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Abstract  

 
Forming effective team strategies using heterogeneous agents to accomplish a task can be 

a challenging problem. The number of combinations of actions to look through can be 
enormous, and having an agent that is really good at a particular sub-task is no guarantee 
that agent will perform well on a team with members with different abilities. Dynamic 

Scripting has been shown to be an effective way of improving behaviours with adaptive 
game AI. We present an approach that modifies the scripting process to account for the 

other agents in a game. By analyzing an agent’s allies and opponents we can create better 
starting scripts for the agents to use. Creating better starting points for the Dynamic 

Scripting process and will minimize the number of iterations needed to learn effective 
strategies, creating a better overall gaming experience. 
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Chapter 1: Introduction 

The importance of games 
Games are a good test-bed for artificial intelligence (AI) research, since they can be 
challenging, but easy to formalize. This makes it possible to measure how well new AI 
methods are working, and to demonstrate that behaviour that is generally thought to 
require intelligence is possible without putting human lives or property at risk. Recently, 
inexpensive yet powerful computer hardware has made it possible to simulate complex 
physical environments, resulting in an explosion of the video game industry [Mii06]. 
Computer games provide an environment for continual, steady advancement and a series 
of increasingly difficult challenges [Lai00]. Not only are video games an important test-
bed for AI, but advances in video games help in other areas also. “Video games are 
particularly important in this regard, because in addition to their very realistic visual 
images and great sound, they are also highly interactive and increasingly collaborative, 
and thus a good launch pad for thinking about how people should best interact with all 
kinds of computer applications as well as with each other in the future” [Fri07]. Although 
this research can directly benefit the AI in video games, advances in machine learning 
and other AI techniques can have benefits in other areas as well.  

Learning in games 
“One of the main challenges for AI is to create intelligent agents that adapt, i.e. change 
their behaviour based on interactions with the environment, becoming more proficient in 
their tasks over time, and adapting to new situations as they occur.” [Sta06] 
The following from [Sta05] states some of the properties video games have that challenge 
traditional reinforcement learning (RL) techniques. 
 

1. Large state/action space. Since games usually have several different types of objects and 
characters, and many different possible actions, the state/action space that RL must explore 
is high-dimensional. Not only does this pose the usual problem of encoding a high 
dimensional space (Sutton and Barto 1998), but in a real-time game there is the additional 
challenge of checking the value of every possible action on every game tick for every agent 
in the game. 
2. Diverse behaviors. Agents learning simultaneously should not all converge to the same 
behavior because a homogeneous population would make the game boring. Yet since RL 
techniques are based on convergence guarantees and do not explicitly maintain diversity, 
such an outcome is likely.  
3. Consistent individual behaviors. RL depends on occasionally taking a random action in 
order to explore new behaviors. While this strategy works well in offline learning, players 
do not want to see an individual agent periodically making inexplicable and idiosyncratic 
moves relative to its usual behavior. 
4. Fast adaptation. Players do not want to wait hours for agents to adapt. Yet a complex 
state/action representation can take a long time to learn. On the other hand, a simple 
representation would limit the ability to learn sophisticated behaviors. Thus, choosing the 
right representation is difficult. 
5. Memory of past states. If agents remember past events, they can react more convincingly 
to the present situation. However, such memory requires keeping track of more than the 
current state, ruling out traditional Markovian methods. 
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Machine learning is important in games, since it can allow them to be more interesting 
and realistic [Sta05]. Many games would benefit from having characters that adapt to new 
situations, as it would likely give the illusion that the characters understand what they are 
doing. Lately many games have improved visually, creating very realistic environments, 
but the AI controlling the characters have not improved as much. “A game’s top-notch 
graphics and sound manage to keep up a suspension of disbelief quite well. However, the 
behaviours of a character in a game are usually of an inferior quality. It is all too clear 
that the characters are lifeless, mindless drones controlled by a computer with little 
knowledge.” [Spr05] 
 
At one point, all computer controlled agents were hard-coded, which meant that the game 
AI was implemented in the source code of the game itself. Therefore, a change regarding 
the game AI required a re-compilation of the game [Lad08]. Since then the dominant 
approach to programming game AI has been scripting, since they are easy to implement, 
interpret, and modify. Scripts are basically text files encoding the behaviour of game 
agents with if-then rules. Some modern games encourage the players to change and add 
content through the use of script editors and other tools. [Szi09] lists some disadvantages 
of scripts: They are labour-intensive, since they have to be reasonably complex to be used 
in a complex game environment, which causes them to be time-consuming to implement 
by hand, as they must be tested in many different situations. Because of their complexity, 
they are likely to contain undetected weaknesses that can be exploited. They are 
predictable, and human players quickly recognize patterns in behaviours generated by 
scripts. Finally, since they are static, they are unable to adapt to a human player’s style. 
 
Spronk et al. [Spr06] investigated a novel game AI learning technique called ‘dynamic 
scripting’ (explained below). They also performed a literature survey and communication 
with game developers to come up with computational and functional requirements for 
adaptive game AI to be applicable in practice: Speed, Effectiveness, Robustness, 
Efficiency, Clarity, Variety, Consistency, and Scalability. Dynamic scripting is a 
reinforcement learning technique that learns effective game AI scripts. For dynamic 
scripting to work, the game AI needs to be available in the form of scripts. This is the de-
facto standard in commercial computer games [Lad08]. [Lad08] also states dynamic 
scripting “can only build scripts as good as the underlying rules. A bunch of bad rules 
won’t magically combine into a good tactic just because they are put together by a 
learning procedure.” 
 

Dynamic scripting 
[Spr06] uses the Neverwinter Nights (NWN, discussed more in Chapter 3) environment 
to combine scripting with a reinforcement learning process. This dynamic scripting 
maintains several rule databases, one for each agent type. A new script to control the 
behaviour of an agent is created from these rule databases whenever an agent is 
generated. This script has a number of rules from the database, each one having a weight. 
There is a linear relationship between the probability a rule is selected and its weight. 
After each fight the weights in the database are updated, with rules that lead to success 
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getting increased. Over time, behaviours emerge from the characters that are more 
effective.  

 
Figure 1: Outline of updating script weights from [Spr03] 

[Spr03] states “because of their complexity, AI scripts are likely to contain weaknesses, 
which can be exploited by human players to easily defeat supposedly tough opponents”, 
and “because they are static, scripts cannot deal with unforeseen tactics employed by the 
human player and cannot scale the difficulty level exhibited by the game AI to cater to 
both novice and experienced human players.” The updating of weights and having 
successful characters more likely to be included in future rounds is similar to the updating 
of weights in neural networks and successful offspring being chosen more often. 
 
One anecdote praising the effectiveness of this type of learning comes from [Spr09]:  
 

“BioWare has changed the AI in NeverWinter Nights significantly between 
versions 1.29 and 1.31… What is kind of funny is that the strategy now employed 
by the opponents is very similar to the strategy that dynamic scripting often 
learned when pitted against the earlier AI. I find it striking that dynamic scripting 
managed to discover in half an hour something that BioWare only added to the 
game after it had been out for more than a year and had been patched over a dozen 
times.” 
 

In Chapter 2, more information is provided about how dynamic scripting works for an 
individual agent.  

Problem topic 
Although the characters learning dynamic scripting can learn effective rule orderings to 
defeat a certain opponent, the strategies the characters learn are less effective against 
different opponents. [Lad08] states “a script that worked well in one case may perform 
very poor in another one”. Dynamic scripting has been shown to perform well for 
individual agents against specific opponents, but it does not accommodate changes in 
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opponents or teammates into account. While performing research for [Pri10], it was 
observed that the rules did not seem to take the opponent into consideration when 
deciding what action to take. For example, one effective rule is to cast a defensive spell 
like “Globe of Invulnerability” at the beginning of combat. The “Globe of 
Invulnerability” spell makes the spellcaster immune to certain spells cast at them by other 
spellcasters. However, it was also noticed that when put against a team that contained no 
spellcasters, the defensive spell was cast anyways. In this instance, casting this spell was 
a complete waste since it could offer no benefit and had an opportunity cost as it 
prevented the spellcaster from casting an offensive spell that might have helped their 
team in combat. This observation leads to the following question: 
 
Can dynamic scripting use information about teammates and opposing agents to create a 
better starting point for the script weights which in turn can be used to learn an effective 
rule ordering more quickly? 
 
Dynamic scripting certainly provides an effective way to learn strategies, but the 
strategies learned become less effective when the opponents change. Spronck’s work with 
dynamic scripting was effective, but it does not take the other agents participating in the 
fight into account when determining the best actions to take. [Spr04] notes “experimental 
evaluations indicated that, occasionally, the time needed for dynamic scripting to generate 
effective opponents becomes unacceptably long.”  
 
Creating better starting points should shorten the number of iterations dynamic scripting 
needs to go through to create an effective strategy. [Pon04] uses different rulebases for 
different stages in a real-time strategy (RTS) game, and shows that taking context into 
account can lead to more-effective results. [Lad08] states that different agent classes have 
their own rulebases since they can have different actions available to them, showing that 
the effective rule orderings for one class do not imply similar rule orderings for other 
classes. In this research we will explore having an agent use a different rulebase 
depending on the other agents in the area, specifically the opponents it will face and the 
teammates it has. This research supports to the following thesis: 
 
Taking other agents into consideration will allow an individual agent using dynamic 
scripting to perform better than current scripting implementations. 
 
The optimal behaviour of an agent in a combat situation will differ depending on the 
teammates and opponents that are participating in that combat. The following chapters in 
this dissertation will demonstrate how the performance of dynamic scripting can be 
improved by taking the other agents into account.  

Thesis plan 
The rest of this thesis will cover the following outline. In Chapter 2 we provide more 
background and review dynamic scripting and game balance in detail. In Chapter 3 we 
discuss the experimental outline after giving an explanation of the environment. In 
Chapter 4 we provide the results of the experiments which indicate that agents perform 
better with the new starting points, along with some discussion. Finally in Chapter 5 we 
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conclude that the performance of dynamic scripting is enhanced by this process, and 
discuss how this research can be used in practice, along with future work. By the end of 
this dissertation we will have demonstrated that using knowledge from teammates and 
other opponents will significantly improve the performance of dynamic scripting, that 
using roles to classify the agents can effectively reduce otherwise impractically large 
search spaces into manageable sizes, and the process of determining weights is robust, 
and is not as sensitive to errors as hand-picking constants. 
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Chapter 2: Background 
In this chapter we give an overview of select topics to provide the necessary background 
required to understand this dissertation. It starts with an overview of AI used in computer 
games, followed by a description of some learning algorithms. A summary of selected 
multi-agent-systems research highlights relevant topics that emerge when teams of 
agents, as opposed to just groups of individuals, work together to accomplish a task. The 
issue of balance in games is discussed, and then the chapter ends with an explanation of 
dynamic scripting along with a walkthrough of an example to show how dynamic 
scripting updates weights in a script and change the actions an agent will take.  

AI in Computer Games 
Computer games have been around for over 50 years, and the field of game artificial 
intelligence has existed “since the dawn of video games in the 1970s” [Tou02] 
Games can be classified into many categories, common ones described in the table below. 
 

Category Description Role of AI 
Action Player uses mostly his or her reflexes 

to win. 
Game AI controls individual 
agents 

Adventure Player follows a path, solving puzzles 
or quests to win. 

None – characters react in pre-
defined ways 

Puzzle Players to solve puzzles. None 
Role-Playing Player assumes the role of an in-game 

character, and solves quests. 
Game AI controls individual 
agents 

Simulation Players interact with a simulation. Game AI controls the 
simulation 

Strategy Player uses tactical skills to guide 
agents to victory. 

Game AI controls lots of 
agents 

Table 1: Game genres 
 
“Complex game AI is encountered mainly in role-playing games and strategy games” 
[Spr05]. In the past decade there have been game developers and game researchers tended 
to live in their own communities. Recently that has been improving, and there have been 
conferences and tracks devoted to Game AI. Many “mainstream” AI techniques have 
found their way into games. The following sections outline some of these techniques. 

Evolutionary Algorithms 
Evolutionary algorithms are population-based optimization algorithms that mimic the 
process of natural evolution. Genetic algorithms or genetic programming are the most 
popular forms of evolutionary algorithms. Neural networks or artificial neural networks 
(ANNs) were partially inspired by biological neural networks. These ANNs were first 
discussed in [McC43]. Although they are modelled after biological neural networks, 
ANNs do not model all of the complexities of biological neural systems. For example, in 
an ANN, the individual output of a neuron is a single constant value, whereas in a 
biological system, the output of a neuron is a complex series of spikes over time. 
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Evolutionary algorithms can be used to update the weights and structure of neural 
networks, through the use of a fitness function. Evolutionary algorithms use parents to 
generate successors through crossovers and mutations. In a crossover, two parents are 
used and partial information is taken from each parent, and combined to form a new 
ANN. In a mutation, one or more nodes are changed in a single network to form a new 
ANN.  
 
Individual agents learning strategies have been the topic in [Sta02], [Sta06], where neural 
networks were used in a reinforcement learning game. The machine learning game 
discussed in these papers requires the player to set up scenarios where agents can learn 
the desired concepts in real time. The NeuroEvolution of Augmenting Topologies 
(NEAT) is an algorithm for learning that adjusts both the weights and the structure of 
ANNs, and was introduced in [Sta02]. NERO (Neuro-Evolving Robotic Operatives) is a 
game that uses an evolutionary algorithm using a fitness function based on the player’s 
input to train agents to perform tasks. The time it takes the agents to learn how to perform 
the tasks depends on how the player sets out the learning tasks. An artificial neural 
network trained on a single, isolated very difficult task is unlikely to learn it well [Car97]. 
The default agents that come with NERO have sensors for where opponents are, but those 
sensors do not distinguish between different opponent types. This would prevent it from 
learning to use different tactics based on the opponents it is facing. This problem could be 
remedied by adding additional sensors, but that would increase the time it takes for the 
neural network to learn each task. 

Bayesian Networks 
A Bayesian Network is a data structure that can be used to represent dependencies among 
variables and to give a concise specification of a joint probability distribution. A Bayesian 
Network is a directed acyclic graph with the variables represented as nodes in the graph, 
with an edge between a parent node and a child node if the parent node directly influences 
the child node. It is usually easy for a domain expert to decide what influences exist in the 
domain. A Bayesian Network representation can take much less space to specify than a 
joint probability distribution, and can also be easier to represent. A good introduction to 
Bayesian networks can be found in [Cha91]. A Dynamic Bayesian Network is a Bayesian 
Network that represents a temporal probability model. One example of a how a Bayesian 
Network can be used in a game is explained in Appendix G. 

Multi-agent systems 
Multi-agent systems focus on how intelligent behaviour can naturally arise from the 
interaction between multiple agents that may cooperate or compete. The experiments run 
in [Tim07] focus mainly on the interactions between agents that compete. The 
experiments described in this paper deal with both types of interactions-agents 
cooperating with their teammates and competing against the opposing team. Flocking 
algorithms are an artificial life subcategory where lifelike flocks result from coordinated 
movements of multiple cooperating AI agents.  
 
[Daw02] states "anytime a group is moving or working together it is expected to do so in 
an orderly, intelligent fashion". [Hei08] discusses how static formations of agents are not 
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capable of adapting effectively to opponent tactics, and demonstrate how formations of 
agents can be formed dynamically to deal with changing circumstances. [Fal03] also 
deals with changing formations in games, and states that systems that dynamically change 
their strategy are sometimes criticized for being "slow to learn".  
 
There has also been research done in agents forming teams amongst themselves, either by 
trust and reputation [Huy06], [Bar07], [Smi09],  cooperating to accomplish tasks that the 
agents cannot perform themselves[Kra03], and teams that work together to accomplish 
goals based on joint intentions [Jen95], [Tam97]. 
 
[Jen95] distinguishes between a group of agents which independently have a goal which 
just happens to be the same and a group of agents which truly share a common goal. This 
distinction is important because the two relationships imply different consequences with 
interaction: the former gives rise to competition if resources are scarce, whereas the latter 
result in cooperation and coordination. 
 
One domain where agents perform together is robot soccer. Bowling et al. [Bow04] 
noticed that “most robot soccer approaches involve single, static, monolithic team 
strategies” and “there have been examples of seemingly superior teams being defeated by 
unexpected opponent play”. Although robot soccer is different than teams fighting in a 
game, there are many similarities. In both cases there are well-defined goals that need to 
be achieved in an adversarial setting by teams that have multiple members. The 
environments are dynamic and unpredictable, and teams that can coordinate plans among 
several agents and adapt to changes often have an advantage.  
 
Many machine learning techniques involve the use of a fitness function to evaluate 
performance. A fitness function provides a measure of how well a solution is to achieving 
its goals. [Lad08] mentions that in many games the fitness functions “comes down to 
doing as much damage as possible on enemy agents while at the same time trying to 
avoid as much damage as feasible. Achieving this goal is more difficult than it sounds, 
but at least makes the design of a fitness functions quite straight forward.” 

Balance in Games 
The purpose of games is to “provide entertainment” [Ada07] and be enjoyed. “Game AI 
is all about fun…You have a customer who paid $40 for your game and he or she expects 
to be entertained.” [Tou02]. Adversarial type games become less enjoyable if one player 
always wins or loses so for this reason, games try to incorporate balance, so one type of 
agent does not dominate over all others. 
 
Consider the rock-paper-scissors game. In this game for two players, each player chooses 
one of three objects, and the result is either a tie (if they both pick the same object) or a 
win for one of the players otherwise (rock crushes scissors, scissors cut paper, paper 
covers rock). Similar dynamics exist in many commercial games. In Microsoft’s “Age of 
Mythology”, infantry do additional damage to cavalry, cavalry do additional damage to 
archers, and archers do additional damage to infantry.  
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Figure 2: Rock-Paper-Scissors dynamic 

 
If one of the objects (rock, for example) were to win against paper as well as scissors, 
then a person could guarantee not losing by always picking rock. That would make the 
game unbalanced, and most people would find such a game to not be fun. It is generally 
assumed that a balanced game has a higher entertainment value than one that is too easy 
or too hard [Lan10].  
 
If a game is too easy or too hard people lose interest. Different approaches have been 
used in the past to allow a player to change the difficulty of a game. Some games have 
cheat-codes that a player can use to help out if they find the game too difficult, or they 
have static difficulty levels (i.e.: easy, normal, and hard) that the player can pick from at 
the beginning of a game. In recent years, research has gone into varying the difficulty 
level of a game dynamically to keep the game interesting for the player. “Auto-dynamic 
difficulty refers to the ability of a game to automatically adapt the difficulty level of 
gameplay to match the skills and tolerances of a player.” [Bai05] 
 
The rock-paper-scissors example is an extremely simple one, but serves as a good 
illustration to explain balance. More discussion about balance and the rock-paper-scissors 
game can be found in [Ada07], as well as a reason to avoid dominant strategies (a 
dominant strategy refers to a strategy that reliably produces the best outcome a player 
may achieve, no matter what the opponent does). 

Dynamic scripting in depth 
From a theoretical point of view, dynamic scripting belongs to the family of 
reinforcement learning methods (as it learns from evaluative feedback), but its formalism 
(assigning weights/credits to individual rules) is also closely connected to learning 
classifier systems [Szi09]. Dynamic scripting provides computer-controlled agents with 
the ability to correct mistakes and respond to new situations. It uses rules from knowledge 
bases to create game scripts, along with a mechanism to order the rules selected for the 
scripts. The following paragraph from [Tim07] describe how the weights get updated 
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After an encounter (i.e., a fight) between the human player and an opponent, 
the opponent’s knowledge base adapts by changing the rule-weight values in 
accordance with the success or failure rate of the rules that were activated 
during the encounter (i.e., rules that occurred in the opponent’s script). The 
new rule weight value is calculated as W +∆W, where W is the original rule 
weight value. The weight adjustment ∆W is expressed by the following 
formula: 
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Rmax and Pmax are the maximum reward and maximum penalty 
respectively, b ∈ <0, 1> is the break-even value, and F ∈ [0, 1] is the 

opponent’s fitness. The fitness is a relative measure of the opponent’s 
success, which is high for good results (victories) and low for bad results 
(defeats). 
 

A simple example will help demonstrate how the weights are updated. For this example, 
two wizards will fight each other, and they will each have 10 spells to pick from. To keep 
things separate, we will call one White and the other Black.  Each wizard will start with 
50 hit points, and the fitness will be calculated as a percentage of the remaining hit points. 
The first step in the example is to pick the spells that will be used.   

