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Abstract

In many web sites, users need to type in keywords in a search Form in order to
access the pages. These pages, called the deep web, are often of high value but
usually not crawled by conventional search engines. This calls for deep web crawlers
to retrieve the data so that they can be used, indexed, and searched upon in an
integrated environment. Unlike the surface web crawling where pages are collected
by following the hyperlinks embedded inside the pages, there are no hyperlinks in
the deep web pages. Therefore, the main challenge of a deep web crawler is the
selection of promising queries to be issued.

This dissertation addresses the query selection problem in three parts: 1) Query
selection in an omniscient setting where the global data of the deep web are avail-
able. In this case, query selection is mapped to the set-covering problem. A
weighted greedy algorithm is presented to target the log-normally distributed data.
2) Sampling-based query selection when global data are not available. This thesis em-
pirically shows that from a small sample of the documents we can learn the queries
that can cover most of the documents with low cost. 3) Query selection for ranked
deep web data sources. Most data sources rank the matched documents and return
only the top k documents. This thesis shows that we need to use queries whose size is
commensurate with k, and experiments with several query size estimation methods.

Keywords deep web, set covering, ranked data source, document frequency es-
timation
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Chapter 1

Introduction

The deep web [2] is the content that is dynamically generated from data sources

such as databases or file systems. Unlike the surface web, where pages are col-

lected by following the hyperlinks embedded inside collected pages, data from the

deep web are guarded by search interfaces such as HTML forms, web services, or

programmable web API [3], and can be retrieved by queries only. The deep web

contains a much bigger amount of data than the surface web [4, 5]. This calls

for deep web crawlers to collect the data so that they can be used, indexed, and

searched in an integrated environment. With the proliferation of publicly available

web services that provide programmable interfaces, where input and output data

formats are explicitly specified, automated extraction of deep web data becomes

more practical.

Deep web crawling is the process of collecting data from search interfaces by

issuing queries. It has been studied from two perspectives. One is the study of

the macroscopic views of the deep web, such as the number of the deep web data

sources [6, 4, 7], the shape of such data sources (e.g., the attributes in the HTML

form) [7], and the total number of pages in the deep web [2].

When crawling the deep web, which consists of tens of millions of HTML forms,

usually the focus is on the coverage of those data sources rather than exhaustively

crawling the content inside one specific data source [7]. That is, the breadth, rather

than the depth, of the deep web is preferred when the computing resource of a

crawler is limited. In this kind of breadth-oriented crawling, the challenges are

locating the data sources [8, 9, 10, 11], learning and understanding the interface

and the returned results so that query submission and data extraction can be au-
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tomated [12, 11, 13, 14].

Another category of crawling is depth-oriented, focusing on one designated deep

web data source, with the goal to garner most of the documents from the given

data source [15, 16, 17, 7]. In this realm, the crucial problem is the query selection

problem, that is, to cover most of the documents in a specific data source with

minimal cost by submitting appropriate queries.

There are many existing works addressing the query selection problem [15, 16,

17, 18, 19, 20, 7] but still some issues remain as follows: 1) How to evaluate query

selection algorithms; 2) How to optimize the query selection problem; 3) What the

input of query selection algorithms at beginning is; 4) How to crawl the deep web

data sources with return limit.

Based on the above issues, in this dissertation, we present a novel technique to

addressing the query selection problem. It contains three parts:

• Query selection using set covering algorithms: first we map the query selection

problem to the set covering problem. If we let the set of documents in a data

source be the universe, each query represents the documents it matches, i.e.,

a subset of the universe. The query selection problem is thus cast as a set

covering problem, and the goal is to cover all the documents with minimal

sum of the cardinalities of the queries.

Although set covering problem is well studied [21, 22, 23, 24] and numerous

algorithms even commercial products such as CPLEX [25] are available, the

greedy algorithm remains the convenient choice for large set covering prob-

lems. A conventional greedy algorithm assigns the same weight to each doc-

ument, which may be good in other domains but not in our application. In

deep web data sources, one empirical law on the document size is that its

distribution is highly skewed, close to power law or log-normal distribution.

Many documents are of small size, while the existence of very large documents

cannot be neglected, so called long tail. Those large documents can be cov-

ered by many queries, therefore their importance or weight should be smaller.

We assign the reciprocal of the document size as the weight of a document,

and select the next best query accordingly.

We conducted experiments on a variety of test data, including the Beasley

data [26], the standard benchmarks for set covering problem, and four typical

2



deep web data sources. The results show that, with same time complexity, our

weighted greedy algorithm outperforms the greedy algorithm in both Beasley

and our data and, especially, for our data (heterogeneous data). Furthermore,

we argue that data distribution has a great impact on the performances of

the two greedy algorithms.

• Sampling-based query selection: before crawling the deep web, there is no input

to the set covering algorithm, i.e., neither documents nor terms are available.

To bootstrap the process, a sample of the data source is needed so that some

good terms are selected and sent, and more documents are returned and added

to the input of the set covering problem. This repetitive and incremental

process is used in the methods proposed by [17, 7]. The disadvantage is

the requirement of downloading and analyzing all the documents covered by

current queries to select the next query to be issued, which is highly inefficient.

We found that instead of incrementally running and selecting queries many

times, selecting all queries on a fixed sample at once is more efficient and

the result can be better as well. We first collect from the data source a set

of documents as a sample that represents the original data source. From

the sample data, we select a set of queries that cover most of the sample

documents with a low cost. Then we use this set of queries to extract data

from the original data source. Finally, we show that the queries working well

on the sample will also induce satisfactory results on the original data source.

More precisely, the vocabulary learnt from the sample can cover most of the

original data source; the cost of our method in the sample can be projected to

the original data source; the size of the sample and the number of candidate

queries for our method do not need to be very large.

• Query selection for ranked data sources: many large data sources rank the

matched documents and return only the top k documents, where k may be

rather small ranging from 10 to 1000. For such ranked data sources, popular

queries will return only the documents in the top layers of the data. Docu-

ments ranked low may never be returned if only popular terms are used. In

order to crawl such data sources, we need to select the queries of appropriate

size, in particular the small queries.

The crucial challenge is to obtain the small queries and learn the frequencies
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Figure 1.1: The key components in this dissertation for unranked and ranked deep
web data sources.

of the small queries from a sample. In particular, the conventional Maximum

Likelihood Estimation [27] overestimates the rare queries. We use Simple

Good-Turing estimation [28] to correct the bias. Another estimation method

is based on Zipf’s law [29]. After a few probing queries issued for their fre-

quencies, the method tries to propagate the known frequencies to nearby terms

with similar frequencies.

The experimental result shows that crawling ranked data sources with small

queries is better than using random queries from a middle-sized Webster En-

glish dictionary, and much better than using popular terms as queries whose

frequencies are more than 2k.

Figure 1.1 shows the key components in our query selection technique for un-

ranked and ranked deep web data sources.

In this dissertation, we focus on textual data sources, i.e., the data sources that
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contain plain text documents only. These kinds of data sources usually provide a

single keyword-based query interface instead of multiple attributes, as studied by

Wu et al. [20]. Madhavan et al.’s study [7] shows that the vast majority of the

HTML forms found by Google deep web crawler contain only one search attribute,

thus we focus on such a search interface.

The rest of this dissertation is organized as follows: Chapter 2 introduces the

related work; in Chapter 3, we convert the query selection problem into set covering

problem and propose a weighted greedy algorithm to addressing it; Chapter 4 details

our sampling-based crawling method; Chapter 5 shows our novel df-based crawling

method for crawling ranked deep web data sources; and finally Chapter 6 concludes

this dissertation with important remarks.
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Chapter 2

Related work

In this chapter, we present a detailed introduction to the related work of our re-

search.

2.1 Query selection problem

The query selection problem is to select a set of queries to efficiently harvest a

specific deep web data source. There are many existing works addressing this prob-

lem [7, 15, 16, 17, 18, 19, 20].

A primitive solution could be randomly selecting some words from a dictionary.

However, this solution is not efficient because a large number of rare queries may

not match any page, or there could be many overlapping returns. Recently, instead

of selecting queries from a dictionary, several algorithms [17, 7, 15, 20, 16] have been

developed to select queries from the downloaded documents, which were retrieved

by previous queries submitted to the target deep web data source.

Generally speaking, query selection methods can be categorized as: the methods

for unstructured data sources and the methods for structured data source.

2.1.1 Unstructured data sources

Here unstructured data sources refer to textual data sources that contain plain text

documents only. This kind of data sources usually provide a single keyword-based

query interface.

Ntoulas et al. [17] proposed an incremental adaptive method for unstructured
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data sources. An incremental method selects queries from the downloaded doc-

uments and the number of documents increases as more queries are sent. Their

method selects the query returning most new documents per unit cost iteratively

and it is represented by the formula
Nnew(qj)

Cost(qj)
. For each query, its cost consists of

the costs for sending qj, retrieving the hyperlinks of the matched documents, and

downloading them.

Since there is no prior knowledge of all the actual document frequencies of the

queries in the original data source DB, this method requires the estimations of the

actual document frequencies based on the documents already downloaded. With

the estimated document frequencies of all queries in the downloaded documents,

the number of matched new documents of each query will be calculated.

They proposed two approaches to estimate. The first method, called the independence

estimator, assumes that the probability of a term in the downloaded documents is

equal to that in DB. Based on the document frequency of a term in the down-

loaded documents N(qj|subset collection), the method can estimate how many

documents containing the term in the original data source N̂(qj). Then we can es-

timate the number of new returned documents by the equation N̂new(qj) = N̂(qj)−
N(qj|subset collection). The second estimation method is the Zipf-law-based esti-

mator provided in [29] (the detail of this method will be introduced in later section),

it estimates the actual document frequency of terms inside the document collection

by following Zipf’s law [30].

They compared their adaptive method with two other query selection methods:

the random method (queries are randomly selected from a dictionary), and the

generic-frequency method (queries are selected from a 5.5-million-web-page corpus

based on their decreasing frequencies). The experimental result shows that the

adaptive method performs remarkably well in all cases. However, their method se-

lects queries from an incremental document collection and it means that the method

needs to analyze each document once it is downloaded and to estimate the document

frequency for every term inside it at each round. In order to estimate document fre-

quency efficiently, the solution from [17] computes the document frequency of each

term by updating the query statistics table after more documents are downloaded.

But maintaining this table is still difficult.

Madhavan et al. [7] developed another incremental method for unstructured

data sources. Because the system is an industry product, it needs to consider
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how to select seed queries. Since they need to process difference languages, their

approach does not select queries from a dictionary. Instead, Their system detects

the feature of the HTML query form and selects the seed queries from it. After

that, the iterative probing and the query selection approach are similar to those,

that proposed in [17].

Their query selection policy is based on TF-IDF that is the popular measure

in the information retrieval. TF-IDF measures the importance of a word by the

formula below.

tfidf(w, p) = tf(w, p)× idf(w) (2.1)

tf(w, p) is the term frequency of the word w in any page p, and measures the

importance of the word w in any page p.

tf(w, p) = nw,p/Np, (2.2)

where nw,p represents the number of times the word w occurs in any page p and Np

is the total number of the terms in any page p.

idf(w) (inverse document frequency) measures the importance of the word w

among all the web pages, and is calculated by log( D
dw
) where D is the total number

of web pages and dw is the number of web pages where the term w appears.

Madhavan et al.’s method adds the top 25 words of every web page sorted by

their TF-IDF values into the query pool. From the query pool, they remove the

following two kinds of terms:

• Eliminate the high frequency terms, such as the terms that have appeared

in many web pages (e.g., > 80%), since these terms could be from menus or

advertisements;

• Delete the terms which occur only in one page, since many of these terms are

meaningless words that are not from the contents of the web pages, such as

nonsensical or idiosyncratic words that could not be indexed by the search

engine;

The remaining words are issued to the target deep web data source as queries and

a new set of web pages are downloaded. Then this is repeated again in the new

iteration.
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Additionally, their approach emphasizes the breadth-oriented crawling that is

quite different to prior researches. They observed the statistical data on Google.com

and found that the results returned to users were more dependent on the number

of the deep web data sources. They analyzed 10 millions of deep web data sources.

They discovered that the top 10,000 deep web data sources accounted for 50% of the

deep web results, while even the top 100,000 deep web data sources only accounted

for 85%. This observation prompted them to their focus on crawling as many deep

web data sources as possible, rather than surfacing on a specific deep web data

source.

In [16], Barbosa et al. proposed a sampling-based method to siphon the deep web

by selecting queries with highest frequencies from the sample document collection.

Unlike the incremental method, a sampling-based crawling method selects queries

from a fixed or near fixed sample which is usually derived from the first batch of

downloaded documents.

This method selects the highest frequency queries from the term list, which are

expected to lead a high coverage. It is composed of two phases: phase 1 selects a set

of terms from the HTML search form and randomly issues them to the target deep

web data source until at least a non-empty result page is returned. By extracting

high frequency terms from the result pages, their algorithm creates a term list. Then

it iteratively updates the frequencies of the term and adds new high frequency terms

into the list by randomly issuing the term in the list until the number of submissions

reaches the threshold. In phase 2, the method uses a greedy strategy to construct a

Boolean query to reach the highest coverage, it iteratively selects the term with the

highest frequency from the term list, and adds it to a disjunctive query if it leads

to an increase in coverage. For example, if 10 terms (q1, . . . , q10) are selected, the

final issued disjunctive query is q1 ∨ . . . ∨ q10.

The method is easy to implement but its shortcoming is obvious. Most of

websites limit the number of the subqueries of a Boolean query and the number

of returned documents for a query. Thus using only one Boolean query to crawl a

deep web data source could be hard.
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2.1.2 Structured data source

A structured data source is a traditional relational database and all contents are

stored as records in tables. Usually the deep web site with a structured data source

provides a search interface with multiple attributes instead of a single keyword-

based search bar.

Wu et al. [20] presented a graph-based crawling method to retrieve the data

inside a specific deep web data source. In their method, a structured data source

DB is viewed as a single relational table with n data records {t1, . . . , tn} over a set

of m attributes {attr1, . . . , attrm}. All distinct attribute values are contained by

the Distinct Attribute Value set (DAV).

Based on a data source DB, an attribute-value undirected graph (AV G) can be

constructed. Each vertex vi represents a distinct attribute value avi ∈ DAV and

each edge (vi, vj) stands for the coexist of the two attribute values avi and avj in a

record tk.

According to AV G, the process of crawling is transformed into a graph traver-

sal in which the crawler starts with a set of seed vertices and at each iteration a

previously seen vertex v is selected to visit, thus all directly-connected new vertices

and the records containing them are discovered and stored for future visits.

Raghavan et al. [15] proposed a task-specific human-assisted crawling method for

structured data sources. First, it needs a task-specific database D which contains

enough terms for the crawler to formulate search queries relevant to a particular

task. For example, to retrieve documents about semiconductor industry in a data

source DB, D should contain the lists of semiconductor companies and product

names that are of interest. For the query selection strategy, the authors assume

that all attributes are independent from each other, and all records can be retrieved

by using the Cartesian product of all possible attribute values from the task-specific

database D.

Namely, for each attribute Ei shown in the multi-attribute search form, a match-

ing function is used to assign a value shown in Equation 2.3.

Match(({E1, . . . , Em}, S,M), D) = [E1 = v1, . . . , Em = vm] (2.3)

where {E1, . . . , Em} is a set of m form attributes, S is the submission informa-

tion associated with the form (e.g., submission URL) and M is the meta infor-
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mation about the form (e.g., the URL of the form page). A value assignment

[E1 = v1, . . . , Em = vm] associates value vi with form attribute Ei and the crawler

uses each possible value assignment to ’fill-out’ and submit the completed form.

This process is repeated until the set of value assignments is exhausted.

In Raghavan et al.’s method, the product of all possible attribute values could

be a large number and sometimes it means a high communication cost and an empty

return result, which could significantly reduce the effectiveness and efficiency of the

crawler.

2.2 Automated form filling

Before the query generation process, the problem of how to automatically interact

with the search interface has to be addressed firstly.

For the deep web crawling, the automated form filling is simpler than other

techniques such as the virtual data integration [31, 32, 33] and the web information

extraction [34, 35, 19, 36], which need to deal with semantic inputs based on a

given knowledge. Here the technique of form filling used by Google’s deep web

crawling [7] is presented as an example.

In Google’s deep web crawling [7], they only focuses on two kinds of inputs

in a searchable form. One is the selection input that offers users some imposed

items to choose, such as the select menu, the radio button and the check box; the

other one is the free input, e.g., the text box. A selection input often provides a

default item, if it is not selected as a certain value, the effect of the input for search

results can be ignored. Among the selection inputs, there exists a special ordering

input which arranges the returned results according to an order. A crawler has

to distinguish the ordering input from other kinds of selection inputs because such

the ordering input causes a much overlapping retrieval. The free input could be

anywhere, usually called a search bar. It accepts any keyword (or Boolean query)

and returns documents containing the keyword. Figure 2.1 shows an example of the

two kinds of inputs from the website of Amazon.com. In the figure, two selection

inputs (drop-down menus) are on the left and right sides respectively. The right

one is an ordering input, and a free input (text box) lies in the center.

According to the values of the free and selection inputs, the retrieved documents
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Figure 2.1: An example from Amazon.com website

can be described as following:

select K from DB where P ordered by O.

where K = (keyword1, ..., keywordn), P = (constrain1 = c1, ..., constrainm = cm),

and O = orderi. Each keyword is from a free input, each constrain is set by the

selection input one by one and the return order is decided by the value of the order

selection input.

Recognizing free inputs and selection inputs, it can be done easily by analyz-

ing the HTML code of the form pages. In [7], the free input of a search form is

automatically filled out by selecting queries from the query list derived from the

retrieved document collection. Each selection input and its value are decided by

the informativeness test that is used to evaluate query template, i.e., the combina-

tions of the selection inputs. The basic idea of the informativeness test is that all

templates (the searchable form with different values for each selection input) are

probed to check which can return sufficiently distinct documents. A template that

returns enough distinct documents is deemed a good candidate for crawling.
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2.3 Automated searchable form discovery

Before crawling the deep web data sources, first of all, we have to locate the en-

trances (searchable forms) of the targeted data sources. It is a challenging problem

due to several reasons. Firstly, the contents in the Web keep changing at all time;

it is continually updating the routine, adding new websites, and removing old ones.

