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Abstract 
 

 

 

Magnetization in the ferromagnetic core significantly affects the performance of elec-

trical machines. In the performance analysis of electrical machines, an accurate represen-

tation of the magnetization characteristics in the machine model is important. As a part of 

this research work, two new mathematical models are proposed to represent the magneti-

zation characteristics of electrical machines based on the measured magnetization charac-

teristics data points. These models can be applied to various kinds and sizes of electrical 

machines. The calculated results demonstrate the effectiveness of the proposed models. 

The comparison analyses on the proposed models and three different existing models 

which have been used in the literature by the researchers validate the fact that these mod-

els can be used as proper alternative for the other models. 

Inasmuch as the omission of magnetization in the machine model has a negative im-

pact on the analysis results, integrating the proposed magnetization models into the syn-

chronous machine mode, can better describe the machine behavior. To aim this goal, as a 

part of this research, the proposed magnetization models are incorporated to the transient 
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and steady state synchronous machine models. The trigonometric model developed in this 

work, has been applied to a conventional synchronous machine model and extensive sta-

bility performance analysis has been carried out. This further reveals the usefulness of the 

proposed trigonometric magnetization model and the importance of the inclusion of mag-

netization in stability analysis. The other magnetization model developed in this research 

is incorporated into a state space synchronous machine model that is used in steady state 

performance analysis of the machine. 
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Chapter 1 

Introduction 
 

 

 

1.1. Research Background 

1.1.1. Magnetization Modeling 

Analysis of the non-linear saturation properties of ferromagnetic materials in electri-

cal machines necessitates mathematical representation of the flux linkage-current rela-

tionship [1]- [5]. Various mathematical models have been presented by many researchers 

that describe the flux linkage and current relationship in electrical machines. The inclu-

sion of magnetization in the electrical machine analysis is important since it affects the 

magnetic flux in the direct and quadrature axes. The leakage flux paths are also influ-

enced by the magnetization effect. To ensure an accurate and reliable model for electrical  
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Fig. 1.1. Typical magnetization characteristics of electrical machines. 

machines, it is necessary to use a precise and accurate mathematical representation of the 

magnetizing saturation. The magnetic flux in the direct and quadrature axes of synchro-

nous machines is influenced by magnetization phenomenon. Thus, it will be useful to 

have a synchronous machine model integrated with an accurate magnetization model in 

algebraic configuration that makes it valuable in understanding the system behavior [6]- 

[24]. Typical magnetization characteristics of an electrical machine is presented in Fig. 

1.1. At low magnetizing current values, the flux linkage is proportionately related to the 

current. This region is called the unsaturated region. For high values of the magnetizing 
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current, the flux linkage in the machine reaches its maximum level, which is known as 

the highly saturated region. The transition between unsaturated and highly saturated re-

gions takes place in the non-linear region. As illustrated in Fig. 1.1, the flux linkage is not 

proportionally related to the magnetizing current in this region [5].  

The magnetization model in an electrical machine is a mathematical realization of the 

machine magnetization behavior. However, in most of the applications, there is a collec-

tion of experimentally obtained magnetization data points. This information, without 

some knowledge of how the current and flux linkage are related, is not useful. Therefore, 

employing an algorithm which can create a functional relationship and produce meaning-

ful information will be useful in machine modeling. The various techniques used are in-

tended to address inclusion of magnetization phenomenon into the electrical machine 

model [6]- [24]. 

Researchers have employed numerous methods to incorporate the magnetization 

phenomenon into the machine model. A transient saturated model for squirrel cage induc-

tion machines is proposed in [9] based on an assumption that the air-gap flux saturation 

harmonics are produced by the fundamental component of the air-gap flux. In this model, 

the magnetization is included directly by using the fundamental and third harmonic fac-

tors. This model can explicitly be used for induction machines. One particular method 

employs variable effective air-gap length [10] to represent magnetization in the machine 

model. As a very popular method, the magnetization is expressed by regression of the 

magnetic flux linkage data points into an nth order polynomial function using the least 
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square criterion in [11, 12]. Although this model is very easy to implement, the level of 

accuracy is affected by the order of the polynomial. Moreover this method is not ade-

quately accurate when the number of data points is small. To acquire a more accurate 

curve in the case of a greater number of data points, a higher degree of the polynomial is 

required that results in a more complicated model. On the other hand, increasing the de-

gree of the polynomial will not result in a more accurate regression function and also for 

some degrees it might even produce oscillation in the resultant curve. The study present-

ed in [13], [14] includes a set of experimentally measured magnetization characteristics 

data points interpolated into rational-fraction functions. This approach to represent mag-

netization is accurate which gives it merit to be considered as a good regression method. 

In contrast with the polynomial method, the rational-fraction method generates smoother 

and less oscillatory functions. Although the rational method is known as a non-linear in-

terpolation method, it can model a high number of observed magnetization data points 

with low degree in both the numerator and denominator. Therefore, in comparison with 

the polynomial functions, this method has fewer coefficients. Nevertheless, the main 

drawback is that the small number of data points results in some errors in the magnetiza-

tion representation. 

In [15], a mathematical relationship between magnetism and current is established 

using a semi-empirical method. This method can be used for any type of electrical ma-

chine. Nevertheless, since both excessive high and low values of the flux linkage are ig-

nored, this method is not very accurate. In [16], the main flux magnetization characteris-
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tic was modeled for induction machines based on the magnetizing current space vector 

and generalized flux space vector. A classic hyperbolic function is used in [17] to inter-

polate the -I characteristics of a ferromagnetic core. Although this method can be used 

for all kinds of electrical machines, the regression accuracy is not high. Authors in [18], 

[19] suggest the magnetic saturation characteristics be divided into three parts in which 

the unsaturated and highly saturated regions are expressed as linear functions, while the 

saturated part is approximated by an arctangent function. In [5] the same methodology is 

employed in spite of the fact that the saturated region is modeled by a hyperbolic func-

tion. Another method proposed by researchers is to express the magnetic flux linkage as a 

function of the excitation ampere-turns to represent saturation in the machine model. 

However, investigators in these papers made assumptions that may result in substantial 

inaccuracies in the determination of the machine performance. Moreover, it is not clear 

whether these magnetization models can be applied to all types of electrical machines 

[20]. In [21]- [23], the sinusoidal series for modeling data points is presented. In these 

papers, the discrete Fourier transform (DFT) approach is used to represent the B-H curve 

in transformers based on a discrete set of data points. In the developed model in [24], two 

additional sine and cosine terms at half the fundamental frequency are incorporated into 

the conventional DFT model to interpolate the data samples to a sinusoidal function. Alt-

hough these models can be used as a general expression of magnetization in any type of 

electrical machine, the accuracy of the model is highly affected by the number of the co-

sine terms in the function. 
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By far, the most frequently used methods of regression employed by researchers to 

represent magnetization in electrical machine models are polynomial, rational-fraction 

and DFT. In the next chapter, the algorithms used to develop the aforementioned methods 

are explained in detail. In the subsequent chapters, these models are re-developed and 

used to validate the models proposed in this research. It will be shown that these pro-

posed models can be considered as valid alternatives for the existing models to represent 

magnetization in electrical machines. 

1.1.2. Synchronous Machine Modeling 

In performance analysis of electrical machines, it is essential to have a closed-form 

mathematical expression that provides a precise description of the system. For a complex 

system such as an electrical machine with significant non-linear magnetization properties 

of ferromagnetic materials, flux linkage-current relationship must be considered in the 

analyses to have more precise and realistic results. Therefore, development of a robust 

model based on the available data for magnetization means to increase the accuracy and 

reliability of the model [25]. In [18], a synchronous machine model with n number of d- 

axis damper circuits and m number of q- axis damper circuits is developed with the pro-

posed magnetization model. In [26], magnetization and hysteresis models are incorpo-

rated into a state space synchronous machine model. A very detailed synchronous ma-

chine model is developed in [27] based on the operating point magnetization specification 

of a synchronous machine. 
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As a part of this research work, based on the proposed magnetization models two 

synchronous machine models are developed to be used in steady state and transient per-

formance analysis of synchronous machines. 

1.2. Thesis Objectives 

The work presented in this thesis conforms to the following objectives: 

1. New methods to represent all regions of magnetization characteristics in syn-

chronous machines are developed. These models are capable for application 

to all kinds of electrical machines such as synchronous, permanent magnet 

synchronous and induction machines. The accuracy of these models is evalu-

ated to ensure the level of reliability. 

2. Since having a comprehensive machine model is very crucial to simulating 

and analyzing the machine behavior, this research is also focused on develop-

ing transient and steady state synchronous machine models incorporated with 

the magnetization models to make the machine model more realistic and ac-

curate. Synchronous machine performance is investigated by conducting dif-

ferent analyses.  
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1.3. Thesis Organization 

This thesis consists of six chapters and two appendices 

Chapter 2 provides detailed information about the synchronous machine mathemati-

cal modeling as well as synchronous machine transient stability performance analysis 

theory. Moreover, in this chapter, three models to represent magnetization in electrical 

machines that have been used in the literature are introduced and explained in detail. 

These models are redeveloped in this research and the results of magnetization character-

istics calculated by these models have been compared with those of the proposed models. 

Chapters 3 and 4 present two new magnetization models using trigonometric and 

Levenberg-Marquardt algorithms, respectively. These chapters consist of the algorithm 

development and numerical analyses to validate the accuracy and reliability of the pro-

posed models. 

Chapter 5 consists of a comprehensive steady state synchronous machine model in-

cluding the magnetization model proposed in Chapter 3. 

Chapter 6 studies the magnetization effect on transient performance analysis of syn-

chronous machines. The magnetization model developed in chapter 3 is used as the mag-

netization model in the investigations.  

Chapter 7 includes the conclusion of this thesis and provides recommendations for 

future work. 

Appendices A and B contain some auxiliary information used in this thesis. 
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Chapter 2 

Literature Review on the Steady-State and 

Transient Analysis of Synchronous Machines  
 

 

 

In this chapter synchronous machine modeling and transient stability analysis are 

presented. Additionally, three regression methods used to represent magnetization in 

electric machines in the literature are explained in detail. 

2.1. Dynamic Synchronous Machine Model 

The objective of this section is to introduce the detailed synchronous generator model 

which has been used in this research work. In this model for simplicity purposes, it is as-

sumed that magnetization and hysteresis effects are negligible. A cross-section view of a 

three phase non-salient, two-pole synchronous machine used in the performance analyses  
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Fig. 2.1. Cross-section view of a two-pole, salient pole synchronous machine 

of synchronous machine in this research work is illustrated in Fig. 2.1. As shown in this 

diagram, a three phase synchronous machine model consists of three phase stator wind-

ings symmetrically distributed around the air-gap. 

The rotor field in synchronous machines is produced by applying a DC current to the 

rotor field windings. This results in a sinusoidal distribution of flux in the air-gap of the 

synchronous machine. If the rotor is rotated by a prime mover such as a DC motor, a ro-

tating field is produced in the air-gap which is also known as the excitation field. The in-

duced voltages in the armature windings have the same magnitudes but they are 120 elec-

trical degrees apart. 

To obtain the synchronous generator mathematical model, the rotor reference frame 

is identified [1]. Inasmuch as all the rotor windings are distributed symmetrically with 
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respect to the orthogonal axes. By definition, the direct axis is centered magnetically in 

the center of the north pole and the quadrature axis lags it by 90 degrees. 

The synchronous machine model order is defined by the total number of rotor wind-

ings on its two orthogonal axes. Fig. 2.2 shows the stator and rotor circuits of a 2×2 syn-

chronous machine model used in this research. As shown in this figure, a 2×2 synchro-

nous machine model consists of one damper circuit and the field winding along the direct 

axis, and two damper circuits along the quadrature axis. Field and damper windings are 

also placed along the rotor. As illustrated in this figure, the damper circuits can be mod-

eled by short-circuited windings along the direct and quadrature axes. The angle  is the 

rotor position with respect to the stator.  

To have a steady torque, the rotating fields of the stator and rotor must have equal 

speed which is called synchronous speed. This speed for a p-pole machine is calculated 

as  

c

b

+
e

b -

+
e c

-

fd

fd

kq
1

kd1

kq
2

 

Fig. 2.2. Circuit diagram for the rotor and stator of a 2×2 synchronous generator model. 
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                                             (2.1) 

where f is the frequency in Hz, s=2f is the angular frequency in rad/s, and ns is the 

synchronous speed in rpm. 

