
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

Analysis and Design of Speech-Recognition Grammars Analysis and Design of Speech-Recognition Grammars

Yue Shi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Shi, Yue, "Analysis and Design of Speech-Recognition Grammars" (2010). Electronic Theses and
Dissertations. 417.
https://scholar.uwindsor.ca/etd/417

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/417?utm_source=scholar.uwindsor.ca%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Analysis and Design of Speech-
Recognition Grammars

by

Shi, Yue

A Dissertation
Submitted to the Faculty of Graduate Studies

Through the School of Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy at the

University of Windsor

Windsor, Ontario, Canada

2010

© 2010 Shi, Yue

Analysis and Design of Speech-Recognition Grammars

by

Shi, Yue

APPROVED BY:

__
Dr. Diana Inkpen, External Examiner

School of Information Technology and Engineering, University of Ottawa

__
Dr. Tanja Collet-Najem

Department of Languages, Literatures and Cultures (French)

__
Dr. Joan Morrissey

School of Computer Science

__
Dr. Jianguo Lu

School of Computer Science

__
Dr. Richard A. Frost, Advisor
School of Computer Science

__
Dr. Abdul A. Hussein, Chair of Defense

Department of Mathematics and Statistics
Sep 15, 2010

iii

 Sep 15, 2010

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas,

techniques, quotations, or any other material from the work of other people

included in my thesis, published or otherwise, are fully acknowledged in

accordance with the standard referencing practices. Furthermore, to the extent

that I have included copyrighted material that surpasses the bounds of fair

dealing within the meaning of the Canada Copyright Act, I certify that I have

obtained a written permission from the copyright owner(s) to include such

material(s) in my thesis and have included copies of such copyright clearances to

my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this

thesis has not been submitted for a higher degree to any other University of

Institution.

iv

Abstract

Currently, most commercial speech-enabled products are constructed using

grammar-based technology. Grammar design is a critical issue for good

recognition accuracy. Two methods are commonly used for creating grammars: 1)

to generate them automatically from a large corpus of input data which is very

costly to acquire, or 2) to construct them using an iterative process involving

manual design, followed by testing with end-user speech input. This is a time-

consuming and very expensive process requiring expert knowledge of language

design, as well as the application area. Another hurdle to the creation and use of

speech-enabled applications is that expertise is also required to integrate the

speech capability with the application code and to deploy the application for

wide-scale use.

An alternative approach, which we propose, is 1) to construct them using the

iterative process described above, but to replace end-user testing by analysis of

the recognition grammars using a set of grammar metrics which have been

shown to be good indicators of recognition accuracy, 2) to improve recognition

accuracy in the design process by encoding semantic constraints in the syntax

rules of the grammar, 3) to augment the above process by generating recognition

grammars automatically from specifications of the application, and 4) to use tools

for creating speech-enabled applications together with an architecture for their

deployment which enables expert users, as well as users who do not have

expertise in language processing, to easily build speech applications and add

them to the web.

v

Dedication

To my parents for their endless and unconditional love

and

To my sister and brothers for their strong support and encouragement

and

To my husband for his enduring understanding, support, and love

and

To my daughter for her sweet love and

being the source of my joy.

vi

Acknowledgements

First and foremost, I would like to thank Dr. Richard A. Frost, my advisor, for his

enduring help, guidance, and ideas in my Master’s and Doctoral studies.

Throughout my graduate study, Dr. Frost has encouraged me to exceed my own

expectations. Dr. Frost has provided extensive proofreading of my research

papers, surveys, and thesis. Without his consideration, understanding, and

encouragement, I could not have completed this work.

I would like to thank Dr. Diana Inkpen for her time and consideration to be my

external examiner, and for the extensive constructive comments which she made

which have helped me to improve the presentation of my results and conclusions.

Also, I would like to thank Dr. Tanja Collet-Najem, Dr. Joan Morrissey, and Dr.

Jianguo Lu, for serving on my dissertation committee, and for providing valuable

guidance and advice. I’d like to express my sincere thanks to Dr. Collet-Najem,

for spending so much time on my work with valuable feedback. Special thanks

are sent to Dr. Morrissey who has been supportive of me since my Master’s

study. Her consideration and encouragement have helped me through the long

journey in my graduate studies. Also, I’d like to present many thanks to Dr.

Jianguo Lu for spending a great deal of time and effort on my thesis and

providing valuable comments. In addition, I’d like to thank Dr. Hussein for serving

as chair on my dissertation committee.

I am very grateful to the faculty, staff, and colleagues in the School of Computer

Science at University of Windsor for their help and support in my graduate

studies. Thanks to my colleagues Nabil Abdullah and Hafiz Rahmatullah, who

have worked with me in the same laboratory, and other friends for giving me their

time and support.

Last but not the least, I would like to say that this research would have been

impossible without the unconditional love and support from my whole family, my

parents, sister, brothers, my husband, and my daughter. To support my study,

vii

my husband has given up much that is extremely important for him. My

daughter’s sweet kiss and hug dissolve all my tiredness and stress. It is my

family’s unconditional love that has supported me throughout the hardships

during the long and difficult journey of my graduate study. I am completely

indebted to them and nothing I say or do can ever repay that debt.

viii

TABLE OF CONTENTS

Author’s Declaration of Originality ..iii

Abstract ... iv

Dedication... v

Acknowledgements ... vi

List of Tables ..xi

List of Figures ..xii

List of Appendices ..xiv

1. INTRODUCTION ... 1

1.1 The Problem ... 3
1.2 An Alternative Less-Expensive Approach ... 4

1.2.1 Average Branching Factor (ABF).. 4
1.2.2 Semantic Constraint Grammar (SCG) .. 5
1.2.3 Automatic generation of speech-recognition grammars 5
1.2.4 A Public-Domain SpeechWeb .. 6

1.3 The Thesis Statement ... 7
1.3.1 Importance of the thesis ... 8
1.3.2 Proof of the thesis statement .. 9

1.4 Contributions of This Thesis Work .. 10
1.5 The Structure of This Thesis Report ... 11

2. AN ALGORITHM FOR COMPUTING THE AVERAGE BRANCHING FACTOR
(PERPLEXITY) OF SPEECH-RECOGNITION GRAMMARS 14

2.1 The Need for Grammar Metrics... 15
2.2 Existing Grammar Metrics... 16
2.3 Analysis of Existing Grammar Metrics... 18
2.4 Introduction to the Average Branching Factor (ABF)................................. 20
2.5 Constraints on Speech-Recognition Grammars .. 21
2.6 Preliminary Discussion of the ABF Algorithm.. 22
2.7 The New ABF Algorithm.. 27
2.8 More Examples ... 31

2.8.1 Example 1... 32
2.8.2 Example 2... 34
2.8.3 Example 3... 38

2.9 Implementation of the ABF Algorithm.. 40
2.10 Summary... 44

ix

3. PROOFS OF THE ABF ALGORITHM .. 46
3.1 Introduction to Miranda ... 46
3.2 Miranda Code for the ABF Algorithm .. 48
3.3 Proof of Termination.. 58
3.4 Proof of Correctness ... 64
3.5 Proof of Complexity... 110

4. SEMANTIC CONSTRAINT GRAMMARS (SCG)... 116

4.1 Context-Free Grammars (CFG) .. 117
4.2 Semantic Constraint Grammars (SCG)... 118
4.3 An Example of a CFG and a Related SCG ... 120

4.3.1 The example CFG .. 121
4.3.2 The example SCG .. 124

4.4 Analyze the CFG and SCG Using Grammar Metrics 130
4.5 Results from an Experiment Investigating Speech- Recognition Accuracy
.. 132
4.6 Comparison of ABFs and Speech Recognition Accuracy Results 133
4.7 Summary... 136

5. AUTOMATIC GENERATION OF SPEECH-RECOGNITION GRAMMARS
FROM RELATIONAL DATABASE SCHEMAS ... 137

5.1 Related Work and Its Shortcomings.. 137
5.1.1 Related work... 137
5.1.2 Shortcomings of related work ... 138

5.2 The New Approach ... 141
5.3 Semantic Specification.. 142
5.4 CFG Grammar-Generation System... 151

5.4.1 The CFG Grammar Template... 152
5.4.2 The CFG Grammar-Generation Engine.. 154

5.5 The SCG Grammar-Generation System ... 163
5.5.1 The SCG Grammar Template... 164
5.5.2 SCG Grammar-Generation Engine... 168

5.6 Analysis of the Automatically-Generated CFG and SCG Using the
Grammar Metrics .. 175
5.7 Comparison to Related Work .. 177
5.8 Summary.. 178

6. A PUBLIC-DOMAIN SPEECHWEB... 179

6.1 Introduction ... 179
6.2 SpeechWebs... 179
6.3 The LRRP SpeechWeb Architecture... 179
6.4 A Public-Domain SpeechWeb... 181
6.5 The Example of a Speech Application .. 184
6.6 Summary... 189

x

7. CONCLUSION... 190
7.1 Proof of the Thesis.. 190
7.2 Future Work .. 190

BIBLIOGRAPHY... 193

APPENDIX A: A SURVEY- DESIGN OF RECOGNITION GRAMMAR FOR VXML-
LIKE APPLICATIONS... 215

APPENDIX B: A SURVEY – AUTOMATIC GENERATION OF SPEECH-
RECOGNITION GRAMMARS .. 274

APPENDIX C: GRAMMAR – READ A BOOK... 318

APPENDIX D: GRAMMAR – READ A BOOK (5-word sequence).................... 321

APPENDIX E: GRAMMAR – WORD SEQENCE (SOLAR SYSETM) 323

APPENDIX F: EXAMPLE DATABASE CONNECTIONS.................................. 325

APPENDIX G: AUTOMATICALLY GENERATED CFG GRAMMAR FOR THE
SOLAR SYSTEM.. 327

APPENDIX H: AUTOMATICALLY GENERATED SCG GRAMMAR FOR THE
SOLAR SYSTEM.. 329

APPENDIX I: THE XML FILE FOR SPEECH APPLICATION Read-A-Book . 333

APPENDIX J: AN EXCERPT OF THE INTERPRETER FOR SPEECH
APPLICATION Read-A-Book ... 351

APPENDIX K: THE CGI FILE FOR SPEECH APPLICATION Read-A-Book.. 353

APPENDIX L: SAMPLE SCREENSHOTS FOR SPEECH APPLICATION Read-A-
Book ... 354

VITA AUCTORIS .. 361

xi

List of Tables

1. Table 2.6 (1): summary of JSGF features …………………………………….. 22

2. Table 2.6 (2): values for decision points in the derivation tree approach ….. 26

3. Table 2.7.6: information from the annotated grammar …………………….… 31

4. Table 2.8.1: information from Example grammar 1 ………………………….. 34

5. Table 2.8.2: information from Example grammar 2 ………………………….. 37

6. Table 2.8.3: information from Example grammar 3 ………………………….. 40

7. Table 2.9: results of applying the ABF algorithm …………………………….. 43

8. Table 4.4: grammar metrics of sample CFG and SCG …………………….. 130

9. Excerpt of Table 2.9: experimental results with ABF algorithm ………….... 134

10. Table 7.3.2 (1): the “Correct” feature using the semantics set …………… 135

11. Table 7.3.2 (2): the “Incorrect” feature using the semantics set ………….. 135

12. Table 5.3: comparison among the Semantic Specification, ER Modeling, and

UML Representation …………………………………………………………… 150

13. Table 5.4.2 (1): database information ……………………………………….. 154

14. Table 5.4.2 (2): table names and aliases …………………………………… 155

15. Table 5.5.2: example syntactic and semantic constraints ………………… 171

16. Table 5.6: comparison among manually-scripted and automatically-generated

CFG and SCG grammars …………………………………………………….. 175

xii

List of Figures

1. Figure 2.6.1: a sample CFG grammar …... 23

2. Figure 2.6.2: sample grammar with director sets and branching

factors …………………………………………………………………………. 23

3. Figure 2.6.3: derivation tree for the example grammar in Figure 2.6.1…. 24

4. Figure 2.7.1: annotated example grammar with branching factors …….. 28

5. Figure 2.7.2: annotated grammar with subsizes …………………………. 28

6. Figure 2.7.3: annotated grammar with the number of occurrences ……. 29

7. Figure 2.7.4: annotated grammar with bracketed left-hand subscripts … 30

8. Figure 2.7.5: example grammar with decision-points ……………………. 30

9. Figure 2.8.1: example grammar 1 …………………………………………. 32

10. Figure 2.8.1: example grammar 1 (Step 1) ……………………………….. 32

11. Figure 2.8.1: example grammar 1 (Step 2) ……………………………….. 32

12. Figure 2.8.1: example grammar 1 (Step 3) ……………………………….. 33

13. Figure 2.8.1: example grammar 1 (Step 4) ……………………………….. 33

14. Figure 2.8.1: example grammar 1 (Step 5) ……………………………….. 33

15. Figure 2.8.2: example grammar 2 ………………………………………….. 34

16. Figure 2.8.2: example grammar 2 (Step 1) ……………………………..… 35

17. Figure 2.8.2: example grammar 2 (Step 2) ………………………………...35

18. Figure 2.8.2: example grammar 2 (Step 3) ………………………………...36

19. Figure 2.8.2: example grammar 2 (Step 4) ………………………………...36

20. Figure 2.8.2: example grammar 2 (Step 5) ………………………………...37

21. Figure 2.8.3: example grammar 3 ………………………………………….. 38

22. Figure 2.8.3: example grammar 3 (Step 1) ……………………………..… 38

23. Figure 2.8.3: example grammar 3 (Step 2) ……………………………..… 38

24. Figure 2.8.3: example grammar 3 (Step 3) ……………………………..… 39

25. Figure 2.8.3: example grammar 3 (Step 4) ……………………………..… 39

26. Figure 2.8.3: example grammar 3 (Step 5) ……………………………..… 40

27. Figure 3.2: Miranda source code for the ABF algorithm ………………… 52

28. Figure 4.1.1: a sample CFG ………………………………………………. 117

xiii

29. Figure 4.3.1: example CFG with the domain of the Solar system …….. 122

30. Figure 4.3.2: a sample SCG with the domain of the Solar system ……. 125

31. Figure 5.3: example Database schema for the Solar system …………. 144

32. Figure 5.3 (1): properties of entity types …………………………………. 144

33. Figure 5.3 (2): possible activities/ relationships among tables ………… 144

34. Figure 5.3 (3): example Semantic Specification ………………………… 147

35. Figure 5.4.1: CFG grammar template ……………………………………. 153

36. Figure 5.4.2: screenshot - example command to generate a CFG

grammar …………………………………………………………………..… 163

37. Figure 5.5.1: SCG grammar template …………………………………… 166

38. Figure 5.5.2: screenshot - example command to generate a SCG

grammar …………………………………………………………………….. 174

39. Figure 6.4: LRRP SpeechWeb architecture ………………………………182

40. Figure 6.5: the screenshot of Read-A-Book application ……………… 188

xiv

List of Appendices

1. Appendix A: A Survey – Design of Recognition Grammar for VXML-like

Applications …………………….…………………………………………. 215

2. Appendix B: A Survey – Automatic Generation of Speech-Recognition

Grammars …………………………………………………………………. 274

3. Appendix C: Grammar – Read A Book ………………………………… 318

4. Appendix D: Grammar – Read A Book (5-word Sequence) ……….… 321

5. Appendix E: Grammar – Word Sequence (Solar System) …….……. 323

6. Appendix F: Example Database Connections ……………………….... 325

7. Appendix G: Automatically Generated CFG Grammar for the Solar

System ……………………………………………………………………… 327

8. Appendix H: Automatically Generated SCG Grammar for the Solar

System ……………………………………………………………………… 329

9. Appendix I: URLs for Example XML Files …………………………..….. 333

10. Appendix J: An Excerpt of the Interpreter for Speech Application Read-A-

Book ……………………………………………………………………..…. 351

11. Appendix K: THE CGI FILE FOR SPEECH APPLICATION Read-A-

Book ……..……………………………………………………………… … 353

12. Appendix L: Sample Screenshots for Speech Application Read-A-

Book ……………………………………………………………………..… 354

1. Introduction

1

1. INTRODUCTION

Currently, most commercial speech-enabled products are constructed using

grammar-based technology. The speech recognition engine processes the input

and phonetically matches it with sentences that are generated by a top-down

expansion of the recognition grammar. The process stops when a match is made

which meets a certain confidence level.

One method for creating speech-recognition grammars is to generate them

automatically from a large corpus of input data which is very costly to acquire.

Another method is to manually design the grammar from a specification of the

application and then to test and modify the grammar by experimenting with end-

user speech input. The high cost of both of these methods is one of the

bottlenecks slowing the production of speech applications (Meng and Siu, 1999,

2002) and (Wang and Acero, 2001, 2003a, 2006). In this thesis, we describe an

alternative approach which is based on grammar metrics. Rather than develop a

grammar and then improve it through experiment, the proposed approach is to

design a grammar, analyze it using grammar metrics which have been claimed

by other researchers to be good indicators of recognition accuracy, modify the

grammar, re-analyze using the metrics, and iteratively improve the grammar with

respect to the metrics. We also facilitate the process of grammar design by

showing how recognition accuracy can be improved by coding semantic

constraints in the syntax rules. We further augment the process of grammar

design by showing how some grammars can be generated automatically from

specifications of applications.

One of the major contributions of this dissertation is the presentation of the first

algorithm to compute an important grammar metric, the Average Branching

Factor (perplexity) of the grammar. The ABF has been claimed by others to be a

good indicator of speech-recognition accuracy. We formally prove termination,

correctness, and polynomial complexity of our algorithm.

1. Introduction

2

We then further investigate a concept that was the focus of the author’s Master’s

work. The concept is that of Semantic Constraint Grammars (SCGs), which

include semantic constraints encoded in the syntax rules. These grammars are

still context-free grammars and we use the name “Semantic Constraint Grammar

(SCG)” only to indicate that the grammar contains what are usually regarded as

semantic constraints in its context-free syntax rule. SCGs are not a new class of

grammar. We compare SCGs with the Context-Free Grammars (CFGs) from

which they were derived, with respect to a number of grammar metrics, including

ABF, number of rules, number of symbols, number of terminals, number of non-

terminals, and size of the language. We compare the analysis with respect to

metrics to the experimental results of voice recognition accuracy which were

obtained as part of a Master’s thesis which was completed by the candidate

before commencing this doctoral work. The results support the claims that 1)

grammar metrics are good indicators of speech-recognition accuracy, and 2) that

encoding semantic constraints in the syntax of recognition grammars can

improve speech recognition accuracy.

In order to further reduce the cost of creating speech-recognition grammars, we

investigate the possibility of generating grammars automatically from application-

specific data. We begin by showing that little work has been carried out on this

approach. We then show how speech-recognition grammars for a simple spoken

database query processor can be generated automatically from a relational-

database schema. We generate straightforward recognition grammars and also

Semantic Constraint Grammars (SCGs) from the database schemas. We analyze

the two types of grammar with respect to their ABFs, and show that the SCGs

have lower ABFs, and are likely, therefore to have better recognition accuracy.

In addition to improving the ease with which speech-recognition grammars can

be developed, we are also interested in facilitating the deployment of speech-

enabled applications. In addition to the work on speech-recognition grammars,

the candidate has also contributed to the development of the architecture and

sample applications for a Public-Domain SpeechWeb, which is an augmentation

1. Introduction

3

of the conventional web with hyperlinked speech applications that are designed

for natural-language speech interaction. As part of this work, the candidate has

developed a SpeechWeb application using readily available software technology

and commonly-used communication protocols. The application allows users who

have access to the Internet to contact a remote application Read-A-Book and

interact with the book “Sleeping Beauty” through speech input and output. We

include a description of this simple application to illustrate the ease with which

hyperlinked speech applications can be created and deployed on the Web.

1.1 The Problem

Despite huge improvements in speech-recognition technology, very few speech

applications are available to the public. We have observed the following two

reasons for this problem:

(1) the high cost of grammar creation.

In general, there are two methods in grammar creation. One approach is

a statistical approach, which constructs recognition grammars by

analyzing a large corpus of data, which is costly to acquire. The second

approach to construct speech-recognition grammars using an iterative

process, involving manual design followed by testing with end-user

speech input. This is a time-consuming and very expensive process

requiring expert knowledge of language design as well as the application

area.

(2) the difficulty in integrating speech-recognition component with application

code.

It requires much expertise to integrate the speech capability with the

application code and to deploy the application for wide scale use.

1. Introduction

4

1.2 An Alternative Less-Expensive Approach

To tackle the above problem, we propose an alternative approach which should

be less expensive as it does not require end-user testing. The approach is based

on grammar metrics and which we present from the following four perspectives:

Average Branching Factor (ABF), Semantic Constraint Grammars (SCG),

automatic generation of speech-recognition grammars, and a Public-Domain

SpeechWeb.

1.2.1 Average Branching Factor (ABF)

Instead of the iterative process of grammar design followed by testing with end-

user speech input, we use metrics to assess the quality of recognition grammars

as they are developed either by hand or automatically. In particular, the Average

Branching Factor (ABF) is claimed by other researchers to be a good indicator of

recognition accuracy. We will define the ABF later in this sub-section.

Speech-recognition accuracy is a significant issue that researchers have been

working on for many decades. Grammar features have been studied from a

variety of perspectives in order to improve the performance of speech

applications.

The accuracy of speech recognition is dependent on the Average Branching

Factor (ABF) of the recognition grammar. Grammars with lower ABFs are likely to

have better recognition accuracy than those with higher ABFs (Hauptmann et. al.,

1988), (Young et. al., 1989), (Young, 1990), (Waibel and Lee, 1990), (Edelkamp

and Korf, 1998), and (Morimoto and Takahashi, 2008, 2009). Much work has

been carried out to reduce the ABF. However, there would appear to be no

published algorithm that computes the ABFs directly from recognition grammars.

In grammar-directed speech recognition, the branching factor of a single decision

point is the number of possible words to be considered as candidates at that

point. During the recognition process, if at any point, it needs to examine the next

1. Introduction

5

symbol on the input to make a choice (even if the choice is a single branch), this

point is a decision point. The Average Branching Factor (ABF) is the average of

the branching factors of all decision points in all of the utterances in the language

defined by the recognition grammar. The ABF is also called the perplexity of the

language.

The Average Branching Factor (ABF) is one grammar metric. Other grammar

metrics include size (number of sentences) of language, number of rules, number

of symbols, number of terminals, and number of non-terminals.

1.2.2 Semantic Constraint Grammar (SCG)

A Semantic Constraint Grammar (SCG) is a Context-Free Grammar (CFG) that

encodes semantic constraints in the syntax rules of the grammar to reduce the

language size and the ABF of the CFG grammar.

In the candidate’s Master’s work (Shi, 2003b), we carried out experiments to

investigate the recognition accuracy of SCGs and CFGs with an iterative testing

process with end-user speech input and test case design. In this doctoral

dissertation, we compare SCGs with the CFGs with respect to a set of grammar

metrics, including ABF, number of rules, number of symbols, number of terminals,

number of non-terminals, and size of the language. We compare and analyze the

results from the Master’s experiment (Shi, 2003b) and the grammar metrics in

this dissertation work. The results support the claims that 1) grammar metrics are

good indicators of speech-recognition accuracy, and 2) that encoding semantic

constraints in the syntax of recognition grammars can improve speech

recognition accuracy.

1.2.3 Automatic generation of speech-recognition grammars

Although technology for grammar-based speech applications is readily available,

it is not yet being extensively used to create speech applications. One problem is

1. Introduction

6

that there appears to be a lack of theory and tools to facilitate the construction of

speech-recognition grammars.

Currently, most grammars for speech-enabled applications are written manually,

which is costly, laborious, and error-prone. Writing a domain-specific grammar

has been a barrier to the rapid development of spoken-language systems (Meng

and Siu, 2002), (Wang and Acero, 2003a), and (Wang and Acero, 2006).

Spoken language often contains repetitions, corrections, interruptions, or

unfinished utterances. These phenomena are often referred as disfluencies

(Jørgensen, 2007). Due to the disfluencies and non-grammatical utterances of

spoken language, a handcrafted grammar cannot guarantee a good coverage of

the input language when deployed in real applications (Meng and Siu, 2002).

Bangalore and Johnston (2003) point out that the heavy cost of authoring and

maintaining grammars and the lack of coverage in the rule sets, are the main

reasons for the bottleneck in the development of conversational systems. Wang

and Acero (2001, 2005, 2006) conclude that writing domain-specific grammars is

a major obstacle in making conversational systems mainstream.

In this dissertation, we show that for some simple applications it is possible to

generate grammars automatically from application specifications. We illustrate

this by generating speech-recognition CFG and SCG grammars automatically

from relational database schemas. This approach further reduces the cost, time,

effort, and the requirement of linguistic knowledge in grammar authoring.

1.2.4 A Public-Domain SpeechWeb

The growth of the Internet since the early 1990’s has changed people’s lives by

providing access to huge amounts of information on the web. It also expands

commercial opportunities for business and convenience for customers, by

allowing business transactions to be conducted anytime around the clock and

anywhere around the world. However, the conventional web is mainly based on

text and graphics, which excludes people with visual disabilities and limits the

1. Introduction

7

use of the web where it is not convenient to access it by hand. Therefore, we

need a supplement to the traditional web. One approach is to augment the web

with hyperlinked speech applications, collectively referred as a SpeechWeb

(Frost and Chitte 1999) and Frost (2004).

By taking the advantage of the rapidly developing wireless industry, a

SpeechWeb that can be accessed via cell phones, will undoubtedly bring profit to

business. Hartzell (2003) estimated that speech-enabled services would

generate more than $4.6 billion in revenue for North American wireless carriers

and $25 billion worldwide by the end of the middle to end of the first decade of

the 21st century.

In addition, the hyperlinking of applications solves the problem of low accuracy of

large recognition grammars by enabling large applications to be partitioned into

smaller hyperlinked components that use smaller grammars with better

recognition accuracy.

1.3 The Thesis Statement

The thesis is that natural-language speech-recognition grammars are amenable

to methodical analysis and design techniques. In particular:

(1) Various grammar metrics, including the Average Branching Factor (ABF)

can be computed automatically and efficiently.

(2) Semantic constraints can be encoded in syntax rules in order to decrease

language size and ABF.

(3) Recognition grammars can be created automatically from relational

database schemas and application specifications.

(4) Readily-available speech-recognition technology and commonly-used

communication protocols can be used by non-expert as well as expert

users to create and deploy speech applications.

1. Introduction

8

1.3.1 Importance of the thesis

This thesis is an attempt to tackle the problem stated in sub-section 1.1. Through

extensive surveys, which are presented in the Appendices, we have shown that

this problem has not yet been solved.

Our solution to the problem is important because of our “constructive” proofs

which involved the creation of algorithms and software, which contribute to the

viability of the alternative less-expensive method for creating speech applications.

In particular:

(1) The importance of the ABF algorithm

The ABF is an important grammar metric that determines the recognition

accuracy of speech-recognition grammars. Our algorithm for computing the

Average Branching Factor (ABF) directly from a speech-recognition grammar

makes it possible to use the ABF to preliminarily examine and assess

recognition grammars avoiding costly and time-consuming experimentation

involving iterative user speech input testing. With the assistance of the ABF,

time, cost, and effort are reduced in grammar design and development.

(2) The importance of Semantic Constraint Grammars (SCGs)

SCGs encode semantic constraints in the syntax rules to naturally decrease

the size of language and ABF therefore improve recognition accuracy.

(3) The importance of the approach for automatic grammar generation

The approach of generating speech-recognition grammars automatically from

relational database schemas illustrates that this approach could facilitate the

development of speech-enabled applications and services. It has the potential

to significantly reduce the time, cost, and difficulty in speech-recognition

grammar authoring. Using the proposed approach, a developer with little

1. Introduction

9

linguistic knowledge and grammar scripting experience can create a high-

quality speech-recognition grammar. More importantly, the method that we

have developed demonstrates that recognition grammars with good

recognition accuracy can be generated automatically.

(4) The importance of a Public-Domain SpeechWeb

The Public-Domain SpeechWeb architecture (Frost, 2005) makes it possible

for expert users and users who do not have expertise in language processing

to easily develop and deploy speech applications in the public-domain

SpeechWeb. In addition, the SpeechWeb provides a solution to improve

recognition accuracy for large grammars by dividing the application into small

hyperlinked components which have smaller grammars and consequently

better recognition accuracy.

1.3.2 Proof of the thesis statement

The thesis has been proven by “constructive proofs”. Algorithms and software

have been built and analyzed in order to prove each part of the thesis by

construction of an example. Such proofs are informal and are really “proof of

concept”. However, formal mathematic proofs have been used to analyze

properties of the algorithm developed.

To prove the thesis statement, we consider a set of speech-recognition grammar

metrics, including the number of symbols, the number of terminals, the number of

non-terminals, the number of rules, the size of the language, and the Average

Branching Factor (ABF). We also review metrics proposed by others as follows.

Details of existing metrics are in sub-section 2.2.

(1) McCabe’s Complexity (McCabe, 1976) metric measures the number of

linearly independent paths through a flow graph.

(2) Fenton’s Impurity (Fenton and Pfleeger, 1996) describes successors’

dependency between non-terminals.

1. Introduction

10

(3) Power and Malloy (2000, 2004) discuss the following grammar metrics:

the average size (the number of terminals or non-terminals) of the right-

hand-side of syntax rules, levels, and depth (the number of non-terminals

in the largest grammatical level).

(4) Grammar Confusability Metrics (GCM) (Cai and Hamaker, 2008) describe

a likelihood that a phrase will be confused by the speech recognizer with

another phrase currently allowed by an active grammar rule.

We then describe an efficient algorithm for determining the Average Branching

Factor (ABF) automatically from a speech-recognition grammar. We formally

prove termination, correctness, and polynomial time complexity. We have

implemented the algorithm and applied it to several example grammars.

We have developed a method to improve grammars with respect to the metrics

by integrating semantics with syntax. We use a set of grammar metrics to

measure the properties of the initial grammars, and the revised “semantic”

grammars (SCGs).

We have also developed a method of generating speech-recognition grammars

(CFGs or SCGs) automatically from relational database schemas. The generated

grammars are analyzed and compared using the set of grammar metrics.

Finally, we have created a small SpeechWeb application to illustrate the ease

with which grammar-based speech applications can be developed and deployed

on the web.

1.4 Contributions of This Thesis Work

The contributions of this thesis work are summarized as follows:

(1) We have proposed the first algorithm to correctly compute the Average

Branching Factor (Perplexity) directly from a speech-recognition grammar.

This algorithm provides a method for more-easily and less-expensively

calculating a grammar metric which is useful when developing speech-

1. Introduction

11

recognition grammars. The algorithm has been formally proven with

respect to termination, correctness, and polynomial time complexity.

(2) We have further investigated the notion of Semantic Constraint Grammars

(SCGs), and compared SCGs and CFGs with respect to a set of grammar

metrics.

(3) We have proposed a novel approach to generate speech-recognition

grammars automatically from relational database schemas and application

specification. The approach has been implemented and the generated

grammars are analyzed using a set of grammar metrics. This approach

demonstrates the viability of automatic grammar authoring and facilitates

the development of conversational systems.

(4) The example SpeechWeb application illustrates the ease of creating and

deploying grammar-based speech applications in a Public-Domain

SpeechWeb using readily available technology and protocols.

1.5 The Structure of This Thesis Report

The remainder of this thesis report is structured as follows:

Section 2 begins by discussing the need for recognition grammar metrics and the

definition of the Average Branching Factor (ABF). We analyze existing grammar

metrics and compare them with the ABF metric. Before presenting the new

algorithm for computing the ABF, we discuss a naïve approach which is incorrect.

Then, we illustrate a correct but impractical approach which has exponential

complexity with respect to the length of the utterances. Next, we present the new

polynomial time ABF algorithm. We include three examples of applying the ABF

algorithm and discuss the implementation of the algorithm. The results of

applying the ABF algorithm on several example grammars are included and

discussed in this section too.

Section 3 contains proofs of the ABF algorithm with respect to termination,

correctness, and polynomial time complexity. To better present the proofs, we

1. Introduction

12

include the Miranda source code for the ABF algorithm implementation. An

introduction to Miranda is included in section 3.

In section 4, we discuss and compare Context-Free Grammars (CFGs) and

Semantic Constraint Grammars (SCGs). Examples of these two grammars are

included and analyzed using a set of grammar metrics. In addition, we refer to

the experimentation for investigating speech recognition accuracy which was

carried out in the candidate’s Master’s work. The experimental results from the

Master’s work are compared with a new analysis of the grammars using the ABF

and other metrics.

Section 5 presents a novel approach for generating speech-recognition

grammars automatically from relational database schemas and application

specifications. We further discuss, analyze, and compare the generated CFGs/

SCGs using a set of grammar metrics.

We discuss the Public-Domain SpeechWeb and the LRRP (Local speech

Recognition and Remote Processing) SpeechWeb architecture in section 6. We

illustrate the ease of creation, deployment, and access to a hyperlinked speech

application using an example speech application.

Section 7 summarizes the work done, concludes the thesis report, and discusses

future work.

Two surveys are appended, Appendix A: “A Survey – Design of Recognition

Grammar for VXML-like Applications”, and Appendix B: “A Survey – Automatic

Generation of Speech-Recognition Grammars”. Appendix C and D are two

example grammars with the same vocabulary, Read-A-Book and a word

sequence grammar. Appendix E is a word-sequence grammar for a small solar

system which has the same domain with the example grammars in section 4.

Appendix F includes Java code for example database connection. Two

automatically generated grammars are in Appendix G and Appendix H

respectively. Appendix I lists the URLs for the XML files of the example speech

1. Introduction

13

applications of the Public-Domain SpeechWeb. Appendix J includes parts of the

interpreter for the example speech application Read-A-Book. Appendix L

includes some sample screenshots for the example speech application Read-

A-Book.

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

14

2. AN ALGORITHM FOR COMPUTING THE AVERAGE

BRANCHING FACTOR (PERPLEXITY) OF SPEECH-
RECOGNITION GRAMMARS

Although speech-recognition technology has achieved significant progress over

decades, it is not yet perfect. Speech recognition is not an exact, analytical

science, but a probabilistic art and incorporates elements of sophisticated

guessing (Abbott, 2001). There are still many limitations in voice applications.

Stochastic (statistical) techniques and grammar-based techniques are two of the

main methods used in natural language speech processing. Stochastic models

were the most popular up to the late 90’s, whereas grammar-based technology

has been more widely used in commercial products since 2001 (Barnard et al.,

1999), (Knight et al., 2001) and (Caskey et al., 2003).

In grammar-based speech applications, recognition grammars are a key

component that directly affects the performance of speech applications. The

design of speech-recognition grammars determines speech-recognition accuracy,

robustness, efficiency, and maintenance complexity of speech applications. A

well-defined grammar also provides the user with great flexibility and comfort in

voice services. Good grammars are essential for the usability of a speech

application. However, writing grammars is a daunting and expensive task, which

forms a major bottleneck in the development of spoken language systems (Siu

and Meng, 1999).

In the survey at Appendix A, we have reviewed the design of recognition

grammar for VXML-like applications. VoiceXML is an XML-based markup

language for building distributed voice applications, much as HTML is a markup

language for creating distributed visual applications. A grammar is a set of rules

that define the possible words, phrases, or utterances which are accepted by the

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

15

speech recognition engine. A grammar is a fundamental building block of speech

technology (Mané and Levin, 2005).

From first-hand experience in writing grammars for real-world voice applications,

some guidelines in VoiceXML application grammar design have been overviewed

and summarized in Appendix A. The topics included grammar design, dialog

design, prompt design, sub-grammar design, sub-dialog design, grammar

weights and probabilities, error handling, and testing. Also, we have reviewed the

design for Voice User Interface (VUI), which is the key to the success of a

VoiceXML application, and the tools and environments for grammar design.

In summary, we have found over 20 articles on grammar design and 4 of which

are refereed scientific papers. More than 10 articles are related to Voice User

Interface (VUI) design and 2 of which are refereed scienctific papers. 4 non-

refereed articles talk about voice-application testing. 15 voice application

development environments are available, 4 of which are freely downloadable.

2.1 The Need for Grammar Metrics

In speech application development, carrying out experiments is one of the major

methods to test speech-recognition accuracy and performance. This process

may involve the following phases:

(1) Design and develop a speech-recognition grammar.

(2) Link the speech-recognition grammar to a speech application.

(3) Design a set of test cases.

(4) Identify a number of subjects (testers) to participate the testing.

(5) Testers go through the set of test cases and record their results.

(6) Analyze the results and summarize the performance of the speech-

application.

For each change of a speech-recognition grammar, the testing process has to be

repeated. Testing and tuning are an iterative process for analyzing and

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

16

optimizing system performance. This process is a complex task that can take a

long time (sometimes, several months) and involves an interdisciplinary team of

professionals, including developers, testers, linguists, and psychologists (Biber

and Kozminski, 2005) and (Eisenzopf, 2006).

In software engineering, software metrics are often used to measure and manage

the complexity of software and estimate the difficulty of maintenance in order to

determine the cost of change, and as an indicator for automatic detection of a

transformation that can improve the quality of a system (Power and Malloy, 2004).

The use of software metrics is essential to good software engineering (Fenton

and Pfleeger 1996) and (Power and Malloy, 2004).

Similarly, there is a need for a set of grammar metrics to analyze and estimate

the performance of speech-recognition grammars so that the time, cost, and

difficulty in grammar design may be reduced.

2.2 Existing Grammar Metrics

Features of speech-recognition grammars have been studied and analyzed from

a variety of perspectives over many years. Researchers have developed a

variety of grammar metrics.

Power and Malloy (2000) developed a technique to map six established metrics

in software engineering to grammars, and extend their work in (Power and Malloy,

2004). The six metrics are as follows:

(1) The number of terminals and non-terminals.

(2) The McCabe Complexity measures the linearly independent paths through

a flow graph (McCabe, 1976). It is typically interpreted as a measure of

the number of decisions in the flow graph. In a CFG, decisions are made

at non-terminals while the recognition process choosing next alternatives.

The McCabe complexity for a CFG is the total number of alternatives in

the grammar.

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

17

(3) The average RHS size is the average of the number of symbols, including

terminals and non-terminals, on the right-hand side of CFG production

rules. It is the quotient of the total of terminals and non-terminals on the

right-hand-side of the rules divided by the number of non-terminals.

(4) The Fenton’s Impurity (Fenton and Pfleeger, 1996) concerns the

dependencies between procedures in a program in software engineering.

The dependencies between procedures in the program are edges of a call

graph, which is represented as a directed graph. In a CFG, a non-terminal

is regarded as a procedure of a program and the successor relations

between non-terminals are edges in the call graph. The Fenton’s Impurity

defines the dependencies of non-terminals of a CFG.

(5) Grammatical Levels (Power and Malloy, 2000 and 2004). If non-terminal A

derives some sequence of symbols β, and β contains some non-terminal

B, we say that B is an immediate successor of A, and write A B. If β

derives some sequence of symbols γ, and γ contains some non-terminal

C, we say that C is a successor of A, and write A * C. If A * C and C

* A, we say that A is equivalent to C and denote as A ≡ C. An

equivalence relation on a set partitions the set into a collection of

equivalence classes. All the elements in a given equivalence class are

considered equivalent. For grammar non-terminals, these equivalence

classes are called grammatical levels.

(6) Depth. Based on the definition of grammatical level, Depth is defined as

the number of non-terminals in the largest grammatical level (Power and

Malloy, 2000 and 2004).

Cai and Hamaker (2008) proposed a Grammar Confusability Metric (GCM) to

describe a likelihood that a phrase will be confused by the speech recognizer

with another phrase currently allowed by an active grammar rule. The GCM

identifies pairs of phrases in the grammar with different semantic meanings which

are difficult for the speech recognizer to distinguish reliably. For example, the

user says, “repeat this voicemail”. The speech recognizer may misrecognize it as

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

18

“delete this voicemail” because they are acoustically alike. The GCM is used to

flag the existence of two phrases in the grammar that have different semantic

meanings but with similar pronunciation.

A Probabilistic Context-Free grammar (PCFG) is a Context-Free Grammar (CFG)

(the formal definition of a CFG is given in sub-section 4.1) with a probability

distribution defined over all productions that share the left-hand side (Rosenfeld,

2000b), (Moore, 1999), and (Weber and Gőrz, 1999). The entropy of a

probabilistic CFG is computed in (Kuich, 1970) and further studied in (Soule,

1974) and (Justensen and Larsen, 1975). Using CFGs to categorize the ways in

which nodes branch to yield daughter nodes, Miller and O’Sullivan (1992)

examine the entropies of the branching processes associated with trees that

branch according to a finite number of rules. Miller and O’Sullivan use the theory

of multi-type Glaton Watson processes (Harris, 1963), these processes are

characterized according to their branching rates as sub-critical, critical, and

super-critical with branching rates ρ<1, ρ=1, and ρ>1 respectively. The

branching rate is the rate of growth of the logarithm of the total number of

derivations from the grammar (the total number of trees possible starting from the

start node) (Miller and O’Sullivan, 1992). To characterize the rate of growth of the

number of derivations in the language, Miller and O’Sullivan (1992) observe that

if there are K non-terminals at the lowest level of a tree, then the number of trees

that can be grown from this level equals the product of the number of trees which

can be grown from each of the K non-terminals.

2.3 Analysis of Existing Grammar Metrics

Power and Malloy (2000 and 2004) state that the use of grammar metrics can

facilitate the maintenance of grammar-based software applications. They apply

established metrics in software engineering to Context-Free Grammars (CFGs).

In the mapping process from software metrics to grammar metrics, procedures

are considered as non-terminals and procedure bodies are the right-hand sides

of production rules (Power and Malloy, 2000). The grammar metrics in (Power

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

19

and Malloy, 2000 and 2004) provide a measurement of Context-Free Grammars

(CFGs) and facilitate the estimation of the difficulty of design, implementation,

testing, and maintenance for large grammars from the point of view of software

development.

The GCM (Grammar Confusability Metric) focuses on phrases with similar

acoustic features in the grammar (Cai and Hamaker, 2008). GCM is used to flag

the processing of two phrases that are acoustically alike but have different

semantic meanings.

With the assistance of the concepts of “branching rate” and “the number of trees”,

Miller and O’Sullivan (1992) investigate the growth of the derivations of

grammars. “The number of trees” in (Miller and O’Sullivan, 1992) has the similar

meaning to “branching factor” for a single decision point in our work. However,

their approach differs from our ABF work in the following ways:

(1) Miller and O’Sullivan specify the properties of generation level, ancestors,

and the offspring of each node. We take into account the branching

factors of all decision points of all the utterances in the language defined

by the recognition grammar.

(2) We obtain the value of the Average Branching Factor (ABF) of the

recognition grammar. Miller and O’Sullivan are more interested in the

growth with derivation depth at some specific level.

(3) Our ABF algorithm is efficient. Miller and O’Sullivan’s approach is not

practical for non-trivial grammars as it has exponential time complexity

with respect to the depth of the derivation tree.

Note that all of the above grammar metrics are concerned with different

properties of grammars. However, none of them gives a good indication of overall

recognition accuracy. We will discuss what the ABF is and how it is related to

recognition accuracy in the following sub-sections.

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

20

2.4 Introduction to the Average Branching Factor (ABF)

In grammar-directed speech recognition, the branching factor of a single decision

point is the number of possible words to be considered as candidates at that

point. During the recognition process, if at any point, it needs to examine the next

symbol on the input to make a choice (even if the choice is a single branch), this

point is a decision point. The Average Branching Factor (ABF) is the average of

the branching factors of all decision points in all of the utterances in the language

defined by the recognition grammar. The ABF is also called the perplexity of the

language.

The Average Branching Factor (ABF) is important in predicting speech-

recognition performance (National Research Council (U.S.), 1984). An increase

of the ABF is likely to result in decreased performance. A smaller ABF indicates

higher constraints and better recognition performance because the system has

fewer choices to make (National Research Council (U.S.), 1984), (Hauptmann et.

al., 1988), (Young et. al., 1989), and (Waibel and Lee, 1990).

Hauptmann et al. (1988) use various types of dialog-level knowledge to reduce

the branching factor in a speech-recognition task to improve speech-recognition

accuracy. Hauptmann et al. (1988), Young et al. (1989), and Waibel and Lee

(1990) state that the ABF is a standard measure for determining the complexity

(not computational complexity) of languages and a meaningful measure for

speech-recognition systems. Young (1990) claims that a decrease in the Average

Branching Factor b results in a decrease in the search space size s, for s = bd,

where d is the depth of the search space. The ABF is also important for

determining the complexity of search algorithms (Edelkamp and Korf, 1998).

Experiments in (Morimoto and Takahashi, 2008, 2009) show that the ABF

(Perplexity) directly affects speech-recognition accuracy, where the ABF

decreases, the recognition accuracy is likely to improve.

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

21

2.5 Constraints on Speech-Recognition Grammars

The algorithm for computing the Average Branching Factor in this thesis requires

that the grammars are proper, 1-lookahead, and non-recursive:

(1) A context-free grammar is said to be proper if starting from the

distinguished non-terminal, the only non-terminals produced are those

whose further rewriting can eventually result in a string of terminals

(Jelinek and Lafferty, 1991).

(2) A 1-lookahead grammar is one in which the director sets for each

alternative in a production rule are disjoint. The director set of a rule is the

set of terminals which start expressions that can be obtained by

expansion of the rule. The cardinality of this set is the branching factor of

that symbol. Consequently, a 1-lookahead grammar is deterministic and

one in which the decision of which alternative to expand in a rule can be

determined by looking at the next word on the input and matching it

against a terminal in at-most one of the director sets of the alternatives.

(3) A non-recursive grammar is one in which no non-terminal is defined in

terms of itself, either directly in one production rule, or through mutual

recursion involving more than one production rule. For example a rule of

the form <A> = a <A> b | c; is not allowed.

The first requirement implies that all non-terminals must be properly defined, i.e.,

must appear on the left hand side with definition on the right hand side of a rule.

This constraint is necessary for a grammar to be applied correctly in a speech

application. The second constraint is not difficult to overcome as all context-free

grammars can be converted to 1-lookahead grammars by a process of factoring

(see for example Aho, Sethi and Ullman 1986). The last constraint is also not too

significant in speech recognition owing to the fact that in the majority of

applications there will be a limit on the length of the input utterances and on the

depth of recursion. In many cases, it will be possible to easily rewrite the

grammar so that iteration of syntactic constraints, which is implicit in recursive

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

22

grammars, is made explicit. For example, the recursive production rule <A> = a

<A> b | c; with a limit of recursive depth 2 can be rewritten to <A> = c | a

c b | a a c b b;

2.6 Preliminary Discussion of the ABF Algorithm

Before presenting the algorithm for computing the Average Branching Factor

from speech grammars, we first present a naïve and incorrect approach. Speech

recognition grammars are context free grammars. Java Speech Grammar Format

(JSGF) is the most common notation used to specify recognition

grammars..JSGF is a platform-independent, vendor-independent textual

representation of grammars for use in speech recognition (Sun, 2000). A

summary of JSGF features is shown below in Table 2.6 (1). The formal definition

of a CFG is given in sub-section 4.1. Figure 2.6.1 is a sample Context-Free

Grammar (CFG), written in Java Speech Grammar Format (JSGF).

 Table 2.6 (1): summary of JSGF features

Feature Purpose
Word or “word” Words (terminals, tokens) need not be quoted
<rule> Rule names (non-terminals) are enclosed in <>
[x] Optionally x
(…) Grouping

x y z … A sequence of x then y then z then …
x | y | z … A set of alternatives of x or y or z or …
<rule> = x;
Public <rule> = x;

A private and a public rule definition

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

23

 <p> = <q> <q>
 | <r> ;

 = 0
 | 1 ;

 <r> = a
 | b
 | c ;

 <q> = x <r> ;

Figure 2.6.1: a sample CFG grammar

Example expressions defined by this grammar (Figure 2.6.1) are: xaxa0,

xaxa1, xaxb0, xaxb1, a0, a1, b0, and b1.

First, we determine the director sets for each production rule in the grammar.

Then we label each symbol with the director sets (in curly brackets) and the

branching factors (with superscripts), as in Figure 2.6.2:

 <p> {x,a,b,c}4 = <q>1 <q>1 2
 | <r>3 2;

 {0,1}2 = 0
 | 1 ;

 <r> {a,b,c}3 = a
 | b
 | c ;

 <q> {x}1 = x <r>3 ;

 Figure 2.6.2: sample grammar with director sets and branching factors

To compute the ABF, one might be tempted to add the branching factors for all

non-terminals on the right hand sides of the grammar rules and the start symbol,

then divide the sum by the total number of non-terminals, as follows:

(4+1+1+2+3+2+3)/ 7 ≈ 2.3. We will see this is incorrect.

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

24

There are a few reasons why the naïve approach gave an incorrect result. One is

that it considers the number of times a symbol appears in the grammar rather

than the number of times the symbol is expanded in deriving all sentences of the

language. The second problem is that the naïve calculation counts all non-

terminals in the grammar as decision points, which is not correct. For example, in

the starting rule, while <p> denotes a decision point with 4 possible next

terminals, the first <q> and the alternative <r> do not denote decision points as

there are no more terminals to consider after the decision at <p> has been made.

Now, we consider another approach which is not practical, but gives us some

insights. In this impractical approach, we compute the ABF from the tree that

represents all derivations from the grammar (Figure 2.6.1). Note that we continue

to use superscripts to denote the size of the director sets, i.e., branching factor.

We also introduce subscripts to denote the number of utterances which contain

that node. The derivation tree for the example grammar is shown in Figure 2.6.3.

24
*<p>4

18<q>1 6<r>3

x

18
*<r>3

6
*<q>1

b a c
6

*<q>1 6
*<q>1

x

6
*<r>3

b a c

x

6
*<r>3

b a c

x

6
*<r>3

b a c

2
*2

0 1

2
*2

0 1

2
*2

0 1

2
*2

0 1

2
*2

0 1

2
*2

0 1

2
*2

0 1

2
*2

0 1

2
*2

0 1

b a c

2
*2

0 1

2
*2

0 1

2
*2

0 1

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

25

Figure 2.6.3: derivation tree for the example grammar in Figure 2.6.1

The algorithm for calculating the ABF from the derivation tree is as follows:

Step 1: Expand the grammar to obtain the complete derivation tree. The start

symbol is the root node in the tree. The set of alternatives of each symbol

becomes a set of branches below that symbol. A sequence of symbols becomes

a path in the tree.

Step 2: Add superscripts for branching factors for each node in the tree by

examining the director sets. For example, the director set for node is {0,

1}, so node has a branching factor of 2.

Step 3: Add left-hand subscripts to denote the number of sentences which

contain that node i.e. the size of the sub-language below the node. The left-hand

subscripts are obtained in a bottom-up manner, starting from the bottom of the

tree and working up.

Step 4: Identify decision nodes and mark them with *. For example, at the node

, we need to make choice of terminal 0 or 1, so node is a decision point.

Note that the root <p> is a decision point, but the nodes <q> and <r> just below

<p> are not decision points. The reason is that when we have made the decision

at point <p>, selecting a terminal from {x, a, b, c}, the decision has already

been made for <q> and <r>.

Step 5: Tabulate the values for decision points (Table 2.6(2)) with: branching

factor, number of times occurring in the whole language, and the total number of

branches involving the nodes. The total number of branches for a node is the

product of the branching factor and the number of occurrences of the node in the

language.

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

26

Table 2.6 (2): values for decision points in the derivation tree approach

Decision point Branching

factor

Number of

occurrences

Total number of

branches

<p> 4 24 96

<r> 3 18 54

 2 2 4

 2 2 4

 2 2 4

<q> 1 6 6

<q> 1 6 6

<q> 1 6 6

<r> 3 6 18

<r> 3 6 18

<r> 3 6 18

 2 2 4

 2 2 4

 2 2 4

 2 2 4

 2 2 4

 2 2 4

 2 2 4

 2 2 4

 2 2 4

Total 102 270

Step 6: Calculate the ABF as dividing the total number of branches of all decision

points by the sum of the total number of occurrences of those decision points.

The result for the above example is:

 ABF = 270/102 = 2.65.

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

27

This method of calculating the ABF is straightforward, but is not practical for non-

trivial grammars as it has exponential complexity with respect to the length of the

utterances. However, it provides insight and justification for the new efficient

algorithm given next.

2.7 The New ABF Algorithm

We note that the derivation-tree method involves “sweeps” through the tree from

bottom to top and then top to bottom in which nodes are annotated with values

representing properties used in calculating the ABF. We also note that the

symbols from the grammar are repeated in the derivation tree and that we must

find some way of combining the annotated values when labeling the grammar.

Consideration of these factors leads to the following algorithm for computing the

ABF directly from a grammar. We use the grammar from Figure 2.6.1 as example.

Step 1: Label each symbol of the grammar with right-hand superscripts denoting

branching factors.

1) Each empty alternative has a branching factor of 0.

2) All terminals have a branching factor of 1.

3) A Left-Hand-Side (LHS) symbol of a rule has a branching factor obtained by

summing the branching factors of the alternatives on the Right-Hand Side

(RHS) of the rule.

4) The branching factor for a RHS non-terminal is the same as it appears on the

LHS of its defining rule. For example:

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

28

 <p>4 = <q>1 <q>1 2
 | <r>3 2 ;

 2 = 01
 | 11 ;

 <r>3 = a1
 | b1
 | c1 ;

 <q>1 = x1 <r>3;

Figure 2.7.1: annotated example grammar with branching factors

Step 2: Label each symbol with a right-hand subscript denoting the size of the

sub-language (subsize) obtained by expanding that symbol. The subsize of the

start symbol gives the size of language defined by the grammar (Shi, 2003b).

1) Each empty alternative has a subsize of 0.

2) Each terminal has a subsize of 1.

3) The subsize of a LHS symbol is the sum of the subsizes of all its alternative

sequences on the right hand side of the rule.

4) The subsize of a symbol in a sequence is the product of the subsizes of each

symbol in the sequence.

5) The subsize of a RHS non-terminal is the same as it appears on the LHS of

its definition rule. For example:

<p>424 = <q>13 <q>13 22
 | <r>33 22 ;

22 = 011
 | 111 ;

<r>33 = a11
 | b11
 | c11 ;

<q>13 = x11 <r>33 ;

Figure 2.7.2: annotated grammar with subsizes

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

29

Step 3: Label each symbol on the right hand side of each rule with a left-hand

subscript which denotes the number of occurrences of that symbol in all

derivations of expressions that are obtained by one expansion of the rule.

1) The number of occurrences of an empty alternative is 0.

2) All of the symbols of a sequence have the same number of occurrences,

which is the product of the subsizes of each symbol in the sequence. Note

that, if a sequence has only one symbol, the number of occurrences for this

sequence is the subsize of that symbol. For example:

<p>424 = 18<q>13 18<q>13 1822 ;
 | 6<r>33 622 ;

22 = 1011
 | 1111 ;

<r>33 = 1a11
 | 1b11
 | 1c11 ;

<q>13 = 3x11 3<r>33 ;

Figure 2.7.3: annotated grammar with the number of occurrences

Step 4: Starting with the start symbol of the grammar, label all symbols on the left

hand side of the rules with a left-hand subscript in brackets denoting the total

number of times the symbol occurs in derivations of all expressions in the

language. Concurrently, label all symbols on the right hand side of rules with a

left-hand subscript in brackets, and preceded with “*”, which denotes a

“multiplication factor”.

1) The “multiplication factor” indicates the number of times the rule is used in

different parts of the whole derivation tree. This multiplication factor is

obtained by dividing the number of occurrences (left-lower subscript) of the

symbol on the left hand side of the rule by its sub-language size of that

symbol (lower right-hand subscript).

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

30

2) To obtain the value of the LHS bracketed subscripts for symbols on the left

hand side of rules, we add together the values of left-hand subscripts of all

instances of that symbol occurring on the RHS of all rules, each multiplied by

the multiplication factor given in the associated bracketed subscript. For

example:

(24) <p>424 = 18(*1) <q>13 18(*1)<q>13 18(*1)22
 | 6(*1) <r>33 6(*1) 22 ;

(24) 22 = 1(*12) 011
 | 1(*12)111 ;

(42) <r>33 = 1(*14) a11
 | 1(*14)b11
 | 1(*14)c11 ;

(36) <q>13 = 3(*12) x11 3(*12)<r>33 ;

 Figure 2.7.4: annotated grammar with bracketed left-hand subscripts

Step 5: Label the start symbol of the grammar, and all symbols on the RHS of all

rules, except the leftmost alternative symbols, with an “*” superscript to indicate

that they are decision points. Note that if an alternative consists of a single

symbol, that symbol is not a decision point. For example:

(24)
 *<p>424 = 18(*1)<q>13 18(*1) *<q>13 18(*1) *22

 | 6(*1) <r>33 6(*1) *22 ;

(24) 22 = 1(*12)011
 | 1(*12)111 ;

(42) <r>33 = 1(*14)a11
 | 1(*14)b11
 | 1(*14)c11 ;

(36) <q>13 = 3(*12)x11 3(*12) *<r>33 ;

Figure 2.7.5: example grammar with decision-points

Step 6: Tabulate values for the decision points. The branching factors are the

right-hand superscripts. The total number of times the decision point occurs is the

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

31

left-hand subscript multiplied by the multiplication factor given in brackets. The

total number of branches for a decision point is the product of the branching

factor and the number of the node’s occurrences in the language. From Figure

2.7.5, we obtain Table 2.7.6.

Table 2.7.6: information from the annotated grammar

Decision Point Branching Factor Number of
Occurrences

Total number of
Branches

<p> 4 24 96
<q> 1 18 18
 2 18 36
 2 6 12
<r> 3 36 108
Total 102 270

Step 7: Calculate the ABF by summing the total number of branches and dividing

by the total number of the occurrences in the language of decision points. From

Table 2.7.6, the ABF is calculated as follows:

 ABF = 270 / 102 = 2.65

2.8 More Examples

We include three more example grammars in this section. These example

grammars are CFGs written in the Java Speech Grammar Format (JSGF). They

are representatives because they cover the basic features of CFGs, such as

rules, alternatives, symbol sequences, terminals, and non-terminals. Also, they

are simple so that we can hand-trace them for the ABFs and present calculation

details. We show each step for the ABF calculation below. We will further test

these example grammars with the ABF implementation in sub-section 2.9

(grammars 1 – 3).

