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ABSTRACT 

Digital filters play an important role in digital signal processing and communication. 

From the 1960s, a considerable number of design algorithms have been proposed for 

finite-duration impulse response (FIR) digital filters and infinite-duration impulse 

response (IIR) digital filters. Compared with FIR digital filters, IIR digital filters have 

better approximation capabilities under the same specifications. Nevertheless, due to the 

presence of the denominator in its rational transfer function, an IIR filter design problem 

cannot be easily formulated as an equivalent convex optimization problem. Furthermore, 

for stability, all the poles of an IIR digital filter must be constrained within a stability 

domain, which, however, is generally nonconvex. Therefore, in practical designs, optimal 

solutions cannot be definitely attained. 

In this dissertation, we focus on IIR filter design problems under the weighted least-

squares (WLS) and minimax criteria. Convex optimization will be utilized as the major 

mathematical tool to formulate and analyze such IIR filter design problems. Since the 

original IIR filter design problem is essentially nonconvex, some approximation and 

convex relaxation techniques have to be deployed to achieve convex formulations of such 

design problems. We first consider the stability issue. A sufficient and necessary stability 

condition is derived from the argument principle. Although the original stability 

condition is in a nonconvex form, it can be appropriately approximated by a quadratic 

constraint and readily combined with sequential WLS design procedures. Based on the 

sufficient and necessary stability condition, this approximate stability constraint can 

achieve an improved description of the nonconvex stability domain. We also address the 

nonconvexity issue of minimax design of IIR digital filters. Convex relaxation techniques 

are applied to obtain relaxed design problems, which are formulated, respectively, as 

second-order cone programming (SOCP) and semidefinite programming (SDP) 

problems. By solving these relaxed design problems, we can estimate lower bounds of 

minimum approximation errors, which are useful in subsequent design procedures to 

achieve real minimax solutions. Since the relaxed design problems are independent of 

local information, compared with many prevalent design methods which employ local 
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search, the proposed design methods using the convex relaxation techniques have an 

increased chance to obtain an optimal design. 
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CHAPTER I 

INTRODUCTION 

A digital filter is a computational tool to extract useful information and remove undesired 

components from input sequences, and simultaneously generate output sequences. Digital 

filters can be implemented on general-purpose computers or some specific hardware. 

Some advantages of digital filters over analog filters are listed below: 

1. Digital filters are programmable, which means that the characteristics of digital 

filters can be easily modified leaving the hardware unchanged. 

2. Digital filters can be conveniently designed, tested and implemented on general-

purpose computers. 

3. Compared with analog filters, the characteristics of digital filters are much more 

consistent with respect to time and temperature. 

4. Digital filters are very versatile in their ability to process signals in a variety of 

ways, which includes the ability of some types of digital filters to adapt to the 

changes of input signals. 

As one of important and fundamental areas in digital signal processing (DSP), the 

research work on digital filter designs started in the 1960s. Although many design 

methods have been proposed so far, nowadays the research on digital filter designs is still 

active. More efficient and robust design techniques are being proposed with the advances 

of DSP and mathematical theories. On the other hand, the emergence of new classes of 

digital filters also stimulates the development of digital filter designs. 

In general, digital filters can be classified into two categories according to the 

duration of their impulse responses, finite-duration impulse response (FIR) and infinite-

duration impulse response (IIR). Note that some people prefer an alternative 

terminology, in which an FIR digital filter is known as a nonrecursive digital filter, and 

an IIR digital filter is referred as a recursive digital filter. 
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The characteristics of a digital filter can be described by its transfer function. The 

transfer function of an FIR digital filter is a polynomial function of ିݖଵ, i.e., 

 
ሻݖሺܨ ൌ ෍ ௟݂ିݖ௟

௅

௟ୀ଴

ൌ ሻ (1.1)ݖ௅ሺ்࣐ࢌ

where 

ࢌ  ൌ ሾ ଴݂ ଵ݂ … ௅݂ሿ் (1.2)