2.1.1. Stator and Rotor Mathematical Modeling 

Assuming that the stator windings are distributed sinusoidally, the mmf wave of each 

phase is sinusoidal with 120 electrical degrees apart in space with respect to each adja-

cent phase. Therefore, we have 
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in which  is the angle along the periphery of the stator and the center of phase a. The 

phase current can be defined by 
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The total amount of mmf is calculated by 

 tkImmfmmfmmfmmf smcbatotal  cos3                     (2.4) 

Therefore, the total mmf is a sinusoidal waveform. (2.4) indicates that mmf in synchro-

nous machines rotates at the constant angular velocity of s. Therefore, for a balanced 

operating condition in synchronous machine, stator field and rotor must rotate at the same 

speed. 

Considering Fig. 2.2, the voltage equations for the three phases can be written as 
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The flux linkages in the three phases are expressed by 
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The rotor circuit voltage equations are 
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Since the rotor has a cylindrical structure, the self-inductance of the rotor circuits as 

well as their mutual inductances does not depend on the rotor position . Only the mutual 

inductances between the rotor and the stator are affected by the rotor position. Therefore, 

we have, 
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  (2.8) 

The stator mutual and self-inductances in (2.8) can be defined by (2.9) and (2.10), respec-

tively. 
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where 

.

4

2

2

2
0

2
2

2

2

0


























 









 









 


qd
aablab

ab
qd

a

qd
aal

PP
NLL

L
PP

NL

PP
NLL

aa

aa

                                   (2.11) 

Pd and Pq are the permeance coefficients of the d- and q-axis, respectively and Na is the 

effective winding turns in phase a. Lal and Labl are the self and inductance flux leakages  
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that are not crossing the air-gap. Similarly, the stator-rotor mutual inductances can be de-

fined by (2.12): 
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Equation (2.8) completely describes the mathematical equation of a synchronous ma-

chine. However, it contains the stator currents and the d- and q-axes currents which result 

in a very complex calculation.  

2.1.2. Park’s Transformation Model 

One of the most widely used methods to convert the stator quantity values such as 

voltage, current, or flux into their corresponding rotor quantity values is Park’s transfor-

mation [28], This transformation can be defined by the following matrix equation 
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in which  can be replaced by voltage, current, or flux. It should be noted that under the 

balanced condition we have  

0 cba                                              (2.14) 

Therefore, 0=0. The inverse transformation can be defined as: 
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2.1.3. Rotor Reference Frame Equations 

Using the transformation equation in (2.13) to convert the flux linkages and currents 

in (2.6) and (2.8), one can obtain 
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where the direct and quadrature inductances can be defined in (2.17) 
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and  
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Therefore, stator voltage equations in (2.5) can be converted to d-q components as fol-

lows [1] 
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where r is the angular velocity of the rotor. For the steady state operating situation we 

have 

rad/s377602Hz60@  srf                        (2.20) 

2.1.4. Power and Torque Equations: 

The three-phase output power can be calculated in the rotor reference frame as  
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Substituting the voltage component from (2.19) in (2.21), (2.22) can be written as  
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Consequently, the air-gap torque can be expressed by 

  .
2

3power gap-air

mech
dqqd

mech

r
e iiT 







                       (2.23) 

2.1.5. Per-unit Calculations 

In lights of the fact that using per-unit system results in simplified computational 

analyses, all the performance analyses are conducted in per-unit system in this research. 

By definition, 
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.
valueBase

 valueActual
unit valuePer                                     (2.24) 

In this work, the machine ratings are chosen as the base quantities in the per unit cal-

culations. Tables 2.1- 2.3 summarize the per-unit equations used in this research. It 

should be noted that hereafter all the quantities used in this thesis are in per unit unless 

the unit is specified.  

2.1.6. The Synchronous Machine d- and q-axis Equivalent Circuits 

Based on the equations developed in the previous section, Figs. 2.3-a and -b provide 

the synchronous machine direct and quadrature axes equivalent circuits, respectively. 

Table 2.1. Base Quantities Used in the Per-unit System 

eB : Peak value of rated line to neutral voltage

iB :Peak value of rated line current, (A) 

fB : Rated frequency, (HZ)

B : 2fB, elec. (rad/second) 

Table 2.2. Stator Per-unit Equations 
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Table 2.3. Rotor Per-unit Equations 
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Fig. 2.3.  22 Synchronous generator model. (a) d-axisequivalent circuit. (b) q-axis equivalent circuit. 
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2.2. The State Space Synchronous Machine Model 

In this section, a comprehensive saturated model for synchronous machines is pre-

sented. To describe the dynamic behavior of synchronous machines in time domain, the 

analysis of this section employs the state space modeling concept. Therefore, based on 

the dynamic equations of synchronous machines and their particular state variables, the 

state space model can be utilized to determine the future state of the machine provided 

that the present state and the excitation signals are known [29]. Firstly, consider a general 

non-linear system with multiple states and inputs as  

 mn uuuxxxfx ...,,,...,, 2121                                      (2.25) 

where xi is the ith vector of the state variables, uj is the jth system driving variable, and f is 

a set of non-linear functions. Suppose the equilibrium points of x0i and u0j are defined 

such that f(x01, …, x0n, …, u01, …, u0m)=0. If xi and uj are considered to be a perturbed 

state of the above system, (28) can be written as 






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mmm
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uuuuuuuuu
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020221011

020221011




.                    (2.26) 

Note that at the equilibrium points, the function f is zero. The linearization of the system 

about the equilibrium point can be obtained using Taylor series expansion and by ignor-

ing the second and higher order terms as 
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Therefore, for small perturbation of a non-linear system around the equilibrium point the 

linear state space model of the system can be written  








UDXCY

UBXAX
                                                  (2.28) 

in which A, B, C, and D are called the system, input, output, and feed-forward coefficient 

matrices, respectively. Considering X0 as the initial condition of the system, applying the 

Laplace transformation to the state space equations in (2.28), we have 

     .0 ssss BUAXXX                                       (2.29) 

Therefore, 

     .0 sss BUXXAI                                        (2.30) 

It yields,  

       .1
0

1 ssss BUAIXAIX                             (2.31) 

It can be proven that  

   .1 teLs AAI                                              (2.32) 

Therefore, state space equations in time-domain can be described as 
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2.3. Fault Analysis 

In a power system, an abrupt disturbance that causes a deviation from normal opera-

tion conditions of the power equipment is generally called a fault. Based on the nature of 

the fault, they are classified into two groups. The first type of failures is short-circuiting 

faults. They may occur as a result of an insulation default in the apparatus due to degra-

dation of electrical components over time or as a consequence of a sudden overvoltage 

situation. The other type of faults is categorized under open circuit faults as a result of an 

interruption in current flow [30].  

In case of short-circuit fault occurrence in the transmission system, the fault must be 

cleared in the least amount of time possible to prevent the system from losing the syn-

chronism and becoming unstable [31]. Therefore, part of this research is focused on per-

formance analysis of a synchronous generator when it is subjected to a short-circuit inter-

ruption. 

2.3.1. Classification of Short-circuit Faults 

Weather conditions are one of the common factors causing short-circuit faults in 

power systems. Lightning, heavy rain and snow, floods, and fires near the electrical 
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equipment are some of the weather-related conditions that can cause a short-circuit fail-

ure.  

Equipment failure due to aging, degradation, or poor installation of the machines, ca-

bles, transformers, etc. can be another cause of short-circuit failure. Short-circuit faults 

can also happen as a result of human error. For instance, this fault may happen during the 

re-energizing process of the system to be in service after maintenance due to some inad-

vertent mistakes[30], [31]. 

2.3.2. Effects of Short-circuit Faults on Power System Equipment 

The short-circuit effects on the power system equipment can be classified as either 

electrical or mechanical effects. Depending on duration of the short-circuit fault, the cur-

rent passing through the conductors of the power system equipment may cause some 

thermal effects such as heating dissipations. On the other hand, electromagnetic forces 

and mechanical stresses caused by short-circuit interruption are considered to be mechan-

ical effects. Mechanical effects of short-circuit failures may result in serious problems. 

Therefore, it is essential that the transformers windings are designed to tolerate electro-

magnetic forces. Also, if the cores in a three-phase unarmored cable are not bounded 

properly, the electromagnetic force due to the short-circuit fault, can cause the cores to 

repel from each other which may result in bursting and installation damages [30].  
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2.4. Transient Stability Analysis  

In the previous section, short-circuit faults as a common source of failures in power 

systems was presented. In this section, transient stability analysis is briefly introduced. 

More information for further reading is available in [1], [29]. 

By definition, transient stability is the ability of a system to sustain synchronism after 

it is subjected to sever transient disturbances. Through a part of this research, the magnet-

ization effect on the synchronous generator transient stability in the case of a short-circuit 

fault is investigated. 

It should be noted that after the fault occurs, the circuit breakers at both ends of the 

faulted circuit will be activated to isolate the circuit and clear the fault. The fault clearing 

time depends on the speed of time at which the circuit breakers can perform. 

Firstly, let us consider fault location F1 to be at the high voltage transmission (HT) 

bus as indicated in Fig. 2.4-a. For simplicity it is assumed that the stator and transformer 

resistors are small and can be neglected. Therefore, in this situation, no active power is 

transmitted to the infinite bus during the fault and the short-circuit current flows through 

the pure reactance.  

If the fault occurs at location F2 as shown in Fig. 2.4-b, some active power will be 

transmitted to the infinite bus during the fault. Figs 2.4-d and 2.4-e demonstrate the active 

power P graph with respect to the load angle  for stable and unstable situations, respec-

tively, based on the fault duration. 
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Suppose that the system is subjected to the fault at t=t0 and the fault is cleared at t=t1. 

First, let us examine the stable situation shown in Fig. 2.4-d. As can be seen in this figure, 

before the fault the system operates at the pre-fault state of operation. At t=t0, one of the 

circuits is subjected to the fault. Therefore, the operating point suddenly drops from point 

a to b. As a result of inertia, load angle cannot suddenly change. Since Pe<Pm, the rotor 

starts accelerating until point c, at which the fault is cleared by activation of the circuit 

breakers and isolating the faulted circuit from the network. Therefore, the operating point 

abruptly changes to point d. At this time, since Pm<Pe, the rotor starts decelerating. How-

ever, the load angle continues increasing because during the fault the rotor speed is in-

creased to more than synchronous speed (0, 0). Therefore, the load angle increases until 

the kinetic energy gained by the machine during the acceleration (area A1) is expended. 

When the operating point reaches to d (t=t2)at which we have A1=A2 the rotor speed is the 

synchronous speed and load angle is maximum. Since Pm<Pe remains true the rotor speed 

and the load angle decrease. If there is no source of damping in the network, the operat-

ing point oscillates between points e and d. 

With the longer fault duration illustrated in Fig. 2.4-e, the area A1 representing to the 

energy gained during the fault is greater than area A2. Therefore, after the fault is cleared 

at point e, the kinetic energy is not completely expended in the system. As a result, the 

speed and the load angle both increase. The speed never reaches the synchronous speed, 

and the system will become unstable. 
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Based on the above discussion, one can conclude that the transient stability in syn-

chronous generators in short-circuit interruptions is affected by the following factors: 

- Load of the generator 

- Location of the fault 

- Fault clearing time 

- Post-fault transmission circuit resistance 

- Generator reactance: The greater this reactance is, the greater the peak power; this 

results in having less initial load angle. 

- Generator inertia: For the generators with greater amount of inertia, the kinetic 

energy gained during the fault is smaller 

- Infinite bus voltage magnitude 
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(a) 

G
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HT EB

F2
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      (b)                        (c) 

  
           (d)                       (e) 

Fig. 2.4. Transient stability concept in power systems. (a) Short-circuit fault in a single distribution line at 

the (HT) bus. (b) Short-circuit fault in a single distribution line at a distance away from the HT bus. (c) 

Post-fault Equivalent circuit. (d) System response to the fault - Stable mode. (e)System response to the fault 

- Unstable mode. 
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2.5. The Previous Models Used to Represent Magneti-

zation 

In this section, three methods to represent magnetization in electrical machines used 

by the researchers are explained. These models are developed in this research work to be 

used in comparison investigations to validate the proposed models. 