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

32

2.8.1 Example 1

<p> = <q>
| ;

<q> = a <s> b
 | x <s> y ;

 = 0 | 1;

 <s> = 2 | 3 ;

 Figure 2.8.1: example grammar 1

(1) calculate the Branching Factor (right-hand superscript):

 <p>4 = <q>2 2
 | 2 ;

 <q>2 = a1 <s>2 b1
 | x1 <s>2 y1 ;

 2 = 01 | 11 ;

 <s>2 = 21 | 31 ;

 Figure 2.8.1: example grammar 1 (Step 1)

(2) calculate the subsize (right-hand subscript):

<p>410 = <q>24 22
 | 22;

<q>24 = a11 <s>22 b11
 | x11 <s>22 y11 ;

22 = 011 | 111 ;

<s>22 = 211 | 311;

 Figure 2.8.1: example grammar 1 (Step 2)

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

33

(3) calculate the number of occurrences for RHS symbols (left-hand

subscript):

<p>410 = 8<q>24 822
 | 222;

<q>24 = 2a11 2<s>22 2b11
 |2x11 2<s>22 2y11 ;

22 = 1011 | 1111 ;

<s>22 = 1211 | 1311;

 Figure 2.8.1: example grammar 1(Step 3)

(4) calculate the number of occurrences for LHS symbols (left-hand subscript

in brackets) and multiplication factors for RHS symbols (left-hand

subscript preceded with an “ * ”):

(10)<p>410 = 8(*1)<q>24 8(*1) 22
 | 2(*1)22;

 (8)<q>24 = 2(*2)a11 2(*2) <s>22 2(*2)b11
 |2(*2)x11 2(*2) <s>22 2(*2)y11 ;

(14)22 = 1(*7)011 | 1(*7)111 ;

(8)<s>22 = 1(*4)211 | 1(*4)311;

 Figure 2.8.1: example grammar 1(Step 4)

(5) label the decision points (left-hand “ * ” superscript):

(10)
 * <p>410 = 8(*1)<q>24 8(*1) *22

 | 2(*1)22;

 (8)<q>24 = 2(*2)a11 2(*2) *<s>22 2(*2)*b11
 |2(*2)x11 2(*2) *<s>22 2(*2)*y11 ;

(14)22 = 1(*7)011 | 1(*7)111 ;

(8)<s>22 = 1(*4)211 | 1(*4)311;

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

34

 Figure 2.8.1: example grammar 1(Step 5)

(6) tabulate values for the decision points:

Table 2.8.1: information from Example grammar 1

Decision Point Branching
Factor

Number of
Occurrences

Total number of
Branches

<p> 4 10 40
 2 8 16
<s> 2 4 8
B 1 4 4
<s> 2 4 8
Y 1 4 4
Total 34 80

(7) Step 7, calculate the ABF:

 ABF = 80/ 34 = 2.35

2.8.2 Example 2

<p> = <q> <s> <q>
| ;

<s> =
| c;

<q> = a
| b ;

 = 0
 | 1;

 Figure 2.8.2: example grammar 2

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

35

1) calculate the Branching Factor (right-hand superscript):

<p>4 = <q>2 <s>3 <q>2
 | 2;

<s>3 = 2
 | c1;

<q>2 = a1 2
 | b1 2;

2 = 01
 | 11;

 Figure 2.8.2: example grammar 2 (Step 1)

2) calculate the subsize (right-hand subscript):

<p>450 = <q>24 <s>33 <q>24
 | 22;

<s>33 = 22
 | c11;

<q>24 = a11 22
 | b11 22;

22 = 011
 |111;

 Figure 2.8.2: example grammar 2 (Step 2)

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

36

3) calculate the number of occurrences for RHS symbols (left-hand

subscript):

<p>450 = 48<q>24 48<s>33 48<q>24
 | 222;

<s>33 = 222

 | 1c11;

<q>24 = 2a11 222
 | 2b11 222;

22 = 1011
 | 1111;

 Figure 2.8.2: example grammar 2 (Step 3)

4) calculate the number of occurrences for LHS symbols (left-hand subscript

in brackets) and multiplication factors for RHS symbols (left-hand

subscripts preceded with an “ * ”):

(50)
 <p>450 = 48(*1) <q>24 48(*1) <s>33 48(*1) <q>24

 | 2(*1) 22;

(48)
 <s>33 = 2(*16) 22

 | 1(*16) c11;

(96)
 <q>24 = 2(*24) a11 2(*24) b>22

 | 2(*24)b11 2(*24) 22;

(130)22 = 1(*65)011
 | 1(*65)111;

 Figure 2.8.2: example grammar 2 (Step 4）

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

37

5) label the decision points (left-hand “ * ” superscript):

(50)
 *<p>450 = 48(*1) <q>24 48(*1) *<s>33 48(*1) *<q>24

 | 2(*1) 22;

(48)
 <s>33 = 2(*16) 22

 | 1(*16) c11;

(96)
 <q>24 = 2(*24) a11 2(*24) *22

 | 2(*24)b11 2(*24) *22;

(130)22 = 1(*65)011
 | 1(*65)111;

 Figure 2.8.2: example grammar 2 (Step 5)

6) tabulate values for the decision points:

Table 2.8.2: information from Example grammar 2

Decision
Point

Branching
Factor

Number of
Occurrences

Total number of
Branches

<p> 4 50 200
<s> 3 48 144
<q> 2 48 96
 2 48 96
 2 48 96
Total 242 632

7) calculate the ABF:

ABF = 632 / 242 = 2.61

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

38

2.8.3 Example 3

<bs> = <b1> ;

<b1> = empty
 | <b2>;

<b2> = empty
 | ;

 = 0
 | 1 ;

 Figure 2.8.3: example grammar 3

1) calculate the Branching Factor (right-hand superscript):

<bs>2 = 2 <b1>2 ;

<b1>2 = empty0
 | 2 <b2>2;

<b2>2 = empty0
 | 2 ;

2 = 01
 | 11 ;

 Figure 2.8.3: example grammar 3 (Step 1)

2) calculate the subsize (right-hand subscript):

<bs>22 = 22 <b1>22 ;

<b1>24 = empty00

 | 22 <b2>22;

<b2>22 = empty00
 | 22 ;

22 = 011
 | 111 ;

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

39

 Figure 2.8.3: example grammar 3 (Step 2)

3) calculate the number of occurrences for RHS symbols (left-hand

subscript):

<bs>22 = 422 4<b1>22 ;

<b1>24 = 0empty00
 | 422 4<b2>22;

<b2>22 = 0empty00
 | 222 ;

22 = 1011 | 1111 ;

 Figure 2.8.3: example grammar 3 (Step 3)

4) calculate the number of occurrences for LHS symbols (left-hand subscript

in brackets) and multiplication factors for RHS symbols (left-hand

subscript preceded with an “ * ”):

(4)<bs>22 = 4(*1)22 4(*1)<b1>22 ;

(4)<b1>24 = 0empty00
 | 4(*1)22 4(*1) <b2>22;

 (4)<b2>22 = 0empty00
 | 2(*2)22 ;

(12)22 = 1(*6)011 | 1(*6)111 ;

 Figure 2.8.3: example grammar 3 (Step 4)

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

40

5) label the decision points (left-hand “ * ”superscript):

(4)
 *<bs>22 = 4(*1)22 4(*1) *<b1>22 ;

(4)<b1>24 = 0empty00
 | 4(*1)22 4(*1) *<b2>22;

(4)<b2>22 = 0empty00
 | 2(*2)22 ;

(12)22 = 1(*6)011 | 1(*6)111;

 Figure 2.8.3: example grammar 3 (Step 5)

6) tabulate values for the decision points:

 Table 2.8.3: information from Example grammar 3

Decision
Point

Branching
Factor

Number of
Occurrences

Total number of
Branches

<bs> 2 4 8
<b1> 2 4 8
<b2> 2 4 8
Total 12 24

7) calculate the ABF:

 ABF = 24/ 12 = 2

2.9 Implementation of the ABF Algorithm

The implementation of the ABF algorithm includes three phases: 1)

preprocessing, 2) algorithm application, and 3) post-processing. In the

preprocessing phase, the program reads in the grammar file, tokenizes the

grammar symbols, and generates the required lists for the next phase. The lists

generated in phase one include grammar, isTerminal, isRHS,

isAlternative, ruleNo, sequence, and isDecPoint. Details about

the lists are in sub-section 3.2.

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

41

With the preliminary information obtained from the preprocessing, the second

phase of the algorithm is able to further obtain the required information for

calculating the ABF, such as the branching factors and subsizes for each symbol

of the grammar, the number of occurrences for the RHS and LHS symbols, and

the multiplication factors for the RHS symbols of the grammar. Phase two

implements the first four steps of the algorithm ABF.

With the information obtained from phase one and phase two, phase three

calculates and outputs the ABF by summing the total number of branches for

decision points and dividing by the total number of occurrences for decision

points in the language, which are the last three steps of the algorithm ABF.

Meanwhile, the program outputs the ABF and other related grammar metrics,

such as the number of rules of the grammar, the number of symbols in the

grammar, the number of terminals of the grammar, the number of non-terminals

of the grammar, the number of decision points of the grammar, and the size of

the language defined by the grammar.

We test the ABF algorithm with three groups of nine grammars. The grammars

are as follows:

(1) Group one is a set of simple CFG grammars (Grammar 0-3) for testing.

Grammar 0, 1, 2, and 3 are the example grammars in Figure 2.6.1, Figure

2.8.1, Figure 2.8.2, and Figure 2.8.3, respectively. These grammars are

fed to the ABF algorithm application and are hand-traced to calculate the

ABFs in order to informally illustrate how the algorithm computes the

correct answers. Note that this does not prove correctness of the

algorithm nor does it show the absence of errors in the implementation of

the algorithm.

(2) Group two includes a set of small practical grammars, i.e., the Read-A-

Book grammar (Grammar 4, shown in Appendix C) for the speech

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

42

application Read-A-Book and its variants (Grammar 5, shown in

Appendix D). These two grammars share the same vocabulary.

(3) Group three includes two more-complicated practical grammars and one

word-sequence grammar all with the same domain. Grammar 6 is a

Semantic Constraint Grammar (SCG) (in Figure 4.3.2) and Grammar 7 is

a Context Free Grammar (CFG) (in Figure 4.3.1). Grammar 8 (in

Appendix E) is a word sequence grammar, which accepts word

sequences from one word to ten words from the vocabulary. The SCG is

the most restricted grammar which directly encodes semantic constraints

in the syntax. The word sequence grammar is the most relaxed grammar.

The results of applying the ABF application on the above grammars are

shown in Table 2.9.

Note that “# of terminal” in the following and all other tables in the dissertation

means “number of instances of a terminal symbol in the grammar” and is a

measure of the size of the grammar and not the vocabulary of the language.

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of Speech-Recognition Grammars

43

Table 2.9: results of applying the ABF algorithm

No. Grammar # of
Rules

of
Symbols

of
Non-

Terminals

of
Terminals

of Decision

Points

Language

Size
ABF

0 Simple Grammar-Figure

2.2.1

4 16 10 6 5 24 2.65

1 Simple Grammar-Figure

2.8.1

4 17 9 8 6 10 2.35

2 Simple Grammar-Figure

2.8.2

4 16 11 5 5 50 2.61

3 Simple grammar-Figure

2.8.3

4 13 9 4 3 4 2

4 Read a Book-Appendix C 16 338 37 301 13 5.38*108 44.51

5 Word sequence-Appendix D 2 245 7 238 5 7.6 *1011 238

6 SCG - Figure 4.3.2 41 262 133 129 53 1.51*109 33.99

7 CFG - Figure 4.3.1 17 160 50 110 19 1.73*1011 52.42

8 Word sequence-Appendix E 12 184 77 107 46 9.14*1019 188.99

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

44

The results are summarized as follows:

1. The results from Group one (Grammars 0 – 3) shows that the ABF

implementation program obtains the same results as those from hand-

tracing.

2. As expected, with the same domain, the more restricted grammar

(Grammar 6, SCG) defines a language with a smaller ABF. The most

relaxed grammars (word sequence, e.g., Grammar 5 and Grammar 8)

have the largest ABF with the same vocabulary.

In reality, it is costly and time-consuming to design an experiment and arrange

subjects to test the performance of a grammar in a speech application. Therefore,

before undertaking an experiment with test cases and subjects, we can primarily

evaluate the grammar with the ABF metric and other metrics generated by the

ABF application. With the same domain, the grammar with a smaller ABF is more

likely to be useful as it is likely to have better recognition accuracy.

2.10 Summary

We have presented, what would appear to be, the first algorithm to compute the

Average Branching Factor (ABF) of a language from the grammar that defines

that language. The motivation for this work was to provide a method for more-

easily calculating properties which are useful when designing speech-recognition

grammars.

We began by discussing the need for grammar metrics, then reviewed and

analyzed existing grammar metrics. We also referred to research by others who

claim that the Average Branching Factor (ABF) is a good indicator of speech-

recognition accuracy.

We then described our new algorithm for calculating the ABF. We began by

describing a naïve but incorrect algorithm and analyzed the reason why it was

incorrect. Then, we illustrated an intuitive method by using a derivation tree to

2. An Algorithm for Computing the Average Branching Factor (Perplexity) of
Speech-Recognition Grammars

45

obtain the Average Branching Factor (ABF). This method gives the correct result,

but it is impractical for the exponential complexity with respect to the length of the

sentences. Next, we introduced the seven-step ABF algorithm and the

implementation for this algorithm. The proofs of termination, correctness, and

complexity of the algorithm are presented in section 3.

It has been claimed by other researchers that the ABF is a good indicator for

speech-recognition accuracy. We believe that the novel algorithm for computing

the ABF may be useful for effective and high-quality grammar design and

analysis.

3. Proofs of the ABF Algorithm

46

3. PROOFS OF THE ABF ALGORITHM

To facilitate the proofs of termination, correctness, and complexity, we have

coded the ABF algorithm in Miranda, a declarative non-strict purely functional

programming language. A brief introduction to Miranda derived from (Turner,

1986) is given in sub-section 3.1. The Miranda source code is given in sub-

section 3.2.

3.1 Introduction to Miranda

Miranda is a non-strict purely functional programming language. A Miranda

program is a collection of equations defining various functions and data

structures. The order of the equations is not significant. For example,

sq x = x*x

 is a function to calculate the square of the parameter x.

An equation can have several alternative right hand sides distinguished by

“guards” on the right following a comma. For example, the function to return the

bigger of two numbers can be written as follows:

 max a b = a, if a >= b
 = b, if a < b

The last guard can be written as otherwise, instead of using the if condition.

Miranda’s evaluation mechanism is “lazy”, in the sense that no sub-expression is

evaluated until its value is required.

The most commonly used data structure in Miranda is the list, written with

square brackets and commas. For example,

week_days = ["Mon", "Tue", "Wed", "Thur", "Fri"]

3. Proofs of the ABF Algorithm

47

The elements of a list must be all of the same type. A sequence of elements of

mixed types can be represented as a tuple, written using parentheses instead

of square brackets, e.g.

student = (“tom”, “computer science”, 93)

Miranda is strongly typed. This means that, any inconsistency in the type

structure of an expression or a sub-expression will result in a compile-time error

message. There are three primitive types in Miranda, namely num, bool, and

char. The type num consists of integer and floating point numbers.

The type bool has two values, True and False. The type char comprises the

ASCII character set.

List comprehensions give a concise syntax for a general class of iterations

over lists. The general form of a list comprehension is as follows:

 [body | qualifiers]

Note that two or more qualifiers are separated by semicolons.

An example list comprehension is as follows:

 [n*n | n <- [1..100]]

which is a list containing (in order) the squares of all the numbers from 1 to 100.

The following are some operators that are used in Miranda programming:

(1) ++ appends two lists. E.g.,

 [1,2] ++ [3,4] = [1,2,3,4]

(2) : prefixes an element to the front of a list. E.g.,

 1:[2,3,4] = [1,2,3,4]

3. Proofs of the ABF Algorithm

48

(3) # gets the length of a list. E.g.,

 #[1,2,3,4] = 4

(4) ! does subscripting. Index starts from 0. E.g.,

 [1,2,3,4] !1 = 2

(5) .. ,a shorthand notation for lists whose elements form an arithmetic series.

 E.g. [1 .. 100] is the list of 100 elements from 1 to 100.

(6) + - * / , plus, minus, times, division.

(7) > >= = ~= <= < , comparison operators.

(8) & , logical and .

(9) \/ , logical or .

(10) ~ , logical negation.

(11) || , denotes comments.

3.2 Miranda Code for the ABF Algorithm

We have implemented the ABF algorithm using several Miranda functions. The

intermediate results are represented in lists. For example, the branching factors

for each symbol of the grammar are obtained in step one of the ABF algorithm

(section 2.7). In the algorithm implementation, a list of branching factors for the

symbols of the grammar is generated by the component function bf. This list of

branching factors is used for later calculation of the Average Branching Factor

(ABF).

 The lists needed for the ABF algorithm implementation are as follow:

3. Proofs of the ABF Algorithm

49

(1) List grammar. The input grammar is expressed as a list of tuples

 [(x, k)], where x is a symbol of the grammar, k is the index of the symbol

in the grammar list starting from 0, 0≤k≤(#grammar-1). For the example

grammar in Figure 2.6.1, the grammar list is as follows:

grammar = [("<p>", 0),("<q>",1),("<q>",2),("",3),

("<r>", 4),("", 5),("", 6),("0", 7),

("1", 8),("<r>", 9),("a", 10),("b", 11),

("c", 12),("<q>", 13),("x", 14),("<r>", 15)]

(2) isTerminal is a list of Boolean values with the same length as list

grammar. Its value reflects whether the corresponding symbol in the

grammar is a terminal or a non-terminal. If the symbol in the grammar is a

terminal, the corresponding value in list isTerminal is True; otherwise,

it is False. For the example grammar in Figure 2.6.1, the list

isTerminal is as follows:

isTerminal = [False,False,False,False,False,False,

False,True,True,False,True,True,True,

False,True,False]

(3) isRHS is a list of Boolean values with the same length as list grammar. Its

value reflects whether the corresponding symbol in the grammar is a

Right-Hand-Side symbol or not. If the symbol in the grammar is on the

right hand side of the rule, the corresponding value in isRHS is True;

otherwise, it is False. For the example grammar in Figure 2.6.1, the list

isRHS is as follows:

isRHS = [False,True,True,True,True,True,False,True,

True,False,True,True,True,False,True,True]

3. Proofs of the ABF Algorithm

50

(4) isAlternative is a list of Boolean values with the same length as list

grammar. Its value reflects whether the corresponding symbol in the

grammar is a left-most alternative in the rule. If the symbol in the grammar

is the left-most alternative, the corresponding value of isAlternative is

True; otherwise, it is False. For the example grammar in Figure 2.6.1,

the list isAlternative is as follows:

isAlternative = [False,True,False,False,True,False,

False,True,True,False,True,True,True,

False,True,False]

(5) ruleNo is a list of numbers with the same length as list grammar. It

records the rule number of the corresponding symbol in the grammar.

Rule numbers start from 1. For the example grammar in Figure 2.6.1, the

list ruleNo is as follows:

ruleNo = [1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4]

(6) List sequence denotes sequence-related information of the symbols in

the grammar. Each symbol of the grammar is associated with a number

denoting its sequence-related information. A left-hand-side non-terminal is

associated with the number showing the number of sequences on the

right hand side of the rule. A right-hand-side symbol is associated with the

number showing on which sequence it is. The list sequence for the

example grammar in Figure 2.6.1 is as follows:

sequence = [2,1,1,1,2,2,2,1,2,3,1,2,3,1,1,1]

(7) isDecPoint is a list of Boolean values with the same length as list

grammar. Its value reflects whether the corresponding symbol in the

grammar is a decision point or not. If the symbol in the grammar is a

decision point, the corresponding value of isDecPoint is True;

3. Proofs of the ABF Algorithm

51

otherwise, it is False. For the example grammar in Figure 2.6.1, the list

isDecPoint is as follows:

isDecPoint = [True,False,True,True,False,True,False,

False,False,False,False,False,False,

False,False,True]

These lists can be obtained in a pre-process (phase one), which reads in the

grammar file, tokenizes the grammar, analyzes each symbol, and composes the

above lists according to their definitions. Then the second and third phases

implement the ABF algorithm. The Miranda code for the ABF algorithm is given

below in Figure 3.2:

3. Proofs of the ABF Algorithm

52

|| ---
||-- Step 1: calculate the Branching Factor
||-- INPUT: a list of the symbols of the grammar,
||-- grammar[([char], num)].
||-- OUTPUT: a list of branching factor for each symbol of
||-- the grammar, bfList[num].
||-- Type of the program is:
||-- bf :: => [([char], num)] -> [num]
|| ---

1. bf [] = [0]
 || an empty alternative has a branching factor of 0

2. bf [(x,k)] = [1], if (isTerminal !k) & (isRHS !k)
 || RHS terminals have a branching factor of 1

3. bf [(x,k)] = bf [(y, j) | (y,j) <- grammar;
 y = x;
 ~(isTerminal ! j);
 ~(isRHS ! j)],
 if (isRHS ! k) & ~(isTerminal ! k)
 || a RHS non-terminal has the same branching factor
 || as it appears on the LHS of its definition rule.

4. bf [(x,k)] = [sumList (bf [(z, h)
 |(z, h) <- grammar;
 (isRHS ! h);
 (ruleNo ! h) = (ruleNo ! k);
 (isAlternative ! h)])],
 if ~(isRHS ! k) & ~(isTerminal ! k)

|| A LHS non-terminal obtains its branching factor by
||summing the branching factors of the left-most
||alternatives on the Right-Hand Side of the rule.

5. bf ((a,b): as) = bf ([(a,b)]) ++ bf as
 || calculate the branching factors for each symbol of
 || the list

6. sumList = foldr (+) 0
 || calculate the sum of a list

7. bfList = bf grammar
 || calculate the branching factors for all the symbols
 || of the grammar

3. Proofs of the ABF Algorithm

53

|| ---
||-- Step 2: calculate the Subsize
||-- INPUT: a list of the symbols of the grammar,
||-- grammar[([char], num)].
||-- OUTPUT: a list of subsize for each symbol of the
||-- grammar, subsizeList[num].
||-- Type of the program is:
||-- subsize :: => [([char], num)] -> [num]
|| ---

8. subsize [] = [0]
 || an empty alternative has a subsize of 0

9. subsize [(x,k)] = [1], if (isTerminal !k) & (isRHS !k)
 || RHS terminals have a subsize of 1

10. subsize [(x,k)] = subsize [(y, j) | (y,j) <- grammar;
 y = x;
 ~(isTerminal ! j);
 ~(isRHS ! j)],
 if (isRHS ! k) & ~(isTerminal ! k)
 || the subsize of a RHS non-terminal is the same as it

||appears on the LHS of its definition rule.

11. subsize [(x,k)] = [sumList [(productList (subsize [(z,h)
| (z,h) <- grammar;

 (isRHS !h);
 (ruleNo !h)=ruleNo !k;
 (sequence !h = s)]))
 | s <- [1 .. (sequence !k)]]],
 if ~(isRHS ! k) & ~(isTerminal ! k)
 || The subsize of a LHS symbol is the sum of the
 || subsizes of all its alternative sequences on the
 || right hand side of the rule.

12. subsize ((a,b): as) = subsize ([(a,b)]) ++ subsize as
 || calculate the subsizes for each symbol of the list

13. productList = foldr (*) 1
 || calculate the product of a list

14. subsizeList = subsize grammar
 || calculate the subsizes for all the symbols
 || of the grammar

3. Proofs of the ABF Algorithm

54

|| ---
||-- Step 3: calculate the number of occurrences for each
||-- symbol on RHS of the rules
||-- INPUT: a list of the symbols of the grammar,
||-- grammar[([char], num)].
||-- OUTPUT: a list of the number of occurrences for each
|| symbol of the grammar, occur_rhsList[num].
||-- Type of the program is:
|| occur_rhs :: => [([char], num)] -> [num]
|| ---

15. occur_rhs [] = [0]
 || The number of occurrences of an empty alternative
 || is 0.

16. occur_rhs [(x,k)] = [productList [subsizeList !h
 | h <- [0 .. (#subsizeList -1)];
 (isRHS !h) ;
 sequence !h = sequence !k;
 ruleNo !h = ruleNo !k]],
 if (isRHS !k)
 = [0], otherwise

 || All of the symbols of a RHS sequence have the same
 || number of occurrences, which is the product of
 || the subsizes of each symbol in the sequence.

17. occur_rhs ((a,b): as)
 = occur_rhs ([(a,b)]) ++ occur_rhs as
 || calculate the number of occurrences for each
 || symbol on RHS of the rules

18. occur_rhsList = occur_rhs grammar
 || calculate the number of occurrences for each
 || symbol on RHS of the rules of the grammar

3. Proofs of the ABF Algorithm

55

|| ---
||-- step 4: calculate the number of occurrences for each
||-- symbol on the LHS of the rules,
||-- and calculate the multiplication factor for the
||-- symbols on the RHS of the rules.
||-- INPUT: a list of the symbols of the grammar,
||-- grammar[([char], num)].
||-- OUTPUT: a list of number of occurrences for each symbol
||-- of the grammar, occur_lhsList[num],
||-- and a list of multiplication factor for each
||-- symbol of the grammar, factorList[num].
||-- Type of the program is:
||-- occur_lhs :: => [([char], num)] -> [num]
||-- factor :: => [([char], num)] -> [num]
|| ---

19. occur_lhs [] = [0]
 || For an empty list, this value is 0

20. occur_lhs [(x,k)]
 = [subsizeList !k],
 if ~(isRHS !k) & ~(isTerminal !k) & ruleNo !k = 1
 || the number of occurrences for start symbol is
 || its subsize

21. occur_lhs [(x,k)] = [sumList [(occur_rhsList !h) *
 ((factor [(y, h)]) !0)
 | (y,h) <- grammar;
 y = x;
 isRHS !h]],
 if ~(isRHS !k) & ~(isTerminal !k)
 & ruleNo !k > 1
 || the number of occurrences for a LHS symbol is
 || obtained by adding together the number of
 || occurrences of that symbol occurring on the RHS of
 || all rules, each multiplied by the multiplication
 || factor.

22. occur_lhs [(x,k)] = [0], if (isRHS !k)
 || for a RHS symbol, this value is 0

23. occur_lhs ((a,b): as) = occur_lhs ([(a,b)]) ++
 occur_lhs as
 || calculate the number of occurrences for each
 || symbol

3. Proofs of the ABF Algorithm

56

||--

24. factor [] = [0]
 || For an empty list, this value is 0

25. factor[(y,h)] =
 [(occur_lhs [(y,h)])!0 / (subsizeList !h)],
 if ~(isRHS !h) & ~(isTerminal !h)
 || the multiplication factor for a LHS symbol is
 || obtained by dividing the number of occurrences of
 || this symbol on the LHS of the rule by its subsize
 || of that symbol.

26. factor[(y,h)] = factor [(z,j) | (z,j) <- grammar;
 ruleNo !j = ruleNo !h;
 ~(isRHS ! j);
 ~(isTerminal !j)],
 if (isRHS !h)
 || The multiplication factor for a RHS symbol is the
 || same as that for the LHS non-terminal of the rule.

27. factor ((a,b): as) = factor ([(a,b)]) ++ factor as
 || calculate the multiplication factor for each
 || symbol

28. occur_lhsList = occur_lhs grammar
 || calculate the number of occurrences for each
 || symbol of the grammar

29. factorList = factor grammar
 || calculate the multiplication factor for each
 || symbol of the grammar

|| --
||-- STEP 5. recognize the decision points of the grammar
||-- Recognize the start symbol of the grammar, and all
||-- symbols on the RHS alternatives of all rules, except
||-- the leftmost symbols as decision points.
||-- this is done in pre-process.
||-- The example list is as follows:
||--
||-- isDecPoint = [True, False, True, True, False, True,
||-- False, False, False, False, False, False, False, False,
||-- False, True]
|| --

3. Proofs of the ABF Algorithm

57

|| --
||-- STEP 6. calculate the number of occurrences and the
||-- total number of branches
|| --

30. num_occurList = [(occur_rhsList !i) * (factorList ! i)
 +(occur_lhsList !i) * (factorList ! i)
 | i <- [0 .. (#grammar - 1)]]

 || calculate the total number of occurrences a symbol
 || occurs for all symbols of the grammar.

 || The total number of times a symbol occurs is the
 || number of occurrences for RHS/ LHS symbol multiplied
 || by the multiplication factor.

 || Note that, for a RHS symbol, occur_lhsList!i = 0,
 || for a LHS symbol, occur_rhsList!i = 0.
 || so the above formula can calculate the number of
 || occurrences for each symbol of the grammar.
 || this list has the same length as the list grammar.

31. num_occurList_Dec = [num_occurList ! i
 | i <- [0 .. (#grammar - 1)];
 (isDecPoint ! i)]
 || a list of the number of occurrences, for only
 || decision points.

32. total_branchList_Dec = [num_occurList!i * bfList!i
 | i <- [0 .. (#grammar - 1)];
 (isDecPoint ! i)]

 || The total number of branches for a decision point is
 || the product of the branching factor and the number
 || of the node’s occurrences in the language.

|| --
||-- STEP 7. calculate ABF
|| --

33. abf = (sumList total_branchList_Dec) /
 (sumList num_occurList_Dec)
 || calculate the ABF by summing the total number of
 || branches and dividing by the total number of
 || decision points’ occurrences in the language.

Figure 3.2: Miranda source code for the ABF algorithm

3. Proofs of the ABF Algorithm

58

3.3 Proof of Termination

In a pure functional programming language such as Miranda, the only form of

iteration is through recursion. Therefore, to prove termination it is only necessary

to prove that all recursive descents are well founded. The standard method for

doing this is called a “size-change” termination proof. The idea is to find a

measure of the recursive function argument size that decreases (or increases) on

each recursive call such that, after a finite number of recursive calls, it reaches a

terminating value (i.e., the base case of the definition of the recursive function).

The following proof of termination of the BNF algorithm is a collection of size-

change termination proofs for all recursive calls in the BNF algorithm.

(It should be noted that in a “lazy” functional programming language such as

Miranda, arguments to functions are not evaluated unless required, and are then

only evaluated to the extent required. For example [1..]!3 returns a value of 4,

even though the argument to ! is the infinite list [1..]. The last evaluation

process only evaluates the first four values of the list (note that the index starts at

0). This means that in a lazy language the number of terminating programs is

larger than the set of programs whose termination can be proven using size-

change proofs. Sereni (2006) has developed a termination proof technique for

programs whose termination depends on lazy evaluation. However, the BNF

algorithm does not rely on lazy evaluation and we show below that its termination

can be proven using size-change proof and does not need the more complex

proof technique developed by Sereni.)

The algorithm ABF consists of seven steps that are executed in sequence. So, if

each step of the algorithm (i.e., component function in the program, Figure 3.2)

terminates, the algorithm ABF terminates.

3. Proofs of the ABF Algorithm

59

(1) Step 1 (component function bf)

 There are three recursive calls in step 1, i.e., lines 3, 4, and 5. Line 7 runs the

program to obtain the list of branching factors (i.e., bfList) for all the symbols of

the grammar.

1) Lines 1, 2, 3, and 4 calculate the branching factor for one symbol of

the grammar. Lines 1 and 2 are base cases for the component

function bf, which return constant values and terminate.

2) Line 3 tests to see if the current symbol is a RHS non-terminal, the

component function bf will return the branching factor of the same

symbol appearing on the LHS of a grammar rule, which evokes line

4.

3) Line 4 calculates the branching factor for a LHS non-terminal by

summing all the branching factors for the RHS leftmost-alternatives

of the current rule. If there are some RHS non-terminals involving in

the sum, it will recursively call line 3.

4) Line 5 deals with the list (i.e., grammar) by processing elements

(symbols) one by one. In each round of recursion, one symbol is

manipulated, and the length of the list decreases by 1 until it

reaches 0. So, if the process for one element (symbol) terminates,

the component function bf (step 1) will terminate when all of the

symbols of the grammar have been processed.

Recursion occurs in lines 3, 4, and 5. Line 5 depends on the termination of lines

3 and 4. Lines 3 and 4 are mutually recursive calls. Since the grammar is non-

recursive (sub-section 2.5), each recursive call in line 4 will call for a different

symbol using an index which increases in a well-founded sequence (until it

reaches a point where there are no more symbols). Since there are a finite

number of symbols (terminals/ non-terminals) in the grammar, the algorithm will

finally finish the traversal of non-terminal symbols and reach terminal symbols

(line 2) and terminate. Therefore, step 1 will terminate.

3. Proofs of the ABF Algorithm

60

(2) Step 2 (component function subsizeList)

Step 2 includes three recursive calls, lines 10, 11, and 12. Line 14 runs the

program to obtain the list of subsizes (i.e., subsizeList) for all the symbols of

the grammar.

1) Lines 8, 9, 10, and 11 calculate the subsize for one symbol of the

grammar. Lines 8 and 9 are base cases for the component function

subsize, which return constant values and terminate.

2) Line 10 tests to see if the current symbol is a RHS non-terminal, the

component function subsize will return the subsize of the same

symbol appearing on the LHS of the grammar, which evokes line 11.

3) Line 11 calculates the subsize for a LHS non-terminal by summing

the subsizes for all the sequences of the current rule. If there are

some RHS non-terminals involving in the sum, it will recursively call

line 10.

4) Line 12 deals with the list (i.e., grammar) by processing elements

(symbols) one by one. In each round of recursion, one symbol is

manipulated, and the length of the list decreases by 1 until reaches

0. Therefore, if the process for one element (symbol) terminates,

component function subsize (step 2) will terminate when all the

symbols of the grammar have been processed.

Recursion occurs in lines 10, 11, and 12. Line 12 depends on the termination of

lines 10 and 11. Lines 10 and 11 are mutually recursive calls. Since the grammar

is non-recursive (section 2.5), each recursive call at line 11 will call a different

symbol with an index which increases in a well-founded sequence (until it

reaches a point where there are no more symbols). Since there are a finite

number of symbols (terminals/ non-terminals) in the grammar, the algorithm will

finally finish the traverse of non-terminal symbols and come to terminal symbols

(line 9) and terminate. Therefore, step 2 will terminate.

3. Proofs of the ABF Algorithm

61

(3) Step 3 (component function occur_rhs)

Recursion in step 3 occurs at line 17, which deals with the list grammar by

processing elements (symbols) one by one. In each round of the recursion, one

symbol is manipulated and the length of the list decreases by 1 until reaches 0.

Therefore, if the process for one element (symbols) terminates, component

function occur_rhs (step 3) will terminate when all the symbols of the grammar

have been processed.

Lines 15 and 16 calculate the number of occurrences for one symbol of the

grammar. Line 18 runs the program to obtain the list of the number of

occurrences of the RHS symbols for the symbols of the grammar

(occur_rhsList).

1) Line 15 is the base case of the component function occur_rhs,

which returns a constant value and terminates.

2) Line 16 searches the grammar list for the symbols in the same

sequence as the current RHS symbol and calculates the product of

the subsizes of the symbols in the same sequence. The lengths of

the grammar list and the sequences are finite. Therefore, the

search will terminate while finishing every symbol in grammar list

and line 16 will terminate. Note that line 16 skips the cases for LHS

symbols.

Therefore, the component function occur_rhs (step 3) will terminate.

(4) Step 4 (component functions occur_lhs and factor)

Step 4 includes two component functions, i.e., occur_lhs and factor.

Function occur_lhs calculates the number of occurrences for each symbol on

the left hand side of the rules. Function factor calculates the multiplication

factors for the symbols on the right hand side of rules. These two component

3. Proofs of the ABF Algorithm

62

functions may mutually recursive call each other. Recursion occurs at lines 21,

23, 25, 26, and 27. Lines 28 and 29 run the programs to obtain the list of the

number of occurrences of the LHS symbols (occur_lhsList) and the

multiplication factors for the symbols of the grammar (factorList). They will

terminate if the component functions terminate, which we now prove.

Lines 23 and 27 deal with the list grammar by processing elements (symbols)

one by one. In each round of recursion, one symbol is manipulated and the

length of the list decreases by 1 until reaches 0. So, if the process for one

element (symbol) terminates, the algorithm terminates.

Lines 19, 20, 21, and 22 calculate the number of occurrences for one symbol of

the grammar. Lines 24, 25¸ and 26 calculate the multiplication factor for one

symbol of the grammar.

1) Lines 19 and 20 are base cases for the component function

occur_lhsList, which return constant values and terminate.

Note that, line 20 returns the subsize of the LHS symbol, which is

already available in step 2.

2) Line 21 tests if the current symbol is a LHS non-terminal and not of

the first rule, the algorithm will search the grammar list for all

occurrences of this non-terminal appearing on the right hand side of

the grammar. Then, calculate the product of its number of RHS

symbol occurrences and the multiplication factor. The sum of the

product is returned as the number of the LHS symbol occurrences.

Note that in line 21, the numbers of RHS symbol occurrences are

already available in step 3. So if the operation of calculating the

multiplication factor terminates, the algorithm of calculating the

number of LHS symbol occurrences will terminate.

3) Lines 24, 25, 26, and 27 calculate the multiplication factors.

4) Line 24 is a base case for the component function factor, which

returns a constant value and terminates.

3. Proofs of the ABF Algorithm

63

5) Line 25 tests to see if the current symbol is a LHS non-terminal, its

multiplication factor is the number of its LHS symbol occurrences

divided by its subsize (already available in step 2). Note that, for the

first rule, the subsize and the number of the LHS symbol

occurrences are available and the same. So the multiplication factor

for LHS symbol of the first rule is available, i.e., 1. Meanwhile the

multiplication factors for the RHS symbols for the first rule are also

available by line 26, which are the same as that of the LHS symbol,

i.e., 1.

6) Recursion in function factor occurs in lines 25 and 26. Since the

grammar is non-recursive (section 2.5), each recursion will call for a

different symbol with an index which increases in a well-founded

sequence (until it reaches a point where there are no more

symbols). Since there are a finite number of symbols of the

grammar, the algorithm will finally come to the symbols in the first

rule and terminate (line 20).

Therefore, the component functions for computing the number of occurrences for

LHS symbols (occur_lhs), and the multiplication factors for RHS symbols

(factor) will terminate. Step 4 will terminate.

(5) Step 5

Step 5 goes through all the symbols of the grammar and labels the decision

points. There are a finite number of symbols in the grammar. Therefore, step 5

will terminate with the last symbol in the grammar.

(6) Step 6

Step 6 tabulates the values for the decision points. It will terminate with a finite

number of decision points.

3. Proofs of the ABF Algorithm

64

(7) Step 7

Step 7 performs a simple arithmetic calculation for the Average Branching Factor

with the above information and will terminate.

In summary, each step of the ABF algorithm will terminate. Therefore, the

algorithm of calculating the Average Branching Factor will terminate.

3.4 Proof of Correctness

We use Structural Induction to prove the correctness of each step of the ABF

algorithm. Information regarding the grammar is represented in lists (sub-section

3.2). The length of each list is the number of symbols in the grammar. With

reference to the Miranda code in section 3.2, we present the proofs for each step

as follows.

(1) Proof of correctness for step 1 (component function bf, lines 1 – 7):

Base Case: there is one rule in the grammar with one non-terminal on the Left

Hand Side and one terminal on the Right Hand Side of the rule, e.g.,

<g> = “a”

In this case, the list grammar is represented as follows:

grammar = [(“<g>”, 0), (”a”, 1)]

3. Proofs of the ABF Algorithm

65

Therefore:

bf grammar
 = bf[(“<g>”, 0)]++ bf [(“a”, 1)] (line 5)

 = [sumList(bf [(“a”, 1)])]++bf[(“a”, 1)](line 4)

 = [sumList [1]] ++ [1] (line 2)

 = [1] ++ [1] (line 6)

 = [1,1] (definition of “++”)

Therefore, for the base case, the algorithm correctly calculates the branching

factors for each symbol of the grammar.

Inductive step:

Hypothesis: for a grammar with n symbols, (i.e., #grammar = n), the algorithm

correctly calculates the branching factors for each symbol of the grammar, i.e.,

bfList, is obtained successfully,

bfList = bf grammar

Show:

1. Adding one more symbol, x, the algorithm correctly calculates the branching

factors for each symbol of the grammar, i.e., the new list of branching factors for

all symbols of the grammar will be obtained successfully,

bfList_new = bf (grammar ++ [(x, n)])

Note that, the index for a list starts from 0. For an n-item list, the index for the last

symbol is (n-1). Therefore, the index for the newly-added symbol x is n.

There are two cases in the inductive step:

Case 1: the newly-added symbol is a terminal, “x”, on the Right-Hand-Side of

3. Proofs of the ABF Algorithm

66

the rule. Since the index of the list starts with 0, the index of the newly-added

terminal, “x”, will be n.

There are two cases while adding a new terminal, “x”:

1) The newly-added terminal “x” is added to an existing symbol sequences

on the right hand side of the rule. Note that, this newly-added symbol will

not affect the branching factors of other existing symbols.

Therefore:

bfList_new
 = bf (grammar ++ [(“x”, n)])

 = bf grammar ++ bf [(“x”, n)]

 (line 5 & definition of “++” and “:”)

 = bfList ++ bf [(“x”, n)] (hypothesis)

 = bfList ++ [1] (line 2)

Since bfList is a list including the correct branching factors for the n symbols of

the grammar (by the hypothesis), list bfList++[1] includes correct branching

factors for the n symbols and the newly-added terminal “x”, whose branching

factor is 1.

2) The newly-added terminal “x” is a new alternative of the right hand side of

the rule.

In this case, the newly-added symbol will affect the branching factor of the LHS

symbol (e.g., lhs_symb) in the current rule. The branching factors for other

symbols of the grammar will not change. If the branching factors for the affected

LHS symbol (lhs_symb) and the newly-added symbol are calculated correctly,

the algorithm correctly calculates the branching factors for all the symbols of the

grammar.

3. Proofs of the ABF Algorithm

67

Suppose the index for the affected LHS symbol (lhs_symb) is k, where 0≤k<n,

and the rest of the grammar symbols are in a sublist grammar1.

Therefore:

bfList_new
 = bf (grammar ++ [(“x”, n)])

 = bf (grammar_1 ++ [(lhs_symb,k)] ++ [(“x”, n)])

 = bf grammar_1 ++ bf [(lhs_symb,k)] ++ bf [(“x”, n)]
 (line 5 & definition of “++” and “:”)

 = [c] ++ bf [(lhs_symb,k)]++ bf [(“x”, n)]

 ([c] is a list of previously computed values,
which is the list of branching factors for
list grammar1.

 By the hypothesis, all symbols of the grammar

have obtained correct branching factors. And
the branching factors for the sublist
grammar1 are not affected by the newly-added
symbol and the list [c] is available.)

 = [c] ++ bf [(lhs_symb,k)] ++ [1] (line 2)

 = [c] ++ [sumList (bf [(q, t)])] ++ [1] (line 4)
 ([(q, t)] represents the list of the left-most

alternatives including the newly-added
symbol.)

 = [c] ++ [f] ++ [1]
 (Note that, the branching factor for the

newly-added alternative is available (i.e.,
1), and the other left-most alternatives have
all obtained the correct branching factors
(by the hypothesis). Therefore, the sum of
these values are available. Let it be f.)

We have seen that the lists [c], [f], and [1] include the correct branching

factors for the n symbols of the grammar and the newly-added alternative. List

[c]++[f]++[1] includes correct branching factors for the symbols and the new

alternative.

3. Proofs of the ABF Algorithm

68

Therefore, by adding one more terminal on the Right-Hand-Side of the rule, the

algorithm correctly calculates the branching factors for each symbol of the

grammar.

Case 2: the newly-added symbol is a non-terminal, <x>, on the Right-Hand-Side

of the rule. Since the index of the list starts with 0, the index of the newly-added

non-terminal <x> will be n.

Note that, this newly-added non-terminal must be a symbol that has been defined

in the grammar. By the restrictions for the algorithm (section 2.5), the grammar

must be proper, which means all the non-terminals must be defined (appearing

on the left hand side of the rule). So the sole newly-added non-terminal must be

a non-terminal which is already in the grammar.

There are two cases while adding a new non-terminal:

1) The newly-added symbol <x> is added to an existing symbol sequences on

the right hand side of the rule. Note that, this newly-added symbol will not

affect the branching factors of other existing symbols.

3. Proofs of the ABF Algorithm

69

Therefore:

bfList_new
 = bf (grammar ++ [(“<x>”, n)])

 = bf grammar ++ bf [(“<x>”, n)]

 (line 5 & definition of “++” and “:”)

 = bfList ++ bf [(“<x>”, n)]
 (by the hypothesis)

 = bfList ++ bf [(“<y>”, m)]
 (line 3)(where, <x>=<y>, <y> is a LHS
 non-terminal in the grammar list)

 = bfList ++ [c]

 (c has been calculated correctly from the hypothesis.
 By the hypothesis, the symbols in the list
 grammar have all obtained the correct branching
 factors. Without the loss of generality, we can
 let bf [(“<y>”, m)] = [c], where c is a correct
 value.)

Since bfList is a list including the correct branching factors for the n symbols of

the grammar (by the hypothesis) and c has also been calculated correctly from

the hypothesis, list bfList++[c] includes correct branching factors for the n

symbols and the newly-added non-terminal <x>.

2) The newly-added non-terminal <x> is a new alternative of the right hand side

of the rule.

In this case, the newly-added symbol will affect the branching factor of the LHS

symbol (e.g., lhs_symb) in the current rule. The branching factors for other

symbols of the grammar will not change. If the branching factors for the affected

LHS symbol (lhs_symb) and the newly-added symbol are calculated correctly,

the algorithm correctly calculates the branching factors for all the symbols of the

grammar.

3. Proofs of the ABF Algorithm

70

Suppose the index for the affected LHS symbol (lhs_symb) is k, where 0≤k<n,

and the rest of the grammar symbols are in a sublist grammar1.

Therefore:

bfList_new
 = bf (grammar ++ [(“<x>”, n)])

 = bf (grammar_1 ++ [(lhs_symb,k)] ++ [(“<x>”, n)])

 = bf grammar_1 ++ bf [(lhs_symb,k)] ++ bf [(“<x>”, n)]
 (line 5 & definition of “++” and “:”)

 = [c] ++ bf [(lhs_symb,k)] ++ bf [(“<x>”, n)]

 ([c] is a list of previously computed values,
which is the list of branching factors for
sublist grammar1.

 By the hypothesis, all symbols of the grammar
have obtained correct branching factors. And
the branching factors for the sublist
grammar1 are not affected by the newly-added
symbol, let it be list [c].)

 = [c] ++ bf [(lhs_symb,k)]++bf [(“<y>”, m)] (line 3)

 (where, <x>=<y>, <y> is a LHS non-terminal in
the grammar list)

 = [c] ++ bf [(lhs_symb,k)]++[e]

 (e has been calculated correctly from the
hypothesis)

 (By the hypothesis, the symbols in the list
grammar have all obtained the correct
branching factors. Without the loss of
generality, we can let bf [(“<y>”, m)] = [e],
where e is a correct value.)

= [c] ++ [sumList (bf [(q, t)])] ++ [e] (line 4)

 ([(q, t)] represents the list of the left-most
alternatives on the right hand side of the
rule, including the newly-added non-terminal.)

= [c] ++ [f] ++ [e]

 (Note that, the branching factor for the
newly-added alternative is available (i.e.,
[e]), and the other left-most alternatives

3. Proofs of the ABF Algorithm

71

have all obtained the correct branching
factors (by the hypothesis). Therefore, the
sum of these values is available. Let it be
f.)

We have seen that the lists [c], [f], and [e] include the correct branching

factors for the n symbols of the grammar and the newly-added alternative. List

[c]++[f]++[e] includes correct branching factors for the symbols of the

grammar and the new alternative.

So, by adding one more non-terminal on the Right-Hand-Side of the rule, the

algorithm correctly calculates the branching factors for each symbol of the

grammar.

2. Add a new rule to the grammar, the algorithm correctly calculates the

branching factors for each symbol of the grammar, i.e., the new list of branching

factors for all symbols of the grammar will be obtained successfully,

bfList_new = bf (grammar ++ newRule)

There are three cases in the inductive step:

Case 1: the new rule has a non-terminal on the left hand side, and a terminal on

the right hand side, i.e.,

<new_r> = “x”

Since the index of a list starts from 0, the indexes for <new_r> and “x” will be n

and (n+1) respectively. The list for this new rule is represented as:

newRule = [(“<new_r>”, n), (”x”, (n+1))]

3. Proofs of the ABF Algorithm

72

Therefore:
bfList_new
 = bf (grammar ++ newRule)

 = bf grammar ++ bf newRule

 (line 5 & definition of “++” and “:”)

 = bfList ++ bf [(“<new_r>”, n), (”x”, (n+1))] (hypothesis)

 = bfList++ bf [(“<new_r>”, n)]++ bf [(”x”, (n+1))]

 (line 5 & definition of “++” and “:”)

 = bfList ++ bf [(“<new_r>”, n)] ++ [1] (line 2)

 = bfList ++ [sumList (bf [(”x”, (n+1))])] ++ [1] (line 4)

 = bfList ++ [sumList [1]] ++ [1] (line 2)

 = bfList ++ [1] ++ [1] (line 6)

 = bfList ++ [1, 1] (definition of “++”)

Since bfList is a list including the correct branching factors for the n symbols of

the grammar (by the hypothesis), list bfList++[1,1] includes correct

branching factors for the n symbols and the newly-added rule.

Therefore, by adding a new rule with one non-terminal on the left hand side and

one terminal on the right hand side, the algorithm correctly calculates the

branching factors for each symbol of the grammar.

Case 2: The new rule includes terminal(s) and/or known non-terminal(s) on the

right hand side, i.e.,

<new_r> = x

where <new_r> is a known non-terminal, and x is an expression of sequence(s)

and/or alternative(s) with known non-terminal(s) and/or terminal(s). Since the

index for a list starts from 0, the indexes for <new_r> and x will be n and (n+k),

k≥1, respectively. The list for this new rule is represented as:

3. Proofs of the ABF Algorithm

73

newRule = [(“<new_r>”, n), (x, (n+k))]

Therefore:
bfList_new
 = bf (grammar ++ newRule)

 = bf grammar ++ bf newRule
 (line 5 & definition of “++” and “:”)

 = bfList++bf[(“<new_r>”, n),(x, (n+k))] (hypothesis)

 = bfList ++ bf [(“<new_r>”, n)] ++ bf [(x, (n+k))]
 (line 5 & definition of “++” and “:”)

 = bfList ++ bf [(“<y>”, m)] ++ bf [(z, j)] (line 3)
 (where, <new_r>=<y>, <y> is a known non-terminal)
 (x=z, z is a known non-terminal or terminal)

 = bfList ++ [c] ++ [d]
 (c, d are correct values by the hypothesis)
 (By the hypothesis, the symbols in the list grammar

have all obtained the correct branching factors,
and the terminals have the branching factor of 1
(line 2)), so we can obtain the branching factors,
bf [(“<y>”, m)] and bf [(z, j)], say values [c]
and [d])

Since bfList is a list including the correct branching factors for the n symbols of

the grammar (by the hypothesis) and values c and d are correct branching

factors, list bfList ++[c]++[d] includes correct branching factors for the n

symbols and the newly-added rule.

Therefore, by adding a new rule with all known non-terminal(s) and/or terminal(s),

the algorithm correctly calculates the branching factors for each symbol of the

grammar.

Case 3: The new rule includes a new non-terminal on the left hand side of the

new rule, and known non-terminal(s) and/ or terminal(s) on the right-hand side of

the new rule, i.e.,

<new_r> = x

3. Proofs of the ABF Algorithm

74

where <new_r> is a new non-terminal, and x is an expression of sequence(s)

and/or alternative(s) with known non-terminal(s) and/or terminal(s). Since the

index for a list starts from 0, the indexes for <new_r> and x will be n and (n+k),

k≥1, respectively. The list for this new rule is represented as:

newRule = [(“<new_r>”, n), (x, (n+k))]

Note that, the non-terminals on the right hand side of the newly-added rule

cannot be new because the grammar is “proper” (section 2.5), which means

every non-terminal has to be defined properly (has to appear on the left hand

side of the rule). So it is not allowed to include any new non-terminal on the right

hand side of the newly-added rule without an accompanying definition for it.

Therefore:

bfList_new
 = bf (grammar ++ newRule)

 = bf grammar ++ bf newRule
 (line 5 & definition of “++” and “:”)

 = bfList ++ bf[(“<new_r>”, n),(x, (n+k))] (hypothesis)

 = bfList ++ bf [(“<new_r>”, n)] ++ bf [(x, (n+k))]
 (line 5 & definition of “++” and “:”)

 = bfList ++ bf [(“<new_r>”, n)] ++ bf [(z, j)] (line 3)
 (where z = x, z is a known non-terminal or a
 terminal)

 = bfList ++ bf [(“<new_r>”, n)] ++ [d]
 (d is a correct previously computed value , by the
 hypothesis)
 (By the hypothesis, the symbols in the list

grammar have all obtained the correct branching
factors, and the terminals have a branching
factor of 1 (line 2)), so we can obtain the
branching factor, bf [(z, j)], let it be called
[d].)

3. Proofs of the ABF Algorithm

75

 = bfList ++ [sumList (bf [(q, t)])] ++ [d] (line 4)
 ([(q, t)] is the list of the left-most

alternatives among the list [(z, j)] with known
branching factors)

 = bfList ++ [sumList [c]] ++ [d] (line 3)
 (c] is a list of previously computed values,

which is the list of branching factors for list
[(q, t)])

 = bfList ++ [e] ++ [d] (line 6)
 (e is the sum of the list [c])

Since bfList is a list including the correct branching factors for the n symbols of

the grammar (by the hypothesis) and the value e and d are correct branching

factors, list bfList++[e]++[d] includes correct branching factors for the n

symbols and the newly-added rule.

Therefore, by adding a new rule with a new non-terminal on the left hand side

and known non-terminal(s) and/or terminal(s) on the right hand side of the rule,

the algorithm correctly calculates the branching factors for each symbol of the

grammar.

(2) Proof of correctness for step 2 (component function subsize, lines 8 – 14):

Base Case: there is one rule in the grammar with one non-terminal on the Left

Hand Side and one terminal on the Right Hand Side of the rule, e.g.,

<g> = “a”

In this case, the list grammar is represented as follows:

grammar = [(“<g>”, 0), (”a”, 1)]

3. Proofs of the ABF Algorithm

76

Therefore:

subsize grammar
 = subsize [(“<g>”, 0)] ++ subsize [(“a”, 1)] (line 12)

 = [sumList [productList (subsize [(“a”, 1)])]] ++
 subsize [(“a”, 1)] (line 11)

 = [sumList [productList (subsize [(“a”, 1)])]] ++ [1]
 (line 9)

 = [sumList [1]] ++ [1] (line 13)

 = [1] ++ [1] (definition of sumList)

 = [1, 1] (definition of “++”)

For the base case, the algorithm correctly calculates the subsizes for each

symbol of the grammar.

Inductive Step:

Hypothesis: for a grammar with n symbols, (i.e., #grammar = n), the algorithm

correctly calculates the subsizes for each symbol of the grammar, i.e.,

subsizeList[num] is obtained successfully,

subsizeList = subsize grammar

Show:

1. Adding one more symbol, x, the algorithm correctly calculates the subsizes for

each symbol of the grammar, i.e., the new list of subsizes for all symbols of the

grammar will be obtained successfully,

subsizeList_new = subsize (grammar ++ [(x, n)])

There are two cases in the inductive step:

Case 1: the newly-added symbol is a terminal, “x”, on the Right Hand Side of

3. Proofs of the ABF Algorithm

77

the rule. Since the index of the list starts with 0, the index of the newly-added

terminal, “x”, will be n.

There are two cases while adding a new terminal, “x”:

1) The newly-added terminal “x” is added to an existing symbol sequence on

the right hand side of the rule. Note that, this newly-added symbol will affect the

subsize of the LHS symbol (e.g., lhs_symb) of the current rule and will not

affect the subsizes of other symbols. If the subsizes for the affected LHS symbol

(lhs_symb) and the newly-added symbol are calculated correctly, the algorithm

correctly calculates the subsizes for all the symbols of the grammar.

Suppose the index for the affected LHS symbol (lhs_symb) is k, where 0≤k<n,

and the rest of the grammar symbols are in a sublist grammar1.

Therefore:

subsizeList_new
 = subsize (grammar ++ [(“x”, n)])

 = subsize (grammar1 ++ [“<lhs_symb>”, k] ++ [(“x”, n)])

 = subsize grammar1 ++ subsize [“<lhs_symb>”, k] ++
 subsize [(“x”, n)])
 (line 12 & definition of “++” and “:”)

 = [c] ++ subsize [“<lhs_symb>”, k] ++ subsize [(“x”, n)])

 ([c] is a list of previously computed values,
which is the list of subsizes for list
grammar1.

 By the hypothesis, all symbols of the grammar
have obtained correct subsizes. And the
subsizes for the sublist grammar1 are not
affected by the newly-added symbol.)

 = [c] ++ subsize [“<lhs_symb>”, k] ++ [1] (line 9)

 = [c] ++ [sumList [productList (subsize [(y, j)])]] ++ [1]

 (line 11)
 (list [y,j] represents the alternative sequences

3. Proofs of the ABF Algorithm

78

of the rule that the new symbol is added to,
(including the sequence with the new symbol).
The algorithm calculates the product of the
subsizes of the sequence symbols, and adds the
products for all alternatives of the rule
together to obtain the subsize of the LHS
symbol.)

 = [c] ++ [d] ++ [1]
 (by the hypothesis, the subsizes for the

sequence symbols are correctly calculated. In
addition, the subsize for the newly-added
symbol is available (e.g., [1]). Therefore, the
subsize for the LHS symbol is available. Let it
be [d].)

Lists [c], [d], and [1] include the correct subsizes for the n symbols of the

grammar and the newly-added symbol. List [c]++[d]++[1] includes correct

subsizes for the symbols of the grammar and the new symbol.

Therefore, by adding a new terminal to an existing symbol sequence on the right

hand side of the rule, the algorithm correctly calculates the subsizes for each

symbol of the grammar.

2) The newly-added terminal “x” is a new alternative of the right hand side of

the rule.

In this case, the newly-added symbol will affect the subsize of the LHS symbol

(e.g., lhs_symb) in the current rule and will not change the subsizes for other

symbols of the grammar. If the subsizes for the affected LHS symbol (lhs_symb)

and the newly-added symbol are calculated correctly, the algorithm correctly

calculates the subsizes for all the symbols of the grammar.

Suppose the index for the affected LHS symbol (lhs_symb) is k, where 0≤k<n,

and the rest of the grammar symbols are in a sublist grammar1.

Therefore:

3. Proofs of the ABF Algorithm

79

subsizeList_new
 = subsize (grammar ++ [(“x”, n)])

 = subsize (grammar1 ++ [“<lhs_symb>”, k] ++ [(“x”, n)])

 = subsize grammar1 ++ subsize [“<lhs_symb>”, k] ++
 subsize [(“x”, n)])
 (line 12 & definition of “++” and “:”)
 = [c] ++ subsize [“<lhs_symb>”, k] ++ subsize [(“x”, n)])

 ([c] is a list of previously computed values,
which is the list of subsizes for list
grammar1.

 By the hypothesis, all symbols of the grammar
have obtained correct subsizes. And the
subsizes for the sublist grammar1 are not
affected by the newly-added symbol.)

 = [c] ++ subsize [“<lhs_symb>”, k] ++ [1] (line 9)

 = [c] ++ [sumList [productList (subsize [(y, j)])]] ++ [1]

 (line 11)
 (list [y, j] represents the alternative

sequences of the rule that the new symbol is
added to, (including the new alternative of the
newly-added symbol). The algorithm calculates
the product of the subsizes of the sequence
symbols, and adds the products for all
alternatives of the rule together to obtain the
subsize of the LHS symbol.)

 = [c] ++ [d] ++ [1]
 (by the hypothesis, the subsizes for the

sequence symbols are correctly calculated. In
addition, the subsize for the newly-added
symbol is available (e.g., [1]). Therefore, the
subsize for the LHS symbol is available. Let it
be d.)

Lists [c], [d], and [1] include the correct subsizes for the n symbols of the

grammar and the newly-added symbol. List [c]++[d]++[1] includes correct

subsizes for the symbols of the grammar and the new symbol.

3. Proofs of the ABF Algorithm

80

Therefore, by adding a new terminal as a new alternative of the right hand side of

the rule, the algorithm correctly calculates the subsizes for each symbol of the

grammar.

Case 2: the newly-added symbol is a non-terminal, <x>, on the right-hand-side of

the rule. Since the index of the list starts with 0, the index of the newly-added

non-terminal, <x>, will be n.

Note that, this newly-added non-terminal must be an existing symbol that has

appeared in the grammar. By the restrictions for the algorithm (section 2.5), the

grammar must be proper, which means all the non-terminals must be defined

(appearing on the left hand side of the rule). So the sole newly-added non-

terminal cannot be a new non-terminal without proper definition.

There are two cases while adding a new non-terminal, <x>:

1) The newly-added non-terminal <x> is added to an existing symbol

sequence on the right hand side of the rule. Note that, this newly-added symbol

will affect the subsize of the LHS symbol (e.g., lhs_symb) of the current rule

and will not affect the subsizes of other symbols. If the subsizes for the affected

LHS symbol (lhs_symb) and the newly-added symbol are calculated correctly,

the algorithm correctly calculates the subsizes for all the symbols of the grammar.

Suppose the index for the affected LHS symbol (lhs_symb) is k, where 0≤k<n,

and the rest of the grammar symbols are in a sublist grammar1.

Therefore:

3. Proofs of the ABF Algorithm

81

subsizeList_new
 = subsize (grammar ++ [(“<x>”, n)])

 = subsize (grammar1 ++ [“<lhs_symb>”, k] ++ [(“<x>”, n)])

 = subsize grammar1 ++ subsize [“<lhs_symb>”, k] ++
 subsize [(“<x>”, n)])
 (line 12 & definition of “++” and “:”)

 = [c] ++ subsize [“<lhs_symb>”, k] ++ subsize [(“<x>”, n)])

 ([c] is a list of previously computed values,
which is the list of subsizes for list
grammar1.

 By the hypothesis, all symbols of the grammar
have obtained correct subsizes. And the
subsizes for the sublist grammar1 are not
affected by the newly-added symbol.)

 = [c] ++ subsize [“<lhs_symb>”, k] ++ subsize [(“<y>”, m)]

 (line 10)
 (where, <x>=<y>, <y> is a LHS non-terminal in

the list grammar.)

 = [c] ++ subsize [“<lhs_symb>”,k] ++ [d]
 ([d] is a previously calculated value.

 By the hypothesis, the symbols in the list
grammar have all obtained the correct subsizes.
Without the loss of generality, let the
subsize for [(“<y>”, m)] = [d])

 = [c] ++ [sumList [productList (subsize [(y, j)])]] ++ [d]

 (line 11)
 (list [y,j] represents the alternative sequences

of the rule that the new symbol is added to,
(including the sequence with the new symbol).
The algorithm calculates the product of the
subsizes of the sequence symbols, and adds the
products for all alternatives of the rule
together to obtain the subsize of the LHS
symbol.)

 = [c] ++ [e] ++ [d]
 (By the hypothesis, the subsizes for the

sequence symbols are correctly calculated. The
subsize for the newly-added symbol is available
(e.g., [d]). Therefore, the subsize for the LHS
symbol is available. Say [e].)

3. Proofs of the ABF Algorithm

82

Lists [c], [e], and [d] include the correct subsizes. List [c]++[e]++[d]

includes correct subsizes for the symbols of the grammar and the new symbols.

Therefore, by adding a new non-terminal to an existing symbol sequence on the

right hand side of the rule, the algorithm correctly calculates the subsizes for

each symbol of the grammar.

2) The newly-added non-terminal <x> is a new alternative of the right hand

side of the rule.

In this case, the newly-added symbol will affect the subsize of the LHS symbol

(e.g., lhs_symb) in the current rule. The subsizes for other symbols of the

grammar will not change. If the subsizes for the affected LHS symbol (lhs_symb)

and the newly-added symbol are calculated correctly, the algorithm correctly

calculates the subsizes for all the symbols of the grammar.

