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Abstract 

Currently, most commercial speech-enabled products are constructed using 

grammar-based technology. Grammar design is a critical issue for good 

recognition accuracy. Two methods are commonly used for creating grammars: 1) 

to generate them automatically from a large corpus of input data which is very 

costly to acquire, or 2) to construct them using an iterative process involving 

manual design, followed by testing with end-user speech input. This is a time-

consuming and very expensive process requiring expert knowledge of language 

design, as well as the application area. Another hurdle to the creation and use of 

speech-enabled applications is that expertise is also required to integrate the 

speech capability with the application code and to deploy the application for 

wide-scale use. 

An alternative approach, which we propose, is 1) to construct them using the 

iterative process described above, but to replace end-user testing by analysis of 

the recognition grammars using a set of grammar metrics which have been 

shown to be good indicators of recognition accuracy, 2) to improve recognition 

accuracy in the design process by encoding semantic constraints in the syntax 

rules of the grammar, 3) to augment the above process by generating recognition 

grammars automatically from specifications of the application, and 4) to use tools 

for creating speech-enabled applications together with an architecture for their 

deployment which enables expert users, as well as users who do not have 

expertise in language processing, to easily build speech applications and add 

them to the web. 
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1.  INTRODUCTION 

Currently, most commercial speech-enabled products are constructed using 

grammar-based technology. The speech recognition engine processes the input 

and phonetically matches it with sentences that are generated by a top-down 

expansion of the recognition grammar. The process stops when a match is made 

which meets a certain confidence level.  

One method for creating speech-recognition grammars is to generate them 

automatically from a large corpus of input data which is very costly to acquire. 

Another method is to manually design the grammar from a specification of the 

application and then to test and modify the grammar by experimenting with end-

user speech input. The high cost of both of these methods is one of the 

bottlenecks slowing the production of speech applications (Meng and Siu, 1999, 

2002) and (Wang and Acero, 2001, 2003a, 2006). In this thesis, we describe an 

alternative approach which is based on grammar metrics. Rather than develop a 

grammar and then improve it through experiment, the proposed approach is to 

design a grammar, analyze it using grammar metrics which have been claimed 

by other researchers to be good indicators of recognition accuracy, modify the 

grammar, re-analyze using the metrics, and iteratively improve the grammar with 

respect to the metrics. We also facilitate the process of grammar design by 

showing how recognition accuracy can be improved by coding semantic 

constraints in the syntax rules. We further augment the process of grammar 

design by showing how some grammars can be generated automatically from 

specifications of applications. 

One of the major contributions of this dissertation is the presentation of the first 

algorithm to compute an important grammar metric, the Average Branching 

Factor (perplexity) of the grammar. The ABF has been claimed by others to be a 

good indicator of speech-recognition accuracy. We formally prove termination, 

correctness, and polynomial complexity of our algorithm. 
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We then further investigate a concept that was the focus of the author’s Master’s 

work. The concept is that of Semantic Constraint Grammars (SCGs), which 

include semantic constraints encoded in the syntax rules. These grammars are 

still context-free grammars and we use the name “Semantic Constraint Grammar 

(SCG)” only to indicate that the grammar contains what are usually regarded as 

semantic constraints in its context-free syntax rule. SCGs are not a new class of 

grammar. We compare SCGs with the Context-Free Grammars (CFGs) from 

which they were derived, with respect to a number of grammar metrics, including 

ABF, number of rules, number of symbols, number of terminals, number of non-

terminals, and size of the language. We compare the analysis with respect to 

metrics to the experimental results of voice recognition accuracy which were 

obtained as part of a Master’s thesis which was completed by the candidate 

before commencing this doctoral work. The results support the claims that 1) 

grammar metrics are good indicators of speech-recognition accuracy, and 2) that 

encoding semantic constraints in the syntax of recognition grammars can 

improve speech recognition accuracy. 

In order to further reduce the cost of creating speech-recognition grammars, we 

investigate the possibility of generating grammars automatically from application-

specific data. We begin by showing that little work has been carried out on this 

approach. We then show how speech-recognition grammars for a simple spoken 

database query processor can be generated automatically from a relational-

database schema. We generate straightforward recognition grammars and also 

Semantic Constraint Grammars (SCGs) from the database schemas. We analyze 

the two types of grammar with respect to their ABFs, and show that the SCGs 

have lower ABFs, and are likely, therefore to have better recognition accuracy.  

In addition to improving the ease with which speech-recognition grammars can 

be developed, we are also interested in facilitating the deployment of speech-

enabled applications. In addition to the work on speech-recognition grammars, 

the candidate has also contributed to the development of the architecture and 

sample applications for a Public-Domain SpeechWeb, which is an augmentation 
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of the conventional web with hyperlinked speech applications that are designed 

for natural-language speech interaction. As part of this work, the candidate has 

developed a SpeechWeb application using readily available software technology 

and commonly-used communication protocols. The application allows users who 

have access to the Internet to contact a remote application Read-A-Book and 

interact with the book “Sleeping Beauty” through speech input and output.  We 

include a description of this simple application to illustrate the ease with which 

hyperlinked speech applications can be created and deployed on the Web. 

1.1 The Problem 

Despite huge improvements in speech-recognition technology, very few speech 

applications are available to the public. We have observed the following two 

reasons for this problem: 

(1) the high cost of grammar creation. 

In general, there are two methods in grammar creation. One approach is 

a statistical approach, which constructs recognition grammars by 

analyzing a large corpus of data, which is costly to acquire. The second 

approach to construct speech-recognition grammars using an iterative 

process, involving manual design followed by testing with end-user 

speech input. This is a time-consuming and very expensive process 

requiring expert knowledge of language design as well as the application 

area. 

(2) the difficulty in integrating speech-recognition component with application 

code.  

It requires much expertise to integrate the speech capability with the 

application code and to deploy the application for wide scale use. 
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1.2 An Alternative Less-Expensive Approach 

To tackle the above problem, we propose an alternative approach which should 

be less expensive as it does not require end-user testing. The approach is based 

on grammar metrics and which we present from the following four perspectives: 

Average Branching Factor (ABF), Semantic Constraint Grammars (SCG), 

automatic generation of speech-recognition grammars, and a Public-Domain 

SpeechWeb.  

1.2.1 Average Branching Factor (ABF)  

Instead of the iterative process of grammar design followed by testing with end-

user speech input, we use metrics to assess the quality of recognition grammars 

as they are developed either by hand or automatically. In particular, the Average 

Branching Factor (ABF) is claimed by other researchers to be a good indicator of 

recognition accuracy. We will define the ABF later in this sub-section. 

Speech-recognition accuracy is a significant issue that researchers have been 

working on for many decades. Grammar features have been studied from a 

variety of perspectives in order to improve the performance of speech 

applications.   

The accuracy of speech recognition is dependent on the Average Branching 

Factor (ABF) of the recognition grammar. Grammars with lower ABFs are likely to 

have better recognition accuracy than those with higher ABFs (Hauptmann et. al., 

1988), (Young et. al., 1989), (Young, 1990), (Waibel and Lee, 1990), (Edelkamp 

and Korf, 1998), and (Morimoto and Takahashi, 2008, 2009). Much work has 

been carried out to reduce the ABF. However, there would appear to be no 

published algorithm that computes the ABFs directly from recognition grammars. 

In grammar-directed speech recognition, the branching factor of a single decision 

point is the number of possible words to be considered as candidates at that 

point. During the recognition process, if at any point, it needs to examine the next 
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symbol on the input to make a choice (even if the choice is a single branch), this 

point is a decision point. The Average Branching Factor (ABF) is the average of 

the branching factors of all decision points in all of the utterances in the language 

defined by the recognition grammar. The ABF is also called the perplexity of the 

language.  

The Average Branching Factor (ABF) is one grammar metric. Other grammar 

metrics include size (number of sentences) of language, number of rules, number 

of symbols, number of terminals, and number of non-terminals. 

1.2.2 Semantic Constraint Grammar (SCG) 

A Semantic Constraint Grammar (SCG) is a Context-Free Grammar (CFG) that 

encodes semantic constraints in the syntax rules of the grammar to reduce the 

language size and the ABF of the CFG grammar.  

In the candidate’s Master’s work (Shi, 2003b), we carried out experiments to 

investigate the recognition accuracy of SCGs and CFGs with an iterative testing 

process with end-user speech input and test case design. In this doctoral 

dissertation, we compare SCGs with the CFGs with respect to a set of grammar 

metrics, including ABF, number of rules, number of symbols, number of terminals, 

number of non-terminals, and size of the language. We compare and analyze the 

results from the Master’s experiment (Shi, 2003b) and the grammar metrics in 

this dissertation work. The results support the claims that 1) grammar metrics are 

good indicators of speech-recognition accuracy, and 2) that encoding semantic 

constraints in the syntax of recognition grammars can improve speech 

recognition accuracy.  

1.2.3 Automatic generation of speech-recognition grammars  

Although technology for grammar-based speech applications is readily available, 

it is not yet being extensively used to create speech applications. One problem is 
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that there appears to be a lack of theory and tools to facilitate the construction of 

speech-recognition grammars.  

Currently, most grammars for speech-enabled applications are written manually, 

which is costly, laborious, and error-prone. Writing a domain-specific grammar 

has been a barrier to the rapid development of spoken-language systems (Meng 

and Siu, 2002), (Wang and Acero, 2003a), and (Wang and Acero, 2006). 

Spoken language often contains repetitions, corrections, interruptions, or 

unfinished utterances. These phenomena are often referred as disfluencies 

(Jørgensen, 2007). Due to the disfluencies and non-grammatical utterances of 

spoken language, a handcrafted grammar cannot guarantee a good coverage of 

the input language when deployed in real applications (Meng and Siu, 2002). 

Bangalore and Johnston (2003) point out that the heavy cost of authoring and 

maintaining grammars and the lack of coverage in the rule sets, are the main 

reasons for the bottleneck in the development of conversational systems. Wang 

and Acero (2001, 2005, 2006) conclude that writing domain-specific grammars is 

a major obstacle in making conversational systems mainstream.  

In this dissertation, we show that for some simple applications it is possible to 

generate grammars automatically from application specifications. We illustrate 

this by generating speech-recognition CFG and SCG grammars automatically 

from relational database schemas. This approach further reduces the cost, time, 

effort, and the requirement of linguistic knowledge in grammar authoring. 

1.2.4 A Public-Domain SpeechWeb 

The growth of the Internet since the early 1990’s has changed people’s lives by 

providing access to huge amounts of information on the web. It also expands 

commercial opportunities for business and convenience for customers, by 

allowing business transactions to be conducted anytime around the clock and 

anywhere around the world. However, the conventional web is mainly based on 

text and graphics, which excludes people with visual disabilities and limits the 
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use of the web where it is not convenient to access it by hand. Therefore, we 

need a supplement to the traditional web. One approach is to augment the web 

with hyperlinked speech applications, collectively referred as a SpeechWeb 

(Frost and Chitte 1999) and Frost (2004). 

By taking the advantage of the rapidly developing wireless industry, a 

SpeechWeb that can be accessed via cell phones, will undoubtedly bring profit to 

business. Hartzell (2003) estimated that speech-enabled services would 

generate more than $4.6 billion in revenue for North American wireless carriers 

and $25 billion worldwide by the end of the middle to end of the first decade of 

the 21st century.  

In addition, the hyperlinking of applications solves the problem of low accuracy of 

large recognition grammars by enabling large applications to be partitioned into 

smaller hyperlinked components that use smaller grammars with better 

recognition accuracy. 

1.3 The Thesis Statement 

The thesis is that natural-language speech-recognition grammars are amenable 

to methodical analysis and design techniques. In particular:  

(1) Various grammar metrics, including the Average Branching Factor (ABF) 

can be computed automatically and efficiently. 

(2) Semantic constraints can be encoded in syntax rules in order to decrease 

language size and ABF.  

(3) Recognition grammars can be created automatically from relational 

database schemas and application specifications. 

(4) Readily-available speech-recognition technology and commonly-used 

communication protocols can be used by non-expert as well as expert 

users to create and deploy speech applications. 
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1.3.1 Importance of the thesis 

This thesis is an attempt to tackle the problem stated in sub-section 1.1. Through 

extensive surveys, which are presented in the Appendices, we have shown that 

this problem has not yet been solved.  

Our solution to the problem is important because of our “constructive” proofs 

which involved the creation of algorithms and software, which contribute to the 

viability of the alternative less-expensive method for creating speech applications.  

In particular: 

(1) The importance of the ABF algorithm 

The ABF is an important grammar metric that determines the recognition 

accuracy of speech-recognition grammars. Our algorithm for computing the 

Average Branching Factor (ABF) directly from a speech-recognition grammar 

makes it possible to use the ABF to preliminarily examine and assess 

recognition grammars avoiding costly and time-consuming experimentation 

involving iterative user speech input testing. With the assistance of the ABF, 

time, cost, and effort are reduced in grammar design and development.  

(2) The importance of Semantic Constraint Grammars (SCGs)  

SCGs encode semantic constraints in the syntax rules to naturally decrease 

the size of language and ABF therefore improve recognition accuracy.  

(3) The importance of the approach for automatic grammar generation 

The approach of generating speech-recognition grammars automatically from 

relational database schemas illustrates that this approach could facilitate the 

development of speech-enabled applications and services. It has the potential 

to significantly reduce the time, cost, and difficulty in speech-recognition 

grammar authoring. Using the proposed approach, a developer with little 
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linguistic knowledge and grammar scripting experience can create a high-

quality speech-recognition grammar. More importantly, the method that we 

have developed demonstrates that recognition grammars with good 

recognition accuracy can be generated automatically. 

(4) The importance of a Public-Domain SpeechWeb 

The Public-Domain SpeechWeb architecture (Frost, 2005) makes it possible 

for expert users and users who do not have expertise in language processing 

to easily develop and deploy speech applications in the public-domain 

SpeechWeb. In addition, the SpeechWeb provides a solution to improve 

recognition accuracy for large grammars by dividing the application into small 

hyperlinked components which have smaller grammars and consequently 

better recognition accuracy.  

1.3.2 Proof of the thesis statement 

The thesis has been proven by “constructive proofs”. Algorithms and software 

have been built and analyzed in order to prove each part of the thesis by 

construction of an example. Such proofs are informal and are really “proof of 

concept”. However, formal mathematic proofs have been used to analyze 

properties of the algorithm developed. 

To prove the thesis statement, we consider a set of speech-recognition grammar 

metrics, including the number of symbols, the number of terminals, the number of 

non-terminals, the number of rules, the size of the language, and the Average 

Branching Factor (ABF). We also review metrics proposed by others as follows. 

Details of existing metrics are in sub-section 2.2. 

(1) McCabe’s Complexity (McCabe, 1976) metric measures the number of 

linearly independent paths through a flow graph.  

(2) Fenton’s Impurity (Fenton and Pfleeger, 1996) describes successors’ 

dependency between non-terminals. 
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(3) Power and Malloy (2000, 2004) discuss the following grammar metrics: 

the average size (the number of terminals or non-terminals) of the right-

hand-side of syntax rules, levels, and depth (the number of non-terminals 

in the largest grammatical level). 

(4) Grammar Confusability Metrics (GCM) (Cai and Hamaker, 2008) describe 

a likelihood that a phrase will be confused by the speech recognizer with 

another phrase currently allowed by an active grammar rule.  

We then describe an efficient algorithm for determining the Average Branching 

Factor (ABF) automatically from a speech-recognition grammar. We formally 

prove termination, correctness, and polynomial time complexity. We have 

implemented the algorithm and applied it to several example grammars. 

We have developed a method to improve grammars with respect to the metrics 

by integrating semantics with syntax. We use a set of grammar metrics to 

measure the properties of the initial grammars, and the revised “semantic” 

grammars (SCGs). 

We have also developed a method of generating speech-recognition grammars 

(CFGs or SCGs) automatically from relational database schemas. The generated 

grammars are analyzed and compared using the set of grammar metrics. 

Finally, we have created a small SpeechWeb application to illustrate the ease 

with which grammar-based speech applications can be developed and deployed 

on the web. 

1.4 Contributions of This Thesis Work 

The contributions of this thesis work are summarized as follows: 

(1) We have proposed the first algorithm to correctly compute the Average 

Branching Factor (Perplexity) directly from a speech-recognition grammar. 

This algorithm provides a method for more-easily and less-expensively 

calculating a grammar metric which is useful when developing speech-
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recognition grammars. The algorithm has been formally proven with 

respect to termination, correctness, and polynomial time complexity. 

(2) We have further investigated the notion of Semantic Constraint Grammars 

(SCGs), and compared SCGs and CFGs with respect to a set of grammar 

metrics. 

(3) We have proposed a novel approach to generate speech-recognition 

grammars automatically from relational database schemas and application 

specification. The approach has been implemented and the generated 

grammars are analyzed using a set of grammar metrics. This approach 

demonstrates the viability of automatic grammar authoring and facilitates 

the development of conversational systems. 

(4) The example SpeechWeb application illustrates the ease of creating and 

deploying grammar-based speech applications in a Public-Domain 

SpeechWeb using readily available technology and protocols. 

1.5 The Structure of This Thesis Report 

The remainder of this thesis report is structured as follows: 

Section 2 begins by discussing the need for recognition grammar metrics and the 

definition of the Average Branching Factor (ABF).  We analyze existing grammar 

metrics and compare them with the ABF metric. Before presenting the new 

algorithm for computing the ABF, we discuss a naïve approach which is incorrect. 

Then, we illustrate a correct but impractical approach which has exponential 

complexity with respect to the length of the utterances. Next, we present the new 

polynomial time ABF algorithm. We include three examples of applying the ABF 

algorithm and discuss the implementation of the algorithm. The results of 

applying the ABF algorithm on several example grammars are included and 

discussed in this section too. 

Section 3 contains proofs of the ABF algorithm with respect to termination, 

correctness, and polynomial time complexity. To better present the proofs, we 
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include the Miranda source code for the ABF algorithm implementation. An 

introduction to Miranda is included in section 3.  

In section 4, we discuss and compare Context-Free Grammars (CFGs) and 

Semantic Constraint Grammars (SCGs). Examples of these two grammars are 

included and analyzed using a set of grammar metrics. In addition, we refer to 

the experimentation for investigating speech recognition accuracy which was 

carried out in the candidate’s Master’s work. The experimental results from the 

Master’s work are compared with a new analysis of the grammars using the ABF 

and other metrics. 

Section 5 presents a novel approach for generating speech-recognition 

grammars automatically from relational database schemas and application 

specifications. We further discuss, analyze, and compare the generated CFGs/ 

SCGs using a set of grammar metrics. 

We discuss the Public-Domain SpeechWeb and the LRRP (Local speech 

Recognition and Remote Processing) SpeechWeb architecture in section 6. We 

illustrate the ease of creation, deployment, and access to a hyperlinked speech 

application using an example speech application. 

Section 7 summarizes the work done, concludes the thesis report, and discusses 

future work. 

Two surveys are appended, Appendix A: “A Survey – Design of Recognition 

Grammar for VXML-like Applications”, and Appendix B: “A Survey – Automatic 

Generation of Speech-Recognition Grammars”. Appendix C and D are two 

example grammars with the same vocabulary, Read-A-Book and a word 

sequence grammar. Appendix E is a word-sequence grammar for a small solar 

system which has the same domain with the example grammars in section 4. 

Appendix F includes Java code for example database connection. Two 

automatically generated grammars are in Appendix G and Appendix H 

respectively. Appendix I lists the URLs for the XML files of the example speech 
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applications of the Public-Domain SpeechWeb. Appendix J includes parts of the 

interpreter for the example speech application Read-A-Book. Appendix L 

includes some sample screenshots for the example speech application Read-

A-Book. 
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2.  AN ALGORITHM FOR COMPUTING THE AVERAGE 

BRANCHING FACTOR (PERPLEXITY) OF SPEECH-
RECOGNITION GRAMMARS 

Although speech-recognition technology has achieved significant progress over 

decades, it is not yet perfect. Speech recognition is not an exact, analytical 

science, but a probabilistic art and incorporates elements of sophisticated 

guessing (Abbott, 2001). There are still many limitations in voice applications. 

Stochastic (statistical) techniques and grammar-based techniques are two of the 

main methods used in natural language speech processing. Stochastic models 

were the most popular up to the late 90’s, whereas grammar-based technology 

has been more widely used in commercial products since 2001 (Barnard et al., 

1999), (Knight et al., 2001) and (Caskey et al., 2003).  

In grammar-based speech applications, recognition grammars are a key 

component that directly affects the performance of speech applications. The 

design of speech-recognition grammars determines speech-recognition accuracy, 

robustness, efficiency, and maintenance complexity of speech applications. A 

well-defined grammar also provides the user with great flexibility and comfort in 

voice services. Good grammars are essential for the usability of a speech 

application. However, writing grammars is a daunting and expensive task, which 

forms a major bottleneck in the development of spoken language systems (Siu 

and Meng, 1999). 

In the survey at Appendix A, we have reviewed the design of recognition 

grammar for VXML-like applications. VoiceXML is an XML-based markup 

language for building distributed voice applications, much as HTML is a markup 

language for creating distributed visual applications. A grammar is a set of rules 

that define the possible words, phrases, or utterances which are accepted by the 
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speech recognition engine. A grammar is a fundamental building block of speech 

technology (Mané and Levin, 2005).  

From first-hand experience in writing grammars for real-world voice applications, 

some guidelines in VoiceXML application grammar design have been overviewed 

and summarized in Appendix A.  The topics included grammar design, dialog 

design, prompt design, sub-grammar design, sub-dialog design, grammar 

weights and probabilities, error handling, and testing. Also, we have reviewed the 

design for Voice User Interface (VUI), which is the key to the success of a 

VoiceXML application, and the tools and environments for grammar design. 

In summary, we have found over 20 articles on grammar design and 4 of which 

are refereed scientific papers. More than 10 articles are related to Voice User 

Interface (VUI) design and 2 of which are refereed scienctific papers. 4 non-

refereed articles talk about voice-application testing. 15 voice application 

development environments are available, 4 of which are freely downloadable. 

2.1 The Need for Grammar Metrics 

In speech application development, carrying out experiments is one of the major 

methods to test speech-recognition accuracy and performance. This process 

may involve the following phases:  

(1) Design and develop a speech-recognition grammar.  

(2) Link the speech-recognition grammar to a speech application.  

(3) Design a set of test cases.  

(4) Identify a number of subjects (testers) to participate the testing.  

(5) Testers go through the set of test cases and record their results.  

(6) Analyze the results and summarize the performance of the speech-

application. 

For each change of a speech-recognition grammar, the testing process has to be 

repeated. Testing and tuning are an iterative process for analyzing and 
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optimizing system performance.  This process is a complex task that can take a 

long time (sometimes, several months) and involves an interdisciplinary team of 

professionals, including developers, testers, linguists, and psychologists (Biber 

and Kozminski, 2005) and (Eisenzopf, 2006). 

In software engineering, software metrics are often used to measure and manage 

the complexity of software and estimate the difficulty of maintenance in order to 

determine the cost of change, and as an indicator for automatic detection of a 

transformation that can improve the quality of a system (Power and Malloy, 2004). 

The use of software metrics is essential to good software engineering (Fenton 

and Pfleeger 1996) and (Power and Malloy, 2004). 

Similarly, there is a need for a set of grammar metrics to analyze and estimate 

the performance of speech-recognition grammars so that the time, cost, and 

difficulty in grammar design may be reduced. 

2.2 Existing Grammar Metrics 

Features of speech-recognition grammars have been studied and analyzed from 

a variety of perspectives over many years. Researchers have developed a 

variety of grammar metrics. 

Power and Malloy (2000) developed a technique to map six established metrics 

in software engineering to grammars, and extend their work in (Power and Malloy, 

2004). The six metrics are as follows:   

(1) The number of terminals and non-terminals. 

(2) The McCabe Complexity measures the linearly independent paths through 

a flow graph (McCabe, 1976). It is typically interpreted as a measure of 

the number of decisions in the flow graph. In a CFG, decisions are made 

at non-terminals while the recognition process choosing next alternatives. 

The McCabe complexity for a CFG is the total number of alternatives in 

the grammar.  
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(3) The average RHS size is the average of the number of symbols, including 

terminals and non-terminals, on the right-hand side of CFG production 

rules. It is the quotient of the total of terminals and non-terminals on the 

right-hand-side of the rules divided by the number of non-terminals. 

(4) The Fenton’s Impurity (Fenton and Pfleeger, 1996) concerns the 

dependencies between procedures in a program in software engineering. 

The dependencies between procedures in the program are edges of a call 

graph, which is represented as a directed graph. In a CFG, a non-terminal 

is regarded as a procedure of a program and the successor relations 

between non-terminals are edges in the call graph. The Fenton’s Impurity 

defines the dependencies of non-terminals of a CFG. 

(5) Grammatical Levels (Power and Malloy, 2000 and 2004). If non-terminal A 

derives some sequence of symbols β, and β contains some non-terminal 

B, we say that B is an immediate successor of A, and write A  B. If β 

derives some sequence of symbols γ, and γ contains some non-terminal 

C, we say that C is a successor of A, and write A * C. If A * C and C 

* A, we say that A is equivalent to C and denote as A ≡ C. An 

equivalence relation on a set partitions the set into a collection of 

equivalence classes. All the elements in a given equivalence class are 

considered equivalent. For grammar non-terminals, these equivalence 

classes are called grammatical levels. 

(6) Depth. Based on the definition of grammatical level, Depth is defined as 

the number of non-terminals in the largest grammatical level (Power and 

Malloy, 2000 and 2004). 

Cai and Hamaker (2008) proposed a Grammar Confusability Metric (GCM) to 

describe a likelihood that a phrase will be confused by the speech recognizer 

with another phrase currently allowed by an active grammar rule. The GCM 

identifies pairs of phrases in the grammar with different semantic meanings which 

are difficult for the speech recognizer to distinguish reliably. For example, the 

user says, “repeat this voicemail”. The speech recognizer may misrecognize it as 
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“delete this voicemail” because they are acoustically alike. The GCM is used to 

flag the existence of two phrases in the grammar that have different semantic 

meanings but with similar pronunciation. 

A Probabilistic Context-Free grammar (PCFG) is a Context-Free Grammar (CFG) 

(the formal definition of a CFG is given in sub-section 4.1) with a probability 

distribution defined over all productions that share the left-hand side (Rosenfeld, 

2000b), (Moore, 1999), and (Weber and Gőrz, 1999). The entropy of a 

probabilistic CFG is computed in (Kuich, 1970) and further studied in (Soule, 

1974) and (Justensen and Larsen, 1975). Using CFGs to categorize the ways in 

which nodes branch to yield daughter nodes, Miller and O’Sullivan (1992) 

examine the entropies of the branching processes associated with trees that 

branch according to a finite number of rules. Miller and O’Sullivan use the theory 

of multi-type Glaton Watson processes (Harris, 1963), these processes are 

characterized according to their branching rates as sub-critical, critical, and 

super-critical with branching rates ρ<1, ρ=1, and ρ>1 respectively. The 

branching rate is the rate of growth of the logarithm of the total number of 

derivations from the grammar (the total number of trees possible starting from the 

start node) (Miller and O’Sullivan, 1992). To characterize the rate of growth of the 

number of derivations in the language, Miller and O’Sullivan (1992) observe that 

if there are K non-terminals at the lowest level of a tree, then the number of trees 

that can be grown from this level equals the product of the number of trees which 

can be grown from each of the K non-terminals.  

2.3 Analysis of Existing Grammar Metrics 

Power and Malloy (2000 and 2004) state that the use of grammar metrics can 

facilitate the maintenance of grammar-based software applications. They apply 

established metrics in software engineering to Context-Free Grammars (CFGs). 

In the mapping process from software metrics to grammar metrics, procedures 

are considered as non-terminals and procedure bodies are the right-hand sides 

of production rules (Power and Malloy, 2000). The grammar metrics in (Power 
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and Malloy, 2000 and 2004) provide a measurement of Context-Free Grammars 

(CFGs) and facilitate the estimation of the difficulty of design, implementation, 

testing, and maintenance for large grammars from the point of view of software 

development. 

The GCM (Grammar Confusability Metric) focuses on phrases with similar 

acoustic features in the grammar (Cai and Hamaker, 2008). GCM is used to flag 

the processing of two phrases that are acoustically alike but have different 

semantic meanings. 

With the assistance of the concepts of “branching rate” and “the number of trees”, 

Miller and O’Sullivan (1992) investigate the growth of the derivations of 

grammars. “The number of trees” in (Miller and O’Sullivan, 1992) has the similar 

meaning to “branching factor” for a single decision point in our work. However, 

their approach differs from our ABF work in the following ways: 

(1) Miller and O’Sullivan specify the properties of generation level, ancestors, 

and the offspring of each node. We take into account the branching 

factors of all decision points of all the utterances in the language defined 

by the recognition grammar.  

(2) We obtain the value of the Average Branching Factor (ABF) of the 

recognition grammar. Miller and O’Sullivan are more interested in the 

growth with derivation depth at some specific level.  

(3) Our ABF algorithm is efficient. Miller and O’Sullivan’s approach is not 

practical for non-trivial grammars as it has exponential time complexity 

with respect to the depth of the derivation tree. 

Note that all of the above grammar metrics are concerned with different 

properties of grammars. However, none of them gives a good indication of overall 

recognition accuracy. We will discuss what the ABF is and how it is related to 

recognition accuracy in the following sub-sections. 
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2.4 Introduction to the Average Branching Factor (ABF) 

In grammar-directed speech recognition, the branching factor of a single decision 

point is the number of possible words to be considered as candidates at that 

point. During the recognition process, if at any point, it needs to examine the next 

symbol on the input to make a choice (even if the choice is a single branch), this 

point is a decision point. The Average Branching Factor (ABF) is the average of 

the branching factors of all decision points in all of the utterances in the language 

defined by the recognition grammar. The ABF is also called the perplexity of the 

language.  

The Average Branching Factor (ABF) is important in predicting speech-

recognition performance (National Research Council (U.S.), 1984). An increase 

of the ABF is likely to result in decreased performance.  A smaller ABF indicates 

higher constraints and better recognition performance because the system has 

fewer choices to make (National Research Council (U.S.), 1984), (Hauptmann et. 

al., 1988), (Young et. al., 1989), and  (Waibel and Lee, 1990).  

Hauptmann et al. (1988) use various types of dialog-level knowledge to reduce 

the branching factor in a speech-recognition task to improve speech-recognition 

accuracy. Hauptmann et al. (1988), Young et al. (1989), and Waibel and Lee 

(1990) state that the ABF is a standard measure for determining the complexity 

(not computational complexity) of languages and a meaningful measure for 

speech-recognition systems. Young (1990) claims that a decrease in the Average 

Branching Factor b results in a decrease in the search space size s, for s = bd, 

where d is the depth of the search space. The ABF is also important for 

determining the complexity of search algorithms (Edelkamp and Korf, 1998). 

Experiments in (Morimoto and Takahashi, 2008, 2009) show that the ABF 

(Perplexity) directly affects speech-recognition accuracy, where the ABF 

decreases, the recognition accuracy is likely to improve.  
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2.5 Constraints on Speech-Recognition Grammars 

The algorithm for computing the Average Branching Factor in this thesis requires 

that the grammars are proper, 1-lookahead, and non-recursive: 

(1) A context-free grammar is said to be proper if starting from the 

distinguished non-terminal, the only non-terminals produced are those 

whose further rewriting can eventually result in a string of terminals 

(Jelinek and Lafferty, 1991).  

(2) A 1-lookahead grammar is one in which the director sets for each 

alternative in a production rule are disjoint. The director set of a rule is the 

set of terminals which start expressions that can be obtained by 

expansion of the rule. The cardinality of this set is the branching factor of 

that symbol. Consequently, a 1-lookahead grammar is deterministic and 

one in which the decision of which alternative to expand in a rule can be 

determined by looking at the next word on the input and matching it 

against a terminal in at-most one of the director sets of the alternatives.  

(3) A non-recursive grammar is one in which no non-terminal is defined in 

terms of itself, either directly in one production rule, or through mutual 

recursion involving more than one production rule. For example a rule of 

the form <A> = a <A> b | c; is not allowed. 

The first requirement implies that all non-terminals must be properly defined, i.e., 

must appear on the left hand side with definition on the right hand side of a rule. 

This constraint is necessary for a grammar to be applied correctly in a speech 

application. The second constraint is not difficult to overcome as all context-free 

grammars can be converted to 1-lookahead grammars by a process of factoring 

(see for example Aho, Sethi and Ullman 1986). The last constraint is also not too 

significant in speech recognition owing to the fact that in the majority of 

applications there will be a limit on the length of the input utterances and on the 

depth of recursion. In many cases, it will be possible to easily rewrite the 

grammar so that iteration of syntactic constraints, which is implicit in recursive 
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grammars, is made explicit. For example, the recursive production rule <A> = a 

<A> b | c; with a limit of recursive depth 2 can be rewritten to <A> = c | a 

c b | a a c b b; 

2.6 Preliminary Discussion of the ABF Algorithm 

Before presenting the algorithm for computing the Average Branching Factor 

from speech grammars, we first present a naïve and incorrect approach. Speech 

recognition grammars are context free grammars. Java Speech Grammar Format 

(JSGF) is the most common notation used to specify recognition 

grammars..JSGF is a platform-independent, vendor-independent textual 

representation of grammars for use in speech recognition (Sun, 2000). A 

summary of JSGF features is shown below in Table 2.6 (1). The formal definition 

of a CFG is given in sub-section 4.1. Figure 2.6.1 is a sample Context-Free 

Grammar (CFG), written in Java Speech Grammar Format (JSGF). 

        Table 2.6 (1): summary of JSGF features 

Feature Purpose 
Word or “word” Words (terminals, tokens) need not be quoted 
<rule> Rule names (non-terminals) are enclosed in <> 
[x] Optionally x 
(…) Grouping 

x y z … A sequence of x then y then z then … 
x | y | z … A set of alternatives of x or y or z or … 
<rule> = x; 
Public <rule> = x; 

A private and a public rule definition 
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 <p> =  <q> <q> <b>   
      | <r> <b> ; 
  
<b> =  0   
      | 1 ; 
 
 <r> =  a   
      | b  
      | c ; 
 
 <q> =  x  <r> ; 

Figure 2.6.1: a sample CFG grammar  

Example expressions defined by this grammar (Figure 2.6.1) are: xaxa0, 

xaxa1, xaxb0, xaxb1, a0, a1, b0, and b1. 

First, we determine the director sets for each production rule in the grammar. 

Then we label each symbol with the director sets (in curly brackets) and the 

branching factors (with superscripts), as in Figure 2.6.2: 

 <p> {x,a,b,c}4 = <q>1  <q>1  <b>2   
                | <r>3  <b>2; 
 
 <b> {0,1}2     =  0   
                |  1 ; 
 
 <r> {a,b,c}3     =  a   
                |  b  
                |  c ; 
 
 <q> {x}1       =  x  <r>3 ; 

        Figure 2.6.2: sample grammar with director sets and branching factors 

To compute the ABF, one might be tempted to add the branching factors for all 

non-terminals on the right hand sides of the grammar rules and the start symbol, 

then divide the sum by the total number of non-terminals, as follows: 

(4+1+1+2+3+2+3)/ 7 ≈ 2.3. We will see this is incorrect. 
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There are a few reasons why the naïve approach gave an incorrect result. One is 

that it considers the number of times a symbol appears in the grammar rather 

than the number of times the symbol is expanded in deriving all sentences of the 

language. The second problem is that the naïve calculation counts all non-

terminals in the grammar as decision points, which is not correct. For example, in 

the starting rule, while <p> denotes a decision point with 4 possible next 

terminals, the first <q> and the alternative  <r> do not denote decision points as 

there are no more terminals to consider after the decision at <p> has been made. 

Now, we consider another approach which is not practical, but gives us some 

insights. In this impractical approach, we compute the ABF from the tree that 

represents all derivations from the grammar (Figure 2.6.1). Note that we continue 

to use superscripts to denote the size of the director sets, i.e., branching factor. 

We also introduce subscripts to denote the number of utterances which contain 

that node. The derivation tree for the example grammar is shown in Figure 2.6.3. 
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Figure 2.6.3: derivation tree for the example grammar in Figure 2.6.1 

The algorithm for calculating the ABF from the derivation tree is as follows:  

Step 1: Expand the grammar to obtain the complete derivation tree. The start 

symbol is the root node in the tree. The set of alternatives of each symbol 

becomes a set of branches below that symbol. A sequence of symbols becomes 

a path in the tree. 

Step 2: Add superscripts for branching factors for each node in the tree by 

examining the director sets. For example, the director set for node <b> is {0, 

1}, so node <b> has a branching factor of 2. 

Step 3: Add left-hand subscripts to denote the number of sentences which 

contain that node i.e. the size of the sub-language below the node. The left-hand 

subscripts are obtained in a bottom-up manner, starting from the bottom of the 

tree and working up. 

Step 4: Identify decision nodes and mark them with *.  For example, at the node 

<b>, we need to make choice of terminal 0 or 1, so node <b> is a decision point. 

Note that the root <p> is a decision point, but the nodes <q> and <r> just below 

<p> are not decision points. The reason is that when we have made the decision 

at point <p>, selecting a terminal from {x, a, b, c}, the decision has already 

been made for <q> and <r>. 

Step 5: Tabulate the values for decision points (Table 2.6(2)) with: branching 

factor, number of times occurring in the whole language, and the total number of 

branches involving the nodes. The total number of branches for a node is the 

product of the branching factor and the number of occurrences of the node in the 

language. 
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Table 2.6 (2): values for decision points in the derivation tree approach 

Decision point Branching 

factor 

Number of 

occurrences 

Total number of 

branches 

<p> 4 24 96 

<r> 3 18 54 

<b> 2 2 4 

<b> 2 2 4 

<b> 2 2 4 

<q> 1 6 6 

<q> 1 6 6 

<q> 1 6 6 

<r> 3 6 18 

<r> 3 6 18 

<r> 3 6 18 

<b> 2 2 4 

<b> 2 2 4 

<b> 2 2 4 

<b> 2 2 4 

<b> 2 2 4 

<b> 2 2 4 

<b> 2 2 4 

<b> 2 2 4 

<b> 2 2 4 

Total  102 270 

Step 6: Calculate the ABF as dividing the total number of branches of all decision 

points by the sum of the total number of occurrences of those decision points. 

The result for the above example is:  

               ABF = 270/102 = 2.65. 
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This method of calculating the ABF is straightforward, but is not practical for non-

trivial grammars as it has exponential complexity with respect to the length of the 

utterances. However, it provides insight and justification for the new efficient 

algorithm given next.    

2.7 The New ABF Algorithm 

We note that the derivation-tree method involves “sweeps” through the tree from 

bottom to top and then top to bottom in which nodes are annotated with values 

representing properties used in calculating the ABF. We also note that the 

symbols from the grammar are repeated in the derivation tree and that we must 

find some way of combining the annotated values when labeling the grammar. 

Consideration of these factors leads to the following algorithm for computing the 

ABF directly from a grammar. We use the grammar from Figure 2.6.1 as example. 

Step 1: Label each symbol of the grammar with right-hand superscripts denoting 

branching factors.  

1) Each empty alternative has a branching factor of 0. 

2) All terminals have a branching factor of 1. 

3) A Left-Hand-Side (LHS) symbol of a rule has a branching factor obtained by 

summing the branching factors of the alternatives on the Right-Hand Side 

(RHS) of the rule. 

4) The branching factor for a RHS non-terminal is the same as it appears on the 

LHS of its defining rule. For example: 
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  <p>4 =  <q>1  <q>1  <b>2    
        | <r>3  <b>2  ; 
 
  <b>2 =  01   
        | 11 ; 
 
  <r>3 =  a1   
        | b1  
        | c1 ; 
 
  <q>1 =  x1  <r>3; 

Figure 2.7.1: annotated example grammar with branching factors 

Step 2: Label each symbol with a right-hand subscript denoting the size of the 

sub-language (subsize) obtained by expanding that symbol. The subsize of the 

start symbol gives the size of language defined by the grammar (Shi, 2003b).  

1) Each empty alternative has a subsize of 0. 

2) Each terminal has a subsize of 1. 

3) The subsize of a LHS symbol is the sum of the subsizes of all its alternative 

sequences on the right hand side of the rule.  

4) The subsize of a symbol in a sequence is the product of the subsizes of each 

symbol in the sequence. 

5) The subsize of a RHS non-terminal is the same as it appears on the LHS of 

its definition rule. For example: 

<p>424  =   <q>13  <q>13  <b>22    
         | <r>33  <b>22  ; 
 
<b>22   =   011   
         | 111 ; 
 
<r>33   =   a11  
         | b11  
         | c11 ; 
 
<q>13   =  x11  <r>33 ; 

Figure 2.7.2: annotated grammar with subsizes 
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Step 3: Label each symbol on the right hand side of each rule with a left-hand 

subscript which denotes the number of occurrences of that symbol in all 

derivations of expressions that are obtained by one expansion of the rule.  

1) The number of occurrences of an empty alternative is 0. 

2) All of the symbols of a sequence have the same number of occurrences, 

which is the product of the subsizes of each symbol in the sequence. Note 

that, if a sequence has only one symbol, the number of occurrences for this 

sequence is the subsize of that symbol. For example: 

<p>424  =  18<q>13  18<q>13  18<b>22  ;  
        | 6<r>33  6<b>22  ; 
 
<b>22   =  1011   
        |  1111 ; 
 
<r>33   =  1a11   
        |  1b11   
        |  1c11 ; 
 
<q>13   =  3x11  3<r>33 ; 
 

Figure 2.7.3: annotated grammar with the number of occurrences 

Step 4: Starting with the start symbol of the grammar, label all symbols on the left 

hand side of the rules with a left-hand subscript in brackets denoting the total 

number of times the symbol occurs in derivations of all expressions in the 

language. Concurrently, label all symbols on the right hand side of rules with a 

left-hand subscript in brackets, and preceded with “*”, which denotes a 

“multiplication factor”.  

1) The “multiplication factor” indicates the number of times the rule is used in 

different parts of the whole derivation tree. This multiplication factor is 

obtained by dividing the number of occurrences (left-lower subscript) of the 

symbol on the left hand side of the rule by its sub-language size of that 

symbol (lower right-hand subscript).  
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2) To obtain the value of the LHS bracketed subscripts for symbols on the left 

hand side of rules, we add together the values of left-hand subscripts of all 

instances of that symbol occurring on the RHS of all rules, each multiplied by 

the multiplication factor given in the associated bracketed subscript. For 

example: 

(24) <p>424 =  18(*1) <q>13  18(*1)<q>13  18(*1)<b>22    
            | 6(*1) <r>33  6(*1) <b>22  ; 
 

(24) <b>22  =   1(*12) 011   
            |  1(*12)111 ; 
 

(42)  <r>33  =   1(*14) a11   
            | 1(*14)b11   
            | 1(*14)c11 ; 
 
(36)  <q>13  =   3(*12) x11  3(*12)<r>33 ; 
 

   Figure 2.7.4: annotated grammar with bracketed left-hand subscripts 

Step 5: Label the start symbol of the grammar, and all symbols on the RHS of all 

rules, except the leftmost alternative symbols, with an “*” superscript to indicate 

that they are decision points. Note that if an alternative consists of a single 

symbol, that symbol is not a decision point. For example: 

(24)
 *<p>424  = 18(*1)<q>13  18(*1) *<q>13  18(*1) *<b>22    

           | 6(*1) <r>33  6(*1) *<b>22  ; 
 
(24) <b>22   =  1(*12)011   
           |  1(*12)111 ;  
 

(42)  <r>33   =  1(*14)a11   
           |  1(*14)b11  
           |  1(*14)c11 ; 
 

(36)  <q>13    = 3(*12)x11  3(*12) *<r>33 ; 
 

Figure 2.7.5: example grammar with decision-points 

Step 6: Tabulate values for the decision points. The branching factors are the 

right-hand superscripts. The total number of times the decision point occurs is the 
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left-hand subscript multiplied by the multiplication factor given in brackets. The 

total number of branches for a decision point is the product of the branching 

factor and the number of the node’s occurrences in the language. From Figure 

2.7.5, we obtain Table 2.7.6. 

Table 2.7.6: information from the annotated grammar 

Decision Point Branching Factor Number of 
Occurrences 

Total number of 
Branches 

<p> 4 24 96 
<q> 1 18 18 
<b> 2 18 36 
<b> 2 6 12 
<r> 3 36 108 
Total  102 270 

 

Step 7: Calculate the ABF by summing the total number of branches and dividing 

by the total number of the occurrences in the language of decision points. From 

Table 2.7.6, the ABF is calculated as follows: 

       ABF = 270 / 102 = 2.65 

2.8 More Examples 

We include three more example grammars in this section. These example 

grammars are CFGs written in the Java Speech Grammar Format (JSGF). They 

are representatives because they cover the basic features of CFGs, such as  

rules, alternatives, symbol sequences, terminals, and non-terminals. Also, they 

are simple so that we can hand-trace them for the ABFs and present calculation 

details. We show each step for the ABF calculation below. We will further test 

these example grammars with the ABF implementation in sub-section 2.9 

(grammars 1 – 3). 
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2.8.1 Example 1 

<p> = <q> <b> 
| <b> ; 
 

<q> = a <s> b  
      | x <s> y ; 
 
<b> = 0   | 1; 

             

            <s> = 2   | 3 ; 

       Figure 2.8.1: example grammar 1 

(1) calculate the Branching Factor (right-hand superscript):  

 <p>4 = <q>2 <b>2 
     | <b>2 ; 
 

 <q>2 = a1 <s>2 b1  
        | x1 <s>2 y1 ; 
 
 <b>2 = 01   | 11 ; 

             

              <s>2 = 21   | 31 ; 

         Figure 2.8.1: example grammar 1 (Step 1) 

(2) calculate the subsize (right-hand subscript): 

<p>410 = <q>24  <b>22                     
     |  <b>22; 
 
<q>24 = a11  <s>22  b11  
        | x11  <s>22  y11 ; 
 
<b>22 = 011   | 111 ; 
 
<s>22 = 211    | 311; 

               Figure 2.8.1: example grammar 1 (Step 2) 
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(3) calculate the number of occurrences for RHS symbols (left-hand 

subscript): 

<p>410 = 8<q>24  8<b>22                     
      | 2<b>22; 
 
<q>24 = 2a11   2<s>22  2b11  
         |2x11   2<s>22  2y11 ; 
 
<b>22 = 1011   | 1111 ; 
 
<s>22 = 1211    | 1311; 

               Figure 2.8.1: example grammar 1(Step 3) 

(4) calculate the number of occurrences for LHS symbols (left-hand subscript 

in brackets) and multiplication factors for RHS symbols (left-hand 

subscript preceded with an “ * ”): 

(10)<p>410 = 8(*1)<q>24  8(*1) <b>22                     
         | 2(*1)<b>22; 
 
 (8)<q>24 = 2(*2)a11   2(*2) <s>22  2(*2)b11  
             |2(*2)x11   2(*2) <s>22  2(*2)y11 ; 
 

(14)<b>22 = 1(*7)011   | 1(*7)111 ; 
 

(8)<s>22 = 1(*4)211    | 1(*4)311; 

               Figure 2.8.1: example grammar 1(Step 4) 

(5) label the decision points (left-hand “ * ” superscript): 

(10)
 * <p>410 = 8(*1)<q>24  8(*1) *<b>22                     

            | 2(*1)<b>22; 
 
 (8)<q>24     = 2(*2)a11   2(*2) *<s>22  2(*2)*b11  
                |2(*2)x11   2(*2) *<s>22  2(*2)*y11 ; 
 

(14)<b>22   = 1(*7)011   | 1(*7)111 ; 
 

(8)<s>22   = 1(*4)211    | 1(*4)311; 
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               Figure 2.8.1: example grammar 1(Step 5) 

(6) tabulate values for the decision points: 

Table 2.8.1: information from Example grammar 1 

Decision Point Branching 
Factor 

Number of 
Occurrences 

Total number of 
Branches 

<p> 4 10 40 
<b> 2 8 16 
<s> 2 4 8 
B 1 4 4 
<s> 2 4 8 
Y 1 4 4 
Total  34 80 

(7)  Step 7, calculate the ABF: 

            ABF = 80/ 34 = 2.35 

2.8.2 Example 2 

<p> = <q> <s> <q>  
| <b>; 
 

<s> = <b>  
| c; 
 

<q> = a  <b>  
| b  <b>; 
 

<b> = 0    
      | 1; 

                        Figure 2.8.2: example grammar 2 
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1) calculate the Branching Factor (right-hand superscript): 

<p>4 = <q>2 <s>3 <q>2  
     | <b>2; 
 
<s>3 = <b>2  
     | c1; 
 
<q>2 = a1  <b>2  
     | b1  <b>2; 
 
<b>2 = 01    
        | 11; 

                        Figure 2.8.2: example grammar 2 (Step 1) 

2) calculate the subsize (right-hand subscript): 

<p>450 = <q>24 <s>33 <q>24  
      | <b>22; 
 
<s>33 = <b>22  
      | c11; 
 
<q>24 = a11 <b>22  
      | b11 <b>22; 
 
<b>22 = 011     
         |111; 

               Figure 2.8.2: example grammar 2 (Step 2) 
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3) calculate the number of occurrences for RHS symbols (left-hand 

subscript): 

<p>450 = 48<q>24 48<s>33 48<q>24  
      | 2<b>22; 
 
<s>33 = 2<b>22  

                 | 1c11; 
 
<q>24 = 2a11  2<b>22  
      | 2b11  2<b>22; 
 
<b>22 =  1011    
         | 1111; 

               Figure 2.8.2: example grammar 2 (Step 3) 

4) calculate the number of occurrences for LHS symbols (left-hand subscript 

in brackets) and multiplication factors for RHS symbols (left-hand 

subscripts preceded with an “ * ”): 

(50)
 <p>450 = 48(*1) <q>24  48(*1) <s>33 48(*1) <q>24  

         | 2(*1) <b>22; 
 

(48)
 <s>33 = 2(*16) <b>22  

         | 1(*16) c11; 
 

(96)
 <q>24 = 2(*24) a11  2(*24) b>22  

         | 2(*24)b11  2(*24) <b>22; 
 

(130)<b>22 = 1(*65)011    
             | 1(*65)111; 

               Figure 2.8.2: example grammar 2 (Step 4） 
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5) label the decision points (left-hand “ * ” superscript): 

(50)
 *<p>450 = 48(*1) <q>24  48(*1) *<s>33 48(*1) *<q>24  

          | 2(*1) <b>22; 
 

(48)
 <s>33 = 2(*16) <b>22  

         | 1(*16) c11; 
 

(96)
 <q>24 = 2(*24) a11  2(*24) *<b>22  

         | 2(*24)b11  2(*24) *<b>22; 
 

(130)<b>22 = 1(*65)011     
             | 1(*65)111; 

               Figure 2.8.2: example grammar 2 (Step 5) 

6) tabulate values for the decision points: 

Table 2.8.2: information from Example grammar 2 

Decision 
Point 

Branching 
Factor 

Number of 
Occurrences 

Total number of 
Branches 

<p> 4 50 200 
<s> 3 48 144 
<q> 2 48 96 
<b> 2 48 96 
<b> 2 48 96 
Total  242 632 

7) calculate the ABF: 

ABF =  632 / 242 = 2.61 
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2.8.3 Example 3 

<bs> = <b>  <b1> ; 
 
<b1> = empty 
     | <b>  <b2>; 
 
<b2> = empty 
     | <b> ; 
 
<b> = 0  
     | 1 ; 

              Figure 2.8.3: example grammar 3 

1) calculate the Branching Factor (right-hand superscript): 

<bs>2 = <b>2  <b1>2 ; 
 
<b1>2 = empty0 
      | <b>2  <b2>2; 
 
<b2>2 = empty0 
      | <b>2 ; 
 
<b>2 =  01  
      | 11 ; 

             Figure 2.8.3: example grammar 3 (Step 1) 

2) calculate the subsize (right-hand subscript): 

<bs>22 = <b>22  <b1>22 ; 
 
<b1>24 = empty00 

                 | <b>22  <b2>22; 
 
<b2>22 = empty00 
      | <b>22 ; 
 
<b>22 = 011  
      | 111 ; 
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             Figure 2.8.3: example grammar 3 (Step 2) 

3) calculate the number of occurrences for RHS symbols (left-hand 

subscript): 

<bs>22 = 4<b>22  4<b1>22 ; 
 
<b1>24 = 0empty00 
      | 4<b>22  4<b2>22; 
 
<b2>22 = 0empty00 
      | 2<b>22 ; 
 
<b>22 = 1011 | 1111 ; 

             Figure 2.8.3: example grammar 3 (Step 3) 

4) calculate the number of occurrences for LHS symbols (left-hand subscript 

in brackets) and multiplication factors for RHS symbols (left-hand 

subscript preceded with an “ * ”): 

(4)<bs>22 = 4(*1)<b>22  4(*1)<b1>22 ; 
 

(4)<b1>24 = 0empty00 
       |  4(*1)<b>22  4(*1) <b2>22; 
 
 (4)<b2>22 = 0empty00 
         | 2(*2)<b>22 ; 
 

(12)<b>22 = 1(*6)011 | 1(*6)111 ; 

             Figure 2.8.3: example grammar 3 (Step 4) 
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5) label the decision points (left-hand “ * ”superscript): 

(4)
 *<bs>22 = 4(*1)<b>22  4(*1) *<b1>22 ; 

 

(4)<b1>24 = 0empty00 
       |  4(*1)<b>22  4(*1) *<b2>22; 
 

(4)<b2>22 = 0empty00 
        | 2(*2)<b>22 ; 
 

(12)<b>22 = 1(*6)011 | 1(*6)111; 

             Figure 2.8.3: example grammar 3 (Step 5) 

6) tabulate values for the decision points: 

        Table 2.8.3: information from Example grammar 3 

Decision 
Point 

Branching 
Factor 

Number of 
Occurrences 

Total number of 
Branches 

<bs> 2 4 8 
<b1> 2 4 8 
<b2> 2 4 8 
Total  12 24 

7) calculate the ABF: 

      ABF = 24/ 12 = 2 

2.9 Implementation of the ABF Algorithm 

The implementation of the ABF algorithm includes three phases: 1) 

preprocessing, 2) algorithm application, and 3) post-processing. In the 

preprocessing phase, the program reads in the grammar file, tokenizes the 

grammar symbols, and generates the required lists for the next phase. The lists 

generated in phase one include grammar, isTerminal, isRHS, 

isAlternative, ruleNo, sequence, and isDecPoint. Details about 

the lists are in sub-section 3.2.  
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With the preliminary information obtained from the preprocessing, the second 

phase of the algorithm is able to further obtain the required information for 

calculating the ABF, such as the branching factors and subsizes for each symbol 

of the grammar, the number of occurrences for the RHS and LHS symbols, and 

the multiplication factors for the RHS symbols of the grammar. Phase two 

implements the first four steps of the algorithm ABF. 

With the information obtained from phase one and phase two, phase three 

calculates and outputs the ABF by summing the total number of branches for 

decision points and dividing by the total number of occurrences for decision 

points in the language, which are the last three steps of the algorithm ABF. 

Meanwhile, the program outputs the ABF and other related grammar metrics, 

such as the number of rules of the grammar, the number of symbols in the 

grammar, the number of terminals of the grammar, the number of non-terminals 

of the grammar, the number of decision points of the grammar, and the size of 

the language defined by the grammar.  

We test the ABF algorithm with three groups of nine grammars. The grammars 

are as follows: 

(1) Group one is a set of simple CFG grammars (Grammar 0-3) for testing. 