2.5.1. Polynomial Regression Algorithm 

Polynomial regression is one of the most commonly used methods in representation 

of magnetization characteristics in electrical machines. Fig. 2.5 illustrates a representation 

 

  mm IccI 10 

  3
3

2
210 mmmm IcIcIccI 

  n
mnmmm IcIcIccI  2

210

     mnnmm III ,,,,,, 2211  

  2
210 mmm IcIccI 

Fl
ux

 li
nk

ag
e 

(p
u)

Magnetizing current (A)
 

Fig. 2.5.  A set of flux linkage data points and their corresponding magnetizing currents represented by 

different degrees of polynomials. 



  2. Magnetization representation 

31 

of a set of flux linkage data points and their corresponding magnetizing currents by dif-

ferent degrees of polynomials. In general, n number of data points can be interpolated by 

a set of polynomials from a straight line (k=2) to a polynomial of degree k=n-1. 

Suppose that for the available set of magnetization data points the function is ex-

pressed in the form of a polynomial of degree k as 

  .0
2

210 


k

1i

i
mi

k
mkmmm IccIcIcIccI                     (2.34) 

To assure that the curve is the best-fit curve of the data points, the least square method is 

employed. In this technique, the error function is defined as sum of the squared devia-

tions from the data points.  

   .
1

2 


n

j
jmjI                                            (2.35) 

Substituting the calculated flux linkage from (2.34), (2.36) can be written as 
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According to the least square error method [32], [33], the regression algorithm will be 

successful if the error is minimized by  
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Considering (2.36) and (2.37), the following equations can be obtained 
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Consequently, 
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The equations in (2.39) can be re-written in matrix format as in (2.40) 
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Therefore the coefficients c0, c1, ..., ck in (2.34) can be calculated using the matrix equa-

tion (2.41) 

BAC  1                                                  (2.41) 

2.5.2. Rational Regression Algorithm 

This section represents the rational-fraction approximation method to represent mag-

netization in electrical machines. In the rational-fraction method, the magnetization is 

represented by a ratio of two polynomials. Therefore, at the n measurement of flux link-

ages, the magnetization characteristics can be described as a rational function of the gen-

eral form of 
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where the coefficients p0, p1, …, pn and q0, q1, …, qn must be determined to produce a 

suitable function passing through all the available data points [32], [33]. 

The rational functions are classified by the degree of the numerator and denominator 

polynomials. In this research quadratic rational functions are employed to represent the 

magnetization characteristics. A quadratic rational-fraction function can be defined by 

(2.43) 

  .
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21
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iqiq

ipp
i




                                            (2.43) 

Given a set of flux linkage data points and their corresponding magnetizing currents, 

the coefficients of the rational-fraction function in (2.43) can be computed using non-

linear least square (NLS) estimation [34]. 

NLS is similar to the least squares method explained in the previous section. The on-

ly difference is that NLS is used in regression applications in which the regression func-

tion consists of non-linear parameters. In such curve fitting procedures, the model is ini-

tially approximated by a linear function and through the next iterations the error will be 

minimized and the desired fit will be calculated [35]. 

Therefore, the iteration starts with an initial guess for the coefficients in (2.43). Con-

sidering some information about the general pattern of magnetization characteristics may 

lead to have the initial guess closer to the ultimate results which results in more efficient 

iterative procedure. Realistic magnetization characteristics in electrical machines can be 

represented by a curve that starts at (0,0), increases with a positive deviation and ends at 
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(Imax max). Therefore, the regression curve in (2.43) needs to be maximized at i=Imax. By 

calculating the first derivative of (2.43), one can obtain 
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Solving (2.44) for i when   0 i  , yields   
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                           (2.45) 

Inasmuch as general magnetization characteristics in electrical machine patterns necessi-

tates (2.44) to be maximized at imax where the second derivative is positive, the other root 

in (2.45) which produces a negative second derivative should be neglected. Substituting 

imax=Imn, (2.46) can be written as 

.
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Next step is to make the regression function passing through (Im0 =0, 0=0). Therefore, 

p0=0 and (2.43) is reduced to 
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Consequently, the derivative function in (2.44) can be modified as 
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and (2.45) is simplified as (2.49) 
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Substituting imax for the positive deviation in (2.47) yields, 

.
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This relationship between the coefficients is useful to produce a proper initial guess. 

2.5.3. DFT Regression Algorithm 

As a trigonometric method to represent magnetization in electrical machines, re-

searchers have used the discrete Fourier transformation (DFT). In this section the algo-

rithm is explained in detail. 

As illustrated in Fig. 2.6, for a mirrored magnetization characteristics curve (-Im) 

expressed by a set of n measured data points m and Imn, the discrete Fourier transfor-

mation can be estimated for a finite number of data points as [21]- [23]: 

    
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'

0 cos
k

1j
mjjm IaaI                                  (2.51) 

in which the coefficients can be calculated by (2.52) and (2.53), 
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Fig. 2.6. Mirrored magnetization characteristics calculated by the DFT method.  
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Fig. 2.7. Approximated integral calculation in the DFT method 
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To calculate the integrals in (2.52) and (2.53) the approximation demonstrated in Fig. 

2.7 is employed. As seen in this figure the flux linkage-current relationship between each 

pair of data points can be approximated as a straight line joining them. Therefore, for the 

flux function between (k-1 and Ik-1) and (k and Ik), we have  
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(2.52) and (2.53) can be calculated as in (2.56) and (2.57), respectively. 
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and 
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Consequently, we have 
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and 
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where j, and Imax are defined as in (2.61)  
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The accuracy of fit in this model depends on the number of cosine terms in (2.51). 

Then, one can define the DFT fitting order, k’, as it is simply the number of sinusoidal 

terms found in the final interpolated curve. For instance, a flux linkage function of the 

DFT fitting order of four is a function consisting of four cosine terms. This order affects 

the accuracy of the resultant curve by using this method. In order to obtain more accurate 

results, the DFT order should be increased. 
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2.6. Conclusion 

The detailed method on synchronous machine modeling is presented in this chapter. 

Short-circuit faults as major failures in the power systems are studied. The causes and the 

effects of these faults on power systems are discussed. A brief review on the transient 

steady analysis of synchronous machines is presented. 

This chapter has also discussed implementation of three regression algorithms that 

have been used in the literature to represent the magnetization characteristics of electrical 

machines. In this research work, these models have been redeveloped. The results of 

magnetization characteristics calculated by these models have been compared with those 

of that calculated by the proposed models. This is discussed in detail in the next chapters. 
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Chapter 3 

Representation of Magnetization Phenomenon 

in Electrical Machines Using Trigonometric 

Regression Algorithm 
 

 

 

In this chapter a new method to represent all regions of the magnetization character-

istics, namely the unsaturated, non-linear and highly saturated regions, with a trigonomet-

ric series, as in Fig. 3.1, is developed. The experimentally measured magnetization char-

acteristics data points are used to develop the series in Fig. 3.1. The measured data points 

for the flux linkages and their corresponding magnetizing currents for different kinds and 

sizes of electrical machines are fed to the proposed model to generate a series of sinusoi-

dal curves that fit these data points, which represent the magnetization characteristics of 

the machine. The results are demonstrated in Section 3.2. In addition, the accuracy of the  
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Fig. 3.1. Trigonometric representation of measured data points of the magnetization characteristics of a 

typical electrical machine. 

proposed trigonometric model has been evaluated through error calculation using the 

Chi-square methods. 

3.1. Trigonometric Regression Algorithm  

Suppose a set of n data points of magnetizing currents of a typical electrical machine 

is expressed as Im1, Im2, …, Imn, and the corresponding measured n data points of the flux 

linkages are expressed as (Im1), (Im2), …, (Imn). The objective of this algorithm is to 

obtain a trigonometric curve as in (3.1), which predicts the value of the flux linkage for 
any value of magnetizing current. This can be performed through the determination of the 
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frequency, amplitude, and phase angle of each sinusoidal term. The developed trigono-

metric function can be expressed as: 

       


k

1i
miimiim III sincos                                (3.1) 

where k (2k<n) is called the order of the trigonometric series, (i)i[1:k] and (i)i[1:k] are 

the amplitudes and (i)i[1:k]  is the frequency of each trigonometric term.  

The trigonometric regression algorithm is developed in two parts. First, the ampli-

tudes are determined based on minimizing the least square error (LSE) function by con-

straining its gradient to zero. In the second part, the frequencies of the sinusoidal terms 

will be calculated. At this stage, the Prony method is applied to the exponential represen-

tation of the curve. To determine the coefficients of this curve, the LSE is minimized and 

then the frequencies are calculated. This technique ensures that the data points will be 

fitted to the trigonometric curve more accurately [32]. 

3.1.1. Amplitude Calculation 

Assuming that the frequencies of the sinusoids are known, one can find the ampli-

tudes using the least-square-error method. In the frequency calculation algorithm, which 

will be presented in the next section, the LSE method will also be used to minimize the 

error in order to obtain a goodness-of-fit. According to the LSE method, the error func-

tion can be written as: 
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By substituting the calculated flux linkage (Im) in (3.1) into (3.2), the following error 

equation can be obtained: 
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In order to obtain a curve that fits the measured data points most accurately, the error 

function should be minimized over Im1, Im2, …, Imn. In other words, the gradient of the 

error function at the points 1, 2, …, k and 1, 2, …, k should be equal to zero . 

Therefore 
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Using (3.3) and (3.4), the derivatives of the error function with respect to i and i can be 

written as: 
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To simplify the procedure at this step, change of variables can be considered as in 

(3.7) and (3.8). 
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Consequently, the following equations can be obtained using (3.5)-(3.8): 
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Equations (3.9) and (3.10) can be expressed in a matrix form as in (3.11). 
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in which, the matric M is defined as (3.12). 
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Consequently, by solving this matrix equation, the amplitudes can be obtained.  
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3.1.2. Frequency Calculation 

In this section of the curve fitting algorithm, the Prony method is used to find the fre-

quency of the components [32], [36], [37]. To use this method, first we need to obtain the 

exponential format of (3.1) which is given in (3.14) 
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where i is a complex number and j2=-1. It can be shown that if for each i[0:2k], p can 

be found satisfying pi  , (3.14) can be transformed into (3.1). 

If  miIj
i ex   can be considered as the roots of the Prony polynomial fP(x), it can be 

expressed  
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(3.15) can be rewritten as: 
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Substituting the roots in the Prony polynomial, one can have 
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Consequently, gP(x) is obtained with the same roots as fp(x) defined by 
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Therefore, 
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Considering that  miIj
i ex   contains two roots in the range of [0:2k], the fP(x) can be 

rewritten as 
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Considering (3.16) and (3.19), from (3.20) one can conclude  

102  aa k  and .1 2 pkp aa                                (3.21) 
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This conclusion is useful to determine the coefficients (ap)p[0:2k] in (3.16). To 

achieve this, it is assumed that there are n measured values of flux linkages, such as 1, 

2, …, n. Using (3.14), (3.18), and (3.21), we can obtain (3.22).  
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          (3.22) 

From (3.22), k number of equations is obtained. However, to find all 2k number of coef-

ficients one needs to have 2k equations. The next step of the interpolation algorithm is to 

use the LSE method to get the other k number of equations to calculate a’s. The error 

function can be calculated as follows: 
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To minimize the error, the derivative of the error function with respect to the all coeffi-

cients of a should be zero. Consequently, for l[1:k-1], (3.24) can be obtained 
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and for l=k, we have 
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Therefore for l[1:k-1], (3.24) can be rewritten as 
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Similarly for the case of l=k, from (3.25), we have 
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Further, a matrix equation can be extracted using (3.26) and (3.27), which will result in 

the coefficients ai as in (3.28) 
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In which matrix M can be defined by (3.29) 
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After determining the coefficients, the next step is to find the frequencies in (3.16). It can 

be shown that  
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Let us consider,  
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Instead of solving (3.31), (3.32) can be solved.  
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Since coefficients ai are specified in the previous stage, (3.33) is a cosine equation with 

an unknown angle . To solve this equation, it can be rewritten using Chebyshev poly-

nomials defined by the following recurrence relation. 
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Replacing x with cos in (3.34) and considering (3.33), (3.34) is obtained 
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After replacing the coefficient and recursive equivalents, one can get a mono-variable 

polynomial of order k for X=cos. Solving this equation allows us to find p[1:k] roots 

for X. As a result, frequencies can be obtained by using 

 .cos 1
pp X                                               (3.35) 

3.2. Numerical Analysis Employing the DFT and Trig-

onometric Algorithms in the Cases of Synchronous 

and Doubly-fed Induction Machines 

A new trigonometric model to fit the measured magnetization characteristics data 

points of electrical machines has been presented in the previous section. In this section, 

numerical investigations are carried out to validate the performance of the developed 
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model. This magnetization model has been applied to three machines of different sizes 

and ratings. The 555 MVA Lambton and 588 MVA Nanticoke synchronous machines 

[38]- [40], both from Ontario Hydro System in Canada, and a laboratory 3-phase, 2.78 

kVA doubly-fed induction machine [40] have been used in the investigations to validate 

the performance of the proposed magnetization model. Machine ratings and specifica-

tions are presented in Appendix A. To compare the accuracy of the proposed trigonomet-

ric algorithm, the DFT method of interpolation described in Chapter 2, has also been ap-

plied to all three machines. For all cases under investigation, the error tests are carried out 

at the highest order of the trigonometric model and their equivalent DFT model to com-

pare the goodness-of-fit. 

