDENKAINENS_SWORD))
{

.

if (GetHasSpell(SPELL_EVARDS_BLACK_TENTACLES)
{

);
)

Which would result in the following spells beingstay the two different characters:
Wizard:

Round 1: Ice Storm

Round 2: Chain Lightning

Round 3: Horrid Wilting

Round 4: Mordenkainen’s Sword

Round 5: Evard’s Black Tentacles

ActionCastSpellAtObject(SPELL_CHAIN_LIGHTNG, oEnemy);

ActionCastSpellAtLocation(SPELL_HORRID_WIING, locTarget);

ActionCastSpellAtLocation(SPELL_MORDENKAIRNS SWORD, locTarget);

ActionCastSpellAtLocation(SPELL_EVARDS BCK_TENTACLES, locTarget

Sorcerer:

Rounds 1-6: Ice Storm (Sorcerer can cast 6 kwplells)

Rounds 7-12: Chain Lightning (Sorcerer can cdsvél 6 spells)

Rounds 13-17: Mordenkainen’s Sword (Sorcerer cacast §' level spell, so skips

Horrid Wilting, goes right to

Mordenkainen’s Sword. Also will skip
Evard’'s Black Tentacles, as it is a level 4
spell, and Sorcerer has already cast all level
4 spells in rounds 1-6.)

Even though there is a lot of overlap in the spmlailable to these two classes, it is
apparent that the same script will produce differesults for these character classes.

44

FFFW FFFW
White (W) | Black (B)
Wins Wins
Default Logic - Both Teams 57 41
Wizard using text-based starting point - Both Teams 53 35
White Team using text-based Wizard. Black Teamgisin
Default Logic. 97 3
FFFS FFFS
White (W) | Black (B)
Wins Wins
Default Logic - Both Teams 46 54
Wizard using text-based starting point - Both Teams 51 45
White Team using text-based Wizard. Black Teamgisin
Default Logic. 94 6

Table 15: Results from FFFW v FFFWcompared to FFFS v FFFS

In both cases, we can state with a 95% level ofidence that the strategy learned from
dynamic scripting performed better than the deflmgfic that was shipped with the game.
The fact that the script performed well with a Swver instead of a Wizard demonstrates
that the abstraction based on roles is a valid sineg the script was created in the text-
only arena that did not have the Sorcerer class.

Discussion

It is important to note that this is not a casénabre knowledge leads to better
decisions”. The logic in the NWN arena module tatkesisands of lines of code.

The scripts produced by this method are under ddednlines. This method replaces
thousands of lines of code written by experts, r@piaces it with scripts proven to be
effective. By removing the complex scripts geneatdig hand, the chance of a bug
existing in a script is minimized, and allowing ptition of the scripts through changing
the values of the weights further removes the chaf@an exploit being used.

The rules that were implemented as scripts in yimahic scripting version used as little
domain-specific knowledge as possible, to enswredhults achieved were the result of
the dynamic scripting process instead of domainedge. For example: The
knowledge that a spell that banished a summonedueecould be cast only if there was
a summoned creature on the opposing team was ahdmatethe knowledge that the spell
“Summon Creature VI” was better than “Summon Cnestubecause it summoned a
more-powerful creature was not encoded. In garkeNWN, this knowledge is
encoded, since it is often the case that you waaldt an agent to cast the most-powerful
spell available to it when in a certain situatibnmost cases, the higher-level spells are
more effective, so they would end up with a higherght than the lower-level versions
after training. There were few instances wherengeteevel version of a spell had a
slightly higher weight after some training runsistbften was not a significant difference,
and was not unexpected given the stochastic nafudgnamic scripting. Adding domain-

45

specific knowledge will not lessen the effectivenesdynamic scripting finding better
strategies, and would lessen the chance of theea@ppening.

The long, hand-coded logic can contain errorsgeitlhue to the complexity, or
requirements not completely understood by the arogners. The following bits of code
were found in the NWN module. More detailed excegre found in Appendix E. The
next few lines contain a comment that shows theldgers were not confident in some

of the constants that were used.
/I No idea if these distances are correct
const float DISTANCE_COLOSSAL = 15.0;
const float DISTANCE_HUGE = 10.0;
<several more lines>

The next few lines of code contain logic to clagsifeatures. This is similar to the work
done in the discussion of roles in chapter 3. Thide shows that Clerics and Druids are
both classified under the abstraction “Priests”.
/I Returns TRUE if oCreature is a priest.
int IsPriest(object oCreature)
if (HasClass(oCreature, CLASS_TYPE_CLERIC) ||
HasClass(oCreature, CLASS_TYPE_DRUID))
return TRUE;

return FALSE;
}

The following lines of code contain several paridhvwomplex reasoning to pick the best
spell for a certain situation. The code shows narecks being performed before a
summon spell is cast, and then various summonialissanked in descending order of
effectiveness.

if (GetHasSpell(SPELL_SUMMON_CREATURE_IV))

ActionCastSpellAtLocation(SPELL_SUMMON_CREATURE_1V, locTarget);

-

if (GetHasSpell(SPELL_SUMMON_CREATURE_II))

ActionCastSpellAtLocation(SPELL_SUMMON_CREATURE_II, locTarget);

}
if (GetHasSpell(SPELL_SUMMON_CREATURE_II))

ActionCastSpellAtLocation(SPELL_SUMMON_CREATURE_I, locTarget);

o

if (GetHasSpell(SPELL_SUMMON_CREATURE_|))

46

ActionCastSpellAtLocation(SPELL_ SUMMON_CREATURE_I, locTarget);
}

As stated earlier, this knowledge is introducedlprogrammer who knows which
summon spells are more effective than others. Alghat could be determined
analytically which of these spells are expectedeanore effective, there is a chance that
a coding error makes one spell more or less effethan it should be.

There are also lots of places in the code whene tisdots of logic built in to take care of
special cases are coded which are only used infigpgocumstances. This introduces
complexity which can make debugging difficult irteén situations. The following code
shows how many checks are done before certainrssprglicast. The complete section
contains comments that mentions some spells, imgudyvisibility, still need to be
coded.

/I HIGH Priority rules. These rules are fairly specific, but can be used

/I in general at any time during combat. They are executed in specific

/I circumstances or use talents in a specific way, to ensure that

/I the talents a creature has, when they are employed, are employed as

/I effectively as possible.

<several lines removed for clarity>

case 1:

if (IsMage(oCreature) ||
IsPriest(oCreature) ||
HasClass(oCreature, CLASS _TYPE_UNDEAD) ||
HasClass(oCreature, CLASS _TYPE_OUTSIDER) ||
HasClass(oCreature, CLASS _TYPE_CONSTRUCT) ||
HasClass(oCreature, CLASS_TYPE_ELEMENTAL) ||
IsGeneralClass(oCreature))

if (IJustCheck)
return TRUE;
sRuleText = "CastHighSummon(oNearest)";
return CastHighSummon(oNearest);
}
break;

<several lines removed for clarity>

The invisibility example was highlighted as theseidocumented error where the two
teams will stop fighting each other if members oftbteams turn invisible. The following
bit of code was found in the NWN module, presumaalgied to try and correct the error,

if (iISomeoneVisible)
return;

/I Since everyone is invisible, Igor will remove the effects from everyone.

a7

SpeaksString("You are unable to see each other, ladies. Let me correct that.");

while (GetlsObjectValid(oWhite))

{
RemoveSpecificEffect(EFFECT_TYPE_INVISIBILITY, oWhite);

.

while (GetlsObjectValid(oBlack))

{
RemoveSpecificEffect(EFFECT_TYPE_INVISIBILITY, oBlack);

.

The following bits of code show how multiple cheeks done to only cast spells that will
be effective in certain situations. You can se¢ bledore a spell is cast, the opponent is
checked to make sure it is not immune, protectexh fihe spell, or even has a certain
amount of hit points left.

/I Tries to cast a cursing spell as high as possible at a single enemy

if (GetHasSpell(SPELL_ENERGY_DRAIN) &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_DEATH) &&
IProtectedAgainstSpells(oEnemy, 9))

{
ActionCastSpellAtObject(SPELL_ENERGY_DRAIN, oEnemy);

o

if (GetHasSpell(SPELL_POWER_WORD_STUN) &&
GetCurrentHitPoints(oEnemy) <= 150 &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_STUN) &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_MIND_SPELLS) &&
IProtectedAgainstSpells(oEnemy, 7))

{

ActionCastSpellAtObject(SPELL_POWER_WORD_STUN, oEnemy);

The amount of checking in the previous sample nlightonsidered ‘cheating’ by some
players — especially if there would be no way f@ agent to know the status of the
opponent. This can be contrasted to the code sniygbaw that is effective and does not
use any kind of knowledge of the status of the oppts when deciding the spell to cast.

The code samples above contain hundreds of linkEgymf manually created by
programmers. For contrast, the script below wadyced using dynamic scripting for the
W character after 1000 fights in FFCW v FFCW((sepuFe 11).

switch (GetLastSpellCastClass())

{

48

case 10: //wizard

if (GetHasSpell(SPELL_HORRID_WILTING))

ActionCastSpellAtLocation(SPELL_HORRID_WILTING, locTarget);

o

if (GetHasSpell(SPELL_CHAIN_LIGHTNING))

ActionCastSpellAtObject(SPELL_CHAIN_LIGHTNING, oEnemy);

}
if (GetHasSpell(SPELL_ICE_STORM))

ActionCastSpellAtLocation(SPELL_ICE_STORM, locTarget);

-

if (GetHasSpell(SPELL_EVARDS_BLACK_TENTACLES))

ActionCastSpellAtLocation(SPELL_EVARDS BLACK_TENTACLES, locTarget);

o

if (GetHasSpell(SPELL_MELFS_ACID_ARROW))

ActionCastSpellAtObject(SPELL_MELFS_ACID_ARROW, oEnemy);

break;

Hlend switch

The results show that the scripts are effectivd, straightforward to create. In addition to
being effective, the scripts are easy to understaéhd ordering of the spells directly
relate to the weights as spells with a low weigbt@nsidered bad and ones with a high
weight are beneficial in the combat situation. @tinethods like complex scripts or
neural networks do not have that benefit.

49

Chapter 5: Conclusions, Future Work, and Limitation S

In the previous chapters we explained dynamic 8ngmnd one of its shortcomings —
how it does not take into account the opponents@mtmates when starting off, which
can lead it to make decisions that may appear eifigent while learning an effective
strategy. We showed how knowledge of the othertagsan be used to create a better
starting point, which can be used to learn an &ffestrategy faster. We showed how
these newer starting points can be created ewthe #xact combinations of teammates or
opponents have never been used before. This rasesated in situations where the
starting weights were different based on the ageatscipating, and prevented the
situation where a spell that was effective in nuastes was cast in a situation where it
was not likely to be effective. The case study wediwas a game that allows thousands
of variations when creating a character and mifliohpossible teams, and we showed
how to reduce this into a manageable size, thrabgtraction and the use of roles.

We also included a difficult case where a team tisad a script that was created using
dynamic scripting performed better than a teamgukigic programmed by the game
designers. We also showed specific instances wdueigs that were hand-coded by
experts were complex and contained errors, and sthéhow dynamic scripting was able
to produce easy-to-understand scripts that alldeedn implementation error to be
easily uncovered.

This research can help ensure balance before sigigpgame. Any character types that
are inadvertently created with too much power taai create imbalances can be
determined and fixed. A character that can deteFraidominant strategy against all other
opponent types could be detected using the proeddliowed in this work, and could be
modified before the game is released.

Additional work can be done in the area of non-catmbles. The preceding experiments
focused on combat situations. In many games, dnreralso many elements of non-
combat situations that could be incorporated inte type of dynamic scripting. For
instance, if a player needed to get into a lockexhr, picking a lock or stealing a key
from the guard may be options for the player. Actting for these actions could be done
by including tasks that use these non-combat axtimil making appropriate changes to
the fitness function. For example, a characterctcbalve “pick lock” or “steal key from
guard” in addition to “attack” guards, so scriptighgs could include non-combat actions.
Ultimately these scenarios would be game-spedfit creating a procedure for handling
these types of actions would be a useful extertsidhis research.

This work is limited to games with teams of hetemgous agents that are controlled by
scripts. Dynamic scripting can adapt to changesgpponent’s behaviour, but it does not
keep track of effective strategies. If a playerndes a strategy, the dynamic scripting
opponent will respond by learning an appropriagpoase. If the player subsequently
reverts to an older strategy, dynamic scriptingtba®-learn an effective response, as

50

opposed to “remembering” the strategy it used leefdow to handle not forgetting
earlier lessons is out of scope of this research.

This research can enable many improvements in coorshgames. In addition to
replacing the need for manual ‘tweaking’ of parangtit can create tougher opponents
for the player to defeat by creating teams thatlehntelligently to challenge the player
without the need to resort to cheating. Implementims research can also improve a
player’s experience with a game by providing ba#aemmates. This can be
accomplished in two ways, either by providing teaates that complement and work
well with the player’s character type, or by custnng the actions of the teammates so
they provide better actions based on the playé@sacter type. In a game where a
companion or teammates are not fixed, teammatésdhngprovide actions that best
complement the player’s character type can be gealiln the experiments performed
for this research, it was discovered that a grbap was entirely composed of wizards did
not perform well compared to a group of wizardshatfighter. If the player was
controlling a wizard, the game could provide a fegtas a companion instead of another
wizard. In a game where the teammates are fixedsc¢hpts that the teammates follow
could vary depending on the composition of the te@sulting in more effective rules.
We saw from the examples provided earlier thastirgts for the most effective spells a
wizard could cast varied depending on the teammasagtesustomizing the actions of the
teammates based on the player’s character woultbirefihe effectiveness of the
player’s team. All of these results show that tgkither agents into consideration will
allow an individual agent using dynamic scriptingperform better than current scripting
implementations.

51

Appendix A: Rulebase

Here are the rulebases used by the characterggdherdynamic scripting algorithm to
produce the strategies. The spells in the Wizadd@eric rulebases were the default
ones that were selected when those charactersoneseed in NWN.

