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Abstract

Clustered (includes longitudinal) count data arise in many bio-statistical practices in

which a number of repeated responses are observed over time from a number of individu-

als. One important problem that arises in practice is to test homogeneity within clusters

(individuals) and between clusters (individuals). As data within clusters are observa-

tions of repeated responses, the count data may be correlated and/or over-dispersed.

Jacqmin-Gadda and Commenges (1995) derive a score test statistic HS by assuming a

random intercept model within the framework of the generalized linear mixed model by

obtaining exact variance of the likelihood score under the null hypothesis of homogeneity

and a score test statistic HT using the generalized estimating equation (GEE) approach

(Liang and Zeger, 1986; Zeger and Liang, 1986). They further show that the two tests

are identical when the covariance matrix assumed in the GEE approach is that of the

random-effects model. In each of these cases they deal with (a) the situation in which

the dispersion parameter φ is assumed to be known and (b) the situation in which the

dispersion parameter φ is assumed to be unknown. The second situation, however, is

more realistic as φ will be unknown in practice. For over-dispersed count data with

unknown over-dispersion parameter we use the score test procedure of Rao (1947) and

derive three tests by assuming a random intercept model within the framework of (i) the

over-dispersed generalized linear model (ii) the negative binomial model, and (iii) the

double extended quasi likelihood model (Lee and Nelder, 2001). All these three statistics

are much simpler than the statistic obtained from the statistic HS derived by Jacqmin-

Gadda and Commenges (1995) under the framework of the over-dispersed generalized

linear mixed effects model. The second statistic takes the over-dispersion more directly

into the model and therefore is expected to do well when the model assumptions are

satisfied and the other statistics are expected to be robust. Simulations show superior

level property of the statistics derived under the negative binomial and double extended
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quasi-likelihood model assumptions. Further, two score tests have been developed to

test for over-dispersion in the generalized linear mixed model. The four score tests of

homogeneity and the two score tests for detecting over-dispersion are applied to two real

life data examples. A plan for future study is given.
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Chapter 1

Introduction

Clustered (includes longitudinal) count data arise in many bio-statistical practices in

which a number of repeated responses and a set of covariates are observed (may be over

time) from a number of individuals. For example, in health care utilization, the number

of visits to the physician by a number of independent individuals may be recorded over

a period of several years. Also, information on covariates, for example, gender, number

of chronic conditions, educational level, age etc. may be recorded for each individual.

A similar example of clustered count data is given by Gadda and Commenges (1995).

As compared to cross-sectional studies where we collect data on the individuals on one

occasion only, clustered or longitudinal study provides repeated measurements on the

same subject (may be over time), thus enhancing the study of assessing within-subject

changes in the response variable.

An important problem, in these situations, is to test homogeneity of the repeated

observations within clusters (individuals) and also between clusters. Jacqmin-Gadda

and Commenges (1995) develop a score test of homogeneity HS by assuming a random

intercept model within the framework of the generalized linear mixed model for clus-

tered responses by obtaining the exact variance of the likelihood score under the null

hypothesis of homogeneity and a score test statistic HT using the generalized estimating

equation (GEE) approach (Liang and Zeger, 1986) . They further show that the two

tests are identical when the covariance matrix assumed in the GEE approach is that of

1
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the random intercept model. The random intercept model not only reflects the natural

heterogeneity across individuals or clusters, but also accounts for within individual cor-

relation. In each of these cases they deal with (a) the situation in which the dispersion

parameter φ is assumed to be known and (b) the situation in which the dispersion pa-

rameter φ is assumed to be unknown. Note that Jacqmin-Gadda and Commenges (1995)

deal with the generalized linear mixed model which is applicable to discrete or continuous

response variable as long as the distribution belongs to the exponential family.

In this dissertation we deal with homogeneity testing for clustered (longitudinal)

count data with over-dispersion. As pointed out earlier, Jacqmin-Gadda and Commenges

(1995) deal with the situation in which the dispersion parameter φ is known as well as the

situation in which the dispersion parameter φ is unknown. However, the second situation

is more realistic as φ will be unknown in practice. Over-dispersion is a common feature

in longitudinal or clustered discrete data, that is, data show more variation than is

accounted for by the common discrete distributions (Poisson, binomial). For example, in

many biomedical applications count data have variability that far exceeds that predicted

by the Poisson distribution.

For the situation in which the dispersion parameter is unknown we first obtain a

specific formula HS for count data. We then use the score test procedure of Rao (1947)

and derive three score tests by assuming a random intercept model within the framework

of (i) the over-dispersed generalized linear model, (ii) the negative binomial model and

(iii) the double extended quasi likelihood model (Lee and Nelder, 2001). All these three

statistics are much simpler than the statistic HS. The second of the latter three statistics

takes over-dispersion more directly into the model and therefore is expected to do well

when the model assumptions are satisfied and the other statistics are expected to be

robust.

We begin Chapter 2 by reviewing generalized linear models (GLM), procedures for

the maximum likelihood estimation of the parameters and extension of GLM to clustered

or longitudinal data. A brief discussion is given for the generalized linear mixed effects
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model in general and generalized linear mixed effects model for count data in particular.

The negative binomial, quasi-likelihood, extended quasi-likelihood and double extended

quasi-likelihood for the estimation of the regression parameters are also discussed in this

chapter. Further, a review of the empirical Bayes estimation is given.

In Chapter 3 we first obtain a specific formula HS for count data and then we obtain

the three score tests discussed above by using the score test procedure of Rao (1947).

Simulations to compare level and power of the four statistics are performed. Some

examples are also given.

In Chapter 4 we develop two score tests for over-dispersion in the generalized linear

mixed effects model. One of these is based on the over-dispersed generalized linear mixed

effects model of Cox (1983) and the other is based on the negative binomial mixed effects

model. Some simulations are conducted.

A summary and some concluding remarks are given in Chapter 5 and a plan for

future study is given in Chapter 6.



Chapter 2

A Review of Current Literature

2.1 Generalized linear models (GLM)

In this section we review the GLM using McCullagh and Nelder (1989).

The GLM extends ordinary regression models to include non-normal response distri-

butions. Three components specify a generalized linear model

a) a random component identifies the response variable Y and its probability distri-

bution,

b) a systematic component specifies explanatory variables used in a linear predictor

function

and

c) a link function specifies the function E(Y ) that the model equates to the systematic

component.

2.1.1 Components of generalized linear models

The random component of a GLM consists of a response variable Y with independent

observations (y1, y2, . . . , yn) from a distribution in the natural exponential family. This

4
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family has probability density function or mass function of the form

f(yi; θi, φ) = exp
[
φ−1{yiθi − b(θi)}+ C(yi; φ)

]
, (2.1)

where φ is constant. The constant φ can be assumed to be known or a parameter to be

estimated. This is said to be in canonical form with canonical or natural parameter θ.

The value of the parameter θi may vary for i = 1, 2, . . . , n depending on values of the

explanatory variables.

The systematic component relates a vector (η1, η2, . . . , ηn) to the explanatory vari-

ables through a linear model. Let xij denote the value of predictor j (j = 1, 2, . . . , p) for

subject i. Then

ηi = β1xi1 + β2xi2 + . . . + βpxip.

This linear combination of explanatory variables is called the linear predictor. Usually,

we take xi1 = 1 for all i. Then the coefficient β1 is the intercept of the model.

The link function connects the random and the systematic components of the model.

Let µi = E(Yi), i = 1, 2, . . . , n. The model links µi to ηi by ηi = g(µi), where the link

function g is a monotonic, differentiable function. Thus, g links E(Yi) to the explanatory

variables through the formula

g(µi) =

p∑
j=1

βjxij, i = 1, 2, . . . , n.

The link function g(µ) = µ, called the identity link, has ηi = µi. It specifies a linear

model for the mean itself. The link function that transforms the mean to the natural

parameter is called the canonical link. For this, g(µi) = θi and θi =
∑p

j=1 βjxij.

The mean and the variance of Y are E(Y ) = b′(θ) and Var(Y ) = φb′′(θ) respectively.

Many known distributions such as the normal, Poisson and the binomial belong to the

exponential family. For the normal distribution φ = σ2, for the Poisson distribution

φ = 1 and for the binomial distribution φ = 1/n, where n is the binomial index. For
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over-dispersed count data, φ can be considered as an over-dispersion parameter to be

estimated from the data.

2.1.2 Estimation of the parameters of the GLM

The log-likelihood in terms of the canonical parameter θ is

l(θ, φ; y) =
n∑

i=1

[
φ−1{yiθi − b(θi)}+ C(yi; φ)

]
.

We want to estimate β1, β2, . . . , βp. After detailed derivation it can be shown that

∂l

∂βj

=
n∑

i=1

[
yi − b′(θi)

φ

1

b′′(θi)

∂µi

∂ηi

xij

]
, j = 1, 2, . . . , p.

Recall that Var(Yi) = φb′′(θi) = Vi, say. Thus

uj =
∂l

∂βj

=
n∑

i=1

yi − b′(θi)

Vi

∂µi

∂ηi

xij

=
n∑

i=1

wi(yi − µi)
∂ηi

∂µi

xij,

where wi =
(

∂µi

∂ηi

)2

V −1
i and µi = E(Yi) = b′(θi). This is a convenient form to solve.

Thus we solve the p equations

uj = 0, j = 1, 2, . . . p,

simultaneously for βj. The equations are non-linear in nature in βj, so we must solve

them iteratively. Two methods, the Newton-Raphson and the Fisher scoring methods,

described below are available to solve these equations.
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2.1.3 Newton-Raphson method

Let us denote u = (u1(β), u2(β), . . . , up(β))′ =
(

∂l
∂β1

, ∂l
∂β2

, . . . , ∂l
∂βp

)′
and β = (β1, β2, . . . , βp)

′.

Thus ∂u
∂β

=
{

∂2l
∂βj∂βk

}
is the matrix of second derivatives of l. If β(t) is the estimate of β

at the tth iteration, then the estimate of β at the (t+1)th iteration is

β(t+1) = β(t) −
(

∂2l

∂βj∂βk

)−1

u(t), j, k = 1, 2, . . . , p,

for t = 0, 1, 2, . . . . The p × p matrix
(

∂2l
∂βj∂βk

)−1

on the right hand side of the above

equation is also to be evaluated at the tth iteration.

2.1.4 Fisher scoring method

A better method which often simplifies the expression is to replace ∂u
∂β

=
{

∂2l
∂βj∂βk

}
by

its expected value. This is called Fisher’s Scoring method. We know that

∂l

∂βj

=
n∑

i=1

yi − µi

Vi

∂µi

∂ηi

xij.

Then,

E

(
∂2l

∂βj∂βk

)
= E

[
∂

∂βk

n∑
i=1

yi − µi

Vi

∂µi

∂ηi

xij

]

= −
n∑

i=1

wixijxik,

where wi is defined above. Now, denote

I = −E

(
∂2l

∂βj∂βk

)

p×p

=
n∑

i=1

wixijxik = (X ′WX)p×p ,
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where

X =




x11 x21 . . . xp1

x12 x22 . . . xp2

...
...

. . .
...

x1n x2n . . . xpn




and W =




w1 0

w2

. . .

0 wn




.

Note that W is an n× n diagonal matrix and X is a n× p covariate matrix. Again

uj =
n∑

i=1

wi(yi − µi)
∂ηi

∂µi

xij.

Thus,

u = X ′W (Y − µ)
∂η

∂µ
.

Therefore, by Fisher’s scoring method, we have

β(t+1) = β(t) + I−1u(t)

⇒ I(t)β(t+1) = I(t)β(t) + u(t)

⇒ (X ′WX)β(t+1) = (X ′WX)β(t) + X ′W (Y − µ)
∂η

∂µ

= X ′W
[
Xβ + (Y − µ)

∂η

∂µ

]

= X ′WZ

⇒ β(t+1) =
[
(X ′WX)−1X ′WZ

](t)
,

where Z = Xβ + (Y − µ) ∂η
∂µ

. This is weighted least squares estimate of β obtained by

regressing Z on X with weight matrix W . This is also called the Iteratively Re-weighted

Least Squares (IRLS) method.
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2.1.5 Estimation of the parameters of a GLM for counts

The log-likelihood function for Poisson data is given by

l(µ, φ; y) =
n∑

i=1

[
φ−1{yi log µi − µi} − C(yi)

]
.

Assuming a log-linear model ηi = log µi = X ′β, we get ∂ηi/∂µi = µ−1
i , wi = φ−1µi, uj =

φ−1
∑n

i=1 µi
yi−µi

µi
xji and I = φ−1

∑n
i=1 µixjixki = φ−1(X ′WX), where W = diag(µi).

Therefore, following the procedure in Section 2.1.4, the Fisher scoring equation for ob-

taining the maximum likelihood estimates of the parameters β with φ = 1 is

β(t+1) =
[
(X ′WX)−1X ′WZ

](t)
, t = 1, 2, 3, . . . ,

where Z = Xβ + y−µ
µ

.

2.2 Generalized linear models for clustered data

Let Yij be the response variable for the jth observation in the ith group, j = 1, 2, . . . , ni, i =

1, 2, . . . , k, with N =
∑k

i=1 ni. The probability density function of Yij is a member of

the exponential family defined as follows

f(Yij; θij, φ) = exp{φ−1[Yij θij − b(θij)] + C(Yij, φ)}. (2.2)

If θij is a linear combination of a vector of explanatory variables, then (2.2) specifies a

generalized linear model (GLM), where θij is the canonical parameter, θij = ηij = g(µij)

is the link function and φ is the dispersion parameter. The mean and variance of Yij

are µij = E(Yij) = b′(θij) and σ2
ij = var(Yij) = φ b′′(θij), where ′ denotes differentiation

with respect to θ.
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2.2.1 Data layout

In the clustered or longitudinal data setting we assume that the responses are observed

repeatedly or followed over time for each of k individuals. The subjects may not have the

same number of repeated observations or the repeated observations may not be taken at

a common set of occasions. Thus, we assume that there are ni repeated measurements

of the response on the ith subject. The layout of the response count data along with the

p covariates can be represented as in Table 2.1.

Table 2.1: Representation of Clustered or Longitudinal Data

Response Covariates
Subject 1 2 . . . ni X 1 2 . . . ni

1 y11 y12 . . . y1ni
X1j1 : x111 x121 . . . x1ni1

X1j2 : x112 x122 . . . x1ni2
...

...
...

X1jp : x11p x12p . . . x1nip

2 y21 y22 . . . y2ni
X2j1 : x211 x221 . . . x2ni1

X2j2 : x212 x222 . . . x2ni2
...

...
...

X2jp : x21p x22p . . . x2nip

...
...

...
...

...
...

k yk1 yk2 . . . ykni
Xkj1 : xk11 xk21 . . . xkni1

Xkj2 : xk12 xk22 . . . xkni2
...

...
...

Xkjp : xk1p xk2p . . . xknip

Note that Yij = g(
∑

k Xijkβk), k = 1, 2, . . . , p.

2.3 Generalized linear mixed effects models (GLMM)

The GLMM is reviewed here following Fitzmaurice, Laird and Ware (2004). Conditional

on the random effects, we assume that the responses for any particular individual are
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independent observations from a distribution belonging to the exponential family (e.g.,

the Poisson distribution if Yij is a count or the Bernoulli distribution if Yij is binary).

We can formulate the generalized linear mixed effects model (GLMM) by the following

specifications

1. The conditional distribution of each Yij, given a q × 1 vector of random effects

αi, is assumed to be a member of the exponential family (2.2) with var(Yij|αi) =

φ v{E(Yij|αi)}, where v(.) is a known variance function, a function of the condi-

tional mean E(Yij|αi). Also given the random effects αi, the Yij’s are assumed to

be independent of each other (conditionally independent).

2. We assume that the conditional mean of Yij depends on both fixed and random

effects through the following linear predictor

θij = ηij = XT
ijβ + Zij αi (2.3)

= g(µij)

for some known function g(.), where β denotes a p× 1 vector of fixed effects with

its associated design vector Xij and αi is the random subject/cluster effect with

the associated covariates Zij.

3. The random effects follow some probability distribution. In practice, we assume

that αi have a multivariate normal distribution with zero mean and q×q covariance

matrix D. The random effects αi are assumed to be independent of the covariates

Xij.

The three components of a generalized linear mixed model given above completely specify

the joint distribution of Yij. In what follows we explain the above specifications by a

model for count data with over-dispersion.
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2.3.1 Generalized linear mixed model for counts

Suppose that Yij is a count. An example of a generalized linear mixed model for Yij (see

Fitzmaurice et. al., 2004) follows

a. Conditional on a vector of random effects αi, the Yij are independent and have a

over-dispersed Poisson distribution with Var(Yij|αi) = φE(Yij|αi).

b. The conditional mean of Yij depends on fixed and random effects via the following

linear predictor

log{E(Yij|αi)} = ηij = XT
ijβ + Zijαi.

That is, the conditional mean of Yij is related to the linear predictor by a log link

function.

c. The random effects are assumed to follow a multivariate normal distribution with

zero mean and a q × q covariance matrix D.

Note that the random effects αi vary from cluster (individual) to cluster representing

natural heterogeneity among the individuals.

A special case of the generalized linear mixed effects model is the random intercept

model in which Zij = 1 for all i and j in which case

θij = XT
ijβ + αi,

and

log{E(Yij|αi)} = XT
ijβ + αi.

It can be shown that (see also Carrasco and Jover, 2005)

Var(Yij) = φ exp(XT
ijβ + σ2

α/2) + exp(2XT
ijβ) eσ2

α(eσ2
α − 1)
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and

Cov(Yij, Yik) = exp(XT
ijβ + XT

ikβ + σ2
α) (eσ2

α − 1),

where σ2
α is the variance of the random effects. The intra-cluster correlation then is

Corr(Yij, Yik) =
exp(XT

ijβ + XT
ikβ + σ2

α) (eσ2
α − 1)[

φ exp(XT
ijβ + σ2

α/2) + exp(2XT
ijβ) eσ2

α(eσ2
α − 1)

] .

2.4 The negative binomial regression model

Let Y be the response variable, which is a count, x be a p×1 vector of explanatory vari-

ables and β be a p×1 vector of regression parameters. The Poisson-gamma relationship

produces the negative binomial distribution which is described below. In the absence of

covariates, let Y |λ ∼ P (λ) and λ ∼ gamma(α, β), that is,

g(λ) =
1

Γ(α) βα
λα−1e−λ/β.

Then the unconditional distribution of Y is given by

Pr(Y = y) =
(α + y − 1)!

y! Γ(α)

(
1

β + 1

)α (
1− 1

β + 1

)y

, y = 0, 1, 2, . . .

=
Γ(α + y)

y! Γ(α)

(
1

β + 1

)α (
β

β + 1

)y

=
Γ(y + c−1)

y! Γ(c−1)

(
1

1 + cµ

)c−1 (
cµ

1 + cµ

)y

, (2.4)

where E(Y ) = αβ = µ, Var(Y ) = αβ + αβ2 = µ(1 + cµ) and c = 1/α. This is the

negative binomial distribution, denoted by NB(µ, c), with mean µ and over-dispersion

parameter c (see Paul and Placket, 1978). Taking into consideration the covariates x,
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the mean and variance of Y can be written as

E(Y |x) = µ(x)

and Var(Y |x) = µ(x) + cµ(x)2

with µ(x) = xβ.

Thus, equation (2.4), with covariates present in the model, can be written as

Pr(Y = y|x) =
Γ(y + c−1)

y! Γc−1

(
1

1 + cµ(x)

)c−1 (
cµ(x)

1 + cµ(x))

)y

, y = 0, 1, 2, . . . (2.5)

Maximum likelihood estimation of the parameters of the model (2.5) is discussed in Law-

less (1987). For data given in Section 2.2.1 we discuss maximum likelihood estimation

in what follows.

We deal with the log-linear model log(µij) = XT
ijβ. Then Yij ∼ NB(µij, c), j =

1, 2, . . . , ni, i = 1, 2, . . . , k, where Yij’s are independent with µij = exp(XT
ijβ). The

likelihood function is given by

L(β, c) =
k∏

i=1

ni∏
j=1

Γ(yij + c−1)

Γ(c−1)

(
1

1 + cµij

)c−1 (
cµij

1 + cµij

)yij

.

Noting that for any c > 0,

Γ(y + c−1) = (y + c−1 − 1)(y + c−1 − 2) . . . (c−1 + 1)c−1Γ(c−1),

we obtain Γ(y + c−1)/Γ(c−1) = c−1(c−1 + 1) . . . (c−1 + y− 1). The log-likelihood function
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can then be written as

l(β, c) =
k∑

i=1

ni∑
j=1

[
yij−1∑

l=0

log

(
1 + cl

c

)
+ yij log(cµij)− (yij + c−1) log(1 + cµij)

]

=
k∑

i=1

ni∑
j=1

[
yij−1∑

l=0

log(1 + cl)−
yij−1∑

l=0

log c + yij log c + yij log(µij)

− (yij + c−1) log(1 + cµij)
]

=
k∑

i=1

ni∑
j=1

[
yij−1∑

l=0

log(1 + cl) + yij log(µij)− (yij + c−1) log(1 + cµij)

]

=
k∑

i=1

ni∑
j=1

[
yij−1∑

l=0

log(1 + cl) + yijX
T
ijβ − (yij + c−1) log

(
1 + ceXT

ijβ
)]

.

If yij < 1 then
∑yij−1

l=0 is zero. The first and second derivatives of l, with respect to

βs, s = 1, 2, . . . , p, and c are

∂l

∂βs

=
k∑

i=1

ni∑
j=1

[
yijxijs − (yij + c−1)

(
cµijxijs

1 + cµij

)]

=
k∑

i=1

ni∑
j=1

[
yijxijs − (1 + cyij)

(
µijxijs

1 + cµij

)]

=
k∑

i=1

ni∑
j=1

xijs(yij − µij)

1 + cµij

, s = 1, 2, . . . , p, (2.6)

∂l

∂c
=

k∑
i=1

ni∑
j=1

[
yij−1∑

l=0

(
l

1 + cl

)
− (yij + c−1)

(
µij

1 + cµij

)
+ c−2 log(1 + cµij)

]

=
k∑

i=1

ni∑
j=1

[
yij−1∑

l=0

(
l

1 + cl

)
+ c−2 log(1 + cµij)− (yij + c−1)

(
µij

1 + cµij

)]
,
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∂2l

∂βs∂βr

=
k∑

i=1

ni∑
j=1

xijs
(1 + cµij)(−µijxijr)− (yij − µij)cµijxijr

(1 + cµij)2

= −
k∑

i=1

ni∑
j=1

(1 + cyij)µijxijsxijr

(1 + cµij)2
r, s = 1, 2, . . . , p,

∂2l

∂βs∂c
= −

k∑
i=1

ni∑
j=1

(yij − µij)µijxijs

(1 + cµij)2

and

∂2l

∂c2
=

k∑
i=1

ni∑
j=1

[
yij−1∑

l=0

− l2

(1 + cl)2
+ c−2 µij

1 + cµij

+ log(1 + cµij)(−2)c−3

− µij
(1 + cµij)(−1)c−2 − (yij + c−1)µij

(1 + cµij)2

]

= −
k∑

i=1

ni∑
j=1

[
yij−1∑

l=0

(
l

1 + cl

)2

+ 2c−3 log(1 + cµij)− c−2 µij

1 + cµij

− µij
c−2(1 + cµij) + µij(yij + c−1)

(1 + cµij)2

]

= −
k∑

i=1

ni∑
j=1

[
yij−1∑

l=0

(
l

1 + cl

)2

+ 2c−3 log(1 + cµij)− µij

{
2c−2(1 + cµij) + µij(yij + c−1)

(1 + cµij)2

}]

= −
k∑

i=1

ni∑
j=1

[
yij−1∑

l=0

(
l

1 + cl

)2

+ 2c−3 log(1 + cµij)− 2c−2µij

1 + cµij

− µ2
ij(yij + c−1)

(1 + cµij)2

]
.

2.4.1 Fisher information matrix

The Fisher information matrix I(β, c) is obtained by taking expectations of minus the

second derivatives which are given below.

E

(
− ∂2l

∂βs∂βr

)
=

k∑
i=1

ni∑
j=1

µij(1 + cµij)

(1 + cµij)2
xijsxijr

=
k∑

i=1

ni∑
j=1

µij

1 + cµij

xijsxijr, s, r = 1, 2, . . . , p
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and

E

(
− ∂2l

∂βs∂c

)
= 0, s = 1, 2, . . . , p.