Algorithm 1: Generating scripts for dynamic scripti ng  
(adapted from [Spr05]) 

rules is an array with the possible actions and associated weights (actions that lead 
to successful outcomes have higher weights) 
scriptsize is the amount of rules to be placed in the script 
maxtries to the maximum amount of tries to add a rule to the script 
 
set sumweights to the sum of the weights of all of the rules 
set tries to 0 
 
For every rule that needs to be added to the script 
   pick a random number between 0 and sumweights 
 
   go through each rule and add the weights until you get to a rule that 
increases the sum to a number greater than or equal to the random one 
   
   if  that rule hasn't been added to the script yet then add it 
   
  increase tries by one 
   
   if  tries >= maxtries then stop 
end for 
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In our example, scriptsize is 3, maxtries will be 10, and rules will be as described in the 
following table, along with the initial weights. 
Spell Description Weight Percentage 
Mage Armor Makes the mage harder to hit physically 10 0-9.99 
Magic Missile Damages opponent 10-25 hp 10 10-19.99 
Melf’s Acid Arrow Damages opponent 2-8 hp, plus extra 

damage subsequent rounds 
10 20-29.99 

Fireball Damages opponents 10-60 hp 10 30-39.99 
Haste Doubles amount of physical attacks 10 40-49.99 
Stoneskin Absorbs physical damage 10 50-59.99 
Ice Storm Damages opponents 5-30 hp 10 60-69.99 
Chain Lightning Damages opponent 15-90 hp 10 70-79.99 
Spell Mantle Absorbs damage from enemy spells 10 80-89.99 
Horrid Wilting Damages opponents 15-90 hp 10 90-99.99 

Table 2: Example weights for spell picking 
 
Creating White’s script for round 1: 
Sumweights = 100 
Tries = 0 
White picks ‘random’ number 38 for the first spell. Fireball is added to the script. 
White picks ‘random’ number 73 for the second spell. Chain Lightning is added to the 
script. 
White picks ‘random’ number 30 for the third spell. Fireball is already in the script, so 
just increment tries. 
White picks ‘random’ number 64 for the third spell. Ice Storm is added to the script. 
There are 3 spells, so stop. 
 
Creating Black’s script for round 1: 
Sumweights = 100 
Tries = 0 
Black picks ‘random’ number 3 for the first spell. Mage Armor is added to the script. 
Black picks ‘random’ number 41 for the second spell. Haste is added to the script. 
Black picks ‘random’ number 95 for the third spell. Horrid Wilting is added to the script. 
There are 3 spells, so stop. 
 
Combat now happens: 
In the first round of combat, White casts Fireball. Black is damaged by 13 hit points (37 
remain). Black casts Mage Armor, which raises his defense against physical attacks. 
In the second round of combat, White casts Chain Lightning. Black is damaged by 42 
points (killing him). Black casts Haste, which would have increased the attack speed. 
 
Combat is now over for this trial.  The fitness for White’s script is 1 (White has all of his 
initial hit points). The weights for the spells are now adjusted, as described by the 
algorithm below: 
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Algorithm 2: Weight Adjustment 
(adapted from [Spr05]) 
adjustment is the amount a spell’s weight will be changed based on the last experiment. It 
can be positive or negative, depending on whether or not the last experiment was a win or 
a loss. The magnitude of the adjustment depends on how decisive the win or loss was. A 
close win will result in a small adjustment, while a resounding win will result in a large 
adjustment. 
minweight is the smallest value we want a spell’s weight to be set to 
maxweight is the largest value we want a spell’s weight to be set to 
 
set adjustment to an amount based on the fitness results of the last experiment 
 
For every rule in the script 
 adjust the weight by the adjustment 
 
 if  the weight is below minweight then set it to minweight 
 
 if  the weight is above maxweight then set it to maxweight 
end for 
 
normalize the weights in the rulebase. 
 
The last step keeps the sum of all the weights in a rulebase at 1. If a team won, the spells 
it used will have their weights increased. After normalization, all the weights would be 
lowered, resulting in the weights that were increased still having higher weights than 
before the experiment, and the weights that were not used lowered, so they will have a 
lower chance of being included in subsequent experiments. The adjustment maximum is 
10% for the first spell, which is multiplied by 0.7 for subsequent rounds. It has been 
found that the earliest actions have a greater effect on whether the team wins or loses. The 
0.7 was determined to be effective during initial experiments. 
 
In our example, the maximum fitness was attained, so the maximum adjustments will 
occur. The weights for White before normalization occur below: 
Spell Description Weight Percentage 
Mage Armor Makes the mage harder to hit physically 10 N/A 
Magic Missile Damages opponent 10-25 hp 10 N/A 
Melf’s Acid Arrow Damages opponent 2-8 hp, plus extra 

damage subsequent rounds 
10 N/A 

Fireball Damages opponents 10-60 hp 20 N/A 
Haste Doubles amount of physical attacks 10 N/A 
Stoneskin Absorbs physical damage 10 N/A 
Ice Storm Damages opponents 5-30 hp 10 N/A 
Chain Lightning Damages opponent 15-90 hp 17 N/A 
Spell Mantle Absorbs damage from enemy spells 10 N/A 
Horrid Wilting Damages opponents 15-90 hp 10 N/A 

Table 3: White weights before normalization 
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After normalization, the following weights represent the weights for White’s spells. 
Spell Description Weight Percentage 
Mage Armor Makes the mage harder to hit physically 8.55 0-8.54 
Magic Missile Damages opponent 10-25 hp 8.55 8.55-17.09 
Melf’s Acid Arrow Damages opponent 2-8 hp, plus extra 

damage subsequent rounds 
8.55 17.10-25.64 

Fireball Damages opponents 10-60 hp 17.09 25.65-42.74 
Haste Doubles amount of physical attacks 8.55 42.75-51.28 
Stoneskin Absorbs physical damage 8.55 51.29-59.83 
Ice Storm Damages opponents 5-30 hp 8.55 59.84-68.38 
Chain Lightning Damages opponent 15-90 hp 14.53 68.39-82.91 
Spell Mantle Absorbs damage from enemy spells 8.55 82.92-91.45 
Horrid Wilting Damages opponents 15-90 hp 8.55 91.46-99.99 

Table 4: White weights after normalization 
The next time spells are picked, the ones that were successful will have a greater chance 
of being included in future rounds. The original weights for Black were the same for the 
original ones for White. After the fight, the spells that Black used will lowered, and the 
pre-normalized weights are shown below (assuming a minweight of 3). 
Spell Description Weight Percentage 
Mage Armor Makes the mage harder to hit physically 3 N/A 
Magic Missile Damages opponent 10-25 hp 10 N/A 
Melf’s Acid Arrow Damages opponent 2-8 hp, plus extra 

damage subsequent rounds 
10 N/A 

Fireball Damages opponents 10-60 hp 10 N/A 
Haste Doubles amount of physical attacks 3 N/A 
Stoneskin Absorbs physical damage 10 N/A 
Ice Storm Damages opponents 5-30 hp 10 N/A 
Chain Lightning Damages opponent 15-90 hp 10 N/A 
Spell Mantle Absorbs damage from enemy spells 10 N/A 
Horrid Wilting Damages opponents 15-90 hp 10 N/A 

Table 5: Black weights before normalization 
After normalization, the following weights represent the weights for Black’s spells. 
Spell Description Weight Percentage 
Mage Armor Makes the mage harder to hit physically 3.49 0-3.48 
Magic Missile Damages opponent 10-25 hp 11.63 3.49-15.17 
Melf’s Acid Arrow Damages opponent 2-8 hp, plus extra 

damage subsequent rounds 
11.63 15.18-26.74 

Fireball Damages opponents 10-60 hp 11.63 26.75-38.37 
Haste Doubles amount of physical attacks 3.49 38.38-41.86 
Stoneskin Absorbs physical damage 11.63 41.87-53.49 
Ice Storm Damages opponents 5-30 hp 11.63 53.50-65.12 
Chain Lightning Damages opponent 15-90 hp 11.63 65.13-76.74 
Spell Mantle Absorbs damage from enemy spells 11.63 76.75-88.37 
Horrid Wilting Damages opponents 15-90 hp 11.63 88.38-99.99 

Table 6: Black weights after normalization 
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The next time spells are picked, the ones that were not successful will have a lesser 
chance of being included in future rounds, and other spells are more likely to be tried.  
 
Dynamic scripting starts exploiting knowledge after a few trials and explores new 
knowledge continuously. Dynamic scripting updates all state-action rules through a 
redistribution process, unlike Monte-Carlo learning which updates state-action values 
only after they have been executed. This may lead to dynamic scripting not converging on 
a solution. Non-convergence is essential for use in games, since the human player may 
choose to switch tactics so the learning task continuously changes. It can quickly respond 
to a variety of behaviours, and the rule orderings dynamic scripting uses in successful 
strategies can be learned automatically. [Tim07] experiments with three different rule 
ordering mechanisms for dynamic scripting. While dynamic scripting can learn effective 
tactics, it has no built-in mechanism to improve diversity, so it tends to converge to static, 
predictable scripts [Szi09]. 
 
One benefit of dynamic scripting worth highlighting is the fact that the scripts it creates 
do not require game designers to produce complex scripts to try and make agents act in 
ways that appear intelligent. One example of human coding that produces inadequate 
results can be found in [Spr05]: 
 

“According to [Computer Role-Playing Game] tradition, dragons are both 
physically and mentally powerful creatures. While [the game] does not 
require the player to fight dragons, the designers realised that most players 
will attempt to do so anyway. Therefore they created complex game AI that 
should be able to humiliate any player bold enough to attack a dragon. Soon 
after the game’s release, weaknesses in the game AI were discovered that 
players could exploit to defeat any dragon in the game, even with a weak 
team. Furthermore, without exploiting game AI weaknesses, players could 
still design superior tactics that, while unforeseen by the game developers, 
allowed weak teams to take on dragons successfully. It is trivial for a dragon 
to recognise that its current behaviour is inadequate to deal with tactics used 
by attackers that, according to its domain knowledge, are no match for it. 
Were the dragons controlled by adaptive game AI instead of static game AI, 
an answer to the superior and exploiting tactics could have been discovered 
automatically, keeping up the challenge level of the game.” 
 

Further explanation of static scripts producing inferior results occurs in Chapter 4: 
Results. 
 
Dynamic scripting can learn effective tactics, but those tactics are specific to the situation 
being learned, which includes the teammates and opponents whose actions affect the 
effectiveness of the character’s actions. Changes to the teammates and opponents can 
require new effective strategies to be learned. If a game can start using starting weights 
that are “closer” to the weights of an effective strategy, it will lessen the time needed to 
learn an effective strategy and there will be less chance of a player encountering a 
character performing actions that appear unintelligent. Dynamic scripting is only useful in 
a game where scripts are used to control agents, so Role-Playing, Action, and even 
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Strategy games could benefit from the following work. [Pol10] demonstrates how 
dynamic scripting can be used in a First-Person Shooter game, and [Sha10] shows how a 
companion controlled by a can learn the preferences of a player in a non-combat scenario 
(disarming traps) in a Role-Playing game. 
 
The topics presented in this chapter will allow the reader to understand the contributions 
of this dissertation. Some assumptions need to hold true for this research to be useful. 
Firstly, the game that it is being applied to needs to use scripts. This will not be an issue 
in most cases, as scripts are used in most modern games. Since this research focuses on 
team strategies of heterogeneous agents, a game that only has one character type or a 
single character will not benefit from it. The following chapter introduces the game used 
in this study. It allows for thousands of combinations of players and millions of 
combinations of teams, which makes it an ideal tool for this research. 
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Chapter 3: Experimental Design 
This chapter starts by providing a description of the game that will be used for the 
experiments that will show that using knowledge about agent's allies and opponents will 
allow better scripts to be created. It explains the different character types, the large 
number of possibilities a player has to choose from when creating a character, which 
leads to an enormous amount of possible combinations for even a small team. It mentions 
a valid abstraction in these experiments, roles, which can classify the characters based on 
their abilities. This is a way of abstracting the most relevant details of a team allowing the 
size of a game’s problem space be reduced to a manageable size. It then describes the 
experiments that will be performed to support the thesis. 

NeverWinter Nights (NWN) overview 
NWN is a Role-Playing Game (RPG) created by BioWare Corportation. It is based on 
rules from the Dungeons and Dragons game and has won multiple awards. NWN ships 
with the Aurora Toolset, which gives the functionality to create modules for the game. 
The University of Alberta GAMES group created ScriptEase, which uses pattern 
templates that allows complex behaviours to be easily programmed. The ScriptEase 
project has many recent publications ([Cut08], [McN04], and [Zha09] are a few). These 
reasons make NWN a good tool for this research. 

Characters in NWN 
The NWN game allows you to make many choices when creating a character. To help 
narrow down the search space, some analysis can be done that will limit the number of 
potential characters that should be examined to form part of the team. To help understand, 
we will start by examining the following two fighters created in NWN. 
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Figure 3: One possible Fighter in NWN 

 

 
Figure 4: A slightly different Fighter in NWN 
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By examining the differences between the above figures, you will notice the first fighter 
has a higher Strength score (18, opposed to 17 for the second fighter), which leads to a 
larger Strength bonus (4, opposed to 3), resulting in larger “Attack bonus” and “Damage” 
values (+5 and 1-3 +4, opposed to +4 and 1-3 +3). This makes the first fighter more 
effective when it comes to melee combat. All characters that are created in NWN have the 
same number of ‘points’ to spend raising the different attributes. In the above example, 
the second fighter has higher Constitution and Wisdom scores than the first fighter (15 
and 9, opposed to 14 and 8), but the bonuses for those scores in the last column are 
identical, so there is no meaningful advantage for the second fighter. There may be some 
scenarios where the second fighter might be preferred, but for the purposes of the 
following experiments that involve fighting in an arena, the second fighter can be 
ignored. 
 
A graphical comparison of these two fighters appears below. To help with the analysis, 
the characters are classified based on the following abilities. 
 

• Hit points (HP): These represent how much damage the character can take before 
falling. Other things being equal, a character with a high number of hit points will 
outlast a character with a low number of hit points in a fight. 

• Melee ability: This is a representation of how well a character fights physically. A 
character with higher melee ability would be more likely to hit an opponent with a 
weapon. 

• Armor class (AC): This represents how difficult it is to hit and damage the 
character. A character with a high AC is difficult to damage because he is either 
nimble and can avoid being hit, or can wear heavy armour.  

• Magic resistance:  A player with a higher magic resistance is more likely to avoid 
most or all of the damage from an opponent’s offensive spell. 

• Helpful magic (healing):  There are lots of spells that are beneficial to the 
members of a party. To help distinguish, we have divided them into two groups. 
The first type is ‘healing’, which returns HPs to a character that has been injured. 
The second type removes a harmful effect that is hindering an ally. For example, a 
character that has a high healing rating would be able to cast a spell that returns an 
injured fighter to full health. 

• Helpful magic (defensive): This group of spells help a character or team by 
increasing various other abilities. These can include making a character more 
resistant to magic, increasing their AC so they are more difficult to hit, adding to 
their attributes so their other skills and abilities become more effective. 

• Offensive magic: A player with a high offensive magic rating can cast spells that 
damage their opponents. For example, he might cast a spell called ‘Fire Ball’ 
which causes an explosion around his enemies. 

• Special/non-combat: There are many abilities that are not directly related to 
combat, but instead are useful to the player in other ways. For example, having the 
ability to move silently (so the character might avoid a fight), pick pockets (so a 
character might be able to steal a key from a guard instead of needing to fight for 
it), or barter (so the character can buy equipment cheaper, allowing them to 
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purchase more or better equipment than a character without that skill) would be 
useful for some people to have. These skills are important for gameplay, but due 
to the experiments involving combat, these skills will not play a role in the 
outcome. 

 
The scale for each of the axes on these radar graphs are relative, with 0 meaning no 
ability in that area, and 5 meaning the best among the players in that area. The fighters 
have the best hit points of the characters under consideration, so they have the highest 
value along that axis. Since the second fighter is not as good as the first fighter with 
respect to melee ability, it has a lower ranking on that axis. Since it has no extra abilities 
to compensate, we can ignore the second fighter when trying to form the best team. 

 
Figure 5: A comparison of the two Fighters 

 

Roles and Abstraction 
In the NWN game, there are different races and character classes the player can choose 
from, along with thousands of ways of assigning the attributes. The number of 
combinations makes any exhaustive search of all possible teams intractable. There are 7 
different races a player can pick from, each with different bonuses or penalties, and 11 
different character classes. Even if you only looked at the 11 basic classes and looked at 
teams of 4 characters, there would still be 114, or 14641 combinations. A valid abstraction 
can be used to remove detail from the representation, making it simpler to find a solution. 
One useful abstraction is to group similar characters together based on the roles they are 
best suited for. The application of roles makes it more likely for this paper to be useful in 
games like NWN with millions of possible team combinations, since a game with only a 
few possible classes it might be able to determine a ‘best’ strategy for every situation by 
exhaustive search. Some games that ship have only a very limited number of playable 
characters that the player can choose to control. If one of the factors that influenced the 
decision to ship these games was the need to verify the combinations of playable 
characters, then this research may be used to make it easier for the game makers to 
include more playable characters in their games. 
 
The concept of abstraction in games and other computer science problems has been 
explored by many others, including [Gil07] who uses abstraction to reduce the 
complexity of a poker game, and [Cla94] that uses abstraction to create a representation 
of a circuit with over 101300 states so it could be verified. 
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The concept of roles is explained in [Lu05], where agents are classified by the capabilities 
they can offer. To help simplify selection process, roles can be used to guide search; first 
the roles that appear in the best teams can be determined, and then best character types to 
fill those roles can be found. Some character types are more effective than others at 
certain roles, and some can play more roles than others. The ‘Defender’, ‘Striker’, 
‘Leader’, and ‘Controller’ roles are described in [Sch09] and refer to characters in the 
NWN game.  
 
Roles can help simplify the search for the best team. As an example, a hockey coach 
might not put his best six players on the ice, especially if none of his top six players is a 
goalie. The concept of a goalie simplifies the search since it limits the criteria for the 
selection of that player to the abilities that are important for someone who is playing in 
that position. 
 
Characters are classified in a role based on what they are best at ‘doing’. For example, the 
‘Defender’ role should be played by a character who is tough, able to take and dish out a 
lot of physical damage, so the fighters described above could easily fall into this role. By 
examining the relative strengths of the team members, it is hoped that rule orderings 
learned through dynamic scripting can be avoided in situations where they will be less 
useful. For example, it should not be the case that a wizard would cast a spell that protects 
him against magic if none of the members on the opposing team can cast offensive magic. 
Also, some of the beneficial magic spells enhance a character’s other abilities. For 
example, there is a spell called “Bull’s Strength”, which makes a character stronger. This 
spell will be most effective if it is used on a teammate that benefits from having a high 
Strength score, like a fighter (reasons described above), and not as useful if cast on a 
Wizard. 
 
Below are a few other characters created in NWN, and their corresponding relative 
abilities. 
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Figure 6: A Rogue in NWN, and relative strengths 

 
A rogue has several abilities that can aid a team outside of combat, like finding traps. 
Under certain circumstances they can do well in combat, but generally they are less 
effective than a fighter due to limitations on the armour they can wear and the weapons 
they can use. They also have fewer HPs than a fighter, and lack the ability to cast magic 
spells. 
 

 
Figure 7: A Wizard in NWN, and relative strengths 
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A wizard is able to cast magic spells, and has powerful offensive spells. To balance this 
they have the fewest HPs, cannot wear armour, and are poor in melee combat. 
 

 
Figure 8: A Cleric in NWN, and relative strengths 

 
A cleric can cast healing spells and other magic that is beneficial to a party. They can also 
wear good armour, and are fairly good in melee combat. 
 
We will use roles to simplify the number of combinations of team members. Fighters and 
Rogues have similar actions to choose from in combat. Wizards and Sorcerers can cast 
the same spells, so if a spell has been found to be effective in a certain situation when a 
Wizard is on a team, then that spell will also be effective if the team has a Sorcerer 
instead. There is a large overlap in the spells available to a Cleric and the spells available 
to a Druid and of the spells that are common to both classes, the effective ones are 
effective regardless of what character class has cast it.  

Experimental Design 
The purpose of these experiments is to see if information about the other agents 
(teammates and opponents) can be used to create better rule orderings faster, and to 
perform better than current scripting implementations. Since the characters that can cast 
spells have more options in their rulebases to choose from, this research will focus on 
their rule orderings (the fighters are effective by moving into combat and then attacking 
with their sword until combat is finished, the magic users have a large range of spells to 
choose from, which allows more possible strategies). 
 
We propose expanding the rulebase in dynamic scripting to have different weights 
depending on the teammates and opponents the agent has, rather than simply have a list of 
scripts and associated weights. In most games there would be too many combinations of 
agents to have an exhaustive list of possible teams, so we use roles to keep the complexity 
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down. In our experiments, we create our team from three different character types: fighter 
(F), cleric (C), and wizard (W). Briefly, a fighter is a tough character that cannot use 
magic, a cleric’s magic is mostly beneficial to his team, and a wizard has offensive magic 
that directly damages opponents. Should other character types be used, they would be 
grouped in the role that is closest to their capabilities – i.e., barbarian and monk types 
could be classified as F since they do not possess magic and have good melee abilities 
like a fighter. Experimental results will verify that this abstraction is effective in NWN.  
 
At a high level, here are the steps that will be performed: 
 
Step 1: Recreate a simple model of the NWN arena. By avoiding the NWN graphical user 
interface, results will be obtained faster. A text-based model of the NWN game will be 
created with the relevant rules. Some assumptions were made when making the text-
based version. These assumptions include: Some area-effect spells damage all opponents; 
Fighters cannot attack on the first turn. More assumptions are listed in the next section. If 
these assumptions do not hold in the NWN arena, it does not mean that the results are 
invalid, but only that the discovered strategy in the text-based arena is not a valid strategy 
in the NWN arena. This step will allow results to be collected much faster than in the 
actual NWN game, and will provide a complex environment with many character types 
where the experiments that will support the thesis can be performed. It will also show that 
the abstraction from an actual commercial game to a text-only version is possible, which 
will allow this research to be applicable to other games 
 
Step 2: Use dynamic scripting to come up with effective rule orderings for various 
scenarios (a team of magic users against opponents without magic users, a team with a 
wizard and many fighters against a team of magic users, a team of magic users against a 
balanced team). The results from each of these scenarios will be saved and used to create 
scripts in future steps. This step will also support the claim that a rule ordering that 
dynamic scripting creates for one character type will not necessarily be effective for that 
character in a different situation. Since other variables in the arena can be held constant 
while one factor is changed (for example, the same teammates against a different set of 
opponents), any changes to the resulting script that dynamic scripting produces can be 
attributed to the change of agents participating. 
 