Suppose the index for the affected LHS symbol (lhs_symb) is k, where 0≤k<n,

and the rest of the grammar symbols are in a sublist grammar1.

Therefore:

3. Proofs of the ABF Algorithm

83

subsizeList_new
 = subsize (grammar ++ [(“<x>”, n)])

 = subsize (grammar1 ++ [“<lhs_symb>”, k] ++ [(“<x>”, n)])

 = subsize grammar1 ++ subsize [“<lhs_symb>”, k] ++
 subsize [(“<x>”, n)])
 (line 12 & definition of “++” and “:”)
 = [c] ++ subsize [“<lhs_symb>”, k] ++subsize [(“<x>”, n)])

 ([c] is a list of previously computed values,
which is the list of subsizes for list
grammar1.

 By the hypothesis, all symbols of the grammar
have obtained correct subsizes. And the
subsizes for the sublist grammar1 are not
affected by the newly-added symbol.)

 = [c] ++ subsize [“<lhs_symb>”, k] ++ subsize [(“<y>”, m)]

 (line 10)
 (where, <x>=<y>, <y> is a LHS non-terminal in

the list grammar)

 = [c] ++ subsize [“<lhs_symb>”, k] ++ [d]
 ([d] is a previously calculated value.

 By the hypothesis, the symbols in the list
grammar have all obtained the correct subsizes.
Without the loss of generality, let the
subsize for [(“<y>”, m)] = [d])

 = [c] ++ [sumList [productList (subsize [(y, j)])]] ++ [d]

 (line 11)
 (list [y, j] represents the alternative

sequences of the rule that the new symbol is
added to, (including the new alternative of the
newly-added symbol). The algorithm calculates
the product of the subsizes of the sequence
symbols, and adds the products for all
alternatives of the rule together to obtain the
subsize of the LHS symbol.)

 = [c] ++ [e] ++ [d]
 (by the hypothesis, the subsizes for the

sequence symbols are correctly calculated. In
addition, the subsize for the newly-added
symbol is available (e.g., [d]). Therefore, the
subsize for the LHS symbol is available. Let it
be [e].)

3. Proofs of the ABF Algorithm

84

Lists [c], [e], and [d] include the correct subsizes. List [c]++[e]++[d]

includes correct subsizes of the symbols and the new symbol.

Therefore, by adding a new non-terminal as a new alternative of the right hand

side of the rule, the algorithm correctly calculates the subsizes for each symbol of

the grammar.

2. Adding a new rule to the grammar, the algorithm correctly calculates the

subsizes for each symbol of the grammar, i.e., the new list of subsizes for all

symbols of the grammar will be obtained successfully,

subsizeList_new = subsize (grammar ++ newRule)

There are three cases in the inductive step:

Case 1: the new rule has a non-terminal on the left hand side, and a terminal on

the right hand side, i.e.,

<new_r> = “x”

The indexes for <new_r> and “x” will be n and (n+1) respectively. The list for

this new rule is represented as:

newRule = [(“<new_r>”, n), (”x”, (n+1))]

Therefore:
subsizeList_new
 = subsize (grammar ++ newRule)

 = subsize grammar ++ subsize newRule

 (line 12 & definition of “++” and “:”)

 = subsizeList++ subsize [(“<new_r>”, n), (”x”, (n+1))]

 (hypothesis)

 = subsizeList ++ subsize [(“<new_r>”, n)] ++
 subsize [(”x”, (n+1))]
 (line 12 & definition of “++” and “:”)

3. Proofs of the ABF Algorithm

85

 = subsizeList ++ subsize [(“<new_r>”, n)] ++ [1] (line 9)

 = subsizeList ++
 [sumList [productList (subsize [(”x”, (n+1)])]] ++ [1]
 (line 11)

 = subsizeList ++ [sumList [1]] ++ [1] (line 13)

 = subsizeList ++ [1] ++ [1] (definition of sumList)

 = subsizeList ++ [1, 1] (definition of “++”)

Since subsizeList is a list including the correct subsizes for the n symbols of

the grammar (by the hypothesis) and [1,1] is a list with correct subsizes, list

subsizeList++[1,1] includes correct subsizes for the n symbols and the

newly-added rule.

Therefore, adding a new rule with one non-terminal on the left hand side and one

terminal on the right hand side, the algorithm correctly calculates the subsizes for

each symbol of the grammar.

Case 2: The new rule includes terminal(s) and/ or known non-terminal(s) on the

right hand side, i.e.,

<new_r> = x,

where <new_r> is a known non-terminal, and x is an expression of sequence(s)

and/or alternative(s) with known non-terminal(s) and/or terminal(s). The indexes

for <new_r> and x will be n and (n+k), k≥1, respectively. The list for this new

rule is represented as:

newRule = [(“<new_r>”, n), (x, (n+k))]

Therefore:

3. Proofs of the ABF Algorithm

86

subsizeList_new
 = subsize (grammar ++ newRule)

 = subsize grammar ++ subsize newRule
 (line 12 & definition of “++” and “:”)

 = subsizeList ++ subsize [(“<new_r>”, n), (x, (n+k))]
 (hypothesis)

 = subsizeList ++ subsize [(“<new_r>”, n)] ++
 subsize [(x, (n+k))]
 (line 12 & definition of “++” and “:”)

 = subsizeList ++ subsize [(“<y>”, m)] ++ subsize[(z, j)]
 (line 10)
 (where, <new_r>=<y>, <y> is a known non-terminal)
 (x=z, z represents a known non-terminal or a terminal)

 = subsizeList ++ [c] ++ [d]
 (c and d are previously correctly calculated values.)
 (By the hypothesis, the symbols in the list grammar
 have all obtained the correct subsizes, and
 terminals have the subsize of 1 (line 9)), so we can
 obtain the subsizes for: subsize [(“<y>”, m)] and
 subsize [(z, j)], say [c] and [d].)

Since subsizeList is a list including the correct subsizes for the n symbols of

the grammar (by the hypothesis) and lists [c] and [d] are lists with correct

subsizes, the list subsizeList++[c]++[d] includes correct subsizes for the n

symbols and the newly-added rule.

Therefore, if adding a new rule with all known non-terminals and/or terminals, the

algorithm correctly calculates the subsizes for each symbol of the grammar.

Case 3: The new rule includes a new non-terminal on the left hand side of the

new rule, and known non-terminal(s) and/or terminal(s) on the right-hand side,

i.e., <new_r> = x

where <new_r> is a new non-terminal, and x is an expression of sequence(s)

and/or alternative(s) with known non-terminal(s) and/or terminal(s). The indexes

3. Proofs of the ABF Algorithm

87

for <new_r> and x will be n and (n+k), k≥1, respectively. The list for this new

rule is represented as:

newRule = [(“<new_r>”, n), (x, (n+k))]

Note that, the non-terminals on the right hand side of the newly-added rule

cannot be new because the algorithm should be “proper” (section 2.4), which

means every non-terminal has to be defined properly (appear on the left hand

side of the rule). So, it is not allowed to include any new non-terminal on the right

hand side of the newly-added rule without further definition for it.

Therefore:

3. Proofs of the ABF Algorithm

88

subsizeList_new
 = subsize (grammar ++ newRule)

 = subsize grammar ++ subsize newRule
 (line 12 & definition of “++” and “:”)

 = subsizeList ++ subsize [(“<new_r>”, n), (x, (n+k))]
 (hypothesis)

 = subsizeList ++ subsize [(“<new_r>”, n)] ++
 subsize [(x, (n+k))]
 (line 12 & definition of “++” and “:”)

 = subsizeList ++ subsize [(“<new_r>”, n)] ++
 subsize [(z, j)] (line 10)
 (where x=z and z is a known non-terminal or a
 terminal)

 = subsizeList ++ subsize [(“<new_r>”, n)] ++ [d]
 (d is a previously correctly calculated value.)
 (By the hypothesis, the symbols in the list grammar
 have all obtained the correct subsizes, and the
 terminals have the subsize of 1 (line 9)), so we can
 obtain the subsize [(z, j)], say [d].)

 = subsizeList ++
 [sumList [productList (subsize [(q, t)])]]++ [d]
 (line 11)
 ([(q, t)] represents the alternative sequences among
 the list [(z, j)]. The subsizes for the sequence
 symbols are multiplied, the products of the
 alternative sequences are summed up.)

 = subsizeList ++ [sumList ([productList [c]])] ++ [d]
 (line 10)
 ([c] is a list of previously correctly calculated
 values, denoting the subsizes for the sequence
 symbols.)
 (By the hypothesis, the symbols in the list
 grammar have all obtained the correct subsizes.)

 = subsizeList ++ [sumList [e]] ++ [d] (line 13)
 (definition of productList)
 (let the product of list [c] be e.)
 = subsizeList ++ [f] ++ [d]
 (definition of sumList.)
 (Let the sum of list [e] be f)

3. Proofs of the ABF Algorithm

89

Since subsizeList is a list including the correct subsizes for the n symbols of

the grammar (by the hypothesis) and lists [f] and [d] are lists with correct

subsizes, the list subsizeList++[f]++[d] includes correct subsizes for the n

symbols and the newly-added rule.

Therefore, if adding a new rule with a new non-terminal on the left hand side and

known non-terminal(s) and/or terminal(s) on the right hand side of the rule, the

algorithm correctly calculates the subsizes for each symbol of the grammar.

(3) Proof of correctness for step 3 (component function occur_rhs, lines 15 –

18):

Base Case: there is one rule in the grammar with one non-terminal on the left

hand side and one terminal on the Right Hand Side of the rule, e.g.,

<g> = “a”

In this case, the list grammar will be represented as:

grammar = [(“<g>”, 0), (”a”, 1)]

Therefore:

occur_rhs grammar
 = occur_rhs [(“<g>”, 0)] ++ occur_rhs [(“a”, 1)] (line 17)

 = [0] ++ occur_rhs [(“a”, 1)]
 (line 16, skip left-hand symbol)

 = [0] ++ [productList [subsizeList!1]] (line 16)

 = [0] ++ [productList [1]]
 (terminals have the subsize of 1, step 2)

 = [0] ++ [1] (definition of productList)

 = [0, 1] (definition of “++”)

3. Proofs of the ABF Algorithm

90

For base case, the algorithm correctly calculates the number of occurrences for

RHS symbols of the grammar.

Inductive step:

Hypothesis: for a grammar with n symbols, (i.e., #grammar = n), the algorithm

correctly calculates the number of occurrences for right-hand-side symbols of the

grammar, i.e., occur_rhsList[num] is obtained successfully,

occur_rhsList = occur_rhs grammar

Show:

1. Adding one more symbol, x, to the right hand side of the rule, the algorithm

correctly calculates the number of occurrences of right-hand-side symbols of the

grammar, i.e., the new list of the number of occurrences for right-hand-side

symbols of the grammar will be obtained successfully,

occur_rhsList_new = occur_rhs (grammar ++ [(x, n)])

Note that, this newly-added RHS symbol must be a terminal or a non-terminal

that has been defined in the grammar. The reason is that the grammar must be

proper (section 2.5), which means that all non-terminals of the grammar must be

properly defined (appearing on the left hand side of the rule).

There are two cases while adding a symbol to the right hand side of the rule:

1) The new symbol is added as a new alternative of the rule. In this case, the

newly-added symbol will not affect the number of occurrences for other symbols

of the grammar.

Therefore:

3. Proofs of the ABF Algorithm

91

occur_rhsList_new
 = occur_rhs (grammar ++ [(x, n)])

 = occur_rhs grammar ++ occur_rhs [(x, n)]

 (line 17 & definition of “++” and “:”)

 = occur_rhsList ++ occur_rhs [(x, n)] (hypothesis)

 = occur_rhsList ++ [productList [subsizeList ! m]]

 (line 16)
 (take the subsizes of the symbols of the sequence)

 = occur_rhsList ++ [productList [c]]

 (c is a known value.)
 (If x is a terminal, the subsize for x is 1.
 If x is a known non-terminal, its subsize has

been set in step 2.)

 = occur_rhsList ++ [c] (definition of productList)

 (Since x is the only symbol of the alternative

sequence, the product of the subsizes of the
sequence is c.)

Since occur_rhsList is a list including the correct number of occurrences of

RHS symbols of the grammar (by the hypothesis) and list [c]is a list with

correct values of the number of occurrences, list occur_rhsList++[c]

includes correct values of the number of occurrences for the n symbols and the

newly-added symbol.

Therefore, when a new symbol is added as a new alternative on the right hand

side of the rule, the algorithm correctly calculates the number of occurrences for

each symbol of the grammar.

2) The newly-added symbol is added to an existing symbol sequence on the

right hand side of the rule. Note that, this newly-added symbol will affect the

number of occurrences for the symbols of the sequence. The number of

occurrences for other symbols will not change. If the values of the number of

occurrences for the affected sequence symbols and the newly-added symbol are

calculated correctly, the algorithm correctly calculates the number of occurrences

3. Proofs of the ABF Algorithm

92

for all the symbols of the grammar.

Suppose the affected sequence symbols are in list grammar2, and the rest

symbols of the grammar are in list grammar1.

Therefore:

occur_rhsList_new
 = occur_rhs (grammar ++ [(x, n)])

 = occur_rhs grammar1 ++ occur_rhs grammar2 ++
 occur_rhs [(x, n)]
 (line 17 & definition of “++” and “:”)

 = [c] ++ occur_rhs grammar2 ++ occur_rhs [(x, n)]
 ([c] is a list includes correctly calculated values.
 By the hypothesis, the number of occurrences for the
 symbols of the grammar have all been calculated
 correctly. And the symbols of list grammar1 are
 not affected by the newly-added symbol)

 = [c] ++ occur_rhs grammar2 ++
 [productList [subsizeList ! m]] (line 16)
 (take the subsizes of the symbols of the sequence)

 = [c] ++ occur_rhs grammar2 ++ [productList [d]]
 (d is a known value representing the subsize for
 each symbol of the sequence. Because, if the newly-
 added symbol is a terminal, its subsize is 1. If
 the newly-added symbol is a known non-terminal, its
 subsize is available in step 2.)

 = [c] ++ occur_rhs grammar2 ++ [e]
 (definition of productList)
 (e is a known value which is the product of the
 subsizes of the symbols of the sequence.

 = [c] ++ [f] ++ [e]
 ([f] is a list with known values representing the
 number of occurrences for the sequence symbols.
 Actually, each item of the list [f] has the same
 value e, which is the number of occurrences of the
 newly-added symbol. Note that, all the symbols of a
 sequence have the same number of occurrences.)

3. Proofs of the ABF Algorithm

93

Since lists [c], [f], and [e] are lists with correct values of the number of

occurrences, list [c]++[f]++[e] includes correct values of the number of

occurrences for the n symbols and the newly-added symbol.

Therefore, when adding a new symbol to an existing sequence on the right hand

side of the rule, the algorithm correctly calculates the number of occurrences for

each symbol of the grammar.

2. Adding a new rule to the grammar, the algorithm correctly calculates the

number of occurrences for the right-hand-side symbols of the grammar, i.e., the

new list of the number of occurrences for right-hand-side symbols of the grammar

will be obtained successfully, i.e.:

occur_rhsList_new = occur_rhs (grammar ++ newRule)

The new rule is expressed in the list as:

newRule = [(“<new_r>”, n), (x, (n+k))],

where x is an expression of alternative(s) and/or sequence(s) of terminal(s)

and/or non-terminal(s). The indexes for <new_r> and x are n and (n+k), k≥1,

respectively.

Note that, the non-terminals on the right hand side of the newly-added rule

cannot be new because the algorithm should be “proper” (section 2.5), which

means every non-terminal has to be properly defined (appear on the left hand

side of the rule). So, it is not allowed to include any new non-terminal on the right

hand side of the newly-added rule without further definition for it.

Therefore:

3. Proofs of the ABF Algorithm

94

occur_rhsList_new
 = occur_rhs (grammar ++ newRule)

 = occur_rhs grammar ++ occur_rhs newRule
 (line 17 & definition of “++” and “:”)

 = occur_rhsList ++ occur_rhs [(“<new_r>”, n), (x, (n+k))]
 (hypothesis)

 = occur_rhsList ++ occur_rhs [(“<new_r>”, n)] ++
 occur_rhs [(x, (n+k))]
 (line 17 & definition of “++” and “:”)

 = occur_rhsList ++ [0] ++ occur_rhs [(x, (n+k))] (line 16)

 = occur_rhsList ++ [0] ++ [productList [subsizeList!m]]
 (line 16)

 = occur_rhsList ++ [productList [c]]
 ([c] is a list of known values, which are subsizes
 of the sequence symbols.
 x is an expression consisting of terminal(s)
 and/or known non-terminal(s).
 The subsizes for terminals are 1.
 The subsizes for known non-terminals are available
 in step 2.
 So the list of the subsizes for the symbols of the
 right hand side of the newly-added rule is
 available, say list [c])

 = occur_rhsList ++ [d] (definition of productList)
 (d is a known value, which is the product of the
 subsizes of the symbols of the sequence)

Since occur_rhsList is a list including the correct number of occurrences of

right-hand-side symbols of the grammar (by the hypothesis) and list [d]is a list

with correct values of the number of occurrences, the list occur_rhsList++[d]

includes correct values of the number of occurrences for the n symbols and the

newly-added rule.

Therefore, when adding a new rule to the grammar, the algorithm correctly

calculates the number of occurrences for the right-hand-side symbols of the

grammar.

3. Proofs of the ABF Algorithm

95

(4) Proof of correctness for step 4 (component function occur_lhs and factor,

lines 19 – 29):

Base Case: there is one rule in the grammar with one non-terminal on the left

hand side and one terminal on the right hand side of the rule, e.g.,

<g> = “a”

In this case, the list grammar will be presented as follows:

grammar = [(“<g>”, 0), (”a”, 1)]

Therefore:

 occur_lhs grammar
 = occur_lhs [(“<g>”, 0), (”a”, 1)]

 = occur_lhs [(“<g>”, 0)] ++ occur_lhs [(“a”, 1)]
 (line 23)

 = occur_lhs [(“<g>”, 0)] ++ [0] (line 22)

 = [subsizeList! 0] ++ [0] (line 20)

 = [c] ++ [0]
 (c is the subsize of the start symbol. It is a

known value, because subsizeList is available
in step 2)

 = [c, 0] (definition of “++”)

factor grammar
 = factor [(“<g>”, 0), (”a”, 1)]

 = factor [(“<g>”, 0)] ++ factor [(“a”, 1)] (line 27)

 = [occur_lhsList[(“<g>”,0)]!0 / subsizeList !0] ++
 factor [(“a”, 1)] (line 25)

 = [subsizeList!0 / subsizeList!0] ++
 factor [(“a”, 1)] (line 20)
 (subsizeList is available in step 2)

3. Proofs of the ABF Algorithm

96

 = [1] ++ factor [(“a”, 1)]
 (Note that, multiplication factor for the
 first rule is 1.)

 = [1] ++ factor [(“<g>”, 0)] (line 26)

 = [1] ++ [1]
 (The multiplication factor for a RHS symbol is
 the same as that for the LHS non-terminal of
 the rule.)

 = [1, 1] (definition of “++”)

For the base case, the algorithm correctly calculates the number of occurrences

for left-hand-side symbols and the multiplication factors for the right-hand-side

symbols of the grammar.

Inductive step:

Hypothesis: for a grammar with n symbols, (i.e., #grammar = n), the algorithm

correctly calculates the number of occurrences for the left-hand-side symbols of

the grammar, i.e., occur_lhsList[num] is obtained successfully,

occur_rhsList = occur_rhs grammar

Also, the algorithm correctly calculates the multiplication factors for right-hand-

side symbols of the grammar, i.e., factList[num] is obtained successfully,

factList = factor grammar

Show:

1. When adding one more symbol, x, to the right hand side of the rule, the

algorithm correctly calculates the number of occurrences for the left-hand-side

symbols of the grammar, i.e., the new list of the number of occurrences for left-

hand-side symbols of the grammar will be obtained successfully,

occur_lhsList_new = occur_rhs (grammar ++ [(x, n)])

3. Proofs of the ABF Algorithm

97

Also, the algorithm correctly calculates the multiplication factors for the right-

hand-side symbols of the grammar.

factorList_new = factor (grammar ++ [(x, n)])

There are two cases while adding a symbol to the right hand side of the rule.

1) The new symbol is a terminal, “x”, on the right hand side of the rule. In this

case, the newly-added symbol will not affect the number of occurrences for the

LHS symbols and the multiplication factors for other RHS symbols of the

grammar.

occur_lhsList_new
 = occur_lhs (grammar ++ [(“x”, n)])

 = occur_lhs grammar ++ occur_lhs [(“x”, n)]
 (line 23 & definition of “++” and “:”)

 = occur_LhsList ++ occur_lhs [(“x”, n)] (hypothesis)

= occur_lhsList ++ [0] (line 22)
 (For a RHS symbol, the number of occurrences for a LHS

symbol is 0)

By the hypothesis, occur_lhsList is a list with correct number of occurrences for

LHS symbols. [0] is a correct value of number of occurrences of a LHS symbol

for a RHS symbol. Therefore, occur_lhsList++[0] is a list includes correct

values of the number of occurrences for LHS symbols of the grammar and the

algorithm correctly calculates the number of occurrences for the LHS symbols

and the newly-added symbol.

3. Proofs of the ABF Algorithm

98

factorList_new
 = factor (grammar ++ [(“x”, n)])

 = factor grammar ++ factor [(“x”, n)]
 (line 9 & definition of “++” and “:”)

 = factorList ++ factor [(“x”, n)] (hypothesis)

 = factorList ++ factor [(y, m)] (line 26)
 (y is the LHS non-terminal of the same rule as “x”)

 = factorList ++ [c]
 (c is a known value, which is the multiplication
 factor of the symbol y.
 (by the hypothesis, multiplication factors for the
 symbols of the grammar have been all calculated
 correctly. Let the multiplication factor for y be
 c.)

List factorList includes correct multiplication factors for the symbols of the

grammar (by the hypothesis), and list [c] includes correct multiplication factor

for the newly-added symbol. Therefore, list factorList++[c] includes correct

multiplication factors for symbols of the grammar and the algorithm correctly

calculates the multiplication factors for the n symbols of the grammar and the

newly-added symbol.

2) The new symbol is a known non-terminal, <x>, on the right hand side of the

rule. In this case, the newly-added symbol will affect the number of occurrences

of the LHS symbol (<sym_lhs>, where <sym_lhs> = <x>) and the

multiplication factors for the rule where this symbol (<x>) appears on the left

hand side of the rule. The number of occurrences and the multiplication factors

for other LHS symbols will not change. So, if the values of the number of

occurrences for the newly-added RHS symbol (<x>) and the LHS symbol

(<sym_lhs> = <x>) are calculated correctly, the algorithm calculates the

number of occurrences for the LHS symbols of the grammar and the newly-

added symbol correctly.

Suppose the affected LHS symbol is <sym_lhs>, whose index is k, where

3. Proofs of the ABF Algorithm

99

0≤k<n. Note that, <sym_lhs> = <x>. However, <sym_lhs> is on the LHS of

the rule, and <x> is a newly-added RHS symbol. The other symbols of the

grammar are in sublist grammar1. Therefore,

occur_lhsList_new
 = occur_lhs (grammar ++ [(“<x>”, n)])

 = occur_lhs (grammar1 ++ [(“<sym_lhs>”, k)] ++
 [(“<x>”, n)])

 = occur_lhs grammar1 ++ occur_lhs [(“<sym_lhs>”, k)] ++
 occur_lhs [(“<x>”, n)]
 (line 23 & definition of “++” and “:”)

 = [c] ++ occur_lhs [(“<sym_lhs>”, k)] ++
 occur_lhs [(“<x>”, n)]
 ([c] is a list including the previously calculated
 values of the number of occurrences for the LHS
 symbols of the grammar.
 By the hypothesis, the number of the occurrences
 for the LHS symbols are available.)

 = [c] ++ occur_lhs [(“<sym_lhs>”, k)] ++ [0] (line 22)
 (For a RHS symbol, the number of occurrences for a
 LHS symbol is 0)
 = [c] ++ [sumList [(occur_rhsList !h) *

 ((factor [(y, h)])!0)] ++ [0] (line 21)
 (The number of occurrences for a LHS symbol is the
 sum of all the instances of that symbol occurring
 on the RHS of all rules, each multiplied by the
 multiplication factor.)

 = [c] ++ [sumList [d *e]] ++ [0]
 (d and e are known values representing the number
 of occurrences and the multiplication factor for
 the RHS symbol.
 From step 3, the number of occurrences for RHS
 symbols are available.
 By the hypothesis, the multiplication factors for
 the RHS symbols of the grammar are correctly
 calculated.)

 = [c] ++ [f] ++ [0] (definition of sumList)
 (f is a known value)

3. Proofs of the ABF Algorithm

100

Lists [c], [f], and [0] include correct values of the number of occurrences

of the LHS symbols. Therefore, list [c]++[f]++[0] includes correct values of

the number of occurrences of the symbols of the grammar and the algorithm

correctly calculates the number of occurrences of the symbols of the grammar

and the newly-added symbol.

In addition, this newly-added non-terminal (<x>) will affect the multiplication

factors for the rule where this symbol (<x>) appears on the left hand side of the

rule. Suppose the LHS symbol of the affected rule is <sym_lhs>, whose index is

k, where 0≤k<n. Note that, <sym_lhs> = <x>. However, <sym_lhs> is on the

LHS of the rule, and <x> is a newly-added RHS symbol. The RHS symbols of the

affected rule are in sublist grammar3. The other symbols of the grammar are in

sublist grammar2. Note that, the multiplication factors for symbol <sym_lhs>

and symbols in grammar3 are affected by the newly-added non-terminal. The

multiplication factors for symbols in grammar2 will not change.

Therefore:

factorList_new
 = factor (grammar ++ [(“<x>”, n)])

 = factor (grammar2 ++ [(“<sym_lhs>”, k)] ++ grammar3 ++
 [(“<x>”, n)])

 = factor grammar2 ++ factor [(“<sym_lhs>”, k)] ++
 factor grammar3 ++ factor [(“<x>”, n)]

 = [c] ++ factor [(“<sym_lhs>”, k)] ++
 factor grammar3 ++ factor [(“<x>”, n)]
 ([c] is a list including previously calculated
 values representing the multiplication factors for
 the symbols in grammar2 which do not change.
 By the hypothesis, the multiplication factors for
 the symbols of the grammar have all been
 calculated correctly.)

 = [c] ++ [(occur_lhs[(“<sym_lhs>”, k)]) /
 (subsize [(“<sym_lhs>”, k)])] ++
 factor grammar3 ++ factor [(“<x>”, n)] (line 25)

3. Proofs of the ABF Algorithm

101

 (The multiplication factor of a LHS symbol is
 obtained by dividing the number of occurrences of
 the symbol on the left hand side of the rule by
 its sub-language size of that symbol.)

 = [c] ++ [d]++ factor grammar3 ++ factor [(“<x>”, n)]
 (d is a known value. The number of occurrences for
 the LHS symbol <sym_lhs> is available from above
 proof for occur_lhsList_new. The sub-language
 size for the symbol <sym_lhs> is available in step
 2.)

 = [c] ++ [d] ++ [e] ++ factor [(“<x>”, n)] (line 26)
 ([e] is a list including known values.
 grammar3 is a list including the RHS symbols of
 the affected rule. From line 26, the
 multiplication factors for the RHS symbols are the
 same as that of the LHS symbol. Therefore, each
 item in list [e] has the value d, which is the
 multiplication factor of symbol <sym_lhs>.

 = [c] ++ [d] ++ [e] ++ factor [(“<y>”, n)] (line 26)
 (<y> is the LHS non-terminal of the same rule as
 the newly-added symbol, <x>)

 = [c] ++ [d] ++ [e] ++ [f]
 (f is a known value, which is the multiplication
 factor of the symbol <y>.)

 (by the hypothesis, multiplication factors for the
 symbols of the grammar have been all calculated
 correctly. And the multiplication factor for <y>
 is not affected, let it be f.)

Lists [c], [d], [e], and [f] include correct multiplication factors for the n

symbols and the newly-added symbol. Therefore, list [c]++[d]++[e]++[f]

includes correct multiplication factors for the symbols of the grammar and the

algorithm correctly calculates the multiplication factors for the symbols of the

grammar and the new symbol.

Therefore, when adding one symbol on the Right-Hand-Side of the rule, the

algorithm correctly calculates the number of occurrences for the left-hand-side

3. Proofs of the ABF Algorithm

102

symbols and the multiplication factors for the right-hand-side symbols of the

grammar.

2. When adding a new rule to the grammar, the algorithm correctly calculates the

number of occurrences for the left-hand-side symbols of the grammar, i.e., the

new list of the number of occurrences for left-hand-side symbols of the grammar

will be obtained successfully,

occur_lhsList_new = occur_lhs (grammar ++ newRule)

Also, the multiplication factors for the right-hand-side symbols of the grammar will

be calculated correctly,

factorList_new = factor (grammar ++ newRule)

The new rule is expressed in list as follows:

newRule = [(“<new_r>”, n), (x, (n+k))],

where x is an expression of alternative(s) and/or sequence(s) of terminal(s)

and/or non-terminal(s). The indexes for <new_r> and x are n and (n+k), k≥1,

respectively.

Note that, the non-terminals on the right hand side of the newly-added rule

cannot be new because the algorithm should be “proper” (section 2.5), which

means every non-terminal has to be properly defined (appear on the left hand

side of the rule). So, it is not allowed to include any new non-terminal on the right

hand side of the newly-added rule without further definition for it.

There are two cases while adding a new rule.

1) There are only terminal(s) on the right hand side of the new rule. In this case,

the newly-added rule will not affect the number of occurrences for other LHS

symbols and the multiplication factors for other RHS symbols of the grammar.

3. Proofs of the ABF Algorithm

103

occur_lhsList_new
 = occur_lhs (grammar ++ newRule)

 = occur_lhs grammar ++ occur_lhs newRule
 (line 23 & definition of “++” and “:”)

 = occur_lhsList++ occur_lhs [(“<new_r>”, n), (x, (n+k))]
 (hypothesis)

 = occur_lhsList ++ occur_lhs [(“<new_r>”, n)] ++
 occur_lhs [(x, (n+k))]
 (line 23 & definition of “++” and “:”)

 = occur_lhsList ++ occur_lhs [(“<new_r>”, n)] ++ [0]
 (line 22)

 = occur_rhsList ++ [sumList [(occur_rhsList!h) *
 ((factor [(y, h)]) !0)|
 (y,h) <- grammar;
 y = <new_r>;
 isRHS !h]
 ++ [0] (line 21)
 (The number of occurrences for a LHS symbol is the
 sum of all the instances of that symbol occurring on
 the RHS of all rules, each multiplied by the
 multiplication factor.)

 = occur_lhsList ++ [sumList [d*e]] ++ [0]
 (d and e are known values representing the number of
 occurrences and the multiplication factor for the
 RHS symbol.
 From step 3, the number of occurrences for RHS
 symbols are available.
 By the hypothesis, the multiplication factors for
 the RHS symbols of the grammar are correctly
 calculated.)

 = occur_lhsList ++ [f] ++ [0] (definition of sumList)

 (f is a known value)

By the hypothesis, list occur_lhsList includes correct values for the number

of occurrences of the LHS symbols. Lists [f] and [0] include correct values

of the number of occurrences of the LHS symbols. Therefore, list

occur_lhsList++[f]++[0] includes correct values of the number of

3. Proofs of the ABF Algorithm

104

occurrences of the symbols of the grammar and the new rule. And the algorithm

correctly calculates the values of the number of occurrences of the symbols of

the grammar and the newly-added rule.

factorList_new
 = factor (grammar ++ newRule)

 = factor grammar ++ factor newRule

 (line 27 & definition of “++” and “:”)

 = factorList ++ factor [(“<new_r>”, n), (x, (n+k))]
 (hypothesis)

 = factorList ++ factor [(“<new_r>”, n)] ++
 factor [(x, (n+k))]
 (line 27 & definition of “++” and “:”)

 = factorList ++ [(occur_lhs [(“<new_r>”, n)])!0 /
 (subsizeList!n)]
 ++ factor [(x, (n+k))] (line 25)
 (The multiplication factor of a LHS symbol
 is obtained by dividing the number of occurrences
 of the symbol on the left hand side of the rule by
 its subsize of that symbol.)

= factorList ++ [c] ++ factor [(x, (n+k))]
 (c is a known value.
 The number of occurrences of the LHS symbol
 “<new_r>” is available in the above proof for
 occur_lhs.
 The subsizeList is available in step 2.)

 = factorList ++ [c] ++ [d] (line 26)
 (list [d] includes known values that represent
 the multiplication factors for the RHS symbols of
 the new rule. The multiplication factors for the
 RHS symbols are the same as that of the LHS
 symbol, i.e., c.)

By the hypothesis, the list factorList includes correct multiplication factors for

the n symbols of the grammar. Lists [c] and [d] include correct multiplication

factors for the symbols of the newly-added rule. Therefore, list

factorList++[c]++[d] includes correct multiplication factors for the n

3. Proofs of the ABF Algorithm

105

symbols of the grammar and the new rule. And the algorithm correctly calculates

the multiplication factors for the symbols of the grammar and the newly-added

rule.

Therefore, adding one new rule with only terminals on the right hand side, the

algorithm correctly calculates the number of occurrences for the left-hand-side

symbols and the multiplication factors for the right-hand-side symbols of the

grammar.

2) The right hand side of the new rule includes non-terminal(s). In this case, the

newly-added rule will affect the number of occurrences of the LHS symbol(s) and

the multiplication factors for the rule(s) where the non-terminal(s) (on the right

hand side of the new rule) appear on the left hand side of the rule(s). The

number of occurrences and the multiplication factors for other symbols will not

change. So, if the values of the number of occurrences and the multiplication

factors for the new rule and the affected symbol(s) are calculated correctly, the

algorithm calculates the number of occurrences for the LHS symbols and the

multiplication factors for the RHS symbols of the grammar correctly.

Suppose the affected LHS symbol(s) are in list sym_lhs, and the RHS symbol(s)

of the affected rule(s) are in list sym_rhs. Note that, list sym_lhs actually

includes the same non-terminals of the right hand side of the new rule. The other

symbols of the grammar are in list grammar1. And the number of occurrences

and the multiplication factors for the symbols in grammar1 will not change.

Therefore:

3. Proofs of the ABF Algorithm

106

occur_lhsList_new
 = occur_lhs (grammar ++ newRule)

 = occur_lhs (grammar1 ++ sym_lhs ++ sym_rhs ++ newRule)

 = occur_lhs grammar1 ++ occur_lhs sym_lhs ++
 occur_lhs sym_rhs ++
 occur_lhs [(“<new_r>”, n), (x, (n+k))]
 (line 23 & definition of “++” and “:”)

 = [c] ++ occur_lhs sym_lhs ++ occur_lhs sym_rhs ++
 occur_lhs [(“<new_r>”, n)] ++ occur_lhs [(x, (n+k))]
 ([c] is a list including previously calculated

values of the number of occurrences for the LHS
symbols.

 By the hypothesis, the number of occurrences for
the LHS symbols of the grammar have all been
correctly calculated. And that for the list
grammar1 are not affected by the newly-added
rule.)

 = [c] ++ occur_lhs sym_lhs ++ [0] ++
 occur_lhs [(“<new_r>”, n)] ++ occur_lhs [(x, (n+k))]
 (line 22)

(For RHS symbols, the values of the number of
occurrences for LHS symbols are 0.)

 = [c] ++ [sumList [(occur_rhsList !h) *
 ((factor [(y, h)])!0)]
 ++ [0] ++

 occur_lhs [(“<new_r>”, n)] ++ occur_lhs [(x, (n+k))]
 (line 21)

 (The number of occurrences for a LHS symbol is the
sum of all the instances of that symbol occurring
on the RHS of all rules, each multiplied by the
multiplication factor.)

 = [c] ++ [sumList [d * e]] ++ [0] ++
 occur_lhs [(“<new_r>”, n)] ++ occur_lhs [(x, (n+k))]

 (d and e are known values representing the number
of occurrences and the multiplication factor for
the RHS symbols.

 From step 3, the number of occurrences for RHS
symbols is available.

 By the hypothesis, the multiplication factors for
the RHS symbols of the grammar are correctly
calculated.)

3. Proofs of the ABF Algorithm

107

 = [c] ++ [f] ++ [0] ++
 occur_lhs [(“<new_r>”, n)] ++ occur_lhs [(x, (n+k))]

 (definition of sumList)
 (f is a known value)

 = [c] ++ [f] ++ [0] ++
 [sumList [(occur_rhsList !j)*((factor [(y, j)]) !0)]
 ++ occur_lhs [(x, (n+k))]
 (The number of occurrences for a LHS symbol is the

sum of all the instances of that symbol occurring
on the RHS of all rules, each multiplied by the
multiplication factor.)

 = [c] ++ [f] ++ [0] ++

 [sumList [r*t]] ++ occur_lhs [(x, (n+k))]
 (r and t are known values representing the number

of occurrences and the multiplication factor for
the RHS symbols.

 From step 3, the number of occurrences for RHS
symbols is available.

 By the hypothesis, the multiplication factors for
the RHS symbols of the grammar are correctly
calculated.)

 = [c] ++ [f] ++ [0] ++
 [s] ++ occur_lhs [(x, (n+k))] (definition of sumList)

 (s is a known value)

 = [c] ++ [f] ++ [0] ++ [s] ++ [0] (line 22)

 (For RHS symbols, the values of the number of
occurrences for LHS symbols are 0.)

Lists [c], [f], [0], [s], and [0] include the correct values for the

number of occurrences of the LHS symbols of the grammar and the newly-added

rule with non-terminals on the right hand side of the rule. Therefore, list

[c]++[f]++[0]++[s]++[0] includes correct values of the number of

occurrences for the LHS symbols of the grammar and the new rule. And the

algorithm correctly calculates the number of occurrences for the LHS symbols of

the grammar and the newly-added rule with non-terminals on the right hand side

of the rule.

Therefore:

3. Proofs of the ABF Algorithm

108

factorList_new
 = factor (grammar ++ newRule)

 = factor (grammar1 ++ sym_lhs ++ sym_rhs ++ newRule)

 = factor grammar1 ++ factor sym_lhs ++ factor sym_rhs ++
 factor [(“<new_r>”, n), (x, (n+k))]
 (line 27 & definition of “++” and “:”)

 = [c] ++ factor sym_lhs ++ factor sym_rhs ++
 factor [(“<new_r>”, n)] ++ factor [(x, (n+k))]
 ([c] is a list including previously calculated

multiplication factors for the symbols.
 By the hypothesis, the multiplication factors for

the symbols of the grammar have all been
correctly calculated. And that for the list
grammar1 are not affected by the newly-added
rule.)

 = [c] ++ [(occur_lhs sym_lhs) / (subsize <sym_lhs)] ++
 factor sym_rhs ++
 factor [(“<new_r>”, n)] ++ factor [(x, (n+k))]
 (line 25)

 (The multiplication factor of a LHS symbol is
obtained by dividing the number of occurrences
of the symbol on the left hand side of the rule
by its sub-language size of that symbol.)

 = [c] ++ [d] ++ factor sym_rhs ++
 factor [(“<new_r>”, n)] ++ factor [(x, (n+k))]

 (d is a known value.
 The number of occurrences for the LHS symbols in

list sym_lhs is available from above proof for
occur_lhsList_new.

 The subsizes for the symbols in list
sym_lhs are available in step 2.)

 = [c] ++ [d] ++ [e] ++
 factor [(“<new_r>”, n)] ++ factor [(x, (n+k))]
 (line 26)
 ([e] is a list including known values

representing the multiplication factors of the
affected RHS symbols.

 sym_rhs is a list including the RHS symbols of
the affected rule(s). From line 26, the
multiplication factors for the RHS symbols are
the same as that of the LHS symbol.)

3. Proofs of the ABF Algorithm

109

 = [c] ++ [d] ++ [e] ++ [(occur_lhs [(“<new_r>”, n)] /
 (subsize [(“<new_r>”, n)])]
 ++ factor [(x, (n+k))]
 (line 25)

 (The multiplication factor of a LHS symbol is
obtained by dividing the number of occurrences
of the symbol on the left hand side of the rule
by its subsize of that symbol.)

 = [c] ++ [d] ++ [e] ++ [f] ++ factor [(x, (n+k))]

 (f is a known value.
 The number of occurrences for the LHS symbol

<new_r> is available from above proof for
occur_lhsList_new.

 The sub-language size for the symbols is
available in step 2.)

 = [c] ++ [d] ++ [e] ++ [f] ++ [g]
 ([g] is a list including known values,
 representing the multiplication factors of the
 RHS symbols of the new rule.
 From line 26, the multiplication factors for the
 RHS symbols are the same as that of the LHS
 symbol.)

Lists [c], [d], [e], [f], and [g] include correct multiplication factors of

the symbols. List [c]++[d]++[e]++[f]++[g] includes correct multiplication

factors of the symbols and the new symbol.

Therefore, the algorithm correctly calculates the multiplication factors of the

symbols of the grammar and the newly-added rule with non-terminals on the right

hand side of the rule.

Therefore, when adding a new rule to the grammar, the algorithm correctly

calculates the number of occurrences for the left-hand-side symbols and the

multiplication factors for the right-hand-side symbols of the grammar.

3. Proofs of the ABF Algorithm

110

(5) Proof of correctness for step 5, step 6, and step 7 (lines 30 – 33):

These steps use the intermediate results from the above four steps (steps 1 to 4)

with arithmetic calculation based on the definition of the Average Branching

Factor (in section 2.4). Since we have proved the correctness of the steps 1 to 4,

steps 5 to 7 are correct.

3.5 Proof of Complexity

We consider the worst-case time complexity for the ABF algorithm with respect to

the size of the grammar.

We assume the following operations require a constant amount of time.

(1) Arithmetic basic operation: +, -, *, /.

(2) Comparison operation: >, ≥, <, ≤, =.

(3) Logic operation: and, or, not.

(4) Assignment expression.

(5) Reading in a character from a text file.

Since there are seven steps in the algorithm ABF which are executed in

sequence, the worst of the time complexity among the seven steps will be the

worst-case time complexity for the algorithm ABF.

Referring to the Miranda code in section 3.2, the worst-case time complexity for

the algorithm ABF is analyzed for each component function (steps of the

algorithm). Suppose there are n symbols in the grammar, i.e., the length of the

list grammar is n, the worst-case time complexity is analyzed as follows:

1) Worst-case time complexity for step 1 (component function bf, lines 1 – 7):

Step 1 calculates the branching factors for all of the symbols of the grammar and

the results are stored in the list bfList.

3. Proofs of the ABF Algorithm

111

Line 5 deals with the list grammar by processing elements (symbols) one by one.

In each round of iteration, one symbol is processed and the length of the

grammar list decreases by 1 until it reaches 0. Therefore, it takes O(n) time to

deal with the n symbols of the grammar. Then we need to consider the cost of

calculating the branching factor for each symbol, which occurs in lines 1, 2, 3,

and 4.

Lines 1 and 2 are base cases of the component function bf, which return

constant values and execute in constant time O(1).

Line 3 searches the grammar list to find a non-terminal and returns its branching

factor. There are n symbols in the grammar. In the worst case, the search of the

grammar list will take O(n) time. Also, it may mutually recursive call the

component function bf in Line 4.

Line 4 calls line 6 to sum up the branching factors for all leftmost-alternatives of

the rule, which costs O(n) time.

Line 7 runs the whole program.

The maximum cost for calculating the branching factor for one symbol involves

the recursive calls in lines 3 and 4, which costs O(n*n) time. Therefore, the worst-

case time complexity for step 1 to calculate the branching factors for n symbols of

the grammar is O(n* n*n) = O(n3) .

2) Worst-case time complexity for step 2 (component function subsize, lines 8

– 14):

Step 2 calculates the subsizes for all symbols of the grammar and the results are

stored in the list subsizeList.

Line 12 deals with the list grammar by processing elements (symbols) one by

one. In each round of iteration, one symbol is processed and the length of the list

3. Proofs of the ABF Algorithm

112

decreases by 1 until it reaches 0. Therefore, it takes O(n) time to deal with the n

symbols of the grammar. Then we need to consider the cost for calculating the

subsize for one symbol, which occurs in lines 8, 9, 10, and 11.

Lines 8 and 9 are base cases for the component function subsize, which return

constant values and execute in constant time O(1).

Line 10 searches the grammar list to find a non-terminal and returns its subsize

for the current symbol. The search in grammar list takes O(n) time. Also, it

mutually recursive calls the algorithm in line 11.

Line 11 calls line 6 and line 13 to sum the product of the subsizes of all the

sequences of the rule. The worst-case cost for sumList and productList is O(n)

each. The cost for line 11 is O(n*n).

Line 14 runs the whole program.

The maximum cost for calculating the subsize for one symbol involves the mutual

recursive calls in lines 10 and 11, which take O(n*n*n) time. Therefore, the worst-

case time complexity for step 2 to calculate the subsizes for n symbols of the

grammar is O(n* n*n*n) = O(n4) .

3) Worst-case time complexity for step 3 (component function occur_rhs, lines

15 – 18):

Step 3 calculates the number of occurrences for the symbols on the Right Hand

Side of the rules and the results are stored in the list occur_rhsList.

Line 17 deals with list grammar by processing elements (symbols) one by one. In

each round of iteration, one symbol is processed and the length of the list

decreases by 1 until it reaches 0. Therefore, it takes O(n) time to deal with the n

symbols of the grammar. Then we need to consider the cost for calculating the

number of occurrences for one RHS symbol, which occurs in lines 15 and 16.

3. Proofs of the ABF Algorithm

113

Line 15 is the base case for the component function occur_rhs, which returns a

constant value and executes constant time O(1).

Line 16 calls the function productList (line 13) to calculate the number of

occurrences for one RHS symbol by calculating the product of the subsize of

each RHS symbol in the sequence. The subsizeList is available in step 2.

Function productList(line 13) costs O(n) time.

The maximum cost of calculating the number of occurrences for one RHS symbol

occurs in line 16, which takes O(n) time. Therefore, the worst-case time

complexity for step 3, to calculate the number of occurrences for all the RHS

symbols of the grammar, is O(n* n) = O(n2) .

4) Worst-case time complexity for step 4 (component function occur_lhs and

factor, lines 19 – 28):

Step 4 calculates the number of occurrences for each symbol on the left hand

side of the rules, and calculates the multiplication factors for the symbols on the

right hand side of the rules.

Referring to the program in sub-section 3.2, lines 23 and 27 deal with list

grammar for the number of occurrences for LHS symbols and multiplication

factors for RHS symbols by processing elements (symbols) one by one. In each

round of the iteration, one symbol is processed and the length of the list

decreases by 1 until it reaches 0. Therefore, the component functions

occur_lhs and factor both need O(n) time to deal with the n symbols of the

grammar. Then we need to consider the cost for processing one symbol in the

two component functions, which occurs in lines 19, 20, 21, 22, 24, 25, and 26.

Lines 19 and 20 are base cases of the component function occur_lhs, which

return constant values and execute in constant time O(1).

3. Proofs of the ABF Algorithm

114

In line 22, the component function occur_lhs directly returns a constant value

with a cost of constant time O(1).

Line 21 calls the function sumList to sum the number of occurrences of the

RHS symbols, each multiplied by its multiplication factor. The function sumList

takes O(n) time. The number of occurrences of the RHS symbols are available in

step 3, so it needs constant time to retrieve the value (occur_rhsList !h).

The calculation for multiplication factor occurs in lines 24, 25, and 26. In line 24,

the component function factor returns a constant value at a cost of constant

time O(1). Line 26 searches grammar list for the LHS symbol in the same rule as

the current symbol and returns its multiplication factor, which costs O(n) time in

the worst case.

The multiplication factor for each LHS symbol is calculated from the number of

occurrences of the LHS symbol divided by its subsize (in line 25). Line 25

invokes recursion by calling component function occur_lhs. Since the grammar

is non-recursive, each recursive call occurs in component function occur_lhs

and factor will call for a different symbol. There are n symbols in the grammar,

so the recursion will occur O(n) times.

In step 4, the two component functions occur_lhs and factor are mutually

recursive. The maximum cost for manipulating one symbol in step 4 occurs in

lines 21, and 25, or line 26, which costs O(n*n) time in the worst case. Therefore,

the worst-case time complexity for step 4 to calculate the number of occurrences

for all the LHS symbols and the multiplication factors for the RHS symbols of the

grammar is O(n* n * n) = O(n3) .

5) Worst-case time complexity for step 5:

Step 5 goes through all the symbols of the grammar and labels the decision

points. There are n symbols in the grammar. The worst-time complexity for step 5

is O(n).

3. Proofs of the ABF Algorithm

115

6) Worst-case time complexity for step 6:

Step 6 tabulates the obtained values for the decision points. For a grammar with

n symbols, the worst-time complexity for step 6 is O(n).

7) Worst-case time complexity for step 7:

Step 7 involves basic arithmetic operations, which have a worst-case time

complexity of O(1).

In summary, the worst-case costs for steps 1 to 7 are: O(n3), O(n4), O(n2), O(n3),

O(n), O(n), and O(1) respectively. The seven steps are executed in sequence in

the ABF algorithm. Therefore, the worst-case time complexity for the algorithm

ABF is the maximum cost of the seven steps, i.e., O(n4).

4. Semantic Constraint Grammars (SCG)

116

4. SEMANTIC CONSTRAINT GRAMMARS (SCG)

As discussed in sub-sections 1.2.2 and 2.4, several researchers have argued

that grammars with lower ABFs are likely to have better recognition accuracy

than those with higher ABFs (Hauptmann et. al., 1988), (Young et. al., 1989),

(Young, 1990), (Waibel and Lee, 1990), (Edelkamp and Korf, 1998), and

(Morimoto and Takahashi, 2008, 2009). In this section, we provide further

evidence that this is the case by modifying a grammar to syntactically encode

semantic constraints, and thereby reduce language size and ABF, and then we

compare the ABFs of the original grammar and the “semantically constrained”

version of it with experimental results of speech recognition accuracy which were

obtained as part of the candidate’s Master’s work (Shi, 2003b).

We begin by defining context-free grammars and semantic constraint grammars,

and provide examples of each of them. We then analyze the two grammars using

various grammar metrics including the ABF. We compare the results of the

analysis with the results of the experiment conducted as part of the Master’s work.

We conclude that encoding semantic constraints in the syntax of a grammar

reduces the ABF and increases speech recognition accuracy. This work supports

the claim that semantic constraint grammars may be a useful approach in speech

recognition grammar design. The work also adds evidence to the claim, made by

others, that the ABF is a good indicator of speech recognition accuracy.

4. Semantic Constraint Grammars (SCG)

117

4.1 Context-Free Grammars (CFG)

A grammar defines a language by identifying the set of valid sequences of

terminals (sentences of the language). Formally, a Context Free Grammar (CFG)

G is a quadruple G = (N, T, P, S), where:

(1) N is a finite set of non-terminal symbols,

(2) T is a finite set of terminal symbols, N ∩ T = Ø,

(3) P is a finite set of production rules,

 (P: <N> =(N T) *),

(4) S is the start symbol, S N.

A rule in a CFG has a non-terminal symbol representing a single atomic

grammatical category on the left-hand side, and a sequence of non-terminals and

terminals (words) on the right-hand side (Moore, 1999) and (Amaya et al., 1999).

The single non-terminal on the left-hand side of a CFG rule can be freely

replaced by the right-side symbols, and this gives rise to the name “Context-Free

Grammar” (Blackburn and Striegnitz, 2002).

Figure 4.1.1 shows a sample CFG grammar written in JSGF (Sun, 2000), which

defines a language including sentences, such as a boy opened the door.

<S> = <NP> <VP>;

<NP> = <Det> <N>;

<VP> = <V> <NP>;

<Det> = the | a;

<N> = boy | door | window;

<V> = opened | closed;

 Figure 4.1.1: a sample CFG

4. Semantic Constraint Grammars (SCG)

118

4.2 Semantic Constraint Grammars (SCG)

Language features have been effectively studied and applied in language models

to improve speech-recognition performance by reducing the number of possible

utterances and prioritizing utterance hypotheses. Takezawa et al. (1991) state

that the accuracy of speech recognition heavily depends on the type of linguistic

knowledge used. Seneff et al. (1995), Hermannsdottir (1996), Moore (1999), and

Harper et al. (2000) claim that “good” language features are necessary to

achieve high accuracy in speech recognition with moderate to large vocabularies

(hundreds to tens of thousands of words).

Syntax and semantics are two important linguistic components. Syntax defines

the way in which linguistic elements (words) are put together to form constituents

(as phrases or clauses). Semantics is concerned with meaning. It is possible that

a sentence is syntactically correct but semantically incorrect. For example, the

sentence a window closed a door is syntactically correct, with respect to

the grammar above in Figure 4.1.1, because it complies with the syntax of

 <s> = <NP> <VP>;

However, it does not make sense in the real world. Therefore, it is reasonable to

expect that the exclusion of the semantically incorrect utterances (although may

be syntactically correct) in a speech application may improve the recognition

accuracy.

 A Unification Grammar (UG) is an augmented or annotated Context-Free

Grammar (CFG) by applying some restriction properties to a CFG in a syntactic

notation. With the constraints unified to the grammar, a UG is more expressive

and more concise than a traditional CFG in representing semantics (Moore,

1999). With the constraints, a UG can help reduce the system’s perplexity, hence

improve the recognition accuracy.

The following is an example rule of a UG from (Moore, 1999):

4. Semantic Constraint Grammars (SCG)

119

S: [tensed=yes]  NP: [person=P, num= N]

 VP: [tensed=yes, person=P, num=N]

This example illustrates the use of feature constraints by a UG (such as,

person=P, num=N). Thus, the UG guarantees that the person and number

features of Noun Phrase (NP) and Verb Phrase (VP) must agree with

each other. For example, the sentence He is a student is correct by this

grammar, whereas the sentence He are students is not.

Frost (2002) proposed a Semantic Constraint Grammar (SCG), which encodes

semantic constraints directly in the syntax of a traditional Context-Free Grammar

(CFG). The integration of semantic constraints in the syntactic rules naturally

reduces the language size, therefore should improve speech-recognition

accuracy. For example, the query which moon discovered mars may be

accepted by a simple CFG, which is initially used to define a language for a

database query processor, which includes the rule:

<question> = which <nounphrase> <verbphrase>;

However, in the specified domain, moons cannot discover mars. Therefore, this

query is syntactically correct, but semantically incorrect. We can replace the

syntactic rule above with a SCG rule as follows:

<question> =

 which <animate_nounphrase> <animate_verbphrase>

 | which <inanimate_nounphrase> <inanimate_verbphrase>;

This SCG rule requires the agreement of animate_nounphrase with

animate_verbphrase and inanimate_nounphrase with

inanimate_verbphrase. Therefore, the example query which moon

discovered mars will not be accepted by the SCG because the inanimate

noun moon needs an inanimate verb phrase while discovered mars is an

4. Semantic Constraint Grammars (SCG)

120

animate verb phrase. In this way, semantically incorrect utterances are excluded

by the SCG, and the perplexity of the language is reduced, so that speech-

recognition accuracy is improved.

The disadvantage of the SCG is the increase in the size of the grammar, owing to

the inclusion of semantic constraints in the syntax. The larger size of the

grammar implies more difficulty in grammar design and makes the speech

system more difficult to maintain. However, this disadvantage can be overcome

to some extent by subdividing a large complex SCG grammar into small SCGs

covering smaller domains. This technique is discussed in section 6, with respect

to a Public Domain SpeechWeb, in which several applications covering small

domains with small SCGs are hyperlinked, so that the user can “browse” a

SpeechWeb by navigating through a web of hyperlinked small speech

applications.

4.3 An Example of a CFG and a Related SCG

To further explain and compare Context-Free Grammars (CFGs) and Semantic

Constraint Grammars (SCGs), we present examples next.

The sample CFG and SCG are constructed for the same domain (the very small

subset of the Solar System), with similar vocabularies. However, the SCG

defines a smaller language than that defined by the CFG. Although both

languages include queries such as who discovered phobos, which moon

orbits mars, etc. However, as discussed in sub-section 4.2, a query such as

which moon discovered mars is covered by the CFG but is not covered by

the SCG.

The example CFG and SCG are written in Java Speech Grammar Format (JSGF)

(Sun, 2000).

4. Semantic Constraint Grammars (SCG)

121

4.3.1 The example CFG

The example CFG (Figure 4.3.1) defines three types of queries with respect to

the solar system and a group of simple greetings as follows:

(1) The queries starting with the linking verbs, such as is earth a

planet and is mars discovered by hall.

(2) Questions starting with general question words, such as does titan

orbit mars or did bernard discover jupiter.

(3) Queries starting with special question words such as: how many

moons orbit jupiter or which moons orbit Jupiter.

(4) The CFG also includes some simple greetings, such as hello, and

goodbye.

Note that, the following queries will also be accepted by the CFG grammar for

their correct syntax, even though they are semantically incorrect:

 which man orbits titan?

 which moon discovered earth?

An example CFG in JSGF format is shown in Figure 4.3.1. We include the rule

numbers for reference, although they are not part of the JSGF notation.

4. Semantic Constraint Grammars (SCG)

122

/* solar_CFG.gram */
grammar solar_CFG ;

1. public <s>

 = <linkingvb> <termph> [<transvb> by] <termph>

 | <linkingvb> <termph> <termph>

 | <quest> <sent>

 | (who |what) <verbph>

 | (which | how many) <nouncla> <verbph>

 | <simple>;

2. <sent>

 = <termph> <verbph>;

3. <termph>

 = <stermph>

 | <stermph> (and | or) <stermph>;

4. <stermph>

 = <pnoun>

 | <detph>;

5. <verbph>

 = <transvbph>

 | <intransvb>;

6. <transvbph>

 = (<transvb> | <linkingvb> <transvb> by) <termph>;

7. <intransvb>

 = spin | spins | spun | exist | exists | existed;

8. <transvb>

 = orbit | orbits | orbited | discover | discovers

 | discovered | find | finds | found;

9. <detph> = <det> <nouncla>;

10. <nouncla>

 = <adj> <cnoun>

 | <cnoun>;

11. <cnoun>

4. Semantic Constraint Grammars (SCG)

123

 = people | planet | moon;

12. <pnoun>

 = bernard | bond | cassini | dollfus | fountain

 | galileo | hall | herschel | huygens | kowal

 | kuiper | arsen | lassell | melotte | nicholson

 | perrine | pickering | earth | jupiter | mars

 | mercury | neptune | pluto | saturn | uranus

 | venus | almathea | ariel |callisto | charon

 | deimos | dione | enceladus | europa | ganymede

 | hyperion | iapetus | io | janus | jupitereighth

 | jupitereleventh | jupiterfourteenth | jupiterninth

 | jupiterseventh | jupitersixth | jupitertenth

 | jupiterthirteenth | jupitertwelfth | luna | mimas

 | miranda | nereid | oberon | phobos | phoebe | rhea

 | saturnfirst | tethys | titan | titania | triton

 | umbriel;

13. <det>

 = a | an | every | one | two | three | four;

14. <adj>

 = red | atmospheric;

15. <linkingvb>

 = is | was | are | were ;

16. <quest>

 = did | do | does;

17. <simple>

 = hello | hi there | how are you | fine, thanks

 | goodbye | bye- bye ;

Figure 4.3.1: example CFG with the domain of the Solar system

4. Semantic Constraint Grammars (SCG)

124

4.3.2 The example SCG

As discussed in sub-section 4.2, a SCG specifies semantics as well as syntax by

encoding semantic constraints in the syntactic rules. The example SCG given

below in Figure 4.3.2 is defined with the same domain (the small subset of the

solar system) and a similar dictionary to the CFG in Figure 4.3.1. Similar to the

CFG, the SCG also covers three types of queries in the solar system and a group

of simple greetings as follows:

(1) Queries starting with the linking words. For example, was mars

discovered by Hall, or is jupiter a planet.

(2) Queries starting with general question words, such as, did hall

discover mars, and does titan orbit earth.

(3) Queries starting with special question words, such as how many

moons orbit earth, or who discovered jupiter.

(4) Simple greetings like hello and goodbye.

Figure 4.3.2 shows that a SCG grammar requires semantic agreement among

the components of each sentence. In particular, some actions can only be

initiated by or applied to animate objects and some actions can only initiated by

or applied to inanimate objects. Only when the components of an action agree in

semantics as well as syntax, is the sentence covered by the SCG grammar as a

correct utterance. Therefore, the queries such as which moon discovered

venus will not be accepted by a SCG recognizer.