 ࣐௟ሺݖሻ ൌ ሾ1 ଵିݖ … ௟ିݖ ሿ் (1.3)

Here, the superscript ܶ represents the transpose of a vector or matrix. For an IIR digital 

filter, its transfer function is a rational function of ିݖଵ, i.e., 

 
ሻݖሺܪ ൌ

ܲሺݖሻ
ܳሺݖሻ ൌ

∑ ௡ேିݖ௡݌
௡ୀ଴

1 ൅ ∑ ௠ெିݖ௠ݍ
௠ୀଵ

ൌ
ሻݖேሺ்࣐࢖
ሻ (1.4)ݖெሺ்࣐ࢗ

where 

࢖  ൌ ሾ݌଴ ଵ݌ … ேሿ் (1.5)݌

ࢗ  ൌ ሾ1 ଵݍ … ெሿ் (1.6)ݍ

The frequency responses of digital filters are calculated by evaluating their transfer 

functions on the unit circle, that is, ܨ൫݁௝ఠ൯ ሻ|௭ୀ௘ೕഘݖሺܨ =   and ܪ൫݁௝ఠ൯ ሻ|௭ୀ௘ೕഘݖሺܪ =  . 

From (1.1), it can be found that all poles of an FIR digital filter are located on the origin 

of the ݖ plane. However, all poles of an IIR digital filter must be constrained inside the 

unit circle of the ݖ plane for stability. 

In this dissertation, we mainly study IIR filter design problems. Generally speaking, 

an IIR filter design problem can be stated as follows: 

Given a set of design specifications, e.g., filter orders, ideal frequency 

response and so forth, find an IIR digital filter with coefficients ࢖ and ࢗ, 
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whose frequency response can best approximate the given ideal frequency 

response under some design criterion. 

In the proposed design methods, we assume that all the numerator and denominator 

coefficients are real values. Nevertheless, all the design methods presented in this 

dissertation can be readily extended to IIR filter designs with complex coefficients. It is 

noteworthy that besides the models in the direct form of (1.1) and (1.4), there are some 

other useful models, such as zero-pole, lattice, and state-space. However, in this 

dissertation, we only consider the direct form due to its simplicity in formulating design 

problems. 

Because of the close relationship between FIR and IIR digital filters, in this chapter 

we shall first introduce FIR digital filter designs. Then, the history of IIR digital filter 

designs will be briefly reviewed. Motivations and objectives of the research work 

reported in this dissertation will be described later. The organization of the rest of the 

dissertation and main contributions will be finally presented in this chapter. 

1.1 Introduction to FIR Digital Filter Design 

Compared with IIR digital filters, FIR digital filters have several advantages: 

1. Since all poles of an FIR digital filter are fixed at the origin of the ݖ plane, the 

frequency response of an FIR digital filter is determined by its zeroes. Thereby, no 

stability concern exists for FIR digital filter designs. 

2. By utilizing (anti-)symmetric structures, FIR digital filters with exactly linear phase 

over the whole frequency band can be easily achieved. However, except for some 

special cases, it is difficult to design an IIR digital filter, which has exactly linear 

phase over the whole frequency band. 

3. Generally speaking, an FIR digital filter design can be equivalently formulated as a 

convex optimization problem in a finite-dimensional linear space. Accordingly, its 

globally optimal solution can be achieved using various optimization techniques. 

However, when magnitude and phase responses are both under consideration, in 

general, it is hard to transform an IIR filter design problem into an equivalent 
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convex optimization problem. Hence, globally optimal solutions cannot be 

definitely attained. 

From the 1960s, a large part of efforts have been devoted to develop efficient 

approaches to design linear-phase FIR digital filters [1]-[2]. As mentioned above, linear-

phase FIR digital filter coefficients demonstrate (anti-)symmetric structures. Thus, the 

number of free variables of design problems can be reduced by about one half. 

Furthermore, besides a constant-delay component, the frequency response of a linear-

phase FIR digital filter can be expressed by a trigonometric function of filter coefficients. 