Grammar 0, 1, 2, and 3 are the example grammars in Figure 2.6.1, Figure 

2.8.1, Figure 2.8.2, and Figure 2.8.3, respectively. These grammars are 

fed to the ABF algorithm application and are hand-traced to calculate the 

ABFs in order to informally illustrate how the algorithm computes the 

correct answers. Note that this does not prove correctness of the 

algorithm nor does it show the absence of errors in the implementation of 

the algorithm.  

(2) Group two includes a set of small practical grammars, i.e., the Read-A-

Book grammar (Grammar 4, shown in Appendix C) for the speech 
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application Read-A-Book and its variants (Grammar 5, shown in 

Appendix D). These two grammars share the same vocabulary. 

(3) Group three includes two more-complicated practical grammars and one 

word-sequence grammar all with the same domain. Grammar 6 is a 

Semantic Constraint Grammar (SCG) (in Figure 4.3.2) and Grammar 7 is 

a Context Free Grammar (CFG) (in Figure 4.3.1). Grammar 8 (in 

Appendix E) is a word sequence grammar, which accepts word 

sequences from one word to ten words from the vocabulary. The SCG is 

the most restricted grammar which directly encodes semantic constraints 

in the syntax. The word sequence grammar is the most relaxed grammar. 

The results of applying the ABF application on the above grammars are 

shown in Table 2.9. 

Note that “# of terminal” in the following and all other tables in the dissertation 

means “number of instances of a terminal symbol in the grammar” and is a 

measure of the size of the grammar and not the vocabulary of the language.
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Table 2.9: results of applying the ABF algorithm 

No. Grammar # of 
Rules 

# of 
Symbols 

# of 
Non-

Terminals 

# of 
Terminals 

# of Decision 

Points 

Language 

Size 
ABF 

0 Simple Grammar-Figure 

2.2.1 

4 16 10 6 5 24 2.65 

1 Simple Grammar-Figure 

2.8.1 

4 17 9 8 6 10 2.35 

2 Simple Grammar-Figure 

2.8.2 

4 16 11 5 5 50 2.61 

3 Simple grammar-Figure 

2.8.3 

4 13 9 4 3 4 2 

4 Read a Book-Appendix C 16 338 37 301 13 5.38*108  44.51 

5 Word sequence-Appendix D 2 245 7 238 5 7.6 *1011 238 

6 SCG - Figure 4.3.2 41 262 133 129 53 1.51*109 33.99 

7 CFG -  Figure 4.3.1 17 160 50 110 19 1.73*1011 52.42 

8 Word sequence-Appendix E 12 184 77 107 46 9.14*1019 188.99 
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The results are summarized as follows: 

1. The results from Group one (Grammars 0 – 3) shows that the ABF 

implementation program obtains the same results as those from hand-

tracing.  

2. As expected, with the same domain, the more restricted grammar 

(Grammar 6, SCG) defines a language with a smaller ABF. The most 

relaxed grammars (word sequence, e.g., Grammar 5 and Grammar 8) 

have the largest ABF with the same vocabulary. 

In reality, it is costly and time-consuming to design an experiment and arrange 

subjects to test the performance of a grammar in a speech application. Therefore, 

before undertaking an experiment with test cases and subjects, we can primarily 

evaluate the grammar with the ABF metric and other metrics generated by the 

ABF application. With the same domain, the grammar with a smaller ABF is more 

likely to be useful as it is likely to have better recognition accuracy.  

2.10 Summary 

We have presented, what would appear to be, the first algorithm to compute the 

Average Branching Factor (ABF) of a language from the grammar that defines 

that language. The motivation for this work was to provide a method for more-

easily calculating properties which are useful when designing speech-recognition 

grammars.  

We began by discussing the need for grammar metrics, then reviewed and 

analyzed existing grammar metrics. We also referred to research by others who 

claim that the Average Branching Factor (ABF) is a good indicator of speech-

recognition accuracy.  

We then described our new algorithm for calculating the ABF. We began by 

describing a naïve but incorrect algorithm and analyzed the reason why it was 

incorrect. Then, we illustrated an intuitive method by using a derivation tree to 
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obtain the Average Branching Factor (ABF). This method gives the correct result, 

but it is impractical for the exponential complexity with respect to the length of the 

sentences. Next, we introduced the seven-step ABF algorithm and the 

implementation for this algorithm. The proofs of termination, correctness, and 

complexity of the algorithm are presented in section 3. 

It has been claimed by other researchers that the ABF is a good indicator for 

speech-recognition accuracy. We believe that the novel algorithm for computing 

the ABF may be useful for effective and high-quality grammar design and 

analysis. 
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3. PROOFS OF THE ABF ALGORITHM 

To facilitate the proofs of termination, correctness, and complexity, we have 

coded the ABF algorithm  in Miranda, a declarative non-strict purely functional 

programming language.  A brief introduction to Miranda derived from (Turner, 

1986) is given in sub-section 3.1. The Miranda source code is given in sub-

section 3.2.  

3.1 Introduction to Miranda 

Miranda is a non-strict purely functional programming language. A Miranda 

program is a collection of equations defining various functions and data 

structures. The order of the equations is not significant. For example,  

sq x = x*x 

 is a function to calculate the square of the parameter x.  

An equation can have several alternative right hand sides distinguished by 

“guards” on the right following a comma. For example, the function to return the 

bigger of two numbers can be written as follows: 

 max a b = a, if a >= b 
         = b, if a < b 

The last guard can be written as otherwise, instead of using the if condition. 

Miranda’s evaluation mechanism is “lazy”, in the sense that no sub-expression is 

evaluated until its value is required. 

The most commonly used data structure in Miranda is the list, written with 

square brackets and commas. For example, 

week_days = ["Mon", "Tue", "Wed", "Thur", "Fri"] 
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The elements of a list must be all of the same type. A sequence of elements of 

mixed types can be represented as a tuple, written using parentheses instead 

of square brackets, e.g.  

student = (“tom”, “computer science”, 93) 

Miranda is strongly typed. This means that, any inconsistency in the type 

structure of an expression or a sub-expression will result in a compile-time error 

message. There are three primitive types in Miranda, namely num, bool, and 

char. The type num consists of integer and floating point numbers. 

The type bool has two values, True and False. The type char comprises the 

ASCII character set. 

List comprehensions give a concise syntax for a general class of iterations 

over lists. The general form of a list comprehension is as follows:  

            [body | qualifiers] 

Note that two or more qualifiers are separated by semicolons. 

An example list comprehension is as follows: 

             [n*n | n <- [1..100] ] 

which is a list containing (in order) the squares of all the numbers from 1 to 100. 

The following are some operators that are used in Miranda programming: 

(1) ++  appends two lists. E.g., 

     [1,2] ++ [3,4] = [1,2,3,4] 

(2) :    prefixes an element to the front of a list. E.g.,  

      1:[2,3,4] = [1,2,3,4] 
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(3) #     gets the length of a list. E.g., 

     #[1,2,3,4] = 4 

(4) !    does subscripting. Index starts from 0. E.g., 

   [1,2,3,4] !1 = 2 

(5) ..  ,a shorthand notation for lists whose elements form an arithmetic series.  

       E.g.  [1 .. 100] is the list of 100 elements from 1 to 100. 

(6)  +  -  *  / ,    plus, minus, times, division. 

(7)  > >= = ~= <= <  , comparison operators. 

(8) & , logical and . 

(9) \/ , logical or . 

(10) ~ , logical negation. 

(11) || , denotes comments. 

3.2 Miranda Code for the ABF Algorithm 

We have implemented the ABF algorithm using several Miranda functions. The 

intermediate results are represented in lists. For example, the branching factors 

for each symbol of the grammar are obtained in step one of the ABF algorithm 

(section 2.7). In the algorithm implementation, a list of branching factors for the 

symbols of the grammar is generated by the component function bf. This list of 

branching factors is used for later calculation of the Average Branching Factor 

(ABF).  

 The lists needed for the ABF algorithm implementation are as follow: 
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(1) List grammar. The input grammar is expressed as a list of tuples 

 [(x, k)], where x is a symbol of the grammar, k is the index of the symbol 

in the grammar list starting from 0, 0≤k≤(#grammar-1). For the example 

grammar in Figure 2.6.1, the grammar list is as follows: 

grammar = [("<p>", 0),("<q>",1),("<q>",2),("<b>",3), 

("<r>", 4),("<b>", 5),("<b>", 6),("0", 7), 

("1", 8),("<r>", 9),("a", 10),("b", 11), 

("c", 12),("<q>", 13),("x", 14),("<r>", 15)] 

(2) isTerminal is a list of Boolean values with the same length as list 

grammar. Its value reflects whether the corresponding symbol in the 

grammar is a terminal or a non-terminal. If the symbol in the grammar is a 

terminal, the corresponding value in list isTerminal is True; otherwise, 

it is False. For the example grammar in Figure 2.6.1, the list 

isTerminal is as follows: 

isTerminal = [False,False,False,False,False,False, 

False,True,True,False,True,True,True, 

False,True,False] 

(3) isRHS is a list of Boolean values with the same length as list grammar. Its 

value reflects whether the corresponding symbol in the grammar is a 

Right-Hand-Side symbol or not. If the symbol in the grammar is on the 

right hand side of the rule, the corresponding value in isRHS is True; 

otherwise, it is False. For the example grammar in Figure 2.6.1, the list 

isRHS is as follows:  

isRHS = [False,True,True,True,True,True,False,True, 

True,False,True,True,True,False,True,True] 
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(4) isAlternative is a list of Boolean values with the same length as list 

grammar. Its value reflects whether the corresponding symbol in the 

grammar is a left-most alternative in the rule. If the symbol in the grammar 

is the left-most alternative, the corresponding value of isAlternative is 

True; otherwise, it is False. For the example grammar in Figure 2.6.1, 

the list isAlternative is as follows: 

isAlternative = [False,True,False,False,True,False, 

False,True,True,False,True,True,True, 

False,True,False] 

(5) ruleNo is a list of numbers with the same length as list grammar. It 

records the rule number of the corresponding symbol in the grammar. 

Rule numbers start from 1. For the example grammar in Figure 2.6.1, the 

list ruleNo is as follows: 

ruleNo = [1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4] 

(6) List sequence denotes sequence-related information of the symbols in 

the grammar. Each symbol of the grammar is associated with a number 

denoting its sequence-related information. A left-hand-side non-terminal is 

associated with the number showing the number of sequences on the 

right hand side of the rule. A right-hand-side symbol is associated with the 

number showing on which sequence it is. The list sequence for the 

example grammar in Figure 2.6.1 is as follows: 

sequence = [2,1,1,1,2,2,2,1,2,3,1,2,3,1,1,1] 

(7) isDecPoint is a list of Boolean values with the same length as list 

grammar. Its value reflects whether the corresponding symbol in the 

grammar is a decision point or not. If the symbol in the grammar is a 

decision point, the corresponding value of isDecPoint is True; 
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otherwise, it is False. For the example grammar in Figure 2.6.1, the list 

isDecPoint is as follows:  

isDecPoint = [True,False,True,True,False,True,False, 

False,False,False,False,False,False, 

False,False,True] 

These lists can be obtained in a pre-process (phase one), which reads in the 

grammar file, tokenizes the grammar, analyzes each symbol, and composes the 

above lists according to their definitions. Then the second and third phases 

implement the ABF algorithm. The Miranda code for the ABF algorithm is given 

below in Figure 3.2: 
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|| --------------------------------------------------------- 
||-- Step 1: calculate the Branching Factor 
||-- INPUT:  a list of the symbols of the grammar,  
||--         grammar[([char], num)]. 
||-- OUTPUT: a list of branching factor for each symbol of  
||--         the grammar, bfList[num]. 
||-- Type of the program is:  
||--         bf :: =>  [([char], num)] -> [num] 
|| --------------------------------------------------------- 
 
1. bf [] = [0] 
      || an empty alternative has a branching factor of 0 
 
2. bf [(x,k)] = [1], if (isTerminal !k) & (isRHS !k) 
      || RHS terminals have a branching factor of 1 
 
3. bf [(x,k)] = bf [(y, j) | (y,j) <- grammar;  
                             y = x;    
                            ~(isTerminal ! j);   
                            ~(isRHS ! j)], 
               if (isRHS ! k)  &  ~(isTerminal ! k)  
      || a RHS non-terminal has the same branching factor 
      || as it appears on the LHS of its definition rule. 
 
4. bf [(x,k)] = [sumList (bf [ (z, h)  
                               |(z, h) <- grammar;  
                                (isRHS ! h);  
                                (ruleNo ! h) = (ruleNo ! k);  
                                (isAlternative ! h)]) ],     
                if ~(isRHS ! k) & ~(isTerminal ! k) 

|| A LHS non-terminal obtains its branching factor by 
||summing the branching factors of the left-most  
||alternatives on the Right-Hand Side of the rule. 
 

5. bf ((a,b): as) = bf ([(a,b)]) ++ bf as 
      || calculate the branching factors for each symbol of 
      || the list 
 
6. sumList = foldr (+) 0 
      || calculate the sum of a list 
 
7. bfList = bf grammar 
      || calculate the branching factors for all the symbols  
      || of the grammar  
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|| --------------------------------------------------------- 
||-- Step 2: calculate the Subsize 
||-- INPUT:  a list of the symbols of the grammar,  
||--         grammar[([char], num)]. 
||-- OUTPUT: a list of subsize for each symbol of the  
||--         grammar, subsizeList[num]. 
||-- Type of the program is:  
||--         subsize :: =>  [([char], num)] -> [num] 
|| --------------------------------------------------------- 
 
8. subsize [] = [0]  
      || an empty alternative has a subsize of 0 
 
9. subsize [(x,k)] = [1], if (isTerminal !k) & (isRHS !k) 
      || RHS terminals have a subsize of 1 
 
10. subsize [(x,k)] = subsize [(y, j) | (y,j) <- grammar;  
                                          y = x;  
                                         ~(isTerminal ! j);   
                                         ~(isRHS ! j)], 
                         if (isRHS ! k)  &  ~(isTerminal ! k)  
      || the subsize of a RHS non-terminal is the same as it  

||appears on the LHS of its definition rule. 
 

11. subsize [(x,k)] = [sumList [(productList (subsize [(z,h) 
| (z,h) <- grammar;  

                        (isRHS !h);  
                        (ruleNo !h)=ruleNo !k;  
                        (sequence !h = s)]) ) 
                      | s <- [1 .. (sequence !k)] ] ],   
                      if ~(isRHS ! k) & ~(isTerminal ! k) 
      || The subsize of a LHS symbol is the sum of the 
      || subsizes of all its alternative sequences on the 
      || right hand side of the rule. 
 
12. subsize ((a,b): as) = subsize ([(a,b)]) ++ subsize as 
      || calculate the subsizes for each symbol of the list 
 
13. productList = foldr (*) 1 
      || calculate the product of a list 
 
14. subsizeList = subsize grammar 
      || calculate the subsizes for all the symbols 
      || of the grammar  
 
 
 



3. Proofs of the ABF Algorithm 
 

54 
 

|| --------------------------------------------------------- 
||-- Step 3: calculate the number of occurrences for each  
||--         symbol on RHS of the rules 
||-- INPUT:  a list of the symbols of the grammar,  
||--         grammar[([char], num)]. 
||-- OUTPUT: a list of the number of occurrences for each  
||           symbol of the grammar, occur_rhsList[num]. 
||--  Type of the program is:  
||           occur_rhs :: =>  [([char], num)] -> [num] 
|| --------------------------------------------------------- 
 
15. occur_rhs [] = [0] 
      || The number of occurrences of an empty alternative  
      || is 0. 
 
16. occur_rhs [(x,k)] = [productList [subsizeList !h  
                          | h <- [0 .. (#subsizeList -1)];  
                            (isRHS !h) ;  
                            sequence !h = sequence !k;  
                            ruleNo !h = ruleNo !k ]], 
                          if (isRHS !k) 
                       = [0], otherwise 
 
      || All of the symbols of a RHS sequence have the same  
      || number of occurrences, which is the product of  
      || the subsizes of each symbol in the sequence.  
 
17. occur_rhs ((a,b): as)  
       = occur_rhs ([(a,b)]) ++ occur_rhs as 
      || calculate the number of occurrences for each  
      || symbol on RHS of the rules 
 
18. occur_rhsList = occur_rhs grammar 
      || calculate the number of occurrences for each  
      || symbol on RHS of the rules of the grammar  
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|| --------------------------------------------------------- 
||-- step 4: calculate the number of occurrences for each  
||--         symbol on the LHS of the rules,  
||--         and calculate the multiplication factor for the  
||--         symbols on the RHS of the rules. 
||-- INPUT: a list of the symbols of the grammar,  
||--        grammar[([char], num)]. 
||-- OUTPUT: a list of number of occurrences for each symbol  
||--         of the grammar, occur_lhsList[num], 
||--         and a list of multiplication factor for each  
||--         symbol of the grammar, factorList[num]. 
||--  Type of the program is:  
||--        occur_lhs :: =>  [([char], num)] -> [num] 
||--        factor    :: =>  [([char], num)] -> [num] 
|| --------------------------------------------------------- 
 
19. occur_lhs [] = [0] 
      || For an empty list, this value is 0 
 
20. occur_lhs [(x,k)]  
       = [subsizeList !k],  
           if ~(isRHS !k) & ~(isTerminal !k) & ruleNo !k = 1 
      || the number of occurrences for start symbol is  
      || its subsize 
 
21. occur_lhs [(x,k)] = [sumList [(occur_rhsList !h) *  
                                    ((factor [(y, h)]) !0) 
                           | (y,h) <- grammar;  
                             y = x; 
                             isRHS !h ] ],        
                           if ~(isRHS !k) & ~(isTerminal !k)  
                              & ruleNo !k > 1 
      || the number of occurrences for a LHS symbol is  
      || obtained by adding together the number of  
      || occurrences of that symbol occurring on the RHS of  
      || all rules, each multiplied by the multiplication  
      || factor. 
 
 
22. occur_lhs [(x,k)] = [0],      if (isRHS !k)   
      || for a RHS symbol, this value is 0 
 
23. occur_lhs ((a,b): as) = occur_lhs ([(a,b)]) ++  
                              occur_lhs as 
      || calculate the number of occurrences for each  
      || symbol 
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||-------------------------------------------------------- 
 
24. factor [] = [0] 
      || For an empty list, this value is 0 
 
25. factor[(y,h)] =  
               [(occur_lhs [(y,h)])!0 / (subsizeList !h)],  
               if ~(isRHS !h) & ~(isTerminal !h) 
      || the multiplication factor for a LHS symbol is  
      || obtained by dividing the number of occurrences of  
      || this symbol on the LHS of the rule by its subsize  
      || of that symbol. 
 
26. factor[(y,h)] = factor [(z,j) | (z,j) <- grammar;   
                                       ruleNo !j = ruleNo !h;   
                                       ~(isRHS ! j);  
                                      ~(isTerminal !j) ], 
                      if (isRHS !h) 
      || The multiplication factor for a RHS symbol is the   
      || same as that for the LHS non-terminal of the rule. 
 
27. factor ((a,b): as) = factor ([(a,b)]) ++ factor as 
      || calculate the multiplication factor for each  
      || symbol  
 
28. occur_lhsList = occur_lhs grammar 
      || calculate the number of occurrences for each  
      || symbol of the grammar 
 
29. factorList = factor grammar 
      || calculate the multiplication factor for each  
      || symbol of the grammar 
 
 
|| ------------------------------------------------------ 
||-- STEP 5. recognize the decision points of the grammar 
||-- Recognize the start symbol of the grammar, and all  
||-- symbols on the RHS alternatives of all rules, except 
||-- the leftmost symbols as decision points. 
||-- this is done in pre-process.  
||-- The example list is as follows: 
||-- 
||-- isDecPoint = [True, False, True, True, False, True,  
||-- False, False, False, False, False, False, False, False,  
||-- False, True]  
|| ------------------------------------------------------ 
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|| ------------------------------------------------------ 
||-- STEP 6. calculate the number of occurrences and the  
||--         total number of branches 
|| ------------------------------------------------------ 
 
30. num_occurList = [(occur_rhsList !i) * (factorList ! i)  
                       +(occur_lhsList !i) * (factorList ! i)  
                       | i <- [0 .. (#grammar - 1)]] 
   
     || calculate the total number of occurrences a symbol  
     || occurs for all symbols of the grammar. 
 
     || The total number of times a symbol occurs is the  
     || number of occurrences for RHS/ LHS symbol multiplied  
     || by the multiplication factor. 
  
     || Note that, for a RHS symbol, occur_lhsList!i = 0,  
     ||            for a LHS symbol, occur_rhsList!i = 0. 
     || so the above formula can calculate the number of  
     || occurrences for each symbol of the grammar. 
     || this list has the same length as the list grammar. 
 
31. num_occurList_Dec = [num_occurList ! i  
                           | i <- [0 .. (#grammar - 1)];  
                             (isDecPoint ! i) ] 
     || a list of the number of occurrences, for only  
     || decision points.  
 
32. total_branchList_Dec = [num_occurList!i * bfList!i  
                              | i <- [0 .. (#grammar - 1)];  
                                (isDecPoint ! i)] 

 
     || The total number of branches for a decision point is  
     || the product of the branching factor and the number  
     || of the node’s occurrences in the language. 
 
|| ------------------------------------------------------ 
||-- STEP 7. calculate ABF 
|| ------------------------------------------------------ 
 
33.  abf = (sumList total_branchList_Dec) /  
              (sumList num_occurList_Dec) 
     || calculate the ABF by summing the total number of  
     || branches and dividing by the total number of  
     || decision points’ occurrences in the language. 
 

Figure 3.2: Miranda source code for the ABF algorithm 
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3.3 Proof of Termination 

In a pure functional programming language such as Miranda, the only form of 

iteration is through recursion. Therefore, to prove termination it is only necessary 

to prove that all recursive descents are well founded. The standard method for 

doing this is called a “size-change” termination proof. The idea is to find a 

measure of the recursive function argument size that decreases (or increases) on 

each recursive call such that, after a finite number of recursive calls, it reaches a 

terminating value (i.e., the base case of the definition of the recursive function). 

The following proof of termination of the BNF algorithm is a collection of size-

change termination proofs for all recursive calls in the BNF algorithm. 

(It should be noted that in a “lazy” functional programming language such as 

Miranda, arguments to functions are not evaluated unless required, and are then 

only evaluated to the extent required. For example [1..]!3 returns a value of 4, 

even though the argument to ! is the infinite list [1..]. The last evaluation 

process only evaluates the first four values of the list (note that the index starts at 

0). This means that in a lazy language the number of terminating programs is 

larger than the set of programs whose termination can be proven using size-

change proofs. Sereni (2006) has developed a termination proof technique for 

programs whose termination depends on lazy evaluation. However, the BNF 

algorithm does not rely on lazy evaluation and we show below that its termination 

can be proven using size-change proof and does not need the more complex 

proof technique developed by Sereni.) 

The algorithm ABF consists of seven steps that are executed in sequence. So, if 

each step of the algorithm (i.e., component function in the program, Figure 3.2) 

terminates, the algorithm ABF terminates.  
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(1) Step 1 (component function bf) 

 There are three recursive calls in step 1, i.e., lines 3, 4, and 5. Line 7 runs the 

program to obtain the list of branching factors (i.e., bfList) for all the symbols of 

the grammar. 

1) Lines 1, 2, 3, and 4 calculate the branching factor for one symbol of 

the grammar. Lines 1 and 2 are base cases for the component 

function bf, which return constant values and terminate. 

2) Line 3 tests to see if the current symbol is a RHS non-terminal, the 

component function bf  will return the branching factor of the same 

symbol appearing on the LHS of a grammar rule, which evokes line 

4.   

3) Line 4 calculates the branching factor for a LHS non-terminal by 

summing all the branching factors for the RHS leftmost-alternatives 

of the current rule. If there are some RHS non-terminals involving in 

the sum, it will recursively call line 3.  

4) Line 5 deals with the list (i.e., grammar) by processing elements 

(symbols) one by one. In each round of recursion, one symbol is 

manipulated, and the length of the list decreases by 1 until it 

reaches 0. So, if the process for one element (symbol) terminates, 

the component function bf (step 1) will terminate when all of the 

symbols of the grammar have been processed.  

Recursion occurs in lines 3, 4, and 5. Line 5 depends on the termination of lines 

3 and 4. Lines 3 and 4 are mutually recursive calls. Since the grammar is non-

recursive (sub-section 2.5), each recursive call in line 4 will call for a different 

symbol using an index which increases in a well-founded sequence (until it 

reaches a point where there are no more symbols). Since there are a finite 

number of symbols (terminals/ non-terminals) in the grammar, the algorithm will 

finally finish the traversal of non-terminal symbols and reach terminal symbols 

(line 2) and terminate. Therefore, step 1 will terminate.  
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(2) Step 2 (component function subsizeList) 

Step 2 includes three recursive calls, lines 10, 11, and 12. Line 14 runs the 

program to obtain the list of subsizes (i.e., subsizeList) for all the symbols of 

the grammar. 

1) Lines 8, 9, 10, and 11 calculate the subsize for one symbol of the 

grammar. Lines 8 and 9 are base cases for the component function 

subsize, which return constant values and terminate. 

2) Line 10 tests to see if the current symbol is a RHS non-terminal, the 

component function subsize will return the subsize of the same 

symbol appearing on the LHS of the grammar, which evokes line 11.  

3) Line 11 calculates the subsize for a LHS non-terminal by summing 

the subsizes for all the sequences of the current rule. If there are 

some RHS non-terminals involving in the sum, it will recursively call 

line 10.  

4) Line 12 deals with the list (i.e., grammar) by processing elements 

(symbols) one by one. In each round of recursion, one symbol is 

manipulated, and the length of the list decreases by 1 until reaches 

0. Therefore, if the process for one element (symbol) terminates, 

component function subsize (step 2) will terminate when all the 

symbols of the grammar have been processed.  

Recursion occurs in lines 10, 11, and 12. Line 12 depends on the termination of 

lines 10 and 11. Lines 10 and 11 are mutually recursive calls. Since the grammar 

is non-recursive (section 2.5), each recursive call at line 11 will call a different 

symbol with an index which increases in a well-founded sequence (until it 

reaches a point where there are no more symbols). Since there are a finite 

number of symbols (terminals/ non-terminals) in the grammar, the algorithm will 

finally finish the traverse of non-terminal symbols and come to terminal symbols 

(line 9) and terminate. Therefore, step 2 will terminate. 
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(3) Step 3 (component function occur_rhs) 

Recursion in step 3 occurs at line 17, which deals with the list grammar by 

processing elements (symbols) one by one. In each round of the recursion, one 

symbol is manipulated and the length of the list decreases by 1 until reaches 0. 

Therefore, if the process for one element (symbols) terminates, component 

function occur_rhs (step 3) will terminate when all the symbols of the grammar 

have been processed.  

Lines 15 and 16 calculate the number of occurrences for one symbol of the 

grammar. Line 18 runs the program to obtain the list of the number of 

occurrences of the RHS symbols for the symbols of the grammar 

(occur_rhsList). 

1) Line 15 is the base case of the component function occur_rhs, 

which returns a constant value and terminates. 

2) Line 16 searches the grammar list for the symbols in the same 

sequence as the current RHS symbol and calculates the product of 

the subsizes of the symbols in the same sequence. The lengths of 

the grammar list and the sequences are finite. Therefore, the 

search will terminate while finishing every symbol in grammar list 

and line 16 will terminate. Note that line 16 skips the cases for LHS 

symbols.  

Therefore, the component function occur_rhs (step 3) will terminate.  

(4) Step 4 (component functions occur_lhs and factor) 

Step 4 includes two component functions, i.e., occur_lhs and factor. 

Function occur_lhs calculates the number of occurrences for each symbol on 

the left hand side of the rules. Function factor calculates the multiplication 

factors for the symbols on the right hand side of rules. These two component 
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functions may mutually recursive call each other. Recursion occurs at lines 21, 

23, 25, 26, and 27. Lines 28 and 29 run the programs to obtain the list of the 

number of occurrences of the LHS symbols (occur_lhsList) and the 

multiplication factors for the symbols of the grammar (factorList). They will 

terminate if the component functions terminate, which we now prove. 

Lines 23 and 27 deal with the list grammar by processing elements (symbols) 

one by one. In each round of recursion, one symbol is manipulated and the 

length of the list decreases by 1 until reaches 0. So, if the process for one 

element (symbol) terminates, the algorithm terminates.  

Lines 19, 20, 21, and 22 calculate the number of occurrences for one symbol of 

the grammar. Lines 24, 25¸ and 26 calculate the multiplication factor for one 

symbol of the grammar.  

1) Lines 19 and 20 are base cases for the component function 

occur_lhsList, which return constant values and terminate. 

Note that, line 20 returns the subsize of the LHS symbol, which is 

already available in step 2.  

2) Line 21 tests if the current symbol is a LHS non-terminal and not of 

the first rule, the algorithm will search the grammar list for all 

occurrences of this non-terminal appearing on the right hand side of 

the grammar. Then, calculate the product of its number of RHS 

symbol occurrences and the multiplication factor. The sum of the 

product is returned as the number of the LHS symbol occurrences. 

Note that in line 21, the numbers of RHS symbol occurrences are 

already available in step 3. So if the operation of calculating the 

multiplication factor terminates, the algorithm of calculating the 

number of LHS symbol occurrences will terminate.  

3) Lines 24, 25, 26, and 27 calculate the multiplication factors. 

4) Line 24 is a base case for the component function factor, which 

returns a constant value and terminates. 
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5) Line 25 tests to see if the current symbol is a LHS non-terminal, its 

multiplication factor is the number of its LHS symbol occurrences 

divided by its subsize (already available in step 2). Note that, for the 

first rule, the subsize and the number of the LHS symbol 

occurrences are available and the same. So the multiplication factor 

for LHS symbol of the first rule is available, i.e., 1. Meanwhile the 

multiplication factors for the RHS symbols for the first rule are also 

available by line 26, which are the same as that of the LHS symbol, 

i.e., 1. 

6) Recursion in function factor  occurs in lines 25 and 26. Since the 

grammar is non-recursive (section 2.5), each recursion will call for a 

different symbol with an index which increases in a well-founded 

sequence (until it reaches a point where there are no more 

symbols). Since there are a finite number of symbols of the 

grammar, the algorithm will finally come to the symbols in the first 

rule and terminate (line 20).  

Therefore, the component functions for computing the number of occurrences for 

LHS symbols (occur_lhs), and the multiplication factors for RHS symbols 

(factor) will terminate. Step 4 will terminate.  

(5) Step 5 

Step 5 goes through all the symbols of the grammar and labels the decision 

points. There are a finite number of symbols in the grammar. Therefore, step 5 

will terminate with the last symbol in the grammar.  

(6) Step 6 

Step 6 tabulates the values for the decision points. It will terminate with a finite 

number of decision points.  
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(7) Step 7 

Step 7 performs a simple arithmetic calculation for the Average Branching Factor 

with the above information and will terminate.  

In summary, each step of the ABF algorithm will terminate. Therefore, the 

algorithm of calculating the Average Branching Factor will terminate.    

3.4 Proof of Correctness 

We use Structural Induction to prove the correctness of each step of the ABF 

algorithm. Information regarding the grammar is represented in lists (sub-section 

3.2). The length of each list is the number of symbols in the grammar. With 

reference to the Miranda code in section 3.2, we present the proofs for each step 

as follows. 

(1) Proof of correctness for step 1 (component function bf, lines 1 – 7): 

Base Case: there is one rule in the grammar with one non-terminal on the Left 

Hand Side and one terminal on the Right Hand Side of the rule, e.g.,  

<g> = “a” 

In this case, the list grammar is represented as follows:  

grammar = [(“<g>”, 0), (”a”, 1)] 
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Therefore: 

bf grammar 
   = bf[(“<g>”, 0)]++ bf [(“a”, 1)]          (line 5) 
    
   = [sumList(bf [(“a”, 1)] ) ]++bf[(“a”, 1)](line 4) 
 
   = [sumList [1]] ++ [1]                    (line 2) 
 
   = [1] ++ [1]                              (line 6)       
 
   = [1,1]                       (definition of “++”) 

Therefore, for the base case, the algorithm correctly calculates the branching 

factors for each symbol of the grammar. 

Inductive step: 

Hypothesis: for a grammar with n symbols, (i.e., #grammar = n), the algorithm 

correctly calculates the branching factors for each symbol of the grammar, i.e., 

bfList, is obtained successfully,   

bfList = bf  grammar 

Show:  

1. Adding one more symbol, x, the algorithm correctly calculates the branching 

factors for each symbol of the grammar, i.e., the new list of branching factors for 

all symbols of the grammar will be obtained successfully,   

bfList_new = bf (grammar ++ [(x, n)]) 

Note that, the index for a list starts from 0. For an n-item list, the index for the last 

symbol is (n-1). Therefore, the index for the newly-added symbol x is n. 

There are two cases in the inductive step: 

Case 1: the newly-added symbol is a terminal, “x”, on the Right-Hand-Side of 
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the rule. Since the index of the list starts with 0, the index of the newly-added 

terminal, “x”, will be n.  

There are two cases while adding a new terminal, “x”:   

1) The newly-added terminal “x” is added to an existing symbol sequences 

on the right hand side of the rule. Note that, this newly-added symbol will 

not affect the branching factors of other existing symbols. 

Therefore: 

bfList_new  
  = bf (grammar ++ [(“x”, n)])  
 
  = bf grammar  ++ bf [(“x”, n)]  

                     (line 5 & definition of “++” and “:”) 
 

  = bfList ++ bf [(“x”, n)]                      (hypothesis) 
 

  = bfList ++ [1]                                    (line 2) 

Since bfList is a list including the correct branching factors for the n symbols of 

the grammar (by the hypothesis), list bfList++[1] includes correct branching 

factors for the n symbols and the newly-added terminal “x”, whose branching 

factor is 1.  

2) The newly-added terminal “x” is a new alternative of the right hand side of 

the rule.  

In this case, the newly-added symbol will affect the branching factor of the LHS 

symbol (e.g., lhs_symb) in the current rule. The branching factors for other 

symbols of the grammar will not change. If the branching factors for the affected 

LHS symbol (lhs_symb) and the newly-added symbol are calculated correctly, 

the algorithm correctly calculates the branching factors for all the symbols of the 

grammar.  
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Suppose the index for the affected LHS symbol (lhs_symb) is k, where 0≤k<n, 

and the rest of the grammar symbols are in a sublist grammar1. 

Therefore: 

bfList_new  
  = bf (grammar ++ [(“x”, n)])  
 
  = bf (grammar_1 ++ [(lhs_symb,k)] ++ [(“x”, n)]) 
 
  = bf grammar_1 ++ bf [(lhs_symb,k)] ++ bf [(“x”, n)] 
                       (line 5 & definition of “++” and “:”) 
 
  = [c] ++ bf [(lhs_symb,k)]++ bf [(“x”, n)] 

          ([c] is a list of previously computed values, 
which is the list of branching factors for 
list grammar1. 

 
              By the hypothesis, all symbols of the grammar 

have obtained correct branching factors. And 
the branching factors for the sublist 
grammar1 are not affected by the newly-added 
symbol and the list [c] is available.) 

 
  = [c] ++ bf [(lhs_symb,k)] ++ [1]                  (line 2) 

 
  = [c] ++ [sumList (bf [(q, t)])] ++ [1]            (line 4) 
              ([(q, t)] represents the list of the left-most 

alternatives including the newly-added 
symbol.) 

 
  = [c] ++ [f] ++ [1]  
              (Note that, the branching factor for the 

newly-added alternative is available (i.e., 
1), and the other left-most alternatives have 
all obtained the correct branching factors 
(by the hypothesis).  Therefore, the sum of 
these values are available. Let it be f.) 

We have seen that the lists [c], [f], and [1] include the correct branching 

factors for the n symbols of the grammar and the newly-added alternative. List 

[c]++[f]++[1] includes correct branching factors for the symbols and the new 

alternative. 
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Therefore, by adding one more terminal on the Right-Hand-Side of the rule, the 

algorithm correctly calculates the branching factors for each symbol of the 

grammar. 

Case 2: the newly-added symbol is a non-terminal, <x>, on the Right-Hand-Side 

of the rule. Since the index of the list starts with 0, the index of the newly-added 

non-terminal <x> will be n. 

Note that, this newly-added non-terminal must be a symbol that has been defined 

in the grammar. By the restrictions for the algorithm (section 2.5), the grammar 

must be proper, which means all the non-terminals must be defined (appearing 

on the left hand side of the rule). So the sole newly-added non-terminal must be 

a non-terminal which is already in the grammar. 

There are two cases while adding a new non-terminal:   

1) The newly-added symbol <x> is added to an existing symbol sequences on 

the right hand side of the rule. Note that, this newly-added symbol will not 

affect the branching factors of other existing symbols. 
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Therefore: 

bfList_new  
  = bf (grammar ++ [(“<x>”, n)])  
 
  = bf grammar ++ bf [(“<x>”, n)]      

                     (line 5 & definition of “++” and “:”) 
 

  = bfList ++ bf [(“<x>”, n)]  
                                          (by the hypothesis) 

 
  = bfList ++ bf [(“<y>”, m)]  
        (line 3)(where, <x>=<y>, <y> is a LHS  
         non-terminal in the grammar list) 

 
  = bfList ++ [c] 

     (c has been calculated correctly from the hypothesis. 
      By the hypothesis, the symbols in the list  
       grammar have all  obtained the correct branching  
       factors. Without the loss of generality, we can  
       let bf [(“<y>”, m)] = [c], where c is a correct  
       value. ) 

Since bfList is a list including the correct branching factors for the n symbols of 

the grammar (by the hypothesis) and c has also been calculated correctly from 

the hypothesis, list bfList++[c]  includes correct branching factors for the n 

symbols and the newly-added non-terminal <x>. 

2) The newly-added non-terminal <x> is a new alternative of the right hand side 

of the rule.  

In this case, the newly-added symbol will affect the branching factor of the LHS 

symbol (e.g., lhs_symb) in the current rule. The branching factors for other 

symbols of the grammar will not change. If the branching factors for the affected 

LHS symbol (lhs_symb) and the newly-added symbol are calculated correctly, 

the algorithm correctly calculates the branching factors for all the symbols of the 

grammar.  
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Suppose the index for the affected LHS symbol (lhs_symb) is k, where 0≤k<n, 

and the rest of the grammar symbols are in a sublist grammar1. 

Therefore: 

bfList_new 
  = bf (grammar ++ [(“<x>”, n)])  
 
  = bf (grammar_1 ++ [(lhs_symb,k)] ++ [(“<x>”, n)]) 
 
  = bf grammar_1 ++ bf [(lhs_symb,k)] ++ bf [(“<x>”, n)] 
                       (line 5 & definition of “++” and “:”) 
   
  = [c] ++ bf [(lhs_symb,k)] ++ bf [(“<x>”, n)] 

          ([c] is a list of previously computed values, 
which is the list of branching factors for 
sublist grammar1. 

              By the hypothesis, all symbols of the grammar 
have obtained correct branching factors. And 
the branching factors for the sublist 
grammar1 are not affected by the newly-added 
symbol, let it be list [c].) 

 
  = [c] ++ bf [(lhs_symb,k)]++bf [(“<y>”, m)] (line 3) 

           (where, <x>=<y>, <y> is a LHS non-terminal in 
the grammar list) 

 
  = [c] ++ bf [(lhs_symb,k)]++[e] 

           (e has been calculated correctly from the 
hypothesis) 

           (By the hypothesis, the symbols in the list 
grammar have all obtained the correct 
branching factors. Without the loss of 
generality, we can let bf [(“<y>”, m)] = [e], 
where e is a correct value. ) 

 
= [c] ++ [sumList (bf [(q, t)])] ++ [e]           (line 4) 

              ([(q, t)] represents the list of the left-most 
alternatives on the right hand side of the 
rule, including the newly-added non-terminal.) 

 
= [c] ++ [f] ++ [e]  

              (Note that, the branching factor for the 
newly-added alternative is available (i.e., 
[e]), and the other left-most alternatives 
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have all obtained the correct branching 
factors (by the hypothesis).  Therefore, the 
sum of these values is available. Let it be 
f.) 

We have seen that the lists [c], [f], and [e] include the correct branching 

factors for the n symbols of the grammar and the newly-added alternative. List 

[c]++[f]++[e] includes correct branching factors for the symbols of the 

grammar and the new alternative. 

So, by adding one more non-terminal on the Right-Hand-Side of the rule, the 

algorithm correctly calculates the branching factors for each symbol of the 

grammar. 

2. Add a new rule to the grammar, the algorithm correctly calculates the 

branching factors for each symbol of the grammar, i.e., the new list of branching 

factors for all symbols of the grammar will be obtained successfully,  

bfList_new = bf (grammar ++ newRule) 

There are three cases in the inductive step: 

Case 1: the new rule has a non-terminal on the left hand side, and a terminal on 

the right hand side, i.e.,  

<new_r> = “x” 

Since the index of a list starts from 0, the indexes for <new_r> and “x” will be n 

and (n+1) respectively. The list for this new rule is represented as:  

newRule = [(“<new_r>”, n), (”x”, (n+1))]  
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Therefore: 
bfList_new  
  = bf (grammar ++ newRule )  
 
  = bf grammar ++ bf newRule        

                     (line 5 & definition of “++” and “:”) 
 
  = bfList ++ bf [(“<new_r>”, n), (”x”, (n+1))]  (hypothesis) 
                                               
  = bfList++ bf [(“<new_r>”, n)]++ bf [(”x”, (n+1))]      

                     (line 5 & definition of “++” and “:”) 
 
  = bfList ++ bf [(“<new_r>”, n)] ++ [1]             (line 2) 
 
  = bfList ++ [sumList (bf [(”x”, (n+1))])] ++ [1]  (line 4)                                  

                                                   
  = bfList ++ [sumList [1]] ++ [1]                  (line 2) 
 
  = bfList ++ [1] ++ [1]                             (line 6) 
 
  = bfList ++ [1, 1]                     (definition of “++”) 

Since bfList is a list including the correct branching factors for the n symbols of 

the grammar (by the hypothesis), list bfList++[1,1] includes correct 

branching factors for the n symbols and the newly-added rule. 

Therefore, by adding a new rule with one non-terminal on the left hand side and 

one terminal on the right hand side, the algorithm correctly calculates the 

branching factors for each symbol of the grammar.  

Case 2: The new rule includes terminal(s) and/or known non-terminal(s) on the 

right hand side, i.e.,  

<new_r> = x 

where <new_r> is a known non-terminal, and x is an expression of sequence(s) 

and/or alternative(s) with known non-terminal(s) and/or terminal(s). Since the 

index for a list starts from 0, the indexes for <new_r> and x will be n and (n+k), 

k≥1, respectively. The list for this new rule is represented as:  
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newRule = [(“<new_r>”, n), (x, (n+k))] 

Therefore: 
bfList_new 
  = bf (grammar ++ newRule)  
 
  = bf grammar ++ bf newRule            
                     (line 5 & definition of “++” and “:”) 
  
  = bfList++bf[(“<new_r>”, n),(x, (n+k))]        (hypothesis) 
   
  = bfList ++ bf [(“<new_r>”, n)] ++ bf [(x, (n+k))]      
                        (line 5 & definition of “++” and “:”) 
 
  = bfList ++ bf [(“<y>”, m)] ++ bf [(z, j)]         (line 3)                                        
         (where, <new_r>=<y>, <y> is a known non-terminal) 
         (x=z, z is a known non-terminal or terminal) 
 
  = bfList ++ [c] ++ [d]                                    
         (c, d are correct values by the hypothesis) 
         (By the hypothesis, the symbols in the list grammar 

have all obtained the correct branching factors, 
and the terminals have the branching factor of 1 
(line 2)), so we can obtain the branching factors, 
bf [(“<y>”, m)] and bf [(z, j)], say values [c] 
and [d]) 

Since bfList is a list including the correct branching factors for the n symbols of 

the grammar (by the hypothesis) and values c and d are correct branching 

factors, list bfList ++[c]++[d]  includes correct branching factors for the n 

symbols and the newly-added rule. 

Therefore, by adding a new rule with all known non-terminal(s) and/or terminal(s), 

the algorithm correctly calculates the branching factors for each symbol of the 

grammar.  

Case 3: The new rule includes a new non-terminal on the left hand side of the 

new rule, and known non-terminal(s) and/ or terminal(s) on the right-hand side of 

the new rule, i.e.,  

<new_r> = x 
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where <new_r> is a new non-terminal, and x is an expression of sequence(s) 

and/or alternative(s) with known non-terminal(s) and/or terminal(s). Since the 

index for a list starts from 0, the indexes for <new_r> and x will be n and (n+k), 

k≥1, respectively. The list for this new rule is represented as:  

newRule = [(“<new_r>”, n), (x, (n+k))] 

Note that, the non-terminals on the right hand side of the newly-added rule 

cannot be new because the grammar is “proper” (section 2.5), which means 

every non-terminal has to be defined properly (has to appear on the left hand 

side of the rule). So it is not allowed to include any new non-terminal on the right 

hand side of the newly-added rule without an accompanying definition for it. 

Therefore: 

bfList_new 
  = bf (grammar ++ newRule)  
  
  = bf grammar ++ bf newRule  
                       (line 5 & definition of “++” and “:”) 
    
  = bfList ++ bf[(“<new_r>”, n),(x, (n+k))]      (hypothesis) 
 
  = bfList ++ bf [(“<new_r>”, n)] ++ bf [(x, (n+k))]      
                        (line 5 & definition of “++” and “:”) 
 
  = bfList ++ bf [(“<new_r>”, n)] ++ bf [(z, j)]     (line 3)                 
          (where z = x, z is a known non-terminal or a  
           terminal) 
 
  = bfList ++ bf [(“<new_r>”, n)] ++ [d]  
          (d is a correct previously computed value , by the  
           hypothesis) 
          (By the hypothesis, the symbols in the list 

grammar have all obtained the correct branching 
factors, and the terminals have a branching 
factor of 1 (line 2)), so we can obtain the 
branching factor, bf [(z, j)], let it be called 
[d].) 
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  = bfList ++ [sumList (bf [(q, t)])] ++ [d]        (line 4)         
           ([(q, t)] is the list of the left-most 

alternatives among the list [(z, j)] with known 
branching factors) 

  
  = bfList ++ [sumList [c]] ++ [d]                  (line 3)  
           (c] is a list of previously computed values, 

which is the list of branching factors for list 
[(q, t)])         

 
  = bfList ++ [e] ++ [d]                            (line 6)    
                              (e is the sum of the list [c]) 

Since bfList is a list including the correct branching factors for the n symbols of 

the grammar (by the hypothesis) and the value e and d are correct branching 

factors, list bfList++[e]++[d]  includes correct branching factors for the n 

symbols and the newly-added rule. 

Therefore, by adding a new rule with a new non-terminal on the left hand side 

and known non-terminal(s) and/or terminal(s) on the right hand side of the rule, 

the algorithm correctly calculates the branching factors for each symbol of the 

grammar. 

(2) Proof of correctness for step 2 (component function subsize, lines 8 – 14): 

Base Case: there is one rule in the grammar with one non-terminal on the Left 

Hand Side and one terminal on the Right Hand Side of the rule, e.g.,  

<g> = “a” 

In this case, the list grammar is represented as follows:  

grammar = [(“<g>”, 0), (”a”, 1)] 
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Therefore: 
 
subsize grammar  
  = subsize [(“<g>”, 0)] ++ subsize [(“a”, 1)]      (line 12) 
                                     
  = [sumList [productList (subsize [(“a”, 1)])] ] ++           
     subsize [(“a”, 1)]                             (line 11) 
                                     
  = [sumList [productList (subsize [(“a”, 1)])]] ++ [1]           
                                                     (line 9) 
 
  = [sumList [1]] ++ [1]                           (line 13) 
 
  = [1] ++ [1]                        (definition of sumList)       
 
  = [1, 1]                               (definition of “++”) 

For the base case, the algorithm correctly calculates the subsizes for each 

symbol of the grammar. 

Inductive Step: 

Hypothesis: for a grammar with n symbols, (i.e., #grammar = n), the algorithm 

correctly calculates the subsizes for each symbol of the grammar, i.e., 

subsizeList[num] is obtained successfully,   

subsizeList = subsize  grammar 

Show:  

1. Adding one more symbol, x, the algorithm correctly calculates the subsizes for 

each symbol of the grammar, i.e., the new list of subsizes for all symbols of the 

grammar will be obtained successfully,   

subsizeList_new = subsize (grammar ++ [(x, n)]) 

There are two cases in the inductive step: 

Case 1: the newly-added symbol is a terminal, “x”, on the Right Hand Side of 
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the rule. Since the index of the list starts with 0, the index of the newly-added 

terminal, “x”, will be n. 

There are two cases while adding a new terminal, “x”:   

1) The newly-added terminal “x” is added to an existing symbol sequence on 

the right hand side of the rule. Note that, this newly-added symbol will affect the 

subsize of the LHS symbol (e.g., lhs_symb) of the current rule and will not 

affect the subsizes of other symbols. If the subsizes for the affected LHS symbol 

(lhs_symb) and the newly-added symbol are calculated correctly, the algorithm 

correctly calculates the subsizes for all the symbols of the grammar. 

Suppose the index for the affected LHS symbol (lhs_symb) is k, where 0≤k<n, 

and the rest of the grammar symbols are in a sublist grammar1. 

Therefore: 

subsizeList_new 
  = subsize (grammar ++ [(“x”, n)])  
 
  = subsize (grammar1 ++ [“<lhs_symb>”, k] ++ [(“x”, n)]) 
 
  = subsize grammar1 ++ subsize [“<lhs_symb>”, k] ++ 
    subsize [(“x”, n)]) 
                       (line 12 & definition of “++” and “:”) 
 
  = [c] ++ subsize [“<lhs_symb>”, k] ++ subsize [(“x”, n)]) 

       ([c] is a list of previously computed values, 
which is the list of subsizes for list 
grammar1. 

        By the hypothesis, all symbols of the grammar 
have obtained correct subsizes. And the 
subsizes for the sublist grammar1 are not 
affected by the newly-added symbol.)         

     
  = [c] ++ subsize [“<lhs_symb>”, k] ++ [1]          (line 9) 
 
  = [c] ++ [sumList [productList (subsize [(y, j)])]] ++ [1]                                       

                                               (line 11) 
            (list [y,j] represents the alternative sequences 
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of the rule that the new symbol is added to, 
(including the sequence with the new symbol). 
The algorithm calculates the product of the 
subsizes of the sequence symbols, and adds the 
products for all alternatives of the rule 
together to obtain the subsize of the LHS 
symbol.) 

 
  = [c] ++ [d] ++ [1] 
            (by the hypothesis, the subsizes for the 

sequence symbols are correctly calculated. In 
addition, the subsize for the newly-added 
symbol is available (e.g., [1]). Therefore, the 
subsize for the LHS symbol is available. Let it 
be [d].) 

Lists [c], [d], and [1] include the correct subsizes for the n symbols of the 

grammar and the newly-added symbol. List [c]++[d]++[1] includes correct 

subsizes for the symbols of the grammar and the new symbol. 

Therefore, by adding a new terminal to an existing symbol sequence on the right 

hand side of the rule, the algorithm correctly calculates the subsizes for each 

symbol of the grammar. 

2) The newly-added terminal “x” is a new alternative of the right hand side of 

the rule.  

In this case, the newly-added symbol will affect the subsize of the LHS symbol 

(e.g., lhs_symb) in the current rule and will not change the subsizes for other 

symbols of the grammar. If the subsizes for the affected LHS symbol (lhs_symb) 

and the newly-added symbol are calculated correctly, the algorithm correctly 

calculates the subsizes for all the symbols of the grammar.  

Suppose the index for the affected LHS symbol (lhs_symb) is k, where 0≤k<n, 

and the rest of the grammar symbols are in a sublist grammar1. 

Therefore: 
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subsizeList_new 
  = subsize (grammar ++ [(“x”, n)])  
 
  = subsize (grammar1 ++ [“<lhs_symb>”, k] ++ [(“x”, n)]) 
 
  = subsize grammar1 ++ subsize [“<lhs_symb>”, k] ++ 
    subsize [(“x”, n)]) 
                       (line 12 & definition of “++” and “:”) 
  = [c] ++ subsize [“<lhs_symb>”, k] ++ subsize [(“x”, n)]) 

       ([c] is a list of previously computed values, 
which is the list of subsizes for list 
grammar1. 

        By the hypothesis, all symbols of the grammar 
have obtained correct subsizes. And the 
subsizes for the sublist grammar1 are not 
affected by the newly-added symbol.)         

    
  = [c] ++ subsize [“<lhs_symb>”, k] ++ [1]          (line 9) 
 
  = [c] ++ [sumList [productList (subsize [(y, j)])]] ++ [1]                                       

                                               (line 11) 
            (list [y, j] represents the alternative 

sequences of the rule that the new symbol is 
added to, (including the new alternative of the 
newly-added symbol). The algorithm calculates 
the product of the subsizes of the sequence 
symbols, and adds the products for all 
alternatives of the rule together to obtain the 
subsize of the LHS symbol.) 

 
 = [c] ++ [d] ++ [1] 
            (by the hypothesis, the subsizes for the 

sequence symbols are correctly calculated. In 
addition, the subsize for the newly-added 
symbol is available (e.g., [1]). Therefore, the 
subsize for the LHS symbol is available. Let it 
be d.) 

Lists [c], [d], and [1] include the correct subsizes for the n symbols of the 

grammar and the newly-added symbol. List [c]++[d]++[1] includes correct 

subsizes for the symbols of the grammar and the new symbol. 
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Therefore, by adding a new terminal as a new alternative of the right hand side of 

the rule, the algorithm correctly calculates the subsizes for each symbol of the 

grammar. 

Case 2: the newly-added symbol is a non-terminal, <x>, on the right-hand-side of 

the rule. Since the index of the list starts with 0, the index of the newly-added 

non-terminal, <x>, will be n. 

Note that, this newly-added non-terminal must be an existing symbol that has 

appeared in the grammar. By the restrictions for the algorithm (section 2.5), the 

grammar must be proper, which means all the non-terminals must be defined 

(appearing on the left hand side of the rule). So the sole newly-added non-

terminal cannot be a new non-terminal without proper definition. 

There are two cases while adding a new non-terminal, <x>:   

1) The newly-added non-terminal <x> is added to an existing symbol 

sequence on the right hand side of the rule. Note that, this newly-added symbol 

will affect the subsize of the LHS symbol (e.g., lhs_symb) of the current rule 

and will not affect the subsizes of other symbols. If the subsizes for the affected 

LHS symbol (lhs_symb) and the newly-added symbol are calculated correctly, 

the algorithm correctly calculates the subsizes for all the symbols of the grammar. 

Suppose the index for the affected LHS symbol (lhs_symb) is k, where 0≤k<n, 

and the rest of the grammar symbols are in a sublist grammar1. 

Therefore: 
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subsizeList_new  
  = subsize (grammar ++ [(“<x>”, n)]) 
   
  = subsize (grammar1 ++ [“<lhs_symb>”, k] ++ [(“<x>”, n)]) 
      
  = subsize grammar1 ++ subsize [“<lhs_symb>”, k] ++ 
    subsize [(“<x>”, n)]) 
                       (line 12 & definition of “++” and “:”) 
     
  = [c] ++ subsize [“<lhs_symb>”, k] ++ subsize [(“<x>”, n)]) 

       ([c] is a list of previously computed values, 
which is the list of subsizes for list 
grammar1. 

        By the hypothesis, all symbols of the grammar 
have obtained correct subsizes. And the 
subsizes for the sublist grammar1 are not 
affected by the newly-added symbol.)         