The example SCG is given in Figure 4.3.2. The grammar is written in JSGF. The

rule numbers are included for reference:

4. Semantic Constraint Grammars (SCG)

125

/* solar_SCG.gram */

grammar solar_SCG;

1. public <s>

 = <linkingvb> <termphrase_verbphrase>

 | is <pnoun> <pnoun>

 | is <pnoun> (a|an) <nouncla>

 | is <pnoun> (a|an) <nouncla> or (a|an) <nouncla>

 | <quest> <sent>

 | (who) <animate_verbph>

 | (what) <inanimate_verbph>

 | (which | how many) <nouncla_verbph>

 | <simple>;

2. <termphrase_verbphrase>

 = <nonhuman_termph_planet> <transvb_by_termph>

 | <nonhuman_termph_moon> <animate_transvb> by

 <human_termph>;

3. <transvb_by_termph>

 = <animate_transvb> by <human_termph>

 | <inanimate_transvb> by <nonhuman_termph_moon>;

4. <sent>

 = <human_termph> <animate_verbph>

 | <nonhuman_termph_moon> <inanimate_verbph_active>

 | <nonhuman_termph_planet> <inanimate_verbph_passive>;

5. <nouncla_verbph>

 = <human_nouncla> <animate_verbph>

 | <nonhuman_nouncla_moon> <animate_verbph_passive>

 | <nonhuman_nouncla_planet> <animate_verbph_passive>

 | <nonhuman_nouncla_moon> <inanimate_verbph_active>

 | <nonhuman_nouncla_planet> <inanimate_verbph_passive>;

4. Semantic Constraint Grammars (SCG)

126

6. <inanimate_verbph>

 = <inanimate_verbph_active>

 | <inanimate_verbph_passive>;

7. <human_stermph>

 = <human_pnoun>

 | <human_detph>;

8. <nonhuman_stermph_planet>

 = <nonhuman_pnoun_planet>

 | <nonhuman_detph_planet>;

9. <nonhuman_stermph_moon>

 = <nonhuman_pnoun_moon>

 | <nonhuman_detph_moon>;

10. <human_termph>

 = <human_stermph>

 | <human_stermph> (and|or) <human_stermph>;

11. <nonhuman_termph_planet>

 = <nonhuman_stermph_planet>

 | <nonhuman_stermph_planet> (and|or)

 <nonhuman_stermph_planet> ;

12. <nonhuman_termph_moon>

 = <nonhuman_stermph_moon>

 | <nonhuman_stermph_moon> (and|or)

 <nonhuman_stermph_moon>;

13. <animate_verbph>

 = <animate_transvbph>;

14. <inanimate_verbph_active>

 = <inanimate_transvbph_active>

 | <intransvb>;

15. <inanimate_verbph_passive>

 = <inanimate_transvbph_passive>

 | <intransvb>;

4. Semantic Constraint Grammars (SCG)

127

16. <animate_verbph_passive>

 = <linkingvb> <animate_transvb> by <human_termph>;

17. <animate_transvbph>

 = <animate_transvb>

 (<nonhuman_termph_planet> | <nonhuman_termph_moon>);

18. <inanimate_transvbph_active>

 = <inanimate_transvb> <nonhuman_termph_planet>;

19. <inanimate_transvbph_passive>

 = <linkingvb> <inanimate_transvb> by

 <nonhuman_termph_moon>;

20. <human_detph>

 = <det> <human_nouncla>;

21. <nonhuman_detph_planet>

 = <det> <nonhuman_nouncla_planet>;

22. <nonhuman_detph_moon>

 = <det> <nonhuman_nouncla_moon>;

23. <nouncla>

 = <human_nouncla>

 | <nonhuman_nouncla_planet>

 | <nonhuman_nouncla_moon>;

24. <human_nouncla>

 = <human_cnoun>;

25. <nonhuman_nouncla_planet>

 = <adj> <nonhuman_cnoun_planet>

 | <nonhuman_cnoun_planet>;

26. <nonhuman_nouncla_moon>

 = <adj> <nonhuman_cnoun_moon>

 | <nonhuman_cnoun_moon>;

27. <pnoun>

 = <nonhuman_pnoun_planet>

 | <nonhuman_pnoun_moon>

 | <human_pnoun>;

4. Semantic Constraint Grammars (SCG)

128

28. <human_cnoun>

 = people;

29. <nonhuman_cnoun_planet>

 = planet;

30. <nonhuman_cnoun_moon>

 = moon;

31. <intransvb>

 = spin | spins | spun | exist |exists | existed ;

32. <animate_transvb>

 = discover | discovers | discovered | find | finds |

found;

33. <inanimate_transvb>

 = orbit | orbits | orbited;

34. <nonhuman_pnoun_planet>

 = earth | jupiter | mars | mercury | neptune | Pluto

 | saturn | uranus | venus ;

35. <nonhuman_pnoun_moon>

 = almathea | ariel |callisto | charon | deimos | dione

 | enceladus | europa | ganymede | hyperion | iapetus

 | io | janus | jupitereighth | jupitereleventh

 | jupiterfourteenth | jupiterninth | jupiterseventh

 | jupitersixth | jupitertenth | jupiterthirteenth

 | jupitertwelfth | luna | mimas| miranda | nereid

 | oberon | phobos | phoebe | rhea | saturnfirst

 | tethys | titan | titania | triton | umbriel ;

36. <human_pnoun>

 = bernard | bond | cassini | dollfus | fountain

 | galileo | hall | herschel | huygens | kowal | kuiper

 | larsen | lassell | melotte | Nicholson

 | perrine | pickering;

37. <adj>

 = red | atmospheric;

4. Semantic Constraint Grammars (SCG)

129

38. <det>

 = a | an | every | one | two | three | four;

39. <linkingvb>

 = is | was | are | were;

40. <quest>

 = did | do | does;

41. <simple>

 = hello | hi, there | how are you | good, thanks

 | fine, thanks | have a good day | goodbye | bye-bye;

Figure 4.3.2: a sample SCG with the domain of the Solar system

4. Semantic Constraint Grammars (SCG)

130

4.4 Analyze the CFG and SCG Using Grammar Metrics

To analyze and compare the CFG and the SCG using the grammar metrics

discussed in section 2, we used the two grammars as input to the ABF

application described in sub-section 2.9. The results for the grammars given in

Table 2.9 are shown in Table 4.4 below:

Table 4.4: grammar metrics of sample CFG and SCG

Grammar # of
rules

of
symbols

of Non-
terminals

of
Terminals

of
Decision
Points

Language
Size

ABF

CFG 17 160 50 110 19 1.73*1011 52.42
SCG 41 262 133 129 53 1.51*109 33.99

Table 4.4 shows that:

(1) The SCG is larger than the CFG.

With the same domain and the same lexicon, the CFG includes 17 rules, and we

need 41 rules to define the corresponding SCG. Consequently, the SCG includes

more symbols than the CFG. For example, the CFG has 160 symbols, which

include 50 non-terminals and 110 terminals. The corresponding SCG uses 262

symbols in definition, among which 133 are non-terminals, and 129 are terminals.

In addition, the SCG has more decision points (i.e., 53) than the CFG (i.e., 19).

The reason for the larger grammar of SCG than CFG is that the SCG grammar

includes more constraints than the CFG grammar, which needs more rules and

symbols (terminals and/or non-terminals) in the definition.

For example, the CFG (Figure 4.3.1) defines a term phrase as follows:

3. <termph>

 = <stermph>

 | <stermph> (and | or) <stermph>;

4. Semantic Constraint Grammars (SCG)

131

However, the SCG (Figure 4.3.2) specifies the term phrase with respect to the

semantic types (constraints), as follows:

10. <human_termph>

 = <human_stermph>

 | <human_stermph> (and|or) <human_stermph>;

11. <nonhuman_termph_planet>

 = <nonhuman_stermph_planet>

 | <nonhuman_stermph_planet> (and|or)

 <nonhuman_stermph_planet>;

12. <nonhuman_termph_moon>

 = <nonhuman_stermph_moon>

 | <nonhuman_stermph_moon> (and|or)

 <nonhuman_stermph_moon>;

In the above example, rule 3 of the example CFG (Figure 4.3.1) includes 6

symbols, 4 non-terminals, and 2 terminals while defining a term phrase. However,

the example SCG (Figure 4.3.2) needs 3 rules (rules 10, 11, 12), 18 symbols, 12

non-terminals, and 6 terminals to define a term phrase.

Therefore, a SCG may include more symbols (terminals and/or non-terminals)

than a CFG with the same vocabulary.

(2) The SCG defines a smaller language than the CFG.

The size of the language defined by the SCG is 1.51*109, while the language size

defined by the CFG is 1.73*1011. With the same domain and vocabulary, the

CFG defines a language 114 times larger than the SCG.

4. Semantic Constraint Grammars (SCG)

132

(3) The ABF of the SCG is smaller than that of the CFG.

The results in Table 4.4 show that, with the same domain and the same lexicon,

the ABF of the SCG (i.e., 33.99) is smaller than the ABF of the CFG (i.e., 52.42),

which is 35.16% reduction.

4.5 Results from an Experiment Investigating Speech- Recognition
Accuracy

In the Master’s work (Shi, 2003b), we conducted a preliminary experiment to

investigate the significance of grammar design in speech recognition. In this

experiment, six grammars and two people (one English male and one non-

English female) were involved. Six grammars were: a semantic grammar, a

syntactic grammar, a word-sequence grammar, an extended semantic grammar,

an extended syntactic grammar, and an extended word-sequence grammar. Note

that, the semantic grammar and the syntactic grammar in the experiment are the

same grammars in Figure 4.3.2 and Figure 4.3.1 respectively in this report.

In the experiment, the subjects (people) spoke to the experimental system at a

normal speed, pronouncing every word as clearly as possible, like a normal user

to a speech recognition system. We also included the training part in the

beginning of the experiment so that the subjects were able to get used to the

testing system and made their pronunciation acceptable to the system in order to

minimize the effect of the order in which the grammars were tested.

The testing utterance inputs were categorized into the following three sets:

(1) a semantics set, which was composed of the questions that were both

semantically and syntactically correct (e.g., is titania a moon);

(2) a syntax set, which consisted of the questions that were only

syntactically correct, but semantically incorrect (e.g., which moon

discovered mars);

4. Semantic Constraint Grammars (SCG)

133

(3) a word-sequence set, which covered the utterances that were neither

semantically nor syntactically correct, they were only word sequences

(e.g., moon is discovered mars).

The experiment was carried out using IBM WebSphere Voice Server SDK on

Windows XP (Home edition). The experiment application was written in

VoiceXML (VoiceXML Forum, 2004). All experiments were conducted

consistently in the same experimental location with the same background noise.

The experimental results were marked as “Correct”, “Incorrect” (“Mis-

recognition”), and “Not Recognized”. The experiments were analyzed with

respect to each experimental subject for each grammar using each testing

utterance set. We have included some of the experimental results from (Shi,

2003b) in sub-section 4.6 of this report and summarize them as follows:

(1) The semantic grammar has the best recognition accuracy for

semantically and syntactically correct utterances. It defines the

smallest language, but is the most complicated grammar.

(2) The syntactic grammar has the mid performance in accuracy,

language size, and grammar complexity, among these three types of

grammar.

(3) The recognition accuracy of word-sequence grammars is very low, but

word-sequence grammars are the most robust grammar, and may

provide some useful information when the user inputs an “unexpected”

utterance. The grammar of word sequences is the simplest one, which

covers the largest language.

4.6 Comparison of ABFs and Speech Recognition Accuracy Results

Hauptmann et. al. (1988), Young et al. (1989), Young (1990), Waibel and Lee

(1990), Edelkamp and Korf (1998), and Morimoto and Takahashi (2008, 2009)

have argued that grammars with lower ABFs are likely to have better recognition

accuracy than those with higher ABFs. We have presented the first algorithm to

4. Semantic Constraint Grammars (SCG)

134

correctly compute the ABF directly from a grammar in section 2. In addition, we

have briefly reviewed the experiment investigating speech recognition accuracy

in sub-section 4.5. To further compare the ABFs and speech recognition

accuracy, we will review the results for the ABFs and the investigation of speech

recognition accuracy in the rest of this sub-section.

We have applied the ABF algorithm in section 2 to calculate the ABFs and have

also computed other grammar metrics (i.e., number of rules, number of symbols,

number of non-terminals, number of terminals, number of decision points, size of

the language). The results of applying the ABF algorithm to nine grammars are

given in sub-section 2.9. We present the results from sub-section 2.9 for the

grammars that are very similar (with some minor differences in vocabulary) to the

grammars used in the recognition accuracy experiments in (Shi, 2003b) and

compare the results.

Excerpt of Table 2.9: results of applying the ABF algorithm
No. Grammar # of

Rules

of

Symbols

of Non-

Terminals

of

Terminals

of Dec

Points

Language

Size

ABF

6 SCG Grammar

Figure 4.3.2

41 262 133 129 53 1.51*109 33.99

7 CFG Grammar

Figure 4.3.1

17 160 50 110 19 1.73*1011 52.42

8 Word-seq Gram

Appendix E

12 184 77 107 46 9.14*1019 188.99

The results show that:

(1) The SCG is the largest among these three grammars.

(2) The SCG defines the smallest language among these three

grammars.

(3) The ABF of the SCG is the smallest among these three grammars.

(4) The word sequence grammar defines the largest language among

these three grammars.

4. Semantic Constraint Grammars (SCG)

135

(5) The ABF for the word sequence grammar is the largest among

these three grammars.

The experiment of investigating speech recognition accuracy was conducted with

respect to subjects (users), grammars, and testing full sentence spoken inputs.

The results were recorded as “Correct”, “Incorrect” (i.e., Mis-recognized), and

“Not Recognized”. Some experimental results (from Shi, 2003b) are presented as

follows:

 Table 7.3.2 (1): the “Correct” feature using the semantics set

Grammars Person #1 Person #2 Average

Semantic (SCG) 82.2 68.5 75.35

Syntactic (CFG) 80.1 52.7 66.4

Word Sequence 12.3 12.3

 Table 7.3.2 (2): the “Incorrect” feature using the semantics set

Grammars Person #1 Person #2 Average

Semantic (SCG) 4.8 2.7 3.75

Syntactic (CFG) 15.1 13.7 14.4

Word Sequence 59.6 59.6

The above data show that if the user asks the queries that are both semantically

correct and syntactically correct, for both subjects,

(1) The semantic grammars have the highest correct recognition rate and

the lowest incorrect recognition (mis-recognition) rate.

(2) The word-sequence grammar has significantly less accuracy and

highest mis-recognition rate among these three grammars.

In summary, Table 2.9 shows that the ABF and the language size decrease in

the following order: word sequence grammar, CFG, and SCG. Not surprisingly,

Table 7.3.2 (1) and table 7.3.2 (2) from the experiment show the same order of

4. Semantic Constraint Grammars (SCG)

136

these grammars for the increase in speech recognition accuracy and the

decrease in the mis-recognition.

This result further supports the claim that SCGs may be a useful approach in

speech recognition design by reducing the ABFs and increasing speech

recognition accuracy. In addition, this work adds evidence to the claim, made by

others, that the ABF is a good indicator of speech recognition accuracy.

4.7 Summary

In this section we began by describing context-free grammars (CFGs) and

Semantic Constraint Grammars (SCGs). We then gave an example of a CFG

and a related SCG. We analyzed the two grammars using our software to

determine grammar and language size and ABF. We then compared these

analytic results with experimental results for the two grammars and a word

sequence grammar that had been obtained previously as part of the candidate’s

Master’s. The comparison of ABFs and recognition accuracies of the three

grammars lends further evidence to support the claim, made by others, that the

ABF is a good indicator of recognition accuracy.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

137

5. AUTOMATIC GENERATION OF SPEECH-RECOGNITION

GRAMMARS FROM RELATIONAL DATABASE SCHEMAS

5.1 Related Work and Its Shortcomings

5.1.1 Related work

Meng and Siu (1999, 2002), Wang and Acero (2003a, 2006) state that creating

domain-specific grammars has been a major bottleneck in the development of

spoken-language systems. Grammar creation techniques are classified into the

following three types: 1) statistical approaches, 2) knowledge-based approaches,

and 3) combinations of the two.

Corpus-based statistical approaches have been widely used in grammar creation

(Meng and Siu, 1999) and (Caskey et al., 2003). The corpus may be annotated

or un-annotated. The grammar creation algorithms automatically capture patterns

from the data (Meng and Siu, 2002). The advantages of the statistical approach

include that the generated grammar can closely represent the real input data

(Meng and Siu, 2002). The main disadvantage of this approach is the very high

cost of acquiring the large amount of data needed.

An alternative approach, sometimes referred to as the “knowledge-based

approach”, uses experts to design the grammars and subsequently test and

modify them (Wang and Acero, 2006). However, this incurs another cost – that of

the expert developer with adequate in-depth knowledge of linguistics and the

application domain.

Some research has attempted to combine the statistical and knowledge-based

approaches (e.g. Wang and Acero, 2001).

In order to reduce the cost of development of speech-enabled applications,

researchers have been working for over ten years on tools to facilitate the

5. Automatic Generation of Speech Grammars from Relational Database
Schema

138

process, such as, Pargellis et al. (1999), Gavaldà (2000), Glass and Wenstein

(2001), Wasinge (2001), and Mané and Levin (2005).

A discussion of this research and a survey of other similar work on automatic

generation of speech-recognition grammars is given in Appendix B. The following

is extracted from that survey.

5.1.2 Shortcomings of related work

Meng and Siu (1999, 2002) present a statistical data-driven approach for semi-

automatic grammar induction from unannotated corpora within a specific domain.

They use an iterative procedure to spatially and temporally cluster the

unannotated words from a corpus of sentences in a restricted domain. When

words have similar left and right contexts, these words will be grouped together

by spatially clustering as they may consist of words with similar semantics. The

temporal clustering groups the words with tend to co-occur sequentially. The

automatically produced CFG grammars are further manually revised to improve

quality.

The shortcomings of this approach are that:

(1) It is costly to obtain the large domain-specific corpus.

(2) Even a large amount of data may be “sparse” relative to the target

grammar as it may not cover all of language constructions.

(3) The extensive experiments are costly.

(4) It needs extra effort for post-processing to manually revise the

generated grammars to improve the quality. The post-processing may

involve: (a) replacing the non-terminal symbols with semantic

meaningful labels, (b) consolidating grammar categories of the same

semantic class, and (c) pruning irrelevant non-terminals and terminals.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

139

Xia (2001) presents two systems that automatically generate grammars for

natural language processing. One system is named LexOrg, which generates

grammars automatically from several types of specification. The second system

is called LexTract, which extracts Lexicalized Tree Adjoining Grammars (LTAGs)

and Context-Free Grammars (CFGs) from Treebanks.

The generated grammars in (Xia, 2001) are Lexicalized Adjoining Grammars

(LTAGs) which are based on the Tree-Adjoining Grammar (TAG) formalism that

is defined by Joshi et al. (1975). Elementary trees are the primitive elements of

an LTAG grammar. Each elementary tree is anchored by a lexical item. The trees

can be combined by either substitution or adjunction. Substitution replaces a

frontier node with another tree whose top node has the same label. Adjunction

inserts an auxiliary tree into the center of another tree.

The shortcomings of the work in (Xia, 2001) are as follows:

(1) The process of grammar generation using LexOrg or LexTract requires

high linguistic expertise.

(2) The generated LTAGs are not ready to use for speech applications

that adapt the widely-used CFG formalism. Although it is possible to

build a CFG from an LTAG, it requires special tools and extra work to

accomplish this transformation.

(3) Xia (2001) describes the advantages of LexTract over LexOrg and

other traditional grammar construction (e.g., manual grammar writing).

However, it requires the access to the Treebanks, which may be a

barrier for some users.

Wang and Acero (2001, 2005) present a machine-aided grammar authoring

system that combines the knowledge-based and data-driven approaches. This

approach uses domain-specific semantics, a library grammar, syntactic

constraints, and a small amount of semantically annotated example sentences.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

140

The work in (Wang and Acero, 2001 and 2005) is similar to our work, but differs

in some important ways:

(1) Wang and Acero (2001, 2005) adapt the knowledge-assisted data-

driven statistical modeling to author CFG grammars. We analyze and

interpret database schemas to generate CFG and SCG grammars.

(2) Wang and Acero (2001, 2005) use a semantic schema in XML to

express domain-specific information. The developer needs to have a

very good understanding of XML to define the semantic classes and

slots. In our approach, we use a semantic specification to include the

domain-specific information for grammar generation. Our approach

requires only a basic knowledge of XML.

(3) In (Wang and Acero, 2001 and 2005), the developer needs to annotate

the data with information from the semantic schema in order to reduce

the search space. The amount of the annotated training data affects

the quality of the learned grammar, which is not necessary in our

approach.

(4) They use a CFG grammar template to generate CFG grammars. We

have both CFG and SCG grammar templates, the latter of which

provides better speech-recognition accuracy.

From our survey (Appendix B), we have observed that there is no existing

approach for creating grammars easily and cheaply from database schemas. We

propose a new approach for automatically generating speech-recognition

grammars from relational database schemas. In our approach, we attempt to

overcome some of the shortcomings existing in other work. For example, we

include the work of post-processing in (Meng and Siu, 1999 and 2002) in the

built-in grammar-generation system as an optimization component to save

developers’ effort, expedite the grammar development, and improve the quality of

the generated grammar. We will discuss in detail the new approach in the

following subsections.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

141

5.2 The New Approach

Seneff (1992), and Wang and Acero (2001) have determined that the high-level

syntactic structures of many speech-recognition grammars are similar for

applications of similar type (e.g., database query applications) and differ only in

the lexicon and in syntactically-expressed semantic constraints. Based on such

assumption, we propose a new approach for automatically generating speech-

recognition grammars from relational database schemas for database query

applications.

We build a syntactic grammar template to express the common parts of the

recognition grammars for database query processors and create an environment

through which grammar developers can generate the application-specific part of

the grammar automatically by entering application-specific data.

The new approach consists of the following three key components:

(1) a built-in Grammar Template,

(2) a built-in Grammar-Generation Engine,

(3) a user-defined Semantic Specification.

The Grammar Template and the Grammar-Generation Engine constitute the

built-in Grammar-Generation System, which are built-in components that

developers can directly use them. The user-defined Semantic Specification

provides application-specific information to generate an application-specific

speech-recognition grammar, which needs developers’ definition.

We consider two types of grammar generation: CFG grammar generation and

SCG grammar generation. A SCG is a CFG grammar that encodes semantic

constraints directly in the syntactic rules to naturally reduce the language size

and therefore should improve speech-recognition accuracy. The CFG grammar

generation requires a CFG Grammar-Generation System, including a CFG

Grammar Template and a CFG Grammar-Generation Engine. The SCG grammar

5. Automatic Generation of Speech Grammars from Relational Database
Schema

142

generation needs a SCG Grammar-Generation System, including a SCG

Grammar Template and a SCG Grammar-Generation Engine. The two Grammar-

Generation Systems can share one user-defined Semantic Specification for the

same application domain.

The process of automatic CFG/ SCG grammar generation is summarized as

follows:

The developer creates the application-specific Semantic Specification and feeds

it to the built-in CFG/ SCG Grammar-Generation System. The CFG/ SCG

Grammar-Generation Engine analyzes the Semantic Specification and database

schemas, interprets them for linguistic information, fills out the built-in CFG/ SCG

grammar template, then a new CFG/ SCG grammar is generated automatically.

We will discuss the Semantic Specification and the CFG/ SCG Grammar-

Generation System in sub-sections 5.3, 5.4, and 5.5 respectively.

5.3 Semantic Specification

The Semantic Specification is created by the developer. It provides necessary

application-specific information for Grammar-Generation Systems to build the

corresponding CFG and/ or SCG grammars automatically. It is useful in many

other aspects in speech-application development. It can be regarded as the

specification for a language-enabled application. Once the Semantic

Specification is defined, grammar and application logic development can proceed

simultaneously according to the specification. A Semantic Specification also

contributes to the dialog design and management of the speech application

(Wang and Acero, 2001).

To create the Semantic Specification, we borrow some concepts from ER

Modeling (Entity-Relationship Modeling), where a table is considered equivalent

of an entity type. Therefore, we are able to describe the properties for an entity

5. Automatic Generation of Speech Grammars from Relational Database
Schema

143

type using columns of the table in the Semantic Specification. The activities and

relationships among entity types are examined among tables.

The Semantic Specification is expressed using natural English language. XML

tags (W3C, 2009) are used as delimiters. For example, the domain-related

information about people’s last name is expressed in the Semantic

Specification as follows:

 <description>

 People’s last name is LastName </description>

Where <description> and </description> are delimiter tags in XML format.

People is a table’s name, LastName is a column’s name of the table People.

People is also an entity type from the point of view of a developer. It represents

a semantic class. We consider each table as a semantic type in our approach.

Details about semantic types will be discussed in subsection 5.5.

A Semantic Specification mainly contains the following three parts:

(1) Basic database information, such as database vendor, database name,

table names, and table aliases.

(2) Database schema description, which describes the properties (columns)

for each table (entity type).

(3) Definition of the activities/ relationships among tables (entity types) using

XML expressions.

For the sake of simplicity, we take an example database with three tables:

People, Planet, and Moon. Each table has two columns. The domain is a small

subset of the solar system, which is the same as that for the example CFG/ SCG

in section 4. The database schema is shown as follows in Figure 5.3:

5. Automatic Generation of Speech Grammars from Relational Database
Schema

144

1) People(LastName, FirstName)

2) Planet(PlanetName, PlanetColor)

3) Moon(MoonName, MoonColor)

Figure 5.3: example Database schema for the Solar system

Regarding a table as an entity type, the properties of an entity type are described

in natural English language using the table name and its column names in Figure

5.3 (1). Table names and column names are in italic font.

1) People’s last name is LastName

2) People’s first name is FirstName

3) Planet’s name is PlanetName

4) Planet is PlanetColor

5) Moon’s name is MoonName

6) Moon is MoonColor

 Figure 5.3 (1): properties of entity types

The possible activities among the tables (entity types) in the specific domain are

described in Figure 5.3 (2). The table names and column names are in italic font.

Here and hereafter, the description of activities and/or relationships in the domain

mainly focuses on describing the activities and/or relationships between entities,

and ignores the agreement of person and number in English sentence

expression.

1) People discover planet

2) People discover moon

3) Moon orbit planet

4) Planet exist

5) Moon exist

6) Planet spin

7) Moon spin

5. Automatic Generation of Speech Grammars from Relational Database
Schema

145

 Figure 5.3 (2): possible activities/ relationships among tables

Usually, a database is designed using meaningful symbols for database schema.

It is also quite common that abbreviations or other symbols are used as table

names or column names in database design. Since we regard a table as an

entity type and we would like a meaningful name for an entity type, the user

needs to provide meaningful aliases for each table in the Semantic Specification.

We use table names and column names for data retrieval from the database. The

meaningful table aliases will be more convenient for automatically generating

grammars for easy reading. In this thesis report, we may use “table name”

instead of “table alias” for easy understanding, because they can be easily

exchanged with each other when needed.

In reality, we distinguish animate from inanimate in language expression. It

emphasizes that some actions can be initiated by the animate but not by the

inanimate, and vice versa. In Figure 5.3 (2), the activities and relationships are

described without any ambiguities. Meanwhile, we need to specify the

descriptions for wh-questions. The reason is that, some wh-question words, like

who, whom, and whose, can only be applied to the animate, not the

inanimate, and some wh-question words, like what, can only be associated with

the inanimate in some situation. Therefore, we include the situations of using the

wh-question words in the Semantic Specification to further strengthen the

semantic constraints.

With the above concerns, i.e.:

1) database information,

2) description of properties of entity types (Figure 5.3 (1)),

3) activities and/or relationships among entity types (Figure 5.3 (2)),

and

4) XML tags,

5. Automatic Generation of Speech Grammars from Relational Database
Schema

146

we have the following example Semantic Specification in Figure 5.3 (3).

5. Automatic Generation of Speech Grammars from Relational Database
Schema

147

<!—-------- part 1: Basic database information ----------->

<database>

 <DB_vendor> ORACLE </DB_vendor>

 <DB_name> solar_system </DB_name>

</database>

<!— list table names (entity types) with their aliases

(symbols after “AS”), which are more meaningful in natural

language -->

<table>

<table_name> people AS people </table_name >

<table_name> planet AS planet </table_name >

<table_name > moon AS moon </table_name >

</table >

<!------- Part 2: description of the database schema ------>

<!-- describe the properties for each table (entity type)-->

<Property>

 <People>

 <description>

 People’s last name is LastName

 </description>

 <description>

 People’s first name is FirstName

 </description>

 </People>

 <Planet>

 <description>

 Planet’s name is PlanetName

 </description>

 <description>

 Planet is PlanetColor

5. Automatic Generation of Speech Grammars from Relational Database
Schema

148

 </description>

 </Planet>

 <Moon>

 <description>

 Moon’s name is MoonName

 </description>

 <description>

 Moon is MoonColor

 </description>

 </Moon>

</Property>

<!—--------Part 3: definition of the activities/

relationships among tables (entity types) ------------->

<Activity>

 <description> People discover planet </description>

 <description> Who discover planet </description>

 <description> People discover moon </description>

 <description> Who discover moon </description>

 <description> Moon orbit planet </description>

 <description> What orbit planet </description>

 <description> What does moon orbit </description>

 <description> Planet exist </description>

 <description> Moon exist </description>

 <description> What exist </description>

 <description> Planet spin </description>

 <description> Moon spin </description>

 <description> What spin </description>

</Activity>

Figure 5.3 (3): example Semantic Specification

5. Automatic Generation of Speech Grammars from Relational Database
Schema

149

Note that, the database vendor and name are available for a given database.

Table names are available with the given database. Regarding tables as entity

types, the activities and/or relationships upon them can be discussed. With good

knowledge of the application, a developer will be able to summarize the possible

activities and/or relationships among the tables (entity types) within the domain.

Therefore, given the database schema, a developer can create the Semantic

Specification in a short time with little difficulty. The reasons are further

summarized as follows:

1. XML (eXtensible Markup Language) (W3C, 2009) is a commonly-used format

by a developer to represent data. Its basic syntax is often used to share

information among computers, applications, and organizations. In addition, in

our Semantic Specification, we mainly use the XML tags to delimiter the

English descriptions, which does not require extensive knowledge of XML.

2. The basic database-related information, such as database vendor, database

names, table names, and column names (part one of the Semantic

Specification), is easily obtained for a given database.

3. The Semantic Specification is based on the database schemas rather than

the data in the database. The size of a database schema is much smaller

than that of data in the database.

4. The Semantic Specification authoring is language independent in the sense

that it does not specify linguistic expressions. Therefore, it is easy for a

developer with good knowledge of an application to define a Semantic

Specification.

5. The description of the relationships and activities among tables is similar to

ER Modeling (Entity-Relationship Modeling) or UML representation (Unified

Modeling Language representation) in software engineering, which are

familiar concepts to many software developers.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

150

From the point of view of ER Modeling, a table is equivalent to an entity type.

In addition, it is reasonable to assume that the developer knows something

about the specific application domain. Then, by considering a table as an

entity type, a developer will be able to define the activities and/or relationships

upon the tables (entity types) in the specific domain.

The Semantic Specification has some similarity to UML representation. In a

UML representation, a table is equivalent to a class. Relationships between

tables in a Semantic Specification are expressed as relationships between

classes in a UML representation.

The comparison among the Semantic Specification, ER Modeling, and UML

representation is shown in Table 5.3.

Table 5.3: comparison among the Semantic Specification, ER Modeling, and

UML Representation

Semantic Specification ER Modeling UML Representation

Table Entity Type Class

Column Attribute Attribute

Activities/ relationships

between tables

Activities/

relationships

between entity types

Behavior/

Relationships

between classes

5. Automatic Generation of Speech Grammars from Relational Database
Schema

151

5.4 CFG Grammar-Generation System

The CFG Grammar-Generation System includes two main components, a CFG

Grammar Template and a CFG Grammar-Generation Engine.

CFG Grammar-Generation Engine analyzes the user-defined Semantic

Specification and database schemas, interprets the linguistic information, fills out

the built-in CFG Grammar Template, then generates a complete CFG grammar.

In sub-sections 5.4 and 5.5, we will take a small subset of the solar system as an

example domain to demonstrate how CFG and SCG grammars are generated

automatically from relational database schemas with a given user-defined

Semantic Specification. The reason for taking the small subset of the solar

system as the example domain is that we have used this domain to illustrate the

example CFG and SCG grammars in sub-section 4.3. The automatically

generated CFG and SCG grammars are in Appendix G and Appendix H

respectively.

The basic concept of generating CFGs and SCGs is the same. Our approach

assumes that the high-level syntactic structures of many speech-recognition

grammars are similar for applications of similar type (e.g., database query

applications) and only differ in the vocabulary and in syntactically-expressed

semantic constraints. Therefore, we can extract the common parts of the

grammars as a grammar template and fill out the grammar template with the

application-specific information to generate the application-specific grammar.

In the process of grammar generation, the main task that needs the developer’s

attention is to build the Semantic Specification to describe the application-specific

information, including basic database information, description of database

schemas, relationships and activities among tables. With the same domain, the

Semantic Specifications for a CFG grammar and a SCG grammar are the same.

We show later how semantic constraints are further used in the SCG.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

152

The Grammar-Generation System (CFG/ SCG) is a customized built-in system

for automatic CFG/ SCG grammar generation, which consists of a CFG/ SCG

Grammar Template and a Grammar-Generation Engine.

To generate a CFG/SCG grammar automatically, the developer calls the CFG/

SCG Grammar-Generation Engine to interpret the user-defined Semantic

Specification and fill out the CFG/ SCG Grammar Template to construct a new

application-specific CFG/ SCG grammar.

5.4.1 The CFG Grammar Template

As discussed in sub-section 5.2, a grammar template defines the common parts

of speech-recognition grammars for one type of speech application. It is a built-in

component of the CFG Grammar-Generation System. The developer does not

need to know the CFG grammar template. With the built-in CFG Grammar

Template, CFG Grammar-Generation Engine, and the user-provided Semantic

Specification, a new application-specific CFG Grammar will be constructed

automatically.

Figure 5.4.1 is an example CFG grammar template for database query

applications.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

153

/* CFG_template.jsgf */

grammar CFG_template ;

public <s>
 = <linkingvb> <termph> [<transvb> by] <termph>
 | <linkingvb> <termph> <termph>
 | <quest> <sent>
 | (who | what) <verbph>
 | (which | how many) <nouncla><verbph>
 | <simple>;

<sent>
 = <termph> <verbph>;

<termph>
 = <stermph>
 | <stermph> (and | or) <stermph>;

<stermph>
 = <pnoun>
 | <detph>;

<verbph>
 = <transvbph>
 | <intransvb>;

<transvbph>
 = (<transvb> | <linkingvb> <transvb> by) <termph>;

<detph>
 = <det> <nouncla>;

<nouncla>
 = <adj> <cnoun>
 | <cnoun>;

 Figure 5.4.1: CFG grammar template

Where <s> is the start symbol of the grammar, <quest> stands for question,

<sent> for sentence, <nouncla> for noun clause, <verbph> for verb phrase,

<termph> for term phrase, <stermph> for single term phrase, <transvbph>

for transitive verb phrase, <instransvb> for intransitive verb phrase, and

5. Automatic Generation of Speech Grammars from Relational Database
Schema

154

<detph> for determiner phrase. This CFG grammar template only works for the

database query applications. The grammar template needs further modifications

for other types of speech applications.

5.4.2 The CFG Grammar-Generation Engine

The CFG Grammar-Generation Engine is the other important component of the

CFG Grammar-Generation System, which accomplishes the task of reading the

Semantic Specification, analyzing the database schemas, interpreting the

linguistic information for grammar generation, filling out the CFG Grammar

Template, and outputting the newly-built CFG Grammar.

The CFG Grammar-Generation System is implemented on PC (Processor: 2.0

GHZ, Memory: 3GB, Hard Drive: 250GB) with Windows XP (Home Edition)

operating system, using the Java programming language (JSDK 1.4.2) as the

development tool, MySQL as the database management system, and JDBC

technology to connect the database in the Java programming language.

The process of generating the CFG grammar involves the following six steps:

Step 1: read in the Semantic Specification.

The domain-specific Semantic Specification is fed to the CFG Grammar-

Generation Engine and tokenized. Basic Database information is obtained. The

Database information for the example solar system is shown in Table 5.4.2 (1):

Table 5.4.2 (1): database information

DB_Vendor DB_name

ORACLE Solar_system

5. Automatic Generation of Speech Grammars from Relational Database
Schema

155

The table names and the corresponding aliases are shown in Table 5.4.2 (2):

Table 5.4.2 (2): table names and aliases

Table_Id Table_name Table_alias

1 People People

2 Planet Planet

3 Moon Moon

Step 2: connect the database.

With the basic database information (e.g., database vendor and database name),

the CFG Grammar-Generation Engine selects the corresponding connection

driver to connect the database. In this thesis work, the CFG / SCG grammars can

be generated from the following three types of databases: Microsoft Access

database, Oracle database, and MySQL database. The source code for

database connections in java programming language is in Appendix E.

Step 3: analyze the database schemas.

Normalization is the process of efficiently organizing data in a database with the

goals of eliminating redundant data and ensuring that data dependencies are

correct. It is reasonable to assume that the database for grammar generation

meets the minimum criteria of First Normal Form (1NF), which includes only

atomic values in each field. Therefore, the data in each field of the database will

be further analyzed and included as terminals in the newly-generated grammars.

The second part of the Semantic Specification (Figure 5.3 (3)) (i.e.,

<Property> …</<Property> section) describes the properties of the tables.

In fact, it is a more-detailed description of the database schema. Tables are

regarded as entity types. Each table is listed under the <property> section

using table names as tags, such as <People> </People>. Columns of the

5. Automatic Generation of Speech Grammars from Relational Database
Schema

156

table are described as properties of the entity type (table), and are listed under

the corresponding table name using the tags of <description>

</description>.

Using a simple language to describe the properties lowers the requirement of the

linguistic knowledge for a developer, thus eases the developer’s work in

addressing the Semantic Specification for automatic grammar generation. The

Grammar-Generation Engine analyzes the Semantic Specification and the

database schema, then interprets the linguistic information for CFG grammar

generation.

In many linguistic grammars, words are classified based on the following eight

parts of speech: verb, noun, pronoun, adjective, adverb, preposition, conjunction,

and interjection (MacFadyen, 2010). To fill out the CFG template and build up the

CFG grammar, the CFG Grammar-Generation Engine needs information of the

parts of the speech of the data in database, which can be obtained by analyzing

the database schemas that are described in the Semantic Specification.

In the following part of this section, we discuss the eight parts of speech and

explain how CFG Grammar-Generation Engine obtains linguistic information from

the Semantic Specification and fills out the CFG template to construct the CFG

grammar.

However, a database may not include instances of the eight parts of speech. For

example, the database may not include the words such as of or the. Therefore,

the CFG Grammar-Generation Engine has to follow the syntactic clues and

comply with syntactic rules in grammar generation.

(1) Part of speech - verb

A verb or compound verb asserts something about the subject of the sentence

and expresses actions, events, or states of being (MacFadyen, 2010). The verb

5. Automatic Generation of Speech Grammars from Relational Database
Schema

157

or compound verb is the critical element of the predicate of a sentence. In syntax,

a transitive verb is a verb that requires a direct object to complete its meaning.

Verbs that do not require an object are called intransitive.

In CFG grammar generation, we distinguish transitive verbs from intransitive

verbs. For example, in the description moon orbit planet, the verb orbit is

a transitive verb. In sentence moon spin, the verb spin is an intransitive verb.

We will discuss more about verbs, relationships, and activities among entities

later in step (4) of this section.

(2) Part of speech - noun

A noun can occur as the main word in the subject of a clause, the object of a

verb, or the object of a preposition (MacFadyen, 2010).

There are many types of nouns in linguistics. We use proper noun and common

noun in the CFG template. Proper nouns include the names of people, days of

the week, months, historical documents, institutions, organizations, religions, and

their adherents. A common noun is a noun referring to a person, place, or thing

in a general sense (MacFadyen, 2010).

For example, in the description, People’s first name is FirstName, the

CFG Grammar-Generation Engine determines that People is a table name,

FirstName is a column name, and the data in column FirstName can be used

as proper nouns in a sentence. So, the CFG Grammar-Generation Engine

accesses the database, retrieves all the data in column FirstName, and

appends them to the definition rule of the non-terminal <pnoun> (stands for

proper noun) in the CFG template (Figure 5.4.1). The definition rule of a non-

terminal is a rule with this non-terminal on the left hand side, terminals and/or

non-terminals in the form of alternative(s) and/ or sequence(s) on the right hand

side of the rule to define the non-terminal. For example, the data from column

5. Automatic Generation of Speech Grammars from Relational Database
Schema

158

<Firstname> will be appended to the definition rule of the non-terminal

<pnoun> as follows:

<pnoun> = bernard | bond | cassini | dollfus;

While the CFG Grammar-Generation Engine proceeds with the Semantic

Specification file, the proper nouns, which are data from corresponding columns

of the database, are appended to the syntax rule defining the non-terminal

(<pnoun>) in the CFG template (Figure 5.4.1).

The table names, i.e., the entity types, are considered as common nouns. They

are added to the rule for common nouns (<cnoun>) in the CFG template (Figure

5.4.1) as follows:

<cnoun> = people | planet | moon;

a) Determiner

A determiner is a word or affix that belongs to a class of noun modifiers that

expresses the reference of a noun, including quantity (MacFadyen, 2010).

For example, Hall discovered three moons, the word three is a

determiner. We include determiners (i.e., <det>) in the CFG grammar

generation. The example definition of determiners is as follows:
 <det> = a | an | every | one | two | three | four;

(3) Part of speech - adjective

An adjective modifies a noun or a pronoun by describing, identifying, or

quantifying words. An adjective usually precedes the noun or the pronoun that it

modifies (MacFadyen, 2010).

Refer to the example Semantic Specification in Figure 5.3 (3), in the description

Planet is PlanetColor, the CFG Grammar-Generation Engine recognizes

5. Automatic Generation of Speech Grammars from Relational Database
Schema

159

that Planet is a table name, PlanetColor is a column name. The data from

column PlanetColor, such as red and blue, is retrieved and appended to the

rule for the non-terminal <adj> (i.e., adjective) in the CFG template (Figure

5.4.1), as follows:

<adj> = red | blue;

a) Article

An article combines with a noun to indicate the type of reference being made by

the noun. There are three articles in the English language, namely the, a, and

an. Some resources consider there are two articles, which are the and a/an.

Among the classical parts of speech, articles are considered a special category

of adjectives (Lynch and Brizee, 2010). In our grammars, we use the identifier

"determiner" to include the words "a", "every", "the", "one", "two"

etc, This categorization is common in Computational Linguistics"

(4) Part of speech - adverb

An adverb is a word that can modify a verb, an adjective, another adverb, a

phrase, or a clause, except nouns. An adverb is used to indicate manner, time,

place, cause, or degree. It can answer questions such as how, when, where,

how much (MacFadyen, 2010).

For example, the word fast is an adverb in the sentence Planet spin fast.

Adverbs are not included in our example application.

The words of the following four parts of speech: preposition, pronoun,

conjunction, and interjection, may or may not appear in the database. The CFG

Grammar-Generation Engine has to compose the CFG grammar by following the

syntactic clues and syntactic constraints.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

160

(5) Part of speech - preposition

A preposition is used to link nouns, pronouns, and phrases to other words in a

sentence. The word or phrase that the preposition introduces is called the object

of the preposition. A preposition usually indicates the temporal, spatial, or logical

relationship of its object to the rest of the sentence (MacFadyen, 2010).

For example, in the sentence There are minerals on Mars, the word on is

the preposition.

(6) Part of speech - pronoun

A pronoun is a word that can replace a noun or another pronoun. Pronouns can

make the sentences less cumbersome and less repetitive (MacFadyen, 2010).

Example pronouns are like he, you, we, and so on.

(7) Part of speech - conjunction

Conjunctions are used to link words, phrases, and clauses (MacFadyen, 2010).

For example, in the sentence Tom and Jerry are friends, the word and is

a conjunction.

(8) Part of speech - interjection

An interjection is a word added to a sentence to convey emotion. It is not

grammatically related to any other part of the sentence. Usually, an interjection is

followed with an exclamation mark (MacFadyen, 2010).

Step 4: extract the activities and relationships.

Verbs are perhaps the most important part of composing a sentence, expressing

ideas, describing an activity of an object, or a relationship between objects. They

are a critical element of the predicate of a sentence. Therefore, verbs act as a

significant role in grammar generation.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

161

The second part (<Property> </Property>) of the Semantic Specification

(Figure 5.3 (3)) describes the database schema information concerning tables

and columns where columns are regarded as the properties of tables. However, it

does not provide any information about the activities of the entity type itself or the

relationships among entity types (tables). Usually, within an application domain,

the entities do not stand alone. They are related by some relationships or

activities to one another, which are discussed in the

(<activity> …</activity>) part of the Semantic Specification (Figure 5.3

(3)).

For example, in the small subset of the solar system example, the entity types

planet and moon are related by the activity orbit, e.g., moon orbit planet

(Figure 5.3 (3)). The system determines that orbit is a transitive verb. A

transitive verb requires a subject and an object. A transitive verb describes an

action that is initiated by the subject with the object as a receiver. In other words,

a transitive verb requires an object to complete the action, which is not required

by an intransitive verb.

While interpreting the Semantic Specification, the Grammar-Generation Engine

analyzes the activities/ relationships between entity types (tables). Meanwhile, it

recognizes that the subject and the object of the activity/ relationship description

are both tables. For the above example (moon orbit planet), the Grammar-

Generation Engine interprets the verb orbit is a transitive verb, moon and

planet are tables. The word orbit is added to the definition rule of the non-

terminal <transvb> (i.e., transitive verb) as follows:

<transvb> = orbit;

Since tables are regarded as entity types, the table aliases (moon and planet)

are regarded as common nouns and put into the definition of the non-terminal

<cnoun> (i.e., common noun), as follows:

5. Automatic Generation of Speech Grammars from Relational Database
Schema

162

<cnoun> = moon | planet;

In addition, an entity may accomplish some activities by itself, without any other

entities involvement. Examples are: planet spin and moon exist. In such

cases, the verbs do not require or cannot take any object. Therefore, we assert

that such types of verbs, e.g., spin and exist, are intransitive verbs. The CFG

Grammar-Generation Engine will append them to the definition rule of the non-

terminal <intransvb> (i.e., intransitive verb) as follows:

<intransvb> = spin | exist;

In this way, the activities and relationships within the domain are analyzed and

the verbs are appended to the definition rules of the corresponding non-terminals

for transitive verbs or intransitive verbs.

Step 5: fill out the CFG Grammar Template.

The process of filling the CFG template takes place through the whole process of

CFG grammar generation. As we have seen, while the CFG Grammar-

Generation Engine interprets the database schema, it recognizes parts of speech

from the database schema, and appends the data to the definition rules of the

corresponding non-terminals, such as <pnoun>, <det>, <transvbph>,

<intransverbph>, <adj>, and <adv>. Meanwhile, table aliases are

regarded as entity types and appended to the definition of common noun (i.e.,

<cnoun>).

While the grammar generation process comes to the part of the description of

activities and relationships in the Semantic Specification, the CFG Grammar-

Generation Engine recognizes the transitive verbs and intransitive verbs, and

puts them into the corresponding rules for non-terminal such as <transvb> (for

transitive verbs) and <intransvb> (for intransitive verbs).

5. Automatic Generation of Speech Grammars from Relational Database
Schema

163

The database may not include all the information for constructing the CFG

grammar. For example, the words of and that may not show up in the

database. The CFG Grammar-Generation Engine needs to fill out the grammar

template by following the syntactic rules, constraints, and clues to build the

complete CFG grammar.

Step 6: output the CFG grammar.

While calling the CFG Grammar-Generation Engine, the user can specify the

location and the name of the output CFG file in the command line. The

screenshot in Figure 5.4.2 is an example command to generate a CFG grammar.

Figure 5.4.2: screenshot - example command to generate a CFG grammar

Note that, Gen_CFG is the name of the CFG Grammar-Generation Engine.

solar_CFG.jsgf is the name of the new CFG grammar which is saved in the

same directory of the CFG Grammar-Generation System. The new CFG

Grammar (solar_CFG.jsgf) is ready for use in a speech application for

database queries with the domain of the small subset of the solar system.

5.5 The SCG Grammar-Generation System

Similar to the CFG Grammar-Generation System, the SCG Grammar-Generation

System also includes two main built-in components, the SCG Grammar Template

and the SCG Grammar-Generation Engine. With a similar workflow to the CFG

Grammar Generation, the SCG Grammar-Generation Engine analyzes the user-

5. Automatic Generation of Speech Grammars from Relational Database
Schema

164

defined Semantic Specification and the database schemas, fills out the SCG

Grammar Template, and generates a complete SCG grammar for speech

applications with the specified domain.

The process of generating a SCG is similar to the process of generating a CFG.

The significant difference between a CFG and a SCG is that the CFG is

concerned only with the correctness of syntax, while the SCG also encodes

semantic constraints. Therefore, the SCG Grammar-Generation System includes

more semantic information than CFG Grammar-Generation System.

In this section, we use the same domain as that in the CFG grammar generation

in section 5.4 (i.e., the small subset of the solar system) so that we can make a

comparison between the two processes of automatic grammar generation. That

also makes it possible for further analysis (sub-section 5.6) the two newly

generated grammars (CFG and SCG) and the example manually scripted CFG

and SCG grammars (in sub-sections 4.3.1 and 4.3.2).

5.5.1 The SCG Grammar Template

In the SCG grammar template in Figure 5.5.1, we introduce semantic types in

order to specify semantic agreement between the subject, predicate, and object

in a sentence. Semantic types classify words by semantics instead of syntactic

function. In this thesis work, a semantic type is usually classified by an entity type

(table). All of the data in the same table has the same semantic type, which is,

represented by the table name. For the example domain in section 5.3, we

classify the objects in the small subset of the solar system into the following three

types: 1) people, 2) planet, and 3) moon.

In addition to the part of speech, each word (e.g., data in the database) in the

domain is associated with a semantic type. A sentence is considered correct only

when it complies with the syntactic constraints and the semantic type constraints.

This means that only a word of the semantic type people can initiate the action

5. Automatic Generation of Speech Grammars from Relational Database
Schema

165

discover. Therefore, a sentence such as Bond discovered Mars is covered,

but Mars discovered Jupiter is not covered by the SCG.

In the SCG Grammar Template in Figure 5.5.1, we use type_k (1≤k≤N) to

denote a semantic type, and keep the agreement between semantic types by

using type_k. In the solar system example, there are three semantic types in

the specified domain (i.e., N = 3). We assign type_1 to people, type_2

to planet, and type_3 to moon. To generalize the SCG grammar

template, we simply use type_i to direct the SCG Grammar-Generation Engine

to list all the possible semantic types in the domain, type_1,…, type_N.

In addition, we introduce type_who, type_what, type_which, and

type_how_many to categorize the words: who, what, which, and how

many.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

166

Figure 5.5.1 below is the example SCG Grammar Template.

/**/

/* SCG_template.jsgf */

/* Assuming there are n semantic types, denoted as type_k
(1<=k<=n).
Using type_i to list all the semantic types type_1,
type_2, ..., type_n.

 Use type_k to specify some specific semantic type */
/**/

grammar scg_template ;

public <s>
 = <linkingvb> <termph_verbph>
 | <quest> <sent>
 | is <pnoun> <pnoun>
 | is <pnoun> (a|an) <nouncla>
 | is <pnoun> (a|an) <nouncla> or (a|an) <nouncla>
 | (who) <verbph_type_who>
 | (what) <verbph_type_what>
 | (which) <nouncla_verbph_type_which>
 | (how many) <nouncla_verbph_type_how_many>
 | <greetings>;

<termph_verbph>
 = <termph_type_suc> <transvb_type_i> by <termph_type_pre>;

<sent>
 = <termph_type_i> <verbph_type_i>;

<termph_type_k>
 = <stermph_type_k> | <stermph_type_k> (and|or)

<stermph_type_k);

<stermph_type_k>
 = <pnoun_type_k> | <detph_type_k>;

<detph_type_k>
 = <det> <nouncla_type_k>;

<nouncla>
 = <nouncla_type_i>;

5. Automatic Generation of Speech Grammars from Relational Database
Schema

167

<nouncla_type_k>
 = <cnoun_type_k>
 | <adj_type_k> <cnoun_type_k>;

<verbph_type_k>
 = <transvb_type_k> <termph_type_suc>
 | <intransvb_type_k>;

<nouncla_verbph_type_k>
 = <nouncla_type_pre> <verbph_type_k>
 | <nouncla_type_suc> <verbph_passive_type_k>;

<verbph_passive_type_k>
 = <linkingvb> <transvb_type_k> [by <termph_type_pre>];

<pnoun>
 = <pnoun_type_i> ;

<cnoun>
 = <cnoun_type_i> ;

 Figure 5.5.1: SCG grammar template

Note that, some parts of the SCG grammar template are the same as and have

the same meanings as that in the CFG grammar template, such as <s>,

<quest>, <sent>, and <nouncla>.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

168

5.5.2 SCG Grammar-Generation Engine

Similar to the CFG Grammar-Generation Engine, the SCG Grammar-Generation

Engine first takes the user-defined Semantic Specification as input and analyzes

it to obtain the corresponding syntactic and semantic information. The SCG

Grammar-Generation Engine then fills out the SCG grammar template, and then

builds and outputs the new SCG grammar for use in the speech application.

The SCG Grammar-Generation System is implemented on PC (Processor: 2.0

GHZ, Memory: 3GB, Hard Drive: 250GB) with Windows XP (Home Edition)

operating system, using the Java programming language (JSDK 1.4.2) as the

development tool, MySQL as the database management system, and JDBC

technology to connect the database in the Java programming language.

The steps of generating the SCG grammar are similar to that of generating a

CFG grammar. However, encoding of semantic constraints in the syntax makes

the SCG grammar generation more complicated than the CFG grammar

generation. In the following discussion of the process of building a SCG, we will

briefly review the same steps as the CFG grammar generation, and elaborate the

differences from the CFG grammar generation.

Step 1: read in the Semantic Specification.

 Same as that in sub-section 5.4.2.

Step 2: connect the database.

 Same as that in sub-section 5.4.2.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

169

Step 3: analyze the database schemas.

Using the same methodology of sub-section 5.4.2, the SCG Grammar-

Generation Engine recognizes the parts of speech of the words (e.g., data in

database). However, different from the CFG grammar, the SCG grammar has to

comply with semantic constraints in addition to syntactic rules. Therefore, the

SCG Grammar-Generation Engine needs also to consider the semantic types for

each word to satisfy the semantic constraints. Therefore, each word in the

database is associated with two features: part of speech and semantic type.

To classify and obtain the information of semantic types, we review the

description of database schemas, activities and relationships among entity types

in the Semantic Specification. For example, in the Semantic Specification (Figure

5.3 (3)), in the third part (<Activity>…</Activity>), one activity is

expressed as follows:

<description> People discover planet </description>

The statement between the tags <description> and </description> is the

same as in the action discover using semantic types in section 5.5.1, i.e.,

people discover planet, where people and planet are semantic types.

Note that, while we regard a table as an entity type, we have already considered

the data of a table as being in the same semantic category. Thus we can

determine that the tables (entity types) of the database can work as the role of

semantic types in SCG grammar generation. Therefore, the semantic types are

easily obtained by recognizing table names (aliases).

While the SCG Grammar-Generation Engine fills out the SCG grammar template,

it not only considers the part of speech of the word, but also puts the word to the

right category by its semantic type. For example, the entity people has the

following property:

5. Automatic Generation of Speech Grammars from Relational Database
Schema

170

People’s first name is FirstName.

The SCG Grammar-Generation Engine recognizes that People is a table,

FirstName is a column of table People, and the data in the column

FirstName are proper nouns. Meanwhile, the data in the column FirstName of

table People are assigned with the semantic type of People. We assume

semantic types for people, planet, and moon are assigned with type_1,

type_2, and type_3 respectively. Then the data from the column FirstName

of table people is appended to the definition of non-terminal <pnoun_type_1>

(i.e., proper noun, semantic type 1), as follows:

<pnoun_type_1> = Bernard | bond | cassini | dollfus;

Note that, in CFG grammar generation, we only use <pnoun> to denote proper

nouns. In SCG grammar generation, we use <pnoun_type_k> (1<=k<=n) to

specify the proper nouns associated with their semantic types to guarantee the

semantic agreements.

Step 4: extract the activities and relationships.

The SCG Grammar-Generation Engine interprets the third part

(<Activity></Activity>) in the Semantic Specification, and recognizes the

transitive verbs or intransitive verbs by examining whether the predicate verb

takes any object. The SCG Grammar-Generation Engine indicates the semantic

types for the verb, subject, and object. The semantic type of an object is

dependent on the verb. Therefore, it is the verb that determines the semantic

types of the subject and object of a sentence. We make a record of the semantic

types of the subject and object depending on the activity (verb).

 subject predicate object.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

171

Note that, the above three parts must have specified semantic types. Note that,

an intransitive verb does not have any object, so the “semantic type of successor

(object)” for an intransitive verb will be “NULL”. Also note that, the subject and/or

object could be a noun phrase with modifiers for the noun. The modifiers require

the same semantic type as the noun.

The SCG Grammar-Generation Engine interprets the syntactic and semantic

constraints from the Semantic Specification and the database schemas, and

records the information in a table. Table 5.5.2 shows the example syntactic and

semantic constraints for the example solar system domain.

Table 5.5.2: example syntactic and semantic constraints

Constraint_ID subject predicate (Verb) Object

1 People Discover Planet

2 People Discover Moon

3 Moon Orbit Planet

4 Planet Exist NULL

5 Moon Exist NULL

6 Planet Spin NULL

7 Moon Spin NULL

This table determines the correct format for a valid sentence. It is also possible to

encode linguistic agreement (e.g., number and person) in the grammar. However,

this would significantly increase the size of the grammar and we will not discuss

this in this report.

With the above table, a syntactically and semantically correct sentence can be

determined easily. For example, an utterance like Bond discovered jupiter

will be accepted by the generated SCG grammar for the reasons as follows:

The subject Bond belongs to the semantic type of people and the object

jupiter has the semantic type of planet. By constraint 1 in Table 5.5.2, the

5. Automatic Generation of Speech Grammars from Relational Database
Schema

172

transitive verb discover requires a subject (preceding word) with the semantic

type of people and an object (successor) with the semantic type of planet.

Thus, the utterance Bond discovered jupiter is correct by the SCG.

However, the utterance like Mars discovered jupiter will be considered

wrong by the SCG grammar, because by constraint_1 and constraint_2 in Table

5.5.2, the predicate discover requires the subject (preceding word) with the

semantic type of people. In the example utterance, the subject mars does not

belong to the semantic type people. Therefore, such an utterance will be

considered incorrect by the SCG grammar.

By excluding the semantically incorrect utterances, a SCG grammar should

improve the speech-recognition accuracy.

Step 5: fill out the SCG Grammar Template.

Similar to the process of CFG grammar generation, the SCG Grammar-

Generation Engine fills out the SCG grammar template. When it deals with the

description of the entity properties, it puts the data from the database into the

rules defining corresponding non-terminals, based on their parts of speech and

semantic types. In addition, the syntactic rules and clues are taken into account

in SCG grammar generation.

Step 6: optimize the SCG grammar.

Note that, in the SCG template (Figure 5.5.1), we use type_k to specify the

semantic type to guarantee the agreement among semantic constraints. We use

type_i to list all the possible semantic types. There is a shortcoming of this

method. If some semantic type is unsuitable in the domain, the grammar

template will expand with an empty rule for this type_k, which will not affect the

correctness of the generated grammar, but will affect the size of the grammar so

that it increases the difficulty for grammar maintenance. In addition, it may

5. Automatic Generation of Speech Grammars from Relational Database
Schema

173

decrease the performance of the recognizers implementing the grammar. For

example, in the SCG grammar template (Figure 5.5.1), there is a rule defined as

follows:

 <nouncla_type_k>

 = <cnoun_type_k>

 | <adj_type_k> <cnoun_type_k>; (1)

While the SCG Grammar-Generation Engine proceeds with the SCG grammar

generation, it interprets this rule (1) as the following rule (2):

 <nouncla_type_1>

 = <cnoun_type_1>

 | <adj_type_1> <cnoun_type_1>; (2)

Supposing type_1 is the semantic type people, we notice that it is not suitable

to say color people. Therefore, in the SCG grammar generation, the SCG

Grammar-Generation Engine will generate the following rule:

 <adj_type_1> = ; (3)

This empty rule will not affect the correctness of the generated SCG grammar

with respect to recognition of appropriate utterances. However, it increases the

size of the generated grammar and makes it more complex, which is not good for

maintenance and grammar optimization. Therefore, SCG Grammar-Generation

Engine needs to optimize the generated SCG grammar.

In the optimization process, the SCG Grammar-Generation Engine scans the

new generated grammar for the empty rules and removes them and their

associated alternatives. If the alternative is the only choice of the rule, the whole

rule is removed and the process needs to trace further for the left-hand-side non-

terminal and removes its appearance(s) in other rules. The process continues

until all empty rules and their associated rule(s)/ alternative(s) are removed.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

174

For the above example, the rule (3), <adj_type_1> = ; is removed from the

generated SCG grammar, and the alternative | <adj_type_1>

<cnoun_type_1> in rule (2) is removed too. Then, the updated rule (2) is like

the following (4):

 <nouncla_type_1> = <cnoun_type_1>; (4)

The complete generated SCG grammar example is at Appendix H.

Step 7: output the SCG grammar.

As in CFG grammar generation, the user can specify the location and file name

for the output SCG grammar in the command line. In the example screenshot of

Figure 5.5.2, Gen_SCG is the name of the SCG Grammar-Generation Engine,

and solar_SCG.jsgf is the name of the generated SCG grammar. Without

specifying the location, the newly-generated SCG grammar solar_SCG.jsgf is

saved in the current directory, which is the directory of SCG Grammar-

Generation Engine.