To get the expression for E (−∂2l/∂c2), we redefine τ = c−1, so the probability

function can be written as

Pr(Y = y) =
Γ(y + τ)

y!Γ(τ)

(
1

1 + µ/τ

)τ (
µ/τ

1 + µ/τ

)y

=
Γ(y + τ)

y!Γ(τ)

(
τ

µ + τ

)τ (
µ

µ + τ

)y

=
Γ(y + τ)

y!Γ(τ)
τ τµy

(
1

µ + τ

)y+τ

, y = 0, 1, 2, . . . .

Now, since Γ(y+τ)/Γ(τ) = τ(τ +1) . . . (τ +y−1), then log
(

Γ(y+τ)
Γ(τ)

)
=

∑y−1
l=0 log(τ + l).

The log-likelihood function for β and τ can then be written as

l(β, τ) =
k∑

i=1

ni∑
j=1

[
yij−1∑

l=0

log(τ + l) + τ log τ − (yij + τ) log(µij + τ) + yij log µij − log(yij!)

]
.

The partial derivatives of l(β, τ) with respect to τ are

∂l

∂τ
=

k∑
i=1

ni∑
j=1

[
yij−1∑

l=0

(
1

τ + l

)
+

τ

τ
+ log τ −

{
yij + τ

µij + τ
+ log(µij + τ)

}]

=
k∑

i=1

ni∑
j=1

[
yij−1∑

l=0

(τ + l)−1 + 1 + log τ −
{

yij + τ

µij + τ
+ log(µij + τ)

}]

and

∂2l

∂τ 2
=

k∑
i=1

ni∑
j=1

[
−

yij−1∑

l=0

(τ + l)−2 +
1

τ
−

{
(τ + µij)− (yij + τ)

(τ + µij)2
+

1

τ + µij

}]

=
k∑

i=1

ni∑
j=1

[
−

yij−1∑

l=0

(τ + l)−2 +
1

τ
− µij − yij

(τ + µij)2
− 1

τ + µij

]

= −
k∑

i=1

ni∑
j=1

[
yij−1∑

l=0

(τ + l)−2 − µij

τ(µij + τ)
− yij − µij

(µij + τ)2

]
.
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Thus

E

(
− ∂2l

∂τ 2

)
=

k∑
i=1

ni∑
j=1

[
E

yij−1∑

l=0

(τ + l)−2 − µij

τ(τ + µij)

]
.

Now, by noting that E(−∂2l/∂c2) = c−4E(−∂2l/∂τ 2), the (ij)th term of this expectation

is equal to

c−4

( ∞∑

l=0

(c−1 + l)−2Pr(Yij ≥ l)− cµij

µij + c−1

)
.

Therefore,

E

(
−∂2l

∂c2

)
= c−4

k∑
i=1

ni∑
j=1

[ ∞∑

l=0

(
c

1 + cl

)2

Pr(Yij ≥ l)− c2µij

1 + cµij

]
.

Following Fisher (1941) and Collings(1981), this equation can be simplified as

E

(
−∂2l

∂c2

)
= c−4

k∑
i=1

ni∑
j=1

[ ∞∑

l=0

l!(cqij)
l+1

(l + 1)dl

− c2µij

1 + cµij

]

= c−4

k∑
i=1

ni∑
j=1

[ ∞∑

l=1

l!(cqij)
l+1

(l + 1)dl

+
c2µij

1 + cµij

− c2µij

1 + cµij

]
.

Thus,

E

(
−∂2l

∂c2

)
= c−4

k∑
i=1

ni∑
j=1

[ ∞∑

l=1

l!(cqij)
l+1

(l + 1)dl

]
,

where qij = cµij/(1 + cµij) and dl =
∏l

j=1(1 + jc).
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2.4.2 Fisher scoring method for the estimation of β and the

dispersion parameter c

Define the function ηij = log µij. Then, ∂ηij/∂µij = 1/µij. Also let Vij = V ar(Yij) =

µij + cµ2
ij. Further we define

wij =

(
∂µij

∂ηij

)2

V −1
ij

= µ2
ij.

1

µij(1 + cµij)

=
µij

1 + cµij

.

Then the score equation (2.6) for βs, s = 1, 2, . . . , p, can be written as

us =
k∑

i=1

ni∑
j=1

wij(yij − µij)
∂ηij

∂µij

xijs

=
k∑

i=1

ni∑
j=1

(
µij

1 + cµij

)
(yij − µij)

1

µij

xijs

=
k∑

i=1

ni∑
j=1

(
µij

1 + cµij

) (
yij − µij

µij

)
xijs

and the Fisher information matrix for β is

I =

[
E

(
− ∂2l

∂βs∂βr

)]
=

[
k∑

i=1

ni∑
j=1

wijxijsxijr

]
, s, r = 1, 2, . . . , p.

Now, define u = (u1, u2, . . . , up)
′, Y = (y11, . . . , y1n1 , . . . , yk1, . . . , yknk

)′, µ = (µ11, . . . , µ1n1 ,

. . . , µk1, . . . , µknk
)′ and N =

∑k
i=1 ni. Further, let X be a N × p matrix with elements

xijs, i = 1, 2, . . . , k, j = 1, 2, . . . , ni, s = 1, 2, . . . , p and W is a N ×N diagonal matrix

with elements wij. Then the score equations in vector notation can be written as

u = XT W

(
Y − µ

µ

)
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and the Fisher information matrix can be written as

I = (XT WX).

The Fisher Scoring equations for solving for the regression parameters β become

I(t)β(t+1) = I(t)β(t) + u(t)

⇒ (
XT WX

)
β(t+1) =

(
XT WX

)
β(t) + u(t)

=
(
XT WX

)
βt + XT W

(
Y − µ

µ

)

= XT W

[
Xβ +

Y − µ

µ

]

= XT WZ.

Thus

β(t+1) =
[(

XT WX
)−1 (

XT WZ
)](t)

, t = 0, 1, 2, . . . (2.7)

with Z = Xβ + Y−µ
µ

.

The Fisher scoring equation to solve for c is

c(t+1) = c(t) + I−1
c v(t), t = 0, 1, 2, . . . (2.8)

where Ic = E (−∂2l/∂c2) and v = ∂l/∂c as defined before.

Maximum likelihood estimates of β and c are obtained by iterating between equations

(2.7) and (2.8) after putting in initial values.

2.5 Cumulants of the negative binomial distribution

The moment generating function (mgf) of the distribution (2.4) is given by

MY (t) =
(
1 + cµ− cµet

)−c−1

.
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Then the cumulant generating function is ψ(t) = −c−1 log(1+cµ−cµet). The cumulants

can be derived directly from

Ki =
∂(i)ψ(t)

∂t(i)

∣∣∣∣
t=0

, i = 1, 2, . . .

which are as follows

K1 = µ.

K2 = µ + cµ2.

K3 = µ + 3cµ2 + 2c2µ3.

K4 = µ + 7cµ2 + 12c2µ3 + 6c3µ4.

2.6 Quasi-likelihood (QL) and the extended quasi-

likelihood (EQL)

In many applications the full distributional assumptions of the GLM cannot be justi-

fied. To avoid the full distributional assumptions, Wedderburn (1974) proposes a quasi-

likelihood (QL) model which is based on the knowledge of the first two moments of the

random variable Y . The quasi-likelihood for a single data point y is defined as

Q(y; µ) =

∫ µ

y

(y − t)

φV (t)
dt,

where φ is a known constant or a parameter to be estimated and V (t) is a variance

function. In the framework of the generalized linear model φ can be considered as an

over-dispersion parameter and a moment estimate of φ can be obtained. Note that the

variance of the random variable Y is assumed to be Var(Y ) = φV (µ) and note further

that a maximum quasi-likelihood estimate for the dispersion parameter φ cannot be

obtained as the quasi-likelihood is used only for the estimation of the β parameters.
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In many real life applications a variance function of the form Var(Y ) = φV (µ) is

not suitable. For example, the negative binomial variance is Var(Y ) = µ(1 + cµ), where

µ is the mean and c is the over-dispersion parameter. For this variance function a

quasi-likelihood can be defined with φ = 1 and V (µ) = µ(1 + cµ). However, such a

quasi-likelihood does not facilitate estimation of the over-dispersion parameter c. In

this situation, for the joint estimation of the mean and dispersion parameters, Nelder

and Pregibon (1987) and Godambe and Thompson (1989) suggest an Extended Quasi-

likelihood (EQL). The EQL is given by

Q+(y; µ, φ) =

[
−1

2
ln[2πφV (y)] + Q(y; µ)

]
.

The second term on the right hand side of the above equation is the QL for y and

the first term is the normalizing factor; thus making exp(Q+) resemble a log-likelihood.

The EQL Q+ can then be used to estimate the mean (regression) parameters and the

over-dispersion parameter. The advantage of using Q+ for estimating the over-dispersion

parameter is that it can be robust to the Maximum Likelihood (ML) estimate as the

full distributional assumptions are not required, yet Q+ behaves like a log-likelihood.

2.6.1 Double extended quasi-likelihood (DEQL)

In generalized linear models, the variance function characterizes the family of distribu-

tions. Thus, a quasi-generalized linear model is characterized by the first two moments,

specified by (V (.), g(.)). Quasi-likelihood allows inferences for mean (regression) pa-

rameters for models having arbitrary variance functions. For estimation of dispersion

parameters for such models, Nelder and Pregibon (1987) propose the extended quasi-

likelihood (EQL), alternatively defined as

−2Q+ =
k∑

i=1

ni∑
j=1

[dij/φ + log 2πφV (yij)],
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where dij is the deviance component given by

dij = 2

∫ yij

µij

(yij − s)

V (s)
ds.

Lee and Nelder (2001) introduce double-extended quasi-likelihood (DEQL) also for

the joint estimation of the mean and the dispersion parameters. The DEQL methodology

requires an EQL for Yij given some random effect αi and an EQL for αi from a conjugate

distribution given some mean parameter µ and dispersion parameter φ. The DEQL is

then obtained by combining the two EQL’s. The random effect αi’s or some transformed

variables si are then replaced by their maximum likelihood estimates resulting in a profile

DEQL.

To form the DEQL we first define the following Hierarchical Generalized Linear

Models (HGLM) (see Lee and Nelder (2001)):

i) yij|αi ∼ GLM with E(yij|αi) = αi = µ0ij and var(yij|αi) = φV0(µ0ij) = µ0ij with

φ = 1, and

ii) αi ∼ GLM with θ(m) = ln(m), b(θ(m)) = eθ(m), E(αi) = b′(θ(m)) = eθ(m) =

m, var(αi) = αV1(m) with α = cm and V1(m) = b′′(θ(m)) = m.

If we define the deviance components of yij|αi by

d0ij = 2

∫ yij

µij

(yij − s)

V0(s)
ds,

and the deviance components of αi by

d1ij = 2

∫ ψ

αi

(ψ − s)

V1(s)
ds,

the double extended quasi-likelihood can be formulated as Q++ = Q+
0 {θ(µ0), φ; y|α} +
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Q+
1 (λ; v1), where

−2Q+
0 {θ(µ0), φ; y|α} =

k∑
i=1

ni∑
j=1

[d0ij/φ + log{2πφV0(yij)}] ,

and

−2Q+
1 (λ; v1) =

k∑
i=1

ni∑
j=1

[
d1ij/λ + log{2πλV1(ψ1)} − 2 log

{∣∣∣∣
dθ(αi)

dv1i

∣∣∣∣
}]

.

Double extended quasi-likelihood allows not only the extension of models to those

with an arbitrary variance function V0(µ0) for y|α with no corresponding generalized

model family of distributions, such as the over-dispersed Poisson or binomial, but also

provides for the formulation of a quasi-conjugate distribution, characterized entirely by

the variance function V1(.).

Following Paul and Saha (2007), using a modified Stirling approximation, recom-

mended by Lee and Nelder (2001), which is given by

log Γ(z) '
(

z − 1

2

)
log(z) +

1

2
log(2π)− z +

1

12z
,

the profile DEQL for count data can be computed as

p∗v(Q
++) =

k∑
i=1

ni∑
j=1

[
yij ln(m)−

(
yij +

1

c

)
ln(1 + cm) +

(
yij +

1

c
− 1

2

)
ln(1 + cyij)

+
c

12(1 + cyij)
− c

12
−

(
yij +

1

2

)
ln(yij)− 1

12(yij + 1)
− 1

2
ln(2π)

]
. (2.9)

For over-dispersed count data this profile DEQL is the same as the negative binomial log-

likelihood with the factorials replaced by the modified Stirling approximations. Inference

for the mean (regression) parameter(s) and the dispersion parameter c can then be made

on p∗v(Q
++). For more details see Saha (2004) and Paul and Saha (2007).
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2.6.2 Estimation of regression and dispersion parameters of the

DEQL

Taking into consideration the covariates x, the mean and variance of Y are

E(Yij|x) = µij(x)

and Var(Yij|x) = µij(x) + cµ2
ij(x).

Using the log link, that is, log(µij) = XT
ijβ, equation (2.9) can be written as

p∗v(Q
++) =

k∑
i=1

ni∑
j=1

[
yijX

T
ijβ −

(
yij +

1

c

)
ln(1 + ceXT

ijβ) +

(
yij +

1

c
− 1

2

)
ln(1 + cyij)

+
c

12(1 + cyij)
− c

12
−

(
yij +

1

2

)
ln(yij)− 1

12(yij + 1)
− 1

2
ln(2π)

]
. (2.10)

As in Section 2.4.1, the first and second derivatives of p∗v(Q
++) with respect to β and c

are given by

∂p∗v(Q
++)

∂βs

=
k∑

i=1

ni∑
j=1

(yij − µij)

1 + cµij

xijs, s = 1, 2, . . . , p,

∂2p∗v(Q
++)

∂βs∂βr

= −
k∑

i=1

ni∑
j=1

(1 + cyij)µij

(1 + cµij)2
xijsxijr, r, s = 1, 2, . . . , p

and

∂2p∗v(Q
++)

∂βs∂c
= −

k∑
i=1

ni∑
j=1

(yij − µij)µij

(1 + cµij)2
xijs, s = 1, 2, . . . , p.

To obtain the element of the information matrix pertaining to the dispersion param-

eter c we redefine τ = 1/c. Therefore, the double extended quasi log-likelihood function
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of equation (2.10) in terms of τ becomes

p∗v(Q
++) =

k∑
i=1

ni∑
j=1

[
yijX

T
ijβ − (yij + τ) ln(τ + eXT

ijβ) +

(
yij + τ − 1

2

)
ln(yij + τ)

+
1

12(yij + τ)
+

1

2
ln(τ)− 1

12τ
− (yij +

1

2
) ln(yij)− 1

12(yij + 1)
− 1

2
ln(2π)

]
.

(2.11)

Differentiating equation (2.11) with respect to τ , we obtain

∂p∗v(Q
++)

∂τ
=

k∑
i=1

ni∑
j=1

[
1 + ln

(
yij + τ

µij + τ

)
− 1

2(yij + τ)
− 1

12(yij + τ)2
+

1

2τ
+

1

12τ 2

− yij + τ

µij + τ

]

and

∂2p∗v(Q
++)

∂τ 2
=

k∑
i=1

ni∑
j=1

[
1

yij + τ
+

1

2(yij + τ)2
+

1

6(yij + τ)3
− 1

2τ 2
− 1

6τ 3
+

yij − µij

(µij + τ)2

− 1

µij + τ

]
.

The Fisher information matrix can then be obtained by taking expectations of minus

the second derivatives. The elements of the Fisher information matrix for the regression

and the dispersion parameters are

E

(
−∂2p∗v(Q

++)

∂βs∂βr

)
=

k∑
i=1

ni∑
j=1

µij

1 + cµij

xijsxijr, r, s = 1, 2, . . . , p,

E

(
−∂2p∗v(Q

++)

∂βs∂c

)
= 0, s = 1, 2, . . . , p
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and

E

(
−∂2p∗v(Q

++)

∂τ 2

)
=

k∑
i=1

ni∑
j=1

[
E

{
1

µij + τ
+

1

2τ 2
+

1

6τ 3
− 1

yij + τ
− 1

2(yij + τ)2

− 1

6(yij + τ)3

}
− E(yij − µij)

(µij + τ)2

]

=
k∑

i=1

ni∑
j=1

[
1

µij + τ
+

1

2τ 2
+

1

6τ 3

]
− E

[
1

yij + τ
+

1

2(yij + τ)2

+
1

6(yij + τ)3

]
.

=
k∑

i=1

ni∑
j=1

[
1

µij + τ
+

1

2τ 2
+

1

6τ 3

]

−
k∑

i=1

ni∑
j=1




∞∑
yij=0

(
1

yij + τ
+

1

2(yij + τ)2
+

1

6(yij + τ)3

)
× f(yij; µij, c)


 ,

where f(yij; µij, c) is the probability function of the negative binomial distribution. The

regression parameter β is estimated by the Fisher scoring equation given in Section

2.4.2. However, to estimate the dispersion parameter c, the Fisher scoring equation

is ct+1 = ct + I−1
(

∂p∗v(Q++)
∂c

)
, where I = E

(
−∂2p∗v(Q++)

∂c2

)
= c−4E

(
−∂2p∗v(Q++)

∂τ2

)
. Here

also the two equations must be solved simultaneously to get the maximum likelihood

estimates of the parameters γ and c.

2.7
√

k consistent estimators

Let {θ̂k}, k = 1, 2, . . . , be a sequence of estimators. If the quantity |θ̂k − θ|
√

k remains

bounded in probability as k → ∞, then the sequence of estimates θ̂k is called
√

k

consistent estimators (see Lehman, 1999).

Theorem: Let θ̂k be a sequence of estimates of θ, and var(θ̂k) = O
(

1
k

)
. Then this

sequence of estimates is
√

k-consistent.
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Proof: By using Chebyshev’s inequality, for a given ε > 0,

P
(
|θ̂k − θ|

√
k < ε

)
≥ 1− var(θ̂k)k

ε2
.

Let θ̂k be the sequence of maximum likelihood estimates (MLE), then by the asymptotic

properties of MLE, θ̂k is distributed as normal with mean θ and variance 1
kI(θ)

, where

I(θ) is the Fisher information matrix defined as I(θ) = E
[

∂
∂θ

log f(y|θ)]2
and the proba-

bility density function f(y|θ) comes from the natural exponential family given by (2.1).

Therefore, as k → ∞, var(θ̂k) tends to zero, that is, var(θ̂k) is O(k−1). Thus, MLE

is
√

k-consistent. The method of moment estimators are also
√

k-consistent estimates

(Moore, 1986).

2.8 Empirical Bayes estimation of a parameter θ

Suppose L(y|θ) is the likelihood for a parameter θ for observations y = (y1, y2, . . . , yn)

from a distribution f(y|θ). Let p(θ|ν) be the prior probability density function of the

parameter of interest θ given a hyper-parameter ν. Then the likelihood of the data y is

a function of ν which can be written as

L(y|ν) =

∫
L(y|θ)p(θ|ν)dθ. (2.12)

In the empirical Bayes approach the parameter ν is estimated by maximizing (2.12).

Then, the prior distribution of θ is taken as p(θ|ν̂) and inference about the parameter θ

is based on its posterior distribution. The said posterior density is proportional to

L(y|θ)p(θ|ν̂) (2.13)
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and the posterior density of θ given ν̂ is

p(θ|y, ν̂) =
L(y|θ)p(θ|ν̂)∫
L(y|θ)p(θ|ν̂)dθ

. (2.14)

The empirical Bayes estimate of θ can then be taken either as the posterior mode which

is obtained by differentiating (2.14) with respect to θ and equating the differential to

zero or by taking the posterior mean which is the expected value of E(θ|y, ν̂) which is

E(θ|y, ν̂) =

∫
θL(y|θ)p(θ|ν̂)dθ∫
L(y|θ)p(θ|ν̂)dθ

. (2.15)

In general the posterior mean is difficult to calculate and we need numerical methods

such as the Markov chain Monte Carlo (MCMC) method.



Chapter 3

Score Test of Homogeneity for Over-Dispersed

Clustered Count Data

Clustered count data arise in many bio-statistical practices in which a number of repeated

count responses are observed on a number of individuals. The repeated observations may

also represent counts over time from a number of individuals. One important problem

that arises in practice is to test homogeneity within clusters (individuals) and between

clusters (individuals). As data within clusters are observations of repeated responses, the

count data may be correlated and/or over-dispersed. Jacqmin-Gadda and Commenges

(1995) derive a score test statistic HS by assuming a random intercept model within

the framework of the generalized linear mixed model by obtaining the exact variance

of the likelihood score under the null hypothesis and a score test statistic HT using the

generalized estimating equation (GEE) approach. They further show that the two tests

are identical when the covariance matrix assumed in the GEE approach is that of the

random-effects model. In each of these cases they dealt with (a) the situation in which

the dispersion parameter φ is assumed to be known and (b) the situation in which the

dispersion parameter φ is assumed to be unknown. The second situation, however, is

more realistic as φ will be unknown in practice.

In this chapter we first obtain a score test of homogeneity for over-dispersed count

data with unknown over-dispersion parameter using the score test results of Jacqmin-

30
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Gadda and Commenges (1995). We then use the score test procedure of Rao (1947)

and derive three tests by assuming a random intercept model within the framework of

(i) the over-dispersed generalized linear model (ii) the negative binomial model, and

(iii) the double extended quasi likelihood model (Lee and Nelder (2001). All these

three statistics are much simpler than the statistic HS derived by Jacqmin-Gadda and

Commenges (1995) under the framework of the over-dispersed generalized linear model.

The second statistic takes over-dispersion more directly into the model and therefore is

expected to do well when the model assumptions are satisfied, and the other statistics are

expected to be robust. Simulations show superior level property of the statistics derived

under the negative binomial and double extended quasi-likelihood model assumptions.

Two data sets are analyzed and a discussion is given.

3.1 The score test obtained from Jacqmin-Gadda

and Commenges (1995)

Let Yij denote the jth response in group i, j = 1, 2, . . . , ni, i = 1, 2, . . . , k,. Conditionally

on a q× 1 vector of random effects αi, Yij’s are independently distributed from an over-

dispersed exponential family

f(Yij; θij, φ) = exp{φ−1[Yijθij − b(θij)] + C(Yij, φ)}, (3.1)

with mean µij = E(Yij|αi) = b′(θij), variance σ2
ij = var(Yij|αi) = φ b′′(θij), where ′

denotes differentiation with respect to θ and φ is the over-dispersion parameter. The

mixed-effects model considered by Jacqmin-Gadda and Commenges (1995) is

g(µij) = θij = ηij = XT
ijβ + Zijαi, (3.2)
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for some known function g(.), where β = (β1, β2, . . . , βp)
T denotes a p× 1 vector of fixed

effects with its associated design vector Xij and αi is the scalar random subject/cluster

effect with the associated covariate Zij. Since we want to test homogeneity across and

within groups we consider the random intercept model in which Zij = 1 for all i, j.

The parameter αi can be written as αi = α+D1/2vi, where the vi’s are independently

and identically distributed with unspecified distribution F with zero mean and unit

variance. Therefore, αi’s are iid with mean α and variance D. Our interest is to test

H0 : D = 0 against the alternative HA : D > 0. Note that for count data models this is

equivalent to testing homogeneity across groups as well as testing homogeneity within

groups as the intra-cluster or within group correlation coefficient is

ρ =
exp(XT

ijβ + XT
ikβ + D)(eD − 1)[

φ exp(XT
ijβ + D/2) + exp(2XT

ijβ)eD(eD − 1)
] .

The log-likelihood for group i is

li(β, α, φ, D) = log

∫ ni∏
j=1

fij(Yij; β, α + D1/2vi, φ) f(vi)dvi. (3.3)

The score statistic for testing the hypothesis of homogeneity when the parameters

are known is

S(β, α, φ) =
k∑

i=1

∂li(β, α, φ, D)

∂D
,

which needs to be obtained at D = 0. Thus

∂li
∂D

=

[∫ ni∏
j=1

fij(Yij; β, α + D1/2vi, φ) f(vi)dvi

]−1

× ∂

∂D

∫ ni∏
j=1

fij(Yij; β, α + D1/2vi, φ) f(vi)dvi. (3.4)

Zhu and Zhang (2006) derived a more general score test statistic than (3.4) for testing

homogeneity in mixed effects models.
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Following Zhu and Zhang (2006) the second part of equation (3.4) can be written as

(
∂
√

D

∂D

)
∂

∂
√

D

∫ ni∏
j=1

fij(Yij; β, α + D1/2vi, φ) f(vi)dvi.