 
  = [c] ++ subsize [“<lhs_symb>”, k] ++ subsize [(“<y>”, m)]   

                                                (line 10) 
          (where, <x>=<y>, <y> is a LHS non-terminal in 

the list grammar.) 
 

  = [c] ++ subsize [“<lhs_symb>”,k] ++ [d] 
             ([d] is a previously calculated value. 

        By the hypothesis, the symbols in the list 
grammar have all obtained the correct subsizes. 
Without the loss of generality, let the 
subsize for [(“<y>”, m)] = [d]) 

 
  = [c] ++ [sumList [productList (subsize [(y, j)])]] ++ [d]                                       

                                               (line 11) 
            (list [y,j] represents the alternative sequences 

of the rule that the new symbol is added to, 
(including the sequence with the new symbol). 
The algorithm calculates the product of the 
subsizes of the sequence symbols, and adds the 
products for all alternatives of the rule 
together to obtain the subsize of the LHS 
symbol.) 

     
  = [c] ++ [e] ++ [d] 
            (By the hypothesis, the subsizes for the 

sequence symbols are correctly calculated. The 
subsize for the newly-added symbol is available 
(e.g., [d]). Therefore, the subsize for the LHS 
symbol is available. Say [e].) 
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Lists [c], [e], and [d] include the correct subsizes. List [c]++[e]++[d] 

includes correct subsizes for the symbols of the grammar and the new symbols.  

Therefore, by adding a new non-terminal to an existing symbol sequence on the 

right hand side of the rule, the algorithm correctly calculates the subsizes for 

each symbol of the grammar. 

2) The newly-added non-terminal <x> is a new alternative of the right hand 

side of the rule.  

In this case, the newly-added symbol will affect the subsize of the LHS symbol 

(e.g., lhs_symb) in the current rule. The subsizes for other symbols of the 

grammar will not change. If the subsizes for the affected LHS symbol (lhs_symb) 

and the newly-added symbol are calculated correctly, the algorithm correctly 

calculates the subsizes for all the symbols of the grammar.  

Suppose the index for the affected LHS symbol (lhs_symb) is k, where 0≤k<n, 

and the rest of the grammar symbols are in a sublist grammar1. 

Therefore: 
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subsizeList_new 
  = subsize (grammar ++ [(“<x>”, n)])  
  
  = subsize (grammar1 ++ [“<lhs_symb>”, k] ++ [(“<x>”, n)]) 
     
  = subsize grammar1 ++ subsize [“<lhs_symb>”, k] ++ 
    subsize [(“<x>”, n)]) 
                       (line 12 & definition of “++” and “:”) 
  = [c] ++ subsize [“<lhs_symb>”, k] ++subsize [(“<x>”, n)]) 

       ([c] is a list of previously computed values, 
which is the list of subsizes for list 
grammar1. 

        By the hypothesis, all symbols of the grammar 
have obtained correct subsizes. And the 
subsizes for the sublist grammar1 are not 
affected by the newly-added symbol.)         

  
  = [c] ++ subsize [“<lhs_symb>”, k] ++ subsize [(“<y>”, m)]   

                                                (line 10) 
          (where, <x>=<y>, <y> is a LHS non-terminal in 

the list grammar) 
    
  = [c] ++ subsize [“<lhs_symb>”, k] ++ [d] 
             ([d] is a previously calculated value. 

        By the hypothesis, the symbols in the list 
grammar have all obtained the correct subsizes. 
Without the loss of generality, let the 
subsize for [(“<y>”, m)] = [d]) 

 
  = [c] ++ [sumList [productList (subsize [(y, j)])]] ++ [d]                                       

                                               (line 11) 
            (list [y, j] represents the alternative 

sequences of the rule that the new symbol is 
added to, (including the new alternative of the 
newly-added symbol). The algorithm calculates 
the product of the subsizes of the sequence 
symbols, and adds the products for all 
alternatives of the rule together to obtain the 
subsize of the LHS symbol.) 

     
  = [c] ++ [e] ++ [d] 
            (by the hypothesis, the subsizes for the 

sequence symbols are correctly calculated. In 
addition, the subsize for the newly-added 
symbol is available (e.g., [d]). Therefore, the 
subsize for the LHS symbol is available. Let it 
be [e].) 
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Lists [c], [e], and [d] include the correct subsizes. List [c]++[e]++[d] 

includes correct subsizes of the symbols and the new symbol. 

Therefore, by adding a new non-terminal as a new alternative of the right hand 

side of the rule, the algorithm correctly calculates the subsizes for each symbol of 

the grammar. 

2. Adding a new rule to the grammar, the algorithm correctly calculates the 

subsizes for each symbol of the grammar, i.e., the new list of subsizes for all 

symbols of the grammar will be obtained successfully,   

subsizeList_new = subsize (grammar ++ newRule) 

There are three cases in the inductive step: 

Case 1: the new rule has a non-terminal on the left hand side, and a terminal on 

the right hand side, i.e., 

<new_r> = “x” 

The indexes for <new_r> and “x” will be n and (n+1) respectively. The list for 

this new rule is represented as:  

newRule = [(“<new_r>”, n), (”x”, (n+1))] 

Therefore: 
subsizeList_new 
  = subsize (grammar ++ newRule)  
 
  = subsize grammar ++ subsize newRule                

                    (line 12 & definition of “++” and “:”) 
 
  = subsizeList++ subsize [(“<new_r>”, n), (”x”, (n+1))]           

                                              (hypothesis) 
 
  = subsizeList ++ subsize [(“<new_r>”, n)] ++  
    subsize [(”x”, (n+1))]      
                    (line 12 & definition of “++” and “:”) 
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  = subsizeList ++ subsize [(“<new_r>”, n)] ++ [1]   (line 9) 
   
  = subsizeList ++ 
      [sumList [productList (subsize [(”x”, (n+1)])]] ++ [1]  
                                                    (line 11) 
 
  = subsizeList ++ [sumList [1]] ++ [1]             (line 13) 
  
  = subsizeList ++ [1] ++ [1]         (definition of sumList) 
   
  = subsizeList ++ [1, 1]                (definition of “++”) 

Since subsizeList is a list including the correct subsizes for the n symbols of 

the grammar (by the hypothesis) and [1,1] is a list with correct subsizes, list  

subsizeList++[1,1] includes correct subsizes for the n symbols and the 

newly-added rule. 

Therefore, adding a new rule with one non-terminal on the left hand side and one 

terminal on the right hand side, the algorithm correctly calculates the subsizes for 

each symbol of the grammar.  

Case 2: The new rule includes terminal(s) and/ or known non-terminal(s) on the 

right hand side, i.e.,  

<new_r> = x, 

where <new_r> is a known non-terminal, and x is an expression of sequence(s) 

and/or alternative(s) with known non-terminal(s) and/or terminal(s). The indexes 

for <new_r> and x will be n and (n+k), k≥1, respectively. The list for this new 

rule is represented as:  

newRule = [(“<new_r>”, n), (x, (n+k))] 

Therefore: 
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subsizeList_new 
  = subsize (grammar ++ newRule )  
 
  = subsize grammar ++ subsize newRule           
                       (line 12 & definition of “++” and “:”) 
   
 
  = subsizeList ++ subsize [(“<new_r>”, n), (x, (n+k))]                
                                                 (hypothesis) 
   
  = subsizeList ++ subsize [(“<new_r>”, n)] ++  
    subsize [(x, (n+k))]      
                       (line 12 & definition of “++” and “:”) 
   
  = subsizeList ++ subsize [(“<y>”, m)] ++ subsize[(z, j)] 
                                                    (line 10) 
       (where, <new_r>=<y>, <y> is a known non-terminal) 
       (x=z, z represents a known non-terminal or a terminal) 
 
  = subsizeList ++ [c] ++ [d]  
       (c and d are previously correctly calculated values.) 
       (By the hypothesis, the symbols in the list grammar   
        have all obtained the correct subsizes, and  
        terminals have the subsize of 1 (line 9)), so we can  
        obtain the subsizes for: subsize [(“<y>”, m)] and  
        subsize [(z, j)], say [c] and [d]. ) 

Since subsizeList is a list including the correct subsizes for the n symbols of 

the grammar (by the hypothesis) and lists [c] and [d] are lists with correct 

subsizes, the list  subsizeList++[c]++[d] includes correct subsizes for the n 

symbols and the newly-added rule. 

Therefore, if adding a new rule with all known non-terminals and/or terminals, the 

algorithm correctly calculates the subsizes for each symbol of the grammar. 

Case 3: The new rule includes a new non-terminal on the left hand side of the 

new rule, and known non-terminal(s) and/or terminal(s) on the right-hand side, 

i.e.,         <new_r> = x 

where <new_r> is a new non-terminal, and x is an expression of sequence(s) 

and/or alternative(s) with known non-terminal(s) and/or terminal(s). The indexes 
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for <new_r> and x will be n and (n+k), k≥1, respectively. The list for this new 

rule is represented as:  

newRule = [(“<new_r>”, n), (x, (n+k))] 

Note that, the non-terminals on the right hand side of the newly-added rule 

cannot be new because the algorithm should be “proper” (section 2.4), which 

means every non-terminal has to be defined properly (appear on the left hand 

side of the rule). So, it is not allowed to include any new non-terminal on the right 

hand side of the newly-added rule without further definition for it. 

Therefore: 
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subsizeList_new  
  = subsize (grammar ++ newRule )  
 
  = subsize grammar ++ subsize newRule              
                     (line 12 & definition of “++” and “:”) 
  
  = subsizeList ++ subsize [(“<new_r>”, n), (x, (n+k))]             
                                               (hypothesis) 
 
  = subsizeList ++ subsize [(“<new_r>”, n)] ++  
    subsize [(x, (n+k))]      
                     (line 12 & definition of “++” and “:”) 
 
  = subsizeList ++ subsize [(“<new_r>”, n)] ++  
    subsize [(z, j)]                              (line 10) 
       (where x=z and z is a known non-terminal or a  
        terminal) 
 
  = subsizeList ++ subsize [(“<new_r>”, n)] ++ [d]                 
       (d is a previously correctly calculated value.) 
       (By the hypothesis, the symbols in the list grammar  
        have all obtained the correct subsizes, and the  
        terminals have the subsize of 1 (line 9)), so we can  
        obtain the subsize [(z, j)], say [d].) 
 
  = subsizeList ++  
    [sumList [productList (subsize [(q, t)])]]++ [d]       
                                                   (line 11)         
        ([(q, t)] represents the alternative sequences among  
        the list [(z, j)]. The subsizes for the sequence           
        symbols are multiplied, the products of the  
        alternative sequences are summed up.) 
 
  = subsizeList ++ [sumList ([productList [c]]) ] ++ [d]                       
                                                  (line 10)  
        ([c] is a list of previously correctly calculated  
          values, denoting the subsizes for the sequence  
          symbols.)         
        (By the hypothesis, the symbols in the list  
         grammar have all obtained the correct subsizes.) 
 
  = subsizeList ++ [sumList [e]] ++ [d]             (line 13) 
                                  (definition of productList)  
                          (let the product of list [c] be e.) 
  = subsizeList ++ [f] ++ [d]  
                                     (definition of sumList.) 
                              (Let the sum of list [e] be f ) 
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Since subsizeList is a list including the correct subsizes for the n symbols of 

the grammar (by the hypothesis) and lists [f] and [d] are lists with correct 

subsizes, the list  subsizeList++[f]++[d] includes correct subsizes for the n 

symbols and the newly-added rule. 

Therefore, if adding a new rule with a new non-terminal on the left hand side and 

known non-terminal(s) and/or terminal(s) on the right hand side of the rule, the 

algorithm correctly calculates the subsizes for each symbol of the grammar.  

(3) Proof of correctness for step 3 (component function occur_rhs, lines 15 –

18): 

Base Case: there is one rule in the grammar with one non-terminal on the left 

hand side and one terminal on the Right Hand Side of the rule, e.g.,  

<g> = “a” 

In this case, the list grammar will be represented as:  

grammar = [(“<g>”, 0), (”a”, 1)] 

Therefore: 
 
 
occur_rhs grammar  
  = occur_rhs [(“<g>”, 0)] ++ occur_rhs [(“a”, 1)]  (line 17)            
                                                   
  = [0] ++ occur_rhs [(“a”, 1)]   
                            (line 16, skip left-hand symbol)           
 
  = [0] ++ [productList [subsizeList!1]]            (line 16) 
   
  = [0] ++ [productList [1] ]         
                    (terminals have the subsize of 1, step 2) 
 
  = [0] ++ [1]                    (definition of productList)       
 
  = [0, 1]                              (definition of “++”) 
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For base case, the algorithm correctly calculates the number of occurrences for 

RHS symbols of the grammar. 

Inductive step: 

Hypothesis: for a grammar with n symbols, (i.e., #grammar = n), the algorithm 

correctly calculates the number of occurrences for right-hand-side symbols of the 

grammar, i.e., occur_rhsList[num] is obtained successfully,   

occur_rhsList = occur_rhs grammar 

Show:  

1. Adding one more symbol, x, to the right hand side of the rule, the algorithm 

correctly calculates the number of occurrences of right-hand-side symbols of the 

grammar, i.e., the new list of the number of occurrences for right-hand-side 

symbols of the grammar will be obtained successfully,   

occur_rhsList_new = occur_rhs (grammar ++ [(x, n)]) 

Note that, this newly-added RHS symbol must be a terminal or a non-terminal 

that has been defined in the grammar. The reason is that the grammar must be 

proper (section 2.5), which means that all non-terminals of the grammar must be 

properly defined (appearing on the left hand side of the rule).  

There are two cases while adding a symbol to the right hand side of the rule: 

1) The new symbol is added as a new alternative of the rule. In this case, the 

newly-added symbol will not affect the number of occurrences for other symbols 

of the grammar. 

Therefore: 
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occur_rhsList_new  
  = occur_rhs (grammar ++ [(x, n)])  
 
  = occur_rhs grammar ++ occur_rhs [(x, n)]          

                    (line 17 & definition of “++” and “:”) 
 
  = occur_rhsList ++ occur_rhs [(x, n)]          (hypothesis) 
 
  = occur_rhsList ++ [productList [subsizeList ! m]]   

                                                 (line 16) 
        (take the subsizes of the symbols of the sequence) 

 
  = occur_rhsList ++ [productList [c]]                     

         (c is a known value.) 
         (If x is a terminal, the subsize for x is 1. 
          If x is a known non-terminal, its subsize has 

been set in step 2.) 
 

  = occur_rhsList ++ [c]         (definition of productList)                                  
                                
        (Since x is the only symbol of the alternative 

sequence, the product of the subsizes of the 
sequence is c. ) 

Since occur_rhsList is a list including the correct number of occurrences of 

RHS symbols of the grammar (by the hypothesis) and list [c]is a list with 

correct values of the number of occurrences, list  occur_rhsList++[c] 

includes correct values of the number of occurrences for the n symbols and the 

newly-added symbol. 

Therefore, when a new symbol is added as a new alternative on the right hand 

side of the rule, the algorithm correctly calculates the number of occurrences for 

each symbol of the grammar.  

2) The newly-added symbol is added to an existing symbol sequence on the 

right hand side of the rule. Note that, this newly-added symbol will affect the 

number of occurrences for the symbols of the sequence. The number of 

occurrences for other symbols will not change. If the values of the number of 

occurrences for the affected sequence symbols and the newly-added symbol are 

calculated correctly, the algorithm correctly calculates the number of occurrences 
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for all the symbols of the grammar. 

Suppose the affected sequence symbols are in list grammar2, and the rest 

symbols of the grammar are in list grammar1. 

Therefore: 

occur_rhsList_new  
  = occur_rhs (grammar ++ [(x, n)])  
 
  = occur_rhs grammar1 ++ occur_rhs grammar2 ++  
    occur_rhs [(x, n)]          
                    (line 17 & definition of “++” and “:”) 
 
  = [c] ++ occur_rhs grammar2 ++ occur_rhs [(x, n)] 
       ([c] is a list includes correctly calculated values. 
        By the hypothesis, the number of occurrences for the  
        symbols of the grammar have all been calculated  
        correctly. And the symbols of list grammar1 are  
        not affected by the newly-added symbol) 
 
  = [c] ++ occur_rhs grammar2 ++ 
     [productList [subsizeList ! m]]               (line 16) 
        (take the subsizes of the symbols of the sequence) 
 
  = [c] ++ occur_rhs grammar2 ++ [productList [d]] 
        (d is a known value representing the subsize for   
         each symbol of the sequence. Because, if the newly- 
         added symbol is a terminal, its subsize is 1. If  
         the newly-added symbol is a known non-terminal, its  
         subsize is available in step 2.)   
 
  = [c] ++ occur_rhs grammar2 ++ [e] 
                                (definition of productList) 
        (e is a known value which is the product of the  
         subsizes of the symbols of the  sequence. 
 
  = [c] ++ [f] ++ [e]  
        ([f] is a list with known values representing the  
         number of occurrences for the sequence symbols.  
         Actually, each item of the list [f] has the same  
         value e, which is the number of occurrences of the  
         newly-added symbol. Note that, all the symbols of a  
         sequence have the same number of occurrences.) 
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Since lists [c], [f], and [e] are lists with correct values of the number of 

occurrences, list [c]++[f]++[e] includes correct values of the number of 

occurrences for the n symbols and the newly-added symbol. 

Therefore, when adding a new symbol to an existing sequence on the right hand 

side of the rule, the algorithm correctly calculates the number of occurrences for 

each symbol of the grammar.  

2. Adding a new rule to the grammar, the algorithm correctly calculates the 

number of occurrences for the right-hand-side symbols of the grammar, i.e., the 

new list of the number of occurrences for right-hand-side symbols of the grammar 

will be obtained successfully, i.e.: 

occur_rhsList_new = occur_rhs (grammar ++ newRule) 

The new rule is expressed in the list as:  

newRule = [(“<new_r>”, n), (x, (n+k))],  

where x is an expression of alternative(s) and/or sequence(s) of terminal(s) 

and/or non-terminal(s). The indexes for <new_r> and x are n and (n+k), k≥1, 

respectively. 

Note that, the non-terminals on the right hand side of the newly-added rule 

cannot be new because the algorithm should be “proper” (section 2.5), which 

means every non-terminal has to be properly defined (appear on the left hand 

side of the rule). So, it is not allowed to include any new non-terminal on the right 

hand side of the newly-added rule without further definition for it. 

Therefore: 
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occur_rhsList_new  
  = occur_rhs (grammar ++ newRule)  
 
  = occur_rhs grammar ++ occur_rhs newRule         
                       (line 17 & definition of “++” and “:”) 
 
  = occur_rhsList ++ occur_rhs [(“<new_r>”, n), (x, (n+k))]         
                                                 (hypothesis) 
 
  = occur_rhsList ++ occur_rhs [(“<new_r>”, n)] ++ 
    occur_rhs [(x, (n+k))]      
                       (line 17 & definition of “++” and “:”) 
 
  = occur_rhsList ++ [0] ++ occur_rhs [(x, (n+k))]  (line 16) 
 
  = occur_rhsList ++ [0] ++ [productList [subsizeList!m]]                 
                                                    (line 16) 
 
  = occur_rhsList ++ [productList [c]]                       
         ([c] is a list of known values, which are subsizes   
          of the sequence symbols. 
          x is an expression consisting of terminal(s)  
          and/or known non-terminal(s).  
          The subsizes for terminals are 1. 
          The subsizes for known non-terminals are available  
          in step 2. 
          So the list of the subsizes for the symbols of the  
          right hand side of the newly-added rule is  
          available, say list [c]) 
 
  = occur_rhsList ++ [d]        (definition of productList) 
         (d is a known value, which is the product of the  
          subsizes of the symbols of the sequence) 

Since occur_rhsList is a list including the correct number of occurrences of 

right-hand-side symbols of the grammar (by the hypothesis) and list [d]is a list 

with correct values of the number of occurrences, the list  occur_rhsList++[d] 

includes correct values of the number of occurrences for the n symbols and the 

newly-added rule. 

Therefore, when adding a new rule to the grammar, the algorithm correctly 

calculates the number of occurrences for the right-hand-side symbols of the 

grammar.  
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(4) Proof of correctness for step 4 (component function occur_lhs and factor, 

lines 19 –  29): 

Base Case: there is one rule in the grammar with one non-terminal on the left 

hand side and one terminal on the right hand side of the rule, e.g.,  

<g> = “a” 

In this case, the list grammar will be presented as follows:  

grammar = [(“<g>”, 0), (”a”, 1)] 

Therefore: 

 occur_lhs grammar  
  = occur_lhs [(“<g>”, 0), (”a”, 1)] 
 
  = occur_lhs [(“<g>”, 0)] ++ occur_lhs [(“a”, 1)]  
                                                 (line 23) 
 
  = occur_lhs [(“<g>”, 0)] ++ [0]                (line 22)                          
  
  = [subsizeList! 0] ++ [0]                      (line 20) 
 
  = [c] ++ [0]                  
           (c is the subsize of the start symbol. It is a 

known value, because subsizeList is available 
in step 2) 

 
  = [c, 0]                             (definition of “++”) 
 
factor grammar  
  = factor [(“<g>”, 0), (”a”, 1)] 
   
  = factor [(“<g>”, 0)] ++ factor [(“a”, 1)]      (line 27)                         
 
  = [occur_lhsList[(“<g>”,0)]!0 / subsizeList !0] ++  
    factor [(“a”, 1)]                             (line 25) 
 
  = [subsizeList!0 / subsizeList!0] ++ 
     factor [(“a”, 1)]                            (line 20) 
             (subsizeList is available in step 2) 
 



3. Proofs of the ABF Algorithm 
 

96 
 

  = [1] ++ factor [(“a”, 1)]                                      
              (Note that, multiplication factor for the  
               first rule is 1.) 
 
  = [1] ++ factor [(“<g>”, 0)]                    (line 26)                                               
 
  = [1] ++ [1]                             
              (The multiplication factor for a RHS symbol is   
               the same as that for the LHS non-terminal of  
               the rule.) 
 
  = [1, 1]                              (definition of “++”)                      

For the base case, the algorithm correctly calculates the number of occurrences 

for left-hand-side symbols and the multiplication factors for the right-hand-side 

symbols of the grammar. 

Inductive step: 

Hypothesis: for a grammar with n symbols, (i.e., #grammar = n), the algorithm 

correctly calculates the number of occurrences for the left-hand-side symbols of 

the grammar, i.e., occur_lhsList[num] is obtained successfully,   

occur_rhsList = occur_rhs grammar  

Also, the algorithm correctly calculates the multiplication factors for right-hand-

side symbols of the grammar, i.e., factList[num] is obtained successfully,  

factList = factor grammar 

Show:  

1. When adding one more symbol, x, to the right hand side of the rule, the 

algorithm correctly calculates the number of occurrences for the left-hand-side 

symbols of the grammar, i.e., the new list of the number of occurrences for left-

hand-side symbols of the grammar will be obtained successfully,   

occur_lhsList_new = occur_rhs (grammar ++ [(x, n)]) 
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Also, the algorithm correctly calculates the multiplication factors for the right-

hand-side symbols of the grammar.  

factorList_new = factor (grammar ++ [(x, n)]) 

There are two cases while adding a symbol to the right hand side of the rule. 

1) The new symbol is a terminal, “x”, on the right hand side of the rule. In this 

case, the newly-added symbol will not affect the number of occurrences for the 

LHS symbols and the multiplication factors for other RHS symbols of the 

grammar. 

occur_lhsList_new  
  = occur_lhs (grammar ++ [(“x”, n)])  
 
  = occur_lhs grammar ++ occur_lhs [(“x”, n)]          
            (line 23 & definition of “++” and “:”) 
 
  = occur_LhsList ++ occur_lhs [(“x”, n)]       (hypothesis)           
   
= occur_lhsList ++ [0]                             (line 22) 
      (For a RHS symbol, the number of occurrences for a LHS 

symbol is 0) 

By the hypothesis, occur_lhsList is a list with correct number of occurrences for 

LHS symbols. [0] is a correct value of number of occurrences of a LHS symbol 

for a RHS symbol. Therefore, occur_lhsList++[0] is a list includes correct 

values of the number of occurrences for LHS symbols of the grammar and the 

algorithm correctly calculates the number of occurrences for the LHS symbols 

and the newly-added symbol. 
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factorList_new  
  = factor (grammar ++ [(“x”, n)]) 

 
  = factor grammar ++ factor [(“x”, n)]     
                     (line 9 & definition of “++” and “:”) 
 
  = factorList ++ factor [(“x”, n)]            (hypothesis) 
 
  = factorList ++ factor [(y, m)]               (line 26 )  
        (y is the LHS non-terminal of the same rule as “x”) 
         
  = factorList ++ [c]  
        (c is a known value, which is the multiplication  
         factor of the symbol y. 
        (by the hypothesis, multiplication factors for the  
         symbols of the grammar have been all calculated  
         correctly. Let the multiplication factor for y be  
         c.) 

List factorList includes correct multiplication factors for the symbols of the 

grammar (by the hypothesis), and list [c] includes correct multiplication factor 

for the newly-added symbol. Therefore, list factorList++[c] includes correct 

multiplication factors for symbols of the grammar and the algorithm correctly 

calculates the multiplication factors for the n symbols of the grammar and the 

newly-added symbol. 

2) The new symbol is a known non-terminal, <x>, on the right hand side of the 

rule. In this case, the newly-added symbol will affect the number of occurrences 

of the LHS symbol (<sym_lhs>, where <sym_lhs> = <x>) and the 

multiplication factors for the rule where this symbol (<x>) appears on the left 

hand side of the rule. The number of occurrences and the multiplication factors 

for other LHS symbols will not change. So, if the values of the number of 

occurrences for the newly-added RHS symbol (<x>) and the LHS symbol 

(<sym_lhs> = <x>) are calculated correctly, the algorithm calculates the 

number of occurrences for the LHS symbols of the grammar and the newly-

added symbol correctly. 

Suppose the affected LHS symbol is <sym_lhs>, whose index is k, where 
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0≤k<n. Note that, <sym_lhs> = <x>. However, <sym_lhs> is on the LHS of 

the rule, and <x> is a newly-added RHS symbol. The other symbols of the 

grammar are in sublist grammar1.  Therefore, 

occur_lhsList_new  
  = occur_lhs (grammar ++ [(“<x>”, n)])  
 
  = occur_lhs (grammar1 ++ [(“<sym_lhs>”, k)] ++  
    [(“<x>”, n)]) 
 
  = occur_lhs grammar1 ++ occur_lhs [(“<sym_lhs>”, k)] ++  
    occur_lhs [(“<x>”, n)] 
                  (line 23 & definition of “++” and “:”) 
 
  = [c] ++ occur_lhs [(“<sym_lhs>”, k)] ++  
    occur_lhs [(“<x>”, n)]    
       ([c] is a list including the previously calculated   
        values of the number of occurrences for the LHS   
        symbols of the grammar.  
        By the hypothesis, the number of the occurrences  
        for the LHS symbols are available.)      
 
  = [c] ++ occur_lhs [(“<sym_lhs>”, k)] ++ [0]   (line 22) 
        (For a RHS symbol, the number of occurrences for a    
         LHS symbol is 0) 
  = [c] ++ [sumList [(occur_rhsList !h) *  

     ((factor [(y, h)])!0) ] ++ [0]             (line 21) 
          (The number of occurrences for a LHS symbol is the  
           sum of all the instances of that symbol occurring  
           on the RHS of all rules, each multiplied by the  
           multiplication factor.) 
 
  = [c] ++ [sumList [d *e]] ++ [0] 
          (d and e are known values representing the number  
           of occurrences and the multiplication factor for  
           the RHS symbol. 
           From step 3, the number of occurrences for RHS     
           symbols are available.  
           By the hypothesis, the multiplication factors for  
           the RHS symbols of the grammar are correctly  
           calculated.) 
 
  = [c] ++ [f] ++ [0]             (definition of sumList) 
                                     (f is a known value) 
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Lists [c], [f], and [0] include correct values of the number of occurrences 

of the LHS symbols. Therefore, list [c]++[f]++[0] includes correct values of 

the number of occurrences of the symbols of the grammar and the algorithm 

correctly calculates the number of occurrences of the symbols of the grammar 

and the newly-added symbol. 

In addition, this newly-added non-terminal (<x>) will affect the multiplication 

factors for the rule where this symbol (<x>) appears on the left hand side of the 

rule. Suppose the LHS symbol of the affected rule is <sym_lhs>, whose index is 

k, where 0≤k<n. Note that, <sym_lhs> = <x>. However, <sym_lhs> is on the 

LHS of the rule, and <x> is a newly-added RHS symbol. The RHS symbols of the 

affected rule are in sublist grammar3. The other symbols of the grammar are in 

sublist grammar2.  Note that, the multiplication factors for symbol <sym_lhs> 

and symbols in grammar3 are affected by the newly-added non-terminal. The 

multiplication factors for symbols in grammar2 will not change. 

Therefore: 
 
factorList_new 
  = factor (grammar ++ [(“<x>”, n)]) 
 
  = factor (grammar2 ++ [(“<sym_lhs>”, k)] ++ grammar3 ++ 
    [(“<x>”, n)] ) 
     
  = factor grammar2 ++ factor [(“<sym_lhs>”, k)] ++ 
    factor grammar3 ++ factor [(“<x>”, n)] 
   
  = [c] ++ factor [(“<sym_lhs>”, k)] ++ 
    factor grammar3 ++ factor [(“<x>”, n)] 
         ([c] is a list including previously calculated 
          values representing the multiplication factors for 
          the symbols in grammar2 which do not change.  
          By the hypothesis, the multiplication factors for 
          the symbols of the grammar have all been 
          calculated correctly.) 
           
  = [c] ++ [(occur_lhs[(“<sym_lhs>”, k)]) /  
            (subsize [(“<sym_lhs>”, k)])] ++ 
    factor grammar3 ++ factor [(“<x>”, n)]         (line 25) 
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         (The multiplication factor of a LHS symbol is 
          obtained by dividing the number of occurrences of 
          the symbol on the left hand side of the rule by  
          its sub-language size of that symbol.) 
           
  = [c] ++ [d]++ factor grammar3 ++ factor [(“<x>”, n)] 
         (d is a known value. The number of occurrences for  
          the LHS symbol <sym_lhs> is available from above  
          proof for occur_lhsList_new. The sub-language  
          size for the symbol <sym_lhs> is available in step  
          2.) 
 
  = [c] ++ [d] ++ [e] ++ factor [(“<x>”, n)]      (line 26) 
         ([e] is a list including known values.  
          grammar3 is a list including the RHS symbols of 
          the affected rule. From line 26, the  
          multiplication factors for the RHS symbols are the  
          same as that of the LHS symbol. Therefore, each  
          item in list [e] has the value d, which is the  
          multiplication factor of symbol <sym_lhs>. 
           
  = [c] ++ [d] ++ [e] ++ factor [(“<y>”, n)]      (line 26) 
         (<y> is the LHS non-terminal of the same rule as  
          the newly-added symbol, <x>) 
           
 
  = [c] ++ [d] ++ [e] ++ [f] 
         (f is a known value, which is the multiplication  
          factor of the symbol <y>.) 

       (by the hypothesis, multiplication factors for the 
        symbols of the grammar have been all calculated  
        correctly. And the multiplication factor for <y>  
        is not affected, let it be f. ) 

Lists [c], [d], [e], and [f] include correct multiplication factors for the n 

symbols and the newly-added symbol. Therefore, list [c]++[d]++[e]++[f] 

includes correct multiplication factors for the symbols of the grammar and the 

algorithm correctly calculates the multiplication factors for the symbols of the 

grammar and the new symbol. 

Therefore, when adding one symbol on the Right-Hand-Side of the rule, the 

algorithm correctly calculates the number of occurrences for the left-hand-side 
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symbols and the multiplication factors for the right-hand-side symbols of the 

grammar.  

2. When adding a new rule to the grammar, the algorithm correctly calculates the 

number of occurrences for the left-hand-side symbols of the grammar, i.e., the 

new list of the number of occurrences for left-hand-side symbols of the grammar 

will be obtained successfully,   

occur_lhsList_new = occur_lhs (grammar ++ newRule)  

Also, the multiplication factors for the right-hand-side symbols of the grammar will 

be calculated correctly,  

factorList_new = factor (grammar ++ newRule) 

The new rule is expressed in list as follows: 

newRule = [(“<new_r>”, n), (x, (n+k))],  

where x is an expression of alternative(s) and/or sequence(s) of terminal(s) 

and/or non-terminal(s). The indexes for <new_r> and x are n and (n+k), k≥1, 

respectively. 

Note that, the non-terminals on the right hand side of the newly-added rule 

cannot be new because the algorithm should be “proper” (section 2.5), which 

means every non-terminal has to be properly defined (appear on the left hand 

side of the rule). So, it is not allowed to include any new non-terminal on the right 

hand side of the newly-added rule without further definition for it. 

There are two cases while adding a new rule. 

1) There are only terminal(s) on the right hand side of the new rule. In this case, 

the newly-added rule will not affect the number of occurrences for other LHS 

symbols and the multiplication factors for other RHS symbols of the grammar. 
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occur_lhsList_new  
  = occur_lhs (grammar ++ newRule)  

 
  = occur_lhs grammar ++ occur_lhs newRule         
                   (line 23 & definition of “++” and “:”) 
   
  = occur_lhsList++ occur_lhs [(“<new_r>”, n), (x, (n+k))]        
                                              (hypothesis) 
 
  = occur_lhsList ++ occur_lhs [(“<new_r>”, n)] ++  
    occur_lhs [(x, (n+k))]     
                    (line 23 & definition of “++” and “:”) 
 
  = occur_lhsList ++ occur_lhs [(“<new_r>”, n)] ++ [0]                    
                                                  (line 22) 
 
  = occur_rhsList ++ [sumList [(occur_rhsList!h) *   
                               ((factor [(y, h)]) !0)|  
                               (y,h) <- grammar;  
                                y = <new_r>; 
                                isRHS !h ]  
                  ++ [0]                           (line 21) 
       (The number of occurrences for a LHS symbol is the  
        sum of all the instances of that symbol occurring on  
        the RHS of all rules, each multiplied by the  
        multiplication factor.) 
 
 
  = occur_lhsList ++ [sumList [d*e]] ++ [0] 
       (d and e are known values representing the number of  
        occurrences and the multiplication factor for the  
        RHS symbol. 
        From step 3, the number of occurrences for RHS   
        symbols are available.  
        By the hypothesis, the multiplication factors for  
        the RHS symbols of the grammar are correctly  
        calculated.) 
 
 = occur_lhsList ++ [f] ++ [0]      (definition of sumList) 

                                     (f is a known value) 

By the hypothesis, list occur_lhsList includes correct values for the number 

of occurrences of the LHS symbols. Lists [f] and [0] include correct values 

of the number of occurrences of the LHS symbols. Therefore, list 

occur_lhsList++[f]++[0] includes correct values of the number of 
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occurrences of the symbols of the grammar and the new rule. And the algorithm 

correctly calculates the values of the number of occurrences of the symbols of 

the grammar and the newly-added rule. 

factorList_new  
  = factor (grammar ++ newRule)  
 
  = factor grammar ++ factor newRule         

                   (line 27 & definition of “++” and “:”) 
 
  = factorList ++ factor [(“<new_r>”, n), (x, (n+k))]                      
                                                (hypothesis) 
  
  = factorList ++ factor [(“<new_r>”, n)] ++ 
         factor [(x, (n+k))]      
                      (line 27 & definition of “++” and “:”) 
   
  = factorList ++ [(occur_lhs [(“<new_r>”, n)])!0 /  
                                 (subsizeList!n)] 
                    ++ factor [(x, (n+k))]         (line 25) 
         (The multiplication factor of a LHS symbol  
          is obtained by dividing the number of occurrences   
          of the symbol on the left hand side of the rule by  
          its subsize of that symbol.) 
 
   
= factorList ++ [c] ++ factor [(x, (n+k))] 
          (c is a known value. 
           The number of occurrences of the LHS symbol  
           “<new_r>” is available in the above proof for  
           occur_lhs. 
           The subsizeList is available in step 2.) 
 
  = factorList ++ [c] ++ [d]                       (line 26) 
          (list [d] includes known values that represent  
           the multiplication factors for the RHS symbols of  
           the new rule. The multiplication factors for the  
           RHS symbols are the same as that of the LHS  
           symbol, i.e., c.) 

By the hypothesis, the list factorList includes correct multiplication factors for 

the n symbols of the grammar. Lists [c] and [d] include correct multiplication 

factors for the symbols of the newly-added rule. Therefore, list 

factorList++[c]++[d] includes correct multiplication factors for the n 
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symbols of the grammar and the new rule. And the algorithm correctly calculates 

the multiplication factors for the symbols of the grammar and the newly-added 

rule. 

Therefore, adding one new rule with only terminals on the right hand side, the 

algorithm correctly calculates the number of occurrences for the left-hand-side 

symbols and the multiplication factors for the right-hand-side symbols of the 

grammar.  

2) The right hand side of the new rule includes non-terminal(s). In this case, the 

newly-added rule will affect the number of occurrences of the LHS symbol(s) and 

the multiplication factors for the rule(s) where the non-terminal(s) (on the right 

hand side of the new rule) appear on the left hand side of the rule(s). The 

number of occurrences and the multiplication factors for other symbols will not 

change. So, if the values of the number of occurrences and the multiplication 

factors for the new rule and the affected symbol(s) are calculated correctly, the 

algorithm calculates the number of occurrences for the LHS symbols and the 

multiplication factors for the RHS symbols of the grammar correctly. 

Suppose the affected LHS symbol(s) are in list sym_lhs, and the RHS symbol(s) 

of the affected rule(s) are in list sym_rhs. Note that, list sym_lhs actually 

includes the same non-terminals of the right hand side of the new rule. The other 

symbols of the grammar are in list grammar1.  And the number of occurrences 

and the multiplication factors for the symbols in grammar1 will not change. 

Therefore: 
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occur_lhsList_new  
  = occur_lhs (grammar ++ newRule)  
 
  = occur_lhs (grammar1 ++ sym_lhs ++ sym_rhs ++ newRule) 
 
  = occur_lhs grammar1 ++ occur_lhs sym_lhs ++ 
    occur_lhs sym_rhs ++  
    occur_lhs [(“<new_r>”, n), (x, (n+k))] 
                      (line 23 & definition of “++” and “:”) 
   
  = [c] ++ occur_lhs sym_lhs ++ occur_lhs sym_rhs  ++  
     occur_lhs [(“<new_r>”, n)] ++ occur_lhs [(x, (n+k))] 
          ([c] is a list including previously calculated 

values of the number of occurrences for the LHS 
symbols. 

           By the hypothesis, the number of occurrences for 
the LHS symbols of the grammar have all been 
correctly calculated. And that for the list 
grammar1 are not affected by the newly-added 
rule.) 

    
  = [c] ++ occur_lhs sym_lhs ++ [0] ++  
    occur_lhs [(“<new_r>”, n)] ++ occur_lhs [(x, (n+k))]   
                                                  (line 22) 

(For RHS symbols, the values of the number of 
occurrences for LHS symbols are 0.) 

 

  = [c] ++ [sumList [(occur_rhsList !h) *  
                   ((factor [(y, h)])!0) ] 
     ++ [0] ++ 

       occur_lhs [(“<new_r>”, n)] ++ occur_lhs [(x, (n+k))] 
                                                  (line 21) 

       (The number of occurrences for a LHS symbol is the 
sum of all the instances of that symbol occurring 
on the RHS of all rules, each multiplied by the 
multiplication factor.) 

 
  = [c] ++ [sumList [d * e]] ++ [0] ++ 
     occur_lhs [(“<new_r>”, n)] ++ occur_lhs [(x, (n+k))] 

       (d and e are known values representing the number 
of occurrences and the multiplication factor for 
the RHS symbols. 

        From step 3, the number of occurrences for RHS 
symbols is available.  

       By the hypothesis, the multiplication factors for 
the RHS symbols of the grammar are correctly 
calculated.) 
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  = [c] ++ [f] ++ [0] ++ 
     occur_lhs [(“<new_r>”, n)] ++ occur_lhs [(x, (n+k))] 

                                  (definition of sumList) 
                                     (f is a known value) 

  = [c] ++ [f] ++ [0] ++ 
  [sumList [(occur_rhsList !j)*((factor [(y, j)]) !0) ] 
  ++ occur_lhs [(x, (n+k))] 
       (The number of occurrences for a LHS symbol is the 

sum of all the instances of that symbol occurring 
on the RHS of all rules, each multiplied by the 
multiplication factor.) 

  
  = [c] ++ [f] ++ [0] ++ 

  [sumList [ r*t ]] ++ occur_lhs [(x, (n+k))] 
       (r and t are known values representing the number 

of occurrences and the multiplication factor for 
the RHS symbols. 

        From step 3, the number of occurrences for RHS 
symbols is available.  

        By the hypothesis, the multiplication factors for 
the RHS symbols of the grammar are correctly 
calculated.) 

 
  = [c] ++ [f] ++ [0] ++ 
    [s] ++ occur_lhs [(x, (n+k))]     (definition of sumList) 

                                      (s is a known value) 
 
  = [c] ++ [f] ++ [0] ++ [s] ++ [0]                 (line 22) 

      (For RHS symbols, the values of the number of 
occurrences for LHS symbols are 0.)          

Lists [c], [f], [0], [s], and [0] include the correct values for the 

number of occurrences of the LHS symbols of the grammar and the newly-added 

rule with non-terminals on the right hand side of the rule. Therefore, list 

[c]++[f]++[0]++[s]++[0] includes correct values of the number of 

occurrences for the LHS symbols of the grammar and the new rule. And the  

algorithm correctly calculates the number of occurrences for the LHS symbols of 

the grammar and the newly-added rule with non-terminals on the right hand side 

of the rule. 

Therefore: 
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factorList_new  
  = factor (grammar ++ newRule)  
 
  = factor (grammar1 ++ sym_lhs ++ sym_rhs ++ newRule) 
 
  = factor grammar1 ++ factor sym_lhs ++ factor sym_rhs ++  
    factor [(“<new_r>”, n), (x, (n+k))] 
                      (line 27 & definition of “++” and “:”) 
 
  = [c] ++ factor sym_lhs ++ factor sym_rhs ++  
     factor [(“<new_r>”, n)] ++ factor [(x, (n+k))] 
          ([c] is a list including previously calculated 

multiplication factors for the symbols. 
           By the hypothesis, the multiplication factors for 

the symbols of the grammar have all been 
correctly calculated. And that for the list 
grammar1 are not affected by the newly-added 
rule.) 

 
  = [c] ++ [(occur_lhs sym_lhs) / (subsize <sym_lhs)] ++ 
    factor sym_rhs  ++  
    factor [(“<new_r>”, n)] ++ factor [(x, (n+k))] 
                                               (line 25) 

        (The multiplication factor of a LHS symbol is 
obtained by dividing the number of occurrences 
of the symbol on the left hand side of the rule 
by its sub-language size of that symbol.) 

 
  = [c] ++ [d] ++ factor sym_rhs ++  
    factor [(“<new_r>”, n)] ++ factor [(x, (n+k))] 

        (d is a known value. 
         The number of occurrences for the LHS symbols in 

list sym_lhs is available from above proof for 
occur_lhsList_new.  

         The subsizes for the symbols in list  
sym_lhs are available in step 2.) 

 
  = [c] ++ [d] ++ [e] ++  
    factor [(“<new_r>”, n)] ++ factor [(x, (n+k))] 
                                                    (line 26) 
           ([e] is a list including known values 

representing the multiplication factors of the 
affected RHS symbols.  

            sym_rhs is a list including the RHS symbols of 
the affected rule(s). From line 26, the 
multiplication factors for the RHS symbols are 
the same as that of the LHS symbol. ) 
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  = [c] ++ [d] ++ [e] ++ [(occur_lhs [(“<new_r>”, n)] / 
                        (subsize [(“<new_r>”, n)])] 
                      ++ factor [(x, (n+k))]      
                                                   (line 25) 

        (The multiplication factor of a LHS symbol is 
obtained by dividing the number of occurrences 
of the symbol on the left hand side of the rule 
by its subsize of that symbol.) 

 
  = [c] ++ [d] ++ [e] ++ [f] ++  factor [(x, (n+k))]     

        (f is a known value. 
          The number of occurrences for the LHS symbol 

<new_r> is available from above proof for 
occur_lhsList_new.  

         The sub-language size for the symbols is 
available in step 2.) 

 
  = [c] ++ [d] ++ [e] ++ [f] ++ [g]     
          ([g] is a list including known values, 
           representing the multiplication factors of the  
           RHS symbols of the new rule.  
           From line 26, the multiplication factors for the  
           RHS symbols are the same as that of the LHS  
           symbol. ) 

Lists [c], [d], [e], [f], and [g] include correct multiplication factors of 

the symbols. List [c]++[d]++[e]++[f]++[g] includes correct multiplication 

factors of the symbols and the new symbol. 

Therefore, the algorithm correctly calculates the multiplication factors of the 

symbols of the grammar and the newly-added rule with non-terminals on the right 

hand side of the rule. 

Therefore, when adding a new rule to the grammar, the algorithm correctly 

calculates the number of occurrences for the left-hand-side symbols and the 

multiplication factors for the right-hand-side symbols of the grammar.  
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(5) Proof of correctness for step 5, step 6, and step 7 (lines 30 – 33): 

These steps use the intermediate results from the above four steps (steps 1 to 4) 

with arithmetic calculation based on the definition of the Average Branching 

Factor (in section 2.4). Since we have proved the correctness of the steps 1 to 4, 

steps 5 to 7 are correct. 

3.5 Proof of Complexity 

We consider the worst-case time complexity for the ABF algorithm with respect to 

the size of the grammar. 

We assume the following operations require a constant amount of time.  

(1) Arithmetic basic operation: +, -, *, /. 

(2) Comparison operation: >, ≥, <, ≤, =. 

(3) Logic operation: and, or, not. 

(4) Assignment expression. 

(5) Reading in a character from a text file. 

Since there are seven steps in the algorithm ABF which are executed in 

sequence, the worst of the time complexity among the seven steps will be the 

worst-case time complexity for the algorithm ABF. 

Referring to the Miranda code in section 3.2, the worst-case time complexity for 

the algorithm ABF is analyzed for each component function (steps of the 

algorithm). Suppose there are n symbols in the grammar, i.e., the length of the 

list grammar is n, the worst-case time complexity is analyzed as follows: 

1) Worst-case time complexity for step 1 (component function bf, lines 1 –  7): 

Step 1 calculates the branching factors for all of the symbols of the grammar and 

the results are stored in the list bfList. 
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Line 5 deals with the list grammar by processing elements (symbols) one by one. 

In each round of iteration, one symbol is processed and the length of the 

grammar list decreases by 1 until it reaches 0. Therefore, it takes O(n) time to 

deal with the n symbols of the grammar. Then we need to consider the cost of 

calculating the branching factor for each symbol, which occurs in lines 1, 2, 3, 

and 4. 

Lines 1 and 2 are base cases of the component function bf, which return 

constant values and execute in constant time O(1). 

Line 3 searches the grammar list to find a non-terminal and returns its branching 

factor. There are n symbols in the grammar. In the worst case, the search of the 

grammar list will take O(n) time. Also, it may mutually recursive call the 

component function bf in Line 4. 

Line 4 calls line 6 to sum up the branching factors for all leftmost-alternatives of 

the rule, which costs O(n) time.  

Line 7 runs the whole program. 

The maximum cost for calculating the branching factor for one symbol involves 

the recursive calls in lines 3 and 4, which costs O(n*n) time. Therefore, the worst-

case time complexity for step 1 to calculate the branching factors for n symbols of 

the grammar is O(n* n*n) = O(n3) . 

2) Worst-case time complexity for step 2 (component function subsize, lines 8 

– 14): 

Step 2 calculates the subsizes for all symbols of the grammar and the results are 

stored in the list subsizeList. 

Line 12 deals with the list grammar by processing elements (symbols) one by 

one. In each round of iteration, one symbol is processed and the length of the list 
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decreases by 1 until it reaches 0. Therefore, it takes O(n) time to deal with the n 

symbols of the grammar. Then we need to consider the cost for calculating the 

subsize for one symbol, which occurs in lines 8, 9, 10, and 11. 

Lines 8 and 9 are base cases for the component function subsize, which return 

constant values and execute in constant time O(1). 

Line 10 searches the grammar list to find a non-terminal and returns its subsize 

for the current symbol. The search in grammar list takes O(n) time. Also, it 

mutually recursive calls the algorithm in line 11. 

Line 11 calls line 6 and line 13 to sum the product of the subsizes of all the 

sequences of the rule. The worst-case cost for sumList and productList is O(n) 

each. The cost for line 11 is O(n*n). 

Line 14 runs the whole program. 

The maximum cost for calculating the subsize for one symbol involves the mutual 

recursive calls in lines 10 and 11, which take O(n*n*n) time. Therefore, the worst-

case time complexity for step 2 to calculate the subsizes for n symbols of the 

grammar is O(n* n*n*n) = O(n4) . 

3) Worst-case time complexity for step 3 (component function occur_rhs, lines 

15 – 18): 

Step 3 calculates the number of occurrences for the symbols on the Right Hand 

Side of the rules and the results are stored in the list occur_rhsList. 

Line 17 deals with list grammar by processing elements (symbols) one by one. In 

each round of iteration, one symbol is processed and the length of the list 

decreases by 1 until it reaches 0. Therefore, it takes O(n) time to deal with the n 

symbols of the grammar. Then we need to consider the cost for calculating the 

number of occurrences for one RHS symbol, which occurs in lines 15 and 16. 
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Line 15 is the base case for the component function occur_rhs, which returns a 

constant value and executes constant time O(1). 

Line 16 calls the function productList (line 13) to calculate the number of 

occurrences for one RHS symbol by calculating the product of the subsize of 

each RHS symbol in the sequence. The subsizeList is available in step 2. 

Function productList(line 13) costs O(n) time. 

The maximum cost of calculating the number of occurrences for one RHS symbol 

occurs in line 16, which takes O(n) time. Therefore, the worst-case time 

complexity for step 3, to calculate the number of occurrences for all the RHS 

symbols of the grammar, is O(n* n) = O(n2) . 

4) Worst-case time complexity for step 4 (component function occur_lhs and 

factor, lines 19 – 28): 

Step 4 calculates the number of occurrences for each symbol on the left hand 

side of the rules, and calculates the multiplication factors for the symbols on the 

right hand side of the rules. 

Referring to the program in sub-section 3.2, lines 23 and 27 deal with list 

grammar for the number of occurrences for LHS symbols and multiplication 

factors for RHS symbols by processing elements (symbols) one by one. In each 

round of the iteration, one symbol is processed and the length of the list 

decreases by 1 until it reaches 0. Therefore, the component functions 

occur_lhs and factor both need O(n) time to deal with the n symbols of the 

grammar. Then we need to consider the cost for processing one symbol in the 

two component functions, which occurs in lines 19, 20, 21, 22, 24, 25, and 26. 

Lines 19 and 20 are base cases of the component function occur_lhs, which 

return constant values and execute in constant time O(1).  
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In line 22, the component function occur_lhs directly returns a constant value 

with a cost of constant time O(1). 

Line 21 calls the function sumList to sum the number of occurrences of the 

RHS symbols, each multiplied by its multiplication factor. The function sumList 

takes O(n) time. The number of occurrences of the RHS symbols are available in 

step 3, so it needs constant time to retrieve the value (occur_rhsList !h).  

The calculation for multiplication factor occurs in lines 24, 25, and 26. In line 24, 

the component function factor returns a constant value at a cost of constant 

time O(1). Line 26 searches grammar list for the LHS symbol in the same rule as 

the current symbol and returns its multiplication factor, which costs O(n) time in 

the worst case.  

The multiplication factor for each LHS symbol is calculated from the number of 

occurrences of the LHS symbol divided by its subsize (in line 25). Line 25 

invokes recursion by calling component function occur_lhs. Since the grammar 

is non-recursive, each recursive call occurs in component function occur_lhs 

and factor will call for a different symbol. There are n symbols in the grammar, 

so the recursion will occur O(n) times.  

In step 4, the two component functions occur_lhs and factor are mutually 

recursive. The maximum cost for manipulating one symbol in step 4 occurs in 

lines 21, and 25, or line 26, which costs O(n*n) time in the worst case. Therefore, 

the worst-case time complexity for step 4 to calculate the number of occurrences 

for all the LHS symbols and the multiplication factors for the RHS symbols of the 

grammar is O(n* n * n) = O(n3) . 

5) Worst-case time complexity for step 5: 

Step 5 goes through all the symbols of the grammar and labels the decision 

points. There are n symbols in the grammar. The worst-time complexity for step 5 

is O(n). 
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6) Worst-case time complexity for step 6: 

Step 6 tabulates the obtained values for the decision points. For a grammar with 

n symbols, the worst-time complexity for step 6 is O(n).  

7) Worst-case time complexity for step 7: 

Step 7 involves basic arithmetic operations, which have a worst-case time 

complexity of O(1).  

In summary, the worst-case costs for steps 1 to 7 are: O(n3), O(n4), O(n2), O(n3), 

O(n), O(n), and O(1) respectively. The seven steps are executed in sequence in 

the ABF algorithm. Therefore, the worst-case time complexity for the algorithm 

ABF is the maximum cost of the seven steps, i.e., O(n4). 
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4.  SEMANTIC CONSTRAINT GRAMMARS (SCG) 

As discussed in sub-sections 1.2.2 and 2.4, several researchers have argued 

that grammars with lower ABFs are likely to have better recognition accuracy 

than those with higher ABFs (Hauptmann et. al., 1988), (Young et. al., 1989), 

(Young, 1990), (Waibel and Lee, 1990), (Edelkamp and Korf, 1998), and 

(Morimoto and Takahashi, 2008, 2009).  In this section, we provide further 

evidence that this is the case by modifying a grammar to syntactically encode 

semantic constraints, and thereby reduce language size and ABF, and then we 

compare the ABFs of the original grammar and the “semantically constrained” 

version of it with experimental results of speech recognition accuracy which were 

obtained as part of the candidate’s Master’s work (Shi, 2003b). 

We begin by defining context-free grammars and semantic constraint grammars, 

and provide examples of each of them. We then analyze the two grammars using 

various grammar metrics including the ABF. We compare the results of the 

analysis with the results of the experiment conducted as part of the Master’s work. 

We conclude that encoding semantic constraints in the syntax of a grammar 

reduces the ABF and increases speech recognition accuracy. This work supports 

the claim that semantic constraint grammars may be a useful approach in speech 

recognition grammar design. The work also adds evidence to the claim, made by 

others, that the ABF is a good indicator of speech recognition accuracy.  
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4.1 Context-Free Grammars (CFG) 

A grammar defines a language by identifying the set of valid sequences of 

terminals (sentences of the language). Formally, a Context Free Grammar (CFG) 

G is a quadruple G = (N, T, P, S), where: 

(1) N is a finite set of non-terminal symbols,  

(2) T is a finite set of terminal symbols, N ∩ T = Ø, 

(3) P is a finite set of production rules,  

       (P: <N> =(N  T) * ), 

(4) S is the start symbol, S  N. 

A rule in a CFG has a non-terminal symbol representing a single atomic 

grammatical category on the left-hand side, and a sequence of non-terminals and 

terminals (words) on the right-hand side (Moore, 1999) and (Amaya et al., 1999). 

The single non-terminal on the left-hand side of a CFG rule can be freely 

replaced by the right-side symbols, and this gives rise to the name “Context-Free 

Grammar” (Blackburn and Striegnitz, 2002). 