The first well-known design technique is the Fourier series method [1]-[2], in which 

a desired frequency response is first expanded as its Fourier series and then truncated to a 

finite length. This method suffers from Gibbs’ oscillations due to the discontinuity of the 

desired frequency responses. In order to reduce Gibbs’ oscillations near the cutoff 

frequencies, a smooth time-limited window, such as the Hamming window and the 

Kaiser window, is multiplied with the coefficients of the Fourier series. This method has 

two obvious drawbacks: First of all, FIR digital filters designed by this window method 

are not optimal in any optimization sense. Moreover, the frequency band edges of the 

designed FIR filters cannot be the same as specified. 

The second design technique is called the frequency sampling method [1]-[2]. The 

desired frequency response is specified on a set of discrete frequency points, and then the 

inverse discrete Fourier transform (IDFT) is used to obtain the discrete-time impulse 

response. Despite its easy implementation, the performance of this method is not good 

enough compared with the design methods using optimization techniques. 

The use of optimization methods for designing FIR digital filters is most prevalent in 

recent years. The most well-known design method was proposed by Parks and 

McClellan [3], where a linear-phase FIR digital filter design is translated to a weighted 

minimax approximation problem. By virtue of the alternation theorem, there exists an 

optimal design with equiripple magnitude response for the weighted minimax design 

problem. Using the Remez exchange algorithm, the optimal design can be efficiently 

attained. In [4], a linear programming (LP) method was proposed as an alternative to 
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designing linear-phase FIR digital filters in the minimax sense. Some other linear 

constraints can be further incorporated in this LP design method. 

In order to achieve the linear phase over the whole frequency band, linear-phase FIR 

filter coefficients should be (anti-)symmetric, and the group delay can only be set equal 

to 2/ܮ, where ܮ denotes the filter order. If one wants to achieve a lower group delay, the 

filter length has to be correspondingly reduced. However, sometimes this is impracticable 

because of the strict design specifications. On the other hand, FIR digital filters with 

nonlinear phase responses are useful in many applications. Therefore, we are also 

interested in general FIR digital filter designs, where the ideal frequency responses can be 

arbitrarily selected. 

It can be observed that the transfer function ܨሺݖሻ in (1.1) is a linear function of filter 

coefficients ࢌ. In general, an FIR filter design problem can be expressed as an equivalent 

convex optimization problem [5]. The techniques of transforming an FIR design problem 

into an equivalent convex optimization problem are very useful in the latter discussion of 

IIR digital filter designs. Let ܦሺ߱ሻ  represent the desired frequency response to be 

approximated. In the WLS sense, the approximation error can be defined by 

ሻࢌௐ௅ௌሺܧ  ൌ න ܹሺ߱ሻหܨ൫݁௝ఠ൯ െ ሺ߱ሻหଶ݀߱ܦ
Ω಺

 

ൌ ࢌ࡭்ࢌ െ ࢈்ࢌ2 ൅ constant 
(1.7)

where ܹሺ߱ሻ ≥ 0 denotes a given weighting function, and Ωூ is the union of frequency 

bands of interest. In (1.7), the matrix ࡭ and vector ࢈ are defined as follows 

࡭  ൌ න ܹሺ߱ሻ · Re൛࣐௅ሺ݁௝ఠሻ࣐௅
ுሺ݁௝ఠሻൟ݀߱

Ω಺

 (1.8)

࢈  ൌ න ܹሺ߱ሻ · Re൛࣐௅ሺ݁௝ఠሻכܦሺ߱ሻൟ݀߱
Ω಺

 (1.9)

In (1.8) and (1.9), Reሼ൉ሽ represents the real part of a complex value, and the superscripts 

ܪ  and כ  denote, respectively, the conjugate transpose of a vector or matrix and the 

conjugate value of a complex number. Since the matrix ࡭ in (1.8) is symmetric and 
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positive definite, the WLS approximation error ܧௐ௅ௌሺࢌሻ is a convex quadratic function of 

 If no other constraints need to be incorporated in the WLS design problem, the optimal .ࢌ

filter coefficients ࢌ௢௣௧ can be readily obtained by solving the linear equation ࢌ࡭௢௣௧ = ࢈. 