Figure 5.5.2: screenshot - example command to generate a SCG grammar

5. Automatic Generation of Speech Grammars from Relational Database
Schema

175

5.6 Analysis of the Automatically-Generated CFG and SCG Using
the Grammar Metrics

We have analyzed and compared the automatically generated CFG and SCG

grammars with each other and with previous manually-crafted grammars, using

the set of grammar metrics discussed in section 2. Similar to the analysis in sub-

section 4.4, the newly-generated CFG and SCG grammars were analyzed using

the ABF application (section 2.9). A set of grammar metrics were calculated and

output, including the Average Branching Factor (ABF), the number of rules of the

grammar, the number of symbols, the number of non-terminals, the number of

terminals, the number of decision points, and the language size. To facilitate the

comparison, in Table 5.6, we include the results for the manually-crafted CFG

and SCG grammars (from sub-sections 4.3.1 and 4.3.2) and the results for the

newly-generated CFG and SCG grammars.

Table 5.6: comparison of manually-scripted and automatically-generated CFG

and SCG grammars

Grammar Rule

Symb
ol #

Non-
terminal#

Termi
nal#

Decision
Point #

Language
Size

ABF

Manual-CFG
(Figure 4.3.1)

17 160 50 110 19 1.73*1011 52.42

Auto-Gen CFG
(Appendix G)

17 160 50 110 19 1.73*1011 52.42

Manual-SCG
(Figure 4.3.2)

41 262 133 129 53 1.51*109 33.99

Auto-Gen SCG
(Appendix H)

41 278 136 142 61 1.56 *109 33.48

Table 5.6 shows that, with the same domain, the automatically generated CFG

has similar features as that of the manually-scripted CFG, and the automatically

generated SCG is a little bigger and has a slightly smaller ABF than the

manually-scripted SCG. The automatically generated SCG consists of more

symbols (terminals and/or non-temterminals) than the manually scripted SCG.

The reason is that in automatic grammar generation, the Grammar Generation

5. Automatic Generation of Speech Grammars from Relational Database
Schema

176

Engine expands all the possible cases though some cases may be not needed or

can be combined with other cases in manual grammar scripting.

The automatically generated CFG is similar to the manually-developed CFG

because the CFG grammar template was derived from the manually-developed

CFG. In the CFG grammar generation, the CFG grammar generation engine

interprets the parts of speech of the words in the database and fills in the

corresponding non-terminals of the CFG grammar template. For example, word

bernard will be added to the non-terminal <pnoun> of the CFG template.

 <pnoun> = bernard ;

Note that, this process does not change the structure of the CFG template.

Therefore the automatically generated (complete) CFG is similar as the

manually-scripted CFG, given the same vocabulary.

In the SCG grammar automatic generation, the SCG grammar generation engine

expands the SCG grammar template with respect to semantic types and

interprets the database schemas to generate a new SCG grammar. In the

example, the automatically generated grammar is slightly different from the hand-

crafted grammar. The reason is that, by examining both grammars, we noticed

that, the manually-crafted SCG grammar sometimes only differentiates between

two semantic types (i.e., animate from inanimate), while in the automatic

SCG grammar generation, the system always automatically expands the SCG

grammar template by three types (i.e., people, planet, moon).

For example, in rule 1 of the manual SCG, the who/what queries are defined as:

 | (who) <animate_verbph>

 | (what) <inanimate_verbph>

However, in the automatically generated SCG, who/what queries are specified

with respect to three semantic types

5. Automatic Generation of Speech Grammars from Relational Database
Schema

177

 |(who) <verbph_type_1>

 |(what) <verbph_type_2>

 |(what) <verbph_type_3>

Therefore, the example automatically generated SCG includes slightly more

constraints than the original manually-crafted SCG grammar. This also explains

the slight difference in grammar sizes and metrics between these two grammars.

The manually-scripted SCG grammar also differentiates between the three

semantic types (i.e., people, planet, moon) for the description of their

activities/relationships among these three entity types (semantic types).

Therefore, the differences of the metrics between the manual and automatic SCG

grammars are minor.

In this section, what we have presented is only one small example. However, this

preliminary attempt demonstrates the viability of automatic generation of

recognition grammars that have comparable ABFs to hand-crafted grammars.

5.7 Comparison to Related Work

With our extensive survey, we have noticed that there has not been much work

carried out on automatic grammar generation. To be specific, there is little work

on automatic grammar generation from relational database schemas. Voxeo

(2006) introduces an approach to create simple dynamic speech grammars from

databases using the ColdFusion server side language.

The basic idea of (Voxeo, 2006) is to create a dynamic-grammar template and

use database queries to retrieve information from database. The generated

grammar is a very simple grammar which uses database queries to retrieve

information from databases for dialogs or prompts in a VoiceXML file. For

example, the generated grammar may allow users to state his/her favorite

movies. The names of the movies in the database and can be retrieved by using

database queries.

5. Automatic Generation of Speech Grammars from Relational Database
Schema

178

In contrast, our approach can automatically generate more expressive speech-

recognition grammars from database schemas.

5.8 Summary

In this section, we have presented a new approach to automatically generate

CFG and SCG grammars from relational database schemas. The new approach

is based on the assumption that the high-level syntactic structures of many

speech-recognition grammars are similar for applications of similar type (e.g.,

database query applications) and differ only in the lexicon and in syntactically-

expressed semantic constraints.

We have applied the approach to a simple database schema and have

automatically generated recognition grammars which have similar properties to

manually crafted grammars with respect to a set of grammar metrics. Although

no general conclusions can be drawn from this limited experiment, it does

provide some evidence that the proposed approach deserves further

investigation.

6. A Public-Domain SpeechWeb

179

6. A PUBLIC-DOMAIN SPEECHWEB

6.1 Introduction

In this section, we illustrate the ease with which grammar-based speech

applications can be created and deployed on the web. We do this by building a

small grammar-based speech application and show how it can be easily added to

a “Public Domain SpeechWeb”. We begin with a short history of SpeechWebs

and the Public-Domain SpeechWeb architecture.

The example speech application is called “Read-A-Book”, which can read the

book “Sleeping Beauty” by users’ voice command. The grammar for this

application was analyzed and the ABF was computed in sub-section 2.9.

6.2 SpeechWebs

A SpeechWeb (Frost and Chitte 1999) is a collection of hyperlinked speech

applications which are accessed by end-users through speech browsers running

on local machines. Navigation from one application to another is also through

speech commands such as can I speak to Geoman which causes the

remote speech application to send information back to the local speech browser

which causes it to be redirected to a, possibly new, remote web server which

hosts the Geoman speech application.

6.3 The LRRP SpeechWeb Architecture

Up to 2004, three architectures that were used to provide speech access to

distributed applications (Frost et al., 2004).

(1) The first architecture uses speech interfaces (screen readers) to

interact with the conventional web.

(2) The second architecture is the RRRP architecture, which is often used

by call centers. RRRP stands for Remote Recognition/ Remote

Processing, which means that the user calls, and the speech

recognition is processed at the call center.

6. A Public-Domain SpeechWeb

180

(3) The third architecture is the LRLP architecture, which stands for Local

speech Recognition/Local Processing. With this architecture,

hyperlinked VoiceXML pages are downloaded to client machines for

execution. Note that VoiceXML(VXML) is a Voice eXtensible Markup

Language, which is an XML-based markup language for building

distributed voice applications, much as HTML is a markup language for

creating distributed visual applications (W3C, 2007a). VoiceXML

documents define the applications as a set of dialog states by

including commands for prompting user speech inputs, for invoking

recognition grammars, for outputting synthesized voices, and for

directing the user from one state to the other state.

Although these three architectures are important in providing speech access to

distributed knowledge and applications, they all have shortcomings as a basis for

a SpeechWeb consisting of speech applications that are developed and

deployed by users that do not have expertise in language processing (Frost et al.,

2004): 1) Since the conventional web is mainly constructed for visual browsing

much of a conventional web page content is inaccessible through a screen

reader. 2) In the second architecture, the processing and recognition both occur

at the remote provider site, which is not accessible to non-expert application

developers. 3) In the third architecture, it requires significant expertise to build

applications purely in VXML. Also, speech recognition and application processing

locally excludes the light-weight user devices.

To overcome the above shortcomings, Frost et al. (2004) proposed a new

architecture, called the LRRP architecture, to access hyperlinked speech-

accessible knowledge sources that are distributed over the internet. LRRP stands

for, Local speech Recognition and Remote Processing.

In the LRRP architecture, the user’s voice input is recognized locally by a voice

browser on the local machine, the recognized text is sent to the remote

6. A Public-Domain SpeechWeb

181

application for processing, and the result is returned to the local device and

output as synthesized voice.

6.4 A Public-Domain SpeechWeb

In 2005, Frost described an architecture for a Public-Domain SpeechWeb in the

Communications of the ACM (Frost 2005). The architecture is based on the

LRRP architecture and allows users who do not have expertise in language

processing to create and deploy hyperlinked speech applications using freely

available software and commonly used communication protocols. The basic idea

is that a speech browser, written in VXML, resides on the end-user device and

the speech application, which can be written in any programming or scripting

language, resides on a remote server. A “session” begins by the local speech

browser requesting the download of the application-dependent recognition

grammar from the remote server. The local speech recognition engine is then

tailored for the specific speech application. End-user spoken input is then

recognized locally and the corresponding text is sent to the remote application for

processing. Text is sent back to the local device and either output as synthesized

speech or used to cause the local device to contact a different speech application

and download a new recognition grammar.

The author of this thesis, together with Mr. Xiaoli Ma helped Dr. Frost (Frost, Ma,

and Shi 2007) reengineer the Public-Domain SpeechWeb software so that the

speech browser is written in X+V, a multi-modal markup language (VoiceXML

Forum, 2004) and the freely available Opera multi-modal web browser (Opera,

2010) to more easily create and deploy hyperlinked speech applications to the

Public-Domain SpeechWeb.

X+V (i.e., XHTML + Voice) is a markup language which combines XHTM with a

subset of VoiceXML (VXML) so that it can bring spoken interaction to standard

web content in multi-modal applications (VoiceXML Forum, 2004). XHTML is an

eXtensible HyperText Markup Language, which has the same expressive power

as HTML, but also conforms to XML syntax (W3C, 2007b).

6. A Public-Domain SpeechWeb

182

The Opera web browser is a freely downloadable multi-modal web browser

(Opera, 2010). By some simple configuration, the Opera web browser downloads

and uses the free IBM speech-recognition plug-in and can then execute X+V

pages.

The SpeechWeb architecture described in (Frost, Ma, and Shi, 2007) is shown in

Figure 6.4:

Figure 6.4: LRRP SpeechWeb architecture (Frost, Ma, and Shi, 2007)

In this architecture, the speech applications (i.e. the interpreter, a specialized

copy of the X+V browser, and the grammar file for the application) reside on

conventional remote web servers. Each application consists of a recognition

grammar and an interpreter. The grammar defines the input language of the

application. The interpreter is a program that takes the recognized text as input

and returns a text result which is returned to the local browser. The interpreter

can be written in any language. The copy of the X+V browser which resides on

the remote server (as part of the application) is specialized for the application

with a special greeting, and also contains the URLs of the interpreter and the

grammar file.

6. A Public-Domain SpeechWeb

183

When the user starts the Opera X+V browser on the local machine and contacts

a remote speech application, the copy of the X+V browser is returned from the

remote application. This browser is tailored to the speech application by having

three application-specific parts: 1) A greeting, 2) the URL of the recognition

grammar, and 3) the URL of the interpreter. Next, the recognition grammar from

the remote application is downloaded and used to tailor the recognition engine of

the browser. The user’s voice input is recognized by the local browser, and the

recognition result is sent as text to the remote application. The interpreter

residing on the remote application accepts the text input, processes it, and

returns the result as text to the X+V browser on the local machine. The result is

then output to the user as synthesized voice.

The reason why each application has its own version of the X+V browser is to

overcome what appears to be a bug in the X+V interpreter. Recognition

grammars cannot be changed when an X+V script is executed. When this bug is

fixed, a single X+V browser can be used on the local device to access different

speech applications. The greeting message, URL of the recognition grammar,

and URL of the interpreter for each application could then be stored in a file at

the remote location associated with the application.

If the user’s command is a request to access another speech application, the

voice input is recognized as such by the current speech application, whose

interpreter returns the URL of the new speech application. The browser

recognizes the URL link and then redirects to the new speech application. A new

recognition grammar is downloaded and the above process continues until the

user requests to leave the SpeechWeb.

The advantages of using LRRP architecture as the basis of the Public-Domain

SpeechWeb are discussed in (Frost, 2005) as follows:

6. A Public-Domain SpeechWeb

184

(1) It improves speech-recognition accuracy and efficiency. Only the

application-specific speech-recognition grammar is downloaded and

applied, which is efficient and improves speech-recognition accuracy.

(2) Speech applications can be written in any language with input and

output that conforms to the Web communication protocol.

(3) It is suitable for expert users and users who do not have expertise in

language processing. People who do not have expertise in language

processing can create simple applications with canned answers to

user queries. Advanced developers can build complex applications on

powerful server-side machines.

6.5 The Example of a Speech Application

In this thesis, we include an example to demonstrate the ease of creating and

deploying a speech application on the Public-Domain SpeechWeb. The example

speech application is a very simple application called Read-A-Book, which

allows speech access to the book Sleeping Beauty. The application can read

the book by page or by chapter. Also, the user can command the application to

read the pages referring to some specific words. In addition, the user can ask

some book-related questions, such as what is the title of the book or

who is the author of the book. Meanwhile, the user can get assistance

from the system by asking for help, what can I say, or what do you know.

The example speech application was chosen to illustrate the ease with which

grammar-based speech applications can be created and deployed using the

Public-Domain SpeechWeb architecture. It is very simple and does not have

many commands, nor does it do any natural-language processing. More powerful

speech applications have been built, and added to the Public-Domain

SpeechWeb, by the research group at the University of Windsor and are briefly

described in Frost et al (2008). However, the same methods are used to provide

the speech recognition capability and to deploy these applications as that are

used by the Read-A-Book application discussed here.

6. A Public-Domain SpeechWeb

185

Similar to navigating from a conventional website to another website on the

Internet, a user can navigate through speech applications on the SpeechWeb.

For example, by asking can I talk to judy, the user leaves the current

speech application to access the judy speech application.

The hardware and software requirements for speech-application development

include any PC or handheld computer that can run a version of the Opera

browser which supports X+V, a microphone and speakers for voice input and

output. The Opera multi-modal web browser is freely downloaded at Opera

(2010), and configured for voice capability.

We need to create four files to build a speech application and deploy it on the

existing SpeechWeb: (1) an XML file, (2) a grammar file, (3) an interpreter file,

and (4) a CGI file (Frost et al, 2007). Taking the Read-A-Book application as an

example, we now discuss each of the four files:

(1) The XML file.

The XML file is a copy of the X+V web browser created by Frost, Ma and Shi

(2007) and subsequently modified by Frost, Karaki, et al (2008). It can be

obtained from the SpeechWeb website at http://cs.uwindsor.ca/~speechweb/.

The .xml file is modified by changing the greeting, the URL of the recognition

grammar, and the URL of the interpreter for the Read-A-Book application. This

modification took only a few minutes. The .xml file for the Read-A-Book

application is given in Appendix I.

(2) The recognition grammar file.

Speech-recognition grammars vary from application to application. The

grammars are written in JSGF format to define the input language of the speech

application. The name of the grammar file needs to be consistent with the URL in

the XML file.

6. A Public-Domain SpeechWeb

186

In the Read-A-Book example, the system firstly greets and responds to user’s

greetings like, Hello or Hi there. The user can command the application to

read the book by user’s preference. For example, the user can ask the system to

read the book starting from specified places, such as the beginning, page

numbers, chapter numbers, or referring to some words, such as please read

page two or read chapter five. The user can also ask some questions

related to the book, such as who is the author of the book, and what

is the title of the book. If the user encounters difficulty while using the

application, s/he can ask for help at any time, like help, what do you know,

or what can I say.

The recognition grammar for application Read-A-Book is given in Appendix C.

This example grammar is very simple. More expressive grammars can be found

at the SpeechWeb website http://cs.uwindsor.ca/~speechweb/.

(3) The interpreter file.

 The interpreter is a program that takes the recognized text as input and outputs

text after processing the input. For the Public-Domain SpeechWeb, the

interpreter must reside in the same directory as the .xml file and must have the

extension .cgi as cgi is the communication protocol used by the Public-

Domain SpeechWeb (note that for interpreters built using interpreted

programming languages an additional script with the .cgi extension must also be

created as discussed later).

For the Read-A-Book application, the interpreter is a simple program. For

example, if the user says hello, the local browser converts it to text and sends it

to the interpreter which sends the text hi back to the local browser which outputs

it using synthesized voice. If the user says read page ten, the interpreter

responds to the user with the content of the book at page ten and the following

pages until the user requests stop or inputs another commands. In the example

Read-A-Book application, without interruption from the user, the system will

6. A Public-Domain SpeechWeb

187

read five continuous pages by default and prompt the user to continue or stop.

The interpreter program interprets the user’s text queries/ commands and returns

the answers to the user by synthesized voice or directs the user to corresponding

speech applications as required.

Interpreters can be written in any programming language provided that the input

and output are handled by the standard input/output features of the language.

The interpreter for the example speech application Read-A-Book was written

using Miranda, a non-strict purely functional programming language. An excerpt

of the Read-A-Book interpreter is in Appendix J.

(4) The CGI file (which is only required when the interpreter is written in an

interpreted language)

Because Miranda is an interpreted language, a .cgi script is also required as

the .cgi file which invokes the Miranda interpreter when the script is sent input

from the local speech browser.

The .cgi file can be written in Unix or any other scripting language which is

supported by the web server on the remote compute server. The .cgi file for the

Read-A-Book application is a Unix script which can be found in Appendix K.

In order to deploy the Read-A-Book application on the Public-Domain

SpeechWeb, the four files are placed in a directory which is accessible through a

web server running on a compute server linked to the Internet.

To start the Read-A-Book speech application, the user directs the Opera

browser to the XML file at the URL for the Read-A-Book application. When the

opera multi-modal web browser starts, the application greets the user by voice

saying Hello, how are you? I am going to read a book for you.

A sample screenshot of the application is in Figure 6.5. More screenshots for the

conversation of the Read-A-Book application are in Appendix L.

6. A Public-Domain SpeechWeb

188

Figure 6.5: the screenshot of Read-A-Book application.

In this example conversation, the user says hello, and the application responds

with hi there. The user then asks what do you know. The application

responds with I know some books. I can read a book for you. The

user continues to ask what is the book’s title. The application answers,

Sleeping Beauty. The user further asks, who is the author of the

book, the application answers the Grimm Brothers.

On the screen, the question (user’s command) is displayed first. The response

(from the application) is displayed above the question on screen. The

subsequent conversations are displayed in the same way, and the screen scrolls

down.

6. A Public-Domain SpeechWeb

189

6.6 Summary

A SpeechWeb is an augmentation of the conventional web. It extends the

concept and the usage of the traditional web. It provides speech access to

specially-created applications for people with visual disabilities and for situations

where hands-free access is necessary.

In this section, we first introduced the concept of a SpeechWeb. We then

presented the LRRP (Local Recognition/ Remote Processing) SpeechWeb

architecture (Frost et al., 2004) and explained its advantages. Next, we

presented an example speech application, Read-A-Book, to demonstrate how

easily a speech application can be constructed and deployed on the Public-

Domain SpeechWeb using freely available software and commonly used

communication protocols.

7. Conclusion

190

7. CONCLUSION

7.1 Proof of the Thesis

We began with the thesis that natural-language speech-recognition grammars

are amenable to methodical analysis and design techniques. In particular:

(1) Various grammar metrics, including the Average Branching Factor

(ABF) can be computed automatically and efficiently.

(2) Semantic constraints can be encoded in syntax rules in order to

decrease language size and ABF.

(3) Recognition grammars can be created automatically from relational

database schemas and application specifications.

(4) Readily-available speech-recognition technology and commonly-used

communication protocols can be used by non-expert as well as expert

users to create and deploy speech applications.

We have proven each part of the thesis by constructing algorithms and software.

Such proofs are informal and are really “proof of concept”. However, formal

mathematic proofs were given showing termination, correctness and polynomial

complexity of the ABF algorithm.

7.2 Future Work

In this thesis report, we have proposed a novel and efficient algorithm of

computing the Average Branching Factor (ABF) directly from speech-recognition

grammars to assist the analysis and design of speech-recognition grammars.

However, this algorithm has the following three constraints: 1) the grammar must

be proper, 2) the grammar must be 1-lookahead, and 3) the grammar must be

non-recursive. For many speech-recognition applications, these constraints can

be easily accommodated. However, it should be noted that if our algorithm can

be modified to overcome the last constraint (i.e., non-recursive), then it would

have application in many other areas of A.I. The reason for this is that many

problems that involve search (for example constraint-satisfaction, pattern-

7. Conclusion

191

recognition, planning, etc.) can be defined as parsing and/or grammar expansion

(derivation) problems. The Average Branching Factor (ABF) is one metric that

can be used when comparing different problems and different language-based

solutions to those problems. Therefore, it would be useful to investigate how to

extend the algorithm to accommodate recursive grammars. However, the

approach would likely be very different as recursive grammars would generate

infinite languages.

 It would be useful to consider the addition of probability values to the alternatives

in the syntax rules. The reason for this is that it is likely, in the near future, those

speech-recognition engines will become available that are based on probabilistic

grammars. In such grammars, each alternative in each syntax rule is labeled with

a probability value that represents the likelihood of that alternative matching the

input. These probability values are then taken into account together with the

results of matching the phonetic properties of the next segment of the input with

those of the words in the director sets of the alternative branches of the

production rule. No research appears to have yet been carried out on relating

average branching factors, probability values, and recognition accuracy. We

would like to investigate into the use of probabilistic grammars when recognition

engines that are based on probabilistic grammars become readily available.

We have discussed, analyzed, and compared the CFG and SCG grammars in

this thesis. It would be useful to study and apply more semantic constraints in

future work to improve the recognition accuracy and assist the design and

development of speech-recognition grammars.

We have proposed a novel approach to generate the CFG and SCG grammars

automatically from relational database schemas. The automatically-generated

CFG/ SCG grammars can be used to the speech applications or speech

interfaces for database queries. In future work, it would be useful to develop

methods to automatically generate other types of speech grammars.

7. Conclusion

192

Finally, the example speech application which we developed using the

SpeechWeb architecture illustrates the ease with which such applications can be

constructed and deployed on the Internet. In future work, it would be useful to

investigate methods which integrate the automatic generation of recognition

grammars from database schemas with other components so that a complete

speech query interface to a given Oracle database could be automatically

generated and deployed on the Internet.

Bibliography

193

BIBLIOGRAPHY

1. Abbott, K. (2001) Voice Enabling Web Applications: VoiceXML and Beyond.

Published by CMP books (April 2001), and by Apress (November 2001).

2. Aho, A.V., Sethi, R., and Ullman, J.D. (1986) Compilers: Principles,

Techniques, and Tools; Addison-Wesley Publish Company; (Everywhere).

Reprinted with corrections March, 1988; ISBN 0-201-10088-6.

3. Akiba, T. and Itou, K (2000) Semi-Automatic language Model Acquisition

without Large Corpora. Proceedings of the ICSLP, 4, 49-52.

4. Alshawi, H. (1992). The Core Language Engine, MIT Press, Cambridge.

5. Angel Voice Site, VUI Design – Introduction to VUI Design, www.angel.com .

6. Amaya, F., Benedf, J. M. and Sănchez, J.A. (1999) Learning of Stochastic

Context-Free Grammars From Bracketed Corpora By Means of Re-

estimation Algmtorithms. VIII Symposium on Pattern Recognition and

Image Analysis. 1, 119-126.

7. Apache Software Foundation (2005) Voice As a User Interface- Case Study

and Lessions Learned,

http://www.redbooks.ibm.com/redpapers/pdfs/redp3893.pdf .

8. Arai, K., Wright, J., Riccardi, G., and Gorin, A. (1998) Grammar Fragment

Acquisiton Using Syntactic and Semantic Clustering. Proceedings of the ICSL.

Proc., 5, 2051-2054.

9. Aust, H., Oerder, M., Seide, F., and Steinbiss, V. (1995) The Philips

Automatic Train Timetable Information System. Speech Communication 17,

249-262.

10. Baggia, P. (January 2006) Impact of Standards on Automatic Speech

Recognition,
http://www.speechtechmag.com/issues/industry/12821-1.html#top

11. Baggia, P., Castagneri, G., and Danieli, M. (2000). Field Trials of The Italian

ARISE Train Timetable System. Speech Conference on Spoken Language

Processing, 550-553.

12. Baker, J. (1979) Trainable Grammar for Speech Recognition. In D. Klatt & J.

Bibliography

194

Wolf (eds.) Speech Communication papers for the 97th Meeting of the

Acoustical Society of America, 547-550.

13. Balakrishna, M. (2007) Exploiting High-Level Knowledge Resources for

Speech Recognition With Applications to Interactive Voice Response

Systems. Ph.D. Dissertation, University of Texas at Dallas.

14. Bangalore, S., and Johnston, M. (2003) Balancing Data-driven and Rule-

based Approaches in the Context of a Multimodel Conversational System.

In Automatic Speech Recognition and Understanding (ASRU’03)- IEEE

Workshop. 221-226.

15. Banzhaf, W., Nordin, P., Keller, R.E., and Francone, F.D. (1998) Genetic

Programming: An Introduction. Morgan Kaufmann Publisher.

16. Barnard, E., Halberstadt, A., Kotelly, C., and Phillips, M. (1999) A

Consistent Approach to Designing Spoken-dialog Systems. In Proceedings

of the Automatic Speech Recognition and Understanding Workshop

(ASRU99), Keystone, Colorado.

17. Bernsen, N.O., Dybkjær, H., and Dybkjær L. (1995) Exploring the limits of

system-directed dialogue. Dialogue Evaluation of the Danish Dialogue

System. Proceedings of Eurospeech ’95, Madrid, 1457-1460.

18. BeVocal Inc., http://cafe.bevocal.com/

19. Biber, C. and Kozminski, A. (2005) Six Steps for Creating a Speech

Recognition Application or Speech-Enabling Your DTMF IVR.

http://www.microsoft.com/speech/community/newsletter/articles/0405article

.mspx .

20. Bigham, J., Prince, C.M., and Ladner, R.E. (2008) WebAnywhere: A

Screen Reader On-the-Go. In Proceedings of the 2nd Cross-Disciplinary

Conference on Web Accessibility, W4A 2008. Beijing, China. 73-82.

21. Blackburn, P. and Striegnitz, K. (2002) http://www.coli.uni-sb.de/~kris/nlp-

with-prolog/html/.

22. Bouzid, A. (2006a) VUI Design- VUI 101, Angel Voice Site Newsletter.

http://www.angel.com/ivruniversity/vui2.jsp .

Bibliography

195

23. Bouzid, A. (2006b) 10 tips for crafting an effective opening prompt, Angel

Voice Site Newsletter . http://www.angel.com/ivruniversity/vui20.jsp .

24. Bouzid, A. (2006c) VUI Design – Site Builder Tips for Better VUI, Angel

Voice Site Newsletter. http://www.angel.com/ivruniversity/vui9.jsp .

25. Bouzid, A. (2006d) VUI Design – The VUI View: Top 10 VUI No-Nos, Angel

Voice Site Newsletter. http://www.angel.com/ivruniversity/vui10.jsp.

26. Bouzid, A. (2006e) VUI Design – Why VUI Design is More Challenging than

GUI Design, Angel Voice Site Newsletter,

http://www.angel.com/ivruniversity/vui11.jsp .

27. Bouzid, A. (2006f) VUI Design –Effective Voice Prompts, Angel Voice Site

Newsletter, http://www.angel.com/ivruniversity/vui4.jsp .

28. Bouzid, A. (2006g) VUI Design – Effective Voice Menus, Angel Voice Site

Newsletter, http://www.angel.com/ivruniversity/vui3.jsp .

29. Boyce, S. (2000) Natural Spoken Dialogue Systems for Telephony

Applications, Communications of the ACM, 43(9): 29-34.

30. Boyce, S. (1999) Spoken Natural Language Dialogue Systems: User Interface

Issues For the Future. In D. Gardner-Bonnea, ed., Human factors and voice

interface systems, Norwell, MA: Kluwer Academic Publishers. 205-235.

31. Myers, B.,,Hudson, S., and Pausch, R. (2000) Past, Present, and Future of

User Interface Software Tools. ACM Transactions on Computer-Human

Interaction 7 (1) 3-28.

32. Brown, P. F., Pietra, V., deSouza, P., Lai, J., and Mercer, R (1992) Class-

based n-gram models of natural language. Computational Linguistics, 18.

467-479.

33. Cai, O. and Hamaker, J. (2008) Grammar Confusability Metric for Speech

Recognition. United States Patent. IPC8 Class: AG10L1100FI, USPC Class:

7042701, Assignees: Microsoft Corporation, Origin: RedMond, WA US.

34. Callison-Burch, C., Osborne, M. and Koehn, P. (2006) Re-evaluating the Role

of BLEU in Machine Translation Research. In 11th Conference of the

European Chapter of the Association for Computational Linguistics: EACL

2006. 249–256.

Bibliography

196

35. Carpenter, P., Jin, C., Wilson, D., Zhang, R., Bohus, D., and Rudnicky, A.

(2001) Is This Conversation on Track? Proceedings of EUROSPEECH.

Aalborg, Dinamarca, 3, 2121-2125.

36. Carrasco, R.D. and Oncina, J. (1994) Grammatical Inference and Applications,

Lecture Notes in Artificial Intelligence (LNAI 862), Springer-Verlag.

37. Caskey, S.P., Story, E., and Pieraccini, R. (2003) Interactive Grammar

Inference with Finite State Transducers. In Proc. IEEE Workshop Automatic

Speech Recognition and Understanding (ASRU 2003). 572-576.

38. Chant Inc. (2002) Chant Developer Workbench,

http://www.chant.net/Products/Developer%20Workbench/Default.aspx .

39. Chelba, C., and Jelinek, F (2000) Structured Language Modeling. In

Computer Speech & Language. 14(4), 283-332.

40. Chen, S. (1995) Bayesian Grammar Induction for Language Modeling.

Proceedings of the COLING/ACL 1995, 33rd Ann. Meeting of the Assoc.

Computational Linguistics, 228-235.

41. Churcher, G.E., Souter, C. and Atwell, E.S. (1996) Dialogues in Air Traffic

Control. In Proceedings of 11th Twente Workshop on Language Technology:

Dialogue Management in Natural Languages Systems (TWLT11), Twente,

Netherlands.

42. Corballis, L. P. (1994) Interactive Dynamic Grammar Constraint in Speech

Recognition. European Patent Application EP0618565.

43. Cover, T.M. and Thomas, J.A. (2006). Elements of Information Theory.

Second Edition. John Wiley & Sons, New York, NY. ISBN: 0-471-24195-4.

776.

44. Črepinšek, M., Mernik, M., and Žumer, V. (2004) Extracting Grammar from

Programs: Brute Force Approach. ACM SIGPLAN Notices, 40(44), 29-38.

45. Črepinšek, M., Mernik, M., Javed, F., Bryant, B., and Sprague, A. (2005)

Extracting Grammar from Programs- Evolutionary Approach. In Proceedings

of ACM SIGPLAN Notices, 40(4), 39-46.

46. Dahl, D. A., Bates, M., Brown, M., Fisher, W., Hunicke-Smith, K., Pallett, D.,

Pao, C., Rudnicky, A., and Shriberg, E. (1994) Expanding the Scope of the

Bibliography

197

ATIS Task: the ATIS-3 Corpus. Proceedings of ARPA Human Language.

Technology Workshop. 43-47.

47. Dellaert, F. (2002) The Expectation Maximization Algorithm. Technical report

GIT-GVU-02-20, College of Computing, Georgia Institute of Technology.

48. Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977) Maximum Likelihood

from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical

Society B, 1977. 39: 1-38.

49. Doddington, G. (2002) Automatic Evaluation of Machine Translation Quality

Using N-Gram Coocurrence Statistics. In Proceedings of the Human

Language Technology Conference (HLT), San Diego, CA pp. 128–132

50. Dowding, J., Gawron, J.M., Appelt, D., Bear, J., Cherny, L., Moore, R., and

Moran, D. (1993) Gemini: A Natural language System for Spoken-language

Understanding. In 31st Annual meeting of the Association for Computational

Linguistics. Columbus, Ohio, 54-61.

51. Dupont, P. (1994) Regular Grammatical Inference from Positive and

Negative Samples by Genetic Search: The GIG Method. Lecture Notes in

Artificial Intelligence, Proceedings of the 2nd International Colloquium on

Grammatical Inference and Applications. ICGI’94, 862, 236-245.

52. Edelkamp, S. and Korf, R. E. (1998) The Branching Factor of Regular Search

Spaces. In Proceedings of the 15th National Conference on Artificial

Intelligence and the 10th Conference on Innovative Applications of Artificial

Intelligence (AAAI-98/IAAI-98), Madison, Wisconsin, U.S., 299-304.

53. Eisenzopf, J. (2006) Top 10 Best Practices for Voice User Interface Design,

the Ferrum Group, LLC .

http://www.developer.com/voice/article.php/1567051 .

54. Everett, S., Wauchope, K., and Perzanowski, D. (1993) Adding Speech

Recognition to a Natural Language Interface, Navy Center for Applied

Research in Artificial Intelligence Naval Research Laboratory,

http://ww.aic.nrl.navy.mil/papers/1993/AIC-93-026.ps .

Bibliography

198

55. Fenton, N.E. and Pfleeger, S.L (1996) Software Metrics: A Rigorous and

Practical Approach. Thomson Computer Press, First Edition. 656.

56. Fraser, N.M. and Gilbert, G.N. (1991) Simulating Speech Systems.

Computer Speech and Language 5, 81-99.

57. Frost, R.A and Chitte, S. (1999) A New Approach For Providing Natural-

Language Speech Access to Large Knowledge Bases. Proceedings of the

Pacific Association of Computational Linguistics Conference PACLING ’99,

University of Waterloo, 82-89.

58. Frost, R.A. (2002) Improving Speech-Recognition Accuracy by Coding

Semantic Constraints in the Syntax of the Recognition Grammar. Technical

Note. School of Computer Science, University of Windsor.

59. Frost, R.A., Abdullah, N., Bhatia, K., Chitte, S., Hanna, F. Roy, M., Shi, Y.,

and Su, L. (2004) LRRP SpeechWebs. In Proceedings of CNSR

Communication Networks and Services Research Conference (CNSR

2004). 91-98.

60. Frost, R.A. (2005) A Call for A Public-Domain SpeechWeb.

Communications of the ACM. 48, 11, 45-49.

61. Frost, R.A., Ma, X., and Shi, Y. (2007) A Step Towards a Public-Domain

SpeechWeb. AAAI’07, the Twenty-Second AAAI Conference on Artificial

Intelligence. Vancouver, B.C., Canada, 1307-1308.

62. Frost, R. A., Karaki, A., Dufour, D. A., Greig, J., Hafiz, R., Shi, Y.,

Daichendt, S., Chandon, S., Barolak, J., and Fortier, R. J. (2008)

MySpeechWeb: software to facilitate the construction and deployment of

speech applications on the web. ASSETS 2008: 249-250

63. Fu., K.S. and Booth, T.L. (1975a) Grammatical inference: Introduction and

survey, part 1. IEEE Transactions on Systems, Man and Cybernetics, 5,

1975.

64. Fu., K.S. and Booth, T.L. (1975b) Grammatical inference: Introduction and

survey, part 2. IEEE Transactions on Systems, Man and Cybernetics, 5,

1975.

Bibliography

199

65. Gao, Y., Erdogan, H., Li, Y., Goel, V., and Picheny, M. (2001) Recent

Advances in Speech Recognition System for IBM DARPA. Proceedings of

EUROSPEECH. Aalborg, Denmark. 503-507.

66. Gavaldà, M. and Waibel, A. (1998) Growing Semantic Grammars. In

Proceedings of the 17th International Conference on Computational

Linguistics and 36th Annual Meeting of the Association for Computational

Linguistics, COLING/ACL98, Montreal, Canada. 451-456.

67. Gavaldà, M. (2000) Growing Semantic Grammar. Ph.D Dissertation,

Carnegie Mellon University.

68. Gini, C. (1921). "Measurement of Inequality of Incomes". The Economic

Journal 31: 124–126.

69. Glass, J.R. (1999) Challenges for Spoken Dialogue Systems. In

Proceedings of the 1999 IEEE ASRU Workshop. http://www.sls.lcs.mit.edu.

70. Glass, J. and Weinstein, E. (2001) SPEECHBUILDER: Facilitating Spoken

Dialogue System Development. In Euriospeech 2001, Aalborg, Denmark.

71. Glass, J., Weinstein, E., Cyphers, S., Polifroni, J., Chung, G., and Nakano,

N. (2004) A Framework for Developing Conversational User Interfaces. In

Proceedings of CADUI, Funchal, Isle of Madeira, Portugal, 347-358.

72. Gorelov, Z. (2005) Interview with Zor Gorelov of Tell-Eureka.

http://www.telleureka.com/about_us/02news_11_25.htm

73. Gruenstein, A. (2002) Automatic Grammar Construction. Symbolic

Systems, Stanford University, 115.

74. Han, B. (2000) Improving Spoken Dialog Systems, Technical Report,

Language Technology Institute, Carnegie Mellon University.

75. Harper, M., White, C., Wang, W. and Johnson, M. (2000) The

Effectiveness of Corpus-Induced Dependency Grammars for Post-

processing Speech. In Proceedings of the First Annual Conference of the

North American Chapter of the Association for Computational Linguistics

(NAACL). 102-109.

76. Harris, T.E. (1963) The Theory of Branching Processes. Berlin-Gottin-gen-

Heidelberg: Springer-Verlag.

Bibliography

200

77. Hartzell, D. (2003) Simplifying Speech-Enabled Solutions or Deploying

Speech-Enabled Services Should Be as Easy as Deploying Web Services.

Invited talk at the Conference on Voice Enabled Services.

78. Hauptmann, A.G., Young, S.R., and Ward, W.H. (1988) Using Dialog-Level

Knowledge Sources to Improve Speech Recognition. Proceedings of the

Seventh National Conference on Artificial Intelligence, Morgan Kaufmann,

79. Hermannsdottir, S.H. (1996) A Dialogue Manager for A Spoken Dialogue

System. McGill University (Canada) MSC thesis, MAI 34/04, 1616.

80. Hewlett Packard (HP) (2005) Developing Voice-Enabled Web Services.

Hewlett Packard (HP) white paper.

 http://whitepapers.techrepublic.com.com/whitepaper.aspx?docid=81819

81. Honavar, V. and Slutzki, G. (1998) Grammatical Inference, LNAI 143,

Springer-Verlag.

82. Hone, K. S. and Barber, C. (1995) Using A Simulation Method to Predict the

Transaction Time Effects of Applying Alternative Levels of Constraint to User

Utterances Within Speech Interactive Dialogues, ESCA Workshop on Spoken

Dialogue Systems. 8. 1 209-212.

83. IBM (2005) WebSphere VoiceXML Programmer's Guide - Voice Server for

Multiplatforms.

http://publib.boulder.ibm.com/infocenter/pvcvoice/51x/topic/com.ibm.voicetool

s.reldocs.doc/pgmguide.pdf .

84. IBM Software Download (2006),

http://www14.software.ibm.com/webapp/download/preconfig.jsp?id=2006-02-

23+09%3A08%3A30.953556R&cat=&fam=&s=z&S_TACT=104AH%20W42&

S_CMP

85. IBM WebSphere Voice Toolkit (2010):

 http://www-306.ibm.com/software/pervasive/voice_toolkit/about/#keyfeatures .

86. IBM WebSphere Voice Server:

 http://www-01.ibm.com/software/pervasive/voice_server/

87. IEEE Industry Standards and Technology Organization (IEEE-ISTO) (2002)

Some Thoughts on Speech Grammar.

Bibliography

201

 http://www.voicexmlreview.org/Jan2002/columns/Jan2002_speak_listen.html .

88. Intervoice Inc. (2004) Intervoice Training Document – Voice User Interface

Design – Speechworks 7.0 OSS/OSR and Naunce 8.0 – Speech Forms, 2004.

89. Jackson, P. (2004) Speaker and Speech Recognition Website:

http://www.ee.surrey.ac.uk/Personal/P.Jackson/eem.ssr/

90. Jørgensen, F (2007) The Effects of Disfluency Detection in Parsing Spoken

Language. NODALIDA 2007 Conference Proceedings, 240–244.

91. Joshi, A.K., Levy, L., and Takahashi, M. (1975) Tree Adjunct Grammars.

Journal of Computer and System Sciences, 10(1), 136-163.

92. Ju, Y., Ollason, D.G., and Bhatia, S. (2009) Method and Apparatus for

Automatic Grammar Generation from Data Entries. United States Patent

7636657. Primary Class: 704/10, International Classes: G06F17/21.

93. Justesen, J. and Larsen, K. (1975) On Probabilistic Context-Free

Grammars that Achieve Capacity. Inform. Contr., 29, 268 -285.

94. Kent, J.T. (1983) Information Gain and a General measure of Correlation.
Biometrika 1983, 70(1), 163-173.

95. Kathrin Klamroth (2006) Measuring Distances. Springer New York. ISBN:

978-0-387-95498-1 (Print) 978-0-387-22707-8 (Online).

96. Knight, S., Gorrell, G., Rayner, M., Milward, D., Koeling, R. and Lewin, I.

(2001) Comparing Grammar-Based and Robust Approaches to Speech

Understanding: A Case Study. In Eurospeech 2001. 1779-1782.

97. Koza, J.R. (1992) Genetic Programming: On the Programming of

Computers by Natural Selection. MIT Press.

98. Koza, J.R. (1994) Genetic Programming as a Means for Programming

Computers by Natural Selection, in journal Statistics and Computing,

4(2):87—112.

99. Kuich, W. (1970) On the Entropy of Context-Free Languages. Inform Contr.,

16, 173-200.

100. Kullback, S. (1959), Information Theory and Statistics. John Wiley and

Sons, NY.

Bibliography

202

101. Kupersstein, M. (2005) Building Professional Speech Applications for

Mainstream IT Developers.
http://www.microsoft.com/speech/community/newsletter/articles/0905article.htm .

102. Lamel, L., Bennacef, S., Rosset, S., Devillers, L., Foukia, S., Gangolf, J.,

and Gauvain, J. (1997) The LIMSI RailTel System: Field Trial of A Telephone

Service for Rail Travel Information. Speech Communication, 23, 67-82.

103. Levin, E. and Mané, A. (2005) Voice User Interface Design for Automated

Directory Assistance. In INTERSPEECH-2005. 2509-2512.

104. Lynch, P. and Brizee, A. (2010) Purdue Owl Online Writing Lab,

http://owl.english.purdue.edu/owl/resource/540/01

105. MacFadyen, H. (2010)

http://www.uottawa.ca/academic/arts/writcent/hypergrammar/partsp.html,

University of Ottawa.

106. Mané, A. and Levin, E. (2005) Designing the Voice User Interface for

Automated Directory Assistance, Voice Advantage, USA, City University of

New York, USA.

107. Marcus, S., Brown, D., Goldberg, R., Schoeffler, M., Wetzel, W., and

Rosinski, R. (1996) Prompt Constrained Natural Language-evolving the

Next Generation of Telephony Services, In Proceedings of Fourth

International Conference on Spoken Language, 2, 857-860.

108. McCabe T.J. (1976) A Complexity measure. IEEE Transactions on

Software Engineering. 2(4):308-320.

109. McCandless and M., Glass, J. (1993) Empirical Acquisition of Word and

Phrase Classes in the ATIS Domain. The 3rd European Conference on

Speech Communication and Technology. 981-984.

110. McTear, M.F. (2002) Spoken Dialogue Technology: Enabling the

Conversational User Interface. ACM Press New York, NY, USA, Periodical-

Issue-Article, 2002, ISSN: 0360-0300, 90-169.

111. Meng, H. and Siu, K.C. (1999) Semi-Automatic Acquisition of Domain-

Specific Semantic Structures. Proceedings of the 6th European Conference

on Speech Communication & Technology, Budapest, Hungary, 2039-2042.

Bibliography

203

112. Meng, H. and Siu, K. C. (2002) Semiautomatic Acquisition of Semantic

Structures for Understanding Domain-Specific Natural Language Queries

(2002). IEEE Transactions on Knowledge and Data Engineering.,14(1),

172-181.

113. Mernik, M., Gerliĉ, G., Zumer, V., and Bryant, B. (2003) Can a parser

be generated from Examples? Proceedings of the ACM Symposium on

Applied Computing, Melbourne, 1063-1067.

114. Metz, B.D. (2008) Automatic Grammar Tuning Using Statistical

Language Model Generation. United States Patent 20080052076, Kind

Code: A1.

115. Miclet, L. and Higuera, C.D. (1996) Grammatical Inference: Learning

Syntax from Sentences, LNAI 1147, Springer-Verlag.

116. Microsoft Corporation (2005). Microsoft Speech Application Software

Development Kit (SASDK) Version 1.0.

http://www.microsoft.com/downloads/details.aspx?FamilyID=1194ed95-

7a23-46a0-bbbc-06ef009c053a&DisplayLang=en .

117. Microsoft Download Center (2010).

http://www.microsoft.com/downloads/details.aspx?FamilyId=5DAAE9C4

-188C-4547-A9D6-1671132A39A1&displaylang=en&EventType=getsdk

118. Miller, M.I. and O’Sullivan, J.A. (1992) Entropies and Combinatorics of

Random Branching Processes and Context-free Languages. IEEE

Transactions on Information Theory, 38(4), 1292-1310.

119. Moore, R.C. (1999) Using Natural-Language Knowledge Sources in

Speech Recognition, Research Institute for Advanced Computer

Science NASA Ames Research Center, Moffett Field, CA 94035.

120. Moore, R.C., Appelt,D., Dowding, J., Gawron, J.M., and Moran, D. (1995)

Combining Linguistic and Statistical Knowledge Sources in Natural-

Language Processing for ATIS. In Spoken Language Systems Technology

Workshop, Austin, Texas, February 1995. Morgan Kaufmann Publishers,

Inc., 261-264.

Bibliography

204

121. Morimoto, T. and Takahashi, S (2009) Automatic Construction of a FSA

Language Model and Speech Recognition on it with Dynamic Alternative

Path Search. Proceedings of the International MultiConference of

Engineers and Computer Scientists 2009 (IMECS 2009), March 18-20,

2009, Hongkong, 1, ISBN: 978-988-17012-2-0.

122. Morimoto, T. and Takahashi, S. (2008) Automatic Construction of FSA

Language Model for Speech Recognition by FSA DP-Matching, Trends in

Intelligent Systems and Computer Engineering (Edtd. by O. Castillo et al.),

Springer, 515-524.

123. National Research Council (U.S.) (1984) Automatic Speech Recognition In

Severe Environments. National Academy Press, Washington, D.C., 1984.

124. Nuance (December 2003) Grammar Developer’s Guide, Nuance Speech

Recognition System Version 8.5.

http://community.voxeo.com/vxml/docs/nuance20/grammar.pdf .

125. NÜ echo Inc. (2005) http://www.nuecho.com/fr/services/grammar.shtml .

126. Olsen, D.R. and Klemmer, S.R. (2005). The Future of User Interface

Design Tools, ACM CHI 2005 Workshop, 2134 - 2135.

127. Omohundro, S. (1992) Best-first Model Merging for Dynamic Learning

and Recognition. In Advances in Neural Information Processing Systems 4,

ed. By John E. Moody, Steve J. Hanson, & Richard P. Lippman, San

Mateo, CA: Morgan Kaufmann. 958-965.

128. Oncina, J. and Garcia, P. (1992) Inferring Regular Languages in

Polynomial Update Time. Series in Machine Perception and Artificial

Intelligence, World Scientific, 1, 49-61.

129. Opera Software ASA (2010) http://www.opera.com/.

130. Paineni, K., Roukos, S., Ward, T., and Zhu and W.J. (2002) BLEU: A

Method for Automatic Evaluation of Machine Translation. In ACL-2002:

40th Annual meeting of the Association for Computational Linguistics.

311- 318.

Bibliography

205

131. Pargellis, A., Zhou, Q., Saad, A. and Lee, C. (1998) A Language for

Creating Speech Applications, in Proceedings ICSLP, Sydney, Australia.

Paper 0388.

132. Pargellis, A., Kuo, H., and Lee, C. (1999a) Automatic Dialogue

Generator Creates User Defined Applications, In Proceedings

EUROSPEECH, Budapest, Hungary.

133. Pargellis, A., Kuo, H., and Lee, C. (1999b) Automatic Application

Generator Matches User Expectations to System Capabilities.

Proceedings ESCA Workshop Inteerac. Dialog. Multi-Modal System,

Kloster Irsee, Germany. 37-40.

134. Pargellis, A., Fosler-Lussier, E., Potamianos, A., and Lee, C.-H. (2001)

Metrics for Measuring Domain Independence of Semantic Classes. In

Eurospeech 2001. Aalborg, Denmark. 447-450.

135. Peissner, M. (2002) What the Relationship between Correct

Recognition Rates and Usability, Proceedings of the 6th International

Scientific Conference on Work with Display Units (WWDU –World Wide

Work), Berchtesgaden.

http://www.ergonomic.de/files/wwdu_2002_proceedings.pdf .

136. Pellom, B., Ward, W., and Pradhan, S. (2000) The CU Communicator:

An Architecture for Dialogue Systems. Proceedings of International

Conference on Spoken Language Processing. Beijing, China, 2,. 723-

726.

137. Pereira, F. and Schabes, Y. (1992) Inside-outside Reestimation from

Partially Bracketed Corpora. In 20th Meeting of the Association for

Computation Linguistics (ACL’92). 128-135.

138. Pieraccini, R. (2004) Spoken Language Understanding, the

Research/Industry Chasm. In HLT/NAACL Workshop on Spoken

Language Understanding for Conversational Systems, Boston, 2004.

47-47.

Bibliography

206

139. Polifroni, J., Chung, G., and Seneff, S. (2003) Towards Automatic

Generation of Mixed-Initiative Dialogue Systems from Web Content.

Proceedings of Eurospeech '03, Geneva, Switzerland, 193-196.

140. Potamianos, A., Kuo, H. Lee, C., Pargellis, A., Saad, A., and Zhou, Q.

(1999) Design Principles and Tools for Multimodal Dialog Systems. In

Proceedings of ESCA Workshop. Interact. Dialog. Multi-Modal System,

Kloster Irsee, Germany, June 1999, 167-170.

141. Power, J.F. and Malloy, B.A. (2000) Metric-based Analysis of Context-

Free Grammars, Proceedings Program Comprehension, IWPC 2000,

8th International Workshop, 171-178.

142. Power, J.F. and Malloy, B.A. (2001) Exploiting Metrics to Facilitate

Grammar Transformation into LALA Format, Proceedings of the 2001

ACM Symposium on Applied Computing. Las Vegas, Nevada, United

States. 636-640.

143. Power, J.F. and Malloy, B.A. (2004) A Metrics Suite For Grammar-

based Software. Journal of Software Maintenance. 16 (6): 405-426.

144. Rahmel, H. (2005) Strategies for Optimizing Alphanumeric Recognition

Accuracy. PM Speech Components Group.

http://www.microsoft.com/speech/community/newsletter/articles/124004

art/index.htm .

145. Rayner, M., Hockey, B.A., James, F., Bratt, E.O., Goldwater, S., and

Gawron, J.M. (2000) Compiling Language Models From A Linguistically

Motivated Unification Grammar. In COLING 2000.

146. Riccardi, G. and Gorin, A. (2000) Stochastic Language Adaptation over

Time And State in Natural Spoken Dialog Systems. IEEE Transactions.

On Speech and Audio Processing, 8, 3-10.

147. Rosenfeld. R. (2000a) Two Decades of Statistical Language Modeling:

Where Do We Go From Here? In Proceedings of the IEEE, 2000,. 88,

1270-1278.

Bibliography

207

148. Rosenfeld, R. (2000b) Incorporating Linguistic Structure into Statistical

Language Models. In Philosophical Transactions of the Royal Society of

London A, 358, 2000, 1311-1324.

149. Rudinsky, J., Mikula, T., Kencl, L., Jakub, D., and Garcia, X. (2009)

Voice2Web: Architecture for Managing Voice-Application Access to Web

Resources. Proceedings of the 12th IFIP/IEEE International Conference

on management of Multimedia and Mobile Networks and Services: Wired-

Wireless Multimedia Networks and Services Management. Venice, Italy

118-131.

150. Rudnicky, A., Bennet, C., Black, A., Chotomongcol, A., Lenzo, K., Oh, A.,

and Singh, R. (2000) Task And Domain Specific Modelling in the Carnegie

Mellon Communicator System. Proceedings of International Conference

on Spoken Language Processing. Beijing, China, 2, 130-133.

151. Rugelbak, J., Johnsen, F., and Knudsen,J. (2001) Experiences with a

Norwegian Voice Controlled e-mail reader, Fornebu : Telenor Forskning

og Utvikling. - 39 s. - (Telenor FoU ; N 38/2001)

152. Schramm, H., Rueber, B., and Kellner, A. (2000) Strategies for Name

Recognition in Automatic Directory Assistance Systems. Speech

Communication. 31(4), 329-338.

153. Seneff, S. (1992) TINA: A Natural Language System for Spoken

Language Applications. Computational Linguistics 18(1), 61-86.

154. Seneff, S., McCandless, M., and Zue, V. (1995) Integrating Natural

Language Into the Word Graph Search For Simultaneous Speech

Recognition And Understanding. In 4th European Conference on

Speech Communication and Technology (Eurospeech’95), 1781-1784.

155. Sereni, D. (2006) Termination Analysis for Higher-Order Functional

Programs. Doctoral thesis. Oxford University Computing Laboratory

Programming Research Group.

156. Shi, Y. (2003a) Using Natural Language Features to Improve Speech

Recognition Accuracy. 60-510 Survey Report. The School of Computer

Science, University of Windsor, Canada.

Bibliography

208

157. Shi, Y. (2003b) An Investigation of Grammar Design in Natural-

Language Speech-Recognition. Master Thesis. School of Computer

Science, University of Windsor, ON, Canada.

158. Shi, Y. and Frost, R. (2004) An Investigation of Grammar Design in

Natural-language Speech Recognition. Proceedings of AI'2004, the

Seventeenth Canadian Conference on Artificial Intelligence. London,

Ontario, Canada, 569-570.

159. Siu, K. and Meng, H. (1999) Semi-automatic Acquisition of Domain-

specific Semantic Structures, Proceedings of the 6th European

Conference on Speech Communication & Technology, Budapest,

Hungary. 2039-2042.

160. Siu, K. C. and Meng, H. (2001) Semi-Automatic Grammar Induction for

Bi-directional English-Chinese Machine Translation. Proceedings of the

7th European Conference on Speech Communication & Technology

(EUROSPEECH-2001), Scandinavia, 2749-2752.

161. Siu, K. C., Meng, H., and Wong, C. C. (2003) Example-based Bi-

directional Chinese English Machine Translation with Semi-

automatically Induced Grammars. Proceedings of the 8th European

Conference on Speech Communication and Technology

(EUROSPEECH-2003), Geneva, Switzerland, 2801-2804.

162. Soule, S. (1974) Entropies of Probabilistic Grammars. Inform. Contr.,25,

57-74.

163. Srinivas, B., Sarkar, A., Doran, C. Hockey, B.A., and Joshi, A. (1996).

An Approach to Robust Partial Parsing and Evaluation Metrics. In

Proceedings of the Workshop on Robust Parsing at European Summer

School in Logic Language and Information. 70-82.

164. Srinivas, B., Sarkar, A., Doran, C. and Hockey, B.A. (1998) Grammar

and Parser Evaluation in the XTAG Project, Workshop on the

Evaluation of Parsing Systems. Granada, Spain.

165. Stolcke, A. and Omohundro, S.M. (1994a) Inducing Probabilistic

Grammars by Bayesian Model Merging. In Proceedings of the Second

Bibliography

209

International Colloquium on Grammatical Inference and Applications

(ICGI-94). 106-118.

166. Stolcke, A., and Omohundro, S.M. (1994b) Best-first Model Merging for

Hidden Markov Model Induction. TR-94-003, ICSI Technical Report,

Berkeley, CA.

167. Sun Microsystems (1998a) Java Speech API Programmer’s Guide.

http://java.sun.com/products/java-media/speech/forDevelopers/jsapi-

guide/Preface.html .

168. Sun Microsystems (1998b) Java Speech Grammar Format

Specification. http://java.sun.com/products/java-

media/speech/forDevelopers/JSGF/JSGF.html .

169. Sun Microsystems, Inc. (2000) Jspeech Grammar Format, W3C Note

05 June 2000.

170. Takezawa, T., Kita, K., Hosaka, J., and Morimoto, T. (1991) Linguistic

Constraints for Continuous Speech Recognition in Goal-Directed

Dialogue. In Proceedings of IEEE International Conference on

Acoustics, Speech and Signal Processing. 801-804.

171. Tellme Networks Inc., https://studio.tellme.com/ .

172. Trias Sanz, R. and Marino, J. (2002) Bassurde [lite], a Machine-driven

Dialogue System for Accessing Railway Timetable Information.

Proceedings of International Conference on Spoken Language

Processing. Denver Colorado, USA, 2685-2689.

173. Tverra, K. (2004) Vox et praeterea nihil, Master’s Thesis, Department of

Informatics, University of Bergen.

174. Turunen, M. (2004) Speech Interface Design, Master’s thesis, University

of Tampere, Finland.

175. Vidal, E., Casacuberta, F., and Garcia, P. (1993) Grammatical Inference

and Applications to Automatic Speech Recognition and Understanding.

Tech. Rep. DSIC II/41/93, Departamento de Sistemas Informáticos y

Computatción, Universidad Politécnica de Valencia.

Bibliography

210

176. Vidal, E. (1994) Grammatical Inference: An Introductory Survey.

Grammatical Inference and Applications (ICGI-94). Springer, Berlin,

Heidelberg, 1-4.

177. VoiceXML Forum (2004)

http://www.voicexml.org/specs/multimodal/x+v/12/.

178. VOXEO corporation (2006) VoiceXML 2.1 Development Guide.

http://docs.voxeo.com/voicexml/n2.0/frame.jsp?page=t_16.htm

179. Voxpilot company, http://www.voxpilot.com/ .

180. W3C (World Wide Web Consortium) (2000). JSpeech Grammar Format.

Sun Microsystems submission to W3C. http://www.w3.org/TR/jsgf/.

181. W3C (World Wide Web Consortium) (2001) Stochastic Language

Models (N-Gram) Specification, http://www.w3.org/TR/ngram-spec/ .

182. W3C (World Wide Web Consortium) (2004) Speech Recognition

Grammar Specification, http://www.w3.org/TR/speech-grammar/ .

183. W3C (World Wide Web Consortium) (2007a) Voice Extensible Markup

Language (VoiceXML) 2.1, W3C Recommendation 19 June 2007,

http://www.w3.org/TR/voicexml21/

184. W3C (World Wide Web Consortium) (2007b) XHTML™ 1.1 - Module-

based XHTML - Second Edition, W3C Working Draft 16 February 2007,

http://www.w3.org/TR/xhtml11 .

185. W3C (World Wide Web Consortium) (2009) Extensible Markup

Language (XML) http://www.w3.org/xml.

186. Waibel, A. (1996) Interactive Translation of Conversational Speech.

Computer,.29.

187. Waibel, A. and Lee, K.F. (1990) Readings in Speech Recognition.

Morgan Kaufmann Publishers, Inc., ISBN 1-55860-124-4.

188. Walker, M. (2001) Darpa Communicator Dialogue Travel Planning

Systems: the June 2000 Data Collection. Proceedings of

EUROSPEECH. Aalborg, Denmark, 1371-1374.

189. Wang, Y.-Y. (1998) Grammar Inference and Statistical Machine

Translation (1998). Ph.D. thesis, Camegie Melon University.

Bibliography

211

190. Wang, Y.-Y. and Waibel, A. (1998). Modeling with Structures in

Statistical Machine Translation. In Proceedings of the 36th Annual

Meeting of the Association for Computational Linguistics and 17th

International Conference on Computational Linguistics Montreal

(COLING-ACL '98), Canada. 1357-1363.

191. Wang, Y., Mahajan, M., and Huang, X. (2000). A Unified Context-Free

Grammar and N-Gram Model for Spoken Language Processing. In

Proceedings of the International Conference on Acoustics, Speech, and

Signal Processing (ICASSP-2000). Istanbul, Turkey. 1639-1642.

192. Wang, Y.-Y. (2001) Robust Spoken Language Understanding in MiPad.

In Eurospeech 2001, Aalborg, Denmark. 1555-1558.

193. Wang, Y.-Y. and Acero, A. (2001). Grammar Learning for Spoken

Language Understanding. In Proceedings of ASRU Workshop.

Madonna di Campiglio, Italy. 292-295.

