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Abstract

In this dissertation we studied asymptotic properties of shrinkage estimators, and
compared their performance with absolute penalty estimators (APE) in linear and
partially linear models (PLM). A robust shrinkage M-estimator is proposed for PLM,
and asymptotic properties are investigated, both analytically and through simulation
studies.

In Chapter 2, we compared the performance of shrinkage and some APEs through
prediction error criterion in a multiple linear regression setup. In particular, we com-
pared shrinkage estimators with lasso, adaptive lasso and SCAD estimators. Monte
Carlo studies were conducted to compare the estimators in two situations: when
p << n, and when p is large yet p < n. Examples using some real data sets are
presented to illustrate the usefulness of the suggested methods.

In Chapter 3, we developed shrinkage estimators for a PLM. Efficient procedures
for simultaneous sub-model selection and shrinkage estimation have been developed
and implemented to obtain the parameter estimates where the nonparametric compo-
nent is estimated using B-spline basis expansion. The proposed shrinkage estimator
performed similarly to adaptive lasso estimators. In overall comparison, shrinkage
estimators based on B-splines outperformed the lasso for moderate sample sizes and
when the nuisance parameter space is large.

In Chapter 4, we proposed robust shrinkage M-estimators in a PLM with scaled
residuals. Ahmed et al. (2006) considered such an M-estimator in a linear regression
setup. We extended their work to a PLM.
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Chapter 1

Background

1.1 Introduction

Regression analysis is one of the most mature and widely applied branches in statis-

tics. Least squares estimation and related procedures, mostly having a parametric

flavor, have received considerable attention from theoretical as well as application

perspectives. Statistical models, both linear and non-linear, are used to obtain in-

formation about unknown parameters. Whether such models fit the data well or

whether the estimated parameters are of much use depends on the validity of certain

assumptions. In practical situations, parameters are estimated based on sample in-

formation and, if available, other relevant information. The “other” information may

be considered as non-sample information (NSI) (Ahmed, 2001). This is also known

as uncertain prior information (UPI). The NSI may or may not positively contribute

in the estimation procedure. Nevertheless, it may be advantageous to use the NSI in

the estimation process when sample-information may be rather limited and may not

1



1.1 Introduction 2

be completely trustworthy.

It is widely accepted that, in applied science, an experiment is often performed with

some prior knowledge of the outcomes, or to confirm a hypothetical result, or to re-

establish existing results. Suppose in a biological experiment, a researcher is focusing

on estimating the growth rate parameter η of a certain bacterium after applying

some catalyst when it is suspected a priori that η = η0, where η0 is a specified value.

In a controlled experiment, the ambient condition may not contribute to varying

growth rate. Therefore, the biologist may have good reason to suspect that η0 is the

true growth rate parameter for her experiment, albeit unsure. This suspicion may

come from previous studies or experience, and the researcher may utilize previously

obtained information i.e., NSI, in the estimation of growth rate parameter.

It is however, important to note that the consequences of incorporating NSI depend

on the quality or usefulness of the information being added in the estimation process.

Based on the idea of Bancroft (1944), NSI may be validated through preliminary test,

and depending on the validity, may be incorporated in the estimation process.

Later, Stein (1956) introduced shrinkage estimation. In this framework, the shrink-

age estimator or Stein-type estimator takes a hybrid approach by shrinking the base

estimator to a plausible alternative estimator utilizing the NSI.

Apart from Stein-type estimators, there are absolute penalty-type estimators,

which are a class of estimators in the penalized least squares family. Such an es-

timator is commonly known as absolute penalty estimator (APE) since the absolute

value of the penalty term is considered in the estimation process. These estimators

provide simultaneous variable selection and shrinkage of the coefficients towards zero.

Frank and Friedman (1993) introduced bridge regression, a generalized version of
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APEs that includes ridge regression as a special case. An important member of the

penalized least squares (PLS) family is the L1 penalized least squares estimator or

the lasso (Least Absolute Shrinkage and Selection Operator) which is due to Tib-

shirani (1996). Two other related APEs are adaptive lasso (alasso) which is due to

Zou (2006), and the smoothly clipped absolute penalty (SCAD), due to Fan and Li

(2001). APEs are frequently being used in variable selection and feature extraction

problems, and problems involving low- and high-dimensional data. We define low-

and high-dimensional later later in this chapter.

1.2 Statement of the Problem in this Study

Consider a scenario as follows. We have a set of covariates to fit a regression model

to predict a response variable. If it is a priori known or suspected that a subset of

the covariates do not significantly contribute in the overall prediction of the response

variable, they may be left aside and a model without these covariates may be suffi-

cient. In some situations, a subset of the covariates may be considered nuisance such

that they are not of main interest, but they must be taken into account in estimating

the coefficients of the remaining parameters. A candidate model for the data that in-

volves only the important covariates in predicting the response is called the restricted

model or sub-model, whereas the model that includes all the covariates is called the

unrestricted model or simply the candidate full model.

To formulate the problem, consider the regression model of the form

y = f(X, θ) +E, (1.1)
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where y is the vector of responses, X is a fixed design matrix, θ is an unknown vector

of parameters, and E is the vector of unobservable random errors.

The shrinkage estimation method combines estimates from the candidate full model

and a sub-model. Such an estimator outperforms the classical maximum likelihood

estimator in terms of a quadratic risk function. In this framework, the estimates are

essentially being shrunken towards the restricted estimators. A schematic flowchart

of shrinkage estimation is presented in Figure 1.1.

θ1, θ2, . . . , θp+q
Available Covariates

θ1, θ2, . . . , θp θp+1, θp+2, . . . , θq
Contributing Set Nuisance Set

Filter best subset

Shrink coefficients
towards contributing set

Shrunken Coefficients
High efficiency
Low overall prediction error

Figure 1.1: Flowchart of shrinkage estimation in multiple regression.

Suppose the dimension of θ is (p + q). Also suppose that q of the covariates are

considered as nuisance. Therefore, the parameter space and the design matrix X

may be partitioned, and the model in (1.1) may be written as

yi = f(Xil, θp) + f(Xim, θq) + Ei, i = 1, 2, . . . , n (1.2)
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where Xil includes the first l column vectors of Xi, and Xim contains the last m

column vectors of Xi with l = 1, 2, . . . , p, m = p+ 1, p+ 2, . . . , p+ q.

Let us denote the full model estimators or unrestricted estimators (UE) by θ̂UE,

and the restricted estimators (RE) by θ̂RE. The nuisance subset may be tested in the

form of testing the hypothesis

H0 : Hθ = h

with an appropriate test statistic, Tn.

Now, the general forms of the UE and RE are, respectively,

θ̂UE = g(X, y)

and

θ̂RE = θ̂UE − g(X, θ,h,H).

In the above expressions, g(X, y) denotes a function of the data and the response

vector, and g(X, θ,h,H) is a function of the data, the response vector, H and h.

Notice that the RE is a linear function of the UE. Now, we are in a position to

introduce the shrinkage estimators. In the following, we define shrinkage, positive

shrinkage, and pretest estimators.

Shrinkage estimator (SE), θ̂S, is defined as

θ̂S = θ̂RE + (θ̂UE − θ̂RE)(1− cT−1
n ),

where c is an optimum constant that minimizes the risk.
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Positive shrinkage estimator (PSE), θ̂S+, is defined by

θ̂S+ = θ̂RE + (θ̂UE − θ̂RE)(1− cT−1
n )+, where s+ = max(0, s).

The pretest estimator (PT), θ̂PT, is defined as

θ̂PT = θ̂UE − (θ̂UE − θ̂RE)I(Tn < dα),

where dα is the 100(1− α) percentage point of the test statistic Tn.

Traditionally, statistical methods have been limited to low-dimensional settings,

that is, when the number of experimental units (n) is much larger than the number

of covariates (p). However, with the advent of high-performance computing and

related technological advancements, new areas of applications have emerged where the

number of experimental units is small compared to a high- or ultra high-dimensional

parameter space. In this dissertation, we call a data set

(a) classical or low-dimensional, if p is much smaller than n, e.g., n = 100, p = 10,

(b) high-dimensional, if p is large yet smaller than n, e.g., n = 100, p = 70, and

(c) ultra high-dimensional, if p is larger than n, e.g., n = 100 and p = 150.

Technically, as per the above definitions, shrinkage estimation works for low and

high-dimension (p < n), but does not work for ultra high-dimensional data. On the

other hand, APEs such as lasso, alasso and SCAD are suited for problems with low-

or high- or ultra high-dimensional data.

It is worth exploring how shrinkage estimators perform in low and high-dimensional

context compared to the APEs considered in this dissertation. We are interested to
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study shrinkage, pretest and absolute penalty estimation in various contexts. We first

consider a multiple linear regression model to compare shrinkage and APE. Then we

extend shrinkage estimation to partially linear model (PLM). Finally, a new robust

shrinkage M-estimator is proposed in PLM setup in the presence of a scaled error in

the model.

Following section summarizes the relevant works available in the reviewed litera-

ture.

1.3 Review of Literature

In this section, we summarize some of the important works found in the reviewed

literature pertaining to this dissertation. We group them into three subsections as

follows.

1.3.1 Shrinkage, Pretest, and APE in Multiple Regression

Models

Since the beginning, pretest and shrinkage estimation techniques have received con-

siderable attention from the researchers. Asymptotic properties of shrinkage and

preliminary test estimators using quadratic loss function, and their dominance over

the usual maximum likelihood estimators have been demonstrated in numerous stud-

ies in the literature. Since 1987, Ahmed and his co-researchers are among others

who have analytically demonstrated that shrinkage estimators outshine the classical

estimator.
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Ahmed (1997) gave a detailed description of shrinkage estimation, and discussed

large sample estimation in a regression model with non-normal error terms. A re-

view of shrinkage and some penalized estimators can be found in the work of van

Houwelingen (2001). In their work, the James-Stein estimator, pretest estimator,

ridge regression, lasso and the Garotte estimators are discussed in an attempt to put

them in a semi-Bayesian framework.

An application of empirical Bayes shrinkage estimation can be found in Castner

and Schirm (2003). They estimated the state wise numbers of people eligible for food

stamps in the Food Stamp Program1 in the U.S. “The shrinkage estimates derived

are substantially more precise than direct sample estimates.”(Castner and Schirm,

2003, page ix).

Khan and Ahmed (2003) considered the problem of estimating the coefficient vector

of a classical regression model when it is a priori suspected that the parameter vec-

tor may belong to a subspace. They demonstrated analytically and numerically that

the positive-part of Stein-type estimator and the improved preliminary test estimator

dominate the usual Stein-type and pretest estimators, respectively. They also showed

that positive-part of Stein-type estimator uniformly dominates the unrestricted esti-

mator.

A review of APEs and their application in PLM can be found in Ahmed et al.

(2010). There has been no study in the reviewed literature to compare the risk

properties of shrinkage and APEs in the context of multiple linear regression models.

In this dissertation, we compare shrinkage, pretest, and APEs in multiple linear

regression models.

1The Food Stamp Program is the largest food and nutrition assistance program administered by

the Food and Nutrition Service of Department of Agriculture, U.S.
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1.3.2 Shrinkage Estimation in Partially Linear Models

A partially linear regression model (PLM) can be written as

yi = x′
iβ + g(ti) + εi, i = 1, . . . , n, (1.3)

where yi’s are responses, xi = (xi1, . . . , xip)
′ and ti ∈ [0, 1] are design points, β =

(β1, . . . , βp)
′ is an unknown parameter vector and g(·) is an unknown bounded real-

valued function defined on [0, 1], εi’s are unobservable random errors.

When εi are independent and identically distributed (i.i.d.) random variables,

Heckman (1986), Rice (1986), Chen (1988), Speckman (1988), Robinson (1988), Chen

and Shiau (1991), Chen and Shiau (1994), Donald and Newey (1994), Eubank and

Speckman (1990), and Hamilton and Truong (1997) used various estimation methods,

such as kernel method, spline method, series estimation, local linear estimation, two-

stage estimation, to obtain estimators of the unknown quantities in (1.3). When

errors are AR(1) process, Schick (1994) discussed the estimation of the autocorrelation

coefficient. Schick (1994, 1996, 1998) further constructed efficient estimators for the

regression coefficients and autocorrelation coefficients, respectively. Bhattacharya and

Zhao (1997) proposed asymptotically efficient estimator of the regression parameters

in a PLM under mild smoothness assumptions on the nonparametric component.

A survey of the estimation and application of PLM in (1.3) can be found in the

monograph of Härdle et al. (2000). For more recent work on the subject we refer to

Wang et al. (2004), Xue et al. (2004), Liang et al. (2004), and Bunea (2004).

information (UPI) about the regression parameters is available have been consid-

ered by Ahmed and Saleh (1999).
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Ahmed et al. (2007) considered a profile least squares approach based on using

kernel estimates of g(·) to construct absolute penalty, shrinkage and pretest estimators

of β in the case where β = (β′
1,β2)

′, where β1 is a vector of principle parameters

and β2 is a vector of nuisance parameters. We extend their work to estimate g(·)

using B-spline basis expansion, and obtain restricted, shrinkage and positive shrinkage

estimators (Raheem et al., 2012).

1.3.3 Shrinkage M-estimation in Partially Linear Models

For partially linear regression models, Bianco and Boente (2004) proposed a family

of robust estimates for the regression parameters. They studied their asymptotic

properties and compared their performance with the classical estimators through

simulation.

Ma and Kosorok (2005) proposed weighted M-estimators for semiparametric mod-

els in a situation when some of the parameters cannot be estimated at the root-n

convergence rate. In the context of a generalized PLM, Boente et al. (2006) proposed

a family of robust estimates for the parametric and nonparametric components. They

showed that the regression parameters are root-n consistent and asymptotically nor-

mal. In a PLM with serially correlated errors, Bianco and Boente (2007) proposed a

family of robust estimators for the autoregression parameter and the autoregression

function.

For longitudinal data, He et al. (2002) studied robust M-estimation in a PLM.

They considered a regression spline to approximate the nonparametric component.

He et al. (2005) considered robust generalized estimating equations for generalized

partially linear models for longitudinal data. They argued that the regression spline
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approach overcomes some of the intricacies associated with the profile-kernel method,

and used regression spline to estimate the nonparametric component.

Yu and Ruppert (2002) proposed penalized spline estimation in partially linear

single-index models. Root-n consistency and asymptotic normality of the estimators

of all parameters have been discussed assuming a fixed number of knots.

Cheng and Huang (2010) provided theoretical justifications for the use of bootstrap

as a semiparametric inferential tool. In particular, they considered M-estimation in a

semiparametric model that is characterized by a Euclidean parameter of interest and

an infinite-dimensional nuisance parameter.

Ahmed et al. (2006) considered robust shrinkage-estimation of the slope parameters

in the presence of nuisance scale parameter in linear regression setup. They studied

asymptotic properties of variants of Stein-type M-estimators (including the positive-

part shrinkage M-estimators). In this dissertation, we extend their work to obtain

shrinkage M-estimators in a PLM.

1.4 Objective of the Study

There are three objectives of this dissertation.

Since the introduction of lasso in 1996 by Tibshirani, there has been a tremendous

amount of development in lasso and related absolute penalty estimation techniques

and their applications.

As a tool for simultaneous variable selection and parameter estimation, lasso shrinks

the regression coefficients toward zero. Although shrinkage and APEs have been



1.4 Objective of the Study 12

around for quite some time, little work has been done to compare their relative per-

formance. Ahmed et al. (2007) are the first to compare shrinkage and lasso estimates

in the context of a PLM. We did not find any study in the reviewed literature that

compares shrinkage and lasso in linear regression models. Therefore, in this study, we

compare the performance of positive-shrinkage and lasso estimators in multiple linear

regression setup based on the quadratic risk function. We show a real data example

and compare their performance by calculating average prediction error through cross

validation. Monte Carlo study will be conducted with low- and high-dimensional data

to compare the predictive performance of shrinkage estimators with those of lasso,

alasso, and SCAD estimators.

Secondly, we intend to develop shrinkage and positive-shrinkage estimators for a

PLM. In particular, we wish to study the the suitability of B-spline basis function

in estimating the nonparametric component in a PLM to obtain shrinkage estimates.

Efficient procedure for simultaneous sub-model selection via shrinkage will be de-

veloped and implemented to obtain the parameter estimates after incorporating the

B-Spline bases in the model. We will also compare the shrinkage estimation with

some APEs.

Thirdly, robust shrinkage estimation will be studied in a PLM. We will consider

a PLM with scaled residuals. Such a study have been considered by Ahmed et al.

(2006) for linear regression only. We will extend their work to a PLM.

1.4.1 Organization of the Study

The dissertation is divided into five chapters. Chapter 1 introduces various shrinkage

and pretest estimators. Three absolute penalty estimators, namely, the least absolute
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penalty and shrinkage operator (lasso), adaptive lasso (alasso), and the smoothly

clipped absolute deviation (SCAD) have been defined. The objective of the study

and the highlights of important findings are summarized in this chapter.

We divided Chapter 2 into two parts. In the first part, application of shrinkage

and pretest estimation have been demonstrated with three real data examples. The

asymptotic properties of the estimators, which are well developed in the literature,

have been studied through Monte Carlo experiment.

In the second part of Chapter 2, we compared shrinkage estimators with three

absolute penalty estimators, such as, lasso, alasso, and SCAD in linear regression

model. Both low-dimensional (p << n) and high-dimensional (p < n) cases have

been considered.

In Chapter 3, we studied asymptotic properties of shrinkage and positive shrinkage

estimators in a partially linear model when the nonparametric component is esti-

mated by B-spline basis expansion. The asymptotic bias and risk expressions of the

estimators have been derived. Algorithm for simultaneous sub-model selection and

shrinkage estimation is presented. Performance of shrinkage estimators have been

compared with lasso and alasso estimators using a popular econometric data set.

In Chapter 4 we proposed a robust shrinkage M-estimator of slope parameters

in a partially linear regression model. Asymptotic bias and risk properties of the

estimators have been studied–both analytically and numerically.

Finally, conclusions and an outline for future research are presented in Chapter 5.
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1.5 Highlights of Contributions

In this dissertation, we consider shrinkage, pretest and absolute penalty estimation

(APE) in linear and partially linear regression regression models (PLM). We also con-

sidered robust shrinkage M-estimation in a PLM. We demonstrate, with examples, the

application of shrinkage, pretest, and absolute penalty estimation. Asymptotic risk

properties of shrinkage and shrinkage-M-estimators have been studied, and analytic

expressions for their bias and risks derived.

The highlights of our contributions in this dissertation are summarized below.

1. In Chapter 1 we layout the rationale for shrinkage estimation. The statement

of the problem and the techniques of shrinkage estimation have been illustrated

through a general regression framework. An up to date review of literature on

the topics covered in this dissertation is presented.

2. In Chapter 2, we show application of shrinkage and pretest estimation in mul-

tiple regression. Three real data examples are given. Monte Carlo study show

that restricted and pretest estimators have superior risk performance compared

to the unrestricted and positive-shrinkage estimators when the underlying model

is assumed to be correctly specified. However, under model misspecification,

positive-shrinkage estimators show superior performance in terms of quadratic

risk.

In comparing shrinkage and APE, we developed and implemented the al-

gorithm for simultaneous sub-model selection using AIC and BIC to obtain

shrinkage estimates of the regression coefficients. Estimates based on lasso,

adaptive lasso, and SCAD have been obtained and their performance compared
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with shrinkage estimators by calculating average prediction errors based on

cross validation. We demonstrated using a medical data example that positive-

shrinkage estimator outperforms APE over a range of alternative parameter

space. In general, positive shrinkage estimators maintain its superiority over all

other estimators for moderate sample sizes and when there are large number of

nuisance covariates present in the model.

Further, through a Monte Carlo experiment, shrinkage estimators have been

compared with APE when the parameter space is high-dimensional, i.e., when

p is large. We considered only classical and high-dimensional cases with p < n

since shrinkage estimators do not exist for p > n.

3. As an extension of Ahmed et al. (2007), in Chapter 3, we considered shrink-

age estimation of slope parameters in a PLM. We explored the suitability of

using B-spline basis expansion to estimate the nonparametric component, g(·).

The dominance of shrinkage and positive-shrinkage estimators over classical

ML estimators have been shown using asymptotic quadratic distributional risk

functions. We have found that B-spline is very flexible to be incorporated in

a regression model when one considers to use uniform knots. If uniform knots

are not preferable, B-splines are still attractive albeit the number of knots and

their placements need to be obtained first. Since the nonparametric part can

also be estimated using kernel-based methods, we compared the bias of the

estimators based on when g(·) was approximated by both B-spline bases and

kernel-based methods. For the nonparametric component, a flat function, such

as g(t) = 4 sin(πt), and a highly oscillating non-flat function, such as

g(t) = sin

(
−2π(0.35× 10 + 1)

0.35t+ 1

)
, t ∈ [0, 10],
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have been considered. Simulation results showed that B-spline-based estimators

have less bias than the kernel-based estimators.

4. In Chapter 4, shrinkage M-estimation (SM) is considered in the context of

a PLM. We developed shrinkage and positive-shrinkage M-estimators (SM+)

when we have prior information about a subset of the covariates. Based on

a quadratic risk function, we computed relative risk of SM estimators with re-

spect to the unrestricted M-estimator (UM). We analytically demonstrated that

shrinkage estimators outperform classical full model M-estimators throughout

the entire parameter space. In simulation experiments, four error distributions

have been considered to explore the performance of the proposed estimators.

We have found that restricted M-estimator (RM) outperforms all other es-

timators when the nuisance subspace is a zero vector. Overall, SM+ dominates

both SM and RM for a wider range of the alternative parameter space.



Chapter 2

Absolute Penalty and Shrinkage

Estimation in Multiple Regression

Models

2.1 Introduction

Shrinkage estimators combine sample and non-sample information in a way that

shrinks the regression coefficients towards a plausible alternative subspace. In this

sense, shrinkage estimates resemble lasso for lasso penalizes the least squares estimates

on their sizes and shrinks them towards zero. In shrinkage estimation, however, most

of the coefficients shrink, while some of them are eliminated by shrinking to exactly

zero.

In this chapter, we demonstrate application of shrinkage estimation and compare

the performance of positive-shrinkage and absolute penalty estimators (APE). We

17
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divide the chapter into two halves. In the first half, we illustrate, with examples, the

application of shrinkage estimators in a multiple regression setup. We study different

shrinkage and APE for low-dimensional (p << n) as well as high-dimensional data

with p < n. In the second half of this chapter, we compare prediction errors of

shrinkage estimators with lasso, alasso and SCAD estimators through Monte Carlo

simulation. A real data example is given to illustrate the methods.

2.1.1 Organization of the Chapter

In Section 2.2 we present estimation strategies using the idea of shrinkage and APE.

Shrinkage, positive-shrinkage, pretest, and absolute penalty estimators are defined in

this section. Asymptotic properties of shrinkage and pretest estimators are presented

in Section 2.3. Application of shrinkage and pretest estimation is illustrated with

three real data examples in Section 2.4. In Section 2.5, performance of shrinkage and

APEs is compared using prostate data and through a Monte Carlo experiment.

2.2 Model and Estimation Strategies

Consider a regression model of the form

Y = Xβ + ε, (2.1)

where Y = (y1, y2, . . . , yn)
′ is a vector of responses, X is an n×p fixed design matrix,

β = (β1, . . . , βp)
′ is an unknown vector of parameters, ε = (ε1, ε2, . . . , εn)

′ is the

vector of unobservable random errors, and the superscript (′) denotes the transpose
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of a vector or matrix.

We do not make any distributional assumption about the errors except that ε has a

cumulative distribution function F (ε) with E(ε) = 0, and E(εε′) = σ2I, where σ2 is

finite. We make the following two assumptions, also called the regularity conditions,

which are needed to derive the asymptotics of the estimators:

i) max
1≤i≤n

x′
i(X

′X)−1xi −→ 0 as n −→ ∞, where x′
i is the ith row of X

ii) lim
n→∞

(
X ′X

n

)
= C, where C is a finite positive-definite matrix.

Suppose that β is partitioned as β = (β′
1,β

′
2)

′. The sub-vectors β1 and β2 are

assumed to have dimensions p1 and p2 respectively, and p1+p2 = p, pi ≥ 0 for i = 1, 2.

We are essentially interested in the estimation of β1 when it is plausible that β2 is a

set of nuisance covariates. This situation may arise when there is over-modeling and

one wishes to cut down the irrelevant part from the model (2.1). Thus, the parameter

space can be partitioned and it is plausible that β2 is near some specified βo
2, which,

without loss of generality, may be set to a null vector.

The above situation may be mathematically written in terms of a restriction on β

as Hβ = h. Here, H is a known p2 × p matrix and h is p2 × 1 vector of known

constants.

The unrestricted estimator (UE) of β is given by

β̂UE = (X ′X)−1X ′Y .
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Under the restriction Hβ = h, the restricted estimator (RE) is given by

β̂RE = β̂UE − (X ′X)−1H ′(H(X ′X)−1H ′)−1(Hβ̂UE − h),

which is a linear function of the unrestricted estimator.

We may consider testing the restriction in the form of testing the null hypothesis

H0 : Hβ = h.

The test statistic is given by

ψn =
(Hβ̂UE − h)′(H(X ′X)−1H ′)−1(Hβ̂UE − h)

s2e
, (2.2)

where

s2e =
(Y −Xβ̂UE)′(Y −Xβ̂UE)

n− p

is an estimator of σ2. Under H0, ψn follows a chi-square distribution with p2 degrees

of freedom.

Now, we outline the estimation strategies in the following section.

2.2.1 Shrinkage Estimators

Shrinkage and Positive-shrinkage Estimators

A Stein-type or shrinkage estimator (SE) β̂S
1 of β1 can be defined as

β̂S
1 = β̂RE

1 + (β̂UE
1 − β̂RE

1 )
{
1− κψ−1

n

}
, where κ = p2 − 2, p2 ≥ 3.
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Here, ψn is defined in (2.2).

