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Abstract

The objective of this dissertation is to study properties of improved estimators of the
parameters of interest in two different multivariate regression models, analogous to
the fixed-X and random-X scenarios of multiple regression and compare the perfor-
mance of these estimators with the usual least square estimator. In general, we study
restricted versions of the multivariate regression problem based upon constraining the
relationship between Y and X in some way where they may be known or unknown to
the researcher prior to statistical analysis.

Chapter two contains a study of the properties of improved estimation strategies
for the parameters of interest in a capital asset pricing model under a general lin-
ear constraint. Asymptotic results of the suggested estimators include derivation of
asymptotic bias, asymptotic mean square error, and asymptotic distributional risk.
The asymptotic results demonstrate the superiority of the suggested estimation tech-
nique. A simulation study is conducted to assess the performance of the suggested
estimators for large samples. Both simulation study and data example corroborate
with the theoretical result.

In Chapter three, we consider a multivariate multiple regression model when X is a
fixed matrix. Here, we propose shrinkage and preliminary test estimation strategies
for the matrix of regression parameters in the presence of a natural linear constraint.
We examine the relative performances of the suggested estimators under the candidate
subspace based on a quadratic risk function and the results are shown. A simulation
study is conducted to compare the performance of the suggested estimators and two
data examples are also presented. Our analytical and numerical results show that
the suggested estimators perform better than the unrestricted estimator under the
candidate subspace.

In Chapter four, we consider a multivariate reduced rank regression model when X
is random and we propose preliminary test and shrinkage estimation strategies. We
investigate the asymptotic properties of the shrinkage and pretest estimators under
a quadratic loss function and compare the performance of the suggested estimators
under the candidate subspace and beyond. The methods are applied on a real data
set for illustrative purposes and a simulation study is also presented.
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ĈPT Preliminary test estimator of regression parameter matrix in MMRM
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

Multivariate multiple regression models (MMRMs) are generalizations of the usual

multiple regression models when several response variables have to be predicted based

on a set of predictor variables. MMRMs have recently found a wide range of appli-

cations in a variety of areas such as artificial intelligence, machine learning theory,

education and psychology. (see for example Izenman (2008) and Timm (2002))

Regression analysis includes many techniques for modeling the relationships among

variables and estimating the parameters of the model. When an estimator is obtained

based on sample data only, it is well known that the maximum likelihood estimation

leads to the best estimate among linear unbiased estimates. We call it an unrestricted

maximum likelihood estimator. However, in problems of statistical inference, some-

1



1.1 Introduction 2

times we deal with uncertain prior information or some constraints on some of the

parameters in a statistical model, which usually leads us to an improved inference

based on alternative methods. Now the question arises as to how one can insert this

uncertain prior information into the inference procedure. In this regard, Bancroft

(1944) came up with the idea of testing the uncertainty of the prior information in

the estimation procedure. It is reasonable to perform a pretest or pretest on the

validity of the uncertain prior information and then analyze its development based

on the result of the test. The new estimator that uses uncertain prior information to

find improved estimates is called a restricted estimator. For examples on the results

from many researchers, see Ahmed (2001), Ahmed et al. (2007), Ahmed and Chitsaz

(2011), Chitsaz and Ahmed (2012b), Chitsaz and Ahmed (2012a), and others. We

believe that the restricted estimator is more efficient than the unrestricted estimator

after using prior information. Recent studies are mostly based on estimating the

vector parameter.

The MMRM can be written as

Y = CX + E , (1.1)

where, Y is a full rank n×m matrix of response variables, X is a full rank q×n matrix

of predictor variables, C is a full rank m×q regression coefficients matrix, and E is the

n×m matrix of random errors. Linear restrictions on the regression coefficients are of

such importance in estimation and testing that a special symbolism has been worked

out. For example, in the analysis of variance, the analyst is concerned with whether

treatment effects are equal, and the economist is often concerned about whether one

or more parameters are zero. Similarly, researchers often wonder whether to pool

data such as cross-sections over time, or whether linear combinations of coefficients
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are equal to a constant.

In this dissertation, we suggest some estimators for the parameter matrix in MMRM

and we concentrate on estimating the parameter matrix, C, under a very general set

of linear constraints as prior information,

H0 : KCL = 0, (1.2)

where K and L are known full-rank matrices of appropriate dimensions. Basically,

we consider the estimation problem in two competing models, where one model in-

cludes all predictors and the other restricts variable coefficients to a linear constraint

based on prior information. In this dissertation, we develop some improved estima-

tion strategies such as pretest and shrinkage estimation methods for the matrix of a

regression parameter in three different multivariate regression models.

Unrestricted and restricted estimator:

With a set of potential restrictions in mind as prior information , the researcher’s

attention is drawn to two estimators. Let Ĉ be the ordinary (unrestricted) least

square estimators ofC, and let C̃ be the restricted estimator ofC under a very general

set of linear constraints as prior information named the candidate subspace (1.2). The

estimator C̃ has a smaller variance than the unrestricted estimator; if the restrictions

are true, C̃ is unbiased. Therefore, imposing false restrictions while reducing variance

leads to bias, and the worse the restriction, the worse the bias. In many cases,

researchers may have restrictions in mind such as pooling data, dropping variables,

and so on. They may not be certain whether the restrictions are valid, or they

may wish the data reveal something about the truth or falsity of the restrictions. A

common practice in such situations is to test the restrictions as a statistical hypothesis.
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Pretest estimator:

Let D be a test statistic for the null hypothesis in (1.2) and drn,α be the critical

value of the distribution of D under the null hypothesis. We define the following

pretest estimator:

ĈPT = Ĉ − (Ĉ − C̃)I(D < drn,α),

where the drn,α is the upper α-level critical value of the χ2 distribution with rn degrees

of freedom, and I(A) is an indicator function of a set A. There is always the chance

of accepting a false hypothesis or rejecting a true hypothesis. When the analyst acts

as if the restrictions are true, he runs a risk associated with a type two error; if the

restrictions are false, he runs a risk associated with the other type of error involved

in hypothesis testing. In general, the pretest estimator is biased, since C̃ is biased

if the restrictions are false, because there is a nonzero probability of accepting false

restrictions via the test. However, the performance of this estimator is substantially

better than the unrestricted estimator when uncertain prior information is nearly

correct. Some useful literature about this estimator can be found in Bancroft (1944),

Albertson (1991), and Ahmed (2001).

Estimators that are better in squared error loss than pretest estimators exist.

Hence, James-Stein type estimators are defined and contrasted with pretest esti-

mators.

Shrinkage and positive shrinkage estimator:

Following Ahmed and Krzanowski (2004), the shrinkage estimator of the regression
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parameters matrix based on a James-Stein type estimator is defined as

ĈJS = C̃ + {1− cD−1}(Ĉ − C̃), c > 2,

where the optimal value of c is chosen in an interval in such a way that ĈJS dominates

Ĉ. Note that the above estimator is derived by simply replacing the binary function of

I(A) by a continuous function cD−1. Therefore, this estimator may have the opposite

sign of Ĉ. To avoid that, we truncate ĈJS to obtain the positive shrinkage estimator

which is defined as

ĈJS+ = C̃ + {1− cD−1}+(Ĉ − C̃), c > 2.

If the candidate subspace as prior information is true, there is no issue since the

imposition of a true candidate subspace reduces variances and does not cause bias.

Imposition of a false candidate subspace introduces bias. Thus, the only way of

making a judgment on listed estimators is to derive a risk function that assigns weights

to bias and variance. We have studied the performance of the suggested estimators

in terms of their risks. In an effort to provide the risk analysis, we considered the

quadratic loss function of the form

L(C∗,C) = [vec(C∗ −C)]′W [vec(C∗ −C)],

where W is the positive semi-definite (p.s.d) matrix with an appropriate dimension.

Then the risk of C∗ or any estimator of C is

R(C∗;W ) = tr[WMSE(C∗)], (1.3)
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where MSE(C∗) = E{vec(C∗ − C)[vec(C∗ − C)]′}. For instance, if we get

MSE(C∗) = (A⊗B) with a A and B nonsingular matrix, we define the quadratic

risk as follows:

R(C∗;W ) = tr(WB)tr(A).

1.2 Highlights of Contributions

The goal of this dissertation is to generalize estimation of the matrix parameter in

MMRM. We describe two different multivariate regression scenarios, analogous to the

fixed X and random X scenarios of multiple regression. We extend the concept of

James-Stein type shrinkage estimation methods and pretest estimation in the context

of three different linear regression models.

In Chapter two, we consider the simple multivariate regression model that includes

basic investment models. For that, we have studied the capital asset pricing model

which reflects how the expected return on an asset is a function of the expected

returns on the market, the risk-free asset, and of the relevant risk of that asset. The

goal of this model is to describe the properties of having an optimal portfolio given

the best selection of stock for investors who like more return and less risk. Let us

consider a system of regression models derived from a capital asset pricing model.

yt = θ + xtβ + εt, t = 1, · · · , n, (1.4)

where yt is the p×1 vector of excess return on k assets; let xt be the excess return on

the market portfolio at time t. Here, the parameter β is the regression slope between

the asset return and that of the market, which shows how a stock acts in relation
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to the market. Here, the goal is to maximize the performance of a portfolio when

it is prior suspected that the asset’s return, θ, may be restricted to a subspace. In

this scenario, we are dealing with different estimation strategies for the parameters

in a simple multivariate regression model. Here we consider alternative estimators of

the slope parameter in a regression model with a non-normal error when uncertain

prior information about the value of the intercept parameter is available and can be

expressed in the general form of a null hypothesis, Hq×pθp×1 = hq×1. We develop

a large sample theory for the estimators that includes derivation of asymptotic bias

and asymptotic distributional risk of the suggested estimators. The asymptotic results

demonstrate the superiority of the suggested estimation technique. Also, a simulation

study shows that the method suggested here has sound finite sample properties and

strongly corroborates with the theoretical results of this chapter. A data example is

also presented to illustrate the suggested estimation strategies.

In Chapter three, we generalize the estimation strategies for the matrix of a re-

gression parameter in a multivariate multiple regression model in the presence of a

natural linear constraint when the matrix of predictor variables X is fixed and non

stochastic. Also, we study the application of shrinkage and pretest estimation strate-

gies in MMRM, which is the most important model for many practical situations.

The goal is to critically examine the relative performances of the listed estimators in

the direction of the subspace and candidate subspace restricted type estimators. In

the case of multivariate multiple regression, we are dealing with the parameter ma-

trix estimation. So, the fundamental results of Sclove et al. (1972) cannot be directly

implemented to compute the expressions needed to check the validity and relative

efficiency of proposed estimators under very general linear constraints. Therefore, we

first generalized the results of Sclove et al. (1972) and then use them to derive those
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expressions for the suggested estimators. This chapter also addresses the pairwise

comparisons of the proposed estimators. Our analytical and numerical results show

that, overall, the proposed shrinkage estimators perform the best. The methods are

also applied on a real data set for illustrative purposes.

However, there are many problems in multivariate statistical analysis that involve a

test concerning regressions of reduced rank and restrictions on regressions. Therefore,

the special feature that can be entered into the multivariate linear regression model

case is that we admit the possibility that the rank of the regression coefficient matrix

can be deficient. This implies that there are linear restrictions on the coefficient

matrix, and these restrictions themselves are often not known a priori. Such a model is

called a reduced rank regression model. The model structure and estimation strategies

for this model will be explicitly discussed in Chapter four of this dissertation. Note

that in this chapter we consider the predictor variables X to be random.

In model (1.2) when C has reduced rank r, there exist two non-unique full rank

matrices: an (m × r) matrix A and an (r × q) matrix B, such that C = AB. We

restate the model in (1.2) as a reduced rank regression model, such that

Y = ABX + E . (1.5)

The above mentioned features have practical implications. When we model with a

large number of response and predictor variables, the implication in terms of restric-

tions serves a useful purpose. Certain linear combinations of response variables can,

eventually, be ignored for regression modeling purposes, since these combinations will

be found to be unrelated to the predictor variables. The alternative implication indi-

cates that only certain linear combinations of the predictor variables need to be used
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in the regression model, since any remaining linear combinations may be found to have

no influence on the response variables given the first set of linear combinations. Thus,

the reduced rank regression procedure takes care of the dimension reduction aspect

of a multivariate regression model when building through the assumption of a lower

rank for the regression coefficient matrix. Statistical problems concerning reduced

rank regression models have been studied in the statistical literature by Anderson

(1951, 1984), Srivastava and Khatri (1979), (see Chapters 5 and 6), Muirhead and

Koole (1982), (see Chapter 10), Reinsel (1998), Heinen and Rengifo (2007), Vounou

et al. (2010), and others.

Therefore, in many practical situations, there is a need to reduce the number of

parameters in model (1.2), and we approach this problem through the assumption of

a lower rank of the matrix B in model (1.5) caused by linear constraints defined by

FBG = D. (1.6)

In Chapter four, we consider shrinkage and pretest estimators in multivariate re-

duced rank regression model. We investigate the asymptotic properties of suggested

estimators under a very general candidate subspace. In the support of our analytical

results, we present a data example and simulation study.

Chapter five summarizes the results, and concludes the dissertation with a discus-

sion on related research and the direction for future research.



Chapter 2

Data Based Adaptive Estimation

in an Investment Model

2.1 Introduction

The capital asset pricing model (CAPM), or Sharpe-Lintner model, stands out among

asset pricing models. This model reflects how the expected return on an asset is a

function of the expected returns on the market, the risk-free asset, and the relevant

risk of that asset. The goal of the CAPM is to describe the properties of having an

optimal portfolio given the best selection of stocks for any investors who like more

return and less risk. The Portfolio theory describes the process by which investors

seek the best possible portfolio in terms of the tradeoff of risk for return. Portfolio

management involves deciding what assets to include in the portfolio, how many to

purchase, and when to purchase them. For this purpose, Jensen (1968) studied a

10
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regression model of the CAPM, given below:

Rit −Rf = θi + βi(Rmt −Rf ) + εit,

where Rit is the return for stock i in period t, Rf is the return of treasury note, θi

is an asset’s return in a access of it’s risk adjusted, βi is an asset’s systematic risk

for stock i, Rm is the return on the market portfolio in period t, and εit is the asset’s

nonsystematic risk in period t. In this chapter, we consider a system of regression

models derived from a capital asset pricing model.

yt = θ + xtβ + εt, t = 1, · · · , n. (2.1)

Let yt be the p × 1 vector of excess return on k assets, and let xt be the excess

return on the market portfolio at time t. For the inference purpose, we assume that

E(εt) = 0, Cov(εt) = Ω, and E(xtεt) = 0. Here, the parameter β is the regression

slope between the asset return and that of the market (security characteristic line,

(SCL)), which shows how a stock acts in relation to the market. The measure of

the sensitivity of the asset return to the market movement is given so that market

variance is equal for all the assets. We will call a security an “aggressive security” if

its beta exceeds 1,“βi > 1”, and “defensive” if its beta falls below 1, “βi < 1”. The

factor θ of the ith risk asset represents the difference between the expected return

according to the observed reality and the expected return according to the CAPM

theory. Now, if the estimated θ is significantly positive or negative, then the given

risk asset produces returns that are over or below the appropriate values following

the theory. Thus, in the market, the asset seems to be either underestimated or

overestimated, respectively. As noted before, a portfolio is efficient when it yields
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a higher average return for a given risk, and a lower risk for a determined average

return. It would be beneficial, if we have some preliminary information about θ,

to have better estimation for the systematic risk and more efficient portfolio with

more returns. The goal of this chapter is to maximize the performance of a portfolio

when it is prior suspected that the asset’s return, θ, may be restricted to a subspace.

Ahmed and Krzanowski (2004) have considered estimation of the intercept vector

in a simple multivariate normal regression model when it is a priori suspected that

the slope vector may be restricted to a subspace. In this chapter, we investigate this

problem when there is no assumption about the error term, and the prior information

about the value of the intercept parameter can be expressed in the general form of a

null hypothesis, Hθ = h.

2.2 Candidate Subspace

Let the candidate subspace be defined by Hq×pθp×1 = hq×1 and Ω = σ2V . When V

is known and nonsingular, then the weighted least square estimators (WLSE) of β

and θ are given by

β̂ =
n∑
t=1

(xt − x̄)yt/
n∑
t=1

(xt − x̄)2

and

θ̂ = ȳ − x̄β̂.

However, even when V is unknown, the estimator of β does not depend on V ; V

drops out of since the covariate is scalar. Now, considering the problem of finding

β̃ that minimizes the following expression subject to the constraint, we form the
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Lagrangian function where λ is an q × 1 vector of Lagrange multipliers:

` =
∑
t

(yt − θ − xtβ)′V −1(yt − θ − xtβ) + 2λ′(Hθ − h).

Differentiation with respect to θ, β and λ yields the following results:

β̃ = β̂ +C(Hθ̂ − h),

where

C = dV H ′(HVH ′)−1

and

d =
nx̄∑n

t=1(xt − x̄)2
.

Note that HVH ′ is invertible. We call β̃ a candidate sub-model or a restricted esti-

mator of β. β̃ will be equal to β̂, an unbiased estimator, if the subspace information

is correct i.e. Hθ = h. Therefore, β̃ will be a biased estimator if the subspace

information is not correct. On the other hand, it will be relatively more efficient than

the classical estimator β̂ when such subspace information represents the data.

A useful but compromising method for tackling the uncertainty regarding the

subspace information is to implement estimation strategies based on shrinkage and

pretest principles. For point estimation, we refer to Ahmed (2001), Khan and Ahmed

(2003), and Ahmed et al. (2010), among others. For the purpose of statistical inference

in such cases, one could employ an empirical Bayes approach to the computation of

standard errors of these shrinkage estimators; for example, see Maddala et al. (1997).

Alternatively, Kazimi and Brownstone (1999) proposed confidence bands for shrink-

age estimators using a simple percentile bootstrapping method. Wan et al. (2003)
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have proposed the use of mean squared error matrices with a class of shrinkage esti-

mators for the purposes of constructing confidence ellipsoids.

The remainder of this chapter is organized as follows. In Section 3, pretest and shrink-

age estimators are defined. In Section 4, we derive the expressions for asymptotic bias

and risk of the proposed estimators, and provide their relative performances. Section

5 provides a simulation study and a real data example. Conclusions are offered in

Section 6. Finally the proof of the main results are provided in Section 7.

2.3 Proposed Estimation Strategies

Here, we consider pretest and shrinkage estimations of the regression parameter vector

β. The pretest estimator is defined as

β̂PT = β̂I(P > χ2
q,α) + β̃I(P ≤ χ2

q,α),

where I(A) is an indicator function of the set A, and P is the test statistic for testing

Hθ = h as given by

P = s2
e(β̂ − β̃)′M−1(β̂ − β̃)

where

M = (
1

n
+
x̄2

Q
)CHVH ′C ′.

When the subspace information is true, (Hθ = h), the statistic P follows χ2 distri-

bution with q degrees of freedom as n→∞. The James-Stein or shrinkage estimator

as a smooth function of P is given by

β̂JS = β̃ + (1−mP−1)(β̂ − β̃), q > 2.
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Notice that β̂JS is similar to β̂PT where we have replaced the indicator function

I(P ≤ χ2
q,α) by a continuous decreasing function mP−1 of P . Thus, instead of two

extreme choices, namely β̂ or β̃, β̂JS provides the choice for all values between β̂ and

β̃ depending on the value of P for a given sample. Here, m is the shrinkage constant

and is chosen in an interval in such a way that β̂JS dominates β̂ in terms of risk. m

is allowed to vary over [0, 2(q − 2)), q > 2, often set to m = q − 2; thus, we assume

that q ≥ 3. We can see that β̂JS tends to β̂ as P tends to infinity, and it tends to β̃

as P → q − 2. Finally, the positive-part shrinkage estimator is

β̂JS+ = β̃ + (1−mP−1)+(β̂ − β̃),

where z+ = max(0, z), or, equivalently, as

β̂JS+ = β̃ + (1−mP−1)I(P > m)(β̂ − β̃).

Having defined all these estimators, we investigate their asymptotic properties in the

following section.

2.4 Main Results

Let ν1 =
√
n(β̂−β), ν2 =

√
n(β̃−β), and ν3 =

√
n(β̂− β̃). To establish the asymp-

totic properties of listed estimators, we consider the local alternatives to guarantee

convergence and overcome the difficulty of identical asymptotic distribution of some

listed estimators in large samples under fixed alternatives. To do so, we consider a

sequence of local alternatives {Ln} defined by Ln : Hθ = h + ξ√
n
, where ξ is a real

fixed vector. Consider model (2.1), where ε is not normally distributed. Therefore, we



2.4 Main Results 16

need the following three regularity conditions for the asymptotic normality of (θ,β)

as n→∞.

Theorem 2.4.1. Consider the simple regression model when the components of the

error vector ε = (ε1, . . . , εn)′ are independent, E(εt) = 0, Cov(εt) = σ2V , and the

distribution of ε is non-normal. Now assume the following regularity assumptions:

(i) limn→∞ x̄ = x̄0, |x̄0| <∞

(ii) Let qt = xt − x̄√
Q

then max1≤t≤n q
2
t → 0 as n→∞.

(iii) Let Q =
n∑
t=1

(xt − x̄)2. Then limn→∞ n
−1Q = Q0 <∞.