Figure 4.1.1 shows a sample CFG grammar written in JSGF (Sun, 2000), which 

defines a language including sentences, such as a boy opened the door. 

<S> = <NP> <VP>;              

<NP> = <Det> <N>;        

<VP> =  <V> <NP>;          

<Det> = the | a;                   

<N> = boy | door | window;                  

<V> = opened | closed;              

  
      Figure 4.1.1: a sample CFG 
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4.2 Semantic Constraint Grammars (SCG) 

Language features have been effectively studied and applied in language models 

to improve speech-recognition performance by reducing the number of possible 

utterances and prioritizing utterance hypotheses. Takezawa et al. (1991) state 

that the accuracy of speech recognition heavily depends on the type of linguistic 

knowledge used.  Seneff et al. (1995), Hermannsdottir (1996), Moore (1999), and 

Harper et al. (2000) claim that “good” language features are necessary to 

achieve high accuracy in speech recognition with moderate to large vocabularies 

(hundreds to tens of thousands of words). 

Syntax and semantics are two important linguistic components. Syntax defines 

the way in which linguistic elements (words) are put together to form constituents 

(as phrases or clauses). Semantics is concerned with meaning. It is possible that 

a sentence is syntactically correct but semantically incorrect. For example, the 

sentence a window closed a door is syntactically correct, with respect to 

the grammar above in Figure 4.1.1, because it complies with the syntax of  

           <s> = <NP> <VP>; 

However, it does not make sense in the real world. Therefore, it is reasonable to 

expect that the exclusion of the semantically incorrect utterances (although may 

be syntactically correct) in a speech application may improve the recognition 

accuracy. 

 A Unification Grammar (UG) is an augmented or annotated Context-Free 

Grammar (CFG) by applying some restriction properties to a CFG in a syntactic 

notation. With the constraints unified to the grammar, a UG is more expressive 

and more concise than a traditional CFG in representing semantics (Moore, 

1999). With the constraints, a UG can help reduce the system’s perplexity, hence 

improve the recognition accuracy. 

The following is an example rule of a UG from (Moore, 1999): 
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S: [tensed=yes]  NP: [person=P, num= N]   

                   VP: [tensed=yes, person=P, num=N] 

This example illustrates the use of feature constraints by a UG (such as, 

person=P, num=N). Thus, the UG guarantees that the person and number 

features of Noun Phrase (NP) and Verb Phrase (VP) must agree with 

each other. For example, the sentence He is a student is correct by this 

grammar, whereas the sentence He are students is not.  

Frost (2002) proposed a Semantic Constraint Grammar (SCG), which encodes 

semantic constraints directly in the syntax of a traditional Context-Free Grammar 

(CFG). The integration of semantic constraints in the syntactic rules naturally 

reduces the language size, therefore should improve speech-recognition 

accuracy. For example, the query which moon discovered mars may be 

accepted by a simple CFG, which is initially used to define a language for a 

database query processor, which includes the rule: 

<question> = which <nounphrase> <verbphrase>; 

However, in the specified domain, moons cannot discover mars. Therefore, this 

query is syntactically correct, but semantically incorrect. We can replace the 

syntactic rule above with a SCG rule as follows: 

<question> = 

    which <animate_nounphrase> <animate_verbphrase> 

  | which <inanimate_nounphrase> <inanimate_verbphrase>; 

This SCG rule requires the agreement of animate_nounphrase with 

animate_verbphrase and inanimate_nounphrase with 

inanimate_verbphrase. Therefore, the example query which moon 

discovered mars will not be accepted by the SCG because the inanimate 

noun moon needs an inanimate verb phrase while discovered mars is an 
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animate verb phrase. In this way, semantically incorrect utterances are excluded 

by the SCG, and the perplexity of the language is reduced, so that speech-

recognition accuracy is improved. 

The disadvantage of the SCG is the increase in the size of the grammar, owing to 

the inclusion of semantic constraints in the syntax. The larger size of the 

grammar implies more difficulty in grammar design and makes the speech 

system more difficult to maintain. However, this disadvantage can be overcome 

to some extent by subdividing a large complex SCG grammar into small SCGs 

covering smaller domains. This technique is discussed in section 6, with respect 

to a Public Domain SpeechWeb, in which several applications covering small 

domains with small SCGs are hyperlinked, so that the user can “browse” a 

SpeechWeb by navigating through a web of hyperlinked small speech 

applications.  

4.3 An Example of a CFG and a Related SCG 

To further explain and compare Context-Free Grammars (CFGs) and Semantic 

Constraint Grammars (SCGs), we present examples next. 

The sample CFG and SCG are constructed for the same domain (the very small 

subset of the Solar System), with similar vocabularies. However, the SCG 

defines a smaller language than that defined by the CFG. Although both 

languages include queries such as who discovered phobos, which moon 

orbits mars, etc. However, as discussed in sub-section 4.2, a query such as 

which moon discovered mars is covered by the CFG but is not covered by 

the SCG.  

The example CFG and SCG are written in Java Speech Grammar Format (JSGF) 

(Sun, 2000). 
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4.3.1 The example CFG 

The example CFG (Figure 4.3.1) defines three types of queries with respect to 

the solar system and a group of simple greetings as follows:  

(1) The queries starting with the linking verbs, such as is earth a 

planet and is mars discovered by hall. 

(2) Questions starting with general question words, such as does titan 

orbit mars or did bernard discover jupiter. 

(3) Queries starting with special question words such as:  how many 

moons orbit jupiter or which moons orbit Jupiter. 

(4) The CFG also includes some simple greetings, such as hello, and 

goodbye. 

Note that, the following queries will also be accepted by the CFG grammar for 

their correct syntax, even though they are semantically incorrect:  

          which man orbits titan?   

          which moon discovered earth?  

An example CFG in JSGF format is shown in Figure 4.3.1. We include the rule 

numbers for reference, although they are not part of the JSGF notation. 
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/* solar_CFG.gram */ 
grammar solar_CFG ; 

1. public <s>  

      = <linkingvb> <termph> [<transvb> by] <termph> 

      | <linkingvb> <termph> <termph>  

      | <quest> <sent> 

      | (who |what) <verbph> 

      | (which | how many) <nouncla> <verbph> 

      | <simple>; 

2. <sent>  

      = <termph> <verbph>; 

3. <termph>  

      = <stermph>  

      | <stermph> (and | or) <stermph>;  

4. <stermph> 

      = <pnoun>  

      | <detph>; 

5. <verbph>  

      = <transvbph>  

      | <intransvb>;  

6. <transvbph> 

      = (<transvb> | <linkingvb> <transvb> by) <termph>; 

7. <intransvb> 

      = spin | spins | spun | exist | exists | existed; 

8. <transvb>    

       = orbit | orbits | orbited | discover | discovers  

       | discovered | find | finds | found; 

9. <detph> = <det> <nouncla>; 

10. <nouncla>  

       = <adj> <cnoun>  

       | <cnoun>; 

11. <cnoun>    
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       =  people | planet | moon; 

12. <pnoun>   

       = bernard | bond | cassini | dollfus | fountain  

       | galileo | hall | herschel | huygens | kowal  

       | kuiper | arsen | lassell | melotte | nicholson  

       | perrine | pickering | earth | jupiter | mars  

       | mercury |  neptune | pluto | saturn | uranus  

       | venus | almathea | ariel |callisto | charon  

       | deimos | dione | enceladus | europa | ganymede  

       | hyperion | iapetus | io | janus | jupitereighth  

       | jupitereleventh | jupiterfourteenth | jupiterninth    

       | jupiterseventh | jupitersixth | jupitertenth  

       | jupiterthirteenth | jupitertwelfth | luna | mimas  

       | miranda | nereid | oberon | phobos | phoebe | rhea   

       | saturnfirst | tethys | titan | titania | triton  

       | umbriel; 

13. <det> 

       = a | an | every | one | two | three | four; 

14. <adj> 

       = red | atmospheric; 

15. <linkingvb>  

       = is | was | are | were ; 

16. <quest>  

       = did | do | does; 

17. <simple>  

       = hello | hi there | how are you | fine, thanks  

       | goodbye | bye- bye ; 

Figure 4.3.1: example CFG with the domain of the Solar system 

 

 



4. Semantic Constraint Grammars (SCG) 
 

124 
 

4.3.2 The example SCG 

As discussed in sub-section 4.2, a SCG specifies semantics as well as syntax by 

encoding semantic constraints in the syntactic rules. The example SCG given 

below in Figure 4.3.2 is defined with the same domain (the small subset of the 

solar system) and a similar dictionary to the CFG in Figure 4.3.1. Similar to the 

CFG, the SCG also covers three types of queries in the solar system and a group 

of simple greetings as follows:  

(1) Queries starting with the linking words. For example, was mars 

discovered by Hall, or is jupiter a planet. 

(2) Queries starting with general question words, such as, did hall 

discover mars, and does titan orbit earth. 

(3) Queries starting with special question words, such as how many 

moons orbit earth, or who discovered jupiter. 

(4) Simple greetings like hello and goodbye.  

Figure 4.3.2 shows that a SCG grammar requires semantic agreement among 

the components of each sentence. In particular, some actions can only be 

initiated by or applied to animate objects and some actions can only initiated by 

or applied to inanimate objects. Only when the components of an action agree in 

semantics as well as syntax, is the sentence covered by the SCG grammar as a 

correct utterance. Therefore, the queries such as which moon discovered 

venus will not be accepted by a SCG recognizer.  

The example SCG is given in Figure 4.3.2. The grammar is written in JSGF. The 

rule numbers are included for reference: 
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/* solar_SCG.gram */ 

grammar solar_SCG; 

1. public <s>  

      = <linkingvb> <termphrase_verbphrase> 

      | is <pnoun> <pnoun> 

      | is <pnoun> (a|an) <nouncla>  

      | is <pnoun> (a|an) <nouncla> or (a|an) <nouncla>  

      | <quest> <sent>  

      | (who) <animate_verbph>  

      | (what) <inanimate_verbph>  

      | (which | how many) <nouncla_verbph>  

      | <simple>; 

2. <termphrase_verbphrase>  

      = <nonhuman_termph_planet> <transvb_by_termph> 

      | <nonhuman_termph_moon> <animate_transvb> by    

        <human_termph>; 

3. <transvb_by_termph>  

      = <animate_transvb> by <human_termph>  

      | <inanimate_transvb> by <nonhuman_termph_moon>; 

4. <sent>  

      = <human_termph> <animate_verbph> 

      | <nonhuman_termph_moon> <inanimate_verbph_active> 

      | <nonhuman_termph_planet> <inanimate_verbph_passive>; 

5. <nouncla_verbph>  

      = <human_nouncla> <animate_verbph> 

      | <nonhuman_nouncla_moon> <animate_verbph_passive> 

      | <nonhuman_nouncla_planet> <animate_verbph_passive>  

      | <nonhuman_nouncla_moon> <inanimate_verbph_active>  

      | <nonhuman_nouncla_planet> <inanimate_verbph_passive>; 
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6. <inanimate_verbph>  

      = <inanimate_verbph_active>  

      | <inanimate_verbph_passive>; 

7. <human_stermph>  

      = <human_pnoun>  

      | <human_detph>;   

8. <nonhuman_stermph_planet>  

      = <nonhuman_pnoun_planet>  

      | <nonhuman_detph_planet>;  

9. <nonhuman_stermph_moon>  

      = <nonhuman_pnoun_moon>  

      | <nonhuman_detph_moon>;  

10. <human_termph>  

      = <human_stermph>  

      | <human_stermph> (and|or) <human_stermph>;  

11. <nonhuman_termph_planet> 

      = <nonhuman_stermph_planet> 

      | <nonhuman_stermph_planet> (and|or)   

        <nonhuman_stermph_planet> ; 

12. <nonhuman_termph_moon>  

      = <nonhuman_stermph_moon>  

      | <nonhuman_stermph_moon> (and|or)                                

        <nonhuman_stermph_moon>; 

13.  <animate_verbph>  

      = <animate_transvbph>; 

14. <inanimate_verbph_active>  

      = <inanimate_transvbph_active>  

      | <intransvb>; 

15. <inanimate_verbph_passive>  

      = <inanimate_transvbph_passive>  

      | <intransvb>;  
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16. <animate_verbph_passive>  

      = <linkingvb> <animate_transvb> by <human_termph>; 

17. <animate_transvbph>  

      = <animate_transvb>  

        (<nonhuman_termph_planet> | <nonhuman_termph_moon>); 

18. <inanimate_transvbph_active>  

      = <inanimate_transvb> <nonhuman_termph_planet>;  

19. <inanimate_transvbph_passive>  

      = <linkingvb> <inanimate_transvb> by  

        <nonhuman_termph_moon>;  

20.  <human_detph>  

      = <det> <human_nouncla>;  

21. <nonhuman_detph_planet>  

      = <det> <nonhuman_nouncla_planet>; 

22. <nonhuman_detph_moon>  

      = <det> <nonhuman_nouncla_moon>;  

23. <nouncla>  

      = <human_nouncla>  

      | <nonhuman_nouncla_planet>  

      | <nonhuman_nouncla_moon>; 

24. <human_nouncla>  

      = <human_cnoun>; 

25. <nonhuman_nouncla_planet>  

      = <adj> <nonhuman_cnoun_planet>  

      | <nonhuman_cnoun_planet>;  

26. <nonhuman_nouncla_moon>  

      = <adj> <nonhuman_cnoun_moon>  

      | <nonhuman_cnoun_moon>;          

27. <pnoun>  

      = <nonhuman_pnoun_planet>  

      | <nonhuman_pnoun_moon>  

      | <human_pnoun>; 
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28. <human_cnoun>  

      = people; 

29. <nonhuman_cnoun_planet>  

      = planet; 

30. <nonhuman_cnoun_moon>  

      = moon; 

31. <intransvb>  

      = spin | spins | spun | exist |exists | existed ; 

32. <animate_transvb>  

      = discover | discovers | discovered | find | finds | 

found; 

33. <inanimate_transvb>  

      = orbit | orbits | orbited; 

34. <nonhuman_pnoun_planet>  

      = earth | jupiter | mars | mercury | neptune | Pluto 

      | saturn | uranus | venus ; 

35. <nonhuman_pnoun_moon>  

      = almathea | ariel |callisto | charon | deimos | dione 

      | enceladus | europa | ganymede | hyperion | iapetus  

      | io | janus | jupitereighth | jupitereleventh  

      | jupiterfourteenth | jupiterninth | jupiterseventh  

      | jupitersixth | jupitertenth | jupiterthirteenth  

      | jupitertwelfth | luna | mimas|  miranda | nereid  

      | oberon | phobos | phoebe | rhea | saturnfirst  

      | tethys | titan | titania | triton | umbriel ; 

36. <human_pnoun>  

      = bernard | bond | cassini | dollfus | fountain  

      | galileo | hall | herschel | huygens | kowal | kuiper 

      | larsen | lassell | melotte | Nicholson  

      | perrine | pickering; 

37. <adj>  

      = red | atmospheric; 
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38. <det>  

      = a | an | every | one | two | three | four; 

39. <linkingvb>  

      = is | was | are | were; 

40. <quest>  

      = did | do | does; 

41. <simple>  

      = hello | hi, there | how are you | good, thanks  

      | fine, thanks | have a good day | goodbye | bye-bye; 

Figure 4.3.2: a sample SCG with the domain of the Solar system 
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4.4 Analyze the CFG and SCG Using Grammar Metrics 

To analyze and compare the CFG and the SCG using the grammar metrics 

discussed in section 2, we used the two grammars as input to the ABF 

application described in sub-section 2.9. The results for the grammars given in 

Table 2.9 are shown in Table 4.4 below:  

Table 4.4: grammar metrics of sample CFG and SCG 

Grammar # of 
rules 

# of 
symbols 

# of Non-
terminals 

# of 
Terminals 

# of 
Decision 
Points  

Language 
Size 

ABF 

CFG 17 160 50 110 19 1.73*1011 52.42 
SCG 41 262 133 129 53 1.51*109 33.99 

Table 4.4 shows that: 

(1) The SCG is larger than the CFG.  

With the same domain and the same lexicon, the CFG includes 17 rules, and we 

need 41 rules to define the corresponding SCG. Consequently, the SCG includes 

more symbols than the CFG. For example, the CFG has 160 symbols, which 

include 50 non-terminals and 110 terminals. The corresponding SCG uses 262 

symbols in definition, among which 133 are non-terminals, and 129 are terminals. 

In addition, the SCG has more decision points (i.e., 53) than the CFG (i.e., 19).  

The reason for the larger grammar of SCG than CFG is that the SCG grammar 

includes more constraints than the CFG grammar, which needs more rules and 

symbols (terminals and/or non-terminals) in the definition.  

For example, the CFG (Figure 4.3.1) defines a term phrase as follows: 

3. <termph>  

      = <stermph>  

      | <stermph> (and | or) <stermph>;  
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However, the SCG (Figure 4.3.2) specifies the term phrase with respect to the 

semantic types (constraints), as follows: 

10. <human_termph>  

      = <human_stermph>  

      | <human_stermph> (and|or) <human_stermph>;  

11. <nonhuman_termph_planet> 

      = <nonhuman_stermph_planet> 

      | <nonhuman_stermph_planet> (and|or)   

        <nonhuman_stermph_planet>; 

12. <nonhuman_termph_moon>  

      = <nonhuman_stermph_moon>  

      | <nonhuman_stermph_moon> (and|or) 

        <nonhuman_stermph_moon>; 

In the above example, rule 3 of the example CFG (Figure 4.3.1) includes 6 

symbols, 4 non-terminals, and 2 terminals while defining a term phrase. However, 

the example SCG (Figure 4.3.2) needs 3 rules (rules 10, 11, 12), 18 symbols, 12 

non-terminals, and 6 terminals to define a term phrase.  

Therefore, a SCG may include more symbols (terminals and/or non-terminals) 

than a CFG with the same vocabulary. 

(2) The SCG defines a smaller language than the CFG.  

The size of the language defined by the SCG is 1.51*109, while the language size 

defined by the CFG is 1.73*1011. With the same domain and vocabulary, the 

CFG defines a language 114 times larger than the SCG.  
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(3) The ABF of the SCG is smaller than that of the CFG.  

The results in Table 4.4 show that, with the same domain and the same lexicon, 

the ABF of the SCG (i.e., 33.99) is smaller than the ABF of the CFG (i.e., 52.42), 

which is 35.16% reduction.  

4.5 Results from an Experiment Investigating Speech- Recognition 
Accuracy 

In the Master’s work (Shi, 2003b), we conducted a preliminary experiment to 

investigate the significance of grammar design in speech recognition. In this 

experiment, six grammars and two people (one English male and one non-

English female) were involved. Six grammars were: a semantic grammar, a 

syntactic grammar, a word-sequence grammar, an extended semantic grammar, 

an extended syntactic grammar, and an extended word-sequence grammar. Note 

that, the semantic grammar and the syntactic grammar in the experiment are the 

same grammars in Figure 4.3.2 and Figure 4.3.1 respectively in this report.  

In the experiment, the subjects (people) spoke to the experimental system at a 

normal speed, pronouncing every word as clearly as possible, like a normal user 

to a speech recognition system. We also included the training part in the 

beginning of the experiment so that the subjects were able to get used to the 

testing system and made their pronunciation acceptable to the system in order to 

minimize the effect of the order in which the grammars were tested.  

The testing utterance inputs were categorized into the following three sets:  

(1) a semantics set, which was composed of the questions that were both 

semantically and syntactically correct (e.g., is titania a moon);  

(2) a syntax set, which consisted of the questions that were only 

syntactically correct, but semantically incorrect (e.g., which moon 

discovered mars);  
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(3) a word-sequence set, which covered the utterances that were neither 

semantically nor syntactically correct, they were only word sequences 

(e.g., moon is discovered mars).  

The experiment was carried out using IBM WebSphere Voice Server SDK on 

Windows XP (Home edition). The experiment application was written in 

VoiceXML (VoiceXML Forum, 2004). All experiments were conducted 

consistently in the same experimental location with the same background noise. 

The experimental results were marked as “Correct”, “Incorrect” (“Mis-

recognition”), and “Not Recognized”. The experiments were analyzed with 

respect to each experimental subject for each grammar using each testing 

utterance set. We have included some of the experimental results from (Shi, 

2003b) in sub-section 4.6 of this report and summarize them as follows: 

(1) The semantic grammar has the best recognition accuracy for 

semantically and syntactically correct utterances. It defines the 

smallest language, but is the most complicated grammar. 

(2) The syntactic grammar has the mid performance in accuracy, 

language size, and grammar complexity, among these three types of 

grammar. 

(3) The recognition accuracy of word-sequence grammars is very low, but 

word-sequence grammars are the most robust grammar, and may 

provide some useful information when the user inputs an “unexpected” 

utterance. The grammar of word sequences is the simplest one, which 

covers the largest language. 

4.6 Comparison of ABFs and Speech Recognition Accuracy Results 

Hauptmann et. al. (1988), Young et al. (1989), Young (1990), Waibel and Lee 

(1990), Edelkamp and Korf (1998), and Morimoto and Takahashi (2008, 2009) 

have argued that grammars with lower ABFs are likely to have better recognition 

accuracy than those with higher ABFs. We have presented the first algorithm to 
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correctly compute the ABF directly from a grammar in section 2. In addition, we 

have briefly reviewed the experiment investigating speech recognition accuracy 

in sub-section 4.5. To further compare the ABFs and speech recognition 

accuracy, we will review the results for the ABFs and the investigation of speech 

recognition accuracy in the rest of this sub-section. 

We have applied the ABF algorithm in section 2 to calculate the ABFs and have 

also computed  other grammar metrics (i.e., number of rules, number of symbols, 

number of non-terminals, number of terminals, number of decision points, size of 

the language). The results of applying the ABF algorithm to nine grammars are 

given in sub-section 2.9. We present the results from sub-section 2.9 for the 

grammars that are very similar (with some minor differences in vocabulary) to the 

grammars used in the recognition accuracy experiments in (Shi, 2003b) and 

compare the results. 

Excerpt of Table 2.9: results of applying the ABF algorithm 
No. Grammar # of 

Rules 

# of 

Symbols 

# of Non-

Terminals 

# of 

Terminals 

# of Dec 

Points 

Language 

Size 

ABF 

6 SCG Grammar 

Figure 4.3.2 

41 262 133 129 53 1.51*109 33.99 

7 CFG Grammar  

Figure 4.3.1 

17 160 50 110 19 1.73*1011 52.42 

8 Word-seq Gram 

Appendix E 

12 184 77 107 46 9.14*1019 188.99 

The results show that: 

(1) The SCG is the largest among these three grammars.  

(2) The SCG defines the smallest language among these three 

grammars.  

(3) The ABF of the SCG is the smallest  among these three grammars. 

(4) The word sequence grammar defines the largest language among 

these three grammars. 
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(5) The ABF for the word sequence grammar is the largest among 

these three grammars.  

The experiment of investigating speech recognition accuracy was conducted with 

respect to subjects (users), grammars, and testing full sentence spoken inputs. 

The results were recorded as “Correct”, “Incorrect” (i.e., Mis-recognized), and 

“Not Recognized”. Some experimental results (from Shi, 2003b) are presented as 

follows: 

     Table 7.3.2 (1): the “Correct” feature using the semantics set 

Grammars Person #1 Person #2 Average 

Semantic (SCG) 82.2 68.5 75.35 

Syntactic (CFG) 80.1 52.7 66.4 

Word Sequence   12.3 12.3 

     Table 7.3.2 (2): the “Incorrect” feature using the semantics set 

Grammars Person #1 Person #2 Average 

Semantic (SCG) 4.8 2.7 3.75 

Syntactic (CFG) 15.1 13.7 14.4 

Word Sequence   59.6 59.6 

 

The above data show that if the user asks the queries that are both semantically 

correct and syntactically correct, for both subjects,  

(1) The semantic grammars have the highest correct recognition rate and 

the lowest incorrect recognition (mis-recognition) rate. 

(2) The word-sequence grammar has significantly less accuracy and 

highest mis-recognition rate among these three grammars. 

In summary, Table 2.9 shows that the ABF and the language size decrease in 

the following order: word sequence grammar, CFG, and SCG. Not surprisingly, 

Table 7.3.2 (1) and table 7.3.2 (2) from the experiment show the same order of 
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these grammars for the increase in speech recognition accuracy and the 

decrease in the mis-recognition.  

This result further supports the claim that SCGs may be a useful approach in 

speech recognition design by reducing the ABFs and increasing speech 

recognition accuracy. In addition, this work adds evidence to the claim, made by 

others, that the ABF is a good indicator of speech recognition accuracy. 

4.7 Summary 

In this section we began by describing context-free grammars (CFGs) and 

Semantic Constraint Grammars (SCGs). We then gave an example of a CFG 

and a related SCG. We analyzed the two grammars using our software to 

determine grammar and language size and ABF. We then compared these 

analytic results with experimental results for the two grammars and a word 

sequence grammar that had been obtained previously as part of the candidate’s 

Master’s. The comparison of ABFs and recognition accuracies of the three 

grammars lends further evidence to support the claim, made by others, that the 

ABF is a good indicator of recognition accuracy. 
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5.  AUTOMATIC GENERATION OF SPEECH-RECOGNITION 

GRAMMARS FROM RELATIONAL DATABASE SCHEMAS 

5.1 Related Work and Its Shortcomings 
 

5.1.1 Related work 

Meng and Siu (1999, 2002), Wang and Acero (2003a, 2006) state that creating 

domain-specific grammars has been a major bottleneck in the development of 

spoken-language systems. Grammar creation techniques are classified into the 

following three types: 1) statistical approaches, 2) knowledge-based approaches, 

and 3) combinations of the two.  

Corpus-based statistical approaches have been widely used in grammar creation 

(Meng and Siu, 1999) and (Caskey et al., 2003). The corpus may be annotated 

or un-annotated. The grammar creation algorithms automatically capture patterns 

from the data (Meng and Siu, 2002). The advantages of the statistical approach 

include that the generated grammar can closely represent the real input data 

(Meng and Siu, 2002). The main disadvantage of this approach is the very high 

cost of acquiring the large amount of data needed. 

An alternative approach, sometimes referred to as the “knowledge-based 

approach”, uses experts to design the grammars and subsequently test and 

modify them (Wang and Acero, 2006). However, this incurs another cost – that of 

the expert developer with adequate in-depth knowledge of linguistics and the 

application domain. 

Some research has attempted to combine the statistical and knowledge-based 

approaches (e.g. Wang and Acero, 2001).  

In order to reduce the cost of development of speech-enabled applications, 

researchers have been working for over ten years on tools to facilitate the 
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process, such as, Pargellis et al. (1999), Gavaldà (2000), Glass and Wenstein 

(2001), Wasinge (2001), and Mané and Levin (2005).  

A discussion of this research and a survey of other similar work on automatic 

generation of speech-recognition grammars is given in Appendix B. The following 

is extracted from that survey. 

5.1.2 Shortcomings of related work 

Meng and Siu (1999, 2002) present a statistical data-driven approach for semi-

automatic grammar induction from unannotated corpora within a specific domain.  

They use an iterative procedure to spatially and temporally cluster the 

unannotated words from a corpus of sentences in a restricted domain. When 

words have similar left and right contexts, these words will be grouped together 

by spatially clustering as they may consist of words with similar semantics. The 

temporal clustering groups the words with tend to co-occur sequentially. The 

automatically produced CFG grammars are further manually revised to improve 

quality. 

The shortcomings of this approach are that: 

(1) It is costly to obtain the large domain-specific corpus. 

(2) Even a large amount of data may be “sparse” relative to the target 

grammar as it may not cover all of language constructions. 

(3) The extensive experiments are costly. 

(4) It needs extra effort for post-processing to manually revise the 

generated grammars to improve the quality. The post-processing may 

involve: (a) replacing the non-terminal symbols with semantic 

meaningful labels, (b) consolidating grammar categories of the same 

semantic class, and (c) pruning irrelevant non-terminals and terminals.  
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Xia (2001) presents two systems that automatically generate grammars for 

natural language processing. One system is named LexOrg, which generates 

grammars automatically from several types of specification. The second system 

is called LexTract, which extracts Lexicalized Tree Adjoining Grammars (LTAGs) 

and Context-Free Grammars (CFGs) from Treebanks.  

The generated grammars in (Xia, 2001) are Lexicalized Adjoining Grammars 

(LTAGs) which are based on the Tree-Adjoining Grammar (TAG) formalism that 

is defined by Joshi et al. (1975). Elementary trees are the primitive elements of 

an LTAG grammar. Each elementary tree is anchored by a lexical item. The trees 

can be combined by either substitution or adjunction. Substitution replaces a 

frontier node with another tree whose top node has the same label. Adjunction 

inserts an auxiliary tree into the center of another tree. 

The shortcomings of the work in (Xia, 2001) are as follows: 

(1) The process of grammar generation using LexOrg or LexTract requires 

high linguistic expertise.  

(2) The generated LTAGs are not ready to use for speech applications 

that adapt the widely-used CFG formalism. Although it is possible to 

build a CFG from an LTAG, it requires special tools and extra work to 

accomplish this transformation. 

(3) Xia (2001) describes the advantages of LexTract over LexOrg and 

other traditional grammar construction (e.g., manual grammar writing). 

However, it requires the access to the Treebanks, which may be a 

barrier for some users. 

Wang and Acero (2001, 2005) present a machine-aided grammar authoring 

system that combines the knowledge-based and data-driven approaches. This 

approach uses domain-specific semantics, a library grammar, syntactic 

constraints, and a small amount of semantically annotated example sentences. 
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The work in (Wang and Acero, 2001 and 2005) is similar to our work, but differs 

in some important ways: 

(1) Wang and Acero (2001, 2005) adapt the knowledge-assisted data-

driven statistical modeling to author CFG grammars. We analyze and 

interpret database schemas to generate CFG and SCG grammars. 

(2) Wang and Acero (2001, 2005) use a semantic schema in XML to 

express domain-specific information. The developer needs to have a 

very good understanding of XML to define the semantic classes and 

slots. In our approach, we use a semantic specification to include the 

domain-specific information for grammar generation. Our approach 

requires only a basic knowledge of XML.  

(3) In (Wang and Acero, 2001 and 2005), the developer needs to annotate 

the data with information from the semantic schema in order to reduce 

the search space. The amount of the annotated training data affects 

the quality of the learned grammar, which is not necessary in our  

approach. 

(4) They use a CFG grammar template to generate CFG grammars. We 

have both CFG and SCG grammar templates, the latter of which 

provides better speech-recognition accuracy.  

From our survey (Appendix B), we have observed that there is no existing 

approach for creating grammars easily and cheaply from database schemas. We 

propose a new approach for automatically generating speech-recognition 

grammars from relational database schemas. In our approach, we attempt to 

overcome some of the shortcomings existing in other work. For example, we 

include the work of post-processing in (Meng and Siu, 1999 and 2002) in the 

built-in grammar-generation system as an optimization component to save 

developers’ effort, expedite the grammar development, and improve the quality of 

the generated grammar. We will discuss in detail the new approach in the 

following subsections. 
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5.2 The New Approach 

Seneff (1992), and Wang and Acero (2001) have determined that the high-level 

syntactic structures of many speech-recognition grammars are similar for 

applications of similar type (e.g., database query applications) and differ only in 

the lexicon and in syntactically-expressed semantic constraints. Based on such 

assumption, we propose a new approach for automatically generating speech-

recognition grammars from relational database schemas for database query 

applications.  

We build a syntactic grammar template to express the common parts of the 

recognition grammars for database query processors and create an environment 

through which grammar developers can generate the application-specific part of 

the grammar automatically by entering application-specific data. 

The new approach consists of the following three key components:  

(1) a built-in Grammar Template,  

(2) a built-in Grammar-Generation Engine,  

(3) a user-defined Semantic Specification.  

The Grammar Template and the Grammar-Generation Engine constitute the 

built-in Grammar-Generation System, which are built-in components that 

developers can directly use them. The user-defined Semantic Specification 

provides application-specific information to generate an application-specific 

speech-recognition grammar, which needs developers’ definition.  

We consider two types of grammar generation: CFG grammar generation and 

SCG grammar generation. A SCG is a CFG grammar that encodes semantic 

constraints directly in the syntactic rules to naturally reduce the language size 

and therefore should improve speech-recognition accuracy.  The CFG grammar 

generation requires a CFG Grammar-Generation System, including a CFG 

Grammar Template and a CFG Grammar-Generation Engine. The SCG grammar 
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generation needs a SCG Grammar-Generation System, including a SCG 

Grammar Template and a SCG Grammar-Generation Engine. The two Grammar-

Generation Systems can share one user-defined Semantic Specification for the 

same application domain. 

The process of automatic CFG/ SCG grammar generation is summarized as 

follows: 

The developer creates the application-specific Semantic Specification and feeds 

it to the built-in CFG/ SCG Grammar-Generation System. The CFG/ SCG 

Grammar-Generation Engine analyzes the Semantic Specification and database 

schemas, interprets them for linguistic information, fills out the built-in CFG/ SCG 

grammar template, then a new CFG/ SCG grammar is generated automatically.  

We will discuss the Semantic Specification and the CFG/ SCG Grammar-

Generation System in sub-sections 5.3, 5.4, and 5.5 respectively. 

5.3 Semantic Specification  

The Semantic Specification is created by the developer. It provides necessary 

application-specific information for Grammar-Generation Systems to build the 

corresponding CFG and/ or SCG grammars automatically. It is useful in many 

other aspects in speech-application development. It can be regarded as the 

specification for a language-enabled application. Once the Semantic 

Specification is defined, grammar and application logic development can proceed 

simultaneously according to the specification. A Semantic Specification also 

contributes to the dialog design and management of the speech application 

(Wang and Acero, 2001). 

To create the Semantic Specification, we borrow some concepts from ER 

Modeling (Entity-Relationship Modeling), where a table is considered equivalent 

of an entity type. Therefore, we are able to describe the properties for an entity 
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type using columns of the table in the Semantic Specification. The activities and 

relationships among entity types are examined among tables. 

The Semantic Specification is expressed using natural English language. XML 

tags (W3C, 2009) are used as delimiters. For example, the domain-related 

information about people’s last name is expressed in the Semantic 

Specification as follows: 

    <description>  

           People’s last name is LastName   </description> 

Where <description> and </description> are delimiter tags in XML format. 

People is a table’s name, LastName is a column’s name of the table People. 

People is also an entity type from the point of view of a developer. It represents 

a semantic class. We consider each table as a semantic type in our approach. 

Details about semantic types will be discussed in subsection 5.5. 

A Semantic Specification mainly contains the following three parts:  

(1) Basic database information, such as database vendor, database name, 

table names, and table aliases. 

(2) Database schema description, which describes the properties (columns) 

for each table (entity type). 

(3) Definition of the activities/ relationships among tables (entity types) using 

XML expressions.  

For the sake of simplicity, we take an example database with three tables: 

People, Planet, and Moon. Each table has two columns. The domain is a small 

subset of the solar system, which is the same as that for the example CFG/ SCG 

in section 4. The database schema is shown as follows in Figure 5.3: 
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1) People(LastName, FirstName) 

2) Planet(PlanetName, PlanetColor) 

3) Moon(MoonName, MoonColor) 

Figure 5.3: example Database schema for the Solar system  

Regarding a table as an entity type, the properties of an entity type are described 

in natural English language using the table name and its column names in Figure 

5.3 (1). Table names and column names are in italic font. 

1) People’s last name is LastName 

2) People’s first name is FirstName 

3) Planet’s name is PlanetName 

4) Planet is PlanetColor 

5) Moon’s name is MoonName 

6) Moon is MoonColor 

      Figure 5.3 (1): properties of entity types 

The possible activities among the tables (entity types) in the specific domain are 

described in Figure 5.3 (2). The table names and column names are in italic font. 

Here and hereafter, the description of activities and/or relationships in the domain 

mainly focuses on describing the activities and/or relationships between entities, 

and ignores the agreement of person and number in English sentence 

expression.  

1) People discover planet 

2) People discover moon 

3) Moon orbit planet 

4) Planet exist 

5) Moon exist 

6) Planet spin 

7) Moon spin 
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      Figure 5.3 (2): possible activities/ relationships among tables 

Usually, a database is designed using meaningful symbols for database schema. 

It is also quite common that abbreviations or other symbols are used as table 

names or column names in database design. Since we regard a table as an 

entity type and we would like a meaningful name for an entity type, the user 

needs to provide meaningful aliases for each table in the Semantic Specification. 

We use table names and column names for data retrieval from the database. The 

meaningful table aliases will be more convenient for automatically generating 

grammars for easy reading. In this thesis report, we may use “table name” 

instead of “table alias” for easy understanding, because they can be easily 

exchanged with each other when needed. 

In reality, we distinguish animate from inanimate in language expression. It 

emphasizes that some actions can be initiated by the animate but not by the 

inanimate, and vice versa. In Figure 5.3 (2), the activities and relationships are 

described without any ambiguities. Meanwhile, we need to specify the 

descriptions for wh-questions. The reason is that, some wh-question words, like 

who, whom, and whose, can only be applied to the animate, not the 

inanimate, and some wh-question words, like what, can only be associated with 

the inanimate in some situation. Therefore, we include the situations of using the 

wh-question words in the Semantic Specification to further strengthen the 

semantic constraints. 

With the above concerns, i.e.:  

1) database information,  

2) description of properties of entity types (Figure 5.3 (1)),  

3) activities and/or relationships among entity types (Figure 5.3 (2)), 

and  

4) XML tags,  
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we have the following example Semantic Specification in Figure 5.3 (3). 
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<!—-------- part 1: Basic database information -----------> 

<database> 

       <DB_vendor> ORACLE </DB_vendor> 

       <DB_name> solar_system </DB_name> 

</database> 

<!— list table names (entity types) with their aliases 

(symbols after “AS”), which are more meaningful in natural 

language --> 

<table> 

<table_name> people AS people </table_name > 

<table_name> planet AS planet </table_name > 

<table_name > moon AS moon </table_name > 

</table > 

 

<!------- Part 2: description of the database schema ------> 

<!-- describe the properties for each table (entity type)--> 

<Property> 

       <People> 

            <description>  

                 People’s last name is LastName    

            </description> 

            <description>  

                 People’s first name is FirstName  

            </description> 

       </People> 

       <Planet> 

             <description>  

                  Planet’s name is PlanetName  

             </description> 

             <description>  

                  Planet is PlanetColor  
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             </description> 

       </Planet> 

       <Moon> 

             <description> 

                  Moon’s name is MoonName 

             </description> 

             <description> 

                  Moon is MoonColor  

             </description> 

       </Moon> 

</Property> 

 

<!—--------Part 3: definition of the activities/ 

relationships among tables (entity types) -------------> 

<Activity> 

      <description> People discover planet </description> 

      <description> Who discover planet </description> 

      <description> People discover moon </description> 

      <description> Who discover moon </description> 

      <description> Moon orbit planet </description> 

      <description> What orbit planet </description> 

      <description> What does moon orbit </description> 

      <description> Planet exist </description> 

      <description> Moon exist </description> 

      <description> What exist </description> 

      <description> Planet spin </description> 

      <description> Moon spin </description> 

      <description> What spin </description> 

</Activity> 

Figure 5.3 (3): example Semantic Specification 
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Note that, the database vendor and name are available for a given database. 

Table names are available with the given database. Regarding tables as entity 

types, the activities and/or relationships upon them can be discussed. With good 

knowledge of the application, a developer will be able to summarize the possible 

activities and/or relationships among the tables (entity types) within the domain.  

Therefore, given the database schema, a developer can create the Semantic 

Specification in a short time with little difficulty. The reasons are further 

summarized as follows: 

1. XML (eXtensible Markup Language) (W3C, 2009) is a commonly-used format 

by a developer to represent data. Its basic syntax is often used to share 

information among computers, applications, and organizations. In addition, in 

our Semantic Specification, we mainly use the XML tags to delimiter the 

English descriptions, which does not require extensive knowledge of XML. 

2. The basic database-related information, such as database vendor, database 

names, table names, and column names (part one of the Semantic 

Specification), is easily obtained for a given database. 

3. The Semantic Specification is based on the database schemas rather than 

the data in the database. The size of a database schema is much smaller 

than that of data in the database.  

4. The Semantic Specification authoring is language independent in the sense 

that it does not specify linguistic expressions. Therefore, it is easy for a 

developer with good knowledge of an application to define a Semantic 

Specification. 

5. The description of the relationships and activities among tables is similar to 

ER Modeling (Entity-Relationship Modeling) or UML representation (Unified 

Modeling Language representation) in software engineering, which are 

familiar concepts to many software developers.  
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From the point of view of ER Modeling, a table is equivalent to an entity type. 

In addition, it is reasonable to assume that the developer knows something 

about the specific application domain. Then, by considering a table as an 

entity type, a developer will be able to define the activities and/or relationships 

upon the tables (entity types) in the specific domain.  

The Semantic Specification has some similarity to UML representation. In a 

UML representation, a table is equivalent to a class. Relationships between 

tables in a Semantic Specification are expressed as relationships between 

classes in a UML representation.  

The comparison among the Semantic Specification, ER Modeling, and UML 

representation is shown in Table 5.3. 

Table 5.3: comparison among the Semantic Specification, ER Modeling, and 

UML Representation 

Semantic Specification ER Modeling UML Representation 

Table Entity Type Class 

Column Attribute  Attribute 

Activities/ relationships 

between tables 

Activities/ 

relationships 

between entity types 

Behavior/ 

Relationships 

between classes 
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5.4 CFG Grammar-Generation System 

The CFG Grammar-Generation System includes two main components, a CFG 

Grammar Template and a CFG Grammar-Generation Engine.  

CFG Grammar-Generation Engine analyzes the user-defined Semantic 

Specification and database schemas, interprets the linguistic information, fills out 

the built-in CFG Grammar Template, then generates a complete CFG grammar. 

In sub-sections 5.4 and 5.5, we will take a small subset of the solar system as an 

example domain to demonstrate how CFG and SCG grammars are generated 

automatically from relational database schemas with a given user-defined 

Semantic Specification. The reason for taking the small subset of the solar 

system as the example domain is that we have used this domain to illustrate the 

example CFG and SCG grammars in sub-section 4.3. The automatically 

generated CFG and SCG grammars are in Appendix G and Appendix H 

respectively. 

The basic concept of generating CFGs and SCGs is the same. Our approach 

assumes that the high-level syntactic structures of many speech-recognition 

grammars are similar for applications of similar type (e.g., database query 

applications) and only differ in the vocabulary and in syntactically-expressed 

semantic constraints. Therefore, we can extract the common parts of the 

grammars as a grammar template and fill out the grammar template with the 

application-specific information to generate the application-specific grammar.  

In the process of grammar generation, the main task that needs the developer’s 

attention is to build the Semantic Specification to describe the application-specific 

information, including basic database information, description of database 

schemas, relationships and activities among tables. With the same domain, the 

Semantic Specifications for a CFG grammar and a SCG grammar are the same. 

We show later how semantic constraints are further used in the SCG. 
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The Grammar-Generation System (CFG/ SCG) is a customized built-in system 

for automatic CFG/ SCG grammar generation, which consists of a CFG/ SCG 

Grammar Template and a Grammar-Generation Engine.  

To generate a CFG/SCG grammar automatically, the developer calls the CFG/ 

SCG Grammar-Generation Engine to interpret the user-defined Semantic 

Specification and fill out the CFG/ SCG Grammar Template to construct a new 

application-specific CFG/ SCG grammar. 

5.4.1 The CFG Grammar Template 

As discussed in sub-section 5.2, a grammar template defines the common parts 

of speech-recognition grammars for one type of speech application. It is a built-in 

component of the CFG Grammar-Generation System. The developer does not 

need to know the CFG grammar template. With the built-in CFG Grammar 

Template, CFG Grammar-Generation Engine, and the user-provided Semantic 

Specification, a new application-specific CFG Grammar will be constructed 

automatically.  

Figure 5.4.1 is an example CFG grammar template for database query 

applications.  
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/* CFG_template.jsgf */ 
 
grammar CFG_template ; 
 
public <s>  
   = <linkingvb> <termph> [<transvb> by] <termph>  
   | <linkingvb> <termph> <termph>  
   | <quest> <sent> 
   | (who | what) <verbph> 
   | (which | how many) <nouncla><verbph>  
   | <simple>; 
 
<sent>  
   = <termph> <verbph>;  
 
<termph> 
   = <stermph>  
   | <stermph> (and | or) <stermph>;  
 
<stermph>   
   = <pnoun>  
   | <detph>;  
 
 
<verbph>  
   = <transvbph>  
   | <intransvb>;  
 
<transvbph> 
   = (<transvb> | <linkingvb> <transvb> by) <termph>; 
 
<detph>  
   = <det> <nouncla>;  
 
<nouncla>  
   = <adj> <cnoun>  
   | <cnoun>; 

               Figure 5.4.1: CFG grammar  template 

Where <s> is the start symbol of the grammar, <quest> stands for question, 

<sent> for sentence, <nouncla> for noun clause, <verbph> for verb phrase, 

<termph> for term phrase, <stermph> for single term phrase, <transvbph> 

for transitive verb phrase, <instransvb> for intransitive verb phrase, and 
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<detph> for determiner phrase. This CFG grammar template only works for the 

database query applications. The grammar template needs further modifications 

for other types of speech applications. 

5.4.2 The CFG Grammar-Generation Engine 

The CFG Grammar-Generation Engine is the other important component of the 

CFG Grammar-Generation System, which accomplishes the task of reading the 

Semantic Specification, analyzing the database schemas, interpreting the 

linguistic information for grammar generation, filling out the CFG Grammar 

Template, and outputting the newly-built CFG Grammar. 

The CFG Grammar-Generation System is implemented on PC (Processor: 2.0 

GHZ, Memory: 3GB, Hard Drive: 250GB) with Windows XP (Home Edition) 

operating system, using the Java programming language (JSDK 1.4.2) as the 

development tool, MySQL as the database management system, and JDBC 

technology to connect the database in the Java programming language.  

The process of generating the CFG grammar involves the following six steps: 

Step 1: read in the Semantic Specification. 

The domain-specific Semantic Specification is fed to the CFG Grammar-

Generation Engine and tokenized. Basic Database information is obtained. The 

Database information for the example solar system is shown in Table 5.4.2 (1): 

Table 5.4.2 (1): database information 

DB_Vendor DB_name 

ORACLE Solar_system 
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The table names and the corresponding aliases are shown in Table 5.4.2 (2): 

Table 5.4.2 (2): table names and aliases 

Table_Id Table_name Table_alias 

1 People People 

2 Planet Planet 

3 Moon Moon 

 

Step 2: connect the database. 

With the basic database information (e.g., database vendor and database name), 

the CFG Grammar-Generation Engine selects the corresponding connection 

driver to connect the database. In this thesis work, the CFG / SCG grammars can 

be generated from the following three types of databases: Microsoft Access 

database, Oracle database, and MySQL database. The source code for 

database connections in java programming language is in Appendix E. 

Step 3: analyze the database schemas. 

Normalization is the process of efficiently organizing data in a database with the 

goals of eliminating redundant data and ensuring that data dependencies are 

correct. It is reasonable to assume that the database for grammar generation 

meets the minimum criteria of First Normal Form (1NF), which includes only 

atomic values in each field. Therefore, the data in each field of the database will 

be further analyzed and included as terminals in the newly-generated grammars.  

The second part of the Semantic Specification (Figure 5.3 (3)) (i.e., 

<Property> …</<Property> section) describes the properties of the tables. 

In fact, it is a more-detailed description of the database schema. Tables are 

regarded as entity types. Each table is listed under the <property> section 

using table names as tags, such as <People> </People>. Columns of the 
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table are described as properties of the entity type (table), and are listed under 

the corresponding table name using the tags of <description> 

</description>.  

Using a simple language to describe the properties lowers the requirement of the 

linguistic knowledge for a developer, thus eases the developer’s work in 

addressing the Semantic Specification for automatic grammar generation. The 

Grammar-Generation Engine analyzes the Semantic Specification and the 

database schema, then interprets the linguistic information for CFG grammar 

generation.  

In many linguistic grammars, words are classified based on the following eight 

parts of speech: verb, noun, pronoun, adjective, adverb, preposition, conjunction, 

and interjection (MacFadyen, 2010). To fill out the CFG template and build up the 

CFG grammar, the CFG Grammar-Generation Engine needs information of the 

parts of the speech of the data in database, which can be obtained by analyzing 

the database schemas that are described in the Semantic Specification.  

In the following part of this section, we discuss the eight parts of speech and 

explain how CFG Grammar-Generation Engine obtains linguistic information from 

the Semantic Specification and fills out the CFG template to construct the CFG 

grammar.  

However, a database may not include instances of the eight parts of speech. For 

example, the database may not include the words such as of or the. Therefore, 

the CFG Grammar-Generation Engine has to follow the syntactic clues and 

comply with syntactic rules in grammar generation. 

(1) Part of speech - verb 

A verb or compound verb asserts something about the subject of the sentence 

and expresses actions, events, or states of being (MacFadyen, 2010). The verb 
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or compound verb is the critical element of the predicate of a sentence. In syntax, 

a transitive verb is a verb that requires a direct object to complete its meaning. 

Verbs that do not require an object are called intransitive.  

In CFG grammar generation, we distinguish transitive verbs from intransitive 

verbs. For example, in the description moon orbit planet, the verb orbit is 

a transitive verb. In sentence moon spin, the verb spin is an intransitive verb. 

We will discuss more about verbs, relationships, and activities among entities 

later in step (4) of this section. 

(2) Part of speech - noun 

A noun can occur as the main word in the subject of a clause, the object of a 

verb, or the object of a preposition (MacFadyen, 2010).  

There are many types of nouns in linguistics. We use proper noun and common 

noun in the CFG template. Proper nouns include the names of people, days of 

the week, months, historical documents, institutions, organizations, religions, and 

their adherents. A common noun is a noun referring to a person, place, or thing 

in a general sense (MacFadyen, 2010).  

For example, in the description, People’s first name is FirstName, the 

CFG Grammar-Generation Engine determines that People is a table name, 

FirstName is a column name, and the data in column FirstName can be used 

as proper nouns in a sentence. So, the CFG Grammar-Generation Engine 

accesses the database, retrieves all the data in column FirstName, and 

appends them to the definition rule of the non-terminal <pnoun> (stands for 

proper noun) in the CFG template (Figure 5.4.1). The definition rule of a non-

terminal is a rule with this non-terminal on the left hand side, terminals and/or 

non-terminals in the form of alternative(s) and/ or sequence(s) on the right hand 

side of the rule to define the non-terminal. For example, the data from column 
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<Firstname> will be appended to the definition rule of the non-terminal 

<pnoun> as follows: 

<pnoun> = bernard | bond | cassini | dollfus; 

While the CFG Grammar-Generation Engine proceeds with the Semantic 

Specification file, the proper nouns, which are data from corresponding columns 

of the database, are appended to the syntax rule defining the non-terminal 

(<pnoun>) in the CFG template (Figure 5.4.1). 

The table names, i.e., the entity types, are considered as common nouns. They 

are added to the rule for common nouns (<cnoun>) in the CFG template (Figure 

5.4.1) as follows: 

<cnoun> = people | planet | moon; 

a) Determiner 

A determiner is a word or affix that belongs to a class of noun modifiers that 

expresses the reference of a noun, including quantity (MacFadyen, 2010).  

For example, Hall discovered three moons, the word three is a 

determiner. We include determiners (i.e., <det>) in the CFG grammar 

generation. The example definition of determiners is as follows: 
                     <det> = a | an | every | one | two | three | four; 

(3) Part of speech - adjective 

An adjective modifies a noun or a pronoun by describing, identifying, or 

quantifying words. An adjective usually precedes the noun or the pronoun that it 

modifies (MacFadyen, 2010).   

Refer to the example Semantic Specification in Figure 5.3 (3), in the description 

Planet is PlanetColor, the CFG Grammar-Generation Engine recognizes 
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that Planet is a table name, PlanetColor is a column name. The data from 

column PlanetColor, such as red and blue, is retrieved and appended to the 

rule for the non-terminal <adj> (i.e., adjective) in the CFG template (Figure 

5.4.1), as follows: 

<adj> = red | blue; 

a) Article 

An article combines with a noun to indicate the type of reference being made by 

the noun. There are three articles in the English language, namely the, a, and 

an. Some resources consider there are two articles, which are the and a/an. 

Among the classical parts of speech, articles are considered a special category 

of adjectives (Lynch and Brizee, 2010). In our grammars, we use the identifier 

"determiner" to include the words "a", "every", "the", "one", "two" 

etc, This categorization is common in Computational Linguistics" 

(4) Part of speech - adverb 

An adverb is a word that can modify a verb, an adjective, another adverb, a 

phrase, or a clause, except nouns. An adverb is used to indicate manner, time, 

place, cause, or degree. It can answer questions such as how, when, where, 

how much (MacFadyen, 2010).  

For example, the word fast is an adverb in the sentence Planet spin fast. 

Adverbs are not included in our example application. 

The words of the following four parts of speech: preposition, pronoun, 

conjunction, and interjection, may or may not appear in the database. The CFG 

Grammar-Generation Engine has to compose the CFG grammar by following the 

syntactic clues and syntactic constraints.  
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(5) Part of speech - preposition 

A preposition is used to link nouns, pronouns, and phrases to other words in a 

sentence. The word or phrase that the preposition introduces is called the object 

of the preposition. A preposition usually indicates the temporal, spatial, or logical 

relationship of its object to the rest of the sentence (MacFadyen, 2010). 

For example, in the sentence There are minerals on Mars, the word on is 

the preposition. 

(6) Part of speech - pronoun 

A pronoun is a word that can replace a noun or another pronoun. Pronouns can 

make the sentences less cumbersome and less repetitive (MacFadyen, 2010). 

Example pronouns are like he, you, we, and so on. 

(7) Part of speech - conjunction 

Conjunctions are used to link words, phrases, and clauses (MacFadyen, 2010). 

For example, in the sentence Tom and Jerry are friends, the word and is 

a conjunction. 

(8) Part of speech - interjection 

An interjection is a word added to a sentence to convey emotion. It is not 

grammatically related to any other part of the sentence. Usually, an interjection is 

followed with an exclamation mark (MacFadyen, 2010). 

Step 4: extract the activities and relationships. 

Verbs are perhaps the most important part of composing a sentence, expressing 

ideas, describing an activity of an object, or a relationship between objects. They 

are a critical element of the predicate of a sentence. Therefore, verbs act as a 

significant role in grammar generation.  
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The second part (<Property> </Property>) of the Semantic Specification 

(Figure 5.3 (3)) describes the database schema information concerning tables 

and columns where columns are regarded as the properties of tables. However, it 

does not provide any information about the activities of the entity type itself or the 

relationships among entity types (tables). Usually, within an application domain, 

the entities do not stand alone. They are related by some relationships or 

activities to one another, which are discussed in the 

(<activity> …</activity>) part of the Semantic Specification (Figure 5.3 

(3)). 

For example, in the small subset of the solar system example, the entity types 

planet and moon are related by the activity orbit, e.g., moon orbit planet 

(Figure 5.3 (3)). The system determines that orbit is a transitive verb.  A 

transitive verb requires a subject and an object. A transitive verb describes an 

action that is initiated by the subject with the object as a receiver. In other words, 

a transitive verb requires an object to complete the action, which is not required 

by an intransitive verb. 