3.2.1. Measured and Calculated Main and Leakage Flux Magnetization 

Characteristics of the DFIG 

Wound-rotor induction generators have numerous advantages in the area of wind 

power generation in comparison to other types of generators. A notable scheme is the use 

of a cascade converter between the slip-ring terminals and the utility grid to control the 

rotor power. This configuration is known as the doubly-fed induction generator (DFIG). 

Fig. 3.2 shows the DFIG used in the experimental investigations of this chapter. The 2.78 

kVA DFIG is coupled to a prime-mover (DC motor). The rated stator and rotor currents 

of the DFIG are 9 A and 4.5 A, respectively. The voltage, current, and real and reactive 

power of the DFIG were measured using the Lab-Volt measuring devices integrated with  
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Fig. 3.2. The doubly-fed induction generator (DFIG) under the investigations. 

the experimental system. Tests were performed on the DFIG to obtain the main flux 

magnetization characteristics, as well as the stator and rotor leakage flux magnetization 

characteristics.  

In order to acquire the main flux magnetization characteristics of the DFIG, as shown 

in Fig. 3.2, the no-load generator test at synchronous speed is carried out. In the no-load 

generator test, the machine is supplied by a three-phase controllable amplitude power 

source at the rated frequency and driven at the synchronous speed. The amplitude of the 

voltage source is adjusted while the terminal current and the active power are continuous-

ly measured. It should be noted that the magnetizing current is equivalent to the stator 

current, in view of the fact that the rotor current is zero, as the machine is driven at syn-
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chronous speed. The main flux magnetization characteristics can be obtained by plotting 

the terminal voltage as a function of the stator current, as shown in Fig. 3.3. This figure 

also shows the results of the calculated main flux magnetization characteristics for three 

orders (k=3, 4, and 5) of trigonometric series. It can be seen that the calculated results are 

in good agreement with the measured ones. The trigonometric series function in the 5th 

order consists of five sine and five cosine terms which are equivalent to the DFT function 

of order 10. Based on the number of data points, the degree of the fitted curve is defined. 

As seen in Fig. 3.3, the accuracy of the fitted magnetization characteristics increases with 

higher orders of the trigonometric series. Figs. 3.4 and 3.5 present the measured and fitted 

curves for the rotor and stator leakage flux magnetization characteristics of the DFIG re-

spectively. The terminal voltage–armature current curve with the machine unloaded and 

unexcited, and the open-circuit characteristics are determined twice; one on the stator and 

another on the rotor. Evidently, the most accurate curve is obtained for the 5th order trig-

onometric series. The DFT curve fitted for an order of 10 has been shown in these figures 

as well. The coefficient of the trigonometric series along with the frequency values for 

the fifth order for all magnetization characteristics of the DFIG are presented in Table 

3.1. 
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Fig. 3.3. Calculated and measured main flux magnetization characteristics of the DFIG for three orders of 

trigonometric series and for DFT curve fitting method of order 10. 

 

Fig. 3.4. Calculated and measured rotor leakage flux magnetization characteristics of the DFIG for three 

orders of trigonometric series and for DFT curve fitting method of order 10. 
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Fig. 3.5. Calculated and measured stator leakage flux magnetization characteristics of the DFIG for three 

orders of trigonometric series and for DFT curve fitting method of order 10. 

3.2.2. Calculated d- and q-axis Magnetization Characteristics of the 

Nanticoke and Lambton Synchronous Machines 

To demonstrate the effectiveness of the developed trigonometric magnetization mod-

el, it has also been applied to two large synchronous generators [41]. The d-axis magneti-

zation characteristics of synchronous machines can be easily determined by conducting 

the conventional open-circuit test, whereas there are no simple methods to determine the 

q-axis magnetization characteristics. In [42], [43], several methods have been proposed to 

calculate the q-axis magnetization characteristics from the measured d-axis characteris-

tics. It has been demonstrated in [41] that steady-state, on-load measurements at the ter-
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minals of synchronous generators can be used to determine both d- and q-axis magnetiza-

tion characteristics. 

The proposed algorithm has been applied to fit both d- and q-axis magnetization 

characteristics of the Nanticoke and Lambton synchronous machines. Figs. 3.6 and 3.7 

illustrate the calculated results for two orders of trigonometric functions in the case of 

both d- and q-axis magnetization characteristics. Although the limited number of data 

points has created a limited trigonometric series of order 1 and 2, the calculated charac-

teristics fit the measured magnetization characteristics data points very well. To compare 

the results for the most accurate trigonometric curve, the d- and q-axis magnetization 

characteristics for the Nanticoke and Lambton machines are represented by its equivalent 

DFT interpolation model with the order of 4. These graphs for the Nanticoke and Lamb-

ton synchronous machines are shown in Figs. 3.6 and 3.7, respectively. The amplitudes 

and the frequencies of the trigonometric terms of the fitted curves for the second-order 

series have been presented in Table 3.1. 
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Fig. 3.6. d- and q-axis magnetization characteristics of the Nanticocke synchronous machine presented by 

the proposed model for two orders of trigonometric series and the 4th order of DFT model. 

 

Fig. 3.7. d- and q-axis magnetization characteristics of the Lambton synchronous machine presented by the 

proposed model for two orders of trigonometric series and the 4th order of DFT model. 
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Table 3.1. Frequencies and Amplitudes of the Calculated Magnetization Characteristics  

for the Machines under the Investigations 

Machine Frequency Amplitudes 

DFIG 
Main flux 

(k=5) 

1=2.65911 α1=-0.16815 β1=1.66295 

2=2.09038 α2= -2.17409 β2= -0.28981 

3=1.26317 α3= -1.54375 β3= -1.79594 

4=1.00365 α4= -0.98576 β4= -3.12139 

5=0.0874 α5= 5.47566 β5= 239.12971 

DFIG 
Stator leakage flux 

(k=5) 

1= 2.67513 α1= -0.24535 β1= 0.02963 

2= 2.03247 α2= -0.10778 β2= -0.28206 

3= 1.43226 α3= -0.34183 β3= -0.10537 

4= 0.51761 α4= -1.31250 β4= -1.23969 

5= 0.07721 α5= 3.28831 β5= 131.63648 

DFIG 
Rotor leakage flux 

(k=5) 

1= 2.75333 α1= 0.06088 β1= -0.27814 

2= 2.05865 α2= 0.03472 β2= -0.55034 

3=1.43698 α3= 0.26290 β3= - 0.10446 

4=0.66569 α4= 0.12613 β4= -0.61001 

5=0.08271 α5= 1.03526 β5= 122.3211 

Nanticoke 
d-axis (k=2) 

1= 1.00274 α1= -0.05186 β1= 0.01649 

2= 0.20430 α2= 0.05298 β2= 1.29305 

Nanticoke 
q-axis (k=2) 

1= 2.0743 α1= -0.00230 β1= -0.00088 

2= 0.25045 α2= 0.01827 β2= 1.07412 

Lambton 
d-axis (k=2) 

1= 2.21596 α1= 0.00918 β1= -0.00322 

2= 0.28025 α2= -0.00482 β2= 1.17387 

Lambton 
q-axis (k=2) 

1= 1.68770 α1= -0.03299 β1= -0.00209 

2= 0.20301 α2= 0.05971 β2= -1.14265 
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3.3. Chi-Square Tests to Measure the Accuracy of the 

Proposed Magnetization Model 

Reduced Chi-square[32] technique has been applied to measure the accuracy of the 

proposed model. The value of the Chi-square error can be calculated using the following 

equation: 
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i i
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2
2                                          (3.36) 

where (Imi) are the calculated values by the proposed model at different excitation cur-

rents, Im1,, Im2, …, Imn, whereas 1, 2,…., n are the actual measured data points at those 

excitation currents. 

The goodness of fit for the magnetization characteristics has also been examined by 

the statistic chi-square method, which has been applied to both the DFT and the proposed 

trigonometric interpolation models. This method can be expressed by 
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where 2 is the known variance of the measured data points. 

The calculated Chi-square error tests for different machines on trigonometric curve 

fitting model of three orders, as well as the corresponding results for DFT interpolation 

model, are presented in Table 3.2. The results demonstrate the effectiveness of the pro-

posed method in fitting the magnetization characteristics data points of electric machines 
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of different types and sizes. Evidently, the proposed trigonometric curve fitting for all the 

cases is more accurate than the DFT regression method. 

Table 3.2. Comparison of Chi-Square Error Test for Different Trigonometric Orders and Their Correspond-

ing DFT Orders for the Machines Used in the Investigations. 

  Trigonometric Method DFT Method 

Machine 
Magnetization 
Characteristics 

Trigonometric 
Order 

Chi-Square 
Error 

Chi-Square 
Distribution

DFT 
Order

Chi-Square 
Error 

Chi-Square 
Distribution

Doubly-fed 
Induction 
Generator 

(DFIG) 
 

Main flux 

3 0.72222 0.01181 6 1.08227 0.02215 

4 0.35989 0.00536 8 0.94831 0.01849 

5 0.02823 0.00048 10 0.81219 0.01426 

Stator leakage 
flux 

3 0.37504 0.01655 6 1.11219 0.02662 

4 0.30797 0.01263 8 1.04831 0.01624 

5 0.08422 0.00438 10 0.68227 0.01023 

Rotor leakage 
flux 

3 0.66905 0.01665 6 1.30318 0.02678 

4 0.56622 0.01270 8 0.95893 0.01634 

5 0.12520 0.00441 10 0.49096 0.01029 

Nanticoke 
Synchronous 

Machine 

d-axis 
1 0.00401 0.01115 2 0.03308 0.08857 

2 0.00010 0.00016 4 0.01353 0.02363 

q-axis 
1 0.00471 0.11341 2 0.03169 0.2139 

2 0.00457 0.11211 4 0.01098 0.14620 

Lambton 
Synchronous 

Machine 

d-axis 
1 0.00421 0.00728 2 0.07077 0.09546 

2 0.00151 0.00324 4 0.05121 0.03337 

q-axis 
1 3.810-7 0.01540 2 0.07478 0.28684 

2 1.110-5 0.00530 4 0.02478 0.19960 
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3.4. Conclusion 

A trigonometric algorithm has been developed in this chapter to represent the mag-

netization characteristics of electrical machines. The suitability of using this model in es-

timating the magnetization characteristics of electrical machines out of some measured 

data points from experimental tests has been investigated. The results of applying this 

model to different types of electrical machines such as induction or synchronous ma-

chines in various ranges of size, from mid-size to large size machines, evaluate the model 

as a precise and reliable one, which can be used in any kind of machine models.  

The work developed in this chapter has already been presented in IEEE International 

Conference on Electrical Machines (ICEM), 2010 [44]. The more comprehensive paper 

based on the presented work has been published in IEEE Transactions on Energy Con-

version [45]. 
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Chapter 4 

Multifunctional Characterization of Magneti-

zation Phenomenon Using Levenberg-

Marquardt Optimization Algorithm 
 

 

 

In the previous chapter, a new method to represent the magnetization in electrical 

machines in the form of sine and cosine terms was presented. Through the several inves-

tigations the accuracy and reliability of this method was examined. 