Fighter:

Move into melee combat
Attack opponent with sword
Do nothing

Wizard:
Move into melee combat
Attack opponent with dagger

(Level O spells)

Cast daze (penalizes low-level opponents)

Cast light (lights up the area — removes penalt@s darkness)
Cast ray of frost (can damage 1 opponent for 1t-Bdints)
Cast resistance (helps resist opponent spells0fooudnds)

(Level 1 spells)

Cast mage armor (makes the agent harder to hit)

Cast summon creature 1 (summons a weak ally tothelpaster)
Cast magic missile (damages 1 opponent for 10-2pamts)
Cast identify (identifies a magical item)

Cast sleep (puts low-level opponents to sleep)

(Level 2 spells)

Cast ghostly visage (reduces the amount of dantegesister takes)

Cast melf's acid arrow (can damage 1 opponent-Bhi points, plus damage for several
more rounds)

Cast summon creature 2 (summons an ally to helpabier)

Cast knock (unlocks doors)

Cast web (WAS invisibility) (creates webs to hindgponents)

(Level 3 spells)

Cast fireball (can damage all opponents for 10i60dints)

Cast clarity (removes the effects of daze, confusstun... spells)
Cast summon creature 3 (summons an ally to helpakier)

Cast haste (lets an ally have twice the amountta€les for 15 rounds)
Cast dispel magic (removes magical effects)

(Level 4 spells)
Cast stoneskin (absorbs physical damage)

52

Cast elemental shield (damages opponents wherhthehe caster, plus absorbs some
damage from offensive spells)

Cast evard's black tentacles (creates allies tladt gnd hit opponents)

Cast ice storm (damages all opponents for 5-30 dajna

Cast minor globe of invulnerability (gives protectifrom all spells under4level)

(Level 5 spells)

Cast lesser spell mantle (completely absorbs dairfnage7-10 spell levels)
Cast summon creature 5 (summons an ally to helpakier)

Cast cloudkill (damages opponents for 1-10 hit {®in

Cast greater shadow conjurations (creates sersialhary objects)

(Level 6 spells)

Cast chain lightning (can damage one opponent3egdLhit points, and damages other
opponents)

Cast greater spell breach (removes magical defdrm@sopponents)

Cast summon creature 6 (summons a powerful alhelp the caster)

(Level 7 spells)
Cast mordenkainen's sword (summons a magical steatlack enemies of the caster)
Cast spell mantle (completely absorbs damage frdit §pell levels)

(Level 8 spell)
Cast horrid wilting (damages opponents for 15-9(phints)

Cleric:
Move into melee combat
Attack opponent with mace

(Level O spells)
Cast inflict minor wounds (can damage an opponant it point)

(Level 1 spells)

Cast cure light wounds (heals an ally for 6-13plints)

Cast inflict light wounds (can damage an opponen6$13 hit points)

Cast bless (gives allies bonuses to hit and dampgenents, and to avoid damaging
spells)

(Level 2 spells)

Cast cure moderate wounds (heals an ally for 1BH2@oints)

Cast inflict moderate wounds (can damage an oppdoe@2-26 hit points)

Cast aid (gives one ally bonuses to hit and damagenents, and to avoid damaging
spells, and gives 1-8 additional temporary hit g)in

(Level 3 spells)
Cast cure serious wounds (heals an ally for 18#39dmnts)

53

Cast inflict serious wounds (can damage an oppdoeni8-39 hit points)

Cast remove blindness/deafness (removes blindesdesiness from a blind or deaf ally,
which are conditions that give penalties to mamsksahey attempt)

Cast remove disease (removes disease and assqmatdtes from a diseased ally)
Cast dispel magic (removes magical effects)

Cast animate dead (creates an undead ally to aifgnents)

(Level 4 spells)

Cast hammer of the gods (can damage opponentsdidrdamage, and possibly daze
them for 1-6 rounds)

Cast inflict critical wounds (can damage an oppof@nl9-47 hit points)

Cast freedom of movement (gets rid of negativectdfef daze, being stuck in webs)
Cast cure critical wounds (heals an ally for 19xépoints)

Cast divine power (gives the caster an attack hatrength bonus, and 15 extra hit
points)

Cast dismissal (can instantly get rid of a summaredture)

(Level 5 spells)

Cast heal (restores all hit points to an ally)

Cast slay living (has a chance to instantly killggponent, or do 18-33 hit points of
damage)

Cast flame strike (can damage opponents for 15¢98bints)

Cast circle of doom (has a chance of doing 23-79dints of damage to and opponent)
Cast spell resistance (gives complete resistansertie low-level spells — magic missile,
fireball, ice storm)

(Level 6 spells)

Cast harm (can remove all BUT 1-4 hit points framo@ponent)

Cast blade barrier (can damage opponents in arf@ar&&-90 hit points)

Cast banishment (can instantly get rid of all sumetbcreatures)

Cast control undead (can take control of an oppdseammoned undead creature)

(Level 7 spells)

Cast destruction (can instantly kill an opponentj@ 10-60 damage)

Cast greater restoration (restores lost abilibest ally. Takes a long time to cast)
Cast regenerate (increases healing rate of anhaling 16-23 hit points)

(Level 8 spells)

Cast fire storm (can damage all opponents for 15i9points)
Cast earthquake (can damage all opponents forl8t4®ints)

54

Appendix B: Synthesis of Starting Rulebases

Once all of the rules were encoded, the initialgh&s were set to equal amounts, and
thousands of fights happened using dynamic scggigtween different teams (FWWW
v FWWW, FFCW v FFCW, FFFW v FFFW). After this ocrenl, weights that
consistently had low weights in all situations wegmoved from future experiments.
These spells are listed in Appendix C, and are rgélgespells that have no combat
usefulness (spells that created a light sourcelemtified an item are two examples).
After those spells were removed, the weights wesetrto be equal, and the tests were
run again. Some spells that caused a lot of damwage often found useful against an
opponent regardless of who the opponent was dedramates.

When a new team started a fight, rules from ‘sirhtkkams (as described in Chapter 3)
were used to create the starting weights. The tadd®wv shows the starting weights for
the Wizard in FFCW v CCWW, from the weights of tMzards from FFCW v FFCW
and FCWW v CCWW.

55

team FFCW FCWwW FFCW
opponent FFCW ccww CCww
character W W W

classification YYNYYY YYYNYY YYNNYY
daze 0.0000 0.0000 0.0000
light 0.0000 0.0000 0.0000
ray of frost 0.0011 0.0011 0.0011
resistance 0.0123 0.0011 0.0067
mage armor 0.0011 0.0011 0.0011
summon creature 1 0.0011 0.0011 0.0011
magic missile 0.0011 0.0011 0.0011
identify 0.0000 0.0000 0.0000
sleep 0.0000 0.0000 0.0000
ghostly visage 0.0011 0.0011 0.0011
melf's acid arrow 0.1797 0.0011 0.0904
summon creature 2 0.0011 0.0011 0.0011
knock 0.0000 0.0000 0.0000
web (WAS invisibility) 0.0011 0.0313 0.0162
fireball 0.0011 0.0011 0.0011
clarity 0.0198 0.0011 0.0105
summon creature 3 0.0011 0.0011 0.0011
haste 0.0011 0.0011 0.0011
dispel magic 0.0011 0.0011 0.0011
stoneskin 0.0011 0.0011 0.0011
elemental shield 0.0011 0.0011 0.0011
evard's black tentacles 0.1797 0.0011 0.0904
ice storm 0.1950 0.1988 0.1969
minor globe of invulnerability 0.0011 0.0011 0.0011
lesser spell mantle 0.0011 0.0011 0.0011
summon creature 5 0.0011 0.0011 0.0011
cloudkill 0.0011 0.0011 0.0011
greater shadow conjurations 0.0000 0.0000 0.0000
chain lightning 0.1950 0.0011 0.0980
greater spell breach 0.0011 0.0101 0.0056
summon creature 6 0.0011 0.0335 0.0173
mordenkainen's sword 0.0011 0.0011 0.0011
spell mantle 0.0011 0.0011 0.0011
horrid wilting 0.1950 0.1999 0.1974
melee 0.0011 0.0011 0.0011

Table 16: Synthesis of starting weights for W in FEW v CCWW

56

Appendix C: Results

Text-only version

The results below are selected iterations fronmtekeonly version of the arena. These
results are from after an initial round where s@pells were removed from
consideration, as they were all determined to eaideful for combat in the arena. The
spells that were removed were:
Wizard:
Daze (this spell is always ineffective due toldheel of the agents)
Light (not useful in combat in the arena)
Identify (not a combat spell)
Sleep (this spell is always ineffective due tolthesl of the agents)
Knock (not a combat spell)
Greater Shadow Conjurations
Cleric:
Remove blindness/deafness (not useful in thesdshig
Remove disease (not useful in these fights)
Greater restoration (not a combat spell)

Wizard from FFCW v FFCW

Weights after 10 fights:

double[] weightArray = new double[]{ //weight of slis
/Nlevel 0 (0-3)

0, //daze

0, /Nlight

0.0126410614387192, //ray of frost
0.0774395508804581, //resistance

lllevel 1 (4-8)

0.0126410614387192, //mage armor
0.0015398815240403, //summon creature 1
0.0820835504455086, //6=magic missile

0, /lidentify

0, //sleep

lNlevel 2 (9-13)

0.0126410614387192, //ghostly visage
0.0844234160732066, //10=melf's acid arrow
0.00231099421337619, //[summon creature 2
0, //knock

0.00735843865551269, //web (WAS invisibility)
lllevel 3 (14-18)

0.00308210690271207, //14=fireball
0.00782235170446284, //clarity
0.0267680180061381, //summon creature 3

57

0.0335191258796749, //haste
0.00628218067375542, //dispel magic

lllevel 4 (19-23)

0.0604552316188311, //19=stoneskin
0.0836117138838773, //lelemental shield
0.087654558121514, //evard's black tentacles
0.0884660691495351, //22=ice storm
0.0126410614387192, //minor globe of invulneraypilit
lllevel 5 (24-27)

0.0263950328877631, //lesser spell mantle
0.0126410614387192, //summon creature 5
0.0693708382053159, //cloudkill

0, //greater shadow conjurations

INlevel 6 (28-30)

0.0530588354652143, //chain lightning
0.0067917364809922, //greater spell breach
0.00545482388420026, //summon creature 6
lllevel 7 (31-32)

0.0122554431508828, //mordenkainen's sword
0.0238857012555003, //spell mantle

lllevel 8 (33)

0.0858796794046119, //horrid wilting

/Imisc

0.000885414339319928 //melee

|8

Weights after 50 fights:

double[] weightArray = new double[]{ //weight of slis
INlevel 0 (0-3)

0, //daze

0, /llight

0.00198312470065133, //ray of frost
0.031027030146624, //resistance

lllevel 1 (4-8)

0.00108025282022827, //mage armor
0.00108025282022827, //summon creature 1
0.0161271809524023, //6=magic missile

0, /lidentify

0, //sleep

lllevel 2 (9-13)

0.00108025282022827, //ghostly visage
0.115324045288633, //10=melf's acid arrow
0.00108025282022827, //summon creature 2
0, //knock

0.00108025282022827, //web (WAS invisibility)
lllevel 3 (14-18)

58

0.00186933327912724, //14=fireball
0.00473506759160179, //clarity
0.00108025282022827, //[summon creature 3
0.00108025282022827, //haste
0.00108025282022827, //dispel magic

lllevel 4 (19-23)

0.00499686254807553, //19=stoneskin
0.0170583784801067, //elemental shield
0.196409603677867, //levard's black tentacles
0.196409603677867, //22=ice storm
0.00108025282022827, //minor globe of invulneraypili
lllevel 5 (24-27)

0.00108025282022827, //llesser spell mantle
0.00108025282022827, //[summon creature 5
0.0039565171776562, //cloudkill

0, //greater shadow conjurations

lllevel 6 (28-30)

0.196409603677867, //chain lightning
0.00108025282022827, //greater spell breach
0.00108025282022827, //[summon creature 6
lllevel 7 (31-32)

0.00108025282022827, //mordenkainen's sword
0.00108025282022827, //spell mantle

lNlevel 8 (33)

0.196409603677867, //horrid wilting

/Imisc

0.00108025282022827 //melee

|8

Weights after 100 fights:

double[] weightArray = new double[|{ //weight of siis
/Nlevel 0 (0-3)

0, //daze

0, /llight

0.0010962496281037, //ray of frost
0.0354735006048557, //resistance

/llevel 1 (4-8)

0.0010962496281037, //mage armor
0.0010962496281037, //[summon creature 1
0.0010962496281037, //6=magic missile

0, //lidentify

0, /lsleep

/llevel 2 (9-13)

0.0010962496281037, //ghostly visage
0.147393479601995, //10=melf's acid arrow
0.0010962496281037, //summon creature 2

59

0, //lknock

0.0010962496281037, //web (WAS invisibility)
lllevel 3 (14-18)

0.0010962496281037, //14=fireball
0.00154336331651076, //clarity
0.0010962496281037, //summon creature 3
0.0010962496281037, //haste
0.0010962496281037, //dispel magic

lllevel 4 (19-23)

0.00162869361527689, //19=stoneskin
0.00637664717517924, //lelemental shield
0.196370546078012, //evard's black tentacles
0.196370546078012, //22=ice storm
0.0010962496281037, //minor globe of invulneraypilit
lllevel 5 (24-27)

0.0010962496281037, //lesser spell mantle
0.0010962496281037, //summon creature 5
0.00128960006483745, //cloudkill

0, //greater shadow conjurations

INlevel 6 (28-30)

0.196370546078012, //chain lightning
0.0010962496281037, //greater spell breach
0.0010962496281037, //summon creature 6
lllevel 7 (31-32)

0.0010962496281037, //mordenkainen's sword
0.0010962496281037, //spell mantle

lllevel 8 (33)

0.196370546078012, //horrid wilting

/Imisc

0.00108003800342907 //melee

|8

Weights after 250 fights:

double[] weightArray = new double[]{ //weight of slis
/Nlevel 0 (0-3)

0, //daze

0, /llight

0.00110466263272181, //ray of frost
0.0553673068314011, //resistance

lllevel 1 (4-8)

0.00110466263272181, //mage armor
0.00110466263272181, //summon creature 1
0.00110466263272181, //6=magic missile

0, /lidentify

0, //sleep

lllevel 2 (9-13)

60

0.00110466263272181, //ghostly visage
0.168529172292573, //10=melf's acid arrow
0.00110466263272181, //[summon creature 2
0, //knock

0.00110466263272181, //web (WAS invisibility)
/lllevel 3 (14-18)

0.00110466263272181, //14=fireball
0.00110466263272181, //clarity
0.00110466263272181, //[summon creature 3
0.00110466263272181, //haste
0.00110466263272181, //dispel magic

lllevel 4 (19-23)

0.00110466263272181, //19=stoneskin
0.0254844370284586, //elemental shield
0.198741434621282, //levard's black tentacles
0.134585823414377, //22=ice storm
0.00110466263272181, //minor globe of invulnerayili
lllevel 5 (24-27)