While interpreting the Semantic Specification, the Grammar-Generation Engine 

analyzes the activities/ relationships between entity types (tables). Meanwhile, it 

recognizes that the subject and the object of the activity/ relationship description 

are both tables. For the above example (moon orbit planet), the Grammar-

Generation Engine interprets the verb orbit is a transitive verb, moon and 

planet are tables. The word orbit is added to the definition rule of the non-

terminal <transvb> (i.e., transitive verb) as follows: 

<transvb> = orbit; 

Since tables are regarded as entity types, the table aliases (moon and planet) 

are regarded as common nouns and put into the definition of the non-terminal 

<cnoun> (i.e., common noun), as follows: 
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<cnoun> = moon | planet; 

In addition, an entity may accomplish some activities by itself, without any other 

entities involvement. Examples are: planet spin and moon exist. In such 

cases, the verbs do not require or cannot take any object. Therefore, we assert 

that such types of verbs, e.g., spin and exist, are intransitive verbs. The CFG 

Grammar-Generation Engine will append them to the definition rule of the non-

terminal <intransvb> (i.e., intransitive verb) as follows: 

<intransvb> = spin | exist; 

In this way, the activities and relationships within the domain are analyzed and 

the verbs are appended to the definition rules of the corresponding non-terminals 

for transitive verbs or intransitive verbs. 

Step 5: fill out the CFG Grammar Template. 

The process of filling the CFG template takes place through the whole process of 

CFG grammar generation. As we have seen, while the CFG Grammar-

Generation Engine interprets the database schema, it recognizes parts of speech 

from the database schema, and appends the data to the definition rules of the 

corresponding non-terminals, such as <pnoun>, <det>, <transvbph>, 

<intransverbph>, <adj>, and <adv>.  Meanwhile, table aliases are 

regarded as entity types and appended to the definition of common noun (i.e., 

<cnoun>). 

While the grammar generation process comes to the part of the description of 

activities and relationships in the Semantic Specification, the CFG Grammar-

Generation Engine recognizes the transitive verbs and intransitive verbs, and 

puts them into the corresponding rules for non-terminal such as <transvb> (for 

transitive verbs) and <intransvb> (for intransitive verbs).  
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The database may not include all the information for constructing the CFG 

grammar. For example, the words of and that may not show up in the 

database. The CFG Grammar-Generation Engine needs to fill out the grammar 

template by following the syntactic rules, constraints, and clues to build the 

complete CFG grammar. 

Step 6: output the CFG grammar. 

While calling the CFG Grammar-Generation Engine, the user can specify the 

location and the name of the output CFG file in the command line. The 

screenshot in Figure 5.4.2 is an example command to generate a CFG grammar.  

 

Figure 5.4.2: screenshot - example command to generate a CFG grammar 

Note that, Gen_CFG is the name of the CFG Grammar-Generation Engine. 

solar_CFG.jsgf is the name of the new CFG grammar which is saved in the 

same directory of the CFG Grammar-Generation System. The new CFG 

Grammar (solar_CFG.jsgf) is ready for use in a speech application for 

database queries with the domain of the small subset of the solar system. 

5.5 The SCG Grammar-Generation System 

Similar to the CFG Grammar-Generation System, the SCG Grammar-Generation 

System also includes two main built-in components, the SCG Grammar Template 

and the SCG Grammar-Generation Engine. With a similar workflow to the CFG 

Grammar Generation, the SCG Grammar-Generation Engine analyzes the user-
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defined Semantic Specification and the database schemas, fills out the SCG 

Grammar Template, and generates a complete SCG grammar for speech 

applications with the specified domain. 

The process of generating a SCG is similar to the process of generating a CFG. 

The significant difference between a CFG and a SCG is that the CFG is 

concerned only with the correctness of syntax, while the SCG also encodes 

semantic constraints. Therefore, the SCG Grammar-Generation System includes 

more semantic information than CFG Grammar-Generation System. 

In this section, we use the same domain as that in the CFG grammar generation 

in section 5.4 (i.e., the small subset of the solar system) so that we can make a 

comparison between the two processes of automatic grammar generation. That 

also makes it possible for further analysis (sub-section 5.6) the two newly 

generated grammars (CFG and SCG) and the example manually scripted CFG 

and SCG grammars (in sub-sections 4.3.1 and 4.3.2). 

5.5.1 The SCG Grammar Template 

In the SCG grammar template in Figure 5.5.1, we introduce semantic types in 

order to specify semantic agreement between the subject, predicate, and object 

in a sentence. Semantic types classify words by semantics instead of syntactic 

function. In this thesis work, a semantic type is usually classified by an entity type 

(table). All of the data in the same table has the same semantic type, which is, 

represented by the table name. For the example domain in section 5.3, we 

classify the objects in the small subset of the solar system into the following three 

types: 1) people, 2) planet, and 3) moon.  

In addition to the part of speech, each word (e.g., data in the database) in the 

domain is associated with a semantic type. A sentence is considered correct only 

when it complies with the syntactic constraints and the semantic type constraints. 

This means that only a word of the semantic type people can initiate the action 
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discover. Therefore, a sentence such as Bond discovered Mars is covered, 

but Mars discovered Jupiter is not covered by the SCG.  

In the SCG Grammar Template in Figure 5.5.1, we use type_k (1≤k≤N) to 

denote a semantic type, and keep the agreement between semantic types by 

using type_k. In the solar system example, there are three semantic types in 

the specified domain (i.e., N = 3). We assign type_1 to people, type_2 

to planet, and type_3 to moon. To generalize the SCG grammar 

template, we simply use type_i to direct the SCG Grammar-Generation Engine 

to list all the possible semantic types in the domain, type_1,…, type_N.  

In addition, we introduce type_who, type_what, type_which, and 

type_how_many to categorize the words: who, what, which, and how 

many. 
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Figure 5.5.1 below is the example SCG Grammar Template. 

/********************************************************/ 

/* SCG_template.jsgf */ 

/* Assuming there are n semantic types, denoted as type_k 
(1<=k<=n). 
Using type_i to list all the semantic types type_1, 
type_2, ..., type_n. 

   Use type_k to specify some specific semantic type    */ 
/********************************************************/ 
 
grammar scg_template ; 
 
public <s> 
   = <linkingvb> <termph_verbph> 
   | <quest> <sent> 
   | is <pnoun> <pnoun> 
   | is <pnoun> (a|an) <nouncla> 
   | is <pnoun> (a|an) <nouncla> or (a|an) <nouncla> 
   | (who) <verbph_type_who>  
   | (what) <verbph_type_what> 
   | (which) <nouncla_verbph_type_which> 
   | (how many) <nouncla_verbph_type_how_many> 
   | <greetings>; 
 
<termph_verbph>  
   = <termph_type_suc> <transvb_type_i> by <termph_type_pre>; 
 
<sent>  
   = <termph_type_i> <verbph_type_i>; 
 
<termph_type_k>  
   = <stermph_type_k> | <stermph_type_k> (and|or) 

<stermph_type_k); 
 
<stermph_type_k>  
   =  <pnoun_type_k> | <detph_type_k>; 
 
<detph_type_k>  
   = <det> <nouncla_type_k>; 
 
<nouncla>  
   =  <nouncla_type_i>; 
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<nouncla_type_k>  
   = <cnoun_type_k>  
   | <adj_type_k> <cnoun_type_k>; 
 
<verbph_type_k>  
   = <transvb_type_k> <termph_type_suc>   
   | <intransvb_type_k>;  
 
<nouncla_verbph_type_k>  
   = <nouncla_type_pre> <verbph_type_k> 
   | <nouncla_type_suc> <verbph_passive_type_k>; 
 
<verbph_passive_type_k>  
   = <linkingvb> <transvb_type_k> [by <termph_type_pre>]; 
 
<pnoun>  
   = <pnoun_type_i> ; 
 
<cnoun>  
   = <cnoun_type_i> ; 

               Figure 5.5.1: SCG grammar template 

Note that, some parts of the SCG grammar template are the same as and have 

the same meanings as that in the CFG grammar template, such as <s>, 

<quest>, <sent>, and <nouncla>.  
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5.5.2 SCG Grammar-Generation Engine 

Similar to the CFG Grammar-Generation Engine, the SCG Grammar-Generation 

Engine first takes the user-defined Semantic Specification as input and analyzes 

it to obtain the corresponding syntactic and semantic information. The SCG 

Grammar-Generation Engine then fills out the SCG grammar template, and then 

builds and outputs the new SCG grammar for use in the speech application. 

The SCG Grammar-Generation System is implemented on PC (Processor: 2.0 

GHZ, Memory: 3GB, Hard Drive: 250GB) with Windows XP (Home Edition) 

operating system, using the Java programming language (JSDK 1.4.2) as the 

development tool, MySQL as the database management system, and JDBC 

technology to connect the database in the Java programming language. 

The steps of generating the SCG grammar are similar to that of generating a 

CFG grammar.  However, encoding of semantic constraints in the syntax makes 

the SCG grammar generation more complicated than the CFG grammar 

generation. In the following discussion of the process of building a SCG, we will 

briefly review the same steps as the CFG grammar generation, and elaborate the 

differences from the CFG grammar generation. 

Step 1: read in the Semantic Specification. 

      Same as that in sub-section 5.4.2. 

Step 2: connect the database. 

      Same as that in sub-section 5.4.2. 
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Step 3: analyze the database schemas. 

Using the same methodology of sub-section 5.4.2, the SCG Grammar-

Generation Engine recognizes the parts of speech of the words (e.g., data in 

database). However, different from the CFG grammar, the SCG grammar has to 

comply with semantic constraints in addition to syntactic rules. Therefore, the 

SCG Grammar-Generation Engine needs also to consider the semantic types for 

each word to satisfy the semantic constraints. Therefore, each word in the 

database is associated with two features: part of speech and semantic type. 

To classify and obtain the information of semantic types, we review the 

description of database schemas, activities and relationships among entity types 

in the Semantic Specification. For example, in the Semantic Specification (Figure 

5.3 (3)), in the third part (<Activity>…</Activity>), one activity is 

expressed as follows:       

<description> People discover planet </description> 

The statement between the tags <description> and </description> is the 

same as in the action discover using semantic types in section 5.5.1, i.e., 

people discover planet, where people and planet are semantic types.  

Note that, while we regard a table as an entity type, we have already considered 

the data of a table as being in the same semantic category. Thus we can 

determine that the tables (entity types) of the database can work as the role of 

semantic types in SCG grammar generation. Therefore, the semantic types are 

easily obtained by recognizing table names (aliases). 

While the SCG Grammar-Generation Engine fills out the SCG grammar template, 

it not only considers the part of speech of the word, but also puts the word to the 

right category by its semantic type. For example, the entity people has the 

following property:  
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People’s first name is FirstName. 

The SCG Grammar-Generation Engine recognizes that People is a table, 

FirstName is a column of table People, and the data in the column 

FirstName are proper nouns. Meanwhile, the data in the column FirstName of 

table People are assigned with the semantic type of People. We assume 

semantic types for people, planet, and moon are assigned with type_1, 

type_2, and type_3 respectively. Then the data from the column FirstName 

of table people is appended to the definition of non-terminal <pnoun_type_1> 

(i.e., proper noun, semantic type 1), as follows: 

<pnoun_type_1> = Bernard | bond | cassini | dollfus; 

Note that, in CFG grammar generation, we only use <pnoun> to denote  proper 

nouns. In SCG grammar generation, we use <pnoun_type_k> (1<=k<=n) to 

specify the proper nouns associated with their semantic types to guarantee the 

semantic agreements. 

Step 4: extract the activities and relationships. 

The SCG Grammar-Generation Engine interprets the third part 

(<Activity></Activity>) in the Semantic Specification, and recognizes the 

transitive verbs or intransitive verbs by examining whether the predicate verb 

takes any object. The SCG Grammar-Generation Engine indicates the semantic 

types for the verb, subject, and object. The semantic type of an object is 

dependent on the verb. Therefore, it is the verb that determines the semantic 

types of the subject and object of a sentence. We make a record of the semantic 

types of the subject and object depending on the activity (verb).  

          subject predicate object. 
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Note that, the above three parts must have specified semantic types. Note that, 

an intransitive verb does not have any object, so the “semantic type of successor 

(object)” for an intransitive verb will be “NULL”. Also note that, the subject and/or 

object could be a noun phrase with modifiers for the noun. The modifiers require 

the same semantic type as the noun.  

The SCG Grammar-Generation Engine interprets the syntactic and semantic 

constraints from the Semantic Specification and the database schemas, and 

records the information in a table. Table 5.5.2 shows the example syntactic and 

semantic constraints for the example solar system domain. 

Table 5.5.2: example syntactic and semantic constraints 

Constraint_ID subject predicate (Verb) Object 

1 People Discover Planet 

2 People  Discover Moon 

3 Moon Orbit Planet 

4 Planet  Exist NULL 

5 Moon Exist NULL 

6 Planet  Spin NULL 

7 Moon  Spin NULL 

This table determines the correct format for a valid sentence. It is also possible to 

encode linguistic agreement (e.g., number and person) in the grammar. However, 

this would significantly increase the size of the grammar and we will not discuss 

this in this report. 

With the above table, a syntactically and semantically correct sentence can be 

determined easily. For example, an utterance like Bond discovered jupiter 

will be accepted by the generated SCG grammar for the reasons as follows:  

The subject Bond belongs to the semantic type of people and the object 

jupiter has the semantic type of planet. By constraint 1 in Table 5.5.2, the 
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transitive verb discover requires a subject (preceding word) with the semantic 

type of people and an object (successor) with the semantic type of planet. 

Thus, the utterance Bond discovered jupiter is correct by the SCG.  

However, the utterance like Mars discovered jupiter will be considered 

wrong by the SCG grammar, because by constraint_1 and constraint_2 in Table 

5.5.2, the predicate discover requires the subject (preceding word) with the 

semantic type of people. In the example utterance, the subject mars does not 

belong to the semantic type people. Therefore, such an utterance will be 

considered incorrect by the SCG grammar. 

By excluding the semantically incorrect utterances, a SCG grammar should 

improve the speech-recognition accuracy.  

Step 5: fill out the SCG Grammar Template. 

Similar to the process of CFG grammar generation, the SCG Grammar-

Generation Engine fills out the SCG grammar template. When it deals with the 

description of the entity properties, it puts the data from the database into the 

rules defining corresponding non-terminals, based on their parts of speech and 

semantic types. In addition, the syntactic rules and clues are taken into account 

in SCG grammar generation. 

Step 6: optimize the SCG grammar. 

Note that, in the SCG template (Figure 5.5.1), we use type_k to specify the 

semantic type to guarantee the agreement among semantic constraints. We use 

type_i to list all the possible semantic types. There is a shortcoming of this 

method. If some semantic type is unsuitable in the domain, the grammar 

template will expand with an empty rule for this type_k, which will not affect the 

correctness of the generated grammar, but will affect the size of the grammar so 

that it increases the difficulty for grammar maintenance. In addition, it may 
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decrease the performance of the recognizers implementing the grammar. For 

example, in the SCG grammar template (Figure 5.5.1), there is a rule defined as 

follows: 

     <nouncla_type_k>  

           = <cnoun_type_k> 

           | <adj_type_k> <cnoun_type_k>; (1) 

While the SCG Grammar-Generation Engine proceeds with the SCG grammar 

generation, it interprets this rule (1) as the following rule (2): 

     <nouncla_type_1>  

           = <cnoun_type_1>  

           | <adj_type_1> <cnoun_type_1>;        (2) 

Supposing type_1 is the semantic type people, we notice that it is not suitable 

to say color people. Therefore, in the SCG grammar generation, the SCG 

Grammar-Generation Engine will generate the following rule:  

       <adj_type_1> = ;                                 (3) 

This empty rule will not affect the correctness of the generated SCG grammar 

with respect to recognition of appropriate utterances. However, it increases the 

size of the generated grammar and makes it more complex, which is not good for 

maintenance and grammar optimization. Therefore, SCG Grammar-Generation 

Engine needs to optimize the generated SCG grammar.  

In the optimization process, the SCG Grammar-Generation Engine scans the 

new generated grammar for the empty rules and removes them and their 

associated alternatives. If the alternative is the only choice of the rule, the whole 

rule is removed and the process needs to trace further for the left-hand-side non-

terminal and removes its appearance(s) in other rules. The process continues 

until all empty rules and their associated rule(s)/ alternative(s) are removed.  
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For the above example, the rule (3), <adj_type_1> = ; is removed from the 

generated SCG grammar, and the alternative | <adj_type_1> 

<cnoun_type_1> in rule (2) is removed too. Then, the updated rule (2) is like 

the following (4): 

       <nouncla_type_1> = <cnoun_type_1>;               (4) 

The complete generated SCG grammar example is at Appendix H. 

Step 7: output the SCG grammar. 

As in CFG grammar generation, the user can specify the location and file name 

for the output SCG grammar in the command line. In the example screenshot of 

Figure 5.5.2, Gen_SCG is the name of the SCG Grammar-Generation Engine, 

and solar_SCG.jsgf is the name of the generated SCG grammar. Without 

specifying the location, the newly-generated SCG grammar solar_SCG.jsgf is 

saved in the current directory, which is the directory of SCG Grammar-

Generation Engine. 

 

Figure 5.5.2: screenshot - example command to generate a SCG grammar 
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5.6 Analysis of the Automatically-Generated CFG and SCG Using 
the Grammar Metrics 
 

We have analyzed and compared the automatically generated CFG and SCG 

grammars with each other and with previous manually-crafted grammars, using 

the set of grammar metrics discussed in section 2. Similar to the analysis in sub-

section 4.4, the newly-generated CFG and SCG grammars were analyzed using 

the ABF application (section 2.9). A set of grammar metrics were calculated and 

output, including the Average Branching Factor (ABF), the number of rules of the 

grammar, the number of symbols, the number of non-terminals, the number of 

terminals, the number of decision points, and the language size. To facilitate the 

comparison, in Table 5.6, we include the results for the manually-crafted CFG 

and SCG grammars (from sub-sections 4.3.1 and 4.3.2) and the results for the 

newly-generated CFG and SCG grammars. 

Table 5.6: comparison of manually-scripted and automatically-generated CFG 

and SCG grammars 

Grammar  Rule
# 

Symb
ol # 

Non-
terminal# 

Termi
nal# 

Decision 
Point # 

Language 
Size 

ABF 

Manual-CFG 
(Figure 4.3.1) 

17 160 50 110 19 1.73*1011 52.42 

Auto-Gen CFG 
(Appendix G) 

17 160 50 110 19 1.73*1011 52.42 

Manual-SCG 
(Figure 4.3.2) 

41 262 133 129 53 1.51*109 33.99 

Auto-Gen SCG 
(Appendix H) 

41 278 136 142 61 1.56 *109 33.48 

Table 5.6 shows that, with the same domain, the automatically generated CFG 

has similar features as that of the manually-scripted CFG, and the automatically 

generated SCG is a little bigger and has a slightly smaller ABF than the 

manually-scripted SCG. The automatically generated SCG consists of more 

symbols (terminals and/or non-temterminals) than the manually scripted SCG. 

The reason is that in automatic grammar generation, the Grammar Generation 
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Engine expands all the possible cases though some cases may be not needed or 

can be combined with other cases in manual grammar scripting. 

The automatically generated CFG is similar to the manually-developed CFG 

because the CFG grammar template was derived from the manually-developed 

CFG.  In the CFG grammar generation, the CFG grammar generation engine 

interprets the parts of speech of the words in the database and fills in the 

corresponding non-terminals of the CFG grammar template. For example, word 

bernard will be added to the non-terminal <pnoun> of the CFG template.  

        <pnoun> = bernard ; 

Note that, this process does not change the structure of the CFG template. 

Therefore the automatically generated (complete) CFG is similar as the 

manually-scripted CFG, given the same vocabulary. 

In the SCG grammar automatic generation, the SCG grammar generation engine 

expands the SCG grammar template with respect to semantic types and 

interprets the database schemas to generate a new SCG grammar. In the 

example, the automatically generated grammar is slightly different from the hand-

crafted grammar. The reason is that, by examining both grammars, we noticed 

that, the manually-crafted SCG grammar sometimes only differentiates between 

two semantic types (i.e., animate from inanimate), while in the automatic 

SCG grammar generation, the system always automatically expands the SCG 

grammar template by three types (i.e., people, planet, moon).  

 

For example, in rule 1 of the manual SCG, the who/what queries are defined as: 

  | (who) <animate_verbph>  

  | (what) <inanimate_verbph>  

However, in the automatically generated SCG, who/what queries are specified 

with respect to three semantic types 
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  |(who) <verbph_type_1> 

  |(what) <verbph_type_2> 

  |(what) <verbph_type_3> 

Therefore, the example automatically generated SCG includes slightly more 

constraints than the original manually-crafted SCG grammar. This also explains 

the slight difference in grammar sizes and metrics between these two grammars.  

The manually-scripted SCG grammar also differentiates between the three 

semantic types (i.e., people, planet, moon) for the description of their 

activities/relationships among these three entity types (semantic types). 

Therefore, the differences of the metrics between the manual and automatic SCG 

grammars are minor. 

In this section, what we have presented is only one small example. However, this 

preliminary attempt demonstrates the viability of automatic generation of 

recognition grammars that have comparable ABFs to hand-crafted grammars. 

5.7 Comparison to Related Work 

With our extensive survey, we have noticed that there has not been much work 

carried out on automatic grammar generation. To be specific, there is little work 

on automatic grammar generation from relational database schemas. Voxeo 

(2006) introduces an approach to create simple dynamic speech grammars from 

databases using the ColdFusion server side language.  

The basic idea of (Voxeo, 2006) is to create a dynamic-grammar template and 

use database queries to retrieve information from database. The generated 

grammar is a very simple grammar which uses database queries to retrieve 

information from databases for dialogs or prompts in a VoiceXML file. For 

example, the generated grammar may allow users to state his/her favorite 

movies. The names of the movies in the database and can be retrieved by using 

database queries.  
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In contrast, our approach can automatically generate more expressive speech-

recognition grammars from database schemas.  

5.8  Summary 

In this section, we have presented a new approach to automatically generate 

CFG and SCG grammars from relational database schemas. The new approach 

is based on the assumption that the high-level syntactic structures of many 

speech-recognition grammars are similar for applications of similar type (e.g., 

database query applications) and differ only in the lexicon and in syntactically-

expressed semantic constraints.  

We have applied the approach to a simple database schema and have 

automatically generated recognition grammars which have similar properties to 

manually crafted grammars with respect to a set of grammar metrics. Although 

no general conclusions can be drawn from this limited experiment, it does 

provide some evidence that the proposed approach deserves further 

investigation. 
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6.  A PUBLIC-DOMAIN SPEECHWEB 

6.1 Introduction 

In this section, we illustrate the ease with which grammar-based speech 

applications can be created and deployed on the web. We do this by building a 

small grammar-based speech application and show how it can be easily added to 

a “Public Domain SpeechWeb”. We begin with a short history of SpeechWebs 

and the Public-Domain SpeechWeb architecture. 

The example speech application is called “Read-A-Book”, which can read the 

book “Sleeping Beauty” by users’ voice command. The grammar for this 

application was analyzed and the ABF was computed in sub-section 2.9. 

6.2 SpeechWebs 

A SpeechWeb (Frost and Chitte 1999) is a collection of hyperlinked speech 

applications which are accessed by end-users through speech browsers running 

on local machines. Navigation from one application to another is also through 

speech commands such as can I speak to Geoman which causes the 

remote speech application to send information back to the local speech browser 

which causes it to be redirected to a, possibly new, remote web server which 

hosts the Geoman speech application. 

6.3 The LRRP SpeechWeb Architecture 

Up to 2004, three architectures that were used to provide speech access to 

distributed applications (Frost et al., 2004).  

(1) The first architecture uses speech interfaces (screen readers) to 

interact with the conventional web.  

(2) The second architecture is the RRRP architecture, which is often used 

by call centers. RRRP stands for Remote Recognition/ Remote 

Processing, which means that the user calls, and the speech 

recognition is processed at the call center.   
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(3) The third architecture is the LRLP architecture, which stands for Local 

speech Recognition/Local Processing. With this architecture, 

hyperlinked VoiceXML pages are downloaded to client machines for 

execution. Note that VoiceXML(VXML) is a Voice eXtensible Markup 

Language, which is an XML-based markup language for building 

distributed voice applications, much as HTML is a markup language for 

creating distributed visual applications (W3C, 2007a). VoiceXML 

documents define the applications as a set of dialog states by 

including commands for prompting user speech inputs, for invoking 

recognition grammars, for outputting synthesized voices, and for 

directing the user from one state to the other state. 

Although these three architectures are important in providing speech access to 

distributed knowledge and applications, they all have shortcomings as a basis for 

a SpeechWeb consisting of speech applications that are developed and 

deployed by users that do not have expertise in language processing (Frost et al., 

2004): 1) Since the conventional web is mainly constructed for visual browsing 

much of a conventional web page content is inaccessible through a screen 

reader. 2) In the second architecture, the processing and recognition both occur 

at the remote provider site, which is not accessible to non-expert application 

developers. 3) In the third architecture, it requires significant expertise to build 

applications purely in VXML. Also, speech recognition and application processing 

locally excludes the light-weight user devices. 

To overcome the above shortcomings, Frost et al. (2004) proposed a new 

architecture, called the LRRP architecture, to access hyperlinked speech-

accessible knowledge sources that are distributed over the internet. LRRP stands 

for, Local speech Recognition and Remote Processing.  

In the LRRP architecture, the user’s voice input is recognized locally by a voice 

browser on the local machine, the recognized text is sent to the remote 
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application for processing, and the result is returned to the local device and 

output as synthesized voice.  

6.4 A Public-Domain SpeechWeb 

In 2005, Frost described an architecture for a Public-Domain SpeechWeb in the 

Communications of the ACM (Frost 2005). The architecture is based on the 

LRRP architecture and allows users who do not have expertise in language 

processing to create and deploy hyperlinked speech applications using freely 

available software and commonly used communication protocols. The basic idea 

is that a speech browser, written in VXML, resides on the end-user device and 

the speech application, which can be written in any programming or scripting 

language, resides on a remote server. A “session” begins by the local speech 

browser requesting the download of the application-dependent recognition 

grammar from the remote server. The local speech recognition engine is then 

tailored for the specific speech application. End-user spoken input is then 

recognized locally and the corresponding text is sent to the remote application for 

processing. Text is sent back to the local device and either output as synthesized 

speech or used to cause the local device to contact a different speech application 

and download a new recognition grammar. 

The author of this thesis, together with Mr. Xiaoli Ma helped Dr. Frost (Frost, Ma, 

and Shi 2007) reengineer the Public-Domain SpeechWeb software so that the 

speech browser is written in X+V, a multi-modal markup language (VoiceXML 

Forum, 2004) and the freely available Opera multi-modal web browser (Opera, 

2010) to more easily create and deploy hyperlinked speech applications to the 

Public-Domain SpeechWeb.  

X+V (i.e., XHTML + Voice) is a markup language which combines XHTM with a 

subset of VoiceXML (VXML) so that it can bring spoken interaction to standard 

web content in multi-modal applications (VoiceXML Forum, 2004). XHTML is an 

eXtensible HyperText Markup Language, which has the same expressive power 

as HTML, but also conforms to XML syntax (W3C, 2007b).  
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The Opera web browser is a freely downloadable multi-modal web browser 

(Opera, 2010). By some simple configuration, the Opera web browser downloads 

and uses the free IBM speech-recognition plug-in and can then execute X+V 

pages.  

The SpeechWeb architecture described in (Frost, Ma, and Shi, 2007) is shown in 

Figure 6.4: 

 

Figure 6.4: LRRP SpeechWeb architecture (Frost, Ma, and Shi,  2007)  

In this architecture, the speech applications (i.e. the interpreter, a specialized 

copy of the X+V browser, and the grammar file for the application) reside on 

conventional remote web servers. Each application consists of a recognition 

grammar and an interpreter. The grammar defines the input language of the 

application. The interpreter is a program that takes the recognized text as input 

and returns a text result which is returned to the local browser. The interpreter 

can be written in any language. The copy of the X+V browser which resides on 

the remote server (as part of the application) is specialized for the application 

with a special greeting, and also contains the URLs of the interpreter and the 

grammar file. 
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When the user starts the Opera X+V browser on the local machine and contacts 

a remote speech application, the copy of the X+V browser is returned from the 

remote application. This browser is tailored to the speech application by having 

three application-specific parts: 1) A greeting, 2) the URL of the recognition 

grammar, and 3) the URL of the interpreter. Next, the recognition grammar from 

the remote application is downloaded and used to tailor the recognition engine of 

the browser. The user’s voice input is recognized by the local browser, and the 

recognition result is sent as text to the remote application. The interpreter 

residing on the remote application accepts the text input, processes it, and 

returns the result as text to the X+V browser on the local machine. The result is 

then output to the user as synthesized voice. 

The reason why each application has its own version of the X+V browser is to 

overcome what appears to be a bug in the X+V interpreter. Recognition 

grammars cannot be changed when an X+V script is executed. When this bug is 

fixed, a single X+V browser can be used on the local device to access different 

speech applications. The greeting message, URL of the recognition grammar, 

and URL of the interpreter for each application could then be stored in a file at 

the remote location associated with the application. 

If the user’s command is a request to access another speech application, the 

voice input is recognized as such by the current speech application, whose 

interpreter returns the URL of the new speech application. The browser 

recognizes the URL link and then redirects to the new speech application. A new 

recognition grammar is downloaded and the above process continues until the 

user requests to leave the SpeechWeb. 

The advantages of using LRRP architecture as the basis of the Public-Domain 

SpeechWeb are discussed in (Frost, 2005) as follows: 
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(1) It improves speech-recognition accuracy and efficiency. Only the 

application-specific speech-recognition grammar is downloaded and 

applied, which is efficient and improves speech-recognition accuracy. 

(2) Speech applications can be written in any language with input and 

output that conforms to the Web communication protocol. 

(3) It is suitable for expert users and users who do not have expertise in 

language processing. People who do not have expertise in language 

processing can create simple applications with canned answers to 

user queries. Advanced developers can build complex applications on 

powerful server-side machines. 

6.5 The Example of a Speech Application 

In this thesis, we include an example to demonstrate the ease of creating and 

deploying a speech application on the Public-Domain SpeechWeb. The example 

speech application is a very simple application called Read-A-Book, which 

allows speech access to the book Sleeping Beauty. The application can read 

the book by page or by chapter. Also, the user can command the application to 

read the pages referring to some specific words. In addition, the user can ask 

some book-related questions, such as what is the title of the book or 

who is the author of the book. Meanwhile, the user can get assistance 

from the system by asking for help, what can I say, or what do you know.  

The example speech application was chosen to illustrate the ease with which 

grammar-based speech applications can be created and deployed using the 

Public-Domain SpeechWeb architecture. It is very simple and does not have 

many commands, nor does it do any natural-language processing. More powerful 

speech applications have been built, and added to the Public-Domain 

SpeechWeb, by the research group at the University of Windsor and are briefly 

described in Frost et al (2008). However, the same methods are used to provide 

the speech recognition capability and to deploy these applications as that are 

used by the Read-A-Book application discussed here. 
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Similar to navigating from a conventional website to another website on the 

Internet, a user can navigate through speech applications on the SpeechWeb. 

For example, by asking can I talk to judy, the user leaves the current 

speech application to access the judy speech application. 

The hardware and software requirements for speech-application development 

include any PC or handheld computer that can run a version of the Opera 

browser which supports X+V, a microphone and speakers for voice input and 

output. The Opera multi-modal web browser is freely downloaded at Opera 

(2010), and configured for voice capability. 

We need to create four files to build a speech application and deploy it on the 

existing SpeechWeb: (1) an XML file, (2) a grammar file, (3) an interpreter file, 

and (4) a CGI file (Frost et al, 2007).  Taking the Read-A-Book application as an 

example, we now discuss each of the four files: 

(1) The XML file.  

The XML file is a copy of the X+V web browser created by Frost, Ma and Shi 

(2007) and subsequently modified by Frost, Karaki, et al (2008). It can be 

obtained from the SpeechWeb website at http://cs.uwindsor.ca/~speechweb/. 

The .xml file is modified by changing the greeting, the URL of the recognition 

grammar, and the URL of the interpreter for the Read-A-Book application. This 

modification took only a few minutes. The .xml file for the Read-A-Book 

application is given in Appendix I. 

(2) The recognition grammar file. 

Speech-recognition grammars vary from application to application. The 

grammars are written in JSGF format to define the input language of the speech 

application. The name of the grammar file needs to be consistent with the URL in 

the XML file.  
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In the Read-A-Book example, the system firstly greets and responds to user’s 

greetings like, Hello or Hi there. The user can command the application to 

read the book by user’s preference. For example, the user can ask the system to 

read the book starting from specified places, such as the beginning, page 

numbers, chapter numbers, or referring to some words, such as please read 

page two or read chapter five. The user can also ask some questions 

related to the book, such as who is the author of the book, and what 

is the title of the book. If the user encounters difficulty while using the 

application, s/he can ask for help at any time, like help, what do you know, 

or what can I say.  

The recognition grammar for application Read-A-Book is given in Appendix C. 

This example grammar is very simple. More expressive grammars can be found 

at the SpeechWeb website http://cs.uwindsor.ca/~speechweb/. 

(3) The interpreter file. 

 The interpreter is a program that takes the recognized text as input and outputs 

text after processing the input. For the Public-Domain SpeechWeb, the 

interpreter must reside in the same directory as the .xml file and must have the 

extension .cgi as cgi is the communication protocol used by the Public-

Domain SpeechWeb (note that for interpreters built using interpreted 

programming languages an additional script with the .cgi extension must also be 

created as discussed later).  

For the Read-A-Book application, the interpreter is a simple program. For 

example, if the user says hello, the local browser converts it to text and sends it 

to the interpreter which sends the text hi back to the local browser which outputs 

it using synthesized voice. If the user says read page ten, the interpreter 

responds to the user with the content of the book at page ten and the following 

pages until the user requests stop or inputs another commands. In the example 

Read-A-Book application, without interruption from the user, the system will 
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read five continuous pages by default and prompt the user to continue or stop. 

The interpreter program interprets the user’s text queries/ commands and returns 

the answers to the user by synthesized voice or directs the user to corresponding 

speech applications as required.  

Interpreters can be written in any programming language provided that the input 

and output are handled by the standard input/output features of the language. 

The interpreter for the example speech application Read-A-Book was written 

using Miranda, a non-strict purely functional programming language. An excerpt 

of the Read-A-Book interpreter is in Appendix J.  

(4) The CGI file (which is only required when the interpreter is written in an 

interpreted language) 

Because Miranda is an interpreted language, a .cgi script is also required as 

the .cgi file which invokes the Miranda interpreter when the script is sent input 

from the local speech browser.  

The .cgi file can be written in Unix or any other scripting language which is 

supported by the web server on the remote compute server. The .cgi file for the 

Read-A-Book application is a Unix script which can be found in Appendix K. 

In order to deploy the Read-A-Book application on the Public-Domain 

SpeechWeb, the four files are placed in a directory which is accessible through a 

web server running on a compute server linked to the Internet.  

To start the Read-A-Book speech application, the user directs the Opera 

browser to the XML file at the URL for the Read-A-Book application. When the 

opera multi-modal web browser starts, the application greets the user by voice 

saying Hello, how are you? I am going to read a book for you. 

A sample screenshot of the application is in Figure 6.5. More screenshots for the 

conversation of the Read-A-Book application are in Appendix L.  
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Figure 6.5: the screenshot of Read-A-Book application. 

In this example conversation, the user says hello, and the application responds 

with hi there. The user then asks what do you know.  The application 

responds with I know some books. I can read a book for you. The 

user continues to ask what is the book’s title. The application answers, 

Sleeping Beauty. The user further asks, who is the author of the 

book, the application answers the Grimm Brothers.  

On the screen, the question (user’s command) is displayed first. The response 

(from the application) is displayed above the question on screen. The 

subsequent conversations are displayed in the same way, and the screen scrolls 

down. 
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6.6 Summary 

A SpeechWeb is an augmentation of the conventional web. It extends the 

concept and the usage of the traditional web.  It provides speech access to 

specially-created applications for people with visual disabilities and for situations 

where hands-free access is necessary. 

In this section, we first introduced the concept of a SpeechWeb. We then 

presented the LRRP (Local Recognition/ Remote Processing) SpeechWeb 

architecture (Frost et al., 2004) and explained its advantages. Next, we 

presented an example speech application, Read-A-Book, to demonstrate how 

easily a speech application can be constructed and deployed on the Public-

Domain SpeechWeb using freely available software and commonly used 

communication protocols. 
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7.  CONCLUSION 

7.1 Proof of the Thesis 

We began with the thesis that natural-language speech-recognition grammars 

are amenable to methodical analysis and design techniques. In particular:  

(1) Various grammar metrics, including the Average Branching Factor 

(ABF) can be computed automatically and efficiently. 

(2) Semantic constraints can be encoded in syntax rules in order to 

decrease language size and ABF.  

(3) Recognition grammars can be created automatically from relational 

database schemas and application specifications. 

(4) Readily-available speech-recognition technology and commonly-used 

communication protocols can be used by non-expert as well as expert 

users to create and deploy speech applications. 

We have proven each part of the thesis by constructing algorithms and software. 

Such proofs are informal and are really “proof of concept”. However, formal 

mathematic proofs were given showing termination, correctness and polynomial 

complexity of the ABF algorithm. 

7.2 Future Work 

In this thesis report, we have proposed a novel and efficient algorithm of 

computing the Average Branching Factor (ABF) directly from speech-recognition 

grammars to assist the analysis and design of speech-recognition grammars. 

However, this algorithm has the following three constraints: 1) the grammar must 

be proper, 2) the grammar must be 1-lookahead, and 3) the grammar must be 

non-recursive. For many speech-recognition applications, these constraints can 

be easily accommodated. However, it should be noted that if our algorithm can 

be modified to overcome the last constraint (i.e., non-recursive), then it would 

have application in many other areas of A.I. The reason for this is that many 

problems that involve search (for example constraint-satisfaction, pattern-
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recognition, planning, etc.) can be defined as parsing and/or grammar expansion 

(derivation) problems. The Average Branching Factor (ABF) is one metric that 

can be used when comparing different problems and different language-based 

solutions to those problems. Therefore, it would be useful to investigate how to 

extend the algorithm to accommodate recursive grammars.   However, the 

approach would likely be very different as recursive grammars would generate 

infinite languages. 

 It would be useful to consider the addition of probability values to the alternatives 

in the syntax rules. The reason for this is that it is likely, in the near future, those 

speech-recognition engines will become available that are based on probabilistic 

grammars. In such grammars, each alternative in each syntax rule is labeled with 

a probability value that represents the likelihood of that alternative matching the 

input. These probability values are then taken into account together with the 

results of matching the phonetic properties of the next segment of the input with 

those of the words in the director sets of the alternative branches of the 

production rule. No research appears to have yet been carried out on relating 

average branching factors, probability values, and recognition accuracy. We 

would like to investigate into the use of probabilistic grammars when recognition 

engines that are based on probabilistic grammars become readily available.  

We have discussed, analyzed, and compared the CFG and SCG grammars in 

this thesis. It would be useful to study and apply more semantic constraints in 

future work to improve the recognition accuracy and assist the design and 

development of speech-recognition grammars.  

We have proposed a novel approach to generate the CFG and SCG grammars 

automatically from relational database schemas. The automatically-generated 

CFG/ SCG grammars can be used to the speech applications or speech 

interfaces for database queries. In future work, it would be useful to develop 

methods to automatically generate other types of speech grammars.  
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Finally, the example speech application which we developed using the 

SpeechWeb architecture illustrates the ease with which such applications can be 

constructed and deployed on the Internet. In future work, it would be useful to 

investigate methods which integrate the automatic generation of recognition 

grammars from database schemas with other components so that a complete 

speech query interface to a given Oracle database could be automatically 

generated and deployed on the Internet. 
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1. INTRODUCTION 

Over the past three decades, speech-recognition technologies have achieved 

significant developments. A large number of spoken-dialogue systems have been 

implemented. Aust et al (1995) present Philips system. Jupiter system (weather 

information system) (Zue et al, 1997 and Zue et al, 2000) and the AT&T’s call 

redirection system (Riccardi and Gorin, 2000) are the pioneer systems. Other 

examples include the ARISE project (Lamel et al, 2000; Baggia et al, 2000) and 

Philips Directory-Assistance system (directory information service) (Schramm et 

al, 2000). Also, an important American project, the DARPA Communicator, has 

attracted the most important research organizations in USA, such as MIT, BBN, 

Carnegie and Mellon University (Rudnicky et al, 2000 and Carpenter et al, 2001), 

University of Colorado (Pellom et al, 2000; Zhang et al, 2001), AT&T (Walker, 

2001),  Bell Labs, SRI and IBM (Gao et al, 2001). Trias and Marino (2002) 

discuss BASURDE [LITE] system, the train travel information and ticket 

reservation services.  

Rather than a graphic user interface, voice applications are applications with 

spoken input and/or output. There is overwhelming information flowing through 

the Internet nowadays, and many business transactions are conducted through 

the web. VoiceXML (VXML) makes it possible to access the Internet via voice 

(e.g. phone). More and more companies are recognizing speech as an integral 

part of their IT solutions (HP, 2005). 

Currently, stochastic (statistical) language models and grammar-based language 

models are two mainstreams in Natural Language Understanding (NLU) research. 

Statistical language models have the advantages of simplicity, flexibility, 

adaptation, higher recognition accuracy, and robust performances. The primary 

disadvantage is the costly collection of huge amounts of training data and poor 

generalization with insufficient data. In addition, Statistical language models are 

not supported by commercial systems, such as VoiceXML browsers.  
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As an alternative solution to statistical techniques, grammar-based speech 

recognition is more expressive, more common and easier to use with reasonable 

recognition accuracy for small domains. An important advantage over statistical 

approaches is that grammar-based approaches do not require a large amount of 

training data which is difficult and expensive to collect. 

 Knight et al. (2001) declare that, statistical language models were popular 

around 1995, whereas grammar-based language models took the pre-eminent 

position in commercial products by 2001. By defining sets of rules, grammars 

define the utterances, phrases, and words that are accepted by the speech 

application. Effective grammars are a critical component of grammar-based 

speech applications (Nuance, 2003). Therefore, the need for guidelines for 

grammar design for VoiceXML-like applications is imperative. This survey aims to 

provide a comprehensive review of research and development in this area.  

This survey is organized as follows. Section 1 briefly reviews the concepts of 

VoiceXML, recognition grammars, and spoken-dialog systems. Section 2 

discusses the current challenges of grammar design. Section 3 focuses on the 

detailed principles and guidelines in grammar design. Section 4 considers the 

issues in Voice User Interface (VUI) design. The issues related to testing are 

discussed in section 5. Section 6 discusses tools and environments for speech-

application development. Section 7 concludes the survey. 

1.1 VoiceXML (VXML) 

The Voice eXtensible Markup Language (VoiceXML) is an industry standard 

defined by the World Wide Web Consortium (W3C, 2005). VoiceXML is an XML-

based markup language for building distributed voice applications, much as 

HTML is a markup language for creating distributed visual applications. The 

structure of VoiceXML is similar to that of HTML, which allows web developers to 

write voice-enabled applications with ease.  
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VoiceXML provides features to collect spoken and DTMF (Dual Tone Multiple 

Frequency) input, generate synthesized audio prompts, control dialog flow and 

ECMA scripting, handle asynchronous events, record and play audio, and control 

basic telephone connections (HP, 2005). A VoiceXML application is built from 

one or more VoiceXML documents with the same application root document. 

Each document contains a variety of VoiceXML instructions for the application. 

The information in the root document is available to all of the documents in the 

application. The root document is loaded whenever one of the application’s 

documents is loaded, and remains loaded as long as the application is active.  

VoiceXML documents define applications as a set of dialog states. At any time, 

the user is either in a state or being transitioned to a state. A dialog may include 

several discrete dialog elements, called forms or menus. A form defines an 

interaction that collects information from the user, and makes the transition to a 

new state based on this information.  A menu is essentially a form with only one 

piece of information to gather. For example, a menu presents the user with a set 

of choices. Based on the choice the user made, s/he is transitioned to another 

state of the application.  

Therefore, a VoiceXML application or document constitutes a conversational 

finite state machine, moving the user from one state to the next. Each transition 

is determined by the dialog element at the time. The transitions are specified 

using Unified Resource Identifiers (URI), which can point to another form in the 

same document, another document, or to a document in a completely different 

application. Execution is terminated when a dialog does not specify a successor, 

or when all dialog elements in the current document have been visited, or if an 

explicit exit command ends the dialog. Events are thrown when certain conditions 

are detected. 
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1.2 Grammars 

A grammar is a fundamental building block of speech technology (Mané and 

Levin, 2005). A grammar is a set of rules that define the possible words, phrases, 

or utterances which are accepted by the speech recognition engine. The main 

rule of a grammar is called the “root” rule, which acts as an entry point in the 

grammar. A rule can reference other rules, or list combinations of equivalent 

alternative wordings, repetitions or optional parts. A grammar may be trivial lists 

of possible words, or a set of rules defining complex sets of phrases. 

Grammars may be incorporated into the application code as inline grammars, or 

be externally available as external grammar files.  Inline grammars are typically 

small and uncomplicated. External grammars are usually larger and non-trivial. 

The advantages of using an external grammar are that, it is shareable among 

multi-applications, which eliminates the need to maintain several identical large 

grammars. Another advantage of external grammars is that they do not need to 

change with the changes of VoiceXML code.  

A grammar can be defined statically, or dynamically using the technology to build 

dynamic HTML, such as CGI scripts, Java Beans, servlets, ASPs, and JSPs. In 

addition, some grammars are so common that they have been incorporated into 

the VoiceXML interpreter, such as those defining Boolean values and Dates.  

Currently, there are several grammar formats available in grammar creation for 

voice applications. Speech Recognition Grammar Specification (SRGS) is the 

only standard for Automatic Speech Recognition (ASR) grammars (Baggia, 2006). 

The details of the W3C Speech Recognition Grammar Specification are available 

at (W3C, 2004). It was accepted as a W3C Recommendation in March 2004, 

which means that many companies demonstrated it to be easy to implement, and 

gave support to its development. The two grammar formats included in SRGS 

are:  
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(1) XML format with an enforced syntax expressed both by a DTD and a 

schema;   

(2) ABNF (Augmented Backus-Naur Form) format, which is a textual and 

concise encoding of a grammar.  

Both the ABNF Form and XML Form have the expressive power of a Context-

Free Grammar (CFG) (W3C, 2004). ABNF format is suitable for quick hand 

coding, while XML is easily handled in automatic environments and is more 

suitable for integrating into XML-based Voice User Interface (VUI) design 

languages, i.e. VoiceXML 2.0.  

SRGS is modeled on the Java Speech Grammar Format specification (JSGF), 

which is owned by Sun Microsystems, Inc., California, U.S.A. (W3C, 2005).  

JSGF is a platform-independent, vendor-independent textual representation of 

grammars for use in speech recognition. It adopts the style and conventions of 

the Java Programming Language in addition to use of traditional grammar 

notations. The textual representation is readable and editable by both developers 

and computers, and can be included in Java source code (Sun, 1998b).   

Nuance (2003) extended the XML grammar as Grammar Specification Language 

(GSL). IBM Voice Toolkit supports XML and ABNF grammar formats (IBM, 2005). 

Bevocal Café, Voxpilot and Tellme support the XML and GSL grammar formats. 

A grammar in a voice application can be in one of two modes: voice (the default 

mode) or DTMF (Dual Tone Multiple Frequency). DTMF can be used as an 

alternative to speech input, particularly when speech recognition is unreliable or 

problematic. In VoiceXML 2.0, DTMF is included as a value of the mode attribute 

in the <grammar> element. In a DTMF grammar, an automatic translation of 

phone buttons to DTMF tokens takes place. A DTMF grammar specifies a set of 

key presses that a user may use to perform an action or supply information, and 

for matching DTMF input, returns a corresponding semantic interpretation (W3C, 

2005).  
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1.3 Spoken-Dialogue Systems 

A complete spoken-dialogue system involves the integration of the following 

components: a speech recognition component, a language understanding 

component, a dialogue management component, a component for 

communication with an external system, a response generation component, and 

a speech output component (Glass, 1999) (Han, 2000) (McTear, 2002). These 

components work in a sequential stream, in which the first component receives 

the user’s input, and the output from that component feeds into the next 

component as the input, and so forth, until the consequent voice output is 

synthesized for the user. 

The construction of the spoken-dialog system usually consists of the following 

four steps (Pellom et al, 2000):  

5) architectural design,  

6) application design and data collection,  

7) speech and natural language interface design, and  

8) user feedback and evaluation.  

Typically, spoken-dialogue systems can be categorized into: 1) transaction-based 

and 2) information-provision systems (which is called queries-based systems in 

IBM (2005)). In transaction-based systems, users can conduct transactions, such 

as buying or selling stocks. In information-provision systems (queries), users can 

obtain information on request. There are three ways of guiding users through 

these automated services: 1) system-driven (machine-directed), 2) mixed-

initiative, and 3) user-driven (Rugelbak, et. al., 2001) (Wasinger, 2001) (Nuance, 

2003) (Turunen, 2004) (Tverra, 2004) (IBM, 2005), and (Apache, 2005). In 

system-driven applications, the computer controls all interactions by sequentially 

executing each item a single time. The advantage is a reduction of the risk of 

errors. But the user may feel this to be too confining and controlling, which may 
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make them unwilling to use the application. In mixed-initiative dialogue system, 

the user is given a greater flexibility and allowed more natural responses. The 

advantage of the mixed-initiative system is that the user is more in charge. But 

the system has to infer information from the user’s input, making it error-prone. 

The user-driven system is the extreme case, where the system opens the 

conversation with a question like “how may I help you?” The user is free to 

express his/ her goal, and the system faces the challenge of matching the user’s 

responses. It has been reported that this technology is currently not considered 

mature for commercial applications (Rugelbak et al., 2001). Most successful 

applications are system-driven, directed dialogue systems. 
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2. THE CHALLENGE OF GRAMMAR DESIGN 

Writing grammars is a daunting and expensive task, which forms a major 

bottleneck in the development of spoken language systems (Siu and Meng, 

1999). Furthermore, there is no direct control that such a grammar will model the 

target language well when it is applied to realistic spoken queries.  

Although speech-recognition technology has achieved significant progress over 

decades, it is not yet perfect. Speech recognition is not an exact, analytical 

science, but a probabilistic art and incorporates elements of sophisticated 

guessing (Abbott, 2001). There are still many limitations in voice applications. For 

example, the background noise or non-native speakers may cause poor speech-

recognition performance. Also, a person, who is not familiar with the voice 

application, may have many out-of-grammar errors (i.e., words or sentences 

cannot be accepted by the current active grammar).  

An effective and efficient comprehensive grammar should be able to handle a 

variety of user inputs. However, each user is different. It is almost impossible to 

design a grammar covering all possible answers to a particular question. Even for 

a YES/NO answer, the user may respond with “Yes”, “Yup”, “Yeah”, “Correct”, or 

“No”, “Nope”, “No way”. This inevitably adds difficulties in defining grammars to 

cover every user’s responses.  

 In addition, speech applications are getting broader and more sophisticated, 

which usually means grammars have significantly increased complexity (NÜ echo, 

2005). To write an effective grammar for a voice application, many factors need 

to be considered (see section 3.1).  Writing a grammar, especially a complex 

grammar, is a tedious task requiring expertise. Also a grammar needs to be used 

and tuned iteratively, and a non-trivial grammar is very difficult to maintain.  

The features of speech communication also implies difficulties in dialog design as 

follows: 
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(1) Speech is transient and invisible, and human beings have limited short-

term memory (Bouzid, 2006e). Psychologists have found that, in general, 

people can only memorize five to nine chunks of information at a time 

(Apache, 2005). People may quickly forget what they have just heard, 

which is different from traditional web pages where the information is 

always present and visible.  

(2) The conversation is linear. The communication is slower than visiting 

graphic web pages.  

(3) Users may not know the navigation words, and may not know how to 

respond to a prompt from the voice system.  

(4) Users may get lost, because of their short-term memory to know where 

they are in a conversation. 
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3. ISSUES IN GRAMMAR DESIGN 

3.1 Guidelines for Grammar Design 

Designing good grammars is as much art as science (IBM, 2005). A well-defined 

grammar can not only improve speech recognition accuracy, but also provide the 

user with great flexibility and comfort in voice services. Good grammars are 

essential for the usability of a speech application. Shi (2003a) provided a survey 

on the techniques of using natural language features to improve speech 

recognition accuracy, such as constraining the grammar by integrating semantics, 

using probabilities (weights), combining stochastic and grammar-based 

techniques, large-vocabulary related techniques, and SpeechWeb techniques. 

From first-hand experience in writing grammars for real-world voice applications, 

many guidelines in VoiceXML application grammar design from the developer’s 

point of view have been created. They are summarized and presented as follows. 

Grammars for VoiceXML applications can be defined in an external file or inline. 

The developer can weigh such factors as follows (IBM, 2005): 

(1) Grammar size and its effect on speech recognition accuracy and 

document access time. Generally, the smaller grammar has the better 

recognition accuracy (Wasinger, 2001) (Shi, 2003b) (Mané and Levin, 

2005) (IBM, 2005) and shorter access time (Nuance, 2003). 

(2) The importance of instantaneous response and the corresponding need to 

load the grammars up front. For example, if the grammar is large and in a 

menu or form that is unlikely to be executed, it can be defined as an 

external file. Conversely, if it needs to be instantaneously ready, it can be 

defined inline, rather than having to be downloaded from the web 

application server, when the user accesses the menu or form.  
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Abbott (2001) identifies the following techniques to improve speech recognition 

performance:  

(1) Use short phrases (Boyce, 2000) or multi-syllabic words for links (e.g., 

“start over”).  

(2) Reserve the shortest, commonest responses for field-level responses, 

which will be matched with high priority by the speech recognizer. The 

links with broader scope should be longer phrases that can be recognized 

in a variety of contexts. 

(3) Allow the use of DTMF where precise input of numbers is important or the 

system has difficulty in recognizing the user’s input (Apache, 2005). Limit 

spoken digits to 4 or less (Eisenzopf, 2006). 

(4) Do not share recognition errors with the user. For example, instead of “Did 

you say Austin or Boston”, the computer should respond with the prompt 

like: “I did not get that. What city”, instead of repeating the question.  

(5) Do not make the grammars too broad, or include too many synonyms.  

It was reported that the complexity of a grammar greatly affects the speed and 

accuracy of the recognizer (Nuance, 2003) (IBM, 2005). The grammar designer 

should predict how users will respond. However, it is impossible to include all of 

the responses that can occur in the application because one cannot control how 

people speak. In practice, one can guess the most common ways that people will 

respond and include them in the grammar, instead of trying to include every 

alternative. After collecting some data, one can refine the grammar, collect more 

data, and refine the grammar further, and so on. Therefore, grammar writing is 

actually an iterative process.  

In addition, Nuance (2003) observes that there are two types of responses from 

the user: 1) the information item by itself, and 2) the literal response to the 

questioning wording. For example, if the system asks “what is your departure 

city?” most responses will be just a city name like “Toronto”.  A smaller group of 
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responses may be “My departure city is Toronto.” These observations indicate 

that prompts need to be worded carefully, and the grammars and the prompts 

should correspond closely with each other. 

Nuance (2003) identifies the following guidelines for building a robust application. 

(1) Specific prompts will lead to a high recognition accuracy and robustness. 

(2) Smaller sub-grammars may result in a more robust system (Wasinger, 

2001). 

(3) Cover as many words as possible in a sentence since the robust Natural 

Language engine ranks interpretations according to the number of words 

of a sentence. 

(4) Use as few grammar rules as possible in the application. 

(5) Use grammar weights/ probabilities to maximize the probability of the 

phrase fragments.  