In this chapter, the main objective is to develop another regression algorithm based on the 

Levenberg-Marquardt (LM) method that can be used to represent the flux linkage and 

magnetizing current relationship with several configurations in a specific domain of ap-

plicability. This concept is demonstrated in Fig. 4.1.  
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       mkmmm IgIgIgI  212

       mnmmm IfIfIfI  211

       mlmmm IhIhIhI  213

       mrmmm IyIyIyI  214

 

Fig. 4.1. Different configurations to represent magnetization characteristics of a typical electrical machine. 

The main distinguishable merit of this method is that this algorithm produces several 

real functional definitions for magnetization phenomenon with an acceptable level of ac-

curacy. This model has also been verified by comparing the results on different magneti-

zation phenomenon configurations provided by the proposed method in this chapter and 

some existing methods mentioned in Chapters 2 and the trigonometric method described 

in Chapter 3. The calculated results presented in Section 4.2 of this chapter show that this 

model can be used as an alternative for aforementioned methods. 
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4.1. Levenberg-Marquardt Algorithm  

In this study, a non-linear optimization method, namely, the Levenberg-Marquardt 

(LM) algorithm [46]- [49], is used to represent the machine magnetization characteristics 

for a set of given experimental data points. The advantage of applying this technique is 

that the magnetization characteristics of the synchronous machine can be represented by a 

series of non-linear multi-variable functions. It should be noted that the coefficients 

might also have different dimensions.  

Suppose that a set of experimentally obtained magnetization data points is expressed 

as (4.1) 

 ΙΨΧ ˆˆˆ                                                       (4.1) 

where Ι̂  is the measured magnetizing current data point matrix and Ψ̂ is its correspond-

ing measured flux data point matrix such as in (4.2) 
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To fit the function  mI , to the data points in (4.2), the LM algorithm starts by using the 

chi-square error criteria to minimize the sum of the weighted squares of the errors be-

tween the measured data  miÎ̂ , and  miÎ . 
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Suppose ̂  consists of non-linear functions and coefficients as a1, a2, …, am, then 

the general procedure is to determine these coefficients to satisfy (4.4). 
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Since ̂  is a non-linear function, the equations in (4.4) are also non-linear. In this tech-

nique, an iterative procedure is used to evaluate (4.4). Similar to any iterative algorithm, 

an initial guess is required to start the procedure. Through the iterations, the optimum re-

sponse can be found. The initial guess can be defined by  

 maaa 002010 A .                                            (4.5) 

Next, the chi-square function is minimized. Using Taylor’s theorem, the expansion can 

be written as (4.6). 
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Equation (4.6) can also be written in matrix form 
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where 

)( 10 jjj aaa 
                                               (4.8) 
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and 
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Now let 2 and 22 denote the gradient vector of 2 and the Hessian matrix of 2, 

respectively, as in (4.13) 
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Therefore, the Taylor series expansion in (4.7) can be reformulated as 

    AχAAχAχAχ 222
0

22 ΔΔ
!2

1
Δ1                         (4.14) 

in which A=A0-A1. If the new value of A1 minimizes 2, then, the derivative of the chi-

square value in (4.14) will be zero, and (4.15) can be obtained as 

.0Δ  222 χAχ                                             (4.15) 
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Therefore, 

  .
1

01
222 χχAA 


                                        (4.16) 

From (4.16), one can conclude that once the gradient and Hessian matrices are calculated, 

the new matrix, A1, can then be determined. Note that for simplicity in (4.14), the expan-

sion is expressed only up to its second-degree of Taylor series expansion. Due to this ap-

proximation, the new values obtained for A1 cannot be the minimized values. Conse-

quently, the iterative procedure must be followed again by using the elements in A1 as the 

new guesses for the next iteration in the procedure. 

The next step is to find the values for the gradient and Hessian matrices. Considering 

(4.3), one can write 
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Since the first term in (4.18) is difficult to calculate, another estimation is made to simpli-

fy the calculations. This approximation does not affect the accuracy of the procedure be-

cause through the algorithm we try to make 2χ =0.  

Therefore, considering i =1, (4.19) can be obtained 



4. Levenberg- Marquardt Algorithm 

71 

     
.

ˆˆ
2

1























n

i j

mi

k

mi
kj a

I

a

I22χ                                 (4.19) 

On account of the fact that the initial guess at the first step of the algorithm might be 

chosen far from the optimal location, the process might not be convergent. Therefore, 

similar to other iteration algorithms, it is essential to develop a technique to control the 

algorithm to be convergent at the optimum values. To control the direction of searching 

for the initial guess and the length of the steps in the proposed algorithm, a positive 

damping factor  is introduced as in (4.20).  
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(4.20) can be reformulated in a matrix format as in (4.21) 

    .oldnew Iχχ 2222                                       (4.21) 

The search direction control procedure comprises two categories based on the value . 

For small values of  we have 

    .oldnew
2222 χχ                                            (4.22) 

Therefore, the algorithm follows the Gauss-Newton algorithm descent direction condition 

[47]. By definition, a vector dR is a descent direction for the function 2(x) at x, if it sat-

isfies  
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  .0 dχ
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Considering d=A in (4.15), we have 

  .
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
                                            (4.24) 

Substituting (4.24) in (4.23) yields 

      .0
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 222 χχχ

T
                                      (4.25) 

Since 2 is a positive definite matrix, the condition in (4.25) is valid and the search is 

going to be close to the convergence boundaries. Accordingly, to make the search direc-

tion move faster toward the convergence area, at the next step of the iteration,  must be 

adjusted to a smaller value. 

Furthermore, for large values of , (4.21) can be written as 

  .new Iχ 22                                                 (4.26) 

The search direction can be defined by  
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          (4.27) 

Therefore, for large values of , the search approximately takes the gradient direction. 

From (4.27), it can be concluded that by decreasing  from a large value to small value, 

the search follows the gradient direction to the Gauss-Newton direction.   
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In general, the damping factor should be adjusted at every iteration. The search starts 

with =1. If the initial guess of the algorithm is convergent, then  will be decreased by a 

factor of 10 in the next step. Otherwise,  will be increased by a factor of 10. The algo-

rithm ends when the gradient vector of 2 is less than the convergence criterion set at the 

beginning of the procedure. Fig. 4.2 summarizes the procedure into a flowchart of the al-

gorithm. 
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Define: 
A0: Initial estimate of the coefficients in (4.5) 

N: Maximum number of iterations allowed 
: Convergence criterion 

Start LM algorithm 

=1 and n=1 

Calculate the gradient and the Hessian 
matrices using (4.17) and (4.19) 

No 

No 

Solve (4.16) and evaluate new A 

Calculate the gradient and the Hessian 

matrices using (4.17) and (4.19) 

 Yes 

 

=/10 

Stop 

)()( 0
2

1
2 AA   

A0=A1, n=n+1 

 

=10 

No 

Yes 

Yes

Print results 

 Nn 

  2

Fig. 4.2. Flowchart of the LM optimization algorithm.  
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4.2. Numerical Investigations and Comparison 

In the previous section the LM algorithm implementation procedure to represent the 

magnetization characteristics was discussed in detail. One of the major dominating fea-

tures of the LM algorithm, over other existing methods, is that the magnetization charac-

teristics can be expressed by different functions. Therefore, based on the application, one 

can choose a desirable format of the optimization function. Moreover, decreasing the er-

ror criterion, , in the recursive procedure for the LM method, results in more accurate 

curves which can be fitted to measured data points. The only limitation to be considered 

is that the desired function must have real domain and range over the interval of magnet-

izing current. Moreover, this algorithm can be applied to different kinds and sizes of elec-

trical machines. In this section, this method is numerically validated to represent the 

magnetization characteristics of a synchronous machine and a laboratory permanent 

magnet synchronous machine (PMSM). 

4.2.1. Magnetization Representation of the Synchronous Machine Using 

the LM Method  

In this research, ten sample characteristics functions are employed as different ex-

pressions of the magnetization characteristics in the synchronous machines under investi-

gation. The list of functions along with the coefficients generated by the proposed model 

for the Lambton generator magnetization characteristics are presented in Table 4.1. The 
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first function in this list is selected to be used for comparison with similar methods such 

as the DFT and the Trigonometric models. 

In this section the magnetization characteristics of the Lambton synchronous genera-

tor is represented by the proposed model in this chapter and it is been compared with oth-

er existing methods. Fig. 4.3 shows the Lambton magnetization characteristics for both 

direct and quadrature axes represented with the proposed method and with the first order 

of the trigonometric model. As can be seen in this figure, in terms of accuracy, both mod-

els describe the magnetization characteristics very effectively. Nevertheless, the results 

demonstrated in Fig. 4.4 show that compared to the proposed model, the DFT model is 

not as accurate.  

To numerically validate the proposed algorithm, in this section, the Chi-square test is 

carried out on some of the profile functions expressing magnetization characteristics of 

the synchronous machine under investigation. To compare the goodness of fit, the same 

method is applied to some of the proposed methods in other literature. The Pearson’s 

Chi-square testing can be expressed by (4.28) 

 
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n

i E

EM

1

2
2                                           (4.28) 

where 2 is the Pearson cumulative test statics which asymptotically approaches a chi-

square. ΨM is the measured flux data set while ΨE is the expected data set, and n is the 

number of data points. In Table 4.2, the calculated errors for the magnetization character-

istics according to the existing models and their implementations with the proposed algo-
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rithm are presented. The results demonstrate the effectiveness of the proposed method in 

fitting the magnetization characteristics of synchronous machines. 

4.2.2. Modeling Magnetization of the Permanent Magnet Synchronous 

Machine Using the LM Method  

To demonstrate that the proposed magnetization model can be applied to any kind of 

electric machine, this section focuses on the numerical investigations of the applied LM 

model to represent the magnetization characteristics of a 21 hp laboratory PMSM. 

The ratings and specifications of this machine are described in Appendix A. To com-

pare the performance of the developed model, the sinusoidal function (similar to the func-

tion with profile no. 2 in Table 4.1, is selected for the optimization algorithm and the re-

sults are compared to the similar sinusoidal interpolation method which is yield using the 

DFT technique.  

Figs. 4.5 and 4.6 show the numerical results by the DFT and the corresponding si-

nusoidal function used in the LM algorithm for the PMSM flux along the direct and 

quadrature axes respectively. As it can be seen in these figures, the results for the pro-

posed optimization model are more accurate than the results for the DFT model.  
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Fig. 4.3. The LM and trigonometric representation of measured data points of the magnetization character-
istics of the Lambton generator. 
 

 

Fig. 4.4. The LM and DFT representation of measured data points of the magnetization characteristics of 

the Lambton generator. 
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Table 4.2. Chi-Square Test Results for Different Magnetization Representation Models of the Lambton 

Synchronous Generator 

Magnetization Representation
 mI  Realization 

Error 

d-axis q-axis 

   mm II 1111 sincos   
Trigonometric [45] 0.008 0.037 

LM Method 0.010 0.031 

)
2

cos()cos( 210
mn

m

mn

m

I

I
a

I

I
aa







DFT [22], [23] 0.145 0.186 

LM Method 0.114 0.161 

2
210 mm IaIaa   

Polynomial [12] 0.030 0.014 

LM Method 0.030 0.014 

2
210

2
210

mm

mm

IbIbb

IaIaa




 

Rational-Fraction 
[13]  

0.0014 0.008 

LM Method 0.002 0.005 
 

To evaluate the accuracy of the proposed fitting technique in comparison with that of 

the DFT model, the chi-squared function is applied to both of the magnetization charac-

teristic models using (4.28). The corresponding error calculation results are presented in 

Table 4.3. The results clarify the fact that with the same degree of complexity according 

to the number of sinusoidal terms in the model the proposed optimization method leads to 

a more accurate fit for magnetization characteristics based on the measured data points.  

As it is mentioned before one of the advantages of using the LM optimization algo-

rithm is that this algorithm is independent of the selected function and based on the  
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Fig. 4.5. Calculated d- axis magnetization characteristics of the laboratory PMSM employing the LM mod-

el and the DFT curve fitting method. 