In addition, the entrances of these data sources are sparsely distributed on the Web.

Thus, to acquire a few deep website locations, a surface web crawler needs to search

tons of useless web pages and this could consume the resources of the crawler too

much.

Note that a crawler for the surface web is quite different from the one for the deep

web. The former usually starts at some seed web pages and follows all the outgoing

hyperlinks of the visited web pages to traverse the linked pages, and this iterative

process ends when all the reachable web pages are visited or the stopping criteria

are satisfied. The latter works on the many searchable forms of the backend data

sources by issuing queries and retrieving all the returned documents. The crawler

for locating the entrances of deep web data sources is the one for the surface web.

At the beginning, an exhaustive crawler is used to crawl all the web pages it can

reach to find the entrances (such as the crawlers Alta Vista, Scooter, and Inktomi).

The whole process could take a few of weeks up to months. However, owing to the

rapid increase of the Web, it becomes harder and harder to implement.

In common, users prefer a collection of searchable forms that can return high

relevant documents. Hence, some researchers [10, 37] provided the concept of fo-

cused crawler that it is a topic-driven crawler. A focused crawler tries to retrieve

a subset of web pages from the surface web that are highly relevant to a topic so

that related searchable forms are likely contained in this collection.

In [10], the surface web is considered a directed graph G given a predefined

hierarchy tree-structured classification C on topics, such as Yahoo!. Each node

c ∈ C refers to some web pages in G as examples denoted as D(c). A user’s interest

can be characterized by a subset of topics C∗ ⊂ C. Given any web page p, a method

is used to calculate the relevant value RC∗(p) for p with respecting to C∗. Based

on the relevant value of p , its neighbour web pages (directly linked by p) firstly

estimates relevant values, and, after crawled, the estimated relevant values of the

neighbour pages are updated to relevant values.
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Figure 2.2: The framework of form-focused crawling method

The crawling process starts from example web pages D(C∗). At each iteration,

the crawler inspects the current set V of the visited web pages and then selects

an unvisited web pages corresponding to the hyperlinks in one or more visited web

pages by their estimated relevant values.

Focused crawlers can significantly reduce the number of useless web pages crawled

but the ratio between the number of forms and the number of visited pages is still

low. In a recent search work in [11], the authors provide a Form-Focused Crawl-

ing(FFC) method to seek the searchable forms based on topics. The difference is

that the previous focused crawler focuses the search process based solely on the

contents of the retrieved pages, and it is not enough. FFC combines the techniques

of the previous focused crawlers with a link classifier that analyzes and prioritizes

the links that will likely lead to searchable forms in one or more steps. Figure 2.2

shows the framework of the form-focused crawling method.

In this figure, there are four major parts in the framework: page classifier, link

classifier, frontier manager, and form classifier. The page classifier is trained to

identify the topic of the crawled web pages and it uses this strategy in [10]. The

searchable form classifier is used to filter out non-searchable forms.

The link classifier and the frontier manager are highlight parts. The authors

first make use of a backward search method to analyze and prioritize links which
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are likely to lead to a searchable form in one or more steps. The backward search

method starts with a given set of URLs of web pages that contain forms in a

specified domain. Links to these pages are acquired by crawling backward from

these pages based on the facilities from standard search engines, such as Google

and Yahoo! [38]. The process of backward crawling is breadth-oriented, and all the

retrieved documents in level l+1 are linked to at least one of the retrieved documents

in level l. At each iteration, the best features of the links in the corresponding level

are manually collected. Finally, those features are used to train the link classifier

to estimate the steps from a given link to a searchable form.

In the frontier manager, there are multiple priority queues for the links that are

not visited, and each queue corresponds to a certain estimated step given by the

link classifier. It means that a link l is placed in the queue i if the link l has i

estimated steps to the target searchable form. At each crawling step, the manager

selects the link with the maximum reward value as the next crawling target, and

the reward for a link is decided by the current status of the crawler and the priority

of the link.

There are still a few of other methods used to locate searchable forms (e.g., IP

sampling method). However, as far as we know, they do not address this problem

well.

2.4 Sampling techniques

Query selection is based on various properties of the data source, such as the df

of all the terms. However, such resource descriptions are not provided by most of

deep web sites. They need to be leant by sample. To select appropriate queries for

crawling, random sampling methods [1, 39, 40] become an important way to acquire

the resource description of a target data source and such information usually is the

basis of most of query selection methods.

In [1], the authors provided a query-based sampling method for textual deep

web data sources and showed that their method can efficiently acquire the accurate

term frequency list of the target data source based on a sufficiently unbiased sample.

Their query-based sampling algorithm is shown as follows:

1. Randomly select an initial query that can retrieve a nonempty set of docu-

ments;
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Table 2.1: The consistency between the conclusions of Callan’s work [1] and our
sampling-based query selection method

No. Callan’s conclusion Our conclusion
1. sample can contain most of the

common terms in the original DB
selected queries from sample can
cover most of the original DB.

2. the rank list of terms in the sam-
ple can represent the order of the
corresponding terms in the origi-
nal DB in a way

selected queries from the sample
can cover most of the original DB
with low cost.

3. small sample can capture most of
the vocabulary and the rank in-
formation of the original DB

to harvest most of the original
DB, the sample size and the
query pool size do not need to be
very large.

2. Send the selected query to the target data source and retrieve the top k

documents;

3. Update the resource description based on the characteristics of the retrieved

documents (extract terms and their frequencies from the top k documents and

add them to the learned resource description);

4. If the stopping criterion has not yet been reached, select a new query and go

to Step 2

The above algorithm more looks more like a framework and some parameters

need to be decided. What is the best value for N? How to select an initial query?

How to select a term as query for further retrieval? What is the stopping criterion?

All those questions are answered in [1].

The conclusions of the Callan’s sampling method support our sampling-based

query selection method in Chapter 4 and they are indirectly verified by our results.

The corresponding relationship is shown in Table 2.1.

In [40], the authors presented a Boolean query-based sampling method for the

sampling of uniform documents from a search engine’s corpus. The algorithm for-

mulates ”random” queries by using disjunctive and conjunctive Boolean queries to

pick uniformly chosen documents from returned results. The method needs the

availability of a lexicon of terms that appear in the Web documents. Each term

contained by the Boolean queries in the lexicon should be given an estimate of its
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frequency on the Web. The lexicon is generated in a preprocess by crawling a large

corpus of documents from the Web.

The method [40] is somehow the reverse process of the deep web crawling. For

the crawling process, a random sample is needed first and then it begins based on

the terms inside the sample, but this method first requires the crawling results that

help to do the random sampling.

In [39], the authors proposed two elaborate random sampling methods for a

search engine corpus. One is the lexicon-based method and the other is the random

walk method. Both methods produce biased samples and each sample is given a

weight to represent its bias. Finally, all samples in conjunction with the weights,

applied using stochastic simulation methods, are considered a near-uniform sample.

Compared to the methods in [1, 40], this method performs better but its complexity

is much higher than the other two.
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Chapter 3

Query selection using set covering

algorithms

3.1 Introduction

In this and the next chapter, we discuss the query selection problem for deep web

data sources without a return limit, i.e., all documents matched by a query should

be returned. We focus on such data source first because

• there are many such data sources in the Web, especially the websites for

public services, such as the PubMed website [41] or the website of United

States Patent and Trademark Office (USPTO) [42];

• the strategies of the query selection for data sources without a return limit

can provide an insight to the one with a return limit (we will discuss the latter

in Chapter 5).

Let the set of documents in a data source be the universe. If one term is

contained by one document, we say that the term covers this document. The query

selection problem is to find a set of terms as queries which can jointly cover the

universe with a minimal cost. Thus, it is cast as a set covering problem (SCP).

SCP is an NP-hard problem [43] and has been extensively studied by many

researchers [21, 22, 23, 24] in fields such as scheduling problem, routing problem,

flexible manufacturing and so on.
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Many algorithms have been developed for set covering problem. Some of them,

such as [44, 45, 46], can provide better solutions in general but require more re-

sources for the execution. For example, since the Optimization Toolbox for binary

integer programming problems provided by Matlab can only work within 1G mem-

ory limit [47], it is easy to be out of memory for one thousand by thousand input

matrix.

Based on the above consideration, the greedy method is a better choice because

it usually leads to one of the most practical and efficient set covering algorithms. But

we found that, so far, most of the research work on greedy methods have been carried

out on the normally distributed data and the corresponding results are acceptable

compared with the optimal solutions (or the best known solutions). In deep web

crawling, the degrees of the documents are not distributed normally. Instead, they

follows a lognormal distribution. For data with a lognormal distribution, the results

of the greedy method could be improved.

We have developed a weighted greedy set covering algorithm. Unlike the greedy

method, it introduces weights to the greedy strategy. We differentiate among doc-

uments according to the dispersion of document degree caused by the lognormal

distribution. A document with a smaller document degree is given a higher docu-

ment weight. A document with a higher weight should usually be retrieved earlier

since it will lower the total cost in the future. This is combined with the existing

greedy strategy. Our experiment carried out on a variety of corpora shows that the

new method outperforms the greedy method when applied on data with a lognormal

distribution.

After analyzing the greedy and our weighted greedy methods on data with var-

ious distributions, we further argue that the data distribution plays a great role in

the performances of the two greedy algorithms.

3.2 Set covering

The query selection problem is to find a set of terms as queries which can jointly

cover the universe with a minimal cost. The query cost is defined by a number of

factors, including the cost for submitting the query, retrieving the URLs of matched

documents from resulting pages, and downloading actual documents. There is no

need to consider separately the first two factors when measuring the cost. For
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a given query, there could be many matched documents and they are returned

in the resulting pages instead of in a long list. Thus the number of queries is

proportional to the total number of retrieved documents because the same query

needs to be sent out repeatedly to retrieve the subsequent pages. For example, if

there are 1,000 matches, the data source may return one page that consists of only

10 documents. If you want the next 10 documents, a second query needs to be sent.

Hence, to retrieve all the 1,000 matches, altogether 100 queries with the same term

are required.

The cost of downloading actual documents should be separated from the cost

in the query selection problem. Since no one will repeatedly download redundant

documents, the cost of downloading all the documents of a data source is a constant.

Thus it does not help to find out a set of appropriate queries to submit by measuring

their downloading cost.

In this setting, we argue that the cost of retrieving the URLs of matched docu-

ments is the cost to consider for the query selection problem, and it can be repre-

sented by the total sum of the document frequencies of the selected queries.

Given a set of documents D = {d1, ..., dm} and a set of terms QP = {q1, ..., qn},
their relationship can be represented by the well known document-term Matrix

A = (aij) where aij = 1 if the document di contains the term qj; otherwise aij = 0.

The query selection problem can be modeled as set covering problem defined

in [43].

Definition 1 (SCP) Given an m×n binary matrix A = (aij), let C = (c1, . . . , cn)

be a non-negative n-vector and each cj =
m∑
i=1

aij represents the cost of the column j.

SCP calls for a binary n-vector X = (x1, . . . , xn) that satisfies the objective function

Z = min
n∑

j=1

cjxj. (3.1)

Subject to
n∑

j=1

aijxj ≥ 1, (1 ≤ i ≤ m). (3.2)

xj ∈ {0, 1}, (1 ≤ j ≤ n). (3.3)

In the matrix representation of the data source DB, each column represents a
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Figure 3.1: The illustration of the textual data source DB in Example 1. Each dot
or circle represents one document or term, respectively.

term in the query pool QP and each row represents a document of DB. cj =
m∑
i=1

aij

is the document frequency (df for short) of the term qj, which is equal to the number

of documents containing the term. We should be aware that the terms in the QP

of a data source are usually parts of all the terms inside the data source; otherwise,

there could be more than millions of terms in the QP and it would be out of the

capability of most set covering algorithms.

Example 1 Given a deep web textual data source DB = {d1, ..., d9} shown in

Figure 3.1, there are 5 terms (QueryPool = {q1, ..., q5}) and each is contained in

at least one of the 9 documents. For example, d1 contains q3 only, and d2 contains

q3 and q4. The doc-term matrix representation of the data source is shown in

Table 3.1. The optimal solution of SCP here is {q4, q3, q1} (with corresponding

X = (1, 0, 1, 1, 0)) and its cost is 13 (4+5+4).
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Table 3.1: The doc-term Matrix A in Example 1
q1 q2 q3 q4 q5

d1 0 0 1 0 0
d2 0 0 1 1 0
d3 1 0 1 0 1
d4 0 0 1 0 1
d5 1 0 0 0 1
d6 1 1 0 1 0
d7 0 0 0 1 0
d8 1 1 0 0 1
d9 0 0 1 1 1
df 4 2 5 4 5

3.3 Greedy algorithm

The basic idea of the greedy algorithm [48] is to construct a solution in a step-by-step

manner and to approximate a global optimal solution by choosing a locally optimal

solution on each step. For a set covering problem, the solution is constructed

step-by-step: on each step, one column is selected as a part of solution until the

requirement is reached.

There are various ways to select a column.

• Minimize cost: we can select the next column qu which has the lowest cost

on this step, namely, cu = min(cj) where 1 ≤ j ≤ n and xj = 0. The lowest

total cost
n∑

j=1

cjxj is approximated by having the smallest cost on each step;

• Maximize coverage: another popular way is to select the next column qu which

can cover the largest number of rows that are not yet covered by the previously

selected columns, namely, setting xu = 1 to maximize
m∑
i=1

((1−yi)×aiu) where

yi ∈ {0, 1} and yi = 1 if di have been covered, otherwise, yi = 0. Such a local

optimization aims at reaching the expected coverage in fewer steps so that

the number of selected columns can be kept small. In this way, the total cost
n∑

j=1

cjxj can get close to the smallest. This approach is especially suitable

when all columns in Matrix A have the same cost, and the total cost is purely

determined by the number of selected columns.

Of course, we can also combine the above two approaches: the next column qu
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is selected taking into account both its cost (cu) and the number of new rows that

can be covered (
m∑
i=1

((1− yi)× aiu)). One of the possible combinations is described

as Algorithm 1 based on Definition 1. In the following, we use new/cost to denote

the value for local query selection. In this algorithm, yi = 1 indicates that the i-th

Algorithm 1: Greedy algorithm.

Input: an m× n matrix A = (aij)
Output: a solution n-vector X = (x1, . . . , xn)
Process:

1 cj =
m∑
i=1

aij; xj = 0(1 ≤ j ≤ n); yi = 0(1 ≤ i ≤ m);

2 while(
m∑
i=1

yi < m){

3 find a column qu which maximizes
m∑
i=1

((1− yi)× aiu)/cu;

4 xu = 1; yi = 1 if
n∑

j=1

aijxj ≥ 1;

5 }

document is already covered.

Ostensibly, the greedy strategy is faultless but there are still some problems we

need to discuss and such problems may lead to an insight to the potential shortage.

3.4 Introducing weight to greedy algorithm

With the step-by-step manner, different rows are covered in different steps. Is there

any difference to covering a row earlier or later? In the above greedy strategy, all

newly covered rows are always considered as having a unit cost and there is no

difference whether they are covered earlier or later.

In Table 3.1, the rows d1 and d7 are only covered by the columns q3 and q4

respectively. Such documents should be covered as early as possible. To easily

compare, let’s say that q4 is set to the initially selected column and then the unique

solution from the greedy algorithm is {q4, q5, q3} with the cost 14. Actually, the

optimal solution is {q4, q3, q1} with the cost 13, and this optimal solution can be

reached if q3 or q4 is in the initially selected column. The greedy method failed to
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find an optimal solution in this case is not to consider covering d1 and d7 by using

q3 and q4 as early as possible.

Now that we know there is a difference in covering certain rows earlier or later,

the second question is how to measure such difference to cover a row earlier or later.

For each row i, we argue that if the number of the columns covering row i is bigger,

it is better to be covered later. Here are two reasons:

• When row i is covered at high coverage (in later steps) and most of the rows

are already covered, more columns covering row i mean that there could be

more possibilities to select a small-cost column which covers few new rows (of

course, at high coverage, no column can take many new rows);

• When row i is covered at low coverage (in earlier steps) and most of the rows

are not covered yet, more columns covering row i mean that there are more

possibilities to cause overlapped coverage, i.e., row i will be covered many

times.

For each document, we call the number of the terms in the query pool QP

covering it the degree of the document. Based on the above intuition, a higher

degree of a document means that the document needs to be covered later. It is

defined as follows:

Definition 2 (document degree) The degree of a document (element) di in DB

with respect to QP , denoted by deg(i), is the number of different terms in QP that

occur in the document di, i.e.,

deg(i) =
n∑

j=1

aij. (3.4)

Then we define dw(i) as document weight by using the document degree as

follows:

Definition 3 (document weight) The weight of a document di in DB with re-

spect to QP , denoted by dw(i) (or dw for short), is the inverse of its document

degree, i.e.,

dw(i) =
1

deg(i)
. (3.5)
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Intuitively, the fewer the terms (columns) are contained in document di (row i),

the larger the weight that is given to it.

After all, covering rows is implemented by selecting columns one by one. At

each step, the column covering the rows with larger weights should be selected

earlier. Based on the definition of the document weight, for each term (column)

qj at each step, we sum up all weights of uncovered documents (rows) covered by

it and obtain the query weight qw for the term (column) qj. The terms (columns)

with larger weights should be selected as early as possible.

Definition 4 (query weight) The weight of a query qj (1 ≤ j ≤ n) in QP with

respect to DB, denoted by qw(j) (or qw for short), is the sum of the document

weights of all the uncovered documents containing the term qj, i.e.,

qw(j) =
m∑
i=1

(aij × dw(i)× (1− yi)), (3.6)

where (aij) is the corresponding Matrix A and yi = 1 if di has been covered, other-

wise, yi = 0.

3.4.1 Weighted algorithm

We consider qw(j) a better measurement than new(j) as it combines both the in-

formation about how many new documents can be obtained by selecting query qj

and the information about how soon the newly obtained documents should be con-

sidered to be covered. Consequently, we use qw/cost to replace new/cost for query

selection. We call the corresponding algorithm weighted greedy algorithm.

Based on the definitions of the document weight and the query weight, we

present our weighted greedy algorithm shown in Algorithm 2.