0.00110466263272181, //lesser spell mantle
0.00110466263272181, //[summon creature 5
0.00110466263272181, //cloudkill

0, //greater shadow conjurations

lllevel 6 (28-30)

0.195992504567504, //chain lightning
0.00110466263272181, //greater spell breach
0.00110466263272181, //[summon creature 6
lllevel 7 (31-32)

0.00110466263272181, //mordenkainen's sword
0.00110466263272181, //spell mantle

lNlevel 8 (33)

0.196996743324524, //horrid wilting

/Imisc

0.00110466263272181 //melee

8

Weights after 500 fights:

double[] weightArray = new double[|{ //weight of siis
/Nlevel 0 (0-3)

0, //daze

0, /llight

0.00108366490376375, //ray of frost
0.0666503001692164, //resistance

/llevel 1 (4-8)

0.00108366490376375, //mage armor
0.00108366490376375, //summon creature 1
0.00108366490376375, //6=magic missile

61

0, /lidentify

0, //sleep

lllevel 2 (9-13)

0.00108366490376375, //ghostly visage
0.155454664793191, //10=melf's acid arrow
0.00108366490376375, //[summon creature 2
0, //knock

0.00108366490376375, //web (WAS invisibility)
lllevel 3 (14-18)

0.0122993550267137, //14=fireball
0.00108366490376375, //clarity
0.00108366490376375, //[summon creature 3
0.00108366490376375, //haste
0.00108366490376375, //dispel magic

lllevel 4 (19-23)

0.00108366490376375, //19=stoneskin
0.00108366490376375, //lelemental shield
0.174574720145967, //evard's black tentacles
0.174224752716077, //22=ice storm
0.00108366490376375, //minor globe of invulnerapili
lllevel 5 (24-27)

0.00108366490376375, //lesser spell mantle
0.00108366490376375, //[summon creature 5
0.00108366490376375, //cloudkill

0, //greater shadow conjurations

lllevel 6 (28-30)

0.188005119543521, //chain lightning
0.00108366490376375, //greater spell breach
0.00108366490376375, //[summon creature 6
lllevel 7 (31-32)

0.011988910096416, //mordenkainen's sword
0.00108366490376375, //spell mantle

lllevel 8 (33)

0.194061540958352, //horrid wilting

/Imisc

0.00106733847527094 //melee

8

Weights after 750 fights:

double[] weightArray = new double[]{ //weight of slis
/Nevel 0 (0-3)

0, //[daze

0, /llight

0.00108857463943687, //ray of frost
0.0350852509773747, lIresistance

lllevel 1 (4-8)

62

0.00108857463943687, //mage armor
0.00108857463943687, //[summon creature 1
0.00108857463943687, //6=magic missile

0, //lidentify

0, /lsleep

/llevel 2 (9-13)

0.00108857463943687, //ghostly visage
0.174353067336769, //10=melf's acid arrow
0.00108857463943687, //[summon creature 2
0, /lknock

0.00108857463943687, //web (WAS invisibility)
/lllevel 3 (14-18)

0.00108857463943687, //14=fireball
0.0299371505959085, //clarity
0.00108857463943687, //[summon creature 3
0.00108857463943687, //haste
0.00108857463943687, //dispel magic

lllevel 4 (19-23)

0.00108857463943687, //19=stoneskin
0.00108857463943687, //elemental shield
0.196733916081687, //evard's black tentacles
0.146480678878263, //22=ice storm
0.00108857463943687, //minor globe of invulneraypili
lllevel 5 (24-27)

0.00108857463943687, //lesser spell mantle
0.00108857463943687, //[summon creature 5
0.00108857463943687, //cloudkill

0, //greater shadow conjurations

lllevel 6 (28-30)

0.196733916081687, //chain lightning
0.00108857463943687, //greater spell breach
0.00108857463943687, //[summon creature 6
lllevel 7 (31-32)

0.00108857463943687, //mordenkainen's sword
0.00108857463943687, //spell mantle

lllevel 8 (33)

0.196733916081687, //horrid wilting

/Imisc

0.00108203653844928 //melee

|5

Weights after 1000 fights:

double[] weightArray = new double[|{ //weight of sits
/Nlevel 0 (0-3)

0, //daze

0, /llight

63

0.00107249207271599, //ray of frost
0.0122590944525473, /Iresistance

lllevel 1 (4-8)

0.00107249207271599, //mage armor
0.00107249207271599, //[summon creature 1
0.00107249207271599, //6=magic missile

0, /lidentify

0, //sleep

lllevel 2 (9-13)

0.00107249207271599, //ghostly visage
0.179673100827668, //10=melf's acid arrow
0.00107249207271599, //[summon creature 2
0, //knock

0.00107249207271599, //web (WAS invisibility)
lllevel 3 (14-18)

0.00107249207271599, //14=fireball
0.0198042022654587, //clarity
0.00107249207271599, //[summon creature 3
0.00107249207271599, //haste
0.00107249207271599, //dispel magic

lllevel 4 (19-23)

0.00107249207271599, //19=stoneskin
0.00107249207271599, //lelemental shield
0.179673100827668, //evard's black tentacles
0.194998558675635, //22=ice storm
0.00107249207271599, //minor globe of invulnerapili
lllevel 5 (24-27)

0.00107249207271599, //lesser spell mantle
0.00107249207271599, //[summon creature 5
0.00107249207271599, //cloudkill

0, //greater shadow conjurations

lllevel 6 (28-30)

0.194998558675635, //chain lightning
0.00107249207271599, //greater spell breach
0.00107249207271599, //[summon creature 6
lllevel 7 (31-32)

0.00107249207271599, //mordenkainen's sword
0.00107249207271599, //spell mantle

lNlevel 8 (33)

0.194998558675635, //horrid wilting

/Imisc

0.00107249207271599 //melee

8

64

Cleric from FFCW v FFCW

Weights after 10 fights:

double[] weightArray = new double[]{ //weight of slis
INevel 0 (0)

0.00616913342258713, //inflict minor wounds
lNlevel 1 (1-3)

0.0129107042664664, //cure light wounds
0.0358631129261162, //inflict light wounds
0.00710630246366453, //bless

lllevel 2 (4-6)

0.0129107042664664, //cure moderate wounds
0.0508912500501716, //inflict moderate wounds
0.0402354229581381, //aid

lNlevel 3 (7-12)

0.058254633067087, //cure serious wounds
0.000861184820420895, //inflict serious wounds
0, /Iremove blindness/deafness

0, /Iremove disease

0.032680536631001, //dispel magic
0.0129107042664664, //animate dead

/lllevel 4 (13-18)

0.0468266149065149, //hammer of the gods
0.00851205602528064, //inflict critical wounds
0.0427247076886512, //[freedom of movement
0.0374315199169298, //cure critical wounds
0.0395906750212618, //divine power
0.0493897394292991, //dismissal

lllevel 5 (19-23)

0.0513459495337289, //heal
0.0448880972737445, //slay living
0.0535582654987718, //flame strike
0.0201041771909471, /[cirle of doom
0.0256372095279022, //spell resistance
lllevel 6 (24-27)

0.0243978759218666, //harm
0.0129107042664664, //blade barrier
0.057606024528066, //banishment
0.0170335566098285, //control undead

lllevel 7 (28-30)

0.0730597286017606, //destruction

0, //greater restoration
0.000861184820420895, //regenerate

lllevel 8 (31-32)

0.0509882933236066, //fire storm
0.0714787459559455, //[earthquake

65

/Imisc 33
0.000861184820420895 //melee

I3
Weights after 50 fights:

double[] weightArray = new double[]{ //weight of slis

/Nlevel 0 (0)

0.00213081048795917, //inflict minor wounds
lNlevel 1 (1-3)

0.00103727610988267, //cure light wounds
0.00111606625275106, //inflict light wounds
0.00103727610988267, //bless

/llevel 2 (4-6)

0.00103727610988267, //cure moderate wounds
0.0201889529933602, //inflict moderate wounds
0.00103727610988267, //aid

lllevel 3 (7-12)

0.0835928456081811, //cure serious wounds
0.00103727610988267, //inflict serious wounds
0, /Iremove blindness/deafness

0, /Iremove disease

0.00222235630778943, //dispel magic
0.00103727610988267, //animate dead

lllevel 4 (13-18)

0.154873850248782, //hammer of the gods
0.00103727610988267, //inflict critical wounds
0.00103727610988267, //[freedom of movement
0.00103727610988267, //cure critical wounds
0.00103727610988267, //divine power
0.141825709878919, //dismissal

lllevel 5 (19-23)

0.00103727610988267, //heal
0.00103727610988267, //slay living
0.00213105201135827, //flame strike
0.0022021281455071, //cirle of doom
0.00103727610988267, //spell resistance
lllevel 6 (24-27)

0.00103727610988267, //harm
0.00103727610988267, //blade barrier
0.188595656342303, //banishment
0.00103727610988267, //control undead

lllevel 7 (28-30)

0.188595656342303, //destruction

0, //greater restoration

0.00103727610988267, //regenerate

lllevel 8 (31-32)

66

0.188595656342303, //fire storm
0.00525828906059573, //earthquake
/Imisc 33

0.00103727610988267 //melee

|8

Weights after 100 fights:

double[] weightArray = new double[]{ //weight of slis
/Nlevel 0 (0)

0.00104023149100506, //inflict minor wounds
lNlevel 1 (1-3)

0.00104023149100506, //cure light wounds
0.00104023149100506, //inflict light wounds
0.00104023149100506, //bless

/llevel 2 (4-6)

0.00104023149100506, //cure moderate wounds
0.00241110554219066, //inflict moderate wounds
0.00104023149100506, //aid

lllevel 3 (7-12)

0.0678507257756659, //cure serious wounds
0.00104023149100506, //inflict serious wounds
0, /Iremove blindness/deafness

0, /lremove disease

0.00104023149100506, //dispel magic
0.00104023149100506, //animate dead

lllevel 4 (13-18)

0.163877158823102, //hammer of the gods
0.00104023149100506, //inflict critical wounds
0.00104023149100506, //freedom of movement
0.00104023149100506, //cure critical wounds
0.00104023149100506, //divine power
0.173496458981248, //dismissal

lllevel 5 (19-23)

0.00104023149100506, //heal
0.00104023149100506, //slay living
0.00104023149100506, //flame strike
0.00104023149100506, //cirle of doom
0.00104023149100506, //spell resistance
lllevel 6 (24-27)

0.00104023149100506, //harm
0.00104023149100506, //blade barrier
0.189132998364557, //banishment
0.00104023149100506, //control undead

lllevel 7 (28-30)

0.189132998364557, //destruction

0, //greater restoration

67

0.00104023149100506, //regenerate
lllevel 8 (31-32)
0.189132998364557, //fire storm
0.00104023149100506, //earthquake
//misc 33

0.00104023149100506 //melee

|8

Weights after 250 fights:

double[] weightArray = new double[]{ //weight of slis
/Nlevel 0 (0)

0.00110043630548751, //inflict minor wounds
lllevel 1 (1-3)

0.00110043630548751, //cure light wounds
0.00110043630548751, //inflict light wounds
0.00110043630548751, //bless

/llevel 2 (4-6)

0.00110043630548751, //cure moderate wounds
0.00110043630548751, //inflict moderate wounds
0.00110043630548751, //aid

lllevel 3 (7-12)

0.189917396963941, //cure serious wounds
0.00110043630548751, //inflict serious wounds
0, /Iremove blindness/deafness

0, /lremove disease

0.00110043630548751, //dispel magic
0.00110043630548751, //animate dead

lllevel 4 (13-18)

0.179465728224759, //hammer of the gods
0.00110043630548751, //inflict critical wounds
0.00110043630548751, //[freedom of movement
0.00110043630548751, //cure critical wounds
0.0350691261772944, //divine power
0.189917396963941, //dismissal

lllevel 5 (19-23)

0.00110043630548751, //heal
0.0347371724327458, //slay living
0.00110043630548751, //flame strike
0.00110043630548751, //cirle of doom
0.00110043630548751, //spell resistance
lllevel 6 (24-27)

0.00110043630548751, //harm
0.00110043630548751, //blade barrier
0.00110043630548751, //banishment
0.00110043630548751, //control undead

lllevel 7 (28-30)

68

0.156303327226422, //destruction

0, //greater restoration
0.00110043630548751, //regenerate
lllevel 8 (31-32)
0.188179380679196, //fire storm
0.00110043630548751, //learthquake
/Imisc 33

0.00110043630548751 //melee

|8

Weights after 500 fights:

double[] weightArray = new double[]{ //weight of slis
/Nlevel 0 (0)

0.00102642151516912, //inflict minor wounds
lllevel 1 (1-3)

0.00102642151516912, //cure light wounds
0.00102642151516912, //inflict light wounds
0.00102642151516912, //bless

/llevel 2 (4-6)

0.00102642151516912, //cure moderate wounds
0.00102642151516912, //inflict moderate wounds
0.00102642151516912, //aid

lllevel 3 (7-12)

0.182602769160189, //cure serious wounds
0.00102642151516912, //inflict serious wounds
0, /Iremove blindness/deafness

0, /Iremove disease

0.00102642151516912, //dispel magic
0.00102642151516912, //animate dead

lllevel 4 (13-18)

0.175477335684356, //hammer of the gods
0.00102642151516912, //inflict critical wounds
0.00102642151516912, //[freedom of movement
0.00102642151516912, //cure critical wounds
0.182602769160189, //divine power
0.0684731560804457, //dismissal

lllevel 5 (19-23)

0.00102642151516912, //heal
0.00102642151516912, //slay living
0.00102642151516912, //flame strike
0.00102642151516912, //cirle of doom
0.00102642151516912, //spell resistance
lllevel 6 (24-27)

0.00102642151516912, //harm
0.00102642151516912, //blade barrier
0.00102642151516912, //banishment

69

0.00102642151516912, //control undead
lllevel 7 (28-30)

0.182602769160189, //destruction

0, //greater restoration
0.00102642151516912, //regenerate
lllevel 8 (31-32)

0.182602769160189, //fire storm
0.00102642151516912, //earthquake
/Imisc 33

0.00100431523038104 //melee

|8

Weights after 750 fights:

double[] weightArray = new double[]{ //weight of slis
/Nlevel 0 (0)

0.00107227150876675, //inflict minor wounds
lllevel 1 (1-3)

0.00107227150876675, //cure light wounds
0.00107227150876675, //inflict light wounds
0.00107227150876675, //bless