Then,  √n(θ̂ − θ)

√
n(β̂ − β)

 ∼ N2p

{ 0

0

 , σ2V

 (1 + x̄2

Q0
) − x̄

Q0

− x̄
Q0

Q−1
0

}.

Theorem 2.4.2. Under assumed regularity conditions given in Theorem 2.4.1 and

{Ln}, we have

(i)

 ν1

ν2

 ∼ N2p

{ 0

γ

 , σ2

 Q−1
0 V Σ12

Σ21 Σ∗

}

(ii)

 ν1

ν3

 ∼ N2p

{ 0

−γ

 , σ2

 Q−1
0 V Ω12

Ω21 Ω∗

}

where γ = Cξ, Q =
n∑
t=1

(xt − x̄)2, Σ∗ = Q−1
0 V +(1+ x̄2

Q0
)CHVH ′C ′−2x̄Q−1

0 CHV ,

Σ12 = Σ′21 = Q−1
0 V − x̄Q−1

0 CHV , Ω12 = Ω′21 = x̄Q−1
0 CHV , and Ω∗ = (1 +

x̄2

Q0
)CHVH ′C ′.

Proof: See Appendix, Section 2.7.1.
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2.4.1 Asymptotic Bias and Risk Analysis

In this section, we obtain expressions for the asymptotic distributional bias (ADB)

and the risks (ADR) of the proposed estimators. Also, we compare the performance

of the suggested estimators in terms of asymptotic bias and risk, respectively. Here,

we present the expression for the asymptotic distribution bias (ADB) of the proposed

estimators. The ADB of an estimator β∗ is defined as

ADB(β∗) = lim
n→∞

E
{
n

1
2 (β∗ − β)

}
.

To study the asymptotic quadratic risks of the estimators, we define a quadratic

loss function using a positive definite matrix (p.d.m.) W , namely

L(β∗,β) = n(β∗ − β)′W (β∗ − β),

where β∗ is any one of β̂, β̃, β̂PT , β̂JS, and β̂JS+.

Now we assume that for the estimator β∗ of β the cumulative distribution function

of β∗ under {Ln} exists and can be denoted as F (x) = limn→∞ P{
√
n(β∗ − β) ≤

x|Ln}, where F (x) is nondegenerate. Then, the ADR of β∗ is defined as

ADR(β∗,W ) = tr

{
W

∫
Rp1

∫
xx′dF (x)

}
= tr(WZ),

where Z is the dispersion matrix for the asymptotic distribution F (x). We say

that β̂ dominates β̂? for all β, if ADR(β̂;W ) < ADR(β̂?;W ).

Theorem 2.4.3. Under {Ln} the asymptotic distribution biases (ADB) of the pro-
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posed estimators are respectively

ADB(β̃) = γ

ADB(β̂PT ) = γHq+2(χ2
q(α),∆)

ADB(β̂JS) = mγE(χ−2
q+2(∆))

ADB(β̂JS+) = ADB(β̂JS)− γE{(mχ−2
q+2(∆)− 1)I(χ2

q+2(∆) < m)},

where γ = Cξ, m = q − 2, and the notation Hν(x; ∆) is the distribution function

of non-central chi-square distribution with ν degrees of freedom and non-centrality

parameter ∆ = Q0σ
−2(γ ′V −1γ).

Proof: See Appendix, Section 2.7.2.

Since the asymptotic bias expression of all the estimators are not in scalar form,

we therefore take the recourse of converting them into the quadratic form. Thus, let

us define the asymptotic quadratic distributional bias (AQDB) of an estimator β∗ of

β by

AQDB(β∗) = Q0σ
−2[ADB(β∗)]′V −1[ADB(β∗)].

Based on the above, we can easily obtain the AQDB of the estimators.

AQDB(β̃) = ∆

AQDB(β̂PT ) = ∆{Hq+2(χ2
q(α),∆)}2

AQDB(β̂JS) = m2∆{E(χ−2
q+2(∆))}2

AQDB(β̂JS+) = ∆{mE(χ−2
q+2(∆))− E{(mχ−2

q+2(∆)− 1)I(χ2
q+2(∆) < m)}2.

Clearly, the asymptotic bias of β̃ is unbounded, and the bias of β̂PT depends on the
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size of α and ∆. The asymptotic bias of β̂JS and β̂JS
+

depend on ∆ alone. Thus, we

can establish the following relation:

0 = AQDB(β̂) ≤ AQDB(β̂JS
+

) ≤ AQDB(β̂JS) ≤ AQDB(β̂PT ) ≤ AQDB(β̃).

Theorem 2.4.4. Under {Ln}, the asymptotic covariance matrices (AMSE) of the

estimators are as follows:

AMSE(β̂) = Q−1
0 V

AMSE(β̃) = Q−1
0 V +G− 2F + γγ ′

AMSE(β̂PT ) = Q−1
0 V + [G− 2F ]Hq+2(χ2

q(α),∆)

+ γγ ′{−2AHq+2(χ2
q(α),∆)

− 2AHq+4(χ2
q(α),∆) +Hq+4(χ2

q(α),∆)}

AMSE(β̂JS) = Q−1
0 V +m2GE(χ−4

q+2(∆))− 2mF [E(χ−2
q+2(∆))] +mγγ ′

[−2AE(χ−2
q+4(∆))− 2AE(χ−2

q+2(∆)) +mE(χ−4
q+4(∆))]

AMSE(β̂JS+) = AMSE(β̂JS)−G[E(1−mχ−2
q+2(∆))2I(χ2

q+2(∆) < m)]

+ γγ ′{2E(1−mχ−2
q+2(∆))I(χ2

q+2(∆) < m)− E(1−mχ−2
q+4(∆))2

× I(χ2
q+4(∆) < m)},

where A = G−1F , G = Ω∗, and F = Ω12.

Proof: See Appendix, Section 2.7.3.

The asymptotic risk expressions for the estimators are contained in the following

theorem.

Theorem 2.4.5. Under {Ln}, the asymptotic distributional risks (ADR) are as fol-
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lows:

ADR(β̂;W ) = Q−1
0 tr(WV ),

ADR(β̃;W ) = Q−1
0 tr(WV ) + a× tr(Z11)− 2b× tr(WCHV ) + η′1Z11η1

ADR(β̂PT ;W ) = Q−1
0 tr(WV ) + [a× tr(Z11)− 2b× tr(WCHV )]Hq+2(χ2

q(α),∆)

− 2tr(Wγγ ′A)[Hq+2(χ2
q(α),∆) +Hq+4(χ2

q(α),∆)]

+ η′1Z11η1Hq+4(χ2
q(α),∆))

ADR(β̂JS;W ) = Q−1
0 tr(WV )− 2mb× tr(WCHV )E(χ−2

q+2(∆))

− 2m× tr(Wγγ ′A)[E(χ−2
q+4(∆)) + E(χ−2

q+2(∆))]

+ am2 × tr(Z11)E(χ−4
q+2(∆)) +m2η′1Z11η1E(χ−4

q+4(∆))]

ADR(β̂JS+;W ) = ADR(β̂JS;W )− a× tr(Z11)[E(1−mχ−2
q+2(∆))2I(χ2

q+2(∆) < m)]

+ η′1Z11η1{2E(1−mχ−2
q+2(∆))I(χ2

q+2(∆) < m)− E(1−mχ−2
q+4(∆))2

× I(χ2
q+4(∆) < m)},

where a = (1 + x̄2

Q0
) and b = x̄Q−1

0 .

Proof: See Appendix, Section 2.7.4.

2.4.2 Comparison of β̂JS+ and β̂

Let us consider the risk of β̂JS+ under a subspace, in terms of the risk of β̂:

ADR(β̂JS+;W ) = ADR(β̂;W )− 2mb× tr(WCHV )E(χ−2
q+2(0))

+ a× tr(Z11){m2 × E(χ−4
q+2(0))− E[(1−mχ−2

q+2(0))2]

I(χ2
q+2(0) < m)}.
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Since {E(1−mχ−2
q+2(0))2I(χ2

q+2(0) < m)} ≤ E[(1−mχ−2
q+2(0))2] and the expectation

of a positive random variable is positive, then, for all m satisfying the condition

tr(Z11) >
2mb× tr(WCHV )E(χ−2

q+2(0))

a[m2 × E(χ−4
q+2(0))− E(1−mχ−2

q+2(0))2]
,

β̂ performs better than β̂JS+. However, as ∆ increases, β̂JS+ dominates β̂ outside

an interval near the origin.

2.4.3 Comparison of β̂JS+ and β̂JS

For comparing the asymptotic risk of β̂JS and β̂JS+, we consider the risk difference

of them

ADR(β̂JS;W )− ADR(β̂JS+;W ) = a× tr(Z11)[E(1−mχ−2
q+2(∆))2I(χ2

q+2(∆) < m)]

− η′1Z11η12E(1−mχ−2
q+2(∆))I(χ2

q+2(∆) < m)

+ η′1Z11η1E(1−mχ−2
q+4(∆))2I(χ2

q+4(∆) < m),

since the expectation of a positive random variable is positive and, by the definition

of an indicator function, the first and last terms are positive. For the second term in

the equation, we observe that (0 < χ2
q+2(∆) < m) ⇐⇒ (mχ−2

q+2(∆) − 1) ≥ 0, we get

E[(1 −mχ−2
q+2(∆))I(χ2

q+2(∆) < m)] ≤ 0. Thus, the second term is nonnegative too.

Therefore, the risk of β̂JS+ will be smaller than β̂JS for all ∆ in (0,∞).
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2.4.4 Comparison of β̃ and β̂JS

We investigate the risk-difference of β̂JS and β̃ under subspace is

ADR(β̃;W )−ADR(β̂JS;W ) = 2b×tr(WCHV )(m−1)−am2×tr(Z11)E(χ−4
q+2(0))

the risk of β̂JS is smaller than β̃ when the condition

tr(WCHV ) >
am2 × tr(Z11)E(χ−4

q+2(0))

2b(m− 1)
.

Thus, β̂JS does not dominate β̃ under a subspace. However, for the large values of

∆, the reverse conclusion holds.

2.4.5 Comparison of β̂PT and β̂

The risk difference is given by

ADR(β̂;W )− ADR(β̂PT ;W ) = −[a× tr(Z11)− 2b× tr(WCHV )]Hq+2(χ2
q(α),∆)

+ 2tr(Wγγ ′A)[(Hq+2(χ2
q(α),∆) +Hq+4(χ2

q(α),∆))]

− η′1Z11η1Hq+4(χ2
q(α),∆))

The right hand side is nonnegative whenever

η′1Z11η1 <
[2b× tr(WCHV )− a× tr(Z11)]Hq+2(χ2

q(α),∆)

Hq+4(χ2
q(α),∆)

,

In this range, β̂PT performs better than β̂ as well as under the null hypothesis

ADR(β̂PT ;W ) ≤ ADR(β̂;W ), since the risk difference for all α is positive.
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After comparing the ADR of all the estimators, we can see that

ADR(β̂JS+;W ) ≤ ADR(β̂JS;W ) ≤ ADR(β̂;W ).

Also comparing the β̂PT with β̂, we see that ADR(β̂PT ;W ) ≤ ADR(β̂;W ).

2.5 Numerical Study

2.5.1 Simulation Study

In this section, we use Monte Carlo simulation experiments to examine the perfor-

mance of the proposed estimators based on a moderate and a large sample method-

ology. In this study, we simulate data from the following model:

 yt1

yt2

 =

 θ1

θ2

+ xt

 β1

β2

+

 εt1

εt2

 t = 1, · · · , n.

For simulation, we consider θ = (1.5, 2.5), H = ((1, 0)′, (0, 1)′)′, and h = (1.5, 2.5).

Under the candidate subspace, we generate 5000 samples using the above model,

which is adequate since a further increase in the number of replications did not sig-

nificantly change the result. We define ∆ as a departure parameter which is a function

of the distance between the true value of θ and that under the null hypothesis. In

order to investigate the behavior of the proposed estimators, different values of θ

were chosen to produce the value of ∆ between 0 and 4. The performance of an

estimator of θ will be reappraised using the mean square error criterion. All com-

putations were conducted using the R statistical system. We numerically calculated
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the relative risk of β̃, β̂PT , β̂JS, and β̂JS+ with respect to β̂ by simulation. The

simulated relative efficiency of the estimator β∗ to the unrestricted β̂ is defined by

R.E = risk(β̂)/risk(β̂∗). We applied our method to several simulated data sets, and

the results were similar. Since the result for different n were similar, here we only

report the results for n = 30 and n = 100 in Tables 2.1 and 2.2, and Figures (2.1)

and (2.2).

Table 2.1: R.E of estimators, n = 30.

∆ β̃ β̂PT β̂JS β̂JS+

0.0 3.198 2.449 1.323 1.467
0.2 2.199 1.410 1.020 1.320
0.4 1.104 0.85 1.065 1.115
0.6 0.621 0.898 1.051 1.054
0.8 0.381 0.883 1.029 1.029
1.2 0.181 0.894 1.015 1.015
1.6 0.105 1.000 1.009 1.009
2.0 0.067 1.000 1.006 1.006
4.0 0.017 1.000 1.001 1.001

Table 2.2: R.E of estimators, n = 100.

∆ β̃ β̂PT β̂JS β̂JS+

0.0 2.225 1.877 1.260 1.356
0.2 0.809 0.797 1.040 1.042
0.4 0.284 0.998 1.010 1.010
0.6 0.134 1.000 1.004 1.004
0.8 0.077 1.000 1.002 1.002
1.2 0.036 1.000 1.001 1.001
1.6 0.020 1.000 1.001 1.001
2.0 0.013 1.000 1.000 1.000
4.0 0.003 1.000 1.000 1.000

We can see the relative efficiencies of the estimators change with the change in the
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Figure 2.1: R.E of the estimators for n = 30.
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Figure 2.2: R.E of the estimators for n = 100.
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value of the departure parameter ∆. The tables and figures reconfirm the typical

characteristics of the listed estimators. We conclude that β̃ and β̂PT dominate the

usual β̂ at and near the candidate subspace. β̂JS and β̂JS+ are more efficient than

an unrestricted one in the unrestricted parameter space. If the candidate subspace is

correctly specified, that is, ∆ = 0 or in the neighborhood of that, then the β̂PT is more

efficient than β̂JS and β̂JS+. However, for a larger value of α, the level of significance,

β̂JS+ dominates β̂PT uniformly. As the value of ∆ grows, the β̂PT becomes more

inefficient than the unrestricted one, and its efficiency value monotonically decreases,

achieves a minimum after crossing the efficiency line at 1, and then monotonically

increases and approaches to the β̂ efficiency. So β̃ is more efficient than all the other

estimators under the candidate subspace but, as ∆ increases, its efficiency converges

to zero since it is an unbounded function of ∆.

2.5.2 Real Data Example

A motivating example is the study of financial data taken from the Standard and

Poors 500 (S&P) index. We consider nine of the largest mutual funds in the United

States for the past thirty one years, from 1977 to 2007. Most data are cited from

Chen and Wen (2004), while the information for 2005-2007 is gathered from Yahoo’s

finance website. We treat the nine funds’ annual returns as response variables:

y1-Washington Mutual Fund A (AWSHX), y2-Fidelity Contra Fund (FCNTX), y3-

American Income Fund (AMECX), y4-Dodqe and Cox Stock Fund(DODGX), y5-New

Perspective Fund A (ANWPX), y6-Fidelity Puritan Fund (FPURX), y7-Vauguard

Windsor Fund (VWNDX), y8-Janus family-janus fund (JANNSX), and y9-Fidelity

Equity Income Fund (FEQIX).
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Table 2.3: Estimators of β for nine diversified funds

Fund β̂ β̃ β̂PT β̂JS β̂JS+

AWSHX 0.756583 1.1018080 0.9278829 0.8918164 0.8918164
FCNTX 0.93232 1.3925302 1.1918986 1.1125959 1.1125959
AMECX 0.4754531 0.6199427 0.5293787 0.5320533 0.5320533
DODGX 0.6753388 0.8373402 0.6385641 0.7387988 0.7387988
ANWPX 0.744376 0.8849010 0.8030956 0.7994232 0.7994232
FPURX 0.5409128 0.9847795 0.7452551 0.7147867 0.7147867
VWNDX 0.6280855 0.6637484 0.5257206 0.6420556 0.6420556
JANNSX 1.137417 1.0711357 1.1255026 1.1114528 1.1114528
FEQIX 0.7484044 1.0847322 0.8798584 0.8801525 0.8801525

Let the (S&P) index be a predictor variable, then we can construct the simple

linear multivariate regression model as model (2.1). We consider the data from the

first 10 years (1977-1986) to find the average of the asset’s return as our preliminary

information, which gives the following result:

θ0 = (6.0060,−0.9894, 8.2210, 1.3112, 8.1563, 8.0703, 11.9730, 7.2887, 10.3300)′.

Using θ0 as prior information, we estimate the systematic risks of β using suggested

estimation strategies. The point estimation of the proposed estimators are presented

in Table 2.3. We calculate the risk of the listed estimators, based on 1000 replicates

from bootstrapping. We obtain the efficiency of estimators relative to β̂; the results

are given in Table 2.4, which are in agreement with the findings of our theoretical

and simulated work.
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Table 2.4: The relative efficiency of estimators

Estimator R.E(β̂ : β∗)

β̃ 2.4472

β̂JS 1.5343

β̂JS+ 1.7750

β̂PT 2.0853

2.6 Concluding Remarks

For a simple multivariate regression model that includes basic investment models,

we have considered various estimation strategies based on a pretest and shrinkage

estimation. In conclusion, the positive-part shrinkage estimator dominates the usual

shrinkage estimator uniformly. Both shrinkage estimators perform well relative to the

usual unrestricted least squares estimator in a wider range that the pretest estima-

tor. The subspace candidate least squares estimator depends heavily on the quality

of the subspace information. The ADR of the restricted least squares estimator is

unbounded when the parameter moves far from the subspace of the restriction, while

the pretest estimator provides good control on the magnitude of the ADR. It is ex-

ceedingly important to note that the shrinkage estimators have the smallest possible

risk in most cases, as compared to other estimators except when the subspace infor-

mation is nearly correct. Further, the application of shrinkage estimators are subject

to the condition that q ≥ 3, where q is the number of parameters in the unrestricted

parameter vector.

The theoretical results in the chapter were verified based on a Monte Carlo sim-

ulation. Indeed, the simulation study shows that the method suggested has sound

finite sample properties. The analysis of a motivating financial data example is also
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consistent with findings of the analytical and simulation results.

2.7 Appendix: Proof of Main Results

The following lemma is listed in Sclove et al. (1972), and is used to prove the theorem

in this chapter.

Lemma 2.7.1. Let y be a q-dimensional normal vector distributed as Nq(µy, Iq).

Then, for a measurable function of φ, we have

E[yφ(y′y)] = µyE[φ(χ2
q+2(∆))]

E[yy′φ(y′y)] = IqE[φ(χ2
q+2(∆))] + µyµ

′
yE[φ(χ2

q+4(∆))],

where ∆ = µ′yµy

2.7.1 Proof of Theorem 2.4.2

Since ν1,ν2, and ν3 are asymptotically normal, the joint distribution of (ν1,ν2) and

(ν2,ν3) will be asymptotically normal as well.

E(ν2) = lim
n→∞

E[n1/2(β̃ − β)]}

= lim
n→∞

E[n1/2(β̂ +C(Hθ̂ − h)− β)] under Ln

= 0 + lim
n→∞

E[n1/2C(Hθ̂ − h)]

= Cξ

= γ



2.7 Appendix: Proof of Main Results 30

Cov(ν2) = Cov(β̃ − β)

= Cov(β̂ +C(Hθ̂ − h)− β)

= Cov(β̂) + Cov(C(Hθ̂ − h))− 2Cov(β̂,C(Hθ̂ − h))

= Q−1
0 V + (1 +

x̄2

Q0

)CHVH ′C ′ − 2x̄Q−1
0 CHV

= Σ∗

E(ν2) = lim
n→∞

E[n1/2(β̃ − β)]}

= lim
n→∞

E[n1/2(β̂ +C(Hθ̂ − h)− β)] under Ln

= 0 + lim
n→∞

E[n1/2C(Hθ̂ − h)]

= Cξ

= γ

E(ν3) = E(ν1 − ν2)

= lim
n→∞

E[n1/2(β̂ − β̃)]

= lim
n→∞

E{n1/2[−C(Hθ̂ − h)]} under Ln

= −Cξ

= −γ

Cov(ν3) = Cov(ν1 − ν2)

= Cov(ν1) + Cov(ν2)− 2Cov(ν1,ν2)

= Q−1
0 V +Q−1

0 V + (1 +
x̄2

Q0

)CHVH ′C ′ − 2x̄Q−1
0 CHV

− 2Q−1
0 V + 2x̄Q−1

0 CHV

= (1 +
x̄2

Q0

)CHVH ′C ′

= Ω∗
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2.7.2 Proof of Theorem 2.4.3

In this section we explicitly present a proof of Theorem 2.4.3. Clearly the ADB of β̃

is equal to γ.