 

Fig. 4.6. Calculated q- axis magnetization characteristics of the laboratory PMSM employing the LM mod-

el and the DFT curve fitting method. 
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application, different non-linear functions can be selected for the magnetization charac-

teristics. Some of the non-linear functions and the numerical regression results according 

to the q-axis PMSM magnetization characteristics as well as the error calculations are 

presented in Table 4.4. In addition, the investigations for the functions given in Table 4.4, 

are presented in Fig. 4.7 which shows the effectiveness of this method to express the 

magnetization characteristics of the machine based on different non-linear functions. 

 

 

 

 

Table 4.3. Coefficients and the Corresponding Errors Calculated for the PMSM Magnetization Characteris-

tics Using the DFT and LM Optimization Algorithms 

   xaaxaaa 54321 coscos   

Method 
Coefficient 

Error 
a1 a2 a3 a4 a5 

DFT (q-axis) 0.2351 -0.1743 5.7910 -0.0142 4.2209 0.2500 

LMO (q-axis) 0 0.00072 1.49 0.4725 3.2117 0.0017 

DFT (d-axis) 0.2713 -0.1585 4.7817 -0.0120 3.1498 0.5095 

LMO (d-axis) 0.0576 0.00192 3.7088 0.4362 0.8254 0.0011 
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Table 4.4. Coefficients and the Corresponding Errors Calculated by Different Non-linear Functions of the 

q-axis Magnetization Characteristics Applying the LM Optimization Algorithm. 

Magnetization Model No. Function Error Coefficient 

1 )sin()cos( 54
2

3
)(

1

2
2 xaaxaea xa   0.00043 

a1=0.00061

a2=4.4993 

a3=1.2138 

a4=0.42579

a5=1.1297 

2 )sin()cos( 543
)(

1
2 xaaxaea xa   0.00041 

a1=0.00011

a2=6.4971 

a3=1.0817 

a4=-0.38878

a5=-1.2459 

3 )sin()cos( 4321 xaaxaa   0.0017 

a1=0.00072

a2=1.49 

a3=0.47251
a4=3.2117

 

 

 

Fig. 4.7. Calculated q-axis magnetization characteristics of the laboratory PMSM employing the LM model 

for different functions listed in Table 4.4. 
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4.2.3. Comparison Study on the Different Magnetization Models  

To compare the efficiency and applicatory of the magnetization models introduced in 

this dissertation a comprehensive comparison is carried on based on different criterions. 

The results are summarized in Table 4.5. As indicated in this table, the trigonometric 

method is privileged particularly when more accurate model with less computational time 

is needed. Inasmuch as the designer can choose any configuration using the LM method, 

this model benefits from the flexibility property in compare to other methods. The numer-

ical error calculation analysis on the different magnetization configurations implemented 

by LM method show that this method is also very accurate. However, since the LM algo-

rithm is iterative, the model suffers from having the long computational time.  

Table 4.5. Comparison Study on the Magnetization Models Introduced in this Dissertation 

Curve Fitting Method Accuracy Flexibility Computational Time

Trigonometric    - 

Levenberg-Marquardt    

DFT   - 

Polynomial   - 

Rational    
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4.3. Conclusion 

A new method to represent the magnetization characteristics of synchronous ma-

chines in different formats is presented. The proposed algorithm is very accurate and 

flexible, allowing researchers with varying applications to choose their own expression of 

magnetization phenomenon. Numerical analysis has been carried out to validate the accu-

racy of the proposed magnetization characterization method for synchronous and PMSM 

in comparison to some other existing methods. 

A part of work developed in this chapter has already been presented in the Vehicle 

Power and Propulsion Conference (VPPC’11) [50]. The more comprehensive paper 

based on the presented work has been submitted to IEEE Transactions on Energy Con-

version [51]. 
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Chapter 5 

A State Space Synchronous Machine Model 

Using LM Magnetizing Model  
 

 

 

In Chapters 3 and 4, two methods to formulize the magnetization in electrical ma-

chines were developed. In this chapter a steady state model of synchronous machine em-

ploying the magnetization model proposed in chapter 4 is presented. Accordingly, in 

chapter 6, the magnetization model described in chapter 3 is incorporated into a transient 

synchronous machine model. 

The concept of steady state stability in electrical machines implies that small changes 

in the terminal inputs, the initial conditions, or the machine parameters do not result in 

severe changes in the machine output. Similar to all other working systems, synchronous 

generators are designed to work in a stable situation. Therefore, the study on stability 
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boundaries of synchronous machines results in performance improvement [1], [29]. Fur-

thermore, inclusion of the proposed LM model proposed in Chapter 4, into the developed 

state space model for synchronous machines has led to a comprehensive and complete 

model which can be used for performance analysis of synchronous generators. It has been 

demonstrated that the LM algorithm provides an accurate synthesis for the steady state 

analysis of synchronous machines.  

5.1. State Space Synchronous Machine Model 

To develop the machine model in this study the linearization technique is being em-

ployed. In the following sections the modeling procedure is discussed in detail. 

5.1.1. Linearization of Magnetization Model 

As discussed in Chapter 4, the LM magnetization model can be employed to repre-

sent the magnetization phenomenon characteristics in an arbitrary configuration provided 

that the function fulfills the requirements mentioned in section 4.2. Suppose that the se-

lected magnetization configuration is in the general format of 

   

   



















0,
)(

0,
)(

mqmq
mq

mqmq
mqmq

mdmd
md

mdmd
mdmd

IXg
I

I
IX

IXf
I

I
IX

                          (5.1) 

in which Ψmd and Ψmq are the direct and quadrature axis flux linkages, respectively. Per-

forming the Taylor series expansion according to the linearization technique explained 
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at the beginning of this section for the d-axis reactance yields 

 
   

.0
~~

,
00

00 







 md
Imd

md
Imd

mdmd I
I

f
X

X

f
IXff

mdmd

             (5.2) 

It follows that f (Xmd0, Imd0)=0 which implies the linearized description of d-axis reactance 

as in (5.3) 

  












 0
0 0

~
~

md
Imdmd

md
md X

II

I
X

md

.                                   (5.3) 

Accordingly, linearized q-axis reactance is obtained as (5.4)  

  















 0
0 0

~
~

mq
Imqmq

mq
mq X

II

I
X

mq

.                                    (5.4) 

Therefore, the magnetization coefficients of ds and qs can be defined for direct and 

quadrature axes respectively. 

 

0

0
0

md

md
Imd

ds I

X
I md














                                          (5.5) 

and 

 
.

0

0
0

mq

mq
Imq

qs I

X
I mq 
















                                        (5.6) 

Consequently, (5.3) and (5.4) can be written in matrix format as (5.7) 



5. State Space Synchronous Machine Model 

89 





































mq

md

qs

ds

mq

md

I

I

X

X
~

~

0

0
~

~
.                                     (5.7) 

Considering  








21

1

kqkqqmq

fdkddmd

IIII

IIII
                                          (5.8) 

(5.7) can be rewritten as (5.9) 
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        (5.9) 

5.1.2. Linearization of Synchronous Generator Model 

Considering the synchronous machine equations, (5.10) can be determined as 

IXX s                                                    (5.10) 

in which, X and I are defined by (5.11). 
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and Xs can be written as 
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                                                                                                                                 (5.12) 

From (5.10), one can conclude: 
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minis XIIXX                                               (5.13) 
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Considering (5.13) and (5.9), (5.15) can be obtained 

.IγIIXX inis
~~~                                               (5.15) 

Therefore, (5.16) can be written as 

IXX st
~~                                                      (5.16)  

in which  

.γIXX inisst                                                (5.17) 
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Considering the synchronous machine model electrical equations in Chapter 2 and 

applying the linearization, it implies 

.
~~~~

sin
~

000 qrrdqaBtBq IRV                  (5.18) 

.
~~~~

cos
~

000 qrrqdaBtBd IRV                   (5.19) 

.
~~

111 kdkdBkd IR                                        (5.20) 

.
~~

fdfdBfd IR                                         (5.21) 

.
~~

111 kqkqBkq IR                                        (5.22) 

.
~~

222 kqkqBkq IR                                       (5.23) 

Similarly, the linearized synchronous machine mechanical equations can also be rep-

resented by:  

.~~
r

                                                 (5.24) 

 rDqdqddqdqm
B

r KIIIIT
H




 ~~~~~~
2

~
0000

 .         (5.25) 

Therefore, one can conclude 

mTBIJXTX
~~~~                                         (5.26) 

in which  
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The matrices T and J are defined by (5.28) and (5.29), respectively 
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Using (5.18)-(5.25), (5.30) can be written as 

XXI st
~~ -1 .                                                   (5.30) 

Thus, upon substituting the matrices T and J and (5.25) in (5.21), the following can be 

obtained. 

    .
~~~~~ 1-

mmst TBXMTTBXJXTX                          (5.31) 

It implies that 

.
~~~
UBXAX                                                 (5.32) 

5.2. Numerical Stability Studies on the Saturated and 

the Unsaturated Synchronous Machine Models  

By applying the Laplace transform to (5.27), (5.28) can be obtained: 

    .
~~~
UB0XXAI -s                                          (5.33) 

Therefore,  

    .~~~ 1 UB0XAIX  --s                                        (5.34) 

where 

   
  .det

adj1

AI

AI
AI

-s

-s
-s                                           (5.35) 
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It can be seen that the poles of X
~

 are the roots of  AI-s . By definition,   0AI-s  is 

known as the characteristic equation and its roots are called the eigenvalues correspond-

ing to the system matrix A.  

According to the Lyapunov first law of stability [52], the system will be stable if all 

the eigenvalues of the state space equation of the system have negative real parts. There-

fore, once the state space model of the system is defined, the scalar parameters  can be 

calculated as the eigenvalues of the system using the following procedure: 

RR VAV                                                   (5.36) 

in which VR is called as the right eigenvector of the system. Consequently, the eigenval-

ues of the system can be obtained by modifying (5.36) 

    .00  IAVIA R                                   (5.37) 

 IA   in (5.37) is the characteristic polynomial of the system. For an n × n matrix A, 

the characteristic equation is a polynomial of degree n, and the n roots of 1, 2 , …, n 

are the eigenvalues. The corresponding right eigenvector associated with i in (5.36) can 

be defined as in (5.38)  
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Accordingly, the left eigenvector VL of the system is defined by 

.LL VAV                                                   (5.39) 

   .VVVVVV L2L1LL2L1L iniiiinii  A               (5.40) 

To determine the relationship between the state variables and the system modes, the 

participation matrix can be established as a combination of left and right eigenvectors as 

expressed in (5.41)  

 .PPPP 21 ni P                                   (5.41) 

It yields 
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                      (5.42) 

By definition, the entries of P are called the participation factors. Pi,j measures the level 

of participation of the ith mode and the kth state variable, ix~ with each other. 

In Section 5.1.4, this matrix is calculated to determine the state variables and the 

mode relationship. Numerical investigations are carried out ignoring magnetization 
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(Model 1), considering magnetization only in the direct axis (Model 2), and considering 

magnetization both in the direct and quadrature axes (Model 3). 

The analyses have been accomplished according to the Lambton synchronous ma-

chine which ratings and specifications are listed in Table A.2 and Table A.3, respectively. 

5.2.1. Synchronous Machine Stability Monitoring by Varying Active and 

Reactive Power 

The numerical investigations are carried on the Lambton synchronous machine sup-

posing that the reactive and active power of the generator are changing from 0 to 1.2 pu. 

To determine the stability status of the machine according to the particular active and re-

active power range, the dominant eigenvalues are monitored for the three models. The 

results are illustrated in Fig. 5.1. As can be seen in this figure, decreasing the reactive 

power enhances the machine stability for all the models. In addition, it can be noticed that 

there is a large discrepancy between the results for the saturated models and those related 

to the unsaturated model.  
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Fig. 5.1. The dominant eigenvalues for the three magnetization models of the synchronous generator. (a) 
Model 1. (b) Model 2. (c) Model3. 
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Fig. 5.2. The dominant eigenvalue sensitivity as a function of the variation of the machine parameters cal-

culated by machine model 3.  