One problem with SE is that its components may have a different sign from the

coordinates of β̂UE
1 . This could happen if κψ−1

n is larger than unity. One possibility

is when p2 ≥ 3 and ψn < 1. From the practical point of view, the change of sign

would affect its interpretability. However, this behavior does not adversely affect

the risk performance of SE. To overcome the sign problem, a positive-rule Stein-type

estimator (PSE) has been defined by retaining the positive-part of the SE. A PSE

has the form

β̂S+
1 = β̂RE

1 + (β̂UE
1 − β̂RE

1 )
{
1− κψ−1

n

}+
, p2 ≥ 3

where z+ = max(0, z). Alternatively, the PSE can be written as

β̂S+
1 = β̂RE

1 + (β̂UE
1 − β̂RE

1 )
{
1− κψ−1

n

}
I(ψn < κ), p2 ≥ 3,

where I(·) is an indicator function.

Throughout they study, we call a PSE as positive-shrinkage estimator. Ahmed

(2001) and others studied the asymptotic properties of Stein-type estimators in vari-

ous contexts.

Preliminary Test Estimator

The preliminary test estimator or pretest estimator (PT) for the regression parameter

β1 is obtained as

β̂PT
1 = β̂UE

1 − (β̂UE
1 − β̂RE

1 )I(ψn < cn,α), (2.3)



2.2 Model and Estimation Strategies 22

where I(·) is an indicator function, and cn,α is the upper 100α percentage point of

the test statistic ψn.

In pretest estimation, the prior information is tested before choosing the estimator

for practical purposes whereas shrinkage and positive-shrinkage estimators use the

value of the test statistic to obtain the estimates.

Pretest estimator either rejects or fails to reject the restricted estimator (β̂RE
1 )

based on whether ψn < cn,α, while shrinkage estimator is a smoothed version of the

pretest estimator. For this reason, pretesting is sometimes called “hard thresholding”,

while shrinkage estimation is called “soft thresholding”.

2.2.2 Absolute Penalty Estimators

In this section, we define some absolute penalty estimators (APEs). These estimators

are members of the penalized least squares family, and are suitable for both high-

dimensional and low-dimensional data. Ahmed et al. (2010) mentioned that penalized

least squares (PLS) estimation provides a generalization of both nonparametric least

squares and weighted projection estimators, and a popular version of the PLS is given

by Tikhonov regularization (Tikhonov, 1963).

Frank and Friedman (1993) introduced bridge regression, a generalized version of

penalty (or absolute penalty type) estimators. For a given penalty function π(·) and

regularization parameter λ, the general form of the objective function can be written

as

φ(β) = (y −Xβ)T (y −Xβ) + λπ(β),
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where the penalty function is of the form

π(β) =
m∑

j=1

|βj|γ , γ > 0. (2.4)

The penalty function in (2.4) bounds the Lγ norm of the parameters in the given

model as
∑m

j=1 |βj |γ ≤ t, where t is the tuning parameter that controls the amount

of shrinkage. Notice that for γ = 2, we have ridge estimates which are obtained by

minimizing the penalized residual sum of squares

β̃ridge = argmin
β

{
n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑

j=1

β2
j

}
, p = p1 + p2, (2.5)

where, λ is the tuning parameter which controls the amount of shrinkage.

Frank and Friedman (1993) did not solve for the bridge regression estimators for any

γ > 0. Interestingly, for γ < 2, it shrinks the coefficient towards zero, and depending

on the value of λ, it sets some of them to exactly zero. Thus, the procedure combines

variable selection and shrinking of the coefficients of penalized regression.

An important member of the penalized least squares family is the L1 penalized

least squares estimator, which is obtained when γ = 1. This is known as the Least

Absolute Shrinkage and Selection Operator (LASSO, Tibshirani (1996)). Although

LASSO is an acronym, it is now commonly written as “lasso”. In this dissertation,

we use “lasso” and “LASSO” interchangeably.

A variable or feature selection procedure is said to have the oracle property if it

identifies the right subset of variables and has the optimal estimation rate. So, it is

desirable for an estimator to have oracle property. Zou (2006) argued that variable

selection via the lasso could be inconsistent, and proposed the adaptive lasso, which
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has the oracle property. Fan and Li (2001) introduced a non-convex penalty called

the smoothly clipped absolute deviation (SCAD) and showed that their estimator

satisfies the oracle property. For a comprehensive review of variable selection, please

see Hesterberg et al. (2008) and Bühlmann and van de Geer (2011).

In the following, the APEs are defined.

LASSO

Proposed by Tibshirani (1996), lasso is a member of the penalized least squares family,

which performs variable selection and parameter estimation simultaneously. Lasso is

closely related to ridge regression.

Lasso solutions are similarly defined by replacing the squared penalty
∑p

j=1 β
2
j in

the ridge solution (2.5) with the absolute penalty
∑p

j=1 |βj| in the lasso,

β̃lasso = argmin
β

{
n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑

j=1

|βj |
}
. (2.6)

Although the change apparently looks minor, the absolute penalty term makes it

impossible to have an analytic solution for the lasso. Originally, lasso solutions were

obtained via quadratic programming. Later, Efron et al. (2004) proposed Least Angle

Regression (LAR), a type of stepwise regression with which the lasso estimates can be

obtained at the same computational cost as that of ordinary least squares estimation.

Further, the lasso estimator remains numerically feasible for dimensions p that are

much higher than the sample size n. Zou and Hastie (2005) introduced a hybrid
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penalized least squares regression with the so called elastic net penalty

λ

p∑

j=1

(αβ2
j + (1− α)|βj|).

Here, the penalty function is a linear combination of the ridge regression penalty

function and lasso penalty function. Here, α controls the amount of weight given to

ridge and lasso penalty. A different type of penalized least square, called garotte is

due to Breiman (1993).

Ahmed et al. (2007) proposed an APE for partially linear models. Further, they

reappraised the properties of shrinkage estimators based on Stein-rule estimation.

Recently, Friedman et al. (2010) have developed fast algorithms for lasso and re-

lated methods for generalized linear models. A complete regularization path can be

obtained via the cyclical coordinate descent algorithm. A generalization of the lasso,

called the randomized lasso, is discussed in Meinshausen and Bühlmann (2010).

Adaptive LASSO

The adaptive lasso estimator β̂alasso is obtained by

β̂alasso = argmin
β

∣∣∣∣
∣∣∣∣y −

p∑

j=1

xjβj

∣∣∣∣
∣∣∣∣
2

+ λ

p∑

j=1

ŵj|βj|, (2.7)

where the weight function is given by

ŵ =
1

|β̂∗|γ
; γ > 0.
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Equation (2.7) is a “convex optimization problem and its global minimizer can be

efficiently solved” (Zou, 2006). The β̂∗ is a root-n consistent estimator of β. For

example, β̂∗ can be β̂ols. Once we have the β̂ols, we need to select a γ > 0 and calculate

the weights. Finally, the adaptive lasso estimates are obtained from (2.7). The LARS

algorithm (Efron et al., 2004) can be used to obtain adaptive lasso estimates. The

steps are given below.

Step 1. Reweight the data by defining xnew
j = xold

j /ŵj, j = 1, 2, . . . , p

Step 2. Solve the lasso problem as

β̂∗∗ = argminβ

∣∣∣∣
∣∣∣∣y −

∑p
j=1 x

new
j βj

∣∣∣∣
∣∣∣∣
2

+ λ
∑p

j=1 |βj |

Step 3. Return β̂alasso
j = β̂∗∗

j /ŵj

For a detailed discussion on the computation of adaptive lasso, we refere to Zou

(2006).

SCAD

While lasso uses L1 penalty function, the amount of penalty increases linearly in

the magnitude of its argument (Fan et al., 2009). As such, lasso produces biased

estimates for large regression coefficients. This issue was addressed by Fan and Li

(2001) who proposed the smoothly clipped absolute deviation or SCAD. This method

not only retains the good features of both subset selection and ridge regression but

also produces sparse solutions, ensures continuity of the selected models (for the

stability of model selection) and give unbiased estimates for large coefficients. The
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estimates are obtained as

β̂SCAD = argmin
β

∣∣∣∣
∣∣∣∣y −

p∑

j=1

Xjβj

∣∣∣∣
∣∣∣∣
2

+ λ

p∑

j=1

Sα,λ||βj||1.

Here Sα,λ(·) is the smoothly clipped absolute deviation penalty, and || · ||1 denotes L1

norm. SCAD penalty is a symmetric and a quadratic spline on [0,∞) with knots at

λ and αλ, whose first order derivative is given by

Sα,λ(x) = λ

{
I(|x| ≤ λ) +

(αλ− |x|)+
(α− 1)λ

I(|x| > λ)

}
, x ≥ 0. (2.8)

Here λ > 0 and α > 2 are the tuning parameters. For α = ∞, the expression (2.8) is

equivalent to the L1 penalty in LASSO. The solution of SCAD penalty is originally

due to Fan (1997).

2.3 Asymptotic Properties of Shrinkage Estima-

tors

In this section, we present the asymptotic distributions of unrestricted (UE), pretest

(PT), shrinkage (SE), and positive-shrinkage estimators (PSE), and the test statistic

ψn. This facilitates finding the asymptotic distributional bias (ADB), asymptotic

distributional quadratic bias (ADQB), and asymptotic distributional quadratic risk

(ADQR) of the estimator of β.

Ahmed (1997) noted that since the test statistic ψn is consistent against fixed β

such that Hβ 6= h, the PT, SE, and PSE will be asymptotically equivalent to UE for

fixed alternative up to the order O(n− 1

2 ). Therefore, for the large-sample situation
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there is not much to investigate. This means that, for an estimator β∗ of β under fixed

alternative, the asymptotic distribution of
√
n(β∗−β) is equivalent to

√
n(β̂UE−β).

In this case, to obtain meaningful asymptotics, a class of local alternatives, {Kn}, is

considered, which is given by

Kn : Hβ = h+
ω√
n
, (2.9)

where ω = (ω1, ω2, · · · , ωp2)
′ ∈ R

p2 is a fixed vector. We notice that ω = 0 implies

Hβ = h, i.e., the fixed alternative is a particular case of (2.9). In the following, we

evaluate the performance of each estimator under local alternative.

For an estimator β∗ and a positive-definite matrix W , we define the loss function

of the form

L(β∗;β) = n(β∗ − β)′W (β∗ − β).

These loss functions are generally known as weighted quadratic loss functions, where

W is the weighting matrix. For W = I, we get squared error loss functions.

The expectation of the loss function

E[L(β∗,β);W ] = R[(β∗,β);W ],

is called the risk function, which can be written as

R[(β∗,β);W ] = nE[(β∗ − β)′W (β∗ − β)]

= n tr[W {E(β∗ − β)(β∗ − β)′}]

= tr(WΓ∗), (2.10)
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where Γ∗ is the covariance matrix of β∗.

The performance of the estimators can be evaluated by comparing the risk func-

tions with a suitable matrix W . An estimator with a smaller risk is preferred. The

estimator β∗ will be called inadmissible if there exists another estimator β0 such that

R(β0,β) ≤ R(β∗,β) ∀(β,W ) (2.11)

with strict inequality for some β. In such cases, we say that the estimator β0 domi-

nates β∗. If, however, instead of (2.11) holding for every n, we have

lim
n→∞

R(β0,β) ≤ lim
n→∞

R(β∗,β) ∀β, (2.12)

with strict inequality for some β, then β∗ is termed as an asymptotically inadmissible

estimator of β. The expression in (2.11) is not easy to prove. An alternative is to

consider the asymptotic distributional quadratic risk (ADQR) for the sequence of

local alternatives {Kn}.

Consider the asymptotic cumulative distribution function (cdf) of
√
n(β∗ − β)/se

under {Kn} exists, and defined as

G(y) = P [ lim
n→∞

√
n(β∗ − β)/se ≤ y].

This is known as the asymptotic distribution function (ADF) of β∗. Further let

Γ =

∫ ∫
· · ·
∫

yy′dG(y)

be the dispersion matrix which is obtained from ADF. Then the ADQR may be
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defined as

R(β∗;β) = tr(WΓ). (2.13)

Further, β∗ strictly dominates β0 if R(β∗;β) < R(β0;β) for some (β,W ). The

asymptotic risk may be obtained by replacing Γ with the limit of the actual dispersion

matrix of
√
n(β∗ −β) in the ADQR function. However, this may require some extra

regularity conditions. Ahmed (2001), Sen (1986), and Saleh and Sen (1985) among

others, have explained this point in various other contexts.

To obtain the asymptotic distribution of the proposed estimators, and the test

statistic ψn, we consider the following theorems.

Theorem 2.3.1. Under the regularity conditions, and if σ2 <∞, as n→ ∞,

√
n(β̂UE − β)

d→ Np(0, σ
2C−1),

where
d→ implies convergence in distribution.

The proof of the theorem can be found in Sen and Singer (1993).

Theorem 2.3.2. If V = (V1, V2, · · · , Vp)′ is a p-dimensional normal vector distributed

as Np(ζ, Ip), then for a measurable function ϕ, we have

E [V ϕ(V ′V )] = ζE
[
ϕ(χ2

p+2(∆))
]

(2.14)

Here, χ2
ν(∆) is a non-central chi-square distribution with ν degrees of freedom and

noncentrality parameter ∆.

Theorem 2.3.3. If V = (V1, V2, · · · , Vp)′ is a p-dimensional normal vector distributed
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as Np(ζ, Ip), then for a measurable function ϕ, we have

E [V V ′ϕ(V ′V )] = IpE
[
ϕ(χ2

p+2(∆))
]
+ ζζ ′E

[
ϕ(χ2

p+4(∆))
]

(2.15)

The proof of Theorems 2.3.2 and 2.3.3 can be found in the appendix of Judge and

Bock (1978).

Theorem 2.3.4. Let X = (X ′
1

...X ′
2)

′ be distributed as Np(µ,Σ) with

µ =




µ1

µ2


 and Σ =




Σ11 Σ12

Σ21 Σ22


 .

Then the conditional distribution of X1, given X2 = x2, is normal with

µ11.2 = µ1 −Σ12Σ
−1
22 (x2 − µ2)

and

Σ11.2 = Σ11 −Σ12Σ
−1
22 Σ21

Proof. The proof can be found in Johnson and Wichern (2001).

2.3.1 Bias Performance

The asymptotic distributional bias (ADB) of an estimator β∗

1 is defined as

ADB(β∗
1) = E

{
lim
n→∞

√
n(β∗

1 − β1)
}
.

Theorem 2.3.5. Under the assumed regularity conditions and the definition above,
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and under {Kn}, the ADB of the estimators are as follows:

ADB(β̂UE
1 ) = 0 (2.16)

ADB(β̂RE
1 ) = −ξ, where ξ = C−1H ′(HC−1H ′)−1ω (2.17)

ADB(β̂PT
1 ) = −ξHp2+2(χ

2
p2,α

; ∆), with ∆ = ξ′Σ−1ξ, where Σ = σ2C−1 (2.18)

ADB(β̂S
1) = −(p2 − 2)ξE

{
χ−2
p2 ; ∆

}
(2.19)

ADB(β̂S+
1 ) = ADB(β̂S

1 )

− ξE {( 1− (p2 − 2)χ−2
p2+2(∆))I(χ2

p2+2(∆) < (p2 − 2)}. (2.20)

The proof of Theorem 2.3.5 can be found in Ahmed (1997) and Saleh (2006).

Here,

E
{
(χ2

ν(∆))−m
}

(2.21)

is the expected value of the inverse of a non-central chi-square distribution with ν

degrees of freedom and noncentrality parameter ∆. For nonnegative interger-valued ν

and m, and for ν > 2m, the expectations in (2.21) can be obtained using a theorem in

Bock et al. (1983, page 7). Hν(·,∆) is the cdf of a non-central chi-square distribution

with ν degrees of freedom with non-centrality parameter ∆ = ξ′Σ−1ξ with Σ =

σ2C−1.

The bias expressions for all the estimators are not in the scalar form. We there-

fore take recourse by converting them into the quadratic form. Let us define the

asymptotic distributional quadratic bias (ADQB) of the estimator β∗
1 by

ADQB(β∗

1 ) = [ADB(β∗

1 )]
′Σ−1[ADB(β∗

1 )] (2.22)
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where Σ = σ2C−1 is the dispersion matrix of β̂UE as n→ ∞.

Using the definition in (2.22), the asymptotic distributional quadratic bias of the

estimators are presented below.

ADQB(β̂UE
1 ) = 0, (2.23)

ADQB(β̂RE
1 ) = ∆ (2.24)

ADQB(β̂PT
1 ) = ∆

{
Hp2+2(χ

2
p2,α

; ∆)
}2

(2.25)

AQDB(β̂S) =
[
−(p2 − 2)ξE

{
χ−2
p2+2(∆

2)
}]′

σ−2C
[
−(p2 − 2)ξE

{
χ−2
p2+2(∆

2)
}]

(p2 − 2)2∆
[
E
{
χ−2
p2+2(∆)

}]2
(2.26)

ADQB(β̂S+
1 ) = ∆

[
Hp2+2(p2 − 2;∆) + (p2 − 2)E

{
χ−2
p2+2(∆)

}

+E
{
χ−2
p2+2(∆)I(χ2

p2+2(∆) > p2 − 2)
}]
. (2.27)

2.3.2 Risk Performance

Following (2.13), under the assumed regularity conditions, and local alternative {Kn},

the ADQR expressions are as follows. The proof can be found in Ahmed (1997) and

Saleh (2006).
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R(β̂UE
1 ;W ) = σ2tr(WC−1) (2.28)

R(β̂RE
1 ;W ) = σ2tr(WC−1)− σ2tr(Q) + ω′B−1Qω (2.29)

R(β̂PT
1 ;W ) = σ2tr(WC−1)− σ2tr(Q)Hp2+2(χ

2
p2,α

; ∆)

+ ω′B−1ω
{
2Hp2+2(χ

2
p2,α; ∆)−Hp2+4(χ

2
p2,α; ∆)

}
(2.30)

R(β̂S
1 ;W ) = σ2tr(WC−1)− (p2 − 2)σ2tr(Q11)

{
2E[χ−4

p2+4(∆)]

−(p2 − 2)E[χ−4
p2+4(∆)]

}

+ (p2 − 2)(p2 + 6)(γ′1Q11γ1)E[χ
−4
p2+4(∆)] (2.31)

R(β̂S+
1 ;W ) = R(β̂S

1 ;W ) + (p2 − 2)σ2tr(Q)
[
E
{
χ−2
p2+2(∆)I(χ2

p2+2(∆) ≤ p2 − 2)
}

− (p2 − 2)E
{
χ−4
p+2+2(∆)I(χ2

p2+2(∆) ≤ p2 − 2)
}]

− σ2tr(Q)Hp2+2(p2 − 2;∆) + ω′B−1Qω {2Hp2+4(p2 − 2;∆)}

− (p2 − 2)ω′B−1Qω
[
2E
{
χ−2
p2+2(∆)I(χ2

p2+2(∆) ≤ p2 − 2)
}

−2E
{
χ−2
p2+4(∆)I(χ2

p2+4(∆) ≤ p2 − 2)
}

+ (p2 − 2)E
{
χ−4
p2+4(∆)I(χ−4

p2+4(∆) ≤ p2 − 2)
}]
, (2.32)

where Q = HC−1WC−1H ′B−1, and B = HC−1H ′.

Ahmed (1997) have studied the statistical properties of various shrinkage and

pretest estimators. It was remarked that none of the unrestricted, restricted, and

pretest estimators is inadmissible with respect to any of the others. However, at

∆ = 0,

R(β̂RE
1 ;W ) ≤ R(β̂PT

1 ;W ) ≤ R(β̂UE
1 ;W ).
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Therefore, for all (∆;W ) and p2 ≥ 3,

R(β̂S+
1 ;W ) ≤ R(β̂S

1 ;W ) ≤ R(β̂UE
1 ;W )

is satisfied. Thus, we conclude that β̂S+
1 performs better than β̂UE

1 in the entire

parameter space induced by ∆. The gain in risk over β̂UE
1 is substantial when ∆ = 0

or near.

2.4 Application of Shrinkage and Pretest Estima-

tion

In the following, we study three real data examples. For each data set, we fit multi-

ple regression models to predict the variable of interest from the available regressors.

Shrinkage and pretest estimates are then obtained for the regression parameters. Per-

formance of shrinkage and pretest estimators are assessed as per the criteria outlined

in the following section. A Monte Carlo study is carried out afterwards.

2.4.1 Assessment Criteria

Low-dimensional Scenario (p << n)

The shrinkage estimation method utilizes the full- and sub-model estimates, and com-

bines them in a way that shrinks the least-squares estimates towards the sub-model

estimates. In this framework, if prior information about a subset of the covariates

is available, then the estimates can be obtained by incorporating the available in-
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formation in the estimation process. However, in the absence of prior information,

one might do usual variable selection to select the best subsets. The best subset

may be selected based on AIC, BIC or other model selection criteria. In the end,

we have a full model with all the covariates, and a sub-model with the best subset

of the covariates. Shrinkage estimates are then obtained from the full-model and the

sub-model.

Let us consider AIC and BIC as sub-model selection criteria for a given data.

We may choose to use the AIC sub-model or the BIC sub-model to build shrinkage

estimators. Suppose, AIC retains three covariates, while BIC drops all but two co-

variates. So, it is possible to use different sub-models to obtain pretest and shrinkage

estimates. In this study, performance of each pair of full- and sub-models were eval-

uated by calculating the prediction error based on K-fold cross validation. In a cross

validation, the data set is randomly divided into K subsets of roughly equal size. One

subset is left aside, and termed as test set, while the remaining K − 1 subsets, called

training set, are used to fit the model. The fitted model is then used to predict the

responses of the test data set. Finally, prediction errors are obtained by taking the

squared deviation of the observed and predicted values in the test set. The process

is repeated for all Ks and the prediction errors are combined.

We consider K = 5, 10. Both raw cross validation estimate (CVE), and bias cor-

rected cross validation estimate of prediction errors are obtained for each configu-

ration. The bias corrected cross validation estimate is the adjusted cross-validation

estimate designed to compensate for the bias introduced by not using leave-one-out

cross-validation (Tibshirani and Tibshirani, 2009).

Since cross validation is a random process, the estimated prediction error varies
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across runs and for different values of K. To account for the random variation, we

repeat the cross validation process 2000 times, and estimate the average prediction

errors along with their standard errors. The number of repetitions was initially varied,

and we settled with this number as no noticeable variations in the standard errors

were observed for higher values.

High- and Ultra High-dimensional Scenario (large p, p < n, and p >> n)

Shrinkage estimation works when p is high-dimensional provided p < n. However,

for ultra high dimensional cases (p >> n), shrinkage estimators do not exist since

maximum likelihood estimators do not exist when the number of unknowns is larger

than the number of sample observations.

In the following, we present three real data examples to illustrate shrinkage and

pretest estimation.

2.4.2 NO2 Data

The data came from a subsample of 60 observations from a large data set from a

study where air pollution at a road was related to traffic volume and meteorological

variables. Data were collected at Alnabru in Oslo, Norway, between October 2001

and August 2003 by the Norwegian Public Roads Administration. The data are freely

available from http://lib.stat.cmu.edu/datasets/.

The idea is to predict the logarithm of the concentration of NO2 particles (conc)

from the following covariates: logarithm of the number of cars per hour (cars),

temperature (degree C) two-meter above ground (tmp2m), wind speed (meters/second)
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(windsp), temperature difference (degree C) between 25- and 2-meters above ground

(tmpdiff), wind direction (degrees between 0 and 360) (winddir), and hour of day

(hour).

Candidate full- and sub-models based for the data are listed in Table 2.1. The

sub-models are obtained based on AIC and BIC.

Table 2.1: Candidate full- and sub-models for NO2 data.

Selection
Criterion Model: Response ˜ Covariates
Full Model conc˜ cars + windsp + tmp2m + tmpdiff + winddir +

hour

BIC conc˜cars + windsp

AIC conc˜cars + windsp + tmp2m

Table 2.2 summarizes the average prediction errors with their standard deviations

for UE, RE, PSE and PTE. The terms listed in the first column of Table 2.2 are

defined as follows: UE represents the full-model, RE(AIC) and RE(BIC) denotes

the restricted estimators with sub-models obtained by AIC and BIC. PSE(AIC),

PSE(BIC) represents positive-shrinkage estimators with AIC and BIC sub-models.

PTE(AIC) and PTE(BIC) are similarly denoted to represent pretest estimators.

Comparing the bias corrected estimate of the cross validation error for 10-fold cross

validation, PSE(BIC) has the smallest average prediction error of 0.265 with standard

error .011. For this data set, RE and PTE are performing very close to PSE, mainly

because the sub-models based on AIC and BIC produce the best model to predict

concentration of NO2. Recall that, RE and PTE works best when the nuisance set is

nearly zero. This data set is an example of such a scenario. However, this may not

be the case for every data set, or prior information may not be trustworthy in every

situation. Since PSE takes into account both full and sub-model, it is less sensitive



2.4 Application of Shrinkage and Pretest Estimation 39

Table 2.2: Average prediction errors based on K-fold cross validation repeated 2000
times for NO2 data. Numbers in smaller font are the corresponding standard errors
of the prediction errors.

Raw CVE Bias Corrected CVE
Estimator K = 5 K = 10 K = 5 K = 10
UE .299.020 .298.019 .283.012 .281.011

RE(AIC) .267.021 .267.019 .268.014 .266.013
RE(BIC) .266.020 .265.012 .265.013 .265.012

PSE(AIC) .273.014 .275.013 .271.012 .266.012
PSE(BIC) .272.013 .273.012 .270.019 .265.011

PTE(AIC) .271.021 .270.015 .268.021 .266.014
PTE(BIC) .276.021 .271.016 .267.019 .267.011

to model misspecification. We will explore this further through Monte Carlo study

in subsection 2.4.5.

2.4.3 State Data

Faraway (2002) illustrated variable selection methods on a data set called state.

There are 97 observations (cases) on 9 variables. The variables are: population

estimate as of July 1, 1975 (Population); per capita income (1974) (Income); illit-

eracy (1970, percent of population) (Illiteracy); life expectancy in years (1969-

71) (Life.exp); murder and non-negligent manslaughter rate per 100,000 popula-

tion (1976) (Murder); percent high-school graduates (1970) (Hs.grad); mean number

of days with minimum temperature 32 degrees (1931-1960) in capital or large city

(Frost); and land area in square miles (Area).

We consider predicting life expectancy from the available covariates. It was found

that population, murder, high school graduates, and temperature produce the best
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model based on AIC or BIC. A model based on CP statistic that includes population,

high school graduates, and temperature showed the largest adjusted R2. All the

models are listed in Table 2.3.