Illevel 2 (4-6)

0.00107227150876675, //cure moderate wounds
0.00107227150876675, //inflict moderate wounds
0.00107227150876675, //aid

lllevel 3 (7-12)

0.160882772669498, //cure serious wounds
0.00107227150876675, //inflict serious wounds
0, /Iremove blindness/deafness

0, /Iremove disease

0.00107227150876675, //dispel magic
0.00107227150876675, //animate dead

lllevel 4 (13-18)

0.192453440916937, //hammer of the gods
0.00107227150876675, //inflict critical wounds
0.00107227150876675, //[freedom of movement
0.00107227150876675, //cure critical wounds
0.192453440916937, //divine power
0.055304773554602, //dismissal

lllevel 5 (19-23)

0.00107227150876675, //heal
0.00107227150876675, //slay living
0.00107227150876675, //flame strike
0.00107227150876675, //cirle of doom
0.00107227150876675, //spell resistance
lllevel 6 (24-27)

0.00107227150876675, //harm

70

0.00107227150876675, //blade barrier
0.00107227150876675, //banishment
0.00107227150876675, //control undead
lllevel 7 (28-30)

0.179659120889645, //destruction

0, //greater restoration
0.00107227150876675, //regenerate
lllevel 8 (31-32)

0.192453440916937, //fire storm
0.00107227150876675, //earthquake
/Imisc 33

0.00105849392504315 //melee

|8

Weights after 1000 fights:

double[] weightArray = new double[]{ //weight of slis
/Nlevel 0 (0)

0.0010753808131337, //inflict minor wounds
lllevel 1 (1-3)

0.0010753808131337, //cure light wounds
0.0010753808131337, //inflict light wounds
0.0010753808131337, //bless

Illevel 2 (4-6)

0.0010753808131337, //cure moderate wounds
0.0010753808131337, //inflict moderate wounds
0.00708927450010023, //aid

lllevel 3 (7-12)

0.181634336998221, //cure serious wounds
0.0010753808131337, //inflict serious wounds
0, /Iremove blindness/deafness

0, /Iremove disease

0.0010753808131337, //dispel magic
0.0010753808131337, //animate dead

lllevel 4 (13-18)

0.195523784206128, //hammer of the gods
0.00197304550035285, //inflict critical wounds
0.0010753808131337, //[freedom of movement
0.0010753808131337, //cure critical wounds
0.145049563966445, //divine power
0.0010753808131337, //dismissal

lllevel 5 (19-23)

0.0010753808131337, //heal
0.0010753808131337, //slay living
0.0010753808131337, //flame strike
0.0010753808131337, //cirle of doom
0.0471079483502052, //spell resistance

71

lllevel 6 (24-27)
0.0010753808131337, //harm
0.0010753808131337, //blade barrier
0.0010753808131337, //banishment
0.0010753808131337, //control undead
lllevel 7 (28-30)
0.195523784206128, //destruction

0, //greater restoration
0.0010753808131337, //regenerate
lllevel 8 (31-32)
0.195523784206128, //fire storm
0.00691610017735052, //earthquake
/Imisc 33

0.0010753808131337 //melee

|8

72

Below are the results from a team of CCWW facingaan of FFCW. The FFCW team
used the default logic that comes with the NWN medihe columns on the left show
the results when the CCWW team used the default,ltige columns on the right show
the results when that team used the starting pgmthesized from the dynamic scripting
trials. The tables show the number of wins for@@&~NW team, along with the number
of draws, and the average remaining hit pointsHeropposing team. The opposing team

Appendix D: Results from NWN

had 434 hit points to start.
Each trial had 100 fights.

dynamic
default scripting
starting starting
point point
enemy enemy
trial # wins draws hp wins draws hp
1 2 2| 113.54 6 0 70.3
2 3 1] 13541 8 0 71.49
3 3 0| 128.22 4 1 71.97
4 4 1] 122.05 11 0 68.47
5 3 2 121.9 4 0 73.23
6 1 2| 130.52 5 0 68.97
7 3 0| 111.36 10 0 70.95
8 4 0| 112.33 6 0 72.03
9 7 2| 109.21 8 0 64.64
10 7 2 96.89 10 0 70.09
11 2 1] 116.92 6 2 70.5
12 2 2| 118.45 12 0 64.59
13 3 3 95.25 5 0 76.33
14 2 0| 120.25 10 0 63.95
15 5 0| 115.56 12 1 67.14
average 3.4 116.524 7.8 69.64333
variance 2.91 114.15 7.63 11.08
standard
deviation 1.7 10.68 2.76 3.33

Table 17: Results from CCWW v FFCW

73

Appendix E: Code Samples from NWN

The following samples come from scripts that shipped with the NWN game.

Code Sample 1:

/I Tries to cast a summoning spell as high as possible, at least when there

/l'is not yet as creature summoned, unless that creature almost dead and

/I currently inactive. Gate will not be cast this way, because for Gate the

/I whole party should be protected against evil. This can be checked and added,
/I of course.

int CastHighSummon(object oEnemy)

{
location locTarget = GetLocation(OBJECT_SELF);

object oSummoned = GetAssociate(ASSOCIATE_TYPE_SUMMONED);
if (GetlsObjectValid(oSummoned)) // There is a summoned creature
if (!GetlsEnemy(oSummoned))

if (GetCurrentHitPoints(oSummoned) * 4 < GetMaxHitPoints(oSummoned)) // And it has
at least 25% of HP left
return FALSE;

if ({(GetHasEffect(EFFECT_TYPE_SLEEP, oSummoned) || / And it is useful
GetHasEffect(EFFECT_TYPE_STUNNED, oSummoned) ||
GetHasEffect(EFFECT_TYPE_TURNED, oSummoned) ||
GetHasEffect(EFFECT_TYPE_CHARMED, oSummoned) ||
GetHasEffect(EFFECT_TYPE_CONFUSED, oSummoned) ||
GetHasEffect(EFFECT_TYPE_DOMINATED, oSummoned) ||
GetHasEffect(EFFECT_TYPE_FRIGHTENED, oSummoned)))
return FALSE;
}
}

if (GetlsObjectValid(oEnemy))
{
vector vTarget = GetPosition(oEnemy);
vector vSource = GetPosition(OBJECT_SELF);
vector vDirection = vTarget - vSource;
float fDistance = VectorMagnitude(vDirection) / 2.0f;
vector vPoint = VectorNormalize(vDirection) * fDistance + vSource;
locTarget = Location(GetArea(OBJECT_SELF), vPoint, GetFacing(OBJECT_SELF));

}
if (GetHasSpell(SPELL_ELEMENTAL_SWARM))

ClearAllActions();

sRuleText +=" (Elemental Swarm)";

ActionCastSpellAtLocation(SPELL_ELEMENTAL_SWARM, locTarget);
return TRUE;

74

if (GetHasSpell(SPELL_SUMMON_CREATURE_IX))

ClearAllActions();

sRuleText +=" (Summon Creature 1X)";

ActionCastSpellAtLocation(SPELL_SUMMON_CREATURE_IX, locTarget);
return TRUE;

}
if (GetHasSpell(SPELL_CREATE_GREATER_UNDEAD))

ClearAllActions();

sRuleText +=" (Create Greater Undead)";

ActionCastSpellAtLocation(SPELL_CREATE_GREATER_UNDEAD, locTarget);
return TRUE;

}
if (GetHasSpell(SPELL_GREATER_PLANAR_BINDING))

ClearAllActions();

sRuleText +=" (Greater Planar Binding)";

ActionCastSpellAtLocation(SPELL_GREATER_PLANAR_BINDING, locTarget);
return TRUE;

}
if (GetHasSpell(SPELL_SUMMON_CREATURE_VIII))

ClearAllActions();

sRuleText +=" (Summon Creature VIII)";

ActionCastSpellAtLocation(SPELL_SUMMON_CREATURE_VIII, locTarget);
return TRUE;

}
if (GetHasSpell(SPELL_MORDENKAINENS_SWORD))

ClearAllActions();

sRuleText +=" (Mordenkainen's Sword)";

ActionCastSpellAtLocation(SPELL_MORDENKAINENS SWORD, locTarget);
return TRUE;

}
if (GetHasSpell(SPELL_SUMMON_CREATURE_VII))

ClearAllActions();

sRuleText +=" (Summon Creature VII)";

ActionCastSpellAtLocation(SPELL_SUMMON_CREATURE_VII, locTarget);
return TRUE;

}
if (GetHasSpell(SPELL_PLANAR_BINDING))

ClearAllActions();

sRuleText +=" (Planar Binding)";

ActionCastSpellAtLocation(SPELL_PLANAR_BINDING, locTarget);
return TRUE;

if (GetHasSpell(SPELL_SHADES_SUMMON_SHADOW))

}

ClearAllActions();

sRuleText +=" (Summon Shadow)";

ActionCastSpellAtLocation(SPELL_SHADES SUMMON_SHADOW, locTarget);
return TRUE;

if (GetHasSpell(SPELL_SUMMON_CREATURE_VI))

}

ClearAllActions();

sRuleText +=" (Summon Creature VI)";

ActionCastSpellAtLocation(SPELL_SUMMON_CREATURE_VI, locTarget);
return TRUE;

if (GetHasSpell(SPELL_LESSER_PLANAR_BINDING))

}

ClearAllActions();

sRuleText +=" (Lesser Planar Binding)";

ActionCastSpellAtLocation(SPELL_LESSER_PLANAR_BINDING, locTarget);
return TRUE;

if (GetHasSpell(SPELL_GREATER_SHADOW_CONJURATION_SUMMON_SHADOW))

ClearAllActions();
sRuleText +=" (Greater Shadow Conjuration)";
ActionCastSpellAtLocation(

SPELL_GREATER_SHADOW_CONJURATION_SUMMON_SHADOW, locTarget);

}

return TRUE;

if (GetHasSpell(SPELL_SUMMON_CREATURE_V))

}

ClearAllActions();

sRuleText +=" (Summon Creature V)";

ActionCastSpellAtLocation(SPELL_ SUMMON_CREATURE_V, locTarget);
return TRUE;

if (GetHasSpell(SPELL_ANIMATE_DEAD))

}

ClearAllActions();

sRuleText +=" (Animate Dead)";

ActionCastSpellAtLocation(SPELL_ANIMATE_DEAD, locTarget);
return TRUE;

if (GetHasSpell(SPELL_SUMMON_CREATURE_IV))

ClearAllActions();

sRuleText +=" (Summon Creature 1V)";

ActionCastSpellAtLocation(SPELL_SUMMON_CREATURE_1V, locTarget);
return TRUE;

76

}
if (GetHasSpell(SPELL_SUMMON_CREATURE_II))

ClearAllActions();

sRuleText +=" (Summon Creature III)";

ActionCastSpellAtLocation(SPELL_SUMMON_CREATURE_III, locTarget);
return TRUE;

}
if (GetHasSpell(SPELL_SUMMON_CREATURE_II))

ClearAllActions();

sRuleText +=" (Summon Creature I1)";

ActionCastSpellAtLocation(SPELL_SUMMON_CREATURE_I, locTarget);
return TRUE;

}
if (GetHasSpell(SPELL_SUMMON_CREATURE_|))

ClearAllActions();

sRuleText +=" (Summon Creature 1)";

ActionCastSpellAtLocation(SPELL_SUMMON_CREATURE _|, locTarget);
return TRUE;

}

return FALSE;
}

Code Sample 2:

/I HIGH Priority rules. These rules are fairly specific, but can be used

/[in general at any time during combat. They are executed in specific

/I circumstances or use talents in a specific way, to ensure that

/l the talents a creature has, when they are employed, are employed as
/I effectively as possible.

/I Still added must be: CastHighBreach (to break through enemy magical
/I defenses), CastHighBless (to add good effects to friends),

/I Shapechanging spells, Domination spells, Curse removal spells, and
/I Invisibility.

if (iIRule < HIGHEST_PRIORITY_COUNT + HIGH_PRIORITY_COUNT)

{
iSwitchValue = iRule - HIGHEST_PRIORITY_COUNT;

switch (iSwitchValue)
{
case O:
<several lines removed for clarity>

case 1:
if (IsMage(oCreature) ||
IsPriest(oCreature) ||
HasClass(oCreature, CLASS _TYPE_UNDEAD) ||
HasClass(oCreature, CLASS_TYPE_OUTSIDER) ||
HasClass(oCreature, CLASS_TYPE_CONSTRUCT) ||

HasClass(oCreature, CLASS_TYPE_ELEMENTAL) ||
IsGeneralClass(oCreature))

if (IJustCheck)

return TRUE;
sRuleText = "CastHighSummon(oNearest)";
return CastHighSummon(oNearest);

}

break;

case 2:

if (IsMage(oCreature) ||
IsPriest(oCreature) ||
HasClass(oCreature, CLASS_TYPE_UNDEAD) ||
HasClass(oCreature, CLASS _TYPE_OUTSIDER) ||
HasClass(oCreature, CLASS _TYPE_CONSTRUCT) ||
HasClass(oCreature, CLASS TYPE_ELEMENTAL) ||
IsGeneralClass(oCreature))

if (IJustCheck)
return TRUE;

if (GetlsObjectValid(oNearestWizard))

{
sRuleText = "CastHighSummon(oNearestWizard)";
return CastHighSummon(oNearestWizard);

else if (GetlsObjectValid(oNearestPriest))

{
sRuleText = "CastHighSummon(oNearestPriest)";
return CastHighSummon(oNearestPriest);

}
}

break;

case 3:

if (IsMage(oCreature) ||
IsPriest(oCreature) ||
HasClass(oCreature, CLASS _TYPE_UNDEAD) ||
HasClass(oCreature, CLASS _TYPE_OUTSIDER) ||
HasClass(oCreature, CLASS TYPE_CONSTRUCT) ||
HasClass(oCreature, CLASS _TYPE_ELEMENTAL) ||
IsGeneralClass(oCreature))

if (IJustCheck)
return TRUE;
sRuleText = "CastHighDamageAreaEffect(oNearest)";
return CastHighDamageAreaEffect(oNearest);
}
break;
<several lines removed for clarity>

Code Sample 3:

/I If the fight is still going on, update the counters of those that
/I are still allive. | originally did this in the heartbeats of the
/I opponents themselves, but the heartbeats don't fire if they are

/I dazed or something.
if (nFight)

/I Execute curse if necessary
int iDoCurse = GetLocallnt(OBJECT_SELF, "DO_CURSE");

if (iDoCurse)
SetLocallnt(OBJECT_SELF, "DO_CURSE", 0);
string sTarget = "BLANCHE";