Step 3: Analyse the results and find correlations between weights of rules and the agents 
participating in combat (for example, it should be determined that casting “Haste” on a 
team with only wizards is less effective than casting it on a fighter, and that casting spells 
that protect the user against magic are not effective when facing opponents without magic 
users). The outcome of every battle is stochastic according to the game rules. Even if both 
teams use fixed tactics, all spell effects and inflicted damage have random factors. The 
opponents’ behaviours will be determined by the scripts. Each time a decision needs to be 
made, the rules are checked in order and the first applicable rule will be executed. This 
will help determine which rules are simply effective in most situations and those that are 
most effective only in certain instances. Determining the situations where certain spells 
are effective is necessary to support the claim that some spells are effective against 
certain opponents or when certain teammates are present. The advantage that will arise 
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from this thesis will come from finding the spells that are most effective in certain 
situations and incorporating them in the scripts for those situations. 
 
Step 4: Create new random teams and opponents. Run experiments with them using rules 
that should be effective against them based on the results of step 3. Compare the results of 
the teams with the static strategies delivered with the NWN game to those with strategies 
created from the results of the dynamic scripting experiments. This step will verify that 
scripts created with dynamic scripting can be more effective than those hand-created by 
experts, and taking the agents into consideration can create a better starting point. 
 
Step 5: Verify the results by implementing the script in the NWN arena, and comparing 
them to the default learning strategies. If the scripts created by the above techniques can 
find an effective strategy against an opponent more quickly than by the dynamic scripting 
algorithm starting with the static scripts shipped with the game, we will be able to say that 
dynamic scripting can create an effective rule ordering more quickly by using information 
about opposing agents. This step will also show that this research can be applied to 
improve a commercial game. 
 
The steps are now described in more detail: 

Recreating the Arena 
As noted in [Tim06], by not using a graphical user interface we can simulate a large 
number of combats. Similar speed increases were found in these experiments by using a 
text-based simulation rather than using the actual NWN game. While creating the text-
based simulation, some simplifying assumptions were made based on observations 
gathering information for [Pri10]. First observation: since the arena is small, area-effect 
spells almost always affected all of the enemies. For the text-based simulation, an area-
effect spell will hit every opponent. As there are no “obstacles” (walls, pillars, doors) 
between the opponents, the rules about partial cover were not implemented. Second 
observation: when opponents had both melee (close-quarter) and ranged weapons (bows, 
etc.), the melee weapons were almost exclusively used, and the strategies learned always 
had the agents using their melee weapons instead of their ranged weapons. For the text-
based simulation, the agents will only have melee weapons. Third observation: ‘fighter’ 
agents (in this context, fighter refers to any class whose primary function is to damage the 
opponent by getting into melee combat rather than by casting magic spells) would 
advance towards the opposing team, and make it to the opposing team in one round (a 
round is the unit of combat used in NWN). If the opposing team had ‘fighters’, they 
would meet near the middle of the arena, and a team’s fighters would not be able to 
advance to the opponent team’s magic users until all of the opposing team’s fighters were 
defeated. If there were no fighters on the opposing team, the fighters would be able to 
make it to the opposing team’s magic users at the end of the first round. For the text-
based simulation, the fighters would not get an attack on the first round (which would 
represent the time it took to move into position), and then they would only attack the 
opposing team’s fighters first, and then attack the opposing team’s magic users second. In 
the event that one team had only magic users remaining and they ran out of spells, they 
would move into melee combat and then attack with their weapons. Some advanced rules 
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were not implemented – occasionally a fighter can knock down an opponent after a hit, 
some bonuses to hit could occur if an attacker tried to hit someone from behind, an extra 
attack was allowed if someone tried to perform certain actions near an enemy. This kept 
the text-only version of the arena a simplified representation of the NWN arena. In a two 
dimensional world like the NWN arena, fighters could choose different opponents to 
attack if there were more than one nearby. In the text-based version, all attacks are 
concentrated on a single enemy, which can easily cause different results. 
 
These assumptions might make the strategies learned unrealistic in some situations. The 
assumption of area-effect spells hitting all opponents for example would be unrealistic if 
the fighting was to occur in a large battlefield instead of the arena. For the purposes of 
these experiments, the assumptions should not affect the results. Verification of the 
strategies learned will occur in the last step when the fights are reproduced in the arena 
with the strategies learned. 

Use Dynamic Scripting in different situations 
Different teams will fight, and effective strategies will be learned. This will be similar to 
work described in [Spr05] and [Tim07]. It has already been shown in [Spr06] that this 
method will allow the agents of a team to learn an effective strategy against an opponent. 
This step is required to collect the data needed for the following step, where the effective 
strategies that the individual agents develop against different teams will be analysed. 
Optimal strategies will be learned with dynamic scripting for teams with different 
amounts of fighters, clerics, and wizards, against teams that also have different amounts 
of the above agents.  
 
A rulebase will be initially set up and populated by letting certain teams of agents play 
against similar teams. Dynamic scripting will be used to come up with effective strategies 
for the cleric and wizard classes. Dynamic scripting will not be used for the fighter class, 
as that class basically had one effective action to perform: hit an opponent with its sword. 
The spells for the cleric and wizard classes will be taken from the default spell selection 
that came with the characters created in the NWN game. One exception will be made; 
wizard spell “invisibility” will be switched for a different spell of that level “web”, since 
there was a documented issue with the implementation of “invisibility” in the NWN 
dynamic scripting module. 
 
To come up with the initial weights for the rules, a well-rounded team (FFCW) will fight 
a similar team for a thousand rounds five times. After this point, some rules with the 
consistently lowest weights will be removed. The spells that ended up being removed 
were the ones that did not have an effect on combat. Appendix C contains a listing of the 
spells that were removed. [Spr06] states that “it is imperative that the majority of the rules 
in the rulebase define effective, or at least sensible, agent behavior.” Rules that will not 
affect combat will be removed since they have no practical value. 
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Find correlations between effective strategies and participating 
agents 
First, all of the strategies will be examined to see if common elements can be found (for 
example, while watching fights in arena, it was observed that there are certain situations 
when a rule is always a good idea, or always a poor one. It is always a poor decision for a 
character to run past enemy fighters, as that will allow the fighters to get extra attacks 
against the character, with bonuses from attacking from behind. It is always a poor 
decision for a wizard to start a combat by moving closer to the enemies and attacking 
with a melee weapon. A wizard can be much more effective by casting an offensive spell. 
It is a good decision for a cleric to heal a fighter on the same team that is wounded, 
regardless of the opponents being faced, as this will potentially allow the fighter to stay 
on his feet longer, which will help the team win. It is always a good idea to start combat 
by casting a spell that improves the abilities that a team mate is using, as this will 
maximize the amount of time the benefit will be in effect. 
 
Since different scripts should be used in different situations, it is necessary to determine 
what rules are more effective in the different situations. The goal of this research is to see 
if the information about other agents can be used to create better starting points for 
dynamic scripting. There are two groups of agents that need to be examined when 
determining a strategy, an agent’s opponents and an agent’s teammates. 

Opponents 
The teams will be categorized by their relative strengths and weaknesses (for example, we 
may classify a team as having low melee abilities, average AC, …and high offensive 
magic ability, or having high melee abilities, high AC,… and no offensive magic 
abilities). An agent can come up with a strategy that is effective against one set of 
opponents but not effective against another. The scenario of a wizard casting a spell that 
protects him from magic is effective against opponents that have offensive magic 
capabilities, but not against opponents that have no offensive magic capabilities. 

Teammates 
The teammates of an agent will also be classified according to strengths and weaknesses. 
The most effective strategy a player can take may depend on the abilities of allies. A 
strategy for increasing the melee abilities of allies on a team will be more effective if 
there are teammates with high melee abilities to begin with. The scenario of a wizard 
casting a spell that increases the speed of a teammate is effective when there is a 
teammate who is a fighter, but much less effective when all of the teammates are also 
wizards.  
 
Using roles and the three character types above, we can create a partition that groups all 
teams into one of seven sets depending on whether or not it has fighters (hasF), clerics 
(hasC), and wizards (hasW). An eighth partition where all 3 functions are false might 
exist in a game – if the player was facing a monster for instance, but for our purposes we 
will ignore this case. The abstraction of using roles is necessary to reduce the problem 
space into a manageable size. 
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In our experiments our fights will contain teams of four agents verses four agents. A team 
of four fighters (FFFF) would be the only team to fall in the hasF=Y, hasC=N, hasW=N 
set, whereas there are three teams in the hasF=Y, hasC=N, hasW=Y set (FFFW, FFWW, 
FWWW). Similar classifications can be made for the opponent teams: oHasF would be Y 
if the opponent team had fighters, and if an agent was fighting a team of FFWW, then 
oHasF and oHasW would be Y and oHasC would be N. 
 
If an action is beneficial in a certain situation regardless of the teammates an agent has 
(for example, casting a spell that protects it from enemy magic), its weight should be 
independent of the values of hasF, hasC, and hasW. Similarly, if an action is beneficial in 
a situation regardless of the opponents (summoning a creature to help fight if there is no 
fighters on your team), then it should have a high value in all situations of oHasF, oHasC, 
and oHasW. 

Create new teams, and synthesize starting strategie s 
Teams that have not been used in the above steps will be created, and starting strategies 
will be created from the results in the above step. The starting strategies will be made up 
of ‘common’ rules that are effective in all scenarios (healing a teammate who is injured), 
and of rules that have been found to be effective in similar situations (with similar 
teammates or against similar opponents). Fights will then occur as usual, and we will be 
able to determine the effectiveness of the new starting strategies against the default 
starting strategies. If the teams can consistently start with a dominant strategy using the 
new starting points than with the default strategies, then this will demonstrate the 
usefulness of this technique. 
 
Other teams fought each other (FFFW), and then teams of different agents fought each 
other (FCWW vs. FFWW, FFFW vs. FFCW, FCWW vs. CCWW, etc.). The different 
teams and their weights were classified based on six functions hasF, hasC, hasW, oHasF, 
oHasC, and oHasW. These classifications are used to reduce the large number of possible 
combinations of character classes into a smaller number of groups to help determine the 
best starting strategy.  
 
The training process was done a total of three times for each set of fights for verification 
purposes. Although exact matches were not expected for any of the weights, trends were 
observed, and the top spells in any given scenario were often the same spells in other 
scenarios, with slightly different weights. The variations in the results between different 
runs are expected as each round in combat has many random factors (whether or not a 
fighter hits its opponent with a sword, or the amount of damage a wizard does with an 
offensive spell). This randomness also affects the dynamic scripting process, as the 
weights that are updated depend on the fitness of the agents (whether or not the team won 
or not, and how decisive the win was). 
 
To synthesize the starting weights, the first step is to look for matches from previous 
training processes, and if no match is found to average the weights from the nearest 
neighbors. An example will help explain the process. Training was performed with the 
following test cases. The six letter code after each line corresponds to the hasF, hasC, 
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hasW, oHasF, oHasC, oHasW functions (in that order) with respect to the W in the first 
group. Since the W in first case has an F and a C as team-mates, but does not have a W, 
the first letters are YYN. Since the opponent team has a member of F, C, and W, the last 
letters are YYY. 
 
1: FFCW vs. FFCW  YYNYYY 
2: FFFW vs. FFFW   YNNYNY 
3: FCWW vs. CCWW YYYNYY 
4: FFWW vs. FFCC  YNYYYN 
 
Now for combat, we want to generate a starting script for the W in the first team in 
FFCW vs. CCWW. The corresponding code for this W would be YYNNYY. As there is 
no exact match, we compare this to the other codes and find that it matches 5/6 letters in 
both test cases 1 and 3. We average the W weights that resulted from those two training 
runs. A similar process can be used to come up with the starting weights for the other 
agents. A complete example is shown in Appendix B, and some highlights are below. The 
first column contains the names of some of the spells available to the Wizard. The second 
column contains the weights for those spells from the Wizard in the FFCW team when it 
faced the FFCW team (row 1 above). The third column contains the weights for those 
spells from a Wizard in the FCWW team when it faced the CCWW team (row 3 above). 
The fourth column contains the average weight for those two columns. In some cases, an 
effective spell in all cases (horrid wilting or ice storm for example) continues to have a 
high weight. In other cases, some spells have a high weight in one instance but not the 
other, and in those cases the average is used. In these cases, the dynamic scripting process 
will cause the averaged weight will go up if these spells are effective in the new scenario, 
or down if not. The spells that have a high weight will likely be effective, and will appear 
as an intelligent action to take. Any spells that have a low weight in most cases not have a 
high chance of being picked, since it is likely to not be effective. 
 

team FFCW FCWW FFCW 
opponent  FFCW CCWW CCWW 
character  W W W 

classification  YYNYYY YYYNYY YYNNYY 
melf's acid arrow 0.1797 0.0011 0.0904 
evard's black tentacles 0.1797 0.0011 0.0904 
ice storm 0.1950 0.1988 0.1969 
chain lightning 0.1950 0.0011 0.0980 
summon creature 6 0.0011 0.0335 0.0173 
horrid wilting 0.1950 0.1999 0.1974 

Table 7: Synthesis of selected starting weights for W in FFCW v CCWW  
 

Verify strategies in the Arena 
Strategies that have been learned in the above ‘text-based’ simulation will be verified in 
the NWN Arena. If the teams learn strategies that perform better than the opponent teams 
faster than by starting using the default starting strategies, then the assumptions made in 
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the text-based simulation are justified, and this approach will have been demonstrated to 
be effective in a commercial game. 
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Chapter 4: Results 
The following pages contain results from the text-based arena, which was used to quickly 
simulate thousands of rounds of combat from the NWN game. Results from the actual 
NWN game start appearing in Table 12. 
 
The step of populating the initial rulebase had the purpose of verifying the 
implementation of dynamic scripting, as weights that we expected to be effective often 
had higher weights, and spells we thought would not be effective ended up with lower 
weights. This step helped catch a bug in our implementation, as one spell that should have 
been effective ended up having a very low weight. This spell provided significant bonuses 
to a teammate, and should have had a high weight. After some troubleshooting, it was 
found that the spell was actually providing the bonuses to an opponent instead of an ally, 
and thus was detrimental to the caster. This underscores the premise in [Spr04] that 
scripts can be complex and can contain errors, and that dynamic scripting can account for 
them. 
 
Below are the results of the text-based experiments, starting with the weights for W spells 
in FFCW versus FFCW. These numbers in each row correspond to the weights of the 
wizard spell in the left-hand column after the fight at the top of that column. For example, 
after 10 fights, the ‘magic missile’ spell had an 8.2% chance of being included in a script, 
but by fight 100 it had about a 0.1% chance of being included. Some spells have weights 
of 0. During preliminary testing, those spells were determined to be ineffective regardless 
of the scenario, so were removed. Further explanation is given in Appendix C. 
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after fight: 10 50 100 250 500 750 1000 
daze 0 0 0 0 0 0 0 
light 0 0 0 0 0 0 0 
ray of frost 0.0126 0.0020 0.0011 0.0011 0.0011 0.0011 0.0011 
resistance 0.0774 0.0310 0.0355 0.0554 0.0667 0.0351 0.0123 
mage armor 0.0126 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
summon creature 1 0.0015 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
magic missile 0.0821 0.0161 0.0011 0.0011 0.0011 0.0011 0.0011 
Identify 0 0 0 0 0 0 0 
sleep 0 0 0 0 0 0 0 
ghostly visage 0.0126 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
melf's acid arrow 0.0844 0.1153 0.1474 0.1685 0.1555 0.1744 0.1797 
summon creature 2 0.0023 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
Knock 0 0 0 0 0 0 0 
web (WAS invisibility) 0.0074 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
fireball 0.0031 0.0019 0.0011 0.0011 0.0123 0.0011 0.0011 
clarity 0.0078 0.0047 0.0015 0.0011 0.0011 0.0299 0.0198 
summon creature 3 0.0268 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
haste 0.0335 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
dispel magic 0.0063 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
stoneskin 0.0605 0.0050 0.0016 0.0011 0.0011 0.0011 0.0011 
elemental shield 0.0836 0.0171 0.0064 0.0255 0.0011 0.0011 0.0011 
evard's black tentacles 0.0877 0.1964 0.1964 0.1987 0.1746 0.1967 0.1797 
ice storm 0.0885 0.1964 0.1964 0.1346 0.1742 0.1465 0.1950 
minor globe of 
invulnerability 0.0126 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
lesser spell mantle 0.0264 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
summon creature 5 0.0126 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
cloudkill 0.0694 0.0040 0.0013 0.0011 0.0011 0.0011 0.0011 
greater shadow 
conjurations 0 0 0 0 0 0 0 
chain lightning 0.0531 0.1964 0.1964 0.1960 0.1880 0.1967 0.1950 
greater spell breach 0.0068 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
summon creature 6 0.0055 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
mordenkainen's sword 0.0123 0.0011 0.0011 0.0011 0.0120 0.0011 0.0011 
spell mantle 0.0239 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
horrid wilting 0.0859 0.1964 0.1964 0.1970 0.1941 0.1967 0.1950 
melee 0.0009 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 

Table 8: Spell weights for Wizard in FFCW v FFCW 
 
Selected weights from the previous table appear in the figures below. Even though all of 
the spells started with equal weights initially, after only 10 fights some of the effective 
spells were already getting higher weights. 
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Figure 9: Wizard spell weights after 50 fights in FFCW v FFCW 

After 50 fights, the wizard has already learned the most effective spells. From a starting 
point where the 29 spells had similar weights, dynamic scripting has already raised the 
weights of some spells and lowered the weights of spells of others.  

 
Figure 10: Wizard spell weights after 250 fights in FFCW v FFCW 

After 250 fights, the weights have changed, but a script created from the most effective 
spells still remains fairly similar to the one created after 50 fights. 
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Figure 11: Wizard spell weights after 1000 fights in FFCW v FFCW 

In the last three figures the weights have changed. Even though the scripts created after 
these fights would be different, the top 5 spells would have been present in all of the 
scripts. 

 
Figure 12: Selected weights for W Spells (FFCW v FFCW) 
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Figure 12 contains the weights of 6 of the spells after various fights. All of the spells 
started with an equal weight. Most of the spells were not effective, and their weights fell 
down to the minimum. From this figure it is easy to see how effective spells quickly can 
be identified after only a few fights. Some variation in the order of spells in a script 
occurs as more trials are completed. This type of variation is beneficial in a game, as it 
allows for different behaviours, and can compensate for changes in a player’s behaviour. 
 
The weights for the C spells using the same teams (FFCW v FFCW) appear below: 
after fight: 10 50 100 250 500 750 1000 
inflict minor wounds 0.0062 0.0021 0.001 0.0011 0.001 0.0011 0.0011 
cure light wounds 0.0129 0.001 0.001 0.0011 0.001 0.0011 0.0011 
inflict light wounds 0.0359 0.0011 0.001 0.0011 0.001 0.0011 0.0011 
bless 0.0071 0.001 0.001 0.0011 0.001 0.0011 0.0011 
cure moderate wounds 0.0129 0.001 0.001 0.0011 0.001 0.0011 0.0011 
inflict moderate wounds 0.0509 0.0202 0.0024 0.0011 0.001 0.0011 0.0011 
aid 0.0402 0.001 0.001 0.0011 0.001 0.0011 0.0071 
cure serious wounds 0.0583 0.0836 0.0679 0.1899 0.1826 0.1609 0.1816 
inflict serious wounds 0.0009 0.001 0.001 0.0011 0.001 0.0011 0.0011 
remove 
blindness/deafness 0 0 0 0 0 0 0 
remove disease 0 0 0 0 0 0 0 
dispel magic 0.0327 0.0022 0.001 0.0011 0.001 0.0011 0.0011 
animate dead 0.0129 0.001 0.001 0.0011 0.001 0.0011 0.0011 
hammer of the gods 0.0468 0.1549 0.1639 0.1795 0.1755 0.1925 0.1955 
inflict critical wounds 0.0085 0.001 0.001 0.0011 0.001 0.0011 0.002 
freedom of movement 0.0427 0.001 0.001 0.0011 0.001 0.0011 0.0011 
cure critical wounds 0.0374 0.001 0.001 0.0011 0.001 0.0011 0.0011 
divine power 0.0396 0.001 0.001 0.0351 0.1826 0.1925 0.145 
dismissal 0.0494 0.1418 0.1735 0.1899 0.0685 0.0553 0.0011 
heal 0.0513 0.001 0.001 0.0011 0.001 0.0011 0.0011 
slay living 0.0449 0.001 0.001 0.0347 0.001 0.0011 0.0011 
flame strike 0.0536 0.0021 0.001 0.0011 0.001 0.0011 0.0011 
cirle of doom 0.0201 0.0022 0.001 0.0011 0.001 0.0011 0.0011 
spell resistance 0.0256 0.001 0.001 0.0011 0.001 0.0011 0.0471 
harm 0.0244 0.001 0.001 0.0011 0.001 0.0011 0.0011 
blade barrier 0.0129 0.001 0.001 0.0011 0.001 0.0011 0.0011 
banishment 0.0576 0.1886 0.1891 0.0011 0.001 0.0011 0.0011 
control undead 0.017 0.001 0.001 0.0011 0.001 0.0011 0.0011 
destruction 0.0731 0.1886 0.1891 0.1563 0.1826 0.1797 0.1955 
greater restoration 0 0 0 0 0 0 0 
regenerate 0.0009 0.001 0.001 0.0011 0.001 0.0011 0.0011 
fire storm 0.051 0.1886 0.1891 0.1882 0.1826 0.1925 0.1955 
earthquake 0.0715 0.0053 0.001 0.0011 0.001 0.0011 0.0069 
melee 0.0009 0.001 0.001 0.0011 0.001 0.0011 0.0011 

Table 9: Spell weights for Cleric in FFCW v FFCW 
 



 

35 

 
Figure 13: Cleric spell weights after 50 fights in FFCW v FFCW 

Similar to the wizard spell weights in Figure 9, the cleric has already learned some 
effective spells after only 50 fights. Unlike the wizard weights, some spells (banishment) 
that appeared effective in early rounds will not appear in the scripts created after later 
rounds. 
 