Some numerical methods, e.g., Newton’s method, can be utilized here to find ࢌ௢௣௧. If 

only linear constraints are incorporated, the design problem can be formulated as a 

quadratic programming (QP) problem. The approximation error ܧௐ௅ௌሺࢌሻ  can also be 

expressed by 

ሻࢌௐ௅ௌሺܧ  ൌ ฮ࡭ଵ/ଶࢌ െ ฮଶ࢈ଵ/ଶି࡭
ଶ ൅ constant (1.10)

where ࡭ଵ/ଶ denotes the square root of ࡭, and ԡ࢞ԡଶ represents the Euclidean norm of a 

vector ࢞ . By introducing an auxiliary variable ߜ , the WLS design problem can be 

equivalently expressed by 

min (1.11) ߜ

s.t. ฮ࡭ଵ/ଶࢌ െ ฮଶ࢈ଵ/ଶି࡭ ൑ (a.1.11) ߜ

It is known that (1.11.a) is a second-order cone (SOC) constraint, and the above design 

problem is essentially an SOCP optimization problem. Some other linear or (convex) 

quadratic constraints can be further incorporated in (1.11). 

In the minimax sense, the FIR filter design problem is defined by 

 min
ࢌ

max
ఠאΩ಺

ሻ| (1.12)ࢌሺܧ|

where the (weighted) complex approximation error is defined by 

ሻࢌሺܧ  ൌ ܹሺ߱ሻൣܨ൫݁௝ఠ൯ െ ,ሺ߱ሻ൧ܦ ߱׊ א Ωூ (1.13)

Even without any other constraint, the minimax design problem (1.12) does not have a 

closed-form solution. Thereby, we need to resort to numerical optimization methods to 

find the optimal designs. Fortunately, we can still transform (1.12) into an equivalent 

convex optimization problem. By introducing an auxiliary variable ߜ as the error limit of 
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 ሻ| over Ωூ, the original minimax design problem (1.12) can be equivalently writtenࢌሺܧ|

by 

min (1.14) ߜ

s.t. |ሻࢌሺܧ| ൑ ,ߜ ߱׊ א Ωூ (1.14.a)

By reformulating |ܧሺࢌሻ|, the constraint (1.14.a) can be transformed to the following SOC 

constraint 

 ܹሺ߱ሻหܨ൫݁௝ఠ൯ െ ሺ߱ሻหܦ ൌ ԡࡳሺ߱ሻࢌ െ ሺ߱ሻԡଶࢍ ൑ (1.15) ߜ

where 

 
ሺ߱ሻࡳ ൌ ܹሺ߱ሻ ൥

Re൛࣐௅
்ሺ݁௝ఠሻൟ

Im൛࣐௅
்ሺ݁௝ఠሻൟ

൩ (1.16)

 
ሺ߱ሻࢍ ൌ ܹሺ߱ሻ ቈ

Reሼܦሺ߱ሻሽ

Imሼܦሺ߱ሻሽ
቉ (1.17)

In (1.16) and (1.17), Imሼ·ሽ  represents the imaginary part of a complex value. For 

simplicity, the constraint (1.15) can be enforced on a set of discrete frequency points 

densely sampled over Ωூ . Obviously, using the SOC constraint (1.15), the minimax 

design problem (1.14) can be converted to an SOCP problem. 