Example 2 Based on the matrix in Table 3.1, the initial weights of the documents

and the queries are shown in Table 3.2. In the first round of Algorithm 2, row q4

has the maximum value of qw/cost (0.54). It is selected as the first query, hence

the corresponding x4 is set to 1. For convenient to explanation, the column q4 and

the covered rows, i.e., d2, d6, d7 and d9 are removed from the matrix A, and the

resulting corresponding weighted matrix is shown in Table 3.3. In the second and
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Algorithm 2: Weighted greedy algorithm.

Input: an m× n matrix A = (aij)
Output: a solution n-vector X = (x1, ..., xn)
Process:

1 cj =
m∑
i=1

aij; xj = 0(1 ≤ j ≤ n); yi = 0(1 ≤ i ≤ m);

2 while(
m∑
i=1

yi < m){

3 find a column qu that maximizes qw(u)/cu;

4 xu = 1; yi = 1 if
n∑

j=1

aijxj ≥ 1;

5 }

Table 3.2: The initial weight table of Example 2 corresponding to Matrix A
t1 t2 t3 t4 t5

d1 0 0 1 0 0
d2 0 0 0.5 0.5 0
d3 0.33 0 0.33 0 0.33
d4 0 0 0.5 0 0.5
d5 0.5 0 0 0 0.5
d6 0.33 0.33 0 0.33 0
d7 0 0 0 1 0
d8 0.33 0.33 0 0 0.33
d9 0 0 0.33 0.33 0.33

cost(df) 4 2 5 4 5
qw 1.49 0.66 2.66 2.16 1.99

qw/cost 0.37 0.33 0.53 0.54 0.39

third rounds, q3 and q1 are selected respectively and the solution of the weighted

greedy is X = (1, 0, 1, 1, 0), and its cost is 13(4+5+4).

3.4.2 Redundancy removal

A solution generated from the above two methods could usually contain redundancy,

i.e., although some columns from the solution are removed, it can still cover all the

rows of matrix A. Here, if a solution does not contain any redundancy, it is a prime

solution. To extract a prime solution from the solution X, we use the standard

procedure described in [49] and it is shown in Algorithm 3. In Algorithm 3, each

selected column (xj = 1) of the solution X is considered to be in order, and if
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Table 3.3: The second-round weight table of Example 2
t1 t2 t3 t5

d1 0 0 1 0
d3 0.33 0 0.33 0.33
d4 0 0 0.5 0.5
d5 0.5 0 0 0.5
d8 0.33 0.33 0 0.33

cost(df) 4 2 5 5
qw 1.16 0.33 1.83 1.66

qw/cost 0.29 0.165 0.36 0.33

X without it is still a solution, the corresponding xj is set to 0. When all the

selected columns of X have been considered, the derived solution X becomes a

prime solution.

Algorithm 3: Redundancy removal algorithm.

Input: an m× n matrix A = (aij), a solution n-vector X = (x1, ..., xn)
Output: a prime solution X = (x1, ..., xn)
Process:
1 foreach xu = 1 (1 ≤ u ≤ n)

2 set xu = 0 if ∀i, (
u−1∑
j=1

aijxj +
n∑

j=u+1

aijxj) ≥ 1;

3.5 Experiments and analysis

3.5.1 Experimental setup

The purpose of the experiment is to test whether the weighted greedy is better than

the greedy algorithm in terms of the solution results. Note that the performances

of the two algorithms are similar since they are both greedy algorithms.

On the same input matrix, the greedy algorithm may produce different solutions

because in each step, especially in the initial stage, there are ties to select from. In

our implementation, we randomly selected one of the candidates when ties occurred.

Therefore, the solution values of the same input fluctuate with each run.

We run each algorithm on each input data 100 times and record the statistics

of the 100 results, such as the maximum cost (max), the minimal cost (min), the
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average cost (avg) and the standard deviation of the costs (SD). More specifically,

given the results C1, C2, . . . , C100, the average and standard deviation of the results

are defined as follows:

SD =

√√√√ n∑
i=1

(Ci − avg)2

n
,

where avg =

n∑
i=1

cj

n
and n = 100.

The improvement of the weighted greedy algorithm can be calculated by using

the formula

IMP =
Cg − Cw

Cg

.

where Cg and Cw are the results from the greedy and weighted greedy algorithms

with the same characteristics, such as the average, maximum, and minimal results.

For example, for calculating the average improvement, Cg and Cw should be the

average costs from the greedy and weighted greedy algorithms.

3.5.2 Data

The experiment was carried out on two different sets of data. One is derived from

the deep web crawling problem, and the other is from the Beasley data that are the

standard benchmarks for set covering problems [26].

For the data in deep web crawling problem, we experimented with four data

collections that cover a variety of forms of web data, including

• regular web pages (web pages under .gov domain),

• web articles (articles in wikipedia.com),

• newspaper articles (from Reuters),

• newsgroup posts in newsgroups.

We experimented with these data in order to show that our algorithm performs

consistently across domains, and is independent of the forms of the web documents.

Although each data collection is huge, in the size of millions or more, we report

only the results on subsets of the documents that contain ten thousand documents.

We have experimented with some larger data size and observed similar results. For
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practical consideration, we restrict the row size to ten thousand so that we can run

numerous tests.

The columns or the queries are not so obvious to select. First we filter out very

popular queries and queries that occur in only one document in order to avoid trivial

solutions. For instance, if all the queries occur only once in all documents, it is trivial

to find an optimal solution if there is one. We select the remaining terms randomly

until µ = 20, where µ is the average document degree defined in equation 3.7. The

reason to set µ as 20 is that according to random graph theory [50], all the nodes

are most surely connected when the average degree is ln(m) where m is the number

of documents.

µ =

m∑
i=1

deg(i)

m
. (3.7)

The distribution of the document degrees of the four data sources is shown in

Figure 3.2 by using histogram on log-log scales. For each histogram, the x axis is for

the document degree and the y axis is for the number of documents with a certain

document degree. Each circle represents the number of documents whose degrees

are in a specified interval (bin) at x axis. Since the distribution is very skewed,

we use log-log format for x and y axes. To avoid the noise on the tail of each

histogram, we use logarithmic binning to vary the bin width and it increases in 2i

(i = 1, 2, 3, . . .). From the figure, we can see that the distribution of the document

degrees for our data follows the lognormal distribution [51].

The details of the corresponding matrices of the four data sources are sum-

marised in Table 3.4 where the Coefficient of Variation(CV ) is used to measure the

dispersion of document degree (deg), which is the ratio of the standard deviation to

the mean. Given an m×n matrix A, we apply the definition of CV in the following

way to measure the dispersion of the document degrees:

CV =
1

µ

√√√√ m∑
i=1

(deg(i)− µ)2

m
, (3.8)

Here the two algorithms were tested on 50 standard test problems as well, which

are called the Beasley data (J. E. Beasley is the first to produce those data). They

are from the OR-Library and available electronically [26]. All the problems in the

OR-library are used as standard data by researchers in Operations Research domain.
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Figure 3.2: The distribution of the document degrees using ’logarithmic binning’
in log-log scale for our data sources. The bin size of the data increases in 2i (i =
1, 2, . . .)

Table 3.4: The properties of our data sources (avg(df): the average of document
frequencies, max: the maximum document degree, min: the minimal document
degree, avg(CV ): the average of CV s, SD(CV ): the standard deviation of CV s,
number: the number of data sources.)

Data sourceRow(m)Column(n)avg(df)
document degree

max min µ CV
Reuters 9,990 5707 32.1 136 1 19.3 0.77

Wikipedia 9,989 7213 26.74 239 1 19.3 1.09
Gov2 9,885 4969 38.77 176 1 19.5 0.99

Newsgroup 9,988 5954 32.1 331 1 19.2 0.97
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Table 3.5: The properties of the Beasley data

Data setsRow(m)Column(n)avg(df)
document degree

max min µ
CV

avg(CV )SD(CV )number
4 200 1000 3.97 36 8 19.8 0.214 0.02 10
5 200 2000 3.97 60 21 39.7 0.155 0.01 10
6 200 1000 9.89 71 29 49.5 0.135 0.008 5
a 300 3000 6.02 81 38 60.0 0.118 0.001 5
b 300 3000 15.0 192 114 149.6 0.079 0.0003 5
c 400 4000 7.99 105 56 79.9 0.107 0.0005 5
d 400 4000 20.02 244 159 200.2 0.068 0.0002 5
e 50 500 9.97 124 82 99.7 0.089 0.004 5

Data sets 4-6 and A-E are from [49] and [44] separately, and the details of those

data sets is shown in Table 3.5.

In each problem of Beasley data, every column covers at least one row and

every row is covered by at least two columns. Note that the cost of each column

of a matrix is also randomly generated, representing generally defined cost. To use

them for our set covering problem, we replaced the original column costs by using

the cardinalities of the columns.

Figure 3.3 shows the distributions of the element (document) degrees of parts of

50 matrices. Their distributions nearly follow the normal distribution [52]. For each

histogram in the figure, x and y axes are for the element degree and the number of

elements respectively, and the bin size is 5.

3.5.3 Results

To clearly explain the results of the two methods, we separate the results obtained

before removing redundancy from those without redundancy based on our corpus

and the Beasley data.

For our data, Table 3.6 and Figure 3.4 show the results of the experiments with

redundancy. According to the table and the figure, our weighted greedy method is

much better than the greedy method applied to the four data sources:

• Even the maximum cost calculated by our weighted greedy method is better

than the minimal cost calculated by the greedy method;

• On average, our method outperforms the greedy method by approximately

15%.
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Figure 3.3: The distributions of element degrees of part of the Beasley data. The
bin size is 5.

Table 3.6: The results with redundancy on our data sources.
Data source Greedy Method Weighted Greedy IMP(%)

MAX MIN AVE SD MAX MIN AVE SD MAXMINAVE
Reuters 57907 55117 56716 508 47673 47664 47668 5 17.6 13.5 15.9
Wiki 69551 65293 67490 808 57001 56996 56998 2 18.0 12.7 15.5
Gov2 77302 71924 73444 844 62691 62673 62681 8 18.9 12.8 14.6

Newsgroup 68546 63331 66114 1089 56911 56319 56675 287 17.8 11.0 14.2
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Figure 3.4: The results of all experiments on each corpus data with redundancy
based on 100 runs. ’o’: the greedy method, ’.’: the weighted greedy method.
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The purpose of introducing weight into the greedy algorithm is to cover docu-

ments with low document degrees in earlier steps during the query selection. This

is confirmed in our experiment. Figure 3.5 shows the average document degrees

of the newly covered documents against the coverage in the greedy and weighted

greedy query selection processes. From Figure 3.5, we find that,

• for the greedy algorithm, the documents with high document degrees are cov-

ered at low coverage (in earlier steps), and the documents with low document

degrees are covered at high and moderate coverage (in later steps);

• compared to that of the greedy algorithm, its shape is relatively even. The

documents with high document degrees are covered at moderate and high

coverage, and the documents with low document degrees are covered at very

high and very low coverage.

As we mentioned, if the documents with high degrees are covered in earlier

steps, it will be covered repeatedly later and the values of new/cost of the rest of

the columns to be selected will be reduced even more, which will lead to a higher

total cost. This is demonstrated in Figure 3.6:

• except for the very beginning, the values of new/cost of the selected columns

from the weighted greedy algorithm are better than the ones from the greedy

algorithm;

• the values of new/cost of the selected columns from the greedy algorithm

decrease faster than the ones from the weighted greedy algorithm;

Figure 3.7 shows the average document frequencies of the selected documents

in the greedy and weighted greedy query selection processes on our data. From df

angle, in our data, there is not much difference between the two algorithms.

For the four corpus data sources, Table 3.7 and Figure A.1 show the results of

the two methods without redundancy. From Table 3.7, we find that

• the maximum and minimal costs of our weighted greedy method are better

than the corresponding ones from the greedy method;

• on average, our method outperforms the greedy method by approximately

5%.
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Figure 3.5: The average document degrees of the newly covered documents in the
greedy and weighted greedy query selection processes on our data sources. The bin
size is 5%.

Table 3.7: The results without redundancy on our data sources.
Data source Greedy Method Weighted Greedy IMP(%)

MAX MIN AVE SD MAX MIN AVE SD MAXMINAVE
Reuters 41407 38821 40173 518 39122 38354 38795 175 5.52 1.20 3.43
Wiki 49464 46422 47857 666 45744 44980 45344 183 7.52 3.11 5.25
Gov2 55845 52815 54028 600 52531 51378 52014 248 5.93 2.72 3.73

Newsgroup 47793 44397 45761 704 44611 42414 43578 566 6.66 4.47 4.77
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Figure 3.6: The average values of new/df in the greedy and weighted greedy query
selection processes on our corpus data sources. The bin size is 5%.
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Figure 3.7: The average document frequencies of the selected documents in the
greedy and weighted greedy query selection processes on our data sources. The bin
size is 5%.
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From Table 3.6 and Table 3.7, we can see that, for both algorithms with re-

dundancy and algorithms without redundancy, our method outperforms the greedy

method. There is less improvement by using our method, however, when redun-

dancy is removed from the original result. The reason is that, when we remove

redundancy from the original result, some columns causing overlapped coverage are

removed. This causes the results from the greedy and weighted greedy methods to

be closer to each other.

We have shown the experimental results of running the greedy and weighted

greedy algorithms on the four corpus data sources for crawling. Similar experiments

are also carried out on the Beasley data whose element degrees have a normal

distribution and small dispersion of document degree.

Table 3.8 and Table 3.9 show the average results for each data set from the two

methods with and without redundancy respectively (the corresponding complete

tables are shown in Table A.1 and Table A.2). From the tables, we find that,

• for each data set, the average maximum cost of the weighted greedy method

is better than the that from the greedy method;

• for around half of the data sets, the average minimal costs of the weighted

greedy method are worse than those generated by the greedy method;

• for all data sets, the average improvement of the weighted greedy method is

around 2%.

Overall, with or without redundancy, the improvement of our weighted greedy

method is small. In some cases, the results from executing the greedy algorithm

are better than those from executing ours.

In the Beasley data, for the results with redundancy (shown in Figure 3.8), the

less improvment is caused by the less variance of the document degrees due to the

normal distribution shown in Figure 3.3. Less variance of the document degrees

leads to the less difference when documents with low degree are covered at earlier

steps.

Figure 3.9 shows the document degrees of the newly covered documents in the

greedy and weighted greedy query selection processes on parts of the Beasley data

(the solid and dashed line represent the results of the greedy and weighted greedy

methods respectively). We find that, like our data, the weighted greedy method
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Table 3.8: The average results with redundancy for each set of the Beasley data.
Data set Greedy Method Weighted Greedy IMP(%)

MAX MIN AVE SD MAX MIN AVE SD MAXMINAVE
4 237.5 216.8 226.6 3.23 218.6 215.2 216.3 1.15 7.96 0.73 4.55
5 220.9 208.8 214.6 2.35 209.2 206 207.3 0.78 5.29 1.33 3.40
6 284.4 259 270.6 5.28 264 264 264 0 7.17 -1.94 2.44
a 344.4 334.2 342 3.62 335.6 334 334.6 0.44 2.39 0.06 2.16
b 440.2 410.4 424.6 6.06 420 419.8 419.8 0.1 4.59 -2.29 1.13
c 496.4 471.6 484.6 4.98 478.4 478.2 478.2 0.1 3.63 -1.40 1.32
d 631.2 590 611.4 7.98 605.6 605.6 605.6 0 4.05 -2.65 0.95
e 69.6 59.8 64.4 2.16 63.6 63.6 63.6 0 8.63 -6.36 1.25

Table 3.9: The average result without redundancy for each set of Beasley data.
Data set Greedy Method Weighted Greedy IMP(%)

MAX MIN AVE SD MAX MIN AVE SD MAXMINAVE
4 233.1 215.8 223.8 3.4 217.2 211 213.7 1.57 6.82 2.22 4.51
5 219 207.2 212.8 2.36 208.2 203.1 205.4 1.17 4.92 1.97 3.40
6 283.2 257.4 270.4 5.24 263.4 263.4 263.4 0 6.99 -2.33 2.59
a 349.6 330.8 339.4 3.86 332.8 329.4 330.8 1.1 4.80 0.42 2.53
b 434 416 424.6 6.12 418.6 418.4 418.4 0.1 3.45 -0.64 1.46
c 489.8 474.6 482.8 4.92 475.4 473.8 474.4 0.44 2.88 0.15 1.74
d 631.2 590 611.2 8.02 605.6 605.6 605.6 0 4.05 -2.65 0.92
e 69.6 59.8 64.4 2.16 63.6 63.6 63.6 0 8.63 -6.36 1.25
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Figure 3.8: The results of all experiments on Beasley data with redundancy. G: the
greedy method, W: the weighted greedy method.
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covers the documents with high degree earlier than the greedy method, but the

difference is much less than the one in our data sources, which can be shown in

Figure 3.9. It shows the average document degrees of the newly covered documents

in the greedy and weighted greedy query selection processes on parts of the Beasley

data.

Thus, the values of new/cost for each column in the greedy and weighted greedy

query selection processes are close to each other, as shown in Figure 3.10.

Figure 3.11 shows the average document frequencies of the selected documents

in the greedy and weighted greedy query selection processes on parts of the Beasley

data. Like in our corpus data, they are quite similar to each other in the Beasley

data as well.

For the results without redundancy (partly shown in Figure A.2), the improve-

ment is almost the same as the one with redundancy. Since the original solutions

from the two methods are close to each other, the solutions after redundancy re-

moval are also similar to one another.

3.5.4 Impact of data distribution

The only difference in the query selection strategy between the weighted greedy and

greedy algorithms is that the formula new/cost is replaced by the formula qw/cost.

The key idea of the change is that all newly covered rows should not be considered

totally in the same way (represented as unit cost 1) and there should be difference

in covering different rows. In our context, such difference is caused by the covering

sequence for each row, i.e., some rows should be covered earlier than some others

by selecting the corresponding columns.

According to Definition 3, dw(i) = 1
deg(i)

(the inverse of document degree). If

all rows are covered by the same number of columns (that is ∀i, deg(i) = c where

c is a non-negative constant), all document weights are the same. In this setting,

the weighted greedy algorithm turns out to be the same as the greedy method. Of

course, there would be no saving in this case. We can only expect cost savings by

using our algorithm when the document degrees are different, i.e. some documents

have larger degrees than some others.