 
Figure 14: Cleric spell weights after 250 fights in FFCW v FFCW 
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The cleric scripts created by dynamic scripting varied more between fights than those of 
the wizard. 
 

 
Figure 15: Cleric spell weights after 1000 fights in FFCW v FFCW 

After 1000 fights, only three out of five spells that appeared to be most effective after 50 
fights remain. 
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Figure 16: Selected weights for C Spells (FFCW v FFCW) 

There is a lot more movement in the weights of the cleric spells which resulted in more 
variation in the created scripts than the wizards in the same fights. See Figure 12 for a 
comparison, where there is not as much movement as in Figure 16, which has some spell 
weights that change from very high to very low or vice versa throughout the experiment. 
 
These results are important since they show that even though no hand-coding of weights 
were used to signify importance of the spells, effective weights were learned and more-
powerful spells ended up with higher weights than their lesser-powerful counterparts. The 
spell casters were able to determine which spells were effective and learned strategies that 
were successful on their own, even when a poor selection of spells resulted in a loss. Also 
of importance is to note that a spell that is most effective in one scenario is not 
necessarily going to be as effective when there are other teammates or opponents. Those 
results are demonstrated in the trials below. 
 
It is worth noting that spells like Banishment and Dismissal (both of which instantly get 
rid of summoned creatures on the opposing team) had high weights during the first half of 
the fights, since these spells are very effective against summoned creatures. These 
weights were so effective that the opponent teams weights for the summon creature spells 
were driven to the minimum weights. After opponents stopped trying to summon 
creatures, the weights for Banishment and Dismissal dropped (from dynamic scripting 
reacting to changes in opponents’ strategies).   
 
Next we removed the C from each team and replaced it with another F, leading to a 
situation where there is only 1 spellcaster on each team, and no ability for the characters 
to heal themselves. Some of the damaging spells are similar, and a defensive spell that 
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helps against physical damage (stoneskin) has a higher weight. The results of these fights 
appear in the table below: 
 
 
after fight: 10 50 100 250 500 750 1000 
daze 0 0 0 0 0 0 0 
light 0 0 0 0 0 0 0 
ray of frost 0.0266 0.0201 0.0441 0.0684 0.0987 0.0585 0.001 
resistance 0.0292 0.0011 0.0013 0.0011 0.0023 0.0325 0.0058 
mage armor 0.0482 0.0011 0.0013 0.0424 0.0364 0.0011 0.001 
summon creature 1 0.0096 0.0251 0.0011 0.0011 0.0023 0.0011 0.001 
magic missile 0.0284 0.0085 0.0013 0.0011 0.0023 0.0572 0.0388 
identify 0 0 0 0 0 0 0 
sleep 0 0 0 0 0 0 0 
ghostly visage 0.0372 0.0481 0.0779 0.0444 0.0312 0.0023 0.001 
melf's acid arrow 0.0152 0.0011 0.0011 0.0346 0.0356 0.0011 0.001 
summon creature 2 0.0109 0.0011 0.0013 0.0011 0.0012 0.0011 0.001 
knock 0 0 0 0 0 0 0 
web (WAS invisibility) 0.0252 0.0049 0.0013 0.0011 0.0214 0.0011 0.001 
fireball 0.0284 0.0437 0.0566 0.0458 0.0332 0.0548 0.0649 
clarity 0.0254 0.031 0.029 0.0673 0.0143 0.0255 0.0417 
summon creature 3 0.0315 0.0014 0.0011 0.0011 0.0023 0.0011 0.001 
haste 0.0298 0.0369 0.0698 0.0144 0.0364 0.0606 0.001 
dispel magic 0.0576 0.0396 0.0571 0.0925 0.0801 0.0778 0.0666 
stoneskin 0.0403 0.0032 0.046 0.0687 0.0367 0.0011 0.0432 
elemental shield 0.0434 0.0892 0.0449 0.0011 0.0223 0.0581 0.001 
evard's black tentacles 0.0638 0.0766 0.1108 0.0466 0.0346 0.0643 0.0607 
ice storm 0.0617 0.0808 0.1219 0.1025 0.1029 0.058 0.1223 
minor globe of 
invulnerability 0.0666 0.006 0.0041 0.0011 0.0663 0.0011 0.001 
lesser spell mantle 0.0645 0.0905 0.0429 0.0537 0.046 0.0441 0.001 
summon creature 5 0.0699 0.0818 0.0011 0.0011 0.0023 0.0011 0.001 
cloudkill 0.05 0.0107 0.0014 0.0452 0.0142 0.0011 0.0579 
greater shadow 
conjurations 0 0 0 0 0 0 0 
chain lightning 0.0129 0.0547 0.0465 0.0613 0.0668 0.0977 0.1185 
greater spell breach 0.0064 0.0448 0.0407 0.0011 0.0154 0.0011 0.0647 
summon creature 6 0.0295 0.054 0.0339 0.0612 0.0653 0.0011 0.001 
mordenkainen's sword 0.0039 0.0022 0.001 0.032 0.0325 0.1001 0.1229 
spell mantle 0.0401 0.0824 0.0458 0.0011 0.0023 0.0848 0.0578 
horrid wilting 0.0428 0.0585 0.1135 0.1063 0.0937 0.109 0.1186 
melee 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Table 10: Spell weights for Wizard in FFFW v FFFW 
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Figure 17: Wizard spell weights after 50 fights in FFFW v FFFW 

After 50 fights, there is much more variation in the script created by dynamic scripting for 
this wizard compared to the one from FFCW v FFCW in Figure 9.  
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Figure 18: Wizard spell weights after 250 fights in FFFW v FFFW 

Some of the spells that were effective in the FFCW v FFCW fights are also effective here, 
but others (like dispel magic) will appear in these scripts but not others. 
 

 
Figure 19: Spell weights after 1000 fights in FFFW v FFFW 
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Compared to Figure 11, the weights learned and scripts generated by this wizard are 
significantly different than those learned by the wizard in FFCW v FFCW. Some of the 
most effective spells are identical and will appear in the wizard’s scripts for both fights, 
but there are also quite a few new spells in these scripts that would appear in FFFW v 
FFFW but not FFCW v FFCW. 
 

 
Figure 20: Selected weights for W spells (FFFW v FFFW) 

 
The weights for the spells were much different than those of the wizard from Figure 12, 
showing that a small change in the composition of the team can have a big difference in 
the spells that appear in the scripts created by dynamic scripting. 
 
After the most effective scripts were learned in the text-based arena, the scripts were used 
in the NWN arena to verify their effectiveness. 
 
Spells that received a high weight after one training run had similar weights after similar 
training runs, and some spells were effective in many situations and had high weights 
after various training runs. The important concept to highlight is some spells were very 
effective in some situations, but less effective in others. Table 11 shows the weights of 
the “Ice Storm” spell. “Ice Storm” is a W spell that damages the opponents on the other 
team. The “Team” and “Opponent” columns show the agents that were in the combat. 
This type of variation would be hard to reproduce if the weights were all hand-coded. The 
people hand-coding the weights would have to enter a value for every spell for different 
combinations of teams that were fighting, which introduces the chance of a game-
designer introducing an error. 
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Team Opponents Weight 
FFCW FFCW 19.6% 
FFFW FFFW 15.7% 
CCWW FCWW 4.2% 

Table 11: Selected resultant weights of the "Ice Storm" spell 
 
In cases where one team lost a significant proportion of the fights, the weights were more 
varied. This is to be expected, since if a team is significantly inferior, dynamic scripting 
will continue to attempt to find different strategies to help the team win. 
 
Table 12 contains the results from the FFCW v FFCW fights. The first row contains the 
results of 100 fights with both teams using the default logic that came with the NWN 
module. The results do not add up to 100 since there were a few ‘ties’, where the last 
player on each team died simultaneously. The second row contains the results of having 
the Wizard on each team used the weights learned from the text-based version. The third 
row contains the results when the Wizard and Cleric on each team used the weights from 
the text-based version. The final two rows one team used the default logic and the other 
used the weights from the text based versions, and for those two rows we can say with a 
95% confidence level that the strategy learned from the text-based version performed 
better than the team using the default logic. The actual weights for the Wizard are in 
Table 3, and the weights for the Cleric are in Table 4. 
 FFCW  FFCW 

 
White (W) 
Wins 

Black 
(B) Wins 

Default Logic - Both Teams 49 46 
Wizard using synthesized starting point - Both Teams 55 41 
Wizard and Cleric using synthesized starting point - Both 
Teams 54 41 
White Team using text-based Wizard. Black Team using 
Default Logic. 67 28 
White Team using text-based Wizard and Cleric. Black Team 
using Default Logic. 64 34 

Table 12: Results from FFCW v FFCW 
 
Table 13 shows the results from FFFW v FFFW. When the Wizard used the weights from 
Table 5, it performed significantly better than by using the default-logic strategy. These 
results highlight the fact that hand-coded values are not necessarily better (as we can state 
with a 95% level of confidence that the strategy learned from dynamic scripting 
significantly outperforms the strategy that shipped with the game), and that following one 
strategy for all opponents is not always effective, as the default strategy had various 
levels of effectiveness against different teams. 
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 FFFW  FFFW 

 
White (W) 
Wins 

Black (B) 
Wins 

Default Logic - Both Teams 57 41 
Wizard using text-based starting point - Both Teams 53 35 
White Team using text-based Wizard. Black Team using 
Default Logic. 97 3 

Table 13: Results from FFFW v FFFW 
 
The above two tables show results from balance teams fighting each other. In many 
situations, one team might be stronger than the other. In such a case, dynamic scripting 
may continue to try different strategies to come up with one that is effective. 
In the following table, the rules for the “Dynamic Scripting Starting Point” were 
synthesized using the method explained in Table 2. The results below show that the 
scripts created from the dynamic scripting method performed better than the scripts 
created by the game designers of NWN. 
 

CCWW % Wins FFCW Remaining Hit Points 
Default Starting Point 3.4 116.52 
Dynamic Scripting Starting Point 7.8 69.64 

Table 14: Results from CCWW v FFCW 
 
The complete results are in Appendix D.  
 
To test the validity of using roles as an abstraction in these experiments, trials were run 
where a character on a team was switched with a different character type that can fulfill 
the same role, and then ensure the results were still applicable. The Sorcerer class is 
similar to the Wizard class, as they have the same spells to pick from. A major difference 
between the two classes is the number of spells they can cast daily, and whether or not 
they need to prepare them at the beginning of the day. A level 15 Sorcerer can cast 6 
spells from each of levels 1-6, and 4 level 7 spells. These spells can be picked right before 
they are cast from a list of spells the sorcerer knows. A level 15 Wizard can cast 4 spells 
from each of levels 1-5, 3 level 6 spells, 2 level 7 spells, and 1 level 8 spell. These spells 
must be picked at the beginning from the spells the wizard knows. 
 
The complete list of spells for the two classes is listed in Appendix F. 
 
The following script was created for the W in FFFW v FFFW.  
 
    if (GetHasSpell( SPELL_ICE_STORM )) 
    {… 
        ActionCastSpellAtLocation( SPELL_ICE_STORM, locTarget ); 
…} 
 
    if (GetHasSpell( SPELL_CHAIN_LIGHTNING )) 
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    {… 
        ActionCastSpellAtObject( SPELL_CHAIN_LIGHTNING, oEnemy ); 
…} 
 
    if (GetHasSpell( SPELL_HORRID_WILTING )) 
    {… 
        ActionCastSpellAtLocation( SPELL_HORRID_WILTING, locTarget ); 
…} 
 
    if (GetHasSpell( SPELL_MORDENKAINENS_SWORD )) 
    {… 
        ActionCastSpellAtLocation( SPELL_MORDENKAINENS_SWORD, locTarget ); 
…} 
 
    if (GetHasSpell( SPELL_EVARDS_BLACK_TENTACLES )) 
    {… 
        ActionCastSpellAtLocation( SPELL_EVARDS_BLACK_TENTACLES, locTarget 
); 
…} 
 
Which would result in the following spells being cast by the two different characters: 
Wizard:  
Round 1: Ice Storm 
Round 2: Chain Lightning 
Round 3: Horrid Wilting 
Round 4: Mordenkainen’s Sword 
Round 5: Evard’s Black Tentacles 
 
Sorcerer:  
Rounds 1-6: Ice Storm    (Sorcerer can cast 6 level 4 spells) 
Rounds 7-12: Chain Lightning   (Sorcerer can cast 6 level 6 spells) 
Rounds 13-17: Mordenkainen’s Sword (Sorcerer cannot cast 8th level spell, so skips 

Horrid Wilting, goes right to 
Mordenkainen’s Sword. Also will skip 
Evard’s Black Tentacles, as it is a level 4 
spell, and Sorcerer has already cast all level 
4 spells in rounds 1-6.) 

 
Even though there is a lot of overlap in the spells available to these two classes, it is 
apparent that the same script will produce different results for these character classes. 
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 FFFW  FFFW 

 
White (W) 
Wins 

Black (B) 
Wins 

Default Logic - Both Teams 57 41 
Wizard using text-based starting point - Both Teams 53 35 
White Team using text-based Wizard. Black Team using 
Default Logic. 97 3 
 FFFS FFFS 

 
White (W) 
Wins 

Black (B) 
Wins 

Default Logic - Both Teams 46 54 
Wizard using text-based starting point - Both Teams 51 45 
White Team using text-based Wizard. Black Team using 
Default Logic. 94 6 

Table 15: Results from FFFW v FFFW compared to FFFS v FFFS 
 
In both cases, we can state with a 95% level of confidence that the strategy learned from 
dynamic scripting performed better than the default logic that was shipped with the game. 
The fact that the script performed well with a Sorcerer instead of a Wizard demonstrates 
that the abstraction based on roles is a valid one, since the script was created in the text-
only arena that did not have the Sorcerer class. 

Discussion 
It is important to note that this is not a case of “more knowledge leads to better 
decisions”. The logic in the NWN arena module takes thousands of lines of code. 
The scripts produced by this method are under a hundred lines. This method replaces 
thousands of lines of code written by experts, and replaces it with scripts proven to be 
effective. By removing the complex scripts generated by hand, the chance of a bug 
existing in a script is minimized, and allowing adaptation of the scripts through changing 
the values of the weights further removes the chance of an exploit being used. 
 
The rules that were implemented as scripts in the dynamic scripting version used as little 
domain-specific knowledge as possible, to ensure the results achieved were the result of 
the dynamic scripting process instead of domain knowledge. For example: The 
knowledge that a spell that banished a summoned creature could be cast only if there was 
a summoned creature on the opposing team was encoded, but the knowledge that the spell 
“Summon Creature VI” was better than “Summon Creature I” because it summoned a 
more-powerful creature was not encoded. In games like NWN, this knowledge is 
encoded, since it is often the case that you would want an agent to cast the most-powerful 
spell available to it when in a certain situation. In most cases, the higher-level spells are 
more effective, so they would end up with a higher weight than the lower-level versions 
after training. There were few instances where a lower-level version of a spell had a 
slightly higher weight after some training runs– this often was not a significant difference, 
and was not unexpected given the stochastic nature of dynamic scripting. Adding domain-
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specific knowledge will not lessen the effectiveness of dynamic scripting finding better 
strategies, and would lessen the chance of the above happening. 
 
The long, hand-coded logic can contain errors, either due to the complexity, or 
requirements not completely understood by the programmers. The following bits of code 
were found in the NWN module. More detailed excerpts are found in Appendix E. The 
next few lines contain a comment that shows the developers were not confident in some 
of the constants that were used. 

// No idea if these distances are correct  
const float DISTANCE_COLOSSAL = 15.0; 
const float DISTANCE_HUGE = 10.0; 
<several more lines> 

 
The next few lines of code contain logic to classify creatures. This is similar to the work 
done in the discussion of roles in chapter 3. This code shows that Clerics and Druids are 
both classified under the abstraction “Priests”. 

// Returns TRUE if oCreature is a priest. 
int IsPriest( object oCreature ) 
{ 
    if (HasClass( oCreature, CLASS_TYPE_CLERIC ) || 
        HasClass( oCreature, CLASS_TYPE_DRUID )) 
        return TRUE; 
 
    return FALSE; 
} 

 
The following lines of code contain several parts with complex reasoning to pick the best 
spell for a certain situation. The code shows many checks being performed before a 
summon spell is cast, and then various summoning spells ranked in descending order of 
effectiveness. 
 

    if (GetHasSpell( SPELL_SUMMON_CREATURE_IV )) 
    { 
… 
        ActionCastSpellAtLocation( SPELL_SUMMON_CREATURE_IV, locTarget ); 
… 
    } 
 
    if (GetHasSpell( SPELL_SUMMON_CREATURE_III )) 
    { 
… 
        ActionCastSpellAtLocation( SPELL_SUMMON_CREATURE_III, locTarget ); 
… 
    } 
 
    if (GetHasSpell( SPELL_SUMMON_CREATURE_II )) 
    { 
… 
        ActionCastSpellAtLocation( SPELL_SUMMON_CREATURE_II, locTarget ); 
… 
    } 
 
    if (GetHasSpell( SPELL_SUMMON_CREATURE_I )) 
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    { 
… 
        ActionCastSpellAtLocation( SPELL_SUMMON_CREATURE_I, locTarget ); 
… 
    } 

 
As stated earlier, this knowledge is introduced by a programmer who knows which 
summon spells are more effective than others. Although it could be determined 
analytically which of these spells are expected to be more effective, there is a chance that 
a coding error makes one spell more or less effective than it should be.  
 
There are also lots of places in the code where there is lots of logic built in to take care of 
special cases are coded which are only used in specific circumstances. This introduces 
complexity which can make debugging difficult in certain situations. The following code 
shows how many checks are done before certain spells are cast. The complete section 
contains comments that mentions some spells, including invisibility, still need to be 
coded. 

    // HIGH Priority rules. These rules are fairly specific, but can be used 
    // in general at any time during combat. They are executed in specific 
    // circumstances or use talents in a specific way, to ensure that 
    // the talents a creature has, when they are employed, are employed as 
    // effectively as possible. 
 
<several lines removed for clarity> 
 
            case 1: 
                if (IsMage( oCreature ) || 
                    IsPriest( oCreature ) || 
                    HasClass( oCreature, CLASS_TYPE_UNDEAD ) || 
                    HasClass( oCreature, CLASS_TYPE_OUTSIDER ) || 
                    HasClass( oCreature, CLASS_TYPE_CONSTRUCT ) || 
                    HasClass( oCreature, CLASS_TYPE_ELEMENTAL ) || 
                    IsGeneralClass( oCreature )) 
                { 
                    if (iJustCheck) 
                        return TRUE; 
                    sRuleText = "CastHighSummon(oNearest)"; 
                    return CastHighSummon( oNearest ); 
                } 
                break; 
 
<several lines removed for clarity> 

 
The invisibility example was highlighted as there is a documented error where the two 
teams will stop fighting each other if members of both teams turn invisible. The following 
bit of code was found in the NWN module, presumably added to try and correct the error,  
 
            if (iSomeoneVisible) 
                return; 
 
            // Since everyone is invisible, Igor will remove the effects from everyone. 
 

… 
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            SpeakString( "You are unable to see each other, ladies. Let me correct that." ); 
 
 … 
            while (GetIsObjectValid( oWhite )) 
            { 
                RemoveSpecificEffect( EFFECT_TYPE_INVISIBILITY, oWhite ); 
 … 
            } 
 … 
            while (GetIsObjectValid( oBlack )) 
            { 
                RemoveSpecificEffect( EFFECT_TYPE_INVISIBILITY, oBlack ); 
 … 
            } 
 
The following bits of code show how multiple checks are done to only cast spells that will 
be effective in certain situations. You can see that before a spell is cast, the opponent is 
checked to make sure it is not immune, protected from the spell, or even has a certain 
amount of hit points left.  