194. Wang, Y.-Y. and Acero, A. (2002) Evaluation of Spoken Language

Grammar Learning in the ATIS Domain. In Proceedings of the

International Conference on Acoustics, Speech, and Signal Processing

(ICASSP’02). Orlando, Florida. 1, 41-44.

195. Wang, Y.-Y., Acero, A., Chelba, C., Frey, B., and Wong, L. (2002)

Combination of Statistical and Rule-Based Approaches for Spoken

Language Understanding. In Proceedings of the International

Conference on Speech and Language Processing (ICSLP). Denver,

Colorado. 609-612.

196. Wang, Y.-Y., and Acero, A. (2003a) Concept Acquisition in Example-

Based Grammar Authoring. In Proceedings of the International

Conference on Acoustics, Speech, and Signal Processing. Hong Kong,

China. 284-287.

197. Wang, Y.-Y., and Acero, A. (2003b) Combination of CFG and N-gram

Modeling in Semantic Grammar Learning. In Proceedings of the

EUROSPEECH Conference (EUROSPEECH-2003). Geneva,

Switzerland. 2809-2812.

Bibliography

212

198. Wang, Y.-Y. and Ju. Y-C. (2004) Creating Speech Recognition

Grammars from Regular Expressions for Alphanumeric Concepts. In

Proceedings of the Proceedings of the International Conference on

Speech and Language Processing. Jeju Island, Korea. 2161-2164.

199. Wang, Y.-Y. and Acero, A. (2005): SGStudio: Rapid Semantic

Grammar Development for Spoken Language Understanding. In

INTERSPEECH-2005, 1869-1872.

200. Wang, Y.-Y. and Acero, A. (2006) Rapid Development of Speech

Recognition Grammars. Communication, 48(3-4).

201. Ward, W. (1991) Understanding Spontaneous Speech: the Phoenix

System. ICASSP, Toronto, Canada.

202. Ward, W. (1990) The CMU Air Travel Information Service: Understanding

Spontaneous Speech. In Proceedings of the DARPA Speech and Natural

Language Workshop, 127–129.

203. Ward, W. (1994) Recent Improvements in the CMU Spoken Language

Understanding System. In Human Language Technology Workshop,

Plainsboro, New Jersey. 213-216.

204. Wasinger, R. M. (2001) Dialog Based User Interfaces Featuring A

Home Cooking Assistant. Master’s Thesis, School of Electrical and

Information Engineering, the University of Sydney.

205. Weber, H. and Gőrz, G. (1999) Symbolic Parsing and Probabilistic

Decision Making. The Speech and language Experience with Hybrid

Information Processing. In Proceedings of HCI (2), April 6, 1999, 802-806.

206. Wong, C.-C. and Meng, H. (2001) Improvements on a Semi-automatic

Grammar Induction Framework. In IEEE Automatic Speech Recognition

and Understanding Workshop (ASRU’01). Madonna di Campiglio, Italy.

288-291.

207. Wong, C.C., Meng, H., and Siu, K.C. (2001) Learning Strategies in a

Grammar Induction Framework. Proceedings of the Natural Language

Processing Pacific Rim Symposium (NLPRS 2001), Tokyo, 153-157.

Bibliography

213

208. Xia, F (2001) Automatic Grammar Generation From Two Different

Perspectives. Doctoral Dissertation, Computer and Information Science,

the University of Pennsylvania. USA.

209. Yankelovich, N. (1997) Using Natural Dialogs as the Basis for Speech

Interface Design, Submitted to MIT Press as a chapter for the upcoming

book, "Automated Spoken Dialog Systems," edited by Susann Luperfoy.

Copyright 1997, Sun Microsystems, Inc.

210. Young, S. R., (1990) Use of Dialog, Pragmatics and Semantics to

Enhance Speech Recognition. Speech Communication, 9, 1990.

211. Young, S. R., Ward, W. H., and Hauptmann, A. G. (1989) Layering

Predictions: Flexible Use of Dialog Expectation in Speech Recognition.

Proceedings of IJCAI-89, Detroit. 1543-1549.

212. Young, S. and Matessa (1991) Using Pragmatic And Semantic Knowledge

to Correct Parsing of Spoken Language Utterances. Eurospeech-91. 223-

227.

213. Yu, D., Ju, Y.-C., Wang, Y., and Acero A. (2006). N-Gram Based Filler

Model for Robust Grammar Authoring. In Proceedings of the

International Conference on Acoustics, Speech, and Signal Processing

(ICASSP). 1, 565-568.

214. Zadrozny, W. and Kambhatla, N. (1999) Method and Apparatus for

Creating Speech Recongition Grammars Constrainted by Counter

Examples. United States Patent 59373.Primary Class: 704/257, other

classes: 704/255, 704/E15.022, 704/251, International Class:

G10L15/18; G10L15/00; G10L5/06; G10L9/00

215. Zhang, J., Ward, W., Pellom, B., Yu, X., and Hacioglu, K. (2001)

Improvements in Audio Processing and Language modeling in the CU

communicator. Proceedings of EUROSPEECH. Aalborg. Denmark,

2209-2212.

216. Zue, V. Seneff, S. Glass, J.R. Polifroni, J. Pao, C. Hazen,

T.J. and Hetherington, L. (2000) JUPITER: A telephone-Based

Bibliography

214

Conversational Interface for Weather Information. IEEE Transactions on

Speech and Audio Processing. 85-96.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 215

APPENDIX A: A SURVEY- DESIGN OF RECOGNITION

GRAMMAR FOR VXML-LIKE APPLICATIONS

Table of Contents of the Survey

1. INTRODUCTION
 1.1 VoiceXML
 1.2 Grammars
 1.3 Spoken-Dialogue Systems

2. THE CHALLENGE OF GRAMMAR DESIGN

3. ISSUES IN GRAMMAR DESIGN
 3.1 Guidelines for Grammar Design
 3.2 Dialog Design
 3.3 Prompt Design
 3.4 Sub-Grammar Design
 3.5 Sub-Dialog Design
 3.6 Grammar Weights and Probabilities
 3.7 Error Handling
 3.8 Summary

4. VOICE USER INTERFACE (VUI) DESIGN
 4.1 Issues Related to VUI
 4.2 Summary

5. TESTING

5.1 Testing Issues
5.2 Summary

6. TOOLS AND ENVIRONMENTS

6.1 Basic VoiceXML Development Environments
6.2 NÜ Echo Grammar Environment
6.3 IBM WebSphere Voice Toolkit
6.4 Microsoft Speech Application SDK (SASDK)
6.5 MCM Toolkit
6.6 Philips Speech SDK
6.7 Hewlett-Pcackard (HP) OCMP VXML Developer Toolkit
6.8 CSLU Toolkit
6.9 Chant Developer Workbench
6.10 Fonelet’s VoiceXML Toolkit
6.11 Wizard of OZ (WOZ)
6.12 BeVocal Café
6.13 Tellme Studio

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 216

6.14 VoxPilot Open media Platform
6.15 Summary

7. CONCLUSION

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 217

1. INTRODUCTION

Over the past three decades, speech-recognition technologies have achieved

significant developments. A large number of spoken-dialogue systems have been

implemented. Aust et al (1995) present Philips system. Jupiter system (weather

information system) (Zue et al, 1997 and Zue et al, 2000) and the AT&T’s call

redirection system (Riccardi and Gorin, 2000) are the pioneer systems. Other

examples include the ARISE project (Lamel et al, 2000; Baggia et al, 2000) and

Philips Directory-Assistance system (directory information service) (Schramm et

al, 2000). Also, an important American project, the DARPA Communicator, has

attracted the most important research organizations in USA, such as MIT, BBN,

Carnegie and Mellon University (Rudnicky et al, 2000 and Carpenter et al, 2001),

University of Colorado (Pellom et al, 2000; Zhang et al, 2001), AT&T (Walker,

2001), Bell Labs, SRI and IBM (Gao et al, 2001). Trias and Marino (2002)

discuss BASURDE [LITE] system, the train travel information and ticket

reservation services.

Rather than a graphic user interface, voice applications are applications with

spoken input and/or output. There is overwhelming information flowing through

the Internet nowadays, and many business transactions are conducted through

the web. VoiceXML (VXML) makes it possible to access the Internet via voice

(e.g. phone). More and more companies are recognizing speech as an integral

part of their IT solutions (HP, 2005).

Currently, stochastic (statistical) language models and grammar-based language

models are two mainstreams in Natural Language Understanding (NLU) research.

Statistical language models have the advantages of simplicity, flexibility,

adaptation, higher recognition accuracy, and robust performances. The primary

disadvantage is the costly collection of huge amounts of training data and poor

generalization with insufficient data. In addition, Statistical language models are

not supported by commercial systems, such as VoiceXML browsers.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 218

As an alternative solution to statistical techniques, grammar-based speech

recognition is more expressive, more common and easier to use with reasonable

recognition accuracy for small domains. An important advantage over statistical

approaches is that grammar-based approaches do not require a large amount of

training data which is difficult and expensive to collect.

 Knight et al. (2001) declare that, statistical language models were popular

around 1995, whereas grammar-based language models took the pre-eminent

position in commercial products by 2001. By defining sets of rules, grammars

define the utterances, phrases, and words that are accepted by the speech

application. Effective grammars are a critical component of grammar-based

speech applications (Nuance, 2003). Therefore, the need for guidelines for

grammar design for VoiceXML-like applications is imperative. This survey aims to

provide a comprehensive review of research and development in this area.

This survey is organized as follows. Section 1 briefly reviews the concepts of

VoiceXML, recognition grammars, and spoken-dialog systems. Section 2

discusses the current challenges of grammar design. Section 3 focuses on the

detailed principles and guidelines in grammar design. Section 4 considers the

issues in Voice User Interface (VUI) design. The issues related to testing are

discussed in section 5. Section 6 discusses tools and environments for speech-

application development. Section 7 concludes the survey.

1.1 VoiceXML (VXML)

The Voice eXtensible Markup Language (VoiceXML) is an industry standard

defined by the World Wide Web Consortium (W3C, 2005). VoiceXML is an XML-

based markup language for building distributed voice applications, much as

HTML is a markup language for creating distributed visual applications. The

structure of VoiceXML is similar to that of HTML, which allows web developers to

write voice-enabled applications with ease.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 219

VoiceXML provides features to collect spoken and DTMF (Dual Tone Multiple

Frequency) input, generate synthesized audio prompts, control dialog flow and

ECMA scripting, handle asynchronous events, record and play audio, and control

basic telephone connections (HP, 2005). A VoiceXML application is built from

one or more VoiceXML documents with the same application root document.

Each document contains a variety of VoiceXML instructions for the application.

The information in the root document is available to all of the documents in the

application. The root document is loaded whenever one of the application’s

documents is loaded, and remains loaded as long as the application is active.

VoiceXML documents define applications as a set of dialog states. At any time,

the user is either in a state or being transitioned to a state. A dialog may include

several discrete dialog elements, called forms or menus. A form defines an

interaction that collects information from the user, and makes the transition to a

new state based on this information. A menu is essentially a form with only one

piece of information to gather. For example, a menu presents the user with a set

of choices. Based on the choice the user made, s/he is transitioned to another

state of the application.

Therefore, a VoiceXML application or document constitutes a conversational

finite state machine, moving the user from one state to the next. Each transition

is determined by the dialog element at the time. The transitions are specified

using Unified Resource Identifiers (URI), which can point to another form in the

same document, another document, or to a document in a completely different

application. Execution is terminated when a dialog does not specify a successor,

or when all dialog elements in the current document have been visited, or if an

explicit exit command ends the dialog. Events are thrown when certain conditions

are detected.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 220

1.2 Grammars

A grammar is a fundamental building block of speech technology (Mané and

Levin, 2005). A grammar is a set of rules that define the possible words, phrases,

or utterances which are accepted by the speech recognition engine. The main

rule of a grammar is called the “root” rule, which acts as an entry point in the

grammar. A rule can reference other rules, or list combinations of equivalent

alternative wordings, repetitions or optional parts. A grammar may be trivial lists

of possible words, or a set of rules defining complex sets of phrases.

Grammars may be incorporated into the application code as inline grammars, or

be externally available as external grammar files. Inline grammars are typically

small and uncomplicated. External grammars are usually larger and non-trivial.

The advantages of using an external grammar are that, it is shareable among

multi-applications, which eliminates the need to maintain several identical large

grammars. Another advantage of external grammars is that they do not need to

change with the changes of VoiceXML code.

A grammar can be defined statically, or dynamically using the technology to build

dynamic HTML, such as CGI scripts, Java Beans, servlets, ASPs, and JSPs. In

addition, some grammars are so common that they have been incorporated into

the VoiceXML interpreter, such as those defining Boolean values and Dates.

Currently, there are several grammar formats available in grammar creation for

voice applications. Speech Recognition Grammar Specification (SRGS) is the

only standard for Automatic Speech Recognition (ASR) grammars (Baggia, 2006).

The details of the W3C Speech Recognition Grammar Specification are available

at (W3C, 2004). It was accepted as a W3C Recommendation in March 2004,

which means that many companies demonstrated it to be easy to implement, and

gave support to its development. The two grammar formats included in SRGS

are:

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 221

(1) XML format with an enforced syntax expressed both by a DTD and a

schema;

(2) ABNF (Augmented Backus-Naur Form) format, which is a textual and

concise encoding of a grammar.

Both the ABNF Form and XML Form have the expressive power of a Context-

Free Grammar (CFG) (W3C, 2004). ABNF format is suitable for quick hand

coding, while XML is easily handled in automatic environments and is more

suitable for integrating into XML-based Voice User Interface (VUI) design

languages, i.e. VoiceXML 2.0.

SRGS is modeled on the Java Speech Grammar Format specification (JSGF),

which is owned by Sun Microsystems, Inc., California, U.S.A. (W3C, 2005).

JSGF is a platform-independent, vendor-independent textual representation of

grammars for use in speech recognition. It adopts the style and conventions of

the Java Programming Language in addition to use of traditional grammar

notations. The textual representation is readable and editable by both developers

and computers, and can be included in Java source code (Sun, 1998b).

Nuance (2003) extended the XML grammar as Grammar Specification Language

(GSL). IBM Voice Toolkit supports XML and ABNF grammar formats (IBM, 2005).

Bevocal Café, Voxpilot and Tellme support the XML and GSL grammar formats.

A grammar in a voice application can be in one of two modes: voice (the default

mode) or DTMF (Dual Tone Multiple Frequency). DTMF can be used as an

alternative to speech input, particularly when speech recognition is unreliable or

problematic. In VoiceXML 2.0, DTMF is included as a value of the mode attribute

in the <grammar> element. In a DTMF grammar, an automatic translation of

phone buttons to DTMF tokens takes place. A DTMF grammar specifies a set of

key presses that a user may use to perform an action or supply information, and

for matching DTMF input, returns a corresponding semantic interpretation (W3C,

2005).

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 222

1.3 Spoken-Dialogue Systems

A complete spoken-dialogue system involves the integration of the following

components: a speech recognition component, a language understanding

component, a dialogue management component, a component for

communication with an external system, a response generation component, and

a speech output component (Glass, 1999) (Han, 2000) (McTear, 2002). These

components work in a sequential stream, in which the first component receives

the user’s input, and the output from that component feeds into the next

component as the input, and so forth, until the consequent voice output is

synthesized for the user.

The construction of the spoken-dialog system usually consists of the following

four steps (Pellom et al, 2000):

5) architectural design,

6) application design and data collection,

7) speech and natural language interface design, and

8) user feedback and evaluation.

Typically, spoken-dialogue systems can be categorized into: 1) transaction-based

and 2) information-provision systems (which is called queries-based systems in

IBM (2005)). In transaction-based systems, users can conduct transactions, such

as buying or selling stocks. In information-provision systems (queries), users can

obtain information on request. There are three ways of guiding users through

these automated services: 1) system-driven (machine-directed), 2) mixed-

initiative, and 3) user-driven (Rugelbak, et. al., 2001) (Wasinger, 2001) (Nuance,

2003) (Turunen, 2004) (Tverra, 2004) (IBM, 2005), and (Apache, 2005). In

system-driven applications, the computer controls all interactions by sequentially

executing each item a single time. The advantage is a reduction of the risk of

errors. But the user may feel this to be too confining and controlling, which may

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 223

make them unwilling to use the application. In mixed-initiative dialogue system,

the user is given a greater flexibility and allowed more natural responses. The

advantage of the mixed-initiative system is that the user is more in charge. But

the system has to infer information from the user’s input, making it error-prone.

The user-driven system is the extreme case, where the system opens the

conversation with a question like “how may I help you?” The user is free to

express his/ her goal, and the system faces the challenge of matching the user’s

responses. It has been reported that this technology is currently not considered

mature for commercial applications (Rugelbak et al., 2001). Most successful

applications are system-driven, directed dialogue systems.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 224

2. THE CHALLENGE OF GRAMMAR DESIGN

Writing grammars is a daunting and expensive task, which forms a major

bottleneck in the development of spoken language systems (Siu and Meng,

1999). Furthermore, there is no direct control that such a grammar will model the

target language well when it is applied to realistic spoken queries.

Although speech-recognition technology has achieved significant progress over

decades, it is not yet perfect. Speech recognition is not an exact, analytical

science, but a probabilistic art and incorporates elements of sophisticated

guessing (Abbott, 2001). There are still many limitations in voice applications. For

example, the background noise or non-native speakers may cause poor speech-

recognition performance. Also, a person, who is not familiar with the voice

application, may have many out-of-grammar errors (i.e., words or sentences

cannot be accepted by the current active grammar).

An effective and efficient comprehensive grammar should be able to handle a

variety of user inputs. However, each user is different. It is almost impossible to

design a grammar covering all possible answers to a particular question. Even for

a YES/NO answer, the user may respond with “Yes”, “Yup”, “Yeah”, “Correct”, or

“No”, “Nope”, “No way”. This inevitably adds difficulties in defining grammars to

cover every user’s responses.

 In addition, speech applications are getting broader and more sophisticated,

which usually means grammars have significantly increased complexity (NÜ echo,

2005). To write an effective grammar for a voice application, many factors need

to be considered (see section 3.1). Writing a grammar, especially a complex

grammar, is a tedious task requiring expertise. Also a grammar needs to be used

and tuned iteratively, and a non-trivial grammar is very difficult to maintain.

The features of speech communication also implies difficulties in dialog design as

follows:

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 225

(1) Speech is transient and invisible, and human beings have limited short-

term memory (Bouzid, 2006e). Psychologists have found that, in general,

people can only memorize five to nine chunks of information at a time

(Apache, 2005). People may quickly forget what they have just heard,

which is different from traditional web pages where the information is

always present and visible.

(2) The conversation is linear. The communication is slower than visiting

graphic web pages.

(3) Users may not know the navigation words, and may not know how to

respond to a prompt from the voice system.

(4) Users may get lost, because of their short-term memory to know where

they are in a conversation.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 226

3. ISSUES IN GRAMMAR DESIGN

3.1 Guidelines for Grammar Design

Designing good grammars is as much art as science (IBM, 2005). A well-defined

grammar can not only improve speech recognition accuracy, but also provide the

user with great flexibility and comfort in voice services. Good grammars are

essential for the usability of a speech application. Shi (2003a) provided a survey

on the techniques of using natural language features to improve speech

recognition accuracy, such as constraining the grammar by integrating semantics,

using probabilities (weights), combining stochastic and grammar-based

techniques, large-vocabulary related techniques, and SpeechWeb techniques.

From first-hand experience in writing grammars for real-world voice applications,

many guidelines in VoiceXML application grammar design from the developer’s

point of view have been created. They are summarized and presented as follows.

Grammars for VoiceXML applications can be defined in an external file or inline.

The developer can weigh such factors as follows (IBM, 2005):

(1) Grammar size and its effect on speech recognition accuracy and

document access time. Generally, the smaller grammar has the better

recognition accuracy (Wasinger, 2001) (Shi, 2003b) (Mané and Levin,

2005) (IBM, 2005) and shorter access time (Nuance, 2003).

(2) The importance of instantaneous response and the corresponding need to

load the grammars up front. For example, if the grammar is large and in a

menu or form that is unlikely to be executed, it can be defined as an

external file. Conversely, if it needs to be instantaneously ready, it can be

defined inline, rather than having to be downloaded from the web

application server, when the user accesses the menu or form.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 227

Abbott (2001) identifies the following techniques to improve speech recognition

performance:

(1) Use short phrases (Boyce, 2000) or multi-syllabic words for links (e.g.,

“start over”).

(2) Reserve the shortest, commonest responses for field-level responses,

which will be matched with high priority by the speech recognizer. The

links with broader scope should be longer phrases that can be recognized

in a variety of contexts.

(3) Allow the use of DTMF where precise input of numbers is important or the

system has difficulty in recognizing the user’s input (Apache, 2005). Limit

spoken digits to 4 or less (Eisenzopf, 2006).

(4) Do not share recognition errors with the user. For example, instead of “Did

you say Austin or Boston”, the computer should respond with the prompt

like: “I did not get that. What city”, instead of repeating the question.

(5) Do not make the grammars too broad, or include too many synonyms.

It was reported that the complexity of a grammar greatly affects the speed and

accuracy of the recognizer (Nuance, 2003) (IBM, 2005). The grammar designer

should predict how users will respond. However, it is impossible to include all of

the responses that can occur in the application because one cannot control how

people speak. In practice, one can guess the most common ways that people will

respond and include them in the grammar, instead of trying to include every

alternative. After collecting some data, one can refine the grammar, collect more

data, and refine the grammar further, and so on. Therefore, grammar writing is

actually an iterative process.

In addition, Nuance (2003) observes that there are two types of responses from

the user: 1) the information item by itself, and 2) the literal response to the

questioning wording. For example, if the system asks “what is your departure

city?” most responses will be just a city name like “Toronto”. A smaller group of

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 228

responses may be “My departure city is Toronto.” These observations indicate

that prompts need to be worded carefully, and the grammars and the prompts

should correspond closely with each other.

Nuance (2003) identifies the following guidelines for building a robust application.

(1) Specific prompts will lead to a high recognition accuracy and robustness.

(2) Smaller sub-grammars may result in a more robust system (Wasinger,

2001).

(3) Cover as many words as possible in a sentence since the robust Natural

Language engine ranks interpretations according to the number of words

of a sentence.

(4) Use as few grammar rules as possible in the application.

(5) Use grammar weights/ probabilities to maximize the probability of the

phrase fragments.

Nuance (2003) indicates that a 5% out-of-grammar rate is acceptable, even 10-

20% out-of-grammar rates are not uncommon for certain types of recognition

tasks. If the out-of-grammar input is a problem for a voice application, a

Statistical Language Model (SLM) could be considered. A detailed discussion of

SLM can be found at (W3C, 2001).

Jackson (2004) points out that:

(1) A good grammar should cover effectively the range of responses that can

be encountered in the application (IEEE, 2002). This can include the

essential input as well as extraneous words and phrases.

(2) A grammar that is too large will hinder speech processing and potentially

lead to more mis-recognitions (Abbott, 2001) (IEEE, 2002) (IBM, 2005).

(3) Grammars should not overlap (i.e., pay attention to scope);

(4) Excessive use of global grammars (defined in the root document) can

increase the possibility of overlapping.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 229

In general, recognition accuracy can be improved by the following measures

(IBM, 2005):

(1) Simplifying the grammars to minimize the possibility of confusion between

words (Abbott, 2001) (IEEE, 2002) (Jackson, 2004).

(2) Presenting fewer choices (Apache, 2005).

(3) Having fewer active grammars.

(4) Ensuring that the grammar can accept user responses that mirror key

phrases from preceding prompt. For example, if the system is asking “Are

you a student or a teacher?” the grammar should be able to accept the

phrase such as “a student”, “I am a student”, “teacher”, and “I am a

teacher”.

Apache (2005) provides the following suggestions for grammar design:

(1) Use form-level, mixed-initiative grammars whenever possible. People feel

more comfortable if they think they are in control of the system, not the

other way. One technique could be barge-in. Eisenzopf (2006) suggests

that if natural dialogs fail, fall back to directed prompts.

(2) Take advantage of grammars allowing global commands.

(3) If the grammars cannot be determined at the time the VoiceXML

document is written, dynamic grammars should be used.

(4) Use the user’s terminology in the grammars, instead of the developer’s

jargon.

(5) Allow the user to phrase their input in multiple ways to increase the

flexibility of the interface.

(6) It’s important to include non-verbal vocalizations in grammars, such as

“err” and “um”, which are common in human to human communication.

(7) Avoid including words that have different meanings but similar

pronunciations in the same grammar. Try to use only phonetically distinct

words (Nuance, 2003).

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 230

To decide what words and phrases to be included in grammars, and when to

make each grammar active, IBM (2005) mentions the following trade-offs which

need to be taken into account:

(1) The length of words and phrases. The longer the words and phrases, the

better recognition accuracy, because of greater differentiation among valid

utterances. However, the longer words and phrases could make the

dialogs slower. Also, it is more difficult for user to remember longer

phrases. On the other hand, shorter words and phrases increase the

chances to be mis-recognized. Monosyllabic words and short words with

unstressed vowels are especially prone to be recognized as each other,

even though they may look and sound different to a human ear. Therefore,

if a grammar has to include many short user utterances, it is important to

minimize acoustic confusability by making them as acoustically distinct as

possible. The advantages of using shorter words and phrases include

faster dialogs progress and easy to remember for users.

(2) Vocabulary robustness and grammar complexity. A robust grammar with

great complexity may include many synonyms and alternative phrases to

offer users with greater freedom of word choice. Consequently, users may

assume that they can say anything, which would lead to large number of

out-of-grammar errors. Also, the complex grammar files are larger and

need longer time to load. A simple grammar with less robustness may

constrain the users more with narrow lists of valid utterances. Also such

grammar files are smaller, they can be loaded more quickly. Simple

grammars usually have better recognition accuracy (Wasinger, 2001)

(Mané and Levin, 2005).

(3) Number of active grammars. If you activate more grammars at the same

time, you are improving the usability of the application, such as by

allowing anytime access to items on main menu. Meanwhile, you are

increasing the chances of recognition conflicts, and the performance is

degrading. The fewer active grammars may constrain the user more, but

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 231

provide better performance with less mis-recognitions due to recognition

conflicts.

A special case which we need to discuss further in speech recognition, is

numbers and letters (alphanumeric strings), which are used very widely in a

variety of applications. Recognizing alphanumeric strings is one of the most

challenging aspects of speech recognition because they are short and many of

them sound very similar, even for human listeners (IBM, 2005). For example,

“six” (the shortest spoken digit in English) is commonly inserted (recognized but

not spoken) and falsely deleted (spoken but not recognized) by speech

recognizers (Abbott, 2001). Also many of the letters are easily confused with

other letters: “N” with “M”, “B” with “D” etc. (Rahmel, 2005). Furthermore, each

letter in a string presents a new chance for error. Rahmel (2005) presents a

formula to calculate the accuracy of a string taking into account the accuracy of

each single character of the string and the length of the string:

string accuracy=(accuracy of a single character recognition)length of the string

To overcome the difficulty of recognizing alphanumeric strings, Abbott (2001) and

Apache (2005) suggest a possible solution of allowing DTMF input for numbers

and International Communications alphabet for letters (e.g., alpha, bravo,

charlie, and delta represent a, b, c, and d).

In most cases, there is a pattern to the alphanumeric string. Rahmel (2005)

provides the simplest and best way to solve the alphanumeric problem by

explicitly spelling out each individual string as a separate phrase element. Since

it’s easy to get one character out of ten wrong, and it’s more unlikely to get two or

more characters wrong in just the right way so that they turn one valid string into

another valid string. Rahmel (2005) states that this approach should work well for

static lists up to 100K entries in size.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 232

Furthermore, rather than constrain the individual characters, Rahmel (2005)

identify groups of characters that occur together. Typically, the chance is low to

recognize the multiple characters all in the right way, if they are all wrong. This

approach could be combined with subsequently validating the top N n-best

choices against a database containing the valid alphanumeric strings (Rahmel,

2005).

Rahmel (2005) talks about some tips for writing alphanumeric grammars:

(1) Force the recognizer to use the specially trained letter recognition models

by specifying the letter in the grammar as a letter followed by a dot to

distinguish letters (e.g. A.) from words (e.g. “A person”).

(2) Write numbers as words, i.e., use “one” instead of “1” and so on, so that

the recognizer does not have to use text normalization to translate the

digits into words.

(3) Separate characters to avoid mis-recognizing the letter string as a word.

(4) Clearly prompt the user (Eisenzopf, 2006).

3.2 Dialog Design

Dialogs are the main components of a voice application. Recognition

performance will be reduced if the speaker is unsure what to say in dialogs

(Nuance, 2003). Each dialog has one or more speech and/or DTMF grammars

associated with it. Dialogs determine the grammars. Therefore, it is very

important for the designer to understand the dialogs well before writing the

grammars. Due to the specific features that a conversation has, there exist more

challenges for designing an effective dialog for a voice application than designing

a traditional web page. Many efforts have been made to come up with good

guidelines for dialog design.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 233

There are two kinds of dialogs: forms and menus. Forms define an interaction

that collects values for a set of form item variables. A menu presents the user

with a choice of options and then transitions to another dialog based on that

choice. Nuance (2003) suggests that, to design dialogs, one should be clear

about the information required to complete, the information will be requested, and

the type of the system (i.e., directed dialog or mixed-initiative dialog). This

information will help determine the shape and content of the grammars for the

application. Mané and Levin (2005) assert that a good dialog design relies on an

understanding and consideration of the business demands, the technology

constraints, and the user needs.

Tverra (2004) summarizes the principles in dialog design as follows:

(1) Minimize the cognitive load for the users (Apache, 2005). The fact is that

human beings can only remember short information in dialogues.

Therefore, it is advisable to keep menu choices and information short.

(2) Balance efficiency and clarity. Though short information helps user

memorization, the prompts also need to be as clear as possible (Eisenzopf,

2006).

(3) Ensure high accuracy (Eisenzopf, 2006). This means that the user should

be able to obtain help any time. For example, tapered prompting could be

a choice (Bouzid, 2006f).

(4) Avoid using “I”. The user should keep in mind that s/he is communicating

with a non-person, which means that s/he must comply with the rules of

the system. However, this is not the view of Eisenzopf (2006) and Bouzid

(2006b) who suggest the use of anthropomorphism (but only in natural

dialogs) to construct a more naturally verbal conversation. Eisenzopf

(2006) states that an AT&T study shows that callers are more satisfied

with applications that used first person in conversations even though

callers know that it is a computer. This is an arguable assertion. The

decision of whether to use the first person is up to the developer.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 234

(5) Recover from errors gracefully (Angel Voice Site). Errors and mis-

recognitions are unavoidable in voice applications. It is the best if the user

does not notice the error, while the error occurs and recovers. Otherwise,

the system needs to recover errors quickly and can not let the user feel it

is his/ her fault.

IBM (2005) identifies the following issues when deciding how to group dialogs:

(1) Logical grouping of menus or forms.

(2) Resources they require.

(3) Functions they perform.

(4) Expected frequency of use.

(5) Number of pages you want the VoiceXML browser to request from the

Web application server. For example, a form or menu that is infrequently

used and contains a large grammar or references, large grammar, or

audio file, could be defined in a separate VoiceXML document, so that the

large files are downloaded only when needed.

Apache (2005) mentions that a person usually can hold five to nine chunks of

information in memory, therefore there should be no more than five options in a

menu for choice. The available commands should be listed after the function

description. Always put frequently-used items first in the menu, and let the user

know the end of the menu if possible (Biber and Kozminski, 2005). In addition, to

satisfy the user, the conversation should be designed to be as short as possible.

One opinion is that, instead of counting the turns in the dialogue, the number of

confirmations that were rejected is a more important factor when determining the

user’s level of content (Mané and Levin, 2005).

Menu is an important element in dialog design. Bouzid (2006g) provides the

following suggestions for voice menu design.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 235

(1) Avoid the For ... Say or To ... Say Construct. For example, instead of

using “ to find out your balance, say BALANCE”, you can say “balance”.

(2) Use landmarks for navigational feedback. For example, you can say

“balance”, or “operator”.

(3) If the user is an expert, let him go first.

(4) Present menu choices when the caller doesn't speak or when what was

said is out of context.

3.3 Prompt Design

Prompts are the short audio files that are played to the user (Biber and Kozminski,

2005). Prompts indicate that it‘s time for user’s input. They provide important

navigation clues within the spoken dialogues. The system is prompting the user

for some information and waiting for user’s input at that specific point in the

application. Prompts can be prerecorded or dynamically generated by using TTS

(Text-To-Speech) technology. Effective prompts can reduce the recognition

errors, increase user satisfaction, and enhance system productivity (Apache,

2005).

Prompts should be defined before writing grammars because prompt wording

can greatly affect the wording of the user’s response, which needs to be captured

by the grammar. The prompts for directed dialogs are specific, such as “what is

your departure city?” The prompts for the mixed-initiative applications are open,

such as “Where would you like to travel?” The open prompts add difficulties to

grammar design, but are closer to human interactions. The specific prompts may

provide the user with a robust system with high recognition accuracy

(Yankelovich, 1997) (Angel Voice Site). Eisenzopf (2006), Bouzid (2006d), and

Yankelovich (1997) suggest not using open prompts. Clear and unambiguous

wording of a prompt is a key contributor to application success (Biber and

Kozminski, 2005).

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 236

Apache (2005) discusses several techniques on prompting:

(1) Tapered prompts mean that the system starts with a detailed prompt and

tapers it to the prompt for the missing information or many pieces of

information. It is a good choice if some information needs to repeat again

and again (Yankelovich, 1997) (Eisenzopf, 2006) (Bouzid, 2006d) (Bouzid,

2006f). Typically, it is used in a mixed-initiative dialog. Hone and Baber

(1995) point that the longer, more constraining prompts may result in more

appropriate user response and less need for re-prompting. However, they

increase the total transaction time.

(2) Opposite to tapered prompts are incremental prompts (Marcus et al, 1996)

(Biber and Kozminski, 2005) (Eisenzopf, 2006) (Bouzid, 2006d) (Bouzid,

2006f). Sometimes, the system provides the short prompt information first,

then a more detailed prompt if required, and so on. In this way, the experts

can move fast, and the novices can also get the required information.

(3) Leading prompts are used to narrow the user’s responses to a question,

and specify the question for a specific answer (Biber and Kozminski, 2005).

The designer can include important words, especially the words that are

expected to be answered, at the end of the prompt. For example, the

prompt could be “The current price is 45 dollars per share. Would you like

to buy, sell, or quit?”

(4) People will feel comfortable if they know they are understood properly. In

many cases, the system needs to be sure it is proceeding correctly based

on the user’s purpose. Especially, when the next action could result in

irrevocable consequences, confirmation and feedback are needed to

assure the user that the communication is proceeding correctly

(Yankelovich, 1997) (Biber and Kozminski, 2005). Eisenzopf (2006)

suggests always confirming the recognition. Explicit confirmations are

necessary for the actions that can cause severe and permanent results.

However, too many unnecessary confirmations make the user interface

too verbose and annoying the user, which is actually impacting on

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 237

system’s usability. An implicit confirmation can be used to inform the user

about the results of a particular task and avoid confusion without the extra

cost of asking for the user’s consent.

(5) The prompts need to be brief and deliver only the necessary information to

the user due to people’s limited memory (Biber and Kozminski, 2005).

(6) Design polite prompts (Boyce, 2000). No matter what the reason is

causing the errors, never blame the user! Always let the system take the

blame. Never make the user feel it is his/ her fault.

(7) Use of barge-in (Biber and Kozminski, 2005) (Bouzid, 2006a). Usually, an

experienced user would like to speed up the communication by providing

information quickly. Barge-in means that the user can interrupt prompts to

input information, rather than waiting for the prompt to complete. This

technique can make the system more productive. However, Boyce (2000)

suggest not using barge-in unless it is sure that the majority users are

frequent users. The final decision is up to the designer according to the

specific application.

Apache (2005) has some additional suggestions as follows:

(1) People have trouble in remembering synthesized speech for long and

complex message. Therefore, prompts recorded in human speech should

be used as much as possible.

(2) The terminology in the prompts should be understood by the potential

users.

(3) Avoid compound questions and questions allowing multiple answers

(Biber and Kozminski, 2005), because they are too verbose and confusing

for users.

(4) Use tones to let the user know it’s their turn for input (Biber and Kozminski,

2005). Biber and Kozminski (2005) also mentioned a preceding set of

instructions should be included.

(5) Keeping the interface simple is more important than trying to offer all

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 238

things to all people.

The following tips in prompt design are summarized by Bouzid (2006b):

(1) Drop the "Welcome to..." and "Thank you for calling..." to shorten the

length of prompts.

(2) Use an audio icon.

(3) Drop the "For English…" and "You can interrupt me at any time".

(4) Do not mention the web site upfront.

(5) Establish that they can use speech.

(6) Postpone the call-recoding disclaimer because such disclaimers not only

lengthen the opening prompt but may frustrate the user as a cue that the

call is going to be transferred to a live agent.

Bouzid (2006d) suggests the following tips:

(1) Ensure that all of the behavior avoids endless loops.

(2) Do not mix voice and text to speech.

(3) Do not put into your prompt something that your grammar can't handle.

(4) Do not switch modes on the caller between tone and voice.

(5) Do not go quiet for more than 3 seconds.

(6) Instruct the user saying longer phrase instead of the hard-to-recognize

short words. For example, direct the user say “help me” instead of “help”.

3.4 Use of Sub-Dialog

A sub-dialog is a mechanism for decomposing complex sequences of dialogs to

better structure them, or to create reusable components (W3C, 2005). A sub-

dialog is also a VoiceXML document, like a function call. Using sub-dialogs

allows documents to call each other and exchange data, without using CGI or

other server-side mechanisms (VOXEO, 2006). A sub-dialog provides a

mechanism for invoking a new interaction, and returning to the original form.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 239

The usages of sub-dialogs include the following (W3C, 2005):

(1) Creating a confirmation sequence that may require a database query.

(2) Creating a set of components that may be shared among documents in a

single application.

(3) Creating a reusable library of dialogs shared among many applications.

The advantages of using sub-dialogs are as follows (VOXEO, 2006):

(1) Sub-dialogs are easier to maintain and faster to load and execute than the

large document.

(2) Using sub-dialogs is helpful for clean code.

(3) Using sub-dialogs can eliminate redundant code.

(4) Using sub-dialogs makes some common voice recognition dialogs

reusable.

(5) The use of sub-dialogs results in a much leaner, more modular code

architecture.

3.5 Use of Sub-Grammar

A grammar is either a top-level grammar or a sub-grammar. Top-level grammars

are the only ones that can be referenced by an application at runtime. All the

other grammars are sub-grammars that can be reference by only other grammars.

However, the distinction between top-level grammars and sub-grammars does

not apply to grammars used dynamically, including just-in-time, VoiceXML, and

Speech Objects grammars.

Flat-file grammars are usually adequate for simple voice application, however,

multi-level complex grammars are more powerful and flexible (VOXEO, 2006).

The advantages of using sub-grammars include the following (Nuance, 2003):

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 240

(1) Sub-grammars are reusable by multiple grammars or applications.

(2) The use of sub-grammars simplifies grammar creation and revision.

(3) Using sub-grammars helps focus the grammar development to the task at

hand.

(4) Defining sub-grammars hides unnecessary details and promotes

modularity.

(5) Sub-grammars can eliminate redundant code.

(6) A hierarchy of grammars using sub-grammars can improve the robustness

of speech application (VOXEO, 2006).

3.6 Grammar Weights and Probabilities

A weight is a multiplying factor assigned to the rule to influence the likelihood of a

phrase in the grammar (Nuance, 2003) (W3C, 2004). A weight is a non-negative

floating point value without exponential. Optionally, a weight can be assigned to

any alternative in an alternative expansion. The items with higher weights are

favoured more over others by speech recognition engine, if the acoustic

processing results in similar scores.

The phrases that are expected to be spoken more frequently (more common)

should be assigned higher weights, and the less likely to be spoken utterances

are less likely to be matched with a lower weight by the recognizer. Therefore,

the speech-recognition accuracy is improved. On the other hand, if the user’s

input does not match the rule with higher weight, the rules with lower weight are

searched until matched or the search reaches the end of the grammar. In this

sense, the weighted grammar is robust. If the summation of the weights of all the

alternatives of a grammar rule is 1.0, these weights are considered probabilities.

Probabilities are useful to reflect the frequency of items in a construct (Nuance,

2003).

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 241

The appropriate uses of weights/ probabilities can improve the recognition

accuracy, robustness and speed (Nuance, 2003) (VOXEO, 2006). However, the

bad assignments of weights/ probabilities can actually hurt the recognition

performance. The weight/ probability assignment should be based on at least ten

samples (on average) for each list element (Nuance, 2003) (Eisenzopf, 2006).

It is valuable to note that the default value for a non-labeled rule is 1.0 in a

weighted grammar. A possible unintended result might be that the rule without

weights may have stronger likelihood than the rule with weights (less than 1).

Therefore, it is important to be consistent in the usage of weights and

probabilities throughout all the grammars in the application.

W3C (2004) identifies the following limitations on the definition and application of

weights:

(1) No normative or informative algorithms can be used to assign weights.

The usage of weights is under the internal control of the recognizer.

(2) It is quite difficult to determine the appropriate weights for any specific

grammar and recognizer. However, the assigned weights by guessing do

not guarantee improvement of speech recognition performance.

(3) Studying real speech input to a grammar is the best way to obtain the

effective weights. A reasonable example for developing weights is to use

weights that are correlated with the occurrence counts of a set of

alternatives.

(4) The appropriate weights for a particular recognizer do not mean the

improvement of recognition performance on other speech recognizer.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 242

3.7 Error Handling

Errors are inevitable in voice applications given current speech technologies. If

the errors cannot be handled properly, the user will be frustrated and even refuse

to use the voice application. The prevention and proper handling of errors are

crucial to a successful speech application.

Apache (2005) discusses the following typical kinds of errors:

(1) The user’s input does not match the grammar.

(2) Background noise causes the recognition failure.

(3) The user’s pronunciation (e.g. accent) may be the reason that the system

fails to recognize it.

(4) The user starts to speak too early, or too late, or not at all.

The goal of error prevention is to avoid putting the user in the situations that are

error-prone. Apache (2005) suggests the following considerations.

(1) Do not overload the user’s memory.

(2) Allow DTMF for digit string input, especially if the system has already

failed to recognize this item.

(3) Use comprehensive grammars to overcome the grammar mismatch errors.

(4) Minimize background noise.

(5) Well inform the user for help.

VoiceXML has a built-in mechanism for handling nomatch and noinput errors.

Since an error can occur anywhere in a dialog, it is important to catch and handle

both nomatch and noinput errors for each field (Bouzid, 2006f). The number of

nomatch and noinput occurrences can be specified, so the system can mention

the DTMF input or directly be transferred to a human operator after the specified

number (Yankelovich, 1997).

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 243

IBM (2005) mentions several strategies toward error recovery and confirming

user input, under different situations.

(1) If the user input is invalid, the system can state the problem and re-prompt.

Also, the user can be directed to keypad input.

(2) If the recognition error occurs while the user is making choices along a

menu path or completing items in a form, one can feed the recognized

input forward into the next prompt. The “Go Back” command should be

included in the first level help (Bouzid, 2006c).

(3) If the user distracts from the communication and does not hear all the

information presented, the always active command “Repeat” can solve this

problem.

Biber and Kozminski (2005) provide two approaches to handle recognition errors.

(1) Use prompt escalation, which means that the prompts change every time

the application queries the user for the same data. If all fail, the user

might switch toTouch-Tone input. This not only avoids user frustration, but

also increases the number of completed interactions using the automated

system.

(2) When the speech-recognition engine recognizes an input or utterance, it

returns a value between 0 and 100 to indicate how confident it is of the

match. The two confidence thresholds (rejection and confirmation) should

be set (Everett et al, 1993) (Eisenzopf, 2006). An utterance with a

confidence, below the “rejection threshold”, is rejected as a not-

recognized utterance; above the “confidence threshold”, does not require

confirmation; between the two thresholds, requires confirmation.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 244

3.8 Summary

This section has discussed the issues related to grammar design and some

proven guidelines for designing high-quality grammars from the developer’s point

of view. The topics covered include dialog design, prompt design, sub-grammar

design, sub-dialog design, grammar weights and probabilities, and error handling.

We summarize this section in the following.

Principles for grammar design are summarized as follows:

(1) The complexity of a grammar greatly affects the speed and accuracy of

the recognizer.

(2) A smaller grammar may result in better speech recognition accuracy and

fast access. A larger grammar will hinder speech processing and

potentially lead to more mis-recognitions, also need more time to load.

(3) Use short phrases or multi-syllabic words for links, and reserve the

shortest, commonest responses for field-level response.

(4) Specific prompts will lead to a high recognition accuracy and robustness.

Presenting fewer choices in menus.

(5) Simplify the grammar, do not make the grammars too broad, or include too

many synonyms. Use as few as possible grammar rules in the application.

Have as few as possible grammars active concurrently.

(6) Ensure the grammar can accept the user responses that mirror key

phrases from preceding prompt. Allow the user to phrase their input in

multiple ways to increase the flexibility of the interface.

(7) Include the most common ways that people will respond, instead of trying

to include every alternative. Use the user’s terminology in the grammars,

instead of the developer’s jargons.

(8) include non-verbal vocalizations in grammars, such as “err” and “um”

(9) Try to use only phonetically distinct words. Avoid including words that

have different meanings but similar pronunciations in the same grammar.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 245

(10) Use grammar weights / probabilities to maximize the probability of

the phrase fragments.

In addition, there are some trade-offs need to be taken into account in grammar

design, such as the length of words and phrases, vocabulary robustness and

grammar complexity, and number of active grammars. Furthermore, the special

case for alphanumeric strings has been put forward and some possible solutions

have been discussed.

Main guidelines for dialog design are listed as follows:

(1) Due to the short memory of human beings, there should be no more than

five options in a menu for choice.

(2) Always put the frequently-used items first in the menu, and notify the user

of the end if possible.

(3) The conversation should be designed as short as possible

(4) Present menu choices when the caller doesn't speak or when what was

said is out of context.

(5) Users should be able to obtain help any time.

(6) Recover from errors gracefully.

(7) Balance efficiency and clarity.

Since the wording of prompts greatly affects the wording of grammars, it should

be defined before writing the grammars. The techniques to design prompts

include tapered prompts, incremental prompts, leading prompts, barge-in, and

confirmation and feedbacks. Also, some suggestions have been made such as,

using recorded prompts, avoiding compound questions and questions allowing

multiple answers, using tones to inform user’s turn, and remaining simple

interface not trying to offer all things to users.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 246

The use of sub-grammars has the following advantages:

(1) Sub-grammars are reusable and promote modularity. They hide

unnecessary details and eliminate redundant code.

(2) The use of sub-grammars simplifies grammar creation and revision.

(3) Using sub-grammars helps focus the grammar development to the task at

hand.

(4) A hierarchy of grammars using sub-grammars can improve the robustness

of speech application.

The advantages of using sub-dialogs include the following:

(1) Sub-dialogs are easier to maintain and faster to load and execute than the

large document.

(2) Using sub-dialogs can eliminate redundant code, and is helpful for clean

code.

(3) Using sub-dialogs makes some common voice recognition dialogs

reusable, and results in much leaner, more modular code architecture.

Using weights/ probabilities properly can improve recognition accuracy,

robustness and speed. However, improper assignment of weights/

probabilities can actually hurt recognition performance.

We discuss the difficulties while defining and applying weights as follows:

(1) No normative or informative algorithms can be used to assign weights.

(2) It is quite difficult to determine the appropriate weights for any specific

grammar and recognizer.

(3) Studying real speech input to a grammar is the best way to obtain the

effective weights.

(4) The appropriate weights for a particular recognizer do not mean the

improvement of recognition performance on other speech recognizer.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 247

Errors are inevitable in voice applications. The prevention and proper handling of

errors are crucial to a successful speech application. Some suggestions are as

follows:

(1) Do not overload the user’s memory.

(2) Allow DTMF for digit string input.

(3) Use comprehensive grammars to overcome the grammar mismatch errors.

(4) Minimize background noise.

(5) Well inform the user for help.

The following are some strategies toward error recovery and confirming user

input.

(1) If the user input is invalid, the system can state the problem and re-prompt.

(2) Use “Go Back” or “Repeat” commands.

(3) Use prompt escalation.

(4) Set confidence thresholds for rejection and confirmation.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 248

4. Voice User Interface (VUI) Design

Voice User Interface (VUI) usability is the key to the success of a VoiceXML

application. A good VUI design is not an option, but a requirement. A poor VUI

does not only frustrate users, but is also insulating and provocative. A good VUI

has a natural and human-like quality. Many technical limitations can be

compensated with properly designed speech interface (Turunen, 2004) (Everett

et al, 1993).

Commonly, people take it for granted that the usability of a speech application

will increase with the improved ASR (Automatic Speech Recognition)

performance. However, the usability of a speech application is determined by a

tight and highly complex interplay between the ASR and the components of the

VUI design (Peissner, 2002). Also, it is critical to strike the right balance between

the simplicity of touch-tone Interactive Voice Response (IVR) systems and the

complexity of AI-like speech applications in Voice User Interface (VUI) design

(Gorelov, 2005).

The main reason of the difficulty in VUI design relies on the fact that speech has

a temporary existence, and the users must remember what they have heard. One

VUI design objective is to avoid making users hear more (or less) than they need

to hear or to say (IBM, 2005). Also, it is important to make the user feel that they

are moving forward with every interaction (Yankelovich, 1997). Dialog design and

speech-recognition accuracy are the main factors that affect VUI usability. Both

issues must be addressed to provide an application that people want to use. This

requires iterations of usability testing and fine-tuning of the UVI.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 249

4.1 Issues Related to VUI

IBM (2005) points out the main concerns in designing an effective VUI as follows:

(1) What to present.

(2) How much to present.

(3) How to present it.

(4) When to present it.

To design an effective VUI, one should understand customer profiles, meet

realistic expectations, and follow a design methodology that uses proven

techniques. The details of VUI design methodology can be found at (IBM, 2005).

Abbott (2001) provides the following VUI design principles and techniques:

(1) Keep it simple, and do it well. Do not compare the capacity of the VUI with

that of GUI. Use the 80/20 rule. It means that, aim to simply and effectively

handle the easiest 80% of the load, and leave the other 20% to other

means (such as human operators) (Eisenzopf, 2006).

(2) Accommodate Errors. Since errors are unavoidable, the VUI design

should not try to eliminate errors, but rather to contain them and tolerate

them. A good VUI is actually deceptively simple. This means that, the

basic structure of dialogs is simple and easy, but it should be able to

handle a multitude of errors. In developing a VUI, the minority of effort

should be spent on the basic dialogs. The majority of effort should be

spent on detecting errors, recovering from them, and getting the

conversation back on track.

(3) Design for everyone, everywhere. Each user is an independent individual.

There are a wide variety of voices, speech skills, and vocabularies among

users. Therefore, the response vocabulary should be simple and generic.

The ideally VUI design can handle all kinds of voices in all kinds of

environments.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 250

Also, Abbott (2001) mentions the following issues in VUI design:

(1) Modeling. In conversations, people tend to model their speech on the

other party’s. Modeling is useful for directing users to acceptable forms of

speech. When use modeling in VUI design, use the prompts that are brief

and to the point (Boyce, 2000). If providing help, it’s more important to

provide examples first than explain what’s going on (Apache, 2005). Do

not use long, wordy prompts (Bouzid, 2006d).

(2) Disfluency is one of the biggest problems for continuous speech

recognition. The longer utterance, the more disfluencies. Therefore, the

application design should limit the length of utterances. However, people

like to make long utterances while they are familiar with the system. To

design a VUI to minimize the effects of disflency, the designer should use

mixed-initiative combined dialogs with directed forms. In addition, it’s not

wise to address disfluency through grammar design, because this will

increase the grammar complexity and slow down recognition, with few

chances of ultimate success.

(3) Synthesized speech. More concentration and effort is required for people

to listen to the synthesized speech than to listen to human speech.

Therefore, try to use recorded prompts as much as possible. Pay attention

to prosodic features when using synthesized speech. Synthesized speech

is not appropriate to read long lists to the user.

(4) Turn-taking and error amplification. A good VUI will make the user feel

oriented, in control, and be able to anticipate what will happen next. It’s

very common for the two parties to lose track of whose turn it is in the

human-computer interaction. A major goal of VUI design is to construct the

interface to direct the user to a safe point where s/he is oriented, in control,

and knows what’s coming if something goes astray.

(5) Lost in space. Since speech is transient, invisible, and asymmetric (Bouzid,

2006e), it is easy for people to feel “lost in space” and do not know “where

they are” in a conversation. A good technique for maintaining orientation is

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 251

to provide auditory cues along the way, for example, use different voices

for different parts of the application. However, do not use too many tunes,

tones, or other non-speech audios, which make the user tired to listen

repeatedly. Barge-in technique can enable experienced users to move fast

and the inexperienced user get contextual feedback. Furthermore, the

orientation tips in prompts are useful when the person is silent or cannot

be understood. Do not force a lot of contextual information on the user

unless s/he requests it. Make sure to incorporate error-handling to avoid

ran-away error amplification.

(6) The wide range of users and environment is a big challenge for VUI

design. The following tips need to be considered to accommodate different

experience levels and environments.

(a) Shortcut should be available for expert users.

(b) Use mixed-initiative dialogs backed up with directed prompting for

filling out forms.

(c) Incorporate yes/no exchanges as the fallback when more

complicated dialogs are not working.

(d) Do not clutter up basic prompts with a lot of tutorial material

aimed at expert users.

(e) If a user encounters a lot of errors, do not assume it means s/he

is “slow”, it may because an expert user is in a tough environment.

Apache (2005) and Sun (1998a) suggests the following tips to build user-friendly

interface:

(1) Use recorded audio for all prompt messages (Abbott, 2001) (Eisenzopf,

2006) (Bouzid, 2006d). Meanwhile, text is included for TTS as a backup in

case the audio file is not available.

(2) <help>, <noinput>, and <nomatch> event handlers are used widely to

make sure the users are always guided through the dialogs.

(3) <reprompt> comes with prompt counts to make messages more detailed

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 252

if the user gets stuck on one field.

(4) Involve real-world users, not trained engineers, to thoroughly test all the

dialogs.

(5) Provide adequate customer support. Users should be able to contact a

real person easily when they have problems with the computers.

Also, Apache (2005) suggests the consistent interface. Terminology consistency

means the use of the same words, rather than synonyms to refer to an object or

event. To convey a consistent personality to the user, use the same wording,

attitude, and style in all dialogs in the application. Use the same key to the same

word or action, while using DTMF.

4.2 Summary

A good VUI, with a natural and human-like quality, is crucial to the success of a

VoiceXML application. A good VUI design is not an option, but a requirement.

Many technical limitations can be compensated with properly designed speech

interface.

Some principles and techniques for VUI design are summarized as follows:

(1) Keep it simple, do it well.

(2) Accommodate Errors.

(3) Design for everyone, everywhere.

(4) Use recorded audio for all prompt messages.

(5) Use <help>, <noinput>, and <nomatch> event handlers to make sure the

users are always guided through the dialogs.

(6) Involve real-world users, not trained engineers, to thoroughly test all the

dialogs.

(7) Provide adequate customer support. The users should be able to contact

a real person easily when they have problems with the computers.

(8) Keep the consistent interface.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 253

In addition, there are some issues related to VUI design that need to be

considered.

(1) Modeling is useful for directing users in speech applications.

(2) Disfluency is a big challenge for continuous speech recognition. Limit the

length of utterances in VUI design. Use mixed-initiative combined dialogs with

directed forms to minimize the effects of disfluency.

(3) Use recorded prompts as much as possible instead of synthesized speech.

(4) A major goal of VUI design is to construct the interface to direct the user to a

safe point where s/he is oriented, in control, and knows what’s coming if

something goes astray.

(5) Lost in space. Provide auditory cues along the way to help users from feeling

“lost in space”.

(6) The wide range of users and environment is a big challenge for VUI design.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 254

5. TESTING

Because of the complexity and ambiguity, extensive testing and tuning are

indispensable for speech-enabled applications. Tuning is an iterative process of

analyzing system performance based on system logs and recorded user

interactions, then applying the best design practices to achieve the most

satisfying customer experience and to work around technology imperfections

(Biber and Kozminski, 2005) (Eisenzopf, 2006). The tuning process should be

based on actual user data, so that one can examine what users have really said

to the system and update the grammars and dialogs accordingly.

Tuning is a complex task which can take a long time (sometimes, several months)

and involve an interdisciplinary team of professionals, such as developers,

testers, linguists, and psychologists.

5.1 Testing Issues

There are a few issues involved in grammar testing, such as:

(1) Coverage test. One should test words and phrases that are in the

grammar to verify that the grammar has the ability to parse a prescribed

set of utterances (Nuance, 2003) (IBM, 2005) (Biber and Kozminski, 2005).

(2) Over-generation test. It is to test the words and phrase that are out of

grammars to make sure the grammars will not accept the unwanted

sentences (Nuance, 2003)(IBM, 2005).

(3) Interpretation test. It verifies that the grammar delivers expected natural

language interpretation for a prescribed collection of phrases (Nuance,

2003).

(4) Ambiguity test. It exposes phrases parsed by the grammar that have

multiple interpretations (Nuance, 2003).

(5) Pronunciation test is to detect words with unknown pronunciations and

misspellings in the grammars (Nuance, 2003).

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 255

(6) Regression test (Nuance, 2003). Whenever a grammar changes, it needs

to be thoroughly tested to ensure that no errors have been introduced. The

results from the new version will be compared with that of the old version.

(7) Identify the consistent mis-recognitions (IBM, 2005). The grammar will be

tested with a group of test subjects that are representatives of the

demographics and environments of the users. One can vary the ambient

noise level, gender, age, accent, and level of fluency during desktop

testing. If a consistent mis-recognition is found, the developer needs to

rephrase some entries or add multiple pronunciations.

(8) If more than one grammar is active concurrently, each grammar needs to

be tested separately, then they will be tested together (IBM, 2005).

(9) If weights or probabilities are included in the grammar, the recognition

performance should be tested with and without them (Nuance, 2003).

Biber and Kozminski (2005) mentions that the following aspects also should be

analyzed and tuned:

(1) Prompts should be unambiguous to prevent unexpected caller responses.

(2) Dialogs. Usually users have their own expectations about the dialogs. If

these anticipations cannot be met, the mis-recognitions occur and the user

might be taken down unexpected paths.

(3) Confidence thresholds. Tune the proper thresholds to accept the correct

and reject the unexpected utterances.

5.2 Summary

Extensive testing and tuning are indispensable for speech-enabled applications.

Tuning is an iterative process of analyzing system performance. Some aspects

are needed to consider in testing, which are summarized as follows:

(1) Coverage test to test the words and phrase in the grammar.

(2) Over-generation test to test the words and phrase that are out of

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 256

grammars.

(3) Interpretation test to make sure the grammar delivers expected natural

language interpretation.

(4) Ambiguity test to expose phrases with multiple interpretations.

(5) Pronunciation test to detect words with unknown pronunciations and

misspellings in the grammars.

(6) Regression test to ensure that no errors have been introduced if the

grammar changes.

(7) Identify the consistent misrecognitions. If a consistent misrecognition is

found, it is needed to be rephrased or add multiple pronunciations.

(8) If more than one grammar is active concurrently, each grammar needs to

be tested separately, then they will be tested together.

(9) If weights or probabilities are included in the grammar, the recognition

performance should be tested with and without them.

(10) Prompts should be unambiguous to prevent unexpected caller responses.

(11) Tune the proper confidence thresholds to accept the correct and reject

the unexpected utterances.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 257

6. TOOLS AND ENVIRONMENTS

Revolutions in the history of technology have shown that the development of

technology is driven by basic technology and by tools for developing solutions on

top of that technology (Olsen and Klemmer, 2005)(Brad et al, 2000). As speech

applications are accepted and adopted widely and widely, the need for more

sophisticated Voice User Interfaces (VUI) grows proportionately. Meanwhile, the

more sophisticated applications usually mean more complicated grammars.

Furthermore, many grammars often need to be dynamically generated based on

data obtained at run-time. As speech-recognition grammars grow larger and

more complicated, the effective grammar development tools are in urgent needs,

such as grammar editors, visualization tools, and the tools for diagnosing and

solving problems.

6.1 Basic VoiceXML Development Environments

VoiceXML applications utilize speech technologies for understanding and

creating spoken dialogs (HP, 2005). Applications also leverage the Web and

server-side technologies (JSP, ASP, CGI) for creating the back-end business

logic and generating dynamic data.

Basically, there are two types of development environments for building

VoiceXML applications: 1) local Software Development Kits (SDK) and 2)

Remote hosts.

The local VoiceXML SDKs provide a variety tools for creating VoiceXML

documents and related resources, such as editors and syntax checkers, dialog

design tools, grammar design tools, reusable components, and debugger. Some

may have rehearsal tools to test dialog flow or other capabilities.

The remote hosts may be Web-based development portal or hosted portal. On

the Web-based development portal, developers upload VoiceXML documents

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 258

and associated resource files to the portal, and test the application by dialing a

pre-assigned phone number. The hosted portal provides developers with the

closet deployment environment, where developers upload a VoiceXML

application to a document server (application/ Web server), and test the

application from a phone. It allows developers to test the full life-cycle of the

application, including back-end database access, server-side dynamic data

generation, and dialog interaction.