Nuance (2003) indicates that a 5% out-of-grammar rate is acceptable, even 10-

20% out-of-grammar rates are not uncommon for certain types of recognition 

tasks. If the out-of-grammar input is a problem for a voice application, a 

Statistical Language Model (SLM) could be considered. A detailed discussion of 

SLM can be found at (W3C, 2001). 

Jackson (2004) points out that: 

(1) A good grammar should cover effectively the range of responses that can 

be encountered in the application (IEEE, 2002). This can include the 

essential input as well as extraneous words and phrases. 

(2) A grammar that is too large will hinder speech processing and potentially 

lead to more mis-recognitions (Abbott, 2001) (IEEE, 2002) (IBM, 2005). 

(3) Grammars should not overlap (i.e., pay attention to scope); 

(4) Excessive use of global grammars (defined in the root document) can 

increase the possibility of overlapping. 
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In general, recognition accuracy can be improved by the following measures 

(IBM, 2005):  

(1) Simplifying the grammars to minimize the possibility of confusion between 

words (Abbott, 2001) (IEEE, 2002) (Jackson, 2004). 

(2) Presenting fewer choices (Apache, 2005). 

(3) Having fewer active grammars. 

(4) Ensuring that the grammar can accept user responses that mirror key 

phrases from preceding prompt. For example, if the system is asking “Are 

you a student or a teacher?” the grammar should be able to accept the 

phrase such as “a student”, “I am a student”, “teacher”, and “I am a 

teacher”.  

Apache (2005) provides the following suggestions for grammar design:  

(1) Use form-level, mixed-initiative grammars whenever possible. People feel 

more comfortable if they think they are in control of the system, not the 

other way. One technique could be barge-in. Eisenzopf (2006) suggests 

that if natural dialogs fail, fall back to directed prompts.  

(2) Take advantage of grammars allowing global commands. 

(3) If the grammars cannot be determined at the time the VoiceXML 

document is written, dynamic grammars should be used. 

(4) Use the user’s terminology in the grammars, instead of the developer’s 

jargon. 

(5) Allow the user to phrase their input in multiple ways to increase the 

flexibility of the interface. 

(6) It’s important to include non-verbal vocalizations in grammars, such as 

“err” and “um”, which are common in human to human communication. 

(7) Avoid including words that have different meanings but similar 

pronunciations in the same grammar. Try to use only phonetically distinct 

words (Nuance, 2003). 
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To decide what words and phrases to be included in grammars, and when to 

make each grammar active, IBM (2005) mentions the following trade-offs which 

need to be taken into account: 

(1) The length of words and phrases. The longer the words and phrases, the 

better recognition accuracy, because of greater differentiation among valid 

utterances. However, the longer words and phrases could make the 

dialogs slower. Also, it is more difficult for user to remember longer 

phrases. On the other hand, shorter words and phrases increase the 

chances to be mis-recognized. Monosyllabic words and short words with 

unstressed vowels are especially prone to be recognized as each other, 

even though they may look and sound different to a human ear. Therefore, 

if a grammar has to include many short user utterances, it is important to 

minimize acoustic confusability by making them as acoustically distinct as 

possible. The advantages of using shorter words and phrases include 

faster dialogs progress and easy to remember for users. 

(2) Vocabulary robustness and grammar complexity. A robust grammar with 

great complexity may include many synonyms and alternative phrases to 

offer users with greater freedom of word choice. Consequently, users may 

assume that they can say anything, which would lead to large number of 

out-of-grammar errors. Also, the complex grammar files are larger and 

need longer time to load. A simple grammar with less robustness may 

constrain the users more with narrow lists of valid utterances. Also such 

grammar files are smaller, they can be loaded more quickly. Simple 

grammars usually have better recognition accuracy (Wasinger, 2001) 

(Mané and Levin, 2005). 

(3) Number of active grammars. If you activate more grammars at the same 

time, you are improving the usability of the application, such as by 

allowing anytime access to items on main menu. Meanwhile, you are 

increasing the chances of recognition conflicts, and the performance is 

degrading. The fewer active grammars may constrain the user more, but 
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provide better performance with less mis-recognitions due to recognition 

conflicts.  

A special case which we need to discuss further in speech recognition, is 

numbers and letters (alphanumeric strings), which are used very widely in a 

variety of applications. Recognizing alphanumeric strings is one of the most 

challenging aspects of speech recognition because they are short and many of 

them sound very similar, even for human listeners (IBM, 2005). For example, 

“six” (the shortest spoken digit in English) is commonly inserted (recognized but 

not spoken) and falsely deleted (spoken but not recognized) by speech 

recognizers (Abbott, 2001).  Also many of the letters are easily confused with 

other letters: “N” with “M”, “B” with “D” etc. (Rahmel, 2005). Furthermore, each 

letter in a string presents a new chance for error. Rahmel (2005) presents a 

formula to calculate the accuracy of a string taking into account the accuracy of 

each single character of the string and the length of the string:  

string accuracy=(accuracy of a single character recognition)length of the string 

To overcome the difficulty of recognizing alphanumeric strings, Abbott (2001) and 

Apache (2005) suggest a possible solution of allowing DTMF input for numbers 

and International Communications alphabet for letters (e.g., alpha, bravo, 

charlie, and delta represent a, b, c, and d). 

In most cases, there is a pattern to the alphanumeric string. Rahmel (2005) 

provides the simplest and best way to solve the alphanumeric problem by 

explicitly spelling out each individual string as a separate phrase element. Since 

it’s easy to get one character out of ten wrong, and it’s more unlikely to get two or 

more characters wrong in just the right way so that they turn one valid string into 

another valid string. Rahmel (2005) states that this approach should work well for 

static lists up to 100K entries in size.  
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Furthermore, rather than constrain the individual characters, Rahmel (2005) 

identify groups of characters that occur together. Typically, the chance is low to 

recognize the multiple characters all in the right way, if they are all wrong. This 

approach could be combined with subsequently validating the top N n-best 

choices against a database containing the valid alphanumeric strings (Rahmel, 

2005).  

Rahmel (2005) talks about some tips for writing alphanumeric grammars: 

(1) Force the recognizer to use the specially trained letter recognition models 

by specifying the letter in the grammar as a letter followed by a dot to 

distinguish letters (e.g. A.) from words (e.g. “A person”). 

(2) Write numbers as words, i.e., use “one” instead of “1” and so on, so that 

the recognizer does not have to use text normalization to translate the 

digits into words. 

(3) Separate characters to avoid mis-recognizing the letter string as a word. 

(4) Clearly prompt the user (Eisenzopf, 2006). 

3.2 Dialog Design 

Dialogs are the main components of a voice application. Recognition 

performance will be reduced if the speaker is unsure what to say in dialogs 

(Nuance, 2003). Each dialog has one or more speech and/or DTMF grammars 

associated with it. Dialogs determine the grammars. Therefore, it is very 

important for the designer to understand the dialogs well before writing the 

grammars. Due to the specific features that a conversation has, there exist more 

challenges for designing an effective dialog for a voice application than designing 

a traditional web page. Many efforts have been made to come up with good 

guidelines for dialog design. 
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There are two kinds of dialogs: forms and menus. Forms define an interaction 

that collects values for a set of form item variables. A menu presents the user 

with a choice of options and then transitions to another dialog based on that 

choice. Nuance (2003) suggests that, to design dialogs, one should be clear 

about the information required to complete, the information will be requested, and 

the type of the system (i.e., directed dialog or mixed-initiative dialog).  This 

information will help determine the shape and content of the grammars for the 

application. Mané and Levin (2005) assert that a good dialog design relies on an 

understanding and consideration of the business demands, the technology 

constraints, and the user needs.  

Tverra (2004) summarizes the principles in dialog design as follows:  

(1) Minimize the cognitive load for the users (Apache, 2005). The fact is that 

human beings can only remember short information in dialogues. 

Therefore, it is advisable to keep menu choices and information short.   

(2) Balance efficiency and clarity. Though short information helps user 

memorization, the prompts also need to be as clear as possible (Eisenzopf, 

2006).   

(3) Ensure high accuracy (Eisenzopf, 2006). This means that the user should 

be able to obtain help any time. For example, tapered prompting could be 

a choice (Bouzid, 2006f). 

(4) Avoid using “I”. The user should keep in mind that s/he is communicating 

with a non-person, which means that s/he must comply with the rules of 

the system. However, this is not the view of Eisenzopf (2006) and Bouzid 

(2006b) who suggest the use of anthropomorphism (but only in natural 

dialogs) to construct a more naturally verbal conversation. Eisenzopf 

(2006) states that an AT&T study shows that callers are more satisfied 

with applications that used first person in conversations even though 

callers know that it is a computer. This is an arguable assertion. The 

decision of whether to use the first person is up to the developer.  
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(5) Recover from errors gracefully (Angel Voice Site). Errors and mis-

recognitions are unavoidable in voice applications. It is the best if the user 

does not notice the error, while the error occurs and recovers. Otherwise, 

the system needs to recover errors quickly and can not let the user feel it 

is his/ her fault.  

IBM (2005) identifies the following issues when deciding how to group dialogs:  

(1) Logical grouping of menus or forms.  

(2) Resources they require.  

(3) Functions they perform. 

(4) Expected frequency of use. 

(5) Number of pages you want the VoiceXML browser to request from the 

Web application server. For example, a form or menu that is infrequently 

used and contains a large grammar or references, large grammar, or 

audio file, could be defined in a separate VoiceXML document, so that the 

large files are downloaded only when needed.  

Apache (2005) mentions that a person usually can hold five to nine chunks of 

information in memory, therefore there should be no more than five options in a 

menu for choice. The available commands should be listed after the function 

description. Always put frequently-used items first in the menu, and let the user 

know the end of the menu if possible (Biber and Kozminski, 2005).  In addition, to 

satisfy the user, the conversation should be designed to be as short as possible. 

One opinion is that, instead of counting the turns in the dialogue, the number of 

confirmations that were rejected is a more important factor when determining the 

user’s level of content (Mané and Levin, 2005). 

Menu is an important element in dialog design. Bouzid (2006g) provides the 

following suggestions for voice menu design.  
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(1) Avoid the For ... Say or To ... Say Construct. For example, instead of 

using “ to find out your balance, say BALANCE”, you can say “balance”. 

(2) Use landmarks for navigational feedback. For example, you can say 

“balance”, or “operator”. 

(3) If the user is an expert, let him go first.  

(4) Present menu choices when the caller doesn't speak or when what was 

said is out of context. 

3.3 Prompt Design 

Prompts are the short audio files that are played to the user (Biber and Kozminski, 

2005). Prompts indicate that it‘s time for user’s input. They provide important 

navigation clues within the spoken dialogues. The system is prompting the user 

for some information and waiting for user’s input at that specific point in the 

application. Prompts can be prerecorded or dynamically generated by using TTS 

(Text-To-Speech) technology. Effective prompts can reduce the recognition 

errors, increase user satisfaction, and enhance system productivity (Apache, 

2005). 

Prompts should be defined before writing grammars because prompt wording 

can greatly affect the wording of the user’s response, which needs to be captured 

by the grammar. The prompts for directed dialogs are specific, such as “what is 

your departure city?” The prompts for the mixed-initiative applications are open, 

such as “Where would you like to travel?” The open prompts add difficulties to 

grammar design, but are closer to human interactions. The specific prompts may 

provide the user with a robust system with high recognition accuracy 

(Yankelovich, 1997) (Angel Voice Site). Eisenzopf (2006), Bouzid (2006d), and 

Yankelovich (1997) suggest not using open prompts. Clear and unambiguous 

wording of a prompt is a key contributor to application success (Biber and 

Kozminski, 2005). 
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Apache (2005) discusses several techniques on prompting: 

(1) Tapered prompts mean that the system starts with a detailed prompt and 

tapers it to the prompt for the missing information or many pieces of 

information. It is a good choice if some information needs to repeat again 

and again (Yankelovich, 1997) (Eisenzopf, 2006) (Bouzid, 2006d) (Bouzid, 

2006f). Typically, it is used in a mixed-initiative dialog. Hone and Baber 

(1995) point that the longer, more constraining prompts may result in more 

appropriate user response and less need for re-prompting. However, they 

increase the total transaction time.  

(2) Opposite to tapered prompts are incremental prompts (Marcus et al, 1996) 

(Biber and Kozminski, 2005) (Eisenzopf, 2006) (Bouzid, 2006d) (Bouzid, 

2006f). Sometimes, the system provides the short prompt information first, 

then a more detailed prompt if required, and so on. In this way, the experts 

can move fast, and the novices can also get the required information.  

(3) Leading prompts are used to narrow the user’s responses to a question, 

and specify the question for a specific answer (Biber and Kozminski, 2005). 

The designer can include important words, especially the words that are 

expected to be answered, at the end of the prompt. For example, the 

prompt could be “The current price is 45 dollars per share. Would you like 

to buy, sell, or quit?”  

(4) People will feel comfortable if they know they are understood properly. In 

many cases, the system needs to be sure it is proceeding correctly based 

on the user’s purpose. Especially, when the next action could result in 

irrevocable consequences, confirmation and feedback are needed to 

assure the user that the communication is proceeding correctly 

(Yankelovich, 1997) (Biber and Kozminski, 2005). Eisenzopf (2006) 

suggests always confirming the recognition. Explicit confirmations are 

necessary for the actions that can cause severe and permanent results. 

However, too many unnecessary confirmations make the user interface 

too verbose and annoying the user, which is actually impacting on 
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system’s usability. An implicit confirmation can be used to inform the user 

about the results of a particular task and avoid confusion without the extra 

cost of asking for the user’s consent.  

(5) The prompts need to be brief and deliver only the necessary information to 

the user due to people’s limited memory (Biber and Kozminski, 2005).  

(6) Design polite prompts (Boyce, 2000). No matter what the reason is 

causing the errors, never blame the user! Always let the system take the 

blame. Never make the user feel it is his/ her fault. 

(7) Use of barge-in (Biber and Kozminski, 2005) (Bouzid, 2006a). Usually, an 

experienced user would like to speed up the communication by providing 

information quickly. Barge-in means that the user can interrupt prompts to 

input information, rather than waiting for the prompt to complete. This 

technique can make the system more productive. However, Boyce (2000) 

suggest not using barge-in unless it is sure that the majority users are 

frequent users. The final decision is up to the designer according to the 

specific application. 

Apache (2005) has some additional suggestions as follows: 

(1) People have trouble in remembering synthesized speech for long and 

complex message. Therefore, prompts recorded in human speech should 

be used as much as possible.  

(2) The terminology in the prompts should be understood by the potential 

users.  

(3) Avoid compound questions and questions allowing multiple answers 

(Biber and Kozminski, 2005), because they are too verbose and confusing 

for users.  

(4) Use tones to let the user know it’s their turn for input (Biber and Kozminski, 

2005). Biber and Kozminski (2005) also mentioned a preceding set of 

instructions should be included.  

(5) Keeping the interface simple is more important than trying to offer all 
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things to all people. 

The following tips in prompt design are summarized by Bouzid (2006b):  

(1) Drop the "Welcome to..." and "Thank you for calling..." to shorten the 

length of prompts.  

(2) Use an audio icon. 

(3) Drop the "For English…" and "You can interrupt me at any time". 

(4) Do not mention the web site upfront.  

(5) Establish that they can use speech.  

(6) Postpone the call-recoding disclaimer because such disclaimers not only 

lengthen the opening prompt but may frustrate the user as a cue that the 

call is going to be transferred to a live agent. 

Bouzid (2006d) suggests the following tips: 

(1) Ensure that all of the behavior avoids endless loops.  

(2) Do not mix voice and text to speech.  

(3) Do not put into your prompt something that your grammar can't handle. 

(4) Do not switch modes on the caller between tone and voice.  

(5) Do not go quiet for more than 3 seconds.  

(6) Instruct the user saying longer phrase instead of the hard-to-recognize 

short words. For example, direct the user say “help me” instead of “help”. 

3.4 Use of Sub-Dialog 

A sub-dialog is a mechanism for decomposing complex sequences of dialogs to 

better structure them, or to create reusable components (W3C, 2005). A sub-

dialog is also a VoiceXML document, like a function call. Using sub-dialogs 

allows documents to call each other and exchange data, without using CGI or 

other server-side mechanisms (VOXEO, 2006). A sub-dialog provides a 

mechanism for invoking a new interaction, and returning to the original form. 
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The usages of sub-dialogs include the following (W3C, 2005):  

(1) Creating a confirmation sequence that may require a database query.  

(2) Creating a set of components that may be shared among documents in a 

single application. 

(3) Creating a reusable library of dialogs shared among many applications.  

The advantages of using sub-dialogs are as follows (VOXEO, 2006):  

(1) Sub-dialogs are easier to maintain and faster to load and execute than the 

large document.  

(2) Using sub-dialogs is helpful for clean code.  

(3) Using sub-dialogs can eliminate redundant code.  

(4) Using sub-dialogs makes some common voice recognition dialogs 

reusable.  

(5) The use of sub-dialogs results in a much leaner, more modular code 

architecture. 

3.5 Use of Sub-Grammar 

A grammar is either a top-level grammar or a sub-grammar. Top-level grammars 

are the only ones that can be referenced by an application at runtime. All the 

other grammars are sub-grammars that can be reference by only other grammars. 

However, the distinction between top-level grammars and sub-grammars does 

not apply to grammars used dynamically, including just-in-time, VoiceXML, and 

Speech Objects grammars.   

Flat-file grammars are usually adequate for simple voice application, however, 

multi-level complex grammars are more powerful and flexible (VOXEO, 2006). 

The advantages of using sub-grammars include the following (Nuance, 2003):  
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(1) Sub-grammars are reusable by multiple grammars or applications. 

(2) The use of sub-grammars simplifies grammar creation and revision.  

(3) Using sub-grammars helps focus the grammar development to the task at 

hand. 

(4) Defining sub-grammars hides unnecessary details and promotes 

modularity.  

(5) Sub-grammars can eliminate redundant code.  

(6) A hierarchy of grammars using sub-grammars can improve the robustness 

of speech application (VOXEO, 2006).  

3.6 Grammar Weights and Probabilities 

A weight is a multiplying factor assigned to the rule to influence the likelihood of a 

phrase in the grammar (Nuance, 2003) (W3C, 2004). A weight is a non-negative 

floating point value without exponential. Optionally, a weight can be assigned to 

any alternative in an alternative expansion. The items with higher weights are 

favoured more over others by speech recognition engine, if the acoustic 

processing results in similar scores.  

The phrases that are expected to be spoken more frequently (more common) 

should be assigned higher weights, and the less likely to be spoken utterances 

are less likely to be matched with a lower weight by the recognizer. Therefore, 

the speech-recognition accuracy is improved. On the other hand, if the user’s 

input does not match the rule with higher weight, the rules with lower weight are 

searched until matched or the search reaches the end of the grammar. In this 

sense, the weighted grammar is robust. If the summation of the weights of all the 

alternatives of a grammar rule is 1.0, these weights are considered probabilities. 

Probabilities are useful to reflect the frequency of items in a construct (Nuance, 

2003). 
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The appropriate uses of weights/ probabilities can improve the recognition 

accuracy, robustness and speed (Nuance, 2003) (VOXEO, 2006). However, the 

bad assignments of weights/ probabilities can actually hurt the recognition 

performance. The weight/ probability assignment should be based on at least ten 

samples (on average) for each list element (Nuance, 2003) (Eisenzopf, 2006).  

It is valuable to note that the default value for a non-labeled rule is 1.0 in a 

weighted grammar. A possible unintended result might be that the rule without 

weights may have stronger likelihood than the rule with weights (less than 1). 

Therefore, it is important to be consistent in the usage of weights and 

probabilities throughout all the grammars in the application. 

W3C (2004) identifies the following limitations on the definition and application of 

weights:  

(1) No normative or informative algorithms can be used to assign weights. 

The usage of weights is under the internal control of the recognizer.  

(2) It is quite difficult to determine the appropriate weights for any specific 

grammar and recognizer. However, the assigned weights by guessing do 

not guarantee improvement of speech recognition performance.  

(3) Studying real speech input to a grammar is the best way to obtain the 

effective weights. A reasonable example for developing weights is to use 

weights that are correlated with the occurrence counts of a set of 

alternatives.  

(4) The appropriate weights for a particular recognizer do not mean the 

improvement of recognition performance on other speech recognizer.  
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3.7 Error Handling 

Errors are inevitable in voice applications given current speech technologies. If 

the errors cannot be handled properly, the user will be frustrated and even refuse 

to use the voice application. The prevention and proper handling of errors are 

crucial to a successful speech application.  

Apache (2005) discusses the following typical kinds of errors:  

(1) The user’s input does not match the grammar. 

(2) Background noise causes the recognition failure.  

(3) The user’s pronunciation (e.g. accent) may be the reason that the system 

fails to recognize it.  

(4) The user starts to speak too early, or too late, or not at all. 

The goal of error prevention is to avoid putting the user in the situations that are 

error-prone. Apache (2005) suggests the following considerations.  

(1) Do not overload the user’s memory.  

(2) Allow DTMF for digit string input, especially if the system has already 

failed to recognize this item. 

(3) Use comprehensive grammars to overcome the grammar mismatch errors. 

(4) Minimize background noise. 

(5) Well inform the user for help. 

VoiceXML has a built-in mechanism for handling nomatch and noinput errors. 

Since an error can occur anywhere in a dialog, it is important to catch and handle 

both nomatch and noinput errors for each field (Bouzid, 2006f). The number of 

nomatch and noinput occurrences can be specified, so the system can mention 

the DTMF input or directly be transferred to a human operator after the specified 

number (Yankelovich, 1997).  
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IBM (2005) mentions several strategies toward error recovery and confirming 

user input, under different situations. 

(1) If the user input is invalid, the system can state the problem and re-prompt. 

Also, the user can be directed to keypad input.  

(2) If the recognition error occurs while the user is making choices along a 

menu path or completing items in a form, one can feed the recognized 

input forward into the next prompt. The “Go Back” command should be 

included in the first level help (Bouzid, 2006c).  

(3) If the user distracts from the communication and does not hear all the 

information presented, the always active command “Repeat” can solve this 

problem. 

Biber and Kozminski (2005) provide two approaches to handle recognition errors. 

(1) Use prompt escalation, which means that the prompts change every time 

the application queries the user for the same data. If all fail, the user 

might switch toTouch-Tone input. This not only avoids user frustration, but 

also increases the number of completed interactions using the automated 

system.  

(2) When the speech-recognition engine recognizes an input or utterance, it 

returns a value between 0 and 100 to indicate how confident it is of the 

match. The two confidence thresholds (rejection and confirmation) should 

be set (Everett et al, 1993) (Eisenzopf, 2006). An utterance with a 

confidence, below the “rejection threshold”, is rejected as a not-

recognized utterance; above the “confidence threshold”, does not require 

confirmation; between the two thresholds, requires confirmation. 
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3.8 Summary 

This section has discussed the issues related to grammar design and some 

proven guidelines for designing high-quality grammars from the developer’s point 

of view. The topics covered include dialog design, prompt design, sub-grammar 

design, sub-dialog design, grammar weights and probabilities, and error handling. 

We summarize this section in the following. 

Principles for grammar design are summarized as follows: 

(1) The complexity of a grammar greatly affects the speed and accuracy of 

the recognizer. 

(2) A smaller grammar may result in better speech recognition accuracy and 

fast access. A larger grammar will hinder speech processing and 

potentially lead to more mis-recognitions, also need more time to load. 

(3) Use short phrases or multi-syllabic words for links, and reserve the 

shortest, commonest responses for field-level response. 

(4) Specific prompts will lead to a high recognition accuracy and robustness. 

Presenting fewer choices in menus. 

(5) Simplify the grammar, do not make the grammars too broad, or include too 

many synonyms. Use as few as possible grammar rules in the application. 

Have as few as possible grammars active concurrently.  

(6) Ensure the grammar can accept the user responses that mirror key 

phrases from preceding prompt. Allow the user to phrase their input in 

multiple ways to increase the flexibility of the interface. 

(7) Include the most common ways that people will respond, instead of trying 

to include every alternative. Use the user’s terminology in the grammars, 

instead of the developer’s jargons. 

(8) include non-verbal vocalizations in grammars, such as “err” and “um” 

(9) Try to use only phonetically distinct words. Avoid including words that 

have different meanings but similar pronunciations in the same grammar. 
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(10) Use grammar weights / probabilities to maximize the probability of 

the phrase fragments.  

 

In addition, there are some trade-offs need to be taken into account in grammar 

design, such as the length of words and phrases, vocabulary robustness and 

grammar complexity, and number of active grammars. Furthermore, the special 

case for alphanumeric strings has been put forward and some possible solutions 

have been discussed. 

Main guidelines for dialog design are listed as follows:  

(1) Due to the short memory of human beings, there should be no more than 

five options in a menu for choice. 

(2) Always put the frequently-used items first in the menu, and notify the user 

of the end if possible. 

(3) The conversation should be designed as short as possible 

(4) Present menu choices when the caller doesn't speak or when what was 

said is out of context. 

(5) Users should be able to obtain help any time. 

(6) Recover from errors gracefully. 

(7) Balance efficiency and clarity. 

Since the wording of prompts greatly affects the wording of grammars, it should 

be defined before writing the grammars. The techniques to design prompts 

include tapered prompts, incremental prompts, leading prompts, barge-in, and 

confirmation and feedbacks. Also, some suggestions have been made such as, 

using recorded prompts, avoiding compound questions and questions allowing 

multiple answers, using tones to inform user’s turn, and remaining simple 

interface not trying to offer all things to users. 
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The use of sub-grammars has the following advantages: 

(1) Sub-grammars are reusable and promote modularity. They hide 

unnecessary details and eliminate redundant code. 

(2) The use of sub-grammars simplifies grammar creation and revision.  

(3) Using sub-grammars helps focus the grammar development to the task at 

hand. 

(4) A hierarchy of grammars using sub-grammars can improve the robustness 

of speech application.  

The advantages of using sub-dialogs include the following:  

(1) Sub-dialogs are easier to maintain and faster to load and execute than the 

large document.  

(2) Using sub-dialogs can eliminate redundant code, and is helpful for clean 

code.  

(3) Using sub-dialogs makes some common voice recognition dialogs 

reusable, and results in much leaner, more modular code architecture. 

Using weights/ probabilities properly can improve recognition accuracy, 

robustness and speed. However, improper assignment of weights/ 

probabilities can actually hurt recognition performance. 

We discuss the difficulties while defining and applying weights as follows:  

(1) No normative or informative algorithms can be used to assign weights.  

(2) It is quite difficult to determine the appropriate weights for any specific 

grammar and recognizer.  

(3) Studying real speech input to a grammar is the best way to obtain the 

effective weights.  

(4) The appropriate weights for a particular recognizer do not mean the 

improvement of recognition performance on other speech recognizer.  
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Errors are inevitable in voice applications. The prevention and proper handling of 

errors are crucial to a successful speech application. Some suggestions are as 

follows: 

(1) Do not overload the user’s memory.  

(2) Allow DTMF for digit string input. 

(3) Use comprehensive grammars to overcome the grammar mismatch errors. 

(4) Minimize background noise. 

(5) Well inform the user for help. 

The following are some strategies toward error recovery and confirming user 

input.  

(1) If the user input is invalid, the system can state the problem and re-prompt. 

(2) Use “Go Back” or “Repeat” commands.  

(3) Use prompt escalation. 

(4) Set confidence thresholds for rejection and confirmation. 
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4. Voice User Interface (VUI) Design 

Voice User Interface (VUI) usability is the key to the success of a VoiceXML 

application. A good VUI design is not an option, but a requirement. A poor VUI 

does not only frustrate users, but is also insulating and provocative. A good VUI 

has a natural and human-like quality. Many technical limitations can be 

compensated with properly designed speech interface (Turunen, 2004) (Everett 

et al, 1993).   

Commonly, people take it for granted that the usability of a speech application 

will increase with the improved ASR (Automatic Speech Recognition) 

performance. However, the usability of a speech application is determined by a 

tight and highly complex interplay between the ASR and the components of the 

VUI design (Peissner, 2002). Also, it is critical to strike the right balance between 

the simplicity of touch-tone Interactive Voice Response (IVR) systems and the 

complexity of AI-like speech applications in Voice User Interface (VUI) design 

(Gorelov, 2005).  

The main reason of the difficulty in VUI design relies on the fact that speech has 

a temporary existence, and the users must remember what they have heard. One 

VUI design objective is to avoid making users hear more (or less) than they need 

to hear or to say (IBM, 2005). Also, it is important to make the user feel that they 

are moving forward with every interaction (Yankelovich, 1997). Dialog design and 

speech-recognition accuracy are the main factors that affect VUI usability. Both 

issues must be addressed to provide an application that people want to use. This 

requires iterations of usability testing and fine-tuning of the UVI.  
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4.1 Issues Related to VUI 

IBM (2005) points out the main concerns in designing an effective VUI as follows:  

(1) What to present.  

(2) How much to present.  

(3) How to present it.  

(4) When to present it.  

To design an effective VUI, one should understand customer profiles, meet 

realistic expectations, and follow a design methodology that uses proven 

techniques. The details of VUI design methodology can be found at (IBM, 2005). 

Abbott (2001) provides the following VUI design principles and techniques:  

(1) Keep it simple, and do it well. Do not compare the capacity of the VUI with 

that of GUI. Use the 80/20 rule. It means that, aim to simply and effectively 

handle the easiest 80% of the load, and leave the other 20% to other 

means (such as human operators) (Eisenzopf, 2006). 

(2) Accommodate Errors. Since errors are unavoidable, the VUI design 

should not try to eliminate errors, but rather to contain them and tolerate 

them. A good VUI is actually deceptively simple. This means that, the 

basic structure of dialogs is simple and easy, but it should be able to 

handle a multitude of errors. In developing a VUI, the minority of effort 

should be spent on the basic dialogs. The majority of effort should be 

spent on detecting errors, recovering from them, and getting the 

conversation back on track.  

(3) Design for everyone, everywhere. Each user is an independent individual. 

There are a wide variety of voices, speech skills, and vocabularies among 

users. Therefore, the response vocabulary should be simple and generic. 

The ideally VUI design can handle all kinds of voices in all kinds of 

environments.  
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Also, Abbott (2001) mentions the following issues in VUI design:  

(1) Modeling. In conversations, people tend to model their speech on the 

other party’s. Modeling is useful for directing users to acceptable forms of 

speech. When use modeling in VUI design, use the prompts that are brief 

and to the point (Boyce, 2000). If providing help, it’s more important to 

provide examples first than explain what’s going on (Apache, 2005). Do 

not use long, wordy prompts (Bouzid, 2006d).  

(2) Disfluency is one of the biggest problems for continuous speech 

recognition. The longer utterance, the more disfluencies. Therefore, the 

application design should limit the length of utterances. However, people 

like to make long utterances while they are familiar with the system. To 

design a VUI to minimize the effects of disflency, the designer should use 

mixed-initiative combined dialogs with directed forms. In addition, it’s not 

wise to address disfluency through grammar design, because this will 

increase the grammar complexity and slow down recognition, with few 

chances of ultimate success.  

(3) Synthesized speech. More concentration and effort is required for people 

to listen to the synthesized speech than to listen to human speech. 

Therefore, try to use recorded prompts as much as possible. Pay attention 

to prosodic features when using synthesized speech. Synthesized speech 

is not appropriate to read long lists to the user.  

(4) Turn-taking and error amplification. A good VUI will make the user feel 

oriented, in control, and be able to anticipate what will happen next. It’s 

very common for the two parties to lose track of whose turn it is in the 

human-computer interaction. A major goal of VUI design is to construct the 

interface to direct the user to a safe point where s/he is oriented, in control, 

and knows what’s coming if something goes astray.  

(5) Lost in space. Since speech is transient, invisible, and asymmetric (Bouzid, 

2006e), it is easy for people to feel “lost in space” and do not know “where 

they are” in a conversation. A good technique for maintaining orientation is 
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to provide auditory cues along the way, for example, use different voices 

for different parts of the application. However, do not use too many tunes, 

tones, or other non-speech audios, which make the user tired to listen 

repeatedly. Barge-in technique can enable experienced users to move fast 

and the inexperienced user get contextual feedback. Furthermore, the 

orientation tips in prompts are useful when the person is silent or cannot 

be understood. Do not force a lot of contextual information on the user 

unless s/he requests it. Make sure to incorporate error-handling to avoid 

ran-away error amplification.  

(6) The wide range of users and environment is a big challenge for VUI 

design. The following tips need to be considered to accommodate different 

experience levels and environments.  

(a) Shortcut should be available for expert users.  

(b) Use mixed-initiative dialogs backed up with directed prompting for 

filling out forms.  

(c) Incorporate yes/no exchanges as the fallback when more 

complicated dialogs are not working.  

(d) Do not clutter up basic prompts with a lot of tutorial material 

aimed at expert users.  

(e) If a user encounters a lot of errors, do not assume it means s/he 

is “slow”, it may because an expert user is in a tough environment.  

Apache (2005) and Sun (1998a) suggests the following tips to build user-friendly 

interface: 

(1) Use recorded audio for all prompt messages (Abbott, 2001) (Eisenzopf, 

2006) (Bouzid, 2006d). Meanwhile, text is included for TTS as a backup in 

case the audio file is not available.  

(2) <help>, <noinput>, and <nomatch> event handlers are used widely to 

make sure the users are always guided through the dialogs.  

(3) <reprompt> comes with prompt counts to make messages more detailed 
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if the user gets stuck on one field.  

(4) Involve real-world users, not trained engineers, to thoroughly test all the 

dialogs. 

(5) Provide adequate customer support. Users should be able to contact a 

real person easily when they have problems with the computers. 

Also, Apache (2005) suggests the consistent interface. Terminology consistency 

means the use of the same words, rather than synonyms to refer to an object or 

event. To convey a consistent personality to the user, use the same wording, 

attitude, and style in all dialogs in the application. Use the same key to the same 

word or action, while using DTMF.  

4.2 Summary 

A good VUI, with a natural and human-like quality, is crucial to the success of a 

VoiceXML application. A good VUI design is not an option, but a requirement. 

Many technical limitations can be compensated with properly designed speech 

interface. 

Some principles and techniques for VUI design are summarized as follows: 

(1) Keep it simple, do it well. 

(2) Accommodate Errors. 

(3) Design for everyone, everywhere. 

(4) Use recorded audio for all prompt messages. 

(5) Use <help>, <noinput>, and <nomatch> event handlers to make sure the 

users are always guided through the dialogs.  

(6) Involve real-world users, not trained engineers, to thoroughly test all the 

dialogs. 

(7) Provide adequate customer support. The users should be able to contact 

a real person easily when they have problems with the computers. 

(8) Keep the consistent interface. 
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In addition, there are some issues related to VUI design that need to be 

considered. 

(1) Modeling is useful for directing users in speech applications.  

(2) Disfluency is a big challenge for continuous speech recognition. Limit the 

length of utterances in VUI design. Use mixed-initiative combined dialogs with 

directed forms to minimize the effects of disfluency. 

(3) Use recorded prompts as much as possible instead of synthesized speech.  

(4) A major goal of VUI design is to construct the interface to direct the user to a 

safe point where s/he is oriented, in control, and knows what’s coming if 

something goes astray.  

(5) Lost in space. Provide auditory cues along the way to help users from feeling 

“lost in space”.  

(6) The wide range of users and environment is a big challenge for VUI design.  
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5. TESTING 

Because of the complexity and ambiguity, extensive testing and tuning are 

indispensable for speech-enabled applications. Tuning is an iterative process of 

analyzing system performance based on system logs and recorded user 

interactions, then applying the best design practices to achieve the most 

satisfying customer experience and to work around technology imperfections 

(Biber and Kozminski, 2005) (Eisenzopf, 2006). The tuning process should be 

based on actual user data, so that one can examine what users have really said 

to the system and update the grammars and dialogs accordingly.  

Tuning is a complex task which can take a long time (sometimes, several months) 

and involve an interdisciplinary team of professionals, such as developers, 

testers, linguists, and psychologists.  

5.1 Testing Issues 

There are a few issues involved in grammar testing, such as: 

(1) Coverage test. One should test words and phrases that are in the 

grammar to verify that the grammar has the ability to parse a prescribed 

set of utterances (Nuance, 2003) (IBM, 2005) (Biber and Kozminski, 2005).  

(2) Over-generation test. It is to test the words and phrase that are out of 

grammars to make sure the grammars will not accept the unwanted 

sentences (Nuance, 2003)(IBM, 2005).  

(3) Interpretation test. It verifies that the grammar delivers expected natural 

language interpretation for a prescribed collection of phrases (Nuance, 

2003).  

(4) Ambiguity test. It exposes phrases parsed by the grammar that have 

multiple interpretations (Nuance, 2003).  

(5) Pronunciation test is to detect words with unknown pronunciations and 

misspellings in the grammars (Nuance, 2003).  
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(6) Regression test (Nuance, 2003). Whenever a grammar changes, it needs 

to be thoroughly tested to ensure that no errors have been introduced. The 

results from the new version will be compared with that of the old version.  

(7) Identify the consistent mis-recognitions (IBM, 2005). The grammar will be 

tested with a group of test subjects that are representatives of the 

demographics and environments of the users. One can vary the ambient 

noise level, gender, age, accent, and level of fluency during desktop 

testing. If a consistent mis-recognition is found, the developer needs to 

rephrase some entries or add multiple pronunciations. 

(8) If more than one grammar is active concurrently, each grammar needs to 

be tested separately, then they will be tested together (IBM, 2005).  

(9) If weights or probabilities are included in the grammar, the recognition 

performance should be tested with and without them (Nuance, 2003).  

Biber and Kozminski (2005) mentions that the following aspects also should be 

analyzed and tuned:  

(1) Prompts should be unambiguous to prevent unexpected caller responses.   

(2) Dialogs. Usually users have their own expectations about the dialogs. If 

these anticipations cannot be met, the mis-recognitions occur and the user 

might be taken down unexpected paths.  

(3) Confidence thresholds. Tune the proper thresholds to accept the correct 

and reject the unexpected utterances.  

5.2 Summary 

Extensive testing and tuning are indispensable for speech-enabled applications. 

Tuning is an iterative process of analyzing system performance. Some aspects 

are needed to consider in testing, which are summarized as follows:  

(1) Coverage test to test the words and phrase in the grammar.  

(2) Over-generation test to test the words and phrase that are out of 
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grammars.  

(3) Interpretation test to make sure the grammar delivers expected natural 

language interpretation.  

(4) Ambiguity test to expose phrases with multiple interpretations.  

(5) Pronunciation test to detect words with unknown pronunciations and 

misspellings in the grammars.  

(6) Regression test to ensure that no errors have been introduced if the 

grammar changes.  

(7) Identify the consistent misrecognitions. If a consistent misrecognition is 

found, it is needed to be rephrased or add multiple pronunciations. 

(8) If more than one grammar is active concurrently, each grammar needs to 

be tested separately, then they will be tested together.  

(9) If weights or probabilities are included in the grammar, the recognition 

performance should be tested with and without them.  

(10) Prompts should be unambiguous to prevent unexpected caller responses. 

(11) Tune the proper confidence thresholds to accept the correct and reject 

the unexpected utterances.  
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6. TOOLS AND ENVIRONMENTS 

Revolutions in the history of technology have shown that the development of 

technology is driven by basic technology and by tools for developing solutions on 

top of that technology (Olsen and Klemmer, 2005)(Brad et al, 2000). As speech 

applications are accepted and adopted widely and widely, the need for more 

sophisticated Voice User Interfaces (VUI) grows proportionately. Meanwhile, the 

more sophisticated applications usually mean more complicated grammars. 

Furthermore, many grammars often need to be dynamically generated based on 

data obtained at run-time. As speech-recognition grammars grow larger and 

more complicated, the effective grammar development tools are in urgent needs, 

such as grammar editors, visualization tools, and the tools for diagnosing and 

solving problems.  

6.1 Basic VoiceXML Development Environments 

VoiceXML applications utilize speech technologies for understanding and 

creating spoken dialogs (HP, 2005). Applications also leverage the Web and 

server-side technologies (JSP, ASP, CGI) for creating the back-end business 

logic and generating dynamic data.  

Basically, there are two types of development environments for building 

VoiceXML applications: 1) local Software Development Kits (SDK) and 2) 

Remote hosts.  

The local VoiceXML SDKs provide a variety tools for creating VoiceXML 

documents and related resources, such as editors and syntax checkers, dialog 

design tools, grammar design tools, reusable components, and debugger. Some 

may have rehearsal tools to test dialog flow or other capabilities.  

The remote hosts may be Web-based development portal or hosted portal. On 

the Web-based development portal, developers upload VoiceXML documents 
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and associated resource files to the portal, and test the application by dialing a 

pre-assigned phone number. The hosted portal provides developers with the 

closet deployment environment, where developers upload a VoiceXML 

application to a document server (application/ Web server), and test the 

application from a phone. It allows developers to test the full life-cycle of the 

application, including back-end database access, server-side dynamic data 

generation, and dialog interaction.  

6.2 NÜ Echo Grammar Environment 

The NÜ echo grammar environment is to tackle the challenges in grammar 

design with effective tools for grammar design, debugging, and testing, which 

address the complete lifecycle of speech-enabled application (NÜ echo, 2005).  

The NÜ echo grammar environment is featured with ABNF editor, coverage 

editor, sentence interpreter (utterance matcher), semantics single-stepper, 

interactive sentence explorer (phrase enumerator), and grammar converters. The 

NÜ echo grammar environment is a truly integrated environment, where 

grammars can be designed in the same environment as the rest of the speech 

application. All tools in the environment are easy for debugging and tuning 

grammars at all levels.   

This development environment has been extensively field tested. The NÜ echo 

grammar environment is vendor independent, which can support grammar 

formats from multiple vendors. It comes as an Eclipse plug-in, which is an open, 

Java-based extensible integrated development environment, supported by a 

growing number of organizations.  

6.3 IBM WebSphere Voice Toolkit 

IBM WebSphere Voice Toolkit is an Integrated Development Environment (IDE) 

for speech application development. Its runtime server and voice development 
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tools are based on industry-standard VoiceXML and Java. It supports VoiceXML 

and Interactive Voice Response (IVR) applications.   

The WebSphere Voice Toolkit V6.0 is powered by Eclipse technology and makes 

it easy to develop VoiceXML applications without having to know the internals of 

voice technology. The WebSphere Voice Toolkit is full-featured with graphical call 

flow building, VoiceXML development and debugging, Grammar development 

and debugging, Pronunciation builder, and Call Control extensible Markup 

Language (CCXML) development environment.  

The WebSphere Voice Toolkit provides the Graphical Grammar Builder for visual 

composition of a grammar file for speech recognition, and the Prompt Manager 

for organizing the Audio Files in a voice application. More details can be found at 

(IBM WebSphere Voice Toolkit, 2010). The free trial of IBM WebSphere Voice 

Toolkit is available at (IBM Software Download, 2006):  

6.4 Microsoft Speech Application SDK (SASDK) 

Microsoft Speech Application SDK (SASDK) is a set of development tools 

supporting Speech Application Language Tags (SALT) specification which will 

make it easier and faster for developers to incorporate speech functionality into 

Web applications (Microsoft, 2005). 

 The application-authoring tools are seamlessly integrated into Microsoft Visual 

Studio .NET 2003. Therefore, under a familiar and powerful development 

environment, developers can easily create, debug and deploy speech-enabled 

ASP .NET Web applications that can be deployed to a Microsoft Speech Server. 

In addition to these authoring tools, the SASDK provides a powerful set of 

ASP .NET Speech controls, a Speech Add-in for Microsoft Internet Explorer, 

debugging tools, a speech application deployment service, tools for speech 

application log analysis, sample and reference applications, a rich grammar 

library, and reference documentation. The Microsoft Speech Application SDK 
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(SASDK) can be used widely from telephones to Windows Mobile-based devices 

and desktop PCs.  

 

SASDK version 1.1 can be freely downloaded from (Microsoft Download Center, 

2010).  

6.5 MCM toolkit 

The Metaphor Conversation Manager (MCM) toolkit is a VUI toolkit, which 

enables the developer to build professional speech applications for Microsoft 

speech server. MCM leverages the Microsoft Speech Application SDK (SASDK) 

and its speech Web controls. Using the only syntax C#, MCM provides an all-in-

one programming environment to build complete speech applications, from 

dialogs with callers to back-end integration to communications with live service 

agents. 

The MCM toolkit sits on top of speech Web controls and hides the low-level 

complexities of building speech applications, such as grammar creation, 

grammar binding, exception handling, and call event handling (Kuperstein, 2005). 

The technique of allowing complete control of advanced dialog features eases 

the user in building speech interfaces. All MCM projects can be exported to 

standard Visual Studio .NET projects to debug, extend, customize, and deploy, 

and can be deployed for any language that has a recognition engine 

In addition to the development environment, MCM includes post-deployment 

application management tools. The Application Monitor is a Web interface to 

observe system performance and modify logging levels under real-time load 

conditions. The Application Editor enables a non-engineer (e.g. business analyst) 

to change prompts, adjust business variable, and perform other application 

revisions in real time, based on business requirements.  
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More technical documentation on the MCM toolkit is available at: 

http://www.metaphorsol.com/MCM3_docs/MCM_3.htm. 

6.6 Philips Speech SDK 

Philips provides a full range of professional services designed to customize 

speech SDK for voice application development and integration. Philips speech 

SDK can be used to integrate the latest speech recognition technology from 

Philips Speech Processing into your applications. Philips speech SDK also 

includes an easy-to-use C/C++ API so that speech recognition can be integrated 

into the programming environment. The capabilities of Philips speech SDK 

include:  

(1) Dictation recognition (speech-to-text). 

(2) Command recognition. 

(3) Verification recognition.  

(4) Spelling recognition. 

(5) Correction functions.  

(6) Natural language understanding. 

(7) Natural dialog between man and machine. 

(8) Audio recording and playback. 

(9) User interface components. 

More information is available at: 

http://www.speechrecognition.philips.com/index.asp?id=521.  

A free trial of Philips Speech SDK can be downloaded from:  

http://www.speechrecognition.philips.com/index.asp?id=641 . 
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6.7 Hewlett-Packard (HP) OCMP VXML Developer Toolkit 

Hewlett-Packard has developed an Eclipse plug-in, the HP OCMP VXML 

Developer Toolkit, to add VoiceXML application creation support to Eclipse. This 

plug-in and the Eclipse platform provide a unified, robust development 

environment for building VoiceXML applications.  

It is easy to use the OCMP VXML Developer Toolkit to (HP, 2005):  

(1) Create VoiceXML 2.0 compliant voice applications. 

(2) Create voiceXML projects, VoiceXML documents, grammar files, ECMA 

Script files, JSP files, and Prompt text files using specialized wizard. 

(3) Import existing VoiceXML project documents into the VoiceXML 

application. 

(4) Validate VoiceXML documents, grammar files, and ECMA Script files. 

(5) Build and deploy VoiceXML projects to the OCMP execution platform. 

(6) Launch the OCMP testing environment.  

The HP OCMP VXML Developer Toolkit supports VoiceXML 2.0 DTD (version 

20021018) and SRGS XML Grammar Form DTD (version 20020820). The HP 

OCMP VXML Developer Toolkit, HP OCMP SDK, and the Eclipse platform are 

available at: http://devresource.hp.com/drc/topics/vxml.jsp for free of charge.  

6.8 CSLU Toolkit 

The CSLU Toolkit is a platform for research and development of spoken-

language systems. The CSLU Toolkit includes the tools of:  

(1) Audio and visual tools, speech recognition. 

(2) Text-to-speech (TTS), rapid application developer (RAD). 

(3) Language-training wizards, Baldi, SpeechView. 

(4) PSL tools, tutorials, robust parsing, etc.  
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CSLU Toolkit is easy to use, and powerful for research and development use. 

The systems work in real world also incorporate research advances. CSLU 

Toolkit is used for language training, education, corporate uses, research, and 

corpus development. It is free for research use, and customizable for corporate 

use.  

Detail information and download are available at: http://www.cslu.ogi.edu/toolkit/. 

6.9 Chant Developer Workbench 

Chant Developer Workbench is a tool set for speech application development. 

The advantages of using Chant Developer Workbench include maximizing 

speech recognition accuracy, tailoring and enhancing text-to-speech (TTS) 

playback quality, creating, and testing. In addition, using Chant Developer 

Workbench, the developer can deploy grammars, lexicons, profiles, and TTS 

markup with applications and build and enhance a workbench of reusable 

technologies for developing software that speaks and listens. The Chant 

Developer Workbench product family includes the following four kits:  

(1) Chant GrammarKit is speech recognition grammar management software 

that enables the developer to create, modify, and test context-free 

grammars before integrating and deploying them with the application.   

(2) Chant LexiconKit is lexicon management software that enables the 

developer to create, delete, modify, extend, backup, and restore user and 

application lexicon.  

(3) Chant ProfileKit is speech recognition profile management software that 

enables the developer to create, delete, modify, train, backup, and restore 

profiles.  

(4) Chant VoiceMarkupKit is text-to-speech (TTS) markup language 

management software that enables the developer to create, modify, and 

test TTS markup to enhance the playback quality when synthesizing. 
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More information is available at: 

 http://www.chant.net/Products/Developer%20Workbench/Default.aspx . 

6.10 Fonelet’s VoiceXML Toolkit 

Fonelet’s VoiceXML Toolkit is for those who do not want to spend a lot of time 

learning VoicXML, but do want to create simple voice-enabled applications. 

Fonelet VoiceXML Toolkit is web-based and offers a GUI. Fonelet Studio helps 

build "fast prototype" applications and other quick, simple voice applications. With 

Fonelet VoiceXML Toolkit, the developer can design interactive dialogs, 

grammars, address books, Fonelet XML, and Mobile discussion board (to 

exchange voice and text messages on the phone or via web browsers). Another 

advantage of Fonelet VoiceXML Toolkit lies on that it does not require 

programming and VoiceXML knowledge to accomplish the above achievements. 

More information is available at:  

http://journals2.iranscience.net:800/www.commweb.com/www.commweb.com/art

icle/COM20011008S0008 . 

6.11 Wizard of OZ (WOZ) 

The Wizard of OZ (WOZ) experimental prototyping method means that a person 

simulates the system to be designed (Wasinger, 2001) (Fraser and Gilbert, 1991) 

(Bernsen and Dybkjær 1995). Suede is a WOZ Prototyping tool for speech user 

interfaces. It’s available at: http://guir.berkeley.edu/projects/suede/ .  

6.12 BeVocal Café 

BeVocal Café is a Web-based development platform and voice hosting service 

for anyone interested in building voice-enabled services in short time. It is a free, 

Java-based development environment with various valuable tools, documentation, 

and other resources, for building, debugging, and running voice applications. 
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BeVocal provides a reliable, secure, high-performance Hosting Network to run 

the VoiceXML applications. Once built, applications can be easily deployed to 

production and hosted on BeVocal's proven, carrier-grade VoiceXML Hosting 

Network.  

The free demonstrations offered by Bevocal are available online at: 

http://cafe.bevocal.com/ , or by dialing 1-800-BVOCAL.  

 6.13 Tellme Studio 

Tellme Studio is a hosted VoiceXML Platform which allows developers to develop, 

test, and publish the Internet-powered VoiceXML based applications on the 

Tellme Network. As a web-based VoiceXML development platform, Tellme 

Studio provides an external VoiceXML gateway and a configuration application to 

connect live telephony numbers/ extensions with the VoiceXML-based telephony 

applications. Tellme Studio features a number of online tools targeted for 

VoiceXML application development, including online scratchpads, syntax 

validator, VoiceXML terminal, grammar scratchpad, debug log, grammar phrase 

checker, phrase generator and DTMF generator. For more information, refer to 

https://studio.tellme.com/ . 

6.14 Voxpilot Open Media Platform 

Voxpilot Open Media Platform is a distributed call control and VoiceXML-based 

media processing platform designed to enable rapid delivery of next generation 

interactive DTMF, speech, and multimedia services on a single platform. The 

Voxpilot Open Media Platform architecture leverages W3C and IETF open 

standards, which revolutionize the way in which voice services are deployed. The 

Voxpilot Open Media Platform supports VoiceXML 2.0, SSML, SRGS, SISR and 

CCXML. The unique combination of VoIP and PSTN interfaces supported by the 

Voxpilot Open Media Platform makes it ideally positioned to support the migration 



Appendix A: A Survey – Design of Recognition Grammar for VXML-Like 
Applications 

 

 266 
 

 

from traditional telephony networks to next generation “all-IP” network 

architectures such as the IP Multimedia Subsystem (IMS). More information is 

available at http://www.voxpilot.com/ . 

6.15 Summary 

This section introduced the developing tools, environments, and developing 

platforms for developers to ease the developments of voice applications. This 

section covers the basic two types of development environments for building 

VoiceXML applications, i.e. local Software Development Kits (SDK) and Remote 

hosts.  

The developing tools, environments, and platforms include Nü echo grammar 

environments, IBM WebSphere Voice Toolkit, Microsoft Speech Application SDK 

(SASDK), MCM toolkit, Philips speech SDK, CSLU Toolkit, Chant Developer 

Workbench, Fonelet’s VoiceXML Toolkit, BeVocal Café, Tellme Studio, and 

Voxpilot Open Media Platform. The summary of the developing tools and 

environments are in Table 1. 
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Table 1: Summary of developing tools and environments 

 

N

o 

Tool/ 

Environment

/ Platform 

Feature URL 

1 local 

Software 

Developmen

t Kits (SDK) 

Including a variety tools for creating VoiceXML documents and related 

resources, such as editors and syntax checkers, dialog design tools, grammar 

design tools, reusable components, and debugger. Rehearsal tools to test dialog 

flow or other capabilities. 

 

2 Remote 

hosts 

(Web-based 

developmen

t portal or 

hosted 

portal) 

Developers upload VoiceXML documents and associated resource files to the 

portal, test the application by dialing a pre-assigned phone number.  Test the full 

life-cycle of the application, including back-end database access, server-side 

dynamic data generation, and dialog interaction. 

 

3 NÜ echo 

grammar 

environment 

Including ABNF editor, coverage editor, sentence interpreter (utterance 

matcher), semantics single-stepper, interactive sentence explorer (phrase 

enumerator), and grammar converters. An integrated environment, where 

grammars can be designed in the same environment as the rest of the speech 

http://www.nuecho.com/fr/ser

vices/grammar.shtml 
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application. All tools are easy for debugging and tuning grammars at all level. 

Vendor independent. Comes as an Eclipse plug-in, which is an open, Java-

based extensible integrated development environment. 

4 IBM 

WebSphere 

Voice 

Toolkit 

Integrated Development Environment (IDE). Its runtime server and voice 

development tools are based on industry-standard VoiceXML and Java. 

Supports VoiceXML and Interactive Voice Response (IVR) applications.  

Powered by Eclipse technology, easy to develop VoiceXML applications without 

knowing the internals of voice technology. Full-featured with graphical call flow 

building, VoiceXML development and debugging, Grammar development and 

debugging, Pronunciation builder, and Call Control extensible Markup Language 

(CCXML) development environment. Graphical Grammar Builder for visual 

composition of a grammar file. Prompt Manager for organizing the Audio Files in 

a voice application. 

http://www14.software.ibm.co

m/webapp/download/preconfi

g.jsp?id=2006-02-

23+09%3A08%3A30.953556

R&cat=&fam=&s=z&S_TACT

=104AH%20W42&S_CMP 

5 Microsoft 

Speech 

Application 

SDK 

(SASDK) 

Set of development tools supporting the Speech Application Language Tags 

(SALT) specification. Application-authoring tools are seamlessly integrated into 

Microsoft Visual Studio .NET 2003. Set of ASP. NET Speech controls, a Speech 

Add-in for Microsoft Internet Explorer, debugging tools, a speech application 

deployment service, tools for speech application log analysis, sample and 

reference applications, a rich grammar library, and reference documentation. 