Therefore, we argue that the bigger dispersion of deg(i) is the basis of the more

improvement of the weighted greedy method.
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Figure 3.9: The average document degrees of the newly covered documents in the
greedy and weighted greedy query selection processes on parts of the Beasley data.
The bin size is 10%. The solid and dashed lines represent the results of the greedy
and weighted greedy methods respectively.
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Figure 3.10: The average values of new/cost for each column in the greedy and
weighted greedy query selection processes on parts of the Beasley data. The bin
size is 10%. In subgraph e.1, the histogram is replaced with the scatter plot because
some values of new/cost are zero and no column is selected in the corresponding
coverage ranges.
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Figure 3.11: The average document frequencies of selected columns in the greedy
and weighted greedy query selection processes on part of Beasley data. The bin
size is 10%. In subgraph e.1, the histogram is replaced with the scatter plot and
the reason is same as Figure 3.10.
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The dispersion of the document degree heavily depends on its distribution of

document degree. For example, with uniform distribution, there is no dispersion on

the document degree. This is the reason that, for the experiments in this chapter,

we use two different kinds of datasets with two different types of distribution data.

For our data, the distribution of the document degrees is close to the lognormal

distribution shown in Figure 3.2. Such a distribution could cause a high dispersion

of the document degrees; for the Beasley data, its distribution of the document

degrees is similar to the normal distribution shown in Figure 3.3. Its dispersion of

the document degrees is much smaller than that of our data.

Note that Figure 3.2 is based on log-log scale and Figure 3.3 is not. Although

their shapes look similar, our data has a much bigger dispersion of the document

degrees than the Beasley data.

The dispersion of deg(i) in a data source (doc-term matrix), it can be measured

by the Coefficient of Variation (CV) defined in equation 3.8.

From Table 3.4 and Table 3.5, we find that the dispersions of deg(i) in our data

are much bigger.

For the results with redundancy, in our data, the weighted greedy method out-

performs the greedy method at around 15%; in the Beasley data, there are less

improvements (≤ 7%). As the improvement from using our algorithm is based on

covering documents with small document degrees earlier, if there is no much differ-

ence among the document degrees, we cannot gain much improvement. Compared

to the lognormal distribution, the normal distribution has a much smaller dispersion

of the document degrees, thus there is not much savings when using the weighted

greedy algorithm.

Having shown our results on two kinds of datasets with different data distribu-

tions, we quantitatively measure the improvement according to the dispersion of

document degrees: we will measure the improvement by using the weighted greedy

algorithm according to the CV of the document degree. To do so, the Pearson Prod-

uct Moment Correlation Coefficient (PC for short) is used here. PC is a measure of

the linear correction between two variables X and Y , giving a value between -1 and

+1 inclusive. The correlation is 1 in the case of an increasing linear relationship

and is -1 in case of a decreasing linear relationship, and a value between -1 and

1 indicates the degree of linear dependence between the variables. It is defined as

follows:
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Figure 3.12: the relationship between the CV of document (element) degree and
the average of the improvement of the weighted greedy method on our and Beasley
data with redundancy.

Definition 5 (PC) Given two random variables X and Y, the Pearson’s correla-

tion coefficient ρ between the two variables is defined as the covariance of the two

variables divided by the product of their standard deviations.

ρ =

∑n
i=1(Xi − X̄)× (Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
. (3.9)

In our context, X is the CV and Y is the average of the improvements of the

weighted greedy algorithm for each matrix.

Based on all the results with redundancy of the corpus and the Beasley data, we

have ρ = 0.88. Figure 3.12 shows the relationship between the CV s and the average

improvements of all the results with redundancy. From the figure, we can see that

the improvement of the weighted greedy method has a positive linear correlation

with the CV of the document degrees.

In addition, the relationship between the CV and the average improvements of
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all results without redundancy is shown in Figure A.3 as well, and its ρ = 0.33.

3.6 Conclusion

In this chapter, we present a weighted greedy method to addressing the query

selection problem. It is designed for textual deep web data sources whose document

degrees follow a lognormal distribution. Targeting the lognormal distribution, the

weighted greedy method shows a better performance than the greedy algorithm that

is one of the most popular query selection methods. In addition, the weighted greedy

method is efficient for large-scale deep web data sources (complexity O(m×n)) and

it is practical. Moreover, the performance of the weighted greedy method on average

outperforms the greedy method on the Beasley data whose element degrees have

a normal distribution and we further argue that the improvement of the weighted

greedy method without redundancy removal has a positive linear correlation with

the CV of the document degrees of the target data source.

47



Chapter 4

Sampling-based query selection

method

4.1 Introduction

In the previous chapter, the query selection problem is represented by Set Covering

Problem (SCP). The experimental results from the greedy and weighted greedy

algorithms can be considered a baseline to compare with other query selection

methods. However, for real cases, before crawling the deep web there is no input

to the set covering algorithm, i.e., neither documents nor terms are available. To

bootstrap the process, a sample of the data source is needed so that some good

terms are selected and sent, and more documents are returned and added to the

input of the set covering problem.

The challenge is to select a set of appropriate queries without the global knowl-

edge of the data source.

As we mentioned in Chapter 2, there are two typical methods to learn queries.

One is the incremental method [17, 7] and the other is the sampling-based method [16].

A shortcoming of the incremental method is the requirement of downloading and

analyzing all the documents covered by current queries in order to select the next

query to be issued, which is highly inefficient. Even when our final goal is to

download documents instead of URLs, it would be efficient to separate the URLs

collection from the document downloading itself. Usually, the implementation of a

downloader should consider factors such as multi-threading and network exceptions,
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and should not be coupled with link collection.

Targeting the disadvantage of the incremental method, we propose an efficient

sampling-based query selection method for collecting the URLs of the documents

inside a data source. We first collect from the data source a set of documents as a

sample that represents the original data source. From the sample data, we select a

set of queries that cover most of the sample documents with a low cost based on

the greedy algorithm defined in Algorithm 1. Then we use this set of queries to

extract data from the original data source.

The main contribution of our sampling-based method is the hypothesis that

the queries working well on the sample will also induce satisfactory results on the

original data source. More precisely, there are three hypotheses:

• The vocabulary learnt from the sample can cover most of the original data

source;

• The cost of our method in the sample can be projected to the original data

source;

• The sizes of the sample and the query pool for our method do not need to be

very large.

While the first result can be derived from [1], the last two are not reported in the

literature as far as we are aware of. As our method is dependent on the sample size

and the query pool size, we have empirically determined the sizes for the sample

and the query pool for effective crawling of a deep web data source.

In this chapter, we still focus on textual data sources with keyword-based query

interfaces and without return limit.

4.2 Problem formalization

4.2.1 Hit rate and overlapping rate

Since the information of the original data source could barely be known, it is hard to

retrieve all the documents inside it like the case in the last chapter. Thus, here the

goal of the query selection problem is to retrieve most of the links of the documents.

This is formalized as the hit rate that is defined below.
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Definition 6 (Hit Rate, HR) Given an m×n doc-term matrix A = (aij) derived

from a data source DB = {d1, . . . , dm} and a query pool QP = {q1, . . . , qn} and

a set of queries Q = {q1, . . . , qk} (Q ⊆ QP ) represented by an n-binary vector

X = {x1, . . . , xn}, xj = 1 if qj ∈ Q, otherwise, xj = 0. Let Y = {y1, ..., ym} be an

m-binary vector and yi = 1 if
n∑

j=1

aijxj ≥ 1, otherwise, yi = 0. The hit rate of Q in

DB, denoted by HR(DB,Q), is defined as the ratio between the number of unique

documents (u) collected by queries in Q and the size of the data source DB, i.e.,

u =
m∑
i=1

yi,

HR(DB,Q) =
u

m
.

Here the overlapping rate is used to measure the performance of a set of queries

instead of the total cost, which is defined as follows:

Definition 7 (Overlapping Rate, OR) Given a set of queries Q = {q1, . . . , qk},
the overlapping rate of Q in DB, denoted by OR(DB, Q), is defined as the ratio of the

total number of th collected documents (v) to the number of the unique documents

retrieved by queries (u) in Q, i.e.,

v =
n∑

j=1

cjxj,

OR(DB,Q) =
v

u
,

where cj =
m∑
i=1

aij.

Since data sources vary in their sizes, the total number of the documents col-

lected by a set of queries Q for crawling a large data source with a larger v does

not necessarily mean that its cost is higher than the cost of the set of queries Q′

for crawling a small data source with a smaller v. Therefore, we normalize the cost

by dividing the total number of the documents by the unique ones. When all the

documents are retrieved, u is equal to the data source size.
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Example 3 Here we use the doc-term matrix A shown in Table 3.1 as an example,

DB = {d1, . . . , d9} and the query pool QP = {q1, . . . , q5}. OR and HR for queries

{q4, q3, q5} and {q4, q3, q1} are calculated as follows:

OR(DB, {q4, q3, q5}) =
4 + 5 + 5

9
=

14

9

HR(DB, {q4, q3, q5}) =
9

9
= 1

OR(DB, {q4, q3, q1}) =
4 + 5 + 4

9
=

13

9

HR(DB, {q4, q3, q1}) =
9

9
= 1

since {q4, q3, q1} has a lower OR than {q4, q3, q5} and they produce the same

HR, we should use the former instead of the latter to retrieve the documents.

4.2.2 Relationship between HR and OR

Another reason to use HR and OR to evaluate the query selection method is that

there is a fixed relationship between HR and OR when documents can be obtained

randomly, i.e., if documents can be retrieved randomly with equal capture proba-

bility, it is shown in [53, 14] that

HR = 1−OR−2.1. (4.1)

When documents are retrieved by random queries, the relationship between HR

and OR are roughly

HR = 1−OR−1. (4.2)

As a rule of thumb, when OR = 2, most probably we have retrieved 50% of

the documents in the deep web data source with random queries. This provides a

convenient way to evaluate the query selection algorithms.

51



Figure 4.1: Our sampling-based query selection method.

4.3 Our method

4.3.1 Overview

The challenge in selecting appropriate queries is that the actual corpus is unknown

to the crawler from the outset, hence the crawler cannot select the most suitable

queries without the global knowledge of the underlying documents inside the data

source.

With our query selection method for deep web crawling, we first download a

sample set of documents from the original data source. From this sample, we select

a set of queries that can cover most of the documents in the sample data source

with low cost. We show that the same set of queries can also be used to cover

most of the documents in the original data source with a low cost. This method is

illustrated in Figure 4.1 and explained in Algorithm 4.

In this chapter, we use DWC(DB,m, µ) to denote the output obtained by

running the algorithm with the input data source DB, the sample size m, and the

average document degree µ.
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Algorithm 4: Outline of Deep Web Crawling algorithm DWC(DB, s, µ).

Input: the original data source DB, the sample size m, the average
document degree µ.

Output: a set of queries Q.
Process:

1. Create a sample data source D by randomly selecting m number of
documents from the corpus;

2. Create a query pool QP from the terms that occur in D and their average
document degree is µ;

3. Select a set of queries Q from QP that can cover at least 99% of the sample
data source D by running the greedy algorithm defined in Algorithm 1;

In our algorithm and experiments, random samples are obtained by generating

uniformly distributed random numbers within the range of the document IDs in

the corpus. However, in practical applications, we do not have direct access to the

whole corpus. Instead, only queries can be sent and the matched documents are

accessed. In this scenario, the random sampling of the documents in a corpus is a

challenging task, and has attracted substantial studies (for example in [39, 1, 38]).

Since the cost of obtaining such random samples is rather high, our experiments

skip the random sampling process and take the random samples directly from the

corpus.

Not all the terms inD can be candidate queries. To avoid the scalability problem

and reach a high coverage in DB without using stop words, only the terms whose

sample document frequencies are within a certain range are qualified to be input

into the query pool QP .

Finally, the set of queries in Q selected from the query pool depends on the

sample by using the greedy algorithm.

To refine this algorithm, two more parameters need to be decided.

One is the number of documents that should be selected into the sample, i.e., the

size of the sample data source D. Although in general a larger sample will always

produce a better result in DB, we need to find an appropriate size for the sample

so that it is amenable to efficient processing while still large enough to produce a

satisfactory query list in QP by using the greedy algorithm.
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The second uncertainty is how to select the terms from D in order to form the

query pool QP . There are several parameters that can influence the selection of

terms, typically, the size of the pool and the document frequencies of the selected

terms.

The soundness of Algorithm 4 relies on the hypothesis that the vocabulary that

works well for the sample will also be able to extract the data from the actual data

source effectively. More precisely, this hypothesis says that

• the terms selected from the sample data sourceD will cover most of documents

in the original data source DB, and

• the overlapping rate in DB will be close to the overlapping rate in D.

Before analyzing the correspondence between the sample and the original data

source in detail, we first show how to address the problem of query selection from

a sample data source.

4.3.2 Creating the query pool

To select the queries to issue, first of all we need to obtain a query poolQP . HereQP

is built from the terms in a sufficiently unbiased sample of the original corpus data

source. We should be aware that random queries cannot produce random documents

because large documents have the higher probability of being matched. It is a rather

challenging task to obtain random documents from searchable interface.

Not every word in the first batch of the search results should be taken into

our consideration, due to the time constraint we suffer in order to calculate an

effective query set Q from D with high hit rate and low overlapping rate. As we

mentioned before in Chapter 3, searching for an optimal query set can be viewed

as a set covering problem. Set covering problem is NP-hard, and even the greedy

algorithm shown in Algorithm 1 has a time complexity that is at least quadratic

to the number of terms in QP . This determines that we are able to calculate Q

only with a query pool of limited size. The first batch of the search results, on

the contrary, may well-exceed such a limit. For instance, the first-batch of results

(around 3000 documents) selected randomly from the newsgroup corpus contains

more than 80,000 unique words. Therefore, we consider only a subset of words from

the sample documents as a query pool.
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Apparently, the size of this subset affects the quality of the set of queries in Q

we generate. Moreover, it should be measured relative to the sample size and the

document frequencies of the terms.

Intuitively, when a sample contains only a few documents, very few terms would

be enough to jointly cover all those documents. When the sample size increases,

very often we need to add more terms into the query pool QP to capture all the

new documents.

There is another factor to consider when selecting queries in the query pool, i.e.,

the document frequencies of the terms in the sample. There are several options:

• Random terms Randomly selecting the terms in the sample data source

may be an obvious choice. However, it suffers from low hit rate in the original

data source DB because most of the randomly selected queries are of low

document frequencies. According to Zipf’s Law [30], the distribution of words

sorted by their frequencies (i.e. their number of occurrences) is very skewed.

In one of our sample data source D, about 75% of the words have very low

frequencies. Therefore, randomly pulling words from the vocabulary to reach

a high coverage in DB seems like very hard. The reasons are that 1) we

will use too many such queries with small number of returns to create the

query pool QP and it is unaffordable for most of the set covering algorithms

to deal with such a big QP ; 2) even if D can be fully covered by the low

frequency queries, the hit rate in DB caused by them could be rather low

because the sample document frequency of the low frequency term usually

cannot be proportionally enlarged in DB. For example, if the df of a low

frequency term in D is ”1”, it is highly likely that its df in DB is still 1 or 2,

not the proportionally enlarged document frequency (1*|DB|/|D|).

• Popular terms Another possible choice is the popular words in the sample,

which are terms with high document frequencies. Although high document

frequency terms in D are easier to keep their properties in DB than low

frequency terms, popular words such as stop words (words filtered out prior

to) are not selected for two reasons. One is that many data sources do not

index stop words. Hence using stop words to extract documents may return

nothing. The second reason is that, if only high frequency terms are used as

queries, they could cause more duplicates.
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• Terms within a certain range of the document frequencies Since nei-

ther random words nor popular words are good choices in the experiment

described in this chapter, we select the terms that have document frequencies

ranging between 2 and 20% of the sample size. For example, if the sample

size is 2,000, we use the words with df values between 2 and 400. Words with

f = 1 are most probably rare words. Words that appear in more than 400

documents are too popular to consider.

The size of the query pool should also be measured relative to the document

frequencies of its terms: terms with low frequencies contribute less to the cover-

age of the document set. Taking into account the sample size and the document

frequencies, here we use the average document degree u defined in equation 3.7 to

measure the pool size. The average document degree represents the total number

of documents that can be retrieved by the queries in the query pool, normalized

by the sample size. For example, if µ = 20, on average each document is captured

20 times if all queries in QP are used. We will discuss exactly proper value for µ

below.

4.3.3 Selecting queries from the query pool

Once the query pool is established, we need to select from this pool some queries

that will be sent to the original data source DB.

In a query selection, it is not easy to find a complete cover, especially when

the language model of the data source, such as the distribution of the terms in the

corpus, is unknown beforehand. Hence, the set covering problem is generalized to

the p-partial coverage problem, where p is the proportion of the coverage required.

Let QP = {q1, q2, . . . , qn} be a query pool. We need to find a subset Q =

{q1, . . . , qn′}, where n′ < n, so that

HR(D,Q) = p,

and

OR(D,Q)

is minimal.
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Table 4.1: Summary of test corpora
Name Number of docs Size in MB Avg file size(KB)
Reuters 806,791 666 0.83

Wikipedia 1,369,701 1950 1.42
Gov 1,000,000 5420 5.42

Newsgroup 30,000 22 0.73

According to Definition 7, if OR(D,Q) × |D| and p = 1, it is the total cost

of Q and the problem is exactly the same as the set covering problem defined in

Definition 1. Here the greedy algorithm defined in Algorithm 1 can be used by

slightly changing the requirement (line 2) While(
m∑
i=1

yi < m) into While(
m∑
i=1

yi <

p×m) where 0 ≤ p ≤ 1.

4.4 Experiment environment

We carried out our experiments on the same corpus data in Chapter 3. The four cor-

pora are Reuters, Gov, Wikipedia, and Newsgroup. They contain different numbers

of documents ranging between 30 thousand and 1.4 millions. Their characteristics

are summarized in Table 4.1. Again these are standard test data that are used by

many researchers in information retrieval.

• Reuters is a TREC data set that contains 806,790 news stories in English

(http://trec.nist.gov/data/reuters/reuters.html).

• Gov is a subset of Gov2 that contains 1 million documents. Gov2 is a TREC

test data collected from .gov domain during 2004, which contains 25 million

documents. We used only a subset of the data for efficiency consideration.

• Wikipedia is the corpus provided by wikipedia.org which contains 1.4 million

documents.