ADB(β̂PT ) = lim
n→∞

√
nE(β̂PT − β)

= lim
n→∞

√
nE(β̂ − (β̂ − β̃)I(P ≤ χ2

q,α)− β)

= lim
n→∞

E[ν1 − ν3I(P ≤ χ2
q,α)]

= γHq+2(χ2
q(α),∆),

ADB(β̂JS) = lim
n→∞

√
nE(β̃ + (1−mP−1)(β̂ − β̃)− β)

= lim
n→∞

E(ν1 −mν3P
−1)

= mγE(χ−2
q+2(∆)),

ADB(β̂JS+) = lim
n→∞

√
nE{(β̂JS − β)− (1−mP−1)(β̂ − β̃)I(P < m)}

= ADB(β̂JS)− γE{(mχ−2
q+2(∆)− 1)I(χ2

q+2(∆) < m)}.

2.7.3 Proof of Theorem 2.4.4

Clearly the AMSE(β̃) is equal to Σ∗ + γγ ′. AMSE(β̂PT ) can be written as

= lim
n→∞

E{n(β̂PT − β)(β̂PT − β)′}

= lim
n→∞

E{[ν1 − ν3I(P < χ2
q(α))][ν1 − ν3I(P < χ2

q(α))]′}

= lim
n→∞

E{ν1ν1
′ − ν1ν3

′I(P < χ2
q(α))− ν3ν1

′I(P < χ2
q(α)) + ν3ν3

′I2(P < χ2
q(α))}.
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Note that, by using Theorem 2.4.2 and Lemma 2.7.1, for E(ν3ν1
′I(P < χ2

q(α))) we

have

= E(E(ν3ν1
′I(P < χ2

q(α))|ν3))

= E(ν3[E(ν1) + Ω21Ω
∗−1(ν3 − E(ν3))]′I(P < χ2

q(α)))

= Ω12Hq+2(χ2
q(α),∆) + γγ ′Ω∗−1Ω12[Hq+4(χ2

q(α),∆) +Hq+2(χ2
q(α),∆)].

Therefore,

AMSE(β̂PT ) = Q−1
0 V − 2{Ω12Hq+2(χ2

q(α),∆) + γγ ′Ω∗−1Ω12[Hq+4(χ2
q(α),∆) +

Hq+2(χ2
q(α),∆)]}+ Ω∗Hq+2(χ2

q(α),∆) + γγ ′Hq+4(χ2
q(α),∆)

AMSE(β̂JS) = lim
n→∞

E{n[(β̂ − β)−mP−1(β̂ − β̃)][(β̂ − β)−mP−1(β̂ − β̃)]′}

= V ar(ν1) + E(ν1)E(ν1)′ − 2E(ν3ν1
′mP−1) + E(ν3ν3

′(mP−1)2).

Note that, by using Theorem 2.4.2 and Lemma 2.7.1, we have

E(ν3ν1
′P−1) = E(E(ν3ν1

′P−1|ν3))

= E(ν3[E(ν1) + Ω21Ω
∗−1(ν3 − E(ν3))]′P−1)

= E(ν3ν3
′Ω∗−1Ω12P

−1 + ν3γ
′Ω∗−1Ω12P

−1)

= Ω12E(χ−2
q+2(∆)) + γγ ′Ω∗−1Ω12[E(χ−2

q+4(∆)) + E(χ−2
q+2(∆))].

Therefore,

AMSE(β̂JS) = Q−1
0 V − 2m{Ω12E(χ−2

q+2(∆)) + γγ ′Ω∗−1Ω12[E(χ−2
q+4(∆)) +

E(χ−2
q+2(∆))]}+m2[Ω∗E(χ−4

q+2(∆)) + γγ ′E(χ−4
q+4(∆))].
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We got the result after some computation. Similarly,

AMSE(β̂JS+) = lim
n→∞

E{n[(β̂JS − β)− (1−mP−1)(β̂ − β̃)I(P < m)]

× [(β̂JS − β)− (1−mP−1)(β̂ − β̃)I(P < m)]′}

= AMSE(β̂JS)

− 2 lim
n→∞

nE{(β̂ − β̃)(β̂JS − β)′(1−mP−1)I(P < m)}

+ lim
n→∞

nE[(β̂ − β̃)(β̂ − β̃)′(1−mP−1)2I(P < m)].

Note that by using the definition of β̂JS from Section 2.3 in the second term of the

above equation and substituting β̃ − β = β̃ − β̂ + β̂ − β, we have

− 2 lim
n→∞

nE{(β̂ − β̃)[(β̃ − β) + (1−mP−1)(β̂ − β̃)]′ × (1−mP−1)I(P < m)} =

− 2 lim
n→∞

nE{(β̂ − β̃)(β̂ − β)′(1−mP−1)I(P < m)} (1*)

+ 2 lim
n→∞

nE{(β̂ − β̃)(β̂ − β̃)′(1−mP−1)I(P < m)} (2*)

− 2 lim
n→∞

nE{(β̂ − β̃)(β̂ − β̃)′(1−mP−1)2I(P < m)} (3*).

Now, by substituting β̂ − β = β̂ − β̃ + β̃ − β in (1∗), we get

(1∗) = − 2 lim
n→∞

nE{(β̂ − β̃)(β̂ − β̃)′(1−mP−1)I(P < m)} same as (2∗)

− 2 lim
n→∞

nE{(β̂ − β̃)(β̃ − β)′(1−mP−1)I(P < m)}.

Therefore, the second term in AMSE(β̂JS+) will be simplified as follows:

−2 lim
n→∞

E[ν3ν2
′(1−mP−1)I(P < m)]− 2 lim

n→∞
E[ν3ν3

′(1−mP−1)2I(P < m)].
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As well the third term in AMSE(β̂JS+) will be simplified as

= E[ν3ν3
′(1−mP−1)2I(P < m)]

= Ω∗E(1−mχ−2
q+2(∆))2I(χ2

q+2(∆) < m) + γγ ′E(1−mχ−2
q+4(∆))2I(χ2

q+4(∆) < m).

Finally, by using Theorem 2.4.2 and Lemma 2.7.1, the AMSE of a positive shrinkage

estimator is

= AMSE(β̂JS)−Ω∗E(1−mχ−2
q+2(∆))2I(χ2

q+2(∆) < m)

+ 2γγ ′E(1−mχ−2
q+2(∆))I(χ2

q+2(∆) < m)− γγ ′E(1−mχ−2
q+4(∆))2I(χ2

q+4(∆) < m).

2.7.4 Proof of Theorem 2.4.5

In an effort to prove Theorem 2.4.5, we need to show some useful preliminary results.

Clearly, the asymptotic risk of β̂ is equal to tr(WQ−1
0 V ) = Q−1

0 tr(WV ). Also, we

get the following expression for the asymptotic risk of β̃:

ADR(β̃;W ) = Q−1
0 tr(WV ) + a× tr(WCHVH ′C ′)− 2b× tr(WCHV ) +γ ′Wγ.

Since the risk of β̃ depends on γ ′Wγ, where γ = Cξ, note that V −
1
2CHVH ′C ′V −

1
2

is symmetric and an idempotent matrix with rank q. Thus, there exists an orthogonal
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matrix Γ such that

ΓV −
1
2CHVH ′C ′V −

1
2 Γ′ =

 Iq 0

0 0


ΓV

1
2WV

1
2 Γ′ =

 Z11 Z12

Z21 Z22

 .

We need to show that

tr[WCHVH ′C ′] = tr[{ΓV
1
2WV

1
2 Γ′} × {ΓV −

1
2CHVH ′C ′V −

1
2 Γ′}]

= tr[

 Z11 Z12

Z21 Z22


 Iq 0

0 0

] = tr(Z11),

and we may write

γ ′Wγ = ξ′C ′WCξ

= ξ′{ΓV −
1
2CHVH ′C ′V −

1
2 Γ′}{ΓV

1
2WV

1
2 Γ′}

{ΓV −
1
2CHVH ′C ′V −

1
2 Γ′}ξ

= η′

 Iq 0

0 0


 Z11 Z12

Z21 Z22


 Iq 0

0 0

η = η′1Z11η1,

where η = ΓV −
1
2CHVH ′ξ =

 η1

η2

 . Therefore,

ADR(β̃;W ) = Q−1
0 tr(WV ) + a× tr(Z11)− 2b× tr(WCHV ) + η′1Z11η1.
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Similarly for ADR(β̂PT ;W ) we have

= Q−1
0 tr(WV ) + [tr(WG)− 2tr(WF )]Hq+2(χ2

q(α),∆)

− 2tr(Wγγ ′A)(Hq+2(χ2
q(α),∆) +Hq+4(χ2

q(α),∆)) + tr(Wγγ ′)Hq+4(χ2
q(α),∆))

= Q−1
0 tr(WV ) + [a× tr(Z11)− 2b× tr(WCHV )]Hq+2(χ2

q(α),∆)

− 2tr(Wγγ ′A)[Hq+2(χ2
q(α),∆) +Hq+4(χ2

q(α),∆)] + η′1Z11η1Hq+4(χ2
q(α),∆)).

Finally, for ADR(β̂JS;W ) we have

= Q−1
0 tr(WV )− 2m{tr(WF )E(χ−2

q+2(∆))

− tr(Wγγ ′A)[E(χ−2
q+4(∆)) + E(χ−2

q+2(∆))]}

+ m2[tr(WG)E(χ−4
q+2(∆)) + tr(Wγγ ′)E(χ−4

q+4(∆))]

= Q−1
0 tr(WV )− 2mb× tr(WCHV )E(χ−2

q+2(∆))

− 2m× tr(Wγγ ′A)[E(χ−2
q+4(∆)) + E(χ−2

q+2(∆))]

+ am2 × tr(Z11)E(χ−4
q+2(∆)) +m2 × η′1Z11η1E(χ−4

q+4(∆))],

and similarly for ADR(β̂JS+;W ) we have

= ADR(β̂JS)− tr(WG)[E(1−mχ−2
q+2(∆))2I(χ2

q+2(∆) < m)]

+ tr(Wγγ ′){2E(1−mχ−2
q+2(∆))I(χ2

q+2(∆) < m)

− E(1−mχ−2
q+4(∆))2I(χ2

q+4(∆) < m)}

= ADR(β̂JS)− a× tr(Z11)[E(1−mχ−2
q+2(∆))2I(χ2

q+2(∆) < m)]

+ η′1Z11η1{2E(1−mχ−2
q+2(∆))I(χ2

q+2(∆) < m)

− E(1−mχ−2
q+4(∆))2I(χ2

q+4(∆) < m)}.



Chapter 3

Estimation Strategies for a

Parameter Matrix in a

Multivariate Regression Model

.

3.1 Introduction

In many areas of scientific research, the basic goal is to assess the simultaneous in-

fluence of several covariates on the response variable, and the quantity of interest.

Multiple regression models provide an extremely powerful methodology to achieve

this task. The multivariate multiple regression model (MMRM) generalizes the mul-

tiple regression model for the prediction of several response variables from the same

set of explanatory variables. A common example of multivariate responses occur in

37
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classification and discrimination problems. Timm (2002) showcases a host of exam-

ples of applications in education and psychology. Some of the recent advances in

multivariate analysis include artificial intelligence and machine learning theory (see

for example Izenman (2008)).

The general multivariate regression model is defined as

Yi = CXi + εi, i = 1, . . . , n, (3.1)

where Yi = (y1i, . . . , ymi)
′ is a m× 1 vector of response variables, Xi = (x1i, . . . , xqi)

′

is a q × 1 vector of predictor variables, C is a full rank m × q regression coefficient

matrix, and εi = (ε1i, . . . , εmi)
′ is the m×1 vector of random errors with mean vector

E(εi) = 0 and covariance matrix Cov(εi) = Σεε is an m×m positive definite matrix.

The εi are assumed to be independent for different i. We define the m× n and q× n

data matrices, respectively, as Y = [Y1, . . . , Yn] and X = [X1, . . . , Xn]. We assume

that m + q ≤ n and X is a full rank matrix with rank q = rank(X ) < n to have a

unique least square solution to the first order equations. Here we arrange the error

vectors εi ,i = 1, . . . , n, into an m × n matrix E = [ε1, ε2, . . . , εn]. The MMRM in

(3.1) can be rewritten as

Y = CX + E . (3.2)

The model (3.2) is regarded as a candidate full model, the least squares (LS) estimate

of C is given by

Ĉ = YX ′(XX ′)−1. (3.3)

For the estimation problem at hand, for the sake of brevity, let us consider that the
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errors can be arranged into an mn× 1 vector, e = vec(E). Then,

E(e) = 0, Cov(e) = E{ee′} = Σεε ⊗ In, i = 1, . . . , n.

For inference purposes we assume that the error terms are independently and iden-

tically distributed (iid) as multivariate normal, that is, εi
iid∼ Nn(0,Σεε), and X is a

fixed matrix. Note that we are using the left Kronecker products in our expressions;

see for example Izenman (2008). Here, we consider the vec(Y) where the “vec” opera-

tor transforms an m×n matrix into an nm-dimensional column vector by stacking the

columns of the matrix below each other. Thus, y = vec(Y) = (In ⊗X ′)vec(C) + e,

and vec(Ĉ) = (In ⊗ (XX ′)−1X )vec(Y). The distributional properties of Ĉ follow

easily from multivariate normality of the error terms εi; therefore,

vec(Ĉ) ∼ N(vec(C),Σεε ⊗ (XX ′)−1).

Now, partition X = [X ′1,X ′2] and corresponding C = [C1,C2] so that the model in

(3.2) is written as

Y = C1X 1 +C2X 2 + E , (3.4)

where C1 is a m × q1 and C2 is a m × q2 with q1 + q2 = q dimensional matrix of

unknown parameters. Model (3.4) may be regarded as a candidate full model, which

is built at the initial stage of modeling and contains all possible relevant variables.

Because of the high dimension of the regression parameter matrix, one usually uses a

variable selection technique to remove less significant variables Li and Liang (2008).

Without loss of generality, we suppose that X 2 is relatively insignificant and thus is
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removed from the model (3.4). Then, we obtain a candidate sub-model as

Y = C1X 1 + E . (3.5)

Nowadays a popularly used method is available to select variables and estimate pa-

rameters simultaneously; see for example Fan and Li (2001) and Li and Liang (2008).

However, Leeb and Potscher (2005) reported that such an estimator is only point-wise

consistent, and not globally well-working. On the other hand, some other estimation

procedures, for example, the restricted-model estimation only depends on the sub-

model (3.5) and the pretest (PT) estimation, which uses a test to decide that the

estimator for C1 is based on a candidate full model, are used in the literature; see

for example Ahmed (2001), Ahmed et al. (2007), and others. The regression coef-

ficients obtained after model selection are biased. In other words, bias caused by a

misspecified model should be accounted for. These issues are well summarized in the

scientific literature. The main objective of this chapter is to consider the estimation

problem of the parameter matrix C under a very general set of linear constraints,

which includes the sub-model (3.5). To this end, we can write the subspace as

candidate subspace : KCL = 0, (3.6)

where K and L are known full-rank matrices of appropriate dimensions r ×m and

q × n, respectively. In the candidate subspace, the matrix K allows for restrictions

between the different columns of C, whereas L generates possible relationships be-

tween the different responses. Let us consider the following example to motivate the

problem at hand. Zapala et al. (2005) considers the multiple multivariate linear

regression model to explain the relationships of gene expression patterns between dif-
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ferent brain regions in the adult mouse. The data set involves gene expression data

from multiple brain regions and multiple inbred mouse strains. They have built a

gene expression-based brain map. However, the preliminary analysis indicates that

the gene expression patterns of these brain regions could be related to each other

based on adult anatomy, evolutionary relationships, or embryonic origin. The com-

plete collection of extensively annotated gene expression data, along with data mining

and visualization tools, have been made available on a publicly accessible web site

(www.barlow-lockhart-brainmapnimhgrant.org).

The capital asset pricing model (CAPM) can be viewed as a special case of the

MMRM as provided in Chapter 2. The candidate subspace includes many interesting

hypotheses and a variety of applications that can be based upon this general set

of linear constraints. Further, this constraint can be applied to tackle a variety of

experimental design problems, including profile analysis. The similarity of a given

number of profiles can be expressed as a set of linear constraints on C. We are

interested in establishing an optimal estimation strategy for the parameter matrix in

multivariate multiple regression models when the parameter is suspected to satisfy a

certain constraint. We let

C̃ = arg min
KCL=0

tr{(Y −CX )(Y −CX )′}

denote the constrained or subspace candidate estimator. We get

C̃ = Ĉ − S(KĈL)T ,

where S = K ′(KK ′)−1 and T = (L′(XX ′)−1L)−1L′(XX ′)−1.
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Clearly, C̃ will be a biased estimator if the candidate subspace does not hold. Alter-

natively, we can write the null hypothesis in (3.6) as

H0 : (K ⊗L′)vec(C) = 0. (3.7)

On the other hand, it can be easily verified that C̃ is an inconsistent estimator because

of the bias inherited by the sub-model. More precisely, the model bias is B(C̃) = −γ

where γ = (SK⊗T ′L′)vec(C). The amount of bias can be reduced by shrinking the

full model estimator towards the candidate sub-model estimator. A natural way to

balance the potential bias of the estimator under the restriction against the classical

estimator is to take a weighted average of Ĉ and C̃. Such an integrated or composite

estimator commonly known as the shrinkage estimator is given by

ĈS = τĈ + (1− τ)C̃,

where τ ∈ [0, 1] denotes the shrinkage intensity. Note that, for τ = 1, the shrinkage

estimate equals the shrinkage target C̃; whereas, for τ = 0, the classical or full model

estimate (FE) is recovered. The key advantage of this construction is that it out-

performs the FE in some part of the parameter space. However, the key question in

this type of estimator is how to select an optimal value for the shrinkage parameter

τ . In some situations, it may suffice to fix the parameter τ at some given value.

The second choice is to select the parameter τ in a data-driven fashion by explicitly

minimizing a suitable risk function. A common but also computationally intensive

approach to estimate the optimal τ is by using cross-validation. On the other hand,

from a Bayesian perspective, one can employ the empirical Bayes technique to infer.

In this case, τ is treated as a hyper-parameter and may be estimated from the data
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by optimizing the marginal likelihood. In this work, we treat τ as the degree of trust

in the prior information in the null hypothesis. The value of τ may be assigned by

the experimenter according to her/his prior belief in the prior value. Ahmed and

Krzanowski (2004) among others pointed out that such an estimator yields a smaller

mean squared error (MSE) when the constraint is correct or nearly correct. However,

this is at the expense of poorer performance in the rest of the parameter space induced

by the candidate subspace information. Here, we will demonstrate that C̃ will have

a smaller MSE than Ĉ near the restriction given in (3.7). However, it becomes con-

siderably biased and inefficient when the restriction may not be judiciously justified.

Therefore, It can be easily verified that C̃ is an inconsistent estimator because of the

bias of the sub-model. The magnitude of the bias can be controlled by judiciously

selecting the values of τ ; in this sense, it has an edge over on Ĉ. In any event, it

is also a function of γ, so it will be an inconsistent estimator of C, regardless. As

such, when the linear constraint information is rather suspicious, it may be reason-

able to construct pretest estimators. We use the following test statistic for defining a

pretest estimator, which can be found based on a likelihood ratio method of the test

construction.

D = tr{(KĈL)′(KΣεεK
′)−1(KĈL)(L′(XX ′)−1L)−1}

= [(K ⊗L′)vec(Ĉ)]′[(KΣεεK
′ ⊗L′(XX ′)−1L)]−1[(K ⊗L′)vec(Ĉ)].

Under the null hypothesis in (3.7), D follows a central χ2 distribution with rn degrees

of freedom for known Σεε. Consequently,

ĈPT = Ĉ − (Ĉ − C̃)I(D < drn,α),
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where the drn,α is the upper α-level critical value of the χ2 distribution with rn degrees

of freedom, and I(A) is an indicator function of a set A. Ahmed (1992) suggested

the following improved version of pretest estimator, namely the shrinkage pretest

estimator.

ĈSPT = ĈSI(D < drn,α) + ĈI(D > drn,α).

Like ĈS, it controls the magnitude of the bias of the estimator and it is less de-

manding with regards to the size of the pretest, α. Following Ahmed and Krzanowski

(2004), we consider two shrinkage estimations of the regression parameters matrix

based on a James-Stein type estimator. The positive part shrinkage estimator is

given by

ĈJS+ = C̃ + {1− cD−1}+(Ĉ − C̃), rn > 2,

where the optimal value of c is copt = rn − 2 and is chosen in an interval in such a

way that β̂JS dominates β̂. c is allowed to vary over [0, 2(rn− 2)), rn > 2, often set

to c = rn− 2; thus, we assume that rn ≥ 3. Finally,

ĈJS = C̃ + {1− cD−1}(Ĉ − C̃), rn > 2.

The remainder of this chapter is organized as follows. In Section 2, we showcase

some important results which will be needed in deriving the expressions for the listed

estimators. In Section 3, we obtain the expressions for bias and risk, and present the

pairwise risk comparison of the listed estimators. To facilitate the risk expressions

for estimators given in this Section, we first generalize the two important lemmas

of Sclove et al. (1972). Section 4 provides two real data examples and a simulation

study. Conclusions are offered in Section 5. The proof of the main results, including
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Lemmas and Theorems, are given in Section 6.

3.2 Main Results

In an effort to establish some important properties of the estimators, let p1 = vec(Ĉ−

C), p2 = vec(Ĉ−C̃), and p3 = vec(C̃−C). Assuming that the errors are distributed

as (iid) gaussian random vectors, i.e., εi
iid∼ Nn(0,Σεε), i = 1, . . . , n and X is a fixed

matrix, then we have the following distributional results:

Theorem 3.2.1.