Can be used widely from telephones to Windows Mobile-based devices and 

http://www.microsoft.com/dow

nloads/details.aspx?FamilyId

=5DAAE9C4-188C-4547-

A9D6-

1671132A39A1&displaylang=

en&EventType=getsdk 
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desktop PCs.  

6 Metaphor 

Conversatio

n Manager 

(MCM) 

toolkit 

A VUI toolkit, an all-in-one programming environment, which enables the 

developer to build professional speech applications for Microsoft speech server, 

from dialogs with callers to back-end integration to communications with live 

service agents. Also including post-deployment application management tools 

such as: Application Monitor, a Web interface, to observe system performance 

and modify logging levels under real-time load conditions, and Application Editor 

to change prompts, adjust business variable, and perform other application 

revisions in real time. 

http://www.metaphorsol.com/

MCM3_docs/MCM_3.htm 

7 Philips 

speech SDK 

Integrate the latest speech recognition technology from Philips Speech 

Processing into your applications. Includes an easy-to-use C/C++ API so that 

speech recognition can be integrated into the programming environment. The 

capabilities include: dictation recognition (speech-to-text), command recognition, 

verification recognition, spelling recognition, correction functions, natural 

language understanding, natural dialog between man and machine, audio 

recording and playback, user interface components. 

http://www.speechrecognition.

philips.com/index.asp?id=641 

8 Hewlett-

Packard 

(HP) OCMP 

vXML 

An Eclipse plug-in to add VoiceXML application creation support to Eclipse. 

Provide a unified, robust development environment for building VoiceXML 

applications. Supports VoiceXML 2.0 DTD (version 20021018) and SRGS XML 

Grammar Form DTD (version 20020820). Used for: creating VoiceXML 2.0 

http://devresource.hp.com/drc

/topics/vxml.jsp 
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Developer 

Toolkit 

compliant voice applications,  voiceXML projects, VoiceXML documents, 

grammar files, ECMA Script files, JSP files, and Prompt text files using 

specialized wizard, importing existing VoiceXML project documents into the 

VoiceXML application, validating VoiceXML documents, grammar files, and 

ECMA Script files, building and deploying VoiceXML projects to the OCMP 

execution platform, launching the OCMP testing environment.  

9 CSLU 

Toolkit 

A platform for research and development of spoken-language systems. Including 

the tools of: audio and visual tools, speech recognition, text-to-speech (TTS), 

rapid application developer (RAD), language-training wizards, Baldi, 

SpeechView, PSL tools, tutorials, robust parsing, etc. Used for language training, 

education, corporate uses, research, and corpus development. Free for research 

use, and customizable for corporate use.  

http://www.cslu.ogi.edu/toolkit

/  

10 Chant 

Developer 

Workbench 

The advantages include maximizing speech recognition accuracy, tailoring and 

enhancing text-to-speech (TTS) playback quality, creating, and testing. 

Developer can deploy grammars, lexicons, profiles, and TTS markup with 

applications and build and enhance a workbench of reusable technologies for 

developing software that speaks and listens. Including: (1) Chant GrammarKit, 

speech recognition grammar management software, (2) Chant LexiconKit, 

lexicon management software, (3) Chant ProfileKit, speech recognition profile 

management software, (4) Chant VoiceMarkupKit, text-to-speech (TTS) markup 

http://www.chant.net/Products

/Developer%20Workbench/D

efault.aspx 
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language management software. 

11 Fonelet’s 

VoiceXML 

Toolkit 

Web-based with a GUI. It is for those who do not want to spend a lot of time 

learning VoicXML, but do want to create simple voice-enabled applications. It is 

used for designing interactive dialogs, grammars, address books, Fonelet XML, 

and Mobile discussion board (to exchange voice and text messages on the 

phone or via web browsers). It does not require programming and VoiceXML 

knowledge. 

http://journals2.iranscience.ne

t:800/www.commweb.com/w

ww.commweb.com/article/CO

M20011008S0008 

12 Wizard of 

OZ (WOZ) 

experimenta

l prototyping 

method 

It means that a person simulates the system to be designed. Suede is a WOZ 

Prototyping tool for speech user interfaces.  

http://guir.berkeley.edu/projec

ts/suede/ 

13 BeVocal 

Café 

It is a Web-based development platform and voice hosting. It is a free, Java-

based development environment with various valuable tools, documentation, and 

other resources, for building, debugging, and running voice applications. It 

provides a reliable, secure, high-performance Hosting Network to run the 

VoiceXML applications. Once built, applications can be easily deployed to 

production and hosted on BeVocal's proven, carrier-grade VoiceXML Hosting 

Network.  

http://cafe.bevocal.com/ 

14 Tellme It’s a hosted VoiceXML Platform allowing developers to develop, test, and https://studio.tellme.com/ 
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Studio publish the Internet-powered VoiceXML based applications on the Tellme 

Network. It provides an external VoiceXML gateway and a configuration 

application to connect live telephony numbers/ extensions with the VoiceXML-

based telephony applications. It includes online scratchpads, syntax validator, 

VoiceXML terminal, grammar scratchpad, debug log, grammar phrase checker, 

phrase generator and DTMF generator.  

15 Voxpilot 

Open Media 

Platform 

A distributed call control and VoiceXML-based media processing platform 

designed to enable rapid delivery of next generation interactive DTMF, speech, 

and multimedia services on a single platform. It leverages W3C and IETF open 

standards. It supports VoiceXML 2.0, SSML, SRGS, SISR and CCXML. The 

unique combination of VoIP and PSTN interfaces supported by it makes it ideally 

positioned to support the migration from traditional telephony networks to next 

generation “all-IP” network architectures such as the IP Multimedia Subsystem 

(IMS). 

http://www.voxpilot.com/ 
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7. CONCLUSION 

As speech technology has achieved significant development over the past three 

decades, the speech-enabled applications have emerged and been applied 

widely. It is a complicated task for voice application design, which involves a wide 

range of techniques. VoiceXML is one of the powerful tools in voice applications 

development. Grammar design is a critical component determining the 

performance of grammar-based speech applications. Voice User Interface (VUI) 

usability is the key to the success of a VoiceXML application. Iterative testing and 

tuning are indispensable for speech-enabled applications.  

In the research reviewed in this survey, we have found 15 voice-application 

development environments available, 4 of which are feely downloadable, i.e., 

IBM WebSphere Voice Toolkit, Microsoft Speech Application SDK (SASDK), 

Philips speech SDK, and CSLU Toolkit. Over 20 articles have been found on 

grammar design, and 4 of which are refereed scientific papers, i.e., (Yankelovich, 

1997) (Boyce, 2000), (Abbott, 2001), and (Mané and Levin, 2005). Over 10 

articles are related to Voice User Interface (VUI) design, and 2 of which are 

refereed scientific papers, i.e., (Boyce, 2000) and (Peissner, 2002). 4 non-

refereed articles talk about voice-application testing. 

This survey aims to provide practical guidelines for tackling the challenges in 

grammar design and related problems in VoiceXML-like application development 

from developers’ point of view. The guidelines presented in this survey are 

proven field-tested experience. Although many of them are generally adaptable, 

some may just fit to their original situations, not suitable for all applications. The 

developer needs to take into account the specific situation in voice-application 

development. 
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1. INTRODUCTION 

With the growing interest and demand for human-machine interaction, much work 

on speech recognition has been carried out over the past three decades. A large 

number of spoken-dialogue systems have been implemented. Aust et al (1995) 

present Philips system. Jupiter system (weather information system) (Zue et al, 

1997, 2000) and AT&T’s call redirection system (Riccardi and Gorin, 2000) are 

pioneer systems. Other examples include the ARISE project (Lamel et al, 2000; 

Baggia et al, 2000) and Philips Directory-Assistance system (directory 

information service) (Schramm et al, 2000). Also, an important American project, 

the DARPA Communicator, has attracted attention from the  most important 

research organizations in USA, such as MIT, BBN, Carnegie Mellon University 

(Rudnicky et al, 2000 and Carpenter et al, 2001), the University of Colorado 

(Pellom et al, 2000; Zhang et al, 2001), AT&T (Walker, 2001),  Bell Labs, SRI 

and IBM (Gao et al, 2001). Trias and Marino (2002) discuss the BASURDE [LITE] 

system, the train travel information and ticket reservation service.    

There are two main directions in the natural-language speech recognition 

research: 1) the grammar-based language model and the 2) statistical language 

model (SLM). In the grammar-based approach, domain-specific semantic 

grammars are developed to define the legal utterances in the spoken-dialogue 

application. A statistical language model adopts a data-driven, statistical 

modeling approach, which requires a large corpus of training data.  

Statistical language models have the advantages of simplicity, flexibility, 

adaptation, high recognition accuracy, and robust performances. The primary 

disadvantage is the costly collection of huge amounts of training data and poor 

generalization with insufficient data. In addition, statistical language models are 

not supported by readily-available commercial systems, such as VoiceXML 

(VXML) browsers. Compared to statistical techniques, grammar-based speech 

recognition is more common and easier to use with reasonable recognition 

accuracy for small domains. An important advantage over statistical approaches 
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is that grammar-based approaches do not require the large amount of training 

data which is difficult and expensive to collect, especially in the early phase of 

system development (Caskey et al, 2003). However, grammar-based techniques 

require experts to write high-quality grammars, which can be difficult to maintain 

and extend. In addition, grammar-based models are not as robust as statistical 

models, as they cannot handle the out-of-grammar (OOG) utterances (Caskey et 

al, 2003). 

Therefore, statistical approaches are often used for broad and shallow natural 

language understanding, and grammar-based approaches are frequently used 

for narrow and deep understanding in a specific domain (Ward and Issar, 1994) 

(Wang, 2001), where grammars can be crafted carefully to cover as many 

usages in the domain as possible (Wang, 2002).  

Stochastic (statistical) language models were popular around 1995, while the 

grammar-based language models took the pre-eminent position in commercial 

products by 2001 (Barnard et al, 1999) (Knight et al, 2001) (Caskey et al, 2003). 

Also, there are some successful cases combining the two approaches by taking 

both of their advantages and overcoming each other’s weakness with a good 

balance of speech-recognition accuracy and robustness (Moore et al, 1995) 

(Knight et al, 2001), (Rayner and Carter, 1997), (Geutner, 1996), (Jones et al, 

1993) (Wang et al, 2000) . 

While hundreds of spoken dialog systems have been deployed in many different 

sectors, it is still very costly and laborious to develop such systems due to the 

long development cycle required to get the application to an acceptable level. 

One of the main barriers in developing such applications is the development of 

grammars (Wang and Acero, 2006).  

In this survey, we review around 90 scientific papers on automatic generation of 

speech-recognition grammars and related work. Roughly, the methodologies in 

automatic grammar generation/ grammar authoring/ grammar induction are 
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classified into three categories: 1) the knowledge-based approaches, 2) the data-

driven approaches, and 3) the combing knowledge-based and data-driven 

approaches. 

Seneff, Dowding et al, Ward, Akiba and Itou, Caskey et al, Wang and Ju are 

currently active research groups using knowledge-based approaches in 

automatic grammar generation.  

Meanwhile, much work is using data-driven approaches because they are 

regarded as the approaches that can model real data closely. Meng, Siu, and 

Wong, at the Chinese University of Hong Kong, are the representative research 

group who adopt data-driven approaches in semi-automatic grammar induction. 

Besides, Stolcke and Omohundro, Wang and Waibel, Gavaldà and Waibel, Koza, 

and Yu et al all have proposed various data-driven approaches in automatic 

grammar generation.  

Attempting to take the advantages and avoiding or overcoming the 

disadvantages, there emerge the approaches combining the knowledge-based 

approaches and data-driven approaches in automatic grammar generation. The 

representative research group is Wang and Acero, from Speech Technology 

Group of Microsoft. In 2001, they proposed a machine-aided grammar authoring 

system. They claim that this system enables a developer, without knowing the 

linguistics, to rapidly develop a high-quality grammar for conversational systems. 

Later on, they applied this system in ATIS (Air Traffic Information System) task in 

2002, and further improved the system in 2003, 2005, and 2006. 

In addition, in this survey, we review the work on automatic speech application 

generation, which covers 8 scientific papers. Among this work, Pargellis et al 

have presented an Automatic Dialogue Generator (ADG), and further upgraded it 

as Application Generator (AG), which can automatically create and manage user-

customized speech-enabled applications.  
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The remainder of this survey is structured as follows:  

Section two introduces some definitions of the technical terms that are used in 

the survey to help the reader to better understand the contributions of each paper.  

In section three, we discuss the motivation of investigating the techniques in 

automatic grammar generation.  

Section four introduces the concept of dynamic grammars and their usage.  

Section five presents the methodologies of automatic grammar generation / 

grammar authoring/ grammar induction in three main categories, knowledge-

based approach, data-driven approach, and combining knowledge-based and 

data-driven approach. 

In section six, the techniques in building automatic speech applications are 

presented. 

Finally, section seven concludes with a summary of the survey. 
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2. DEFINITIONS 

In this section, we briefly introduce some definitions of the technical terms that 

are used in the survey to help the reader to better understand the contributions of 

each paper. 

Grammar-Based Language Model uses grammars to specify the utterances of 

the system. In grammar-based language models, domain-specific grammars are 

developed to define the legal utterances in the spoken-dialogue application.  

Statistical Language Model (SLM) is a probability distribution P(s) over all 

possible sentences s, or spoken utterances, documents, or any other linguistic 

units (Rosenfeld, 2000). 

ATIS is Air Travel Information Service, which is being used by several ARPA-

funded sites to develop and evaluate speech-understand systems (Ward and 

Issar, 1994). 

Domain-Specific Grammar is a set of rules, like syntactic grammar, defining the 

legal combination of individual words into constituents and constituents into 

sentences within the application domain. Also, non-terminals are semantic 

concepts and their relations in a specific domain (Ward, 1991) (Gavaldà, 2000) 

(Wang and Acero, 2001). 

Dynamic Grammar is a grammar that can be dynamically created and modified 

while an application is running (Nuance, 2003). A dynamic grammar can be a file 

that is referenced using external rules, or it can be created directly in a database 

using API functions. 

Frequently Requested Listings (FRL) approach means that a grammar is built 

based on the information about the most-frequently-requested listings and voice 

recordings that users refer to. In such a grammar, each listing has a unique 

corresponding branch, which compiles all the linguistic representations of the 
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listing that have been collected, with a reference to the listing ID (Identification 

Number) in the directory. 

Inside-Outside (IO) algorithm was first introduced by Baker (1979) to infer the 

parameters of Stochastic Context-Free Grammars (SCFGs) and generalize the 

parameter estimation methods for HMMs (Hidden Markov Model) to SCFGs.  It 

uses the current rule probabilities and the training set to estimate the expected 

frequencies of certain types of derivation step, and then compute new rule 

probability estimates as appropriate ratios of those expected frequency estimates 

(Pereira and Schabes, 1992). 

Expectation-Maximization (EM) algorithm is used in statistics for finding 

maximum likelihood estimates of parameters in probabilistic models, where the 

model depends on unobserved latent variables. EM alternates between 

performing an expectation (E) step, which computes an expectation of the 

likelihood by including the latent variables as if they were observed, and a 

maximum (M) step, which computes the maximum likelihood estimates of the 

parameters by maximizing the expected likelihood found on the E step. The 

parameters found on the M step are then used to begin another E step, and the 

process is repeated. More details are available in (Dempster et al, 1977), (Frank, 

2002). 

Mutual Information (MI). In probability theory and information theory, the Mutual 

Information (or trans-information) of two random variables is a quantity that 

measures the mutual dependence of the two variables. The most common unit of 

measurement of mutual information is the bit, when logarithms to the base 2 are 

used. The value of the Mutual Information (MI) between two random variables 

indicates the level of the reduction in uncertainty. The higher of MI indicates the 

larger reduction in uncertainty. Zero MI means the variables are independent 

(Cover and Thomas, 2006). 
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Information Gain (IG) can be used to define a measure of correlation between 

two random quatities (Kent, 1983). It measures the difference between two 

probability distributions. In information theory and machine learning, Information 

Gain (IG) is an alternative synonym for Kullback-Leibler divergence.  

Kullback-Leibler (KL) is a non-symmetric, non-commutative, measure of the 

difference between two probability distributions P and Q. KL measures the 

expected difference in the number of bits required to code samples from P when 

using a code based on P, and when using a code based on Q. Typically P 

represents the “true” distribution of data, observations, or a precise calculated 

theoretical distribution. The measure Q typically represents a theory, a model, a 

description or an approximation of P (Kullback, 1959). 

Manhattan-Norm. In linear algebra, functional analysis and related areas of 

mathematics, a Norm is a function which assigns a strictly positive length or size 

to all vectors in a vector space, other than the zero vector. Manhattan-Norm is 

also known as Taxicab metric with corresponding variations in the name of the 

geometry. It alludes to the grid layout of most streets on the island of Manhattan, 

which causes the shortest path a car could take between two points in the city to 

have length equal to the points’ distance in taxicab geometry (Klamroth, 2006).  

Gini Index (Gini, 1921) is a standard economic measure to see the degree of 

income inequality in a society. Algebraically, it is defined as “Expected value of 

the ration of the difference of two arbitrary specimens to the mean value of all 

specimens”. The Gini Index is the Gini Coefficient expressed as a percentage, 

and is equal to the Gini Coefficient multiplied by 100. The Gini Coefficient is a 

measure of statistical dispersion most prominently used as a measure of 

inequality of income distribution or inequality of wealth distribution. It is defined as 

a ratio with values between 0 and 1.  

BLEU (Bilingual Evaluation Understudy) metric is a metric for evaluating the 

quality of machine translation output. Quality is considered to be the 
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correspondence between a machine’s output and that of a human. “The closer a 

machine translation is to a professional human translation, the better it is”. 

(Papineni et.al., 2002). BLEU was one of the first metrics to achieve a high 

correlation with human judgments of quality, and remains one of the most 

popular (Callison-Burch et.al., 2006) (Doddington, 2002). 

Temporal clustering: words or multi-word entries that co-occur sequentially are 

clustered together based on the Mutual Information (MI) metric or the Information 

Gain (IG) metric. 

Spatial clustering: words or multi-word entries with similar left and right linguistic 

contexts are clustered together based on the symmetric divergence that is 

applied to the left and right linguistic contexts of the entity pair 

Genetic programming (GP) is an evolutionary approach that programs computers 

by natural selection (Koza, 1992) and (Dupont, 1994). In genetic programming, 

populations of computer programs are genetically bred using the Darwinian 

principle of survival of the fittest and using a genetic crossover (sexual 

recombination) operator appropriate for genetically mating computer programs 

(Koza, 1994). 

Regular Positive and Negative Inference (RPNI) algorithm: is a framework for 

identifying any language consistent with a given sample in polynomial time 

(Oncina and Garcia, 1992).  
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3. MOTIVATION 

It was reported that semantic-based robust understanding technology has been 

widely used in human-machine (Ward, 1990) (Zue et al, 2000) (Wang, 2001) and 

human-human conversational systems (Waibel, 1996). However, speech-

enabled systems have not yet become the mainstream in the real world. Among 

the existing difficulties, the discrepancy between the lab research and the reality 

in industry hinders the development of such voice applications (Wang and Acero, 

2006). Pieraccini (2004) lists the difficulties and the potential areas of 

improvement in spoken language understanding research as follows:  

(1) There are few data in the spoken language system design/ development 

phrase, which is difficult for creating the grammar using data-driven 

approaches. 

(2) There is a huge amount of data available after application deployment, 

which is extremely difficult to manually analyze.  

In addition, Wang (2001) owes this limited success to the complexity of the 

following problem:  

(1) compared to the complexity of the target grammar, the available data 

is typically sparse, and a good generalization mechanism to correctly 

cover a large variety of language constructions is hard to obtain. 

Due to the long development cycle, it is very costly and laborious to develop 

speech-enabled systems. Also, one of the main reasons that it is not practical for 

regular developers to implement a conversational system is that, such 

implementations rely on manual development of domain-specific grammars, a 

task that is time-consuming, error-prone, and requires extensive language 

expertise (Meng and Siu, 2001) (Wang and Acero, 2003a) (Wang and Acero, 

2006). Siu and Meng (1999, 2002) state that writing grammars is a daunting and 

expensive task, which forms a major bottleneck in the development of spoken 

language systems. Furthermore, due to the disfluencies and non-grammatical 
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utterances of spoken language, a handcrafted grammar cannot guarantee good 

coverage of real data when deployed in real applications (Meng and Siu, 2001). 

Bangalore and Johnston (2003) point out that the heavy cost of authoring and 

maintenance of grammars and inevitable brittleness due to lack of coverage in 

the rule sets are the main reasons that the scalability of the conversational 

system is a bottleneck. 

Based on discussions with developers, Wang and Acero (2006) summarize the 

main difficulties in writing a speech-recognition grammar as follows: 

(1) It is hard to anticipate the various alternatives for an expression. For 

example, “520” can be read as “five two oh”, “five two zero”, “five twenty”, 

“five hundred twenty”, etc. 

(2) It is hard to normalize speech inputs with Semantic Interpretation (SI) tags, 

due to the various alternatives. 

(3) It is hard to optimize grammar structures for best recognition performance, 

for example, with high recognition accuracy and speed.  

(4) The verbosity of XML, which is accepted by Speech Recognition 

Grammar Specification (SRGS) (W3C, 2004), may be a source of errors in 

manual grammar development. 

Therefore, if conversational systems are to become a mainstream, it is apparent 

that writing domain-specific grammars must become easier for a typical 

application developer (Wang and Acero, 2001, 2005, 2006). Therefore, tools for 

fast grammar authoring/ language learning/ grammar induction/ grammar 

inference and tools for automatic or semi-automatic adaptation/ learning/ system 

tuning are important and useful to improve the spoken language system’s 

performance. 

The issue of automatic grammar generation has attracted the attention of 

researchers for many years (Fu and Booth, 1975a, 1975b), (Carrasco and 

Oncina, 1994), (Miclet and Higuera, 1996), and (Honavar and Slutzki, 1998), 
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though most of that work focuses on toy applications. The approaches for natural 

language processing are not adequate for Natural Language Understanding 

(NLU) applications (Wang and Waibel, 1998) and (Stolcke and Omohundro, 

1994a). Recently, researchers have been working on tools for rapid development 

of mixed-initiative systems (Glass, 2001) (Glass and Weinstein, 2001) and (Glass 

et al, 2004), but without addressing the problem of grammar authoring. However, 

other researchers have developed tools that let an end user refine an existing 

grammar (Gavaldà, 2000). The revised grammar still relies on the initial grammar. 

Also it assumes that the developer has a good knowledge of language structures. 

With the above concerns, this survey aims to overview the techniques related to 

automatic/ semi-automatic grammar generation and related technology of 

speech-recognition grammars. 
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4. DYNAMIC GRAMMARS 

A dynamic grammar is a grammar that can be dynamically created and modified 

while an application is running (Nuance, 2003). Since large grammars will result 

in significant real time delays while loading, the proper usage of smaller dynamic 

grammars appear to be a good choice to overcome the scaling problems 

(Wasinge, 2001) and (Levin and Mané, 2005). Also, a dynamic grammar can 

result in a more easily maintainable and fluid grammar design for VoiceXML 

applications (Voxeo, 2006).   

A dynamic grammar can be a file that is referenced using external rules, or it can 

be created directly in a database using API functions. Nuance provides a 

dynamic grammar mechanism letting the developer create and update grammars 

at runtime and use them for recognition immediately without needing to recompile 

the recognition package. The “gate” technique in (Nuance, 2003) is a dynamic 

grammar that dynamically enables or disables various branches in a static 

grammar. Voxeo (2006) provides a technique to create a dynamic grammar from 

a data source, e.g. Microsoft Access. The utterances and return values of the 

grammar can be obtained from the data source using a server side language. 

Wang (2001) presents a robust chart parser to support dynamic grammars so 

that the parser is able to customize the grammar online for different user data. 

Levin and Mané (2005) apply dynamic grammars in his project of designing a 

Voice User Interface (VUI) for Automated Directory (AD) assistance to overcome 

the scaling problem with the large size of the listing directory. The methods to 

deal with the large database while automatically generating the grammar in 

(Levin and Mané, 2005) are discussed as follows:  

(1) Extension of the Frequently Requested Listings (FRL) approach to automated 

grammar generation. With the FRL approach, a grammar is built based on the 

information about the most-frequently-requested listings and voice recordings 

users refer to. In such a grammar, each listing has a unique corresponding 
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branch, which compiles all the linguistic representations of the listing that have 

been collected, with a reference to the listing ID (Identification Number) in the 

directory. In speech recognition, by looking up the information associated with the 

branch, which has a reference to a listing ID and the full listing information, the 

path in the grammar, which is best matching the user utterance, is found.  

In the Extension of the FRL approach, each directory listing is associated with a 

unique corresponding branch that compiles all the linguistic representations of 

the listing automatically generated by the variation model from normalized listing 

name. Its advantage is simple because each branch in the grammar has a 

reference to the listing ID in the directory. The disadvantages include the fact that 

the size of the grammars scales with the size of the listing directory because 

every listing in the grammar is associated with a separate branch. Meanwhile, the 

daily changed listings cause the grammars to be recompiled and reloaded very 

frequently which increases the resources and the infrastructure necessary for 

deployment.  

(2) To circumvent the above difficulties in the Extension of the FRL approach, 

Levin and Mané (2005) propose the approach of separating recognition from 

search and the use of over-generative grammars. They adopt a compact 

grammar, which defines an over-generating language, to recognize the listing 

names, without a separate branch for every listing in the directory. The 

advantages include the small size of the grammar and less frequently 

recompiling with the over-generative grammars. The disadvantages include the 

non-trivial search. Without the association between the recognized utterance and 

a listing ID, the directory needs to be searched after the recognition, outputting 

the listings with a high similarity with the recognized utterance. Also, the n-best 

results need to be confirmed in the VUI design. 

A summary of the major work on dynamic grammars is in Table 4. 
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Table 4: summary of Dynamic Grammars 

Date Authors Title of the Paper Major Contribution 

2001 Wang, Y.-Y. Robust Spoken 

Language Understanding 

in MiPad 

Robust chart parser to support dynamic grammars so that 

the parser is able to customize the grammar online for 

different user data. 

2003 Nuance 

Communications, Inc. 

 Grammar Developer’s 

Guide 

“Gate” technique to dynamically enable or disable various 

branches in a static grammar 

2005 Levin, E., Mané, A. Designing the Voice User 

Interface for Automated 

Directory Assistance 

1. Extension of the Frequently Requested Listings (FRL) 

approach to automated grammar generation. 

2. Approach of separating recognition from search and 

the use of over-generative grammars 

2006 Voxeo Corporation http://www.vxml.org/  

 

A technique to create a dynamic grammar from a data 

source, e.g. Microsoft Access. 
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5. AUTOMATIC GRAMMAR GENERATION 

To facilitate the development of speech-enabled applications and services, 

researchers have been working on tools for rapid development of mixed-initiative 

systems (Glass and Wenstein, 2001) and (Gavaldà, 2000). Fu and Booth (1975a, 

1975b) surveyed the early work on automatic learning of finite state automata 

(FSA) from training data.  

In this survey, we overview the grammar generating techniques and classify them 

into the following three types: 1) the knowledge-based approaches, 2) the 

statistical approaches, and 3) the combining knowledge-based and statistical 

approaches. 

5.1 The Knowledge-Based Approaches 

Due to the fact that statistical language models require large amounts of data, 

which is costly in terms of time and effort, a way of developing language models 

without a corpus for a given task at a reasonable cost is needed. This problem 

has been recognized for many years and has been discussed more recently by 

(Akiba and Itou, 2000).  

Assuming that syntactic structures do not vary across different domains and thus 

a high level syntactic CFG could be shared by different applications, Seneff 

(1992) reuses the domain-independent part of a grammar to alleviate the 

grammar authoring problem. In the natural language system, TINA (Seneff, 1992), 

an initial set of hand-crafted context-free rewrite rules was first converted to a 

network structure where the semantic categories were intermixed with syntactic 

ones. Seneff (1992) uses the domain specific knowledge by replacing the low-

level syntactic non-terminals with semantic non-terminals. For example, they may 

replace the domain-specific concepts HOTEL_NAME with the noun phrases 

(NPs). 

Also, in (Seneff, 1992), new rules can be automatically generated for the rules 
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sharing the common elements on the right-hand sides. For example, with the rule 

X=>A B C and X => B C D, the system would automatically generate two new 

rules, X => B C and X => A B C D. This ability to automatically generate new 

rules permits the system to generalize more quickly to unseen structures. Also, it 

greatly simplifies the implementation, because rules do not have to be explicitly 

monitored during the parse. However, it can potentially lead to overgeneralization 

to some extent.  

A similar idea of including domain specific semantic features in the typed 

unification grammar is adopted by Dowding et al (1993) in a natural-language 

understanding system Gemini. Gemini includes a mid-sized constituent grammar 

of English, a small utterance grammar for assembling constituents into 

utterances, and a lexicon. All three are written in the typed unification formalism, 

a variant of unification formalism, used in the Core Language English (Alshawi, 

1992). The typed unification provides a facility for grammar development in 

grammar error analysis and warning of the improperly assigned feature values. In 

addition, this type analysis is performed statistically at compiling time. There is no 

run-time overhead for adding types to the grammar. 

In Phoenix, the spoken language understanding system, Ward and Issar (1994) 

model semantics by using Recursive Transition Networks (RTN) to extract 

information relevant to a task. This limits the grammar rules that can be shared. 

However, developers can fine tune a grammar without any limitations imposed by 

a background syntactic grammar. The lexicon to the recognition grammar can be 

augmented using completion techniques, such as adding the words from the 

parsing grammar, synonyms and other words related to the words in the training 

corpus. For example, if the word “Monday” appears in the training corpus, the 

words “Mondays”, as well as other days like “Tuesday” will be added. 

Akiba and Itou (2000) introduce a knowledge-based semi-automatic method of 

acquiring a language model. This method uses all kinds of knowledge resources 

to construct the language model. For example, it considers both novice users’ 
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word sequences that are or are not sentences, and expert users’ constituents 

that can make sentences. Also, a corpus is considered as one of knowledge 

resources. To integrate information from such a range of knowledge resources, a 

specific class of attribute grammars is used as a uniform representation.   

Using Perl code, Gruenstein (2002) implements the automation of the recognition 

grammar from a list of strings.  

Based on the fact that speech grammars need to be used and tuned iteratively, 

Caskey et al (2003) propose an algorithm to augment the coverage of an existing 

CFG based on a set of new sentence examples that are not covered by the 

existing grammar. Using a Finite State Transducer (FST) representation of CFGs, 

this algorithm attempts to find the minimal set of modifications to the grammar to 

increase its coverage while preserving its original structure. Also, this proposed 

approach includes an interactive component to allow developers to control the 

generalization of the new grammar. 

Wang and Ju (2004) provide a way to construct high-performance speech-

grammars for alphanumeric concepts, which are common in practice. Using this 

approach, a developer only needs to write down a regular expression for a 

concept, the algorithm automatically generates a W3C grammar with appropriate 

semantic interpretation tags. However, the quality of the grammar is highly 

dependent on the way the regular expression is written. Preliminary experimental 

results in (Wang and Ju, 2004) have shown that the generated grammar 

consistently outperforms the general alphanumeric rules in the grammar library. 

In some cases the semantic error rates were cut by more than 50%. 

The main difficulty with the knowledge-based approach is that, to create high-

quality grammars, the grammar developer must have in-depth knowledge of both 

linguistics and the domain (Wang and Acero, 2006). 

A summary of the major work on the Knowledge-Based approaches is listed in 

Table 5.1. 
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Table 5.1: summary of Knowledge-Based Approaches 

Date Authors Title of the Paper Major Contribution 

1992 Seneff, S. TINA: A Natural Language System 

for Spoken Language Applications 

Reuses the domain-independent part of a grammar to alleviate the 

grammar authoring problem 

1993 Dowding, J., et. al. Gemini: A Natural language 

System for Spoken-language 

Understanding. 

A typed unification formalism for grammar development in grammar 

error analysis and warning of the improperly assigned feature values 

1994 Ward, W., Issar, S. Recent Improvements in the CMU 

Spoken Language Understanding 

System. 

Model semantics by using Recursive Transition Networks (RTN) to 

extract information relevant to a task, and allow developers to fine 

tune a grammar without any limitations imposed by a background 

syntactic grammar. 

2000 Akiba, T., Itou, K Semi-Automatic language Model 

Acquisition without Large Corpora 

A method of acquiring a language model using all kinds of 

knowledge resources to construct the language model. 

2002 Gruenstein, A. Automatic Grammar Construction Implement the grammar automation from a list of strings, using Perl 

code. 

2003 Caskey, S.P., Story, 

E., Pieraccini, R. 

Interactive Grammar Inference with 

Finite State Transducers. 

An algorithm to augment the coverage of an existing CFG based on 

a set of new sentence examples that were not covered by the 

existing grammar. 

2004 Wang, Y.-Y. and Ju. 

Y-C. 

Creating Speech Recognition 

Grammars from Regular 

Expressions for Alphanumeric 

Concepts. 

Construct high-performance speech-grammars for the common-used 

alphanumeric concepts 
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5.2 The Data-Driven Approaches 

5.2.1 Introduction 

As an alternative to knowledge-based approaches, data-driven approaches are 

applied because the grammar can model real data closely (Meng and Siu, 2001). 

Many grammar induction approaches are typically corpus-based, data-driven 

approaches (Siu and Meng, 1999) (Caskey et al, 2003). The corpus may be 

annotated with some domain-dependent semantic tags, or domain-independent 

syntactic tags. The grammar induction algorithms will automatically capture 

patterns from the data (Meng and Siu, 2001).    

Zhou and Ren (1999) classify the statistical grammar-inference into the following 

two types: 1) supervised learning method - to directly obtain useful syntactic 

statistics from corpus; 2) unsupervised training method – to automatically acquire 

syntactic knowledge from raw texts by an iterative algorithm, such as the 

commonly-used EM (Expectation-Maximization) algorithm (Dempster et al, 1977). 

Vidal et al (1993) and Vidal (1994) introduce an Error Correcting Grammar 

Inference (ECGI) algorithm to infer infinite state grammars that are able to 

generalize over a set of examples. Wang (1998) presents a statistical word-

based grammar-inference approach by ignoring the language structures. Wang 

(1998) claims that this approach can achieve the good performance comparable 

to the best commercial systems. Different from the word-based approach of 

(Wang, 1998), Arai et al (1998) propose a phrase-based approach to 

automatically generate a collection of grammar fragments each representing a 

set of syntactically and semantically similar phrases. 

Wang and Waibel (1998) adopt a similar approach by using iterative clustering 

and sequence building operations to find the common structures in a statistical 

spoken language translation system, which achieves over 10% error reduction for 

spoken language translation task. Similarly, Pargellis et al (2001) present an 



Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars 
` 

 294 

approach to semi-automatically find language structures from training using 

statistical processing techniques. 

5.2.2 Bayesian Model Merging Framework 

Stolcke and Omohundro (1994a) present a Bayesian model merging framework 

to induce probabilistic grammars from corpora of samples. By adding ad-hoc 

rules, the samples are incorporated to a working grammar, and elements of the 

models (e.g., states or non-terminals) are merged to achieve generalization and 

a more compact representation. What to merge and when to stop is governed by 

the Bayesian posterior probability of the grammar. The framework is so general 

that it can be instantiated for a variety of probabilistic models, such as Hidden 

Markov Model (HMM), n-gram, and Stochastic Context-free Grammars (SCFG). 

Based on the general “model merging” strategy (Omohundro, 1992), Stolcke and 

Omohundro (1994b) describe a technique for inducing the structure of Hidden 

Markov Models (HMMs) from data. By directly encoding the training data, a 

maximum likelihood HMM is first constructed. Then, more general models are 

generated by merging the HMM states using a Bayesian posterior probability 

criterion to determine the states to merge and stop generalizing. This procedure 

is a heuristic search for the HMM structure with highest posterior probability. With 

three evaluating applications, Stolcke and Omohundro (1994b) claim that this 

merging procedure is more robust and accurate.  

5.2.3 Growing Semantic Grammar (GSG) System 

Gavaldà and Waibel (1998), and Gavaldà (2000) propose the Growing Semantic 

Grammar (GSG) system, which can aid the end-users who do not have expertise 

in language processing to rapidly deploy the Natural Language Understanding 

System (NLU) front-ends and dynamically customize the system. With the 

collected data, GSG includes the following stages to develop a grammar: 
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(1) With a simple editor, GSG designs and analyzes the Domain Model 

(DM) by building a hierarchical structure of the relevant concepts in the 

domain.  

(2) A kernel grammar covering a small subset of the collected data is 

semi-automatically constructed.  

(3) The grammar is dynamically expanded over the collected data and 

beyond in an interactive environment.  

(4) The grammar is ready to deploy. 

5.2.4 Semi-Automatic Grammar Induction Approach 

Siu and Meng (1999) propose a statistical approach for semi-automatic grammar 

induction from un-annotated corpora within a restricted domain. The generated 

grammar contained both semantic and syntactic structures, which are useful for 

language understanding. They adopt an iterative procedure to cluster the words 

while constructing a grammar from an un-annotated corpus of sentences in a 

restricted domain. Semi-automatic grammar induction means that the generated 

grammar can be further hand-revised to improve quality. The authors have 

claimed that the algorithm also shows promise in portability across languages. 

Experiments with the ATIS (Air Travel Information Service) corpus show positive 

results in semantic parsing, when compared to an entirely handcrafted grammar. 

Inspired by McCandless and Glass (1993), and with the similar motivation to 

Akiba and Itou (2000), Wong and Meng (2001) extend their work described in 

(Siu and Meng, 1999). The proposed grammar induction is based on 

agglomerative clustering of words in a corpus of un-annotated sentences from 

the ATIS domain. Clustering was implemented both spatially and temporally. In 

spatial clustering, words or multi-word entries with similar left and right linguistic 

contexts are clustered together. In temporal clustering, words or multi-word 

entries that co-occur sequentially are clustered together. 

Observing that SQL expressions provide information for natural language 
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structures, Wong and Meng (2001) use the information in the SQL queries in the 

induced grammar. Instead of Mutual Information (MI), Information Gain (IG) is 

used to capture phrasal structures, and to determine an automatic stopping 

criterion for agglomerative clustering. In addition, this approach can be seeded 

with pre-specified semantic categories to expedite the learning process, and 

reduce the demand for large training corpora (Wong and Meng, 2001). 

In (Wong et al, 2001), the semi-automatic grammar induction approach of (Siu 

and Meng, 1999) is extended by investigating the use of Information Gain (IG) in 

place of Mutual Information (MI) for grammar induction based on an un-

annotated training corpus. The experiments using the ATIS-3 training corpus 

indicate better precision and recall of desired semantic categories at earlier 

stages in the grammar induction process while using IG rather than MI. Since 

grammar induction is an iterative process, Wong et al. (2001) propose an 

approach to automatically terminate the iteration with a stopping criterion. In 

(Wong et al, 2001), the coverage of a grammar is measured in terms of the 

percentage of words/ terminals in the training corpus that are captured in the 

grammar. If the stopping criterion is defined to be the point where the relative 

growth in grammar coverage falls below 1%, the grammar induction is terminated 

at iteration 100. Experiments using the ATIS-3 test sets show promising results 

compared with the handcrafted and semi-automatic grammars from (Siu and 

Meng, 1999), based on NLU performance. 

Siu and Meng (2001) explore the portability of the semi-automatic grammar 

induction approach in (Siu and Meng, 1999) to the Chinese language, based on 

a corpus of translated ATIS-3 queries. To assess grammar quality, Siu and Meng 

(2001) develop a framework for bi-directional English-Chinese example-based 

machine translation, where the English and Chinese grammars were obtained by 

running the semi-automatic grammar induction procedure on the English and 

Chinese corpora separately. The induced English (/Chinese) grammars are used 

to parse the input English (/Chinese) queries, and the parsed concepts are then 

used to generate the Chinese (/English) translation. Siu and Meng (2001) adopt 
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the translation-by-analogy (also known as Example-Based Machine Translation, 

or EBMT) approach, which has the advantage that the translation quality can be 

improved with more available training. Instead of handcrafted grammars, semi-

automatically induced grammars reinforce this advantage of EBMT. Experiments 

on the ATIS-3 test sets show a high percentage (76% to 91%) of user-accepted 

translations. 

Meng and Siu (2002) further describe the semi-automatic grammar induction 

methodology from un-annotated corpora of information-seeking queries in a 

restricted domain. The resultant grammars contain language structures that 

tightly couple semantics with syntax, which are conducive to spoken natural 

language understanding. Based on the work of (Siu and Meng, 1999) and (Wong 

and Meng, 2001), Meng and Siu (2002) adopt agglomerative clustering in the 

grammar induction, which includes temporal clustering and spatial clustering. The 

induced grammar is amenable to hand-editing for refinement, hence it is semi-

automatic in nature. Also, it is easily portable across different restricted domains, 

as well as across languages. While comparing the semi-automatically-induced 

grammar with a handcrafted grammar in the experiments using ATIS corpus, the 

handcrafted grammar gave concept error rates of 7% and 11.3% in language 

understanding, and the semi-automatically induced grammar gave 11% and 12% 

respectively on the corresponding two test corpora. However, the hand-crafted 

grammar took two months to develop and the semi-automatically-induced 

grammar took only three days to produce. These results show a desirable trade-

off between language understanding performance and grammar development 

effort.  

Siu et al (2003) report three extensions to the bi-directional English-Chinese 

Example-Based Machine Translation (EBMT) paradigm (Meng and Siu, 2001) as 

follows: 

(1) The comparative merits of three distance metrics (i.e., Kullback-Leibler, 

Manhattan-Norm, and Gini Index) are investigated for agglomerative 
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clustering procedure, which is discussed in (Siu and Meng, 2001) to 

generate context-free grammar rules from un-annotated sentences in 

grammar induction.   

(2) An automatic evaluation method is proposed to generate multiple 

translation outputs for a single input utterance based on the BLEU 

metric. 

(3) Siu et al (2003) present a selection strategy that leverages information 

from the example parse trees in the Example-Based Machine 

Translation paradigm to improve the performance in Chinese-English 

translation. 

Ju et al. (2009) invent an approach of generating speech-recognition grammars 

from a data set or big list of items. This method firstly uses a processor to 

automatically generate a simulated recognition search tree representing items in 

a data set. Next the processor generates the speech recognition grammar 

automatically using the simulated recognition search tree and stores the speech 

recognition grammar for future use in speech recognition. 

5.2.5 Genetic Programming (GP) 

Genetic programming (GP) is an evolutionary approach that programs computers 

by natural selection (Koza, 1992) and (Dupont, 1994). In genetic programming, 

populations of computer programs are genetically bred using the Darwinian 

principle of survival of the fittest and using a genetic crossover (sexual 

recombination) operator appropriate for genetically mating computer programs 

(Koza, 1994). Hierarchical automatic function definition enables genetic 

programming to define potentially useful functions automatically and dynamically 

during a run (Koza, 1994). Genetic programming is a successful technique for 

getting computers to automatically solve problems, which has been successfully 

used in a wide variety of problems where solutions can be expressed with 

modestly short programs (Banzhaf et al, 1998). Dupont (1994) uses a genetic 

approach to infer grammars for regular languages and compares it with the RPNI 
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(Regular Positive and Negative Inference) algorithm (Oncina and Garcia, 1992) 

which can identify any regular language in the size limit of samples.  

Mernik et al (2003) propose the grammar-specific genetic operators for crossover 

and mutation to grammar induction. Črepinšek et al.(2004) discuss the search 

space of CFG induction and propose a Brute Force approach to grammar 

induction. Owing to the large search space, the exhaustive (brute-force) 

approach can only be applied to small samples. Therefore, Črepinšek and Mernik 

(2005) propose a more efficient approach by using genetic-programming with 

application to inducing grammars from programs written in simple domain-

specific languages. The authors claim that experiments show that the genetic 

approach is comparable to other grammatical inference approaches.  

5.2.6 Robust Grammar Authoring Paradigm 

Since it is very common that users’ speech does not conform to a rigid CFG, it is 

important to build robust grammars for voice systems. Yu et al (2006) propose a 

robust grammar authoring paradigm to transfer rigid Context-Free Grammars 

(CFGs) into more robust semantic CFGs. This system takes a simple CFG as 

input, using n-gram based Filler Models (FMs) to model the garbage words 

between slots, and generates a hybrid n-gram/ CFG in W3C SRGS (Speech 

Recognition Grammar Specification) format which can run in many standard ASR 

(Automatic Speech Recognition) engines.  

The authoring paradigm in (Yu et al, 2006) is described as follows: a basic 

grammar is constructed with pre-ambles, post-ambles, and slots. Pre-ambles and 

post-ambles are fillers modeled with word n-grams, and slots carry semantic 

information such as numbers, a list of commands, date, time, currency, and credit 

card number, etc. Thus, to build such a grammar, developers only need to 

provide a slot grammar (e.g., a name list, cardinal or ordinary number, and date 

time, etc) and plug it into the above structure. The slot grammar can be from a 

reusable library grammar or created with grammar controls. 
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The authors claim that the generated robust CFG does not lose accuracy for test 

utterances that are covered by the rigid CFG, also greatly improves the 

robustness of the speech applications by covering more cases than the rigid CFG. 

Especially, the paradigm is good at rejecting the out-of-grammar (OOG) 

utterances and recognizing utterances with pre-ambles or post-ambles. They 

also claim that the robust CFG can achieve recognition accuracy close to the 

class-based n-gram LM customized for the application, with a few example 

sentences for adaptation. In addition, the authors demonstrate that the proposed 

paradigm is superior in many aspects to other filler models. 

5.2.7 Statistical Language Model Generation 

Metz (2008) invents a speech processing solution to automatically tune the 

grammar using statistical language model generation. Firstly, one or more 

speech recognition grammars are applied to the speech-recognition system for 

multiple recognition instances by performing a plurality of speech-to-text 

operations. Then, based on the obtained recognition instances, the system 

automatically creates a set of words and phrases and automatically weighs the 

words and phrases based upon the recorded recognition data. So, a replacement 

grammar can be automatically generated from the set of words and phrases. The 

replacement grammar is a statistical language model grammar, though the 

original speech-recognition grammar can be either a grammar-based language 

model grammar or a statistical language model grammar. And the original 

speech recognition grammar can be written in various grammar format 

specification languages, such as a NUANCE Grammar Specification Language 

(GSL), a Speech Recognition Grammar Specification (SRGS) compliant 

language and a JAVA Speech Grammar Format (JSGF) compliant language.  

A performance analyzer is configured to compare the performance of original 

speech recognition grammar with that of the replacement grammar. The decision 

of whether to replace the original grammar depends on the test for the speech-

recognition performance. Metz (2008) presents an administrator of the speech-
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recognition system with an option to replace the original speech recognition 

grammar.  

5.2.8 Method of Using Counter Examples 

Zadrozny and Kambhatla (1999) invent a method of taking counter examples to 

generate and revise speech-recognition grammars to reduce errors in the overall 

system. In this method, an initial grammar is given in Backus-Naur Form (BNF) 

notation. The author uses a sentence generator to generate a list of all sentences 

that are accepted by the grammar and identify the inappropriate or irrelevant 

sentences that are accepted by the grammar (counter-examples) from the list. 

With the assistance of the list of counter examples and the original grammar, a 

grammar reviser program prunes the list and generates a revised grammar. The 

revision process is iterated several times until is deemed satisfactory in that it 

accepts only relevant sentences. 

5.2.9 Summary 

One advantage of the corpus-based grammar induction approaches lies in the 

fact that the grammars produced model real data closely. One disadvantage of 

such approaches is the requirement of the large amount of data, and the 

annotation of the large corpus (which is adopted by some approaches) is time-

consuming and costly. Also, the data-driven approaches suffer from the data 

sparseness problem, and are generally very slow (Caskey et al, 2003). In 

addition, the quality of the inducted grammars, using the purely bottom-up, data-

driven grammar inference algorithms, cannot be guaranteed (Wang and Acero, 

2006). 

A summary of the major work on the Data-Driven approaches is in Table 5.2.9. 
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Table 5.2.9: summary of Data-Driven Approaches 

Date Authors Title of the Paper Major Contribution 

1979 Baker, J. Trainable Grammar for Speech 

Recognition 

Inside-Outside (IO) algorithm to automatically infer 

probabilistic context-free grammars (PCFGs) 

1992 Pereira, F., Schabes, 

Y. 

Inside-outside Reestimation from 

Partially Bracketed Corpora 

Combining structured and stochastic models in grammar 

induction 

1992 

1994 
(1) Omohundro, S.  

(2) Stolcke and 

Omohundro 

 (1) Best-first Model Merging for 

Dynamic Learning and Recognition 

(2) Inducing Probabilistic Grammars 

by Bayesian Model Merging 

“model merging” strategy to induce the structure of 

Hidden Markov Models (HMMs) from data 

1993, 

1994 
(1) Vidal, E., 

Casacuberta, F., 

Garcia, P.  

(2) Vidal, E. 

(1) Grammatical Inference and 

Applications to Automatic Speech 

Recognition and Understanding 

 (2) Grammatical Inference: An 

Introductory Survey 

An Error Correcting Grammar Inference (ECGI) 

algorithm to infer infinite state grammars that are able to 

generalize over a set of examples 

1994 Stolcke, A., 

Omohundro, S.M. 

 Best-first Model Merging for Hidden 

Markov Model Induction 

Bayesian model merging framework to induce 

probabilistic grammars from corpora of samples 

1994 Dupont, P. Regular Grammatical Inference 

From Positive and Negative 

Samples by Genetic Search: The 

Uses a genetic approach to infer grammars for regular 

languages and compares it with the RPNI (Regular 

Positive and Negative Inference) algorithm (Oncina and 
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GIG Method Garcia, 1992) 

1998 Wang, Y. –Y Grammar Inference and Statistical 

Machine Translation 

A statistical word-based grammar-inference approach by 

ignoring the language structures 

1998 Arai, K., Wright, J., 

Riccardi, G., Gorin, A. 

Grammar Fragment Acquisiton 

Using Syntactic and Semantic 

Clustering 

A phrase-based approach to automatically generate a 

collection of grammar fragments each representing a set 

of syntactically and semantically similar phrases 

1998 Wang, Y.-Y., Waibel, 

A. 

 Modeling with Structures in 

Statistical Machine Translation 

Use iterative clustering and sequence building operations 

to find the common structures in a statistical spoken 

language translation system 

1998 

2000 

(1) Gavaldà, M., 

Waibel, A.  

(2) Gavaldà, M. 

(1) Growing Semantic Grammars 

(2) Growing Semantic Grammars 

(Ph. D Thesis) 

Growing Semantic Grammar (GSG) system to aid the 

non-expert end-users to rapidly deploy the Natural 

Language Understanding System (NLU) front-ends and 

dynamically customize the system 

1999 Meng, H., Siu, K.C.  Semi-Automatic Acquisition of 

Domain-Specific Semantic 

Structures 

semi-automatic grammar induction from un-annotated 

corpora within a restricted domain 

1999 Zadrozny, W. and 

Kambhatla, N. 

Method and Apparatus for Creating 

Speech Recognition Grammars 

Constrained by Counter Examples. 

Invent a method of taking counter examples to generate 

and revise speech-recognition grammars to reduce 

errors in the overall system. 

2000 Chelba, C., Jelinek, F  Structured Language Modeling Infer grammars using the methods on the combination of 
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structured and stochastic models 

2001 Pargellis, A., Fosler-

Lussier, E., 

Potamianos, A., Lee, 

C.-H. 

 Metrics for Measuring Domain 

Independence of Semantic Classes 

An approach to semi-automatically find language 

structures from training using statistical processing 

techniques 

2001 Wong, C.-C., Meng, H.  Improvements on a Semi-automatic 

Grammar Induction Framework. 

Grammar induction approach, based on agglomerative 

clustering of words in a corpus of un-annotated 

sentences from the ATIS domain. Information in the 

SQL queries is used in the induced grammar. 

2001 Wong, C.C., Meng, H., 

and Siu, K.C. 

 Learning Strategies in a Grammar 

Induction Framework 

Use Information Gain (IG) in place of Mutual Information 

(MI) for grammar induction based on an un-annotated 

training corpus 

2001 Siu, K. C. and Meng, 

H. 

 Semi-Automatic Grammar Induction 

for Bi-directional English-Chinese 

Machine Translation 

Explore the portability of the semi-automatic grammar 

induction approach to the Chinese language, based on a 

corpus of translated ATIS-3 queries 

2002 Meng, H., Siu, K. C.  Semiautomatic Acquisition of 

Semantic Structures for 

Understanding Domain-Specific 

Natural Language Queries. 

Agglomerative clustering in the grammar induction. 

Resultant grammars contain language structures that 

tightly couple semantics with syntax, which are 

conducive to spoken natural language understanding. 

2003 Siu, K. C., Meng, H., Example-based Bi-directional Three extensions to the bi-directional English-Chinese 
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Wong, C. C. Chinese English Machine 

Translation with Semi-automatically 

Induced Grammars. 

Example-Based Machine Translation (EBMT) paradigm 

in (Meng and, 2002). 

2003 Mernik, M., Gerliĉ, G., 

Zumer, V., Bryant, B. 

 Can a parser be generated from 

Examples? 

Grammar-specific genetic operators for crossover and 

mutation to grammar induction. 

2006 Yu, D., Ju, Y.-C., 

Wang, Y., Acero A. 

 N-Gram Based Filler Model for 

Robust Grammar Authoring. 

Robust grammar authoring paradigm to transfer rigid 

Context-Free Grammars (CFGs) into more robust 

semantic CFGs 

2008 Metz, B.D. Automatic Grammar Tuning Using 

Statistical Language Model 

Generation 

Automatically tunes the grammar using statistical 

language model generation. Presents an administrator 

of the speech recognition system with an option to 

replace the original speech recognition grammar 

2009 Ju, Y., Ollason, D., 

Bhatia, S. 

Method and apparatus for automatic 

grammar generation from data 

entries 

Invent an approach of generating speech-recognition 

grammars from a data set or big list of items, involving 

simulated recognition search tree. 
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5.3 The Combining Knowledge-Based and Data-Driven Approaches  

While knowledge-based approaches and data-driven approaches both have 

advantages and disadvantages in natural language processing, much work 

emerges to combine these two approaches attempting to take their advantages 

and overcome the disadvantages. Also, the interest of combining the knowledge-

based and data-driven models has recently increased in grammar authoring 

research. 

Based on bracket matching schemes, Zhou and Ren (1999) propose an 

approach for automatically generating Chinese Probabilistic Context-Free 

Grammars (PCFGs). They annotate the training texts with constituent boundary 

information and use the bracket matching schemes upon boundary predicted 

texts to implement the EM (Expectation-Maximization) algorithm (Dempster et al, 

1977). Different knowledge resources, such as the automatically generated 

grammar, and a set of special rules summarized by linguists or extracted from 

tree banks, are integrated to obtain a better initialization for the learning process. 

The authors claim that the experimental results show good learning efficiency of 

this algorithm and high reliability of the generated grammar. This proposed 

method guarantees an automatically generated grammar with a broad-coverage 

and a good bootstrapping for the learning process. 