/I Addition
if (iDoCurse < 2)
sTarget = "NERA";

oWhite = GetNearestObjectByTag(sTarget, OBJECT_SELF);

effect eCurse = EffectCurse(CURSE_PENALTY, CURSE_PENALTY,
CURSE_PENALTY, CURSE_PENALTY, CURSE_PENALTY, CURSE_PENALTY);

effect evisStun = EffectVisualEffect(VFX_DUR_MIND_AFFECTING_DISABLED);

effect evisStunimp = EffectVisualEffect(VFX_IMP_STUN);

intk=1;

while (GetlsObjectValid(oWhite))

{
ApplyEffectToObject(DURATION_TYPE_INSTANT, evisStunimp, oWhite);
ApplyEffectToObject(DURATION_TYPE_TEMPORARY, eCurse, oWhite, 60.0);
ApplyEffectToObject(DURATION_TYPE_TEMPORARY, evisStun, oWhite, 60.0);
++k;
oWhite = GetNearestObjectByTag(sTarget, OBJECT_SELF, k);

}

}

oWhite = GetNearestObjectByTag("BLANCHE");
object oSign;
inti=1,

while (GetlsObjectValid(oWhite))
{
0Sign = GetNearestObjectByTag("SIGN_" + GetResRef(oWhite));
if (GetlsObjectValid(0Sign))
SetLocallnt(0Sign, "END_ROUND_NUMBER", GetLocallnt(0Sign,
"END_ROUND_NUMBER") +1);
++i;
oWhite = GetNearestObjectByTag("BLANCHE", OBJECT_SELF, i);

}

i=1;

while (GetlsObjectValid(oBlack))
{

0Sign = GetNearestObjectByTag("SIGN_" + GetResRef(oBlack));
if (GetlsObjectValid(0Sign))
SetLocallnt(0Sign, "END_ROUND_NUMBER", GetLocallnt(0Sign,
"END_ROUND_NUMBER") +1);
++i;
oBlack = GetNearestObjectByTag("NERA", OBJECT_SELF, i);
}

79

}

/I Check how the current fight is going, but do this only once
/I a minute, otherwise it might take too much time.

if (nFight && ((nHeartbeat%10) == 0))

{

Il lgor checks nothing if it's a fight from the player against one
/I of the opponents.

object oGong = GetObjectByTag("GONG");

int iFightWhite = GetLocallnt(oGong, "FIGHT_WHITE");

int iFightBlack = GetLocallnt(oGong, "FIGHT_BLACK");

if (iFightWhite || iFightBlack)
return;

Il First check if there is at least one of the opponents visible.
inti=1,
int iISomeoneVisible = FALSE;
oWhite = GetNearestObjectByTag("BLANCHE");
while (GetlsObjectValid(oWhite))
{
if (!(GetHasSpellEffect(SPELL_INVISIBILITY, oWhite) ||
GetHasSpellEffect(SPELL_IMPROVED_INVISIBILITY, oWhite)))

{
iSomeoneVisible = TRUE;

break;

}

++i;
oWhite = GetNearestObjectByTag("BLANCHE", OBJECT_SELF, i);
}

if (ISomeoneVisible)
return;

i=1;
oBlack = GetNearestObjectByTag("NERA");
while (GetlsObjectValid(oBlack))

if (I(GetHasSpellEffect(SPELL_INVISIBILITY, oBlack) ||
GetHasSpellEffect(SPELL_IMPROVED_INVISIBILITY, oBlack)))

{
iSomeoneVisible = TRUE;

break;

}

++i;

oBlack = GetNearestObjectByTag("NERA", OBJECT_SELF, i);
}

if (ISomeoneVisible)
return;

Il Since everyone is invisible, Igor will remove the effects from everyone.

ClearAllActions();

80

/I Flag that Igor is busy and should not be interrupted.
SetLocallnt(OBJECT_SELF, "BUSY", 1);

SpeakString("You are unable to see each other, ladies. Let me correct that.");

i=1;

oWhite = GetNearestObjectByTag("BLANCHE", OBJECT_SELF, 1);

while (GetlsObjectValid(oWhite))

{
RemoveSpecificEffect(EFFECT_TYPE_INVISIBILITY, oWhite);
RemoveSpecificEffect(EFFECT_TYPE_IMPROVEDINVISIBILITY, oWhite);
++i;
oWhite = GetNearestObjectByTag("BLANCHE", OBJECT_SELF, i);

}

i=1;

oBlack = GetNearestObjectByTag("NERA", OBJECT_SELF, 1);

while (GetlsObjectValid(oBlack))

{
RemoveSpecificEffect(EFFECT_TYPE_INVISIBILITY, oBlack);
RemoveSpecificEffect(EFFECT_TYPE_IMPROVEDINVISIBILITY, oBlack);
++i;
oBlack = GetNearestObjectByTag("NERA", OBJECT_SELF, i);

}

Code Sample 4:

/] Tries to cast a cursing spell as high as possible at a single enemy. The

/I lowest level spells are not used here because they usuallu have less effect
/[than a simple physical attack.

int CastHighCurse(object oEnemy)

if (IGetlsObjectValid(oEnemy))
return FALSE;

if (IGetlIsEnemy(oEnemy))
return FALSE;

float iDistance = GetDistanceToObject(oEnemy);
if (iDistance < 0.0)
return FALSE;

if (GetHasSpell(SPELL_ENERGY_DRAIN) &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_DEATH) &&
IProtectedAgainstSpells(oEnemy, 9))

{
ClearAllActions();
ActionCastSpellAtObject(SPELL_ENERGY_DRAIN, oEnemy);
return TRUE;

}

if (GetHasSpell(SPELL_POWER_WORD_STUN) &&
GetCurrentHitPoints(oEnemy) <= 150 &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_STUN) &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_MIND_SPELLS) &&

81

IProtectedAgainstSpells(oEnemy, 7))

ClearAllActions();

sRuleText +=" (Power Word: Stun)";

ActionCastSpellAtObject(SPELL_POWER_WORD_STUN, oEnemy);
return TRUE;

}

if (GetHasSpell(SPELL_FEEBLEMIND) &&
HasClass(oEnemy, CLASS_TYPE_WIZARD) &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_MIND_SPELLS) &&
IProtectedAgainstSpells(oEnemy, 5))

ClearAllActions();

sRuleText +=" (Feeblemind)";

ActionCastSpellAtObject(SPELL_FEEBLEMIND, oEnemy);
return TRUE;

}

if (GetHasSpell(SPELL_ENERVATION) &&
iDistance < DISTANCE_SHORT &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_DEATH) &&
IProtectedAgainstSpells(oEnemy, 4))

ClearAllActions();

sRuleText +=" (Enervation)";

ActionCastSpellAtObject(SPELL_ENERVATION, oEnemy);
return TRUE;

}

if (GetHasSpell(SPELL_BESTOW_CURSE) &&
iDistance < DISTANCE_SHORT &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_CURSED) &&
IProtectedAgainstSpells(oEnemy, 3))

ClearAllActions();

sRuleText +=" (Bestow Curse)";

ActionCastSpellAtObject(SPELL_BESTOW_CURSE, oEnemy);
return TRUE;

}

if (GetHasSpell(SPELL_HOLD_PERSON) &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_MOVEMENT_SPEED_DECREASE) &&
IProtectedAgainstSpells(oEnemy, 2))
{
ClearAllActions();
sRuleText +=" (Hold Person)";
ActionCastSpellAtObject(SPELL_HOLD_PERSON, oEnemy);
return TRUE;

}

if (GetHasSpell(SPELL_GHOUL_TOUCH) &&
iDistance < DISTANCE_SHORT &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_DEATH) &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_PARALYSIS) &&
IProtectedAgainstSpells(oEnemy, 2))

82

ClearAllActions();

sRuleText +=" (Ghoul Touch)";

ActionCastSpellAtObject(SPELL_GHOUL_TOUCH, oEnemy);
return TRUE;

}

if (GetHasSpell(SPELL_BLINDNESS_AND_DEAFNESS) &&
IsMage(oEnemy) &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_BLINDNESS) &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_DEAFNESS) &&
IProtectedAgainstSpells(oEnemy, 2))

ClearAllActions();

sRuleText +=" (Blindness and Deafness)";

ActionCastSpellAtObject(SPELL_BLINDNESS AND_DEAFNESS, oEnemy);
return TRUE;

}

if (GetHasSpell(SPELL_SCARE) &&
GetHitDice(oEnemy) <=5 &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_FEAR) &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_DEATH) &&
IProtectedAgainstSpells(oEnemy, 1))

ClearAllActions();

sRuleText +=" (Scare)";

ActionCastSpellAtObject(SPELL_SCARE, oEnemy);
return TRUE;

}

if (GetHasSpell(SPELL_RAY_OF_ENFEEBLEMENT) &&
GetAbilityScore(oEnemy, ABILITY_STRENGTH) > 14 &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_DEATH) &&
IProtectedAgainstSpells(oEnemy, 1))

ClearAllActions();

sRuleText +=" (Ray of Enfeeblement)";

ActionCastSpellAtObject(SPELL_RAY_OF ENFEEBLEMENT, oEnemy);
return TRUE;

}

if (GetHasSpell(SPELL_DOOM) &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_MIND_SPELLS) &&
IProtectedAgainstSpells(oEnemy, 1))
{
ClearAllActions();
sRuleText +=" (Doom)";
ActionCastSpellAtObject(SPELL_DOOM, oEnemy);
return TRUE;

}

if (GetHasSpell(SPELL_ENTANGLE) &&
I(IsMage(oEnemy) || IsPriest(oEnemy)) &&
IGetlsimmune(oEnemy, IMMUNITY_TYPE_ENTANGLE) &&
IProtectedAgainstSpells(oEnemy, 1))

83

ClearAllActions();

sRuleText +=" (Entangle)";

ActionCastSpellAtObject(SPELL_ENTANGLE, oEnemy);
return TRUE;

}

return FALSE;
}

Code Sample 5:

switch (GetLastSpellCastClass())
{

case 10: //wizard
if (GetHasSpell(SPELL_HORRID_WILTING))

ClearAllActions();

ActionCastSpellAtLocation(SPELL_HORRID_WILTING, locTarget);
PrintString(" cast horrid wilting ");

return ;

}
if (GetHasSpell(SPELL_CHAIN_LIGHTNING))

ClearAllActions();

ActionCastSpellAtObject(SPELL_CHAIN_LIGHTNING, oEnemy);
PrintString(" cast chain lightning ");

return ;

}
if (GetHasSpell(SPELL_ICE_STORM))

ClearAllActions();

ActionCastSpellAtLocation(SPELL_ICE_STORM, locTarget);
PrintString(" cast ice storm ");

return ;

}
if (GetHasSpell(SPELL_EVARDS_BLACK_TENTACLES))

ClearAllActions();

ActionCastSpellAtLocation(SPELL_EVARDS BLACK_TENTACLES, locTarget);
PrintString(" cast evards black tentacles ");

return ;

}
if (GetHasSpell(SPELL_MELFS_ACID_ARROW))

ClearAllActions();

ActionCastSpellAtObject(SPELL_MELFS_ACID_ARROW, oEnemy);
PrintString(" cast melf's acid arrow ");

return ;

84

break;

Hlend switch

85

Appendix F: Wizard and Sorcerer spells

The following are the default spells availabletie two character classes. There is a large
amount of overlap in the spells available to the#asses, which allows a script that is
created in from class be used by the other.

Spell Level | Wizard (Level 15) Sorcerer (Level 15)
0 Daze Daze
Light Light
Ray of Frost Ray of Frost
Resistance Resistance
1 Mage Armor Mage Armor
Summon Creature | Summon Creature |
Magic Missile Magic Missile
Identify Identify
Sleep Sleep
2 Ghostly Visage Ghostly Visage
Melf's Acid Arrow Melf's Acid Arrow
Summon Creature I Summon Creature I
Invisibility Invisibility
Knock Knock
3 Fireball Fireball
Clarity Clarity
Summon Creature Il Summon Creature Il
Haste Haste
Dispel Magic
4 Stoneskin Stoneskin
Elemental Shield Elemental Shield
Evard's Black Tentacles Evard's Black Tentacles
Ice Storm Ice Storm
Minor Globe of Invulnerability
5 Lesser Spell Mantle Lesser Spell Mantle
Summon Creature V Summon Creature V
Cloudkill Cloudkill
Greater Shadow Conjuration Greater Shadow Conjuration
6 Chain Lightning Chain Lightning
Greater Spell Breach Greater Spell Breach
Summon Creature VI Summon Creature VI
7 Mordenkainen's Sword Mordenkainen's Sword
Spell Mantle Spell Mantle
8 Horrid Wilting (none)

Table 18: Comparison of Wizard and Sorcerer spells

86

Appendix G: Bayesian Networks in Games

Many games use static terrain with fixed reconsimacof areas that a player leaves and
later revisits. This can result in noticeable difeces between the reconstructed area and
the player’s recollections (or expectations). Thaifferences can lessen a player’'s
immersion in the game, or the usefulness of thellsiion. We propose an approach for
environmental reconstruction that uses Bayesiamwblés to quickly and easily calculate
likely effects that external factors have on theiemment. The reconstruction of
revisited areas becomes less disconcerting andifgeima incorporation of plausible
changes based on unobserved, yet reasonably edp@ets that could have occurred
during the player’'s absence. Once these Bayesiamdies have been created, we show
how they can also be used to model an agent’sfbairewhat happened in the
environment, and to possibly help control the ageattions. We conclude with
screenshots and a discussion of an implementatocr@ated that uses Bayesian
Networks to recreate different environments.