Since ∂
∂D

√
D = 1

2
√

D
, in the limit as D → 0+ the above equation becomes

1

2
lim

D→0+

∂

∂
√

D

∫ ∏ni

j=1 fij(Yij; β, α + D1/2vi, φ) f(vi)dvi√
D

.

Using L’Hôpital’s rule we get

1

2
lim

D→0+

∂2

∂2
√

D

∫ ∏ni

j=1 fij(Yij; β, α + D1/2vi, φ) f(vi)dvi

∂
∂
√

D

√
D

=
1

2
lim

D→0+

∫
∂2

∂2
√

D

ni∏
j=1

fij(Yij; β, α + D1/2vi, φ) f(vi)dvi. (3.5)

Using the following argument

∂2f

∂θ2
= f

[
∂2 log f

∂θ2
+

(
∂ log f

∂θ

)2
]

,

for a density function f with a vector of parameters θ equation (3.5) can be written as

1

2
lim

D→0+

∫ ni∏
j=1

fij(Yij; β, α+D1/2vi, φ)


 ∂2

∂2
√

D
log

ni∏
j=1

fij(Yij) +

{
∂

∂
√

D
log

ni∏
j=1

fij(Yij)

}2

 .

(3.6)

From (3.1) and (3.2) with Zij = 1 for all i, j

log fij(β, α, φ) = φ−1 {Yijθij − b(θij)}+ C(Yij, φ)

= φ−1
{
Yij

(
XT

ijβ + αi

)− b
(
XT

ijβ + αi

)}
+ C(Yij, φ)

= φ−1
{

Yij

(
XT

ijβ + α +
√

Dvi

)
− b

(
XT

ijβ + α +
√

Dvi

)}

+ C(Yij, φ).
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Now,

∂

∂
√

D
log

ni∏
j=1

fij(Yij) =

ni∑
j=1

∂

∂
√

D
log fij(Yij)

= φ−1vi

ni∑
j=1

(Yij − b′(θij))

and

∂2

∂2
√

D
log

ni∏
j=1

fij(Yij) =

ni∑
j=1

∂

∂
√

D

{
∂

∂
√

D
log fij(Yij)

}

= −φ−1v2
i

ni∑
j=1

b′′(θij).

Therefore, equation (3.6) becomes

1

2
lim

D→0+

∫ ni∏
j=1

fij(Yij)


−φ−1v2

i

ni∑
j=1

b′′(θij) + φ−2v2
i

{
ni∑

j=1

(Yij − b′(θij))

}2

 f(vi)dvi.

Finally at D = 0 we have from (3.4)

∂li(0)

∂D
=

1

2


−φ−1

ni∑
j=1

b′′(θij)

∫
v2

i f(vi)dvi + φ−2

{
ni∑

j=1

(Yij − b′(θij))

}2 ∫
v2

i f(vi)dvi




=
1

2
φ−2




{
ni∑

j=1

(Yij − b′(θij))

}2

− φ

ni∑
j=1

b′′(θij))


 .

Under null hypothesis, for Poisson count data θij = log µij = XT
ijβ + α, b(θij) =

exp
(
XT

ijβ + α
)
, µij = b′(θij) = exp

(
XT

ijβ + α
)

and σ2
ij = φb′′(θij) = φµij.

Substituting the above quantities we have the score statistics as

S(β, α, φ) =
1

2
φ−2

k∑
i=1





[
ni∑

j=1

(Yij − µij)

]2

− φ

ni∑
j=1

µij



 . (3.7)

Further, Jacqmin-Gadda and Commenges (1995) decompose the above score statistic
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into two terms as

S(β, α, φ) =
1

2
φ−2[S1(β, α, φ) + S2(β, α, φ)],

where

S1(β, α, φ) =
k∑

i=1

ni∑
j=1

ni∑

j′ 6=j

(Yij − µij)(Yij′ − µij′)

and

S2(β, α, φ) =
k∑

i=1

ni∑
j=1

[
(Yij − µij)

2 − φµij

]
.

Jacqmin-Gadda and Commenges (1995) show that the asymptotic variance of the score

statistic S(β, α, φ) can be obtained as IS = IS1 + IS2 , where

IS1 =
1

2φ2

k∑
i=1

ni∑
j=1

∑

1≤j′ 6=j≤ni

µijµij′

and

IS2 = I + JS2I
−1
γγ JT

S2
− 2KS2I

−1
γγ JT

S2
,

where

I =
1

4φ2

k∑
i=1

ni∑
j=1

(φµij + 2µ2
ij) +

1

4N2φ2

(
k∑

i=1

ni∑
j=1

µij

)2

×
[(

k∑
i=1

ni∑
j=1

φµij + 3µ2
ij

µ2
ij

)
+ N

]

− 1

2Nφ2

(
k∑

i=1

ni∑
j=1

µij

)
×

(
k∑

i=1

ni∑
j=1

φµij + 3µ2
ij

µij

)
,

JS2 = KS2 =
1

4φ3

{
k∑

i=1

ni∑
j=1

µijW
T
ij −

(
k∑

i=1

ni∑
j=1

µij

)(
k∑

i=1

ni∑
j=1

WT
ij

N

)}

is a 1× (p + 1) vector,

Iγγ =
1

4φ5

k∑
i=1

ni∑
j=1

µijWijW
T
ij
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is a (p + 1)× (p + 1) matrix, N =
∑k

i=1 ni, γT = [α, βT ], WT
ij = [1,XT

ij], where 1 is an

N × 1 vector of 1’s. Note that IS2 now simplifies to IS2 = I − JS2I
−1
γγ JT

S2
.

Let γ̂ and φ̂ be some
√

k consistent estimates of γ and φ respectively under the

null hypothesis. Further, let S(α̂, β̂, φ̂) and ÎS be the estimate of S(α, β, φ) and IS

respectively, after replacing γ and φ by γ̂ and φ̂. Then, following Jacqmin-Gadda and

Commenges (1995) the statistic

HS = S2(β̂, α̂, φ̂)/ÎS (3.8)

has, asymptotically, as k →∞, a chi-square distribution with one degree of freedom.

Now the mle of γ can be obtained iteratively by Fisher’s scoring method from the

following equation with φ = 1

γ(t+1) =
[(

WQWT
)−1

WQZ
](t)

, t = 1, 2, 3, . . . ,

where Q = diag(µ̂) is an N × N matrix and Z = WT γ̂(t) + Y−µ̂
µ̂

, t = 1, 2, 3, . . . is

an N × 1 vector. Jacqmin-Gadda and Commenges (1995) suggest using the moment

estimator φ̂ =
∑k

i=1

∑ni

j=1(Yij − µ̂ij)
2/((N − p)µ̂ij) of φ or the consistent estimator

φ∗ =
∑k

i=1

∑ni

j=1(Yij−µ̂ij)
2/(Nµ̂ij). In our simulations in Section 3.5 we use the moment

estimator as it has a degree of freedom correction which is expected to give a better

estimate of φ.

3.2 Score test of homogeneity in the generalized lin-

ear mixed effects model using the procedure of

Rao (1947)

The score statistic that we obtain and denoted by SR(β, α, φ) is the same as (3.7). In

what follows we derive the score test by following Rao (1947) in which we obtain the
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asymptotic variance of the score statistic by following the procedure of Cox and Hinkley

(1974).

Now, the asymptotic variance, as k →∞, of SR(β, α, φ) under H0 is

I = IDD − IDγI
−1
γγ IT

Dγ,

where γT = [α, βT ],

IDD =
k∑

i=1

E

[
∂li
∂D

∣∣∣∣
D=0

]2

, Iγγ =
k∑

i=1

E

[(
∂li
∂γ

∣∣∣∣
D=0

)(
∂li
∂γ

∣∣∣∣
D=0

)T
]

and

IDγ =
k∑

i=1

E

[(
∂li
∂D

∣∣∣∣
D=0

)(
∂li
∂γ

∣∣∣∣
D=0

)T
]

.

By defining Uij = Yij − µij, the ith term of (3.7) can be written as

∂li
∂D

∣∣∣∣
D=0

=
1

2
φ−2




(∑
j

Uij

)2

−
∑

j

σ2
ij


 .

Thus

E

(
∂li
∂D

∣∣∣∣
D=0

)2

=
1

4φ4
E

(
U2

i −
∑

j

σ2
ij

)2

,

where Ui =
∑ni

j=1 Uij. Now since E(Uij) = 0, we have

E(U2
i ) = E




(
ni∑

j=1

Uij

)2

 = E

(
ni∑

j=1

U2
ij +

ni∑
j=1

ni∑

j′ 6=j

UijUij′

)

= E

(
ni∑

j=1

U2
ij

)
= E

[
ni∑

j=1

(Yij − µij)
2

]

=

ni∑
j=1

E (Yij − µij)
2

=

ni∑
j=1

σ2
ij.



Chapter 3. Score Test of Homogeneity for Over-Dispersed Count Data 38

Therefore,

E

(
∂li
∂D

∣∣∣∣
D=0

)2

=
1

4φ4
E

(
U2

i − E(U2
i )

)2
=

1

4φ4
var(U2

i )

=
1

4φ4

[
E(U4

i )− [E(U2
i )]2

]

=
1

4φ4

(
µ4 − µ2

2

)
,

where µ2 and µ4 are the second and fourth central moments of Yij, respectively which

can be expressed as a function of the second and fourth cumulants K2 and K4 of Yij

(Kendall and Stuart, 1977)

µ4 = K4 + 3K2
2 , µ2 = K2 = σ2.

After simplification we get

IDD =
1

4φ4

k∑
i=1

ni∑
j=1

(
K4(θij) + 2σ4

ij

)
,

where K4(θij) = φ3b(iv)(θij) and b(iv)(θij) is the fourth derivative of b(θij) with respect

to θij.

Further, using similar derivations we obtain

Iγγ = φ−2

k∑
i=1

E

[
ni∑

j=1

U2
ijWijW

T
ij

]

= φ−2

k∑
i=1

ni∑
j=1

E(U2
ij)WijW

T
ij

= φ−2

k∑
i=1

ni∑
j=1

σ2
ijWijW

T
ij
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and

IDγ =
1

2φ3

k∑
i=1

E








(∑
j

Uij

)2

−
∑

j

σ2
ij





{∑
j

UijW
T
ij

}


=
1

2φ3

k∑
i=1

E

[{∑
j

U2
ij +

∑
j

∑

j′ 6=j

UijUij′ −
∑

j

σ2
ij

}{∑
j

UijW
T
ij

}]

=
1

2φ3

k∑
i=1

E

[∑
j

U3
ijW

T
ij +

∑
j

∑

j′ 6=j

U2
ijUij′W

T
ij −

∑
j

Uijσ
2
ijW

T
ij

]

=
1

2φ3

k∑
i=1

ni∑
j=1

E(U3
ij)W

T
ij.

As E(Uij) = E(Uij′) = 0, then

IDγ =
1

2φ3

k∑
i=1

ni∑
j=1

µ3(θij)W
T
ij

=
1

2φ3

k∑
i=1

ni∑
j=1

K3(θij)W
T
ij,

where K3(θij) = φ2b′′′(θij) is the third cumulant of Yij and b
′′′
(θij) is the third derivative

of b(θij) with respect to θij. Note that in IDD, IDγ and Iγγ we need the cumulants

K2(θij), K3(θij) and K4(θij). For over-dispersed count data these are K2(θij) = σ2
ij =

φµij, K3(θij) = φ2µij and K4(θij) = φ3µij.

Then, following Rao (1947) the score test of homogeneity for over-dispersed count

data with γ and φ in S, IDD, IDγ and Iγγ being replaced by their maximum likelihood

estimates is HSC = S2
R(β, α, φ)/[IDD − IDγI

−1
γγ IT

Dγ]. Using the moment results given

above, after simplification and replacement of β, α and φ by their maximum likelihood

estimates β̂, α̂ and φ̂ the approximate score test statistic is

HSC = S2
R(β̂, α̂, φ̂)/[ÎDD − ÎDγ Î

−1
γγ ÎT

Dγ], (3.9)

which, asymptotically, as k → ∞, has a chi-square distribution with one degree of
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freedom, where

SR(β̂, α̂, φ̂) =
1

2φ̂2

k∑
i=1





[
ni∑

j=1

(Yij − µ̂ij)

]2

− φ̂

ni∑
j=1

µ̂ij



 ,

ÎDD =
1

4φ̂2

k∑
i=1

ni∑
j=1

(
φ̂µ̂ij + 2µ̂2

ij

)
,

Îγγ =
1

φ̂

k∑
i=1

ni∑
j=1

µ̂ijWijW
T
ij,

and

ÎDγ =
1

2φ̂

k∑
i=1

ni∑
j=1

µ̂ijW
T
ij.

The quantities µ̂ij and Wij are the same as in Section 3.1. Now the mle of γ is as in

Section 3.1. However, the mle of φ is not obtainable from the likelihood. So we use the

degree of freedom corrected method of moment estimator φ̂ given in Section 3.1.

Note that the asymptotic variance of SR is computationally much simpler than that

of S, and hence the computation of the score test statistic HSC . In our simulation in

Section 3.5 we have seen that the performance of the test statistic HSC is almost identical

to that of HS in maintaining level and power.

We need to mention here that the above variance components of the test statistic

HSC are special cases of the variance of the global score test statistic χ2
G of Lin (1997)

for testing global variance components of the GLMM.

3.3 The score test based on the negative binomial

distribution (NBD)

Here we consider a negative binomial mixed effects model and as in Section 3.1 our

purpose is to develop a score test of homogeneity between and within groups for over-

dispersed count data. Let Yij be the response variable for the jth observation in group
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i, j = 1, 2, . . . , ni, i = 1, 2, . . . , k, from the negative binomial distribution, denoted by

NB(µij, ci) and given by

f(yij; µij, ci) =
Γ(yij + c−1

i )

yij! Γ(c−1
i )

(
1

1 + ciµij(x)

)c−1
i

(
ciµij(x)

1 + ciµij(x))

)yij

, (3.10)

where log(µij) = XT
ijβ + Zijαi is the mixed effects model for the mean response with

αi = α+D1/2vi, ci is the dispersion parameter for group i and Xij is a p×1 vector of time

independent covariates. The distribution of vi is the same as specified in Section 3.1.

Again, as in Section 3.1, since we want to test homogeneity across and within groups we

consider the random intercept model in which Zij = 1 for all i, j. As in Section 3.1 our

interest is to test H0 : D = 0 against the alternative HA : D > 0 which is equivalent to

testing homogeneity across groups as well as testing homogeneity within groups as the

intra-cluster or within group correlation coefficient (assuming common over-dispersion

parameter c over all groups or individuals) is (see also Carrasco and Jover, 2005)

ρ =
exp(XT

ijβ + XT
ikβ + D)(eD − 1)[

exp(XT
ijβ + D/2) + exp(2XT

ijβ + D)(ceD + eD − 1)
] .

The ith term in the log-likelihood of the negative binomial distribution can be written

as,

li(β, α, c) = log fi(yij; α + D1/2vi, β, c)

=

ni∑
j=1

[
yij−1∑

l=0

log(1 + cl) + yij(X
T
ijβ + (α + D1/2vi))

−(yij + c−1) log
(
1 + ceXT

ijβ+(α+D1/2vi)
)]

. (3.11)
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To obtain the score function, we follow the procedure of Section 3.1. Now

∂

∂
√

D
log

ni∏
j=1

fij(yij; β, α, c) =

ni∑
j=1

∂

∂
√

D
log fij(yij; β, α, c)

= vi

ni∑
j=1

(yij − µij)

1 + cyij

and

∂2

∂2
√

D
log

ni∏
j=1

fij(yij; β, α, c) =

ni∑
j=1

∂

∂
√

D

{
∂

∂
√

D
log fij(yij; β, α, c)

}

= −v2
i

ni∑
j=1

µij(1 + cyij)

(1 + cµij)2
.

Therefore, at D = 0 the score statistic becomes

SN(β, α, c) =
k∑

i=1

∂li(0)

∂D

=
1

2

k∑
i=1





[
ni∑

j=1

(yij − µij)

(1 + cµij)

]2

−
ni∑

j=1

µij(1 + cyij)

(1 + cµij)2



 . (3.12)

Then, the score test statistic for testing H0 : D = 0 for the known nuisance parameters

γ and c is

HNB = S2
N(β, α, c)/(IDD − AB−1AT ), (3.13)

where

IDD =
k∑

i=1

E

[
∂li
∂D

∣∣∣∣
D=0

]2

is a scalar and A =

(
A1 A2

)
, B =




B11 B12

B21 B22


 ,
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A1 =
k∑

i=1

E

( −∂2li
∂D∂γ

∣∣∣∣
D=0

)
=

k∑
i=1

E

[(
∂li
∂D

∣∣∣∣
D=0

)(
∂li
∂γ

∣∣∣∣
D=0

)T
]

is a 1× (p + 1) vector,

A2 =
k∑

i=1

E

( −∂2li
∂D∂c

∣∣∣∣
D=0

)
is a scalar,

B11 =
k∑

i=1

E

( −∂2li
∂γs∂γr

∣∣∣∣
D=0

)
=

k∑
i=1

E

[(
∂li
∂γ

∣∣∣∣
D=0

)(
∂li
∂γ

∣∣∣∣
D=0

)T
]

is a (p + 1)× (p + 1) matrix,

B12 = B21 =
k∑

i=1

E

(−∂2li
∂γ∂c

∣∣∣∣
D=0

)
is a (p + 1)× 1 vector

and

B22 =
k∑

i=1

E

(−∂2li
∂c2

∣∣∣∣
D=0

)
is a scalar.

3.3.1 Computation of the variance of the score statistic

Now we need to evaluate the variance of S defined as Var(S) = IDD − AB−1AT . The

ith summand of IDD can be written as

E

(
∂li
∂D

∣∣∣∣
D=0

)2

=
1

4
E





[
ni∑

j=1

yij − µij

1 + cµij

]2

−
ni∑

j=1

µij(1 + cYij)

(1 + cµij)2





2

=
1

4
E(ai − bi)

2 =
1

4
E(a2

i )−
1

2
E(aibi) +

1

4
E(b2

i ),

where

ai =

[
ni∑

j=1

yij − µij

1 + cµij

]2

and

bi =

ni∑
j=1

µij(1 + cyij)

(1 + cµij)2
.
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To derive quantities such as E(a2
i ), we need some basic moment results from the

NB(µij, c) distribution. Let U = Y−µ
(1+cµ)

. Then, following Section 2.5 it can be shown

that the first four cumulants of U are

K1 = 0,

K2 =
µ

1 + cµ
,

K3 =
µ + 2cµ2

(1 + cµ)2

and

K4 =
µ + 6cµ2 + 6c2µ3

(1 + cµ)3
.

Applying these results we obtain

E(a2
i ) =

ni∑
j=1

[
µij + 6cµ2

ij + 6c2µ3
ij

(1 + cµij)3
+ 3

(
µij

1 + cµij

)2
]

.

Now

aibi =

[
ni∑

j=1

(yij − µij)
2

(1 + cµij)2
+

ni∑
j=1

ni∑

j′ 6=j

(yij − µij)(yij′ − µij′)

(1 + cµij)(1 + cµij′)

][
ni∑

j=1

µij(1 + cyij)

(1 + cµij)2

]

=

ni∑
j=1

µij
(yij − µij)

2(1 + cyij)

(1 + cµij)4
+

ni∑
j=1

ni∑

j′ 6=j

µij
(1 + cyij)(yij − µij)(yij′ − µij′)

(1 + cµij)3(1 + cµij′)
.

Then

E(aibi) =

ni∑
j=1

µij
E[(yij − µij)

2(1 + cyij)]

(1 + cµij)4
+

ni∑
j=1

ni∑

j′ 6=j

µij
E[(1 + cyij)(yij − µij)]E(yij′ − µij′)

(1 + cµij)3(1 + cµij′)

=

ni∑
j=1

µij
E[(yij − µij)

2(1 + cyij)]

(1 + cµij)4
+ 0.
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Further,

E[(yij − µij)
2(1 + cyij)] = E[(yij − µij)

2 + cyij(y
2
ij + µ2

ij − 2yijµij)]

= E(yij − µij)
2 + cE(y3

ij) + cµ3
ij − 2cE(y2

ij)µij

= σ2
ij + cE(y3

ij) + cµ3
ij − 2c(µ2

ij + µij + cµ2
ij)

= µij + cµ2
ij + cµ3

ij + cµij + cµ3
ij + 3c2µ2

ij + 2c3µ3
ij + 3cµ2

ij

+ 3c2µ3
ij − 2cµ3

ij − 2cµ2
ij − 2c2µ3

ij

= µij + cµij + 2cµ2
ij + 3c2µ2

ij + 2c3µ3
ij + c2µ3

ij.

Thus

E(aibi) =

ni∑
j=1

µij

µij + cµij + 2cµ2
ij + 3c2µ2

ij + 2c3µ3
ij + c2µ3

ij

(1 + cµij)4

=

ni∑
j=1

(
µ2

ij + cµ2
ij + 2cµ3

ij + 3c2µ3
ij + 2c3µ4

ij + c2µ4
ij

(1 + cµij)4

)
.

Again

b2
i =

(
ni∑

j=1

µij(1 + cyij)

(1 + cµij)2

)2

=

ni∑
j=1

µ2
ij(1 + cyij)

2

(1 + cµij)4
+

ni∑
j=1

ni∑

j′ 6=j

µij(1 + cyij)µij′(1 + cyij′)

(1 + cµij)2(1 + cµij′)2
.

E(b2
i ) =

ni∑
j=1

µ2
ij

E(1 + cyij)
2

(1 + cµij)4
+

ni∑
j=1

ni∑

j′ 6=j

µijµij′E(1 + cyij)E(1 + cyij′)

(1 + cµij)2(1 + cµij′)2
.
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Now,

E(1 + cyij)
2 = E(1 + c2y2

ij + 2cyij)

= 1 + c2E(y2
ij) + 2cµij

= 1 + c2(µ2
ij + µij + cµ2

ij) + 2cµij

= 1 + c2µ2
ij + c2µij + c3µ2

ij + 2cµij.

So,

E(b2
i ) =

ni∑
j=1

µ2
ij

(1 + 2cµij + c2µ2
ij + c2µij + c3µ2

ij)

(1 + cµij)4
+

ni∑
j=1

ni∑

j′ 6=j

µijµij′(1 + cµij)(1 + cµij′)

(1 + cµij)2(1 + cµij′)2

=

ni∑
j=1

(µ2
ij + 2cµ3

ij + c2µ3
ij + c2µ4

ij + c3µ4
ij)

(1 + cµij)4
+

ni∑
j=1

ni∑

j′ 6=j

µijµij′

(1 + cµij)(1 + cµij′)
.

Finally

E

(
∂li
∂D

)2

=
1

4

[
E(a2

i )− 2E(aibi) + E(b2
i )

]

=
1

4

[
ni∑

j=1

(µij + 6cµ2
ij + 6c2µ3

ij)

(1 + cµij)3
+ 3

ni∑
j=1

(
µij

1 + cµij

)2

−

2

ni∑
j=1

(µ2
ij + cµ2

ij + 2cµ3
ij + 3c2µ3

ij + 2c3µ4
ij + c2µ4

ij)

(1 + cµij)4
+

ni∑
j=1

(µ2
ij + 2cµ3

ij + c2µ3
ij + c2µ4

ij + c3µ4
ij)

(1 + cµij)4
+

ni∑
j=1

ni∑

j′ 6=j

µijµij′

(1 + cµij)(1 + cµij′)

]
.

Hence

IDD =
1

4

k∑
i=1

[
ni∑

j=1

(µij + 6cµ2
ij + 6c2µ3

ij)

(1 + cµij)3
+ 3

ni∑
j=1

(
µij

1 + cµij

)2

−

2

ni∑
j=1

(µ2
ij + cµ2

ij + 2cµ3
ij + 3c2µ3

ij + 2c3µ4
ij + c2µ4

ij)

(1 + cµij)4
+

ni∑
j=1

(µ2
ij + 2cµ3

ij + c2µ3
ij + c2µ4

ij + c3µ4
ij)

(1 + cµij)4
+

ni∑
j=1

ni∑

j′ 6=j

µijµij′

(1 + cµij)(1 + cµij′)

]
.
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We still need to evaluate the elements of A and B. Now,

∂li(β, α, c)

∂γ

∣∣∣∣
D=0

=

ni∑
j=1

[
yijW

T
ij −

(1 + cyij)

c

cµijW
T
ij

(1 + cµij)

]

=

ni∑
j=1

[
yij −

(
1 + cyij

1 + cµij

)
µij

]
W T

ij

=

ni∑
j=1

yij − µij

1 + cµij

W T
ij .