• Newsgroups includes 1,372,911 posts in various newsgroups and only 30,000

posts report here.

In the experiments, we built our own search engine using Lucene [54] to obtain

the details of a data source, such as its size. In the real deep web data sources, usu-
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ally the total number of documents is unknown, hence it is impossible to calculate

HR and evaluate the methods.

4.4.1 Hypothesis I

Our first hypothesis is that in general the HR in a small sample data source D can

be projected to the original data source DB. Namely, the queries learnt from a

small sample data source covers more than 99% data in D and can cover most of

the data in the original data source as well, i.e., the queries can be used to retrieve

most of the documents in DB.

Hypothesis 1 Suppose that the sample data source D from the original data

source DB and the set of queries Q are created by our algorithm. If |D| > 1,000

and µ = 20, then

HR(DB,Q) > 0.8.

Here we assume that the size of DB is a very large number, i.e., |DB| >> 1000.

We tested the cases where the sample size range between 100 and 4,000 docu-

ments for the four corpora studied. Figure 4.2 shows HR in D and DB as a function

of the sample size. It demonstrates that our method quickly finds the queries that

can account for 90% of the documents in DB and the HRs in D and DB are close

to each other when the sample size is bigger than 1,000. On the other side, it is

shown that at the beginning when the sample size increases, HR in the original

data source is higher. After about 1,000 documents, the gain in HR tapers and the

increase of the sample size has little impact on the HR in DB.

This phenomenon can be explained by three reasons: 1) Heaps’ law states that

when more documents are gathered, there are diminishing returns of new words.

When 1,000 documents are checked, most common words are already recovered

from the sample. There are very few useful words left outside that 1,000 sample; 2)

the dfs of common words in D usually can be proportionally enlarged in DB; 3) the

set of selected queries from the greedy algorithm mostly contains enough common

words if |D| is bigger than 1,000.
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Figure 4.2: Impact of sample size on HR projection. The queries are selected from
D and cover above 99% of the documents in D. The HR in DB is obtained when
those queries are sent to the original data source DB. µ = 20.
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4.4.2 Hypothesis II

While the first hypothesis shows that it is easy to select the queries to retrieve

most of the documents in DB, what we concern about more is the cost, i.e., the

overlapping rate, to retrieve the data.

Although for the sample data source D, we make sure that the selected queries

have a low cost by applying the greedy algorithm, we are not sure yet whether the

cost would also be low for the original data source DB. Hence we need to verify

our second hypothesis, i.e., the queries selected by Algorithm 4 from D will also

result in low overlapping rate in DB. More precisely, it can be described as:

Hypothesis 2 Suppose that queries Q are selected by our method, i.e., Q =

DWC(DB,m, µ), where m > 1, 000 and µ > 10, then

1.5×OR(D,Q) > OR(DB,Q).

To verify this, we conducted a series of experiments to compare ORs in sample

D and the original data source DB. Figure 4.3 illustrates the experimental result.

In this experiment, the range of the size of sample is between 100 and 4000 and the

average document degree µ is set to 20. From Figure 4.3, we find that the over-

lapping rates in D and DB are close to each other when sample size is bigger than

1,000. The OR is caused by co-occurrence words and the result demonstrates that

the patterns of co-occurrence words in DB can be successfully learnt by sampling.

This is the basis that the OR in sample can be projected to the original data source.

Although this experiment shows that our method is effective, we need to identify

what are the appropriate sizes for D and QP , respectively.

4.4.3 Hypothesis III

The previous two hypotheses have shown that

• we can cover most of the documents based on a sample;

• we can do that with a low cost.

The next concern is exactly how large the sample and what the proper value for

the average document degree of the query pool should be. Our third hypothesis is
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Figure 4.3: Impact of sample size on OR projection. X axis is sample size, Y axis
is HR. Sample size is from 100 to 4,000 documents and µ = 20.
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that, to download most of the documents with low overlapping, the sample size and

the value for the average document degree of the query pool do not need to be very

large. This will be elaborated in two aspects, i.e., the sample size and the value for

the average document degree.

Sample size

Figure 4.2 shows that a few thousands of sample documents are good enough to

harvest most of the documents in DB. Increasing sample may not always lead to

better coverage when the sample size is bigger than 1,000. We have the following

hypothesis:

Hypothesis 3.1 For any data source DB, there exists m1 > m2 > 1000 and

µ > 10 s.t. let

Q1 = DWC(DB,m1, µ),

Q2 = DWC(DB,m2, µ),

then

HR(DB,Q1) < HR(DB,Q2).

Similarly, Figure 4.3 shows that the change of the overlapping rate becomes

little when the sample size is bigger than 1,000. The impact of the sample size on

OR can be summarized as following:

Hypothesis 3.2 For any data source DB, there exists m1 > m2 > 1000 and

µ > 10 s.t. let

Q1 = DWC(DB,m1, µ),

Q2 = DWC(DB,m2, µ),

then

OR(DB,Q1) > OR(DB,Q2).

Intuitively, Hypothesis 3.1 and 3.2 say that a larger sample size does not guar-

antee a better result. For Hypothesis 3.2, someone may say the OR is subject to

the HR and it is meanless to list the OR without the reference to HR. In fact, here

we assume the HRs of two samples are very close to each other and this is shown

in Figure 4.3.

We conducted more experiments to investigate the impact of sample size on
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Figure 4.4: The impact of the sample size and the average document degree on HR.

the hit and overlapping rate respectively. Figure 4.4 and Figure 4.5 show the HR

and OR in DB as functions of the sample size and the average document degree.

The average document degree is in the range of between 5 and 30. We ignored the

value smaller than five because it will not produce enough queries to cover all the

documents.

The experimental results conform to Hypothesis 3.1 and 3.2 as well. Sometimes

a larger sample size may induce a higher overlap in DB. Although it is counter-

intuitive, the reason is that with more documents in the sample, there are more

words to choose from, most of them having low frequencies according to Zipf’s law.

When those low frequency words are selected by the greedy algorithm, they result

in a low OR in the sample data source D. However, when they are mapped to the

original data source DB, the patterns of their co-occurrence in D and DB can be

very different and then the OR could get worse.

Average document degree

This experiment investigates the impact of the query pool size represented by the

average document degree on HR and OR. Since HR and OR will also vary with
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Figure 4.5: The impact of the sample size and the average document degree on OR.
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different sample sizes, we include sample sizes as another dimension of input in our

experiments.

First we need to investigate the impact of the value of the average document

degree on HR. Our hypothesis can be formulated as below:

Hypothesis 3.3 For any data source DB, there exists µ1 > µ2 > 10 and m >

1000 s.t. let

Q1 = DWC(DB,m, µ1),

Q2 = DWC(DB,m, µ2),

then

HR(DB,Q1) < HR(DB,Q2).

In particular, HR(DB,Q) achieves the highest value if µ is between 10 and 20.

From Figure 4.4, it can be seen that HR is low only when µ < 10. When the

value of µ becomes larger (µ > 20), HR decreases because the inclusion of more

low frequency words in D, which are most probably still of low frequencies in DB

and this makes the HR becomes worse. The conclusion of this experiment is that

the best performance is achieved when µ is set between 10 and 20.

Another investigation is the impact of the value of the average document degree

on OR. Although Figure 4.5 shows that usually the OR decreases with the increase

of µ, the OR is dependent of the HR which decreases simultaneously. Thus, in

order to have an objective comparison, we measure the improvement of OR over

the random method which obtains the same hit rate. Our empirical study shows

the following results:

Hypothesis 3.4 Suppose that two sets of queries Q and Q’ have the same hit

rate. Q is selected by our algorithm, while Q’ is randomly selected from the query

pool. i.e.,

Q = DWC(DB,m, µ),

HR(DB,Q) = HR(DB,Q′).

Let ORimprovement be

OR(DB,Q′)−OR(DB,Q).
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Figure 4.6: The impact of the value of the average document degree on OR improve-
ment from the comparison between our and random methods for Reuters corpus.

Then the change of ORimprovement likes a concave function as µ grows.

The experiment is carried out as follows: we first issue all the selected queries

Q to the DB and record the overlapping rate OR(DB,Q) and HR(Q,DB) at the

end of querying process. Then we use the randomly selected queries Q’ to reach

the same HR, and record the overlapping rate OR(DB, Q’) at this point. The

improvement of OR is

OR(DB,Q′)−OR(DB,Q).

Figure 4.6 depicts the improvement of OR while the sample size and the value

of the average document degree vary for Reuters corpus. It shows that the value

of the average document degree does not need to be very large - the best result is

obtained while µ is around 20, which can be explained again by the inclusion of

rare words.

Figure 4.6 also gives us an overall comparison between our method and the

random method on Reuters corpus. First of all, no matter what the sample size

and the query pool size are, the result of our method is always better than that

of the random method. We can also see that usually the larger samples introduce

more improvements in overlapping, while the value of the average document degree

does not matter very much.
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4.4.4 Comparing queries on other data sources

The results in the preceding experiments show that the queries selected from the

samples can cover most of the original data source effectively. However, these

experiments do not rule out another possibility, i.e., whether queries selected from

any English corpus may work equally well for all the data sources. If that were true,

it would imply that the sampling process might not be necessary-we could select

appropriate queries once and use those queries for all data crawling tasks.

In order to show that the sampling process is necessary, we need to show that

the selected queries from a sample of DB will not work well on another data source

DB.

To be precise, suppose that Q is selected from one original data source DB

based on our method, i.e.,

Q = DWC(DB,m, µ),

m > 1000, µ > 10.

Suppose that Q
′
and Q

′′
are two subsets of Q that can achieve the same high HR

in original data sources DB and another arbitrary data source DB
′
(DB

′ ̸= DB).

i.e., Q
′ ⊆ Q, Q

′′ ⊆ Q, such that

HR(DB,Q
′
) = HR(DB

′
, Q

′′
) > 50%.

We demonstrate that

OR(DB,Q
′
) < OR(DB

′
, Q

′′
).

Figure 4.7 shows the results of applying queries to other corpora. For example,

the sub figure from the Reuters corpus shows the OR/HR relationship for the

queries selected from a sample of Reuters. Those queries are subsequently sent to

all the four corpora. The charts show that in three cases queries selected from

DA will perform better in DBA than other DBs, with the exception of Wikipedia.

Wikipedia contains a variety of topics, resulting in samples that are representative

for a variety of corpora. Hence the learnt queries work equally well for the other

corpora.
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Figure 4.7: Apply queries selected in one corpus to other corpora. Sample size is
3,000, µ = 20. Each sub figure shows the querying results for the four data sources
with the queries selected from one particular corpus.

Comparing Figure 4.7 with the random method in Figure 4.3, we find that

queries learnt from corpus A can also improve the performance of crawling corpus

B, albeit not as good as learning from corpus B directly. An explanation for this is

that some groups of words tend to co-occur more often in all corpora. By learning

less overlapping words in one corpus, we break up those co-occurrence words and

get better results in another corpus.

4.4.5 Comparing queries with Ntoulas’ method

One of the elaborate query selection methods is provided by Ntoulas et al in [17],

as mentioned in Chapter 2. This method is an incremental crawling method which

selects queries from the documents that have been downloaded, and the number of

the documents increases as more queries are sent. Their method selects the query
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returning most new documents per unit cost iteratively. This can be represented

by the following formula

Nnew(q
k)

Cost(qk)
=

Pnew(q
k)× |DB|

cq + cr(P (qk)× |DB|) + cd(Pnew(qk)× |DB|)
=

1
cq

Pnew
+ cr

P (qk)
Pnew(qk)

+ cd
(4.3)

where

• Nnew(q
k) is the numbers of the new returned documents by issuing qk;

• P (qk) and Pnew(q
k) denote the fraction of all the returned documents and

the new returned documents by issuing qk to the original data source DB.

Pnew(q
k) = P (qk)−P (q1∨· · ·∨ qk−1)P (qk|q1∨· · ·∨ qk−1) where {q1, . . . , qk−1}

are all the previously selected queries;

• cq, cr, and cd are the costs for sending qk, retrieving all URLs of matched

documents, and downloading all matched documents respectively.

Since there is no prior knowledge of all the document frequencies of the queries in

the original data source DB, this method requires the estimate of the document fre-

quency to calculate Pnew(q
k) based on the documents already downloaded. Because

the MLE is used to estimate the document frequency for each term in the current

downloaded documents in [17] (the detail is shown in Chapter 5), the selected query

needs to maximize Pnew(q
k) according to equation 4.3. Namely, Ntoulas’ method

prefers popular terms as queries.

The results of the comparison on the four data sources are shown in Figure 4.8.

In this experiment, our method sets the sample size at 3,000, µ = 20, and the range

of the sample document frequencies of the queries are between 2 and 500. For

Ntoulas’ method, the initial query is set to the randomly selected term ”good” and

all terms whose document frequencies inDB are more than 20%|DB| are considered
stop words. The stopping criterion is that no new document is returned after 10

consecutive queries sent.

From Figure 4.8, we find that our method outperforms Ntoulas’ method in the

four data sources. In addition, our method is much more efficient than Ntoulas’

method since it is a sampling-based method rather than an incremental method.
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Figure 4.8: Comparison with queries selected by using Ntoulas’ method. For our
method, the sample size is 3000, µ = 20 and the range of the sample document
frequencies of the queries are between 2 and 500. For Ntoulas’ method, the stopping
criterion is that no new document is returned after 10 consecutive queries sent.
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4.4.6 Selecting queries directly from DB

When queries are selected from the greedy algorithm that directly works on the

original data source DB instead of a sample data source D, those queries would

certainly perform better than our method. To learn whether the sampling method

is effective, we would like to know how much better the direct selection method is

than our sampling method. Figure 4.9 shows the difference when the queries are

selected from the sample data source D and the original data source DB. In this

experiment, our method sets the sample size at 4,000, µ = 30, and the range of the

document frequencies of the queries as between 2 and 800.

The experiment shows that for all the four corpora we investigated, the sam-

ple based on our method performs nearly as good as the direct selection method,

especially when the hit rate is close to one. In particular, the 4th sub figure for

the Newsgroup corpus shows that the two approaches have almost the same per-

formances. This can be explained that the difference between the sample size and

the actual data source is not as big as other corpora because the Newsgroup corpus

just has 30,000 documents.

4.5 Conclusion

In this chapter, we propose an efficient and effective sampling-based query selection

method for deep web crawling. It can retrieve most of the data in a text data source

with a low overlapping rate. Our empirical study on the four corpus data shows

that, using a sample of around 2,000 documents, we can efficiently select a set of

queries that can cover most of the data source with a low cost. We also empirically

identified the appropriate size for the sample and the value of the document degree

of th query pool.

The main contribution of our work is that it shows that a relatively small set of

sample documents can be used to select the queries to efficiently cover most of the

data source. Using a sample to predict the characteristics of a total population is

widely used in various areas. Sampling a data source is well studied. Our Hypothesis

1 is related with the result by Callan et al [1], which says that using around 500

documents from a sample, one can predict rather accurately the ctf (total term

frequency) ratio for the DB. However, Hypotheses 2 and 3 are proposed by us as
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Figure 4.9: Comparison with queries selected directly from DB. Each sub figure
shows the querying results for queries selected from one particular data source.
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far as we are aware of.
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Chapter 5

Ranked data source

5.1 Motivation

The set covering based crawling method introduced in the previous two chapters

is based on the assumption that all the matched documents are returned. In the

real deep web data sources, especially the large ones, documents are ranked and

only the top k of them are returned even if there are more than k number of

documents matching a query. For instance, Amazon.com only returns top 500

products (documents) to users by submitting queries at its home page. For this

kind of data sources, the set covering approaches no longer works fine because highly

ranked documents tend to be retrieved quite often, while lower ranked documents

have less probability of being returned even if they are matched.

To explain the phenomenon, we have conducted three experiments which are

illustrated in Figure 5.1. The data source is the Reuters corpus that contains

806,791 documents. Each document is assigned a randomly generated static no

duplicated ranking value. In each experiment, 100 queries are sent. The return

limit k is 20, and the document frequencies F of the queries are 40, 40-80 and 80

respectively for each experiment.

From Figure 5.1, we find that, if queries with large document frequencies, 1)

documents ranked low may not be retrieved and thus, high coverage rates cannot

be reached; 2) many documents ranked high are repeatedly retrieved, causing high

redundancy. Here, document frequencies F are considered large compared to the

return limit k. For example, if k = 20, F = 40 is considered large.

Figure 5.1(B) shows the ranks of the retrieved documents when k = 20 and 100
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Figure 5.1: Scatter plots for the query results from different types of queries. For
each experiment, 100 queries are sent. X axis represents the document rank and
the return limit k = 20. Sub figure (A) queries with F = 40; (B) queries with
40 ≤ F ≤ 80; (C) queries with F = 80. The data source is the Reuters.

75



queries with 40 ≤ F ≤ 80 are sent. As we can see from this figure, documents with

ranks between 430,000 and 806,791 are not retrieved at all. In addition, according to

the data of this experiment, documents with ranking values between 0 and 410,000

are retrieved 1991 times.

More precisely, when the document frequencies of all the queries in Q are greater

than k, the range of the document ranks of those that can be retrieved by the queries

in Q can be determined by the range of the document frequencies of Q. This can

be approximately expressed by the following formula:

max{Mq|q ∈ Q} ≈ k
min{F (q)|q∈Q} × |DB|

where Mq is the maximum rank of the documents returned by issuing q. |DB| is
the size of the data source. F(q) denotes the document frequency of the query q in

the data source DB.

In the first experiment (Figure 5.1(A)),

k = 20,

min{F (q)|q ∈ Q} = 40,

N = 806791.

So we have max{Mq|q ∈ Q} ≈ (20/40) ∗ 806791. Thus, the biggest rank of the

returned documents should be around 403,396. Most of the documents whose ranks

are bigger than this are not retrieved by these terms.

Similarly, in the third experiment (Figure 5.1(C)),

k = 20,

min{F (q)|q ∈ Q} = 80,

N = 806, 791.

So we have max{Mq|q ∈ Q} ≈ (20/80) ∗ 806, 791. Thus, the biggest rank of the

returned documents should be approximately 201,698. Most of documents whose

ranks are bigger than this are hardly retrieved by these terms.

The above formula defines a limit on the size of the documents that can be

returned by Q. It was given in [55] a special case of this formula when the document

frequencies of all the queries are the same and the documents are ranked according

to their document degrees.
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Figure 5.2: The scatter plot for the query result. 100 queries whose F ≤ 20 are
sent and the return limit k = 20.