Introduction

The motivation behind this section is to have aviéleof-Detail Artificial Intelligence”
(LODAI) [Bro02] approach to determine what an asbauld look like when a player
revisits an area in a game. Many games allocateRig time for events unfolding outside
a player’s view. For example, if you break winddwshe game “Fablé” and then leave
the zone and come right back, the windows wilballreplaced. If you were to stay in the
area and watch, the windows will not get fixed. §¢ngames can have the result that if
the player is watching, one thing happens, andeflayer is not watching, a different set
of events occur. This disconnect can be undesiralames and simulations. At the
other extreme, games like “Oblivichkeep track of a great number of changes in the
environment. For instance, an apple dropped inMarket District will remain there
throughout the game, unless the player picks ittupever rots or gets removed by
another game character. A LODAI approach mightausmall amount of CPU time to
update the world that is outside the player’s v@sfiodically. Using such an approach in
the window-breaking example, if the player camekbato the area immediately, there
would be no change (all of the windows would $télbroken). After a long period of
time, everything might be back to normal (all of thindows would be replaced). At an
intermediate point in time, a plausible intermeglistate could be represented (after a few
days, the windows on the expensive homes coulefiaced, while the other windows
would still be broken, or boarded up). In the cala dropped perishable item (or a
valuable item dropped in a public place), the cleasfdat remaining would decrease with
time. In addition to coming up with a quick waydstermining what a region that a
player is returning to might look like, we will slvdhat it will also be possible to re-use
the structures that made this possible to havereifit agents in the game reason about
and act on what caused the current state of their@ament.

http://lionhead.com/Fable/Fable/
http://www.bethsoft.com/eng/games/games_oblivianlht

2

87

Bayesian Networks

A Bayesian Network (BN) is a data structure that lsa used to represent dependencies
among variables and to give a concise specificaifanjoint probability distribution. A
BN is a directed acyclic graph with the variablegresented as nodes in the graph, with
an edge between a parent node and a child nolde farent node directly influences the
child node. It is usually easy for a domain expedecide what influences exist in the
domain. A BN representation can take much lessesfmspecify than a joint probability
distribution, and can also be easier to repre€amrniak [1991] provides a good
introduction to BNs. A Dynamic Bayesian Networkai8N that represents a temporal
probability model. A Dynamic Bayesian Network canused model the environment
over many time slices. At each time slice, thealalgs have parent nodes that are in its
own time slice, or in the time immediately precedita We discuss our BN later in this
paper.

We chose to use a BN to reconstruct the environisiane it is easy to model many
independent variables efficiently, and it is quickcalculate the desired probabilities
given the available information. Once the BN hasrbereated, we realized that it could
be also be used to determine what an agent belabas the local environment and
events that may have recently occurred there.

Using Bayesian Networks to Reconstruct the Environm ent

We used the Microsoft Bayesian Network Editmr model the BN, which can
subsequently be used to determine what type diteto draw when a player walks into
an area that he or she has not visited for a wB#&eral nodes could affect the terrain
that would be ultimately drawn. Nodes can direeffgct other nodes (a fire in an area
would affect the amount of plants in the areajndirectly affect other nodes (a dragon

in the area can set fires, which affect the plamsgcipitation, the temperature, and the
creatures that are present in an area, etc. caaal an effect on what the region should
look like when the player enters an area.

As a simple example, a game could have a BN thatdiafall and temperature as nodes
that each could be in one of three states (lowaar tftormal, normal, higher than normal).
There could also be a node for whether or not thexea dragon in the area. A node for
fires could exist that has precipitation, tempagtand dragon as parent nodes.
Generally speaking there will more likely to beeérin an area if there is a dragon around,
if the temperatures are higher than normal, drefgrecipitation is lower than normal.
There could also be a node for plant growth witle¢tstates (lower than normal, normal,
and higher than normal). The plants in the areadvgrow best with higher
temperatures, lots of precipitation, and no fireghie area. The final node in this example
indicates whether or not animals have gone migsitige area. Animals are more likely
to go missing in a region if there is a dragoria area. The network is shown below in
Figure 21, and the values used in one of the nadeshown in Figure 22.

8 http://research.microsoft.com/en-us/um/redmond/gstadapt/msbnx/

88

e o —
i o o
- e -

— -

—— e

__,f')‘ -\-\--\-""--.__ ____,--"--f_’
F.3 x =
@ MissingAnimals
P
d _

L ——

¥

@i

Figure 21: A sample Bayesian Network
Once this network has been set up in a game, thieoement in the area can quickly and
easily be updated while the character is not iratie@a. The server can either provide the
top-level states of what happened, or they cambdamly generated. For example, if the
player’s character has not ventured into a cedssa in a given month, the server could
spend a small amount of CPU time to update the &iest it could examine the last state
of that area, and then determine what the staté®iBN should be. It would determine
what the temperature and precipitation was, andhvener not there was a dragon in the
area. In this example, the temperature and pratimit might be randomly determined,
but for reasons to advance the storyline of theegdah®e ‘dragon present’ node might be
set to ‘yes’. Once these nodes are given valuegetmaining nodes can easily be
determined by looking at the probability tablesoassted with each node. For example if
the temperature and precipitation were normal,thace was a dragon in the area, there
would be an 80% chance of a fire occurring in tiegion (look near the middle of Figure

2 for this value).

Parent Hode{s} Fire
Temperature | Precipitation | Dragon Yes Ho bar chartz

] Yes |03 |01 |

o No || 0.01 0.33
Yes |08 |02 |

o Hermal No || 0.01 0.33
. Yes || 05 o5

High No || 0.0 1.0
] Yes |03 |01 |

o No || 01 0.9 B

Yes |08 |02 |

M armal M armal Ho o0 09
. Yes || 05 o5

High No || 0.01 0.33
] Yes |03 |01 |
™ TR {0703 |
. Yes |08 |02 |

High M armal Ho i 03 .

. Yes || 05 05

High No || 0.05 0.95

Figure 22: Probabilities used for "Fire" node in Figure 21
Once we determined if there were fires in the nedfor this example, we will assume
that we picked a number less than 80% so there fives}, we can determine what kind

89

of plant growth occurred in the area. In our nekydrthere is normal temperature,
normal precipitation, and fires are in the area,glant growth in the area is 60% likely to
be low, 30% likely to be normal and 10% likely te ligh. All that is required to
determine the amount of plant growth in the arda j@ick a random number and a
lookup the value in the table.

Once the states that the environment should beeinaculated, the game could use that
information to determine what the player will adlyaee. As games can vary quite
significantly, an exact implementation of how tadafe what the player sees would have
to depend on the individual game, and is beyongtiope of this paper; however, a
possible implementation follows. In a given aredemrmormal conditions, the ground can
be covered with healthy green grass and a heakkycbuld be drawn. In times of little
rainfall and high temperatures, the grass couldrben using a yellow colour, and
instead of using a ‘healthy-tree’ model, an ‘unti@atree’ model could be used. If we
determined that there was low plant growth in @&aawe might not update the
environment at all, whereas if there was high ptaotvth in an area, we might scale the
tree models by a small amount, so they appeante gi@wn, and we might draw some
small bushes in an area to show new growth. Imaa@d winter with high precipitation,
snow can be covering the ground instead of grasksaanodel of the tree with snow on
the branches can be used. It would make it singpletégrate an approach like this into a
game, since there would be little chance of negatiteractions with other parts of the
game. For example, if the non-player characteesgame use waypoints to find their
way around, the same waypoints could be used tigat@varound the tree, regardless of
what model of the tree the player sees.

This approach does not have to be limited to ‘s#ialireconstruction of the environment.
In the game Fable, your character’'s appearancegelsarased on your actions — a very
evil person will have horns growing out of his he@bere is nothing stopping a game
that uses a BN approach to give clues to the pliyeugh the environment. For
example, if there is an evil wizard living in a texythe vegetation in the surrounding area
could appear sick and dying. Once the evil wizas heen driven away, the plants can
appear healthy and vibrant again.

This approach could also take into account theastof the characters in the game when
determining the environment to draw. If there wdmsawl in a tavern recently, a player
who wanders into the room might see evidence ofdébent fighting (broken glass and
furniture). After a period of time, however, thed¢an would go back to normal, and there
would be little evidence for the player to see thate was a fight. If there was a battle
recently between a mad wizard who likes to casbétls and a bunch of goblins, a player
wandering into the area would see that the grosubickened, and that there are some
corpses on the ground.

Difficulties with this approach

Implementing this kind of solution in a game witlmae with additional costs. There is the
knowledge engineering cost with using this kindpproach: many game programmers
will be unfamiliar with BNs, so there will be a le#ng curve to overcome. Coming up
with the structure of the network can be relativedgy by examining the effects various
factors have on each other; however, it might &akar bit of tuning to get realistic or
reasonable probabilities. It would detract fromaang if the BN that was used creates an

90

environment that varies greatly from what the cbmaexpects. Testing must be done
with the BN to ensure that a small drought doesunot an ancient forest into a desert.
The values that we assigned to the nodes in ouwBi¢ generated by hand. Depending
on how complex you make your network, it might takeonsiderable amount of time to
enter in all of the values and test them. The guaals is, once you have acceptable
results for one area, it should be easy to reuse BN in similar areas with little
modification. An area in a game that should be dew# require a different BN than an
area that should be grasslands, but once you hBixethat gives you suitable results for
one grasslands area, you should be able to usgiassland areas throughout your game.
In addition to any difficulties in getting your Bfd produce acceptable outputs, there will
be additional work for the game’s artists to corpemith additional models. Instead of a
single tree for a certain location in the gamegsahMrees would need to be made. Based
on the BN, the game engine would pick which onepllager would see. In addition to

the extra time and effort to come up with the megd#iere would be additional storage
requirements to consider when installing the ganhés might not be a very large cost,
since many models can likely be reused in diffeezaas of the game. For example, if an
artist has to make several different models fohdese in a certain area, those models
can also be used for the trees in different areas.

There might also be additional costs and othercdities in keeping track of the player’s
actions. In a multiplayer game, several playersld/be able to simultaneously affect the
environment. It could be difficult to store all thfe data, so that each player can revisit an
area at a later date to see their effect on it. él@w, the data should not need to be stored
for very long. If a player is involved in a big Haton a certain day, the details of the area
can be aggregated when a certain time passeslagtplayer leaves the area. For
example, after a few days, the exact placemeriteobbdies can be discarded, and only
the number and the relative area can be keptelpthyer returns after a week, he or she
will likely remember that there was a battle in #rea, but not the exact placement of the
bodies. Even if the player notices that the bodresin a slightly different orientation, it
might be explained away by something else (persapgone coming by to search for
treasure).

In a single-player game, it might be possible regal years to go by in the game before
a player returns to an area. The BN should betalielatively easily recreate an
environment that the player believes is realistia massively multiplayer game, it is
unlikely that an area will remain unvisited for thang of a time. In the worst case, a
certain area might constantly have one player cierar another in the area. In this
situation, other approaches will likely have tothken, as using a BN to update the
environment would be inappropriate (since it waodddisturbing to the players if the
environment they are in suddenly changed for n@egy reason).

Using a Bayesian Network to model an agent’s belief s

Once the BN has been created, it can also be aseddify an agent’s beliefs of what
has actually happened in an area while they weegalor example, we can use the BN
from Figure 1 in our game we want to recreate a&zbat an agent has not visited for a
while. In this area, we calculate that the temp#eaaind precipitation has been in the
normal regions. Using the BN, we determine thatelage likely missing animals in the
region (90% probability), evidence of recent fi{86%), and lower than normal overall

91

plant growth (52%). Figure 23 shows the probakditihe server uses when recreating the

zone.
Mode Mame State0 |State1 |State 2
Dragon Yes Mo
1.0000 0.0000
Fire Yes Mo
0.8000 0.2000
MissingAnimals Yfes Mo
0.5000 0.1000
FlantGrowth Low Mosmal High
0.5200 0.3600 01200
Frecipitation Lo Mosrnal High _
0000 1.0000 00000
Temperature Lo Momal High
0,000 1.0000 00000

Figure 23: The probabilities the server uses
When the agent enters the zone, it sees that teree of recent fires and the sparse
vegetation. Using the same network, the agent sannierence to calculate that there is
likely not a dragon in the area (approximately 7d8ance), and that the fires were likely
caused by low precipitation and high temperatuapgproximately 69% and 66%,
respectively). The agent’s initial beliefs of thene are shown in Figure 24. At this point,
the agent is only sure that there were fires iratlea recently and that there was not much
plant growth. Inference was used to determine thbabilities of the other nodes.

Node Name State@ |Statel | State 2
Dragon Tes Mo
0.2915 07085
Fire Yes Mo
1.0000 0.0000
Missinghnimals Yes Ho
02978 07022
FlartGrawth Low MNosmal High
1.0000 0.0000 0.0000
Precipitation Low Momal High
0.6850 02248 0090z
Temperature Low Mommal — High
01160 02274 0. B5EE
Figure 24: The agent’s initial beliefs

Later on, after talking to a farmer who mentioret tsome of his livestock has been

disappearing lately without a trace, the agent texlhis beliefs. Starting with the same
evidence as above, and then setting the "MissinghAls" node to true, the agent infers
that the chance of a dragon being in the area jumpe just over 88%, which makes the
agent a little nervous. The agent’s updated betisfsshown in Figure 25.

92

Mode Name State0 |Statel | State 2
Dragon Tes Mo

0.3811 01189
Fire es Mo

1.0000 0.0000
Mizsingdnimals Yes Mo

1.0000 0.0000
FlartGrewth Low Meemal High

1.0000 0.0000 00000
Precipitation Low Mosmal High

04448 0.3863 01689
Temperature Low Momal High

02991 03601 03409

Figure 25: The agent’s updated beliefs
The BNs that the agents use to infer what happeas area do not have to exactly match
the networks used to update the environment. Famele, the agents in an area might
have a simpler model of the world than what youfoseeconstructing the environment.
A character might not believe in dragons, so whesgnted with evidence of increased
fires, he might explain it away either by dry, laather, lightning strikes, or even that
humans might have started them. A different charanight use the same nodes as the
BN used to reconstruct the environment, but hafferént beliefs about what the
probabilities should be. Using the same exampla fiiagure 1, if a character
overestimates the chance of a dragon being inrdee that character is much more likely
to blame any fires that happen on dragons. Althaughpossible to have several
different networks for different agents to reasbouw the world, creating and testing
them would involve extra work, which detracts sorhatfrom the simplicity of this
approach.
One additional benefit of this approach is thatedént agents might come to different
conclusions when they view the same evidence.dfdagents were presented with the
same evidence as in Figure 25, one might belieaealiragon is in the area, but the other
might not (the server picks a random number of uB8&s for the first agent, so he
believes that there is a dragon in the area, aaddom number of over 88% for the
second one, so he does not believe there is amiadbe area). By having the agents in
the game act in different ways because of thefetinit views might make the player
think they are doing much more complex reasoniag they actually are. The
differences in the ways that the agents reactditnations around them may also add to
the replayability to a game, as the player will betable to completely predict how
everyone will react to a certain event.

Controlling Agents with Bayesian Networks

At a high level, a BN can be used to model an agieetiefs. After an agent views its
surroundings and updates its beliefs on what hppdreed in the area, the agent can also
use a probabilistic model to determine its actidmstead of using a finite state machine
(FSM) or similar tool as is common in games to duiee the actions of a character, a
BN can be used not only to calculate the charatelisfs, but also to decide what
actions the character takes. Using a BN to modafeeand control behaviours has the
advantages of being quick to compute, easy to madel can provide behaviours that are
realistic without being recurring or predictable.