5.2.2. Synchronous Machine Stability Monitoring Considering the Ma-

chine Parameter Sensitivity 

Although there are several methods to experimentally measure the parameters of a 

synchronous generator, it is inevitable to have uncertainty in the process of parameter 

measurements. Therefore, this error might lead to an unreliable stability analysis. To as-

certain the sensitivity of synchronous machine stability to the variation of the machine 

parameters, the sensitivity analysis has been carried out. To perform this evaluation, all 

the machine parameters have been subject to a variation from -25% of the standard value 

to +25% of the standard value and the eigenvalues of the system are calculated. 

To explore the worst case of stability, the dominant eigenvalue is monitored and the 

percentage of the variation corresponding to each machine parameter variation is calcu-
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lated. The sensitivity of the dominant eigenvalue with respect to the machine equivalent 

circuit parameter, , is calculated by (5.43). It can be noticed that there is a large dis-

crepancy between the results for the saturated models and those related to the unsaturated 

model.  

100% 25% 






 
 


S

S

Ε

ΕΕ
S Ε                                       (5.43) 

where SΕ  and 25%Ε are the dominant eigenvalues calculated for the standard and±25% of 

the standard values of each machine parameter respectively. The result of this analysis is 

illustrated in Fig. 5.2. As can be seen in this figure, the stability reliability is affected sig-

nificantly by the accuracy of field resistance, the armature leakage reactance, and the 

field reactance.  

5.2.3. Frequency Analysis on the Synchronous Machine 

In this section, the frequency analysis is accomplished using Bode and zero-pole dia-

grams of the synchronous machine. Considering the mechanical torque as the input for 

the Lambton synchronous machine, the transfer function of the saturated generator is ob-

tained for the machine speed as the output. The Bode diagram of the system is plotted in 

Fig. 5.3. As can be seen in this figure the frequency response of the machine speed is 

very similar to a second order system in the general format of 

  1.0for
2 22





nnss

Ks
sH                         (5.44) 
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Fig. 5.3. The Bode diagram of the speed of the Lambton synchronous machine calculated using magnetiza-
tion Model 3. 
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Fig. 5.4. The Zero-Pole diagram of the speed of the Lambton synchronous machine calculated using mag-
netization Model 3. 
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in which ξ is the damping ratio and ωn is the natural frequency of the system. This system 

has one zero at origin and two complex poles. Considering the zero-pole plot of the syn-

chronous generator in Fig. 5.4, it can be concluded that the dominant zeros and poles of 

the system are one zero at the origin and one pair of complex poles. Therefore, the steady 

state frequency response of the generator can be approximated by a second order system 

such as the system mentioned in (5.44). To determine the state variables, which cause the 

dominant poles of the system the participation matrix is calculated [1], [53]. For instance, 

the absolute values for participation matrix entries for the magnetization model 3 is cal-

culated and presented in (5.45). 
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Based on this matrix, it can be concluded that the d- and q-axis fluxes are producing the 

dominant poles of the system. Performing the same analysis on the other magnetization 

models shows that magnetization does not affect the frequency response of the system 

significantly.  

Next, the frequency analysis is accomplished for different values of active and reac-

tive power. The results demonstrate that active power variation has no effect on the fre-

quency response of the system. However, as illustrated in Fig. 5.5, increasing the reactive 

power from 0.2 pu to 1.4 pu results in an increase of the natural frequency for the system. 
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Fig. 5.5. Frequency response of the synchronous machine speed with respect to the reactive power varia-

tions for active power Po=0.9 pu. 



5. State Space Synchronous Machine Model 

103 

5.3. Conclusion 

Numerical analysis employing the developed machine model demonstrates that mag-

netization affects the stability boundaries of the synchronous machine significantly. 

Moreover, sensitivity analysis on the machine reveals that the machine stability is affect-

ed mostly by variations in armature leakage reactance, field reactance, and field re-

sistance. It has been also found that reactive power variation affects the frequency re-

sponse of the synchronous generator. 

The work developed in this chapter has been submitted to IEEE Transactions on En-

ergy Conversion [51].
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Chapter 6 

Synchronous Machine Transient Performance 

Analysis under Momentary Interruption Con-

sidering Trigonometric Magnetization Model 
 

 

 

In this chapter, the effectiveness of the proposed trigonometric magnetization model 

in Chapter 3 has been demonstrated by incorporating it into a conventional synchronous 

machine model. Transient stability analysis in time-frequency domain has been per-

formed under a three-phase short-circuit condition. Based on this result, the effect of 

magnetization on machine performance in the case of an interruption at the machine ter-

minals is investigated. It has been demonstrated that the proposed trigonometric magneti-

zation algorithm provides an accurate synthesis for all the analyses. 
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6.1. Synchronous Machine Transient Performance Un-

der Momentary Interruption  

The proposed magnetization model is applied to a synchronous generator model in 

order to develop a more accurate machine model considering magnetization [54]. Numer-

ical investigations in this chapter, are carried out ignoring magnetization (Model 1), con-

sidering magnetization only in the direct axis (Model 2), and considering magnetization 

both in the direct and quadrature axes (Model 3). 

Referring to the synchronous generator equivalent circuit illustrated in Fig. 2.3 and 

based on mathematical representation for synchronous machine expressed in Table 2.2 in 

Chapter 2, the classical equations of synchronous machines in (6.1)-(6.8). 
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.22
2

kqkqB
kq IR

dt

d



                                            (6.6) 

The synchronous machine mechanical equations can be represented by:  

Brdt

d



                                                 (6.7) 

 Le
Br TT
Hdt

d






2

                                             (6.8) 

where  is the load angle and Te and TL are the air-gap and load torque respectively.  

The proposed interruption profile presented in Fig. 6.1 is used in the investigations of 

this chapter and can be expressed by (6.9)  

 
Cycles

tt

t eV 20
0

0



 ;  

 
Cycles

tt

t eV 20
1

1

1


                         (6.9) 

where Vt0 is the voltage during the fault, whereas Vt1 is the voltage after the fault is 

cleared. The calculation has been performed for an active and reactive power output of 

P=0.9 pu and Q=0.44 pu respectively. Equations (6.1)-(6.8) have been solved using the 

4th order Runge-Kutta method.  
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Fig. 6.1. Proposed voltage profile due to a momentary interruption at the machine terminals. 

6.2. Synchronous Generator Performance Analysis 

Employing the Proposed Magnetization Model 

In this section, numerical investigations are carried out on the synchronous machine 

model based on the Lambton synchronous machine parameters described in Appendix A. 

[38] employing the proposed trigonometric magnetization model.  

6.2.1. Dynamic Performance Analysis of the Saturated Synchronous 

Generator Considering and Ignoring AVR  

The air-gap torque and load angle calculated by the three models of synchronous ma-

chines are shown in Figs. 6.2 and 6.3 respectively. The interruption occurs at t=10 ms, 

while the machine is in the steady-state mode of operation. The fault is cleared after 

58.33 ms (three and half cycles, for 60 Hz supply). As seen in these figures, the machine 

returns to its pre-disturbance conditions after 2 sec.  
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Fig. 6.2. Air-gap torque calculated by the three synchronous machine models. 

 

Fig. 6.3. Load angle calculated by the three synchronous machine models. 
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To compare the results of the influence of the proposed magnetization characteristics 

in performance analysis of the synchronous machine, the load angle response for margin-

ally stable and unstable cases of the machine is investigated using proposed trigonometric 

magnetization models and the DFT magnetization model. As seen in Fig. 6.4, incorpora-

tion of the magnetization characteristics based on the trigonometric algorithm results in 

more accurate performance analysis of the machine. All the analysis hereafter in this 

chapter is conducted on the model incorporating an automatic voltage regulator (AVR). 

Fig. 6.5 illustrates the block diagram of an AVR. The AVR senses the terminal voltage 

variations with respect to a reference value.  

 

 

Fig 6.4. Load angle response for marginally stable and unstable cases calculated for the three models using 

proposed trigonometric and DFT method. 
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 Fig. 6.5. AVR block diagram.  

 

This helps improve system stability by adjusting the excitation in order to maintain a con-

stant terminal voltage [55], [56]. In this study, the AVR parameters have been selected 

according to the sample data in [57] for the excitation model of ST1A. The rotor speed of 

the synchronous machine for the three magnetization models is presented in Fig. 6.6. As 

can be seen in this figure, the speed of the motor recovers to its pre-disturbance value of 1 

pu after 2 sec. Fig. 6.7 presents the air-gap torque of the machine. During the disturbance 

and after the clearing of the fault, the maximum value of the air-gap torque for Model 1 is 

slightly greater than the values for Models 2 and 3. It is evident that the oscillations main-

tain the same frequency for all cases. 
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Fig. 6.6. Machine rotor speed calculated by the three models.  

 

Fig. 6.7. Synchronous machine air-gap torque calculated by the three models.  
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The load angle graph is presented in Fig. 6.8. Since load angle is closely related to 

the quadrature axis reactance, there is a discrepancy between the load angle values at the 

steady-state and transient states as calculated by the different magnetization models. Fig. 

6.9 shows the calculated phase ‘a’, ‘b’ and ‘c’ currents for synchronous machines for 

Model 3. Table 6.1 summarizes the peak-to-peak variations of the load angle, phase ‘a’ 

current, and air-gap torque calculated using the three magnetization models.  

 

 

 

Fig. 6.8. Load angle calculated by the three models.   
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Fig. 6.9. Synchronous machine phase currents calculated using Model 3. 

Table 6.1. The First Peak-To-Peak Values of Torque, Load Angle, and Phase Current Calculated by Em-

ploying AVR for Model 3. 

 Model 1 Model 2 Model 3 

Air-gap Torque 14.14 pu 14.05 pu 13.83 pu 

Load Angle 16.95o 14.45o 18.00o 

Phase ‘A’ Current 11.10 pu 11.14 pu 11.08 pu 
 

 

Figure 6.10 demonstrates the load angle response for marginally stable and the un-

stable cases calculated by the three models. Model 3 demonstrates that inclusion of mag-

netization increases the value of critical clearing time (CCT).  In fact, this correlation be-
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the three magnetization models. In the case of a saturated machine subjected to an inter-

ruption, it can be seen that the use of AVR improves the critical clearing time. A qualita-

tive analysis of the fault duration on the machine first peak air-gap torque is essential, 

because the machine is subjected to high air-gap torque both during the interruption and 

after its clearance.  

The first peak air-gap torque as a function of the fault duration is presented in Fig. 

6.11. It can be seen that for a fault duration of 8.33 ms, the maximum value of the air-gap 

torque is calculated to be 11.8 pu. Additionally, it can be seen that the frequency of the 

peak air-gap torque oscillation as a function of the fault duration is 60 Hz. 

 

 
Fig. 6.10. Load angle response for marginally stable and unstable cases calculated by the three models. 
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Table 6.2. Critical Clearing Time for Different Magnetization Models With and Without AVR. 

 Model 1 Model 2 Model 3 

CCT (AVR) 256.25 ms 257.08 ms 260.83 ms 

CCT (Without AVR) 254.58 ms 256.67 ms 257.92 ms 
 

6.2.2. Parameter Sensitivity Analysis Employing the Synchronous Gener-

ator Models 

The purpose of parameter sensitivity analysis is to ascertain the sensitivity of the 

synchronous machine stability characteristic when one or more of the machine parame-

ters vary. The dynamic behaviour of the machine is analyzed by performing a series of 

tests with different parameter values. This method is beneficial to evaluate the robustness 

of the saturated machine model. It also leads to the construction of a confidence model 

through uncertainty investigations on the machine parameters. Although there are several 

 

Fig. 6.11. Peak air-gap torque as a function of fault duration calculated by using Model 3. 
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ways to measure the synchronous machine parameters, it is not always possible to meas-

ure them with a high level of accuracy in practical applications. Moreover, the synchro-

nous machines are always subjected to varying operating conditions and aging. The sen-

sitivity analysis is advantageous because it enables the evaluation of the reliability and 

validity of the machine model and allows for a good estimate of the stability margin of 

the machine under fault [58]- [60]. 

The sensitivity of the load angle and air-gap torque oscillations with respect to a ma-

chine equivalent circuit parameter, , can be calculated by (6.10) 
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                                           (6.10) 

where p-p and p-p are the peak-to-peak load angle and air-gap torque functions respec-

tively. The effect of machine parameter variation on the load angle and the air-gap torque 

responses is investigated for an interruption duration of 58.33 ms. The parameters were 

varied from 25% to 175% of their standard values. Figs. 6.12 and 6.13 demonstrate the 

load angle and air-gap torque peak-to-peak sensitivity to all the machine parameters. It 

can be seen that variation of the armature leakage reactance significantly affects both the 

load angle and air-gap torque responses. The sensitivities of load angle and air-gap torque 

with respect to the machine parameters are calculated using (6.10) and listed in Table 6.3. 