Table 2.3: Full and candidate sub-models for state data.

Selection
Criterion Model: Response ˜ Covariates
Full Life.exp˜ Population + Murder + Hs.grad + Frost

+ Income + Illiteracy + Area

AIC/BIC Life.exp˜ Population + Murder + Hs.grad + Frost

CP Life.exp˜ Murder + Hs.grad + Frost

Table 2.4: Average prediction errors (thousands) based on K-fold cross validation,
repeated 2000 times for state data. Numbers in smaller font are the corresponding
standard errors of the prediction errors.

Raw CVE Bias Corrected CVE
Estimator K = 5 K = 10 K = 5 K = 10
UE .879.144 .847.086 .819.119 .820.079

RE(AIC) .637.063 .614.036 .599.052 .597.033
RE(CP) .639.058 .639.033 .626.048 .626.031

PSE(AIC) .740.124 .690.074 .696.104 .671.068
PSE(CP) .768.106 .746.063 .727.090 .727.058

PTE(AIC) .637.066 .614.036 .599.054 .597.033
PTE(CP) .662.069 .639.035 .629.059 .626.032

For this data set, the models given by AIC and BIC are the same. When the

models are correctly specified, restricted estimator performs best. Here, the RE has

the smallest prediction error. Under model uncertainty, however, the scenario may

completely change completely as the risk of RE theoretically higher than than of the

UE when the sub-model deviates from the true underlying model. This is explored

in the simulation study presented in section 2.4.5.
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2.4.4 Galapagos Data

Faraway (2002) analyzed the data about species diversity on the Galapagos islands.

The Galapagos data contains 30 rows and seven variables. Each row represents an

island, and the covariates represent various geographic measurements. The relation-

ship between the number of species of tortoise and several geographic variables is of

interest. The data set has the following covariates: Species–the number of species

of tortoise found on the island, Endemics represents the number of endemic species,

Area represents the area of the island (km2), Elevation measures the highest eleva-

tion of the island (m), Nearest is the distance from the nearest island (km), Scruz

measures the distance from Santa Cruz island (km), and Adjacent measures the area

of the adjacent island (km2). The original data set contained missing values for some

of the covariates, which have been imputed by Faraway (2002) for convenience.

The full model and the sub-models based on AIC and BIC are shown in Table 2.5.

Table 2.5: Full and candidate sub-models for Galapagos data.

Selection
Criterion Model: Response ˜ Covariates
Full Species˜ Endemics + Area + Elevation + Nearest +

Scruz + Adjacent

AIC Species˜ Endemics + Area + Elevation

BIC Species˜ Endemics

We obtain restricted, pretest, and positive-shrinkage estimates of the regression pa-

rameters for the Galapagos data. Average prediction errors along with their standard

errors for UE, RE, PSE, and PTE are presented in Table 2.6. Prediction errors and

the standard errors are shown in thousands. PSE(AIC) represents positive shrink-

age estimates based on sub-model given by AIC, and PSE(BIC) represents the same

based on BIC. PTE(AIC) and PTE(BIC) are similarly defined for pretest estimators.
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Table 2.6: Average prediction errors (thousands) based on K-fold cross validation, re-
peated 2000 times for Galapagos data. Numbers in smaller font are the corresponding
standard errors of the predictor errors.

Raw CVE Bias Corrected CVE
Estimator K = 5 K = 10 K = 5 K = 10
UE 13.878.36 12.634.36 11.316.70 11.483.93

RE(AIC) 12.456.96 11.624.28 10.105.57 10.533.85
RE(BIC) 1.780.59 1.650.24 1.460.43 1.510.29

PSE(AIC) 13.197.82 11.984.29 10.756.27 10.883.87
PSE(BIC) 9.076.53 7.963.75 7.545.24 7.323.38

PTE(AIC) 12.506.98 11.634.29 10.145.58 10.543.86
PTE(BIC) 5.397.56 3.906.16 4.406.08 3.555.56

For this data set, the RE and PTE have the smallest average prediction errors. We

notice that, models based on BIC are smaller in size, and their average prediction

errors are smaller than those of the AIC models. The difference in average prediction

errors for the two sub-models is noticeably large. Such a large difference between

the competing sub-models hints about possible error in model specification, and the

consequences that it may cause. A Monte Carlo study conducted later in section 2.4.5

reveals the sensitivity of RE, PSE, and PTE when the hypothesized model deviates

considerably from the true one.

It is noted here that the prediction errors are unusually large for this data set. This

indicates that the predictors are not quite capturing the variability in the response.

2.4.5 Simulation Study: Comparing PSE with UE, RE, PTE

Based on the bias and risk expressions of PSE and PTE in section 2.3, we conduct

Monte Carlo simulation experiments to examine the quadratic risk performance of the
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estimators. We generate the response and the predictors from the following model:

yi = x1iβ1 + x2iβ2 + . . . ,+xpiβp + εi, i = 1, . . . , n, (2.33)

where x1i and x2i ∼ N(1, 2), and the xsi are i.i.d. N(0, 1) for s = 3, . . . , p and

i = 1, . . . , n. Moreover, εi are i.i.d. N(0, 1).

We are interested in testing the hypothesis H0 : βj = 0, for j = p1 + 1, p1 +

2, . . . , p1 + p2, with p = p1 + p2. Accordingly, we partition the regression coefficients

as β = (β1,β2) = (β1, 0).

The number of simulations is initially varied. Finally, each realization is repeated

2000 times to obtain stable results. For each realization, we calculated bias of the

estimators. We define ∆∗ = ||β−β(0)||, where β(0) = (β1, 0), and ||·|| is the Euclidean

norm. To determine the behavior of the estimators for ∆∗ > 0, further data sets are

generated from those distributions under local alternative hypotheses. Various ∆∗

values between [0,1] are considered.

Our objective is to study the behavior of PSE and PTE under varying degrees of

model misspecification, i.e., when ∆∗ > 0. RE performs best if the nuisance subset

is a zero vector (∆∗ = 0). However, the risk of RE goes higher than the UE when it

deviates substantially from ∆∗ = 0.

The risk performance of an estimator of β1 is measured by comparing its MSE with

that of UE as defined below:

RMSE(β̂UE
1 : β̂*

1) =
MSE(β̂UE

1 )

MSE(β̂*
1)
, (2.34)

where β̂*
1 is either the RE, PSE or PTE. The amount by which an RMSE is larger
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than unity indicates the degree of superiority of the estimator β̂*
1 over β̂UE

1 .

RMSEs for the RE, PSE and PTE are computed for n = 30, 50, 100, p1 = 3, 6, 9,

and p2 = 5, 7, 10. Since the results are similar for all the configurations, we list the

RMSEs in Table 2.7 for n = 50 and (p1, p2) = (6, 10) only. Comparative RMSEs for

RE, PSE and PTE for the configurations (p1, p2) = (6, 5), (6, 10), (9, 5), and (9, 10)

are illustrated in Figure 2.1.
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Figure 2.1: Relative mean squared error for restricted, positive-shrinkage, and pretest
estimators for n = 50, and (p1, p2) = (6, 5), (6, 10), (9, 5), (9, 10).

Case 1: ∆∗ = 0

Clearly, for ∆∗ = 0, the RE outperforms all other estimators for all the cases consid-

ered in the simulation study.
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Table 2.7: Simulated relative mean squared error for restricted, positive-shrinkage,
and pretest estimators with respect to unrestricted estimator for p1 = 6, and p2 = 10
for different ∆∗ when n = 50.

∆∗ β̂RE
1 β̂S+

1 β̂PT
1

0.00 3.78 2.78 2.85
0.05 3.70 2.73 2.75
0.11 3.27 2.43 2.24
0.16 2.76 2.10 1.69
0.21 2.28 1.85 1.32
0.26 1.82 1.63 1.09
0.32 1.52 1.49 0.99
0.37 1.22 1.37 0.94
0.42 1.01 1.29 0.94
0.47 0.86 1.24 0.96
0.53 0.72 1.20 0.97
0.58 0.61 1.17 0.99
0.63 0.53 1.14 0.99
0.68 0.46 1.13 1.00
0.74 0.40 1.10 1.00
0.79 0.36 1.09 1.00
0.84 0.32 1.08 1.00
0.89 0.28 1.07 1.00
0.95 0.26 1.07 1.00
1.00 0.23 1.05 1.00

Case 2: ∆∗ > 0

As the restriction moves away from ∆∗ = 0, the RMSE of RE (solid line in Figure 2.1)

decays sharply and goes below the horizontal line at RMSE=1. The RMSE of PSE,

represented by dashed line in Figure 2.1, approaches 1 at the slowest rate (for a

range of ∆∗) as we move away from ∆∗ = 0. This indicates that in the event of

imprecise subspace information (i.e., even if β2 6= 0), PSE has the smallest quadratic

risk among all other estimators for a range of ∆∗. PTE (dotted line in Figure 2.1)

outshines PSE when ∆∗ is in the neighborhood of zero. For ∆∗ > 0, the RMSE of
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PTE becomes inferior to the UE at a faster rate than that of the RE. However, with

the increase of ∆∗, at some point, RMSE of PTE approaches 1 from below. This

phenomenon suggests that neither PTE nor RE is uniformly better than the other

when ∆∗ > 0. This is consistent with the theoretical results available in the literature

for these estimators (Ahmed, 2012).

Figure 2.1 suggests that PSE maintains its superiority over the RE and PTE for

a wide range of ∆∗. For example, when (p1, p2) = (6, 5), the risk performance of RE

and PTE are superior to that of PSE when ∆∗ = 0. However, as ∆∗ moves slightly

away from 0, PTE becomes inferior to PSE. PSE dominates RE for ∆∗ around 0.25.

After this point RE is not useful while the RMSE of PSE continues to remain over

1 [panels a) and c) in Figure 2.1]. Therefore, PSE might be a preferred estimator

since there always remains uncertainty in model-specification. Here ∆∗ measures the

degree of deviation from the underlying hypothesis regarding the sub-model, and we

see that one cannot go wrong with the PSE even if the assumed model is wrong. In

that case, the estimates are as good as the UE in terms of risk.

2.5 Comparing Shrinkage and APEs

Our motivation to compare shrinkage and APE came from the work of Hastie et al.

(2009) who analyzed the prostate data (Stamey et al., 1989) to evaluate the perfor-

mance of lasso and some other model selection criteria.

Shrinkage estimators shrink the full model estimates towards the restricted model

estimates. In contrast, APEs, for example, the lasso, shrink the ordinary least squares

(OLS) estimator towards zero and depending on the value of the tuning parameter λ,



2.5 Comparing Shrinkage and APEs 47

it sets some coefficients to exactly zero. The output of the lasso resembles shrinkage

and pretest methods as it shrinks and selects the variables simultaneously. However,

lasso does variable selection automatically by treating all the variables equally. Lasso

does not single out the nuisance covariates, or for that matter, the NSI, for special

scrutiny as to their usefulness in estimating the main coefficients.

When we have prior information about certain covariates, shrinkage estimators are

directly obtained by combining the full and sub-model estimates. On the other hand,

if a priori information is not available, shrinkage estimation takes a two-step approach

in obtaining the estimates. In the first step, a set of covariates are selected based on

a suitable model selection criterion such as AIC, BIC or best subset selection. Conse-

quently, the remaining covariates become nuisance, causing a parametric restriction

on the full model. In the second step, full and sub-model estimates are combined in

a way that minimizes the quadratic risk.

Therefore, it is worth exploring the performance of APEs and shrinkage estimators

when it is suspected a priori that the parameters may be reduced to a subspace. The

following section is dedicated to comparative study of shrinkage and APEs.

In the following, we use the prostate data that was used by Hastie et al. (2009) and

obtain the shrinkage estimators, and compare their performance with the absolute

penalty estimators.

First, we present the prostate data.

2.5.1 Prostate Data

Stamey et al. (1989) studied the correlation between the level of prostate specific
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antigen (PSA), and a number of clinical measures in men who were about to receive

radical prostatectomy. The data consist of 97 measurements on the following vari-

ables: log cancer volume (lcavol), log prostate weight (lweight), age (age), log of

benign prostatic hyperplasia amount (lbph), log of capsular penetration (lcp), sem-

inal vesicle invasion (svi), Gleason score (gleason), and percent of Gleason scores 4

or 5 (pgg45).

The idea is to predict log of PSA (lpsa) from these measured variables.

2.5.2 Predictive Models for Prostate Data

Hastie et al. (2009) demonstrated various model selection techniques by fitting linear

regression models to the prostate data. We fit linear regression model to this data, and

apply the shrinkage estimation method to obtain positive shrinkage estimates of the

regression parameters. We then obtain prediction accuracy of the model by computing

cross validation errors, and compare the same with those obtained by the lasso. The

predictors were first standardized to have zero mean and unit standard deviation

before fitting the model. The correlation table, and the estimated coefficients of

linear regression model are available in Hastie et al. (2009, page 50). In their analysis,

data were randomly divided into a training and a test part. Several model selection

and shrinkage methods such as, OLS, best subset selection (BSS), ridge regression,

principal component regression (PCR), partial least squares (PLS), and the lasso,

were employed on the training data, and the resulting models were used to predict

the outcomes in the test data to obtain prediction errors. Results can be found in

Hastie et al. (2009, Table 3.3, page 63). Of the six methods that were used, only best

subset selection and lasso methods set some of the coefficients to zero. Best subset
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selection gives a model with only lcavol and lweight, while lasso returns lcavol,

lweight, lbph, and svi as the best covariates to be included in the model. Since

the variables that were dropped were not significantly contributing to the overall fit

of the model, we take them as our prior information, and incorporate them in the

shrinkage estimation by setting them as restrictions on the full model. In addition to

the best subset selection method and lasso, we obtain sub-models based on AIC and

BIC for the same data set. The sub-models along with the full-model are listed in

Table 2.8. Subsequent calculation of shrinkage and positive-shrinkage estimates uses

these four sub-models.

Table 2.8: Full and candidate sub-models for prostate data.

Selection
Criterion Model: Response ˜ Covariates
Full Model lpsa˜ lcavol + lweight + svi + lbph + age + lcp +

gleason + pgg45

AIC lpsa˜ lcavol + lweight + svi + lbph + age

BIC lpsa˜ lcavol + lweight + svi

BSS lpsa˜ lcavol + lweight

lasso lpsa˜ lcavol + lweight + svi + lbph

We compute several sets of positive-shrinkage estimates using the sub-models listed

in Table 2.8. The model performance is evaluated by computing the prediction error

based on K-fold cross validation. We consider K = 5, 10. In a similar fashion,

separate lasso estimates are obtained. For lasso, the tuning parameter is chosen

to minimize an estimate of the prediction error based on five- and ten-fold cross

validation. Both raw and bias corrected cross validation estimate of prediction error

are considered.

We compute adaptive lasso estimates for the prostate data. The advantage of adap-

tive lasso over the lasso is that it has the oracle property–“it performs as well as if the
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true underlying model were given in advance”(Zou, 2006). We use parcor R-package

(Kraemer and Schaefer, 2010) to obtain adaptive lasso estimates. The software cal-

culates the weights for adaptive lasso by fitting a lasso, where the optimal value of

the penalty term is selected via K-fold cross-validation. This is a computationally

intensive method in which the lasso solutions are computed K ∗K times.

We also estimate the regression parameters using SCAD penalty. Breheny and

Huang (2011) have implemented the SCAD algorithm in their R-package ncvreg. In

our analysis, we use this package to obtain the SCAD estimates.

Table 2.9 shows average prediction errors and their standard deviations for different

shrinkage and absolute penalty estimators based on K-fold cross validation repeated

2000 times. We compute four positive shrinkage estimators based on sub-models

returned by BSS, AIC, BIC, and lasso. For the purpose of comparison, we first

obtain lasso, adaptive lasso and SCAD estimators. Then shrinkage estimators are

obtained based on the sub-models given by AIC, BIC, BSS, and lasso. Prediction

errors are obtained for each of the cases using 10-fold cross validation.

Table 2.9: Average prediction errors for various models based on K-fold cross vali-
dation repeated 2000 times for prostate data. Numbers in smaller font are the corre-
sponding standard errors of the prediction errors.

Raw CVE Bias Corrected CVE
Estimator K = 5 K = 10 K = 5 K = 10
Lasso .571.030 .569.021 .565.027 .564.018
alasso .562.029 .557.022 .559.026 .552.016
SCAD .588.044 .563.031 .584.043 .560.026

PSE(AIC) .553.029 .546.020 .549.027 .541.016
PSE(BIC) .559.031 .553.021 .555.028 .547.016
PSE(BSS) .551.028 .549.019 .547.025 .544.017
PSE(Lasso) .546025 .548019 .546025 .543016
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The procedure for shrinkage estimation is as follows:

Step 1 Select a candidate sub-model using a suitable model selection criterion, or use

prior information to make up the sub-model.

Step 2 Obtain full and sub-model estimates

Step 3 Combine the full and sub-model estimates to obtain shrinkage estimates.

From Table 2.9 we see that the shrinkage estimators have the smallest average

prediction error compared to each of the absolute penalty estimators. Recall that the

best subset selection produced the smallest sub-model with two covariates followed

by BIC, which produced a sub-model with three covariates.

In an attempt to visually display the comparison between shrinkage and APEs, we

plot the first fifty values of the average prediction errors for the selected models in

Figure 2.2. Since plotting the values for 2000 repetitions would make the comparison

difficult to visualize, we plot only the first 50 values.

Figure 2.2 a) shows no striking difference in average prediction errors when predic-

tion errors based on PSE(AIC) and PSE(BIC) models are compared. Figure 2.2 b)

shows comparison between PSE(BIC) and the lasso models. Similarly, PSE(BIC) is

compared with adaptive lasso and shown in panel c), and with SCAD in panel d) of

Figure 2.2. Clearly, shrinkage estimators have smaller overall prediction errors com-

pared to the APEs. It is to be noted that AIC model is larger than the lasso model.

The analyses demonstrate that the positive shrinkage estimators minimize the overall

risk when we have some prior information about some of the covariates.

In the following section, we conduct Monte Carlo simulation for further investiga-

tion.
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Figure 2.2: Comparison of average prediction error using 10-fold cross validation
(first 50 values only) for some positive-shrinkage, lasso, adaptive lasso, and SCAD
estimators.
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2.5.3 Simulation Study: Shrinkage Vs APEs

We perform Monte Carlo simulation experiments to examine the quadratic risk per-

formance of shrinkage estimators with those of APEs. We simulate data from model

(2.33) that was previously used in this chapter.

We partition the regression coefficients as β = (β1,β2) = (β1, 0), and consider

β1 = (1, 1, 1, 1).

The risk performance of an estimator of β1 is measured by calculating its mean

squared error (MSE). After calculating the MSEs, we compute efficiencies of the esti-

mators β̂RE
1 , β̂S

1 , β̂
S+
1 , β̂lasso, β̂alasso, and β̂SCAD relative to the unrestricted estimator

β̂UE
1 using the relative mean squared error (RMSE) criterion, given by

RMSE(β̂UE
1 : β̂*

1) =
MSE(β̂UE

1 )

MSE(β̂*
1)
. (2.35)

Here, β̂*
1 is one of the shrinkage and APEs. The amount by which an RMSE is larger

than unity indicates the degree of superiority of the estimator β̂*
1 over β̂UE

1 .

We simulate for n = 30, 50, 100, 125, p1 = 4, 6, 10, and p2 = 5, 9, 15. RMSEs are

calculated and are presented in Tables 2.12-2.22 for different values of ∆∗. Table 2.10

summarizes the RMSEs of the estimators when ∆∗ = 0.

The tuning parameters for the APE are obtained via cross validation. Ahmed et al.

(2007) was the first to compare the shrinkage estimators with an APE (the lasso) in

a partially linear regression setup. They compared when ∆∗ = 0 only, arguing that

APE does not take into consideration that the regression coefficient β is partitioned

into main and nuisance parts. However, comparison in the classical linear model is not
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available in the reviewed literature. Further, in this study, we extend the comparison

by adding adaptive lasso and the SCAD penalty estimators in the picture.

Discussion: Shrinkage Vs APEs

We compare RMSE of shrinkage and APE for both ∆∗ = 0 and ∆∗ > 0. Let us

compare their performance separately.

Case 1: ∆∗ = 0

Figure 2.3 shows relative efficiencies of the PSE, β̂S+
1 , and the APE with respect to

the UE. Clearly, for ∆∗ = 0, the restricted estimator outperforms all other estimators

for all the cases considered in this study. Under this condition, β̂S+
1 outperforms all

the APEs. Table 2.10 lists the RMSE of the estimators for p1 = 4, p2 = 5, 9, 15, and

n = 30, 50, 100, and 125.

Case 2: ∆∗ > 0

As the restriction moves away from ∆∗ = 0, RMSE of the restricted estimator sharply

goes below 1. The RMSE of PSE approaches 1 at the slowest rate (for a range of ∆∗)

as we move away from ∆∗ = 0. This indicates that in the event of imprecise subspace

information (i.e., even if β2 6= 0), β̂S+
1 has the smallest quadratic risk among all other

estimators for a range of ∆∗.

Our simulation results suggest that shrinkage and positive shrinkage estimators

maintain their superiority over the restricted estimators for a wide range of ∆∗. How-

ever, when compared to lasso, alasso and SCAD estimators, the scenario changes when
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Figure 2.3: Relative efficiency as measured by RMSE criterion for positive shrink-
age, lasso, adaptive lasso, and SCAD estimators for different ∆∗, n, p1, and p2. A
value larger than unity (the horizontal line on the y-axis) indicates superiority of the
estimator compared to the unrestricted estimator.
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we deviate considerably from ∆∗ = 0. At some point in the range of ∆∗, adaptive

lasso and the SCAD estimators show improved RMSE compared to the unrestricted

estimators. Notice the upward-going curves for adaptive lasso and SCAD estimators

when ∆∗ is around 0.3 in Figure 2.3.

Based on the ∆∗ values that we consider in our study, performance of shrinkage and

positive shrinkage estimators are superior for ∆∗ ≤ 0.25. However, as ∆∗ increases,

RMSE of adaptive lasso gets better. The reason for adaptive lasso to perform better

than the rest of the estimators under the alternative hypothesis is that an increase in

the ∆∗ makes a previously insignificant covariate possibly significant, which was not

being considered under the simulation setup. Note that, in our setup we computed

the MSE under fixed H0 : β2 = 0 even though we let ∆∗ vary considerably.

Table 2.10: Simulated RMSE with respect to β̂UE
1 for p1 = 4, ∆∗ = 0.

n p2 β̂RE
1 β̂S

1 β̂S+
1 β̂lasso β̂alasso β̂SCAD

30 5 3.30 1.71 1.98 1.17 1.66 1.64
9 6.20 2.85 3.49 1.66 2.71 2.75
15 14.88 5.35 6.98 3.05 5.72 5.47

50 5 2.93 1.67 1.89 1.15 1.67 1.73
9 4.88 2.61 3.16 1.56 2.57 2.81
15 14.88 5.35 6.98 3.05 4.65 4.70

100 5 2.76 1.62 1.84 1.15 1.79 1.73
9 4.27 2.52 2.93 1.51 2.62 2.77
15 6.90 3.83 4.63 2.12 4.08 4.35

125 5 2.69 1.62 1.83 1.14 1.87 1.71
9 4.14 2.44 2.88 1.50 2.70 4.30
15 6.66 3.79 4.63 2.09 4.07 4.45
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2.5.4 High-dimensional Scenario

We further compare the RMSE of shrinkage and APEs in a high-dimensional scenario

when the number of nuisance parameter is very high compared to the number of main

parameters. We keep the number of parameters less than the number of observations

in order to be able to compute the shrinkage estimators. Simulated RMSE for fixed

n = 110 and fixed p1 = 5 are presented in Table 2.11 for varying p2. RMSE are

also graphically compared in Figure 2.4. This time, only cases with ∆∗ = 0 were

considered.

We observe that PSE and SCAD estimators perform closely in terms of RMSE for

p2 up to 40. As p2 gets larger, adaptive lasso and SCAD outshines PSE. However,

PSE continues to dominate lasso for all p2 considered in this study. See Table 2.11.