// Tries to cast a cursing spell as high as possible at a single enemy 
… 
    if (GetHasSpell( SPELL_ENERGY_DRAIN ) && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_DEATH ) && 
        !ProtectedAgainstSpells( oEnemy, 9 )) 
    { 
… 
     ActionCastSpellAtObject( SPELL_ENERGY_DRAIN, oEnemy ); 
… 
    } 
 
    if (GetHasSpell( SPELL_POWER_WORD_STUN ) && 
        GetCurrentHitPoints( oEnemy ) <= 150 && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_STUN ) && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_MIND_SPELLS ) && 
        !ProtectedAgainstSpells( oEnemy, 7 )) 
    { 
… 
        ActionCastSpellAtObject( SPELL_POWER_WORD_STUN, oEnemy ); 
… 
    } 
 
… 

The amount of checking in the previous sample might be considered ‘cheating’ by some 
players – especially if there would be no way for the agent to know the status of the 
opponent. This can be contrasted to the code snippet below that is effective and does not 
use any kind of knowledge of the status of the opponents when deciding the spell to cast. 
 
The code samples above contain hundreds of lines of logic manually created by 
programmers. For contrast, the script below was produced using dynamic scripting for the 
W character after 1000 fights in FFCW v FFCW(see Figure 11). 

  switch ( GetLastSpellCastClass() ) 
  { 
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  case 10: //wizard 
 
    if (GetHasSpell( SPELL_HORRID_WILTING )) 
    { 
… 
        ActionCastSpellAtLocation( SPELL_HORRID_WILTING, locTarget ); 
… 
    } 
 
    if (GetHasSpell( SPELL_CHAIN_LIGHTNING )) 
    { 
… 
        ActionCastSpellAtObject( SPELL_CHAIN_LIGHTNING, oEnemy ); 
… 
    } 
 
    if (GetHasSpell( SPELL_ICE_STORM )) 
    { 
… 
        ActionCastSpellAtLocation( SPELL_ICE_STORM, locTarget ); 
… 
    } 
 
    if (GetHasSpell( SPELL_EVARDS_BLACK_TENTACLES )) 
    { 
… 
        ActionCastSpellAtLocation( SPELL_EVARDS_BLACK_TENTACLES, locTarget ); 
… 
    }     
 
    if (GetHasSpell( SPELL_MELFS_ACID_ARROW )) 
    { 
… 
        ActionCastSpellAtObject( SPELL_MELFS_ACID_ARROW, oEnemy ); 
… 
    } 
 
 
    break; 
 
    }//end switch 

 
The results show that the scripts are effective, and straightforward to create. In addition to 
being effective, the scripts are easy to understand. The ordering of the spells directly 
relate to the weights as spells with a low weight are considered bad and ones with a high 
weight are beneficial in the combat situation. Other methods like complex scripts or 
neural networks do not have that benefit. 
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Chapter 5: Conclusions, Future Work, and Limitation s 
 
In the previous chapters we explained dynamic scripting and one of its shortcomings – 
how it does not take into account the opponents and teammates when starting off, which 
can lead it to make decisions that may appear unintelligent while learning an effective 
strategy. We showed how knowledge of the other agents can be used to create a better 
starting point, which can be used to learn an effective strategy faster. We showed how 
these newer starting points can be created even if the exact combinations of teammates or 
opponents have never been used before. This research resulted in situations where the 
starting weights were different based on the agents participating, and prevented the 
situation where a spell that was effective in most cases was cast in a situation where it 
was not likely to be effective. The case study we used was a game that allows thousands 
of variations when creating a character and millions of possible teams, and we showed 
how to reduce this into a manageable size, through abstraction and the use of roles. 
 
We also included a difficult case where a team that used a script that was created using 
dynamic scripting performed better than a team using logic programmed by the game 
designers. We also showed specific instances where scripts that were hand-coded by 
experts were complex and contained errors, and showed how dynamic scripting was able 
to produce easy-to-understand scripts that allowed for an implementation error to be 
easily uncovered.  
 
This research can help ensure balance before shipping a game. Any character types that 
are inadvertently created with too much power that can create imbalances can be 
determined and fixed. A character that can determine a dominant strategy against all other 
opponent types could be detected using the procedure followed in this work, and could be 
modified before the game is released. 
 
Additional work can be done in the area of non-combat roles. The preceding experiments 
focused on combat situations. In many games, there are also many elements of non-
combat situations that could be incorporated into this type of dynamic scripting. For 
instance, if a player needed to get into a locked room, picking a lock or stealing a key 
from the guard may be options for the player. Accounting for these actions could be done 
by including tasks that use these non-combat actions and making appropriate changes to 
the fitness function. For example, a character could have “pick lock” or “steal key from 
guard” in addition to “attack” guards, so script weights could include non-combat actions.  
Ultimately these scenarios would be game-specific, but creating a procedure for handling 
these types of actions would be a useful extension to this research.  
 
This work is limited to games with teams of heterogeneous agents that are controlled by 
scripts. Dynamic scripting can adapt to changes in opponent’s behaviour, but it does not 
keep track of effective strategies. If a player changes a strategy, the dynamic scripting 
opponent will respond by learning an appropriate response. If the player subsequently 
reverts to an older strategy, dynamic scripting has to re-learn an effective response, as 
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opposed to “remembering” the strategy it used before. How to handle not forgetting 
earlier lessons is out of scope of this research. 
 
This research can enable many improvements in commercial games. In addition to 
replacing the need for manual ‘tweaking’ of parameters, it can create tougher opponents 
for the player to defeat by creating teams that behave intelligently to challenge the player 
without the need to resort to cheating. Implementing this research can also improve a 
player’s experience with a game by providing better teammates. This can be 
accomplished in two ways, either by providing teammates that complement and work 
well with the player’s character type, or by customizing the actions of the teammates so 
they provide better actions based on the player’s character type. In a game where a 
companion or teammates are not fixed, teammates that can provide actions that best 
complement the player’s character type can be provided. In the experiments performed 
for this research, it was discovered that a group that was entirely composed of wizards did 
not perform well compared to a group of wizards with a fighter. If the player was 
controlling a wizard, the game could provide a fighter as a companion instead of another 
wizard. In a game where the teammates are fixed, the scripts that the teammates follow 
could vary depending on the composition of the team, resulting in more effective rules. 
We saw from the examples provided earlier that the scripts for the most effective spells a 
wizard could cast varied depending on the teammates, so customizing the actions of the 
teammates based on the player’s character would improve the effectiveness of the 
player’s team. All of these results show that taking other agents into consideration will 
allow an individual agent using dynamic scripting to perform better than current scripting 
implementations. 
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Appendix A: Rulebase 
 
Here are the rulebases used by the characters during the dynamic scripting algorithm to 
produce the strategies. The spells in the Wizard and Cleric rulebases were the default 
ones that were selected when those characters were created in NWN. 
 
Fighter: 
Move into melee combat 
Attack opponent with sword 
Do nothing 
 
Wizard: 
Move into melee combat 
Attack opponent with dagger 
 
(Level 0 spells)  
Cast daze (penalizes low-level opponents) 
Cast light (lights up the area – removes penalties from darkness) 
Cast ray of frost (can damage 1 opponent for 1-3 hit points) 
Cast resistance (helps resist opponent spells for 10 rounds) 
 
(Level 1 spells)  
Cast mage armor (makes the agent harder to hit) 
Cast summon creature 1 (summons a weak ally to help the caster) 
Cast magic missile (damages 1 opponent for 10-25 hit points) 
Cast identify (identifies a magical item) 
Cast sleep (puts low-level opponents to sleep) 
 
(Level 2 spells)  
Cast ghostly visage (reduces the amount of damage the caster takes) 
Cast melf's acid arrow (can damage 1 opponent for 2-8 hit points, plus damage for several 
more rounds) 
Cast summon creature 2 (summons an ally to help the caster) 
Cast knock (unlocks doors) 
Cast web (WAS invisibility) (creates webs to hinder opponents) 
 
(Level 3 spells)  
Cast fireball (can damage all opponents for 10-60 hit points) 
Cast clarity (removes the effects of daze, confusion, stun… spells) 
Cast summon creature 3 (summons an ally to help the caster) 
Cast haste (lets an ally have twice the amount of attacks for 15 rounds) 
Cast dispel magic (removes magical effects) 
 
(Level 4 spells)  
Cast stoneskin (absorbs physical damage) 
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Cast elemental shield (damages opponents when they hit the caster, plus absorbs some 
damage from offensive spells) 
Cast evard's black tentacles (creates allies that grab and hit opponents) 
Cast ice storm (damages all opponents for 5-30 damage) 
Cast minor globe of invulnerability (gives protection from all spells under 4th level) 
 
(Level 5 spells)  
Cast lesser spell mantle (completely absorbs damage from 7-10 spell levels) 
Cast summon creature 5 (summons an ally to help the caster) 
Cast cloudkill (damages opponents for 1-10 hit points) 
Cast greater shadow conjurations (creates semi-illusionary objects) 
 
(Level 6 spells)  
Cast chain lightning (can damage one opponent for 15-90 hit points, and damages other 
opponents) 
Cast greater spell breach (removes magical defences from opponents) 
Cast summon creature 6 (summons a powerful ally to help the caster) 
 
(Level 7 spells)  
Cast mordenkainen's sword (summons a magical sword to attack enemies of the caster) 
Cast spell mantle (completely absorbs damage from 9-16 spell levels) 
 
(Level 8 spell)  
Cast horrid wilting (damages opponents for 15-90 hit points) 
 
 
Cleric: 
Move into melee combat 
Attack opponent with mace 
 
(Level 0 spells)  
Cast inflict minor wounds (can damage an opponent for 1 hit point) 
 
(Level 1 spells)  
Cast cure light wounds (heals an ally for 6-13 hit points) 
Cast inflict light wounds (can damage an opponent for 6-13 hit points) 
Cast bless (gives allies bonuses to hit and damage opponents, and to avoid damaging 
spells) 
 
(Level 2 spells)  
Cast cure moderate wounds (heals an ally for 12-26 hit points) 
Cast inflict moderate wounds (can damage an opponent for 12-26 hit points) 
Cast aid (gives one ally bonuses to hit and damage opponents, and to avoid damaging 
spells, and gives 1-8 additional temporary hit points) 
 
(Level 3 spells)  
Cast cure serious wounds (heals an ally for 18-39 hit points) 
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Cast inflict serious wounds (can damage an opponent for 18-39 hit points) 
Cast remove blindness/deafness (removes blindess and deafness from a blind or deaf ally, 
which are conditions that give penalties to many tasks they attempt) 
Cast remove disease (removes disease and associated penalties from a diseased ally) 
Cast dispel magic (removes magical effects) 
Cast animate dead (creates an undead ally to attack opponents) 
 
(Level 4 spells)  
Cast hammer of the gods (can damage opponents for 5-40 damage, and possibly daze 
them for 1-6 rounds) 
Cast inflict critical wounds (can damage an opponent for 19-47 hit points) 
Cast freedom of movement (gets rid of negative effects of daze, being stuck in webs) 
Cast cure critical wounds (heals an ally for 19-47 hit points) 
Cast divine power (gives the caster an attack bonus, strength bonus, and 15 extra hit 
points) 
Cast dismissal (can instantly get rid of a summoned creature) 
 
(Level 5 spells)  
Cast heal (restores all hit points to an ally) 
Cast slay living (has a chance to instantly kill an opponent, or do 18-33 hit points of 
damage) 
Cast flame strike (can damage opponents for 15-90 hit points) 
Cast circle of doom (has a chance of doing 23-79 hit points of damage to and opponent) 
Cast spell resistance (gives complete resistance to some low-level spells – magic missile, 
fireball, ice storm) 
 
(Level 6 spells)  
Cast harm (can remove all BUT 1-4 hit points from an opponent) 
Cast blade barrier (can damage opponents in an area for 15-90 hit points) 
Cast banishment (can instantly get rid of all summoned creatures) 
Cast control undead (can take control of an opponent’s summoned undead creature) 
 
(Level 7 spells)  
Cast destruction (can instantly kill an opponent, or do 10-60 damage) 
Cast greater restoration (restores lost abilities to an ally. Takes a long time to cast) 
Cast regenerate (increases healing rate of an ally, healing 16-23 hit points) 
 
(Level 8 spells)  
Cast fire storm (can damage all opponents for 15-90 hit points) 
Cast earthquake (can damage all opponents for 8-48 hit points) 
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Appendix B: Synthesis of Starting Rulebases 
Once all of the rules were encoded, the initial weights were set to equal amounts, and 
thousands of fights happened using dynamic scripting between different teams (FWWW 
v FWWW, FFCW v FFCW, FFFW v FFFW). After this occurred, weights that 
consistently had low weights in all situations were removed from future experiments. 
These spells are listed in Appendix C, and are generally spells that have no combat 
usefulness (spells that created a light source, or identified an item are two examples).  
After those spells were removed, the weights were reset to be equal, and the tests were 
run again. Some spells that caused a lot of damage were often found useful against an 
opponent regardless of who the opponent was or the teammates.  
When a new team started a fight, rules from ‘similar’ teams (as described in Chapter 3) 
were used to create the starting weights. The table below shows the starting weights for 
the Wizard in FFCW v CCWW, from the weights of the Wizards from FFCW v FFCW 
and FCWW v CCWW.  
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team FFCW FCWW FFCW 

opponent  FFCW CCWW CCWW 
character  W W W 

classification  YYNYYY YYYNYY YYNNYY 
daze 0.0000 0.0000 0.0000 
light 0.0000 0.0000 0.0000 
ray of frost 0.0011 0.0011 0.0011 
resistance 0.0123 0.0011 0.0067 
mage armor 0.0011 0.0011 0.0011 
summon creature 1 0.0011 0.0011 0.0011 
magic missile 0.0011 0.0011 0.0011 
identify 0.0000 0.0000 0.0000 
sleep 0.0000 0.0000 0.0000 
ghostly visage 0.0011 0.0011 0.0011 
melf's acid arrow 0.1797 0.0011 0.0904 
summon creature 2 0.0011 0.0011 0.0011 
knock 0.0000 0.0000 0.0000 
web (WAS invisibility) 0.0011 0.0313 0.0162 
fireball 0.0011 0.0011 0.0011 
clarity 0.0198 0.0011 0.0105 
summon creature 3 0.0011 0.0011 0.0011 
haste 0.0011 0.0011 0.0011 
dispel magic 0.0011 0.0011 0.0011 
stoneskin 0.0011 0.0011 0.0011 
elemental shield 0.0011 0.0011 0.0011 
evard's black tentacles 0.1797 0.0011 0.0904 
ice storm 0.1950 0.1988 0.1969 
minor globe of invulnerability 0.0011 0.0011 0.0011 
lesser spell mantle 0.0011 0.0011 0.0011 
summon creature 5 0.0011 0.0011 0.0011 
cloudkill 0.0011 0.0011 0.0011 
greater shadow conjurations 0.0000 0.0000 0.0000 
chain lightning 0.1950 0.0011 0.0980 
greater spell breach 0.0011 0.0101 0.0056 
summon creature 6 0.0011 0.0335 0.0173 
mordenkainen's sword 0.0011 0.0011 0.0011 
spell mantle 0.0011 0.0011 0.0011 
horrid wilting 0.1950 0.1999 0.1974 
melee 0.0011 0.0011 0.0011 

Table 16: Synthesis of starting weights for W in FFCW v CCWW 
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Appendix C: Results 

Text-only version 
The results below are selected iterations from the text-only version of the arena. These 
results are from after an initial round where some spells were removed from 
consideration, as they were all determined to not be useful for combat in the arena. The 
spells that were removed were: 

Wizard: 
 Daze (this spell is always ineffective due to the level of the agents) 
 Light (not useful in combat in the arena) 
 Identify (not a combat spell) 
 Sleep (this spell is always ineffective due to the level of the agents) 
 Knock (not a combat spell) 
 Greater Shadow Conjurations 
Cleric: 
 Remove blindness/deafness (not useful in these fights) 
 Remove disease (not useful in these fights) 
 Greater restoration (not a combat spell) 
 

Wizard from FFCW v FFCW 

Weights after 10 fights: 
double[] weightArray = new double[]{ //weight of spells 
//level 0 (0-3) 
0, //daze 
0, //light 
0.0126410614387192, //ray of frost 
0.0774395508804581, //resistance 
//level 1 (4-8) 
0.0126410614387192, //mage armor 
0.0015398815240403, //summon creature 1 
0.0820835504455086, //6=magic missile 
0, //identify 
0, //sleep 
//level 2 (9-13) 
0.0126410614387192, //ghostly visage 
0.0844234160732066, //10=melf's acid arrow 
0.00231099421337619, //summon creature 2 
0, //knock 
0.00735843865551269, //web (WAS invisibility) 
//level 3 (14-18) 
0.00308210690271207, //14=fireball 
0.00782235170446284, //clarity 
0.0267680180061381, //summon creature 3 
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0.0335191258796749, //haste 
0.00628218067375542, //dispel magic 
//level 4 (19-23) 
0.0604552316188311, //19=stoneskin 
0.0836117138838773, //elemental shield 
0.087654558121514, //evard's black tentacles 
0.0884660691495351, //22=ice storm 
0.0126410614387192, //minor globe of invulnerability 
//level 5 (24-27) 
0.0263950328877631, //lesser spell mantle 
0.0126410614387192, //summon creature 5 
0.0693708382053159, //cloudkill 
0, //greater shadow conjurations 
//level 6 (28-30) 
0.0530588354652143, //chain lightning 
0.0067917364809922, //greater spell breach 
0.00545482388420026, //summon creature 6 
//level 7 (31-32) 
0.0122554431508828, //mordenkainen's sword 
0.0238857012555003, //spell mantle 
//level 8 (33) 
0.0858796794046119, //horrid wilting 
//misc 
0.000885414339319928 //melee 
}; 

Weights after 50 fights: 
double[] weightArray = new double[]{ //weight of spells 
//level 0 (0-3) 
0, //daze 
0, //light 
0.00198312470065133, //ray of frost 
0.031027030146624, //resistance 
//level 1 (4-8) 
0.00108025282022827, //mage armor 
0.00108025282022827, //summon creature 1 
0.0161271809524023, //6=magic missile 
0, //identify 
0, //sleep 
//level 2 (9-13) 
0.00108025282022827, //ghostly visage 
0.115324045288633, //10=melf's acid arrow 
0.00108025282022827, //summon creature 2 
0, //knock 
0.00108025282022827, //web (WAS invisibility) 
//level 3 (14-18) 
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0.00186933327912724, //14=fireball 
0.00473506759160179, //clarity 
0.00108025282022827, //summon creature 3 
0.00108025282022827, //haste 
0.00108025282022827, //dispel magic 
//level 4 (19-23) 
0.00499686254807553, //19=stoneskin 
0.0170583784801067, //elemental shield 
0.196409603677867, //evard's black tentacles 
0.196409603677867, //22=ice storm 
0.00108025282022827, //minor globe of invulnerability 
//level 5 (24-27) 
0.00108025282022827, //lesser spell mantle 
0.00108025282022827, //summon creature 5 
0.0039565171776562, //cloudkill 
0, //greater shadow conjurations 
//level 6 (28-30) 
0.196409603677867, //chain lightning 
0.00108025282022827, //greater spell breach 
0.00108025282022827, //summon creature 6 
//level 7 (31-32) 
0.00108025282022827, //mordenkainen's sword 
0.00108025282022827, //spell mantle 
//level 8 (33) 
0.196409603677867, //horrid wilting 
//misc 
0.00108025282022827 //melee 
}; 

Weights after 100 fights: 
double[] weightArray = new double[]{ //weight of spells 
//level 0 (0-3) 
0, //daze 
0, //light 
0.0010962496281037, //ray of frost 
0.0354735006048557, //resistance 
//level 1 (4-8) 
0.0010962496281037, //mage armor 
0.0010962496281037, //summon creature 1 
0.0010962496281037, //6=magic missile 
0, //identify 
0, //sleep 
//level 2 (9-13) 
0.0010962496281037, //ghostly visage 
0.147393479601995, //10=melf's acid arrow 
0.0010962496281037, //summon creature 2 
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0, //knock 
0.0010962496281037, //web (WAS invisibility) 
//level 3 (14-18) 
0.0010962496281037, //14=fireball 
0.00154336331651076, //clarity 
0.0010962496281037, //summon creature 3 
0.0010962496281037, //haste 
0.0010962496281037, //dispel magic 
//level 4 (19-23) 
0.00162869361527689, //19=stoneskin 
0.00637664717517924, //elemental shield 
0.196370546078012, //evard's black tentacles 
0.196370546078012, //22=ice storm 
0.0010962496281037, //minor globe of invulnerability 
//level 5 (24-27) 
0.0010962496281037, //lesser spell mantle 
0.0010962496281037, //summon creature 5 
0.00128960006483745, //cloudkill 
0, //greater shadow conjurations 
//level 6 (28-30) 
0.196370546078012, //chain lightning 
0.0010962496281037, //greater spell breach 
0.0010962496281037, //summon creature 6 
//level 7 (31-32) 
0.0010962496281037, //mordenkainen's sword 
0.0010962496281037, //spell mantle 
//level 8 (33) 
0.196370546078012, //horrid wilting 
//misc 
0.00108003800342907 //melee 
}; 