Contrast to the three experiments shown in Figure 5.1, we have conducted an-

other experiment with the same conditions, as shown in Figure 5.2. In this experi-

ment, 100 queries whose document frequencies are less than the return limit k = 20

are sent. It can be seen that, compared to Figure 5.1, the ranks of the retrieved

documents can reach the whole range of the rank values.

Thus, we say, for a query with a small document frequency, the documents

matched by it are not affected by the return limit and ranking criteria. Here, the

document frequencies are considered small compared to the return limit k. Any

numbers smaller than k, for example, can be considered small. Any numbers not

much bigger than k can also be considered small. As a consequence, if there are

enough queries with small dfs, most of the documents inside a ranked data source

can be returned.

Similar experiments were conducted previously [55] where the documents are

ranked by their document degrees and there is no consideration of the return limit

k.
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According to the above observations, we can draw the following conclusions as

guidelines for the query selection for ranked data sources.

• To reach a high coverage rate, the set of selected queries should not contain

only of those with large document frequencies.

This is because, according to the observation on Figure 5.1, some documents

ranked low can rarely be returned by the queries with large document fre-

quencies, at the same time, the queries with large document frequencies very

often bring back the same documents ranked high.

• We can reach a much better coverage rate by using the queries with small

document frequencies.

This is straightforward from the observation on Figure 5.2.

The proposed query selection technique is based on the above guidelines. It is

introduced in the next section.

5.2 Our crawling method

Our query selection method is shown and illustrated in Algorithm 5 and Figure 5.3.

It consists of four steps.

Algorithm 5: Query selection for ranked data sources.

Input: the original data source DB, the sample size m and the return limit
k.

Output: a collection of URLs S.
Process:
1 D = retrieveDocs(DB,m);
2 QP = retrieveTerms(D);
3 foreach q in QP

if F̂ (q) ≤ k
add q into QPk;

4 while(!requirment){
randomly select qu ∈ QPk as query;
S = S + retrieveURLs(DB, qu);

}
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Figure 5.3: Our query selection method for ranked deep web data sources

Our method is sample-based: some documents are randomly extracted from the

original ranked data source DB (Step 1). These sample documents form the sample

data source D. The size of the sample data source should meet the requirement

which ensures that there are enough queries to cover DB. Our algorithm runs on

the sample to generate a set of queries which are then mapped into the original

data source.

From the sample data source, we retrieve all the terms to obtain the set of terms

QP for selection (Step 2).

According to the discussions in the previous section, we can choose queries only

from among QP with small document frequencies and can reach a high coverage

rate. Other than the return limit k, the limit on the document frequencies to be

considered small depends on the given coverage rate as well. It is hard and beyond

the scope of the present work to find such a limit. Here we assume that by using all

the queries with document frequencies less than k they can cover most of the original

data source, and we select from among these queries to reach a given coverage rate.

Note that most of the web-access databases do not provide the document fre-
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quency for each query inside it, and it is time-consuming to obtain the document

frequencies of all the queries in QP by issuing them. Here we use three different df

estimators to estimate the document frequencies of all terms in QP . The detail is

shown in the following section.

Let QPk denote the subset of QP which contains all the terms in QP whose

estimated document frequencies are no greater than k.

In Step 4, we randomly select queries from QPk sequentially until the given

coverage rate is reached.

5.3 Frequency estimation

5.3.1 Introduction

Maximum Likelihood Estimation

Document frequency estimation refers to estimating the document frequencies of

the terms in a given sample D.

The most straightforward estimate is theMaximum Likelihood Estimation (MLE).

Simply speaking, it enlarges the sample df of each term f(qj) proportionally and

the ratio is |DB|
|D| . More precisely, given a sample data source D derived from one

original data source DB, which contains m documents and n terms, for each term

qj (1 ≤ j ≤ n), its probability pj is the ratio of its document frequency F (qj) to the

sum of the document frequencies of all the terms in DB and defined in equation 5.1:

pj =
F (qj)∑

q∈DB F (q)
(5.1)

Then, pj can be estimated by the ratio of the sample document frequency of qj to

the sum of the sample document frequencies of all the terms in D in the MLE. It is

shown in equation 5.2

p̂j =
f(qj)∑
q∈D f(q)

(5.2)

If it is supposed that the average document size ofD is the same as that ofDB, after
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given |DB|, the estimation function of the MLE can be represented by equation 5.3.

F̂ (qj) = p̂j ×
∑
q∈DB

F (q) = f(qj)×
|DB|
|D|

(5.3)

where F̂ (qj) is the estimated document frequency for qj. The detail of the MLE is

shown in Appendix C.

Simple Good-Turing Estimation

According to equation 5.1 and equation 5.2, all estimated probabilities of all the

terms in D are added up to ”1” (
∑

q∈D p̂(q) = 1) and simultaneously the sum of

the probabilities of all the terms in DB is ”1” as well (
∑

q∈DB p(q) = 1). Thus, two

problems remain: 1) in the MLE, there is no probability mass for ”unseen” terms

in DB not in D; 2) the MLE will give overestimates for the terms in D.

Smoothing techniques [56, 57, 58, 59, 60, 61, 62] can be used to address the

two problems. The term smoothing describes the techniques to produce more

accurate estimated probabilities by adjusting the maximum likelihood estimate of

the probabilities. More precisely, these techniques tend to adjust low estimated

probabilities upward and high estimated probabilities downward.

The Simple Good-Turing method [28] (SGT) is one of the smoothing techniques

and the basis of many other smoothing estimators [63, 64]. Its basic idea applied

to our problem is adjusting the document frequency of each term in D. It can be

represented as equation 5.4. For each f , we have

f ∗ = (f + 1)× nf+1

nf

(5.4)

where f ∗ is the adjusted sample frequency, nf and nf+1 are the numbers of the

terms whose sample document frequencies are f and f + 1 respectively.

With the adjusted frequency, the adjusted probability of each term p∗j is defined

in equation 5.5.

p∗j =
f ∗(qj)∑
q∈D f(q)

(5.5)

There are two expectations for equation 5.5. One is that p∗ < p and the other

is that the ratio p∗

p
to increase to one as df increases. The first expectation is to

cut down the estimated probability of each term in D and it is accomplished by
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decreasing its sample document frequencies. In common sense, the high frequency

terms usually are easier to obtain the more accurate estimates. Therefore, the

second expectation is to take less and less probability away as sample document

frequency increases.

Equation 5.4 requires that the sample document frequencies must be continuous.

However, because of the sparse sample data, the requirement could be hard to

satisfy, especially for the high frequency. Even though all frequencies are continuous,

for high dfs, their corresponding nf could be the same with each other and then it

will lead to f ∗ > f . To deal with the problem caused by the sparse data, a linear

smoothing algorithm is given in [28] and it uses a new variable Zf to replace nf

in equation 5.4, then we have a new equation for the adjusted sample document

frequency shown in equation 5.6. For f ,

f ∗ = (f + 1)×
Zf

′′

Zf
′

(5.6)

where Zf =
2nf

f ′′−f ′ , f
′
is the nearest lower sample document frequency and f

′′
is the

nearest higher sample document frequency such that both of nf ′ and nf ′′ are rather

than zero. For low f , f
′
and f

′′
will be immediately adjacent to f , so that f

′′ − f
′

will be 2 and Zf will be the same as nf ; for high f , Zf will be a fraction, sometimes

a small fraction.

Now, the detail of the SGT method applied to estimate df is shown in Algo-

rithm 6.

In Step 1, for calculating each Zf , if f = 1, let f
′
be 0; if f is the largest

frequency, f ′′ is set to 2f − f
′
.

In Step 2, here we use the off-the-shelf curve-fitting algorithms provided by

Matlab curve-fitting toolbox [65].

In Step 3, there are one inequation and two values x and y defined as follows:

X = (f + 1)
nf+1

nf

. (5.7)

Y = (f + 1)
S(f + 1)

S(f)
. (5.8)

|X − Y | > 1.96×
√

(f + 1)2
nf+1

nf

(1 +
nf+1

nf

). (5.9)
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Algorithm 6: SGT applied to df estimation

Input: a sample data source D (containing m documents and n terms) and
the size of the original data source |DB|.

Output: a set of estimated document frequencies for all terms in D.

1. Calculate Zf =
2nf

f ′′−f ′ for each available sample document frequency f where

nf is the total number of the terms that occur f times in D and f ′ (f ′′) is
the nearest lower (higher) sample document frequency to f ;

2. Find the line of best fit (y = A+ α ∗ log(x)) to all pairs (log(f), log(Zf ))
using a curve fitting algorithm where A and α are parameters;

3. Calculate f ∗ for all various f beginning with f = 1 in accordance with
different rules, f ∗ = (f + 1)

nf+1

nf
if inequation 5.9 is satisfied, otherwise,

f ∗ = (f + 1)S(f+1)
S(f)

where S(f) is the antilog function of y = A+ α ∗ log(x);

4. Calculate F̂ (qj) = f ∗(qj)× ( |DB|
m

) for each term, where f ∗(qj) is the adjusted
frequency of the term qj.

If the inequality 5.9 holds, then let f ∗ be the value of X; if the inequality does

not hold, f ∗ is assigned to the value of Y and cease to calculate X values for all

subsequent terms, and their adjusted sample document frequencies always are the

values of Y . In equation 5.8, S(f) is the antilog function of y = A+ α ∗ log(x).

Example 4 In this example, the original data DB is a small size Gov corpus, it

contains 2975 documents(|DB| = 2975) and 4604 terms. The sample D contains

593 documents (m=593) and 2535 terms (n = 2535), and the sum of the sample

dfs of all terms is 19,065. Table B.1 shows the information f , nf , Zf , log10(f),

log10(Zf ) and f ∗ in ascending order of f values. Figure 5.4 plots nf against f .

Figure 5.5 shows Zf again r and the line best fit (y = 3.121 − 1.707 ∗ log10(x))

superimposed on all pairs (f , log(Zf )). Both of figures are in log-log scales. Accord-

ing to Table B.1, we can calculate the estimated document frequency for each term.

For example, the estimated document frequency of the term ”abby” whose sample

document frequency is 2 can be calculated by F̂ (”abby”) = f ∗(qj)× |DB|
m

= 1.62× 2975
593

= 8.12 (its df is 4).
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Figure 5.4: The trend of sample document frequency in Example 4 on log-log scales.
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Zipf’s-law-based estimation

Compared to the MLE and the SGT, the Zipf’s-law-based estimate is a different

technique to address df estimation problem by using Zipf’s law that is an empirical

linguistic law. Ipeirotis et al. [29] first presented a Zipf’s-law-based estimation

method to estimate document frequency.

In 1932, George Zipf put forward an empirical observation on certain statistical

regularities of human writings that has become the most well-known statement of

quantitative linguistics. It states that, given a certain corpus of a natural language,

the occurrence frequency of any word is approximately inversely proportional to its

rank in the frequency list and it can be described as follows:

F (r) =
A

rα
,

where A is a constant and the characteristic exponent α takes on a value slightly

greater than 1. Later, in [66], Mandelbrot slightly modified Zipf’s law to improve

its performance and the function is shown here:

F (r) =
A

(r + b)α
,

where A, b and α are constants. The Zipf-Mandelbrot law can more precisely

describe the relationship between the ranks and frequencies of the terms ranked

high (r < 100).

According to the Zipf-Mandelbrot law, the basic idea of this estimation method

is that

• exploiting the sample document frequencies f derived from the sample D to

rank all terms from most frequency to least frequency;

• exploiting the document frequencies of probing queries to potentially boost

the document frequencies of ”nearby” terms for which we only know their

sample document frequency but not their document frequency in DB.

In a word, the method tries to ”propagate” the known document frequencies to

”nearby” terms with similar sample document frequencies according to Zipf-Mandelbrot

law. Figure 5.6 illustrates the basic idea of Ipeirotis’ estimator.
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Figure 5.6: An artificial example to illustrate the basic idea of Ipeirotis’ estimator.

Although the Zipf’s-law-based estimator in [29] is a novel method to address

df estimation problem, the authors did not expose the detail of their estimation

method (such as how to select probing queries) and no solid estimate results were

provided. According to the key idea in [29], here it is implemented in Algorithm 7.

In step 3, although intuitively more probing queries are sent and better results

for curve fitting are produced, sending many probing queries for their document

frequencies could be time-consuming in reality. Here empirically we set h = 30 for

our experiments. and all selected queries should have different ranks in D.

In step 4, the curve-fitting toolbox of Matlab is used to do regression and it

makes use of the least-squares formulation to fit our sample data.

Example 5 Example 4 is used to show how the Zipf ’s-law-based estimation method

works. Figure 5.7 shows each sample data, 30 probing data and the generated fitting

curve in log-log scales. X axis represents the ranks in the sample D (m = 593,

n = 2535) and y axis represents the document frequency in DB (|DB| = 2975).

From this figure, for sample data, the terms ranked low can have many different F

(dotted vertical lines) because of a lack of sufficient statistics in D, on the other side,
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Algorithm 7: The Zipf’s-law-based document frequency estimation

Input: DB(original data source), m(sample size), and h(probing query
number).

Output: A set of estimated document frequencies for all terms in D.

1. Randomly collect from DB a sample data source D = {d1, ..., dm};

2. Rank all the terms in the query pool QP derived from D in descending
order according to their document frequencies in D;

3. Randomly select h number of probing queries from QP and send them to
DB to obtain their document frequencies in DB;

4. Based on the ranks in D and the document frequencies of the issued queries,
calculate the values for all parameters A, b and α of the estimation function
F̂ (r) = A

(r+b)α
by running the least-squares curve fitting algorithm provided

in Matlab [65];

5. Based on the estimation function F̂ (r) and the ranks of all the terms in QP ,
a set of the estimated document frequencies for all the terms are calculated
and returned.

the terms ranked high are much better. For probing data, most of them are the terms

ranked low due to the power law distribution [67], which states that most of terms

are low frequency terms. For the generated curve, it fits the terms with moderate and

low frequencies better than the high frequency terms because most of probing terms

are from the low frequency terms. According to the fitting curve F (r) = 106.334

(r+64.66)1.892
,

we can calculate the estimated document frequency for each term. For example, the

estimated document frequency of the term ”abby” whose sample document frequency

is 2 and its rank is 1852 can be calculated by F̂ (r) = 106.334

(1011+64.66)1.892
≈ 3.963 (its df

is 4).

In the following section, we will evaluate the performances of the three estimation

methods on the four corpus data sources.

5.3.2 Evaluation of the estimation methods

In this section, we run our experiments on the same data as the ones in Chapter 4

to show the performances of the three estimators. The only difference is that the
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Figure 5.7: The example of the Zipf-law-based estimation method.

89



Table 5.1: The statistics of the samples for the experiments (m:the number of the
documents in D, n: the number of the terms in D, r1:

m
|DB| , r2: the ratio of the

number of all the terms in D to the number of all the terms in DB).
corpus m avg(n) avg(r1) avg(r2)
Reuters 3000 30894 0.00372 0.0081
Wiki 3000 103296 0.00219 0.0156
Gov 3000 83422 0.00300 0.0415

Newsgroup 3000 91401 0.00218 0.0303

Table 5.2: The average of the parameter values for the Zipf-law-based estimation
and SGT based on 10 3000-document samples.

corpus
Zipf SGT

A b α A α
Reuters 109.75 613 -1.71 4.607 -1.869
Wiki 1013.2 2953 -2.34 5.060 -2.007
Gov 1015.73 4029 -2.90 5.014 -1.874

Newsgroup 1012.44 1907 -2.18 4.909 -1.901

Newsgroup corpus contains 1,372,911 not 30,000 documents. In our experiments,

there are 10 sample data sources randomly retrieved from each original data source

and their size m are 3000. The statistics of the samples are shown in Table 5.1.

Table 5.2 shows the average of the parameter values for the Zipf-law-based es-

timation and SGT based on 10 sample data sources derived from one particular

original data source.

Since the document frequencies and their estimated ones can vary by several

orders of magnitude, it is convenient to express the error in the logarithm of the

ratio of an estimated document frequency to its document frequency. To measure

the overall error of a set of given terms in D, the root mean square of the base-10

logarithms of their ratios is used, which is called Average Error defined in [28] and

shown in Definition 8.

Definition 8 (Average Error) Given a set of terms Q = {q1, ..., qn} from D, its

average error can be calculated by equation 5.10

AE(Q) =

√√√√√ n∑
j=1

(lgF̂ (qj)− lgF (qj))2

n
, (5.10)
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Table 5.3: The average errors for three estimators according to different corpus
samples and sample df ranges.

Ranges Methods Reuters Wiki Gov Newsgroup

1 ≤ f ≤ 10
MLE 0.797 1.277 0.923 1.123
SGT 0.676 1.003 0.757 0.852
Zipf 0.708 1.008 0.842 1.014

10 < f < 500
MLE 0.093 0.096 0.087 0.090
SGT 0.090 0.092 0.086 0.088
Zipf 0.103 0.103 0.092 0.090

500 ≤ f
MLE 0.013 0.014 0.013 0.011
SGT 0.013 0.014 0.013 0.011
Zipf 0.565 0.181 0.084 0.221

1 ≤ f
MLE 0.740 1.220 0.855 1.065
SGT 0.629 0.958 0.702 0.808
Zipf 0.659 0.963 0.781 0.963

where lg is the base-10 logarithm, F (qj) and F̂ (qj) are the document frequencies and

estimated document frequency of the term qj (qj ∈ Q).