Table 2.11: Simulated RMSE when p2 is high-dimensional for fixed n = 110 and
p1 = 5.

p2 β̂RE
1 β̂S

1 β̂S+
1 β̂lasso β̂alasso β̂SCAD

20 7.17 4.33 5.25 2.31 4.43 5.05
40 17.50 9.94 12.21 4.55 10.61 12.73
60 37.82 17.11 22.78 8.56 21.10 26.39
80 92.85 27.48 41.32 18.63 51.06 66.04
90 163.22 37.32 58.24 33.9 89.07 104.72
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Figure 2.4: Graphical comparison of simulated RMSE for fixed p1 = 5, n = 110 when
∆∗ = 0.
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Table 2.12: Simulated RMSE with respect to β̂UE
1 for p1 = 4 when n = 30.

p2 ∆∗ β̂RE
1 β̂S

1 β̂S+
1 β̂lasso β̂alasso β̂SCAD

5 0.00 3.30 1.71 1.98 1.17 1.66 1.64
0.25 1.69 1.34 1.38 1.05 1.17 1.11
0.50 0.70 1.11 1.11 1.02 1.19 1.10
1.00 0.20 1.03 1.03 1.02 1.31 1.34
2.00 0.05 1.01 1.01 1.03 1.35 1.37
4.00 0.01 1.00 1.00 1.02 1.40 1.37

9 0.00 6.20 2.85 3.49 1.66 2.71 2.75
0.25 3.17 2.04 2.13 1.46 1.85 1.82
0.50 1.29 1.40 1.40 1.42 1.78 1.70
1.00 0.38 1.11 1.11 1.40 2.19 2.18
2.00 0.10 1.03 1.03 1.42 2.20 2.29
4.00 0.03 1.01 1.01 1.44 2.24 2.34

15 0.00 14.88 5.35 6.98 3.05 5.72 5.47
0.25 7.77 3.64 3.87 2.73 3.85 3.75
0.50 3.09 2.03 2.04 2.55 3.67 3.48
1.00 0.93 1.29 1.29 2.48 4.32 4.50
2.00 0.24 1.07 1.07 2.49 4.26 4.61
4.00 0.06 1.02 1.02 2.46 4.65 4.33
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Table 2.13: Simulated RMSE with respect to β̂UE
1 for p1 = 4 when n = 50.

p2 ∆∗ β̂RE
1 β̂S

1 β̂S+
1 β̂lasso β̂alasso β̂SCAD

5 0.00 2.93 1.67 1.89 1.15 1.67 1.73
0.25 1.13 1.18 1.20 1.02 1.13 1.03
0.50 0.40 1.05 1.05 1.03 1.29 1.24
1.00 0.11 1.01 1.01 1.04 1.38 1.41
2.00 0.03 1.00 1.00 1.04 1.40 1.43
4.00 0.01 1.00 1.00 1.04 1.43 1.43

9 0.00 4.88 2.61 3.16 1.56 2.57 2.81
0.25 1.91 1.62 1.65 1.37 1.72 1.59
0.50 0.68 1.19 1.19 1.36 1.91 1.84
1.00 0.19 1.05 1.05 1.34 2.11 2.25
2.00 0.05 1.01 1.01 1.35 2.10 2.31
4.00 0.01 1.00 1.00 1.37 2.27 2.35

15 0.00 8.59 4.29 5.38 2.36 4.65 4.70
0.25 3.44 2.43 2.49 2.00 2.77 2.67
0.50 1.23 1.47 1.47 1.98 3.16 3.09
1.00 0.34 1.12 1.12 1.96 3.48 4.14
2.00 0.09 1.03 1.03 2.00 3.48 4.03
4.00 0.02 1.01 1.01 1.97 3.81 3.90
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Table 2.14: Simulated RMSE with respect to β̂UE
1 for p1 = 4 when n = 100.

p2 ∆∗ β̂RE
1 β̂S

1 β̂S+
1 β̂lasso β̂alasso β̂SCAD

5 0.00 2.76 1.62 1.84 1.15 1.79 1.73
0.25 0.66 1.09 1.09 1.03 1.28 1.09
0.50 0.20 1.02 1.02 1.03 1.44 1.40
1.00 0.05 1.01 1.01 1.04 1.48 1.43
2.00 0.01 1.00 1.00 1.04 1.56 1.42
4.00 0.00 1.00 1.00 1.05 1.63 1.40

9 0.00 4.27 2.52 2.93 1.51 2.62 2.77
0.25 1.04 1.31 1.31 1.31 1.82 1.52
0.50 0.32 1.08 1.08 1.33 2.08 2.12
1.00 0.08 1.02 1.02 1.33 2.23 2.18
2.00 0.02 1.01 1.01 1.33 2.17 2.19
4.00 0.01 1.00 1.00 1.32 2.38 2.19

15 0.00 6.90 3.83 4.63 2.12 4.08 4.35
0.25 1.65 1.70 1.71 1.80 2.69 2.39
0.50 0.50 1.20 1.20 1.81 3.25 3.50
1.00 0.13 1.05 1.05 1.82 3.17 3.66
2.00 0.03 1.01 1.01 1.81 3.47 3.67
4.00 0.01 1.00 1.00 1.82 3.75 3.54
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Table 2.15: Simulated RMSE with respect to β̂UE
1 for p1 = 4 when n = 125.

p2 ∆∗ β̂RE
1 β̂S

1 β̂S+
1 β̂lasso β̂alasso β̂SCAD

5 0.00 2.69 1.62 1.83 1.14 1.87 1.71
0.25 0.55 1.07 1.07 1.04 1.33 1.14
0.50 0.16 1.02 1.02 1.03 1.47 1.40
1.00 0.04 1.00 1.00 1.03 1.50 1.42
2.00 0.01 1.00 1.00 1.03 1.53 1.42
4.00 0.00 1.00 1.00 1.06 1.61 1.41

9 0.00 4.14 2.44 2.88 1.50 2.70 4.30
0.25 0.84 1.24 1.24 1.30 1.81 2.21
0.50 0.25 1.06 1.06 1.31 2.11 3.19
1.00 0.06 1.02 1.02 1.32 2.25 3.69
2.00 0.02 1.00 1.00 1.31 2.30 3.53
4.00 0.00 1.00 1.00 1.33 2.40 3.54

15 0.00 6.66 3.79 4.63 2.09 4.07 4.45
0.25 1.33 1.56 1.56 1.79 2.68 2.48
0.50 0.39 1.16 1.16 1.78 3.14 3.41
1.00 0.10 1.04 1.04 1.79 3.44 3.54
2.00 0.03 1.01 1.01 1.78 3.50 3.61
4.00 0.01 1.00 1.00 1.79 3.66 3.49
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Table 2.16: Simulated RMSE with respect to β̂UE
1 for p1 = 6 when n = 30.

p2 ∆∗ β̂RE
1 β̂S

1 β̂S+
1 β̂lasso β̂alasso β̂SCAD

5 0.00 2.26 1.51 1.66 1.07 1.64 1.41
0.25 1.13 1.16 1.17 1.00 0.98 1.05
0.50 0.46 1.05 1.05 1.00 1.16 1.05
1.00 0.13 1.01 1.01 1.00 1.48 1.23
2.00 0.04 1.00 1.00 1.00 1.28 1.28
4.00 0.01 1.00 1.00 1.01 1.27 1.26

9 0.00 3.52 2.26 2.60 1.36 2.06 2.20
0.25 1.74 1.55 1.57 1.23 1.70 1.64
0.50 0.71 1.18 1.18 1.22 1.72 1.51
1.00 0.21 1.05 1.05 1.22 1.79 1.83
2.00 0.05 1.01 1.01 1.23 1.88 1.91
4.00 0.01 1.00 1.00 1.24 1.88 1.99

15 0.00 6.11 3.67 4.35 1.94 4.32 4.41
0.25 3.05 2.29 2.34 1.72 3.48 3.21
0.50 1.23 1.45 1.45 1.69 3.24 2.90
1.00 0.36 1.12 1.12 1.71 3.66 3.35
2.00 0.09 1.03 1.03 1.70 3.78 3.53
4.00 0.02 1.01 1.01 1.71 3.80 3.69
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Table 2.17: Simulated RMSE with respect to β̂UE
1 for p1 = 6 when n = 50.

p2 ∆∗ β̂RE
1 β̂S

1 β̂S+
1 β̂lasso β̂alasso β̂SCAD

5 0.00 2.56 1.59 1.79 1.07 1.41 1.53
0.25 1.59 1.30 1.33 0.99 1.09 1.03
0.50 0.74 1.10 1.11 0.97 1.21 1.20
1.00 0.24 1.03 1.03 0.98 1.23 1.30
2.00 0.06 1.01 1.01 0.98 1.26 1.32
4.00 0.02 1.00 1.00 1.00 1.33 1.34

9 0.00 4.61 2.54 3.02 1.43 2.18 2.33
0.25 2.87 1.95 2.04 1.32 1.57 1.47
0.50 1.31 1.39 1.40 1.27 1.72 1.73
1.00 0.43 1.11 1.11 1.28 1.80 1.98
2.00 0.11 1.03 1.03 1.30 1.85 2.01
4.00 0.03 1.01 1.01 1.29 1.82 2.01

15 0.00 11.51 4.88 6.26 2.51 3.42 3.97
0.25 7.04 3.49 3.77 2.30 2.39 2.48
0.50 3.37 2.10 2.11 2.23 2.75 2.72
1.00 1.07 1.31 1.31 2.21 2.91 3.47
2.00 0.29 1.08 1.08 2.17 3.01 3.48
4.00 0.07 1.02 1.02 2.24 3.05 3.39
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Table 2.18: Simulated RMSE with respect to β̂UE
1 for p1 = 6 when n = 100.

p2 ∆∗ β̂RE
1 β̂S

1 β̂S+
1 β̂lasso β̂alasso β̂SCAD

5 0.00 2.10 1.46 1.60 1.07 1.53 1.52
0.25 0.70 1.07 1.07 1.00 1.19 1.06
0.50 0.24 1.02 1.02 1.01 1.28 1.30
1.00 0.06 1.00 1.00 1.01 1.33 1.32
2.00 0.02 1.00 1.00 1.01 1.34 1.32
4.00 0.00 1.00 1.00 1.01 1.39 1.30

9 0.00 3.10 2.14 2.38 1.31 2.07 2.22
0.25 1.03 1.26 1.26 1.20 1.61 1.40
0.50 0.34 1.07 1.07 1.20 1.81 1.86
1.00 0.09 1.02 1.02 1.20 1.85 1.93
2.00 0.02 1.00 1.00 1.21 1.89 1.93
4.00 0.01 1.00 1.00 1.21 1.95 1.87

15 0.00 4.80 3.19 3.66 1.75 3.14 3.45
0.25 1.59 1.63 1.64 1.55 2.25 2.13
0.50 0.53 1.18 1.18 1.57 2.59 2.83
1.00 0.14 1.05 1.05 1.56 2.70 2.98
2.00 0.04 1.01 1.01 1.57 2.79 2.96
4.00 0.01 1.00 1.00 1.57 2.91 2.96
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Table 2.19: Simulated RMSE with respect to β̂UE
1 for p1 = 6 when n = 125.

p2 ∆∗ β̂RE
1 β̂S

1 β̂S+
1 β̂lasso β̂alasso β̂SCAD

5 0.00 2.08 1.45 1.60 1.07 1.58 1.50
0.25 0.60 1.06 1.06 1.01 1.22 1.11
0.50 0.19 1.02 1.02 1.00 1.32 1.29
1.00 0.05 1.00 1.00 1.00 1.36 1.32
2.00 0.01 1.00 1.00 1.01 1.39 1.31
4.00 0.00 1.00 1.00 1.02 1.41 1.30

9 0.00 2.99 2.08 2.33 1.31 2.17 2.17
0.25 0.86 1.21 1.21 1.20 1.64 1.48
0.50 0.28 1.06 1.06 1.20 1.83 1.88
1.00 0.08 1.01 1.01 1.19 1.84 1.91
2.00 0.02 1.00 1.00 1.20 1.90 1.89
4.00 0.00 1.00 1.00 1.22 1.97 1.91

15 0.00 4.55 3.10 3.54 1.71 3.17 3.31
0.25 1.31 1.50 1.50 1.54 2.31 2.17
0.50 0.42 1.14 1.14 1.54 2.57 2.84
1.00 0.11 1.04 1.04 1.54 2.63 2.90
2.00 0.03 1.01 1.01 1.54 2.75 2.95
4.00 0.01 1.00 1.00 1.56 2.96 2.84



2.5 Comparing Shrinkage and APEs 67

Table 2.20: Simulated RMSE with respect to β̂UE
1 for p1 = 10 when n = 50.

p2 ∆∗ β̂RE
1 β̂S

1 β̂S+
1 β̂lasso β̂alasso β̂SCAD

5 0.00 1.78 1.37 1.46 1.01 1.24 1.35
0.25 1.12 1.14 1.15 0.97 1.06 1.03
0.50 0.53 1.04 1.04 0.97 1.12 1.13
1.00 0.17 1.01 1.01 0.96 1.15 1.21
2.00 0.05 1.00 1.00 0.97 1.13 1.22
4.00 0.01 1.00 1.00 0.97 1.16 1.22

9 0.00 2.61 1.91 2.12 1.18 1.69 1.92
0.25 1.63 1.46 1.48 1.11 1.41 1.37
0.50 0.77 1.17 1.17 1.11 1.45 1.54
1.00 0.25 1.05 1.05 1.11 1.50 1.74
2.00 0.07 1.01 1.01 1.11 1.53 1.70
4.00 0.02 1.00 1.00 1.11 1.54 1.71

15 0.00 4.37 3.05 3.45 1.56 2.65 3.05
0.25 2.74 2.15 2.20 1.47 2.12 2.25
0.50 1.28 1.45 1.45 1.45 2.10 2.44
1.00 0.41 1.13 1.13 1.45 2.40 2.94
2.00 0.11 1.03 1.03 1.45 2.42 2.84
4.00 0.03 1.01 1.01 1.45 2.36 2.90
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Table 2.21: Simulated RMSE with respect to β̂UE
1 for p1 = 10 when n = 100.

p2 ∆∗ β̂RE
1 β̂S

1 β̂S+
1 β̂lasso β̂alasso β̂SCAD

5 0.00 1.65 1.32 1.39 1.01 1.31 1.32
0.25 0.77 1.06 1.06 0.98 1.12 1.02
0.50 0.30 1.01 1.01 0.98 1.18 1.18
1.00 0.09 1.00 1.00 0.98 1.20 1.20
2.00 0.02 1.00 1.00 0.98 1.21 1.20
4.00 0.01 1.00 1.00 0.99 1.21 1.19

9 0.00 2.23 1.75 1.90 1.16 1.69 1.78
0.25 1.04 1.21 1.21 1.10 1.41 1.28
0.50 0.40 1.06 1.06 1.10 1.50 1.59
1.00 0.12 1.02 1.02 1.10 1.53 1.59
2.00 0.03 1.00 1.00 1.10 1.54 1.62
4.00 0.01 1.00 1.00 1.10 1.56 1.60

15 0.00 3.20 2.48 2.73 1.42 2.33 2.59
0.25 1.50 1.53 1.53 1.33 1.88 1.83
0.50 0.58 1.16 1.16 1.33 2.07 2.25
1.00 0.17 1.04 1.04 1.34 2.12 2.37
2.00 0.04 1.01 1.01 1.33 2.17 2.36
4.00 0.01 1.00 1.00 1.33 2.21 2.36



2.5 Comparing Shrinkage and APEs 69

Table 2.22: Simulated RMSE with respect to β̂UE
1 for p1 = 10 when n = 125.

p2 ∆∗ β̂RE
1 β̂S

1 β̂S+
1 β̂lasso β̂alasso β̂SCAD

5 0.00 1.63 1.31 1.39 1.02 1.31 1.30
0.25 0.68 1.04 1.04 0.99 1.14 1.07
0.50 0.24 1.01 1.01 0.99 1.20 1.20
1.00 0.07 1.00 1.00 0.98 1.21 1.21
2.00 0.02 1.00 1.00 0.99 1.23 1.20
4.00 0.00 1.00 1.00 0.99 1.22 1.21

9 0.00 2.19 1.73 1.87 1.16 1.70 1.78
0.25 0.90 1.17 1.17 1.10 1.48 1.34
0.50 0.33 1.05 1.05 1.10 1.52 1.62
1.00 0.09 1.01 1.01 1.10 1.53 1.59
2.00 0.02 1.00 1.00 1.10 1.57 1.63
4.00 0.01 1.00 1.00 1.11 1.60 1.58

15 0.00 3.05 2.40 2.64 1.41 2.30 2.50
0.25 1.28 1.42 1.42 1.32 1.99 1.81
0.50 0.47 1.13 1.13 1.33 2.09 2.28
1.00 0.13 1.03 1.03 1.32 2.10 2.30
2.00 0.03 1.01 1.01 1.33 2.12 2.34
4.00 0.01 1.00 1.00 1.32 2.17 2.29
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2.6 Conclusion

In this chapter, we demonstrated application of shrinkage and pretest estimation in

linear models using three real life data sets. We also compared the performance of

PSE and APE numerically using the prostate data. Monte Carlo experiments were

conducted to study the behavior of shrinkage and APE under various conditions.

In the first half of this chapter (up to Section 2.4), we presented shrinkage and

pretest estimation in the context of a multiple linear regression model. To illustrate

the methods, three different data sets have been considered to obtain restricted, pos-

itive shrinkage, and pretest estimators. Average prediction errors based on repeated

cross validation estimate of the error rates show that pretest and restricted estimators

have superior risk performance compared to the unrestricted and positive-shrinkage

estimators when the underlying model is correctly specified. This is not unusual since

the restricted estimator dominates all other estimators when the prior information

is correct. Since the data considered in this study have been interactively analyzed

using various model selection criteria, it is expected that the sub-models consist of

the best subsets of the available covariates for the respective data sets. Theoretically,

this is equivalent to the case where ∆∗ = 0, or very close to zero. The real data

examples considered here, however, do not tell us how sensitive are the prediction

errors under model misspecification. Therefore, we conduct Monte Carlo simulation

to study the behaviour of PSE and PT estimators under varying ∆∗ and different

sizes of the nuisance subsets.

Our study re-established the fact that the restricted estimator outperforms the

unrestricted estimator at or near the pivot (∆∗ = 0). However, as we deviate from

the pivot (∆∗ > 0), relative risk of the RE becomes higher than that of the UE.
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RMSE of PSE decays at the slowest rate with the increase of ∆∗, and performs

steadily throughout a wider range of the alternative parameter subspace. When the

nuisance subset is large, PSE outperforms all other estimators.

In the second part of this chapter (Section 2.5), we compared shrinkage and APE

in the context of a multiple linear regression model. In our study, we developed and

implemented a procedure for simultaneous sub-model selection using AIC or BIC to

obtain shrinkage estimates of the regression coefficients. Based on a quadratic risk

function, we computed RMSE of SE, PSE and several APE such as lasso, adaptive

lasso, and SCAD with respect to UE. Asymptotic risk properties of the proposed es-

timators have been reappraised and their dominance over classical estimators demon-

strated. All the computations were programmed with R (R Development Core Team,

2010).

For high-dimensional data, our simulation study reconfirms the dominance of PSE

over APEs for moderate to large number of nuisance covariates (Table 2.11). However,

SCAD and adaptive lasso outperform PSE when the number of nuisance covariates

gets extremely large relative to the sample size.



Chapter 3

Shrinkage Estimation in Partially

Linear Models

3.1 Introduction

A semiparametric model is one which includes both parametric and nonparametric

components. Several semiparametric models have been proposed in the literature.

Partially linear model, semiparametric single index models, and varying coefficient

models are among the popular ones.

A partially linear model (PLM) is a semiparametric regression model of the form

yi = x′
iβ + g(ti) + εi, i = 1, . . . , n, (3.1)

where yi’s are responses, xi = (xi1, . . . , xip)
′ and ti ∈ [0, 1] are design points, β =

(β1, . . . , βp)
′ is an unknown parameter vector, g(·) is an unknown bounded real-valued

72
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function defined on [0, 1], and εi’s are unobservable random errors.

Some earlier surveys of the estimation and application of model (3.1) can be found

in the monograph of Härdle et al. (2000). Bunea (2004) suggested a consistent co-

variate selection technique in a semiparametric regression model through penalized

least squared criterion for selection. They showed that the selected estimator of the

linear part is asymptotically normal. In finding the strategy of bandwidth selection

in kernel-based estimation in semiparametric models, Liang (2006) numerically com-

pared the performance of profile-kernel, penalized spline method, and back-fitting

methods for a partially linear model. Real data from a study of relation between

log-earnings of an individual, personal characteristics (such as gender), and measures

of a person’s human capital (such as year of schooling or job experience) were used

to compare the three methods. The nonparametric component was estimated as a

function of the “local unemployment rate” by smoothing-splines. Sun et al. (2008)

considered polynomial spline estimation of partially linear single-index model in the

context of proportional hazards regression.

For (3.1), Ahmed et al. (2007) considered a profile least squares approach based

on using kernel estimates of g(·) to construct absolute penalty, shrinkage, and pretest

estimators of the regression parameter β. They also studied APE with shrinkage and

positive-shrinkage estimators through Monte Carlo simulation.

In this study, we explore the suitability of using B-spline basis function in approx-

imating the nonparametric component since B-splines are easy to compute and they

can be incorporated in a regression model. Our motivation came from the work of

Engle et al. (1986) who used a PLM in studying the relationship between electricity

demand and temperature. We propose shrinkage estimators in a PLM and illustrate
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and compare our estimators with lasso and adaptive lasso (alasso) estimators using

econometric data. We present the details in Section 3.2.

In this chapter, we consider a PLM (3.1) where the vector of coefficients β in the

linear part can be partitioned as (β1, β2) where β1 is the coefficient vector for main

effects, and β2 is the vector for nuisance effects. For example, in modeling family

income, age and education of the wage-earner may be the main effects while the

number of kids they have, or parents’ years of schooling can be regarded as nuisance

variables. In this situation, inference about β1 may benefit from moving the least

squares estimate for the full model to the direction of the least squares estimate

without the nuisance variables (Steinian shrinkage), or from dropping the nuisance

variables if there is evidence that they do not provide useful information (through

pretesting). In this framework, the shrinkage estimator takes a hybrid approach by

shrinking the base estimator to a plausible alternative estimator.

In our case, the sub-vectors β1 and β2 are assumed to have dimensions p1 and

p2 respectively, and p1 + p2 = p, pi ≥ 0 for i = 1, 2. We are essentially interested

in the estimation of β1 when it is plausible that β2 is close to zero. This situation

may arise when there is over-modeling and one wishes to cut down the irrelevant part

(uncertain factors) from the model. Thus, the parameter space can be partitioned and

it is plausible that β2 is near some specified βo
2 which, without loss of generality, may

be set to a null vector. In our framework, the nonparametric component is estimated

by B-spline basis function.
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3.1.1 Organization of the Chapter

In the following, we begin with a motivating example using econometric data. A

brief description of the data is given. Analysis of data and development of the full

model and sub-model is illustrated in detail in Section 3.3. We present the proposed

estimators in Section 3.4. Prediction errors and log-likelihood values of the proposed

estimators are compared with lasso and adaptive lasso estimators through bootstrap

resampling in Section 3.5. In Section 3.6, we design and conduct a Monte Carlo

experiment to study the performance of the proposed estimators and compare them

with an APE. Asymptotic bias and risk performance of the estimators are presented

in Section 3.8. Finally, we make some conclusions and recommendations.

3.2 Motivating Example

Engle et al. (1986) studied the relationship between demand for electricity and tem-

perature, and found that electricity demand and temperature are nonlinearly related.

Numerous authors have shown applications of PLM in many areas. Most of the

applications are, however, in the areas of econometrics or on demographic and socio-

economic data. Härdle et al. (2000) mentioned that “well-known applications in

econometrics literature that can be put in the form of PLM are the human capi-

tal earnings function and the wage curve,” where log-earnings of an individual were

related to sex, marital status, schooling, and labour market experience. It is also

suggested in economic theory that log-earnings and labour market experience are

nonlinearly related.

In the following, we fit a PLM to an econometric data while estimating the non-
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parametric component g(·) using B-spline basis function.

3.2.1 Data and Variables

Mroz (1987) used a sample of 1975 Panel Study on Income Dynamics (PSID) labour

supply data to systematically study several theoretic and statistical assumptions used

in many empirical models of female labour supply. PSID data is freely available from

http://ideas.repec.org/s/boc/bocins.html

Fox (2002) used these data for a semiparametric logistic regression. Fox (2005)

commented that a semiparametric model may be used wherever there is a reason

to believe that one or more covariates enter the regression linearly. This could be

known from prior studies or there are prior reasons to believe so (although rare), or

examination of the data might suggest a linear relationship for some covariates. A

more general scenario is when some of the covariates are categorical and they enter

in the model as dummy variables.

The female labour supply data consist of 753 observations on 19 variables. Data

were collected from married white women between the ages 30 and 60 in 1975. Of

them, 428 were working at some time during the year 1975.

Depending on whether the woman was in the labour force during 1975 (inlf=1),

average and standard deviation (in parenthesis) of the variables are presented in

Table 3.1. The variable nwifeinc represents nonwife income (in thousands) for the

household and is defined as the household’s total money (faminc) minus the wife’s

labour income. The rest of the variables are self explanatory. For a detail description

of each of the variables, please see Mroz (1987, pages 771, 796).
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Table 3.1: Description of variables, and summary of PSID 1975 female labour supply
data.

Variables Description Summary: Average (SD)
All women Working women

inlf = 1 if in labour force in 1975 – –
hours Hours worked in 1975 740.60 1302.93

(871.3) (776.27)
k5 Kids less than 6 years 0.24 0.14

(0.52) (0.39)
k618 Kids 6-18 years 1.35 1.35

(1.31) (1.31)
age Woman’s age in years 42.53 41.97

(8.07) (7.72)
educ Years of schooling 12.28 12.65

(2.28) (2.28)
wage Estimated hourly wage from earnings – 185.26

(107.26)
repwage Reported wage at interview in 1976 1.84 3.18

(2.42) (2.44)
hushrs Hours worked by husband in 1975 2267.27 2233.46

(595.56) (582.91)
husage Husband’s age 45.12 44.61

(8.06) (7.95)
huseduc Husband’s years of schooling 12.49 12.61

(3.02) 3.03
huswage Husband’s hourly wage in 1975 7.48 7.22

(4.23) (3.57)
faminc Family income in 1975 (000s) 23.08 24.13

(12.19) (11.67)
mtr Federal marginal tax rate facing woman 0.68 0.66

(0.08) (0.07)
motheduc Mother’s years of schooling 9.25 9.51

(3.36) (3.31)
fatheduc Father’s years of schooling 8.80 8.99

(3.57) (3.52)
unem Unemployment rate in county of residence 8.62 8.54

(3.11) (3.03)
city = 1 if living in SMSA – –
exper Actual labour market experience 10.63 13.03

(8.07) (8.05)
nwifeinc (faminc - wage × hours)/1000 20.12 18.93

(11.63) (10.59)
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In the next section we define the statistical model and analyze the data by fitting

a semiparametric regression model. Unlike Fox (2005), where smoothing spline was

used for fitting nonparametric part, we use B-spline basis function. Since we are

estimating the nonparametric part through a different method, we briefly present the

results of our analysis in the following section. We used gam function in mgcv package

in R (R Development Core Team, 2010) for model fitting.

3.3 Statistical Model

We assume that 1n = (1, . . . , 1)′ is not in the space spanned by the column vectors of

X = (x1, . . . ,xn)
′. As a result, according to Chen (1988), model (3.1) is identifiable.

In addition, we assume the design points xi and ti as fixed for i = 1, . . . , n. The

design space of t is [0, 1] and it is assumed that the sequence of designs (we drop the

dependence on n) forms an asymptotically regular sequence (Sacks and Ylvisaker,

1970) in the sense that

max
i=1,...,n

∣∣∣∣
∫ ti

0

p(t)dt− i− 1

n− 1

∣∣∣∣ = o(n− 3

2 ).

Here p(·) denotes a positive density function on the interval [0, 1] which is Lipschitz

continuous of order one. Let us introduce a restriction on the parameters in model

(3.1) as

yi = Xβ + g(ti) + εi subject to Hβ = h, (3.2)

where H is a p2 × p restriction matrix, and h is a p2 × 1 vector of constants. In this

paper, we consider H = [0, I], and h = 0.