93

As an example, a game has a guard patrolling an &he goal of the player is to get into
a building in the area that the guard is patrolli@ge approach that a game might take
would be to have the guard controlled by a finiegesmachine or even a push down
automata (both described in [Yis04], with patrotl amvestigate states. The benefits of
this approach are that it is easy to understarde,cand debug; however it does have
drawbacks. A guard can easily get caught doingd#nee thing over and over again,
which can detract from the realism of the game. ¥aw imagine the following scenario
occurring in a game: A character makes a loud nefsi trying break into the building.
The guard (using the FSM in Figure 26) hears gwstches from "patrol" to

"investigate". The player hides since he heargitteed coming to investigate, after a
while, the guard decides there is no one theregaed back to "patrol” from
"investigate". The problem with a finite state miaehis this scenario can occur several
times, and after a while one would likely thinktitlais behaviour is unrealistic. After the
fifth time the player makes a noise in an area,tmpesple would not think it is realistic
for a guard to investigate the area for the sameuainof time as the previous four
occurrences, and most people would expect the gaatd a more thorough investigation
of the area, or even perform a different actionil&/an improved behaviour can certainly
be modeled with a more sophisticated finite stageline, the purpose of the approach
proposed in this paper is to be able to represent sophisticated behaviours easily.

+—— ;
T_ﬂ.‘:e o
—b =

N

Figure 26: A FSM to control a guard
Let us use our approach in the example. The plaakes a noise which the guard hears.
This raises the suspicion level in the guard. Tierd investigates, finds nothing, and
returns to patrolling. When the guard hears nailsgsg subsequent rounds, the guard
can end up investigating longer, since his suspil@egel was already raised. This can be
modeled by having a simple Bayesian Network withuspicion"” state. The suspicion
level can rise whenever a noise is heard (or ifierd notices something else out of the
ordinary), and if the guard is suspicious enougkvitienvestigate. The states in this BN
will depend only on the states from the previoosetslice and any current stimuli
(similar to the way the environment in the firstten can be calculated simply by using
the states of the environment in the previous shoes, along with current factors). After
a while, the heightened suspicion would set thedjt@minvestigate on smaller and
smaller stimuli, and it could take longer and lonfpe the guard to have his suspicion
lowered enough to return to patrolling.

Implementation

Part of the BN described in Figure 1 was implemeiie the authors in the “Neverwinter
Nights™ (NWN) environment. NWN is an award-winning comniatgame that comes
with a toolset that allows modifications. There /ap noticeable effects on load time

4 http://nwn.bioware.com/

94

when this BN was implemented, and it provided défe environments to the player
based on the player’s actions. The module thatoneeted has a tower that contains
magic that allows the player to change the tempezand precipitation in the area, as
well as advance time by one or more years.

The following screenshots show some of the scregpsrienced in this module. Figure
27 shows the initial terrain, which is grassland.

Figure 27: Initial terrain
After going into the tower and setting the tempam@i&and precipitation to very
favourable levels and advancing time by severalsyg¢he player leaves the tower and
views the terrain seen in Figure 28.

95

Flgure 28: Increased plant growth
In this scenario, the player goes back in the tpgaets the temperature and precipitation
levels to unfavourable conditions, and then advatioge a few more years. The result is
the screenshot in Figure 29.

Flure 29 Less faourable condltlons
Each time the player advances time by a year, @&sRiNecked against the temperature
and precipitation variables to come up with the amof plant growth for that year.

96

Once that is chosen, the world is updated basedengrowth rate and the previous state
of the world. A fully-grown tree will not pop uptaf one year, if there was nothing in an
area before, only a small bush or patch of grascaupy that area. If favourable
conditions continue, the model can be replaced fipaller tree model, and then finally
by a larger tree model. Similarly, if there is eglatree in an area, it will not disappear
after a single poor year. Bushes and grass mighpgear, but for every tree in the area a
random number will be generated and checked aghi@sesults from the BN to see if
the tree survived or not. If the tree did not sueyia model of a dead tree would replace
the living tree, and would stay for a few yearsarelipss of the subsequent conditions — it
would be disconcerting for a tree to be dead ome rd the alive the next. Since the
model that would appear in any given area at aiceyear depends on the conditions and
the plant that appeared there in the previous yeplayer will not see odd behaviour like
an area that is empty one year followed by a desglih that area the very next year. The
models will only be rendered when the player resumthe area, which helps the
computation very quick, necessary for the LODAIlagh. If several years pass before
a player returns, only the final state of the avébbe observed. This behaviour was
relatively easy to implement, runs quickly, andlddae changed to suit a game’s
requirements.

Future Work

This method for generating terrain could benebtirapplying any techniques that
simplify the calculations in any BN. For examples would explore using only singly
connected networks, or polytrees. A method forifggmodes in a BN into a tree of
clusters is found in [Huang and Darwiche, 1996}efEhalso might be a benefit to using a
simpler representation of the BN. For examplehdéf mode "fire", which represents the
probability of a forest fire occurring, has two @ar nodes: "rainfall” and "temperature”,
which represent the amount of recent rainfall dr&durrent temperature, it might be
advantageous to have a representation where wepeaify the probability of a large
forest fire starting is zero if there was very haghounts of rainfall recently regardless of
temperature, rather than having to specify the qaodiby for each temperature. Tools that
would allow developers to easily view, modify, aedt the networks that they create
would also greatly facilitate the incorporationtbis idea into commercial games. In
addition, advances in BN technology continuouslyesy in the literature, which will
inevitably inspire improvements in our proposedrapph.

Conclusions

This paper has demonstrated that it is possiblegartd simple to use a BN to help
determine what type of terrain to render in a satiah or game. This could be used to
make games and simulations more realistic tham toeinterparts that simply use static
terrain. The contribution of this paper is to destoate that determining what type of
terrain to draw can be done quickly and easily, @dadd to the realism in a game,
while not taking up much CPU time. The importantéhes LODAI approach is that it
might give the player the impression that the ghasemodeled the world more
accurately than it actually has, and that the gasndeing more work than it actually is.
For a relatively small cost, the believability betgame or simulation can be immensely
improved.

97

Additionally, if networks have been created andetg$or environmental reconstruction,
we have shown how they could be adapted for ugbdoggents to infer what has
happened recently in the area. This can lead totagg@pearing to do complex reasoning
about the environment, and different agents cortordjfferent conclusions based on

what they observe, which might lead to interesting entertaining interactions for the
player.

98

References

[Ada07] Adams, Ernest, and Andrew Rollings. “Fundamals of Game Design”, Pearson
Education Inc., pp. 650-658, 2007.

[AtkO9] Atkinson, John, and Dario Rojas. “On-thg-§eneration of multi-robot team
formation strategies based on game conditions” eExpystems With Applications, Vol.
36, pp. 6082-6090, April 2009.

[Bae06] Baekkelund, Christian. “A Brief ComparisoinMachine Learning Methods”, Al
Game Programming Wisdom 3. Steve Rabin, ed., pps&17 2006.

[BaiO5] Bailey, Christine, and Michael Katchabavwn‘Experimental Testbed to Enable
Auto-Dynamic Difficulty in Modern Video Games”, Rreedings of the 2005 GameOn
North America Conference, Montreal, Canada, 2005.

[Ban00] Banerjee, Bikramjit, and Sandip Sen. "Sabgcpartners”, Proceedings of the
Fourth International Conference on Autonomous agygg 261 - 262, 2000.

[Bar07] Barber, K. Suzanne, Jaesuk Ahn, SuratnaaBildti, David DeAngelis, Karen
K. Fullam, Chris L. D. Jones, Xin Sui. "Agent TruStaluation and Team Formation in
Heterogeneous Organizations", Proceedings of AAMXSpp 1356-1357, 2007.

[Bar02] Barnes, Jonty, and Jason Hutchens. “Tedfimdefined Behavior as a Result of
Learning”, Al Game Programming Wisdom. Steve Rabth, pp.615-623, 2002.

[Ben09] Benton, J., Minh Do, and Subbarao Kambhdamffenytime Heuristic Search
for Partial Satisfaction Planning”, Artificial Integence, Vol. 173, pp. 562-592, April
2009.

[Bou96] Boutilier, Craig. “Planning, Learning ane@dination in Multiagent Decision
Processes”, Theoretical Aspects of Rationality lindwledge, pp. 195-201, 1996.

[Bow02] Bowling, Michael, Rune Jensen, and Manié&#oso. “A Formalization of
Equilibria for Multiagent Planning”, AAAI Workshopn Planning with and for
Multiagent Systems, 2002.

[Bow04] Bowling, Michael, Brett Browning, and Marlae/eloso. "Plays as Effective
Multiagent Plans Enabling Opponent-Adaptive Plae&en", Proceedings of the
International Conference on Automated Planning&citeduling, 2004.

[Bow06] Bowring, Emma, Milind Tambe, Makoto Yokddultiply-Constrained

Distributed Constraint Optimization”, Fifth Interti@nal Joint Conference on
Autonomous Agents and Multi Agent Systems, 2006.

99

[Boy09] Boyle, Liz, Fiona Hancock, Matt Seeney, ard Allen. “The Implementation
of Team Based Assessment In Serious Games”, 2R Eonference in Games and
Virtual Worlds for Serious Applications, pp. 28-Z809.

[Bra09] Brafman, Ronen |., and Carmel DomshlakefBrence Handling-An
Introductory Tutorial”, Al Magazine, Vol. 30, pp86, Spring 2009.

[Bra07] Brandt, Felix, Felix Fischer, Paul Harremst and Yoav Shoham. “A Game-
Theoretic Analysis of Strictly Competitive MultiagieScenarios”. IJCAI-07, pp.1199-
1206, 2007.

[Bro02] Brockington, Mark. “Level-Of-Detail Al foa Large Role-Playing Game”. Al
Game Programming Wisdom, pp. 419-425, Charles Ri\eglia, Hingham,
Massachusetts, 2002.

[Bry06] Bryant, Bobby D. “Evolving Visibly Intellignt Behavior for Embedded Game
Agents”, PhD thesis, Department of Computer Scignthe University of Texas at
Austin, 2006.

[Bui97] Bui, Hung H., Svetha Venkatesh, and Dofgtaronska. “A Framework for
Coordination and Learning among Team of AgentsdcBedings of the Third Australian
Workshop on Distributed Al, 1997.

[Cha04] Charles, Darryl, and Michaela Black. “DynarRlayer Modelling: A
Framework for Player-Centred Digital Games”, Conep@ames: Atrtificial Intelligence,
Design and Education, pp.29-35, 2004.

[Cha91] Charniak, Eugene. “Bayesian Networks withicears”, Al Magazine, Vol. 12
No. 4, pp. 50-63, 1991.

[Che08] Chevaleyre, Yann, Ulle Endriss, Jérome L.amg Nicolas Maudet. “Preference
Handling in Combinatorial Domains: From Al to Sddthoice”, Al Magazine, Vol. 29,
pp. 37-46, Winter 2008.

[Cla94] Clarke, Edmund M., Orna Grumberg, and Ddvid.ong. “Model Checking and
Abstraction” ACM Transactions on Programming Larggsand Systems, Vol. 16 No. 5,
pp. 1512-1542, 1994.

[Cut08] Cutumisu, Maria, and Duane Szafron. “A Destoation of Learning Behaviours
for Non-Player Characters in Computer Role-Playgagnes”, 18th Canadian Conference
on Intelligent Systems, Windsor, Canada, May 272808.

[Daw02] Dawson, Chad. "Formations”, Al Game Prograng Wisdom, Steve Rabin,
ed., pp.272-281, 2002.

100

[Dia04] Dias, M. Bernardine, "TraderBots: A New &digm for Robust and Efficient
Multirobot Coordination in Dynamic Environments'h.B. Dissertation, Robotics
Institute, Carnegie Mellon University, January, 200

[Fal03] Falke, William Joseph I, and Peter Ro&yriamic Strategies in a Real-Time
Strategy Game", Lecture Notes in Computer Scieviok,2724, pp.1920-1921, 2003.

[FriO7] Friedman, Thomas L. “The World is Flat: Adf history of the twenty-first
century”, Version 3, Douglas & Mcintyre Ltd, Vanoaar, BC, 2007,

[Fur01] Furnkranz, Johannes. “Machine learningamgs: a survey”, Machines that learn
to play games, Advances in Computation: TheoryRuadtice, Vol. 8, pp. 11-59, 2001.

[Gas05] Gaston, Matthew E., and Marie desJardihgeht-Organized Networks for
Dynamic Team Formation”, Proceedings of the Folmtérnational Joint Conference on
Autonomous Agents and Multiagent Systems, pp. Z80-2005.

[Gas04] Gaston, Matthew, E., John Simmons, andéMesJardins. "Adapting Network
Structures for Efficient Team Formation", Procegdinof AAMAS-04, Workshop on
Learning and Evolution in Agent-based Systems, 2004

[GilO7] Gilpin, Andrew, and Tuomas Sandholm. “La=sd Abstraction of Imperfect
Information Games”, Journal of the ACM, Vol. 54, .Nig 2007.

[Gol05] Gold, Aliza. “Academic Al and Video Games:Case Study of Incorporating
Innovative Academic Research into a Video Gamed®pe”, Proceedings of the IEEE
2005 Symposium on Computational Intelligence anth&a Piscataway, NJ: IEEE,
2005.

[Gru05a] Gruenwoldt, Leif, Stephen Danton, and MiehKatchabaw. “Creating
Reactive Non Player Character Artificial Intelligenin Modern Video Games”,
Proceedings of the 2005 GameOn North America Cents, Montreal, Canada, 2005.

[Gru05b] Gruenwoldt, Leif, Stephen Danton, and MiehKatchabaw. “A Realistic
Reaction System for Modern Video Games”, Proceedaighe Digital Games Research
Association Conference, Vancouver, Canada, 2005.

[Hei08] van der Heijden, Marcel, Sander Bakkes, Rigder Spronck. "Dynamic
Formations in Real-Time Strategy Games", IEEE Sysnpo on Computational
Intelligence and Games, pp. 47-54, 2008.

[Her05] van den Herik, Jaap, Jeroen Donkers, aatePSpronck. “Opponent modelling
and commercial games”, IEEE 2005 Symposium on Caatipnal Intelligence and
Games, pp. 15-25, 2005.