Then,

E

[(
∂li
∂D

∣∣∣∣
D=0

)(
∂li
∂γ

∣∣∣∣
D=0

)]
=

1

2
E

[{
ni∑

j=1

ni∑

j′ 6=j

(yij − µij)(yij′ − µij′)

(1 + cµij)(1 + cµij′)
+

ni∑
j=1

(yij − µij)
2

(1 + cµij)2

−
ni∑

j=1

µij(1 + cyij)

(1 + cµij)2

} {
(yij − µij)

(1 + cµij)
W T

ij

}]

= E

[
ni∑

j=1

ni∑

j′ 6=j

(yij − µij)
2(yij′ − µij′)

(1 + cµij)2(1 + cµij′)
+

ni∑
j=1

(yij − µij)
3

(1 + cµij)3

−
ni∑

j=1

µij
(yij − µij)(1 + cyij)

(1 + cµij)3

]
W T

ij

=

[
ni∑

j=1

ni∑

j′ 6=j

E(yij − µij)
2E(yij′ − µij′)

(1 + cµij)2(1 + cµij′)
+

ni∑
j=1

E(yij − µij)
3

(1 + cµij)3

−
ni∑

j=1

µij
E{(yij − µij)(1 + cyij)}

(1 + cµij)3

]
W T

ij

=

ni∑
j=1

[
E(yij − µij)

3

(1 + cµij)3
− µij

E{(yij − µij)(1 + cyij)}
(1 + cµij)3

]
W T

ij .
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Now

E[(1 + cyij)(yij − µij)] = E
[
(yij − µij) + cy2

ij − cyijµij

]

= cE(y2
ij)− cµ2

ij

= c(µ2
ij + σ2

ij)− cµ2
ij

= cσ2
ij

and

E(yij − µij)
3 = µij + 3cµ2

ij + 2c2µ3
ij.

Then after simplification we obtain

E

[(
∂li
∂D

∣∣∣∣
D=0

)(
∂li
∂γ

∣∣∣∣
D=0

)T
]

=
1

2

ni∑
j=1

µij

(1 + cµij)
W T

ij

and hence we obtain

A1 =
1

2

k∑
i=1

ni∑
j=1

µij

(1 + cµij)
W T

ij .

Similar calculations show that

A2 =
1

2

k∑
i=1

ni∑
j=1

µ2
ij

(1 + cµij)2
,

B11 =
k∑

i=1

ni∑
j=1

µij

(1 + cµij)
WijW

T
ij

and

B12 = B21 = 0.

We now obtain B22. The partial derivative of of the log likelihood function of the negative
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binomial with respect to c is given by

∂li
∂c

=

ni∑
j=1

[
yij−1∑

l=0

(
l

1 + cl

)
+ c−2 log(1 + cµij)− (yij + c−1)

(
µij

1 + cµij

)]
.

Then, applying the formulation described in Section 2.4.1 for calculating the Fisher

Information, we obtain

B22 = c−4

k∑
i=1

ni∑
j=1

[ ∞∑

l=1

l!(cqij)
l+1

(l + 1)dl

]
,

where qij = cµij/(1+cµij) and dl =
∏l

j=1(1+jc). The parameters γ and c in HN given in

equation (3.13) are replaced by their maximum likelihood estimates, obtained from the

negative binomial regression model under the null hypothesis (see also Lawless (1987)).

The score test statistic HN then reduces to HN = S2
N(β, α, c)/

[
IDD − (A1B

−1
11 AT

1 + A2
2B

−1
22 )

]
.

Now the mle of γ can be estimated iteratively by Fisher’s scoring method from the

following equation

γ(t+1) =
[(

WQWT
)−1

WQZ
](t)

, t = 1, 2, 3, . . . ,

where Q = diag
(

µ̂
1+ĉµ̂

)
is an N × N matrix and Z = WT γ̂(t) + Y−µ̂

µ̂
, t = 1, 2, 3, . . .

is an N × 1 vector. Fisher’s scoring equation to estimate c is given by c(t+1) = c(t) +
(
B−1

22

(
∂l
∂c

))(t)
, where l is the log-likelihood function given by (3.11) with D = 0. Note

that these two equations must be solved simultaneously to get the maximum likelihood

estimates of the parameters γ and c under the null hypothesis.



Chapter 3. Score Test of Homogeneity for Over-Dispersed Count Data 50

3.4 The score test based on the quasi-likelihood

(DEQL)

For the joint estimation of the mean and the dispersion parameters, Nelder and Pregibon

(1987) suggest using an extended quasi-likelihood (EQL), which assumes only the first

two moments of the response variable. Lee and Nelder (2001) introduce double-extended

quasi-likelihood (DEQL) also for the joint estimation of the mean and the dispersion

parameters. The DEQL methodology requires an EQL for Yij given some random effect

αi and an EQL for αi from a conjugate distribution given some mean parameter µ and

dispersion parameter c. The DEQL is then obtained by combining the two EQL’s. The

random effect αi’s or some transformed variables si are then replaced by their maximum

likelihood estimates resulting in a profile DEQL. For over-dispersed count data this

profile DEQL is the same as the negative binomial log-likelihood with the factorials

replaced by the usual Stirling approximations (Lee and Nelder, 2001, Result 5, p.996).

They argue, however, that the Stirling approximation may not be good for small z, so

for nonnormal random effects, they suggest using the modified Stirling approximation

ln Γ(z) '
(

z − 1

2

)
+

1

2
ln(2π)− z +

1

12z
.

Using the modified Stirling approximation given above, the log link log(µij) = XT
ijβ+

Zijαi, with αi = α + D1/2vi, where αi is the random effect defined earlier. Following
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Paul and Saha (2007), the ith term of the profile DEQL is

DEQi(yij; α + D1/2vi, β, c) =

ni∑
j=1

[
yij(X

T
ijβ + Zij(α + D1/2vi))

−
(

yij +
1

c

)
log(1 + ceXT

ijβ+Zij(α+D1/2vi))

+

(
yij +

1

c
− 1

2

)
ln(1 + cyij) +

c

12(1 + cyij)
− c

12

−
(

yij +
1

2

)
ln(yij)− 1

12(yij + 1)
− 1

2
ln(2π)

]
.

(3.14)

Then following the procedure in Section 3.1 the score statistic becomes

SQ(β, α, c) =
1

2

k∑
i=1





[
ni∑

j=1

(yij − µij)

(1 + cµij)
Zij

]2

−
ni∑

j=1

µij(1 + cyij)

(1 + cµij)2
Z2

ij



 . (3.15)

Assuming the random intercept model, that is Zij = 1 for all i and j, equation (3.15)

becomes

SQ(β, α, c) =
1

2

k∑
i=1





[
ni∑

j=1

(yij − µij)

(1 + cµij)

]2

−
ni∑

j=1

µij(1 + cyij)

(1 + cµij)2



 . (3.16)

The statistic

HQL = S2
Q(β̂, α̂, ĉ)/(IDD − AB−1AT ), (3.17)

has, asymptotically, a chi-square distribution with one degree of freedom. The definitions

of the mixed partial derivatives and their corresponding expected values of IDD and the

elements of A and B are exactly the same as those in Section 3.3 with li replaced by

DEQi. The variance I = IDD − AB−1AT of the double extended quasi-likelihood score

function SQ is computed according to the procedure in Section 3.3. We find that all

the variance components in I are exactly the same as those of the SN except for the

component B22 which we obtain in what follows.
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To obtain B22 we define τ = 1/c. Then

B22 =
k∑

i=1

E
(−∂2li/∂c2

)
= c−4

k∑
i=1

E
(−∂2li/∂τ 2

)
,

where

k∑
i=1

E

(
−∂2DEQi

∂τ 2

∣∣∣∣
D=0

)
=

k∑
i=1

ni∑
j=1

[
E

{
1

µij + τ
+

1

2τ 2
+

1

6τ 3
− 1

yij + τ

− 1

2(yij + τ)2
− 1

6(yij + τ)3

}
− E(yij − µij)

(µij + τ)2

]

=
k∑

i=1

ni∑
j=1

[
1

µij + τ
+

1

2τ 2
+

1

6τ 3

]

−E

[
1

yij + τ
+

1

2(yij + τ)2
+

1

6(yij + τ)3

]

=
k∑

i=1

ni∑
j=1

[
1

µij + τ
+

1

2τ 2
+

1

6τ 3

]

−
k∑

i=1

ni∑
j=1




∞∑
yij=0

(
1

yij + τ
+

1

2(yij + τ)2
+

1

6(yij + τ)3

)
× f(yij; µij, c)


 ,

where f(yij; µij, c) is the probability function of the negative binomial distribution given

by (3.10) with D = 0. The regression parameter γ is estimated by the Fisher scoring

equation given in Section 2.4.2. However, to estimate the dispersion parameter c the

Fisher scoring equation is c(t+1) = c(t) +
(
B−1

22

(
∂l
∂c

))(t)
, t = 1, 2, 3, . . ., where l is the

log-likelihood function given by (3.14) with D = 0. Here also the two equations must

be solved simultaneously to get the maximum likelihood estimates of the parameters γ

and c.

The variances of the score functions S, SR, SN and SQ are all different. The vari-

ance of SR is the simplest to calculate and the statistics HSC , HNB and HQL are all

computationally simpler than the statistic HS.
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3.5 Simulation study

In this section we conduct a simulation study to compare, in terms of size and power,

the four score test statistics HS, HSC , HNB and HQL. For studying the properties of the

statistics in terms of empirical size we generate count data from Poisson, negative bino-

mial and lognormal-Poisson mixture distributions under the hypothesis of homogeneity.

We assume random effect is the intercept (Zij = 1).

Two sets of data are simulated for each distribution of the response variable as-

suming homogeneous and heterogeneous inner group sizes (= ni) with different num-

ber of groups/individuals (k) according to the variance (D) of the distribution of the

group-specific random effect of the response variable and for different values of the

over-dispersion parameter c. The samples are comprised of k = 10, 20, 50, 100 individu-

als/groups with ni = 5 observations in the homogeneous group and ni distributed uni-

formly between 5 and 20 in the heterogeneous group. The values of the over-dispersion

parameter c considered are 0.10, 0.22, 0.40, 0.67, 0.91 and 1.25. We generate 10,000 sam-

ples from each experiment in computing the nominal levels and power. The following

log-linear model for the response variable is assumed (see Jacqmin-Gadda and Com-

menges (1995))

log(µij) = 0.8x1ij + 0.5x2i − 0.5, (3.18)

for i = 1, 2, . . . , k and j = 1, 2, . . . , ni. The variable x1 is subject-specific and x2 is

group-specific and are simulated according to a standard normal distribution.

For drawing samples and for estimating the maximum likelihood estimates of the

regression and dispersion parameters of interest under the null hypothesis, different R

functions are applied. To simulate correlated data, we add a group-specific random

intercept in the model for the response variable which is αi = α + D1/2vi, where vi is

standard normal. Therefore, the random effects are normally distributed with mean α

and variance D.

Our first objective is to compare the estimated Type I error of the four tests. Table
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3.1 displays the computed nominal levels for the four tests when data are generated

from the Poisson distribution according to the variance of the distribution of the group-

specific random effect under the hypothesis of homogeneity, that is, D = 0. None

of the statistics maintain level, although the level property, in general, improves as

the sample size increases, except for the statistics HQL. However, HNB performs the

best in maintaining level. The performance of the statistic HQL is the worst, severely

underestimating the nominal levels. There does not seem to be any difference in level

properties of all the statistics between cases when the groups have homogeneous sample

size and the case when the sample sizes are not equal.

Tables 3.2 and 3.3 display the estimated Type I error for the four tests when data

are simulated from the negative binomial distribution under the hypothesis of homo-

geneity with common over-dispersion parameter c. From the results in Tables 3.2 and

3.3 it is evident that both the statistics based on the generalized linear mixed model

(GLMM) framework perform the worst, severely overestimating the level as the number

of groups increases. This property is even worst when the number of groups as well

as the over-dispersion are large. The other two statistics HNB and HQL, in general,

show conservative behavior, although as the number of groups increases the estimated

levels become closer to the nominal levels. Level properties of both of these statistics

are similar.

We then generated count data with over-dispersion from the Log-normal-Poisson

mixture model under the hypothesis of homogeneity with common over-dispersion pa-

rameter c. The mean and variances of the log-normal distribution assumed were m =

log(µij)− 1
2
log(1 + c) and σ2 = log(1 + c) as used by Paul and Banerjee (1998), where

log(µij) is given by (3.18) and c is the common over-dispersion parameter. Tables 3.4

and 3.5 display the estimated Type I error of the four tests. From Tables 3.4 and 3.5

we see that the overall properties of all of the four statistics remain almost the same as

those shown in Tables 3.2 and 3.3 when data were simulated from the negative binomial

distribution, except when k and c are large (k ≥ 50 and c ≥ .67) in which case both the
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statistics HNB and HQL show liberal behavior.

Our second objective is to compare power of the four tests when data are gen-

erated from heterogeneous count data models. Here we first consider data from the

heterogeneous negative binomial model. As for size here also we consider nominal levels

0.10, 0.05 and 0.01. We computed power for k = 20 and 50 with common c = .10, .40

for D = 0, .05, .10, .15, .20. Table 3.6 presents computed power of the four tests.

From the results in Table 3.6 we first discuss results for k = 20 and c = .10. As the

value of D increases, the power increases for all the statistics and they all show similar

power. Note that at these values of k and c all the four statistics have similar level

property (and they all reasonably hold level) and they also have similar power. This

indicates that if all the four statistics have similar level, they will have similar power.

Now we consider k = 20 and c = .40. As the statistics HS and HSC produce highly

inflated Type I error, their powers are also overestimated. Power properties of the other

two statistics HNB and HQL are similar. However, the power of HNB and HQL increases

faster as D increases. For example, at α = .01, the estimated level of HS and HSC is .06

and for HNB and HQL is .007. The corresponding empirical power for the four statistics

HS, HSC , HNB and HQL for D = .2 are .70, .69, .60 and .60, respectively. Note that

empirical level 0.007 for HNB and HQL is close to the nominal level of α = .01, whereas

the empirical levels for both HS and HSC are about six times the nominal level.

Next we consider k = 50. Generally, as c increases power increases and also as the

number of observations in each group increases power increases. The general properties

of HS and HSC for k = 50 and c = .10 and .40 are similar to those for k = 20 and

c = .40. As D increases (D > .1) power of all of the statistics become almost identical,

although empirical levels of the statistics HNB and HQL are close to the nominal and

those of HS and HSC are highly inflated.

The power study was extended for the situation in which data are generated from

heterogeneous log-normal-Poisson mixture distribution. The results are given in Table

3.7. The overall finding from the results in Table 3.7 seem to be similar to those in Table
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3.6 when data are generated from the heterogeneous negative binomial model.

In summary, as k, c and ni increase, the power increases for all the statistics. The

statistics HS and HSC , in general, show highly inflated level properties. The statistics

HNB and HQL show some conservative level properties, however, as the values of c and

k increase, empirical levels become closer to the nominal. The power of the statistics HS

and HSC are, in general, larger than those of HNB and HQL which is expected. What

is interesting is that as D increases (D > .1), the power of all of the statistics become

almost identical, although empirical levels of the statistics HNB and HQL are close to the

nominal and those of HS and HSC are highly inflated. The power of both the statistics

HNB and HQL are very similar in all the cases studied.

We extended this simulation study of the properties of the four statistics in terms of

empirical size and power to situations where the over-dispersion parameter c is not the

same for all groups. For this we generated data from the heterogeneous negative bino-

mial and Log-normal-Poisson mixture distributions with heterogeneous over-dispersion

parameter c(.10 ≤ c ≤ 1.0). The results for size and power are given in Tables 3.8 and

3.9. The overall conclusion of the level and power properties of the four statistics remain

the same as those for homogenous c.

The level and power properties of all the statistics, in general, remain similar irre-

spective of which mechanism of over-dispersion is used to generate count data. This also

seems to be true irrespective of whether the over-dispersion parameter c is varying or

constant.

3.6 Examples

In this section we analyze two real data sets. The first example is the epileptic seizures

count data from a clinical trial of an anti-epileptic drug obtained from Table 2 (page

664) in Thall and Vail (1990), also discussed and analyzed by Fitzmaurice, Laird and

Ware (2004). The second example represents the counts of new skin cancers per year
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taken from the Skin Cancer Prevention Study, a randomized, double-blind, placebo-

controlled clinical trial from Greenberg, Baron, Stukel, Stevens, Mandel, Spencer, Elias,

Lowe, Nierenberg, Bayrd, Vance, Freeman, Clendenning and Kwan (1990). We first test

whether over-dispersion exists in these data sets and then test for homogeneity of within

and between groups.

3.6.1 Example 1: Clinical trial of an anti-epileptic drug

The data are from a placebo-controlled clinical trial of 59 epileptic patients. Patients

with partial seizures were enrolled in a randomized clinical trial of the anti-epileptic

drug, progabide. Participants in the study were randomized to either progabide or

a placebo, as an adjuvant to the standard anti-epileptic chemotherapy. Progabide

is an anti-epileptic drug whose primary mechanism of action is to enhance gamma-

aminobutyric acid (GABA) content; GABA is the primary inhibitory neurotransmitter

in the brain. Prior to receiving treatment, baseline data on the number of epileptic

seizures during the preceding 8-week interval were recorded. Counts of epileptic seizures

during 2-week intervals before each of four successive post-randomization clinic visits

were recorded. The data are given in Table 3.10. The covariates recorded are:

Patient ID, Treatment (0 = Placebo, 1 = Progabide), Age, Baseline 8 week seizure

count (Time = 0), First 2 week seizure count (Time = 2), Second 2 week seizure count

(Time = 4), Third 2 week seizure count (Time = 6), Fourth 2 week seizure count (Time

= 8). These data show clear over-dispersion as can be seen from the estimated mean

and variances of the seizure counts given in Table 3.11.

In Chapter 4 we developed two score tests for over-dispersion in generalized linear

mixed effects model. The two score tests are denoted by T and Tc (for details see

Chapter 4). To obtain the statistic T for testing the presence of over-dispersion in the

data given in Table 3.10 we first fitted the following model (see also Fitzmaurice et al.,
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2004), assuming data distributed as Poisson,

log(µij) = β1 + β2Treatment + β3Age + β4Time + β5Treatment ∗ Time. (3.19)

The maximum likelihood estimates obtained from this model fit are (standard errors

in parentheses) β̂1 = 3.760 (0.075), β̂2 = 0.023 (0.045), β̂3 = −0.0202 (0.0024), β̂4 =

−0.187 (0.009) and β̂5 = −0.026 (0.013).

To obtain the statistic Tc we fitted the following random intercept model to the same

data, assuming data distributed as Poisson,

log(µij) = β1 + β2Treatment + β3Age + β4Time + β5Treatment ∗ Time + αi, (3.20)

where αi’s are normal with mean zero and variance D. The maximum likelihood es-

timates of the regression parameters and the variance component D obtained from

the fit of the model are (standard errors in parentheses) β̂1 = 3.324 (0.471), β̂2 =

−0.016 (0.229), β̂3 = −0.016 (0.015), β̂4 = −0.375 (0.018), β̂5 = −0.026 (0.005) and

D̂ = 0.594 (0.073). Note that here we need the estimates of the random effects αi which

are given in Table 3.12.

The values of the score test statistics T and Tc are then obtained as 22.47 and

18.07 respectively. This shows severe over-dispersion, in agreement with the preliminary

analysis based on the results in Table 3.11, indicating that data analysis should take

account of the over-dispersion present.

We now test for homogeneity in the seizures count data. For this we fitted the

following model assuming that the data come from a negative binomial distribution

NB(µij, c),

log(µij) = β1 + β2Treatment + β3Age + β4Time + β5Treatment ∗ Time. (3.21)

The maximum likelihood estimates of the parameters obtained from the fit of this model
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are (standard errors in parentheses) β̂1 = 3.66 (0.289), β̂2 = −0.019 (0.211), β̂3 =

−0.020 (0.009), β̂4 = −0.150 (0.032), β̂5 = −0.022 (0.044) and ĉ = 1.036 (0.0899).

The values of the test statistics are as follows HS = 26.09, HSC = 23.44, HNB =

24.81 and HQL = 25.03 which all show high heterogeneity.

3.6.2 Example 2: The skin cancer prevention study

These data are from the Skin Cancer Prevention Study of Greenberg et al. (1990).

This was a randomized, double-blind, placebo-controlled clinical trial of beta-carotene

to prevent non-melanoma skin cancer in high risk subjects. A total of 1805 subjects were

randomized to either placebo or 50mg of beta-carotene per day for 5 years. Subjects

were examined once a year and biopsied if cancer was suspected to determine the number

of new skin cancers occurring since the last exam. The data are given in Greenberg et

al. (1990).

In this example the response variable Y is a count representing the number of new

skin cancers per year. The explanatory variables are: treatment coded as 1 for beta-

carotene and 0 for placebo, years of follow-up, gender coded as 1 for male and 0 for

female, skin cancer type coded as 1 for burns and 0 otherwise, exposure representing

count of the number of previous skin cancers and age in years. The study has variable

number of repeated observations for each individual (ni between 1 and 5). The complete

data on 1683 subjects comprising a total of 7081 measurements are given in Fitzmaurice

et al. (2004) which we analyze here for the presence of over-dispersion and for testing

homogeneity within and between subjects.

The data set shows over-dispersion as can be seen from Table 3.13. The model

log(µij) = β1 + β2Y ear + β3Treatment + β4Treatment× Y ear + β5Age + β6Skin

+β7Gender + β8Exposure (3.22)

has been fitted to obtain the value of the test statistic T assuming data are distributed
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as Poisson. The maximum likelihood estimates of the parameters of this model are

(standard errors in parentheses) β̂1 = −3.464 (0.192), β̂2 = −0.008 (0.025), β̂3 =

0.009 (0.104), β̂4 = 0.039 (0.034), β̂5 = 0.016 (0.003), β̂6 = 0.136 (0.046), β̂7 =

0.596 (0.060) and β̂8 = 0.135 (0.003) producing a value of T = 54.84.

The random intercept model

log(µij) = β1 + β2Y earij + β3Treatment + β4Treatment× Y ear + β5Age + β6Skin

+β7Gender + β8Exposure + αi, (3.23)

where αi is normal with mean zero and variance D, was fitted to obtain the value of the

test statistic Tc. The maximum likelihood estimates of the parameters are (standard er-

rors in parentheses) β̂1 = −4.588 (0.294), β̂2 = 0.003 (0.023), β̂3 = 0.0204 (0.112), β̂4 =

0.036 (0.029), β̂5 = 0.019 (0.004), β̂6 = 0.339 (0.079), β̂7 = 0.660 (0.089), β̂8 =

0.178 (0.011) and D̂ = 1.236 (0.0387). The estimates of the 1683 random effects αi

are given in Tables 3.14, 3.15 and 3.16. The value of the test statistic Tc is obtained as

37.13.

For testing homogeneity in these data we fitted the following model, assuming that

data come from a negative binomial distribution NB(µij, c),

log(µij) = β1 + β2Y earij + β3Treatment + β4Treatment× Y ear + β5Age + β6Skin

+β7Gender + β8Exposure. (3.24)

The maximum likelihood estimates obtained are (standard errors in parentheses) β̂1 =

−3.743 (0.254), β̂2 = 0.0027 (0.0344), β̂3 = 0.0022 (0.145), β̂4 = 0.029 (0.048), β̂5 =

0.017 (0.003), β̂6 = 0.267 (0.064), β̂7 = 0.613 (0.076), β̂8 = 0.169 (0.007) and ĉ =

2.245 (0.1538).

The values of the test statistics are HS = 66.50, HSC = 63.44, HNB = 11.10 and

HQL = 12.08. As in example 1, these values show significant heterogeneity within and
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Table 3.1: Comparison of performances of four score tests in respect of Type I error
when data are simulated from Poisson distribution according to the variance of the
distribution of the group-specific random effect under H0, that is, D = 0. The nominal
levels of significance considered are 10%, 5% and 1%. Two sample structures are followed
for k = 10,20,50 and 100 to simulate the data: ni = 5 (Homogeneous Group) and ni

uniformly distributed between 5 and 20 (Heterogeneous Group).