Weights after 250 fights: 
double[] weightArray = new double[]{ //weight of spells 
//level 0 (0-3) 
0, //daze 
0, //light 
0.00110466263272181, //ray of frost 
0.0553673068314011, //resistance 
//level 1 (4-8) 
0.00110466263272181, //mage armor 
0.00110466263272181, //summon creature 1 
0.00110466263272181, //6=magic missile 
0, //identify 
0, //sleep 
//level 2 (9-13) 
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0.00110466263272181, //ghostly visage 
0.168529172292573, //10=melf's acid arrow 
0.00110466263272181, //summon creature 2 
0, //knock 
0.00110466263272181, //web (WAS invisibility) 
//level 3 (14-18) 
0.00110466263272181, //14=fireball 
0.00110466263272181, //clarity 
0.00110466263272181, //summon creature 3 
0.00110466263272181, //haste 
0.00110466263272181, //dispel magic 
//level 4 (19-23) 
0.00110466263272181, //19=stoneskin 
0.0254844370284586, //elemental shield 
0.198741434621282, //evard's black tentacles 
0.134585823414377, //22=ice storm 
0.00110466263272181, //minor globe of invulnerability 
//level 5 (24-27) 
0.00110466263272181, //lesser spell mantle 
0.00110466263272181, //summon creature 5 
0.00110466263272181, //cloudkill 
0, //greater shadow conjurations 
//level 6 (28-30) 
0.195992504567504, //chain lightning 
0.00110466263272181, //greater spell breach 
0.00110466263272181, //summon creature 6 
//level 7 (31-32) 
0.00110466263272181, //mordenkainen's sword 
0.00110466263272181, //spell mantle 
//level 8 (33) 
0.196996743324524, //horrid wilting 
//misc 
0.00110466263272181 //melee 
}; 

Weights after 500 fights: 
double[] weightArray = new double[]{ //weight of spells 
//level 0 (0-3) 
0, //daze 
0, //light 
0.00108366490376375, //ray of frost 
0.0666503001692164, //resistance 
//level 1 (4-8) 
0.00108366490376375, //mage armor 
0.00108366490376375, //summon creature 1 
0.00108366490376375, //6=magic missile 
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0, //identify 
0, //sleep 
//level 2 (9-13) 
0.00108366490376375, //ghostly visage 
0.155454664793191, //10=melf's acid arrow 
0.00108366490376375, //summon creature 2 
0, //knock 
0.00108366490376375, //web (WAS invisibility) 
//level 3 (14-18) 
0.0122993550267137, //14=fireball 
0.00108366490376375, //clarity 
0.00108366490376375, //summon creature 3 
0.00108366490376375, //haste 
0.00108366490376375, //dispel magic 
//level 4 (19-23) 
0.00108366490376375, //19=stoneskin 
0.00108366490376375, //elemental shield 
0.174574720145967, //evard's black tentacles 
0.174224752716077, //22=ice storm 
0.00108366490376375, //minor globe of invulnerability 
//level 5 (24-27) 
0.00108366490376375, //lesser spell mantle 
0.00108366490376375, //summon creature 5 
0.00108366490376375, //cloudkill 
0, //greater shadow conjurations 
//level 6 (28-30) 
0.188005119543521, //chain lightning 
0.00108366490376375, //greater spell breach 
0.00108366490376375, //summon creature 6 
//level 7 (31-32) 
0.011988910096416, //mordenkainen's sword 
0.00108366490376375, //spell mantle 
//level 8 (33) 
0.194061540958352, //horrid wilting 
//misc 
0.00106733847527094 //melee 
}; 

Weights after 750 fights: 
double[] weightArray = new double[]{ //weight of spells 
//level 0 (0-3) 
0, //daze 
0, //light 
0.00108857463943687, //ray of frost 
0.0350852509773747, //resistance 
//level 1 (4-8) 
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0.00108857463943687, //mage armor 
0.00108857463943687, //summon creature 1 
0.00108857463943687, //6=magic missile 
0, //identify 
0, //sleep 
//level 2 (9-13) 
0.00108857463943687, //ghostly visage 
0.174353067336769, //10=melf's acid arrow 
0.00108857463943687, //summon creature 2 
0, //knock 
0.00108857463943687, //web (WAS invisibility) 
//level 3 (14-18) 
0.00108857463943687, //14=fireball 
0.0299371505959085, //clarity 
0.00108857463943687, //summon creature 3 
0.00108857463943687, //haste 
0.00108857463943687, //dispel magic 
//level 4 (19-23) 
0.00108857463943687, //19=stoneskin 
0.00108857463943687, //elemental shield 
0.196733916081687, //evard's black tentacles 
0.146480678878263, //22=ice storm 
0.00108857463943687, //minor globe of invulnerability 
//level 5 (24-27) 
0.00108857463943687, //lesser spell mantle 
0.00108857463943687, //summon creature 5 
0.00108857463943687, //cloudkill 
0, //greater shadow conjurations 
//level 6 (28-30) 
0.196733916081687, //chain lightning 
0.00108857463943687, //greater spell breach 
0.00108857463943687, //summon creature 6 
//level 7 (31-32) 
0.00108857463943687, //mordenkainen's sword 
0.00108857463943687, //spell mantle 
//level 8 (33) 
0.196733916081687, //horrid wilting 
//misc 
0.00108203653844928 //melee 
}; 

Weights after 1000 fights: 
double[] weightArray = new double[]{ //weight of spells 
//level 0 (0-3) 
0, //daze 
0, //light 
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0.00107249207271599, //ray of frost 
0.0122590944525473, //resistance 
//level 1 (4-8) 
0.00107249207271599, //mage armor 
0.00107249207271599, //summon creature 1 
0.00107249207271599, //6=magic missile 
0, //identify 
0, //sleep 
//level 2 (9-13) 
0.00107249207271599, //ghostly visage 
0.179673100827668, //10=melf's acid arrow 
0.00107249207271599, //summon creature 2 
0, //knock 
0.00107249207271599, //web (WAS invisibility) 
//level 3 (14-18) 
0.00107249207271599, //14=fireball 
0.0198042022654587, //clarity 
0.00107249207271599, //summon creature 3 
0.00107249207271599, //haste 
0.00107249207271599, //dispel magic 
//level 4 (19-23) 
0.00107249207271599, //19=stoneskin 
0.00107249207271599, //elemental shield 
0.179673100827668, //evard's black tentacles 
0.194998558675635, //22=ice storm 
0.00107249207271599, //minor globe of invulnerability 
//level 5 (24-27) 
0.00107249207271599, //lesser spell mantle 
0.00107249207271599, //summon creature 5 
0.00107249207271599, //cloudkill 
0, //greater shadow conjurations 
//level 6 (28-30) 
0.194998558675635, //chain lightning 
0.00107249207271599, //greater spell breach 
0.00107249207271599, //summon creature 6 
//level 7 (31-32) 
0.00107249207271599, //mordenkainen's sword 
0.00107249207271599, //spell mantle 
//level 8 (33) 
0.194998558675635, //horrid wilting 
//misc 
0.00107249207271599 //melee 
}; 
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Cleric from FFCW v FFCW 

Weights after 10 fights: 
double[] weightArray = new double[]{ //weight of spells 
//level 0 (0) 
0.00616913342258713, //inflict minor wounds 
//level 1 (1-3) 
0.0129107042664664, //cure light wounds 
0.0358631129261162, //inflict light wounds 
0.00710630246366453, //bless 
//level 2 (4-6) 
0.0129107042664664, //cure moderate wounds 
0.0508912500501716, //inflict moderate wounds 
0.0402354229581381, //aid 
//level 3 (7-12) 
0.058254633067087, //cure serious wounds 
0.000861184820420895, //inflict serious wounds 
0, //remove blindness/deafness 
0, //remove disease 
0.032680536631001, //dispel magic 
0.0129107042664664, //animate dead 
//level 4 (13-18) 
0.0468266149065149, //hammer of the gods 
0.00851205602528064, //inflict critical wounds 
0.0427247076886512, //freedom of movement 
0.0374315199169298, //cure critical wounds 
0.0395906750212618, //divine power 
0.0493897394292991, //dismissal 
//level 5 (19-23) 
0.0513459495337289, //heal 
0.0448880972737445, //slay living 
0.0535582654987718, //flame strike 
0.0201041771909471, //cirle of doom 
0.0256372095279022, //spell resistance 
//level 6 (24-27) 
0.0243978759218666, //harm 
0.0129107042664664, //blade barrier 
0.057606024528066, //banishment 
0.0170335566098285, //control undead 
//level 7 (28-30) 
0.0730597286017606, //destruction 
0, //greater restoration 
0.000861184820420895, //regenerate 
//level 8 (31-32) 
0.0509882933236066, //fire storm 
0.0714787459559455, //earthquake 
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//misc 33 
0.000861184820420895 //melee 
}; 

Weights after 50 fights: 
double[] weightArray = new double[]{ //weight of spells 
//level 0 (0) 
0.00213081048795917, //inflict minor wounds 
//level 1 (1-3) 
0.00103727610988267, //cure light wounds 
0.00111606625275106, //inflict light wounds 
0.00103727610988267, //bless 
//level 2 (4-6) 
0.00103727610988267, //cure moderate wounds 
0.0201889529933602, //inflict moderate wounds 
0.00103727610988267, //aid 
//level 3 (7-12) 
0.0835928456081811, //cure serious wounds 
0.00103727610988267, //inflict serious wounds 
0, //remove blindness/deafness 
0, //remove disease 
0.00222235630778943, //dispel magic 
0.00103727610988267, //animate dead 
//level 4 (13-18) 
0.154873850248782, //hammer of the gods 
0.00103727610988267, //inflict critical wounds 
0.00103727610988267, //freedom of movement 
0.00103727610988267, //cure critical wounds 
0.00103727610988267, //divine power 
0.141825709878919, //dismissal 
//level 5 (19-23) 
0.00103727610988267, //heal 
0.00103727610988267, //slay living 
0.00213105201135827, //flame strike 
0.0022021281455071, //cirle of doom 
0.00103727610988267, //spell resistance 
//level 6 (24-27) 
0.00103727610988267, //harm 
0.00103727610988267, //blade barrier 
0.188595656342303, //banishment 
0.00103727610988267, //control undead 
//level 7 (28-30) 
0.188595656342303, //destruction 
0, //greater restoration 
0.00103727610988267, //regenerate 
//level 8 (31-32) 
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0.188595656342303, //fire storm 
0.00525828906059573, //earthquake 
//misc 33 
0.00103727610988267 //melee 
}; 

Weights after 100 fights: 
double[] weightArray = new double[]{ //weight of spells 
//level 0 (0) 
0.00104023149100506, //inflict minor wounds 
//level 1 (1-3) 
0.00104023149100506, //cure light wounds 
0.00104023149100506, //inflict light wounds 
0.00104023149100506, //bless 
//level 2 (4-6) 
0.00104023149100506, //cure moderate wounds 
0.00241110554219066, //inflict moderate wounds 
0.00104023149100506, //aid 
//level 3 (7-12) 
0.0678507257756659, //cure serious wounds 
0.00104023149100506, //inflict serious wounds 
0, //remove blindness/deafness 
0, //remove disease 
0.00104023149100506, //dispel magic 
0.00104023149100506, //animate dead 
//level 4 (13-18) 
0.163877158823102, //hammer of the gods 
0.00104023149100506, //inflict critical wounds 
0.00104023149100506, //freedom of movement 
0.00104023149100506, //cure critical wounds 
0.00104023149100506, //divine power 
0.173496458981248, //dismissal 
//level 5 (19-23) 
0.00104023149100506, //heal 
0.00104023149100506, //slay living 
0.00104023149100506, //flame strike 
0.00104023149100506, //cirle of doom 
0.00104023149100506, //spell resistance 
//level 6 (24-27) 
0.00104023149100506, //harm 
0.00104023149100506, //blade barrier 
0.189132998364557, //banishment 
0.00104023149100506, //control undead 
//level 7 (28-30) 
0.189132998364557, //destruction 
0, //greater restoration 
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0.00104023149100506, //regenerate 
//level 8 (31-32) 
0.189132998364557, //fire storm 
0.00104023149100506, //earthquake 
//misc 33 
0.00104023149100506 //melee 
}; 

Weights after 250 fights: 
double[] weightArray = new double[]{ //weight of spells 
//level 0 (0) 
0.00110043630548751, //inflict minor wounds 
//level 1 (1-3) 
0.00110043630548751, //cure light wounds 
0.00110043630548751, //inflict light wounds 
0.00110043630548751, //bless 
//level 2 (4-6) 
0.00110043630548751, //cure moderate wounds 
0.00110043630548751, //inflict moderate wounds 
0.00110043630548751, //aid 
//level 3 (7-12) 
0.189917396963941, //cure serious wounds 
0.00110043630548751, //inflict serious wounds 
0, //remove blindness/deafness 
0, //remove disease 
0.00110043630548751, //dispel magic 
0.00110043630548751, //animate dead 
//level 4 (13-18) 
0.179465728224759, //hammer of the gods 
0.00110043630548751, //inflict critical wounds 
0.00110043630548751, //freedom of movement 
0.00110043630548751, //cure critical wounds 
0.0350691261772944, //divine power 
0.189917396963941, //dismissal 
//level 5 (19-23) 
0.00110043630548751, //heal 
0.0347371724327458, //slay living 
0.00110043630548751, //flame strike 
0.00110043630548751, //cirle of doom 
0.00110043630548751, //spell resistance 
//level 6 (24-27) 
0.00110043630548751, //harm 
0.00110043630548751, //blade barrier 
0.00110043630548751, //banishment 
0.00110043630548751, //control undead 
//level 7 (28-30) 
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0.156303327226422, //destruction 
0, //greater restoration 
0.00110043630548751, //regenerate 
//level 8 (31-32) 
0.188179380679196, //fire storm 
0.00110043630548751, //earthquake 
//misc 33 
0.00110043630548751 //melee 
}; 

Weights after 500 fights: 
double[] weightArray = new double[]{ //weight of spells 
//level 0 (0) 
0.00102642151516912, //inflict minor wounds 
//level 1 (1-3) 
0.00102642151516912, //cure light wounds 
0.00102642151516912, //inflict light wounds 
0.00102642151516912, //bless 
//level 2 (4-6) 
0.00102642151516912, //cure moderate wounds 
0.00102642151516912, //inflict moderate wounds 
0.00102642151516912, //aid 
//level 3 (7-12) 
0.182602769160189, //cure serious wounds 
0.00102642151516912, //inflict serious wounds 
0, //remove blindness/deafness 
0, //remove disease 
0.00102642151516912, //dispel magic 
0.00102642151516912, //animate dead 
//level 4 (13-18) 
0.175477335684356, //hammer of the gods 
0.00102642151516912, //inflict critical wounds 
0.00102642151516912, //freedom of movement 
0.00102642151516912, //cure critical wounds 
0.182602769160189, //divine power 
0.0684731560804457, //dismissal 
//level 5 (19-23) 
0.00102642151516912, //heal 
0.00102642151516912, //slay living 
0.00102642151516912, //flame strike 
0.00102642151516912, //cirle of doom 
0.00102642151516912, //spell resistance 
//level 6 (24-27) 
0.00102642151516912, //harm 
0.00102642151516912, //blade barrier 
0.00102642151516912, //banishment 
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0.00102642151516912, //control undead 
//level 7 (28-30) 
0.182602769160189, //destruction 
0, //greater restoration 
0.00102642151516912, //regenerate 
//level 8 (31-32) 
0.182602769160189, //fire storm 
0.00102642151516912, //earthquake 
//misc 33 
0.00100431523038104 //melee 
}; 

Weights after 750 fights: 
double[] weightArray = new double[]{ //weight of spells 
//level 0 (0) 
0.00107227150876675, //inflict minor wounds 
//level 1 (1-3) 
0.00107227150876675, //cure light wounds 
0.00107227150876675, //inflict light wounds 
0.00107227150876675, //bless 
//level 2 (4-6) 
0.00107227150876675, //cure moderate wounds 
0.00107227150876675, //inflict moderate wounds 
0.00107227150876675, //aid 
//level 3 (7-12) 
0.160882772669498, //cure serious wounds 
0.00107227150876675, //inflict serious wounds 
0, //remove blindness/deafness 
0, //remove disease 
0.00107227150876675, //dispel magic 
0.00107227150876675, //animate dead 
//level 4 (13-18) 
0.192453440916937, //hammer of the gods 
0.00107227150876675, //inflict critical wounds 
0.00107227150876675, //freedom of movement 
0.00107227150876675, //cure critical wounds 
0.192453440916937, //divine power 
0.055304773554602, //dismissal 
//level 5 (19-23) 
0.00107227150876675, //heal 
0.00107227150876675, //slay living 
0.00107227150876675, //flame strike 
0.00107227150876675, //cirle of doom 
0.00107227150876675, //spell resistance 
//level 6 (24-27) 
0.00107227150876675, //harm 
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0.00107227150876675, //blade barrier 
0.00107227150876675, //banishment 
0.00107227150876675, //control undead 
//level 7 (28-30) 
0.179659120889645, //destruction 
0, //greater restoration 
0.00107227150876675, //regenerate 
//level 8 (31-32) 
0.192453440916937, //fire storm 
0.00107227150876675, //earthquake 
//misc 33 
0.00105849392504315 //melee 
}; 

Weights after 1000 fights: 
double[] weightArray = new double[]{ //weight of spells 
//level 0 (0) 
0.0010753808131337, //inflict minor wounds 
//level 1 (1-3) 
0.0010753808131337, //cure light wounds 
0.0010753808131337, //inflict light wounds 
0.0010753808131337, //bless 
//level 2 (4-6) 
0.0010753808131337, //cure moderate wounds 
0.0010753808131337, //inflict moderate wounds 
0.00708927450010023, //aid 
//level 3 (7-12) 
0.181634336998221, //cure serious wounds 
0.0010753808131337, //inflict serious wounds 
0, //remove blindness/deafness 
0, //remove disease 
0.0010753808131337, //dispel magic 
0.0010753808131337, //animate dead 
//level 4 (13-18) 
0.195523784206128, //hammer of the gods 
0.00197304550035285, //inflict critical wounds 
0.0010753808131337, //freedom of movement 
0.0010753808131337, //cure critical wounds 
0.145049563966445, //divine power 
0.0010753808131337, //dismissal 
//level 5 (19-23) 
0.0010753808131337, //heal 
0.0010753808131337, //slay living 
0.0010753808131337, //flame strike 
0.0010753808131337, //cirle of doom 
0.0471079483502052, //spell resistance 
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//level 6 (24-27) 
0.0010753808131337, //harm 
0.0010753808131337, //blade barrier 
0.0010753808131337, //banishment 
0.0010753808131337, //control undead 
//level 7 (28-30) 
0.195523784206128, //destruction 
0, //greater restoration 
0.0010753808131337, //regenerate 
//level 8 (31-32) 
0.195523784206128, //fire storm 
0.00691610017735052, //earthquake 
//misc 33 
0.0010753808131337 //melee 
}; 
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Appendix D: Results from NWN 
Below are the results from a team of CCWW facing a team of FFCW. The FFCW team 
used the default logic that comes with the NWN module. The columns on the left show 
the results when the CCWW team used the default logic, the columns on the right show 
the results when that team used the starting point synthesized from the dynamic scripting 
trials. The tables show the number of wins for the CCWW team, along with the number 
of draws, and the average remaining hit points for the opposing team. The opposing team 
had 434 hit points to start. 
Each trial had 100 fights. 
 

  

default 
starting 
point     

dynamic 
scripting 
starting 
point     

trial # wins draws 
enemy 
hp wins draws 

enemy 
hp 

1 2 2 113.54 6 0 70.3 
2 3 1 135.41 8 0 71.49 
3 3 0 128.22 4 1 71.97 
4 4 1 122.05 11 0 68.47 
5 3 2 121.9 4 0 73.23 
6 1 2 130.52 5 0 68.97 
7 3 0 111.36 10 0 70.95 
8 4 0 112.33 6 0 72.03 
9 7 2 109.21 8 0 64.64 

10 7 2 96.89 10 0 70.09 
11 2 1 116.92 6 2 70.5 
12 2 2 118.45 12 0 64.59 
13 3 3 95.25 5 0 76.33 
14 2 0 120.25 10 0 63.95 
15 5 0 115.56 12 1 67.14 

average 3.4   116.524 7.8   69.64333 

variance 2.91   114.15 7.63   11.08 
standard 
deviation 1.7   10.68 2.76   3.33 

Table 17: Results from CCWW v FFCW 
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Appendix E: Code Samples from NWN 
The following samples come from scripts that shipped with the NWN game. 
 