As seen in this table, the machine is most sensitive to the variation of the leakage reac-

tance and armature resistance. 



6. Transient Synchronous Machine Model 

117 

 

Fig. 6.12. Peak-to-peak load angle sensitivity as functions of different synchronous machine parameters 
calculated using Model 3.  
 

 

Fig. 6.13. Peak-to-peak air-gap torque sensitivity as functions of different synchronous machine parameters 
calculated using Model 3.  
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Table 6.3. Load Angle and Air-gap Torque Sensitivities with Respect  

to the Variation in the Machine Parameters. 

S  

S  

Xl 0.27 0.65 

Ra 0.11 0.24 

Xfd 0.01 0.07 

Rfd 0.03 0.01 

Xkd1 0.04 0.07 

Rkd1 0.10 0.06 

Xkq1 0.08 0.03 

Rkq1 0.08 0.02 

Xkq2 0.001 0.009 

Rkq2 0.03 0.01 

6.2.3. Harmonic Analysis on the Produced Air-gap Torque and Phase 

Current Responses by the Three Models  

As demonstrated in the previous sections, when a machine is subjected to a disturb-

ance, there are impurities in the generator sinusoidal output. Thus, the machine terminal 

quantities are expected to be periodic and have harmonics. Since the synchronous ma-

chine is designed to work at the fundamental frequency of 60 Hz, it is detrimental for the 

generator to deliver power at the harmonics of its rated fundamental frequency. This may 

even reduce the life of the machine. Moreover, the harmonics in the machine response 

can cause the machine to operate inefficiently because they increase internal heating 

which increases the losses. Since hysteresis losses and eddy losses are function of the 
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frequency, the higher frequency creates more iron losses in the core. Copper losses also 

depend on frequency and lead to an increase in the internal temperature of the generator, 

which reduce its efficiency at the harmonic frequency. As a result, investigation on the 

harmonic spectrum of the machine during its transient operation is very significant [61]- 

[66].  

To characterize the machine behavior after the occurrence of an interruption, the air-

gap torque and phase current spectrums are decomposed using discrete Fourier analysis.  

Since the air-gap torque or phase current oscillation is a non-stationary waveform and 

can only produce finite sequences, the discrete Fourier transform should be applied to 

obtain the harmonic spectrum. The discrete Fourier transformation for air-gap torque os-

cillations, , can be expressed as follows: 

   1,...,0)(
1

0

2  




 NkenT
N

n

NnkjtF                        (6.11) 

where N is the number of samples in the range of [0, 2] and T is the sampling interval. 

The spectrums of the produced air-gap torque waveform for three machine models 

are presented in Fig. 6.14 for a fault duration of three and half cycles. It can be seen that 

the spectrum content of the waveform consists of the fundamental and the second har-

monics. In Model 1, an amplitude of 349 dB was observed for the first harmonic, whereas 

for the second harmonic and DC, the amplitudes were 52 dB and 243 dB, respectively. 

The results also demonstrate that the magnetization affects the frequency of the air-gap 

torque oscillation due to the disturbance. The effect of fault duration on the harmonic 
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spectrum of the air-gap torque waveform is presented in Fig. 6.15. It can be seen that if 

the fault persists for the full number of cycles (four cycles in this case), the distribution of 

the harmonics in the harmonic spectrum does not change much in comparison to the ones 

for three and a half cycles, whereas the amplitude in the spectrum is much smaller. Har-

monic spectrums of phase “a” current calculated by the three models are illustrated in 

Fig. 6.16 for fault duration of three and a half cycles. As seen in this figure, the amplitude 

at the second harmonic increases if magnetization is considered. Therefore, in the saturat-

ed machine subjected to an interruption, additional iron and copper losses are produced, 

which in turn cause the temperature in the synchronous machine to increase. 
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(a) 

 

(b) 

 

(c) 

Fig. 6.14. Harmonic spectrum for the air-gap torque oscillations of the synchronous machine for fault dura-

tion of three and half cycles. (a) Model 1. (b) Model 2. (c) Model 3.  

0 50 100 150 200
0

50

100

150

200

250

300

350

400

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

(60 Hz, 349 dB)

(120 Hz, 52 dB) 

0 50 100 150 200
0

50

100

150

200

250

300

350

400

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

(60 Hz, 345 dB)

(120 Hz, 51 dB)

0 50 100 150 200
0

50

100

150

200

250

300

350

400

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

(60 Hz, 334 dB)

(120 Hz, 48 dB)



6. Transient Synchronous Machine Model 

122 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.15. Calculated air-gap torque harmonic spectrum of the synchronous machine by Model 3 for fault 

duration of four cycles. (a) Model 1. (b) Model 2. (c) Model 3.  
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(a) 

 

(b) 

 

(c) 
Fig. 6.16.  Harmonic spectrum for phase ‘a’ current of the synchronous machine for fault duration of three 
and half cycles. (a) Model 1. (b) Model 2. (c) Model 3.  
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6.2.4. Time-Frequency Analysis of the Produced Air-gap Torque Re-

sponse by the Three Models  

In order to determine the time at which each specific harmonic of the air-gap torque 

oscillations occurs, time-frequency analysis has been performed in this section. Time-

frequency analysis is very useful in time varying processes and can provide the spectro-

gram representation of the waveform. In this section, the short time Fourier transform 

(STFT), which is a discrete Fourier-based transform, is used to examine the frequency 

spectrogram of a produced time varying air-gap torque after the fault. In fact, in the STFT 

procedure, the air-gap torque information is divided into several frames using a moving 

window throughout the time, and the discrete Fourier analysis will be computed for each 

windowed section of the waveform. The STFT of a signal such as the air-gap torque os-

cillations of the machine, which is the waveform under investigation in this study, can be 

mathematically represented by (6.12) 

     






n

njenmnWmn )(),(STFT                      (6.12) 

where T(m,ω) is the discrete Fourier transform of the windowed air-gap torque oscilla-

tion, W is the window function and m and ω are time and frequency respectively [67], 

[68].  

Since the STFT is just a computation of the discrete Fourier transform on the win-

dowed waveform, the short time Fourier transform of the torque oscillation is significant-

ly affected by the kind and duration of the window. Therefore, there is always trade-off 
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between time and frequency resolution. In this analysis, the 240-point window used in the 

STFT implementations is the Hamming window with a 50% overlap between the sec-

tions, number of FFT points used to calculate DFT (nfft) is 256, and the sampling rate is 

42 ms. 

Fig. 6.17 shows the time-frequency spectrogram of the produced air-gap torque of the 

synchronous machine for the short-circuit duration of 58.33 ms calculated for the three 

machine models. This figure illustrates that three major harmonics in the oscillating air-

gap torque mostly occur during the first 250 ms. Moreover, the discrepancies between the 

results calculated by three magnetization cases are significant. 
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(a) 

 

(b) 

 

(c) 
Fig. 6.17. Time-frequency spectrogram of the air-gap torque waveform. (a) Model 1. (b) Model 2. (c) Mod-
el 3 
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6.3. Conclusion 

The trigonometric magnetization model developed in chapter 3 has been applied to 

the conventional synchronous machine model. Extensive transient stability analysis in 

time-frequency domain has been performed under a three-phase short circuit condition. 

The numerical analyses results employing the three saturated synchronous machine mod-

els demonstrate that magnetization significantly affects the transient performance of syn-

chronous machines. 

The work developed in this chapter has been published in IEEE Transactions on En-

ergy Conversion [45]. 
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Chapter 7 

Conclusions and Future Work 
 

 

 

7.1. Conclusions  

In this dissertation, two effective techniques to represent magnetization phenomenon 

in electrical machines have been proposed. 

The first method developed in this research was based on a trigonometric algorithm. 

The implemented magnetization models for particular electric machines are examined by 

conducting several numerical investigations. Based on these results, it was concluded that 

this model is privileged for magnetization modeling of electrical machines for its accura-

cy and reliability. Therefore, this model was integrated into a synchronous machine mod-

el. Transient analysis of synchronous machines in case of short circuit faults was per-
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formed using the Lambton synchronous generator parameters. Then, the impact of the d- 

and q-axis magnetization on the machine performance was studied. 

It was demonstrated that the second method proposed in this research is very accurate 

and modifiable. Inasmuch as the algorithm is not developed reliantly on a particular ex-

pression, researchers can adjust it according to many different possible functional expres-

sions provided that they satisfy some basic rules. The accuracy of this method has also 

been verified by performing numerical analyses on magnetization characteristics of a 

synchronous machine and a permanent magnet synchronous machine for different con-

figurations. 

To realize the effect of magnetization in steady-state performance of synchronous 

machines, the LM model has been incorporated into a state space synchronous machine. 

Furthermore, the model was used in steady-state performance analyses on the Lambton 

synchronous machine. 

7.2. Suggestions for Future Work 

Inclusion of magnetization in performance analysis of synchronous machines has a 

significant effect on the accuracy of the results obtained in through the numerical investi-

gations. Therefore, as the next step for this research, universal synchronous machine 

software incorporated with the proposed magnetization models can be implemented. This 

model can be utilized for both transient and steady-state analyses of synchronous ma-

chines. 
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Additionally, more investigations can be carried out by doing some experimental 

procedures to re-examine the efficiency of the model. 

Finally, the magnetization models proposed in this research can be applied to repre-

sent magnetization phenomenon for other kinds of electrical machines as well. Therefore, 

comprehensive electrical machine models including magnetization can be obtained.  
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Appendix A 

Electrical Machines Ratings and Specifications 
 

 

 

The Specifications and ratings for the different electrical machines used in the inves-

tigations in this research are presented here. 

A.1. Nanticoke Synchronous Generator  

The Nanticoke synchronous generator is a two pole 588 MVA non-salient pole syn-

chronous machine on the Ontario Hydro System. The ratings are listed in Table A.1. 

Table A.1. The Nanticoke Synchronous Machine Ratings 

Machine Rating 

Rated Power 588 MVA 

Rated Voltage 22 kV 

Rated Frequency 60 Hz 

Rated Power Factor 0.85 

Rated Speed 3,600 rpm 
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A.2. Lambton Synchronous Generator  

The Lambton synchronous generator is a two pole 555 MVA non-salient pole synchro-

nous machine the Ontario Hydro system. The rating and parameter specification used in 

the investigations are presented in Table A.2 and Table A.3, respectively. 

Table A.2. The Lambton Synchronous Machine Ratings 

Machine Rating 

Rated Power 555 MVA 

Rated Voltage 22.8 kV 

Rated Frequency 60 Hz 

Rated Power Factor 0.90 

Rated Speed 3,600 rpm 

 

 

Table A.3. The Lambton Synchronous Machine Parameters 

Machine Parameters 

Xmd = 1.97pu Ra = 0.003 pu 

Xmq = 1.867 pu Xl = 0.160 pu 

Rfd= 0.0012 pu Rkd1 = 0.0109 pu 

Xfd = 0.1171 pu Xkd1= 0.0174 pu 

Rkq1 = 0.0164 pu Rkq2 = 0.0099 pu 

Xkq1 = 0.0638 pu Xkq2 = 0.3833 pu 
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A.3. Doubly Fed Induction Generator  

The machine ratings for a laboratory doubly fed induction generator are shown in 

Table A.4. 

Table A.4. The DFIG Ratings 

Machine Rating 

Rated Power 2.78 kVA 

Rated Voltage 208 V 

Rated Frequency 60 Hz 

Rated Power Factor 0.72 

Rated Speed 1,720 rpm 

 

A.4. Permanent Synchronous Machine 

The rating information for the laboratory surface mounted Permanent Magnet Syn-

chronous Machine (PMSM) of Siemens is listed in Table A.5.  

Table A.5. The PMSM Ratings 

Machine Rating 

Rated Power 21 hp 

Rated Motor Voltage  297V 

Rated Motor Current 35 A 

Rated Motor Speed 3000 r/min 

Number of Pole 8 

Moment of Inertia 0.0168 kgm² 

Maximum Motor Current 155 A 
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