Homogeneous Group Sizes Heterogeneous Group Sizes
k α HS HSC HNB HQL HS HSC HNB HQL

10 .10 2.7 2.3 4.6 1.9 2.8 2.7 3.5 1.9
.05 1.4 1.2 2.3 1.1 1.7 1.6 1.9 1.1
.01 0.4 0.3 0.6 0.7 0.5 0.5 0.5 0.4

20 .10 4.1 3.5 5.3 1.8 4.5 4.3 5.4 2.0
.05 2.2 2.0 3.2 1.1 2.5 2.4 2.9 0.9
.01 0.5 0.5 0.7 0.3 0.8 0.8 0.9 0.3

50 .10 5.4 4.8 6.9 1.5 6.1 5.7 6.4 1.7
.05 2.9 2.4 3.5 0.6 2.8 2.6 3.6 0.7
.01 0.8 0.7 0.9 0.01 0.8 0.7 0.9 0.2

100 .10 6.5 5.9 7.8 1.1 6.8 6.6 7.4 1.0
.05 3.2 2.9 3.8 0.5 3.8 3.6 3.6 0.5
.01 0.9 0.7 0.8 0.05 1.2 1.1 1.2 0.0

Note: k is the number of groups (individuals), and ni is the number of observations per
group (individual).

across the individuals.
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Table 3.2: Estimated Type I error of four tests when data are generated from nega-
tive binomial distribution under the hypothesis of homogeneity. Levels considered are
10%, 5% and 1%.

ni = 5 5 ≤ ni ≤ 20
k c α HS HSC HNB HQL HS HSC HNB HQL

10 .10 .10 3.5 3.2 4.2 2.9 4.6 4.4 3.5 2.9
.05 2.1 1.8 2.4 1.9 2.6 2.5 2.1 1.7
.01 0.8 0.6 0.7 1.1 1.0 0.9 0.6 0.4

.22 .10 4.4 4.1 4.2 4.4 6.3 6.1 3.7 3.9
.05 2.6 2.4 2.2 2.3 3.9 3.7 2.0 2.4
.01 0.8 0.7 0.7 1.7 1.6 1.5 0.6 0.6

.40 .10 5.4 5.0 3.6 6.4 7.7 7.5 4.1 4.1
.05 3.3 3.0 2.0 2.6 5.2 5.0 2.2 2.3
.01 1.3 1.2 0.5 0.6 2.4 2.3 0.7 0.7

.67 .10 7.5 7.2 3.5 3.6 9.9 9.6 4.2 4.3
.05 4.4 4.1 2.0 2.1 6.4 6.2 2.3 2.3
.01 1.9 1.8 0.7 0.8 3.2 3.1 0.8 0.5

.91 .10 7.8 7.7 2.9 2.8 12.0 11.8 3.9 4.3
.05 4.9 4.9 2.4 2.2 8.5 8.3 2.1 2.3
.01 2.2 2.1 0.4 0.5 4.2 4.1 0.8 0.9

1.25 .10 9.1 8.9 2.8 3.2 13.2 13.1 3.1 3.6
.05 6.1 6.1 2.3 2.4 9.2 9.0 2.0 2.1
.01 2.7 2.9 0.3 0.5 4.7 4.8 0.6 0.6

20 .10 .10 6.1 5.6 5.5 3.3 7.4 7.2 4.9 3.6
.05 3.7 3.2 2.9 1.8 4.3 4.1 2.8 2.0
.01 1.3 1.1 0.8 0.6 1.7 1.5 0.8 0.6

.22 .10 9.6 8.7 5.2 5.0 11.3 10.9 5.4 5.4
.05 5.9 5.2 2.7 3.2 7.4 7.1 2.9 3.1
.01 2.4 2.2 0.8 1.5 3.4 3.2 0.8 1.1

.40 .10 13.9 13.1 5.2 7.3 16.2 15.8 5.5 5.5
.05 9.2 8.4 2.9 4.8 11.2 10.9 2.6 2.7
.01 4.1 3.7 0.8 2.7 6.0 5.7 0.7 0.7

.67 .10 17.8 17.1 4.8 5.5 22.1 21.7 5.0 5.4
.05 12.7 11.9 2.6 2.8 16.4 16.0 2.7 2.8
.01 6.4 5.9 0.7 0.7 8.9 8.7 0.8 1.0

.91 .10 19.9 19.3 4.5 6.9 25.8 25.6 5.2 5.8
.05 14.1 13.5 2.6 4.7 19.2 18.9 2.8 3.3
.10 7.3 7.0 0.8 2.3 11.1 10.9 0.9 1.0

1.25 .10 23.6 23.0 4.4 5.0 29.0 28.8 5.2 6.1
.05 17.2 16.5 2.4 2.7 22.1 21.9 2.7 3.4
.01 9.1 8.9 0.7 0.8 12.8 12.6 0.9 1.1

Note: k is the number of groups (individuals) and ni is the number of observations per
group (individual)
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Table 3.3: Estimated Type I error of four tests when data are generated from nega-
tive binomial distribution under the hypothesis of homogeneity. Levels considered are
10%, 5% and 1%.

ni = 5 5 ≤ ni ≤ 20
k c α HS HSC HNB HQL HS HSC HNB HQL

50 .10 .10 12.7 11.6 6.9 4.4 13.8 13.3 6.7 6.6
.05 8.0 7.0 3.5 2.4 8.7 8.3 3.8 3.4
.01 3.3 2.9 0.7 0.6 3.5 3.3 1.2 0.9

.22 .10 21.2 20.2 7.0 6.7 23.5 22.9 7.0 7.2
.05 14.5 13.5 3.7 3.7 16.2 15.7 3.7 3.7
.01 6.8 6.1 0.9 1.1 8.2 7.8 1.1 1.2

.40 .10 32.8 31.3 6.7 7.8 36.1 35.6 7.4 7.5
.05 24.4 23.1 3.7 4.8 27.2 26.5 3.9 4.0
.01 13.8 12.7 0.9 2.0 15.4 15.0 1.0 1.0

.67 .10 44.0 42.6 6.6 8.0 48.4 48.0 7.1 7.3
.05 34.6 33.3 3.6 4.5 39.3 38.7 4.0 4.2
.01 21.9 20.6 1.0 1.8 25.1 24.5 1.1 1.4

.91 .10 51.7 50.4 6.6 8.7 55.1 54.6 6.9 7.5
.05 42.3 40.9 3.7 5.6 46.3 45.8 3.7 4.2
.01 28.1 26.5 1.1 2.7 31.3 30.7 1.1 1.4

1.25 .10 56.9 55.9 6.2 8.4 62.4 62.0 7.0 8.3
.05 47.5 46.3 3.4 4.9 53.7 53.2 4.2 5.0
.01 32.6 31.6 0.9 1.7 38.4 37.9 1.0 1.4

100 .10 .10 20.1 18.9 8.0 5.8 20.9 20.3 7.8 7.3
.05 13.0 11.6 4.2 2.9 14.0 13.6 4.3 3.8
.01 5.5 4.7 1.0 0.6 5.9 5.7 1.2 0.9

.22 .10 36.8 35.0 7.4 7.3 38.7 38.0 7.7 7.7
.05 27.3 25.5 4.0 4.0 29.1 28.3 4.1 4.0
.01 14.4 13.0 0.9 0.9 15.6 15.1 1.1 1.1

.40 .10 55.7 54.1 7.7 8.3 58.7 58.2 8.2 8.4
.05 46.0 44.2 4.2 4.7 48.8 48.2 4.5 4.6
.01 29.1 27.0 1.2 1.6 32.5 31.8 1.4 1.4

.67 .10 71.6 70.6 7.8 8.5 74.0 73.6 7.8 8.9
.05 62.8 61.1 4.3 4.7 65.1 64.5 4.5 5.0
.01 45.7 43.8 1.0 1.5 48.9 48.2 1.2 1.5

.91 .10 78.3 77.5 7.7 9.2 82.7 82.3 7.6 9.0
.05 70.9 70.0 4.1 5.3 75.0 74.6 4.2 4.8
.01 55.1 53.2 1.2 1.9 59.4 58.6 1.1 1.3

1.25 .10 84.4 83.7 7.2 10.0 87.1 86.9 7.7 11.0
.05 78.1 77.0 4.1 5.8 81.2 80.9 4.5 6.3
.01 63.7 62.3 1.1 1.9 68.3 67.7 1.4 2.0

Note: k is the number of groups (individuals) and ni is the number of observations per
group (individual)
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Table 3.4: Estimated Type I error of four tests when data are generated from the
Lognormal-Poisson mixture distribution under the hypothesis of homogeneity. Levels
considered are 10%, 5% and 1%.

ni = 5 5 ≤ ni ≤ 20
k c α HS HSC HNB HQL HS HSC HNB HQL

10 .10 .10 3.6 3.3 3.9 3.9 4.6 4.5 4.1 4.5
.05 2.0 1.7 2.2 2.0 2.8 2.7 2.4 2.8
.01 0.8 0.7 0.7 0.7 1.0 0.9 0.9 0.9

.22 .10 4.2 3.8 3.8 4.1 5.5 5.4 3.5 3.6
.05 2.5 2.1 2.1 2.4 3.4 3.2 2.0 2.0
.01 0.9 0.7 0.7 0.8 1.4 1.3 0.6 0.7

.40 .10 5.6 5.2 4.3 4.4 7.6 7.5 4.2 4.4
.05 3.5 3.2 2.3 2.4 5.0 4.9 2.4 2.5
.01 1.4 1.2 0.7 0.5 2.2 2.2 0.8 0.8

.67 .10 6.8 6.4 3.9 4.2 9.1 9.0 4.8 5.0
.05 4.3 4.0 2.1 2.4 6.5 6.3 2.8 2.8
.01 1.7 1.6 0.6 0.7 3.3 3.2 0.9 0.8

.91 .10 7.9 7.8 4.6 4.6 10.6 10.4 5.2 5.3
.05 4.5 5.0 2.6 2.9 7.3 7.2 3.0 3.2
.01 2.1 2.0 0.5 0.6 3.6 3.6 1.1 1.2

1.25 .10 8.2 7.9 4.4 4.4 12.5 12.4 5.7 5.8
.05 5.3 5.2 2.3 2.2 8.7 8.6 3.5 3.6
.01 2.5 2.5 1.0 1.1 4.7 4.7 1.5 1.5

20 .10 .10 6.7 6.1 5.9 5.9 7.6 7.4 4.8 4.8
.05 3.9 3.4 3.2 3.5 4.8 4.5 2.7 2.8
.01 1.4 1.2 0.8 1.2 1.9 1.8 0.7 0.7

.22 .10 9.2 8.5 5.4 5.7 11.6 11.2 5.4 5.5
.05 5.8 5.2 3.1 3.3 7.5 7.3 2.9 3.0
.01 2.3 2.1 0.9 0.9 3.3 3.2 0.8 0.8

.40 .10 12.9 12.1 5.9 6.3 16.5 16.2 5.5 5.4
.05 8.8 8.2 3.2 3.4 11.2 11.0 3.3 3.2
.01 4.0 3.5 0.8 0.9 5.6 5.4 1.1 1.1

.67 .10 16.6 15.9 6.7 6.9 20.8 20.4 7.1 7.1
.05 11.7 11.1 4.0 4.0 15.5 15.1 4.2 4.3
.01 5.8 5.4 1.4 1.5 8.5 8.3 1.5 1.5

.91 .10 18.7 18.2 7.5 8.1 23.2 23.0 8.1 8.4
.05 13.5 13.1 4.4 4.8 17.3 17.2 4.9 5.2
.01 6.9 6.7 1.4 1.5 10.2 10.0 2.1 2.1

1.25 .10 20.5 20.0 8.6 9.2 26.4 26.2 10.0 10.9
.05 14.8 14.4 5.1 5.5 20.0 19.7 6.2 6.8
.01 7.9 7.9 2.0 2.1 12.1 11.9 2.5 2.8

Note: k is the number of groups (individuals) and ni is the number of observations per
group (individual)
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Table 3.5: Estimated Type I error of four tests when data are generated from the
Log-normal-Poisson mixture distribution under the hypothesis of homogeneity. Levels
considered are 10%, 5% and 1%.

ni = 5 5 ≤ ni ≤ 20
k c α HS HSC HNB HQL HS HSC HNB HQL

50 .10 .10 12.2 11.2 6.7 6.8 14.2 13.8 6.8 7.1
.05 7.4 6.6 3.5 3.3 8.9 8.7 4.0 4.3
.01 2.9 2.5 0.8 0.6 3.6 3.4 1.1 1.2

.22 .10 20.8 19.7 7.4 7.7 22.9 22.4 7.4 7.5
.05 14.5 13.4 4.0 4.1 16.2 15.7 4.1 4.1
.01 7.2 6.3 1.0 1.1 7.7 7.3 1.2 1.2

.40 .10 30.9 29.6 8.6 8.7 35.6 35.2 8.6 8.7
.05 22.9 21.5 4.9 4.9 27.3 26.7 5.1 5.2
.01 12.9 12.1 1.5 1.5 15.8 15.3 1.8 1.8

.67 .10 40.8 39.6 10.7 11.0 46.1 45.5 11.4 11.7
.05 32.2 30.9 6.6 6.8 37.7 37.2 6.9 7.1
.01 20.1 18.7 2.4 2.5 24.3 23.7 2.2 2.3

.91 .10 44.3 43.0 13.6 14.0 52.1 51.7 14.4 14.9
.05 35.8 34.6 8.7 8.9 43.4 42.9 8.9 9.1
.01 24.0 22.7 3.4 3.4 29.0 28.4 3.3 3.4

1.25 .10 50.4 49.1 17.8 18.7 56.5 56.1 18.9 20.2
.05 41.5 40.3 12.2 12.6 47.8 47.4 12.5 13.3
.01 27.9 27.2 5.6 5.9 33.7 33.3 5.8 6.0

100 .10 .10 20.4 18.9 8.2 8.7 21.1 20.6 8.0 8.3
.05 13.3 12.0 4.5 4.9 13.9 13.6 4.2 4.4
.01 5.8 4.8 1.2 1.2 5.8 5.5 1.2 1.1

.22 .10 35.4 33.9 8.6 8.7 38.9 38.3 8.5 8.5
.05 26.3 24.7 4.4 4.5 29.4 28.5 4.8 4.9
.01 14.2 12.7 1.2 1.1 15.5 14.8 1.4 1.4

.40 .10 52.6 51.3 10.9 10.9 56.1 55.7 10.1 10.3
.05 43.4 41.4 6.2 6.3 47.0 46.3 6.0 6.1
.01 27.4 25.3 1.8 1.8 30.7 29.8 1.9 2.0

.67 .10 66.4 65.1 15.7 16.3 71.7 71.1 15.3 15.8
.05 57.5 56.0 9.8 10.2 63.5 62.7 9.6 9.9
.01 42.1 40.2 3.7 3.8 47.0 46.2 3.5 3.6

.91 .10 71.9 70.6 21.1 21.6 77.7 77.4 21.6 22.7
.05 63.5 62.1 14.2 14.6 69.7 69.2 14.3 15.3
.01 48.7 46.8 6.5 6.7 54.2 53.5 5.8 6.4

1.25 .10 75.9 74.8 28.2 30.3 82.0 81.8 28.9 31.8
.05 68.6 67.3 20.3 21.9 75.3 74.9 20.3 22.6
.01 53.6 52.3 10.5 11.1 61.2 60.7 9.9 11.2

Note: k is the number of groups (individuals) and ni is the number of observations per
group (individual)
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Table 3.6: Power (in percent) of the four tests when data are generated from negative binomial
distribution with c = .10, .40 and k = 20, 50. Levels considered are 10%, 5% and 1%.

ni = 5 5 ≤ ni ≤ 20
k c D α HS HSC HNB HQL HS HSC HNB HQL

20 .10 0 .10 6.1 5.6 5.5 3.3 7.4 7.2 4.9 3.6
.05 3.7 3.2 2.9 1.8 4.3 4.1 2.8 2.0
.01 1.3 1.1 0.8 0.6 1.7 1.5 0.8 0.6

.05 .10 16.6 15.6 14.7 16.3 41.6 41.1 38.0 41.7
.05 11.5 10.3 9.4 10.4 33.5 32.8 29.2 32.7
.01 5.6 4.9 3.4 4.1 21.6 20.9 17.2 19.6

.10 .10 28.9 27.4 27.9 30.8 67.6 67.0 64.3 68.6
.05 21.7 20.1 20.0 22.5 60.2 59.7 56.0 60.4
.01 11.9 10.7 8.7 10.3 46.7 45.8 41.4 45.6

.15 .10 40.1 38.4 39.3 43.0 82.0 81.6 80.6 83.9
.05 31.8 30.0 29.5 32.5 76.5 76.0 74.6 78.4
.01 19.7 17.9 15.7 18.0 66.1 65.3 62.0 66.4

.20 .10 50.7 49.2 49.6 53.1 89.6 89.4 89.1 91.1
.05 42.0 40.1 39.4 43.1 86.1 85.7 85.1 87.5
.01 28.4 26.5 23.7 26.7 77.2 76.6 75.7 78.4

.40 0 .10 13.9 13.1 5.2 7.3 16.2 15.8 5.5 5.5
.05 9.2 8.4 2.9 4.8 11.2 10.9 2.6 2.7
.01 4.1 3.7 0.8 2.7 6.0 5.7 0.7 0.7

.05 .10 22.2 21.1 10.7 11.2 43.4 43.0 27.2 27.5
.05 16.2 15.2 6.5 6.9 35.4 34.8 19.4 19.6
.01 8.4 7.8 2.5 2.6 23.2 22.6 10.2 10.3

.10 .10 30.5 29.5 18.3 19.1 64.0 63.5 50.7 50.7
.05 23.8 22.5 12.1 12.8 56.3 55.8 41.9 41.8
.01 14.0 12.9 4.9 5.1 43.0 42.2 27.7 27.7

.15 .10 40.6 39.0 27.8 28.7 77.0 76.6 68.7 68.8
.05 32.2 30.7 19.4 20.3 70.6 70.1 60.2 60.2
.01 20.2 18.9 9.6 10.2 58.5 57.8 45.8 45.6

.20 .10 47.6 46.2 35.4 36.1 84.8 84.5 79.3 79.4
.05 39.1 37.6 26.7 27.4 79.8 79.3 72.8 72.7
.01 26.4 24.9 14.3 14.6 69.9 69.2 59.7 59.4

50 .10 0 .10 12.7 11.6 6.9 4.4 13.8 13.3 6.7 6.6
.05 8.0 7.0 3.5 2.4 8.7 8.3 3.8 3.4
.01 3.3 2.9 0.7 0.6 3.5 3.3 1.2 0.9

.05 .10 37.8 36.1 27.1 30.3 77.6 77.1 68.9 71.7
.05 28.8 26.7 18.5 21.2 70.6 70.0 59.5 62.4
.01 16.0 14.3 7.6 9.1 54.9 53.9 41.7 44.8

.10 .10 62.8 61.1 51.4 54.9 95.9 95.7 94.3 94.9
.05 53.2 51.1 40.4 43.7 94.2 93.9 90.9 92.0
.01 36.4 33.9 22.9 25.4 87.5 87.0 82.2 83.7

.15 .10 79.2 77.8 71.2 73.2 99.4 99.4 99.1 99.3
.05 71.6 69.6 60.8 63.4 98.9 98.9 98.3 98.5
.01 56.5 54.0 42.2 44.4 96.8 96.6 95.3 95.9

.20 .10 89.3 88.5 84.4 85.5 99.8 99.8 99.8 99.8
.05 83.9 82.8 76.9 78.2 99.8 99.7 99.7 99.7
.01 71.9 69.7 60.4 61.9 99.1 99.1 98.9 98.9

.40 0 .10 32.8 31.3 6.7 7.8 36.1 35.6 7.4 7.5
.05 24.4 23.1 3.7 4.8 27.2 26.5 3.9 4.0
.01 13.8 12.7 0.9 2.0 15.4 15.0 1.0 1.0

.05 .10 53.1 51.6 20.1 20.4 81.1 80.8 53.2 53.5
.05 43.6 41.8 13.1 13.1 74.4 73.7 42.8 43.2
.01 28.5 26.6 5.1 5.2 59.3 58.4 25.9 26.2

.10 .10 68.4 67.1 37.6 38.0 94.8 94.7 85.4 85.7
.05 60.1 58.3 27.5 28.1 92.2 91.9 79.2 79.3
.01 44.1 41.8 14.3 14.4 85.3 84.8 65.2 65.1

.15 .10 78.9 77.8 53.5 54.3 98.8 98.8 96.1 96.0
.05 71.5 69.9 43.1 43.8 97.9 97.9 93.8 93.7
.01 56.4 54.5 26.3 26.9 95.4 95.1 87.0 87.1

.20 .10 86.7 85.8 68.5 68.9 99.7 99.6 98.9 98.9
.05 80.9 79.8 58.9 59.2 99.2 99.2 98.0 98.0
.01 69.1 66.8 40.5 40.8 98.2 98.1 95.3 95.3

Note: k is the number of groups (individuals) and ni is the number of observations per group (individual)
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Table 3.7: Power (in percent) of the four tests when data are generated from Log-normal-
Poisson mixture distribution with c = .10, .40 and k = 20, 50. Levels considered are 10%, 5%
and 1%.

ni = 5 5 ≤ ni ≤ 20
k c D α HS HSC HNB HQL HS HSC HNB HQL

20 .10 0 .10 6.7 6.1 5.9 5.9 7.6 7.4 4.8 4.8
.05 3.9 3.4 3.2 3.5 4.8 4.5 2.7 2.8
.01 1.4 1.2 0.8 1.2 1.9 1.8 0.7 0.7

.05 .10 16.5 15.3 16.6 16.9 41.2 40.6 38.9 33.9
.05 11.0 10.0 10.8 10.9 33.1 32.4 30.4 25.8
.01 5.3 4.5 4.2 4.3 21.1 20.5 17.3 14.4

.10 .10 29.0 27.4 28.1 21.7 65.9 65.2 66.2 60.9
.05 21.1 19.7 19.9 15.1 58.4 57.7 57.6 52.5
.01 11.7 10.5 9.8 7.4 44.9 44.0 42.7 38.3

.15 .10 39.6 38.0 41.8 34.0 81.7 81.4 82.1 78.9
.05 31.3 29.5 31.6 25.6 76.2 75.7 76.1 72.5
.01 19.4 17.7 17.0 13.8 65.4 64.7 63.6 59.8

.20 .10 50.5 48.8 51.9 45.6 89.2 88.9 90.1 88.2
.05 41.8 40.1 41.7 36.2 85.2 84.7 85.9 83.6
.01 28.8 26.6 26.5 22.5 77.1 76.6 76.7 74.0

.40 0 .10 12.9 12.1 5.9 6.3 16.5 16.2 5.5 5.4
.05 8.8 8.2 3.2 3.4 11.2 11.0 3.3 3.2
.01 4.0 3.5 0.8 0.9 5.6 5.4 1.1 1.1

.05 .10 21.0 20.3 12.3 13.6 42.1 41.6 28.4 28.8
.05 15.2 14.4 7.4 8.9 34.5 33.9 21.1 21.6
.01 8.3 7.5 3.1 4.4 22.5 21.9 11.3 11.8

.10 .10 30.7 29.3 21.0 22.1 63.3 63.0 52.7 53.1
.05 23.7 22.5 14.5 16.1 55.7 55.1 43.4 44.0
.01 14.0 13.1 6.7 8.4 42.1 41.3 29.6 30.3

.15 .10 39.5 38.1 29.6 31.4 77.6 77.3 70.8 70.9
.05 31.1 29.6 21.0 23.1 71.4 70.9 63.4 63.8
.01 19.4 18.1 10.8 13.0 59.3 58.7 48.6 49.1

.20 .10 47.9 46.7 38.8 40.5 85.4 85.1 81.5 81.4
.05 39.7 37.8 29.6 32.0 80.4 80.0 75.5 75.1
.01 26.6 25.3 16.6 19.4 70.6 70.1 63.1 63.3

50 .10 0 .10 12.2 11.2 6.7 6.8 14.2 13.8 6.8 7.1
.05 7.4 6.6 3.5 3.3 8.9 8.7 4.0 4.3
.01 2.9 2.5 0.8 0.6 3.6 3.4 1.1 1.2

.05 .10 38.6 36.9 28.9 23.8 77.9 77.3 70.0 67.6
.05 29.6 27.6 19.9 16.0 70.6 70.0 61.0 59.0
.01 16.6 14.9 8.8 6.7 55.4 54.5 43.0 41.1

.10 .10 63.1 61.4 53.0 49.0 96.2 96.0 94.3 93.9
.05 53.5 50.8 41.5 38.3 93.8 93.6 91.4 90.8
.01 36.5 34.3 24.3 22.4 87.8 87.4 82.8 82.1