(i) p1 ∼ N(0, (Σεε ⊗ (XX ′)−1))

(ii) p2 ∼ N((SK ⊗ T ′L′)vec(C),Σ∗)

where Σ∗ = (SK ⊗ T ′L′)(Σεε ⊗ (XX ′)−1)(K ′S′ ⊗LT )

(iii) p3 ∼ N(−(SK ⊗ T ′L′)vec(C),Ω∗)

where Ω∗ = (Σεε ⊗ (XX ′)−1)−Σ12 −Σ21 + Σ∗,

Σ12 = Σ′21 = (Σεε ⊗ (XX ′)−1)(K ′S′ ⊗LT )

(iv)

 p1

p2

 ∼ N

{ 0

(SK ⊗ T ′L′)vec(C)

 ,

 (Σεε ⊗ (XX ′)−1) Σ12

Σ21 Σ∗

}

(v)

 p2

p3

 ∼ N

{ (SK ⊗ T ′L′)vec(C)

−(SK ⊗ T ′L′)vec(C)

 ,

 Σ∗ Ω12

Ω21 Ω∗

}

where

Ω12 = Ω′21 = Σ12 −Σ∗.

Proof: See Appendix, Section 3.6.1.
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3.2.1 Two Useful Lemmas

In this chapter, we are dealing with parameter matrix estimation in a multivariate

multiple regression model. The fundamental results of Sclove et al. (1972) cannot be

directly implemented to compute the expressions for bias and risk of the proposed

estimators. However, they can be generalized as in the following Lemmas.

Lemma 3.2.1. Let y be an (nm × 1) vector that follows normal distribution

with mean µy vector and covariance matrix Σy, i.e. y ∼ N(µy,Σy). Then, for a

measurable function of φ, we have

E[yφ(y′y)] = µyE[φ(χ2
nm+2(∆))],

where ∆ = µ′yΣ
−1
y µy.

Proof: See Appendix, Section 3.6.2.

Lemma 3.2.2. Let y be an (nm × 1) vector that follows normal distribution

with mean µy matrix and covariance matrix Σy, i.e. y ∼ N(µy,Σy). Then, for a

measurable function of φ we have

E[yy′φ(y′y)] = ΣyE[φ(χ2
nm+2(∆))] + µyµ

′
yE[φ(χ2

nm+4(∆))],

where ∆ = µ′yΣ
−1
y µy.

Proof: See Appendix, Section 3.6.3.
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3.3 Bias and Risk Analysis

In this section, we compare the performance of the suggested estimators in terms of

bias and risk, respectively. First, the bias expressions of the listed estimators of the

regression coefficients are given in the following theorem.

Theorem 3.3.1. Under the assumptions for model (3.2), the bias of the listed esti-

mators are given as follows.

(i) B(C̃) = −γ

(ii) B(ĈS) = −(1− τ)γ.

(iii) B(ĈPT ) = −γHrn+2(χ2
rn(α); ∆)

(iv) B(ĈSPT ) = −(1− τ)γHrn+2(χ2
rn(α); ∆)

(v) B(ĈJS) = −cγE[χ−2
rn+2(∆)]

(vi) B(ĈJS+
) = B(ĈS)− γE{[1− cχ−2

rn+2(∆)]I(χ2
rn+2(∆) < c)},

where

γ = (SK ⊗ T ′L′)vec(C)

and

∆ = γ ′(Σεε ⊗ (XX ′)−1)−1γ.

Proof: See Appendix, Section 3.6.4.

Since the bias expressions of all the estimators are not in scalar form, we therefore

take the recourse of converting them into the quadratic form. Thus, let us define the
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quadratic bias (QB) of an estimator C∗ of C by

QB = [B(Ĉ∗)]′(Σ−1
εε ⊗ (XX ′))[B(Ĉ∗)].

Based on the above, we can easily obtain the QB of the listed estimators.

(i) QB(C̃) = ∆

(ii) QB(ĈS) = (1− τ)2∆.

(iii) QB(ĈPT ) = ∆{Hrn+2(χ2
rn(α); ∆)}2

(iv) QB(ĈSPT ) = (1− τ)2∆{Hrn+2(χ2
rn(α); ∆)}2

(v) QB(ĈJS) = c2∆{E[χ−2
rn+2(∆)]}2

(vi) QB(ĈJS+
) = ∆{cE[χ−2

rn+2(∆)]− E[(1− cχ−2
rn+2(∆))I(χ2

rn+2(∆) < c)]}2.

Clearly, for the quadratic bias of C̃, ĈJS, and ĈJS+
the component ∆ is common

and they differ only by scalar factors: it suffices to compare the scalar factors only.

Therefore we have the following two results:

QB(ĈJS+

) ≤ QB(ĈJS) ≤ QB(C̃)

QB(Ĉ) ≤ QB(ĈS) ≤ QB(ĈSPT ) ≤ QB(ĈPT ) ≤ QB(C̃).

Now, we present some useful results in the following theorem which will be used in

deriving the risk expressions for the estimators.

Lemma 3.3.1. Under the assumptions for model (3.2),
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(i) E(p1|p2) = (SK ⊗ T ′L′)−1(p2 − γ)

(ii) E(p2p1
′I(D < χ2

rn(α)) = Σ∗(K ′S′ ⊗ LT )−1Hrn+2(χ2
rn(α); ∆) + γγ ′(K ′S′ ⊗

LT )−1 [Hrn+4(χ2
rn(α); ∆)−Hrn+2(χ2

rn(α); ∆)]

(iii) E(p2p1
′D−1) = Σ∗(K ′S′⊗LT )−1E(χ−2

rn+2(∆))+γγ ′(K ′S′⊗LT )−1{E[χ−2
rn+4(∆)]−

E[χ−2
rn+2(∆)]},

Proof: See Appendix, Section 3.6.5.

3.3.1 Relative Performance of the Estimators

In this section, we compare the performance of the suggested estimators in terms of

their risks. In an effort to provide the risk analysis, we consider the quadratic loss

function of the form

L(C∗,C) = [vec(C∗ −C)]′W [vec(C∗ −C)]

= tr{W [vec(C∗ −C)][vec(C∗ −C)]′},

where W is the positive semi-definite (p.s.d) matrix with an appropriate dimension.

Then the risk of C∗ or any estimator of C is

R(C∗;W ) = tr[WMSE(C∗)], (3.8)

where MSE(C∗) = E{vec(C∗ − C)[vec(C∗ − C)]′}. For instance, if we get

MSE(C∗) = (A⊗B) with a A and B nonsingular matrix, we define the quadratic

risk as follows:

R(C∗;W ) = tr(WB)tr(A).
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The quadratic risk of the estimators are given in the following theorem.

Theorem 3.3.2. The quadratic risk of the listed estimators are given as follows.

R(Ĉ;W ) = tr(Σεε)tr(W (XX ′)−1)

R(C̃;W ) = R(Ĉ;W )− tr(ΣεεK
′S′)tr(A11) + (γ ′Wγ)

R(ĈS;W ) = R(Ĉ;W )− (1− τ 2)tr(ΣεεK
′S′)tr(A11) + (1− τ)2(γ ′Wγ)

R(ĈPT ;W ) = R(Ĉ;W )− tr(ΣεεK
′S′)tr(A11)Hrn+2(χ2

rn(α); ∆)

− 2tr(Wγγ ′M)× [Hrn+4(χ2
rn(α); ∆)−Hrn+2(χ2

rn(α); ∆)]

+ (γ ′Wγ)Hrn+4(χ2
rn(α); ∆)

R(ĈSPT ;W ) = R(Ĉ;W )− (1− τ 2)tr(ΣεεK
′S′)tr(A11)Hrn+2(χ2

rn(α); ∆)

− 2(1− τ)tr(Wγγ ′M)× [Hrn+4(χ2
rn(α); ∆)−Hrn+2(χ2

rn(α); ∆)]

+ (1− τ)2γ ′WγHrn+4(χ2
rn(α); ∆)

R(ĈJS;W ) = R(Ĉ;W )− c× tr(ΣεεK
′S′)tr(A11)

{2E(χ−2
rn+2(∆))− cE(χ−4

rn+2(∆))}+ 2c× tr(Wγγ ′M)

{E(χ−2
rn+2(∆))− E(χ−2

rn+4(∆))}+ c2 × (γ ′Wγ)E(χ−4
rn+4(∆)),

R(ĈJS+;W ) = R(ĈJS;W )− tr(ΣεεK
′S′)tr(A11)E[(1− cχ−2

rn+2(∆))2

I(χ2
rn+2(∆) < c)] + γ ′WγE[(1− c2χ−2

rn+4(∆))I(χ2
rn+4(∆) < c)]

− 2tr(Wγγ ′M)E[(1− cχ−2
rn+4(∆))I(χ2

rn+4(∆) < c)],

where

M = (K ′S′ ⊗LT )−1

A = Γ(XX ′)− 1
2W (XX ′)− 1

2 Γ′
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tr(WT ′L′(XX ′)−1LT ) = tr(A11)

tr(WΣ∗M) = tr(ΣεεK
′S′)tr(A11)

tr(W (XX ′)−1LT ) = tr(A11).

Proof: See Appendix, Section 3.6.6.

Now, we provide the pairwise comparison of the estimators.

3.3.2 Comparison of ĈSPT and Ĉ

Consider the difference between two risks:

R(Ĉ;W ) − R(ĈSPT ;W ) = (1− τ 2)tr(ΣεεK
′S′)tr(A11)Hrn+2(χ2

rn(α); ∆) +

2(1− τ)tr(Wγγ ′M )[Hrn+4(χ2
rn(α); ∆)−Hrn+2(χ2

rn(α); ∆)]−

(1− τ)2γ ′WγHrn+4(χ2
rn(α); ∆)].

The right hand side is nonnegative whenever

tr(Wγγ ′M ) >
(1− τ)γ ′WγHrn+4(χ2

rn(α); ∆)

2[Hrn+4(χ2
rn(α); ∆)−Hrn+2(χ2

rn(α); ∆)]
.

In this range, ĈSPT performs better than Ĉ and also under the null hypothesis

R(Ĉ;W ) > R(ĈSPT ;W ), since the difference between two risks for all α is positive.

Furthermore, we get the same conclusion for R(ĈPT ) after taking τ = 0 in R(ĈSPT ).
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3.3.3 Comparison of ĈSPT and ĈPT

For comparing the risk of CSPT and CPT , we consider the difference between them:

R(ĈSPT ;W ) − R(ĈPT ;W ) = (τ 2)tr(ΣεεK
′S′)tr(A11)Hrn+2(χ2

rn(α); ∆) +

2tr(Wγγ ′M)[Hrn+4(χ2
rn(α); ∆)−Hrn+2(χ2

rn(α); ∆)]−

(τ 2)γ ′WγHrn+4(χ2
rn(α); ∆).

The knowledge of ∆ determines which estimator is to be chosen. From the difference

between two risks, it is obvious that the risk of ĈSPT will be larger than the risk of

ĈPT under the null hypothesis. Further, as ∆ increases, the difference between two

risks becomes negative and ĈSPT dominates ĈPT in the rest of the parameter space.

3.3.4 Comparison of ĈSPT and ĈS

Let us consider the risk of ĈSPT and ĈS:

R(ĈSPT ;W ) = R(ĈS;W )− (1− τ 2)tr(ΣεεK
′S′)tr(A11)[Hrn+2(χ2

rn(α); ∆)− 1] +

(1− τ)2γ ′Wγ[Hrn+4(χ2
rn(α); ∆)− 1] +

2(τ − 1)tr(Wγγ ′M)[Hrn+4(χ2
rn(α); ∆)−Hrn+2(χ2

rn(α); ∆)].

The risk of ĈSPT is smaller than ĈS for all ∆ in (0,∞), whenever

γ ′Wγ <
2tr(Wγγ ′M)[Hrn+4(χ2

rn(α); ∆)−Hrn+2(χ2
rn(α); ∆)]

(1− τ)[Hrn+4(χ2
rn(α); ∆)− 1]

.
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3.3.5 Comparison of C̃ and ĈS

We investigate the risk-difference of ĈS and C̃

R(C̃;W )−R(ĈS;W ) = −τ{τ × tr(ΣεεK
′S′)tr(A11)− [τ − 2]γ ′Wγ}.

The risk of C̃ is smaller than the risk of ĈS when the value of τ satisfies the following

condition:

τtr(ΣεεK
′S′)tr(A11) > γ ′Wγ(2− τ).

Finally, based on the above finding we will suggest to use ĈSPT . It provides a good

control on the risk function unlike the sub-model estimators C̃ and ĈS. Under the

candidate subspace, the risks of the estimators may be ordered as

R(C̃;W ) ≤ R(ĈSPT ;W ) ≤ R(ĈPT ;W ) ≤ R(ĈS;W ) ≤ R(Ĉ;W ).

3.3.6 Comparison of ĈJS and Ĉ

Let us consider the risk of ĈJS under the candidate subspace, in terms of the risk of

Ĉ

R(ĈJS;W ) = R(Ĉ;W )− 2ctr(WΣ∗M )E(χ−2
rn+2(∆)) +

c2tr(WΣ∗)E(χ−4
rn+2(∆)) + 2ctr(Wγγ ′M )E(χ−2

rn+2(∆))−

2ctr(Wγγ ′M )E(χ−2
rn+4(∆)) + c2tr(Wγγ ′)E(χ−4

rn+4(∆)).
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The risk difference is positive whenever

tr(ΣεεK
′S′)tr(A11) <

−tr(Wγ ′γM)E(χ−2
rn+4(∆))

E(χ−2
rn+2(∆))

.

The risk of ĈJS is smaller than Ĉ when, for all ∆, the opposite of above inequality

is satisfied.

3.3.7 Comparison of ĈJS+ and ĈJS

For comparing the risk of ĈJS and ĈJS+, we consider the risk difference

R(ĈJS;W ) − R(ĈJS+;W ) =

+ tr(ΣεεK
′S′)tr(A11)E[(1− cχ−2

rn+2(∆))2I(χ2
rn+2(∆) < c)]

− γ ′WγE[(1− c2χ−2
rn+4(∆))I(χ2

rn+4(∆) < c)]

+ 2tr(Wγγ ′M )E[(1− cχ−2
rn+4(∆))I(χ2

rn+2(∆) < c)].

The right hand side is positive, since the expectation of a positive random variable is

positive by the definition of an indicator function,

(0 < χ2
rn+4(∆) < c)⇐⇒ (cχ−2

rn+4(∆)− 1) ≥ 0;

therefore,

E[(1− cχ−2
rn+4(∆))I(χ2

rn+2(∆) < c)] ≤ 0.

Thus, for all ∆, R(ĈJS+;W ) ≤ R(ĈJS;W ) and ĈJS+ not only confirms inadmissi-

bility of ĈJS but also provides a simple superior estimator.
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3.3.8 Comparison of C̃ and ĈJS

We investigate the risk-difference of ĈJS and C̃ under candidate subspace is

R(ĈJS;W ) = R(C̃;W ) + tr(ΣεεK
′S′)tr(A11)[1− cE(χ−2

rn+2(0)]2

≥ R(C̃;W ).

Thus, C̃ performs better than ĈJS under candidate subspace. However, as ∆ moves

away from the origin, the risk of C̃ becomes unbounded, and the risk of ĈJS remains

below the risk of Ĉ and merges with it as ∆ → ∞. Therefore, ĈJS dominates C̃

outside an interval around the origin.

Finally, based on the above finding, we can order the risk of the estimators under

the candidate subspace as

R(C̃;W ) ≤ R(ĈJS+;W ) ≤ R(ĈJS;W ) ≤ R(Ĉ;W ).

3.4 Numerical Study

3.4.1 Simulation Study

In this section, we use Monte Carlo simulation experiments to examine the relative

performance of the proposed estimators. In this study, we simulate the data from the
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following model:

Yi = c0 + c1x1i + c2x2i + c3x3i + c4x4i + εi ≡ CXi + εi i = 1, . . . , n,

where Yi = (y1i, y2i, y3i, y4i)
′ and Xi = (1, x1i, x2i, x3i, x4i)

′ with m = 1, 2, 3, 4. There-

fore, Y , X , and C denote 4 × n, 5 × n, and 4 × 5 data matrices, respectively. For

simulation, we consider

C = ((0.5, 0.5, 0.25, 0.5, 0.25)′, (0, 0.12, 0.1, 0.5,−0.5)′, (−0.14, 0,−0.1,−0.5, 0)′,

(−0.1, 0,−0.03, 0.4, 0.11)′,

K = [I4], and L = [0′, I ′1]′, or more explicitly,

K = ((1, 0, 0, 0)′, (0, 1, 0, 0)′, (0, 0, 1, 0)′, (0, 0, 0, 1)′),

L = ((0, 0, 0, 0, 0)′, (0, 0, 0, 0, 0)′, (0, 0, 0, 0, 0)′,

(0, 0, 0, 0, 0)′, (1, 0, 0, 0, 0)′)′.

Under the candidate subspace, we generate 5000 samples using the above model. We

define the ∆ as a departure parameter which is a function of the distance between

the true value of C and that under the null hypothesis. In order to investigate the

behavior of the proposed estimators, different values of C were chosen to produce the

value of ∆ between 0 and 4. The performance of an estimator of C will be reappraised

using the mean square error criterion. All computations were conducted using the

R statistical system. We numerically calculated the relative risk of C̃, ĈPT , ĈJS

and ĈJS+ with respect to Ĉ by simulation. The simulated relative efficiency of the
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estimator C∗ to the unrestricted Ĉ is defined by R.E = risk(Ĉ)/risk(Ĉ∗). Since

the result for different n were similar, here we only report the results for n = 20 and

n = 40 in Figures (3.1) and (3.2).

We can see the relative efficiencies of the estimators change with the value of the

departure parameter ∆. The figures reconfirm the typical characteristics of the listed

estimators. We conclude that C̃ and ĈPT dominate the usual Ĉ at or near the

candidate subspace. ĈJS and ĈJS+ are more efficient than an unrestricted estimator

in the unrestricted parameter space; for ∆ = 0, or in a neighborhood of that, ĈPT

is more efficient that ĈJS and ĈJS+. Note that, for a larger value of α, the level

of significance, ĈJS+ dominates ĈPT uniformly. For the larger value of ∆, ĈPT

becomes more inefficient than the unrestricted estimator, and its efficiency value

monotonically decreases, achieves a minimum after crossing the efficiency line at

1, and then monotonically increases and approaches the Ĉ efficiency. Under the

candidate subspace, C̃ is more efficient than all the other estimators, but, as ∆

increases, its efficiency converges to zero since it is an unbounded function of ∆.

3.4.2 Real Data Example I

As a first data example, we consider multivariate regression analysis methods on

data from a study by Rohwer (given in Timm (1975)) on kindergarten children. It

was designed to determine how well a set of paired-associate (PA) tasks determine

performance on some tests. The data involve a sample from an upper-class, white,

residential school. The data considered in this example consist of 32 kindergarten

students and three response variables: the peabody picture vocabulary test (y1); the

raven progressive matrices test (y2); and a student achievement test (y3). PA learning
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Figure 3.1: R.E of the estimators for n = 20.
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Figure 3.2: R.E of the estimators for n = 40.



3.4 Numerical Study 59

proficiency tasks represent the sum of the number of items correct out of 20 (on two

exposures). The tasks involved prompts that were used to facilitate learning. The

five PA word prompts involved x1-named (N), x2-still (S), x3-named action (NA),

x4-named still (NS), and x5-sentence still (SS) prompts. We consider the following

model for the ith vector of responses of the form:

Yi = c0 + c1x1i + c2x2i + c3x3i + c4x4i + c5x5i + εi ≡ CXi + εi i = 1, . . . , n,

where Yi = (y1i, y2i, y3i)
′ and Xi = (1, x1i, x2i, x3i, x4i, x5i)

′ with m = 1, 2, 3 and

n = 32. Therefore Y , X , and C denote 3 × 32, 6 × 32, and 3 × 6 data matrices,

respectively. The closest literature to the model and moment selection results of

this chapter is that concerning likelihood-based model selection criteria. We now

review the criteria related to this chapter. The AIC criterion was introduced by

Akaike (1969). The BIC criterion was introduced by Schwarz (1978), Rissanen (1978),

and Akaike (1977). HQ and HQIC criterion were introduced by Hannan and Quinn

(1979). The stepwise, Cp, and HQ procedures selected variables X1, X2, X3, and X4,

while the corrected AIC selected only variables X2 and X4. The uncorrected criteria

AIC, BIC, and HQIC only selected one variable X4. All methods exclude the fifth

variable (SS). Based on all methods, the predictor variable X5 does not enter into

the linear regression model, so the restrictions {c15 = c25 = c35 = 0} can be imposed

on the model. The coefficient matrices of the subspace are selected as K = [I3] and

L = [0′, I ′1]′ or, more explicitly,

K = ((1, 0, 0)′, (0, 1, 0)′, (0, 0, 1)′)
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Table 3.1: Estimate of the regression coefficient matrix
Estimator Intercept x1 x2 x3 x4 x5

Ĉ 39.76467 0.34929 0.40265 -1.05918 1.89365 0.39208

C̃ 41.94818 0.33364 0.57819 -0.99751 2.06337 0

y1 ĈS 40.85643 0.34147 0.49042 -1.02834 1.97851 0.19604

ĈPT 39.79491 0.34915 0.41428 -1.25860 1.89523 0.38845

ĈSPT 39.77479 0.349225 0.40346 -1.05889 1.86444 0.36026

Ĉ 12.97366 0.03742 0.50580 -0.18529 0.15699 -0.13105

C̃ 12.24380 0.04265 0.44713 -0.20590 0.10026 0

y2 ĈS 12.60873 0.04004 0.47647 -0.19560 0.12863 -0.06552

ĈPT 12.94386 0.03763 0.50341 -0.18613 0.15467 -0.12570

ĈSPT 12.95876 0.03753 0.50461 -0.18571 0.15583 -0.12838

Ĉ -45.04718 2.14209 2.83837 -5.32059 6.22416 -0.49068

C̃ -47.77978 2.16168 2.61869 -5.39776 6.01177 0

y3 ĈS -46.41348 2.15188 2.72853 -5.35917 6.11797 -0.24534

ĈPT -45.23896 2.14203 2.83903 -5.14036 6.29480 -0.49215

ĈSPT -45.04307 2.14206 2.83870 -5.32047 6.22448 -0.49142

and

L = ((0, 0, 0, 0, 0, 0)′, (0, 0, 0, 0, 0, 0)′, (0, 0, 0, 0, 0, 0)′,

(0, 0, 0, 0, 0, 0)′, (0, 0, 0, 0, 0, 0)′, (1, 0, 0, 0, 0, 0)′)′.