Let β̂ = (β̂′
1, β̂

′
2)

′ be the semiparametric least squares estimator of β for the model
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(3.1). Here, β̂ is a column vectors. Then we call β̂UE
1 the semiparametric unrestricted

least squares estimator of β1. If β2 = 0, then the model in (3.1) reduces to

yi = xi1β
(∗)
1 + . . .+ xip1β

(∗)
p1

+ g(∗)(ti) + ε
(∗)
i , i = 1, 2, . . . , n. (3.3)

Here (∗) is used to differentiate the slope parameters in (3.3) from those in (3.1). The

reduced model in (3.3) gives restricted estimator of β1. Let us denote the semipara-

metric restricted least squares estimator by β̂RE
1 .

We develop shrinkage and PSE of β1, and denote them by β̂S
1 and β̂S+

1 , respectively.

Our main objective is efficient estimation of β1 when it is suspected that β2 = 0 or

close to zero.

3.3.1 Model Building Strategy: Candidate Full and Sub-

models

Similar to Mroz (1987), we consider hours– woman’s hours of work in 1975, as our

response variable. Because of the nature of our response variable, we only used

the portion of the data when the women were in labour force. Thus, we had 428

cases (rows) in our working data. Our candidate full model consists of age (age),

non-wife income (nwifeinc), children aged five and younger (k5), number of children

between ages six and eighteen (k618), wife’s college attendance (wc), husband’s college

attendance (hc), unemployment rate in the county of residence (unem), actual labour

force experience (exper), and marginal tax rate (mtr). A brief summary of the

variables in our model is given in Table 3.2.

After applying stepwise variable selection procedure based on AIC, BIC, and ab-
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Table 3.2: Description of Variables in the Model for Working Women.

Covariates Description Remarks
hours Hours worked in 1975 Min=12, max=4950, median=1303
age Age (in years) of woman Min=30, max=60, median=42
nwifeinc Non-wife income Income in thousands
k5 Number of kids five and younger 0-1, a few 2’s and 3’s, factor variable
k618 Number of kids six to 18 years 0-4, few >4, factor variable
wc Whether wife attended college 1 (if educ > 12), else 0
hc Whether husband attended college 1 (if huseduc > 12), else 0
unem Unemployment rate Min=3, max=14, median=7.5
mtr Marginal tax rate facing women Min=0.44, max=0.94, median=0.69
exper Actual labour market experience Min=0, max=38, median=12

solute penalty (lasso), we obtained three candidate sub-models. AIC selection proce-

dure picked wc, nwifeinc, mtr, exper, unem, k5, and age. BIC picked wc, nwifeinc,

mtr, and exper (see Table 3.3). To apply lasso on a model with categorical predic-

tors (such as k5 and k618), we need to make dummy variables for each levels of the

categorical covariate. For instance, k618 had four levels, so, four dummy variables

were created, namely, k6180 (when k6180=0), k6181 (when k618=1), k6182 (when

k618=2), and k6183 (when k618 ≥3). When applied to data, lasso method retained

all the variables of the full model except k6183. We used glmnet package in R to

implement lasso on our data.

Table 3.3: Selection of covariates by AIC, BIC.

Models Selected / Chosen Variables
Full Model wc, nwifeinc, mtr, exper, unem, k5, age, k618, hc

AIC wc, nwifeinc, mtr, exper, unem, k5, age
BIC wc, nwifeinc, mtr, exper

We begin with the model given by AIC and investigate if any of the covariates can

be modelled nonparametrically. For this, we fit several models to test for nonlinearity

of each of the covariates. The selected covariates, deviance and residual degrees of
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freedom of these models are listed in Table 3.4. The codes in Table 3.4 are as follows:

F = factor or dummy variable, L = linear term, S = a smoothed term estimated

by B-spline basis expansion. Of all the models, we have found that model 2 has

the smallest deviance in which nwifeinc was estimated nonparametrically using B-

spline approximation. Analysis of deviance (Table 3.5) confirms that nwifeinc has

a significant nonlinear relationship with the response hours (p-value 0.0065) making

model 2 as the preferred one.

Table 3.4: Deviance table for various models fitted with mroz data.

Predictors Deviance
Model k5 wc age unem exper nwifeinc mtr (000,000) df (res)

0 F F L L L L L 196.26 419
1 F F L L L L S 191.19 412
2 F F L L L S L 186.62 411
3 F F L L S L L 191.21 411
4 F F L S L L L 195.08 414
5 F F S L L L L 192.33 411

Code: L = linear term, S = smoothed term.

Table 3.5: Analysis of deviance table for tests of nonlinearity of age, unem, exper,
nwifeinc and mtr.

Model Predictor Difference Difference in p-value
contrasted in deviance df (res)

1–0 mtr 5.15 7 0.1337
2–0 nwifeinc 9.65 8 0.0065
3–0 exper 5.05 8 0.2097
4–0 unem 1.19 5 0.7731
5–0 age 3.94 8 0.3941

Keeping model 2 in mind, we test for significance of each of the predictors by

dropping them one at a time. For this, additional models (Table 3.6) were fitted and

contrasted with model 2. Results are reported in Table 3.7. Analysis of deviance

confirms that there is strong evidence of partial relationship of woman’s hours of
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work to wife’s college attendance, labour force experience, marginal tax rate, and

non-wife income of the family but not to children five and younger, age of woman, and

unemployment rate. Interestingly, the significant covariates found through deviance

analysis are also the ones that were picked by the BIC.

Table 3.6: Deviance table for additional models to test for significance of each of the
predictors.

Predictors Deviance
Model k5 wc age unem exper nwifeinc mtr df (res)
2 (Ref) F F L L L S L 186.62 411

6 - F L L L S L 187.89 413
7 F - L L L S L 189.19 412
8 F F - L L S L 187.68 412
9 F F L - L S L 187.60 412
10 F F L L - S L 191.42 414
11 F F L L L - L 191.59 412
12 F F L L L S - 221.78 412

Code: F= Factor or dummy, L = linear term, S = smoothed term.

Table 3.7: Analysis of deviance table for additional models when contrasted with
model 2.

Model Predictor Difference Difference in p-value
contrasted in deviance df (res)

6–2 k5 1.27 2 0.2454
7–2 wc 2.57 1 0.0173
8–2 age 1.06 1 0.1266
9–2 unem 9.86 1 0.1405
10–2 exper 4.81 3 0.0142
11–2 nwifeinc 4.98 1 0.0009
12–2 mtr 3.51 1 ≪0.0001

For the sake of visualizing nonlinearity, we jointly plotted mtr and nwifeinc in a

three dimensional space in Figure 3.1 a), after holding other predictors fixed. The

two-dimensional plot in panel d) of Figure 3.1 visibly shows a nonlinear relationship

between non-wife income and woman’s hours of work. We notice that the confidence
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Figure 3.1: (a) Visualizing nonlinear relationship of mtr and nwifeinc with woman’s
hours of work. (b) contour plot, (c) 2-D plot of mtr shows the smoothed curve
estimated by B-spline basis function, and (d) shows the smoothed curve for nwifeinc
estimated by B-spline basis function with uniform knots. Dashed lines in c) and d)
are 95% confidence envelopes of the smoothed curves.

envelopes in panels c) and d) get wider near the edge of the curves. The reason behind

the large scale for the confidence envelope is due to the small number of sample points

as mtr and nwifeinc increase. This causes high variability in the fitted values causing

the confidence envelopes to explode.

Finally, with the inclusion of a nonparametric part, our candidate full- and sub-

models are listed below. Since the model produced by lasso did not eliminate any



3.4 Estimation Strategies 84

covariate completely, we are not considering it as a sub-model.

Full-Model: hours = wc+ g(nwifeinc) + mtr + exper + unem + k5+ age + k618 + hc

Sub-Model: hours = wc+ g(nwifeinc) + mtr + exper

Here g(nwifeinc) denotes a component estimated by B-spline basis function.

It is to be mentioned here that, although we have found that the covariates unem,

k5, age, k618, and hc do not contribute significantly in predicting hours, and sub-

sequently being dropped from the model, the shrinkage estimates based on full- and

sub-models above may result in a model with all the variables of the full model

depending on the quantity 1 − (p2 − 2)ψ−1
n defined in Section 3.4.2. However, the

coefficients will be shrunken, and some of them might be zero.

3.4 Estimation Strategies

We first define a semiparametric least square estimator for the parameter vector β

based on g(·) approximated by a B-spline series. The book by de Boor (2001) is an

excellent source for various properties of splines as well as many computer algorithms.

Let k be an integer larger than or equal to ν where ν will be defined in Assumption

3.7.2. Further, let Smn,k be the class of functions s(·) on [0, 1] with the following

properties:

(i) s(·) is a polynomial of degree k on each of the sub-intervals [(i−1)/mn, i/mn], i =

1, . . . , mn, where mn is a positive integer which depends on n.

(ii) s(·) is (k − 1) times differentiable.
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Then Smn,k is called the class of all splines of degree k with mn-equispaced knots.

Note that Smn,k has a basis of mn+k normalized B-spline {Bmnj(·) : j = 1, . . . , mn+

k}, and g(·) can be approximated by a linear combination θ′Bmn
(·) of the bases,

where θ ∈ Rmn+k and Bmn
(·) = (Bmn,1(·), . . . , Bmn,mn+k(·))′. With θ′Bmn

(·), model

in (3.1) becomes

yi = x′
iβ + θ′Bmn

(ti) + εi. (3.4)

For β ∈ Rp and θ ∈ Rmn+k, let

Sn(β, θ) = n−1

n∑

i=1

[yi − x′
iβ − θ′Bmn

(ti)]
2
. (3.5)

In the following, we discuss and develop UE, SE, PSE, and an APE as defined in

Section 2.2.1.

3.4.1 Unrestricted and Restricted Estimators

If Sn(·, ·) is minimized at (β̂, θ̂), then we have

β̂ = (X ′MBmn
X)−1X ′MBmn

Y and θ̂ = (B′
mn

Bmn
)−1B′

mn
(Y −Xβ̂),

where Y = (y1, . . . , yn)
′, X = (x1, . . . ,xp), xs = (x1s, . . . , xns)

′, s = 1, . . . , p,

MBmn
= I − Bmn

(B′
mn

Bmn
)−1B′

mn
and Bmn

= (Bmn
(t1), . . . , Bmn

(tn)). The es-

timator β̂ is called a semiparametric least squares estimator (SLSE) of β. The SLSE

possess some good statistical properties. With respect to a quadratic risk function,

β̂ can be dominated by a class of shrinkage estimators.

Using the inverse matrix formula, the semiparametric unrestricted least squared
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estimator β̂UE
1 of β1 is

β̂UE
1 = (X ′

1MBmn
MBmnX2

MBmn
X1)

−1X ′
1MBmn

MBmnX2
MBmn

Y ,

where X1 is composed of the first p1 row vectors of X, X2 is composed of the last

p2 row vectors of X, and MBmnX2
= I −Bmn

X2(X
′
2B

′
mn

Bmn
X2)

−1X ′
2B

′
mn

. When

β2 = 0, we have the restricted partially linear regression (reduced) model which is

yi = xi1β1 + · · ·+ xip1βp1 + g(ti) + εi, i = 1, . . . , n. (3.6)

Using the semiparametric least squares estimation for β, similar to Ahmed et al.

(2007), an estimator of β1 can be obtained,which has the form

β̂RE
1 = (X ′

1MBmn
X1)

−1X ′
1MBmn

Y .

β̂RE
1 is called a semiparametric restricted estimator of β1.

3.4.2 Shrinkage Estimators

A semiparametric shrinkage estimator (SSE) β̂S
1 of β1 can be defined as

β̂S
1 = β̂RE

1 + (β̂UE
1 − β̂RE

1 )
{
1− (p2 − 2)ψ−1

n

}
, p2 ≥ 3,

where

ψn =
n

σ̂2
n

β̂′
2X

′
2B

′
mn

MBmnX2
Bmn

X2β̂2,
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with

σ̂2
n =

1

n

n∑

i=1

(yi − x′
iβ̂ −B′

mn
(ti)θ̂)

2.

A positive-part shrinkage semiparametric estimator (PSSE) is obtained by retaining

the positive-part of the SSE. We denote PSSE by β̂S+
1 . A PSSE has the form

β̂S+
1 = β̂RE

1 + (β̂UE
1 − β̂RE

1 )
{
1− (p2 − 2)ψ−1

n

}+
, p2 ≥ 3

where z+ = max(0, z).

3.4.3 Absolute Penalty Estimators

Absolute penaly estimation (APE) was defined in Section 2.2.2. In this chapter, we

use lasso and adaptive lasso estimators for the purpose of comparison with shrinkage

estimators. Therefore, we briefly present the definitions of lasso and adaptive lasso

(alasso) in the following.

Lasso is a member of the penalized least squares family, which performs simulte-

naous variable selection and parameter estimation. Lasso was proposed by Tibshirani

(1996). Lasso solutions are obtained as

β̃lasso = argmin
β

{
n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑

j=1

|βj |
}
, (3.7)

where λ is the tuning parameter which controls the amount of shrinkage. The tuning

parameter is selected via cross-validation.

For a root-n consistent estimator β̂∗ of β, let us denote the alasso estimator by

β̂alasso. We may consider β̂ols as an estimator of β∗. For a chosen value of γ > 0, we
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calculate the weights ŵj = 1/|β̂∗
j |γ. Finally, the adaptive lasso estimates are obtained

as

β̂alasso = argmin
β

∣∣∣∣
∣∣∣∣y −

p∑

j=1

xjβj

∣∣∣∣
∣∣∣∣
2

+ λ

p∑

j=1

ŵj|βj|. (3.8)

The algorithm to obtain the alasso estimates is described in detaile in Section 2.2.2.

3.5 Application

In the previous section we analyzed labour supply data and developed a sub-model.

In this section we evaluate the performance of shrinkage, positive-shrinkage, lasso,

and alasso estimates through prediction errors and log likelihood criteria. For lasso,

we used glmnet package, and the adalasso() function in parcor R-package was used

to to compute alasso estimates.

Prediction errors were obtained following the discussion on page 18 of Hastie et al.

(2009). Our results are based on 9999 case resampled bootstrap samples. Initially,

we varied the number of replications and settled with this as no noticeable variation

were observed for larger samples. For each bootstrap replicate, average prediction

errors were calculated by ten-fold cross validation. Figure 3.2 shows that lasso esti-

mator has the smallest prediction error similar to that of the full model. The rest of

estimators perform equally well in terms of prediction errors. On the other hand, all

the estimators perform equally in terms of loglikelihood, with the restricted estimator

having slightly larger loglikelihood value. Although the alasso estimator has higher

prediction error than the lasso, it is interesting to note that our proposed estimators

are behaving quite similarly with the alasso. On the other hand, lasso is behaving

more like the full model. The reason might be the fact that the lasso model has as
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Figure 3.2: Comparison of the estimators through prediction errors and loglikelihood
values.

many covariates as there are in the full model. Noticeably, the log-likelihood of the

proposed estimators are similar to the log-likelihood of the full model.

3.6 Simulation Studies

We perform Monte Carlo simulation experiments to examine the quadratic risk per-

formance of the proposed estimators. We simulate the response from the following

model:

yi = x1iβ1 + x2iβ2 + . . .+ xpiβp + g(ti) + εi, i = 1, . . . , n,

where ti = (i − 0.5)/n, x1i = (ζ
(1)
1i )

2 + ζ
(1)
i + ξ1i, x2i = (ζ

(1)
2i )

2 + ζ
(1)
i + 2ξ2i, xsi =

(ζ
(1)
si )

2 + ζ
(1)
i with ζ

(1)
si i.i.d. ∼ N(0, 1), ζ

(1)
i i.i.d. ∼ N(0, 1), ξ1i ∼Bernoulli(0.45)

and ξ2i ∼Bernoulli(0.45) for all s = 3, . . . , p, and i = 1, . . . , n. Moreover, εi are i.i.d.

N(0, 1), n >> p, and g(t) = sin(4πt).
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We are interested in testing the hypothesis H0 : βj = 0, for j = p1 + 1, p1 +

2, . . . , p1 + p2, with p = p1 + p2. Our aim is to estimate β1, β2, β3, and β4 when

the remaining regression parameters may not be useful. We partition the regression

coefficients as β = (β1,β2) = (β1, 0) with β1 = (2, 1.5, 1, 0.6).

The number of simulations was initially varied. Next, each realization was repeated

5000 times to obtain stable results. For each realization, we calculated bias of the

estimators. We defined ∆∗ = ||β − β(0)||, where β(0) = (β1, 0), and || · || is the

Euclidean norm. To determine the behavior of the estimators for ∆∗ > 0, further

datasets were generated from those distributions under local alternative hypothesis.

We consider ∆∗ = 0, .1, .2, .3, .4, .5, .8, 1, 2, and 4.

The risk performance of an estimator of β1 was measured by calculating its mean

squared error (MSE). After calculating the MSEs, we numerically calculated the effi-

ciency of the proposed estimators β̂RE
1 , β̂S

1 , β̂
S+
1 , relative to the unrestricted estimator

β̂UE
1 using the relative mean squared error (RMSE) criterion defined by

RMSE(β̂UE
1 : β̂∗

1) =
MSE(β̂UE

1 )

MSE(β̂∗
1)
, (3.9)

where β̂∗
1 is one of the proposed estimators. An RMSE greater than 1 indicates that

β̂∗
1 is superior to β̂UE

1 .

In this study, we used B-spline basis expansion with uniform knots for estimating

the nonparametric component. According to He and Shi (1996), uniform knots are

usually sufficient when the function g(·) does not exhibit dramatic changes in its

derivatives. Thus, we just need to determine the number of knots. The method

discussed in He and Shi (1996) is used to determine this number. In a separate

simulation study (results not presented here), we found that a degree-three B-spline
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with three knots performs best for sample sizes larger than 40, and two knots are

sufficient for moderate sample sizes (n ≤ 35).

To compute RMSEs, we considered n = 30, 50, 80, 100, 125, p1 = 3, 4, and p2 = 5,

9, 15. Since the results of our simulation study are similar for all the combinations, we

graphically present results in Figure 3.3 for n = 50, 80, p1 = 4, and p2 = 5, 9, 15. The

horizontal line at RMSE=1 facilitates a comparison among the estimators. Any point

above this horizontal line indicates superiority of the proposed estimator compared

to the unrestricted one.

In general, restricted estimators (β̂RE
1 ) have the largest RMSE, which indicates

their superiority over other estimators when the null hypothesis is true (∆∗ = 0).

Not surprisingly, RMSE of β̂RE
1 decays quite sharply as we deviate from the null

hypothesis (∆∗ > 0), and quickly goes below the horizontal line. On the other hand,

shrinkage (β̂S
1) and positive-shrinkage (β̂S+

1 ) estimators perform steadily for a range

of ∆∗.

The findings of the simulation study may be summarized as follows.

(i) Figure 3.3 shows that the restricted estimator outperforms all other estimators

for all the cases considered in this study. However, this is true when the re-

striction is at or near ∆∗ = 0. As the restriction moves away from ∆∗ = 0, the

restricted estimator becomes inefficient (see the sharply decaying RMSE curve

that goes below the horizontal line at RMSE=1 when ∆∗ > 0).

(ii) The RMSE of the positive-shrinkage estimator β̂S+
1 approaches 1 at the slowest

rate as we move away from ∆∗ = 0. This indicates that in the event of imprecise

subspace information (i.e., even if β2 6= 0), it has the smallest quadratic risk
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Figure 3.3: Relative mean squared error of the estimators as a function of the non-
centrality parameter ∆∗ for sample sizes n = 50, 80, p1 = 4, and p2 = 5, 9, 15.
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among all other estimators, making it an ideal choice for real-life applications.

In summary, the simulation results are in agreement with our asymptotic results

and the general theory of these estimators available in the literature.

3.6.1 Comparison with Absolute Penalty Estimator

We compare shrinkage estimators with an APE (lasso only), based on the RMSE

criterion. The tuning parameter for the APE was estimated using cross validation

(CV) and generalized cross validation (GCV). In our simulation, we considered p1 =

3, 4 and p2 = 3, 4, 5, 6, 9, 11, 15. Only ∆∗ = 0 was considered since, according to

Ahmed et al. (2007), APE does not take into consideration that the parameter vector

β is partitioned into main and nuisance parts, and is at a disadvantaged position

when ∆∗ > 0. Simulated RMSEs are presented in Table 3.8, and 3.9. Figure 3.4 shows

RMSEs when p1 = 3, and Figure 3.5 shows the same when p1 = 4. Both figures reveal

that shrinkage estimates have a smaller risk than the APE for moderate-sized samples.

As the number of nuisance parameters increases, shrinkage estimators perform better

than the APE.

For a succinct comparison between positive-shrinkage and APE, we plotted RMSEs

in a three-dimensional diagram (see Figures 3.6, 3.7). The horizontal axis represents

n, the diagonal axis shows p2, while the RMSEs are plotted on the vertical axis. Solid

black circles represent positive shrinkage estimates, and hollow circles, represented

by APE (CV), indicate APE with cross validation. Clearly, shrinkage estimator is

doing better for moderate sample sizes and when p2 is large. On the other hand, APE

has higher RMSE than the shrinkage estimators for large sample sizes and when the

number of main parameters is large.



3.6 Simulation Studies 94

Table 3.8: Shrinkage versus APE: simulated RMSE with respect to β̂UE
1 for p1 = 3,

∆∗ = 0.

n p2 β̂RE
1 β̂S

1 β̂S+
1 APE(CV) APE(GCV)

30 3 2.49 1.26 1.37 1.46 1.63
4 3.21 1.52 1.72 1.64 1.86
5 3.94 1.82 2.07 1.92 2.18
6 4.84 2.15 2.49 2.12 2.46
9 8.19 3.12 3.80 2.83 3.57
11 11.89 3.98 4.87 3.13 4.39
15 27.22 6.02 7.67 2.37 5.69

40 3 2.40 1.25 1.35 1.62 1.72
4 2.92 1.49 1.68 1.89 2.08
5 3.53 1.74 2.00 2.10 2.27
6 4.10 1.99 2.32 2.37 2.55
9 6.51 2.90 3.43 3.08 3.46
11 8.40 3.55 4.24 3.49 4.05
15 13.65 4.99 6.06 4.52 5.78

80 3 2.23 1.26 1.35 1.82 1.85
4 2.67 1.47 1.66 2.15 2.20
5 3.18 1.70 1.96 2.42 2.46
6 3.63 1.91 2.26 2.65 2.72
9 5.15 2.66 3.21 3.48 3.61
11 6.19 3.17 3.88 4.00 4.17
15 8.33 4.25 5.23 5.03 5.30

100 3 2.24 1.23 1.34 1.63 1.65
4 2.66 1.45 1.65 1.86 1.87
5 3.07 1.69 1.94 2.47 2.50
6 3.51 1.92 2.24 2.27 2.31
9 4.91 2.62 3.15 2.91 2.97
11 5.90 3.13 3.81 3.31 3.40
15 8.00 4.14 5.13 4.09 4.24

We recommend a positive-shrinkage estimator for practical purposes when sample

size is moderate, and when the number of nuisance parameters is large.
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Table 3.9: Shrinkage versus APE: simulated RMSE with respect to β̂UE
1 for p1 = 4,

∆∗ = 0.

n p2 β̂RE
1 β̂S

1 β̂S+
1 APE(CV) APE(GCV)

30 3 2.18 1.23 1.31 1.27 1.41
4 2.68 1.46 1.63 1.49 1.69
5 3.29 1.73 1.93 1.69 1.93
6 3.96 1.98 2.28 1.87 2.18
9 6.71 2.96 3.49 2.44 3.12
11 9.70 3.66 4.54 2.62 3.76
15 24.68 5.99 7.64 1.64 5.07

40 3 2.05 1.22 1.31 1.46 1.55
4 2.45 1.42 1.59 1.64 1.74
5 2.90 1.66 1.85 1.83 1.96
6 2.91 1.67 1.90 2.03 2.19
9 4.61 2.60 3.06 2.65 2.98
11 5.11 2.68 3.20 3.04 3.50
15 11.27 4.68 6.06 3.81 4.79

80 3 1.92 1.20 1.29 1.61 1.62
4 2.23 1.40 1.54 1.85 1.89
5 2.56 1.60 1.78 2.05 2.09
6 2.93 1.80 2.04 2.25 2.30
9 3.99 2.36 2.78 2.90 2.99
11 4.80 2.80 3.32 3.28 3.40
15 6.54 3.78 4.55 4.13 4.36

100 3 1.87 1.20 1.28 1.87 1.89
4 2.18 1.37 1.52 2.21 2.23
5 2.50 1.57 1.77 2.11 2.13
6 2.85 1.76 2.01 2.77 2.81
9 3.88 2.39 2.78 3.61 3.70
11 4.61 2.79 3.27 4.12 4.21
15 6.20 3.66 4.35 5.12 5.33
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Figure 3.4: Graphical comparison of simulated RMSE plot for shrinkage and lasso
when p1 = 3 and p2 varies for different n.
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Figure 3.6: Three-dimensional plot of RMSE against n and p2 for p1 = 3 to compare
positive shrinkage estimator and APE(CV).
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Figure 3.7: Three-dimensional plot of RMSE against n and p2 for p1 = 4 to compare
positive shrinkage estimator and APE(CV).
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3.7 First-Order Asymptotics

The following assumptions are needed to derive the main results. These assumptions,

while they look a bit lengthy, are actually quite mild and can be easily satisfied (see

remark following the assumptions).

Assumption 3.7.1. There exist bounded functions hs(·) on [0, 1], s = 1, . . . , p, such

that

xis = hs(ti) + uis, i = 1, . . . , n, s = 1, . . . , p, (a)

where ui = (ui1, . . . , uip)
′ are real vectors satisfying

lim
n→∞

∑n
i=1 uikuij
n

= bkj, for k = 1, . . . , p, j = 1, . . . , p, (b)

and the matrix B = (bkj) is nonsingular. Moreover,

max
1≤k,j≤p

‖Au∗
j‖ = O

(
[tr(A′A)]

1

2

)
, for any matrix A, (c)

where u∗
k = (u1k, . . . , unk)

′ and || · || denotes the Euclidean norm.