.15 .10 79.3 78.1 71.9 69.9 99.3 99.3 99.0 99.1
.05 72.2 70.2 62.9 60.6 99.0 99.0 98.6 98.5
.01 56.3 53.7 43.3 41.5 97.2 97.1 95.9 95.8

.20 .10 88.3 87.4 83.9 83.0 99.9 99.9 99.9 99.8
.05 83.2 82.0 77.4 76.4 99.7 99.7 99.7 99.7
.01 71.3 69.0 61.1 60.3 99.2 99.2 99.1 99.1

.40 0 .10 30.9 29.6 8.6 8.7 35.6 35.2 8.6 8.7
.05 22.9 21.5 4.9 4.9 27.3 26.7 5.1 5.2
.01 12.9 12.1 1.5 1.5 15.8 15.3 1.8 1.8

.05 .10 51.0 49.4 23.5 24.3 49.5 79.0 56.8 57.3
.05 41.4 39.4 15.5 16.2 72.2 71.8 46.8 47.2
.01 27.0 25.2 6.4 7.0 58.3 57.5 30.4 30.7

.10 .10 67.0 65.2 42.6 43.0 94.5 94.4 87.6 87.7
.05 58.3 56.4 31.8 32.1 91.9 91.7 81.7 81.9
.01 42.6 40.7 16.6 17.0 85.5 85.1 68.7 69.0

.15 .10 78.7 77.7 59.0 59.3 98.7 98.6 96.6 96.7
.05 71.7 70.2 49.1 50.0 97.7 97.6 94.4 94.5
.01 56.8 54.5 31.5 31.6 94.9 94.8 88.6 88.8

.20 .10 86.3 85.5 72.2 72.6 99.6 99.6 99.1 99.2
.05 81.1 79.8 63.0 63.4 99.3 99.3 98.4 98.5
.01 68.5 66.1 43.6 44.0 98.2 98.1 96.3 96.4

Note: k is the number of groups (individuals) and ni is the number of observations per group (individual)
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Table 3.8: Power (in percent) of the four tests when data are generated from heteroge-
neous negative binomial distribution with .1 ≤ c ≤ 1.0. Levels considered are 10%, 5%
and 1%.

ni = 5 5 ≤ ni ≤ 20
k D α HS HSC HNB HQL HS HSC HNB HQL

20 0 .10 16.2 15.4 6.2 6.4 19.2 18.9 5.4 5.6
.05 11.7 10.8 3.4 3.4 13.7 13.1 3.0 3.1
.01 5.6 5.3 1.1 1.2 7.0 6.8 1.0 1.1

.05 .10 23.0 22.0 10.6 10.9 43.0 42.3 24.8 25.3
.05 16.8 15.6 6.3 6.5 35.1 34.7 18.0 18.5
.01 9.2 8.4 2.3 2.3 23.0 22.3 9.2 9.5

.10 .10 31.2 30.0 17.2 17.7 62.4 62.0 47.2 47.9
.05 23.6 22.3 11.0 11.3 54.9 54.4 38.2 38.7
.01 13.5 12.5 4.7 4.9 42.2 41.3 24.6 25.1

.15 .10 40.2 38.7 25.0 25.6 74.5 74.3 63.6 64.1
.05 32.0 30.5 17.0 17.5 67.9 67.5 55.0 55.7
.01 20.0 18.6 8.4 8.6 56.0 55.3 40.0 40.8

.20 .10 47.1 45.8 33.5 34.3 83.3 83.1 76.7 77.4
.05 38.4 37.2 24.3 25.0 78.1 77.7 69.2 70.0
.01 26.5 24.9 13.0 13.5 67.3 66.7 55.5 56.0

50 0 .10 38.6 37.5 7.2 7.4 44.0 43.4 7.8 8.1
.05 30.1 28.6 4.1 4.3 34.6 34.1 4.4 4.7
.01 17.8 16.4 1.1 1.2 21.9 21.3 1.2 1.2

.05 .10 55.7 54.6 20.3 20.9 79.8 79.4 49.6 50.3
.05 46.9 45.4 14.1 14.5 72.9 72.5 39.1 39.7
.01 31.8 29.9 5.6 5.9 59.1 58.4 23.4 23.9

.10 .10 69.4 68.0 34.9 36.0 94.8 94.6 81.5 82.0
.05 60.5 58.8 26.1 27.1 91.8 91.5 73.9 74.5
.01 44.8 42.9 13.4 13.8 84.0 83.4 58.6 59.5

.15 .10 78.0 76.9 49.6 50.7 98.3 98.2 93.7 93.8
.05 70.6 69.3 39.1 40.1 97.3 97.3 90.5 90.8
.01 56.5 54.2 23.0 23.9 93.8 93.5 82.1 82.7

.20 .10 86.1 85.1 64.3 65.7 99.5 99.5 98.5 98.5
.05 79.7 78.4 54.0 55.5 99.0 99.0 97.2 97.3
.01 66.7 64.8 35.3 36.6 97.7 97.6 93.4 93.6

Note: k is the number of groups (individuals) and ni is the number of observations per group (individual)



Chapter 3. Score Test of Homogeneity for Over-Dispersed Count Data 69

Table 3.9: Power (in percent) of the four tests when data are generated from heteroge-
neous Log-normal-Poisson mixture distribution with .1 ≤ c ≤ 1.0. Levels considered are
10%, 5% and 1%.

ni = 5 5 ≤ ni ≤ 20
k D α HS HSC HNB HQL HS HSC HNB HQL

20 0 .10 14.3 13.6 6.6 6.5 17.7 17.3 6.9 7.0
.05 9.7 9.1 3.7 3.5 12.6 12.3 4.1 4.2
.01 4.8 4.3 1.0 1.1 6.7 6.5 1.5 1.5

.05 .10 22.3 20.9 12.6 12.5 40.6 40.1 27.0 27.3
.05 15.9 14.9 7.9 7.7 32.4 31.9 20.0 20.1
.01 8.9 8.2 2.9 2.8 21.5 21.2 10.1 10.3

.10 .10 31.1 30.2 21.1 21.2 61.7 61.3 51.6 51.8
.05 24.3 23.5 14.2 14.4 54.2 53.5 43.0 43.4
.01 14.6 13.5 6.9 6.9 40.5 39.9 29.2 29.6

.15 .10 38.8 37.3 28.2 28.4 73.8 73.4 67.3 67.6
.05 31.4 30.0 20.6 20.5 67.4 67.0 59.4 59.9
.01 18.9 17.8 10.4 10.6 55.6 54.8 45.6 45.9

.20 .10 47.1 45.7 36.4 36.7 82.6 82.4 79.1 79.4
.05 38.3 37.1 26.9 27.2 77.4 77.0 72.4 72.7
.01 25.5 24.2 14.9 15.1 67.4 66.8 59.2 59.6

50 0 .10 35.7 34.5 10.6 10.6 40.0 39.7 11.5 11.6
.05 27.2 25.4 6.5 6.5 31.7 31.4 7.0 7.1
.01 16.0 15.0 2.4 2.4 20.0 19.7 3.0 3.1

.05 .10 52.4 50.9 24.8 25.2 79.2 78.8 56.2 56.7
.05 43.8 42.1 16.6 17.0 71.8 71.3 46.0 46.5
.01 29.3 27.6 7.7 7.7 58.8 58.0 28.8 29.3

.10 .10 67.8 66.4 42.8 43.2 93.7 93.5 85.5 85.9
.05 58.7 56.7 32.1 32.5 90.5 90.3 79.4 79.8
.01 43.4 41.4 17.1 17.4 82.9 82.4 66.1 66.6

.15 .10 78.1 77.1 58.1 58.7 98.5 98.5 96.5 96.7
.05 70.9 69.4 47.3 48.0 97.6 97.6 94.2 94.4
.01 57.0 54.7 30.6 31.1 94.4 94.1 87.2 87.6

.20 .10 84.6 83.8 70.4 70.9 99.6 99.6 99.1 99.0
.05 78.4 76.8 60.7 61.2 99.1 99.1 98.4 98.4
.01 65.3 63.3 43.0 43.7 97.9 97.9 95.4 95.5

Note: k is the number of groups (individuals) and ni is the number of observations per group (individual)
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Table 3.10: Epileptic seizures counts for 59 epileptics obtained from a placebo-controlled
clinical trial of an anti-epileptic drug

Patient ID Treatment Age Baseline First 2 week Second 2 week Third 2 week Fourth 2 week
1 0 31 11 5 3 3 3
2 0 30 11 3 5 3 3
3 0 25 6 2 4 0 5
4 0 36 8 4 4 1 4
5 0 22 66 7 18 9 21
6 0 29 27 5 2 8 7
7 0 31 12 6 4 0 2
8 0 36 52 40 20 23 12
9 0 37 23 5 6 6 5

10 0 28 10 14 13 6 0
11 0 36 52 26 12 6 22
12 0 24 33 12 6 8 5
13 0 28 18 4 4 6 2
14 0 36 42 7 9 12 14
15 0 26 87 16 24 10 9
16 0 26 50 11 0 0 5
17 0 28 18 0 0 3 3
18 0 31 111 37 29 28 29
19 0 32 18 3 5 2 5
20 0 21 20 3 0 6 7
21 0 29 12 3 4 3 4
22 0 21 9 3 4 3 4
23 0 32 17 2 3 3 5
24 0 25 28 8 12 2 8
25 0 30 55 18 24 76 25
26 0 40 9 2 1 2 1
27 0 19 10 3 1 4 2
28 0 22 47 13 15 13 12
29 1 18 76 11 14 9 8
30 1 32 38 8 7 9 4
31 1 20 19 0 4 3 0
32 1 20 10 3 6 1 3
33 1 18 19 2 6 7 4
34 1 24 24 4 3 1 3
35 1 30 31 22 17 19 16
36 1 35 14 5 4 7 4
37 1 57 11 2 4 0 4
38 1 20 67 3 7 7 7
39 1 22 41 4 18 2 5
40 1 28 7 2 1 1 0
41 1 23 22 0 2 4 0
42 1 40 13 5 4 0 3
43 1 43 46 11 14 25 15
44 1 21 36 10 5 3 8
45 1 35 38 19 7 6 7
46 1 25 7 1 1 2 4
47 1 26 36 6 10 8 8
48 1 25 11 2 1 0 0
49 1 22 151 102 65 72 63
50 1 32 22 4 3 2 4
51 1 25 42 8 6 5 7
52 1 35 32 1 3 1 5
53 1 21 56 18 11 28 13
54 1 41 24 6 3 4 0
55 1 32 16 3 5 4 3
56 1 26 22 1 23 19 8
57 1 21 25 2 3 0 1
58 1 36 13 0 0 0 0
59 1 37 12 1 4 3 2



Chapter 3. Score Test of Homogeneity for Over-Dispersed Count Data 71

Table 3.11: Estimated mean and variances (in parentheses) of seizure counts for the
placebo and progabide groups

Group Baseline Week 2 Week 4 Week 6 Week 8
Placebo 30.79 9.36 8.29 8.79 8.00

(681.21) (102.82) (66.58) (215.21) (57.91)
Progabide 31.65 8.58 8.42 8.13 6.74

(783.44) (332.70) (140.66) (192.93) (126.56)

Table 3.12: Estimates of the random patient effects for the epileptic seizures count data

-0.5741 -0.5889 -0.9982 -0.6561 0.8113 0.0283 -0.6109 1.2244 0.0680
-0.1127 1.0044 0.2117 -0.3355 0.6655 1.0613 0.2727 -0.6553 1.6127
-0.3032 -0.3875 -0.5683 -0.7968 -0.3921 0.1309 1.4293 -0.8858 -0.9480
0.6215 0.8029 0.4433 -0.6268 -0.7366 -0.3052 -0.2921 0.8733 -0.1536

-0.2736 0.5755 0.3471 -1.2280 -0.5145 -0.3653 1.1311 0.2125 0.6421
-1.0283 0.3802 -1.0840 2.2146 -0.1714 0.3648 0.0482 0.9151 0.0174
-0.2856 0.4502 -0.4507 -0.9865 -0.5255

Table 3.13: Estimated mean and variance (in parentheses) of skin cancer counts for the
two treatment groups

Treatment Group Year 1 Year 2 Year 3 Year 4 Year 5
Placebo 0.271 0.240 0.247 0.233 0.272

(0.762) (0.477) (0.607) (0.611) (0.716)
Beta Carotene 0.298 0.261 0.286 0.315 0.298

(0.646) (0.457) (1.117) (1.263) (0.803)
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Table 3.14: Estimates of the random patient effects for the skin cancer data

-0.2739 -0.3564 0.6570 1.0631 -0.3273 1.0587 -0.4872 0.1870 0.3588
-0.1708 0.1418 -0.5120 0.6904 -0.2849 0.5818 -0.5441 -0.2144 -0.2356
-0.4964 0.4217 1.2110 -0.2423 0.7035 -0.5089 -0.4804 -0.2263 0.5117
-0.2013 -0.1923 0.0698 0.8892 -0.2312 -0.2468 -0.2076 -0.4478 0.5204
-0.0265 -0.1665 0.2991 -0.4110 0.6423 -0.3991 0.7190 -0.1139 0.2035
-0.2628 -0.4751 -0.2814 0.3359 -0.2111 -0.4255 -0.2569 2.2347 -0.4449
-0.3253 -0.2946 -0.4112 0.6270 -0.3257 1.7871 -0.3297 -0.3350 0.3487
-0.3845 -0.2488 1.0704 0.7222 -0.2423 -0.4222 0.9001 -0.2319 -0.3591
-0.4632 -0.3538 0.7100 0.6033 -0.2044 1.5790 -0.9995 -0.3793 -0.2044
-0.3303 0.4558 1.3072 -0.2350 0.1134 0.4994 -0.2681 -0.2206 -0.2531
0.0555 -0.3412 -0.1351 1.3314 -0.5507 -0.2479 -0.2699 -0.9253 -0.6938
0.5735 0.4954 0.2331 -0.2611 -0.2860 -0.4596 -0.2791 -0.3166 -0.2854
-0.2393 1.5577 -0.1923 -0.1667 1.3684 1.2930 0.3270 -0.4425 -0.2384
-0.3073 -0.3182 -0.2955 0.4301 1.0023 -0.2733 0.7784 -1.8394 -0.2573
-0.2569 1.0634 -0.5906 -0.2384 -0.3227 0.2528 0.1863 -0.3270 -0.2180
0.7679 0.2987 -0.3789 0.1770 -0.5411 -0.4993 0.2528 -0.3361 -0.3397
-0.3739 -0.5276 -0.2211 0.8195 -0.4624 -0.1161 -0.3253 -0.2082 1.1091
0.1878 -0.2534 -0.4588 1.2095 0.3623 -0.2312 -0.2247 -0.2855 0.7510
0.3721 -0.4302 -0.2277 -0.1953 -0.1921 1.3724 1.0686 -0.4282 -0.3481
1.6767 0.3490 -0.0027 1.3611 0.3310 -0.3036 -0.2925 -0.2855 1.0874
-0.1775 -0.2534 -0.3946 -0.2315 0.3299 -0.2731 -0.2486 1.0414 -0.5744
-0.2982 0.2531 -0.4223 0.1924 0.1440 1.7466 -0.3190 -0.3946 0.7251
-0.4478 0.4301 0.3402 0.4837 -0.0241 0.4133 -0.1068 -0.3208 -0.4031
2.1554 -0.3950 -0.2791 -0.3121 -0.2573 1.0885 0.2393 0.8080 0.5396
-0.2808 0.6244 0.2848 -0.3641 0.8609 0.2903 -0.4865 -1.6559 0.3044
-0.2479 -0.4334 -0.5216 -0.6752 -0.4424 -0.7139 -0.4217 -0.4171 -0.3880
-0.4770 -1.6162 -0.0047 -0.4107 -0.3121 0.2348 -0.2865 -0.3033 1.2329
-0.4278 -0.5016 -0.3925 -0.3077 -0.1308 -0.5054 1.3378 0.4794 -0.5949
-0.4286 0.3918 0.3134 -0.3303 0.3524 0.5616 -0.4655 0.2576 0.5685
-0.3350 -0.4409 -0.3292 -0.5242 -0.1834 -0.3564 -0.3320 -0.1682 -0.3822
-0.4416 -0.2144 -0.4008 -0.2628 -0.3629 -0.2460 -0.2420 -0.3046 -0.3249
-0.2875 -0.3738 -0.7979 -0.5774 -0.3860 -0.3845 0.0130 1.2574 -0.3121
-0.1749 0.3224 0.7566 -0.3246 -0.8726 -0.1749 -1.8050 -0.2277 0.2435
-0.3446 -0.2333 -0.2015 -0.3793 -0.3346 -0.2700 1.5688 -0.3109 1.7111
-0.4081 -0.2176 -0.2566 -0.2013 0.5209 -1.1047 1.5045 -0.2248 -0.3443
-0.5178 -0.4166 -0.3765 -0.2481 -0.2420 -0.2143 0.7735 -0.0582 0.4467
-0.3166 -0.2894 1.5915 -0.3135 -0.3565 -0.3589 -0.3282 -0.3900 -0.1862
1.4463 0.3521 -0.2230 -0.4168 -0.5411 -0.1605 -0.4225 -0.0948 -0.2244
-0.4958 -0.3543 -0.3351 0.9180 -0.3318 -0.2247 -0.3258 1.0517 -0.2252
0.4415 0.4339 -0.3540 -0.2390 -0.3158 0.2903 -0.2440 -0.2821 -0.3056
-0.3249 -0.2194 0.8718 -0.2178 -0.1952 0.6345 -0.1956 -0.1615 -0.2466
-0.2317 0.4088 -0.3646 -0.4331 -0.2321 -0.1614 -0.3790 -0.2179 1.2664
0.2202 -0.1720 -0.1983 -0.3077 -0.4227 -0.2472 1.1224 -0.1228 0.6306
1.8646 -0.3899 -0.3037 -0.3258 0.3922 -0.1614 -0.3745 0.2384 -0.2863
-0.4005 -0.2740 -0.3255 -0.3351 -0.5021 0.5194 -0.3375 -0.1864 1.1010
-0.1720 0.4422 0.2941 -0.3003 -0.1349 -0.2654 -0.2240 -0.3074 0.4755
-0.5309 0.5828 0.3473 -0.3214 -0.2320 0.5643 1.0727 1.2665 0.8568
0.9189 -0.3314 -0.2247 -0.2754 1.5633 -0.1553 -0.4238 2.0987 0.7603
-0.1721 -0.5021 1.5795 -0.5051 -0.2728 -0.7041 1.6108 -0.2015 -0.7594
-1.9591 0.7746 1.0644 -0.2214 0.9678 -0.3709 0.2903 -0.4395 -0.2894
1.5200 -0.4655 -0.6215 1.5588 -0.7280 -0.0981 -0.2582 0.9200 1.6445
-0.6130 -0.4350 1.2926 0.3916 1.9082 -0.2546 -0.3860 0.5925 -0.5087
-0.3850 1.0303 1.5632 0.7812 -0.3445 -0.4749 -0.6410 -0.2318 -0.2849
-0.3605 -0.2356 -0.2794 -0.3718 -0.6193 -0.3367 -0.3166 -0.1957 1.4642
2.6853 0.3428 -0.2620 1.9788 -0.3200 0.7259 0.6188 -0.1101 0.7886
-0.3969 0.6494 0.4384 -0.1738 0.5331 1.7004 0.5375 0.7307 -0.0500
0.9450 -0.1754 1.8445 0.7196 0.3697 -0.3838 0.5828 0.8945 -0.1060
0.9199 -0.1456 -0.4183 -1.0985 1.3945 -0.3319 1.2531 -0.9199 -0.3253
-0.3080 -0.1244 1.0578 -0.6830 1.1519 1.3960 -0.4107 0.1141 -0.4426
0.2610 0.8565 2.2265 1.2868 0.4298 0.0641 1.0923 1.1821 -0.1896
0.6174 -1.0745 -0.1253 -0.8338 -0.3303 1.8262 0.3001 -0.3164 -0.3952
-0.4748 -0.9093 1.0201 -0.2286 -0.6981 -0.0653 -0.6620 -0.4171 1.2203
-0.4162 -0.8717 -0.2737 -0.0051 -0.5447 0.9303 -0.0990 0.2348 0.1685
-0.1192 -0.3257 0.3174 -0.1303 0.5002 -0.4654 1.4525 -0.4111 -1.1766
1.5720 0.9339 -0.3637 0.2438 0.3870 0.5159 -0.4059 0.2790 1.0303
1.5438 -0.4444 1.4303 0.3854 -1.7313 -0.3445 0.2247 0.7842 0.9912
1.5764 1.3946 -0.3077 -0.1380 1.8640 -0.4274 1.6888 -0.2029 -0.3591
-0.3689 0.2852 2.0541 -0.5466 -0.2875 0.3954 0.2846 -0.0279 0.2846
-0.5619 0.2442 0.4619 1.6765 0.5571 0.1871 1.4720 0.5189 0.4052
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Table 3.15: Estimates of the random patient effects for the skin cancer data