The least squares estimates of the regression coefficient matrix Ĉ, C̃, ĈS, ĈPT , and

ĈSPT are given in Table 3.1.

In an effort to appraise the performance of the suggested estimators, we conduct a

numerical study that implements bootstrapping. We conduct bootstrapping for 5000

replicates to evaluate the performance of suggested estimators in our data example.

The performance of the estimators was evaluated in terms of the relative efficiency

of estimators. The relative efficiencies are given in Table 3.2, assuming the candidate

subspace is correct.
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Table 3.2: The relative efficiency of estimators

Estimator R.E(Ĉ : Ĉ∗)

C̃ 3.8894

ĈS 2.3503

ĈPT 2.7039

ĈSPT 2.7806

3.4.3 Real Data Example II

As a second data example, we consider multivariate regression analysis methods and

some biochemical data taken from a study by Smith et al. (1962). The data in-

volve several biochemical measurements and characteristics of urine specimens from

men classified under two weight groups: overweight and underweight. Each subject

contributed two or three morning samples of urine, and the data considered in this

example consist of the 33 individual samples; five response variables: pigment crea-

tinine (y1), concentrations of phosphate (y2), phosphorous (y3), creatinine (y4), and

choline (y5); and three predictor variables: weight of each subject (x1), volume (x2),

and specific gravity (x3). The multivariate data set for this example is presented

in Table 3.5 in Section 3.6. We consider the following model for the ith vector of

responses of the form

Yi = c0 + c1x1i + c2x2i + c3x3i + εi ≡ CXi + εi i = 1, . . . , 33,

where Yi = (y1i, y2i, y3i, y4i, y5i)
′ and Xi = (1, x1i, x2i, x3i)

′ with n = 5. Therefore

Y , X , and C denote 5 × 33, 4 × 33, and 5 × 4 data matrices, respectively. Based

on stepwise selection, the predictor variable X3 does not enter into the linear re-

gression model for the first four components of the response variables Y . So, the

restrictions {c13 = c23 = c33 = c43 = 0} can be imposed to the model. The



3.5 Numerical Study 62

Table 3.3: Estimates of the regression coefficient matrix
Estimator Intercept x1 x2 x3

Ĉ 15.3469 -2.91975 1.9534 0.1992

y1 C̃ 15.7497 -2.8132 1.9364 0

ĈJS 15.8659 -3.7742 2.6142 0.1042

ĈJS+ 15.8541 -3.5594 2.4659 0.0813

Ĉ 1.4159 0.6043 -0.4815 0.2666

y2 C̃ 2.2413 0.6530 -0.5702 0

ĈJS 3.7064 0.9704 -0.7264 0.6097

ĈJS+ 3.3883 0.8994 -0.6928 0.4961

Ĉ 2.0187 0.5768 -0.4245 -0.0400

y3 C̃ 1.8842 0.5650 -0.4041 0

ĈJS 1.87203 0.6381 -1.0681 -0.4153

ĈJS+ 1.8775 0.6205 -0.9281 -0.3187

Ĉ 1.8717 0.6159 -0.5780 0.3518

y4 C̃ 2.9710 0.6825 -0.7009 0

ĈJS 3.80438 0.2832 -1.0717 0.1340

ĈJS+ 3.6220 0.3647 -0.9888 0.1007

Ĉ -0.8902 1.3797 -0.6289 2.8907

y5 C̃ -1.8248 1.5113 -0.5216 3.0692

ĈJS -2.8369 1.7688 -0.4883 3.0692

ĈJS+ -2.6398 1.7085 -0.4911 3.0692

coefficient matrices of the subspace are selected as K = [I4, 0] and L = [0′, I ′1]′

or, more explicitly, K = ((1, 0, 0, 0, 0)′, (0, 1, 0, 0, 0)′, (0, 0, 1, 0, 0)′, (0, 0, 0, 1, 0)′) and

L = ((0, 0, 0, 0)′, (0, 0, 0, 0)′, (0, 0, 0, 0)′, (1, 0, 0, 0)′)′. The least squares estimate of the

regression coefficient matrix Ĉ, ĈJS, and ĈJS are given in Table 3.3.

We conduct a bootstrap with 1000 replicates to evaluate the performance of sug-

gested estimators in our data example. The results for relative efficiency at ∆ = 0

are given in Table 3.4.
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Table 3.4: The relative efficiency of estimators

Estimator R.E(Ĉ : Ĉ∗)

C̃ 6.07

ĈJS 2.35

ĈJS+ 2.54

3.5 Concluding Remarks

The goal of this chapter was to examine the relative performance of estimators based

on full model and submodels in the context of multivariate multiple regression models

when X is fixed. However, studying pretest and shrinkage estimation strategies for

a matrix parameter in a MMRM is not considered much in the reviewed literature.

Mostly it was studied for a vector form of parameter. Here we extended our analysis

to a matrix form. The fundamental results of Sclove et al. (1972) could not be directly

implemented to derive the expressions. Therefore, we first generalize the results of

Sclove et al. (1972).

We succinctly investigated the bias and risk properties of the suggested estimators.

The shrinkage estimator provides a wider range than the restricted estimator in which

it dominates the unrestricted one. The pretest estimators with data based weights

outperform the full model estimator in a meaningful part of the parameter space

induced by the candidate subspace. A shrinkage pretest estimator dominates the

unrestricted estimator in a wider range that the pretest estimator. Further, the

suggested approach is free from any tuning parameters, and calculations are not

iterative. It would also be interesting to replace the known Σεε by an estimated one.

We leave these for future investigation. We conclude that the risk improvement of the

submodel estimator over other estimators is substantial near the restriction. However,

the improvement starts diminishing as the restriction moves further and further away
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from assumed subspaces. Thus, the performance of the submodel estimator heavily

depends on the quality of the subspace information. In summary, we show large gains

of a suggested shrinkage approach over an ordinary least-square. Finally, real data

examples and the simulation study support the contention that the suggested method

is superior to classical estimation.

3.6 Appendix: Proof of Main Results

3.6.1 Proof of Theorem 3.2.1

Since p1,p2, and p3 are normal, the joint distribution of (p1,p2) and (p2,p3) will also

be normal.

E(p2) = E[vec(Ĉ − C̃)]

= E[vec(S(KĈL)T )]

= (SK ⊗ T ′L′)E(vec(Ĉ))

= (SK ⊗ T ′L′)vec(C)

Cov(p2) = Cov(vec(Ĉ − C̃))

= Cov(vec(S(KĈL)T ))

= Cov[(SK ⊗ T ′L′)vec(Ĉ)]

= (SK ⊗ T ′L′)Cov[vec(Ĉ)](SK ⊗ T ′L′)′

= (SK ⊗ T ′L′)(Σεε ⊗ (XX ′)−1)(K ′S′ ⊗LT )

= Σ∗
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E(p3) = E(p1 − p2)

= E[vec(Ĉ −C)− vec(Ĉ − C̃)]

= E[vec(Ĉ −C)]− E[vec(S(KĈL)T )]

= 0− E[(SK ⊗ T ′L′)E(vec(Ĉ))]

= −(SK ⊗ T ′L′)vec(C)

Cov(p3) = Cov(p1 − p2)

= Cov(p1) + Cov(p1)− 2Cov(p1,p2)

= (Σεε ⊗ (XX ′)−1) + Σ∗ −Σ12 −Σ21

= Ω∗

3.6.2 Proof of Lemma 3.2.1

Let Y = (Y1, . . . , Yn) be an m× n matrix following a normal distribution with mean

µY , and the columns are each random m-vectors with covariance matrix Σ. Note that

pairs of column vectors, (εj, εk), j 6= k, are uncorrelated with each other. Applying

the vectoring operation, we get E(y) = E(vec(Y)) = µy and cov(y) = cov(vec(Y)) =

(Σεε ⊗ I) = Σy. Hence, by arranging Y to a vector form as y = (y1, y2, . . . , ynm)′,

where y′y =
∑nm

j=1 y
2
j , we can rewrite the left hand side of Lemma 3.2.1 as

E[yφ(y′y)] =

{
E

[
E
[
y1φ(y2

1 +
nm∑
j=2

y2
j )|yj, j 6= 1

]]
, . . . , E

[
E
[
ynmφ(y2

nm

+
nm−1∑
j=1

y2
j )|yj, j 6= nm

]]}′
.
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Now, using the result of Lemma 2 in Judge and Bock (1978), (p. 320), we have

E[yiφ(y′y)] = µiE

[
E
[
φ(χ2

(3,µ2i /2) +
∑
j 6=i

y2
j )|yj, j 6= i

]]
.

Using the fact that the distribution of Zi is χ2
(1,µi)

, then
∑p

i=1 Zi is χ2
(p,

∑p
i=1 µi)

. Hence

E[yφ(y′y)] = (µ1, . . . , µnm)′E[φ(χ2
(nm+2,µ′µ/2))].

3.6.3 Proof of Lemma 3.2.2

Consider the diagonal elements of E[yy′φ(y′y)]. By using the result of Lemma 1 in

Judge and Bock (1978), (p. 320), we get

E[y2
i φ(

nm∑
i

y2
i )] = E

[
E
[
y2
i φ(y2

i +
∑
j 6=i

y2
j )|y2

j , j 6= i
]]

= E

[
E
[
φ(χ2

(3,µ2i /2) +
∑
j 6=i

y2
j )
]
|y2
j , j 6= i

]
+ µ2

iE
[
φ(χ2

(5,µ2i /2) +
∑
j 6=i

y2
j )
]
|y2
j , j 6= i

]
= E

[
φ(χ2

(nm+2,µ′µ/2))

]
+ µ2

iE

[
φ(χ2

(nm+4,µ′µ/2))

]
.

Then, for the off-diagonal elements, we consider the result of Lemma 2 given in Judge

and Bock (1978), (p. 320), for i 6= j, so that
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E

[
yiyjφ(

nm∑
k=1

y2
k)

]
= E

[
yjE

[
yiφ(y2

i +
∑
k 6=i

y2
k)|yk, k 6= i

]]
= E

[
yjµiE

[
φ

(
χ2

(3,µ2i /2) +
∑
k 6=i

y2
k

)
|yk, k 6= i

]]
= E

[
yjµiE

[
φ
(
χ2

(3,µ2i /2) + y2
j

+
∑

k 6=i,k 6=j

y2
k

)
|χ2

(3,µ2i /2), yk, k 6= i, k 6= j
]]
.

The unconditional expectations of the off-diagonal elements are

µiµjE

[
φ
(
χ2

(3,µ2j/2) +
∑

k 6=i,k 6=j

y2
k + χ2

(3,µ2i /2)

)]
= µiµjE

[
φ(χ2

(nm+4,
∑nm

i=1 µ
2
i /2))

]
.

Now, combining the diagonal and off-diagonal components, we get the desired result.

3.6.4 Proof for Theorem 3.3.1

Here, we provide the proof of bias expressions for all proposed estimators. Clearly,

the bias of C̃ is equal to −γ.

B(ĈS) = E[vec(ĈS −C)]

= E[vec(C̃ −C) + τ × vec(Ĉ − C̃)],
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using Theorem 3.2.1, we get the desired result.

B(ĈPT ) = E[vec(ĈPT −C)]

= E[vec(Ĉ −C − (Ĉ − C̃)I(D < χ2
rn(α))]

= E[−vec(S(KĈL)T I(D < χ2
rn(α)))]

= E[−(SK ⊗ T ′L′)vec(Ĉ)I(D < χ2
rn(α))],

using Theorem 3.2.1, Lemma 3.2.1, and some computations, we get the above result.

B(ĈSPT ) = E[vec(ĈSPT −C)]

= E{vec[ĈI(D > drn,α) + τĈI(D < drn,α) + (1− τ)C̃I(D < drn,α)]}

= E{vec[ĈI(D > drn,α) + ĈI(D < drn,α)− ĈI(D < drn,α) +

τĈI(D < drn,α) + (1− τ)C̃I(D < drn,α)]}

= E{vec[Ĉ − (1− τ)(Ĉ − C̃)I(D < drn,α)]},

finally, using Theorem 3.2.1 and Lemma 3.2.1 we obtained the desired result.

The proof of B(ĈJS) is as follows,

B(ĈJS) = E[vec(ĈJS −C)]

= E[vec(C̃ + {1− cD−1}(Ĉ − C̃)−C)]

= E[vec(Ĉ − C̃)cD−1]
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using Theorem 3.2.1 and Lemma 3.2.1, we get the desired result. Finally we have

B(ĈJS+

) = E[vec(C̃ + {1− cD−1}+(Ĉ − C̃)−C)]

= E(vec(ĈJS −C)− E(vec(Ĉ − C̃)(1− cD−1)I(D < c))

= B(ĈJS)− {E[vec(Ĉ − C̃)I(D < c)] + E[vec(Ĉ − C̃)cD−1I(D < c)]}

= B(ĈJS)− (SK ⊗ T ′L′)vec(C)E{I(χ2
rn+2(∆) < c)}+

c(SK ⊗ T ′L′)vec(C)E{χ−2
rn+2(∆)I(χ2

rn+2(∆) < c)}.

By factoring the term −(SK ⊗ T ′L′)vec(C), we get the result.

3.6.5 Proof of Lemma 3.3.1:

For the proof of part (i), we use the result of Theorem 3.2.1 part (i),(ii), and (iv):

E(p1|p2) = E(p1) + Σ12Σ
∗−1(p2 − E(p2))

= (Σεε ⊗ (XX ′)−1)(K ′S′ ⊗LT )

[(SK ⊗ T ′L′)(Σεε ⊗ (XX ′)−1)(K ′S′ ⊗LT )]−1

[p2 − (SK ⊗ T ′L′)vec(C)].

We got the result by using left Kronecker product rules . A proof of (ii) is similar to

the proof of (iii), provided below. Based on Theorem 3.2.1 part (i),(ii), and (iv), we
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have

E(p2p1
′I(D < χ2

rn(α))) = E(E(p2p1
′I(D < χ2

rn(α))|p2))

= E(p2E(p1
′I(D < χ2

rn(α))|p2))

= E(p2[E(p1) + Σ12Σ
∗−1(p2 − E(p2))]′I(D < χ2

rn(α)))

= E(p2[(p2 − γ)′Σ∗−1Σ21I(D < χ2
rn(α))])

= E(p2p2
′Σ∗−1Σ21I(D < χ2

rn(α)))

− E(p2)γ ′Σ∗−1Σ21I(D < χ2
rn(α))

= [V ar(p2)Hrn+2(χ2
rn(α)) + γγ ′Hrn+4(χ2

rn(α))]Σ∗−1Σ21

− γγ ′Σ∗−1Σ21Hrn+2(χ2
rn(α))

= Σ∗(K ′S′ ⊗LT )−1Hrn+2(χ2
rn(α)) + γγ ′(K ′S′ ⊗LT )−1

[Hrn+4(χ2
rn(α))−Hrn+2(χ2

rn(α))],

E(p2p1
′D−1) = E[E(p2p1

′D−1)|p2]

= E(p2E(p1
′D−1|p2))

= E(p2[E(p1) + Σ12Σ
∗−1(p2 − E(p2))]′D−1)

= E(p2[(p2 − γ)′Σ∗−1Σ21D
−1])

= E(p2p2
′Σ∗−1Σ21D

−1 − p2γ
′Σ∗−1Σ21D

−1)

= Σ21E(χ−2
rn+2(∆)) + γγ ′Σ∗−1Σ21[E(χ−2

rn+4(∆))− E(χ−2
rn+2(∆))]

= Σ∗(K ′S′ ⊗LT )−1E(χ−2
rn+2(∆))

+ γγ ′Σ∗−1Σ21[E(χ−2
rn+4(∆))− E(χ−2

rn+2(∆))].
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3.6.6 Proof of Theorem 3.3.2

Following the definition in (3.8), clearly the risk of Ĉ is equal to tr(Σεε)tr(W (XX ′)−1).

Note that

MSE(C̃) = E{vec(C̃ −C)(vec(C̃ −C))′}.

Using the definition of C̃ and Theorem 3.2.1, we have

MSE(C̃) = E{p3p3
′}

= (Σεε ⊗ (XX ′)−1)− 2(Σεε ⊗ (XX ′)−1)(K ′S′ ⊗LT ) +

(SK ⊗ T ′L′)(Σεε ⊗ (XX ′)−1)(K ′S′ ⊗LT ) + γγ ′.

Using the definition in (3.8) we have,

R(C̃;W ) = tr(Σεε)tr(W (XX ′)−1)− 2tr(ΣεεK
′S′)tr(W (XX ′)−1LT )

+ tr(SKΣεεK
′S′)tr(WT ′L′(XX ′)−1LT ) + tr(γ ′Wγ).

The risk of C̃ depends on γ ′Wγ, where

γ = (SK ⊗ T ′L′)vec(C)

T ′L′ = (XX ′)−1L(L′(XX ′)−1L)−1L′.
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Note that (XX ′)− 1
2L(L′(XX ′)−1L)−1L′(XX ′)− 1

2 is symmetric and an idempotent

matrix with rank r. Thus, there exists an orthogonal matrix Γ such that

Γ(XX ′)− 1
2L(L′(XX ′)−1L)−1L′(XX ′)− 1

2 Γ′ =

 Irn 0

0 0


Γ(XX ′)− 1

2W (XX ′)− 1
2 Γ′ =

 A11 A12

A21 A22

 .

Hence,

tr[W (XX ′)−1LT ] = tr[{Γ(XX ′)− 1
2W (XX ′)− 1

2 Γ′}

{Γ(XX ′)− 1
2L(L′(XX ′)−1L)−1L′(XX ′)− 1

2 Γ′}]

= tr[

 A11 A12

A21 A22


 Irn 0

0 0

]

= tr[A11]

tr[WT ′L′(XX ′)−1] = tr[(XX ′)−1WT ′L′]

= tr[(XX ′)−1W (XX ′)−1L(L′(XX ′)−1L)−1L′]

= tr[{Γ(XX ′)− 1
2W (XX ′)− 1

2 Γ′}

{Γ(XX ′)− 1
2L(L′(XX ′)−1L)−1L′(XX ′)− 1

2 Γ′}]

= tr[

 A11 A12

A21 A22


 Irn 0

0 0

]

= tr[A11],
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tr[WT ′L′(XX ′)−1LT ] = tr[LTWT ′L′(XX ′)−1]

= tr[{Γ(XX ′)− 1
2L(L′(XX ′)−1L)−1L′(XX ′)− 1

2 Γ′}

{Γ(XX ′)− 1
2W (XX ′)− 1

2 Γ′}

{Γ(XX ′)− 1
2L(L′(XX ′)−1L)−1L′(XX ′)− 1

2 Γ′}]

= tr[

 Irn 0

0 0


 A11 A12

A21 A22


 Irn 0

0 0

]

= tr[

 A11 0

0 0


 Irn 0

0 0

]

= tr[A11],

and

tr[SKΣεεK
′S′] = tr[K ′(K ′K)−1KΣεεK

′(K ′K)−1K]

= tr[ΣεεK
′(K ′K)−1KK ′(K ′K)−1K]

= tr[ΣεεK
′(K ′K)−1K]

= tr[ΣεεK
′S′].

By some computations, we obtain the expression for the risk of R(C̃;W ) as follows:

R(C̃;W ) = tr(Σεε)tr(W (XX ′)−1)− tr(ΣεεK
′S′)tr(A11) + γ ′Wγ.

Now, similarly, we get

MSE(ĈS) = E{(p3 + τp2)(p3 + τp2)′}

= (Σεε ⊗ (XX ′)−1)− 2(1− τ)Σ12 + (1− τ)2Σ∗ + (1− τ)2γγ ′.
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Hence,

R(ĈS;W ) = tr(Σεε)tr(W (XX ′)−1)− 2(1− τ)tr(ΣεεK
′S′)tr(W (XX ′)−1LT ) +

(1− τ)2tr(SKΣεεK
′S′)tr(WT ′L′(XX ′)−1LT ) + (1− τ)2tr(γ ′Wγ)

= tr(Σεε)tr(W (XX ′)−1)− 2(1− τ)tr(ΣεεK
′S′)tr(A11) +

(1− τ)2tr(ΣεεK
′S′)tr(A11) + (1− τ)2tr(γ ′Wγ).