Assumption 3.7.2. The functions g(·) and hj(·) satisfy the Lipschitz condition of

order ν, i.e., there exists a constant c such that

|f (ν)
j (s)− f

(ν)
j (t)| ≤ c|s− t|ν , for any s, t ∈ [0, 1], j = 0, 1, . . . , p,

where f0(·) = g(·) and fj(·) = hj(·), j = 1, . . . , p.

Remark 1. In many applications, the above uij behave like zero-mean random vari-

ables and hj(ti) are the regression of xij on ti. Specifically, suppose that the design

points (xi, ti) are independent and identically distributed (i.i.d.) random variables,
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and let hs(ti) = E(xij |ti) and uis = xis − hs(ti) with Euiu
′
i = B. Then by the law of

large numbers (b) holds with probability 1. Assumption 3.7.1 (a) and (b) are used in

Gao (1995a, 1995b, 1997), Liang (2000), Härdle, Liang and Gao (2000) among others.

According to Moyeed and Diggle (1994), (c) holds when uij behave like zero-mean

uncorrelated random variables.

Lemma 3.7.1. If f(·) satisfies assumption 3.7.2, then we have

sup
t∈[0,1]

|f(t)−Bmn
(t)(B′

mn
Bmn

)−1B′
mn

f | = O(n−1mn) +O(m−ν
n ),

where f = (f(t1), . . . , f(tn))
′.

Lemma 3.7.2. For the B-spline basis we have i)
∑mn+k

i=1 B2
mn

(t) ≤ 1 for all t. ii) all the

eigenvalues of n−1B′
mn

Bmn
are between c1m

−1
n and c2m

−1
n , where 0 < c1 < c2 <∞.

Proof. The proof of Lemmas 3.7.1 and 3.7.2 can be found in Burman (1991).

Lemma 3.7.3. Suppose that assumptions 3.7.1 and 3.7.2 hold, and εi are indepen-

dent with mean zero, equal variance σ2 and µ3i = Eε3i being uniformly bounded.

Then

√
n(β̂ − β) →D N(0, σ2B−1) and B′

mn
(t)θ̂ − g(t) = Op(n

− ν
2ν+1 ),

where “→D” denotes convergence in distribution and B is defined in assumption

3.7.1.

Proof. The proof of the asymptotic normality of β̂ is similar to that of Theorem 3 in
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Gao (1995). Following the proof of Lemma 3 in Ahmed et al. (2007) we write

θ̂′Bmn
(t)− g(t) = B′

mn
(t)(B′

mn
Bmn

)−1Bmn
g − g(t) +B′

mn
(t)(B′

mn
Bmn

)−1Bmn
ε

+ B′
mn

(t)(B′
mn

Bmn
)−1

n∑

i=1

Bmn
(ti)x

′
i(β̂ − β)

= I1 + I2 + I3, say,

where g = (g(t1), . . . , g(tn))
′. By Lemma 3.7.1, I1 = O(n−1mn)+O(m

−ν
n ). Moreover,

Cov(I2) = σ2B′
mn

(t)(B′
mn

Bmn
)−1Bmn

(t) = O(n−1mn).

This implies I2 = Op(n
− ν

2ν+1 ). Combining the root-n consistency of β̂ by the same

argument we can show I3 = Op(n
− ν

2ν+1 ) and the proof follows.

Lemma 3.7.4. Suppose that assumptions 3.7.1 and 3.7.2 hold. Then n−1X ′MBmn
X =

B +O(n− 2ν
2ν+1 ).

Proof. The proof of Lemma 3.7.4 is similar to that of Lemma 2 in Gao (1995).

Lemma 3.7.5. Suppose that assumptions 3.7.1 and 3.7.2 hold. Then we have

σ̂2
n = σ2+Op

(
n− 1

2

)
, β̂R

1 = (I,B−1
11 B12)β̂+op

(
n− 1

2

)
, and Tn = nσ2β̂′

2B22.1β̂2+op(1),

where B =




B11 B12

B21 B22


 and B22.1 = B22 −B21B

−1
11 B12.
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Proof. By definition of σ̂2
n, we have

σ̂2
n =

1

n

n∑

i=1

ε2i +
1

n

n∑

i=1

[
x′
i(β − β̂)

]2
+

1

n

n∑

i=1

[
B′

mn
(ti)(θ − θ̂)

]2
+

1

n

n∑

i=1

(g(ti)

−B′
mn

(ti)θ)
2

+
2

n

n∑

i=1

εix
′
i(β − β̂) +

2

n

n∑

i=1

εiB
′
mn

(ti)(θ − θ̂) +
2

n

n∑

i=1

εi(g(ti)−B′
mn

(ti)θ)

+
2

n

n∑

i=1

x′
i(β − β̂)B′

mn
(ti)(θ − θ̂) +

2

n

n∑

i=1

x′
i(β − β̂)(g(ti)−B′

mn
(ti)θ)

+
2

n

n∑

i=1

B′
mn

(ti)(θ − θ̂)(g(ti)−B′
mn

(ti)θ) = I1 + . . .+ I10, say.

It is seen that I1 = σ2 + Op(n
− 1

2 ). Based on Lemmas 3.7.2 and 3.7.3 we can show

I2 = op(n
− 1

2 ) and I3 = op(n
− 1

2 ). By Lemma 3.7.1, I4 = o(n− 1

2 ). In addition, by the

Cauchy-Schwartz inequality we can prove that the other terms are op(n
− 1

2 ). These

lemmas provide the basis for deriving the asymptotic distributional bias (ADB) and

asymptotic distributional risk (ADR) for the proposed semiparametric estimators.

3.8 Asymptotic Properties of Shrinkage Estima-

tors

We investigate the performance of the proposed estimators when, without loss of

generality, β2 is close to 0. Thus we consider the sequence {Kn} given by

Kn : β2(n) = n− 1

2ω, ω 6= 0 fixed vector.
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3.8.1 Bias Performance of the Estimators

The asymptotic distributional bias (ADB) of an estimator β∗
1 is defined as

ADB(β∗

1
) = E

{
lim
n→∞

n
1

2 (δ − β1)
}
.

Theorem 3.8.1. Suppose that assumptions 3.7.1 and 3.7.2 hold. Under {Kn}, the

ADB of the estimators are as follows:

ADB(β̂UE
1 ) = 0, (3.10)

ADB(β̂RE
1 ) = −B−1

11 B12ω, (3.11)

ADB(β̂S
1 ) = −(p2 − 2)B−1

11 B12ωE(χ
−2
p2,α

; ∆), (3.12)

and

ADB(β̂S+
1 ) = −B−1

11 B12ωHp2+2(p2 − 2;∆)

− (p2 − 2)B−1
11 B12ω

{
E
[
χ−2
p2+2(∆)I(χ2

p2+2(∆) > p2 − 2)
]}
, (3.13)

where B =




B11 B12

B21 B22


 with B defined in assumption 3.7.1, ∆ = (ω′B22.1ω)σ−2,

B22.1 = B22 − B21B
−1
11 B12, Hv(x; ∆) denotes the noncentral chi-square distribu-

tion function with noncentrality parameter ∆ and v degrees of freedom. Here

E {(χ2
ν(∆))−m} is the expected value of the inverse of a non-central chi-square distri-

bution with ν degrees of freedom and noncentrality parameter ∆. For nonnegative

integer-valued ν and m, and for ν > 2m, the expectations can be obtained using the

Theorem in Bock et al. (1983, page 7).

Proof. It is easy to prove this theorem using Theorem 4.1 in Ahmed et al. (2007).
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We omit the details.

The bias expressions for all the estimators are not in scalar form. We therefore

take recourse by converting them into quadratic form. Let us define the asymptotic

distributional quadratic bias (ADQB) of an estimator β∗

1
of β1 by

ADQB(β∗

1
) = [ADB(β∗

1
)]′B11.2[ADB(β∗

1
)].

Theorem 3.8.2. Suppose that conditions in Theorem 4.5.2 hold. Then the ADQB

of the estimators under consideration are given by

ADQB(β̂UE
1 ) = 0, (3.14)

ADQB(β̂RE
1 ) = ω′B21B

−1
11 B11.2B

−1
11 B12ω, (3.15)

ADQB(β̂S
1) = (p2 − 2)2ω′B21B

−1
11 B11.2B

−1
11 B12ω

[
E(χ−2

p2,α; ∆)
]2
, (3.16)

and

ADQB(β̂S+
1 ) = ω′B21B

−1
11 B11.2B

−1
11 B12ω

·
{
Hp2+2(p2 − 2;∆)− (p2 − 2)E

[
χ−2
p2+2(∆)I(χ2

p2+2(∆) > p2 − 2)
]}2

.

(3.17)

For B12 = 0, we have B21B
−1
11 B

−1
11 B12 = 0 and B11.2 = B11 and hence all the

ADQB reduce to common value zero for all ω. All these variations, thus, become

ADQB-equivalent. Hence, in the sequel we assume that B12 6= 0 and the remaining

discussions follow.

The ADQB of β̂RE
1 is an unbounded function of ω′B21B

−1
11 B11.2B

−1
11 B12ω.

In order to investigate ADQB(β̂S
1) and ADQB(β̂S+

1 ), we use the following result
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from matrix algebra:

chmin(σ
2B21B

−1
11 B11.2B

−1
11 B12B

−1
22.1) ≤ σ2ω′B21B

−1
11 B11.2B

−1
11 B12ω

ω′B22.1ω

≤ chmax(σ
2B21B

−1
11 B11.2B

−1
11 B12B

−1
22.1).

Therefore, ADQB(β̂S
1) starts from zero at ω′B21B

−1
11 B11.2B

−1
11 B12ω = 0, increases to

a point then decreases towards zero due to E(χ−2
p2+2(∆)) being a decreasing log-convex

function of ∆. The behavior of β̂S+
1 is similar to β̂S

1 , however, the quadratic bias curve

of β̂S+
1 remains below the curve of β̂S

1 for all values of ∆.

Simulation Study for Bias

Simulated biases for the slope parameters are shown in Table 3.8.1. Here we con-

sidered p1 = 3, p2 = 4 with true parameter vector β = (1, 1, 1, 0, 0, 0, 0)′. We also

tested a highly oscillating non-flat function to compare bias of the slope parameters

for B-spline and kernel-based estimators. The B-spline performed better than the

kernel for this function. Zheng et al. (2006) used a highly oscillating non-flat function

that is identical to the one used in our paper. They considered

g(t) = sin

(
−2π(0.35× 10 + 1)

0.35t+ 1

)
, t ∈ [0, 10]. (3.18)

Simulated bias of the slope parameters using this function are given in Table 3.8.1.
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Table 3.10: Simulated bias of the slope parameters when the true parameter vector
was β = (1, 1, 1, 0, 0, 0, 0)′. Here, p1 = 3, p2 = 4, and the results are based on 5000
Monte Carlo runs, when g(t) is a flat function.

B-spline Kernel

∆ β RE S S+ RW S S+
0 β1 -0.0013 -0.0011 -0.0009 -0.0013 -0.0014 -0.0013

β2 0.0002 0.0005 0.0001 -0.0003 -0.0006 -0.0004
β3 0.0012 0.0010 0.0011 0.0017 0.0013 0.0017
β4 0.0000 -0.0005 0.0003 0.0000 0.0018 0.0011
β5 0.0000 0.0003 0.0002 0.0000 0.0003 -0.0004
β6 0.0000 -0.0011 -0.0009 0.0000 -0.0013 -0.0016
β7 0.0000 0.0002 0.0006 0.0000 0.0006 -0.0001

2 β1 0.0323 -0.0001 -0.0001 0.0167 -0.0029 -0.0029
β2 0.0290 0.0019 0.0019 0.0152 -0.0004 -0.0004
β3 0.0239 0.0011 0.0011 0.0156 -0.0010 -0.0010
β4 0.0000 1.9902 1.9902 0.0000 1.9903 1.9903
β5 0.0000 -0.0022 -0.0022 0.0000 -0.0029 -0.0029
β6 0.0000 0.0000 0.0000 0.0000 -0.0007 -0.0007
β7 0.0000 -0.0005 -0.0005 0.0000 0.0013 0.0013
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Table 3.11: Simulated bias of the slope parameters when the true parameter vector
was β = (1, 1, 1, 0, 0, 0, 0)′. Here, p1 = 3, p2 = 4, and the results are based on 5000
Monte Carlo runs, when g(t) is a highly oscillating non-flat function.

B-spline Kernel

∆ β RE S S+ RE S S+
0 β1 0.0009 0.0008 0.0008 0.0096 0.0099 0.0100

β2 0.0025 0.0019 0.0022 0.0079 0.0083 0.0080
β3 -0.0013 -0.0015 -0.0013 0.0077 0.0072 0.0072
β4 0.0000 -0.0003 0.0003 0.0000 0.0027 0.0030
β5 0.0000 0.0005 0.0004 0.0000 0.0032 0.0043
β6 0.0000 0.0005 0.0009 0.0000 0.0048 0.0057
β7 0.0000 0.0031 0.0014 0.0000 0.0032 0.0037

2 β1 0.0309 0.0031 0.0031 0.0314 0.0124 0.0124
β2 0.0362 0.0016 0.0016 0.0369 0.0087 0.0087
β3 0.0186 0.0016 0.0016 0.0174 0.0050 0.0050
β4 0.0000 1.9896 1.9896 0.0000 1.9997 1.9997
β5 0.0000 0.0011 0.0011 0.0000 0.0091 0.0091
β6 0.0000 0.0034 0.0034 0.0000 0.0061 0.0061
β7 0.0000 -0.0005 -0.0005 0.0000 0.0072 0.0072
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3.8.2 Risk Performance of the Estimators

To study the asymptotic distributional quadratic risk (ADQR) of an estimator, we

define a quadratic loss function using a positive definite matrix (p.d.m.) M , as follows

L(β∗
1,β1) = n(β∗

1
− β1)

′M(β∗

1
− β1),

where β∗

1
is any one of the proposed estimators. If Vn is the asymptotic dispersion

matrix of β∗

1
, the ADQR of

√
n(β∗

1
−β1) is given by tr(MVn). Now we assume that

for the estimator β∗

1
of β1, the cumulative distribution function of β∗

1
under {Kn}

exists, and is

F (x) = P
{
lim
n→∞

√
n(β∗

1
− β1) ≤ x|Kn

}
,

where F (x) is non degenerate. Then, the ADQR of β∗

1
is defined as

R(β∗

1
,M) = tr

{
M

∫

Rp1

∫
xx′dF (x)

}
= tr(MV ),

where V is the dispersion matrix of the asymptotic distribution F (x).

Theorem 3.8.3. Suppose that assumptions 3.7.1 and 3.7.2 hold. Under {Kn}, the

asymptotic covariance matrix of the estimators are:

Γ(β̂UE
1 ) = σ2B−1

11.2 where B11.2 = B11 −B12B
−1
22 B21, (3.19)

Γ(β̂RE
1 ) = σ2B−1

11 +B−1
11 B12ωω′B21B

−1
11 , (3.20)

Γ(β̂S) = σ2B−1
11.2−

(p2 − 2)σ3B−1
11 B12B

−1
22.1B21B

−1
11

{
2E(χ2

p2,α(∆))−E(χ2
p2+2,α(∆))

}

+ (p22 − 4)B−1
11 B12ωω′B21B

−1
11 E(χ

−4
p2+4(∆)), (3.21)
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and

Γ(β̂S+)

= Γ(β̂S) + (p2 − 2)B−1
11 B12B

−1
22.1B21B

−1
11

{
2E
[
χ−2
p2+2(∆)I(χ2

p2+2(∆) ≤ p2 − 2)
]

− (p2 − 2)E
[
χ−4
p2+2(∆)I(χ2

p2+2(∆) ≤ p2 − 2)
]}

− σ2B−1
11 B12B

−1
22.1B21B

−1
11

·Hp2+2(p2 − 2;∆) +B−1
11 B12ωω′B21B

−1
11 [2Hp2+2(p2 − 2;∆)−

Hp2+4(p2 − 2;∆)]

− (p2 − 2)B−1
11 B12ωω′B21B

−1
11

{
2E
[
χ−2
p2+2(∆)I(χ2

p2+2(∆) ≤ p2 − 2)
]

− 2E
[
χ−2
p2+2(∆)I(χ2

p2+2(∆) ≤ p2 − 2)
]
+

(p2 − 2)E
[
χ−4
p2+2(∆)I(χ2

p2+2(∆) ≤ p2 − 2)
]}

Theorem 3.8.4. Suppose that assumptions 3.7.1 and 3.7.2 hold, then under {Kn}

the ADQR of the estimators are:

R(β̂UE
1 ;M) = σ2tr(MB−1

11.2), (3.22)

R(β̂RE
1 ;M) = σ2tr(MB−1

11 ) + ω′B21B
−1
11 MB−1

11 B12ω, (3.23)

R(β̂S
1 ;M) = σ2

[
tr(MB−1

11.2)− (p2 − 2)tr(B21B
−1
11 MB−1

11 B12B
−1
22.1)

·
{
2E(χ2

p2,α
(∆))− (p2 − 2)E(χ−4

p2+2(∆))
}]

+ (p22 − 4)ω′B21B
−1
11 MB−1

11 B12ωE(χ
−4
p2+4(∆)), (3.24)
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and

R(β̂S+;M)

= R(β̂S;M)

+(p2 − 2)tr(B21B
−1
11 MB−1

11 B12B
−1
22.1)

{
2E
[
χ−2
p2+2(∆)I(χ2

p2+2(∆) ≤ p2 − 2)
]

−(p2 − 2)E
[
χ−4
p2+2(∆)I(χ2

p2+2(∆) ≤ p2 − 2)
]}

− σ2tr(B21B
−1
11 MB−1

11 B12B
−1
22.1)

·Hp2+2(p2 − 2;∆) + ω′B21B
−1
11 MB−1

11 B12ω [2Hp2+2(p2 − 2;∆)

−Hp2+4(p2 − 2;∆)]

−(p2 − 2)ωB21B
−1
11 MB−1

11 B12ω
′
{
2E
[
χ−2
p2+2(∆)I(χ2

p2+2(∆) ≤ p2 − 2)
]

− 2E
[
χ−2
p2+2(∆)I(χ2

p2+2(∆) ≤ p2 − 2)
]

+(p2 − 2)E
[
χ−4
p2+2(∆)I(χ2

p2+2(∆) ≤ p2 − 2)
]}
, (3.25)

Proof of these theorems are similar to the proofs in Ahmed et al. (2007, p. 452).

According to Theorem 3.8.4, for B12 = 0, we have B21B
−1
11 MB−1

11 B12 = 0 and

B11.2 = B11 and hence all the ADQR reduce to common value σ2tr(MB−1
11 ) for all

ω. Hence, all these variations become ADQR-equivalent. In the sequel we therefore

assume that B12 6= 0 and the remaining discussion follows. Moreover, if we consider

the Mahalanobis distance (loss) then M = σ−2B11.2 and R(β̂UE
1 ) reduces to p1.

By comparing R(β̂S
1) and R(β̂UE

1 ), the following dominance condition holds. If

M ∈ MD, β̂S
1 dominates β̂UE

1 for any ω in the sense of ADQR, where

MD =

{
M :

tr(B21B
−1
11 MB−1

11 B12B
−1
22.1)

chmax(B21B
−1
11 MB−1

11 B12B
−1
22.1)

≥ p2 + 2

2

}
.

Comparing R(β̂S+) with R(β̂S), we observe that β̂S+ dominates β̂S for all the
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values of ω, with strict inequality holding for some ω. Therefore, the risk of β̂S+ is

also smaller than the risk of β̂UE
1 in the entire parameter space and the upper limit

is attained when ∆ approaches ∞. ADQR(β̂S+
1 ) increases monotonically towards

R(β̂UE
1 ) from below, as ∆ moves away from 0. This implies that

R(β̂S+
1 ) ≤ R(β̂S

1 ) ≤ R(β̂UE
1 ), for any M ∈ MD and ω,

with strict inequality holding for some ω. Thus, we conclude that β̂S
1 and β̂S+

1 perform

better than β̂UE
1 in the entire parameter space induced by ∆. The gain in risk over

β̂UE
1 is substantial when ∆ = 0 or near.

3.9 Conclusion

In this chapter, we considered shrinkage estimation in the context of a partially lin-

ear model where the nonparametric component was approximated by a B-spline basis

function. In our study, we developed and implemented a procedure for simultaneous

sub-model selection to obtain shrinkage estimators, and compared their performance

with lasso and adaptive lasso estimators. All the computations were performed us-

ing R (R Development Core Team, 2010). As an example, we analyzed a popular

econometric data set, and used prediction errors and loglikelihood criteria to com-

pare shrinkage and positive shrinkage estimators with those obtained from the models

produced by lasso and adaptive lasso estimators. Our analyses showed that positive

shrinkage and shrinkage estimators perform equally compared to the adaptive lasso

estimators. In our analysis the candidate sub-models were obtained through stepwise

variable selection procedure based on AIC and BIC. For the data example, the initial
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selection via AIC, interactive model selection procedure based on deviance analysis

was performed to obtain the final sub-model. As noted earlier, the final sub-model

was the same as the one given by BIC.

We used the RMSE criterion to compare shrinkage estimators with an APE (lasso

only) through Monte Carlo simulation. We found that positive-shrinkage estimators

have smaller relative risk when the number of nuisance parameters in the model was

large. Not surprisingly, APE performed better when the nuisance subset was small.

We suspected that alongside the number of nuisance parameters, performance of the

shrinkage and absolute penalty estimators may vary depending on the number of

main parameters (p1). In our study, we got an indication that, for an increased

number of main parameters, APE may outperform shrinkage estimators. Behavior of

the proposed estimators compared to lasso and adaptive lasso estimators for different

sizes of main parameters is currently under investigation. In our setup, APE tend to

outperform shrinkage estimators when the sample size gets larger.

Monte Carlo simulation study re-established the fact that the restricted estimators

outperform the usual unrestricted estimators at or near the pivot (∆∗ = 0). However,

as we deviate away from the pivot, risk of the restricted estimator becomes large. On

the other hand, shrinkage and positive-shrinkage estimators perform steadily through-

out the alternative parameter sub-space.

To summarize, we observed that the positive part shrinkage estimator may be

considered in a PLM when the nonparametric component is estimated by B-spline

basis function. B-splines are easier to implement and to incorporate in a regression

model when one considers uniform knots. In many practical situations, this might be

a good alternative to the kernel-based estimators for the nonparametric part.



Chapter 4

Robust Shrinkage M-Estimation in

Partially Linear Models

4.1 Introduction

In this chapter, we consider robust shrinkage M-estimation in a partially linear model

(PLM). Ahmed et al. (2006) considered robust shrinkage-estimation of regression pa-

rameters in the presence of nuisance scale parameters when it is a priori suspected

that the regression could be restricted to a linear subspace. They studied the asymp-

totic properties of variants of Stein-rule M-estimators (including the positive-part

shrinkage M-estimators). We extend their work to a PLM and develop shrinkage

M-estimators. In our work, we obtained risk-based robust shrinkage estimators of

regression parameters.

PLM is more flexible than a linear model since it includes a nonlinear component

along with the linear components. A PLM may provide a better alternative to the

114
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classical linear regression in a situation where one or more covariates have nonlinear

relationship with the response variable.

Robust regression models are designed to overcome some of the limitations of clas-

sical linear regression. For example, least squares regression is highly non-robust to

outliers, and is subject to underlying assumptions. Violation of these assumptions

will have serious impact on the validity of the fitted model. Similar to a classical

linear regression model, a PLM may be affected due to the presence of outliers or

violation of underlying assumptions.

In this chapter, we focus on robust shrinkage M-estimation of regression coefficients

in a PLM where the nonparametric part is estimated by the kernel-based method. We

consider four different error distributions, namely, standard normal, scaled normal,

standard Laplace, and logistic distribution. We consider a PLM with scaled error

term which is defined in (4.1).

4.1.1 Organization of the Chapter

In Section 4.2, we discuss robust M-estimation in a seminarametric model. The steps

to estimate the nonparametric function in a PLM are discussed in detail. We reviewed

the consistency and asymptotic normality of the estimators. Shrinkage M-estimators

are defined in Section 4.3. Asymptotic bias and risk expressions for the M-estimators

are derived in Section 4.5. Finally, Monte Carlo simulation results are presented in

Section 4.6.
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4.2 Semiparametric M-Estimation

Consider a PLM of the form

Y = Xβ + g(T ) + σe, (4.1)

where X ′ = (x′
1,x

′
2, . . . ,x

′
n), Y = (y1, y2, . . . , yn)

′, e = (e1, e2, . . . , en)
′, and x′

is are

known row vectors of length p, eis are independent and identically distributed (iid)

random variables having a continuous distribution, F , free from an unknown scale

parameter σ > 0, g(T ) is an unknown real-valued function, and β′ = (β1, β2, . . . , βp)
′

is the vector of regression parameters. The ′ denotes transpose of a vector or a matrix.

After estimating g(·) using kernel smoothing, we confine ourselves to the estimation

of β based on the partial residuals which attains the usual parametric convergence

rate n−1/2 without under-smoothing the nonparametric component g(·) (Speckman,

1988).

Let us assume that {x′
i, ti, yi; i = 1, 2, . . . , n} satisfy model (4.1). If β is known to

be the true parameter, then by E(ǫ) = 0, we have

g(ti) = E(yi − x′
iβ), i = 1, 2, . . . , n.

A natural nonparametric estimator of g(·) given β is

g∗(t,β) =

n∑

i=1

Wni(yi − x′
iβ).
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Here, Wni are defined as

Wni =
K((ti − t)/h)∑n
j=1K((tj − t)/h)

, (4.2)

with K(·) being a kernel function–a non-negative function integrable on R, and h is

a bandwidth parameter. We need to make the following assumptions on Wni.

Assumption 4.2.1. The function g(·) satisfies the Lipschitz condition of order 1 on

[0, 1].

Assumption 4.2.2. The probability weight functions Wni(·) satisfy

a) max1≤i≤n

∑n
j=1Wni(tj) = O(1)

b) max1≤i, j≤n

∑n
j=1Wni(tj) = O(n−2/3),

c) max1≤j≤n

∑n
i=1Wni(tj)I(|ti− tj | > cn) = O(dn), where I is the indicator function,

cn satisfies lim supn→∞ nc3n, and dn satisfies lim supn→∞ nd3n <∞.