Combining a domain-specific semantics, a library grammar, syntactic constraints 

and a small amount of example sentences that have been semantically 

annotated, Wang and Acero (2001) propose a machine-aided grammar authoring 

system. The authors claim that it enables a programmer, without knowing the 

linguistics, to rapidly develop a high-quality grammar for conversational systems.  

The grammar is generated from the following three inputs: 1) a semantic 

schemas defining the domain semantics, 2) a grammar library that contains CFG 

rules for domain-independent concepts (e.g., Date and Time) or domain-specific 

semantic terminals (e.g., city names and airlines), and 3) semantically annotated 
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training data. Wang and Acero (2001) inherit semantic constraints from schema, 

use annotation to reduce the search space, and use syntactic clues to align the 

remaining words of the sentence.  

Wang and Acero (2001) ascribe the consistently better understanding accuracies 

with much less authoring effort than the manually authored grammar to the 

following three reasons: 1) data driven learning, 2) the template grammar, and 3) 

the use of multiple information source. The authors claim that the grammar 

authoring tool greatly eases semantic grammar development by integrating 

different information sources and learning from annotated examples to induct 

CFG rules.  

To study the general applicability of the algorithm as well as to provide the 

research community with more informative results, Wang and Acero (2002) have 

applied the algorithm in (Wang and Acero, 2001) to the well studied Airline Travel 

Information System (ATIS) task (Dahl et al., 1994) and compare the performance 

of the learned grammar with one of the best performers in ATIS evaluations. The 

results show that the semi-automatically learned grammar achieves comparable 

performance to the manually authored grammar. In addition, the smaller size and 

the common paradigm of the learned grammar may make the system work faster 

and be easier to maintain.  

While the example-based grammar authoring tool (Wang and Acero, 2001) has 

some basic learning capabilities, they often require users’ intervention to solve 

the ambiguities to induct grammar rules, which is very intrusive and greatly slows 

down the grammar development. Wang and Acero (2003a) present an 

Expectation-Maximization (EM) algorithm (Dempster et al., 1977) to automatically 

resolve the segmentation ambiguities. Their preliminary experiment results show 

that this algorithm not only eliminates the human involvement in ambiguity 

resolution, but also improves the overall spoken language understanding 

accuracy. 
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Although the grammar authoring tool of (Wang and Acero, 2001) can significantly 

reduce the effort in grammar development with promising understanding 

accuracy across different domains, it has the following limitations (Wang and 

Acero, 2003b):  

 It only works well for slot-rich high resolution understanding tasks. 

 The generated grammars only work well with robust understanding 

technology.  

With these concerns, Wang and Acero (2003b) propose a composite model of 

HMM and CFG, a modification to the model in (Wang and Acero, 2001), by 

combining semantic CFG and n-gram statistical model. The HMM models the 

template rules and the n-gram pre-terminals; the CFG models the library 

grammar. This combined CFG/n-gram model overcomes the robustness and the 

scalability problem existing in the semantic grammar model described in (Wang 

and Acero, 2001). The authors claim that the preliminary results show the 32% 

error reduction in high resolution understanding of the new model. 

To further tackle the problem when little data is available at initial states of data-

driven grammar-learning system development, Wang and Acero (2005, 2006) 

present SGStudio, which significantly reduces the requirement for large amount 

of training data. SGStudio is an example-based grammar authoring tool. The 

authors claim that it enables software developers with little speech/linguistic 

background to rapidly create quality semantic grammars for speech-driven 

applications. SGStudio includes the following components: the knowledge-

assisted example-based grammar learning, grammar control, and configurable 

grammar structure. SGStudio adopts the HMM/ CFG composite model which 

integrates the domain knowledge in the data-driven grammar learning framework. 

The HMM/ CFG composite model uses CFGs as the lexicalization models for slot 

fillers, which generally model a specific concept. The concept can be domain-

independent, like date and time, or domain-dependent, such as insurance policy 

number and auto part numbers. Grammar controls and the control operations 
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provide the tools to generate various grammars for the concepts that can be used 

in a system-initiated dialog or as the filler of a slot in a mixed-initiative system. 

The combination of the knowledge-based and data-driven approaches achieves 

the balance between robustness and accuracy better than or comparable to the 

best manually developed grammars.  

A summary of the major work on the approaches of combining Knowledge-Based 

and Data-Driven is listed in Table 5.3. 
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Table 5.3: summary of the Combining Knowledge-Based and Data-Driven Approaches 

Date Authors Title of the Paper Major Contribution 

1999 Zhou, Q., Ren, F. Automatic Inference for Chinese 

Probabilistic Context-Free 

Grammar 

An approach for automatically generating Chinese 

Probabilistic Context-Free Grammars (PCFGs) 

2001 Wang, Y.-Y., 

Acero, A. 

Grammar Learning for Spoken 

Language Understanding. 

A machine-aided grammar authoring system, to rapidly 

develop a high quality grammar for conversational systems, 

by combining a domain-specific semantics, a library grammar, 

syntactic constraints and a small amount of example 

sentences that have been semantically annotated 

2002 Wang, Y.-Y., 

Acero, A. 

Evaluation of Spoken Language 

Grammar Learning in the ATIS 

Domain 

Apply the algorithm in (Wang and Acero, 2001) to the well 

studied Airline Travel Information System (ATIS) task and 

compare the performance of the learned grammar with one of 

the best performers in ATIS evaluations 

2003 Wang, Y.-Y., 

Acero, A. 

Concept Acquisition in Example-

Based Grammar Authoring 

An Expectation-Maximization (EM) algorithm (Dempster et al., 

1977) to automatically resolve the segmentation ambiguities 

2003 Wang, Y.-Y., 

Acero, A. 

Combination of CFG and N-gram 

Modeling in Semantic Grammar 

Learning 

A composite model of HMM and CFG, a modification to the 

model in (Wang and Acero, 2001), by combining semantic 

CFG and n-gram statistical model 

2005 Wang, Y.-Y., (1) SGStudio: Rapid Semantic SGStudio significantly reduces the requirement for large 
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2006 Acero, A. Grammar Development for Spoken 

Language Understanding. 

(2) Rapid Development of Speech 

Recognition Grammars 

amount of training data 
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6. AUTOMATIC SPEECH APPLICATION GENERATION 

A spoken dialogue system consists of the following components: a speech 

recognition component, a language understanding component, a dialogue 

management component, a component for communication with an external 

system, a response generation component, and a speech output component 

(McTear, 2002), (Han, 2000), and (Glass, 1999). These components work in a 

sequential stream, in which the first component receives the user’s input, the 

output from that component feeds into the next component as the input, and so 

forth, until the consequent voice output is synthesized for the user. It is a great 

challenge to build each component of the spoken-dialogue system. To facilitate 

the creation of speech-enabled systems, research work to automatically generate 

the various components has been carried out.  

Pargellis et al (1999a) present an Automatic Dialogue Generator (ADG), which is 

a software engine with associated library files to simplify the generation of new 

voice applications. Given any task description in tables, the ADG can 

automatically generate a finite-state dialogue for that task in a uniform and 

consistent fashion. The advantages of using an ADG to generate dialogues 

include:  

(1) prompts and grammars are generated in a consistent manner, 

(2) prompts and grammars are generated dynamically,  and 

(3) user-specified applications can be quickly generated. 

Given the advantages of the Automatic Dialogue Generator (ADG) (Pargellis et al, 

1999a), Pargellis et al (1999b) propose the Application Generator (AG), a system 

that automatically creates, and then manages, user-customized speech-enabled 

applications. The AG consists of four modular components: the Automatic 

Dialogue Generator (ADG), the Profile Manager (PM), the Information and 

Services Manager (ISM), and the Dialogue Manager (DM): 
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(1) The Profile Manager (PM) uses a Q&A session to obtain knowledge about 

the user’s preferences, and stored this in a user profile. 

(2) The Information and Services Manager (ISM) accesses the available 

databases and services, including distributed sources such as the World 

Wide Web or corporate file systems.  

(3) The Automatic Dialogue Generator (ADG) combines these data with the 

profile and builds a speech interface by generating a series of dialogue 

states, with associated grammars and system prompts. 

(4) Finally, the Dialogue Manager (DM) interfaces between the user and the 

dialogue specification are generated by the ADG. 

AG is a platform that automatically generates a dialogue model by matching a 

user’s expectations with the system’s capability and available resources 

(Pargellis et al, 1999b). One advantage of AG is that it enables each user to 

define his/her own dialogue session. Therefore, dialogue interactions are more 

accurate, faster, and rewarding.  

To facilitate the creation of mixed-initiative spoken-dialogue systems for both 

novice and experienced developers, Glass (2001), Glass and Weinstein (2001b) 

present SPEECH-BUILDER, a suite of tools, which employs intuitive methods of 

specification to allow developers to specify domain-dependent linguistic 

information and create spoken dialogue interfaces. Using SPEECH-BUILDER, 

instead of defining the language grammars, developers specifies the basic 

semantic concepts (keys) and provides examples of user utterances to trigger 

different system behaviors (actions). Based on the inputs, the system 

automatically configures the speech recognition, language understanding, 

language generation, and discourse components. Also, a hierarchical grammar 

can be generated if the developer uses bracketing to label portions of the 

example sentences as being subject to a particular structure.  

Several spoken-dialogue systems in different domains have been created using 

SPEECH-BUILDER, such as a directory of the people working at the MIT 
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Laboratory for Computer Science, an application to control the various physical 

items in a typical office environment, and a system for real-time weather 

information access.  Since November 2000, SPEECH-BUILDER has been 

accessible from within MIT and limited other locations for beta-testing. 

Motivated by a desire to minimize the need for a pre-determined dialogue flow, 

Polifroni et al (2003) propose an approach that automatically builds a mixed-

initiative dialogue system from online knowledge resource. In this approach, 

decisions on dialogue flow are made dynamically based on analyses of data, 

either prior to user interaction or during the dialogue itself. Polifroni et al (2003) 

also introduce a simulation server to examine the operation of the overall 

dialogue system, particularly the interaction between the dialogue flow and the 

response generation outputs. Overall, these techniques aim towards the goal of 

creating new domains automatically with little or no human input. Furthermore, 

automatic methods are more adaptable and robust against frequent online 

changes (Polifroni et al, 2003). 

Glass et al (2004) further discuss the framework in (Glass, 2001), and (Glass and 

Weinstein, 2001), SPEECH-BUILDER, which facilitates the creation of mixed-

initiative conversational interfaces for novice and expert developers of human 

language technology. SPEECH-BUILDER has a web-based interface, where 

developers can specify the information about the interactions between a human 

and a spoken dialogue system. SPEECH-BUILDER uses XML to store 

information that is human-readable. With the configuration, the developer can 

use a web-interface to compile it. Using the specified information and example 

sentences provided by the developer, this compilation process takes usually one 

or two minutes. After the compilation, the developer can examine the resulting 

grammar, deploy the system, talk to it and subsequently iteratively refine aspects 

of the understanding, generation, dialogue, etc.  

A summary of the major work on automatic speech application generation is 

listed in Table 6. 
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Table 6: summary of automatic speech application generation 

Date Authors Title of the Paper Major Contribution 

1999 Pargellis, A., Kuo, 

H., Lee, C. 

Automatic Dialogue Generator 

Creates User Defined Applications 

Automatic Dialogue Generator (ADG), a software engine with 

associated library files to simplify the generation of new voice 

applications 

1999 Pargellis, A., Kuo, 

H., Lee, C. 

Automatic Application Generator 

Matches User Expectations to 

System Capabilities 

Application Generator (AG), a system that automatically 

creates, and then manages, user-customized speech-enabled 

applications 

2001 (1) Glass, J.,  

Weinstein, E. 

(2) Glass, J. 

 

(1) SPEECH-BUILDER: Facilitating 

Spoken Dialogue System 

Development 

(2) SPEECH-BUILDER: Facilitating 

Spoken Dialogue System 

Development, (MIT M.Eng. Thesis) 

SPEECH-BUILDER, a suite of tools, employs intuitive 

methods of specification to allow developers to specify 

domain-dependent linguistic information and create spoken 

dialogue interfaces 

2003 Polifroni, J., Chung, 

G., Seneff, S. 

Towards Automatic Generation of 

Mixed-Initiative Dialogue Systems 

from Web Content 

An approach automatically builds a mixed-initiative dialogue 

system from online knowledge resource 

2004 Glass, J., Weinstein, 

E., Cyphers, S., 

Polifroni, J., Chung, 

G., Nakano, N. 

A Framework for Developing 

Conversational User Interfaces 

Further improve the framework in (Glass, 2001), and (Glass 

and Weinstein, 2001), SPEECH-BUILDER, to facilitate the 

creation of mixed-initiative conversational interfaces for 

novice and expert developers of human language technology 
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7. CONCLUSION 

Over the past three decades, much work on speech recognition technology has 

been carried out, and a large number of spoken-dialogue systems have been 

developed. However, speech-enabled systems have not become the mainstream 

yet in the real world. Among the existing barriers, writing a domain-specific 

grammar, which is time-consuming, error-prone, and requires intensive language 

expertise, forms a major bottleneck in the development of spoken-language 

systems (Wang and Acero, 2001, 2005, 2006), (Meng and Siu, 2001), (Wang and 

Acero, 2003a), (Bangalore and Johnston, 2003), and (Wang and Acero, 2006). 

 

While conducting this survey, we have noticed that there is not much work on 

automatic grammar authoring, language learning/ grammar induction/ grammar 

inference or the tools for automatic or semi-automatic adaptation/ learning/ 

system tuning. The issue of automatic grammar generation attracted the attention 

of researchers as early as 1975 (Fu and Booth, 1975a, 1975b), however most of 

the wok focused on toy problems (Carrasco and Oncina, 1994), (Miclet and 

Higuera, 1996), and (Honavar and Slutzki, 1998).  Gavaldà (2000) develops tools 

to let an end user refine an existing grammar, but it requires the developer a 

good knowledge of language structures. Recently, Glass (2001), Glass and 

Weinstein (2001), and Glass et al (2004) have presented tools (i.e., SPEECH-

BUILDER) for rapid development of mixed-initiative systems, but they did not 

address the problem of grammar authoring.  

 
In summary, the methodology in automatic speech-recognition-grammar 

generation is classified into the following three types: 1) knowledge-based 

approaches, 2) data-driven approaches, and 3) combining knowledge-based and 

data-driven approaches. 6 refereed scientific papers use knowledge-based 

paradigm, around 30 scientific papers use data-driven approaches, and around 

10 scientific papers combine knowledge-based and data-driven approaches. Also, 

we have found 6 refereed scientific papers discussing the tools for automatic 
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speech application generation, and 5 scientific papers talking about dynamic 

grammars. 

 
Also, we have observed some research groups working actively in automatic 

generation of speech-recognition grammars and speech applications with 

continuing work, such as Meng, Siu, and Wong, at the Chinese University of 

Hong Kong ( http://www.cuhk.edu.hk/v6/en/ ), using statistical approaches, Wang 

and Acero, at Speech Technology Group of Microsoft   

(http://research.microsoft.com/research/srg/), using combined knowledge-based 

and data-driven approaches, Glass, and Weinstein, at Spoken Language 

Systems Group MIT Laboratory for Computer Science 

( http://www.sls.lcs.mit.edu), working on the tools (i.e., SPEECH-BUILDER) for 

rapid development of mixed-initiative systems. 
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APPENDIX C: GRAMMAR – READ A BOOK 

/* read_a_book.gram */ 
grammar read_a_book; 
 
public <s> =  <command>; 
 
<command> = <read_command> <place> [(to | until) <place>] 
           | <question> 
           | <greeting> 
           | <help>; 
 
<read_command> = [please] (read from  
                         | start reading from 
                         | go to); 
 
<place> = the beginning 
        | <order_number> (page |chapter) 
        | page <number> 
        | chapter <under_hundred> 
        | <word>;    
 
/* order number is used limited to tenth */ 
<order_number> = first 
               | second 
               | third 
               | fourth 
               | fifth 
               | sixth 
               | seventh 
               | eighth 
               | ninth  
               | tenth;  
 
<number> = <under_hundred> 
            | <hundreds> 
            | <thousands>; 
 
<under_hundred> = <digit> 
                | <teens> 
                | <tens> [<digit>];  
 
<hundreds> = <digit> hundred [<under_hundred> ]; 
             
<thousands> = <digit> thousand [<hundreds> ]; 
 



Appendix C: Grammar – Read A Book 
 

 319 

<digit> =    one  
           | two 
           | three 
           | four 
           | five 
           | six 
           | seven 
           | eight 
           | nine;      
 
<teens> =    ten  
           | eleven 
           | twelve 
           | thirteen 
           | fourteen 
           | fifteen 
           | sixteen 
           | seventeen 
           | eighteen 
           | nineteen;      
            
<tens> = twenty 
           | thirty 
           | forty 
           | fifty 
           | sixty 
           | seventy 
           | eighty  
           | ninety; 
            
<question> = what is the book title 
           | who wrote the book;         
           
<greeting> = hello 
             | hello there 
             | hi, how are you 
             | goodbye 
             | bye-bye; 
 
<help> = help 
        | help please 
        | please help 
        | I need help 
        | give me a help; 
            
/* <word> will include all the words from the story 
distinctly (without duplicate) */ 
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<word>= king| queen| said| day| had| child| one| happened| 

bathing| frog| crept| water| land| wish| fulfilled| 
year| gone| have| daughter| came| contain| joy| 
ordered| feast| invited| kindred| friends| 
acquaintances| women| thirteen| kingdom| twelve| 
plates| eat| left| home| held| manner| splendor| 
end| bestowed| gifts| baby| gave| virtue| beauty| 
riches| world| eleven| made| promises| thirteenth| 
wished| avenge| greeting| looking| cried| voice| 
fifteenth| prick| spindle| fall| dead| saying| 
word| turned| room| shocked| twelfth| remained| 
unspoken| undo| sentence| soften| death| sleep| 
hundred| years| princess| fain| keep| misfortune| 
orders| burnt| saw| love| maiden| palace| went|        
sorts| places| looked| rooms| bed-chambers| liked| 
tower| climbed| winding-staircase| reached| door| 
key| lock| sprang| sat| woman| spinning| flax| 
mother| doing| nodded| head| rattles| took| wanted| 
spin| touched| decree| pricked| finger| moment| 
felt| fell| bed| stood| lay| extended| come| 
entered| hall| began| go| court| horses| stable| 
dogs| yard| pigeons| roof| flies| wall| fire| 
flaming| hearth| became| meat| frizzling| cook| 
going| pull| hair| boy| forgotten| let| wind| 
trees| castle| leaf| moved| grow| hedge| thorns| 
grew| seen| flag| story| briar-rose| named| 
country| time| sons| tried| get| found| hands| 
youths| caught| died| heard| man| thorn-hedge| 
stand| grandfather| kings| youth| see| dissuade| 
listen| words| passed| awake| son| parted| accord| 
pass| closed| hounds| lying| wings| house| kitchen| 
holding| hand| seize| maid| hen| pluck| throne| 
breath| opened| sleeping| turn| eyes| stooped| 
kiss| kissed| awoke| astonishment| shook| jumped| 
wagged| tails| pulled| heads| flew| flickered| 
cooked| joint| sizzle| box| ear| screamed| 
plucking| fowl| marriage| celebrated| lived| 
contented| days;  
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APPENDIX D: GRAMMAR – READ A BOOK (5-word sequence) 

 
/* read_a_book_5_word_sequence.gram */ 
 
grammar read_a_book_5_word_sequence; 
 
public <s> = <word> <word> <word> <word> <word> ; 
 
<word>= king| queen| said| day| had| child| one| happened| 

bathing| frog| crept| water| land| wish| fulfilled| 
year| gone| have| daughter| came| contain| joy| 
ordered| feast| invited| kindred| friends| 
acquaintances| women| thirteen| kingdom| twelve| 
plates| eat| left| home| held| manner| splendor| 
end| bestowed| gifts| baby| gave| virtue| beauty| 
riches| world| eleven| made| promises| thirteenth| 
wished| avenge| greeting| looking| cried| voice| 
fifteenth| prick| spindle| fall| dead| saying| 
word| turned| room| shocked| twelfth| remained| 
unspoken| undo| sentence| soften| death| sleep| 
hundred| years| princess| fain| keep| misfortune| 
orders| burnt| saw| love| maiden| palace| went|        
sorts| places| looked| rooms| bed-chambers| liked| 
tower| climbed| winding-staircase| reached| door| 
key| lock| sprang| sat| woman| spinning| flax| 
mother| doing| nodded| head| rattles| took| wanted| 
spin| touched| decree| pricked| finger| moment| 
felt| fell| bed| stood| lay| extended| come| 
entered| hall| began| go| court| horses| stable| 
dogs| yard| pigeons| roof| flies| wall| fire| 
flaming| hearth| became| meat| frizzling| cook| 
going| pull| hair| boy| forgotten| let| wind| 
trees| castle| leaf| moved| grow| hedge| thorns| 
grew| seen| flag| story| briar-rose| named| 
country| time| sons| tried| get| found| hands| 
youths| caught| died| heard| man| thorn-hedge| 
stand| grandfather| kings| youth| see| dissuade| 
listen| words| passed| awake| son| parted| accord| 
pass| closed| hounds| lying| wings| house| kitchen| 
holding| hand| seize| maid| hen| pluck| throne| 
breath| opened| sleeping| turn| eyes| stooped| 
kiss| kissed| awoke| astonishment| shook| jumped| 
wagged| tails| pulled| heads| flew| flickered| 
cooked| joint| sizzle| box| ear| screamed| 
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plucking| fowl| marriage| celebrated| lived| 
contented| days; 
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APPENDIX E: GRAMMAR – WORD SEQENCE (SOLAR SYSETM) 

/* 10-word word-sequence grammar 
   Allows 1 to 10 words sequence 
*/ 
 
grammar wordSequence_solar; 
 
public <s> = <word> 
   | <word> <word> 
       | <word> <word> <word> 
       | <word> <word> <word> <word> 
       | <word> <word><word> <word><word> 
       | <word> <word><word> <word><word> <word> 
       | <word> <word><word> <word><word> <word><word> 
       | <word> <word><word> <word><word> <word><word>  
         <word> 
       | <word> <word><word> <word><word> <word><word>           
         <word> <word> 
       | <word> <word><word> <word><word> <word><word>  
         <word> <word> <word>  
       | <simple>; 
 
<word> = <intransvb> 
       | <transvb> 
       | <cnoun> 
       | <pnoun> 
       | <det> 
       | <adj> 
       | <linkingvb> 
       | <quest> 
       | <other>; 
 
<intransvb> 
       = spin | spins | spun | exist | exists | existed; 
 
<transvb>    
       = orbit | orbits | orbited | discover | discovers  
       | discovered | find | finds | found; 
 
<cnoun>    
       = people | planet | moon; 
 
<pnoun>   
       = bernard | bond | cassini | dollfus | fountain  
       | galileo | hall | herschel | huygens | kowal  
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       | kuiper | arsen | lassell | melotte | nicholson  
       | perrine | pickering | earth | jupiter | mars  
       | mercury |  neptune | pluto | saturn | uranus  
       | venus | almathea | ariel |callisto | charon  
       | deimos | dione | enceladus | europa | ganymede  
       | hyperion | iapetus | io | janus | jupitereighth  
       | jupitereleventh | jupiterfourteenth | jupiterninth    
       | jupiterseventh | jupitersixth | jupitertenth  
       | jupiterthirteenth | jupitertwelfth | luna | mimas  
       | miranda | nereid | oberon | phobos | phoebe | rhea   
       | saturnfirst | tethys | titan | titania | triton  
       | umbriel; 
 
<det>  = a | an | every | one | two | three | four; 
 
<adj>  = red | atmospheric; 
 
<linkingvb>  
       = is | was | are | were; 
 
<quest>  
       = did | do | does; 
 
<simple>  
       = hello | hi, there | how are you | good, thanks  
       | fine, thanks | have a good day | goodbye | bye-bye ; 
 
<other> = and | or | by; 
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APPENDIX F: EXAMPLE DATABASE CONNECTIONS  

The following is the source code in Java programming language for example 

database connections. 

/* connection to Access Database */ 

public static Connection getAccessConnection() throws 

Exception { 

    String url = "jdbc:odbc:solar_system"; 

    String username = "Administrator"; 

    String password = "123"; 

 

    //Class.forName(driver); 

    DriverManager.registerDriver (new 

sun.jdbc.odbc.JdbcOdbcDriver()); 

    Connection conn = DriverManager.getConnection(url, 

username, password); 

    return conn; 

  } 

 

/* connection to Oracle Database */ 

 public static Connection getOracleConnection() throws 

Exception { 

    String driver = "oracle.jdbc.driver.OracleDriver"; 

    String url = 

"jdbc:oracle:thin:@localhost:1521:solar_system"; 

    String username = "mp"; 

    String password = "mp2"; 

 

    Class.forName(driver); // load Oracle driver 
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    Connection conn = DriverManager.getConnection(url, 

username, password); 

    return conn; 

  } 

 

/* connection to MySQL Database */ 

 public static Connection getMySqlConnection() throws 

Exception { 

    String driver = "org.gjt.mm.mysql.Driver"; 

    String url = "jdbc:mysql://localhost/solar_system"; 

    String username = "oost"; 

    String password = "oost"; 

 

    Class.forName(driver); 

    Connection conn = DriverManager.getConnection(url, 

username, password); 

    return conn; 

  } 



Appendix G: Automatically Generated CFG Grammar for the Solar System 
 

 327 

APPENDIX G: AUTOMATICALLY GENERATED CFG GRAMMAR 

FOR THE SOLAR SYSTEM 

/* CFG_new.jsgf */ 

grammar CFG_new ; 

public <s> = <linkingvb> <termph> [<transvb> by ] <termph>  

           | <linkingvb> <termph> <termph> 

           | <quest> <sent> 

           | (who |what) <verbph> 

           | (which | how many ) <nouncla><verbph>  

           | <greetings>; 

<sent> = <termph> <verbph>;  

<termph> = <stermph>  

         | <stermph> (and | or) <stermph>;  

<stermph> = <pnoun> | <detph>;  

<verbph> = <transvbph> | <intransvb>;  

<transvbph> = ( <transvb> | <linkingvb> <transvb> by ) 

<termph>; 

<detph>= <det> <nouncla>;  

<nouncla> = <adj> <cnoun> | <cnoun>;  

<pnoun> = bernard | bond | cassini | dollfus | fountain | 

galileo | hall | herschel | huygens | kowal | 

kuiper | larsen | lassell | melotte | nicholson | 

perrine | pickering | earth | jupiter | mars | 

mercury |  neptune | pluto | saturn | uranus | 

venus | almathea | ariel |callisto | charon | 

deimos | dione | enceladus | europa | ganymede | 

hyperion | iapetus | io | janus | jupitereighth | 

jupitereleventh | jupiterfourteenth | jupiterninth 

| jupiterseventh | jupitersixth | jupitertenth | 

jupiterthirteenth | jupitertwelfth | luna | mimas 
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|miranda | nereid | oberon | phobos | phoebe | 

rhea | saturnfirst | tethys | titan | titania | 

triton | umbriel ; 

<cnoun> =  people | planet | moon; 

<transvb> = orbit | orbits | orbited | discover | discovers 

| discovered | find | finds | found; 

<intransvb> = spin | spins | spun | exist | exists | existed; 

<det> = a | an | every | one | two | three | four ; 

<adj> = red | blue ; 

<linkingvb> = is | was | are | were ; 

<quest> = did | do | does ; 

<greetings> = hello | hi there | how are you | fine, thanks 

| goodbye | bye- bye ; 

 



Appendix H: Automatically Generated SCG Grammar for the Solar System 
 

 329 

APPENDIX H: AUTOMATICALLY GENERATED SCG GRAMMAR 

FOR THE SOLAR SYSTEM 

/* SCG_new.jsgf */ 

/* Assuming we have n semantic types, we use type_k (1<=k<=n) 

to denote each semantic type. 

Also, in the SCG grammar template, we just use type_i to 

list all the semantic types type_1, type_2, ..., type_n. 

meanwhile, we use type_k to specify some specific type */ 

 

grammar scg_new ; 

 
public <s> = <linkingvb> <termph_verbph> 

  | <quest> <sent> 

  | is <pnoun> <pnoun> 

  | is <pnoun> (a|an) <nouncla> 

  | is <pnoun> (a|an) <nouncla> or (a|an) <nouncla> 

  | (who) <verbph_type_1> 

  | (what) <verbph_type_2> 

  | (what) <verbph_type_3> 

  | (which) <nouncla_verbph_type_1> 

  | (which) <nouncla_verbph_type_2> 

  | (which) <nouncla_verbph_type_3> 

  | (how many) <nouncla_verbph_type_1> 

  | (how many) <nouncla_verbph_type_2> 

  | (how many) <nouncla_verbph_type_3> 

  | <greetings>; 

<termph_verbph> = 

 <termph_type_2> <transvb_type_1> by 

<termph_type_1> 
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 | <termph_type_3> <transvb_type_1> by 

<termph_type_1> 

 |<termph_type_2> <transvb_type_3> by 

<termph_type_3>; 

<sent> = 

  <termph_type_1> <verbph_type_1> 

  | <termph_type_2> <verbph_type_2> 

  | <termph_type_3> <verbph_type_3>; 

<termph_type_1> = <stermph_type_1> | <stermph_type_1> 

(and|or) <stermph_type_1>; 

<termph_type_2> = <stermph_type_2> | <stermph_type_2> 

(and|or) <stermph_type_2>; 

<termph_type_3> = <stermph_type_3> | <stermph_type_3> 

(and|or) <stermph_type_3>; 

<stermph_type_1> =  <pnoun_type_1> | <detph_type_1>; 

<stermph_type_2> =  <pnoun_type_2> | <detph_type_2>; 

<stermph_type_3> =  <pnoun_type_3> | <detph_type_3>; 

<detph_type_1> = <det> <nouncla_type_1>; 

<detph_type_2> = <det> <nouncla_type_2>; 

<detph_type_3> = <det> <nouncla_type_3>; 

<nouncla> = 

  <nouncla_type_1> 

  | <nouncla_type_2> 

  | <nouncla_type_3>; 

<nouncla_type_1> = <cnoun_type_1> ; 

<nouncla_type_2> = <cnoun_type_2>  

                 | <adj_type_2> <cnoun_type_2>; 

<nouncla_type_3> = <cnoun_type_3>  

                 | <adj_type_3> <cnoun_type_3>; 

<verbph_type_1> = <transvb_type_1>  

                 (<termph_type_2> | < termph_type_3>); 

<verbph_type_2> =  <intransvb_type_2>; 
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<verbph_type_3> = <transvb_type_3> <termph_type_2>  

                | <intransvb_type_3>; 

<nouncla_verbph_type_1> =  

                  <nouncla_type_1> <verbph_type_1> 

                | <nouncla_type_2> <verbph_passive_type_1> 

                | <nouncla_type_3> <verbph_passive_type_1>; 

<nouncla_verbph_type_2> = <nouncla_type_2> <verbph_type_2>; 

<nouncla_verbph_type_3> = 

                 <nouncla_type_3> <verbph_type_3> 

               | <nouncla_type_2> <verbph_passive_type_3>; 

<verbph_passive_type_1> =  

                 <linkingvb> <transvb_type_1> [by 

<termph_type_1>]; 

<verbph_passive_type_3> =  

                <linkingvb> <transvb_type_3> [by 

<termph_type_3>]; 

<pnoun> = <pnoun_type_1> 

  | <pnoun_type_2> 

  | <pnoun_type_3> ; 

<pnoun_type_1> = bernard | bond | cassini | dollfus | 

fountain | galileo | hall | herschel | huygens | 

kowal | kuiper | larsen | lassell | melotte | 

nicholson | perrine | pickering ; 

<cnoun_type_1> = people; 

<transvb_type_1> = discover | discovered | discovers | find  

| finds | found; 

<pnoun_type_2> =  earth | jupiter | mars | mercury | neptune 

| pluto | saturn | uranus | venus ; 

<cnoun_type_2> = planet; 

<intransvb_type_2> = spin | spins | spun | exist | existed | 

exists; 

<adj_type_2> = red | blue; 
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<pnoun_type_3> = almathea | ariel |callisto | charon | 

deimos | dione  | enceladus | europa | ganymede | 

hyperion | iapetus | io | janus | jupitereighth | 

jupitereleventh | jupiterfourteenth | jupiterninth  

          | jupiterseventh | jupitersixth | jupitertenth 

|jupiterthirteenth | jupitertwelfth | luna | 

mimas|  miranda | nereid | oberon | phobos | 

phoebe | rhea | saturnfirst | tethys | titan | 

titania | triton | umbriel ; 

<cnoun_type_3> = moon; 

<transvb_type_3> = orbit | orbits | orbited; 

<intransvb_type_3> = spin | spins | spun | exist | existed | 

exists; 

<adj_type_3> = red | blue; 

<det> = a | an | one | two | three | four | the; 

<linkingvb> = is | was | are | were ; 

<quest> = did | do | does ; 

<greetings> = hello | hi, there | how are you | good, thanks 

| fine, thanks | have a good day | goodbye | bye-

bye ; 
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APPENDIX I: THE XML FILE FOR SPEECH APPLICATION    
Read-A-Book 

The URL for the XML files of the speech application Read-A-Book is at: 

http://cs.uwindsor.ca/~speechweb/p_d_speechweb/read_a_book/read_a_book.x

ml . 

 

Note that this file can only be downloaded using a browser that can execute X+V 

files. 

 

The source code of the XML file for speech application Read-A-Book is as 

follows: 
 

<?xml version="1.0"?> 

<!DOCTYPE html PUBLIC "-//VoiceXML Forum//DTD XHTML+Voice 

1.2//EN" 

"http://www.voicexml.org/specs/multimodal/x+v/12/dtd/xhtml+voice1

2.dtd"> 

<html xmlns="http://www.w3.org/1999/xhtml" 

    xmlns:vxml="http://www.w3.org/2001/vxml"  

    xmlns:ev="http://www.w3.org/2001/xml-events" 

    xmlns:xv="http://www.voicexml.org/2002/xhtml+voice" 

    xml:lang="en-US"> 

     

<!--

*****************************************************************

******************* 

Date: March. 2006 

Developer: Ma, Xiaoli(William) 

Architecture: LRRP (Dr.Frost, University of Windsor, Canada) 

*****************************************************************

********************--> 
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<head> 

 

<!-- Please modify the value of variable sv_greeting, and cgiLink 

to fit your application. --> 

<script type="text/javascript"> 

/** The greeting message that will say to the user, only at the 

first time the user visits this page. **/ 

var sv_greeting ="hello, I can read a book to you."; 

/** The link to your CGI interpreter location.  

Notice, you have to place the CGI interpreter program with this 

page in the same domain to prevent a cross-domain security 

error.**/ 

var 

cgiLink="http://cs.uwindsor.ca/~speechweb/p_d_speechweb/read_a_bo

ok/read_a_book.cgi"; 

</script> 

 

<!-- VoiceXML form. --> 

<vxml:form id="vxml_form"> 

<vxml:field name="st_field" xv:id="voice_input" modal="true"> 

   <!-- NOTICE!!! PLEASE MODIFY THE VALUE OF 'src' ATTRIBUTE IN 

THE NEXT LINE <grammar> ELEMENT TO YOUR GRAMMAR FILE LOCATION.--> 

   <vxml:grammar type="application/x-jsgf" 

src="http://cs.uwindsor.ca/~speechweb/p_d_speechweb/read_a_book/r

ead_a_book.jsgf" /> 

   <!-- The following greeting will only speak out when user 

connects to a new interpreter. --> 

     <vxml:prompt cond="sayGreetings==true"><vxml:break 

time="500ms"/><vxml:value expr="sv_greeting"/> 

     <vxml:value expr="updateShowFrame('GREETING: 

'+sv_greeting);"/></vxml:prompt> 

   <vxml:filled> 

 <!--*********************************** 
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  This "filled" element will be run after user speech input has 

recognized.  

  Inside this element, first step, i have assign the user input 

to the variable 'question',  

  because VoiceXML code can access a JavaScript defined variable, 

but JavaScript can not see a VoiceXML defined variable. 

  Then, in the next step, i call a JavaScript function 

"runCode()' to proceed AJAX submit process. 

************************************--> 

     <vxml:assign name="question" expr="st_field"/> 

     <!--********************* 

       Calls to javascript mainControl() function to do the 

logical process based on user voice input. 

     *************************--> 

     <vxml:assign name="javacode" expr="mainControl();"/> 

     <vxml:prompt><vxml:break time="300ms"/><vxml:value 

expr="answer"/></vxml:prompt> 

<!-- If the answer is not a link to next interpreter, then repeat 

the voice dialog. -->     

     <vxml:if cond="isLink==false"> 

       <vxml:throw event="repeat.st_field"/> 

     </vxml:if> 

   </vxml:filled> 

   <vxml:catch event="nomatch noinput"> 

     <vxml:prompt>Sorry, I don't understand, can you say it 

again?</vxml:prompt> 

     <vxml:reprompt/> 

   </vxml:catch> 

   <vxml:catch event="help"> 

     No help is available! Restart the dialog! 

     <vxml:clear namelist="st_field"/> 

     <vxml:reprompt/> 

   </vxml:catch> 

</vxml:field> 
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<!-- Catch the 'repeat.st_field' event. --> 

<vxml:catch event="repeat.st_field"> 

  <vxml:clear namelist="st_field"/> 

<!-- Restart the voice form without change the speech grammar. --

> 

  <vxml:reprompt/> 

</vxml:catch> 

</vxml:form> 

 

 

<script type="text/javascript"> 

/******* Declare global variables shared by JavaScript and 

VoiceXML *********/ 

var sayGreetings=true; 

var defaultGreetingMsg="Hi, i'm ready to talk now."; 

/*** The location of next remote speech-application/CGI-

application interpeter. ***/ 

var nextPage=""; 

/*** Question query recognized from user's speech (request). ***/ 

var question=""; 

/*** Answer query returned from remote CGI interpter (response). 

***/ 

var answer=""; 

var answerRecieved=false; 

/*** Answer query contains a link to next CGI interpreter. ***/ 

var isLink=false; 

var gotoNext= false; 

/*** This variable needed for VXML to call JavaScript code. ***/ 

var javacode=""; 

/*** menu page of the demo public-domain speechweb. ***/ 

var 

startPage="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/me

nu/demo_menu.xml"; 
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if(sv_greeting=="") 

  sv_greeting=defaultGreetingMsg; 

 

 

/****************************************************************

******************************** 

This is the main control function to the whole question submit 

and answer retrived procedures. 

It will call submitReq() method to send the question to the CGI 

program. 

then it will check the answer whether it is a link to new CGI 

program or a simply answer string. 

if it is a link to another interpreter, then retrieve the data 

from there,  

and call the 'changeData' function to change the neccessary 

information for the next round dialog. 

*****************************************************************

********************************/ 

function mainControl() 

{ 

  updateShowFrame("QUESTION: "+question+"<br/>"); 

 

  answer=""; 

  answerRecieved=false; 

  isLink=false; 

  sayGreetings=false; 

   

  /* call submitReq() method to send the question to the CGI 

program. */ 

  submitReq("POST", cgiLink); 

  /** Cannot receive data from CGI interpreter. Network problem. 

**/ 

  if(answerRecieved==false) 
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    return "-1"; 

  answer = getAnswer(xmlhttp.responseText); 

     

  /******* Check whether the received answer is a link or not. 

And, assign the result to the global variable isLink. ******/ 

  checkAnswer(xmlhttp.responseText); 

   

  /****** if the answer is not a link, then show the answer to 

the user and return. ******/ 

  if(!isLink) 

  { 

    gotoNext=false; 

    updateShowFrame("RESPONSE: "+answer+"<br/>"); 

    return "1"; 

  }  

 

  nextPage=getNextInterpreter(xmlhttp.responseText); 

 

  updateShowFrame("RESPONSE: "+answer+"<br/><br/>"); 

   

  if(gotoNext==true) 

    window.location=nextPage; 

   

  return "1"; 

} 

 

 

/****************************************************************

****************************** 

This function returns the substring that has to be spoken as a 

result of the user's question.  

Same procedure is applied for extracting the content to be spoken 

out. 
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*****************************************************************

*****************************/ 

function getAnswer(answer) 

{ 

  var ex=answer; 

  var index; 

  if((ex.indexOf('LINK=',0)) == -1) 

    return ex; 

  ex= ex.slice(5); 

  index = ex.indexOf(";",0); 

  ex = ex.substring(0,index);     

  return ex; 

} 

 

 

/****************************************************************

**************************** 

This function uses AJAX, it will submit the question to the given 

URI if it use a 'POST' method. 

Or, it will retrieve data from the given URI if it use a 'GET' 

method. 

*****************************************************************

****************************/ 

function submitReq(method, url) 

{ 

  /***** Initialize AJAX XMLHttpRequest object. ****/ 

  xmlhttp=new XMLHttpRequest(); 

  /******  

  Assign a event listener to the 'onreadystatechange' event. 

  Different listerner assigned depends on a 'GET' or a 'POST' 

method.  

  ******/ 

  if(method=="GET") 

    xmlhttp.onreadystatechange=stateChange_GET; 
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  else 

    xmlhttp.onreadystatechange=stateChange_POST; 

 

 

  /** Check whether the url involves a cross-domain security 

error before send the request. **/ 

  if(isCrossDomain(url)==true) 

  { 

    /** if method is 'GET', it means this function is called from 

loadPage() function to validate a user input URL. **/ 

    if(method=="GET") 

      alert("Cannot validate input URL since it involves a cross-

domain security issue. Load URL immediately."); 

    /**  

    if method is not 'GET', which means 'POST' method,  

    it means this method is called from main control to submit a 

question query to the interpreter.  

    **/ 

    else 

      updateShowFrame("SYSTEM ERROR: An error which against the 

web browser cross-domain security issue." 

         +" Your CGI interpreter has to be placed in 

the same domain with this voice page."+ 

                      "Please contact to your application 

provider to fix this problem. \n" 

                      +"Your CGI interpreter location: "+ url+"   

Current voice page host domain: "+window.location.host); 

    answerRecieved=true; 

    answer="An error which against the web browser cross-domain 

security issue has occured. Please check the error message to 

continue."; 

    return; 

  } 
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  /** Open the connect, sychronized.  ***/ 

  xmlhttp.open(method,url,false); 

   

  if(method=="GET") 

    xmlhttp.send(); 

  else 

  { 

    xmlhttp.setRequestHeader("Content-Type", "application/x-www-

form-urlencoded"); 

    xmlhttp.send("question="+question); 

  } 

} 

 

function stateChange_POST() 

{ 

  /******* if xmlhttp shows loaded  ******/ 

  if (xmlhttp.readyState==4) 

  { 

    if (xmlhttp.status==200 || xmlhttp.status==304) 

    { 

      answerRecieved = true; 

    } 

    else 

    { 

      answerRecieved = false; 

      xmlhttp.responseText = ""; 

    } 

  } 

} 

 

function stateChange_GET() 

{ 

  /******* if xmlhttp shows loaded  ******/ 

  if (xmlhttp.readyState==4) 
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  { 

    if (xmlhttp.status==200 || xmlhttp.status==304) 

    { 

      answerRecieved = true; 

    } 

    else 

    { 

      answerRecieved = false; 

      xmlhttp.responseText = ""; 

    } 

  } 

} 

 

/** Validate the given url with the current page domain(hostname),  

to see whether they are in the same domain or cross-

domain(different domain). **/ 

function isCrossDomain(url) 

{ 

  var domain = url; 

  var i = domain.indexOf("//"); 

  if(i==-1) 

    return false; 

   

  domain = domain.slice(i+2); 

   

  var k = domain.indexOf("/"); 

  if(k!=-1) 

    domain = domain.slice(0, k); 

  else 

    return true; 

   

  var host = window.location.hostname; 

   

  if(host==domain) 
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    return false; 

  else 

    return true; 

   

} 

 

/****************************************************************

**************************************** 

Check whether there is a occurrence of '=' character in the 

answer, which means a link existed in it. 

And, assign the result to the global variable 'isLink'. 

*****************************************************************

**************************************/ 

function checkAnswer(answer) 

{ 

  if((answer.indexOf('LINK=',0))== -1) 

    isLink=false; 

  else 

    isLink=true; 

 

  return isLink; 

} 

 

/****************************************************************

************************************************ 

if the answer is a link, this function will return the next 

interpreter's URI as a string. Otherwise, return "-1". 

*****************************************************************

*************************************************/ 

function getNextInterpreter(answer) 

{ 

  var loc; 

  var ex = answer; 

  var index; 
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/******  

Check if the answer is a link to next speech application 

interpreter.  

It should never be evaluated as true, otherwise error.  

******/ 

  if(!isLink) 

    return "-1"; 

     

/****************************************************************

******************************************************* 

If the answer is a link, then its formation should be: 

"LINK=_answer;SIHLO=_location;". 

e.g. Question send to judy.cgi: "can i talk to solar man". 

     Answer received from judy.cgi: "LINK=yes. here he 

is;SIHLO=http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy

/judy.xml" 

*****************************************************************

*****************************************************/ 

/****** extracts the LINK=  substring from the string and assigns 

it to the variable ex ******/ 

    ex = ex.slice(5); 

/****** gets the index position of ';'  ******/ 

   index = ex.indexOf(";",0); 

   index = index+1; 

/****************************************************************

*********************************************** 

The string after the '=' and upto ';' are eliminated because this 

is the content which is the answer-query of the user's input. 

*****************************************************************

**************************************************/ 

   loc = ex.substr(index); 

/****************************************************************

****************************** 
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eliminating 'SIHLO=' from the loc variable.  

SIHLO contains the server address starting right after '=' and 

ended by the delimiter ';'. 

*****************************************************************

********************************/ 

   ex = loc.slice(6); 

   index = ex.indexOf(";",0); 

   loc = ex.substring(0,index); 

    

   return loc;  

} 

 

/** Update the text area in the HTML and show message on it. **/ 

function updateShowFrame(message) 

{ 

  var objTable = document.getElementById("logFrame"); 

 

  objTable.insertRow(0); 

  objTable.rows[0].insertCell(0); 

  objTable.rows[0].insertCell(1); 

  var cell0 = objTable.rows[0].cells[0]; 

   

  var cell1 = objTable.rows[0].cells[1]; 

  cell1.align="left";   

  cell0.align="left"; 

  cell0.width="105"; 

  if(message.indexOf("SYSTEM ERROR: ")!=-1) 

  { 

    var objFont = document.createElement("font"); 

    objFont.color="red"; 

    objFont.size="-1"; 

    objFont.appendChild(document.createElement("b")); 

    objFont.firstChild.innerHTML = message.slice(0, 

message.indexOf(":")+1); 
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    cell0.appendChild(objFont); 

     

    var objFont2 = document.createElement("font"); 

    var objIta = document.createElement("i"); 

    objFont2.color="black"; 

    objFont2.size="-1"; 

    objFont2.appendChild(objIta); 

    cell1.appendChild(objFont2); 

    objIta.innerHTML=message.slice(message.indexOf(":")+1); 

  }else 

  { 

    var index = message.indexOf(":"); 

    var ex=message.slice(0,index+1); 

    var objFont = document.createElement("font"); 

    if(ex.indexOf("QUESTION:")!=-1) 

      objFont.color= "blue"; 

    else if(ex.indexOf("RESPONSE:")!=-1) 

      objFont.color="green"; 

    else  

      objFont.color="purple"; 

 

    objFont.appendChild(document.createElement("b")); 

    cell0.appendChild(objFont); 

    objFont.firstChild.innerHTML = ex; 

    cell1.appendChild(document.createElement("font")); 

    cell1.firstChild.innerHTML = message.slice(index+1); 

  } 

  /****** Insert a table row as an empty line after a response 

and greeting message. ***********/ 

  if(message.indexOf("QUESTION")==-1) 

  {  

    objTable.insertRow(0); 

    objTable.rows[0].insertCell(0); 

    objTable.rows[0].colspan="2"; 
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    objTable.rows[0].cells[0].innerHTML = "<br/>&nbsp;"; 

  }   

   

  return ""; 

} 

 

/** Load user's application. **/ 

function loadPage(checkInput) 

{ 

  /** Get user's input. **/ 

  var loc = document.getElementById("id_nextPage").value; 

   

  /** if user's input is empty, then return a error message. **/ 

  if(loc=="") 

  { 

    updateShowFrame("SYSTEM ERROR: Please input the URL to your 

voice page in the above text field. It can not be empty!" ); 

  } 

  /** if user input is not empty, and user asked to validate URL 

before go. **/ 

  else if(checkInput==true) 

  { 

    submitReq("GET", loc); 

    /** if the valicating process return a false as result, which 

means invalid URL. **/ 

    if(answerRecieved==false) 

    { 

      if(xmlhttp.status==404) 

        updateShowFrame("SYSTEM ERROR: Unable to load your voice 

page. File does not exist at: "+ loc ); 

      else 

        updateShowFrame("SYSTEM ERROR: Unable to load your voice 

page. Network problem, error code: " 
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        +xmlhttp.status+". Please check your internet 

connection."); 

    } 

    /** if user's input is not empty, it is a valid URL to next 

page. **/ 

    else 

      window.location=loc; 

  }   

  /** if user's input is not empty, and user asked to load URL 

page immediately. **/ 

  else 

    window.location=loc; 

} 

 

function menuPage() 

{ 

  window.location=startPage; 

} 

 

function processQuestion() 

{ 

  gotoNext = true; 

  question = document.getElementById("id_questionField").value; 

  document.getElementById("id_questionField").value=""; 

  mainControl(); 

} 

 

</script> 

 

<!--***************************************************** 

  The following script will only be run after a 'vxmldone' event 

is thrown after the VoiceXML form finish all its process. 

  It also means that the answer returned from interpreter 

contains a link to next interpreter, so it needs to go there. 
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*********************************************************--> 

<script type="text/javascript" id="gotoNextPage" 

declare="declare"> 

  window.location=nextPage; 

</script> 

 

<title>Public-Domain SpeechWeb</title> 

</head> 

<body id="page.body"> 

<center><h2>Welcome to our new voice browser!</h2></center> 

<br/> 

<center> 

<table> 

<tr><td colspan="6">Load your own speech application :  

<input type="text" id="id_nextPage" size="50" 

value="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/d

emo_menu.xml"/> 

<br/><br/></td></tr> 

<!-- Call loadPage() function to setup the interprter and speech-

grammar location according to the above input text field value; -

-> 

<tr><td colspan="2"><input type="button" name="submitValidate" 

value="Validate Before Go" onclick="loadPage(true)"/></td> 

<td colspan="2"><input type="button" name="submitGo" value="Go 

Immediately" onclick="loadPage(false)"/></td> 

<td colspan="2"><input type="button" name="menuGo" 

value="SpeechWeb Menu Page" onclick="menuPage()"/></td></tr> 

<tr><td colspan="6"><br/><br/><br/><b>Say your question or type 

it in here:</b></td></tr> 

<tr><td colspan="6"><form onsubmit="processQuestion(); return 

false;"> 

<input type="text" size="70" name="questionField" 

id="id_questionField" value=""/></form></td></tr> 

</table> 
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<br/><br/> 

<table id="logFrame" width="600"></table><br/> 

<br/><br/><br/> 

</center> 

</body> 

<!-- Call a script to reload the vxml form when the current vxml 

form has done its process. --> 

<ev:listener ev:observer="page.body" ev:event="vxmldone" 

ev:handler="#gotoNextPage" ev:propagate="stop" /> 

<!-- Load 'vxml_form' when the page.body loaded. --> 

<ev:listener ev:observer="page.body" ev:event="load" 

ev:handler="#vxml_form" ev:propagate="stop" /> 

</html> 
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APPENDIX J: AN EXCERPT OF THE INTERPRETER FOR 

SPEECH APPLICATION Read-A-Book 

The interpreter of the speech application Read-A-Book is written in Miranda, the 

non-strict purely functional programming language. Parts of the source code are 

as following: 
 

|| get the tail string from k to the end of the list,  

|| k starts from 0. 

 tailstr list k = list!k : tailstr list (k+1),if  k <#list 

                = [], otherwise 

 

|| get the first k characters from the string,  

|| k starts from 1. 

 headstr (a: as) k = a: headstr as (k-1),  

                           if k>0 & k < #(a:as) 

                   = a:as, if k >= #(a:as) 

                   = [], otherwise 

 

|| read page k, page number starts from 1 

|| The component function “numToLetter n numLetter “ is 

defined elsewhere. 

|| It changes a number to a letter to append to a string. 

readpage 0 = "The page number is out of range." 

readpage n = "starting page: " ++ numToLetter n numLetter  

++ ". " ++ pages!(n-1) ++ " That's the end of 

page " ++ numToLetter n numLetter,  

                                if n< #pages 

           = pages!(n-1) ++ " Congratulations! You have 

reached the end of this book.", if n= #pages 
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           = "This book has " ++ numToLetter (#pages) 

numLetter ++ " pages. Please reinput your 

command.", otherwise 

 

|| continuously read k pages 

readKpages (a:as) k = a ++ " " ++ readKpages as (k-1),  

                          if k < #(a:as) & k>0 

                    = foldr (++) [] (a:as), if k >= #(a:as) 

                    = [], otherwise 

|| read from page i and continuously read k pages 

readFrom i k = "starting page: " ++ numToLetter i numLetter 

++ ". "++ (readKpages (tailstr pages (i-1)) 

k)++ " This is the end of page " ++ 

numToLetter (i+k-1) numLetter , 

                   if (i<= #pages & i>0 & i+k-1 < #pages) 

              = readKpages (tailstr pages (i-1)) k ++ " 

Congratulations! You have reached the end of 

this book." ,  

                   if (i<= #pages & i>0 & i+k-1 >= #pages) 

             = "The starting page number exceeds the maximum 

number of the book! " ++   

               "Please reinput your command.", otherwise 
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APPENDIX K: THE CGI FILE FOR SPEECH APPLICATION   
Read-A-Book 

The URL for the CGI file of the speech application Read-A-Book is: 

http://cs.uwindsor.ca/~speechweb/p_d_speechweb/read_a_book/read_a_book.c

gi 
 

The content is as follows: 

 

#!/bin/csh -f 

 

setenv HOME '/stu1/shic/public_html/read_a_book:$HOME' 

setenv PATH '/lapps1/mira:$PATH' 

 

echo "Content-Type:text/plain" 

echo '' 

setenv v "`/bin/cat`" 

/lapps1/mira/bin/mira -heap 10000000 

/stu1/shic/public_html/read_a_book/read_a_book.m << zzz 

(sh_answer "$v") 

/q 

zzz 
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APPENDIX L: SAMPLE SCREENSHOTS FOR SPEECH 

APPLICATION Read-A-Book 

Note that, by taking the advantages of X+V multi-model, the conversation is 

available by both voice- and text-input and output. Therefore, we can capture the 

screenshots of the example conversation between the user and the computer. In 

the screen, the conversation is recorded in the way of “rolling down”, which 

means, the first talk is in the bottom, the later response is on the top part of the 

screen. 

The first screenshot on opening the browser to “read a book” application: 

 
 

Greet the system, and get to know the system: 
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The user is wondering how to communicate with the SpeechWeb: 

 

Start the reading by page: 
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Continue the reading by chapter: 

 
 

Specifying the reading by specific pages which covering interested words: 
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Leaving the Read-A-Book application, and move to judy : 

 
 

The application confirming that is judy: 

 
 
 

Getting to know the hyperlinked speech application judy 
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Leaving judy to monty: 

 
 

Confirming monty: 

 

Getting to know monty: 
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Leaving monty , moving to solar man : 

 

Confirming solar man: 

 
 

Getting to know solar man:  
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Asking questions to solar man and solar man providing answers. 

 
 

Appreciating solar man: 

 
 

Leaving the SpeechWeb: 
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