After some simplification, we get the expression for the risk of R(C̃S;W ). For the

mean square error of the pretest estimation, we have

MSE(ĈPT ) = E{vec(ĈPT −C)[vec(ĈPT −C)]′}.

Using the definition of ĈPT and Theorem 4.2.1, we have

MSE(ĈPT ) = E{p1p1
′ − p1p2

′I(D < χ2
rn(α))− p2p1

′I(D < χ2
rn(α))

+ p2p2
′I2(D < χ2

rn(α))}.

Hence,

MSE(ĈPT ) = (Σεε ⊗ (XX ′)−1)− 2Σ∗(SK ⊗ T ′L′)−1Hrn+2(χ2
rn(α); ∆)

− 2γγ ′(SK ⊗ T ′L′)−1(Hrn+4(χ2
rn(α); ∆2)−Hrn+2(χ2

rn(α); ∆))

+ Σ∗Hrn+2(χ2
rn(α); ∆) + γγ ′Hrn+4(χ2

rn(α); ∆).
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Finally for R(ĈPT ;W ) we have

= tr(Σεε)tr(W (XX ′)−1)− 2tr[WΣ∗(SK ⊗ T ′L′)−1]Hrn+2(χ2
rn(α); ∆)

− 2tr(Wγγ ′(SK ⊗ T ′L′)−1)(Hrn+4(χ2
rn(α); ∆)−Hrn+2(χ2

rn(α); ∆))

+ tr(WΣ∗)Hrn+2(χ2
rn(α); ∆) + tr(Wγγ ′)Hrn+4(χ2

rn(α); ∆).

We obtain more simplified expressions for tr[WΣ∗(SK ⊗ T ′L′)−1] and tr(WΣ∗),

tr[WΣ∗(SK ⊗ T ′L′)−1] = tr[W (SK ⊗ T ′L′)(Σεε ⊗ (XX ′)−1)

(K ′S′ ⊗LT )(SK ⊗ T ′L′)−1]

= tr[W (SKΣεε ⊗ T ′L′(XX ′)−1)]

= tr[SKΣεε]tr[WT ′L′(XX ′)−1]

= tr[ΣεεK
′S′]tr[A11],

and

tr(WΣ∗) = tr(SKΣεεK
′S′)tr[WT ′L′(XX ′)−1LT ]

= tr(ΣεεK
′S′)tr(A11).

By some computations after substituting the above results, we get the expression for

the risk of R(ĈPT ;W ).

For the mean square error of the shrinkage pretest estimation, we have

MSE(ĈSPT ) = E{vec(ĈSPT −C)[vec(ĈSPT −C)]′},

= E{(p1 − (1− τ)p2I(D < drn,α)(p1 − (1− τ)p2I(D < drn,α)′}.
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After some manipulations, we get

MSE(ĈSPT ) = (Σεε ⊗ (XX ′)−1)− 2(1− τ){Σ∗(SK ⊗ T ′L′)−1Hrn+2(χ2
rn(α); ∆)

+ γγ ′(SK ⊗ T ′L′)−1[Hrn+4(χ2
rn(α); ∆)−Hrn+2(χ2

rn(α); ∆)]}

+ (1− τ)2[Σ∗Hrn+2(χ2
rn(α); ∆) + γγ ′Hrn+4(χ2

rn(α); ∆)].

Hence, for R(ĈSPT ;W ) we have

= tr(Σεε)tr(W (XX ′)−1)− 2(1− τ){tr(WΣ∗(SK ⊗ T ′L′)−1)Hrn+2(χ2
rn(α); ∆)

+ tr(Wγγ ′(SK ⊗ T ′L′)−1)[Hrn+4(χ2
rn(α); ∆)−Hrn+2(χ2

rn(α); ∆)]}

+ (1− τ)2[tr(WΣ∗)Hrn+2(χ2
rn(α); ∆) + tr(γ ′Wγ)Hrn+4(χ2

rn(α); ∆)].

By some computations we get the expression for the risk of R(ĈSPT ;W ). For the

proof for R(ĈJS;W ), let us consider

MSE(ĈJS) = E{vec(ĈJS −C)[vec(ĈJS −C)]′}.

Using the definition of ĈJS and Theorem 3.2.1 part (i) and (ii), we have

MSE(ĈJS) = E{(p1 − cp2D
−1)(p1 − cp2D

−1)′}

= E{p1p1
′ − cp1p2

′D−1 − cp2p1
′D−1 + p2p2

′(cD−1)2}.

By combining Theorem 3.2.1, Lemma 3.2.1, and 3.2.1, we get the following result,

MSE(ĈJS) = (Σ⊗ (XX ′)−1)− cΣ∗(2E(χ−2
rn+2(∆))M − cE(χ−4

rn+2(∆)))

+ cγγ ′[2E(χ−2
rn+2(∆))M − 2E(χ−2

rn+4(∆))M + cE(χ−4
rn+4(∆))].
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Using the definition in (3.8), we have

R(ĈJS;W ) = tr(Σεε)tr(W (XX ′)−1)− 2ctr(WΣ∗M )E(χ−2
rn+2(∆))

+ c2tr(WΣ∗)E(χ−4
rn+2(∆)) + 2ctr(Wγγ ′M )E(χ−2

rn+2(∆))

− 2ctr(Wγγ ′M)E(χ−2
rn+4(∆)) + c2tr(Wγγ ′)E(χ−4

rn+4(∆)).

By some computation we get the risk expression for ĈJS. Finally,

MSE(ĈJS+) = E{vec(ĈJS+ −C)[vec(ĈJS+ −C)]′}

= E{[vec(ĈJS −C)− vec(Ĉ − C̃)(1− cD−1)I(D < c)]

[vec(ĈJS −C)− vec(Ĉ − C̃)(1− cD−1)I(D < c)]′}

= E{[vec(ĈJS −C)][vec(ĈJS −C)]′}

− 2E{[vec(Ĉ − C̃)(1− cD−1)I(D < c)][vec(ĈJS −C)]′}

+ E{[vec(Ĉ − C̃)(1− cD−1)I(D < c)]

[vec(Ĉ − C̃)(1− cD−1)I(D < c)]′}.
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Using Theorem 3.2.1, Lemma 3.2.1, and 3.2.2, we have

MSE(ĈJS+) = MSE(ĈJS)− 2E{p2p1
′(1− cD−1)I(D < c)}

+ 2E{p2p2
′(1− cD−1)I(D < c)} − E{p2p2

′(1− cD−1)2I(D < c)}

= MSE(ĈJS)− 2(K ′S′ ⊗LT )−1E[(1− cχ−2
rn+2(∆))I(χ2

rn+2(∆) < c)]

− 2γγ ′(K ′S′ ⊗LT )−1E[(1− cχ−2
rn+4(∆))I(χ2

rn+4(∆) < c)]

+ 2Σ∗E[(1− cχ−2
rn+2(∆))I(χ2

rn+2(∆) < c)]

+ 2γγ ′E[(1− cχ−2
rn+4(∆))I(χ2

rn+4(∆) < c)]

− Σ∗E[(1− cχ−2
rn+2(∆))2I(χ2

rn+2(∆) < c)]

− γγ ′E[(1− cχ−2
rn+4(∆))2I(χ2

rn+4(∆) < c)].

Using the definition in (3.8) we have

R(ĈJS+;W ) = R(ĈJS;W )− 2tr(WΣ∗M)E[(1− cχ−2
rn+2(∆))I(χ2

rn+2(∆) < c)]

− 2tr(Wγγ ′M)E[(1− cχ−2
rn+4(∆))I(χ2

rn+4(∆) < c)]

+ 2tr(WΣ∗)E[(1− cχ−2
rn+2(∆))I(χ2

rn+2(∆) < c)]

+ 2tr(Wγγ ′)E[(1− cχ−2
rn+4(∆))I(χ2

rn+4(∆) < c)]

− tr(WΣ∗)E[(1− cχ−2
rn+2(∆))2I(χ2

rn+2(∆) < c)]

− tr(Wγγ ′)E[(1− cχ−2
rn+4(∆))2I(χ2

rn+4(∆) < c)].

Using some computation we get the risk expression for ĈJS+.
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Table 3.5: Biomedical data on urine samples of patients from a study by Smith et al.
(1962).

y1 y2 y3 y4 y5 x1 x2 x3

17.6 1.50 1.50 1.88 7.5 0.98 2.05 2.4
13.4 1.65 1.32 2.24 7.1 0.98 1.60 3.2
20.3 0.90 0.89 1.28 2.3 1.15 4.80 1.7
22.3 1.75 1.50 2.24 4.0 1.28 2.30 3.0
18.5 1.20 1.03 1.84 2.0 1.28 2.15 2.7
12.1 1.90 1.87 2.40 16.8 1.22 2.15 2.5
10.1 2.30 2.08 2.68 0.9 1.22 1.90 2.8
14.7 2.35 2.55 3.00 2.0 1.30 1.75 2.4
14.7 2.50 2.38 2.84 3.8 1.30 1.55 2.7
18.1 1.50 1.20 2.60 14.5 1.35 2.20 3.1
16.9 1.40 1.15 1.72 8.0 1.35 3.05 3.2
23.7 1.65 1.58 1.60 4.9 1.35 2.75 2.0
18.0 1.60 1.68 2.00 3.6 1.35 2.10 2.3
14.8 2.45 2.15 3.12 12.0 1.40 1.70 3.1
15.6 1.65 1.42 2.56 5.2 1.40 2.35 2.8
16.2 1.65 1.62 2.04 10.2 1.41 1.85 2.1
17.5 1.05 1.56 1.48 9.6 1.41 2.65 1.5
14.1 2.70 2.77 2.56 6.9 1.62 3.05 2.6
22.5 0.85 1.65 1.20 3.5 1.62 4.30 1.6
17.0 0.70 0.97 1.24 1.9 2.05 3.50 1.8
12.5 0.80 0.80 0.64 0.7 2.05 4.75 1.0
21.5 1.80 1.77 2.60 8.3 2.30 1.95 3.3
13.0 2.20 1.85 3.84 13.0 2.30 1.60 3.5
13.0 3.55 3.18 3.48 18.3 2.15 2.40 3.3
12.0 3.65 2.40 3.00 14.5 2.15 2.70 3.4
22.8 0.55 1.00 1.14 3.3 2.30 4.75 1.6
18.4 1.05 1.17 1.36 4.9 2.30 4.90 2.8
8.7 4.25 3.62 3.84 19.5 2.62 1.15 2.5
9.4 3.85 3.36 5.12 1.3 2.62 0.97 2.8
15.0 2.45 2.38 2.40 20.0 2.55 3.25 2.7
12.9 1.70 1.74 2.48 1.0 2.55 3.10 2.3
12.1 1.80 2.00 2.24 5.0 2.70 2.45 2.5
11.5 2.25 2.25 3.12 5.1 2.70 2.20 3.4



Chapter 4

Estimation Strategies for a

Parameter Matrix in a

Multivariate Reduced Rank

Regression Model

4.1 Introduction

We consider the multivariate multiple regression models (MMRMs) that were pre-

sented in Chapter 3, when the number of parameters in the regression matrix is

large, which happens in financial and economic analysis. Thus, in many practical

problems, there is a need to reduce the number of parameters in model (3.2). We

study this problem through the possibility that the rank of the regression coefficient

matrix C is deficient. Therefore, there may be a number of linear constraints on the

80
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set of regression coefficients in the model. The resulting model is called a multivariate

reduced rank regression model (Izenman 1975, 2008). Anderson (1951) was the first

to consider in detail the RRR problem when Xi is fixed.

Statistical problems concerning reduced rank regression models and their properties

have been studied in the statistical literature by Anderson (1984), Robinson (1973),

Robinson (1974), Tso (1981), Davies and Tso (1982), Zhou (1994), Geweke (1996),

Reinsel and Velu (1998), Heinen and Rengifo (2007), Vounou et al. (2010), and Yee

and Hastie (2003), also, from a Bayesian point of view, Schmidli (1995), Geweke

(1996), and others. Most applications of RRR have been directed toward problems

in time series (time domain and frequency domain) and econometrics: see Velu and

Reinsel (1987), Reinsel (1983), Johansen (1988, 1991) among others.

A physical interpretation of the reduced rank model was offered by Brillinger (1969).

Suppose we wish to send a message based upon the q components of a vector X that

represents information which is to be used to send a message Y having m components

(m ≤ q), but such a message can only be transmitted through r channels (r ≤ m).

Thus, first we would need to encode X into a r vector ζ = BX, where B is a (r× q)

matrix. After receiving the coded message, we would need to decode it using an

(m× r) matrix A to form the m vector Aζ, which we hope to be as close as possible

to the desired Y .

When C has reduced rank r, then there exist two nonunique full rank matrices, an

(m× r) matrix A and a (r × q) matrix B, such that C = AB. The nonuniqueness

happens because we can always find a nonsingular (r × r) matrix R such that

C = (AR)(R−1B) = JT ,
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which gives a different decomposition of C.

Hence, we restate the model in (3.2) as RRR model

Yi = ABXi + εi, i = 1, . . . , n, (4.1)

where vectors εi are assumed to be independent with mean zero and covariance matrix

Σεε, and where Σεε is a positive definite matrix.

In this chapter, we are interested in how to place linear constraints in a RRR model

on C when X is considered to be random. Therefore, we describe the RRR scenario

in which X and Y are jointly distributed.

As we will see shortly, reduced rank regression estimation will be obtained as a

certain reduced rank approximation of the full rank least squares estimate of the

regression coefficient matrix. Therefore, we need an essential matrix result which

represents how to approximate a full rank matrix by a matrix of lower rank from

Eckart and Young (1936).

Theorem 4.1.1. If A and B are both (J ×K) matrices, and we plan on using B

with reduced rank r(B) = b to approximate A with full rank r(A) = min(J,K),

then we have

λj((A−B)(A−B)′) ≥ λj+b(AA
′)

with equality if

B =
b∑
i=1

λ
1/2
i uiv

′
i,

where λi = λi(AA
′), ui = vi(AA

′), and vi = vi(A
′A). Because the above choice

of B provides a simultaneous minimization for all eigenvalues λj, it follows that the

minimum is achieved for different functions of those eigenvalues, say, the trace or the
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determinant of (A−B)(A−B)′.

Estimation of A and B in (4.1) is based on the following Theorem (Brillinger,

1981, Section 10.2), which essentially uses Theorem 4.1.1.

Theorem 4.1.2. Suppose the (m+q) dimensional random vector (Y ′, X ′)′ has mean

vector zero and covariance matrix Σyx = Σxy = Cov(Y,X), and Σxx = Cov(X)

nonsingular. Then for any positive definite matrix Γ, an (m × r) matrix A and

(r × q) matrix B, for r ≤ min(m, q), which minimize

tr{E[Γ1/2(Y −ABX )(Y −ABX )′Γ1/2]}

are given by

A(r) = Γ−1/2[V1, . . . , Vr] = Γ−1/2V , B(r) = V ′Γ1/2ΣyxΣ
−1
xx ,

where V = [V1, . . . , Vr] and Vj is the (normalized) eigenvector that corresponds to

the jth largest eigenvalue λ2
j of the matrix Γ1/2ΣyxΣ

−1
xxΣxyΓ

1/2, (j = 1, . . . , r).

We also observed earlier that the decomposition C = AB is not unique, hence

to determine A and B uniquely, we must impose some normalization conditions.

The eigenvectors Vj in Theorem 4.1.2 are normalized to satisfy V ′jVj = 1, and this is

equivalent to normalization for A and B as follows:

BΣxxB
′ = Λ2, A′ΓA = Ir,

where Λ2 = diag(λ2
1, . . . , λ

2
r) and Ir is an r × r identity matrix. Thus, the number

of independent regression parameters in the reduced rank model (4.1) is (m+ q − r)

compared to (mq) parameters in the full rank model. The elements of the reduced



4.1 Introduction 84

rank approximation of the matrix C are given as

C(r) = A(r)B(r) = Γ−1/2

(
r∑
j=1

VjV
′
j

)
Γ1/2ΣyxΣ

−1
xx = T ΓΣyxΣ

−1
xx

where T Γ is an idempotent matrix for any Γ, but it does not need to be symmetric.

Observe that, ΣyxΣ
−1
xx is the usual full rank (population) regression coefficient matrix.

When r = m,
∑r

j=1 VjV
′
j = Im and, therefore, C(r) reduces to a full rank coefficient

matrix. Robinson (1974) has shown that the solution for A and B in Theorem 4.1.2

are as follows when sample quantities are substituted, namely

Â(r) = Γ−1/2[V̂1, . . . , V̂r] = Γ−1/2V̂ , B̂(r) = [V̂1, . . . , V̂r]
′Γ1/2Σ̂yxΣ̂

−1
xx ,

V̂j is the eigenvector that corresponds to the jth largest eigenvalues λ̂2
j of Γ1/2Σ̂yxΣ̂

−1
xx

Σ̂yxΓ
1/2, with the choice Γ = Σ̂−1

εε , where Σ̂yx = (1/n)YX ′, Σ̂xx = (1/n)XX ′, and

Σ̂εε = (1/n)(YY ′ −YX ′(XX ′)−1XY ′) ≡ (1/n)(Y − ĈX )(Y − ĈX )′.

The small sample distribution of the reduced rank estimators is somewhat difficult

to work with. Therefore, we focus on the large sample behavior of the estimators.

The asymptotic results follow from Robinson (1973).

The main results on asymptotic distribution of Â and B̂ when Γ = Σ−1
εε is assumed

to be known is contained in the next Theorem.

Theorem 4.1.3. For the model (4.1), let (vec(A), vec(B)) ∈ Θ, which is a compact

set defined by the normalization condition in Theorem 4.1.2. Then, with Â, B̂ and

A, B given by

Â = Γ−1/2[V̂1, . . . , V̂r] = Γ−1/2V̂ , B̂ = V̂ ′Γ1/2Σ̂yxΣ̂
−1
xx ,
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A = Γ−1/2[V1, . . . , Vr] = Γ−1/2V , B = V ′Γ1/2ΣyxΣ
−1
xx ,

respectively, vec(Â) and vec(B̂) converge in probability to vec(A) and vec(B), re-

spectively, as n −→∞.

In this chapter, we assume A to be known and based on results by Robinson

(1974, Theorem 1 and Section 2.3). Then n1/2vec(B̂ −B) converges in distribution

to N(0, (Ir ⊗Σ−1
xx )).

The main objective of this chapter is to consider the estimation problem of the

parameter matrix B under a very general set of linear constraints,

H0 : FBG = D, (4.2)

where F and G are known full rank matrices of appropriate dimensions r1 × r and

q×m, respectively. Let B̃ be a restricted estimate of B when it is suspected but not

known thatB may be restricted to the subspace defined by FBG = D. Alternatively,

we can write the null hypothesis in (4.2) by using the left Kronecker product as

H0 : (F ⊗ G′)vec(B) = vec(D). (4.3)

We wish to find an (r × q) matrix B to minimize the following expression

B̃ = arg min
FBG=D

tr{(Y −ABX )Γ(Y −ABX )′}

where Γ is a positive definite symmetric matrix. The candidate sub-model estimator

is

B̃ = B̂ −N (FB̂G −D)Q,
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where N = (A′ΓA)−1F ′(F(A′ΓA)−1F ′)−1 and Q = (G′Σ−1
xxG)−1G′Σ−1

xx . Clearly,

B̃ will be a unbiased estimator under the candidate subspace in (4.2). On the other

hand, it can be easily verified that B̃ is an inconsistent estimator because of the bias

inherited by the submodel. It is obviously important to be able to find a test statistic

for testing H0 : FBG = D which can be used for further research. Based on the

asymptotic results given in Robinson (1974), we define that the test statistic follows

from the likelihood ratio method of test construction [see Anderson (1951)], as we

now indicate. For model (4.1) under the asymptotically normality assumption on the

εi, the likelihood ratio test statistic for testing H0 : FBG = D is ν = Un/2, where

U = |S|/|S1|, S = (Y −AB̂X )(Y −AB̂X )′, and

S1 = (Y −AB̃X )(Y −AB̃X )′

= (Y −AB̂X +AN (FB̂G −D)QX )

(Y −AB̂X +AN (FB̂G −D)QX )′

= (Y −AB̂)(Y −AB̂)′

+ AN (FB̂G −D)QΣ̂xxQ′(FB̂G −D)′N ′A′

= S +AN (FB̂G −D)(G′Σ̂−1
xxG)−1G′Σ̂−1

xx Σ̂xx

× Σ̂−1
xxG(G′Σ̂−1

xxG)−1(FB̂G −D)′N ′A′

= S +AN (FB̂G −D)(G′Σ̂−1
xxG)−1(FB̂G −D)′N ′A′

= S + H.

It has been shown in Anderson (1984) that the test statistic L = −[n − q +

q−m−1
2

]log(U) under H0 follows asymptotically χ2
r1m

.

As mentioned before, when the linear constraint as a prior information is rather
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suspicious, it may be reasonable to construct pretest estimators. Therefore, we use

B̂PT = B̂ − (B̂ − B̃)I(L < lr1m,α),

where the lr1m,α is the upper α-level critical value of the χ2 distribution with r1m

degrees of freedom, and I(A) is an indicator function of a set A. Also, the shrinkage

and positive shrinkage estimators are defined as

B̂JS = B̃ + {1− sL−1}(B̂ − B̃), r1m > 2

B̂JS+ = B̃ + {1− sL−1}+(B̂ − B̃), r1m > 2,

where the optimal value of s is sopt = r1m− 2 and is chosen in an interval in such a

way that B̂JS dominates B̂. s is allowed to vary over [0, 2(r1m− 2)), r1m > 2, often

set to s = r1m− 2; thus, we assume that r1m ≥ 3.