Code Sample 1: 
// Tries to cast a summoning spell as high as possible, at least when there 
// is not yet as creature summoned, unless that creature almost dead and 
// currently inactive. Gate will not be cast this way, because for Gate the 
// whole party should be protected against evil. This can be checked and added, 
// of course. 
int CastHighSummon( object oEnemy ) 
{ 
    location locTarget = GetLocation( OBJECT_SELF ); 
 
    object oSummoned = GetAssociate( ASSOCIATE_TYPE_SUMMONED ); 
 
    if (GetIsObjectValid( oSummoned )) // There is a summoned creature 
    { 
        if (!GetIsEnemy( oSummoned )) 
        { 
            if (GetCurrentHitPoints( oSummoned ) * 4 < GetMaxHitPoints( oSummoned )) // And it has 
at least 25% of HP left 
                return FALSE; 
 
            if (!(GetHasEffect( EFFECT_TYPE_SLEEP, oSummoned ) || // And it is useful 
                GetHasEffect( EFFECT_TYPE_STUNNED, oSummoned ) || 
                GetHasEffect( EFFECT_TYPE_TURNED, oSummoned ) || 
                GetHasEffect( EFFECT_TYPE_CHARMED, oSummoned ) || 
                GetHasEffect( EFFECT_TYPE_CONFUSED, oSummoned ) || 
                GetHasEffect( EFFECT_TYPE_DOMINATED, oSummoned ) || 
                GetHasEffect( EFFECT_TYPE_FRIGHTENED, oSummoned ))) 
                return FALSE; 
        } 
    } 
 
    if (GetIsObjectValid( oEnemy )) 
    { 
        vector vTarget = GetPosition( oEnemy ); 
        vector vSource = GetPosition( OBJECT_SELF ); 
        vector vDirection = vTarget - vSource; 
        float fDistance = VectorMagnitude( vDirection ) / 2.0f; 
        vector vPoint = VectorNormalize( vDirection ) * fDistance + vSource; 
        locTarget = Location( GetArea( OBJECT_SELF ), vPoint, GetFacing( OBJECT_SELF ) ); 
    } 
 
    if (GetHasSpell( SPELL_ELEMENTAL_SWARM )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Elemental Swarm)"; 
        ActionCastSpellAtLocation( SPELL_ELEMENTAL_SWARM, locTarget ); 
        return TRUE; 
    } 
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    if (GetHasSpell( SPELL_SUMMON_CREATURE_IX )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Summon Creature IX)"; 
        ActionCastSpellAtLocation( SPELL_SUMMON_CREATURE_IX, locTarget ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_CREATE_GREATER_UNDEAD )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Create Greater Undead)"; 
        ActionCastSpellAtLocation( SPELL_CREATE_GREATER_UNDEAD, locTarget ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_GREATER_PLANAR_BINDING )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Greater Planar Binding)"; 
        ActionCastSpellAtLocation( SPELL_GREATER_PLANAR_BINDING, locTarget ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_SUMMON_CREATURE_VIII )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Summon Creature VIII)"; 
        ActionCastSpellAtLocation( SPELL_SUMMON_CREATURE_VIII, locTarget ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_MORDENKAINENS_SWORD )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Mordenkainen's Sword)"; 
        ActionCastSpellAtLocation( SPELL_MORDENKAINENS_SWORD, locTarget ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_SUMMON_CREATURE_VII )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Summon Creature VII)"; 
        ActionCastSpellAtLocation( SPELL_SUMMON_CREATURE_VII, locTarget ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_PLANAR_BINDING )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Planar Binding)"; 
        ActionCastSpellAtLocation( SPELL_PLANAR_BINDING, locTarget ); 
        return TRUE; 
    } 
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    if (GetHasSpell( SPELL_SHADES_SUMMON_SHADOW )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Summon Shadow)"; 
        ActionCastSpellAtLocation( SPELL_SHADES_SUMMON_SHADOW, locTarget ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_SUMMON_CREATURE_VI )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Summon Creature VI)"; 
        ActionCastSpellAtLocation( SPELL_SUMMON_CREATURE_VI, locTarget ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_LESSER_PLANAR_BINDING )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Lesser Planar Binding)"; 
        ActionCastSpellAtLocation( SPELL_LESSER_PLANAR_BINDING, locTarget ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_GREATER_SHADOW_CONJURATION_SUMMON_SHADOW )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Greater Shadow Conjuration)"; 
        ActionCastSpellAtLocation( 
SPELL_GREATER_SHADOW_CONJURATION_SUMMON_SHADOW, locTarget ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_SUMMON_CREATURE_V )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Summon Creature V)"; 
        ActionCastSpellAtLocation( SPELL_SUMMON_CREATURE_V, locTarget ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_ANIMATE_DEAD )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Animate Dead)"; 
        ActionCastSpellAtLocation( SPELL_ANIMATE_DEAD, locTarget ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_SUMMON_CREATURE_IV )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Summon Creature IV)"; 
        ActionCastSpellAtLocation( SPELL_SUMMON_CREATURE_IV, locTarget ); 
        return TRUE; 
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    } 
 
    if (GetHasSpell( SPELL_SUMMON_CREATURE_III )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Summon Creature III)"; 
        ActionCastSpellAtLocation( SPELL_SUMMON_CREATURE_III, locTarget ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_SUMMON_CREATURE_II )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Summon Creature II)"; 
        ActionCastSpellAtLocation( SPELL_SUMMON_CREATURE_II, locTarget ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_SUMMON_CREATURE_I )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Summon Creature I)"; 
        ActionCastSpellAtLocation( SPELL_SUMMON_CREATURE_I, locTarget ); 
        return TRUE; 
    } 
 
    return FALSE; 
} 

Code Sample 2: 
    // HIGH Priority rules. These rules are fairly specific, but can be used 
    // in general at any time during combat. They are executed in specific 
    // circumstances or use talents in a specific way, to ensure that 
    // the talents a creature has, when they are employed, are employed as 
    // effectively as possible. 
 
    // Still added must be: CastHighBreach (to break through enemy magical 
    // defenses), CastHighBless (to add good effects to friends), 
    // Shapechanging spells, Domination spells, Curse removal spells, and 
    // Invisibility. 
    if (iRule < HIGHEST_PRIORITY_COUNT + HIGH_PRIORITY_COUNT) 
    { 
        iSwitchValue = iRule - HIGHEST_PRIORITY_COUNT; 
 
        switch (iSwitchValue) 
        { 
            case 0: 
<several lines removed for clarity> 
 
            case 1: 
                if (IsMage( oCreature ) || 
                    IsPriest( oCreature ) || 
                    HasClass( oCreature, CLASS_TYPE_UNDEAD ) || 
                    HasClass( oCreature, CLASS_TYPE_OUTSIDER ) || 
                    HasClass( oCreature, CLASS_TYPE_CONSTRUCT ) || 
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                    HasClass( oCreature, CLASS_TYPE_ELEMENTAL ) || 
                    IsGeneralClass( oCreature )) 
                { 
                    if (iJustCheck) 
                        return TRUE; 
                    sRuleText = "CastHighSummon(oNearest)"; 
                    return CastHighSummon( oNearest ); 
                } 
                break; 
 
            case  2: 
                if (IsMage( oCreature ) || 
                    IsPriest( oCreature ) || 
                    HasClass( oCreature, CLASS_TYPE_UNDEAD ) || 
                    HasClass( oCreature, CLASS_TYPE_OUTSIDER ) || 
                    HasClass( oCreature, CLASS_TYPE_CONSTRUCT ) || 
                    HasClass( oCreature, CLASS_TYPE_ELEMENTAL ) || 
                    IsGeneralClass( oCreature )) 
                { 
                    if (iJustCheck) 
                        return TRUE; 
                    if (GetIsObjectValid( oNearestWizard )) 
                    { 
                        sRuleText = "CastHighSummon(oNearestWizard)"; 
                        return CastHighSummon( oNearestWizard ); 
                    } 
                    else if (GetIsObjectValid( oNearestPriest )) 
                    { 
                        sRuleText = "CastHighSummon(oNearestPriest)"; 
                        return CastHighSummon( oNearestPriest ); 
                    } 
                } 
                break; 
 
            case  3: 
                if (IsMage( oCreature ) || 
                    IsPriest( oCreature ) || 
                    HasClass( oCreature, CLASS_TYPE_UNDEAD ) || 
                    HasClass( oCreature, CLASS_TYPE_OUTSIDER ) || 
                    HasClass( oCreature, CLASS_TYPE_CONSTRUCT ) || 
                    HasClass( oCreature, CLASS_TYPE_ELEMENTAL ) || 
                    IsGeneralClass( oCreature )) 
                { 
                    if (iJustCheck) 
                        return TRUE; 
                    sRuleText = "CastHighDamageAreaEffect(oNearest)"; 
                    return CastHighDamageAreaEffect( oNearest ); 
                } 
                break; 
<several lines removed for clarity> 

Code Sample 3: 
        // If the fight is still going on, update the counters of those that 
        // are still allive. I originally did this in the heartbeats of the 
        // opponents themselves, but the heartbeats don't fire if they are 
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        // dazed or something. 
        if (nFight) 
        { 
            // Execute curse if necessary 
            int iDoCurse = GetLocalInt( OBJECT_SELF, "DO_CURSE" ); 
 
            if (iDoCurse) 
            { 
                SetLocalInt( OBJECT_SELF, "DO_CURSE", 0 ); 
 
                string sTarget = "BLANCHE"; 
 
                // Addition 
                if (iDoCurse < 2) 
                    sTarget = "NERA"; 
 
                oWhite = GetNearestObjectByTag( sTarget, OBJECT_SELF ); 
                effect eCurse = EffectCurse( CURSE_PENALTY, CURSE_PENALTY, 
                    CURSE_PENALTY, CURSE_PENALTY, CURSE_PENALTY, CURSE_PENALTY ); 
                effect evisStun = EffectVisualEffect( VFX_DUR_MIND_AFFECTING_DISABLED ); 
                effect evisStunImp = EffectVisualEffect( VFX_IMP_STUN ); 
                int k = 1; 
                while (GetIsObjectValid( oWhite )) 
                { 
                    ApplyEffectToObject( DURATION_TYPE_INSTANT, evisStunImp, oWhite ); 
                    ApplyEffectToObject( DURATION_TYPE_TEMPORARY, eCurse, oWhite, 60.0 ); 
                    ApplyEffectToObject( DURATION_TYPE_TEMPORARY, evisStun, oWhite, 60.0 ); 
                    ++k; 
                    oWhite = GetNearestObjectByTag( sTarget, OBJECT_SELF, k ); 
                } 
            } 
 
            oWhite = GetNearestObjectByTag( "BLANCHE" ); 
            object oSign; 
            int i = 1; 
 
            while (GetIsObjectValid( oWhite )) 
            { 
                oSign = GetNearestObjectByTag( "SIGN_" + GetResRef( oWhite ) ); 
                if (GetIsObjectValid( oSign )) 
                    SetLocalInt( oSign, "END_ROUND_NUMBER", GetLocalInt( oSign, 
"END_ROUND_NUMBER" ) + 1 ); 
                ++i; 
                oWhite = GetNearestObjectByTag( "BLANCHE", OBJECT_SELF, i ); 
            } 
 
            i = 1; 
            while (GetIsObjectValid( oBlack )) 
            { 
                oSign = GetNearestObjectByTag( "SIGN_" + GetResRef( oBlack ) ); 
                if (GetIsObjectValid( oSign )) 
                    SetLocalInt( oSign, "END_ROUND_NUMBER", GetLocalInt( oSign, 
"END_ROUND_NUMBER" ) + 1 ); 
                ++i; 
                oBlack = GetNearestObjectByTag( "NERA", OBJECT_SELF, i ); 
            } 
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        } 
 
        // Check how the current fight is going, but do this only once 
        // a minute, otherwise it might take too much time. 
        if (nFight && ((nHeartbeat%10) == 0)) 
        { 
            // Igor checks nothing if it's a fight from the player against one 
            // of the opponents. 
            object oGong = GetObjectByTag( "GONG" ); 
            int iFightWhite = GetLocalInt( oGong, "FIGHT_WHITE" ); 
            int iFightBlack = GetLocalInt( oGong, "FIGHT_BLACK" ); 
 
            if (iFightWhite || iFightBlack) 
                return; 
 
            // First check if there is at least one of the opponents visible. 
            int i = 1; 
            int iSomeoneVisible = FALSE; 
            oWhite = GetNearestObjectByTag( "BLANCHE" ); 
            while (GetIsObjectValid( oWhite )) 
            { 
                if (!(GetHasSpellEffect( SPELL_INVISIBILITY, oWhite ) || 
                    GetHasSpellEffect( SPELL_IMPROVED_INVISIBILITY, oWhite ))) 
                { 
                    iSomeoneVisible = TRUE; 
                    break; 
                } 
 
                ++i; 
                oWhite = GetNearestObjectByTag( "BLANCHE", OBJECT_SELF, i ); 
            } 
 
            if (iSomeoneVisible) 
                return; 
 
            i = 1; 
            oBlack = GetNearestObjectByTag( "NERA" ); 
            while (GetIsObjectValid( oBlack )) 
            { 
                if (!(GetHasSpellEffect( SPELL_INVISIBILITY, oBlack ) || 
                    GetHasSpellEffect( SPELL_IMPROVED_INVISIBILITY, oBlack ))) 
                { 
                    iSomeoneVisible = TRUE; 
                    break; 
                } 
 
                ++i; 
                oBlack = GetNearestObjectByTag( "NERA", OBJECT_SELF, i ); 
            } 
 
            if (iSomeoneVisible) 
                return; 
 
            // Since everyone is invisible, Igor will remove the effects from everyone. 
 
            ClearAllActions(); 
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            // Flag that Igor is busy and should not be interrupted. 
            SetLocalInt( OBJECT_SELF, "BUSY", 1 ); 
 
            SpeakString( "You are unable to see each other, ladies. Let me correct that." ); 
 
            i = 1; 
            oWhite = GetNearestObjectByTag( "BLANCHE", OBJECT_SELF, 1 ); 
            while (GetIsObjectValid( oWhite )) 
            { 
                RemoveSpecificEffect( EFFECT_TYPE_INVISIBILITY, oWhite ); 
                RemoveSpecificEffect( EFFECT_TYPE_IMPROVEDINVISIBILITY, oWhite ); 
                ++i; 
                oWhite = GetNearestObjectByTag( "BLANCHE", OBJECT_SELF, i ); 
            } 
 
            i = 1; 
            oBlack = GetNearestObjectByTag( "NERA", OBJECT_SELF, 1 ); 
            while (GetIsObjectValid( oBlack )) 
            { 
                RemoveSpecificEffect( EFFECT_TYPE_INVISIBILITY, oBlack ); 
                RemoveSpecificEffect( EFFECT_TYPE_IMPROVEDINVISIBILITY, oBlack ); 
                ++i; 
                oBlack = GetNearestObjectByTag( "NERA", OBJECT_SELF, i ); 
            } 

Code Sample 4: 
// Tries to cast a cursing spell as high as possible at a single enemy. The 
// lowest level spells are not used here because they usuallu have less effect 
// than a simple physical attack. 
int CastHighCurse( object oEnemy ) 
{ 
    if (!GetIsObjectValid( oEnemy )) 
        return FALSE; 
 
    if (!GetIsEnemy( oEnemy )) 
        return FALSE; 
 
    float iDistance = GetDistanceToObject( oEnemy ); 
    if (iDistance < 0.0) 
        return FALSE; 
 
    if (GetHasSpell( SPELL_ENERGY_DRAIN ) && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_DEATH ) && 
        !ProtectedAgainstSpells( oEnemy, 9 )) 
    { 
        ClearAllActions(); 
        ActionCastSpellAtObject( SPELL_ENERGY_DRAIN, oEnemy ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_POWER_WORD_STUN ) && 
        GetCurrentHitPoints( oEnemy ) <= 150 && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_STUN ) && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_MIND_SPELLS ) && 
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        !ProtectedAgainstSpells( oEnemy, 7 )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Power Word: Stun)"; 
        ActionCastSpellAtObject( SPELL_POWER_WORD_STUN, oEnemy ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_FEEBLEMIND ) && 
        HasClass( oEnemy, CLASS_TYPE_WIZARD ) && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_MIND_SPELLS ) && 
        !ProtectedAgainstSpells( oEnemy, 5 )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Feeblemind)"; 
        ActionCastSpellAtObject( SPELL_FEEBLEMIND, oEnemy ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_ENERVATION ) && 
        iDistance < DISTANCE_SHORT && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_DEATH ) && 
        !ProtectedAgainstSpells( oEnemy, 4 )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Enervation)"; 
        ActionCastSpellAtObject( SPELL_ENERVATION, oEnemy ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_BESTOW_CURSE ) && 
        iDistance < DISTANCE_SHORT && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_CURSED ) && 
        !ProtectedAgainstSpells( oEnemy, 3 )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Bestow Curse)"; 
        ActionCastSpellAtObject( SPELL_BESTOW_CURSE, oEnemy ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_HOLD_PERSON ) && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_MOVEMENT_SPEED_DECREASE ) && 
        !ProtectedAgainstSpells( oEnemy, 2 )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Hold Person)"; 
        ActionCastSpellAtObject( SPELL_HOLD_PERSON, oEnemy ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_GHOUL_TOUCH ) && 
        iDistance < DISTANCE_SHORT && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_DEATH ) && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_PARALYSIS ) && 
        !ProtectedAgainstSpells( oEnemy, 2 )) 
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    { 
        ClearAllActions(); 
        sRuleText += " (Ghoul Touch)"; 
        ActionCastSpellAtObject( SPELL_GHOUL_TOUCH, oEnemy ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_BLINDNESS_AND_DEAFNESS ) && 
        IsMage( oEnemy ) && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_BLINDNESS ) && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_DEAFNESS ) && 
        !ProtectedAgainstSpells( oEnemy, 2 )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Blindness and Deafness)"; 
        ActionCastSpellAtObject( SPELL_BLINDNESS_AND_DEAFNESS, oEnemy ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_SCARE ) && 
        GetHitDice( oEnemy ) <= 5 && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_FEAR ) && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_DEATH ) && 
        !ProtectedAgainstSpells( oEnemy, 1 )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Scare)"; 
        ActionCastSpellAtObject( SPELL_SCARE, oEnemy ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_RAY_OF_ENFEEBLEMENT ) && 
        GetAbilityScore( oEnemy, ABILITY_STRENGTH ) > 14 && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_DEATH ) && 
        !ProtectedAgainstSpells( oEnemy, 1 )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Ray of Enfeeblement)"; 
        ActionCastSpellAtObject( SPELL_RAY_OF_ENFEEBLEMENT, oEnemy ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_DOOM ) && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_MIND_SPELLS ) && 
        !ProtectedAgainstSpells( oEnemy, 1 )) 
    { 
        ClearAllActions(); 
        sRuleText += " (Doom)"; 
        ActionCastSpellAtObject( SPELL_DOOM, oEnemy ); 
        return TRUE; 
    } 
 
    if (GetHasSpell( SPELL_ENTANGLE ) && 
        !(IsMage( oEnemy ) || IsPriest( oEnemy )) && 
        !GetIsImmune( oEnemy, IMMUNITY_TYPE_ENTANGLE ) && 
        !ProtectedAgainstSpells( oEnemy, 1 )) 
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    { 
        ClearAllActions(); 
        sRuleText += " (Entangle)"; 
        ActionCastSpellAtObject( SPELL_ENTANGLE, oEnemy ); 
        return TRUE; 
    } 
 
    return FALSE; 
} 
 

Code Sample 5: 
  switch ( GetLastSpellCastClass() ) 
  { 
 
  case 10: //wizard 
 
    if (GetHasSpell( SPELL_HORRID_WILTING )) 
    { 
        ClearAllActions(); 
        ActionCastSpellAtLocation( SPELL_HORRID_WILTING, locTarget ); 
        PrintString(" cast horrid wilting "); 
        return ; 
    } 
 
    if (GetHasSpell( SPELL_CHAIN_LIGHTNING )) 
    { 
        ClearAllActions(); 
        ActionCastSpellAtObject( SPELL_CHAIN_LIGHTNING, oEnemy ); 
        PrintString(" cast chain lightning "); 
        return ; 
    } 
 
    if (GetHasSpell( SPELL_ICE_STORM )) 
    { 
        ClearAllActions(); 
        ActionCastSpellAtLocation( SPELL_ICE_STORM, locTarget ); 
        PrintString(" cast ice storm "); 
        return ; 
    } 
 
    if (GetHasSpell( SPELL_EVARDS_BLACK_TENTACLES )) 
    { 
        ClearAllActions(); 
        ActionCastSpellAtLocation( SPELL_EVARDS_BLACK_TENTACLES, locTarget ); 
        PrintString(" cast evards black tentacles "); 
        return ; 
    }     
 
    if (GetHasSpell( SPELL_MELFS_ACID_ARROW )) 
    { 
        ClearAllActions(); 
        ActionCastSpellAtObject( SPELL_MELFS_ACID_ARROW, oEnemy ); 
        PrintString(" cast melf's acid arrow "); 
        return ; 
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    } 
 
 
    break; 
 
    }//end switch 
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Appendix F: Wizard and Sorcerer spells 
The following are the default spells available to the two character classes. There is a large 
amount of overlap in the spells available to these classes, which allows a script that is 
created in from class be used by the other. 
Spell Level Wizard (Level 15) Sorcerer (Level 15) 
0    Daze 

   Light 
   Ray of Frost 
   Resistance 

   Daze 
   Light 
   Ray of Frost 
   Resistance 

1    Mage Armor 
   Summon Creature I 
   Magic Missile 
   Identify 
   Sleep 

   Mage Armor 
   Summon Creature I 
   Magic Missile 
   Identify 
   Sleep 

2    Ghostly Visage 
   Melf's Acid Arrow 
   Summon Creature II 
   Invisibility 
   Knock 

   Ghostly Visage 
   Melf's Acid Arrow 
   Summon Creature II 
   Invisibility 
   Knock 

3    Fireball 
   Clarity 
   Summon Creature III 
   Haste 
   Dispel Magic 

   Fireball 
   Clarity 
   Summon Creature III 
   Haste 
 

4    Stoneskin 
   Elemental Shield 
   Evard's Black Tentacles 
   Ice Storm 
   Minor Globe of Invulnerability 

   Stoneskin 
   Elemental Shield 
   Evard's Black Tentacles 
   Ice Storm 
 

5    Lesser Spell Mantle 
   Summon Creature V 
   Cloudkill 
   Greater Shadow Conjuration 

   Lesser Spell Mantle 
   Summon Creature V 
   Cloudkill 
   Greater Shadow Conjuration 

6    Chain Lightning 
   Greater Spell Breach 
   Summon Creature VI 

   Chain Lightning 
   Greater Spell Breach 
   Summon Creature VI 

7    Mordenkainen's Sword 
   Spell Mantle 

   Mordenkainen's Sword 
   Spell Mantle 

8    Horrid Wilting (none) 
Table 18: Comparison of Wizard and Sorcerer spells 
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Appendix G: Bayesian Networks in Games 
Many games use static terrain with fixed reconstruction of areas that a player leaves and 
later revisits. This can result in noticeable differences between the reconstructed area and 
the player’s recollections (or expectations). These differences can lessen a player’s 
immersion in the game, or the usefulness of the simulation. We propose an approach for 
environmental reconstruction that uses Bayesian Networks to quickly and easily calculate 
likely effects that external factors have on the environment. The reconstruction of 
revisited areas becomes less disconcerting and permits the incorporation of plausible 
changes based on unobserved, yet reasonably expected events that could have occurred 
during the player’s absence. Once these Bayesian Networks have been created, we show 
how they can also be used to model an agent’s beliefs on what happened in the 
environment, and to possibly help control the agent's actions. We conclude with 
screenshots and a discussion of an implementation we created that uses Bayesian 
Networks to recreate different environments. 