6.2 NÜ Echo Grammar Environment

The NÜ echo grammar environment is to tackle the challenges in grammar

design with effective tools for grammar design, debugging, and testing, which

address the complete lifecycle of speech-enabled application (NÜ echo, 2005).

The NÜ echo grammar environment is featured with ABNF editor, coverage

editor, sentence interpreter (utterance matcher), semantics single-stepper,

interactive sentence explorer (phrase enumerator), and grammar converters. The

NÜ echo grammar environment is a truly integrated environment, where

grammars can be designed in the same environment as the rest of the speech

application. All tools in the environment are easy for debugging and tuning

grammars at all levels.

This development environment has been extensively field tested. The NÜ echo

grammar environment is vendor independent, which can support grammar

formats from multiple vendors. It comes as an Eclipse plug-in, which is an open,

Java-based extensible integrated development environment, supported by a

growing number of organizations.

6.3 IBM WebSphere Voice Toolkit

IBM WebSphere Voice Toolkit is an Integrated Development Environment (IDE)

for speech application development. Its runtime server and voice development

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 259

tools are based on industry-standard VoiceXML and Java. It supports VoiceXML

and Interactive Voice Response (IVR) applications.

The WebSphere Voice Toolkit V6.0 is powered by Eclipse technology and makes

it easy to develop VoiceXML applications without having to know the internals of

voice technology. The WebSphere Voice Toolkit is full-featured with graphical call

flow building, VoiceXML development and debugging, Grammar development

and debugging, Pronunciation builder, and Call Control extensible Markup

Language (CCXML) development environment.

The WebSphere Voice Toolkit provides the Graphical Grammar Builder for visual

composition of a grammar file for speech recognition, and the Prompt Manager

for organizing the Audio Files in a voice application. More details can be found at

(IBM WebSphere Voice Toolkit, 2010). The free trial of IBM WebSphere Voice

Toolkit is available at (IBM Software Download, 2006):

6.4 Microsoft Speech Application SDK (SASDK)

Microsoft Speech Application SDK (SASDK) is a set of development tools

supporting Speech Application Language Tags (SALT) specification which will

make it easier and faster for developers to incorporate speech functionality into

Web applications (Microsoft, 2005).

 The application-authoring tools are seamlessly integrated into Microsoft Visual

Studio .NET 2003. Therefore, under a familiar and powerful development

environment, developers can easily create, debug and deploy speech-enabled

ASP .NET Web applications that can be deployed to a Microsoft Speech Server.

In addition to these authoring tools, the SASDK provides a powerful set of

ASP .NET Speech controls, a Speech Add-in for Microsoft Internet Explorer,

debugging tools, a speech application deployment service, tools for speech

application log analysis, sample and reference applications, a rich grammar

library, and reference documentation. The Microsoft Speech Application SDK

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 260

(SASDK) can be used widely from telephones to Windows Mobile-based devices

and desktop PCs.

SASDK version 1.1 can be freely downloaded from (Microsoft Download Center,

2010).

6.5 MCM toolkit

The Metaphor Conversation Manager (MCM) toolkit is a VUI toolkit, which

enables the developer to build professional speech applications for Microsoft

speech server. MCM leverages the Microsoft Speech Application SDK (SASDK)

and its speech Web controls. Using the only syntax C#, MCM provides an all-in-

one programming environment to build complete speech applications, from

dialogs with callers to back-end integration to communications with live service

agents.

The MCM toolkit sits on top of speech Web controls and hides the low-level

complexities of building speech applications, such as grammar creation,

grammar binding, exception handling, and call event handling (Kuperstein, 2005).

The technique of allowing complete control of advanced dialog features eases

the user in building speech interfaces. All MCM projects can be exported to

standard Visual Studio .NET projects to debug, extend, customize, and deploy,

and can be deployed for any language that has a recognition engine

In addition to the development environment, MCM includes post-deployment

application management tools. The Application Monitor is a Web interface to

observe system performance and modify logging levels under real-time load

conditions. The Application Editor enables a non-engineer (e.g. business analyst)

to change prompts, adjust business variable, and perform other application

revisions in real time, based on business requirements.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 261

More technical documentation on the MCM toolkit is available at:

http://www.metaphorsol.com/MCM3_docs/MCM_3.htm.

6.6 Philips Speech SDK

Philips provides a full range of professional services designed to customize

speech SDK for voice application development and integration. Philips speech

SDK can be used to integrate the latest speech recognition technology from

Philips Speech Processing into your applications. Philips speech SDK also

includes an easy-to-use C/C++ API so that speech recognition can be integrated

into the programming environment. The capabilities of Philips speech SDK

include:

(1) Dictation recognition (speech-to-text).

(2) Command recognition.

(3) Verification recognition.

(4) Spelling recognition.

(5) Correction functions.

(6) Natural language understanding.

(7) Natural dialog between man and machine.

(8) Audio recording and playback.

(9) User interface components.

More information is available at:

http://www.speechrecognition.philips.com/index.asp?id=521.

A free trial of Philips Speech SDK can be downloaded from:

http://www.speechrecognition.philips.com/index.asp?id=641 .

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 262

6.7 Hewlett-Packard (HP) OCMP VXML Developer Toolkit

Hewlett-Packard has developed an Eclipse plug-in, the HP OCMP VXML

Developer Toolkit, to add VoiceXML application creation support to Eclipse. This

plug-in and the Eclipse platform provide a unified, robust development

environment for building VoiceXML applications.

It is easy to use the OCMP VXML Developer Toolkit to (HP, 2005):

(1) Create VoiceXML 2.0 compliant voice applications.

(2) Create voiceXML projects, VoiceXML documents, grammar files, ECMA

Script files, JSP files, and Prompt text files using specialized wizard.

(3) Import existing VoiceXML project documents into the VoiceXML

application.

(4) Validate VoiceXML documents, grammar files, and ECMA Script files.

(5) Build and deploy VoiceXML projects to the OCMP execution platform.

(6) Launch the OCMP testing environment.

The HP OCMP VXML Developer Toolkit supports VoiceXML 2.0 DTD (version

20021018) and SRGS XML Grammar Form DTD (version 20020820). The HP

OCMP VXML Developer Toolkit, HP OCMP SDK, and the Eclipse platform are

available at: http://devresource.hp.com/drc/topics/vxml.jsp for free of charge.

6.8 CSLU Toolkit

The CSLU Toolkit is a platform for research and development of spoken-

language systems. The CSLU Toolkit includes the tools of:

(1) Audio and visual tools, speech recognition.

(2) Text-to-speech (TTS), rapid application developer (RAD).

(3) Language-training wizards, Baldi, SpeechView.

(4) PSL tools, tutorials, robust parsing, etc.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 263

CSLU Toolkit is easy to use, and powerful for research and development use.

The systems work in real world also incorporate research advances. CSLU

Toolkit is used for language training, education, corporate uses, research, and

corpus development. It is free for research use, and customizable for corporate

use.

Detail information and download are available at: http://www.cslu.ogi.edu/toolkit/.

6.9 Chant Developer Workbench

Chant Developer Workbench is a tool set for speech application development.

The advantages of using Chant Developer Workbench include maximizing

speech recognition accuracy, tailoring and enhancing text-to-speech (TTS)

playback quality, creating, and testing. In addition, using Chant Developer

Workbench, the developer can deploy grammars, lexicons, profiles, and TTS

markup with applications and build and enhance a workbench of reusable

technologies for developing software that speaks and listens. The Chant

Developer Workbench product family includes the following four kits:

(1) Chant GrammarKit is speech recognition grammar management software

that enables the developer to create, modify, and test context-free

grammars before integrating and deploying them with the application.

(2) Chant LexiconKit is lexicon management software that enables the

developer to create, delete, modify, extend, backup, and restore user and

application lexicon.

(3) Chant ProfileKit is speech recognition profile management software that

enables the developer to create, delete, modify, train, backup, and restore

profiles.

(4) Chant VoiceMarkupKit is text-to-speech (TTS) markup language

management software that enables the developer to create, modify, and

test TTS markup to enhance the playback quality when synthesizing.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 264

More information is available at:

 http://www.chant.net/Products/Developer%20Workbench/Default.aspx .

6.10 Fonelet’s VoiceXML Toolkit

Fonelet’s VoiceXML Toolkit is for those who do not want to spend a lot of time

learning VoicXML, but do want to create simple voice-enabled applications.

Fonelet VoiceXML Toolkit is web-based and offers a GUI. Fonelet Studio helps

build "fast prototype" applications and other quick, simple voice applications. With

Fonelet VoiceXML Toolkit, the developer can design interactive dialogs,

grammars, address books, Fonelet XML, and Mobile discussion board (to

exchange voice and text messages on the phone or via web browsers). Another

advantage of Fonelet VoiceXML Toolkit lies on that it does not require

programming and VoiceXML knowledge to accomplish the above achievements.

More information is available at:

http://journals2.iranscience.net:800/www.commweb.com/www.commweb.com/art

icle/COM20011008S0008 .

6.11 Wizard of OZ (WOZ)

The Wizard of OZ (WOZ) experimental prototyping method means that a person

simulates the system to be designed (Wasinger, 2001) (Fraser and Gilbert, 1991)

(Bernsen and Dybkjær 1995). Suede is a WOZ Prototyping tool for speech user

interfaces. It’s available at: http://guir.berkeley.edu/projects/suede/ .

6.12 BeVocal Café

BeVocal Café is a Web-based development platform and voice hosting service

for anyone interested in building voice-enabled services in short time. It is a free,

Java-based development environment with various valuable tools, documentation,

and other resources, for building, debugging, and running voice applications.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 265

BeVocal provides a reliable, secure, high-performance Hosting Network to run

the VoiceXML applications. Once built, applications can be easily deployed to

production and hosted on BeVocal's proven, carrier-grade VoiceXML Hosting

Network.

The free demonstrations offered by Bevocal are available online at:

http://cafe.bevocal.com/ , or by dialing 1-800-BVOCAL.

 6.13 Tellme Studio

Tellme Studio is a hosted VoiceXML Platform which allows developers to develop,

test, and publish the Internet-powered VoiceXML based applications on the

Tellme Network. As a web-based VoiceXML development platform, Tellme

Studio provides an external VoiceXML gateway and a configuration application to

connect live telephony numbers/ extensions with the VoiceXML-based telephony

applications. Tellme Studio features a number of online tools targeted for

VoiceXML application development, including online scratchpads, syntax

validator, VoiceXML terminal, grammar scratchpad, debug log, grammar phrase

checker, phrase generator and DTMF generator. For more information, refer to

https://studio.tellme.com/ .

6.14 Voxpilot Open Media Platform

Voxpilot Open Media Platform is a distributed call control and VoiceXML-based

media processing platform designed to enable rapid delivery of next generation

interactive DTMF, speech, and multimedia services on a single platform. The

Voxpilot Open Media Platform architecture leverages W3C and IETF open

standards, which revolutionize the way in which voice services are deployed. The

Voxpilot Open Media Platform supports VoiceXML 2.0, SSML, SRGS, SISR and

CCXML. The unique combination of VoIP and PSTN interfaces supported by the

Voxpilot Open Media Platform makes it ideally positioned to support the migration

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 266

from traditional telephony networks to next generation “all-IP” network

architectures such as the IP Multimedia Subsystem (IMS). More information is

available at http://www.voxpilot.com/ .

6.15 Summary

This section introduced the developing tools, environments, and developing

platforms for developers to ease the developments of voice applications. This

section covers the basic two types of development environments for building

VoiceXML applications, i.e. local Software Development Kits (SDK) and Remote

hosts.

The developing tools, environments, and platforms include Nü echo grammar

environments, IBM WebSphere Voice Toolkit, Microsoft Speech Application SDK

(SASDK), MCM toolkit, Philips speech SDK, CSLU Toolkit, Chant Developer

Workbench, Fonelet’s VoiceXML Toolkit, BeVocal Café, Tellme Studio, and

Voxpilot Open Media Platform. The summary of the developing tools and

environments are in Table 1.

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like Applications

267

Table 1: Summary of developing tools and environments

N

o

Tool/

Environment

/ Platform

Feature URL

1 local

Software

Developmen

t Kits (SDK)

Including a variety tools for creating VoiceXML documents and related

resources, such as editors and syntax checkers, dialog design tools, grammar

design tools, reusable components, and debugger. Rehearsal tools to test dialog

flow or other capabilities.

2 Remote

hosts

(Web-based

developmen

t portal or

hosted

portal)

Developers upload VoiceXML documents and associated resource files to the

portal, test the application by dialing a pre-assigned phone number. Test the full

life-cycle of the application, including back-end database access, server-side

dynamic data generation, and dialog interaction.

3 NÜ echo

grammar

environment

Including ABNF editor, coverage editor, sentence interpreter (utterance

matcher), semantics single-stepper, interactive sentence explorer (phrase

enumerator), and grammar converters. An integrated environment, where

grammars can be designed in the same environment as the rest of the speech

http://www.nuecho.com/fr/ser

vices/grammar.shtml

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like Applications

 268

application. All tools are easy for debugging and tuning grammars at all level.

Vendor independent. Comes as an Eclipse plug-in, which is an open, Java-

based extensible integrated development environment.

4 IBM

WebSphere

Voice

Toolkit

Integrated Development Environment (IDE). Its runtime server and voice

development tools are based on industry-standard VoiceXML and Java.

Supports VoiceXML and Interactive Voice Response (IVR) applications.

Powered by Eclipse technology, easy to develop VoiceXML applications without

knowing the internals of voice technology. Full-featured with graphical call flow

building, VoiceXML development and debugging, Grammar development and

debugging, Pronunciation builder, and Call Control extensible Markup Language

(CCXML) development environment. Graphical Grammar Builder for visual

composition of a grammar file. Prompt Manager for organizing the Audio Files in

a voice application.

http://www14.software.ibm.co

m/webapp/download/preconfi

g.jsp?id=2006-02-

23+09%3A08%3A30.953556

R&cat=&fam=&s=z&S_TACT

=104AH%20W42&S_CMP

5 Microsoft

Speech

Application

SDK

(SASDK)

Set of development tools supporting the Speech Application Language Tags

(SALT) specification. Application-authoring tools are seamlessly integrated into

Microsoft Visual Studio .NET 2003. Set of ASP. NET Speech controls, a Speech

Add-in for Microsoft Internet Explorer, debugging tools, a speech application

deployment service, tools for speech application log analysis, sample and

reference applications, a rich grammar library, and reference documentation.

Can be used widely from telephones to Windows Mobile-based devices and

http://www.microsoft.com/dow

nloads/details.aspx?FamilyId

=5DAAE9C4-188C-4547-

A9D6-

1671132A39A1&displaylang=

en&EventType=getsdk

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like Applications

 269

desktop PCs.

6 Metaphor

Conversatio

n Manager

(MCM)

toolkit

A VUI toolkit, an all-in-one programming environment, which enables the

developer to build professional speech applications for Microsoft speech server,

from dialogs with callers to back-end integration to communications with live

service agents. Also including post-deployment application management tools

such as: Application Monitor, a Web interface, to observe system performance

and modify logging levels under real-time load conditions, and Application Editor

to change prompts, adjust business variable, and perform other application

revisions in real time.

http://www.metaphorsol.com/

MCM3_docs/MCM_3.htm

7 Philips

speech SDK

Integrate the latest speech recognition technology from Philips Speech

Processing into your applications. Includes an easy-to-use C/C++ API so that

speech recognition can be integrated into the programming environment. The

capabilities include: dictation recognition (speech-to-text), command recognition,

verification recognition, spelling recognition, correction functions, natural

language understanding, natural dialog between man and machine, audio

recording and playback, user interface components.

http://www.speechrecognition.

philips.com/index.asp?id=641

8 Hewlett-

Packard

(HP) OCMP

vXML

An Eclipse plug-in to add VoiceXML application creation support to Eclipse.

Provide a unified, robust development environment for building VoiceXML

applications. Supports VoiceXML 2.0 DTD (version 20021018) and SRGS XML

Grammar Form DTD (version 20020820). Used for: creating VoiceXML 2.0

http://devresource.hp.com/drc

/topics/vxml.jsp

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like Applications

 270

Developer

Toolkit

compliant voice applications, voiceXML projects, VoiceXML documents,

grammar files, ECMA Script files, JSP files, and Prompt text files using

specialized wizard, importing existing VoiceXML project documents into the

VoiceXML application, validating VoiceXML documents, grammar files, and

ECMA Script files, building and deploying VoiceXML projects to the OCMP

execution platform, launching the OCMP testing environment.

9 CSLU

Toolkit

A platform for research and development of spoken-language systems. Including

the tools of: audio and visual tools, speech recognition, text-to-speech (TTS),

rapid application developer (RAD), language-training wizards, Baldi,

SpeechView, PSL tools, tutorials, robust parsing, etc. Used for language training,

education, corporate uses, research, and corpus development. Free for research

use, and customizable for corporate use.

http://www.cslu.ogi.edu/toolkit

/

10 Chant

Developer

Workbench

The advantages include maximizing speech recognition accuracy, tailoring and

enhancing text-to-speech (TTS) playback quality, creating, and testing.

Developer can deploy grammars, lexicons, profiles, and TTS markup with

applications and build and enhance a workbench of reusable technologies for

developing software that speaks and listens. Including: (1) Chant GrammarKit,

speech recognition grammar management software, (2) Chant LexiconKit,

lexicon management software, (3) Chant ProfileKit, speech recognition profile

management software, (4) Chant VoiceMarkupKit, text-to-speech (TTS) markup

http://www.chant.net/Products

/Developer%20Workbench/D

efault.aspx

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like Applications

 271

language management software.

11 Fonelet’s

VoiceXML

Toolkit

Web-based with a GUI. It is for those who do not want to spend a lot of time

learning VoicXML, but do want to create simple voice-enabled applications. It is

used for designing interactive dialogs, grammars, address books, Fonelet XML,

and Mobile discussion board (to exchange voice and text messages on the

phone or via web browsers). It does not require programming and VoiceXML

knowledge.

http://journals2.iranscience.ne

t:800/www.commweb.com/w

ww.commweb.com/article/CO

M20011008S0008

12 Wizard of

OZ (WOZ)

experimenta

l prototyping

method

It means that a person simulates the system to be designed. Suede is a WOZ

Prototyping tool for speech user interfaces.

http://guir.berkeley.edu/projec

ts/suede/

13 BeVocal

Café

It is a Web-based development platform and voice hosting. It is a free, Java-

based development environment with various valuable tools, documentation, and

other resources, for building, debugging, and running voice applications. It

provides a reliable, secure, high-performance Hosting Network to run the

VoiceXML applications. Once built, applications can be easily deployed to

production and hosted on BeVocal's proven, carrier-grade VoiceXML Hosting

Network.

http://cafe.bevocal.com/

14 Tellme It’s a hosted VoiceXML Platform allowing developers to develop, test, and https://studio.tellme.com/

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like Applications

 272

Studio publish the Internet-powered VoiceXML based applications on the Tellme

Network. It provides an external VoiceXML gateway and a configuration

application to connect live telephony numbers/ extensions with the VoiceXML-

based telephony applications. It includes online scratchpads, syntax validator,

VoiceXML terminal, grammar scratchpad, debug log, grammar phrase checker,

phrase generator and DTMF generator.

15 Voxpilot

Open Media

Platform

A distributed call control and VoiceXML-based media processing platform

designed to enable rapid delivery of next generation interactive DTMF, speech,

and multimedia services on a single platform. It leverages W3C and IETF open

standards. It supports VoiceXML 2.0, SSML, SRGS, SISR and CCXML. The

unique combination of VoIP and PSTN interfaces supported by it makes it ideally

positioned to support the migration from traditional telephony networks to next

generation “all-IP” network architectures such as the IP Multimedia Subsystem

(IMS).

http://www.voxpilot.com/

Appendix A: A Survey – Design of Recognition Grammar for VXML-Like
Applications

 273

7. CONCLUSION

As speech technology has achieved significant development over the past three

decades, the speech-enabled applications have emerged and been applied

widely. It is a complicated task for voice application design, which involves a wide

range of techniques. VoiceXML is one of the powerful tools in voice applications

development. Grammar design is a critical component determining the

performance of grammar-based speech applications. Voice User Interface (VUI)

usability is the key to the success of a VoiceXML application. Iterative testing and

tuning are indispensable for speech-enabled applications.

In the research reviewed in this survey, we have found 15 voice-application

development environments available, 4 of which are feely downloadable, i.e.,

IBM WebSphere Voice Toolkit, Microsoft Speech Application SDK (SASDK),

Philips speech SDK, and CSLU Toolkit. Over 20 articles have been found on

grammar design, and 4 of which are refereed scientific papers, i.e., (Yankelovich,

1997) (Boyce, 2000), (Abbott, 2001), and (Mané and Levin, 2005). Over 10

articles are related to Voice User Interface (VUI) design, and 2 of which are

refereed scientific papers, i.e., (Boyce, 2000) and (Peissner, 2002). 4 non-

refereed articles talk about voice-application testing.

This survey aims to provide practical guidelines for tackling the challenges in

grammar design and related problems in VoiceXML-like application development

from developers’ point of view. The guidelines presented in this survey are

proven field-tested experience. Although many of them are generally adaptable,

some may just fit to their original situations, not suitable for all applications. The

developer needs to take into account the specific situation in voice-application

development.

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars

274

APPENDIX B: A SURVEY – AUTOMATIC GENERATION OF

SPEECH-RECOGNITION GRAMMARS

Table of Contents

1. INTRODUCTION

2. DEFINITIONS

3. MOTIVATION

4. DYNAMIC GRAMMARS

5. AUTOMATIC GRAMMAR GENERATION
 5.1 The Knowledge-Based Approaches

5.2 The Data-Driven Approaches
 5.2.1 Introduction
 5.2.2 Bayesian Model Merging Framework
 5.2.3 Growing Semantic Grammar System
 5.2.4 Semi-Automatic Grammar Induction Approach
 5.2.5 Genetic Programming (GP)
 5.2.6 Robust Grammar Authoring Paradigm
 5.2.7 Statistical Language Model Generation
 5.2.8 Method of Using Counter Examples
 5.2.9 Summary
 5.3 The Combining Knowledge-Based and Data-Driven Approaches

6. AUTOMATIC SPEECH APPLICATION GENERATION

7. CONCLUSION

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 275

1. INTRODUCTION

With the growing interest and demand for human-machine interaction, much work

on speech recognition has been carried out over the past three decades. A large

number of spoken-dialogue systems have been implemented. Aust et al (1995)

present Philips system. Jupiter system (weather information system) (Zue et al,

1997, 2000) and AT&T’s call redirection system (Riccardi and Gorin, 2000) are

pioneer systems. Other examples include the ARISE project (Lamel et al, 2000;

Baggia et al, 2000) and Philips Directory-Assistance system (directory

information service) (Schramm et al, 2000). Also, an important American project,

the DARPA Communicator, has attracted attention from the most important

research organizations in USA, such as MIT, BBN, Carnegie Mellon University

(Rudnicky et al, 2000 and Carpenter et al, 2001), the University of Colorado

(Pellom et al, 2000; Zhang et al, 2001), AT&T (Walker, 2001), Bell Labs, SRI

and IBM (Gao et al, 2001). Trias and Marino (2002) discuss the BASURDE [LITE]

system, the train travel information and ticket reservation service.

There are two main directions in the natural-language speech recognition

research: 1) the grammar-based language model and the 2) statistical language

model (SLM). In the grammar-based approach, domain-specific semantic

grammars are developed to define the legal utterances in the spoken-dialogue

application. A statistical language model adopts a data-driven, statistical

modeling approach, which requires a large corpus of training data.

Statistical language models have the advantages of simplicity, flexibility,

adaptation, high recognition accuracy, and robust performances. The primary

disadvantage is the costly collection of huge amounts of training data and poor

generalization with insufficient data. In addition, statistical language models are

not supported by readily-available commercial systems, such as VoiceXML

(VXML) browsers. Compared to statistical techniques, grammar-based speech

recognition is more common and easier to use with reasonable recognition

accuracy for small domains. An important advantage over statistical approaches

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 276

is that grammar-based approaches do not require the large amount of training

data which is difficult and expensive to collect, especially in the early phase of

system development (Caskey et al, 2003). However, grammar-based techniques

require experts to write high-quality grammars, which can be difficult to maintain

and extend. In addition, grammar-based models are not as robust as statistical

models, as they cannot handle the out-of-grammar (OOG) utterances (Caskey et

al, 2003).

Therefore, statistical approaches are often used for broad and shallow natural

language understanding, and grammar-based approaches are frequently used

for narrow and deep understanding in a specific domain (Ward and Issar, 1994)

(Wang, 2001), where grammars can be crafted carefully to cover as many

usages in the domain as possible (Wang, 2002).

Stochastic (statistical) language models were popular around 1995, while the

grammar-based language models took the pre-eminent position in commercial

products by 2001 (Barnard et al, 1999) (Knight et al, 2001) (Caskey et al, 2003).

Also, there are some successful cases combining the two approaches by taking

both of their advantages and overcoming each other’s weakness with a good

balance of speech-recognition accuracy and robustness (Moore et al, 1995)

(Knight et al, 2001), (Rayner and Carter, 1997), (Geutner, 1996), (Jones et al,

1993) (Wang et al, 2000) .

While hundreds of spoken dialog systems have been deployed in many different

sectors, it is still very costly and laborious to develop such systems due to the

long development cycle required to get the application to an acceptable level.

One of the main barriers in developing such applications is the development of

grammars (Wang and Acero, 2006).

In this survey, we review around 90 scientific papers on automatic generation of

speech-recognition grammars and related work. Roughly, the methodologies in

automatic grammar generation/ grammar authoring/ grammar induction are

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 277

classified into three categories: 1) the knowledge-based approaches, 2) the data-

driven approaches, and 3) the combing knowledge-based and data-driven

approaches.

Seneff, Dowding et al, Ward, Akiba and Itou, Caskey et al, Wang and Ju are

currently active research groups using knowledge-based approaches in

automatic grammar generation.

Meanwhile, much work is using data-driven approaches because they are

regarded as the approaches that can model real data closely. Meng, Siu, and

Wong, at the Chinese University of Hong Kong, are the representative research

group who adopt data-driven approaches in semi-automatic grammar induction.

Besides, Stolcke and Omohundro, Wang and Waibel, Gavaldà and Waibel, Koza,

and Yu et al all have proposed various data-driven approaches in automatic

grammar generation.

Attempting to take the advantages and avoiding or overcoming the

disadvantages, there emerge the approaches combining the knowledge-based

approaches and data-driven approaches in automatic grammar generation. The

representative research group is Wang and Acero, from Speech Technology

Group of Microsoft. In 2001, they proposed a machine-aided grammar authoring

system. They claim that this system enables a developer, without knowing the

linguistics, to rapidly develop a high-quality grammar for conversational systems.

Later on, they applied this system in ATIS (Air Traffic Information System) task in

2002, and further improved the system in 2003, 2005, and 2006.

In addition, in this survey, we review the work on automatic speech application

generation, which covers 8 scientific papers. Among this work, Pargellis et al

have presented an Automatic Dialogue Generator (ADG), and further upgraded it

as Application Generator (AG), which can automatically create and manage user-

customized speech-enabled applications.

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 278

The remainder of this survey is structured as follows:

Section two introduces some definitions of the technical terms that are used in

the survey to help the reader to better understand the contributions of each paper.

In section three, we discuss the motivation of investigating the techniques in

automatic grammar generation.

Section four introduces the concept of dynamic grammars and their usage.

Section five presents the methodologies of automatic grammar generation /

grammar authoring/ grammar induction in three main categories, knowledge-

based approach, data-driven approach, and combining knowledge-based and

data-driven approach.

In section six, the techniques in building automatic speech applications are

presented.

Finally, section seven concludes with a summary of the survey.

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 279

2. DEFINITIONS

In this section, we briefly introduce some definitions of the technical terms that

are used in the survey to help the reader to better understand the contributions of

each paper.

Grammar-Based Language Model uses grammars to specify the utterances of

the system. In grammar-based language models, domain-specific grammars are

developed to define the legal utterances in the spoken-dialogue application.

Statistical Language Model (SLM) is a probability distribution P(s) over all

possible sentences s, or spoken utterances, documents, or any other linguistic

units (Rosenfeld, 2000).

ATIS is Air Travel Information Service, which is being used by several ARPA-

funded sites to develop and evaluate speech-understand systems (Ward and

Issar, 1994).

Domain-Specific Grammar is a set of rules, like syntactic grammar, defining the

legal combination of individual words into constituents and constituents into

sentences within the application domain. Also, non-terminals are semantic

concepts and their relations in a specific domain (Ward, 1991) (Gavaldà, 2000)

(Wang and Acero, 2001).

Dynamic Grammar is a grammar that can be dynamically created and modified

while an application is running (Nuance, 2003). A dynamic grammar can be a file

that is referenced using external rules, or it can be created directly in a database

using API functions.

Frequently Requested Listings (FRL) approach means that a grammar is built

based on the information about the most-frequently-requested listings and voice

recordings that users refer to. In such a grammar, each listing has a unique

corresponding branch, which compiles all the linguistic representations of the

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 280

listing that have been collected, with a reference to the listing ID (Identification

Number) in the directory.

Inside-Outside (IO) algorithm was first introduced by Baker (1979) to infer the

parameters of Stochastic Context-Free Grammars (SCFGs) and generalize the

parameter estimation methods for HMMs (Hidden Markov Model) to SCFGs. It

uses the current rule probabilities and the training set to estimate the expected

frequencies of certain types of derivation step, and then compute new rule

probability estimates as appropriate ratios of those expected frequency estimates

(Pereira and Schabes, 1992).

Expectation-Maximization (EM) algorithm is used in statistics for finding

maximum likelihood estimates of parameters in probabilistic models, where the

model depends on unobserved latent variables. EM alternates between

performing an expectation (E) step, which computes an expectation of the

likelihood by including the latent variables as if they were observed, and a

maximum (M) step, which computes the maximum likelihood estimates of the

parameters by maximizing the expected likelihood found on the E step. The

parameters found on the M step are then used to begin another E step, and the

process is repeated. More details are available in (Dempster et al, 1977), (Frank,

2002).

Mutual Information (MI). In probability theory and information theory, the Mutual

Information (or trans-information) of two random variables is a quantity that

measures the mutual dependence of the two variables. The most common unit of

measurement of mutual information is the bit, when logarithms to the base 2 are

used. The value of the Mutual Information (MI) between two random variables

indicates the level of the reduction in uncertainty. The higher of MI indicates the

larger reduction in uncertainty. Zero MI means the variables are independent

(Cover and Thomas, 2006).

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 281

Information Gain (IG) can be used to define a measure of correlation between

two random quatities (Kent, 1983). It measures the difference between two

probability distributions. In information theory and machine learning, Information

Gain (IG) is an alternative synonym for Kullback-Leibler divergence.

Kullback-Leibler (KL) is a non-symmetric, non-commutative, measure of the

difference between two probability distributions P and Q. KL measures the

expected difference in the number of bits required to code samples from P when

using a code based on P, and when using a code based on Q. Typically P

represents the “true” distribution of data, observations, or a precise calculated

theoretical distribution. The measure Q typically represents a theory, a model, a

description or an approximation of P (Kullback, 1959).

Manhattan-Norm. In linear algebra, functional analysis and related areas of

mathematics, a Norm is a function which assigns a strictly positive length or size

to all vectors in a vector space, other than the zero vector. Manhattan-Norm is

also known as Taxicab metric with corresponding variations in the name of the

geometry. It alludes to the grid layout of most streets on the island of Manhattan,

which causes the shortest path a car could take between two points in the city to

have length equal to the points’ distance in taxicab geometry (Klamroth, 2006).

Gini Index (Gini, 1921) is a standard economic measure to see the degree of

income inequality in a society. Algebraically, it is defined as “Expected value of

the ration of the difference of two arbitrary specimens to the mean value of all

specimens”. The Gini Index is the Gini Coefficient expressed as a percentage,

and is equal to the Gini Coefficient multiplied by 100. The Gini Coefficient is a

measure of statistical dispersion most prominently used as a measure of

inequality of income distribution or inequality of wealth distribution. It is defined as

a ratio with values between 0 and 1.

BLEU (Bilingual Evaluation Understudy) metric is a metric for evaluating the

quality of machine translation output. Quality is considered to be the

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 282

correspondence between a machine’s output and that of a human. “The closer a

machine translation is to a professional human translation, the better it is”.

(Papineni et.al., 2002). BLEU was one of the first metrics to achieve a high

correlation with human judgments of quality, and remains one of the most

popular (Callison-Burch et.al., 2006) (Doddington, 2002).

Temporal clustering: words or multi-word entries that co-occur sequentially are

clustered together based on the Mutual Information (MI) metric or the Information

Gain (IG) metric.

Spatial clustering: words or multi-word entries with similar left and right linguistic

contexts are clustered together based on the symmetric divergence that is

applied to the left and right linguistic contexts of the entity pair

Genetic programming (GP) is an evolutionary approach that programs computers

by natural selection (Koza, 1992) and (Dupont, 1994). In genetic programming,

populations of computer programs are genetically bred using the Darwinian

principle of survival of the fittest and using a genetic crossover (sexual

recombination) operator appropriate for genetically mating computer programs

(Koza, 1994).

Regular Positive and Negative Inference (RPNI) algorithm: is a framework for

identifying any language consistent with a given sample in polynomial time

(Oncina and Garcia, 1992).

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 283

3. MOTIVATION

It was reported that semantic-based robust understanding technology has been

widely used in human-machine (Ward, 1990) (Zue et al, 2000) (Wang, 2001) and

human-human conversational systems (Waibel, 1996). However, speech-

enabled systems have not yet become the mainstream in the real world. Among

the existing difficulties, the discrepancy between the lab research and the reality

in industry hinders the development of such voice applications (Wang and Acero,

2006). Pieraccini (2004) lists the difficulties and the potential areas of

improvement in spoken language understanding research as follows:

(1) There are few data in the spoken language system design/ development

phrase, which is difficult for creating the grammar using data-driven

approaches.

(2) There is a huge amount of data available after application deployment,

which is extremely difficult to manually analyze.

In addition, Wang (2001) owes this limited success to the complexity of the

following problem:

(1) compared to the complexity of the target grammar, the available data

is typically sparse, and a good generalization mechanism to correctly

cover a large variety of language constructions is hard to obtain.

Due to the long development cycle, it is very costly and laborious to develop

speech-enabled systems. Also, one of the main reasons that it is not practical for

regular developers to implement a conversational system is that, such

implementations rely on manual development of domain-specific grammars, a

task that is time-consuming, error-prone, and requires extensive language

expertise (Meng and Siu, 2001) (Wang and Acero, 2003a) (Wang and Acero,

2006). Siu and Meng (1999, 2002) state that writing grammars is a daunting and

expensive task, which forms a major bottleneck in the development of spoken

language systems. Furthermore, due to the disfluencies and non-grammatical

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 284

utterances of spoken language, a handcrafted grammar cannot guarantee good

coverage of real data when deployed in real applications (Meng and Siu, 2001).

Bangalore and Johnston (2003) point out that the heavy cost of authoring and

maintenance of grammars and inevitable brittleness due to lack of coverage in

the rule sets are the main reasons that the scalability of the conversational

system is a bottleneck.

Based on discussions with developers, Wang and Acero (2006) summarize the

main difficulties in writing a speech-recognition grammar as follows:

(1) It is hard to anticipate the various alternatives for an expression. For

example, “520” can be read as “five two oh”, “five two zero”, “five twenty”,

“five hundred twenty”, etc.

(2) It is hard to normalize speech inputs with Semantic Interpretation (SI) tags,

due to the various alternatives.

(3) It is hard to optimize grammar structures for best recognition performance,

for example, with high recognition accuracy and speed.

(4) The verbosity of XML, which is accepted by Speech Recognition

Grammar Specification (SRGS) (W3C, 2004), may be a source of errors in

manual grammar development.

Therefore, if conversational systems are to become a mainstream, it is apparent

that writing domain-specific grammars must become easier for a typical

application developer (Wang and Acero, 2001, 2005, 2006). Therefore, tools for

fast grammar authoring/ language learning/ grammar induction/ grammar

inference and tools for automatic or semi-automatic adaptation/ learning/ system

tuning are important and useful to improve the spoken language system’s

performance.

The issue of automatic grammar generation has attracted the attention of

researchers for many years (Fu and Booth, 1975a, 1975b), (Carrasco and

Oncina, 1994), (Miclet and Higuera, 1996), and (Honavar and Slutzki, 1998),

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 285

though most of that work focuses on toy applications. The approaches for natural

language processing are not adequate for Natural Language Understanding

(NLU) applications (Wang and Waibel, 1998) and (Stolcke and Omohundro,

1994a). Recently, researchers have been working on tools for rapid development

of mixed-initiative systems (Glass, 2001) (Glass and Weinstein, 2001) and (Glass

et al, 2004), but without addressing the problem of grammar authoring. However,

other researchers have developed tools that let an end user refine an existing

grammar (Gavaldà, 2000). The revised grammar still relies on the initial grammar.

Also it assumes that the developer has a good knowledge of language structures.

With the above concerns, this survey aims to overview the techniques related to

automatic/ semi-automatic grammar generation and related technology of

speech-recognition grammars.

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 286

4. DYNAMIC GRAMMARS

A dynamic grammar is a grammar that can be dynamically created and modified

while an application is running (Nuance, 2003). Since large grammars will result

in significant real time delays while loading, the proper usage of smaller dynamic

grammars appear to be a good choice to overcome the scaling problems

(Wasinge, 2001) and (Levin and Mané, 2005). Also, a dynamic grammar can

result in a more easily maintainable and fluid grammar design for VoiceXML

applications (Voxeo, 2006).

A dynamic grammar can be a file that is referenced using external rules, or it can

be created directly in a database using API functions. Nuance provides a

dynamic grammar mechanism letting the developer create and update grammars

at runtime and use them for recognition immediately without needing to recompile

the recognition package. The “gate” technique in (Nuance, 2003) is a dynamic

grammar that dynamically enables or disables various branches in a static

grammar. Voxeo (2006) provides a technique to create a dynamic grammar from

a data source, e.g. Microsoft Access. The utterances and return values of the

grammar can be obtained from the data source using a server side language.

Wang (2001) presents a robust chart parser to support dynamic grammars so

that the parser is able to customize the grammar online for different user data.

Levin and Mané (2005) apply dynamic grammars in his project of designing a

Voice User Interface (VUI) for Automated Directory (AD) assistance to overcome

the scaling problem with the large size of the listing directory. The methods to

deal with the large database while automatically generating the grammar in

(Levin and Mané, 2005) are discussed as follows:

(1) Extension of the Frequently Requested Listings (FRL) approach to automated

grammar generation. With the FRL approach, a grammar is built based on the

information about the most-frequently-requested listings and voice recordings

users refer to. In such a grammar, each listing has a unique corresponding

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 287

branch, which compiles all the linguistic representations of the listing that have

been collected, with a reference to the listing ID (Identification Number) in the

directory. In speech recognition, by looking up the information associated with the

branch, which has a reference to a listing ID and the full listing information, the

path in the grammar, which is best matching the user utterance, is found.

In the Extension of the FRL approach, each directory listing is associated with a

unique corresponding branch that compiles all the linguistic representations of

the listing automatically generated by the variation model from normalized listing

name. Its advantage is simple because each branch in the grammar has a

reference to the listing ID in the directory. The disadvantages include the fact that

the size of the grammars scales with the size of the listing directory because

every listing in the grammar is associated with a separate branch. Meanwhile, the

daily changed listings cause the grammars to be recompiled and reloaded very

frequently which increases the resources and the infrastructure necessary for

deployment.

(2) To circumvent the above difficulties in the Extension of the FRL approach,

Levin and Mané (2005) propose the approach of separating recognition from

search and the use of over-generative grammars. They adopt a compact

grammar, which defines an over-generating language, to recognize the listing

names, without a separate branch for every listing in the directory. The

advantages include the small size of the grammar and less frequently

recompiling with the over-generative grammars. The disadvantages include the

non-trivial search. Without the association between the recognized utterance and

a listing ID, the directory needs to be searched after the recognition, outputting

the listings with a high similarity with the recognized utterance. Also, the n-best

results need to be confirmed in the VUI design.

A summary of the major work on dynamic grammars is in Table 4.

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 288

Table 4: summary of Dynamic Grammars

Date Authors Title of the Paper Major Contribution

2001 Wang, Y.-Y. Robust Spoken

Language Understanding

in MiPad

Robust chart parser to support dynamic grammars so that

the parser is able to customize the grammar online for

different user data.

2003 Nuance

Communications, Inc.

 Grammar Developer’s

Guide

“Gate” technique to dynamically enable or disable various

branches in a static grammar

2005 Levin, E., Mané, A. Designing the Voice User

Interface for Automated

Directory Assistance

1. Extension of the Frequently Requested Listings (FRL)

approach to automated grammar generation.

2. Approach of separating recognition from search and

the use of over-generative grammars

2006 Voxeo Corporation http://www.vxml.org/

A technique to create a dynamic grammar from a data

source, e.g. Microsoft Access.

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 289

5. AUTOMATIC GRAMMAR GENERATION

To facilitate the development of speech-enabled applications and services,

researchers have been working on tools for rapid development of mixed-initiative

systems (Glass and Wenstein, 2001) and (Gavaldà, 2000). Fu and Booth (1975a,

1975b) surveyed the early work on automatic learning of finite state automata

(FSA) from training data.

In this survey, we overview the grammar generating techniques and classify them

into the following three types: 1) the knowledge-based approaches, 2) the

statistical approaches, and 3) the combining knowledge-based and statistical

approaches.

5.1 The Knowledge-Based Approaches

Due to the fact that statistical language models require large amounts of data,

which is costly in terms of time and effort, a way of developing language models

without a corpus for a given task at a reasonable cost is needed. This problem

has been recognized for many years and has been discussed more recently by

(Akiba and Itou, 2000).

Assuming that syntactic structures do not vary across different domains and thus

a high level syntactic CFG could be shared by different applications, Seneff

(1992) reuses the domain-independent part of a grammar to alleviate the

grammar authoring problem. In the natural language system, TINA (Seneff, 1992),

an initial set of hand-crafted context-free rewrite rules was first converted to a

network structure where the semantic categories were intermixed with syntactic

ones. Seneff (1992) uses the domain specific knowledge by replacing the low-

level syntactic non-terminals with semantic non-terminals. For example, they may

replace the domain-specific concepts HOTEL_NAME with the noun phrases

(NPs).

Also, in (Seneff, 1992), new rules can be automatically generated for the rules

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 290

sharing the common elements on the right-hand sides. For example, with the rule

X=>A B C and X => B C D, the system would automatically generate two new

rules, X => B C and X => A B C D. This ability to automatically generate new

rules permits the system to generalize more quickly to unseen structures. Also, it

greatly simplifies the implementation, because rules do not have to be explicitly

monitored during the parse. However, it can potentially lead to overgeneralization

to some extent.

A similar idea of including domain specific semantic features in the typed

unification grammar is adopted by Dowding et al (1993) in a natural-language

understanding system Gemini. Gemini includes a mid-sized constituent grammar

of English, a small utterance grammar for assembling constituents into

utterances, and a lexicon. All three are written in the typed unification formalism,

a variant of unification formalism, used in the Core Language English (Alshawi,

1992). The typed unification provides a facility for grammar development in

grammar error analysis and warning of the improperly assigned feature values. In

addition, this type analysis is performed statistically at compiling time. There is no

run-time overhead for adding types to the grammar.

In Phoenix, the spoken language understanding system, Ward and Issar (1994)

model semantics by using Recursive Transition Networks (RTN) to extract

information relevant to a task. This limits the grammar rules that can be shared.

However, developers can fine tune a grammar without any limitations imposed by

a background syntactic grammar. The lexicon to the recognition grammar can be

augmented using completion techniques, such as adding the words from the

parsing grammar, synonyms and other words related to the words in the training

corpus. For example, if the word “Monday” appears in the training corpus, the

words “Mondays”, as well as other days like “Tuesday” will be added.

Akiba and Itou (2000) introduce a knowledge-based semi-automatic method of

acquiring a language model. This method uses all kinds of knowledge resources

to construct the language model. For example, it considers both novice users’

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 291

word sequences that are or are not sentences, and expert users’ constituents

that can make sentences. Also, a corpus is considered as one of knowledge

resources. To integrate information from such a range of knowledge resources, a

specific class of attribute grammars is used as a uniform representation.

Using Perl code, Gruenstein (2002) implements the automation of the recognition

grammar from a list of strings.

Based on the fact that speech grammars need to be used and tuned iteratively,

Caskey et al (2003) propose an algorithm to augment the coverage of an existing

CFG based on a set of new sentence examples that are not covered by the

existing grammar. Using a Finite State Transducer (FST) representation of CFGs,

this algorithm attempts to find the minimal set of modifications to the grammar to

increase its coverage while preserving its original structure. Also, this proposed

approach includes an interactive component to allow developers to control the

generalization of the new grammar.

Wang and Ju (2004) provide a way to construct high-performance speech-

grammars for alphanumeric concepts, which are common in practice. Using this

approach, a developer only needs to write down a regular expression for a

concept, the algorithm automatically generates a W3C grammar with appropriate

semantic interpretation tags. However, the quality of the grammar is highly

dependent on the way the regular expression is written. Preliminary experimental

results in (Wang and Ju, 2004) have shown that the generated grammar

consistently outperforms the general alphanumeric rules in the grammar library.

In some cases the semantic error rates were cut by more than 50%.

The main difficulty with the knowledge-based approach is that, to create high-

quality grammars, the grammar developer must have in-depth knowledge of both

linguistics and the domain (Wang and Acero, 2006).

A summary of the major work on the Knowledge-Based approaches is listed in

Table 5.1.

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 292

Table 5.1: summary of Knowledge-Based Approaches

Date Authors Title of the Paper Major Contribution

1992 Seneff, S. TINA: A Natural Language System

for Spoken Language Applications

Reuses the domain-independent part of a grammar to alleviate the

grammar authoring problem

1993 Dowding, J., et. al. Gemini: A Natural language

System for Spoken-language

Understanding.

A typed unification formalism for grammar development in grammar

error analysis and warning of the improperly assigned feature values

1994 Ward, W., Issar, S. Recent Improvements in the CMU

Spoken Language Understanding

System.

Model semantics by using Recursive Transition Networks (RTN) to

extract information relevant to a task, and allow developers to fine

tune a grammar without any limitations imposed by a background

syntactic grammar.

2000 Akiba, T., Itou, K Semi-Automatic language Model

Acquisition without Large Corpora

A method of acquiring a language model using all kinds of

knowledge resources to construct the language model.

2002 Gruenstein, A. Automatic Grammar Construction Implement the grammar automation from a list of strings, using Perl

code.

2003 Caskey, S.P., Story,

E., Pieraccini, R.

Interactive Grammar Inference with

Finite State Transducers.

An algorithm to augment the coverage of an existing CFG based on

a set of new sentence examples that were not covered by the

existing grammar.

2004 Wang, Y.-Y. and Ju.

Y-C.

Creating Speech Recognition

Grammars from Regular

Expressions for Alphanumeric

Concepts.

Construct high-performance speech-grammars for the common-used

alphanumeric concepts

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 293

5.2 The Data-Driven Approaches

5.2.1 Introduction

As an alternative to knowledge-based approaches, data-driven approaches are

applied because the grammar can model real data closely (Meng and Siu, 2001).

Many grammar induction approaches are typically corpus-based, data-driven

approaches (Siu and Meng, 1999) (Caskey et al, 2003). The corpus may be

annotated with some domain-dependent semantic tags, or domain-independent

syntactic tags. The grammar induction algorithms will automatically capture

patterns from the data (Meng and Siu, 2001).

Zhou and Ren (1999) classify the statistical grammar-inference into the following

two types: 1) supervised learning method - to directly obtain useful syntactic

statistics from corpus; 2) unsupervised training method – to automatically acquire

syntactic knowledge from raw texts by an iterative algorithm, such as the

commonly-used EM (Expectation-Maximization) algorithm (Dempster et al, 1977).

Vidal et al (1993) and Vidal (1994) introduce an Error Correcting Grammar

Inference (ECGI) algorithm to infer infinite state grammars that are able to

generalize over a set of examples. Wang (1998) presents a statistical word-

based grammar-inference approach by ignoring the language structures. Wang

(1998) claims that this approach can achieve the good performance comparable

to the best commercial systems. Different from the word-based approach of

(Wang, 1998), Arai et al (1998) propose a phrase-based approach to

automatically generate a collection of grammar fragments each representing a

set of syntactically and semantically similar phrases.

Wang and Waibel (1998) adopt a similar approach by using iterative clustering

and sequence building operations to find the common structures in a statistical

spoken language translation system, which achieves over 10% error reduction for

spoken language translation task. Similarly, Pargellis et al (2001) present an

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 294

approach to semi-automatically find language structures from training using

statistical processing techniques.

5.2.2 Bayesian Model Merging Framework

Stolcke and Omohundro (1994a) present a Bayesian model merging framework

to induce probabilistic grammars from corpora of samples. By adding ad-hoc

rules, the samples are incorporated to a working grammar, and elements of the

models (e.g., states or non-terminals) are merged to achieve generalization and

a more compact representation. What to merge and when to stop is governed by

the Bayesian posterior probability of the grammar. The framework is so general

that it can be instantiated for a variety of probabilistic models, such as Hidden

Markov Model (HMM), n-gram, and Stochastic Context-free Grammars (SCFG).

Based on the general “model merging” strategy (Omohundro, 1992), Stolcke and

Omohundro (1994b) describe a technique for inducing the structure of Hidden

Markov Models (HMMs) from data. By directly encoding the training data, a

maximum likelihood HMM is first constructed. Then, more general models are

generated by merging the HMM states using a Bayesian posterior probability

criterion to determine the states to merge and stop generalizing. This procedure

is a heuristic search for the HMM structure with highest posterior probability. With

three evaluating applications, Stolcke and Omohundro (1994b) claim that this

merging procedure is more robust and accurate.

5.2.3 Growing Semantic Grammar (GSG) System

Gavaldà and Waibel (1998), and Gavaldà (2000) propose the Growing Semantic

Grammar (GSG) system, which can aid the end-users who do not have expertise

in language processing to rapidly deploy the Natural Language Understanding

System (NLU) front-ends and dynamically customize the system. With the

collected data, GSG includes the following stages to develop a grammar:

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 295

(1) With a simple editor, GSG designs and analyzes the Domain Model

(DM) by building a hierarchical structure of the relevant concepts in the

domain.

(2) A kernel grammar covering a small subset of the collected data is

semi-automatically constructed.

(3) The grammar is dynamically expanded over the collected data and

beyond in an interactive environment.

(4) The grammar is ready to deploy.

5.2.4 Semi-Automatic Grammar Induction Approach

Siu and Meng (1999) propose a statistical approach for semi-automatic grammar

induction from un-annotated corpora within a restricted domain. The generated

grammar contained both semantic and syntactic structures, which are useful for

language understanding. They adopt an iterative procedure to cluster the words

while constructing a grammar from an un-annotated corpus of sentences in a

restricted domain. Semi-automatic grammar induction means that the generated

grammar can be further hand-revised to improve quality. The authors have

claimed that the algorithm also shows promise in portability across languages.

Experiments with the ATIS (Air Travel Information Service) corpus show positive

results in semantic parsing, when compared to an entirely handcrafted grammar.

Inspired by McCandless and Glass (1993), and with the similar motivation to

Akiba and Itou (2000), Wong and Meng (2001) extend their work described in

(Siu and Meng, 1999). The proposed grammar induction is based on

agglomerative clustering of words in a corpus of un-annotated sentences from

the ATIS domain. Clustering was implemented both spatially and temporally. In

spatial clustering, words or multi-word entries with similar left and right linguistic

contexts are clustered together. In temporal clustering, words or multi-word

entries that co-occur sequentially are clustered together.

Observing that SQL expressions provide information for natural language

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 296

structures, Wong and Meng (2001) use the information in the SQL queries in the

induced grammar. Instead of Mutual Information (MI), Information Gain (IG) is

used to capture phrasal structures, and to determine an automatic stopping

criterion for agglomerative clustering. In addition, this approach can be seeded

with pre-specified semantic categories to expedite the learning process, and

reduce the demand for large training corpora (Wong and Meng, 2001).

In (Wong et al, 2001), the semi-automatic grammar induction approach of (Siu

and Meng, 1999) is extended by investigating the use of Information Gain (IG) in

place of Mutual Information (MI) for grammar induction based on an un-

annotated training corpus. The experiments using the ATIS-3 training corpus

indicate better precision and recall of desired semantic categories at earlier

stages in the grammar induction process while using IG rather than MI. Since

grammar induction is an iterative process, Wong et al. (2001) propose an

approach to automatically terminate the iteration with a stopping criterion. In

(Wong et al, 2001), the coverage of a grammar is measured in terms of the

percentage of words/ terminals in the training corpus that are captured in the

grammar. If the stopping criterion is defined to be the point where the relative

growth in grammar coverage falls below 1%, the grammar induction is terminated

at iteration 100. Experiments using the ATIS-3 test sets show promising results

compared with the handcrafted and semi-automatic grammars from (Siu and

Meng, 1999), based on NLU performance.

Siu and Meng (2001) explore the portability of the semi-automatic grammar

induction approach in (Siu and Meng, 1999) to the Chinese language, based on

a corpus of translated ATIS-3 queries. To assess grammar quality, Siu and Meng

(2001) develop a framework for bi-directional English-Chinese example-based

machine translation, where the English and Chinese grammars were obtained by

running the semi-automatic grammar induction procedure on the English and

Chinese corpora separately. The induced English (/Chinese) grammars are used

to parse the input English (/Chinese) queries, and the parsed concepts are then

used to generate the Chinese (/English) translation. Siu and Meng (2001) adopt

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 297

the translation-by-analogy (also known as Example-Based Machine Translation,

or EBMT) approach, which has the advantage that the translation quality can be

improved with more available training. Instead of handcrafted grammars, semi-

automatically induced grammars reinforce this advantage of EBMT. Experiments

on the ATIS-3 test sets show a high percentage (76% to 91%) of user-accepted

translations.

Meng and Siu (2002) further describe the semi-automatic grammar induction

methodology from un-annotated corpora of information-seeking queries in a

restricted domain. The resultant grammars contain language structures that

tightly couple semantics with syntax, which are conducive to spoken natural

language understanding. Based on the work of (Siu and Meng, 1999) and (Wong

and Meng, 2001), Meng and Siu (2002) adopt agglomerative clustering in the

grammar induction, which includes temporal clustering and spatial clustering. The

induced grammar is amenable to hand-editing for refinement, hence it is semi-

automatic in nature. Also, it is easily portable across different restricted domains,

as well as across languages. While comparing the semi-automatically-induced

grammar with a handcrafted grammar in the experiments using ATIS corpus, the

handcrafted grammar gave concept error rates of 7% and 11.3% in language

understanding, and the semi-automatically induced grammar gave 11% and 12%

respectively on the corresponding two test corpora. However, the hand-crafted

grammar took two months to develop and the semi-automatically-induced

grammar took only three days to produce. These results show a desirable trade-

off between language understanding performance and grammar development

effort.

Siu et al (2003) report three extensions to the bi-directional English-Chinese

Example-Based Machine Translation (EBMT) paradigm (Meng and Siu, 2001) as

follows:

(1) The comparative merits of three distance metrics (i.e., Kullback-Leibler,

Manhattan-Norm, and Gini Index) are investigated for agglomerative

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 298

clustering procedure, which is discussed in (Siu and Meng, 2001) to

generate context-free grammar rules from un-annotated sentences in

grammar induction.

(2) An automatic evaluation method is proposed to generate multiple

translation outputs for a single input utterance based on the BLEU

metric.

(3) Siu et al (2003) present a selection strategy that leverages information

from the example parse trees in the Example-Based Machine

Translation paradigm to improve the performance in Chinese-English

translation.

Ju et al. (2009) invent an approach of generating speech-recognition grammars

from a data set or big list of items. This method firstly uses a processor to

automatically generate a simulated recognition search tree representing items in

a data set. Next the processor generates the speech recognition grammar

automatically using the simulated recognition search tree and stores the speech

recognition grammar for future use in speech recognition.

5.2.5 Genetic Programming (GP)

Genetic programming (GP) is an evolutionary approach that programs computers

by natural selection (Koza, 1992) and (Dupont, 1994). In genetic programming,

populations of computer programs are genetically bred using the Darwinian

principle of survival of the fittest and using a genetic crossover (sexual

recombination) operator appropriate for genetically mating computer programs

(Koza, 1994). Hierarchical automatic function definition enables genetic

programming to define potentially useful functions automatically and dynamically

during a run (Koza, 1994). Genetic programming is a successful technique for

getting computers to automatically solve problems, which has been successfully

used in a wide variety of problems where solutions can be expressed with

modestly short programs (Banzhaf et al, 1998). Dupont (1994) uses a genetic

approach to infer grammars for regular languages and compares it with the RPNI

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 299

(Regular Positive and Negative Inference) algorithm (Oncina and Garcia, 1992)

which can identify any regular language in the size limit of samples.

Mernik et al (2003) propose the grammar-specific genetic operators for crossover

and mutation to grammar induction. Črepinšek et al.(2004) discuss the search

space of CFG induction and propose a Brute Force approach to grammar

induction. Owing to the large search space, the exhaustive (brute-force)

approach can only be applied to small samples. Therefore, Črepinšek and Mernik

(2005) propose a more efficient approach by using genetic-programming with

application to inducing grammars from programs written in simple domain-

specific languages. The authors claim that experiments show that the genetic

approach is comparable to other grammatical inference approaches.

5.2.6 Robust Grammar Authoring Paradigm

Since it is very common that users’ speech does not conform to a rigid CFG, it is

important to build robust grammars for voice systems. Yu et al (2006) propose a

robust grammar authoring paradigm to transfer rigid Context-Free Grammars

(CFGs) into more robust semantic CFGs. This system takes a simple CFG as

input, using n-gram based Filler Models (FMs) to model the garbage words

between slots, and generates a hybrid n-gram/ CFG in W3C SRGS (Speech

Recognition Grammar Specification) format which can run in many standard ASR

(Automatic Speech Recognition) engines.

The authoring paradigm in (Yu et al, 2006) is described as follows: a basic

grammar is constructed with pre-ambles, post-ambles, and slots. Pre-ambles and

post-ambles are fillers modeled with word n-grams, and slots carry semantic

information such as numbers, a list of commands, date, time, currency, and credit

card number, etc. Thus, to build such a grammar, developers only need to

provide a slot grammar (e.g., a name list, cardinal or ordinary number, and date

time, etc) and plug it into the above structure. The slot grammar can be from a

reusable library grammar or created with grammar controls.

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 300

The authors claim that the generated robust CFG does not lose accuracy for test

utterances that are covered by the rigid CFG, also greatly improves the

robustness of the speech applications by covering more cases than the rigid CFG.

Especially, the paradigm is good at rejecting the out-of-grammar (OOG)

utterances and recognizing utterances with pre-ambles or post-ambles. They

also claim that the robust CFG can achieve recognition accuracy close to the

class-based n-gram LM customized for the application, with a few example

sentences for adaptation. In addition, the authors demonstrate that the proposed

paradigm is superior in many aspects to other filler models.

5.2.7 Statistical Language Model Generation

Metz (2008) invents a speech processing solution to automatically tune the

grammar using statistical language model generation. Firstly, one or more

speech recognition grammars are applied to the speech-recognition system for

multiple recognition instances by performing a plurality of speech-to-text

operations. Then, based on the obtained recognition instances, the system

automatically creates a set of words and phrases and automatically weighs the

words and phrases based upon the recorded recognition data. So, a replacement

grammar can be automatically generated from the set of words and phrases. The

replacement grammar is a statistical language model grammar, though the

original speech-recognition grammar can be either a grammar-based language

model grammar or a statistical language model grammar. And the original

speech recognition grammar can be written in various grammar format

specification languages, such as a NUANCE Grammar Specification Language

(GSL), a Speech Recognition Grammar Specification (SRGS) compliant

language and a JAVA Speech Grammar Format (JSGF) compliant language.

A performance analyzer is configured to compare the performance of original

speech recognition grammar with that of the replacement grammar. The decision

of whether to replace the original grammar depends on the test for the speech-

recognition performance. Metz (2008) presents an administrator of the speech-

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 301

recognition system with an option to replace the original speech recognition

grammar.

5.2.8 Method of Using Counter Examples

Zadrozny and Kambhatla (1999) invent a method of taking counter examples to

generate and revise speech-recognition grammars to reduce errors in the overall

system. In this method, an initial grammar is given in Backus-Naur Form (BNF)

notation. The author uses a sentence generator to generate a list of all sentences

that are accepted by the grammar and identify the inappropriate or irrelevant

sentences that are accepted by the grammar (counter-examples) from the list.

With the assistance of the list of counter examples and the original grammar, a

grammar reviser program prunes the list and generates a revised grammar. The

revision process is iterated several times until is deemed satisfactory in that it

accepts only relevant sentences.