The remainder of this chapter is organized as follows. In Section 2, we showcase

some important results which will be needed in deriving the expressions for the sug-

gested estimators. In Section 3, we present the expressions for asymptotic bias and

risk with their analysis. A data example and simulation study are presented in Sec-

tion 4. Conclusions are offered in Section 5. Finally, the proofs of the main results

are given in Section 6.

4.2 Main Results

In an effort to establish some important properties of the estimators, we consider

the asymptotic distribution of n1/2vec(B̂ − B) ∼ N(0, (Ir ⊗ Σ−1
xx )). To obtain a
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meaningful asymptotic distribution for this, we consider the class of local alternatives

Kn defined by

Kn : FBG = D + n−1/2Υ,

where Υ is a non zero matrix. Let q1 = n1/2vec(B̂ −B), q2 = n1/2vec(B̂ − B̃), and

q3 = n1/2vec(B̃ −B). Then we have the following asymptotic distributional results:

Theorem 4.2.1.

(i) q1 ∼ N(0, (Ir ⊗Σ−1
xx ))

(ii) q2 ∼ N(δ,Σ∗)

(iii) q3 ∼ N(−δ,Ω∗)

(iv)

 q1

q2

 ∼ N

{ 0

δ

 ,

 (Ir ⊗Σ−1
xx ) Σ12

Σ21 Σ∗

}

(v)

 q2

q3

 ∼ N

{ δ

−δ

 ,

 Σ∗ Ω12

Ω21 Ω∗

}

where δ = (N ⊗Q′)vec(Υ),

Σ∗ = (NF ⊗Q′G′)(Ir ⊗Σ−1
xx )(F ′N ′ ⊗ GQ),

Ω∗ = (Ir ⊗Σ−1
xx )−Σ12 −Σ21 + Σ∗,

Σ12 = Σ′21 = (Ir ⊗Σ−1
xx )(F ′N ′ ⊗ GQ),

Ω12 = Ω′21 = Σ12 −Σ∗.

Proof: See Appendix, Section 4.6.1.



4.3 Asymptotic Bias and Risk Analysis 89

4.3 Asymptotic Bias and Risk Analysis

In this section, we obtain expressions for the asymptotic distributional bias (ADB)

and the risks (ADR) of the proposed estimators. Also, we compare the performance of

the suggested estimators in terms of asymptotic risk. First we present the expression

for the asymptotic distribution bias (ADB) of the proposed estimators. The ADB of

an estimator B∗ is defined as

ADB(B∗) = lim
n→∞

E
{√

n(B∗ −B)
}
.

Theorem 4.3.1. Under {Kn} the asymptotic distribution biases (ADB) of the pro-

posed estimators are, respectively,

(i) ADB(B̃) = −δ

(ii) ADB(B̂PT ) = −δHr1m+2(χ2
r1m

(α),∆)

(iii) ADB(B̂JS) = −sδE[χ−2
r1m+2(∆)]

(iv) ADB(B̂JS+
) = ADB(B̂S)− δE{[1− sχ−2

r1m+2(∆)]I(χ2
r1m+2(∆) < s)}.

The notation Hν(x,∆) is the distribution function of non-central chi-square distribu-

tion with ν degrees of freedom and non-centrality parameter ∆ = δ′(Ir ⊗Σ−1
xx )−1δ.

Proof: See Appendix, Section 4.6.2.

Since the asymptotic bias expressions of all the estimators are not in the scalar form,

we therefore take the recourse by converting them into the quadratic form. Thus, let

us define the asymptotic quadratic distributional bias (AQDB) of an estimator B∗ of
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B by

AQDB(B∗) = [ADB(B̂∗)]′(Ir ⊗Σ−1
xx )[ADB(B̂∗)].

Based on the Theorem 4.3.1, we can easily obtain the AQDB of the estimators.

AQDB(B̃) = ∆

AQDB(B̂PT ) = ∆{Hr1m+2(χ2
r1m

(α),∆)}2

AQDB(B̂JS) = s2∆{E(χ−2
r1m+2(∆))}2

AQDB(B̂JS+) = ∆{sE(χ−2
r1m+2(∆))− E{(sχ−2

r1m+2(∆)− 1)I(χ2
r1m+2(∆) < s)}2.

Clearly, the asymptotic bias of B̃ is unbounded, and the bias of B̂PT depends on the

size of α and ∆. The asymptotic bias of B̂JS and B̂JS+
depends on ∆ alone. Thus,

we can establish the following two results:

AQDB(B̂JS+

) ≤ AQDB(B̂JS) ≤ AQDB(B̃),

0 = AQDB(B̂) ≤ AQDB(B̂PT ) ≤ AQDB(B̃).

4.3.1 Relative Performance of the Estimators

Now, we present some useful results in the following Theorem, which will be used in

deriving the risk expressions for the estimators.

Lemma 4.3.1. Under the assumed conditions for model (4.1),

(i) E(q1|q2) = (NF ⊗Q′G′)−1(q2 − δ)
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(ii) E(q2q1
′I(L < χ2

r1m
(α))) = Σ∗(F ′N ′ ⊗ GQ)−1Hr1m+2(χ2

r1m
(α)) + δδ′(F ′N ′ ⊗

GQ)−1[Hr1m+4(χ2
r1m

(α))−Hr1m+2(χ2
r1m

(α))], where δ = E(q2)

(iii) E(q2q1
′L−1) = (FN ⊗Q′G′)(Ir ⊗Σ−1

xx )E(χ−2
r1m+2(∆)) + δδ′(F ′N ′ ⊗ GQ)−1

[E(χ−2
r1m+4(∆))− E(χ−2

r1m+2(∆))].

Proof: See Appendix, Section 4.6.3.

Theorem 4.3.2. Under {Kn}, the asymptotic mean square errors (AMSE) of the

listed estimators are as follows:

AMSE(B̃) = Ω∗ + δδ′

AMSE(B̂PT ) = (Ir ⊗Σ−1
xx )− 2Σ∗(F ′N ′ ⊗ GQ)−1Hr1m+2(χ2

r1m
(α))

− 2δδ′(F ′N ′ ⊗ GQ)−1[Hr1m+4(χ2
r1m

(α))−Hr1m+2(χ2
r1m

(α))]

+ δδ′Hr1m+4(χ2
r1m

(α)) + Σ∗Hr1m+2(χ2
r1m

(α))

AMSE(B̂JS) = (Ir ⊗Σ−1
xx )− sΣ∗[2E(χ−2

r1m+2(∆))(F ′N ′ ⊗ GQ)−1

− sE(χ−4
r1m+2(∆))] + sδδ′{2[E(χ−2

r1m+2(∆))− E(χ−2
r1m+4(∆))]

× (F ′N ′ ⊗ GQ)−1 + sE(χ−4
r1m+4(∆))}

AMSE(B̂JS+) = AMSE(B̂JS)− 2Σ∗(F ′N ′ ⊗ GQ)−1

× E[(1− sχ−2
r1m+2(∆))I(χ2

r1m+2(∆) < s)]− 2δδ′(F ′N ′ ⊗ GQ)−1

× E[(1− sχ−2
r1m+4(∆))I(χ2

r1m+4(∆) < s)]

+ 2Σ∗E[(1− sχ−2
r1m+2(∆))I(χ2

r1m+2(∆) < s)]

+ 2δδ′E[(1− sχ−2
r1m+4(∆))I(χ2

r1m+4(∆) < s)]

− Σ∗E[(1− sχ−2
r1m+2(∆))2I(χ2

r1m+2(∆) < s)]

− δδ′E[(1− sχ−2
r1m+4(∆))2I(χ2

r1m+4(∆) < s)].
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Proof: See Appendix, Section 4.6.4.

Theorem 4.3.3. The asymptotic quadratic risks of estimators are

ADR(B̂;W ) = rtr(WΣ−1
xx )

ADR(B̃;W ) = ADR(B̂;W )− 2tr(D11)tr(NF) + tr(D11)tr(NFF ′N ′)

+ δ′Wδ

ADR(B̂PT ;W ) = ADR(B̂;W )− 2tr(D11)tr(NF)Hr1m+2(χ2
r1m

(α))

− 2tr(Wδδ′U)[Hr1m+4(χ2
r1m

(α))−Hr1m+2(χ2
r1m

(α))]

+ tr(D11)tr(NFF ′N ′)Hr1m+2(χ2
r1m

(α))

+ δ′WδHr1m+4(χ2
r1m

(α))

ADR(B̂JS;W ) = ADR(B̂;W )− 2str(D11)tr(NF)E(χ−2
r1m+2(∆)) + s2tr(D11)

tr(NFF ′N ′)E(χ−4
r1m+2(∆))− 2str(Wδδ′U)[E(χ−2

r1m+4(∆))

− E(χ−2
r1m+2(∆))] + s2δ′WδE(χ−4

r1m+4(∆))

ADR(B̂JS+;W ) = ADR(B̂JS;W )

− 2tr(D11)tr(NF)E[(1− sχ−2
r1m+2(∆))I(χ2

r1m+2(∆) < s)]

− 2tr(Wδδ′U)E[(1− sχ−2
r1m+4(∆))I(χ2

r1m+4(∆) < s)]

+ tr(D11)tr(NFF ′N ′)E[(1− s2χ−4
r1m+2(∆))I(χ2

r1m+2(∆) < s)]

+ δ′WδE[(1− s2χ−4
r1m+4(∆))I(χ2

r1m+4(∆) < s)],

where

U = (F ′N ′ ⊗ GQ)−1,

D = ΓΣ
− 1

2
xxWΣ

− 1
2

xx Γ′,

tr(WQ′G′Σ−1
xxGQ) = tr(D11),
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tr(WΣ−1
xxGQ) = tr(D11),

tr(WΣ∗U) = tr(D11)tr(NF),

tr(WΣ∗) = tr(D11)tr(NFF ′N ′)

.

Proof: See Appendix, Section 4.6.5.

4.3.2 Comparison of B̂PT and B̂

Consider the risk-difference:

ADR(B̂;W ) − ADR(B̂PT ;W ) = 2tr(D11)tr(NF)Hr1m+2(χ2
r1m

(α),∆)

+ 2tr(Wδδ′U)[Hr1m+4(χ2
r1m

(α),∆)−Hr1m+2(χ2
r1m

(α),∆)]

− δ′WδHr1m+4(χ2
r1m

(α),∆)

− tr(D11)tr(NFF ′N ′)Hr1m+2(χ2
r1m

(α),∆).

The right hand side is nonnegative whenever

δ′Wδ ≤
−tr(D11)tr(NFF ′N ′)Hr1m+2(χ2

r1m
(α),∆)

Hr1m+4(χ2
r1m

(α),∆)
.

In this range, B̂PT performs better than B̂ for all ∆.
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4.3.3 Comparison of B̂PT and B̃

For comparing the risk of B̂PT and B̃, we consider the differences between them:

ADR(B̃;W ) − ADR(B̂PT ;W ) = (Hr1m+2(χ2
r1m

(α),∆)− 1)[2tr(D11)tr(NF)

− tr(D11)tr(NFF ′N ′)] + δ′Wδ(1−Hr1m+4(χ2
r1m

(α),∆))

+ 2tr(Wδδ′U)[Hr1m+4(χ2
r1m

(α),∆)−Hr1m+2(χ2
r1m

(α),∆)].

Thus, the risk of B̂PT is smaller than B̃ whenever

δ′Wδ ≥
(Hr1m+2(χ2

r1m
(α),∆)− 1)2tr(D11)[tr(NF)− tr(NFF ′N ′)]

(Hr1m+4(χ2
r1m

(α),∆)− 1)
.

Note that both B̂PT and B̃ are superior to B̂ under H0. Therefore, under H0 the

risk of the three estimators may be ordered as

ADR(B̃;W ) ≤ ADR(B̂PT ;W ) ≤ ADR(B̂;W ).

4.3.4 Comparison of B̂JS and B̂

The risk-differences are given by

ADR(B̂JS;W ) − ADR(B̂;W ) = −2ctr(D11)tr(NF)E(χ−2
r1m+2(∆)) + c2tr(D11)

tr(NFF ′N ′)E(χ−4
r1m+2(∆))− 2ctr(Wδδ′U)[E(χ−2

r1m+4(∆))

− E(χ−2
r1m+2(∆))] + c2δ′WδE(χ−4

r1m+4(∆))
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Note that ∆E(χ−4
r1m+4(∆)) = E(χ−2

r1m+2(∆)) − cE(χ−4
r1m+2(∆)). Thus, for all ∆, the

B̂JS uniformly dominates B̂ whenever

∆ <
δ′Wδ[cE(χ−4

r1m+2(∆))− E(χ−2
r1m+4(∆))]

tr(D11)tr(NFF ′N ′)E(χ−4
r1m+2(∆))

4.3.5 Comparison of B̂JS and B̃

Let us consider the risk of B̂JS under a candidate subspace in terms of the risk of B̃:

ADR(B̂JS;W ) = ADR(B̃;W )− 2tr(D11)tr(NF)

[cE(χ−2
r1m+2(0))− 1] + tr(D11)tr(NFF ′N ′)[c2E(χ−4

r1m+2(0))− 1].

Under H0, the risk of B̃ is smaller than that of the risk of B̂JS when the value of c

satisfies the following condition

tr(NF)[c2E(χ−4
r1m+2(0))− 1] > 2[cE(χ−2

r1m+2(0))− 1].

However, as ∆ increases, the risk of B̃ becomes unbounded, and the risk of B̂JS

remains below the risk of B̃ and merges with it as ∆ −→ ∞. Thus, B̂JS dominates

B̃ outside an interval around the origin.
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4.3.6 Comparison of B̂JS+ and B̂JS

For comparing the risk of B̂JS and B̂JS+, we consider the risk-difference between

them:

ADR(B̂JS;W ) − ADR(B̂JS+;W ) =

+ 2tr(D11)tr(NF)E[(1− cχ−2
r1m+2(∆))I(χ2

r1m+2(∆) < c)]

+ 2tr(Wδδ′U)E[(1− cχ−2
r1m+4(∆))I(χ2

r1m+2(∆) < c)]

− tr(D11)tr(NFF ′N ′)E[(1− c2χ−4
r1m+2(∆))I(χ2

r1m+2(∆) < c)]

− δ′WδE[(1− c2χ−4
r1m+4(∆))I(χ2

r1m+4(∆) < c)].

The first two terms on the right hand side are positive, and we have

(0 < χ2
r1m+4(∆) < c2)⇐⇒ (c2χ−2

r1m+4(∆)− 1) ≥ 0

so that

E[(1− c2χ−2
r1m+4(∆))I(χ2

r1m+4(∆) < c)] ≤ 0.

Thus, for all ∆, ADR(B̂JS+) ≤ ADR(B̂JS) and B̂JS+ not only confirms inadmissi-

bility of B̂JS but also provides a simple superior estimator.

Under H0, we can order the risk of estimators

ADR(B̃;W ) ≤ ADR(B̂JS+;W ) ≤ ADR(B̂JS;W ) ≤ ADR(B̂;W ).
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4.4 Numerical Study

4.4.1 Simulation study

In this section, we use Monte Carlo simulation experiments to examine the relative

performance of the proposed estimators. In this study, we simulate data from the

following model: Yi = c0 + c1x1i + c2x2i + c3x3i + c4x4i + εi ≡ CXi + εi, i = 1, . . . , n,

where Yi = (y1i, y2i, y3i, y4i, y5i)
′ and Xi = (1, x1i, x2i, x3i, x4i)

′ with m = 1, 2, 3, 4, 5.

Therefore Y , X , and C denote 5 × n, 5 × n, and 5 × 5 data matrices, respectively.

For simulation we consider

Ĉ =



5.42 −0.90 −0.06 −0.42 1.90

1.24 −0.10 0.13 −0.32 0.56

−5.92 0.29 −0.37 1.21 −1.05

3.13 −0.51 −0.11 −0.13 1.38

9.46 −0.37 0.71 −0.86 0.39



Â′ =

2.70 1.09 −1.69 2.54 2.84

0.21 0.31 0.15 −0.86 3.80



B̂ =

0.81 −0.13 0.08 −0.24 0.61

1.57 0.19 0.28 −0.24 −0.49


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F = [I2], and G = [0′, I ′1]′ or, more explicitly,

F = ((1, 0)′, (0, 1)′),

G = ((0, 0, 0, 0, 0)′, (0, 0, 0, 0, 1)′)′.

We generate 1000 samples using the above model. We define ∆ as a departure pa-

rameter which is a function of the distance between the true value of C and that

under the candidate subspace. In order to investigate the behavior of the proposed

estimators, different values of B are chosen to produce the value of ∆ between 0 and

4. The performance of an estimator of C will be reappraised using the mean squared

error criterion. All computations are conducted using the R statistical system. We

numerically calculate the relative risk of B̃, B̂PT , B̂JS, and B̂JS+ with respect to B̂

by simulation. Since the result for different n were similar, here we only report the

results for n = 40 and n = 100 in Figures (4.1) and (4.2).

Table 4.1: R.E of estimators, n = 40.

∆ B̃ B̂JS B̂JS+

0.0 2.251 1.239 1.439
0.2 2.056 1.204 1.400
0.4 1.738 1.152 1.260
0.6 1.355 1.094 1.112
0.8 1.077 1.077 1.100
1.2 0.636 1.024 1.068
1.6 0.386 1.013 1.015
2.0 0.267 1.007 1.007
4.0 0.059 0.999 0.999

Table 4.2: R.E of estimators, n = 100.

∆ B̃ B̂JS B̂JS+

0.0 3.227 2.544 2.027
0.2 1.589 1.051 1.341
0.4 0.687 0.969 1.105
0.6 0.341 1.000 1.048
0.8 0.197 1.000 1.025
1.2 0.094 1.000 1.011
1.6 0.052 1.000 1.007
2.0 0.033 1.000 1.004
4.0 0.009 1.000 1.000
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Figure 4.1: R.E of the estimators for n = 40.
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Figure 4.2: R.E of the estimators for n = 100.
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4.4.2 Real Data Example

In this section, we consider reduced rank regression methods using the example on

biochemical data that was examined in Section 3.4.2. It would appear from the

results of the likelihood ratio test statistic that the possibility that the rank of the

matrix C is either one or two could be entertained. Only estimation results for the

rank two situation will be presented in detail here. Therefore, there is a reduced

rank structure for the regression coefficient matrix (excluding the constant term) of

the predictor variables Xi = (x1i, x2i, x3i)
′. The normalized eigenvectors are V̂ ′1 =

(−0.290, 0.234, 0.025, 0.906, 0.199) and V̂ ′2 = (0.425, 0.269,−0.841, 0.047, 0.194)

Therefore, Â(2) = Σ̂
1/2
εε V̂ ′(2) and B̂(2) = V̂ ′(2)Σ̂

−1/2
εε Σ̂yxΣ̂

−1
xx , with V̂ ′(2) = [V̂ ′1 , V̂

′
2 ]. The

least squares estimates of the A and B are given below:

Â′ =

−1.085 0.333 0.231 0.397 1.109

1.335 −0.126 −0.266 −0.092 0.875



B̂ =

 1.361 −1.326 1.190

−0.908 0.494 1.240

 .
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The reduced rank estimate of the regression coefficient matrix is

Ĉ =



−2.6893 2.0981 0.3649

0.5679 −0.5040 0.2400

0.5558 −0.4374 −0.0555

0.6248 −0.5726 0.3583

0.7142 −1.0379 2.4044


.

Notice again that we are excluding the first column of intercepts from the regres-

sion coefficient matrix. Most of the coefficients of Ĉ were found to be statistically

significant in the reduced rank estimate of C. Now, based on stepwise selection, the

predictor variable X3 does not enter into the linear regression model. So, the restric-

tion {b13 = b23 = 0} can be imposed on the model. The coefficient matrices of the

subspace are selected as F = [I2] and G = [0′, I ′1]′ or, more explicitly,

F = ((1, 0)′, (0, 1)′)

and

G = ((0, 0)′, (0, 0)′, (0, 1)′)′.

The least squares estimate of the matrix B̂, B̃, B̂JS, and B̂JS+ are given below:

B̂JS+ =

 2.1318964 −1.2726333 1.587769

−0.8517842 0.9462463 1.433390

 ,
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B̂ =

 1.3609628 −1.3258840 1.189601

−0.9084776 0.4941074 1.240191

 ,

B̃ =

 1.8218686 −1.0393488 0

−0.6059243 0.6546354 0

 ,

B̂JS =

 2.2244241 −1.340690 1.592792

−0.9210026 1.024746 1.449279

 .

We conduct a bootstrap with 1000 replicates to evaluate the performance of the

suggested estimators in our data example. The performance of the estimators is

evaluated in terms of the relative efficiency of the estimators, where relative effi-

ciency of the estimator B̂∗ to the unrestricted least square estimator B̂ is denoted by

R.E(B̂ : B̂∗) = risk(B̂)

risk(B̂∗)
. The estimated relative efficiency at ∆ = 0 is given below:

Estimator R.E(B̂ : B∗)

B̃ 4.11

B̂JS 2.09

B̂JS+ 2.24

4.5 Concluding Remarks

We consider shrinkage and pretest estimators in a reduced rank regression model.