-0.4804 0.6894 -1.5417 -0.4062 0.3568 -0.7024 0.7034 -0.3477 1.7568
-0.9340 -0.9990 -0.3928 1.1246 0.8226 1.3658 -0.2184 0.7290 2.0784
-0.1689 0.4716 -0.4363 1.8167 0.3438 -0.2536 0.7874 0.8423 1.5733
0.5999 1.1341 -0.2885 0.1442 -0.4931 1.8956 -0.5154 -0.9524 0.6274
1.2025 -0.6099 1.2772 -0.2814 -0.2761 -0.1920 -0.3902 1.1874 -0.5992
2.2305 1.2485 -0.2660 -0.3609 1.8550 0.0881 1.6640 -0.1751 -0.1897
-0.1262 -0.2212 -0.2653 -0.2356 -0.1660 0.3480 -0.2132 -0.4729 0.8415
-0.3977 -0.2172 -0.3357 -0.2882 -0.1286 -0.5146 -0.1477 -0.2621 0.3026
-0.3902 -0.2252 -0.1191 1.3042 -0.1972 -0.4354 1.0900 -0.3145 1.6674
1.2654 -0.4256 0.8066 1.6954 2.4975 0.5614 1.2494 -0.3894 1.2923
-0.4166 0.8473 0.7627 -0.1284 0.5451 1.4410 -0.2345 0.1480 -0.3850
-0.3074 -0.3122 -0.2244 0.9331 -0.3842 0.5422 -0.2285 0.5903 1.0117
-0.2678 0.6232 1.9265 -0.1767 -0.3060 0.4381 -0.2338 -0.2447 -0.8598
-0.4924 0.7784 0.3571 -0.8026 -0.3493 -0.3542 0.6164 -0.2417 -1.0820
0.1181 -0.4065 -0.1685 -0.6522 -0.1617 0.9015 0.2886 0.2455 0.7891
-0.3845 1.8920 0.7311 0.4719 0.2804 1.6802 -0.4569 1.5958 -0.5307
-0.7865 1.8741 -0.4483 -0.3825 1.5181 -0.6696 0.3832 -0.3303 0.4088
-0.4710 3.2535 -0.6053 -0.3397 0.8640 -0.0603 0.8262 -0.3166 -0.1923
0.8520 0.3571 -0.5271 1.1992 -0.3281 0.3402 -0.0932 -1.2577 0.6291
-0.7058 -0.5541 -0.3350 -0.6981 0.4133 0.1280 -0.4453 0.4116 0.1527
-0.1754 -0.2211 0.8075 1.4850 0.6364 -0.4452 -0.6124 -0.2897 1.2759
-0.3077 -0.4253 -0.4474 -0.3144 -0.5472 1.0607 1.4299 -0.2913 -0.5411
0.5253 0.9129 -0.4368 -0.3641 0.6586 -0.0885 2.5784 0.0776 -0.2520
-0.4939 0.8986 0.5427 -0.1696 1.7756 -0.2855 -0.3587 -0.3596 -0.2313
0.1082 -0.5242 -0.1921 -0.5608 0.7105 -0.2534 -0.1972 -0.3493 -0.3589
-0.4368 2.4633 -0.3730 -0.2700 0.3912 -0.3303 -0.4532 -0.1233 0.7129
-0.3372 0.4669 1.0378 -0.3489 -0.4008 0.7959 -0.2424 -0.2181 0.0040
1.2559 -0.5380 -0.5544 -0.4865 0.0426 1.3152 0.5362 -0.5879 2.0881
0.8126 -0.4746 -0.3255 -0.4330 1.2071 0.6857 0.5493 -0.2582 1.2084
0.1521 0.7242 0.5040 0.6771 1.7064 0.0122 1.3537 -0.4391 -0.3031
-0.2082 -0.3033 0.0122 0.2713 0.0130 -0.4279 0.9217 1.1858 1.1667
1.0647 0.3805 -0.3793 -0.4227 -0.3494 1.4410 0.3260 1.9844 0.8089
-0.5472 0.0641 0.4196 1.4142 -0.2572 -0.4117 -0.1195 0.3256 -0.4009
1.1920 -0.3583 -0.3795 -0.4269 -0.4683 -0.3769 -0.3565 -0.4336 2.0455
-0.6517 0.3883 -0.1921 -0.1494 0.6549 0.1474 0.2111 -0.3074 -0.4386
-0.3304 -0.3952 1.5403 -1.2143 -0.3013 0.2104 0.6462 -0.1015 0.4635
0.1928 1.1664 -0.2146 2.5345 -0.3121 -0.1776 -0.3303 -0.2316 -0.6161
0.3345 1.1834 -0.3445 0.6664 0.7789 -0.3350 0.4149 -0.3798 0.2052
-0.4453 -0.2262 -0.3789 -0.3209 1.0301 0.5353 1.0541 -0.5477 0.9283
1.7544 -0.3519 -0.2917 0.6773 -0.2931 -0.2853 -0.2658 0.3349 -0.1775
-0.3850 -0.1835 0.3788 -0.4059 1.0764 -0.2113 -0.4626 2.5158 1.0652
-0.1233 0.3532 -0.3691 0.1577 -0.2652 0.1584 -0.0659 1.3256 -0.1764
-0.3200 -0.4282 -0.3746 0.4513 1.2468 -0.3033 1.0788 -0.4036 -0.4391
-0.1749 -0.2777 0.0782 -0.3211 -0.1982 0.5191 -0.5539 -0.2087 0.5234
-0.4743 1.6101 -0.3211 0.4948 -0.3350 1.6616 -0.3493 0.6671 -0.2430
1.3085 -0.3068 -0.3797 1.0430 -0.1468 0.3490 0.5801 1.3861 -0.3591
0.6904 0.2542 -0.5242 -0.5051 -0.4226 0.8845 -0.2423 -0.3331 1.0852
-0.2114 -0.4003 -0.2162 -0.2109 0.8597 -0.4860 0.3117 -0.4687 -0.2229
-0.5307 -0.2731 0.3710 -0.5604 -0.1667 -0.4657 -0.3048 -0.3530 -0.1923
-0.1777 -0.2659 -0.1832 0.2542 -0.3211 -0.1542 -0.1832 0.4630 2.6129
-0.1958 -0.3238 2.0929 0.2103 0.3791 -0.3029 -0.3950 -0.1861 1.8529
-0.3969 0.5269 -0.1982 1.4817 0.2110 -0.2114 -0.4777 -0.4029 -0.5472
-0.2699 -0.2575 -0.3701 0.3483 0.7575 -0.2763 0.9858 -0.4112 1.5424
-0.3208 -0.2406 -0.3999 -0.6161 -0.3901 2.1161 -0.5474 0.4931 -0.2348
-0.3350 0.9405 -0.2229 -0.4645 -0.5245 -0.5021 -0.3999 1.1697 0.4048
-0.5084 0.5263 -0.4483 -0.2670 -0.3891 -0.3316 -0.4683 -0.3026 1.7740
-0.2885 -0.5512 1.1926 -0.3303 -0.4167 -0.3166 -0.3591 -0.3158 -0.0394
1.3411 -0.3978 0.5818 -0.3036 -0.3397 -0.2531 0.3623 0.5423 -0.4162
1.1136 -0.4717 0.2903 -0.3901 -0.2620 -0.3538 -0.3493 -0.2109 -0.2079
-0.4444 -0.2015 -0.4444 -0.2874 -0.1803 1.4191 -0.0607 -0.3092 -0.4391
-0.2315 -0.3696 -0.4425 -0.0757 0.3127 -0.4226 0.9258 -0.3841 0.4156
0.9243 2.1077 -0.2777 1.6520 -0.4101 -0.1588 -0.3175 0.9597 -0.2690
1.0484 -0.5544 -0.2423 -0.3864 0.7077 0.7196 -0.2534 1.3076 0.1936
0.3306 -0.3266 1.8073 0.6459 -0.4892 0.6057 -0.0633 2.4430 -0.3386
0.0118 0.2251 -0.2175 0.7911 -0.1749 -0.5528 0.8267 0.3270 -0.4280
-0.2209 -0.2894 1.9566 -0.2109 -0.3397 -0.5089 2.0875 -0.3978 0.0782
-0.4624 -0.3253 -0.2014 -0.4222 -0.2468 -0.2214 -0.1861 2.0478 -0.2209
-0.2211 -0.1953 -0.7104 -1.0790 -0.3437 -0.2180 -0.2109 1.2703 1.5684
1.5683 -0.2989 2.8070 -0.4853 -0.2248 -0.3841 -0.3841 0.6775 -0.2049
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Table 3.16: Estimates of the random patient effects for the skin cancer data

-0.5541 -0.2946 -0.2658 0.0388 -0.2476 1.8067 -0.2905 -0.2778 -0.4282
1.1749 -0.2087 -0.5116 -0.2623 -0.3255 -0.2987 -0.2286 -0.1746 1.6168
-0.1305 -0.3013 0.3870 0.6608 -0.5949 1.1185 -0.2287 -0.3845 -0.2905
0.9122 0.9252 0.8650 -0.1907 -0.3589 -0.2386 -0.5242 1.5820 -0.4453
-0.1088 -0.5769 -0.3547 -0.4685 -0.4334 -0.3841 2.3115 -0.1926 1.1711
-0.1696 -0.2405 0.4039 1.6864 1.2415 -0.2906 -0.2943 -0.3274 -0.4059
1.2664 2.1429 -0.2444 -0.3581 -0.2944 -0.1990 1.5599 -0.2829 0.6803
1.0845 -0.1669 -0.2778 0.6523 -0.2582 0.6674 -0.2821 -0.1925 -0.4055
-0.4395 -0.2467 0.9180 -0.2324 -0.2286 -0.3258 0.7812 -0.2821 -0.3225
-0.2506 -0.2420 -0.4081 0.3524 1.4995 -0.3133 1.1244 -0.2639 -0.1747
1.6299 -0.2780 -0.3643 -0.4359 -0.0927 -0.4053 0.5122 -0.4107 -0.2386
-0.4195 -0.0247 -0.3227 0.9633 -0.3449 -0.4739 -0.2534 1.3176 1.7635
1.3708 0.6877 0.5512 -0.2714 -0.6538 -0.2243 -0.2299 0.4997 -0.1893
-0.1959 -0.1551 0.3795 -0.7984 -0.3739 1.0361 -0.5218 -0.4227 -0.5813
-0.4005 -0.3301 -0.1223 -0.3104 -0.4426 -0.5509 -0.3547 -0.1685 0.7728
1.9205 2.0111 -0.4201 -0.3589 -0.2660 -0.3952 -0.3495 0.3782 0.6527
0.2058 0.2394 -0.3646 -0.5548 -0.3665 0.2108 -0.3798 -0.6242 -0.2145
0.3733 -0.2697 -0.2700 0.6758 -0.2580 0.4740 1.3915 -0.2821 -0.4688
-0.4871 -0.3165 0.9328 0.3695 0.3563 -0.3498 -0.3122 0.9511 0.4459
-0.3646 -0.5509 -0.2045 2.6204 -0.1563 -0.1840 1.3818 -0.2467 0.3432
0.4553 -0.2495 -0.2099 -0.3236 -0.2360 -0.3036 -0.1779 1.9586 -0.3387
-0.0540 0.3704 -0.0467 0.5129 -0.2212 0.4946 1.3734 0.1183 -0.0391
-0.1474 0.5993 1.4327 0.4299 -0.2145 -0.1513 -0.1959 -0.3615 -0.2004
-0.1162 -0.2902 -0.3161 0.7227 -0.2949 0.8205 -0.3093 0.3836 -0.2542
-0.1587 0.5503 -0.1441 -0.1694 -0.2660 -0.4745 -0.2227 -0.2580 -0.2536
-0.2227 -0.4061 -0.3119 -0.3795 -0.4716 -0.1756 -0.2018 -0.5784 -0.0662
-0.2283 -0.2082 -0.2931 0.5796 -0.2048 -0.3825 -0.4841 0.3303 -0.2211
-0.1692 -0.3142 -0.2087 -0.2660 -0.2580 -0.2335 0.3986 -0.2322 0.5951
-0.1551 0.3524 -0.2860 -0.3304 -0.2218 -0.3643 1.7575 -0.2181 -0.4391
-0.3429 -0.4369 0.4541 0.8258 2.5534 -0.2580 -0.4484 0.3701 0.6948
-0.3598 -0.2990 -0.2181 -0.2731 0.3881 -0.2118 -0.4221 -0.2283 1.8717
-0.2602 0.2848 -0.2894 0.2300 1.4019 -0.3744 1.5497 -0.2506 0.8449
-0.3745 -0.2477 -0.1667 -0.2085 -0.2394 1.0500 0.3071 -0.3693 0.7144
-0.4283 -0.4277 -0.2595 -0.3212 -0.4062 -0.3209 -0.3449 -0.3791 -0.2352
-0.2106 -0.5481 -0.4961 -0.2082 -0.2254 -0.1692 -0.2247 0.5116 -0.2032
-0.5251 -0.1488 0.8367 -0.1163 0.6732 -0.1640 1.1920 -0.3420 -0.7809
-0.1338 0.7099 0.2153 -0.2463 -0.1634 0.7079 -0.2184 -0.4140 -0.2143
0.4904 -0.2426 -0.1749 -0.5546 0.8479 0.7327 1.5108 -0.1828 2.6167
-0.1480 0.5901 1.0283 -0.1484 -0.1743 1.4104 -0.2132 -0.2165 0.8107
-0.3747 0.6269 -0.1456 -0.1979 -0.1978 0.1079 1.6414 -0.2042 -0.2821
-0.1661 1.1746 -0.1430 -0.2761 -0.4068 -0.1978 -0.2784 -0.2704 -0.2975
1.4298 -0.2561 -0.2035 0.6676 -0.1723 -0.1504 0.4836 0.7436 -0.2072
-0.2074 -0.2225 -0.1453 -0.1232 -1.1996 1.1109 -0.1274 -0.1850 -0.2380
-0.1454 -0.1317 -0.2216 -0.2137 -0.1995 -0.2175 -0.1263 -0.1115 -0.1642
-0.2697 -0.1253 -0.2548 1.4584 1.9987 -0.1828 -0.5086 1.4286 -0.2240
1.0065 -0.5260 -0.2723 -0.2452 -0.3523 0.4904 1.3928 0.7719 -0.1942
0.5804 -0.1453 -0.2558 -0.1202 -0.2932 -0.2010 2.4072 -0.1695 -0.2204
1.0801 -0.1716 0.6685 -0.1941 -0.3669 -0.3598 -0.0409 -0.1882 -0.1661
-0.2275 2.2664 -0.4087 1.0484 0.8685 -0.2004 -0.2310 0.6198 -0.1383



Chapter 4

Test for Presence of Over-Dispersion

In Chapter 3 we developed score tests for homogeneity between and within groups for

over-dispersed clustered count data. However, in practice, in some situations, the data

may not be over-dispersed. In this chapter we develop two score tests for over-dispersion

in generalized linear mixed effects model. One of these is based on the over-dispersed

generalized linear mixed effects model of Cox (1983) and the other is based on the

negative binomial mixed effects model.

4.1 Test based on the over-dispersed generalized lin-

ear model (OGLM)

The probability density function that we assume for Yij is the exponential family

f(Yij; θij) = exp{[Yijθij − g(θij)] + C(Yij)}, (4.1)

with the parameters as defined in Section 3.1. To construct the extended family, let the

density of Yij given θ∗ij be f(Yij|θ∗ij) as given by (4.1), where the θ∗ij’s are continuous

independently distributed with finite mean

E(θ∗ij) = θij(x
T
ij; β)

75
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and variance

var(θ∗ij) = τb(θij) > 0.

We assume that

E{(θ∗ij − θij)
r} = αr; αr = o(τ), r ≥ 3.

In the limit as τ → 0, this model reduces to natural exponential family.

The probability density function of Yij in the mixed model is fM(Yij) = E∗{f(Yij; θ
∗
ij)},

where E∗ denotes expectations over the distribution of θ∗ij. By expanding f(Yij; θ
∗
ij) in

a Taylor series about θij (see Cox (1983) and Chesher (1984)) and taking expectations

we obtain

fM(Yij) = f(Yij; θij)

{
1 +

∞∑
r=2

αr

r!
Dr(Yij; θij)

}
,

where

Dr(Yij; θij) =

{
∂(r)

∂θ
∗(r)
ij

f(Yij; θ
∗
ij)|θ∗ij=θij

}
{f(Yij; θij)}−1.

Further, for small τ and r = 2 we have

f2(Yij; θij, τ) = f(Yij; θij){1 +
α2

2!
D2(Yij; θij)}

= f(Yij; θij){1 +
1

2
τb(θij)D2(Yij; θij)}. (4.2)

For tractability, in most practical applications the above form given by (4.2) is used as

an approximation to the generalized linear mixed model (see Cox, 1983; Dean, 1992 and

Deng and Paul, 2005).

Now, the contribution to the log-likelihood function for the ith group is

li =

ni∑
j=1

log fij(Yij; θij) +

ni∑
j=1

log

{
1 +

1

2
τb(θij)D2(Yij; θij) +

∞∑
r=3

αr

r!
Dr(Yij; θij)

}
.

(4.3)
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Now

D2(Yij; θij) =
1

f(Yij; θij)

∂2

∂θ∗2ij

f(Yij; θ
∗
ij)|θ∗ij=θij

=

(
∂ log fij(Yij; θ

∗
ij)

∂θ∗ij
|θ∗ij=θij

)2

+
∂2 log fij(Yij; θ

∗
ij)

∂θ∗2ij

|θ∗ij=θij
.

Further,

log fij(Yij; θ
∗
ij) = Yijθ

∗
ij − g(θ∗ij) + C(Yij),

∂ log fij(Yij; θ
∗
ij)

∂θ∗ij
= Yij − g′(θ∗ij)

and
∂2 log fij(Yij; θ

∗
ij)

∂θ∗2ij

= −g′′(θ∗ij).

Therefore

D2(Yij; θij) = (Yij − g′(θij))
2 − g′′(θij).

Then, the log-likelihood li given in (4.3) becomes

li =

ni∑
j=1

log fij(Yij; θij) +
τ

2

ni∑
j=1

b(θij)
{
(Yij − g′(θij))

2 − g′′(θij)
}

+ O(τ)

=

ni∑
j=1

{[Yijθij − g(θij)] + C(Yij)}+
τ

2

ni∑
j=1

b(θij)
{
(Yij − g′(θij))

2 − g′′(θij)
}

+ O(τ),

(4.4)

where O(τ) is a higher order function of τ (τ 2, τ 3, etc.)

Suppose again that with independent responses Yij we have a p × 1 vector of co-

variates Xij, j = 1, 2, . . . , ni, i = 1, 2, . . . , k. Now, we assume the log-linear model,

θij = log µij = XT
ijβ and θ∗ij = XT

ijβ + αi, where the αi’s are iid random variables with

E(αi) = 0, Var(αi) = τ < ∞. Thus, E(θ∗ij) = XT
ijβ, Var(θ∗ij) = τ and b(θij) = 1. Then

it can be shown that the score function for testing over-dispersion, that is, for testing
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H0 : τ = 0 against the alternative HA : τ > 0 is given by

S(β) =
k∑

i=1

∂li
∂τ

∣∣∣∣
τ=0

=
1

2

k∑
i=1

{
ni∑

j=1

(Yij − µij)
2 −

ni∑
j=1

µij

}
.

The asymptotic variance of the statistic S can be obtained as (Cox and Hinkley, 1974)

I = Iττ − IτβI−1
ββ IT

τβ,

where

Iττ =
k∑

i=1

E

[
∂li
∂τ

∣∣∣∣
τ=0

]2

, Iββ =
k∑

i=1

E

[(
∂li
∂β

∣∣∣∣
τ=0

)(
∂li
∂β

∣∣∣∣
τ=0

)T
]

,

and

Iτβ =
k∑

i=1

E

[(
∂li
∂τ

∣∣∣∣
τ=0

)(
∂li
∂β

∣∣∣∣
τ=0

)T
]

.

Evaluating the expected values in Iττ , Iββ and Iτβ, simplifying and replacing the param-

eter β by its maximum likelihood estimate β̂ under the null hypothesis, the score test

statistic for testing over-dispersion in clustered count data is obtained as

T = S2(β̂)/[Îττ − Îτβ Î−1
ββ ÎT

τβ],

where

S(β̂) = =
1

2

k∑
i=1

{
ni∑

j=1

(Yij − µ̂ij)
2 −

ni∑
j=1

µ̂ij

}
,

Îττ =
1

4

k∑
i=1

ni∑
j=1

(
µ̂ij + 2µ̂2

ij

)
,

Îββ =
k∑

i=1

ni∑
j=1

µ̂ijXijX
T
ij

and

Îτβ =
1

2

k∑
i=1

ni∑
j=1

µ̂ijX
T
ij ,



Chapter 4. Test for Presence of Over-Dispersion 79

where µ̂ij = eXT
ij β̂ and β̂ is the maximum likelihood estimate of β, under the Poisson

regression model, which can be obtained by Fisher scoring method. Asymptotically, as

k →∞, T has a chi-square distribution with one degree of freedom.

4.2 Test based on the negative binomial model

Now we assume that the data Yij, j = 1, 2, . . . , ni, i = 1, 2, . . . , k come from the negative

binomial model

f(yij; µij, ci) =
Γ(yij + c−1

i )

yij! Γc−1
i

(
1

1 + ciµij(x)

)c−1
i

(
ciµij(x)

1 + ciµij(x))

)yij

, (4.5)

given by equation (3.10). We assume a common over-dispersion parameter c, that is,

c1 = c2 = . . . = ck = c. Further, we assume the mixed effects model

θij = log(µij) = XT
ijβ + αi, (4.6)

where β is a vector of p unknown regression parameters and αi’s are iid random variables

having a normal distribution with mean zero and variance D. The log-likelihood function

for the ith group is given by

li(β, c) = log

∫ ni∏
j=1

fij(yij; β, c|αi)f(αi)dαi, (4.7)

where

log fij(yij; β, c|αi) =

[
yij−1∑

l=0

log(1 + cl) + yij(X
T
ijβ + αi)− (yij + c−1) log

(
1 + ceXT

ijβ+αi

)]
.

(4.8)

Our purpose is to test H0 : c = 0 against the alternative HA : c > 0. To obtain the

score function we need to integrate out αi from (4.7). However, in practice, it is difficult

to carry out the integration. So instead we use (4.8) to obtain the log-likelihood and
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develop the score test for given αi. That is, for the development of the score test we

consider β to be a nuisance parameter and αi to be known. We deal with the issue of

αi being random later in this chapter. The resulting log-likelihood of β and c for given

αi is

l =
k∑

i=1

ni∑
j=1

log fij(yij; β, c|αi)

=
k∑

i=1

ni∑
j=1

[
yij−1∑

l=0

log(1 + cl) + yij(X
T
ijβ + αi)− (yij + c−1) log

(
1 + ceXT

ijβ+αi

)]
.

(4.9)

Then the score function for testing H0 : c = 0 is obtained as (see also Collings and

Margolin, 1985)

Sc =
∂l

∂c

∣∣∣∣
c=0

=
k∑

i=1

ni∑
j=1

∂ log

∂c
fij(yij; β, c|αi)

∣∣∣∣
c=0

=
k∑

i=1

ni∑
j=1

{
(µ2

ij − 2µijyij)/2 +

yij−1∑

l=0

l

}

=
k∑

i=1

ni∑
j=1

{
yij(yij − 1)

2
+ (µ2

ij − 2µijyij)/2

}

=
1

2

k∑
i=1

ni∑
j=1

{(yij − µij)
2 − yij}

=
1

2

k∑
i=1

ni∑
j=1

{(yij − eXT
ijβ+αi)2 − yij}. (4.10)
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So, the score test statistic for testing H0 : c = 0 is Tc = S2
c /I, where

I = Icc − IcβI−1
ββ IT

cβ,

Icc = E

[
∂l

∂c

∣∣∣∣
c=0

]2

,

Icβ = E

( −∂2l

∂c∂β

∣∣∣∣
c=0

)
is a 1× p vector

and

Iββ = E

( −∂2l

∂βs∂βr

∣∣∣∣
c=0

)
is a p× p matrix.

Now

E

(
∂

∂c

ni∑
j=1

log fij

)2

=
1

4
E

[
ni∑

j=1

(yij − µij)
2 −

ni∑
j=1

yij

]2

=
1

4
E




{
ni∑

j=1

(yij − µij)
2

}2

+

(
ni∑

j=1

yij

)2

− 2

ni∑
j=1

(yij − µij)
2yij




=
1

4
E

[
ni∑

j=1

(yij − µij)
4 +

ni∑
j=1

ni∑

j 6=j′
(yij − µij)

2(yij′ − µij′)
2 +

ni∑
j=1

y2
ij

+

ni∑
j=1

ni∑

j 6=j′
yijyij′ − 2

ni∑
j=1

(yij − µij)
2yij

]
,

E

(
∂2

∂c∂β

ni∑
j=1

log fij

)
= E

ni∑
j=1

(yij − µij)(−µijX
T
ij),

and

E

(
∂2

∂βs∂βr

ni∑
j=1

log fij

)
= −E

ni∑
j=1

µijXijX
T
ij

After detailed calculations using the first four moments of the Poisson distribution
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in the above expressions it can be shown that

Icc =
1

2

k∑
i=1

(
ni∑

j=1

µ2
ij +

ni∑
j=1

ni∑

j′ 6=j

µijµij′

)
,

Icβ = 0

and

Iββ =
k∑

i=1

ni∑
j=1

µijXijX
T
ij .

Then, the score test statistic Tc can be written as Tc = Ŝ2
c /Îcc, where

Îcc =
1

2

k∑
i=1

(
ni∑

j=1

µ̂2
ij +

ni∑
j=1

ni∑

j′ 6=j

µ̂ijµ̂ij′

)
, µ̂ij = eXT

ij β̂+αi

and β̂ is the maximum likelihood estimator of β under the null hypothesis. Asymptoti-

cally, as k →∞, Tc has a chi-square distribution with one degree of freedom.

Note that the above results are based on αi being known. However, since αi’s are

random effects these should have been integrated out of (4.7). As indicated earlier such

integration is difficult to carry out. So we replace these by their estimates. One way of

obtaining estimates of the random effects is through using an empirical Bayes procedure

(see Collet, 2003). The maximum likelihood estimates of β and the empirical Bayes

estimates of αi under the null hypothesis are given in what follows.

4.2.1 Estimation of the parameter β under the null hypothesis

Note that the mixed effects model (4.6) can be written as

log(µij) = XT
ijβ +

√
Dvi, (4.11)

where vi has a standard normal distribution. Now define ηij = XT
ijβ for the linear

component of the model obtained from the fixed effects, then (4.11) becomes log(µij) =
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ηij +
√

Dvi. The kernel of the likelihood for β,D and vi, i = 1, 2, . . . , k, for Poisson data

is given by

L = L(β, D, v1, v2, . . . , vk)

=
k∏

i=1

ni∏
j=1

[exp{Yij log(µij)− µij}] ,

=
k∏

i=1

ni∏
j=1

[
exp{Yij(ηij +

√
Dvi)− exp(ηij +

√
Dvi)}

]
. (4.12)

Further, since vi is a random variable it needs to be integrated out. Then the likelihood

function for β and D can be written as

L(β, D) =
k∏

i=1

∫ ∞

−∞

ni∏
j=1

[
exp{Yij(ηij +

√
Dvi)− exp(ηij +

√
Dvi)}

] exp(−v2
i /2)√

2π
dvi.

(4.13)

The likelihood function (4.13) has (p+1) unknown parameters β1, . . . , βp and D. Maxi-

mum likelihood estimates of the parameters β and D are obtained by maximizing (4.13).