According to Definition 8, we separately calculate the average errors based on

the different sample df ranges shown in Table 5.3. In Table 5.3, for each corpus, all

terms inside a 3000-document sample are used to calculate the average errors but

they are divided into four different groups. Here the first three groups represent

high, moderate and low frequency terms respectively and the last one stands for an

overall result. From the table, we find that

• for all estimators, the accuracy of their estimates is improved while f increases;

• for the SGT estimation, it achieves the best results in all kinds of the ranges

and particularly outperforms the others at the low frequency terms (f < 10);

• for the MLE, compared to the others, it has the worst performance on the

low frequency terms (f < 10) but the good results on the moderate and the

high frequency terms, especially for the high frequency, it can obtain the same

results as the ones from the SGT;

• for Zipf’s-law-based estimation, it has the reversed performance of the MLE

and is good at estimating the low frequency not the high frequency terms.
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The results from the three estimators are not unexpected. As mentioned before,

the MLE is notorious for overestimating the low frequency terms, not the high

frequency ones and the SGT is designed to correct such a problem by cutting down

the estimated probability of each term. Since the SGT takes less and less probability

away as the sample document frequency increases, we find the SGT is much better

than the MLE for the low frequency terms but has the same performance as the

MLE for the high frequency terms. The Zipf’s-law-based estimation is good at

estimating the low frequency terms since the generated curve (F̂ = A
(r+b)α

) fits the

moderate-low frequency terms better than the high frequency terms. In fact, recent

studies [68, 69, 70, 71, 72] show that the Zipf-Mandelbrot law is not fit for web-scale

corpus and the terms inside a large corpus should be divided into different groups.

In common, it is much easier to have accurate estimates on the high frequent

terms than the low frequent terms and thus the performances of the three estimators

in small f are displayed in more detail in Figure 5.8. In this figure, the x and y

axes represent the sample document frequency and the average error.

Average Error successfully measures the performances of the three estimators.

Namely, it shows how accurate the estimated document frequencies are. However, it

cannot demonstrate the overestimation and underestimation of the estimated doc-

ument frequencies. Thus, Figure 5.9 shows the average of the document frequencies

and estimated document frequencies of the three estimators for the low frequency

terms. From the figure, we can see that

• the MLE gives much overestimated results especially when f < 5;

• the estimates of the SGT are closest to the averages of dfs and particularly

the results with f = 1, 2 are almost same as the true values;

• the Zipf’s-law-based estimator usually underestimates the low frequency terms

except f = 1.

Finally, we randomly select 20 terms from one Newsgroup 3000-document sample

as concrete examples to illustrate the performance of the three estimation methods

shown in Table 5.4.

92



0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Reuters

f

av
er

ag
e 

er
ro

r

 

 
MLE
SGT
Zipf

0 2 4 6 8 10
0

0.5

1

1.5
Wiki

f
av

er
ag

e 
er

ro
r

 

 
MLE
SGT
Zipf

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Gov

f

av
er

ag
e 

er
ro

r

 

 
MLE
SGT
Zipf

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Newgroup

f

av
er

ag
e 

er
ro

r

 

 
MLE
SGT
Zipf

Figure 5.8: The average errors of the three estimators for the terms with 1 ≤ f ≤ 10
based on four different corpus samples.
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Figure 5.9: The average of the document frequencies and the estimated document
frequencies of the three estimators for the low frequency terms based on four 3000-
document samples. The MLE: the average of estimated document frequencies from
the MLE, the SGT: the average of estimated dfs from the SGT, Zipf: the average
estimated dfs from the Zipf’s-law-based estimation.
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Table 5.4: The results of twenty randomly selected terms from a Newsgroup 3000-
document sample (f : sample document frequency).

terms f F
F̂

MLE SGT Zipf
integration 43 19979 19651 19342 18507
arrange 10 5754 4570 4216 4568
aeons 3 302 1368 1064 1470
stupor 3 935 1371 1064 1470

oneshould 2 263 914 638 959
muche 2 640 914 638 959

prisonexperience 1 5 457 156 304
phineas 1 573 457 156 304
polevoy 1 151 457 156 304

tensionhid 1 4 457 156 304
teamis 1 69 457 156 304

songentitled 1 37 457 156 304
compassionately 1 418 457 156 304

armourand 1 18 457 156 304
aclosed 1 166 457 156 304

alcornwhose 1 5 457 156 304
madeof 1 176 457 156 304
lastline 1 24 457 156 304
haganot 1 39 457 156 304
jewsbut 1 127 457 156 304
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5.4 Crawling evaluation

To evaluate the performance of our query selection method, we compare it with the

following two existing ones: the random method and the popular word method [16,

17].

1. random method: we use a middle-sized Webster English dictionary with 51,541

words and randomly select them as queries from it;

2. popular word method: given the document frequencies of all the terms in D,

we directly collect all the high frequency terms whose document frequencies

are higher than 2k. However, we do not use stop words. Then we randomly

pick these queries one by one to send to DB;

3. our df-based method: each term in D whose F̂ (q) ≤ k is sent to DB randomly

until the given coverage rate is reached or all the terms are used up. Here

F̂ (q) is calculated by the three estimation methods respectively.

We have run these methods on four different 3000-document sample data sources

obtained from the four different ranked data sources. For each experiment, the

return limit k is set to 1000. Each document in a corpus has a unique randomly

generated rank value. A document with a smaller rank value is ranked higher than

a document with bigger a rank value.

Table 5.5 shows the number of the candidate queries of the three methods in

one sample derived from one certain corpus data source. From this table, we can

see that df-based method with different estimation methods could have exactly

the same candidate queries in QPk, such as, for Gov and Newsgroup sample data

sources, the three estimation methods select totally same terms into QPk. Thus, for

our method with the same candidate terms in QPk, only one experiment is carried

out.

From Figure 5.10, we can see that, 1) in the presence of the return limit, the

proposed method with any of the three estimation methods is much better than the

random method, which is better than the popular word method; 2) the results of our

df-based method with different estimates are close to each other.

Note that all result curves look much more smoother than the other results, such

as Figure 4.9. The reason is that, due to the return limit, the improvement of HR
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Table 5.5: The number of the candidate terms of the three methods in each exper-
iment.

corpus
random method popular word method

our method
MLE SGT Zipf

Reuters 51541 5441 22330 23744 23744
Wiki 51541 16030 78405 78405 83575
Gov 51541 15476 56371 56371 56371

Newsgroup 51541 15478 67860 67860 67860
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Figure 5.10: The results of the three methods on different corpora. The return limit
k is 1000. Documents are statically ranked. MLE, SGT, Zipf: our methods with
the MLE, the SGT and the Zipf-law-based estimation methods respectively.
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Figure 5.11: The zoomed-in area of each subgraph in Figure 5.10. The range of HR
is up to 10%.

at each iteration could be very low (maximum 1000 new returned documents) and

thus the 80% coverages of all results are based on a large number of sent queries

issued. Figure 5.11 shows a zoomed-in area of each subgraph in Figure 5.10 and

the fluctuation of each result is demonstrated.

Since the results of our df-based method with different estimates are close to

each other, Table 5.6 shows the comparison of the results of the random method,

the popular word method and our method with the MLE. From Table 5.6, we can

see the difference between the performance of our method compared to the other

two:

• The random method can also reach a high coverage rate as ours, but with 85%

coverage rate, our method gives around 58% savings on the overlapping rate.
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Table 5.6: Comparison of the three methods (Imp =
ORrandom(ORpopular)−ORours

ORrandom(ORpopular)
).

corpus HR(%)
Our method Random method Popular word method

OR OR Imp(%) OR Imp(%)

Reuters

10 1.11 1.20 8.3 1.47 24.4
20 1.26 1.48 14.8 2.56 50.7
30 1.47 1.87 21.3 4.78 69.2
40 1.73 2.40 27.9 12.55 86.2
42 1.79 2.49 28.1 16.08 88.8
50 2.06 2.96 30.4 - -
60 2.54 3.87 34.3 - -
70 3.33 5.33 37.5 - -
80 4.65 8.21 43.3 - -
84 5.53 12.87 57.0 - -

Wiki

10 1.15 1.32 12.8 1.67 31.1
20 1.33 1.65 19.3 2.55 47.8
30 1.55 2.13 27.2 4.52 65.7
40 1.80 2.68 32.8 8.77 79.4
50 2.12 3.40 37.6 24.48 91.3
60 2.54 4.41 42.4 - -
70 3.17 6.04 47.5 - -
80 4.19 9.04 53.6 - -
89 6.05 15.09 59.9 - -

Gov2

10 1.22 1.36 10.2 1.81 32.5
20 1.45 1.84 21.1 3.13 53.6
30 1.73 2.41 28.2 6.18 72.0
40 2.08 3.10 32.9 15.27 86.3
45 2.28 3.52 35.2 34.56 93.4
50 2.53 3.99 36.5 - -
60 3.13 5.33 41.2 - -
70 3.98 7.44 46.5 - -
80 5.53 11.75 52.9 - -
85 6.70 18.15 63.1 - -

Newsgroup

10 1.19 1.29 7.75 1.62 26.5
20 1.41 1.57 10.1 2.74 48.5
30 1.65 1.97 16.2 5.16 68.0
40 1.91 2.44 21.7 13.90 86.2
44 2.01 2.68 25.0 25.66 92.1
50 2.21 3.02 26.8 - -
60 2.61 3.84 32.0 - -
70 3.27 5.24 37.5 - -
80 4.39 7.75 43.3 - -
87 6.09 14.05 56.6 - -
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• The popular word method cannot reach beyond 50% coverage rate and our

method gives around 90% savings at its highest coverages on the four corpora.

As we have explained before, in the presence of a return limit and with our

static ranking criterion, choosing many high frequency queries will result in a low

coverage rate and a high overlapping rate, because (i) some documents with high

rank value may not be retrieved at all and as a consequence, the desired coverage

rate cannot be reached; (ii) some documents with low rank value may be repeatedly

retrieved, causing the retrieval of many redundant documents.

On the other hand, choosing many low frequency queries will result in a high

coverage rate and a low overlapping rate, because (i) when we use queries with

small document frequencies, any document can be returned by sending some of the

queries; (ii) the coverage of the returned documents is more even which means less

an overlapping rate.

Thus, choosing many low frequency terms as we do in the present work is much

better than choosing many high frequency terms as proposed in the popular word

method both in terms of coverage rate and in terms of overlapping rate.

With the random method, we have a mix of high and low frequency terms

selected. Thus, its result both in terms of coverage rate and in terms of overlapping

rate is between the popular word method and our method.

5.5 Conclusion

In this chapter, we presented a novel method to crawl ranked data source, which

only selects the queries whose estimated dfs are less than the return limit using a

df estimator. Compared to the traditional methods, our method works well in the

presence of a return limit and a static ranking criterion. Given a sample containing

enough small queries to cover DB, it can reach a high coverage (over 85%). With

the same coverage, our method separately outperforms the random and popular

word methods 58% and 90% at most.

We are interested in extending this work for other ranking criteria in the original

data source. We have considered original data sources with fixed sizes and a fixed

number as the return limit. For future work, we are interested in knowing the

performance of this present method with the change of the size of the original data

100



source and the change of the return limit k. Note that in particular, when k is

infinite, it corresponds to the case that there is no return limit, which is the setting

used in many previous work. On the other hand, when k is pretty small and the

size of ranked data source is large, it may be hard to find enough queries whose

document frequencies are smaller than k in order to reach a high hit rate. In this

chapter, we have assumed that by using all queries with document frequencies less

than k we can reach a high coverage, and we could select among these queries to

reach a given coverage rate. It remains an interesting problem to find the limit of

the number of queries we need in order to reach a given coverage rate. In the case

we have to work with a set of queries with document frequencies below this limit,

we will try to use multiply keywords.
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Chapter 6

Conclusions

Deep web crawling is the process of collecting data from search interfaces by is-

suing queries. It consists of several subtasks, including 1) estimating and locating

the deep web data sources [11, 4]; 2) understanding the HTML forms of each data

source [15, 73]; 3) selecting appropriate queries [17, 74, 16]; 4) retrieving the returns

and extracting the relevant content if it is embedded inside HTML pages. With

the adoption of the Web services and the improvement of the information extrac-

tion techniques [34, 75, 36, 6], the other subtasks can be addressed better. Query

selection problem becomes a main challenge of the deep web crawling.

There are several challenges in the query selection problem including 1) cold

start problem: there are no queries to select from at the beginning; 2) optimization

problem: finding out a better optimization algorithm for query selection; 3) return

limit problem: it is hard to retrieve data from ranked deep web data sources.

Targeting those challenges, we present a novel technique to address the query

selection problem from three aspects.

1. Query selection with sampling: for most of the query selection algorithms,

one of the challenges is the selection of the input. At the beginning of the

crawling, there are no queries to select from. Namely, neither documents

nor terms are available. One method [17, 7] to solve this problem is the

incremental method that selects queries from the documents that have been

downloaded. The number of documents increases as more queries are sent.

However, this method needs the downloading and analyzing of all retrieved

documents in order to generate the next query to be issued. This is highly
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inefficient.

Here we argue that a fixed small sample is sufficient to generate high qual-

ity queries. The sample is derived from the original data source. Thus, we

proposed a sampling-based query selection method. It first creates a sample

and chooses a set of terms fully covering the sample. Then it uses the greedy

algorithm to generate queries based on the sample and the chosen terms.

We conducted experiments on four different standard corpus data and the

results showed that, with small sample and query pool (D = 3000 and µ = 20),

i) the queries select from our method can cover most of the original data

source; ii) the overlapping rate in original data source is better than that of

Ntoulas’ method [17] and outperforms that of the random method.

2. Query selection utilizing log-normal data distribution: The performance of a

query selection algorithm for the deep web crawling is normally evaluated

by the cost over the coverage. The optimization of the query selection is

usually modeled as Set Covering Problem. Most previous query selection

algorithms minimize the total number of submitted queries [16, 17]. In this

dissertation, we show that the network traffic is the major cost of a query

selection algorithm and it can be represented by the total number of retrieved

URLs. Under this definition, the goal of the query selection is to minimize

the sum of the cardinalities of the queries. More importantly, we find that

the distribution of the document degrees could have a great impact on the

performance of the conventional greedy algorithm.

Although there are many elaborate set covering algorithms [49, 45, 76, 46], the

greedy algorithm is still a better choice because it is scalable. Conventional

greedy algorithm assigns each document with the same weight, which may be

good in other domains but not in our application. Unlike the Beasley data, one

of standard benchmarks for SCP, in the deep web data sources, the document

degree is distributed log-normally, not normally, and it makes the possibility

of each document to cause overlap varies from each other. Documents with

larger degrees can be covered by more queries and they should be covered

later to avoid repeated coverage by the following queries. Thus, we assign the

reciprocal of the document degree as the weight of a document and introduce

our weighted greedy algorithm. It iteratively selects the query that maximizes
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the average of the document weights of all uncovered documents covered by

it.

The experiments were carried out on our corpus data and the Beasley data.

The results show that i) on average, the weighted greedy algorithm outper-

forms the greedy algorithm on our corpus data around 15% and on the Beasley

data around 5%; ii) the average improvements of the weighted greedy algo-

rithm has a positive linear correlation with the dispersion of document degrees.

3. Query selection for ranked data sources: there are many ranked data sources

in the deep web, which ranks the matched documents and only returns the

top k documents when the number of matched documents is larger than k.

In this setting, the queries selected from the algorithms [16, 17] preferring

popular terms cannot reach a good result: documents ranked low may not

be retrieved and thus it may not be possible to reach a desired high coverage

while many documents ranked high will be repeatedly retrieved causing the

retrieval of many redundant documents.

To address this problem, one solution is to select queries with appropriate

document frequencies F such that F ≤ k. However, it is hard to have such

information from the websites holding ranked data sources. Thus, our df-based

method obtains a sample first and then estimate the document frequency

for each term inside it to remain the qualified ones, finally the remaining

terms are randomly selected to be sent to the original data sources until the

desired coverage is reached. We tested various estimation method including

the MLE [25], the SGT [28] and the Zipf’s-law-based estimation [29] and,

found that SGT outperformed the others.

To show the performance of our method, we compared it with the random

method and the popular word method. The former randomly selects queries

from a middle-sized Webster English dictionary and the latter only chooses

the terms whose frequencies are more than 2k as queries. The experimental

results show that i) both of our and the random methods can reach a high

coverage (HR ¿ 84%) and our method is better on average 59% on OR; ii)

the popular word method has the worst performance and it cannot even reach

more than 50% coverage with too much redundant retrieval, and our method

outperforms it around 90% on OR. These results conform to the theoretical
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guide shown in equation 5.1 especially for the second one. It says that the

range of returned documents can be approximately decided by the document

frequencies of queries and the return limit.
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Appendix A

Details of the comparison between

greedy and weighted greedy

algorithms

This appendix contains the complete tables and supplementary figures for the ex-

periments in Chapter 3 and Chapter 5. Table A.1 and Table A.2 are the com-

plete results of the experiments shown in Table 3.8 and Table 3.9. Figure A.1 and

Figure A.2 are the supplementary illustrations for the experimental results of the

greedy and weighted greedy methods on our corpus data and Beasley data respec-

tively, which have been discussed in Section 3.5.3. Figure A.3 is shown here as the

supplement of Figure 3.12 for the relationship between the CV of document degree

and the average of the improvement of the weighted greedy method on our and

Beasley data.

Table A.1: Greedy vs weighted greedy. The results with redundancy based on

100 times running experiments on the Beasley data.