[Hou04] Houlette, Ryan. “Player Modeling for AdamiGames”, Al Game Programming
Wisdom 2. Steve Rabin, ed., pp.557-566, 2004.

101

[Hua96] Huang, Cecil, and Adnan Darwiche. “Infereit Belief Networks: A
Procedural Guide”. Journal of Approximate Reasonifw. 15, No. 3, pp. 225-263,
1996.

[Huy06] Huynh, Trung Dong, Nicholas R. Jennings] &hgel R. Shadbolt. "An
Integrated Trust and Reputation Model for Open MAgent Systems”, Journal of
Autonomous Agents and Multi-Agent Systems, Vol. N8, 2, pp 119-154, 2006.

[Jen95] Jennings, Nicholas R. "Controlling CoopgsProblem Solving in Industrial
Multi-Agent Systems Using Joint Intentions”, Artitl Intelligence, 1995.

[Jon06] Jones, E. Gil, Brett Browning, M. Bernaelibias, Brenna Argall, Manuela
Veloso, and Anthony Stentz. "Dynamically Formedéiegeneous Robot Teams
Performing Tightly-Coordinated Tasks", Proceediofythe International Conference on
Robotics and Automation, 2006.

[Jun05] Jung, Hyuckchul and Milind Tambe. “On Commuation in Solving Distributed
Constraint Satisfaction Problems”, InternationahtC&l and Eastern European
Conference on Multi-Agent Systems, 2005.

[Koe04] Koenig, Sven. “A Comparison of Fast Sedwtdthods for Real-Time Situated
Agents”, Proceedings of the Third Internationahf@onference on Autonomous Agents
and Multiagent Systems, pp. 864-871, 2004.

[Kra03] Kraus,Sarit, Onn Shehory, and Gilad Tad8ealition Formation with Uncertain
Heterogeneous Information”, Proceedings of AAMAS{03 1-8, 2003.

[LaiO0] Laird, John E. and Michael van Lent. “Hurrlawel Al's Killer Application:
Interactive Computer Games”, AAAI Fall Symposiunchirical Report, North
Falmouth, Massachusetts, pp. 80-97, 2000.

[Lad08] Ladebeck, Manuel. “Applying Dynamic Scripgito "Jagged Alliance 2.
Diploma thesis, TU Darmstadt, Knowledge Engineefargup, 2008.

[Lan10] van Lankveld, Giel, Pieter Spronck, Jaap s&lan Herik, and Matthias
Rauterberg. “Incongruity-Based Adaptive Game Balagic Advances in Computer
Games. 12th International Conference, pp. 208-3péinger-Verlag, Berlin Heidelberg,
Germany, 2010.

[Lar02] Laramee, Francois Dominic. “Genetic Algbris: Evolving the Perfect Troll”,
Al Game Programming Wisdom. Steve Rabin, ed., &9, 2002.

[Lid04] Liden, Lars. “Artificial Stupidity: The Arbf Intentional Mistakes”, Al Game
Programming Wisdom 2. Steve Rabin, ed., pp.41-8842

102

[LuO5] Lu, Hongen. “Team Formation in Agent-Baseohtputer Games”, ACM
International Conference Proceeding Series, V@, pp. 121-124, 2005.

[Lud08] Ludwig, Jeremy. “Extending Dynamic Scrigiin PhD thesis, Department of
Computer and Information Science, University of gane, 2008.

[Lud09] Ludwig, Jeremy, and Arthur Farley. “ExammgiExtended Dynamic Scripting in
a Tactical Game Framework”, Proceedings of thenFfttificial Intelligence and
Interactive Digital Entertainment Conference, 2009.

[Mac09] Mackworth, Alan K. “Agents, Bodies, Consiris, Dynamics, and Evolution”,
Al Magazine, Vol. 30, Iss. 1, pp. 7-28, Spring 2009

[Mah04] Maheswaran, Rajiv T., Jonathan P. Peacé Milind Tambe. “Distributed
Algorithms for DCOP: A Graphical-Game-Based Apptdad 7th International
Conference on Parallel and Distributed Computingt&ys, 2004.

[Man06] Manslow, John. “Practical Algorithms for-@ame Learning”, Al Game
Programming Wisdom 3. Steve Rabin, ed., pp.599-8266.

[Mar08] Marecki, Janusz, Tapana Gupta, PradeepkRdatham, Milind Tambe, and
Makoto Yokoo. “Not All Agents Are Equal: Scaling Wpstributed POMDPs for Agent
Networks”,Proceedings ohie Seventh International Conference on Autonomayents
and Multiagent Systems, 2008.

[Mar93] Markovitch, Shaul, and Yawn Sella. “Leargiaf Resource Allocation
Strategies for Game Playing”, IJCAI-93, Vol 2, §@4-979, 1993.

[McNO4] McNaughton, Matthew, Jonathan SchaefferabeiSzafron, Dominique Parker,
and James Redford. "Code Generation for Al ScrgptinComputer Role-Playing
Games", Challenges in Game Al Workshop at AAAI, hpO-133, 2004.

[Mii06] Miikkulainen, Risto, Bobby D. Bryant, Rya@ornelius, Igor V. Karpov, Kenneth
O. Stanley, and Chern Han Yong. “Computationallligence in Games”, In Gary Y.
Yen and David B. Fogel (editors), Computationatligence: Principles and Practice.
IEEE Computational Intelligence Society, 2006.

[Mod03] Modi, Pragnesh Jay. “Distrubuted Constré&dptimization for Multiagent
Systems”, PhD thesis, Faculty of the Graduate S¢chiw® University of Southern
California, 2003.

[NarO5] Narayek, Alexander, Robert Fourer, Eugen&r€uder, Enrico Giunchiglia,
Robert P. Goldman, Henry Kautz, Jussi Rintanen farglin Tate. “Constraints and Al
Planning”, IEEE Intelligent Systems, Vol. 20, Nopp. 62-72, 2005.

[Pea07] Pearce, Jonathan P. “Local OptimizatioGooperative Agent Networks”, PhD
thesis, Faculty of the Graduate School, the Unityeod Southern California, 2007.

103

[Peal6] Pearce, Jonathan P., Rajiv T. Maheswanahiidind Tambe. “Solution Sets in
DCOPs and Graphical Game®roceedings ohe Fifth International Joint Conference
on Autonomous Agents and Multi-Agent Systems, pjy-584, 2006.

[Pol10] Policarpo, Daniel, Paulo Urbano, and Tiagareiro. “Dynamic Scripting
Applied to a First-Person Shooter”, Proceedingthefrifth Conference on Information
Systems and Technologies, 2010.

[Pon07] Ponsen, Marc, Pieter Spronck, Hector Mufieita and David Aha. “Knowledge
Acquisition for Adaptive Game Al”. Science of ConteuProgramming, pp. 59-75.
Springer. The Netherlands, 2007.

[Pon04] Ponsen, Marc. “Improving Adaptive Game AthAEvolutionary Learning”,
MSc thesis. Delft University of Technology. Delthe Netherlands, 2004

[Pri10] Price, Robert G., and Scott D. Goodwin. direFormation with Heterogeneous
Agents in Computer Games”, Proceedings of the TywvEourth AAAI Conference on
Artificial Intelligence, AAAI Press, pp. 1957-1953010.

[PriO5] Price, Robert G. “Forward Checking in thenial and Dual Constraint Graphs”,
MSc thesis, Department of Computer Science, Thedisity of Windsor, 2005.

[Pyn03] Pynadath, David V., and Milind Tambe. “Anitdmated Teamwork
Infrastructure for Heterogeneous Software Agentskmmans”, Journal of Autonomous
Agents and Multi-Agent Systems, Vol. 7, pp. 71-12003.

[Pyn02] Pynadath, David V., and Milind Tambe. "T@emmunicative Multiagent Team
Decision Problem: Analyzing Teamwork Theories anadils”, Journal of Artificial
Intelligence Research, Volume 16, pp 389-423, 2002.

[Ric09] Rich, Charles, and Candace L Sidner. “Relaotd Avatars as Hosts, Advisors,
Companions, and Jesters”, Al Magazine, Vol. 3Q,1spp. 29-41, Spring 2009.

[Ros97] Rosin, Christopher Darrell. “Coevolution&garch Among Adversaries”, PhD
thesis, Department of Computer Science and Endimgerhe University of California,
San Diego, 1997.

[Ros08] Rossi, Francesca, K Brent Venable, and Mbish. “Preferences in Constraint
Satisfaction and Optimization”, Al Magazine, VoB,2p. 58-68, Winter 2008.

[Sce05] Scerri, Paul, Alessandro Farinelli, Ste@d&amoto, and Milind Tambe.
“Allocating tasks in extreme teams”, ProceedingghefFourth International Joint
Conference on Autonomous Agents and Multiagente®yst The Netherlands, pp. 727-
734, 2005.

104

[Sch09] Schwalb, Robert J. “Party Building: Fromsi#a to Themes”, Dragon Magazine,
Issue 373, pp. 24-34, 2009.

[Shal0] Sharifi, Amir Ali, Richard Zhao, and DuaBeafron. “Learning Companion
Behaviours Using Reinforcement Learning in GamBsdceedings of the Sixth Artificial
Intelligence and Interactive Digital Entertainmé&unference, pp. 69-75, 2010.

[Smi09] Smith, Michael J., and Marie desJardingdining to trust in the competence
and commitment of agents”, Journal of Autonomousrig and Multi-Agent Systems,
Vol. 18, Number 1 pp 36-82, 2009.

[Spr09] Spronck, Pieter. “Pieter Spronck's NevetaniNights Modules”.
http://ticc.uvt.nl/~pspronck/nwn.html as viewed Sapber 22, 2009.

[Spr06] Spronck, Pieter, Marc Posen, Ida SprinkéniKuyper, and Eric Postma.
“Adaptive Game Al with Dynamic Scripting”, Machinesarning, Vol. 63, No. 3, pp.
217-248, 2006.

[Spr05] Spronck, Pieter. “Adaptive Game Al”, Ph[2sis, Maastricht University Press,
Maastricht, The Netherlands, 2005.

[Spr04] Spronck, Pieter, Ida Sprinkhuizen-Kuypéerd &ric Postma. “Enhancing the
Performance of Dynamic Scripting in Computer GamEgsitertainment Computing -
ICEC, Lecture Notes in Computer Science Vol. 3¥§6:296-307, 2004.

[Sta06] Stanley, Kenneth O., Bobby D. Bryant, I§arpov, and Risto Miikkulainen.
“Real-Time Evolution of Neural Networks in the NER@eo Game”, Proceedings of
the Twenty-First National Conference on Artificlatelligence, Meno Park, CA: AAAI
Press, pp. 1671-1674, 2006.

[Sta05] Stanley, Kenneth O., Bobby D. Bryant, amstdRMiikkulainen. “Evolving
Neural Network Agents in the NERO Video Game”, lextings of the IEEE 2005
Symposium on Computational Intelligence and Gamesxataway, NJ: IEEE, 2005.

[Stu06] Sturtevant, Nathan, and Michael BowlingotiRst Game Play Against Unknown
Opponents”, Proceedings of the Fifth Internatialmht Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), pp. 713—72006.

[Szi09] Szita, Istvan, Marc Ponsen, and Pieter Sgko“Effective and Diverse Adaptive
Game Al", IEEE Transactions on Computational Ingelhce and Al in Games, Vol. 1,
No. 1, pp. 16-27, 20009.

[TamO0O0] Tambe, Milind, David V. Pynadath, Nicolakativat, Abhimanyu Das, and Gal
A. Kaminka. “Adaptive Agent Integration Architecas for Heterogeneous Team
Members”, Proceedings of the International Confeeeon MultiAgent Systems, pp. 301-
308, 2000.

105

[Tam97] Tambe, Milind. “Towards flexible teamworkIpurnal of Artificial Intelligence
Research, Vol. 7, pp.83-124, 1997.

[Tha06] Thawonmas, Ruck, and Syota Osaka. “A Mefloo®nline Adaptation of
Computer-Game Al Rulebase”, Proceedings of the ZID8! SIGCHI International
Conference in Computer Entertainment Technolog§620

[TimO7] Timuri, Timor, Pieter Spronck, and Jaap \¢im Herik. “Automatic Rule
Ordering for Dynamic Scripting”, The Third Artifigl Intelligence and Interactive Digital
Entertainment Conference, pp. 49-54, 2007.

[TimO6] Timuri, Timor. “Automatic Rule Ordering fddynamic Scripting”, MSc thesis,
Maastricht, The Netherlands, 2006.

[Tou02] Touzour, Paul. “The Evolution of Game ARl Game Programming Wisdom.
Steve Rabin, ed., pp. 3-15, 2002.

[Tsa93] Tsang, Edward. “Foundations of Constraatistaction”, Academic Press Inc,
San Diego, 1993.

[Whi06] White, Chris, and David Brogan. “The Selfganization of Context for
Learning in Multiagent Games”, Proceedings of tbkeddd Artificial Intelligence and
Interactive Digital Entertainment Conference, pp-9, 2006.

[Yis04] Yiskis, Eric. “Finite-State Machine Scripty Language for Designers”. Al Game
Programming Wisdom 2, pp. 319—325, Charles RivedisleHingham, Massachusetts,
2004.

[YonO07] Yong, Chern Han, and Risto Miikkulainen.d&volution of Role-Based
Cooperation in Multi-Agent Systems”, Technical Repgdl07-338, Department of
Computer Sciences, The University of Texas at Aug007.

[Zzha09] Zhao, Richard, and Duane Szafron. "Lear@hgracter Behaviors using Agent
Modeling in Games", Proceedings of the Fifth Adidi Intelligence and Interactive
Digital Entertainment Conference, pp. 179-185, 2009

[Zin06] Zinkevich, Martin, Michael Bowling, Noland&d, Morgan Kan, and Darse
Billings. “Optimal Unbiased Estimators for EvaluagiAgent Performance”, Proceedings
of the Twenty-First National Conference on Artificintelligence (AAAI), pp. 573-578,
2006.

106

Vita Auctoris

NAME: Robert George Price

PLACE OF BIRTH: Windsor, Ontario.

YEAR OF BIRTH: 1975

EDUCATION: General Amherst High School, Amhersthudgtario
1989-1994
University of Windsor, Windsor, Ontario
1994-1998 B.Sc.
University of Windsor, Windsor, Ontario
2002-2005 M.Sc.
University of Windsor, Windsor, Ontario
2005-2011 Ph.D.

107

	Effective Team Strategies using Dynamic Scripting
	Recommended Citation

	/var/tmp/StampPDF/bQfZvtWgBS/tmp.1351257124.pdf.eacsY