The integration in (4.13) is difficult to carry out. However, this can be evaluated ap-

proximately by using Gauss-Hermite formula for numerical integration. Therefore, the

marginal likelihood function (4.13) becomes

π−N/2

k∏
i=1

ni∏
j=1

m∑
r=1

wr

[
exp{Yij(ηij +

√
Dsr

√
2)− exp(ηij +

√
Dsr

√
2)}

]
, (4.14)

where w1, w2, . . . , wm are the weights with

wr =
2m−1m!

√
π

m2[Hm−1(sr)]2
,

m is the number of quadrature points and s1, s2, . . . , sm are the roots of the Hermite

polynomial Hm(s) given by

Hm(s) = (−1)mes2/2 dm

dsm
e−s2/2.
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The evaluation points sr (abscissas) and weights wr are given in Table 25.10 of Abramowitz

and Stegun (1972).

The values β̂ and D̂, which maximizes (4.14), or its logarithm, can then be determined

numerically. The computer package SAS procedure GLIMMIX or R function glmmML

can be used to evaluate equation (4.14).

4.2.2 Estimation of the random effects αi

From equation (4.13) the joint posterior density of v1, . . . , vk, given β̂ and D̂, the maxi-

mum likelihood estimates of β and D obtained in Section 4.2.1, is proportional to

k∏
i=1

ni∏
j=1

[
exp{Yij(η̂ij +

√
D̂vi)− exp(η̂ij +

√
D̂vi)}

] exp(−v2
i /2)√

2π
, (4.15)

where η̂ij = XT
ij β̂.

Now, the log of the ith term of (4.15) is given by

li(β̂, D̂, vi) = Constant +

ni∑
j=1

[
Yij(η̂ij +

√
D̂vi)− exp(η̂ij +

√
D̂vi)

]
− v2

i

2
. (4.16)

The empirical Bayes estimate v̂i of vi is obtained by solving ∂li(β̂,D̂,vi)
∂vi

= 0. This is

equivalent to obtaining v̂i by solving

√
D̂

ni∑
j=1

exp(η̂ij +
√

D̂vi) + v̂i =
√

D̂

ni∑
j=1

Yij.

This non-linear equation is to be solved by using a numerical method. The empirical

Bayes estimate of αi then is α̂i =
√

D̂v̂i.

It is interesting to note that we obtain the same test statistic as given above for

testing c = 0 obtained by using the double extended quasi-likelihood given in (3.14).
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4.3 Simulation study

In this section we conduct a simulation study to compare level properties of the test

statistics T and Tc. Simulations for power properties of these statistics will be conducted

in a future study. To estimate the type I error rate of the test statistic T , samples have

been generated from the Poisson log-linear model with

log(µij) = 0.8x1ij + 0.5x2i − 0.5, (4.17)

for i = 1, 2, . . . , k and j = 1, 2, . . . , ni. The variable x1 is subject-specific and x2 is group-

specific and is simulated from the standard normal distribution. Similarly, to estimate

the type I error of the test statistic Tc we obtain samples from the Poisson log-linear

model with

log(µij) = −0.5 + 0.8x1ij + 0.5x2i + αi, (4.18)

where αi’s are normal with mean zero and variance D, and x1 and x2 are the same as

above.

Two sets of data are simulated from each model assuming homogeneous and het-

erogeneous inner group sizes (= ni) with different number of groups/subjects (k). The

samples comprised k = 10, 20, 50, 100 groups/subjects with ni = 5 observations in the

homogeneous group and ni distributed uniformly between 5 and 20 in the heterogeneous

group. The value of the variance D of the random effects considered was D = 1, al-

though from our experience other values of D produce similar empirical type I error rates

which is expected. Each simulation experiment was based on 10,000 replicated samples.

Results of the estimated type I error of the two tests are given in Table 4.1. The results

in Table 4.1 show better level performance of the statistic T than its counterpart Tc.
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Table 4.1: Estimated Type I error of the tests T and Tc when data are generated from
the Poisson distribution. Levels considered are 10%, 5% and 1%

k α ni = 5 5 ≤ ni ≤ 20
T Tc T Tc

10 0.10 3.5 4.1 3.3 3.4
0.05 1.8 3.8 1.9 3.1
0.01 0.7 3.3 0.6 2.5

20 0.10 4.9 6.2 4.4 10.2
0.05 2.7 4.5 2.5 10.0
0.01 0.7 2.9 0.8 9.9

50 0.10 6.3 17.6 6.0 0.6
0.05 3.1 17.5 3.4 0.6
0.01 0.7 17.5 1.0 0.6

100 0.10 6.7 3.2 6.9 4.9
0.05 3.7 3.1 3.8 4.1
0.01 0.8 3.1 1.0 3.3



Chapter 5

Summary and Conclusions

We derived four score tests for testing homogeneity between and within individuals for

clustered (longitudinal) count data with over-dispersed. Two of these tests, namely, HS

and HSC are based on the over-dispersed generalized linear mixed effects model. The

remaining two tests, HNB and HQL are based on specific over-dispersion models, namely

the negative binomial mixed effects model and the double extended quasi-likelihood

mixed effects model. We also developed two score tests for testing over-dispersion in

clustered count data. One of these was developed using a generalized over-dispersed

mixed effects model given by Cox (1983) and the other was developed using the negative

binomial mixed effects model.

The statistics HS and HSC , in general, show highly inflated level properties, except

when the number of groups k and the over-dispersion parameter c are both small, in

which case the level property of all four statistics are similar. The statistics HNB and

HQL show some conservative level properties, however, as the values of c and k increase,

empirical levels become closer to the nominal. The power of the statistics HS and HSC

are, in general, larger than those of HNB and HQL which is expected. What is interesting

is that as D increases (D > .1), the power of all of the statistics become almost identical,

although empirical levels of the statistics HNB and HQL are close to the nominal and

those of HS and HSC are highly inflated. The power of both the statistics HNB and

HQL are similar in all the cases studied. The statistic HNB is simpler to calculate.
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The level and power properties of all the statistics, in general, remain similar irre-

spective of which mechanism of over-dispersion is used to generate count data. This also

seems to be true irrespective of whether the over-dispersion parameter c is varying or

constant.

For testing homogeneity between and within individuals for clustered (longitudinal)

count data with over-dispersion, our recommendation, then, is to use either HNB or

HQL, although computationally HNB is easier, so it might be preferable in that sense.

For testing the presence of over-dispersion in clustered count data we prefer the statistic

T as it is simpler to calculate and it holds level, in general, closer to the nominal level

than the statistic Tc.



Chapter 6

Future Study: Maximum Likelihood and Bayesian

Estimation

In Chapter 3 we developed score tests for homogeneity between and within groups for

over-dispersed count data, presented simulation results and showed some examples. In

the examples, we saw that the null hypotheses of homogeneity have been rejected which

may be the case in most practical situations. Therefore, estimation of the parameters

under the alternative hypothesis, that is, with heterogeneous data, is needed. In Chapter

3 and Chapter 4 we dealt with the generalized linear mixed effects model and the negative

binomial mixed effects model and used maximum likelihood estimates and empirical

Bayes estimates of the parameters under certain null hypotheses.

The purpose of this chapter is to provide an outline for future study of estimation

of the parameters of the generalized linear mixed effects model with over-dispersion.

We consider maximum likelihood and Bayesian procedures for the estimation of the

regression parameters of the generalized linear mixed effects model for count data with

over-dispersion and the negative binomial mixed effects model.

89
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6.1 Estimation of the parameters of the generalized

linear mixed effects model

6.1.1 Maximum likelihood estimation

Let Yij denote the jth response in group i, j = 1, 2, . . . , ni, i = 1, 2, . . . , k, from an

over-dispersed exponential family distribution

f(yij; θij, φ) = exp{φ−1[yijθij − b(θij)] + C(yij, φ)}, (6.1)

with mean µij = E(Yij|αi) = b′(θij), variance σ2
ij = var(Yij|αi) = φ b′′(θij), where ′

denotes differentiation with respect to θ and φ is the over-dispersion parameter. The

mixed-effects model considered in Chapter 3 is

g(µij) = θij = ηij = XT
ijβ + ZT

ijαi, (6.2)

where Xij is a p×1 vector of explanatory variables, β is a p×1 vector of fixed effects, Zij

is a q × 1 vector of covariates and αi is a q × 1 vector of random cluster/subject effects.

We further assume that the random effects αi have a multivariate normal distribution

with a zero mean vector and q × q covariance matrix D.

Note that in this dissertation we are interested in the random intercept model only.

So the rest of this chapter will deal with the situation in which αi is a scalar random

effect and Zij = 1 for all i and j. Extension to the general case in which αi is a vector

is straightforward.

We assume that the random effect αi has a normal distribution with mean zero and

variance D. Then the likelihood function for the parameters β,D and φ is given by
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L(β, D, φ; Y ) ∝
k∏

i=1

∫ ni∏
j=1

f(Yij|αi)×D−1/2 exp

(
− α2

i

2D

)
dαi

∝
k∏

i=1

∫ ni∏
j=1

exp{φ−1[Yijθij − b(θij)]}D−1/2 exp

(
− α2

i

2D

)
dαi.

(6.3)

The integral above is analytically intractable except in the case of the normal linear

model. Maximum likelihood estimates β̂, D̂ and φ̂ of the parameters β,D and φ can be

obtained by maximizing

π−N/2

k∏
i=1

ni∏
j=1

m∑
r=1

wr exp
[
φ−1

{
Yij(X

T
ijβ + D1/2sr

√
2)− b(XT

ijβ + D1/2sr

√
2)

}]
, (6.4)

numerically, where w1, w2, . . . , wm are the weights with

wr =
2m−1m!

√
π

m2[Hm−1(sr)]2
,

m is the number of quadrature points and s1, s2, . . . , sm are the roots of the Hermite

polynomial

Hm(s) = (−1)mes2/2 dm

dsm
e−s2/2.

The evaluation points sr (abscissas) and the weights wr are given in Table 25.10 of

Abramowitz and Stegun (1972). The computer package SAS procedure GLIMMIX or R

function glmmML can be used to evaluate (6.4).

By modifying expression (6.4) for count data with θij = log µij = XT
ijβ + αi, the

maximum likelihood estimates β̂, D̂ and φ̂ of the parameters β, D and φ are obtained
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by maximizing

π−N/2

k∏
i=1

ni∏
j=1

m∑
r=1

wr exp
[
φ−1

{
Yij(X

T
ijβ + D1/2sr

√
2)− exp(XT

ijβ + D1/2sr

√
2)

}]
, (6.5)

numerically. The definitions of wr, sr and Hm(s) are the same as above.

For some data sets, maximum likelihood estimation of the parameters using the above

procedure poses difficulty (convergence). However, any of the Markov chain Monte carlo

(MCMC) methods, for example, the Gibbs sampling approach to the GLM requires only

a minor extension to accommodate the introduction of the random effects (see Clayton,

1996). In this case, the amount of computation depends only linearly upon the total

number of parameters and a Bayesian formulation of the model is required which is given

below.

6.1.2 Bayesian estimation

Specification of the prior distributions

To complete the Bayesian formulation of the model (6.2) with scalar αi, we need to spec-

ify prior distributions for β, D and φ. Without having any particular prior information,

the usual choice of a prior distribution for β is to take a noninformative diffuse prior

on β that is uniform and independent of D. However, this non-informative prior may

produce an improper posterior distribution which is undesirable. For a full discussion see

Gelfand and Ghosh (2000). It is a usual practice in Bayesian analysis to take a normal

prior for β. So, following Gelfand and Ghosh (2000) we assume a prior distribution for

β as N(β0, Σβ), where β0 is a p× 1 vector and Σβ is a p× p variance-covariance matrix

of β. The hyper-parameters β0 and Σβ are assumed to be known from prior knowledge.

We now need to set up prior distributions for the two variance parameters φ and D.

First we discuss prior specification for the parameter φ. For this one may choose a prior

as p(φ) ∝ φ−1. However, this can make the resulting posterior distribution improper.
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So, we define ψ = log(φ). Then by using the Jeffreys’ invariance principle (see Gelman,

Carlin, Stern and Rubin, 2004) for a noninformative prior we obtain the prior density

for ψ as

p(ψ) = p(φ)

∣∣∣∣
dφ

dψ

∣∣∣∣ ∝
1

φ
× φ = 1.

That is, we choose a uniform prior for ψ on [0, 1]. An alternative is to take a conjugate

prior for φ (Natarajan and Kass, 2000) as

p(φ) =
ννs

c

Γ(νs)
φ−(νs+1)e−νc/φ.

However, the former specification is much simpler so we adopt that here. Similarly, we

define δ = log(D) and take a uniform prior distribution for δ on [0, 1].

Note that as we discussed earlier we can take an inverse gamma prior for each of the

parameters φ and D with known parameters. This will make the posterior distribution

complicated. In a future study we will deal with this situation.

In the situation in which β0 and Σβ are not known, one can take a uniform prior

distribution for each component of β0 and an inverse Wishart distribution

p(Σβ) ∝ exp

[
−1

2
tr(SΣ−1

β )

]
|Σβ|−ω/2

as a prior distribution for Σβ, where S is a known p× p scale matrix and ω is a known

parameter representing degrees of freedom of the Wishart distribution.
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Bayesian formulation

With the prior distributions of β, δ and ψ specified above and β0 and Σβ assumed to be

known the joint posterior distribution of β, δ and ψ is

f(β, δ, ψ|Y ) =

∏k
i=1

∫ ∏ni

j=1 f(Yij|αi, β, ψ)p(β|Σβ)p(αi|δ)p(δ)p(ψ) dαi∫ ∏k
i=1

∫ ∏ni

j=1 f(Yij|αi, β, ψ)p(β|Σβ)p(αi|δ)p(δ)p(ψ) dαi dβ dδ dψ

= C × |Σβ|−p/2 exp[−1

2
(β − β0)

T Σ−1
β (β − β0)]

×
k∏

i=1

ni∏
j=1

m∑
r=1

wr exp
[
e−ψ

{
Yij(X

T
ijβ + eδ/2sr

√
2)− b(XT

ijβ + eδ/2sr

√
2)

}]
,

(6.6)

where wr and sr are as specified in Section 6.1.1 and

C =

∫
|Σβ|−p/2 exp[−1

2
(β − β0)

T Σ−1
β (β − β0)]

×
k∏

i=1

ni∏
j=1

m∑
r=1

wr exp
[
e−ψ

{
Yij(X

T
ijβ + eδ/2sr

√
2)− b(XT

ijβ + eδ/2sr

√
2)

}]
dβ dδ dψ

Note that the integration is over all the parameters β1, β2, . . . , βp, δ and ψ. For count data

the above expressions can be modified by replacing b(XT
ijβ + eδ/2sr

√
2) by exp(XT

ijβ +

eδ/2sr

√
2).

Now our interest is to obtain the marginal posterior distributions for β, δ and ψ which

are given below.

f(β|Y ) ∝ |Σβ|−p/2 exp[−1

2
(β − β0)

T Σ−1
β (β − β0)]

×
∫ k∏

i=1

ni∏
j=1

m∑
r=1

wr exp
[
e−ψ

{
Yij(X

T
ijβ + eδ/2sr

√
2)− exp(XT

ijβ + eδ/2sr

√
2)

}]
dψ dδ,

(6.7)
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f(δ|Y ) ∝
∫
|Σβ|−p/2 exp[−1

2
(β − β0)

T Σ−1
β (β − β0)]

×
k∏

i=1

ni∏
j=1

m∑
r=1

wr exp
[
e−ψ

{
Yij(X

T
ijβ + eδ/2sr

√
2)− exp(XT

ijβ + eδ/2sr

√
2)

}]
dβdψ

(6.8)

and

f(ψ|Y ) ∝
∫
|Σβ|−p/2 exp[−1

2
(β − β0)

T Σ−1
β (β − β0)]

×
k∏

i=1

ni∏
j=1

m∑
r=1

wr exp
[
e−ψ

{
Yij(X

T
ijβ + eδ/2sr

√
2)− exp(XT

ijβ + eδ/2sr

√
2)

}]
dβdδ.

(6.9)

Posterior means for β, δ and ψ can be obtained from (6.7), (6.8) and (6.9) respectively.

However, evaluation of the integrals involved are computationally difficult. To overcome

this a Markov chain Monte carlo (MCMC) method such as the Gibbs sampler can be

used which we describe below.

Gibbs sampler

The Gibbs sampler is a MCMC method for estimating the marginal posterior distri-

butions. It is a special case of the single component Metropolis-Hastings algorithm

(Metropolis, Rosenbluth, Rosenbluth, Teller and Teller, 1953) and consists entirely in

sampling from full conditional distributions. Let us consider three variables X,Y and

Z. Suppose that the conditional distribution of each variable, given the others, has a

simple form and the joint distribution is more complicated. We denote the conditional

distributions by [X|Y, Z], [Y |X, Z] and [Z|X, Y ] and the joint distribution by [X, Y, Z].

The joint distribution must be positive over its entire domain. Then by using the method

of Gibbs sampler we can generate random values from [X, Y, Z]. We review the method

here from Zeger and Karim (1991).

With the arbitrary starting values X(0), Y (0), Z(0), we draw X(1) from [X|Y (0), Z(0)],
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then we draw Y (1) from [Y |X(1), Z(0)], and finally, complete the first iteration by drawing

Z(1) from [Z|X(1), Y (1)]. After a large number of M iterations, we obtain (X(M), Y (M), Z(M)).

This process is repeated a large number of times, say N , obtaining N values from the

marginal distributions of X, Y and Z. Geman and Geman (1984) show that under mild

conditions, the joint distribution of (X(M), Y (M), Z(M)) converges at an exponential rate

to [X, Y, Z] as M →∞. The mean of the marginal posterior distribution of, for example,

X is the arithmetic mean of the N values obtained above.

Now to use the Gibbs sampler we need to find the conditional f(β|δ, ψ, Y ), f(δ|β, ψ, Y )

and f(ψ|β, δ, Y ). These are obtained as given below.

f(β|δ, ψ, Y ) ∝ |Σβ|−p/2 exp[−1

2
(β − β0)

T Σ−1
β (β − β0)]

×
k∏

i=1

ni∏
j=1

m∑
r=1

wr exp
[
e−ψ

{
Yij(X

T
ijβ + eδ/2sr

√
2)− b(XT

ijβ + eδ/2sr

√
2)

}]
.

f(δ|β, ψ, Y ) ∝
k∏

i=1

ni∏
j=1

m∑
r=1

wr exp
[
e−ψ

{
Yij(X

T
ijβ + eδ/2sr

√
2)− b(XT

ijβ + eδ/2sr

√
2)

}]
.

f(ψ|β, δ, Y ) ∝
k∏

i=1

ni∏
j=1

m∑
r=1

wr exp
[
e−ψ

{
Yij(X

T
ijβ + eδ/2sr

√
2)− b(XT

ijβ + eδ/2sr

√
2)

}]
.

Assuming an over-dispersed Poisson log-linear random intercept model log(µij) =

XT
ijβ + αi, the above conditional distributions become

f(β|δ, ψ, Y ) ∝ |Σβ|−p/2 exp[−1

2
(β − β0)

T Σ−1
β (β − β0)]

×
k∏

i=1

ni∏
j=1

m∑
r=1

wr exp
[
e−ψ

{
Yij(X

T
ijβ + eδ/2sr

√
2)− exp(XT

ijβ + eδ/2sr

√
2)

}]
.
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f(δ|β, ψ, Y ) ∝
k∏

i=1

ni∏
j=1

m∑
r=1

wr exp
[
e−ψ

{
Yij(X

T
ijβ + eδ/2sr

√
2)− exp(XT

ijβ + eδ/2sr

√
2)

}]
.

f(ψ|β, δ, Y ) ∝
k∏

i=1

ni∏
j=1

m∑
r=1

wr exp
[
e−ψ

{
Yij(X

T
ijβ + eδ/2sr

√
2)− exp(XT

ijβ + eδ/2sr

√
2)

}]
.

6.2 Estimation of the parameters of the negative bi-

nomial mixed effects model

6.2.1 Maximum likelihood estimation

Let Yij be the response variable for the jth observation in group i, j = 1, 2, . . . , ni, i =

1, 2, . . . , k, from the negative binomial distribution, denoted by NB(µij, ci) and given by

f(yij; µij, ci) =
Γ(yij + c−1

i )

yij! Γc−1
i

(
1

1 + ciµij(x)

)c−1
i

(
ciµij(x)

1 + ciµij(x))

)yij

, (6.10)

where log(µij) = XT
ijβ + αi is the random intercept model for the mean response.

The likelihood function for the parameters β, c and D, assuming common over-

dispersion parameter c over all groups or individuals, is given by

L(β, c, D; Y ) =
k∏

i=1

∫ ni∏
j=1

Γ(yij + c−1)

Γ(c−1)

(
1

1 + cµij

)c−1 (
cµij

1 + cµij

)yij

× D−1/2

√
2π

exp

(
− α2

i

2D

)
dαi

=
k∏

i=1

∫ ni∏
j=1

Γ(yij + c−1)

Γ(c−1)

(
1

1 + ceXT
ijβ+

√
Dvi

)c−1
(

ceXT
ijβ+

√
Dvi

1 + ceXT
ijβ+

√
Dvi

)yij

× exp(−v2
i /2)√

2π
. (6.11)

As before, the above integral is analytically intractable. Therefore, by using the Gauss-

Hermite procedure for numerical integration, maximum likelihood estimates β̂, ĉ and D̂
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of the parameters β, c and D can be obtained by maximizing

π−N/2

k∏
i=1

ni∏
j=1

m∑
r=1

wr
Γ(yij + c−1)

Γ(c−1)

(
1

1 + ceXT
ijβ+

√
Dsr

√
2

)c−1
(

ceXT
ijβ+

√
Dsr

√
2

1 + ceXT
ijβ+

√
Dsr

√
2

)yij

(6.12)

or its logarithm, where wr and sr are as given before.

6.2.2 Bayesian estimation

To obtain the joint posterior distribution of the parameters β, c and D, we need to

specify the prior distributions of the parameters. As before we assign a N(β0, Σβ) prior

for β. The hyper-parameters β0 and Σβ are assumed to be known. Moreover, we choose

a uniform prior for ψ = log(c) on [0, 1] and a uniform prior for δ = log(D) on [0, 1].

Therefore, the joint posterior distribution of β, ψ and δ become

f(β, ψ, δ, Y ) ∝ |Σβ|−p/2 exp[−1

2
(β − β0)

T Σ−1
β (β − β0)]

×
k∏

i=1

ni∏
j=1

Yij−1∏

l=1

(1 + le−ψ)
m∑

r=1

wr

(
1

1 + eψ+XT
ijβ+

√
Dsr

√
2

)e−ψ

×
(

eψ+XT
ijβ+

√
Dsr

√
2

1 + eψ+XT
ijβ+

√
Dsr

√
2

)Yij

.

The conditionals for β, ψ and δ are as given below.

f(β|ψ, δ, Y ) ∝ |Σβ|−p/2 exp[−1

2
(β − β0)

T Σ−1
β (β − β0)]

×
k∏

i=1

ni∏
j=1

Yij−1∏

l=1

(1 + le−ψ)
m∑

r=1

wr

(
1

1 + eψ+XT
ijβ+

√
Dsr

√
2

)e−ψ

×
(

eψ+XT
ijβ+

√
Dsr

√
2

1 + eψ+XT
ijβ+

√
Dsr

√
2

)Yij

,
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f(ψ|β, δ, Y ) ∝
k∏

i=1

ni∏
j=1

Yij−1∏

l=1

(1 + le−ψ)
m∑

r=1

wr

(
1

1 + eψ+XT
ijβ+

√
Dsr

√
2

)e−ψ

×
(

eψ+XT
ijβ+

√
Dsr

√
2

1 + eψ+XT
ijβ+

√
Dsr

√
2

)Yij

and

f(δ|β, ψ, Y ) ∝
k∏

i=1

ni∏
j=1

Yij−1∏

l=1

(1 + le−ψ)
m∑

r=1

wr

(
1

1 + eψ+XT
ijβ+

√
Dsr

√
2

)e−ψ

×
(

eψ+XT
ijβ+

√
Dsr

√
2

1 + eψ+XT
ijβ+

√
Dsr

√
2

)Yij

.

The marginal posterior means of β, ψ and δ are obtained using the Gibbs sampler pro-

cedure described in Section 6.1.2.

Work is continuing to compare the efficiency of the maximum likelihood estimates of

the regression parameters for the two models considered, namely the generalized linear

mixed effects model and the negative binomial mixed effects model with those obtained

by Bayesian procedures. Moreover, as mentioned in Chapter 4 the power study of the

statistics T and Tc for testing the presence of over-dispersion is ongoing.
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