We investigate the asymptotic properties of listed estimators under a very general



4.6 Appendix: Proof of Main Results 103

candidate subspace. The relative performance of the estimators is examined using

asymptotic analysis of quadratic risk functions; it is found that the shrinkage estima-

tor outperforms the full model estimator uniformly. On the other hand, the pretest

estimator dominates the least squares estimator only in a small part of the parameter

space. Also, the risk performance of the listed estimators is investigated through

an asymptotic distributional risk. A data example and our analytical results show

that the suggested estimators perform better than the classical estimator under a

candidate subspace and beyond. We conclude that a positive shrinkage estimator

dominates the usual shrinkage estimator, and they both perform well relative to the

classical full model generalized least squares estimator of the reduced rank regression

parameter matrix in the entire parameter space. Note that the performance of the

restricted and pretest estimators heavily depend on the quality of prior information.

4.6 Appendix: Proof of Main Results

4.6.1 Proof of Theorem 4.2.1

Since q1, q2, and q3 are asymptotically normal, the joint distribution of (q1, q2) and

(q2, q3) will be asymptotically normal as well.

E(q2) = lim
n→∞

E[n1/2vec(B̂ − B̃)]

= lim
n→∞

E[n1/2vec(N (FB̂G −D)Q)] under Kn

= lim
n→∞

E[n1/2vec(Nn−1/2ΥQ)]

= (N ⊗Q′)vec(Υ)

= δ
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Cov(q2) = Cov(vec(B̂ − B̃))

= Cov(vec(N (FB̂G −D)Q))

= Cov[(NF ⊗Q′G′)vec(B̂)− (NF ⊗Q′G′)vec(D)]

= (NF ⊗Q′G′)Cov[vec(B̂)](NF ⊗Q′G′)′

= (NF ⊗Q′G′)(Ir ⊗Σ−1
xx )(F ′N ′ ⊗ GQ)

= Σ∗

E(q3) = E(q1 − q2)

= lim
n→∞

E{n1/2[vec(B̂ −B)− vec(B̂ − B̃)]}

= lim
n→∞

E[n1/2vec(B̂ −B)]− E[n1/2vec(N (FB̂G −D)Q)] under Kn

= 0− lim
n→∞

E[n1/2vec(Nn−1/2ΥQ)]

= −(N ⊗Q′)vec(Υ)

= −δ

Cov(q3) = Cov(q1 − q2)

= Cov(q1) + Cov(q1)− 2Cov(q1, q2)

= (Ir ⊗Σ−1
xx ) + Σ∗ −Σ12 −Σ21

= Ω∗
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4.6.2 Proof of Theorem 4.3.1

Here, we provide the proof of asymptotic bias expressions for the proposed estimators.

ADB(B̃) = lim
n→∞

√
nE[vec(B̃ −B)]

= lim
n→∞

√
nE[vec(B̂ −N (FB̂G −D)Q−B)]

= lim
n→∞

√
nE[vec(B̂ −B −N (FB̂G −D)Q)]

= −(N ⊗Q′)vec(Υ)

= −δ,

ADB(B̂PT ) = lim
n→∞

√
nE[vec(B̂PT −B)]

= lim
n→∞

√
nE[vec(B̂ −B − (B̂ − B̃)I(L < χ2

r1m
(∆)))]

= lim
n→∞

√
nE[q1 − q3I(L < χ2

r1m
(∆))]

= −δHr1m+2(χ2
r1m

(∆)),

ADB(B̂JS) = lim
n→∞

√
nE[vec(B̂JS −B)]

= lim
n→∞

√
nE[vec(B̃ −B + (B̂ − B̃)(1− sL−1))]

= lim
n→∞

√
nE[q1 − sq3L

−1]

= −sδE(χ−2
r1m+2(∆)),

ADB(B̂JS+) = lim
n→∞

√
nE[vec(B̂JS+ −B)]

= lim
n→∞

√
nE{vec[(B̂JS −B)− (1− sL−1)(B̂ − B̃)I(L < s)]}

= ADB(B̂S)− δE{[1− sχ−2
r1m+2(∆)]I(χ2

r1m+2(∆) < s)}.
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4.6.3 Proof of Lemma 4.3.1

For the proof of part (i), we use the result of Theorem 4.2.1 part (i),(ii), and (iv)

E(q1|q2) = E(q1) + Σ12(Σ∗)−1(q2 − E(q2))

= (Ir ⊗Σ−1
xx )(F ′N ′ ⊗ GQ)

[(NF ⊗Q′G′)(Ir ⊗Σ−1
xx )(F ′N ′ ⊗ GQ)]−1

[q2 − δ].

We got the result by using left Kronecker products. Proof of (ii) is similar to the

proof of (iii), provided below, based on Theorem 4.2.1 part (i),(ii), and (iv). We have

E(q2q1
′I(L < χ2

r1m
(α))) = E(E(q2q1

′I(L < χ2
r1m

(α))|q2))

= E(q2E(q1
′I(L < χ2

r1m
(α))|q2))

= E(q2[E(q1) + Σ12Σ
∗−1(q2 − E(q2))]′I(L < χ2

r1m
(α)))

= E(q2[(q2 − δ)′Σ∗−1Σ21I(L < χ2
r1m

(α))])

= E(q2q2
′Σ∗−1Σ21I(L < χ2

r1m
(α)))

− E(q2)δ′Σ∗−1Σ21I(L < χ2
r1m

(α))

= [V ar(q2)Hr1m+2(χ2
r1m

(α)) + δδ′Hr1m+4(χ2
r1m

(α))]Σ∗−1Σ21

− δδ′Σ∗−1Σ21Hr1m+2(χ2
r1m

(α))

= Σ∗(F ′N ′ ⊗ GQ)−1Hr1m+2(χ2
r1m

(α)) + δδ′(F ′N ′ ⊗ GQ)−1

[Hr1m+4(χ2
r1m

(α))−Hr1m+2(χ2
r1m

(α))],



4.6 Appendix: Proof of Main Results 107

and

E(q2q1
′L−1) = E(E(q2q1

′L−1|q2))

= E(q2E(q1
′L−1|q2))

= E(q2[E(q1) + Σ12Σ
∗−1(q2 − E(q2))]′L−1)

= E(q2[(q2 − δ)′Σ∗−1Σ21L
−1])

= E(q2q2
′Σ∗−1Σ21L

−1 − q2δ
′Σ∗−1Σ21L

−1)

= Σ21E(χ−2
r1m+2(∆)) + δδ′Σ∗−1Σ21[E(χ−2

r1m+4(∆))− E(χ−2
r1m+2(∆))]

= (NF ⊗Q′G′)(Ir ⊗Σ−1
xx )E(χ−2

r1m+2(∆))

+ δδ′Σ∗−1Σ21[E(χ−2
r1m+4(∆))− E(χ−2

r1m+2(∆))].

4.6.4 Proof of Theorem 4.3.2

Clearly, the AMSE of B̂ is equal to Ω∗ + δδ′. Using Theorem 4.2.1,

AMSE(B̃) = lim
n→∞

E{n(B̃ −B)(B̃ −B)′}

= lim
n→∞

E(q3q3
′)

= V ar(q3) + E(q3)E(q3)′

= Ω∗ + δδ′.
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Note that

AMSE(B̂PT ) = lim
n→∞

E{n(B̂PT −B)(B̂PT −B)′}

= lim
n→∞

E{n[(B̂ − (B̂ − B̃)I(L < χ2
r1m

(α))−B)

(B̂ − (B̂ − B̃)I(L < χ2
r1m

(α))−B)′]}

= lim
n→∞

E{[q1 − q2I(L < χ2
r1m

(α))][q1 − q2I(L < χ2
r1m

(α))]′}

= lim
n→∞

E{q1q1
′ − q1q2

′I(L < χ2
r1m

(α))− q2q1
′I(L < χ2

r1m
(α))

+ q2q2
′I2(L < χ2

r1m
(α))}

= V ar(q1) + E(q1)E(q1)′ − 2E(q2q1
′I(L < χ2

r1m
(α)))

+ E(q2q2
′I2(L < χ2

r1m
(α)))

= (Ir ⊗Σ−1
xx )− 2Σ∗(F ′N ′ ⊗ GQ)−1Hr1m+2(χ2

r1m
(α))

− 2δδ′(F ′N ′ ⊗ GQ)−1[Hr1m+4(χ2
r1m

(α))−Hr1m+2(χ2
r1m

(α))]

+ δδ′Hr1m+4(χ2
r1m

(α)) + Σ∗Hr1m+2(χ2
r1m

(α)).

AMSE(B̂JS) can be written as

= lim
n→∞

E{n(B̂JS −B)(B̂JS −B)′}

= lim
n→∞

E{n[B̃ + (1− sL−1)(B̂ − B̃)−B][B̃ + (1− sL−1)(B̂ − B̃)−B]′}

= lim
n→∞

E{n[(B̃ −B) + (1− sL−1)(B̂ − B̃)][(B̃ −B) + (1− sL−1)(B̂ − B̃)]′}

= lim
n→∞

E{n[(B̂ −B)− sL−1(B̂ − B̃)][(B̂ −B)− sL−1(B̂ − B̃)]′}

= E{[q1 − sL−1q2][q1 − sL−1q2]′}

= E[q1q1
′ − q1q2

′sL−1 − q2q1
′sL−1 + q2q2

′(sL−1)2]

= (Ir ⊗Σ−1
xx )− 2s{Σ∗(F ′N ′ ⊗ GQ)−1E(χ−2

r1m+2(∆)) + δδ′(F ′N ′ ⊗ GQ)−1

(E[χ−2
r1m+4(∆)]− E[χ−2

r1m+2(∆)])}+ s2[Σ∗E(χ−4
r1m+2(∆)) + δδ′E(χ−4

r1m+4(∆))].
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AMSE(B̂JS+) can be written as

= lim
n→∞

nE{vec(B̂JS+ −B)[vec(B̂JS+ −B)]′}

= lim
n→∞

nE{[vec(B̂JS −B)− vec(B̂ − B̃)(1− sL−1)I(L < s)]

[vec(B̂JS −B)− vec(B̂ − B̃)(1− sL−1)I(L < s)]′}

= lim
n→∞

nE{[vec(B̂JS −B)][vec(B̂JS −B)]′} −

2E{[vec(B̂ − B̃)(1− sL−1)I(L < s)][vec(B̂JS −B)]′}+

E{[vec(B̂ − B̃)(1− sL−1)I(L < s)][vec(B̂ − B̃)(1− sL−1)I(L < s)]′}

= AMSE(B̂JS)− 2E{q2q1
′(1− sL−1)I(L < s)}+

2E{q2q2
′(1− sL−1)I(L < s)} − E{q2q2

′(1− sL−1)2I(L < s)}

= AMSE(B̂JS)− 2Σ∗(F ′N ′ ⊗ GQ)−1E[(1− sχ−2
r1m+2(∆))I(χ2

r1m+2(∆) < s)]−

2δδ′(F ′N ′ ⊗ GQ)−1E[(1− sχ−2
r1m+4(∆))I(χ2

r1m+2(∆) < s)] +

2Σ∗E[(1− sχ−2
r1m+2(∆))I(χ2

r1m+2(∆) < s)] +

2δδ′E[(1− sχ−2
r1m+4(∆))I(χ2

r1m+2(∆) < s)]−

Σ∗E[(1− sχ−2
r1m+2(∆))2I(χ2

r1m+2(∆) < s)]−

δδ′E[(1− sχ−2
r1m+4(∆))2I(χ2

r1m+4(∆) < s)].
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4.6.5 Proof of Theorem 4.3.3

Following the definition in (4.4), the risk of B̂ is clearly equal to rtr(WΣ−1
xx ). Note

that

ADR(B̃;W ) = tr(WAMSE(B̃))

= tr(WΩ∗) + tr(Wδδ′)

= rtr(WΣ−1
xx )− 2tr(D11)tr(F ′N ′)

+ tr(D11)tr(NFF ′N ′) + δ′Wδ.

The risk of B̃ depends on δ′Wδ, where δ = (N ⊗ Q′)vec(Υ). Also, GQ =

G(G′Σ−1
xxG)−1G′Σ−1

xx . Note that Σ
− 1

2
xx G(G′Σ−1

xxG)−1G′Σ−
1
2

xx is symmetric and idempo-

tent with rank r1. Thus, there exists an orthogonal matrix Γ such that

ΓΣ
− 1

2
xx G(G′Σ−1

xxG)−1G′Σ−
1
2

xx Γ′ =

 Ir1m 0

0 0


ΓΣ

− 1
2

xxWΣ
− 1

2
xx Γ′ =

 D11 D12

D21 D22

 .

Hence,

tr[WΣ−1
xxGQ] = tr[{ΓΣ

− 1
2

xxWΣ
− 1

2
xx Γ′}

{ΓΣ
− 1

2
xx G(G′Σ−1

xxG)−1G′Σ−
1
2

xx Γ′}]

= tr[

 D11 D12

D21 D22


 Ir1m 0

0 0

]

= tr[D11],
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tr[WQ′G′Σ−1
xxGQ] = tr[Σ

− 1
2

xx GQWQ′G′]

= tr[GQWQ′G′Σ−
1
2

xx ]

= tr[{ΓΣ
− 1

2
xx G(G′Σ−1

xxG)−1G′Σ−
1
2

xx Γ′}

{ΓΣ
− 1

2
xxWΣ

− 1
2

xx Γ′}

{ΓΣ
− 1

2
xx G(G′Σ−1

xxG)−1G′Σ−
1
2

xx Γ′}]

= tr[

 Ir1m 0

0 0


 D11 D12

D21 D22


 Ir1m 0

0 0

]

= tr[

 D11 0

0 0


 Ir1m 0

0 0

]

= tr[D11],

tr[WΣ∗] = tr[W (NF ⊗Q′G′)(Ir ⊗Σ−1
xx )(F ′N ′ ⊗ GQ)]

= tr(NFF ′N ′)tr(WQ′G′Σ−1
xxGQ)

= tr(NFF ′N ′)tr(D11),

and

tr[WΣ∗U ] = tr[WΣ∗(F ′N ′ ⊗ GQ)−1]

= tr[W (NF ⊗Q′G′)(Ir ⊗Σ−1
xx )]

= tr(NF)tr(WQ′G′Σ−1
xx )

= tr(NF)tr(D11).
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After some computation, we obtain the expression for the risk of ADR(B̃;W ) as

follows:

ADR(B̃;W ) = tr(WΩ∗) + tr(Wδδ′)

= tr(W (Ir ⊗Σ−1
xx ))− 2tr(W (Ir ⊗Σ−1

xx )(F ′N ′ ⊗ GQ))

+ tr(WΣ∗) + δ′Wδ

= ADR(B̂;W )− 2tr(D11)tr(F ′N ′) + tr(D11)tr(NFF ′N ′)

+ δ′Wδ.

Now, similarly, we get

ADR(B̂PT ;W ) = r tr(WΣ−1
xx )− 2tr(WΣ∗U)Hr1m+2(χ2

r1m
(∆))−

2tr(Wδδ′U)[Hr1m+4(χ2
r1m

(∆))−Hr1m+2(χ2
r1m

(∆))] +

tr(WΣ∗)Hr1m+2(χ2
q+2(∆)) + tr(Wδδ′)Hr1m+4(χ2

r1m
(∆)).

After some computation, we get the expression for the risk of ADR(B̂PT ;W ). Also,

ADR(B̂JS;W ) = rtr(WΣ−1
xx )− 2str(WΣ∗U)E(χ−2

r1m+2(∆))

+ 2str(Wδδ′U){[E(χ−2
r1m+2(∆))− E(χ−2

r1m+4(∆))]}

+ s2tr(WΣ∗)E(χ−4
r1m+2(∆))] + s2δ′WδE(χ−4

r1m+4(∆)).
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Finally,

ADR(B̂JS+) = ADR(B̂JS)− 2tr(D11)tr(NF)E[(1− sχ−2
r1m+2(∆))I(χ2

r1m+2(∆) < s)]

− 2tr(Wδδ′U)E[(1− sχ−2
r1m+4(∆))I(χ2

r1m+4(∆) < s)]

+ 2tr(WΣ∗)E[(1− sχ−2
r1m+2(∆))I(χ2

r1m+2(∆) < s)]

+ 2tr(Wδδ′)E[(1− cχ−2
r1m+4(∆))I(χ2

r1m+4(∆) < s)]

− tr(WΣ∗)E[(1− sχ−2
r1m+2(∆))2I(χ2

r1m+2(∆) < s)]

− tr(Wδδ′)E[(1− sχ−2
r1m+4(∆))2I(χ2

r1m+4(∆) < s)].

After using some computation, we get the expression for the ADR(B̂JS+).



Chapter 5

Concluding Remarks and Future

Research

In this dissertation, we study different estimation strategies for multivariate regression

models. The following estimation procedures are discussed in this dissertation.

• Unrestricted and restricted estimation;

• Shrinkage and positive shrinkage estimation;

• Pretest estimation.

We apply the above estimation procedures in some multivariate multiple regression

models to improve the performance of existing estimators when non-sample informa-

tion is available. The positive-part shrinkage estimator dominates the usual shrinkage

estimator. At any rate, both shrinkage estimators perform well relative to the usual

unrestricted least squares estimator of the parameters in the entire parameter space.

114
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In Chapter 2, we study the simple multivariate regression model that includes basic

investment models. We consider various estimation strategies based on the pretest

and shrinkage estimation. The subspace candidate least squares estimator depends

heavily on the quality of the subspace information. The asymptotic distributional risk

of the restricted least squares estimator is unbounded when the parameter moves far

from the subspace of the restriction, while the pretest estimator provides good control

on the magnitude of the asymptotic distributional risk. It is exceedingly important

to note that the shrinkage estimators have the smallest possible asymptotic risk in

most cases, as compared to other estimators except when the subspace information is

nearly correct. Finally, a numerical study based on a real data set demonstrates how

to implement and use the proposed estimation procedure. The statistical properties

of the estimators are investigated analytically and numerically. Also, the simulation

study supports our theoretical findings.

In Chapter 3, we generalize the estimation strategies for the matrix of a regression

parameter in a multivariate multiple regression model. Also, we study the application

of shrinkage and pretest estimation strategies and discuss the relative performance of

the full model LSE, a candidate subspace estimator, a pretest, and shrinkage estima-

tors in MMRMs in the presence of a natural candidate subspace when the matrix of

explanatory variables is fixed. We succinctly investigate the bias and risk properties

of the suggested estimators. We conclude that the risk improvement of the submodel

estimator over other estimators is substantial near the restriction. However, the im-

provement starts diminishing as the restriction moves further and further away from

the assumed subspaces. Thus, the performance of the submodel estimator heavily

depends on the quality of the subspace information. The shrinkage estimators with



5.1 CHAPTER 5. CONCLUDING REMARKS AND FUTURE RESEARCH 116

data based weights outperform the full model estimator which outperforms the full

model LSE in the most parameter space induced by the candidate subspace. Based

on the risk comparisons and relative efficiencies among the suggested estimators, the

weight of the shrinkage estimator has an appealing intuitive property. In summary,

we show large gains of a suggested shrinkage approach over an ordinary least-squares

approach. Finally, the real data example supports the contention that the suggested

method is superior to classical estimation.

In Chapter 4, we consider shrinkage and pretest estimators in a multivariate reduced

rank regression model. We investigate the asymptotic properties of listed estimators

under a very general candidate subspace. The relative performance of the estimators

is examined using asymptotic analysis of quadratic risk functions. It is found that the

pretest estimator dominates the least squares estimator in some part of the parameter

space. Also, the risk performance of the listed estimators are investigated through

asymptotic distributional risk. A data example and our analytical results show that all

suggested estimators perform better than the classical estimator under a candidate

subspace and beyond. We conclude that a positive shrinkage estimator dominates

the usual shrinkage estimator uniformly, and they both perform well relative to the

classical full model weighted least squares estimator of the reduced rank regression

parameter matrix. Further, the performance of the restricted and pretest estimators

heavily depend on the quality of prior information.
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5.1 Future Research

For future research, we can consider shrinkage and pretest estimations in an extension

of the basic growth curve (or generalized MANOVA) model. In this extended model,

the mean of the response vector is represented by a sum of the two components, a

growth curve portion, and a standard MANOVA portion. The model could be viewed

as an analysis of a covariance model that adjusts the growth curve structure for the

influence of additional covariates for the response vector. Specifically, the model is

considered as

Yi = ABXi +DZi + εi, i = 1, . . . , n.

Notice that the form of this model is similar to the reduced rank model in Chapter

4, however, in the presence of a growth curve model context, the matrix A is known.

The error terms εi are assumed to follow a multivariate normal distribution with zero

mean vector and positive definite covariance matrix Σεε.

Also, we can consider shrinkage and pretest strategies in linear simultaneous equa-

tion models. The model can be written in the form

Y B = ZΓ +U .

A simultaneous equation model (SEM) relates a set of endogenous or dependent

variables to a set of exogenous, independent, or predetermined variables with error

variables. In contrast to many statistical studies, the interest in simultaneous equation

models is in linear restrictions on the regression of the dependent variables on the

independent variables. In order to have nontrivial linear restrictions on the regression

coefficients, the regression matrix has to be a reduced rank.
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