5.2.9 Summary

One advantage of the corpus-based grammar induction approaches lies in the

fact that the grammars produced model real data closely. One disadvantage of

such approaches is the requirement of the large amount of data, and the

annotation of the large corpus (which is adopted by some approaches) is time-

consuming and costly. Also, the data-driven approaches suffer from the data

sparseness problem, and are generally very slow (Caskey et al, 2003). In

addition, the quality of the inducted grammars, using the purely bottom-up, data-

driven grammar inference algorithms, cannot be guaranteed (Wang and Acero,

2006).

A summary of the major work on the Data-Driven approaches is in Table 5.2.9.

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 302

Table 5.2.9: summary of Data-Driven Approaches

Date Authors Title of the Paper Major Contribution

1979 Baker, J. Trainable Grammar for Speech

Recognition

Inside-Outside (IO) algorithm to automatically infer

probabilistic context-free grammars (PCFGs)

1992 Pereira, F., Schabes,

Y.

Inside-outside Reestimation from

Partially Bracketed Corpora

Combining structured and stochastic models in grammar

induction

1992

1994
(1) Omohundro, S.

(2) Stolcke and

Omohundro

 (1) Best-first Model Merging for

Dynamic Learning and Recognition

(2) Inducing Probabilistic Grammars

by Bayesian Model Merging

“model merging” strategy to induce the structure of

Hidden Markov Models (HMMs) from data

1993,

1994
(1) Vidal, E.,

Casacuberta, F.,

Garcia, P.

(2) Vidal, E.

(1) Grammatical Inference and

Applications to Automatic Speech

Recognition and Understanding

 (2) Grammatical Inference: An

Introductory Survey

An Error Correcting Grammar Inference (ECGI)

algorithm to infer infinite state grammars that are able to

generalize over a set of examples

1994 Stolcke, A.,

Omohundro, S.M.

 Best-first Model Merging for Hidden

Markov Model Induction

Bayesian model merging framework to induce

probabilistic grammars from corpora of samples

1994 Dupont, P. Regular Grammatical Inference

From Positive and Negative

Samples by Genetic Search: The

Uses a genetic approach to infer grammars for regular

languages and compares it with the RPNI (Regular

Positive and Negative Inference) algorithm (Oncina and

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 303

GIG Method Garcia, 1992)

1998 Wang, Y. –Y Grammar Inference and Statistical

Machine Translation

A statistical word-based grammar-inference approach by

ignoring the language structures

1998 Arai, K., Wright, J.,

Riccardi, G., Gorin, A.

Grammar Fragment Acquisiton

Using Syntactic and Semantic

Clustering

A phrase-based approach to automatically generate a

collection of grammar fragments each representing a set

of syntactically and semantically similar phrases

1998 Wang, Y.-Y., Waibel,

A.

 Modeling with Structures in

Statistical Machine Translation

Use iterative clustering and sequence building operations

to find the common structures in a statistical spoken

language translation system

1998

2000

(1) Gavaldà, M.,

Waibel, A.

(2) Gavaldà, M.

(1) Growing Semantic Grammars

(2) Growing Semantic Grammars

(Ph. D Thesis)

Growing Semantic Grammar (GSG) system to aid the

non-expert end-users to rapidly deploy the Natural

Language Understanding System (NLU) front-ends and

dynamically customize the system

1999 Meng, H., Siu, K.C. Semi-Automatic Acquisition of

Domain-Specific Semantic

Structures

semi-automatic grammar induction from un-annotated

corpora within a restricted domain

1999 Zadrozny, W. and

Kambhatla, N.

Method and Apparatus for Creating

Speech Recognition Grammars

Constrained by Counter Examples.

Invent a method of taking counter examples to generate

and revise speech-recognition grammars to reduce

errors in the overall system.

2000 Chelba, C., Jelinek, F Structured Language Modeling Infer grammars using the methods on the combination of

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 304

structured and stochastic models

2001 Pargellis, A., Fosler-

Lussier, E.,

Potamianos, A., Lee,

C.-H.

 Metrics for Measuring Domain

Independence of Semantic Classes

An approach to semi-automatically find language

structures from training using statistical processing

techniques

2001 Wong, C.-C., Meng, H. Improvements on a Semi-automatic

Grammar Induction Framework.

Grammar induction approach, based on agglomerative

clustering of words in a corpus of un-annotated

sentences from the ATIS domain. Information in the

SQL queries is used in the induced grammar.

2001 Wong, C.C., Meng, H.,

and Siu, K.C.

 Learning Strategies in a Grammar

Induction Framework

Use Information Gain (IG) in place of Mutual Information

(MI) for grammar induction based on an un-annotated

training corpus

2001 Siu, K. C. and Meng,

H.

 Semi-Automatic Grammar Induction

for Bi-directional English-Chinese

Machine Translation

Explore the portability of the semi-automatic grammar

induction approach to the Chinese language, based on a

corpus of translated ATIS-3 queries

2002 Meng, H., Siu, K. C. Semiautomatic Acquisition of

Semantic Structures for

Understanding Domain-Specific

Natural Language Queries.

Agglomerative clustering in the grammar induction.

Resultant grammars contain language structures that

tightly couple semantics with syntax, which are

conducive to spoken natural language understanding.

2003 Siu, K. C., Meng, H., Example-based Bi-directional Three extensions to the bi-directional English-Chinese

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 305

Wong, C. C. Chinese English Machine

Translation with Semi-automatically

Induced Grammars.

Example-Based Machine Translation (EBMT) paradigm

in (Meng and, 2002).

2003 Mernik, M., Gerliĉ, G.,

Zumer, V., Bryant, B.

 Can a parser be generated from

Examples?

Grammar-specific genetic operators for crossover and

mutation to grammar induction.

2006 Yu, D., Ju, Y.-C.,

Wang, Y., Acero A.

 N-Gram Based Filler Model for

Robust Grammar Authoring.

Robust grammar authoring paradigm to transfer rigid

Context-Free Grammars (CFGs) into more robust

semantic CFGs

2008 Metz, B.D. Automatic Grammar Tuning Using

Statistical Language Model

Generation

Automatically tunes the grammar using statistical

language model generation. Presents an administrator

of the speech recognition system with an option to

replace the original speech recognition grammar

2009 Ju, Y., Ollason, D.,

Bhatia, S.

Method and apparatus for automatic

grammar generation from data

entries

Invent an approach of generating speech-recognition

grammars from a data set or big list of items, involving

simulated recognition search tree.

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 306

5.3 The Combining Knowledge-Based and Data-Driven Approaches

While knowledge-based approaches and data-driven approaches both have

advantages and disadvantages in natural language processing, much work

emerges to combine these two approaches attempting to take their advantages

and overcome the disadvantages. Also, the interest of combining the knowledge-

based and data-driven models has recently increased in grammar authoring

research.

Based on bracket matching schemes, Zhou and Ren (1999) propose an

approach for automatically generating Chinese Probabilistic Context-Free

Grammars (PCFGs). They annotate the training texts with constituent boundary

information and use the bracket matching schemes upon boundary predicted

texts to implement the EM (Expectation-Maximization) algorithm (Dempster et al,

1977). Different knowledge resources, such as the automatically generated

grammar, and a set of special rules summarized by linguists or extracted from

tree banks, are integrated to obtain a better initialization for the learning process.

The authors claim that the experimental results show good learning efficiency of

this algorithm and high reliability of the generated grammar. This proposed

method guarantees an automatically generated grammar with a broad-coverage

and a good bootstrapping for the learning process.

Combining a domain-specific semantics, a library grammar, syntactic constraints

and a small amount of example sentences that have been semantically

annotated, Wang and Acero (2001) propose a machine-aided grammar authoring

system. The authors claim that it enables a programmer, without knowing the

linguistics, to rapidly develop a high-quality grammar for conversational systems.

The grammar is generated from the following three inputs: 1) a semantic

schemas defining the domain semantics, 2) a grammar library that contains CFG

rules for domain-independent concepts (e.g., Date and Time) or domain-specific

semantic terminals (e.g., city names and airlines), and 3) semantically annotated

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 307

training data. Wang and Acero (2001) inherit semantic constraints from schema,

use annotation to reduce the search space, and use syntactic clues to align the

remaining words of the sentence.

Wang and Acero (2001) ascribe the consistently better understanding accuracies

with much less authoring effort than the manually authored grammar to the

following three reasons: 1) data driven learning, 2) the template grammar, and 3)

the use of multiple information source. The authors claim that the grammar

authoring tool greatly eases semantic grammar development by integrating

different information sources and learning from annotated examples to induct

CFG rules.

To study the general applicability of the algorithm as well as to provide the

research community with more informative results, Wang and Acero (2002) have

applied the algorithm in (Wang and Acero, 2001) to the well studied Airline Travel

Information System (ATIS) task (Dahl et al., 1994) and compare the performance

of the learned grammar with one of the best performers in ATIS evaluations. The

results show that the semi-automatically learned grammar achieves comparable

performance to the manually authored grammar. In addition, the smaller size and

the common paradigm of the learned grammar may make the system work faster

and be easier to maintain.

While the example-based grammar authoring tool (Wang and Acero, 2001) has

some basic learning capabilities, they often require users’ intervention to solve

the ambiguities to induct grammar rules, which is very intrusive and greatly slows

down the grammar development. Wang and Acero (2003a) present an

Expectation-Maximization (EM) algorithm (Dempster et al., 1977) to automatically

resolve the segmentation ambiguities. Their preliminary experiment results show

that this algorithm not only eliminates the human involvement in ambiguity

resolution, but also improves the overall spoken language understanding

accuracy.

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 308

Although the grammar authoring tool of (Wang and Acero, 2001) can significantly

reduce the effort in grammar development with promising understanding

accuracy across different domains, it has the following limitations (Wang and

Acero, 2003b):

 It only works well for slot-rich high resolution understanding tasks.

 The generated grammars only work well with robust understanding

technology.

With these concerns, Wang and Acero (2003b) propose a composite model of

HMM and CFG, a modification to the model in (Wang and Acero, 2001), by

combining semantic CFG and n-gram statistical model. The HMM models the

template rules and the n-gram pre-terminals; the CFG models the library

grammar. This combined CFG/n-gram model overcomes the robustness and the

scalability problem existing in the semantic grammar model described in (Wang

and Acero, 2001). The authors claim that the preliminary results show the 32%

error reduction in high resolution understanding of the new model.

To further tackle the problem when little data is available at initial states of data-

driven grammar-learning system development, Wang and Acero (2005, 2006)

present SGStudio, which significantly reduces the requirement for large amount

of training data. SGStudio is an example-based grammar authoring tool. The

authors claim that it enables software developers with little speech/linguistic

background to rapidly create quality semantic grammars for speech-driven

applications. SGStudio includes the following components: the knowledge-

assisted example-based grammar learning, grammar control, and configurable

grammar structure. SGStudio adopts the HMM/ CFG composite model which

integrates the domain knowledge in the data-driven grammar learning framework.

The HMM/ CFG composite model uses CFGs as the lexicalization models for slot

fillers, which generally model a specific concept. The concept can be domain-

independent, like date and time, or domain-dependent, such as insurance policy

number and auto part numbers. Grammar controls and the control operations

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 309

provide the tools to generate various grammars for the concepts that can be used

in a system-initiated dialog or as the filler of a slot in a mixed-initiative system.

The combination of the knowledge-based and data-driven approaches achieves

the balance between robustness and accuracy better than or comparable to the

best manually developed grammars.

A summary of the major work on the approaches of combining Knowledge-Based

and Data-Driven is listed in Table 5.3.

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 310

Table 5.3: summary of the Combining Knowledge-Based and Data-Driven Approaches

Date Authors Title of the Paper Major Contribution

1999 Zhou, Q., Ren, F. Automatic Inference for Chinese

Probabilistic Context-Free

Grammar

An approach for automatically generating Chinese

Probabilistic Context-Free Grammars (PCFGs)

2001 Wang, Y.-Y.,

Acero, A.

Grammar Learning for Spoken

Language Understanding.

A machine-aided grammar authoring system, to rapidly

develop a high quality grammar for conversational systems,

by combining a domain-specific semantics, a library grammar,

syntactic constraints and a small amount of example

sentences that have been semantically annotated

2002 Wang, Y.-Y.,

Acero, A.

Evaluation of Spoken Language

Grammar Learning in the ATIS

Domain

Apply the algorithm in (Wang and Acero, 2001) to the well

studied Airline Travel Information System (ATIS) task and

compare the performance of the learned grammar with one of

the best performers in ATIS evaluations

2003 Wang, Y.-Y.,

Acero, A.

Concept Acquisition in Example-

Based Grammar Authoring

An Expectation-Maximization (EM) algorithm (Dempster et al.,

1977) to automatically resolve the segmentation ambiguities

2003 Wang, Y.-Y.,

Acero, A.

Combination of CFG and N-gram

Modeling in Semantic Grammar

Learning

A composite model of HMM and CFG, a modification to the

model in (Wang and Acero, 2001), by combining semantic

CFG and n-gram statistical model

2005 Wang, Y.-Y., (1) SGStudio: Rapid Semantic SGStudio significantly reduces the requirement for large

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 311

2006 Acero, A. Grammar Development for Spoken

Language Understanding.

(2) Rapid Development of Speech

Recognition Grammars

amount of training data

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 312

6. AUTOMATIC SPEECH APPLICATION GENERATION

A spoken dialogue system consists of the following components: a speech

recognition component, a language understanding component, a dialogue

management component, a component for communication with an external

system, a response generation component, and a speech output component

(McTear, 2002), (Han, 2000), and (Glass, 1999). These components work in a

sequential stream, in which the first component receives the user’s input, the

output from that component feeds into the next component as the input, and so

forth, until the consequent voice output is synthesized for the user. It is a great

challenge to build each component of the spoken-dialogue system. To facilitate

the creation of speech-enabled systems, research work to automatically generate

the various components has been carried out.

Pargellis et al (1999a) present an Automatic Dialogue Generator (ADG), which is

a software engine with associated library files to simplify the generation of new

voice applications. Given any task description in tables, the ADG can

automatically generate a finite-state dialogue for that task in a uniform and

consistent fashion. The advantages of using an ADG to generate dialogues

include:

(1) prompts and grammars are generated in a consistent manner,

(2) prompts and grammars are generated dynamically, and

(3) user-specified applications can be quickly generated.

Given the advantages of the Automatic Dialogue Generator (ADG) (Pargellis et al,

1999a), Pargellis et al (1999b) propose the Application Generator (AG), a system

that automatically creates, and then manages, user-customized speech-enabled

applications. The AG consists of four modular components: the Automatic

Dialogue Generator (ADG), the Profile Manager (PM), the Information and

Services Manager (ISM), and the Dialogue Manager (DM):

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 313

(1) The Profile Manager (PM) uses a Q&A session to obtain knowledge about

the user’s preferences, and stored this in a user profile.

(2) The Information and Services Manager (ISM) accesses the available

databases and services, including distributed sources such as the World

Wide Web or corporate file systems.

(3) The Automatic Dialogue Generator (ADG) combines these data with the

profile and builds a speech interface by generating a series of dialogue

states, with associated grammars and system prompts.

(4) Finally, the Dialogue Manager (DM) interfaces between the user and the

dialogue specification are generated by the ADG.

AG is a platform that automatically generates a dialogue model by matching a

user’s expectations with the system’s capability and available resources

(Pargellis et al, 1999b). One advantage of AG is that it enables each user to

define his/her own dialogue session. Therefore, dialogue interactions are more

accurate, faster, and rewarding.

To facilitate the creation of mixed-initiative spoken-dialogue systems for both

novice and experienced developers, Glass (2001), Glass and Weinstein (2001b)

present SPEECH-BUILDER, a suite of tools, which employs intuitive methods of

specification to allow developers to specify domain-dependent linguistic

information and create spoken dialogue interfaces. Using SPEECH-BUILDER,

instead of defining the language grammars, developers specifies the basic

semantic concepts (keys) and provides examples of user utterances to trigger

different system behaviors (actions). Based on the inputs, the system

automatically configures the speech recognition, language understanding,

language generation, and discourse components. Also, a hierarchical grammar

can be generated if the developer uses bracketing to label portions of the

example sentences as being subject to a particular structure.

Several spoken-dialogue systems in different domains have been created using

SPEECH-BUILDER, such as a directory of the people working at the MIT

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 314

Laboratory for Computer Science, an application to control the various physical

items in a typical office environment, and a system for real-time weather

information access. Since November 2000, SPEECH-BUILDER has been

accessible from within MIT and limited other locations for beta-testing.

Motivated by a desire to minimize the need for a pre-determined dialogue flow,

Polifroni et al (2003) propose an approach that automatically builds a mixed-

initiative dialogue system from online knowledge resource. In this approach,

decisions on dialogue flow are made dynamically based on analyses of data,

either prior to user interaction or during the dialogue itself. Polifroni et al (2003)

also introduce a simulation server to examine the operation of the overall

dialogue system, particularly the interaction between the dialogue flow and the

response generation outputs. Overall, these techniques aim towards the goal of

creating new domains automatically with little or no human input. Furthermore,

automatic methods are more adaptable and robust against frequent online

changes (Polifroni et al, 2003).

Glass et al (2004) further discuss the framework in (Glass, 2001), and (Glass and

Weinstein, 2001), SPEECH-BUILDER, which facilitates the creation of mixed-

initiative conversational interfaces for novice and expert developers of human

language technology. SPEECH-BUILDER has a web-based interface, where

developers can specify the information about the interactions between a human

and a spoken dialogue system. SPEECH-BUILDER uses XML to store

information that is human-readable. With the configuration, the developer can

use a web-interface to compile it. Using the specified information and example

sentences provided by the developer, this compilation process takes usually one

or two minutes. After the compilation, the developer can examine the resulting

grammar, deploy the system, talk to it and subsequently iteratively refine aspects

of the understanding, generation, dialogue, etc.

A summary of the major work on automatic speech application generation is

listed in Table 6.

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammars
`

 315

Table 6: summary of automatic speech application generation

Date Authors Title of the Paper Major Contribution

1999 Pargellis, A., Kuo,

H., Lee, C.

Automatic Dialogue Generator

Creates User Defined Applications

Automatic Dialogue Generator (ADG), a software engine with

associated library files to simplify the generation of new voice

applications

1999 Pargellis, A., Kuo,

H., Lee, C.

Automatic Application Generator

Matches User Expectations to

System Capabilities

Application Generator (AG), a system that automatically

creates, and then manages, user-customized speech-enabled

applications

2001 (1) Glass, J.,

Weinstein, E.

(2) Glass, J.

(1) SPEECH-BUILDER: Facilitating

Spoken Dialogue System

Development

(2) SPEECH-BUILDER: Facilitating

Spoken Dialogue System

Development, (MIT M.Eng. Thesis)

SPEECH-BUILDER, a suite of tools, employs intuitive

methods of specification to allow developers to specify

domain-dependent linguistic information and create spoken

dialogue interfaces

2003 Polifroni, J., Chung,

G., Seneff, S.

Towards Automatic Generation of

Mixed-Initiative Dialogue Systems

from Web Content

An approach automatically builds a mixed-initiative dialogue

system from online knowledge resource

2004 Glass, J., Weinstein,

E., Cyphers, S.,

Polifroni, J., Chung,

G., Nakano, N.

A Framework for Developing

Conversational User Interfaces

Further improve the framework in (Glass, 2001), and (Glass

and Weinstein, 2001), SPEECH-BUILDER, to facilitate the

creation of mixed-initiative conversational interfaces for

novice and expert developers of human language technology

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammar

 316

7. CONCLUSION

Over the past three decades, much work on speech recognition technology has

been carried out, and a large number of spoken-dialogue systems have been

developed. However, speech-enabled systems have not become the mainstream

yet in the real world. Among the existing barriers, writing a domain-specific

grammar, which is time-consuming, error-prone, and requires intensive language

expertise, forms a major bottleneck in the development of spoken-language

systems (Wang and Acero, 2001, 2005, 2006), (Meng and Siu, 2001), (Wang and

Acero, 2003a), (Bangalore and Johnston, 2003), and (Wang and Acero, 2006).

While conducting this survey, we have noticed that there is not much work on

automatic grammar authoring, language learning/ grammar induction/ grammar

inference or the tools for automatic or semi-automatic adaptation/ learning/

system tuning. The issue of automatic grammar generation attracted the attention

of researchers as early as 1975 (Fu and Booth, 1975a, 1975b), however most of

the wok focused on toy problems (Carrasco and Oncina, 1994), (Miclet and

Higuera, 1996), and (Honavar and Slutzki, 1998). Gavaldà (2000) develops tools

to let an end user refine an existing grammar, but it requires the developer a

good knowledge of language structures. Recently, Glass (2001), Glass and

Weinstein (2001), and Glass et al (2004) have presented tools (i.e., SPEECH-

BUILDER) for rapid development of mixed-initiative systems, but they did not

address the problem of grammar authoring.

In summary, the methodology in automatic speech-recognition-grammar

generation is classified into the following three types: 1) knowledge-based

approaches, 2) data-driven approaches, and 3) combining knowledge-based and

data-driven approaches. 6 refereed scientific papers use knowledge-based

paradigm, around 30 scientific papers use data-driven approaches, and around

10 scientific papers combine knowledge-based and data-driven approaches. Also,

we have found 6 refereed scientific papers discussing the tools for automatic

Appendix B: A Survey – Automatic Generation of Speech-Recognition Grammar

 317

speech application generation, and 5 scientific papers talking about dynamic

grammars.

Also, we have observed some research groups working actively in automatic

generation of speech-recognition grammars and speech applications with

continuing work, such as Meng, Siu, and Wong, at the Chinese University of

Hong Kong (http://www.cuhk.edu.hk/v6/en/), using statistical approaches, Wang

and Acero, at Speech Technology Group of Microsoft

(http://research.microsoft.com/research/srg/), using combined knowledge-based

and data-driven approaches, Glass, and Weinstein, at Spoken Language

Systems Group MIT Laboratory for Computer Science

(http://www.sls.lcs.mit.edu), working on the tools (i.e., SPEECH-BUILDER) for

rapid development of mixed-initiative systems.

Appendix C: Grammar – Read A Book

 318

APPENDIX C: GRAMMAR – READ A BOOK

/* read_a_book.gram */
grammar read_a_book;

public <s> = <command>;

<command> = <read_command> <place> [(to | until) <place>]
 | <question>
 | <greeting>
 | <help>;

<read_command> = [please] (read from
 | start reading from
 | go to);

<place> = the beginning
 | <order_number> (page |chapter)
 | page <number>
 | chapter <under_hundred>
 | <word>;

/* order number is used limited to tenth */
<order_number> = first
 | second
 | third
 | fourth
 | fifth
 | sixth
 | seventh
 | eighth
 | ninth
 | tenth;

<number> = <under_hundred>
 | <hundreds>
 | <thousands>;

<under_hundred> = <digit>
 | <teens>
 | <tens> [<digit>];

<hundreds> = <digit> hundred [<under_hundred>];

<thousands> = <digit> thousand [<hundreds>];

Appendix C: Grammar – Read A Book

 319

<digit> = one
 | two
 | three
 | four
 | five
 | six
 | seven
 | eight
 | nine;

<teens> = ten
 | eleven
 | twelve
 | thirteen
 | fourteen
 | fifteen
 | sixteen
 | seventeen
 | eighteen
 | nineteen;

<tens> = twenty
 | thirty
 | forty
 | fifty
 | sixty
 | seventy
 | eighty
 | ninety;

<question> = what is the book title
 | who wrote the book;

<greeting> = hello
 | hello there
 | hi, how are you
 | goodbye
 | bye-bye;

<help> = help
 | help please
 | please help
 | I need help
 | give me a help;

/* <word> will include all the words from the story
distinctly (without duplicate) */

Appendix C: Grammar – Read A Book

 320

<word>= king| queen| said| day| had| child| one| happened|

bathing| frog| crept| water| land| wish| fulfilled|
year| gone| have| daughter| came| contain| joy|
ordered| feast| invited| kindred| friends|
acquaintances| women| thirteen| kingdom| twelve|
plates| eat| left| home| held| manner| splendor|
end| bestowed| gifts| baby| gave| virtue| beauty|
riches| world| eleven| made| promises| thirteenth|
wished| avenge| greeting| looking| cried| voice|
fifteenth| prick| spindle| fall| dead| saying|
word| turned| room| shocked| twelfth| remained|
unspoken| undo| sentence| soften| death| sleep|
hundred| years| princess| fain| keep| misfortune|
orders| burnt| saw| love| maiden| palace| went|
sorts| places| looked| rooms| bed-chambers| liked|
tower| climbed| winding-staircase| reached| door|
key| lock| sprang| sat| woman| spinning| flax|
mother| doing| nodded| head| rattles| took| wanted|
spin| touched| decree| pricked| finger| moment|
felt| fell| bed| stood| lay| extended| come|
entered| hall| began| go| court| horses| stable|
dogs| yard| pigeons| roof| flies| wall| fire|
flaming| hearth| became| meat| frizzling| cook|
going| pull| hair| boy| forgotten| let| wind|
trees| castle| leaf| moved| grow| hedge| thorns|
grew| seen| flag| story| briar-rose| named|
country| time| sons| tried| get| found| hands|
youths| caught| died| heard| man| thorn-hedge|
stand| grandfather| kings| youth| see| dissuade|
listen| words| passed| awake| son| parted| accord|
pass| closed| hounds| lying| wings| house| kitchen|
holding| hand| seize| maid| hen| pluck| throne|
breath| opened| sleeping| turn| eyes| stooped|
kiss| kissed| awoke| astonishment| shook| jumped|
wagged| tails| pulled| heads| flew| flickered|
cooked| joint| sizzle| box| ear| screamed|
plucking| fowl| marriage| celebrated| lived|
contented| days;

Appendix D: Grammar – Read A Book (5-Word Sequence)

 321

APPENDIX D: GRAMMAR – READ A BOOK (5-word sequence)

/* read_a_book_5_word_sequence.gram */

grammar read_a_book_5_word_sequence;

public <s> = <word> <word> <word> <word> <word> ;

<word>= king| queen| said| day| had| child| one| happened|

bathing| frog| crept| water| land| wish| fulfilled|
year| gone| have| daughter| came| contain| joy|
ordered| feast| invited| kindred| friends|
acquaintances| women| thirteen| kingdom| twelve|
plates| eat| left| home| held| manner| splendor|
end| bestowed| gifts| baby| gave| virtue| beauty|
riches| world| eleven| made| promises| thirteenth|
wished| avenge| greeting| looking| cried| voice|
fifteenth| prick| spindle| fall| dead| saying|
word| turned| room| shocked| twelfth| remained|
unspoken| undo| sentence| soften| death| sleep|
hundred| years| princess| fain| keep| misfortune|
orders| burnt| saw| love| maiden| palace| went|
sorts| places| looked| rooms| bed-chambers| liked|
tower| climbed| winding-staircase| reached| door|
key| lock| sprang| sat| woman| spinning| flax|
mother| doing| nodded| head| rattles| took| wanted|
spin| touched| decree| pricked| finger| moment|
felt| fell| bed| stood| lay| extended| come|
entered| hall| began| go| court| horses| stable|
dogs| yard| pigeons| roof| flies| wall| fire|
flaming| hearth| became| meat| frizzling| cook|
going| pull| hair| boy| forgotten| let| wind|
trees| castle| leaf| moved| grow| hedge| thorns|
grew| seen| flag| story| briar-rose| named|
country| time| sons| tried| get| found| hands|
youths| caught| died| heard| man| thorn-hedge|
stand| grandfather| kings| youth| see| dissuade|
listen| words| passed| awake| son| parted| accord|
pass| closed| hounds| lying| wings| house| kitchen|
holding| hand| seize| maid| hen| pluck| throne|
breath| opened| sleeping| turn| eyes| stooped|
kiss| kissed| awoke| astonishment| shook| jumped|
wagged| tails| pulled| heads| flew| flickered|
cooked| joint| sizzle| box| ear| screamed|

Appendix D: Grammar – Read A Book (5-Word Sequence)

 322

plucking| fowl| marriage| celebrated| lived|
contented| days;

Appendix E: Grammar – Word sequence (Solar System)

 323

APPENDIX E: GRAMMAR – WORD SEQENCE (SOLAR SYSETM)

/* 10-word word-sequence grammar
 Allows 1 to 10 words sequence
*/

grammar wordSequence_solar;

public <s> = <word>
 | <word> <word>
 | <word> <word> <word>
 | <word> <word> <word> <word>
 | <word> <word><word> <word><word>
 | <word> <word><word> <word><word> <word>
 | <word> <word><word> <word><word> <word><word>
 | <word> <word><word> <word><word> <word><word>
 <word>
 | <word> <word><word> <word><word> <word><word>
 <word> <word>
 | <word> <word><word> <word><word> <word><word>
 <word> <word> <word>
 | <simple>;

<word> = <intransvb>
 | <transvb>
 | <cnoun>
 | <pnoun>
 | <det>
 | <adj>
 | <linkingvb>
 | <quest>
 | <other>;

<intransvb>
 = spin | spins | spun | exist | exists | existed;

<transvb>
 = orbit | orbits | orbited | discover | discovers
 | discovered | find | finds | found;

<cnoun>
 = people | planet | moon;

<pnoun>
 = bernard | bond | cassini | dollfus | fountain
 | galileo | hall | herschel | huygens | kowal

Appendix E: Grammar – Word sequence (Solar System)

 324

 | kuiper | arsen | lassell | melotte | nicholson
 | perrine | pickering | earth | jupiter | mars
 | mercury | neptune | pluto | saturn | uranus
 | venus | almathea | ariel |callisto | charon
 | deimos | dione | enceladus | europa | ganymede
 | hyperion | iapetus | io | janus | jupitereighth
 | jupitereleventh | jupiterfourteenth | jupiterninth
 | jupiterseventh | jupitersixth | jupitertenth
 | jupiterthirteenth | jupitertwelfth | luna | mimas
 | miranda | nereid | oberon | phobos | phoebe | rhea
 | saturnfirst | tethys | titan | titania | triton
 | umbriel;

<det> = a | an | every | one | two | three | four;

<adj> = red | atmospheric;

<linkingvb>
 = is | was | are | were;

<quest>
 = did | do | does;

<simple>
 = hello | hi, there | how are you | good, thanks
 | fine, thanks | have a good day | goodbye | bye-bye ;

<other> = and | or | by;

Appendix F: Example Database Connections

 325

APPENDIX F: EXAMPLE DATABASE CONNECTIONS

The following is the source code in Java programming language for example

database connections.

/* connection to Access Database */

public static Connection getAccessConnection() throws

Exception {

 String url = "jdbc:odbc:solar_system";

 String username = "Administrator";

 String password = "123";

 //Class.forName(driver);

 DriverManager.registerDriver (new

sun.jdbc.odbc.JdbcOdbcDriver());

 Connection conn = DriverManager.getConnection(url,

username, password);

 return conn;

 }

/* connection to Oracle Database */

 public static Connection getOracleConnection() throws

Exception {

 String driver = "oracle.jdbc.driver.OracleDriver";

 String url =

"jdbc:oracle:thin:@localhost:1521:solar_system";

 String username = "mp";

 String password = "mp2";

 Class.forName(driver); // load Oracle driver

Appendix F: Example Database Connections

 326

 Connection conn = DriverManager.getConnection(url,

username, password);

 return conn;

 }

/* connection to MySQL Database */

 public static Connection getMySqlConnection() throws

Exception {

 String driver = "org.gjt.mm.mysql.Driver";

 String url = "jdbc:mysql://localhost/solar_system";

 String username = "oost";

 String password = "oost";

 Class.forName(driver);

 Connection conn = DriverManager.getConnection(url,

username, password);

 return conn;

 }

Appendix G: Automatically Generated CFG Grammar for the Solar System

 327

APPENDIX G: AUTOMATICALLY GENERATED CFG GRAMMAR

FOR THE SOLAR SYSTEM

/* CFG_new.jsgf */

grammar CFG_new ;

public <s> = <linkingvb> <termph> [<transvb> by] <termph>

 | <linkingvb> <termph> <termph>

 | <quest> <sent>

 | (who |what) <verbph>

 | (which | how many) <nouncla><verbph>

 | <greetings>;

<sent> = <termph> <verbph>;

<termph> = <stermph>

 | <stermph> (and | or) <stermph>;

<stermph> = <pnoun> | <detph>;

<verbph> = <transvbph> | <intransvb>;

<transvbph> = (<transvb> | <linkingvb> <transvb> by)

<termph>;

<detph>= <det> <nouncla>;

<nouncla> = <adj> <cnoun> | <cnoun>;

<pnoun> = bernard | bond | cassini | dollfus | fountain |

galileo | hall | herschel | huygens | kowal |

kuiper | larsen | lassell | melotte | nicholson |

perrine | pickering | earth | jupiter | mars |

mercury | neptune | pluto | saturn | uranus |

venus | almathea | ariel |callisto | charon |

deimos | dione | enceladus | europa | ganymede |

hyperion | iapetus | io | janus | jupitereighth |

jupitereleventh | jupiterfourteenth | jupiterninth

| jupiterseventh | jupitersixth | jupitertenth |

jupiterthirteenth | jupitertwelfth | luna | mimas

Appendix G: Automatically Generated CFG Grammar for the Solar System

 328

|miranda | nereid | oberon | phobos | phoebe |

rhea | saturnfirst | tethys | titan | titania |

triton | umbriel ;

<cnoun> = people | planet | moon;

<transvb> = orbit | orbits | orbited | discover | discovers

| discovered | find | finds | found;

<intransvb> = spin | spins | spun | exist | exists | existed;

<det> = a | an | every | one | two | three | four ;

<adj> = red | blue ;

<linkingvb> = is | was | are | were ;

<quest> = did | do | does ;

<greetings> = hello | hi there | how are you | fine, thanks

| goodbye | bye- bye ;

Appendix H: Automatically Generated SCG Grammar for the Solar System

 329

APPENDIX H: AUTOMATICALLY GENERATED SCG GRAMMAR

FOR THE SOLAR SYSTEM

/* SCG_new.jsgf */

/* Assuming we have n semantic types, we use type_k (1<=k<=n)

to denote each semantic type.

Also, in the SCG grammar template, we just use type_i to

list all the semantic types type_1, type_2, ..., type_n.

meanwhile, we use type_k to specify some specific type */

grammar scg_new ;

public <s> = <linkingvb> <termph_verbph>

 | <quest> <sent>

 | is <pnoun> <pnoun>

 | is <pnoun> (a|an) <nouncla>

 | is <pnoun> (a|an) <nouncla> or (a|an) <nouncla>

 | (who) <verbph_type_1>

 | (what) <verbph_type_2>

 | (what) <verbph_type_3>

 | (which) <nouncla_verbph_type_1>

 | (which) <nouncla_verbph_type_2>

 | (which) <nouncla_verbph_type_3>

 | (how many) <nouncla_verbph_type_1>

 | (how many) <nouncla_verbph_type_2>

 | (how many) <nouncla_verbph_type_3>

 | <greetings>;

<termph_verbph> =

 <termph_type_2> <transvb_type_1> by

<termph_type_1>

Appendix H: Automatically Generated SCG Grammar for the Solar System

 330

 | <termph_type_3> <transvb_type_1> by

<termph_type_1>

 |<termph_type_2> <transvb_type_3> by

<termph_type_3>;

<sent> =

 <termph_type_1> <verbph_type_1>

 | <termph_type_2> <verbph_type_2>

 | <termph_type_3> <verbph_type_3>;

<termph_type_1> = <stermph_type_1> | <stermph_type_1>

(and|or) <stermph_type_1>;

<termph_type_2> = <stermph_type_2> | <stermph_type_2>

(and|or) <stermph_type_2>;

<termph_type_3> = <stermph_type_3> | <stermph_type_3>

(and|or) <stermph_type_3>;

<stermph_type_1> = <pnoun_type_1> | <detph_type_1>;

<stermph_type_2> = <pnoun_type_2> | <detph_type_2>;

<stermph_type_3> = <pnoun_type_3> | <detph_type_3>;

<detph_type_1> = <det> <nouncla_type_1>;

<detph_type_2> = <det> <nouncla_type_2>;

<detph_type_3> = <det> <nouncla_type_3>;

<nouncla> =

 <nouncla_type_1>

 | <nouncla_type_2>

 | <nouncla_type_3>;

<nouncla_type_1> = <cnoun_type_1> ;

<nouncla_type_2> = <cnoun_type_2>

 | <adj_type_2> <cnoun_type_2>;

<nouncla_type_3> = <cnoun_type_3>

 | <adj_type_3> <cnoun_type_3>;

<verbph_type_1> = <transvb_type_1>

 (<termph_type_2> | < termph_type_3>);

<verbph_type_2> = <intransvb_type_2>;

Appendix H: Automatically Generated SCG Grammar for the Solar System

 331

<verbph_type_3> = <transvb_type_3> <termph_type_2>

 | <intransvb_type_3>;

<nouncla_verbph_type_1> =

 <nouncla_type_1> <verbph_type_1>

 | <nouncla_type_2> <verbph_passive_type_1>

 | <nouncla_type_3> <verbph_passive_type_1>;

<nouncla_verbph_type_2> = <nouncla_type_2> <verbph_type_2>;

<nouncla_verbph_type_3> =

 <nouncla_type_3> <verbph_type_3>

 | <nouncla_type_2> <verbph_passive_type_3>;

<verbph_passive_type_1> =

 <linkingvb> <transvb_type_1> [by

<termph_type_1>];

<verbph_passive_type_3> =

 <linkingvb> <transvb_type_3> [by

<termph_type_3>];

<pnoun> = <pnoun_type_1>

 | <pnoun_type_2>

 | <pnoun_type_3> ;

<pnoun_type_1> = bernard | bond | cassini | dollfus |

fountain | galileo | hall | herschel | huygens |

kowal | kuiper | larsen | lassell | melotte |

nicholson | perrine | pickering ;

<cnoun_type_1> = people;

<transvb_type_1> = discover | discovered | discovers | find

| finds | found;

<pnoun_type_2> = earth | jupiter | mars | mercury | neptune

| pluto | saturn | uranus | venus ;

<cnoun_type_2> = planet;

<intransvb_type_2> = spin | spins | spun | exist | existed |

exists;

<adj_type_2> = red | blue;

Appendix H: Automatically Generated SCG Grammar for the Solar System

 332

<pnoun_type_3> = almathea | ariel |callisto | charon |

deimos | dione | enceladus | europa | ganymede |

hyperion | iapetus | io | janus | jupitereighth |

jupitereleventh | jupiterfourteenth | jupiterninth

 | jupiterseventh | jupitersixth | jupitertenth

|jupiterthirteenth | jupitertwelfth | luna |

mimas| miranda | nereid | oberon | phobos |

phoebe | rhea | saturnfirst | tethys | titan |

titania | triton | umbriel ;

<cnoun_type_3> = moon;

<transvb_type_3> = orbit | orbits | orbited;

<intransvb_type_3> = spin | spins | spun | exist | existed |

exists;

<adj_type_3> = red | blue;

<det> = a | an | one | two | three | four | the;

<linkingvb> = is | was | are | were ;

<quest> = did | do | does ;

<greetings> = hello | hi, there | how are you | good, thanks

| fine, thanks | have a good day | goodbye | bye-

bye ;

Appendix I: The XML File for Speech Application Read-A-Book

 333

APPENDIX I: THE XML FILE FOR SPEECH APPLICATION
Read-A-Book

The URL for the XML files of the speech application Read-A-Book is at:

http://cs.uwindsor.ca/~speechweb/p_d_speechweb/read_a_book/read_a_book.x

ml .

Note that this file can only be downloaded using a browser that can execute X+V

files.

The source code of the XML file for speech application Read-A-Book is as

follows:

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//VoiceXML Forum//DTD XHTML+Voice

1.2//EN"

"http://www.voicexml.org/specs/multimodal/x+v/12/dtd/xhtml+voice1

2.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:vxml="http://www.w3.org/2001/vxml"

 xmlns:ev="http://www.w3.org/2001/xml-events"

 xmlns:xv="http://www.voicexml.org/2002/xhtml+voice"

 xml:lang="en-US">

<!--

Date: March. 2006

Developer: Ma, Xiaoli(William)

Architecture: LRRP (Dr.Frost, University of Windsor, Canada)

********************-->

Appendix I: The XML File for Speech Application Read-A-Book

 334

<head>

<!-- Please modify the value of variable sv_greeting, and cgiLink

to fit your application. -->

<script type="text/javascript">

/** The greeting message that will say to the user, only at the

first time the user visits this page. **/

var sv_greeting ="hello, I can read a book to you.";

/** The link to your CGI interpreter location.

Notice, you have to place the CGI interpreter program with this

page in the same domain to prevent a cross-domain security

error.**/

var

cgiLink="http://cs.uwindsor.ca/~speechweb/p_d_speechweb/read_a_bo

ok/read_a_book.cgi";

</script>

<!-- VoiceXML form. -->

<vxml:form id="vxml_form">

<vxml:field name="st_field" xv:id="voice_input" modal="true">

 <!-- NOTICE!!! PLEASE MODIFY THE VALUE OF 'src' ATTRIBUTE IN

THE NEXT LINE <grammar> ELEMENT TO YOUR GRAMMAR FILE LOCATION.-->

 <vxml:grammar type="application/x-jsgf"

src="http://cs.uwindsor.ca/~speechweb/p_d_speechweb/read_a_book/r

ead_a_book.jsgf" />

 <!-- The following greeting will only speak out when user

connects to a new interpreter. -->

 <vxml:prompt cond="sayGreetings==true"><vxml:break

time="500ms"/><vxml:value expr="sv_greeting"/>

 <vxml:value expr="updateShowFrame('GREETING:

'+sv_greeting);"/></vxml:prompt>

 <vxml:filled>

 <!--***********************************

Appendix I: The XML File for Speech Application Read-A-Book

 335

 This "filled" element will be run after user speech input has

recognized.

 Inside this element, first step, i have assign the user input

to the variable 'question',

 because VoiceXML code can access a JavaScript defined variable,

but JavaScript can not see a VoiceXML defined variable.

 Then, in the next step, i call a JavaScript function

"runCode()' to proceed AJAX submit process.

************************************-->

 <vxml:assign name="question" expr="st_field"/>

 <!--*********************

 Calls to javascript mainControl() function to do the

logical process based on user voice input.

 *************************-->

 <vxml:assign name="javacode" expr="mainControl();"/>

 <vxml:prompt><vxml:break time="300ms"/><vxml:value

expr="answer"/></vxml:prompt>

<!-- If the answer is not a link to next interpreter, then repeat

the voice dialog. -->

 <vxml:if cond="isLink==false">

 <vxml:throw event="repeat.st_field"/>

 </vxml:if>

 </vxml:filled>

 <vxml:catch event="nomatch noinput">

 <vxml:prompt>Sorry, I don't understand, can you say it

again?</vxml:prompt>

 <vxml:reprompt/>

 </vxml:catch>

 <vxml:catch event="help">

 No help is available! Restart the dialog!

 <vxml:clear namelist="st_field"/>

 <vxml:reprompt/>

 </vxml:catch>

</vxml:field>

Appendix I: The XML File for Speech Application Read-A-Book

 336

<!-- Catch the 'repeat.st_field' event. -->

<vxml:catch event="repeat.st_field">

 <vxml:clear namelist="st_field"/>

<!-- Restart the voice form without change the speech grammar. --

>

 <vxml:reprompt/>

</vxml:catch>

</vxml:form>

<script type="text/javascript">

/******* Declare global variables shared by JavaScript and

VoiceXML *********/

var sayGreetings=true;

var defaultGreetingMsg="Hi, i'm ready to talk now.";

/*** The location of next remote speech-application/CGI-

application interpeter. ***/

var nextPage="";

/*** Question query recognized from user's speech (request). ***/

var question="";

/*** Answer query returned from remote CGI interpter (response).

***/

var answer="";

var answerRecieved=false;

/*** Answer query contains a link to next CGI interpreter. ***/

var isLink=false;

var gotoNext= false;

/*** This variable needed for VXML to call JavaScript code. ***/

var javacode="";

/*** menu page of the demo public-domain speechweb. ***/

var

startPage="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/me

nu/demo_menu.xml";

Appendix I: The XML File for Speech Application Read-A-Book

 337

if(sv_greeting=="")

 sv_greeting=defaultGreetingMsg;

/**

This is the main control function to the whole question submit

and answer retrived procedures.

It will call submitReq() method to send the question to the CGI

program.

then it will check the answer whether it is a link to new CGI

program or a simply answer string.

if it is a link to another interpreter, then retrieve the data

from there,

and call the 'changeData' function to change the neccessary

information for the next round dialog.

********************************/

function mainControl()

{

 updateShowFrame("QUESTION: "+question+"
");

 answer="";

 answerRecieved=false;

 isLink=false;

 sayGreetings=false;

 /* call submitReq() method to send the question to the CGI

program. */

 submitReq("POST", cgiLink);

 /** Cannot receive data from CGI interpreter. Network problem.

**/

 if(answerRecieved==false)

Appendix I: The XML File for Speech Application Read-A-Book

 338

 return "-1";

 answer = getAnswer(xmlhttp.responseText);

 /******* Check whether the received answer is a link or not.

And, assign the result to the global variable isLink. ******/

 checkAnswer(xmlhttp.responseText);

 /****** if the answer is not a link, then show the answer to

the user and return. ******/

 if(!isLink)

 {

 gotoNext=false;

 updateShowFrame("RESPONSE: "+answer+"
");

 return "1";

 }

 nextPage=getNextInterpreter(xmlhttp.responseText);

 updateShowFrame("RESPONSE: "+answer+"

");

 if(gotoNext==true)

 window.location=nextPage;

 return "1";

}

/**

This function returns the substring that has to be spoken as a

result of the user's question.

Same procedure is applied for extracting the content to be spoken

out.

Appendix I: The XML File for Speech Application Read-A-Book

 339

*****************************/

function getAnswer(answer)

{

 var ex=answer;

 var index;

 if((ex.indexOf('LINK=',0)) == -1)

 return ex;

 ex= ex.slice(5);

 index = ex.indexOf(";",0);

 ex = ex.substring(0,index);

 return ex;

}

/**

This function uses AJAX, it will submit the question to the given

URI if it use a 'POST' method.

Or, it will retrieve data from the given URI if it use a 'GET'

method.

****************************/

function submitReq(method, url)

{

 /***** Initialize AJAX XMLHttpRequest object. ****/

 xmlhttp=new XMLHttpRequest();

 /******

 Assign a event listener to the 'onreadystatechange' event.

 Different listerner assigned depends on a 'GET' or a 'POST'

method.

 ******/

 if(method=="GET")

 xmlhttp.onreadystatechange=stateChange_GET;

Appendix I: The XML File for Speech Application Read-A-Book

 340

 else

 xmlhttp.onreadystatechange=stateChange_POST;

 /** Check whether the url involves a cross-domain security

error before send the request. **/

 if(isCrossDomain(url)==true)

 {

 /** if method is 'GET', it means this function is called from

loadPage() function to validate a user input URL. **/

 if(method=="GET")

 alert("Cannot validate input URL since it involves a cross-

domain security issue. Load URL immediately.");

 /**

 if method is not 'GET', which means 'POST' method,

 it means this method is called from main control to submit a

question query to the interpreter.

 **/

 else

 updateShowFrame("SYSTEM ERROR: An error which against the

web browser cross-domain security issue."

 +" Your CGI interpreter has to be placed in

the same domain with this voice page."+

 "Please contact to your application

provider to fix this problem. \n"

 +"Your CGI interpreter location: "+ url+"

Current voice page host domain: "+window.location.host);

 answerRecieved=true;

 answer="An error which against the web browser cross-domain

security issue has occured. Please check the error message to

continue.";

 return;

 }

Appendix I: The XML File for Speech Application Read-A-Book

 341

 /** Open the connect, sychronized. ***/

 xmlhttp.open(method,url,false);

 if(method=="GET")

 xmlhttp.send();

 else

 {

 xmlhttp.setRequestHeader("Content-Type", "application/x-www-

form-urlencoded");

 xmlhttp.send("question="+question);

 }

}

function stateChange_POST()

{

 /******* if xmlhttp shows loaded ******/

 if (xmlhttp.readyState==4)

 {

 if (xmlhttp.status==200 || xmlhttp.status==304)

 {

 answerRecieved = true;

 }

 else

 {

 answerRecieved = false;

 xmlhttp.responseText = "";

 }

 }

}

function stateChange_GET()

{

 /******* if xmlhttp shows loaded ******/

 if (xmlhttp.readyState==4)

Appendix I: The XML File for Speech Application Read-A-Book

 342

 {

 if (xmlhttp.status==200 || xmlhttp.status==304)

 {

 answerRecieved = true;

 }

 else

 {

 answerRecieved = false;

 xmlhttp.responseText = "";

 }

 }

}

/** Validate the given url with the current page domain(hostname),

to see whether they are in the same domain or cross-

domain(different domain). **/

function isCrossDomain(url)

{

 var domain = url;

 var i = domain.indexOf("//");

 if(i==-1)

 return false;

 domain = domain.slice(i+2);

 var k = domain.indexOf("/");

 if(k!=-1)

 domain = domain.slice(0, k);

 else

 return true;

 var host = window.location.hostname;

 if(host==domain)

Appendix I: The XML File for Speech Application Read-A-Book

 343

 return false;

 else

 return true;

}

/**

**

Check whether there is a occurrence of '=' character in the

answer, which means a link existed in it.

And, assign the result to the global variable 'isLink'.

**************************************/

function checkAnswer(answer)

{

 if((answer.indexOf('LINK=',0))== -1)

 isLink=false;

 else

 isLink=true;

 return isLink;

}

/**

**

if the answer is a link, this function will return the next

interpreter's URI as a string. Otherwise, return "-1".

***/

function getNextInterpreter(answer)

{

 var loc;

 var ex = answer;

 var index;

Appendix I: The XML File for Speech Application Read-A-Book

 344

/******

Check if the answer is a link to next speech application

interpreter.

It should never be evaluated as true, otherwise error.

******/

 if(!isLink)

 return "-1";

/**

If the answer is a link, then its formation should be:

"LINK=_answer;SIHLO=_location;".

e.g. Question send to judy.cgi: "can i talk to solar man".

 Answer received from judy.cgi: "LINK=yes. here he

is;SIHLO=http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy

/judy.xml"

***/

/****** extracts the LINK= substring from the string and assigns

it to the variable ex ******/

 ex = ex.slice(5);

/****** gets the index position of ';' ******/

 index = ex.indexOf(";",0);

 index = index+1;

/**

The string after the '=' and upto ';' are eliminated because this

is the content which is the answer-query of the user's input.

**/

 loc = ex.substr(index);

/**

Appendix I: The XML File for Speech Application Read-A-Book

 345

eliminating 'SIHLO=' from the loc variable.

SIHLO contains the server address starting right after '=' and

ended by the delimiter ';'.

********************************/

 ex = loc.slice(6);

 index = ex.indexOf(";",0);

 loc = ex.substring(0,index);

 return loc;

}

/** Update the text area in the HTML and show message on it. **/

function updateShowFrame(message)

{

 var objTable = document.getElementById("logFrame");

 objTable.insertRow(0);

 objTable.rows[0].insertCell(0);

 objTable.rows[0].insertCell(1);

 var cell0 = objTable.rows[0].cells[0];

 var cell1 = objTable.rows[0].cells[1];

 cell1.align="left";

 cell0.align="left";

 cell0.width="105";

 if(message.indexOf("SYSTEM ERROR: ")!=-1)

 {

 var objFont = document.createElement("font");

 objFont.color="red";

 objFont.size="-1";

 objFont.appendChild(document.createElement("b"));

 objFont.firstChild.innerHTML = message.slice(0,

message.indexOf(":")+1);

Appendix I: The XML File for Speech Application Read-A-Book

 346

 cell0.appendChild(objFont);

 var objFont2 = document.createElement("font");

 var objIta = document.createElement("i");

 objFont2.color="black";

 objFont2.size="-1";

 objFont2.appendChild(objIta);

 cell1.appendChild(objFont2);

 objIta.innerHTML=message.slice(message.indexOf(":")+1);

 }else

 {

 var index = message.indexOf(":");

 var ex=message.slice(0,index+1);

 var objFont = document.createElement("font");

 if(ex.indexOf("QUESTION:")!=-1)

 objFont.color= "blue";

 else if(ex.indexOf("RESPONSE:")!=-1)

 objFont.color="green";

 else

 objFont.color="purple";

 objFont.appendChild(document.createElement("b"));

 cell0.appendChild(objFont);

 objFont.firstChild.innerHTML = ex;

 cell1.appendChild(document.createElement("font"));

 cell1.firstChild.innerHTML = message.slice(index+1);

 }

 /****** Insert a table row as an empty line after a response

and greeting message. ***********/

 if(message.indexOf("QUESTION")==-1)

 {

 objTable.insertRow(0);

 objTable.rows[0].insertCell(0);

 objTable.rows[0].colspan="2";

Appendix I: The XML File for Speech Application Read-A-Book

 347

 objTable.rows[0].cells[0].innerHTML = "
 ";

 }

 return "";

}

/** Load user's application. **/

function loadPage(checkInput)

{

 /** Get user's input. **/

 var loc = document.getElementById("id_nextPage").value;

 /** if user's input is empty, then return a error message. **/

 if(loc=="")

 {

 updateShowFrame("SYSTEM ERROR: Please input the URL to your

voice page in the above text field. It can not be empty!");

 }

 /** if user input is not empty, and user asked to validate URL

before go. **/

 else if(checkInput==true)

 {

 submitReq("GET", loc);

 /** if the valicating process return a false as result, which

means invalid URL. **/

 if(answerRecieved==false)

 {

 if(xmlhttp.status==404)

 updateShowFrame("SYSTEM ERROR: Unable to load your voice

page. File does not exist at: "+ loc);

 else

 updateShowFrame("SYSTEM ERROR: Unable to load your voice

page. Network problem, error code: "

Appendix I: The XML File for Speech Application Read-A-Book

 348

 +xmlhttp.status+". Please check your internet

connection.");

 }

 /** if user's input is not empty, it is a valid URL to next

page. **/

 else

 window.location=loc;

 }

 /** if user's input is not empty, and user asked to load URL

page immediately. **/

 else

 window.location=loc;

}

function menuPage()

{

 window.location=startPage;

}

function processQuestion()

{

 gotoNext = true;

 question = document.getElementById("id_questionField").value;

 document.getElementById("id_questionField").value="";

 mainControl();

}

</script>

<!--***

 The following script will only be run after a 'vxmldone' event

is thrown after the VoiceXML form finish all its process.

 It also means that the answer returned from interpreter

contains a link to next interpreter, so it needs to go there.

Appendix I: The XML File for Speech Application Read-A-Book

 349

***-->

<script type="text/javascript" id="gotoNextPage"

declare="declare">

 window.location=nextPage;

</script>

<title>Public-Domain SpeechWeb</title>

</head>

<body id="page.body">

<center><h2>Welcome to our new voice browser!</h2></center>

<center>

<table>

<tr><td colspan="6">Load your own speech application :

<input type="text" id="id_nextPage" size="50"

value="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/d

emo_menu.xml"/>

</td></tr>

<!-- Call loadPage() function to setup the interprter and speech-

grammar location according to the above input text field value; -

->

<tr><td colspan="2"><input type="button" name="submitValidate"

value="Validate Before Go" onclick="loadPage(true)"/></td>

<td colspan="2"><input type="button" name="submitGo" value="Go

Immediately" onclick="loadPage(false)"/></td>

<td colspan="2"><input type="button" name="menuGo"

value="SpeechWeb Menu Page" onclick="menuPage()"/></td></tr>

<tr><td colspan="6">

Say your question or type

it in here:</td></tr>

<tr><td colspan="6"><form onsubmit="processQuestion(); return

false;">

<input type="text" size="70" name="questionField"

id="id_questionField" value=""/></form></td></tr>

</table>

Appendix I: The XML File for Speech Application Read-A-Book

 350

<table id="logFrame" width="600"></table>

</center>

</body>

<!-- Call a script to reload the vxml form when the current vxml

form has done its process. -->

<ev:listener ev:observer="page.body" ev:event="vxmldone"

ev:handler="#gotoNextPage" ev:propagate="stop" />

<!-- Load 'vxml_form' when the page.body loaded. -->

<ev:listener ev:observer="page.body" ev:event="load"

ev:handler="#vxml_form" ev:propagate="stop" />

</html>

Appendix J: An Excerpt of the Interpreter for Speech Application Read-A-Book

 351

APPENDIX J: AN EXCERPT OF THE INTERPRETER FOR

SPEECH APPLICATION Read-A-Book

The interpreter of the speech application Read-A-Book is written in Miranda, the

non-strict purely functional programming language. Parts of the source code are

as following:

|| get the tail string from k to the end of the list,

|| k starts from 0.

 tailstr list k = list!k : tailstr list (k+1),if k <#list

 = [], otherwise

|| get the first k characters from the string,

|| k starts from 1.

 headstr (a: as) k = a: headstr as (k-1),

 if k>0 & k < #(a:as)

 = a:as, if k >= #(a:as)

 = [], otherwise

|| read page k, page number starts from 1

|| The component function “numToLetter n numLetter “ is

defined elsewhere.

|| It changes a number to a letter to append to a string.

readpage 0 = "The page number is out of range."

readpage n = "starting page: " ++ numToLetter n numLetter

++ ". " ++ pages!(n-1) ++ " That's the end of

page " ++ numToLetter n numLetter,

 if n< #pages

 = pages!(n-1) ++ " Congratulations! You have

reached the end of this book.", if n= #pages

Appendix J: An Excerpt of the Interpreter for Speech Application Read-A-Book

 352

 = "This book has " ++ numToLetter (#pages)

numLetter ++ " pages. Please reinput your

command.", otherwise

|| continuously read k pages

readKpages (a:as) k = a ++ " " ++ readKpages as (k-1),

 if k < #(a:as) & k>0

 = foldr (++) [] (a:as), if k >= #(a:as)

 = [], otherwise

|| read from page i and continuously read k pages

readFrom i k = "starting page: " ++ numToLetter i numLetter

++ ". "++ (readKpages (tailstr pages (i-1))

k)++ " This is the end of page " ++

numToLetter (i+k-1) numLetter ,

 if (i<= #pages & i>0 & i+k-1 < #pages)

 = readKpages (tailstr pages (i-1)) k ++ "

Congratulations! You have reached the end of

this book." ,

 if (i<= #pages & i>0 & i+k-1 >= #pages)

 = "The starting page number exceeds the maximum

number of the book! " ++

 "Please reinput your command.", otherwise

Appendix K: The CGI file for Speech Application Read-A-Book

 353

APPENDIX K: THE CGI FILE FOR SPEECH APPLICATION
Read-A-Book

The URL for the CGI file of the speech application Read-A-Book is:

http://cs.uwindsor.ca/~speechweb/p_d_speechweb/read_a_book/read_a_book.c

gi

The content is as follows:

#!/bin/csh -f

setenv HOME '/stu1/shic/public_html/read_a_book:$HOME'

setenv PATH '/lapps1/mira:$PATH'

echo "Content-Type:text/plain"

echo ''

setenv v "`/bin/cat`"

/lapps1/mira/bin/mira -heap 10000000

/stu1/shic/public_html/read_a_book/read_a_book.m << zzz

(sh_answer "$v")

/q

zzz

Appendix L: Sample Screenshots for Speech Application Read a Book

 354

APPENDIX L: SAMPLE SCREENSHOTS FOR SPEECH

APPLICATION Read-A-Book

Note that, by taking the advantages of X+V multi-model, the conversation is

available by both voice- and text-input and output. Therefore, we can capture the

screenshots of the example conversation between the user and the computer. In

the screen, the conversation is recorded in the way of “rolling down”, which

means, the first talk is in the bottom, the later response is on the top part of the

screen.

The first screenshot on opening the browser to “read a book” application:

Greet the system, and get to know the system:

Appendix L: Sample Screenshots for Speech Application Read a Book

 355

The user is wondering how to communicate with the SpeechWeb:

Start the reading by page:

Appendix L: Sample Screenshots for Speech Application Read a Book

 356

Continue the reading by chapter:

Specifying the reading by specific pages which covering interested words:

Appendix L: Sample Screenshots for Speech Application Read a Book

 357

Leaving the Read-A-Book application, and move to judy :

The application confirming that is judy:

Getting to know the hyperlinked speech application judy

Appendix L: Sample Screenshots for Speech Application Read a Book

 358

Leaving judy to monty:

Confirming monty:

Getting to know monty:

Appendix L: Sample Screenshots for Speech Application Read a Book

 359

Leaving monty , moving to solar man :

Confirming solar man:

Getting to know solar man:

Appendix L: Sample Screenshots for Speech Application Read a Book

 360

Asking questions to solar man and solar man providing answers.

Appreciating solar man:

Leaving the SpeechWeb:

361

VITA AUCTORIS

NAME: Shi, Yue (Sunny)

DATE OF BIRTH April 21, 1972

PLACE OF BIRTH: Suizhong, Liaoning, China

EDUCATION: Southeast University, Nanjing, Jiangsu, China

 1989.9 – 1993.7 B.Sc.

 University of Windsor, Windsor, Ontario, Canada

 2002.1 – 2003.12 M.Sc.

 University of Windsor, Windsor, Ontario, Canada

 2004.1 – 2010.9 Ph.D.

	Analysis and Design of Speech-Recognition Grammars
	Recommended Citation

	Microsoft Word - Yue_Shi_dissertation_final.doc