Data set Greedy Method Weighted Greedy Improvement(%)

MAXMINAVESDMAXMINAVE SD MAX MIN AVG

4.1 236 220 227 3.1 217 214 215 1.5 8.05 2.72 5.28

4.2 236 218 227 3.1 222 216 219 1.9 5.93 0.92 3.52

4.3 236 219 226 3.2 224 216 219 2.4 5.08 1.36 3.09

4.4 235 220 227 3.3 219 216 217 1.3 6.81 1.86 4.41
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4.5 235 219 227 3.2 216 214 215 1 8.08 2.28 5.28

4.6 233 218 226 3.1 217 216 216 0.5 6.86 0.91 4.42

4.7 236 217 227 3.7 220 216 217 1.2 6.77 0.47 4.41

4.8 236 219 228 3.4 220 216 217 1.2 6.77 1.36 4.82

4.9 233 217 226 3.3 219 217 218 0.6 6.01 0 3.54

4.10 234 218 226 3.2 211 211 211 0 9.82 3.21 6.64

5.1 222 209 214 2.5 211 206 208 1.0 4.95 1.43 2.80

5.2 220 211 215 2.0 211 206 208 1.3 4.09 2.36 3.26

5.3 222 210 215 2.4 211 208 209 0.7 4.95 0.95 2.79

5.4 221 208 215 2.5 210 209 209 0.4 4.97 -0.48 2.79

5.5 217 206 213 2.2 209 205 206 1.1 3.68 0.49 3.29

5.6 220 208 214 2.3 206 206 206 0 6.36 0.96 3.74

5.7 221 206 214 2.3 207 203 205 0.9 6.33 1.46 4.21

5.8 219 210 214 2.1 207 203 205 1.0 5.48 3.33 4.21

5.9 225 210 216 2.5 212 208 210 0.8 5.78 0.95 2.77

5.10 222 210 216 2.7 208 206 207 0.6 6.31 1.90 4.16

6.1 285 262 271 5.2 262 262 262 0 8.07 0 3.32

6.2 288 258 270 5.4 263 263 263 0 8.68 -1.94 2.59

6.3 282 261 271 4.7 264 264 264 0 6.38 -1.15 2.58

6.4 283 256 270 5.3 261 261 261 0 7.77 -1.95 3.33

6.5 284 258 271 5.8 270 270 270 0 4.93 -4.65 0.37

a.1 351 335 342 3.6 335 335 335 0 4.56 0 2.05

a.2 351 335 342 3.1 332 332 332 0 5.41 0.90 2.92

a.3 354 335 343 3.7 337 337 337 0 4.80 -0.60 1.75

a.4 351 332 341 3.8 342 334 337 2.2 2.56 -0.60 1.17

a.5 315 334 342 3.9 332 332 332 0 -5.40 0.60 2.92

b.1 438 410 425 5.7 414 414 414 0 5.48 -0.98 2.59

b.2 441 413 425 6.2 428 428 428 0 2.95 -3.63 -0.71

b.3 443 408 426 6.7 418 418 418 0 5.64 -2.45 1.88

b.4 440 409 423 6.3 422 422 422 0 4.09 -3.18 0.24

b.5 439 412 424 5.4 418 417 417 0.5 4.78 -1.21 1.65

c.1 495 469 485 5 470 470 470 0 5.05 -0.21 3.09

c.2 496 475 486 4.6 491 490 490 0.5 1.01 -3.16 -0.82

c.3 498 472 484 5.3 466 466 466 0 6.43 1.27 3.72
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c.4 496 466 484 5.7 476 476 476 0 4.03 -2.15 1.65

c.5 497 476 484 4.3 489 489 489 0 1.61 -2.73 -1.03

d.1 630 593 612 7.8 604 604 604 0 4.13 -1.85 1.31

d.2 631 593 611 8.1 588 588 588 0 6.81 0.84 3.76

d.3 630 590 612 7.4 616 616 616 0 2.22 -4.41 -0.65

d.4 636 587 611 8.2 608 608 608 0 4.40 -3.58 0.49

d.5 629 587 611 8.4 612 612 612 0 2.70 -4.26 -0.16

e.1 70 60 65 2.2 62 62 62 0 11.43 -3.33 4.62

e.2 69 60 64 2 60 60 60 0 13.04 0 6.25

e.3 69 59 64 2.1 64 64 64 0 7.25 -8.47 0

e.4 69 60 64 2.2 65 65 65 0 5.80 -8.33 -1.56

e.5 71 60 65 2.3 67 67 67 0 5.63 -11.67 -3.08

Table A.2: Greedy vs weighted greedy. The results without redundancy based

on 100 times running experiments on Beasley data.

Data set Greedy Method Weighted Greedy Improvement(%)

MAXMINAVESDMAXMINAVE SD MAX MIN AVG

4.1 233 217 224 3.3 217 213 214 1.4 6.86 1.84 4.46

4.2 232 216 224 3.3 220 211 216 2 5.17 2.31 3.57

4.3 235 215 223 3.6 222 212 216 2.6 5.53 1.40 3.13

4.4 233 217 224 3.3 214 209 211 1.6 8.15 3.68 5.80

4.5 234 217 224 3.4 214 209 211 1.2 8.55 3.68 5.80

4.6 231 215 224 3.1 216 214 215 0.7 6.49 0.46 4.02

4.7 234 215 224 3.6 220 211 214 2.0 5.98 1.86 4.89

4.8 234 215 225 3.6 220 210 215 2.3 5.98 2.32 4.44

4.9 235 215 223 3.6 219 213 216 1.2 6.81 0.93 3.14

4.10 230 216 223 3.2 210 208 209 0.7 8.69 3.70 6.28

5.1 221 207 213 2.5 209 204 206 1.2 5.42 1.45 3.28

5.2 217 208 213 2.2 209 202 206 1.4 3.68 2.88 3.28

5.3 219 207 213 2.5 209 202 206 1.6 4.56 2.42 3.28

5.4 219 207 213 2.7 210 206 208 1.1 4.11 0.48 2.35

5.5 216 206 211 2.2 207 202 204 1.1 4.17 1.94 3.32
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5.6 218 206 212 2.2 205 204 204 0.4 5.96 0.97 3.77

5.7 219 208 213 2.1 206 202 203 1 5.93 2.88 4.69

5.8 222 208 214 2.4 210 203 206 1.4 5.41 2.40 3.73

5.9 220 209 214 2.4 207 203 205 1.0 5.91 2.87 4.21

5.10 219 206 212 2.4 210 203 206 1.5 4.11 1.46 2.83

6.1 285 257 271 5.3 262 262 262 0 8.07 -1.95 3.32

6.2 283 258 270 5.2 263 263 263 0 7.07 -1.94 2.59

6.3 281 258 271 4.7 264 264 264 0 6.05 -2.33 2.58

6.4 283 256 269 5.3 261 261 261 0 7.77 -1.95 2.97

6.5 284 258 271 5.7 267 267 267 0 5.99 -3.49 1.48

a.1 349 332 340 3.8 333 332 332 0.5 4.58 0 2.35

a.2 350 332 339 3.5 330 329 329 0.5 5.71 0.90 2.95

a.3 352 332 340 4 333 333 333 0 5.40 -0.30 2.06

a.4 348 328 339 4.1 337 328 332 2.9 3.16 0 2.06

a.5 349 330 339 3.9 331 325 328 1.6 5.16 1.52 3.24

b.1 438 410 425 5.7 414 414 414 0 5.48 -0.98 2.59

b.2 441 410 425 6.3 428 428 428 0 2.95 -4.39 -0.71

b.3 443 408 426 6.7 411 411 411 0 7.22 -0.74 3.52

b.4 409 440 423 6.4 422 422 422 0 -3.18 4.09 0.24

b.5 439 412 424 5.5 418 417 417 0.5 4.78 -1.21 1.65

c.1 494 468 483 4.8 465 461 463 1.3 5.87 1.50 4.14

c.2 494 474 484 4.6 490 486 487 0.9 0.81 -2.53 -0.62

c.3 496 471 482 5.2 463 463 463 0 6.65 1.70 3.94

c.4 493 465 483 5.7 473 473 473 0 4.06 -1.72 2.07

c.5 472 495 482 4.3 486 486 486 0 -2.97 1.82 -0.83

d.1 630 593 612 7.7 604 604 604 0 4.13 -1.85 1.31

d.2 631 593 610 8.1 588 588 588 0 6.81 0.84 3.61

d.3 630 590 612 7.5 616 616 616 0 2.22 -4.41 -0.65

d.4 636 587 611 8.4 608 608 608 0 4.40 -3.58 0.49

d.5 629 587 611 8.4 612 612 612 0 2.70 -4.26 -0.16

e.1 70 60 65 2.2 62 62 62 0 11.43 -3.33 4.62

e.2 69 60 64 2 60 60 60 0 13.04 0 6.25

e.3 69 59 64 2.1 64 64 64 0 7.25 -8.47 0

e.4 69 60 64 2.2 65 65 65 0 5.80 -8.33 -1.56
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e.5 71 60 65 2.3 67 67 67 0 5.63 -11.67 -3.08
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Figure A.1: The results of all the experiments on each corpus data based on 100
runs. ’.’: greedy with redundancy, ’*’: weighted greedy with redundancy, ’o’: greedy
without redundancy, ’+’: weighted greedy without redundancy.
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Figure A.2: Part of the results of all the experiments on the Beasley data based on
100 runs. ’.’: greedy with redundancy, ’*’: weighted greedy with redundancy, ’o’:
greedy without redundancy, ’+’: weighted greedy without redundancy.
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and the average of the improvement of the weighted greedy method on our and the
Beasley data without redundancy.
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Appendix B

Detail of the example for Simple

Good-Turing estimation

Table B.1 shows the complete intermediate calculation results of Example 4.

Table B.1: The full set of (f , nf , Zf , log10(f), log10(Zf ), f
∗) tuples for the

example of Section 2.4.2

f nf Zf log10(f)log10(Zf ) f ∗ df nf Zf log10(f)log10(Zf ) f ∗

1 1367 1367 0 3.13 0.45 63 2 2.00 1.80 0.30 62.30

2 314 314 0.30 2.49 1.62 64 1 1.00 1.81 0.00 63.30

3 170 170 0.47 2.23 2.44 65 1 1.00 1.81 0.00 64.30

4 83 83 0.60 1.91 3.41 66 1 1.00 1.82 0.00 65.30

5 79 79 0.69 1.89 4.39 67 3 2.00 1.83 0.30 66.30

6 63 63 0.77 1.79 5.38 69 2 1.00 1.84 0.00 68.30

7 35 35.00 0.85 1.54 6.37 71 1 0.67 1.85 -0.18 70.30

8 31 31.00 0.90 1.49 7.36 72 1 1.00 1.86 0.00 71.30

9 26 26.00 0.95 1.41 8.35 73 1 1.00 1.86 0.00 72.30

10 26 26.00 1.00 1.41 9.35 74 1 1.00 1.87 0.00 73.30

11 25 25.00 1.04 1.40 10.34 75 1 1.00 1.88 0.00 74.30

12 17 17.00 1.08 1.23 11.34 76 1 1.00 1.88 0.00 75.30

13 15 15.00 1.11 1.18 12.34 77 3 2.00 1.89 0.30 76.30

14 18 18.00 1.15 1.26 13.33 79 1 0.67 1.90 -0.18 78.30

15 3 3.00 1.18 0.48 14.33 80 1 0.67 1.90 -0.18 79.30
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16 19 19.00 1.20 1.28 15.33 82 1 0.67 1.91 -0.18 81.30

17 16 16.00 1.23 1.20 16.33 83 1 1.00 1.92 0.00 82.30

18 12 12.00 1.26 1.08 17.32 84 1 0.67 1.92 -0.18 83.65

19 8 8.00 1.28 0.90 18.32 86 1 0.67 1.93 -0.18 85.30

20 4 4.00 1.30 0.60 19.32 87 3 2.00 1.94 0.30 86.30

21 10 10.00 1.32 1.00 20.32 89 1 0.40 1.95 -0.40 88.30

22 11 11.00 1.34 1.04 21.32 92 1 0.33 1.96 -0.48 91.30

23 5 5.00 1.36 0.70 22.32 95 1 0.33 1.98 -0.48 94.30

24 5 5.00 1.38 0.70 23.32 98 1 0.50 1.99 -0.30 97.30

25 10 10.00 1.40 1.00 24.32 99 1 0.40 2.00 -0.40 98.30

26 1 1.00 1.41 0.00 25.32 103 2 0.80 2.01 -0.10 102.30

27 7 7.00 1.43 0.85 26.31 104 1 1.00 2.02 0.00 103.30

28 5 5.00 1.45 0.70 27.31 105 1 1.00 2.02 0.00 104.30

29 8 8.00 1.46 0.90 28.31 106 1 1.00 2.03 0.00 105.30

30 3 3.00 1.48 0.48 29.31 107 1 1.00 2.03 0.00 106.30

31 6 6.00 1.49 0.78 30.31 108 1 1.00 2.03 0.00 107.30

32 1 1.00 1.51 0.00 31.31 109 1 0.40 2.04 -0.40 108.30

33 2 2.00 1.52 0.30 32.31 113 1 0.40 2.05 -0.40 112.30

34 5 5.00 1.53 0.70 33.31 114 1 1.00 2.06 0.00 113.30

35 2 2.00 1.54 0.30 34.31 115 1 0.67 2.06 -0.18 114.30

36 3 3.00 1.56 0.48 35.31 117 1 0.67 2.07 -0.18 116.30

37 6 6.00 1.57 0.78 36.31 118 1 0.33 2.07 -0.48 117.30

38 5 5.00 1.58 0.70 37.31 123 2 0.67 2.09 -0.18 122.30

39 2 2.00 1.59 0.30 38.31 124 1 0.50 2.09 -0.30 123.30

40 5 5.00 1.60 0.70 39.31 127 1 0.33 2.10 -0.48 126.30

41 2 1.33 1.61 0.12 40.31 130 1 0.40 2.11 -0.40 129.30

43 3 2.00 1.63 0.30 42.31 132 1 0.40 2.12 -0.40 131.30

44 3 3.00 1.64 0.48 43.31 135 1 0.20 2.13 -0.70 134.30

45 2 2.00 1.65 0.30 44.31 142 1 0.20 2.15 -0.70 141.30

46 1 1.00 1.66 0.00 45.31 145 1 0.50 2.16 -0.30 144.30

47 1 1.00 1.67 0.00 46.31 146 1 1.00 2.16 0.00 145.30

48 2 2.00 1.68 0.30 47.31 147 1 0.22 2.17 -0.65 146.30

49 1 0.50 1.69 -0.30 48.31 155 1 0.17 2.19 -0.78 154.30

52 2 1.00 1.72 0.00 51.30 159 1 0.11 2.20 -0.95 158.30
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53 3 3.00 1.72 0.48 52.30 173 1 0.05 2.24 -1.29 172.30

54 3 3.00 1.73 0.48 53.30 198 1 0.04 2.30 -1.40 197.30

55 2 2.00 1.74 0.30 54.30 223 1 0.06 2.35 -1.19 222.30

56 1 1.00 1.75 0.00 55.30 229 1 0.20 2.36 -0.70 228.30

57 1 1.00 1.76 0.00 56.30 233 1 0.25 2.37 -0.60 232.30

58 1 1.00 1.76 0.00 57.30 237 1 0.07 2.37 -1.13 236.30

59 2 1.33 1.77 0.12 58.30 260 1 0.01 2.41 -1.94 259.30

61 3 2.00 1.79 0.30 60.30 412 1 0.006 2.61 -2.18 411.29

62 2 2.00 1.79 0.30 61.30

116



Appendix C

Maximum likelihood estimation

In MLE applied to df estimation, firstly of all, we need to make an assumption and it

is that any document contains any term in D independently. With the assumption,

the sample df of a query q follows the Binomial distribution and its probability mass

function (PMF) is defined as follows:

P (f(q)|N, p) =

(
N

f(q)

)
pf(q)(1− p)N−f(q) (C.1)

where f(q) is the sample df of the term q and N =
∑

q∈D f(q) is the sum of the dfs

of all terms in D, and p is the probability of q defined in equation 5.1.

Example 6 To illustrate the concept of the PMF, here a simple artificial example

is shown in Figure C.1. Suppose that a sample D is randomly collected from an

original data source DB and it contains 100 documents (m = 100) and 500 terms

(n = 500), and its total dfs are 1500(N=1500). For a term q in D, its probability

in DB is 0.4% (p = 0.004) and then the PMF of its df in D is shown as following:

P (f(q)|N = 1500, p = 0.004) =

(
1500

f(q)

)
(0.004)f(q)(1− 0.004)1500−f(q).

The shape of this PMF is shown in Figure C.1(a). This figure shows that, for q,

it is most possible that its df is 5 or 6. If the parameter value is changed to say

p = 0.008, a new PMF is obtained as

P (f(q)|N = 1500, p = 0.008) =

(
1500

f(q)

)
(0.008)f(q)(1− 0.008)1500−f(q).
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Figure C.1: The probability mass functions of the document frequency of query q
with N = 1500 and p = 0.004(A) and p = 0.008(B)

Its shape is shown in Figure C.1(b).

Given a set of parameter values, the corresponding PMF will show that some

data are more probable than other data. In the above example, the PMF with

p = 0.004 and N = 1500, f(q) = 5 is more likely to occur than f(q) = 2(0.1608 vs

0.0444). In reality, however, the sample D is given first. Accordingly, we are faced

with an inverse problem: given the sample D, with f(q) of any term q and N , our

purpose is to find its probability p in DB. To address the problem, the likelihood

function is introduced by reversing the roles of f(q) and p, and it is shown in

equation C.2

L(p|N = c, f(q) = d) = P (f(q) = d|N = c, p) =

(
N

d

)
pd(1− p)N−d. (C.2)
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Figure C.2: The likelihood function L(p|N, f(q)) with N = 1500 and f(q) = 12 is
based on the binomial distribution model described in the text.

Thus L(p|N = c, f(q) = d) represents the likelihood of the parameter p of a term

q. For example, the likelihood function for f(q) = 12 and N = 1500 is shown as

following:

L(p|N = 1500, f(q) = 12) =

(
N

d

)
pd(1− p)N−d =

1500!

10!1488!
p12(1− p)1488.

and it is shown in Figure C.2.

Given the likelihood function and the sample D, we are in position to use

the MLE to estimate the probability p of a query q in D. The MLE states

that the desired probability distribution is the one that makes the observed data

”most likely” to be produced. In our case, for a term q, the value for its p that

makes the corresponding L(p|N, f(q)) maximum should be selected. For example,
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in Figure C.2, p = 0.008 is selected by the MLE, which is the maximum value

L(p = p|N = 1500, f = 12) = 0.1148. Simultaneously, the corresponding PMF is

shown in C.1(B). According to the principle, setting p to 0.008 is most likely to

have produced the term with f(q) = 12 while N = 1500. In a word, the object of

the MLE is to seek the probability distribution that can produce the observed data

most likely.

Finally, since the likelihood function L(p|N, f(q)) for binomial distribution is a

convex function. Thus, the MLE estimates exist and are unique for L(p|N, f(q)) and

it must satisfy the following partially differentiating equation known as likelihood

equation:
∂lnL(p|N, f(q))

∂p
= 0. (C.3)

where lnL(p|N, f(q)) is log-likelihood function and both of the functions (lnL(p|N, f(q))

and L(p|N, f(q))) are monotonically related to each other. So, the same MLE esti-

mate is obtained by maximizing either one. After solving equation C.3, finally we

have the MLE estimate shown as follows:

p̂ =
f(q)

N
. (C.4)

According to equation C.4, we have the estimation function F̂ (q) = p̂×
∑

q′∈DB F (q′) =

f(q)× |DB|
|D| , the estimated document frequency of any term can easily be calculated.

The interesting readers can refer to [27] for more details of MLE.
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