Remark 2. The usual polynomial and trigonometric functions satisfy Assump-

tion 4.2.1

Remark 3. Under regular conditions, the Nadaraya-Watson kernel weights, Priestley

and Chao kernel weights, locally linear weights and Gasser-Müller kernel weights

satisfy Assumption 4.2.2. If we consider the pdf of U [−1, 1] as the kernel function as

K(t) =
1

2
I[−1,1](t),

with ti =
i
n
, and the bandwidth cn−1/3 where c is constant, then the Priestley and
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Chao kernel weights satisfy Assumption 4.2.2, and the weights are

Wni(t) =
1

2cn
2

3

(∣∣t− i

n

∣∣ ≤ cn− 1

3

)(t)

.

For a detailed discussion on the assumptions above, see Ahmed et al. (2007).

Now, we define γ0(t) = E(y|T = t) and γ(t) = (γ1(t), γ2(t), . . . , γn(t))
′, where

γj(t) = E(xj |T = t). We estimate β using

β̂ = argminSS(β) = (X̃ ′X̃)−1X̃ ′Ỹ , (4.3)

with

SS(β) =

n∑

i=1

(yi − x′iβ − g∗(ti,β))
2
=

n∑

i=1

(ỹi − x̃′
iβ)

2. (4.4)

Here, Ỹ = (ỹ1, ỹ2, . . . , ỹn)
′, X̃ = (x̃1, x̃2, . . . , x̃n)

′, ỹi = yi − γ0(t), and x̃i = xi − γ(t)

for i = 1, 2, . . . , n. The conditional expectations γ0(t) and γ(t) can be obtained using

classical nonparametric approach through

γ̂0(t) =
n∑

i=1

Wni(t)yi, and

γ̂j(t) =

n∑

i=1

Wni(t)xij

where Wni(t) is defined in (4.2). Clearly, once we obtain the estimates γ̂0(t) and γ̂j(t),

they can be plugged into (4.4) prior to the estimation of regression parameters β.

The above procedure was independently proposed by Speckman (1988) and Denby

(1986). Chen and Shiau (1994) mentioned that the procedure can be related to the
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partial regression procedure in linear regression. A similar approach was taken by

Ahmed et al. (2007) in estimating the nonparametric component in a partially linear

model.

We obtain the robust M-estimators of the parameters of a PLM using a two-step

procedure as follows:

Step 1 We first estimate γ0(t) and γj(t) through kernel smoothing as described above.

We denote the estimates by γ̂0(t) and γ̂j(t), respectively.

Step 2 The estimates in Step 1 are then plugged into the model. Then the estimator

β̂ of β is obtained by regressing the residuals yi − γ̂0(t) and xi − γ̂(t) using

a robust procedure. We denote the residuals as r̂i = yi − γ̂0(t) and ui =

xi − γ̂(ti).

4.2.1 Consistency and Asymptotic Normality

Let ρ̃ and W̃ be score and weight functions, respectively. The asymptotic distribution

of β is defined as a solution of

n∑

i=1

ρ̃

(
r̂i − ûiβ̂

sn

)
W̃ (||ûi||)ûi = 0, (4.5)

where r̂i = yi− γ̂0(t), ui = xi− γ̂(ti), and sn is an estimate of the residual scale. Also

consider that γ̂0(t) and γ̂(ti) are the consistent estimators of γ0(t) and γ(ti), respec-

tively. Now, denote the random vector (R(T ),U(T )′)′ with the same distribution as

(ri,u
′
i)
′.

Consistency of the regression parameters in a semiparametric model has been
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proved in great detail in Bianco and Boente (2004). We omit the details but present

only the set of assumptions, lemma, and theorem which are needed for proving asymp-

totic normality and consistency of the estimators.

To derive the asymptotic distribution of β we must have ti in a compact set, so

without loss of generality, we assume that ti ∈ [0, 1]. We need the following set of

assumptions. See Bianco and Boente (2004) for details.

A1 ρ̃ is odd, bounded, continuous, and twice differentiable with bounded derivative

ρ̃′ and ρ̃′′ such that φ1(t) = tρ̃′(t) and φ2(t) = tρ̃′′(t) are bounded.

A2 E(W̃ (||U(T )||)||U(T )′||2) <∞ and the matrix

A = E

(
ρ̃′
(
R(T )−U(T )′β

σ

)
W̃ (||U(T )||)U(T )U(T )′

)

is nonzero.

A3 W̃ (u) = ρ̃1(u)u
−1 > 0 is a bounded function which satisfies the Lipschitz condi-

tion of order 1. Further, ρ̃1 is bounded with bounded derivative.

A4 E(W̃ (||U(T )||)U(T )|T = t) = 0 for almost all t.

A5 The functions xj(t), 0 ≤ j ≤ p are continuous in [0, 1] with continuous first

derivative.

Remark 4. According to Robinson (1988), condition A2 is needed so that no element

of X can be predictable by T . A2 guarantees that there is no multicollinearity in the

columns of X − X̃j(T ). In other words, X has to be free from multicollinearity.

Remark 5. Again, according to Robinson (1988), condition A5 is a standard require-

ment in kernel estimation in semiparametric models in order to guarantee asymptotic
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normality.

Lemma 4.2.1. Let (yi,x
′
i, ti)

′, 1 ≤ i ≤ n be independent random vectors satisfying

(4.1) with ǫi independent of (x′
i, ti)

′. Assume that ti are random variable with ti ∈

[0, 1]. Denote (R(T ),U(T )′)′ a random vector with the same distribution as

(ri,u
′
i)
′ = (yi − γ̂0(ti), [xi − γ̂(ti)]

′)′.

Further, let γ̂j(ti), 0 ≤ j ≤ p be the estimates of γj(ti) such that

∑

t∈[0,1]

|γ̂j(t)− γj(t)|
p−→ 0, 0 ≤ j ≤ p.

If β̃
p−→ β and sn

p−→ σ, then under the stated assumptions A1-A3, An
p−→ A where

A is defined in A2, and

An = n−1
n∑

i=1

ρ̃′

(
r̂i − û′

iβ̃

sn

)
W̃ (||ûi||)ûiû

′
i.

Here,
p−→ denotes convergence in probability.

Proof. The proof is available in the appendix of Bianco and Boente (2004).

Theorem 4.2.1. Let (yi,x
′
i, ti)

′, 1 ≤ i ≤ n be independent random vectors satisfying

(4.1) with ǫi independent of (x′
i, ti)

′. Assume that ti are random variables with

tin ∈ [0, 1]. Denote (R(T ),U(T )′)′ a random vector with the same distribution as

(ri,u
′
i)
′ = (yi − γ0(ti), [xi − γ(ti)]

′)′.

Further, let γ̂j(t), 0 ≤ j ≤ p be estimates of γj(t) such that first derivative of γ̂j(t)
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exists and is continuous, and

n1/4
∑

t∈[0,1]

|γ̂j(t)− γj(t)|
p−→ 0, 0 ≤ j ≤ p (4.6)

∑

t∈[0,1]

|γ̂j(t)− γj(t)|
p−→ 0, 0 ≤ j ≤ p (4.7)

Then, if sn
p−→ σ, under A1-A5,

√
n(β̂ − β)

d−→ N(0,Q)

with Q = A−1Σ(A−1)′, where A is defined previously in A2 and

Σ = σ2E

(
ρ̃2
(
R(T )−U(T )′β

σ

)
W̃ 2(||U(T )||)U(T )U(T )

)

Proof. The proof is available in Bianco and Boente (2004).

4.3 Shrinkage M-Estimation

Similar to the previously defined shrinkage estimators, a Stein-type M-estimator (SM)

β̂SM
1 of β1 can be defined as

β̂SM
1 = β̂RM

1 + (β̂UM
1 − β̂RM

1 )
{
1− κψ−1

n

}
, where κ = p2 − 2, p2 ≥ 3.

where ψn is a test statistic defined in (4.16). And the positive-rule Stein-type M-

estimator (SM+) has the form

β̂SM+
1 = β̂RM

1 + (β̂UM
1 − β̂RM

1 )
{
1− κψ−1

n

}+
, p2 ≥ 3,
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where z+ = max(0, z). Alternatively, this can be written as

β̂SM+
1 = β̂RM

1 + (β̂UM
1 − β̂RM

1 )
{
1− κψ−1

n

}
I(ψn < κ), p2 ≥ 3.

For a suitable absolutely continuous function ρ : R → R, with derivative φ, an

M-estimator of β is defined as a solution of the minimization

min
β

n∑

i=1

ρ(ỹi − x̃′
iβ). (4.8)

Generally, an M-estimator is regression-equivariant, i.e.,

Mn(cY +Xa) = cMn(Y ) + ca, for a ∈ Rp

and robustness depends on the choice of ρ(·). But it is generally not scale-equivariant.

That is, it may not satisfy

Mn(cY ) = cMn(Y ) for c > 0.

To have the estimators scale and regression equivariant, we need to studentize them.

The studentized M-estimator is defined as as solution of the minimization

min
b∈Rp

n∑

i=1

ρ

(
ỹi − x̃′

iβ

Sn

)
(4.9)

where Sn = Sn(Y ) ≥ 0 is an appropriate scale statistic that is regression equivariant

and scale equivariant, i.e.,

Sn(c(Y +Xa)) = cSn(Y ) for a ∈ Rp and c > 0
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According to Jurec̆ková and Sen (1996), the minimization in (4.9) should be sup-

plemented by a rule how to define Mn in the case when Sn(Y ) = 0. However, in

general, this happens with probability zero, and the specific rule does not affect the

asymptotic properties of Mn. There are additional regularity conditions needed with

(4.9), which we present in the following. Details may be found in Jurec̆ková and Sen

(1996, page 217)].

4.3.1 Regularity Conditions

Here, we list the regularity conditions needed for the minimization problem in (4.9).

Detailed discussions about these conditions can be found in Jurec̆ková and Sen (1996,

p. 217-218).

For the studentized M-estimators, consider that φ = ρ′ can be decomposed as

φ = φ1 + φ2 + φ3, (4.10)

where φ1 is an absolutely continuous function with absolutely continuous derivative,

φ2 is a continuous piecewise linear function that is constant in a neighbourhood of

±∞, and φ3 is a nondecreasing step function.

The following conditions are imposed on (4.9).

RC.1. Sn(Y ) is regression invariant and scale equivariant, Sn > 0 a.s., and

√
n(Sn − S) = Op(1)

for some functional S = S(F ) > 0.
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RC.2. The function h(t) =
∫
ρ((z − t)/S)dF (z) has the unique minimum at t = 0.

RC.3. For some δ > 0 and η > 1,

∫ −∞

∞

{
|z| sup

|u|≤δ

sup
|v|≤δ

∣∣∣∣φ
′′
1

(
e−v(z + u)

S

) ∣∣∣∣

}η

dF (z) <∞

and ∫ −∞

∞

{
|z|2 sup

|u|≤δ

∣∣∣∣
φ′′
1(z + u)

S

∣∣∣∣

}η

dF (z) <∞

where φ′
1(z) =

d
dz
φ1(z), and φ

′′
1(z) =

d2

dz2
φ1(z).

RC.4. φ3 is a continuous, piecewise linear function with knots at µ1, . . . , µk, which

is constant in a neighborhood of ±∞. Hence the derivative φ′
3 of φ3 is a step

function

φ′
3(z) = αν for µν < z < µν+1, ν = 0, 1, . . . , k,

where α0, α1, . . . , αk ∈ R1, α0 = αk = 0 and ∞ = µ0 < µ1 < · · · < µk <

µk+1 = ∞. Further, we assume that f(z) = dF (z)
dz

is bounded in neighbourhood

of Sµj
, j = 1, 2, . . . , k.

RC.5. φ3(z) = λν for qν < z ≤ qν+1, ν = 1, 2, . . . , m where −∞ = q0 < q1 < · · · <

qm < qm+1 = ∞, −∞ < λ0 < λ1 < · · · < λm < ∞. We further assume that

f ′(z) and f ′′(z) are bounded in the neighbourhood of Sqj , j = 1, 2, . . . , m.

Now, to define the shrinkage M-estimators, we redefine the matrix An as

C = AnA
′
n =




A′
n11An11 A′

n21An12

A′
n21An21 A′

n22An22


 =




C11 C12

C21 C22
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Also, we define

C22.1 = C22 −C21C
−1
11 C12,

which we shall require later. Notice that, if C21 = 0, C22.1 = C22. Otherwise,

C22 −C22.1 is positive semi-definite, as we shall require.

A studentized unrestricted M-estimator (UME) of β is defined as a solution of

(4.9). Let us denote it by

β̂UM =
((

β̂UM
1

)
,
(
β̂UM
2

))
.

A studentized restricted M-estimator of β1 is obtained by minimizing

min
b∈Rp1

n∑

i=1

ρ

(
ỹi − x̃′

i1b

Sn

)
, (4.11)

and denote it by β̂RM
1 . Here, Sn is regression-invariant, and so is not affected by the

restricted environment. Since ρ(·) is assumed to have derivative φ(·), we rewrite β̂UM

as a solution of

Mn(θ) =
n∑

i=1

x̃i φ

(
ỹi − x̃′

iθ

Sn

)
= 0. (4.12)

In other words,

Mn(β̂
UM) = 0.

Similarly, β̂RM
1 is a solution of

Mn1
(θ1) =

n∑

i=1

x̃i1 φ

(
ỹi − x̃′

i1θ1

Sn

)
= 0. (4.13)
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Now, let

M̂RM
n2

=
n∑

i=1

x̃i2 φ

(
ỹi − x̃′

i1β̂
RM
1

Sn

)
. (4.14)

Recall that M̂RM
n2

is a p1-vector and Mn1
is a p2-vector. Let us denote also

σ̂2
φnR = (n− p2)

−1
n∑

i=1

φ2

(
ỹi − x̃′

i1β̂
RM
1

Sn

)
. (4.15)

Now, considering the studentized environment for our problem, a suitable test

statistic can be formulated following the procedure discussed in Jurec̆ková and Sen

(1996, section 10.2), as

ψn =

[
M̂RM

n2

]′
C−1

22.1

[
M̂RM

n2

]

σ̂ΦnR
. (4.16)

Directly applying the Lemma 5.5.1 in Jurec̆ková and Sen (1996, page 220), it can be

shown that

ψn
d−→ χ2

p2 under H0.

For details of proof, please see the above reference. However, under (local) alternative

hypotheses

ψn
d−→ χ2

p2,∆,

where ∆ is the noncentrality parameter.

It is to be mentioned here that unlike least-squares estimators, M-estimators are not

linear. Even if the distribution function F , is normal, the finite sample distribution

theory of M-estimators is not simple. Asymptotic methods [Sen and Saleh (1987)

Jurec̆ková and Sen (1996)] have been used to overcome this difficulty. However, these

asymptotic methods are related primarily to convergence in distribution, which may

not generally guarantee convergence in quadratic risk (Ahmed et al., 2006). This is
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taken care of with the introduction of asymptotic distributional risk (ADR) (Sen,

1986), which is based on the concept of a shrinking neighbourhood of the pivot for

which the ADR serves a useful and interpretable role in they asymptotic risk analysis.

4.4 Asymptotic Properties of the Estimators

In this section, we derive the asymptotic distributions of the estimators and the test

statistic ψn. This facilitates in finding the asymptotic distributional bias (ADB),

asymptotic distributional quadratic bias (ADQB), and asymptotic distributional

quadratic risk (ADQR) of the estimator of β.

Under the assumed regularity conditions and as

lim
n→∞

Cn

n
= Q (4.17)

where

Q =




Q11 Q12

Q21 Q22


 ,

it is known that under fixed alternative, β2 = 0,

ψn

n
→ γ(β̂1, β̂2;Q) > 0 as n→ ∞

such that the shrinkage factor κψ−1
n = Op(n

−1). This implies, asymptotically, there is

no shrinkage effect. Therefore, to obtain meaningful asymptotics, we consider a class
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of local alternatives, {Kn}, given by

Kn : β2 = β2n =
ω√
n
, (4.18)

where ω = (ω1, ω2, · · · , ωp2)
′ ∈ R

p2 is a fixed vector, and ||ω|| < ∞ so that the null

hypothesis H0 : β2 = 0 reduces to H0 : ω = 0.

It is to be reminded that under such local alternatives, the estimators β̂UM
1 , β̂RM

1 ,

β̂SM
1 , and β̂SM+

1 may not be asymptotically unbiased for β1. Therefore, we consider

a quadratic loss function. For an estimator β∗
1 and a positive-definite matrix W , we

define the loss function of the form

L(β∗
1;β1) = n(β∗

1 − β1)
′W (β∗

1 − β1).

These loss functions are generally known as weighted quadratic loss functions, where

W is the weighting matrix. For W = I, it is the simple squared error loss function.

The expectation of the loss function

E[L(β∗
1,β1);W ] = R[(β∗

1,β1);W ]

is called the risk function, which can be written as

R[(β∗
1,β1);W ] = nE[(β∗

1 − β1)
′W (β∗

1 − β1)]

= n tr[W {E(β∗
1 − β1)(β

∗
1 − β1)

′}]

= tr(WΩ∗), (4.19)
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where Ω∗ is the covariance matrix of
√
n(β∗

1 − β1). Whenever

lim
n→∞

Ω̂∗
n = Ω̂∗

exists, the asymptotic risk is defined by

Rn(β
∗
1n,β1;W ) → R(β∗

1,β1;W ) = tr(W Ω̂∗).

Consider the asymptotic cumulative distribution function (cdf) of
√
n(β∗

1n − β1)

under {Kn} exists, and is defined as

G(y) = P
[
lim
n→∞

√
n(β∗

1n − β1) ≤ y
]
.

This is known as the asymptotic distribution function (ADF) of β∗
1. Suppose that

Gn → G at all points of continuity as n → ∞, and let Ω̂∗ be the covariance matrix

of G. Then the ADR of β1n is defined as

R(β∗
1,β1;W ) = tr(WΩ∗

G)

As noted in Ahmed et al. (2006), if Gn → G in second moment, then ADR is

the asymptotic risk. However, this is a stronger mode of convergence, and is hard

to analytically prove for shrinkage M-estimators. Therefore, they suggested using

asymptotic distributional risk.

Now let

Γ =

∫ ∫
· · ·
∫

yy′dG(y)
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be the dispersion matrix which is obtained from ADF. The asymptotic distributional

quadratic risk (ADQR) may be defined as

R(β∗
1;β1) = tr(WΓ). (4.20)

Here Γ is the asymptotic distributional mean squared error (ADMSE) of the estima-

tors.

To derive the ADB and ADQB of the estimators, we present two important theo-

rems.

Theorem 4.4.1. Consider an absolutely continuous function f(·) with derivative

f ′(·) which exists everywhere, and finite Fisher information

I(f) =

∫

R

(−f ′(x)

f(x)

)2

dF (x) <∞

Under {Kn} and the assumed regularity conditions, ψn has asymptotically a non-

central chi-square distribution with non-centrality parameter ∆ = ω′Q22.1ωγ
−2. Here

γ2 =

∫
R
φ2(y)dF (y)∫

R
φ(x)[−f ′(x)/f(x)]dF (x)

, (4.21)

and φ(·) is defined in Section 4.3.1.

Theorem 4.4.2. Under the assumed regularity conditions, as n→ ∞

√
n(β̂UM − β)

d→ Np(0, γ
2Q−1). (4.22)

Proofs of these theorems are available in Jurec̆ková and Sen (1996).
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4.5 Asymptotic Bias and Risk

Theorem 4.5.1. Under the local alternative Kn and the assumed regularity condi-

tions, we have as n→ ∞

(i) η1 =
√
n(β̂UM

1 − β1)
d→ N(0, γ2Q−1

11.2)

(ii) η2 =
√
n(β̂UM

1 − β̂RM
1 )

d→ N(δ,Σ∗), δ = −Q−1
11 Q12ω

(iii) η3 =
√
n(β̂RM

1 − β1)
d→ N(−δ,Ω∗) Ω∗ = γ2Q−1

11

Also, under {Kn}

√
n
(
(β̂UM

1 − β1)
′, (β̂UM

2 − n− 1

2ω)′
)′ d→ N(0, γ2Q−1)

where

Q =




Q11 Q12

Q21 Q22




Now, let us denote the joint distributions as follows:




η1

η2


 ∼ Np1+p2







0

δ


 ,




γ2Q−1
11.2 Σ12

Σ21 Σ∗










η2

η3


 ∼ Np1+p2







δ

−δ


 ,




Σ∗ Ω12

Ω21 Ω∗
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Now we derive Σ12 as

Σ12 = Cov(η1, η2)

= Cov(β̂UM
1 , β̂UM

1 − β̂RM
1 )

= Cov(β̂UM
1 , β̂UM

1 )− Cov(β̂UM
1 , β̂RM

1 )

= V ar(β̂UM
1 )− Cov(β̂UM

1 , β̂RM
1 )

= γ2Q−1
11.2 − Cov(β̂UM

1 , β̂RM
1 )

where

Cov(β̂UM
1 , β̂RM

1 ) = Cov(β̂UM
1 , β̂UM

1 +Q−1
11 Q12β̂

UM
2 )

= V ar(β̂UM
1 ) + Cov(β̂UM

1 , β̂UM
2 )[Q−1

11 Q12]
′

= γ2Q−1
11.2 + γ2Q12Q21Q

−1
11

Therefore,

Σ12 = γ2Q−1
11.2 − γ2Q−1

11.2 − γ2Q12Q21Q
−1
11

= −γ2Q12Q21Q
−1
11

and

Σ∗ = Ω∗ − γ2Q−1
11.2 +Σ12 +Σ21

= γ2(Q−1
11 −Q−1

11.2 − 2Q12Q21Q
−1
11 )
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4.5.1 Bias Performance

The asymptotic distributional bias (ADB) of an estimator β∗ is defined as

ADB(β∗) = E
{
lim
n→∞

n
1

2 (β∗ − β)
}
.

Theorem 4.5.2. Under the assumed regularity conditions and theorem above, and

under {Kn}, the ADB of the estimators are as follows:

ADB(β̂UM
1 ) = 0

ADB(β̂RM
1 ) = −δ

ADB(β̂SM
1 ) = κδE

{
χ−2
p2+2(∆)

}

ADB(β̂SM+
1 ) = ADB(β̂SM

1 )− δ
[
Hp2+2(κ,∆)−E

{
κχ−2

p2+2(∆)I(χ2
p2+2(∆) < κ)

}]

Proof. Obviously, ADB(β̂UM
1 ) = 0

ADB(β̂RM
1 ) = E

{
lim
n→∞

√
n(β̂RM

1 − β1)
}

= E
{
lim
n→∞

√
n(β̂UM

1 +Q−1
11 Q12β̂

UM
2 − β1)

}

= E
{
lim
n→∞

√
n(β̂UM

1 − β1)
}
+ E

{
lim
n→∞

√
n(Q−1

11 Q12β̂
UM
2 )

}

= E
{
lim
n→∞

√
n
(
Q−1

11 Q12β̂
UM
2 )

)}

= Q−1
11 Q12ω

= −δ.
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ADB(β̂SM
1 ) = E

{
lim
n→∞

√
n(β̂SM

1 − β1)
}

= E
{
lim
n→∞

(√
nβ̂SM

1 −
√
nβ1

)}

= E
{
lim
n→∞

√
n(β̂UM

1 − β̂RM
1 )(−κψ−1

n )
}

= −κE
{
η2ψ

−1
n

}

= −κ(−δ)E
{
χ−2
p2+2(∆)

}

= κδE
{
χ−2
p2+2(∆)

}
.

ADB(β̂SM+
1 ) = E

{
lim
n→∞

√
n(β̂SM+

1 − β1)
}

= E
{
lim
n→∞

√
n(β̂SM+

1 − β1)−
√
n(β̂UM

1 − β̂RM
1 )(1− κψ−1

n )I(ψn < κ)
}

= E
{
lim
n→∞

√
n(β̂SM

1 − β1)
}
− E

{
lim
n→∞

√
n(β̂UM

1 − β̂RM
1 )(1− κψ−1

n )I(ψn < κ)
}

= ADB(β̂SM
1 )−E

{
η2(1− κψ−1

n )I(ψn < κ)
}

= ADB(β̂SM
1 )− δE

{(
1− κχ−2

p2+2(∆
2)
)
I
(
χ2
p2+2(∆

2) < κ
)}

= ADB(β̂SM
1 )− δE

{
I
(
χ2
p2+2(∆)

)
< κ

}
− δE

{
κχ−2

p2+2(∆)I
(
χ2
p2+2(∆) < κ

)}

= ADB(β̂SM
1 )− δ

[
Hp2+2(κ,∆)−E

{
κχ−2

p2+2(∆)I
(
χ2
p2+2(∆) < κ

)}]
.

The bias expressions for all the estimators are not in scalar form. We therefore con-

vert them into quadratic form. Let us define the asymptotic distributional quadratic
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bias (ADQB) of an estimator β∗ of β1 by

ADQB(β∗) = [ADB(β∗)]′Σ[ADB(β∗)]

where Σ−1 is the dispersion matrix of β̂UM
1 as n → ∞. In our case, the dispersion

matrix is Q11.

Using the definition, the asymptotic quadratic distributional bias of the various

estimators are derived below.

ADQB(β̂UM
1 ) = 0,

ADQR(β̂RM
1 ) = ω′Q21Q

−1
11 Q12ω

ADQB(β̂SM
1 ) = κ2δ′Q−1

11 δ
[
E
{
χ−2
p2+2(∆)

}]2

ADQB(β̂SM+
1 ) = δ′Q11δ

[
Hp2+2(κ,∆)− E

{
κχ−2

p2+2(∆)I(χ2
p2+2(∆) < κ)

}]
.

In the following, we derive the expressions for asymptotic distributional mean

square error (ADMSE). Let us denote it by Γ.
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The ADMSE’s are listed below

Γ(β̂UM
1 ) = γ2Q−1

11.2

Γ(β̂RM
1 ) = γ2Q−1

11 +Q−1
11 Q12ωω′Q21Q

−1
11

Γ(β̂SM
1 ) = γ2Q−1

11.2 − 2κ
[
E(χ−2

p2+2(∆))Σ21 + δδ′E(χ−2
p2+4(∆))Σ∗−1Σ21

−δδ′E(χ−2
p2+2(∆))Σ∗−1Σ21

]

+ κ2
[
Σ∗E(χ−4

p2+2(∆)) + δδ′E(χ−4
p2+4(∆))

]
.