Introduction 
The motivation behind this section is to have a “Level-of-Detail Artificial Intelligence” 
(LODAI) [Bro02] approach to determine what an area should look like when a player 
revisits an area in a game. Many games allocate no CPU time for events unfolding outside 
a player’s view. For example, if you break windows in the game “Fable”1, and then leave 
the zone and come right back, the windows will all be replaced. If you were to stay in the 
area and watch, the windows will not get fixed. These games can have the result that if 
the player is watching, one thing happens, and if the player is not watching, a different set 
of events occur. This disconnect can be undesirable in games and simulations. At the 
other extreme, games like “Oblivion”2 keep track of a great number of changes in the 
environment. For instance, an apple dropped in the Market District will remain there 
throughout the game, unless the player picks it up. It never rots or gets removed by 
another game character. A LODAI approach might use a small amount of CPU time to 
update the world that is outside the player’s view periodically. Using such an approach in 
the window-breaking example, if the player came back into the area immediately, there 
would be no change (all of the windows would still be broken). After a long period of 
time, everything might be back to normal (all of the windows would be replaced). At an 
intermediate point in time, a plausible intermediate state could be represented (after a few 
days, the windows on the expensive homes could be replaced, while the other windows 
would still be broken, or boarded up). In the case of a dropped perishable item (or a 
valuable item dropped in a public place), the chance of it remaining would decrease with 
time. In addition to coming up with a quick way of determining what a region that a 
player is returning to might look like, we will show that it will also be possible to re-use 
the structures that made this possible to have different agents in the game reason about 
and act on what caused the current state of their environment. 

                                                 
1  http://lionhead.com/Fable/Fable/   
2  http://www.bethsoft.com/eng/games/games_oblivion.html  
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Bayesian Networks 
A Bayesian Network (BN) is a data structure that can be used to represent dependencies 
among variables and to give a concise specification of a joint probability distribution. A 
BN is a directed acyclic graph with the variables represented as nodes in the graph, with 
an edge between a parent node and a child node if the parent node directly influences the 
child node. It is usually easy for a domain expert to decide what influences exist in the 
domain. A BN representation can take much less space to specify than a joint probability 
distribution, and can also be easier to represent. Charniak [1991] provides a good 
introduction to BNs. A Dynamic Bayesian Network is a BN that represents a temporal 
probability model. A Dynamic Bayesian Network can be used model the environment 
over many time slices. At each time slice, the variables have parent nodes that are in its 
own time slice, or in the time immediately preceding it. We discuss our BN later in this 
paper.  
We chose to use a BN to reconstruct the environment since it is easy to model many 
independent variables efficiently, and it is quick to calculate the desired probabilities 
given the available information. Once the BN has been created, we realized that it could 
be also be used to determine what an agent believes about the local environment and 
events that may have recently occurred there. 

Using Bayesian Networks to Reconstruct the Environm ent 
We used the Microsoft Bayesian Network Editor3 to model the BN, which can 
subsequently be used to determine what type of terrain to draw when a player walks into 
an area that he or she has not visited for a while. Several nodes could affect the terrain 
that would be ultimately drawn. Nodes can directly affect other nodes (a fire in an area 
would affect the amount of plants in the area), or indirectly affect other nodes (a dragon 
in the area can set fires, which affect the plants). Precipitation, the temperature, and the 
creatures that are present in an area, etc. can all have an effect on what the region should 
look like when the player enters an area.  
As a simple example, a game could have a BN that has rainfall and temperature as nodes 
that each could be in one of three states (lower than normal, normal, higher than normal). 
There could also be a node for whether or not there was a dragon in the area. A node for 
fires could exist that has precipitation, temperature, and dragon as parent nodes. 
Generally speaking there will more likely to be fires in an area if there is a dragon around, 
if the temperatures are higher than normal, or if the precipitation is lower than normal. 
There could also be a node for plant growth with three states (lower than normal, normal, 
and higher than normal). The plants in the area would grow best with higher 
temperatures, lots of precipitation, and no fires in the area. The final node in this example 
indicates whether or not animals have gone missing in the area. Animals are more likely 
to go missing in a region if there is a dragon in the area. The network is shown below in 
Figure 21, and the values used in one of the nodes are shown in Figure 22. 

                                                 
3  http://research.microsoft.com/en-us/um/redmond/groups/adapt/msbnx/  
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Figure 21: A sample Bayesian Network 

Once this network has been set up in a game, the environment in the area can quickly and 
easily be updated while the character is not in the area. The server can either provide the 
top-level states of what happened, or they can be randomly generated. For example, if the 
player’s character has not ventured into a certain area in a given month, the server could 
spend a small amount of CPU time to update the area. First it could examine the last state 
of that area, and then determine what the states in the BN should be. It would determine 
what the temperature and precipitation was, and whether or not there was a dragon in the 
area. In this example, the temperature and precipitation might be randomly determined, 
but for reasons to advance the storyline of the game, the ‘dragon present’ node might be 
set to ‘yes’. Once these nodes are given values, the remaining nodes can easily be 
determined by looking at the probability tables associated with each node. For example if 
the temperature and precipitation were normal, and there was a dragon in the area, there 
would be an 80% chance of a fire occurring in that region (look near the middle of Figure 
2 for this value).  

 
Figure 22: Probabilities used for "Fire" node in Figure 21 

Once we determined if there were fires in the region (for this example, we will assume 
that we picked a number less than 80% so there were fires), we can determine what kind 
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of plant growth occurred in the area. In our network, if there is normal temperature, 
normal precipitation, and fires are in the area, the plant growth in the area is 60% likely to 
be low, 30% likely to be normal and 10% likely to be high. All that is required to 
determine the amount of plant growth in the area is to pick a random number and a 
lookup the value in the table. 
Once the states that the environment should be in are calculated, the game could use that 
information to determine what the player will actually see. As games can vary quite 
significantly, an exact implementation of how to update what the player sees would have 
to depend on the individual game, and is beyond the scope of this paper; however, a 
possible implementation follows. In a given area under normal conditions, the ground can 
be covered with healthy green grass and a healthy tree could be drawn. In times of little 
rainfall and high temperatures, the grass could be drawn using a yellow colour, and 
instead of using a ‘healthy-tree’ model, an ‘unhealthy-tree’ model could be used. If we 
determined that there was low plant growth in an area, we might not update the 
environment at all, whereas if there was high plant growth in an area, we might scale the 
tree models by a small amount, so they appear to have grown, and we might draw some 
small bushes in an area to show new growth. In a very cold winter with high precipitation, 
snow can be covering the ground instead of grass, and a model of the tree with snow on 
the branches can be used. It would make it simple to integrate an approach like this into a 
game, since there would be little chance of negative interactions with other parts of the 
game. For example, if the non-player characters in a game use waypoints to find their 
way around, the same waypoints could be used to navigate around the tree, regardless of 
what model of the tree the player sees. 
This approach does not have to be limited to ‘realistic’ reconstruction of the environment. 
In the game Fable, your character’s appearance changes based on your actions – a very 
evil person will have horns growing out of his head. There is nothing stopping a game 
that uses a BN approach to give clues to the player through the environment. For 
example, if there is an evil wizard living in a tower, the vegetation in the surrounding area 
could appear sick and dying. Once the evil wizard has been driven away, the plants can 
appear healthy and vibrant again. 
This approach could also take into account the actions of the characters in the game when 
determining the environment to draw. If there was a brawl in a tavern recently, a player 
who wanders into the room might see evidence of the recent fighting (broken glass and 
furniture). After a period of time, however, the tavern would go back to normal, and there 
would be little evidence for the player to see that there was a fight. If there was a battle 
recently between a mad wizard who likes to cast fireballs and a bunch of goblins, a player 
wandering into the area would see that the ground is blackened, and that there are some 
corpses on the ground. 

Difficulties with this approach 
Implementing this kind of solution in a game will come with additional costs. There is the 
knowledge engineering cost with using this kind of approach: many game programmers 
will be unfamiliar with BNs, so there will be a learning curve to overcome. Coming up 
with the structure of the network can be relatively easy by examining the effects various 
factors have on each other; however, it might take a fair bit of tuning to get realistic or 
reasonable probabilities. It would detract from a game if the BN that was used creates an 
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environment that varies greatly from what the character expects. Testing must be done 
with the BN to ensure that a small drought does not turn an ancient forest into a desert. 
The values that we assigned to the nodes in our BN were generated by hand. Depending 
on how complex you make your network, it might take a considerable amount of time to 
enter in all of the values and test them. The good news is, once you have acceptable 
results for one area, it should be easy to reuse your BN in similar areas with little 
modification. An area in a game that should be desert will require a different BN than an 
area that should be grasslands, but once you have a BN that gives you suitable results for 
one grasslands area, you should be able to use it in grassland areas throughout your game. 
In addition to any difficulties in getting your BN to produce acceptable outputs, there will 
be additional work for the game’s artists to come up with additional models. Instead of a 
single tree for a certain location in the game, several trees would need to be made. Based 
on the BN, the game engine would pick which one the player would see. In addition to 
the extra time and effort to come up with the models, there would be additional storage 
requirements to consider when installing the game. This might not be a very large cost, 
since many models can likely be reused in different areas of the game. For example, if an 
artist has to make several different models for each tree in a certain area, those models 
can also be used for the trees in different areas. 
There might also be additional costs and other difficulties in keeping track of the player’s 
actions. In a multiplayer game, several players would be able to simultaneously affect the 
environment. It could be difficult to store all of the data, so that each player can revisit an 
area at a later date to see their effect on it. However, the data should not need to be stored 
for very long. If a player is involved in a big battle on a certain day, the details of the area 
can be aggregated when a certain time passes after the player leaves the area. For 
example, after a few days, the exact placement of the bodies can be discarded, and only 
the number and the relative area can be kept. If the player returns after a week, he or she 
will likely remember that there was a battle in the area, but not the exact placement of the 
bodies. Even if the player notices that the bodies are in a slightly different orientation, it 
might be explained away by something else (perhaps someone coming by to search for 
treasure). 
In a single-player game, it might be possible for several years to go by in the game before 
a player returns to an area. The BN should be able to relatively easily recreate an 
environment that the player believes is realistic. In a massively multiplayer game, it is 
unlikely that an area will remain unvisited for that long of a time. In the worst case, a 
certain area might constantly have one player character or another in the area. In this 
situation, other approaches will likely have to be taken, as using a BN to update the 
environment would be inappropriate (since it would be disturbing to the players if the 
environment they are in suddenly changed for no apparent reason). 

Using a Bayesian Network to model an agent’s belief s 
Once the BN has been created, it can also be used to modify an agent’s beliefs of what 
has actually happened in an area while they were away. For example, we can use the BN 
from Figure 1 in our game we want to recreate a zone that an agent has not visited for a 
while. In this area, we calculate that the temperature and precipitation has been in the 
normal regions. Using the BN, we determine that there are likely missing animals in the 
region (90% probability), evidence of recent fires (80%), and lower than normal overall 
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plant growth (52%). Figure 23 shows the probabilities the server uses when recreating the 
zone. 

 
Figure 23: The probabilities the server uses 

When the agent enters the zone, it sees that the evidence of recent fires and the sparse 
vegetation. Using the same network, the agent can use inference to calculate that there is 
likely not a dragon in the area (approximately 71% chance), and that the fires were likely 
caused by low precipitation and high temperatures (approximately 69% and 66%, 
respectively). The agent’s initial beliefs of the zone are shown in Figure 24. At this point, 
the agent is only sure that there were fires in the area recently and that there was not much 
plant growth. Inference was used to determine the probabilities of the other nodes. 

 
Figure 24: The agent’s initial beliefs 

Later on, after talking to a farmer who mentions that some of his livestock has been 
disappearing lately without a trace, the agent updates his beliefs. Starting with the same 
evidence as above, and then setting the "Missing Animals" node to true, the agent infers 
that the chance of a dragon being in the area jumps up to just over 88%, which makes the 
agent a little nervous. The agent’s updated beliefs are shown in Figure 25. 
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Figure 25: The agent’s updated beliefs 

The BNs that the agents use to infer what happens in an area do not have to exactly match 
the networks used to update the environment. For example, the agents in an area might 
have a simpler model of the world than what you use for reconstructing the environment. 
A character might not believe in dragons, so when presented with evidence of increased 
fires, he might explain it away either by dry, hot weather, lightning strikes, or even that 
humans might have started them. A different character might use the same nodes as the 
BN used to reconstruct the environment, but have different beliefs about what the 
probabilities should be. Using the same example from Figure 1, if a character 
overestimates the chance of a dragon being in the area, that character is much more likely 
to blame any fires that happen on dragons. Although it is possible to have several 
different networks for different agents to reason about the world, creating and testing 
them would involve extra work, which detracts somewhat from the simplicity of this 
approach.  
One additional benefit of this approach is that different agents might come to different 
conclusions when they view the same evidence. If two agents were presented with the 
same evidence as in Figure 25, one might believe that a dragon is in the area, but the other 
might not (the server picks a random number of under 88% for the first agent, so he 
believes that there is a dragon in the area, and a random number of over 88% for the 
second one, so he does not believe there is a dragon in the area). By having the agents in 
the game act in different ways because of their different views might make the player 
think they are doing much more complex reasoning than they actually are. The 
differences in the ways that the agents react to the situations around them may also add to 
the replayability to a game, as the player will not be able to completely predict how 
everyone will react to a certain event. 

Controlling Agents with Bayesian Networks 
At a high level, a BN can be used to model an agent's beliefs. After an agent views its 
surroundings and updates its beliefs on what has happened in the area, the agent can also 
use a probabilistic model to determine its actions. Instead of using a finite state machine 
(FSM) or similar tool as is common in games to determine the actions of a character, a 
BN can be used not only to calculate the characters beliefs, but also to decide what 
actions the character takes. Using a BN to model beliefs and control behaviours has the 
advantages of being quick to compute, easy to model, and can provide behaviours that are 
realistic without being recurring or predictable. 
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As an example, a game has a guard patrolling an area. The goal of the player is to get into 
a building in the area that the guard is patrolling. One approach that a game might take 
would be to have the guard controlled by a finite state machine or even a push down 
automata (both described in [Yis04], with patrol and investigate states. The benefits of 
this approach are that it is easy to understand, code, and debug; however it does have 
drawbacks. A guard can easily get caught doing the same thing over and over again, 
which can detract from the realism of the game. You can imagine the following scenario 
occurring in a game: A character makes a loud noise while trying break into the building. 
The guard (using the FSM in Figure 26) hears this, switches from "patrol" to 
"investigate". The player hides since he hears the guard coming to investigate, after a 
while, the guard decides there is no one there, and goes back to "patrol" from 
"investigate". The problem with a finite state machine is this scenario can occur several 
times, and after a while one would likely think that this behaviour is unrealistic. After the 
fifth time the player makes a noise in an area, most people would not think it is realistic 
for a guard to investigate the area for the same amount of time as the previous four 
occurrences, and most people would expect the guard to do a more thorough investigation 
of the area, or even perform a different action. While an improved behaviour can certainly 
be modeled with a more sophisticated finite state machine, the purpose of the approach 
proposed in this paper is to be able to represent more sophisticated behaviours easily. 

 
Figure 26: A FSM to control a guard 

Let us use our approach in the example. The player makes a noise which the guard hears. 
This raises the suspicion level in the guard. The guard investigates, finds nothing, and 
returns to patrolling. When the guard hears noises during subsequent rounds, the guard 
can end up investigating longer, since his suspicion level was already raised. This can be 
modeled by having a simple Bayesian Network with a "suspicion" state. The suspicion 
level can rise whenever a noise is heard (or if the guard notices something else out of the 
ordinary), and if the guard is suspicious enough he will investigate. The states in this BN 
will depend only on the states from the previous time slice and any current stimuli 
(similar to the way the environment in the first section can be calculated simply by using 
the states of the environment in the previous time slices, along with current factors). After 
a while, the heightened suspicion would set the guard to investigate on smaller and 
smaller stimuli, and it could take longer and longer for the guard to have his suspicion 
lowered enough to return to patrolling. 

Implementation 
Part of the BN described in Figure 1 was implemented by the authors in the “Neverwinter 
Nights”4 (NWN) environment. NWN is an award-winning commercial game that comes 
with a toolset that allows modifications. There were no noticeable effects on load time 
                                                 

4  http://nwn.bioware.com/   
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when this BN was implemented, and it provided different environments to the player 
based on the player’s actions. The module that was created has a tower that contains 
magic that allows the player to change the temperature and precipitation in the area, as 
well as advance time by one or more years. 
The following screenshots show some of the screens experienced in this module. Figure 
27 shows the initial terrain, which is grassland.  

 
Figure 27: Initial terrain 

After going into the tower and setting the temperature and precipitation to very 
favourable levels and advancing time by several years, the player leaves the tower and 
views the terrain seen in Figure 28. 
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Figure 28: Increased plant growth 

In this scenario, the player goes back in the tower, sets the temperature and precipitation 
levels to unfavourable conditions, and then advances time a few more years. The result is 
the screenshot in Figure 29. 

 
Figure 29: Less favourable conditions 

Each time the player advances time by a year, a BN is checked against the temperature 
and precipitation variables to come up with the amount of plant growth for that year. 
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Once that is chosen, the world is updated based on the growth rate and the previous state 
of the world. A fully-grown tree will not pop up after one year, if there was nothing in an 
area before, only a small bush or patch of grass can occupy that area. If favourable 
conditions continue, the model can be replaced by a smaller tree model, and then finally 
by a larger tree model. Similarly, if there is a large tree in an area, it will not disappear 
after a single poor year. Bushes and grass might disappear, but for every tree in the area a 
random number will be generated and checked against the results from the BN to see if 
the tree survived or not. If the tree did not survive, a model of a dead tree would replace 
the living tree, and would stay for a few years regardless of the subsequent conditions – it 
would be disconcerting for a tree to be dead one year and the alive the next. Since the 
model that would appear in any given area at a certain year depends on the conditions and 
the plant that appeared there in the previous year, a player will not see odd behaviour like 
an area that is empty one year followed by a dead tree in that area the very next year. The 
models will only be rendered when the player returns to the area, which helps the 
computation very quick, necessary for the LODAI approach. If several years pass before 
a player returns, only the final state of the area will be observed. This behaviour was 
relatively easy to implement, runs quickly, and could be changed to suit a game’s 
requirements. 

Future Work 
This method for generating terrain could benefit from applying any techniques that 
simplify the calculations in any BN. For example, we could explore using only singly 
connected networks, or polytrees. A method for joining nodes in a BN into a tree of 
clusters is found in [Huang and Darwiche, 1996]. There also might be a benefit to using a 
simpler representation of the BN. For example, if the node "fire", which represents the 
probability of a forest fire occurring, has two parent nodes: "rainfall" and "temperature", 
which represent the amount of recent rainfall and the current temperature, it might be 
advantageous to have a representation where we can specify the probability of a large 
forest fire starting is zero if there was very high amounts of rainfall recently regardless of 
temperature, rather than having to specify the probability for each temperature. Tools that 
would allow developers to easily view, modify, and test the networks that they create 
would also greatly facilitate the incorporation of this idea into commercial games. In 
addition, advances in BN technology continuously appear in the literature, which will 
inevitably inspire improvements in our proposed approach. 

Conclusions 
This paper has demonstrated that it is possible and quite simple to use a BN to help 
determine what type of terrain to render in a simulation or game. This could be used to 
make games and simulations more realistic than their counterparts that simply use static 
terrain. The contribution of this paper is to demonstrate that determining what type of 
terrain to draw can be done quickly and easily, and can add to the realism in a game, 
while not taking up much CPU time. The importance of this LODAI approach is that it 
might give the player the impression that the game has modeled the world more 
accurately than it actually has, and that the game is doing more work than it actually is. 
For a relatively small cost, the believability of the game or simulation can be immensely 
improved. 
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Additionally, if networks have been created and tested for environmental reconstruction, 
we have shown how they could be adapted for use by the agents to infer what has 
happened recently in the area. This can lead to agents appearing to do complex reasoning 
about the environment, and different agents coming to different conclusions based on 
what they observe, which might lead to interesting and entertaining interactions for the 
player. 
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