Γ(β̂SM+
1 ) = Γ(β̂SM

1 )− 2Σ21E(1− κχ−2
p2+2(∆))I(χ2

p2+2(∆) < κ)

− 2δδ′Σ∗−1Σ21E(1− κχ−2
p2+4(∆))I(χ2

p2+4(∆) < κ)Σ∗−1Σ21

+ 2δδ′E(1− κχ−2
p2+2(∆))I(χ2

p2+2(∆) < κ)

+Σ∗E(1− κχ−2
p2+2(∆))2I(χ2

p2+2(∆) < κ)

+ δδ′E
{
(1− χ−2

p2+4(∆))2I(χ2
p2+4(∆) < κ)

}
.

Proof.

Γ(β̂UM
1 ) = E

{
lim
n→∞

√
n(β̂UM

1 − β1)
√
n(β̂UM

1 − β1)
′
}

= E{η1η′1}

= {Cov(η1η′1) + E(η1)E(η1)
′}

= V ar(η1)

= γ2Q−1
11.2.
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Γ(β̂RM
1 ) = E

{
lim
n→∞

√
n(β̂RM

1 − β1)
√
n(β̂RM

1 − β1)
′
}

= E{η3η′3}

= Cov(η3, η
′
3) + E(η3)E(η3)

′

= V ar(η3) + E(η3)E(η3)
′

= γ2Q−1
11 +Q−1

11 Q12ωω′Q21Q
−1
11 .

Γ(β̂SM
1 ) = E

{
lim
n→∞

√
n(β̂SM

1 − β1)
√
n(β̂SM

1 − β1)
′
}

= E
{
lim
n→∞

n
[
(β̂UM

1 − β1)− (β̂UM
1 − β̂RM

1 )κψ−1
n

]

[
(β̂UM

1 − β1)− (β̂UM
1 − β̂RM

1 )κψ−1
n

]′}

= E
{
[η1 − η2κψ

−1
n ][η1 − η2κψ

−1
n ]′
}

= E
{
η1η

′
1 − 2κψ−1

n η2η
′
1 + κ2ψ−2

n η2η
′
2

}
. (A)
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Now

E
{
ψ−1
n η2η

′
1

}
= E

{
E(η2η

′
1ψ

−1
n |η2)

}

= E
{
η2E(η

′
1ψ

−1
n |η2)

}

= E
{
η2
[
0 +Σ12Σ

∗−1(η2 − δ)
]′
ψ−1
n

}

= E
{
η2(η2 − δ)′Σ∗−1Σ′

12ψ
−1
n

}

= E
{
η2η

′
2Σ

∗−1Σ21ψ
−1
n

}
− E

{
η2δ

′Σ∗−1Σ21ψ
−1
n

}

=
[
V ar(η2)E(χ

−2
p2+2(∆)) + E(η2)E(η2)

′E(χ−2
p2+4(∆))

]
Σ∗−1Σ21

− E(η2)δ
′E(χ−2

p2+2(∆))Σ∗−1Σ21

=
[
Σ∗E(χ−2

p2+2(∆)) + δδ′E(χ−2
p2+4(∆))

]
Σ∗−1Σ21

− δδ′E(χ−2
p2+2(∆))Σ∗−1Σ21

= E(χ−2
p2+2(∆))Σ21 + δδ′E(χ−2

p2+4(∆))Σ∗−1Σ21

− δδ′E(χ−2
p2+2(∆))Σ∗−1Σ21.

Now, substituting E{ψ−1
n η2η

′
2} in (A), we get

Γ(β̂SM
1 ) = E{η1η′1} − 2κE

{
ψ−1
n η2η

′
1

}
+ κE

{
ψ−2
n η2η

′
2

}

= V ar(η1)− 2κ
[
E(χ−2

p2+2(∆))Σ21 + δδ′E(χ−2
p2+4(∆))Σ∗−1Σ21

−δδ′E(χ−2
p2+2(∆))Σ∗−1Σ21

]

+ κ2
{
V ar(η2)E(χ

−4
p2+2(∆)) + E(η2)E(η2)

′)E(χ−4
p2+4(∆))

}

= γ2Q−1
11.2 − 2κ

[
E(χ−2

p2+2(∆))Σ21 + δδ′E(χ−2
p2+4(∆))Σ∗−1Σ21

−δδ′E(χ−2
p2+2(∆))Σ∗−1Σ21

]

+ κ2
[
Σ∗E(χ−4

p2+2(∆)) + δδ′E(χ−4
p2+4(∆))

]
.
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Γ(β̂SM+
1 ) = E

{
lim
n→∞

n(β̂SM+
1 − β1)(β̂

SM+
1 − β1)

′
}

= Γ(β̂SM
1 )− 2E

{
lim
n→∞

n(β̂UM
1 − β̂RM

1 )(β̂UM − β1)
′(1− κψ−1

n )I(ψn < κ)
}

+ E
{
lim
n→∞

n(β̂UM
1 − β̂RM

1 )(β̂UM
1 − β̂RM

1 )′(1− κψ−1
n )2I(ψn < κ)

}

= Γ(β̂SM
1 )− 2E

{
η2η

′
1(1− κψ−1

n )I(ψn < κ)
}

+ E
{
η2η

′
2(1− κψ−1

n )2I(ψn < κ)
}
. (B)

Now, using the rule of conditional expectation,

E
{
η2η

′
2(1− κψ−1

n )I(ψn < κ)
}

= E
[
η2E

{
η′1(1− κψ−1

n I(ψn < κ)
}
|η2
]

= E
[
η2
{
0 +Σ12Σ

∗−1(η2 − δ)
}′
(1− κψ−1

n )I(ψn < κ)
]

= E
{
η2(η2 − δ)′Σ∗−1Σ21(1− κψ−1

n )I(ψn < κ)
}

= E
{
η2η

′
2Σ

∗−1Σ21(1− κψ−1
n )I(ψn < κ)

}

− E
{
η2δ

′Σ∗−1Σ21(1− κψ−1
n )I(ψn < κ)

}

=
{
V ar(η2)E(1− κχ−2

p2+2(∆))I(χ2
p2+2(∆) < κ)Σ∗−1Σ21

+δδ′E(1− κχ−2
p2+4(∆))I(χ2

p2+4(∆) < κ)Σ∗−1Σ21

}

−
{
δδ′E(1− κχ−2

p2+2(∆))I(χ2
p2+2(∆) < κ)

}
.
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Now, substituting the above in (B), we get

Γ(β̂SM+
1 ) = Γ(β̂SM

1 )− 2Σ21E(1− κχ−2
p2+2(∆))I(χ2

p2+2(∆) < κ)

− 2δδ′Σ∗−1Σ21E(1− κχ−2
p2+4(∆))I(χ2

p2+4(∆) < κ)Σ∗−1Σ21

+ 2δδ′E(1− κχ−2
p2+2(∆))I(χ2

p2+2(∆) < κ)

+Σ∗E(1− κχ−2
p2+2(∆))2I(χ2

p2+2(∆) < κ)

+ δδ′E
{
(1− κχ−2

p2+4(∆))2I(χ2
p2+4(∆) < κ)

}
.

4.5.2 Risk Performance

Using the definition (4.20), ADQR expressions are given below.
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R(β̂UM
1 ) = tr(WΓ(β̂UM

1 ))

= tr(W γ2Q−1
11.2)

R(β̂RM
1 ) = tr(WΓ(β̂RM

1 ))

= tr(W γ2Q−1
11 ) + tr(WM), where M = Q−1

11 Q12ωω′Q21Q
−1
11

R(β̂SM
1 ) = tr(WΓ(β̂SM

1 ))

= R(β̂UM
1 )− 2κE

{
χ−2
p2+2(∆)

}
tr(WΣ21)

− 2κE
{
χ−2
p2+4(∆)

}
tr(Wδδ′Σ∗−1Σ21)

+ 2κE
{
χ−2
p2+2(∆)

}
tr(Wδδ′Σ∗−1Σ21)

+ κ2E
{
χ−4
p2+2(∆)

}
tr(WΣ∗)

+ κ2E
{
χ−2
p2+4(∆)

}
tr(Wδδ′)

R(β̂SM+
1 ) = tr(WΓ(β̂SM+

1 ))

= R(β̂SM
1 )− 2E(1− κχ−2

p2+2(∆))I(χ2
p2+2(∆) < κ)tr(WΣ21)

− 2E(1− κχ−2
p2+4(∆))I(χ2

p2+4(∆) < κ)tr(Wδ′δΣ∗−1Σ21Σ
∗−1Σ21)

+ 2E(1− κχ−2
p2+2(∆))I(χ2

p2+4(∆) < κ)tr(Wδδ′)

+ E
{
(1− κχ−2

p2+2(∆))2I(χ2
p2+2(∆) < κ)

}
tr(WΣ∗)

+ E
{
(1− κχ−2

p2+4(∆))2I(χ2
p2+4(∆) < κ)

}
tr(Wδδ′)

4.6 Simulation Studies

We perform Monte Carlo simulation experiments to examine the quadratic risk per-

formance of the proposed estimators. We simulate the response from the following
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model:

yi =

p1∑

l=1

xilβl +

p∑

m=p1+1

ximβm + sin(4πti) + εi (4.23)

where βl is a p1 × 1 vector and βm is p2 × 1 vector of parameters and p = p1 + p2.

To simulate the data, we consider, xi1 = (ζ
(1)
i1 )2+ζ

(1)
i +ξi1, xi2 = (ζ

(1)
i2 )2+ζ

(1)
i +2ξi2,

xis = (ζ
(1)
is )2+ζ

(1)
i with ζ

(1)
is i.i.d. ∼ N(0, 1), ζ

(1)
i i.i.d. ∼ N(0, 1), ξi1 ∼Bernoulli(0.35)

and ξi2 ∼Bernoulli(0.35) for all s = 3, . . . , p, p = p1 + p2, and i = 1, . . . , n. Four dif-

ferent error distributions have been considered which are defined later in this chapter.

We are interested in testing the hypothesis H0 : (βp1+1, βp1+2, . . . , βp1+p2) = 0. Our

aim is to estimate β1, when the remaining regression parameters may not be useful.

We partition the regression coefficients as β = (β1,β2) = (β1, 0).

The number of simulations was initially varied. Finally, each realization was re-

peated 5000 times to obtain stable results. For each realization, we calculated bias

of the estimators. We defined ∆∗ = ||β − β(0)||, where β(0) = (β1, 0) and || · || is the

Euclidean norm. ∆∗ and Sn were estimated by median absolute deviation (MAD).

To determine the behavior of the estimators for ∆∗ > 0, further data sets were

generated from those distributions under local alternative hypothesis.

4.6.1 Error Distributions

Four different error distributions have been considered. They are outlined briefly

below.
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Normal and Contaminated Normal

F (x) = λN(0, σ2) + (1− λ)N(0, 1) (4.24)

where λ is the parameters indicating whether standard normal or its contaminated

version is returned. We consider λ = 0 and .9. For λ = 0 we get standard normal

errors, while scale contaminated normal errors are obtained for λ = .9.

Standard Logistic

The standard logistic distribution has cdf

F (x) =
1

1 + e−x
, x ∈ R (4.25)

Standard Laplace

The standard Laplace distribution has cdf

F (x) =
1

2

[
1 + sign(x)(1− e−|x|)

]
, x ∈ R. (4.26)

4.6.2 Risk Comparison

The risk performance of an estimator of β1 was measured by calculating its MSE.

After calculating the MSEs, we numerically calculated the efficiency of the proposed

estimators β̂RM
1 , β̂SM

1 , β̂SM+
1 relative to the unrestricted estimator β̂UM

1 using the
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relative mean squared error criterion, given as follows:

RMSE(β̂UM
1 : β̂*

1) =
MSE(β̂UM

1 )

MSE(β̂ *
1 )

, (4.27)

where β̂*
1 is one of the proposed estimators. The amount by which an RMSE is larger

than unity indicates the degree of superiority of the estimator β̂*
1 over β̂UM

1 .

To compute RMSE we consider n = 30, 50 and (p1, p2)= (3, 5), (3, 9), (5, 9)

and (5, 20) based on Huber’s ρ−function. Results are shown in Tables 4.1–4.4.

Since the results of our simulation study are similar for all the combinations, we

conduct separate simulations to visually compare the estimators for n = 50, and

(p1, p2) = (3, 4).

Figure 4.1 shows the RMSEs of various M-estimators for Huber’s ρ-function. Here,

∆∗ indicates the correctness of the sub-model under null hypothesis. ∆∗ > 0 indi-

cates the degree of deviation from the hypothesized model. We found that the RM

estimators are the best when ∆∗ = 0. However, the RM estimators become inefficient

and the RMSE goes below 1 very quickly as ∆∗ deviates from zero. The RMSE of

restricted estimator is depicted by the dashed line in Figure 4.1. In the simulation

study, the RM shows similar behaviour for all the error distributions considered in

this study.

Positive shrinkage estimator (SM+) appears to be most stable in terms of RMSE

as ∆∗ becomes large. Although the RM estimator outperforms all other estimators

for ∆∗ = 0, SM+ dominates in terms of RMSE for ∆∗ as small as 0.10 for all the error

distributions except standard Laplace. When error distribution is standard Laplace,

SM+ dominates RM for ∆∗ ≥ 20.
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An RMSE larger than 1 indicates that the risk of the corresponding estimator is

smaller than the risk of unrestricted M-estimator. For example, an RMSE of “x”

indicates that gain in risk of the estimator is “x”-times that of UM. As for example,

Table 4.1 presents the RMSEs based on Huber’s ρ-function for sample size 30, and

(p1, p2) = (3, 5). For standard normal error, gain in risk for positive-shrinkage M-

estimator is 3.161 times that of the ordinary M-estimator provided that the model

specification is correct (i.e., ∆∗ = 0). For the same configuration, when the error

distribution is standard Laplace, the gain is risk for SM+ is 2.273 times that of UM.
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Figure 4.1: Relative mean squared errors for RM, SM, and SM+ estimators with
respect to unrestricted M-estimator for n = 50, (p1, p2) = (3, 4) when Huber’s ρ-
function is considered.
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Table 4.1: Relative mean squared errors for restricted, shrinkage, and positive shrink-
age M-estimators for (p1, p2) = (3, 5), n = 30, based on Huber’s ρ−function for
different error distributions.

Error ∆∗ β̂RM
1 β̂SM

1 β̂SM+
1

Standard 0.00 3.695 2.035 3.161
Normal 0.05 3.472 2.084 3.224

0.10 2.386 1.758 2.515
0.15 1.619 1.496 1.835
0.20 1.065 1.216 1.479
0.25 0.814 1.202 1.261
1.00 0.060 0.995 0.997

Scaled 0.00 3.867 2.163 3.195
Normal 0.05 2.842 1.733 2.621

0.10 2.250 1.707 2.352
0.15 1.476 1.492 1.839
0.20 1.100 1.288 1.473
0.25 0.737 1.082 1.163
1.00 0.060 1.017 1.017

Standard 0.00 3.532 1.921 2.991
Logistic 0.05 3.288 1.922 3.004

0.10 2.400 1.846 2.434
0.15 1.656 1.551 1.853
0.20 1.129 1.323 1.464
0.25 0.758 1.158 1.208
1.00 0.062 0.996 0.996

Standard 0.00 3.853 1.895 2.273
Laplace 0.05 3.628 1.743 2.056

0.10 2.719 1.597 1.974
0.15 2.179 1.426 1.753
0.20 1.418 1.329 1.538
0.25 1.090 1.273 1.360
1.00 0.093 1.014 1.016
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Table 4.2: Relative mean squared errors for restricted, shrinkage, and positive shrink-
age M-estimators for (p1, p2) = (3, 9), n = 50, based on Huber’s ρ−function for
different error distributions.

Error ∆∗ β̂RM
1 β̂SM

1 β̂SM+
1

Standard 0.00 5.552 3.607 5.462
Normal 0.05 4.269 3.098 4.407

0.10 2.574 2.322 2.919
0.15 1.601 1.827 2.027
0.20 1.085 1.503 1.583
0.25 0.726 1.340 1.370
1.00 0.051 0.994 0.994

Scaled 0.00 5.443 3.576 5.301
Normal 0.05 4.457 3.009 4.510

0.10 2.755 2.442 3.096
0.15 1.668 1.788 2.028
0.20 1.022 1.417 1.500
0.25 0.750 1.313 1.353
1.00 0.051 1.001 1.001

Standard 0.00 5.702 3.364 5.410
Logistic 0.05 4.422 3.316 4.459

0.10 2.641 2.364 2.927
0.15 1.666 1.941 2.139
0.20 1.040 1.475 1.582
0.25 0.710 1.338 1.374
1.00 0.049 1.009 1.009

Standard 0.00 5.827 2.734 3.256
Laplace 0.05 5.187 2.489 2.989

0.10 3.351 2.333 2.624
0.15 2.332 2.142 2.242
0.20 1.462 1.692 1.783
0.25 1.039 1.565 1.606
1.00 0.075 1.021 1.021
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Table 4.3: Relative mean squared errors for restricted, shrinkage, and positive shrink-
age M-estimators for (p1, p2) = (5, 9), n = 50, based on Huber’s ρ−function for
different error distributions.

Error ∆∗ β̂RM
1 β̂SM

1 β̂SM+
1

Standard 0.00 3.838 2.772 3.705
Normal 0.05 3.202 2.438 3.179

0.10 2.494 2.168 2.641
0.15 1.638 1.708 1.923
0.20 1.097 1.453 1.531
0.25 0.778 1.201 1.260
1.00 0.062 1.016 1.016

Scaled 0.00 3.653 2.592 3.472
Normal 0.05 3.172 2.328 3.161

0.10 2.391 2.035 2.530
0.15 1.632 1.748 1.986
0.20 1.123 1.453 1.550
0.25 0.797 1.244 1.297
1.00 0.064 1.028 1.028

Standard 0.00 3.740 2.730 3.678
Logistic 0.05 3.299 2.554 3.298

0.10 2.424 2.125 2.544
0.15 1.596 1.690 1.931
0.20 1.077 1.383 1.480
0.25 0.769 1.283 1.326
1.00 0.059 1.002 1.002

Standard 0.00 3.919 2.125 2.626
Laplace 0.05 3.872 2.158 2.461

0.10 2.613 1.923 2.207
0.15 2.015 1.798 1.895
0.20 1.519 1.637 1.703
0.25 1.157 1.464 1.528
1.00 0.099 1.022 1.022
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Table 4.4: Relative mean squared errors for restricted, shrinkage, and positive shrink-
age M-estimators for (p1, p2) = (5, 20), n = 50, based on Huber’s ρ−function for
different error distributions.

Error ∆∗ β̂RM
1 β̂SM

1 β̂SM+
1

Standard 0.00 7.469 5.415 7.328
Normal 0.05 6.034 4.502 6.145

0.10 3.809 3.343 3.992
0.15 2.230 2.487 2.727
0.20 1.437 1.901 1.985
0.25 1.019 1.638 1.672
1.00 0.072 1.037 1.037

Scaled 0.00 7.900 5.809 7.974
Normal 0.05 6.115 4.864 6.171

0.10 3.593 3.111 3.820
0.15 2.295 2.446 2.726
0.20 1.491 1.967 2.054
0.25 1.005 1.613 1.636
1.00 0.073 1.028 1.028

Standard 0.00 7.366 5.569 7.238
Logistic 0.05 6.085 4.701 6.042

0.10 3.767 3.391 4.100
0.15 2.296 2.494 2.714
0.20 1.482 1.920 2.004
0.25 1.018 1.589 1.624
1.00 0.072 1.025 1.025

Standard 0.00 8.550 3.841 4.200
Laplace 0.05 7.369 3.424 3.817

0.10 4.973 3.262 3.457
0.15 3.116 2.510 2.622
0.20 2.149 2.266 2.342
0.25 1.473 1.938 1.945
1.00 0.112 1.054 1.054
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4.7 Conclusion

In this chapter, we considered shrinkage M-estimation in the context of a partially

linear regression model. We developed shrinkage and positive-shrinkage M-estimators

when we have prior information about a subset of the covariates. Based on a quadratic

risk function, we computed relative risk of shrinkage M-estimators with respect to the

unrestricted M-estimator. Asymptotic properties of the estimators have been studied

and their risk expressions derived.

In the simulation study, we numerically computed relative mean squared errors of

the restricted-M, shrinkage-M, and positive-shrinkage M-estimators compared to the

unrestricted M-estimator. Four different error distributions have been considered to

study the performance of the proposed estimators. A Monte Carlo simulation study

provided support for the positive-shrinkage estimators under varying degrees of model

misspecification.

Restricted M-estimator (RM) outperforms all other estimators when the nuisance

subspace is zero. However, a small departure from this condition makes the RM very

inefficient, questioning its applicability for practical purposes.



Chapter 5

Conclusions and Future Work

In this dissertation, shrinkage and absolute penalty estimation have been studied in

linear and partially linear models. Application of shrinkage and pretest estimators

have been demonstrated in fully parametric and semiparametric regression models

with real data examples. We compared the performance of shrinkage and absolute

penalty estimators and demonstrated the usefulness of shrinkage estimators under

some conditions.

We have discussed the following topics in this dissertation

(i) Application of shrinkage and pretest estimation in linear models

(ii) Comparison of positive-shrinkage and absolute penalty estimators (lasso, adap-

tive lasso, and SCAD) in linear models

(iii) Use of B-spline basis expansion in partially linear models to obtain shrinkage

estimators, and their comparison with lasso and adaptive lasso estimators

(iv) Robust shrinkage M-estimation in partially linear models

152
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In the following, we summarize our findings.

In the first part of Chapter 2, we presented shrinkage, positive-shrinkage and pretest

estimation in the context of a multiple linear regression model, and demonstrated their

applicability using three real data examples. To illustrate the methods, average pre-

diction errors based on repeated cross validation estimate of the error rates were com-

puted. We numerically showed that pretest and restricted estimators have superior

risk performance compared to unrestricted and positive-shrinkage estimators when

the underlying model is correctly specified. However, under model misspecification,

positive-shrinkage estimators showed superior performance in terms of minimizing

prediction errors.

In the second part of Chapter 2, we developed and implemented the algorithm for

simultaneous subset selection using AIC and BIC to obtain shrinkage estimates of

the regression coefficients in a multiple regression context. Several absolute penalty

estimators such as lasso, adaptive lasso, and SCAD were studied, and their relative

risks compared with those obtained using shrinkage estimators. Through a real data

example, we illustrated that the positive-shrinkage estimator outperforms absolute

penalty estimators for varying degrees of model misspecification. In general, the

positive shrinkage estimator maintains its superiority over all other estimators for

moderate sample sizes and when there is a large number of nuisance covariates present

in the model.

We compared the performance of shrinkage and APE for both low- and high-

dimentional scenarios. In low-dimensional data, positive-shrinkage estimators out-

perform all other estimators in a given neighbourhood of the pivot (∆∗ = 0). For

high-dimensional data with large p and p < n, PSE and SCAD estimators perform
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equally in terms of RMSE when the number of nuisance parameters is up to 40. As the

number goes higher, adaptive lasso and SCAD became dominant over the shrinkage

estimators.

In Chapter 3, we introduced shrinkage estimation of parameters of a semiparamet-

ric regression model. This work is an extension of Ahmed et al. (2007) in which a

kernel-based estimator was considered to estimate the nonlinear component of a PLM.

We explored the suitability of using B-spline basis expansion to estimate the nonpara-

metric part. Since B-splines are easier to incorporate in a regression model, one may

prefer B-spline over a kernel-based method for the nonparametric component.

Through a simulation study, both flat and a highly oscillating non-flat function

for the nonparametric component were studied. We found that the B-spline-based

approach shows less bias in the estimates than the estimates obtained by the kernel-

based approach. Therefore, in many practical situations, B-spline will be a good

alternative to kernel-based estimators for estimating the nonparametric component

in a PLM especially when uniform knots are suitable. Further, shrinkage estimators

based on B-splines outperformed the absolute penalty estimator (lasso) for moderate

sample sizes and when the nuisance parameter space was large.

In Chapter 4 we considered shrinkage M-estimation in the context of a partially

linear regression model. We developed shrinkage and positive-shrinkage estimators

when we have prior information about a subset of the covariates. Based on a quadratic

risk function, we computed relative risk of shrinkage M-estimator with respect to the

unrestricted M-estimator. Through a simulation study, we numerically computed rel-

ative mean squared errors of the RM, SM, and SM+ compared to the unrestricted

M-estimator. Four different error distributions were considered to study the perfor-
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mance of the proposed estimators. A Monte Carlo simulation study provided support

for the SM+ estimators under varying sizes of the nuisance parameter space.

Future Work

There are possibilities of extending our works in the following ways.

In Chapter 2, we compared shrinkage estimation strategies with absolute penalty

estimators (APE), such as, lasso, adaptive lasso, and smoothly clipped absolute de-

viation. We found that the shrinkage strategies work better than the APEs in terms

of quadratic risk, when the number of restriction on the parameter space is large. We

suspected that the comparative performance of shrinkage and APEs may also depend

on the number of main parameters. In this respect, a further study may be conducted

to explore the effect of the size of p1 for varying p2 on the performance of shrinkage

and APE strategies. It will be worth exploring if there exist a ratio of p1 to p2 that

guarantees dominance of shrinkage estimators over the APEs.

We observed that adaptive lasso, although computationally very expensive, per-

forms better than the lasso. In adaptive lasso, lasso estimates are used as weights to

obtain the final estimates. We are currently considering the use of positive-shrinkage

estimates as weights in computing the adaptive lasso estimates. The results will be

released through future publications.

As a continuation of the work in Chapter 3, we will introduce penalized spline

or P-spline into the picture and compare the performance of kernel, B-spline, and

P-spline based shrinkage estimators.

In Chapter 4, we developed robust M-estimators based on the shrinkage principle
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in partially linear models. In our study, the nonlinear component was estimated us-

ing kernel-smoothing, and the robust M-estimates were obtained for the regression

parameters on the linearized model. Considering a robust estimation of the nonpara-

metric part is our immediate research goal. To achieve this, appropriate algorithm

and software are to be developed.

At present, we are developing an R-package for shrinkage estimation in the multiple

regression model. The project is hosted at http://shrink.r-forge.r-project.

org/. The final version will be released in the future through Comprehensive R

Archive Network (CRAN).
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