As a generalization of the WLS and minimax criteria, the ܮ௣-norm error criterion is 

also widely used in FIR filter designs as well. If 1 ≤ ݌, the corresponding FIR filter 

design problem is still convex in essence, although it may not be transformed to a convex 

optimization problem in some commonly used form, such as LP, QP, SOCP and SDP. In 

practical designs, some other linear and/or nonlinear constraints, for instance, magnitude 

and group delay flatness, peak error, and zero constraints, can be further incorporated in 

these design problems to improve the performances of the obtained FIR digital filters or 

make the design results satisfy some specific requirements. 
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1.2 Introduction to IIR Digital Filter Design 

Compared with FIR digital filters, IIR digital filters can achieve much better 

performance under the same set of design specifications. However, IIR filter designs face 

more challenges due to the presence of the denominator ܳሺݖሻ  in (1.4). The major 

difficulties we encounter are as follows: 

1. Since the poles of an IIR digital filter can be anywhere in the ݖ plane, in general, 

IIR filter design problems are nonconvex optimization problems. Accordingly, there 

exist many local optima on error performance surfaces, and globally optimal 

solutions cannot be definitely achieved or even verified. 

2. If phase (or group delay) responses are also of concern, stability constraints must be 

incorporated in design procedures. However, when the denominator order ܯ  is 

larger than 2, the stability domain cannot be expressed as a convex set with respect 

to denominator coefficients ࢗ. 

The techniques of invariant impulse response, matched- ݖ  transformation, and 

bilinear transformation are widely used to achieve an IIR digital filter from a given 

analog filter [1]-[2]. These design techniques are straightforward, and can naturally 

guarantee the stability of obtained IIR digital filters. However, these techniques can only 

be applied to transform standard analog filters, such as lowpass, highpass, bandpass and 

bandstop filters, into digital counterparts. 

Nowadays, IIR filter designs can be performed directly on the discrete time or 

frequency domain. If only the magnitude response is of concern, an IIR filter design 

problem can be simplified to some extent, since the stability can always be achieved by 

flipping the poles outside the unit circle into the inside without changing the magnitude 

response of the obtained IIR digital filter. So far, the minimax design for magnitude 

response approximation has been widely studied. One of most often used techniques is to 

approximate the squared ideal magnitude response by ܪሺݖሻܪሺିݖଵሻ [6]. This is mainly 

because in the form of squared magnitude, the design problem can be simplified to a 

quasi-convex optimization problem. 
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If phase (or group delay) responses are also under consideration, IIR filter design 

problems become more complicated. As in FIR filter design problems, the WLS and 

minimax criteria are also widely used in practical IIR filter designs. Like (1.7), the WLS 

approximation error of an IIR filter design can be defined by 

ௐ௅ௌሺ࢞ሻܧ  ൌ න ܹሺ߱ሻหܪ൫݁௝ఠ൯ െ ሺ߱ሻหଶ݀߱ܦ
Ω಺

 

ൌ න ܹሺ߱ሻ ቤ
ܲ൫݁௝ఠ൯
ܳሺ݁௝ఠሻ െ ሺ߱ሻቤܦ

ଶ

݀߱
Ω಺

 

(1.18)

where 

 ࢞ ൌ ሾ்ࢗ ሿ் (1.19)்࢖

As in (1.7) and (1.13), ܹሺ߱ሻ and ܦሺ߱ሻ represent the given weighting function and the 

desired frequency response, respectively. Similarly, the minimax approximation error is 

expressed by 

ெெሺ࢞ሻܧ  ൌ max
ఠאΩ಺

ሺ߱ሻ| (1.20)ܧ|

where the (weighted) complex approximation error is given by 

ሺ߱ሻܧ  ൌ ܹሺ߱ሻൣܪ൫݁௝ఠ൯ െ ሺ߱ሻ൧ܦ

ൌ ܹሺ߱ሻ ቈ
ܲ൫݁௝ఠ൯
ܳሺ݁௝ఠሻ െ  ሺ߱ሻ቉ܦ

(1.21)

The objective of our design problems is to minimize these approximation errors subject 

to some other constraints. It is worth noting that although the complex approximation 

error ܧሺ߱ሻ  is differentiable over Ωூ , the minimax approximation error ܧெெሺ࢞ሻ  is a 

nondifferentiable function of ࢞ . Therefore, it is inconvenient to directly manipulate 

 ெெሺ࢞ሻ in practical designs. Besides the WLS and minimax criteria, some other designܧ

criteria, such as the Lp-norm error criterion, where the approximation error is defined by 

׬ = ௣ሺ࢞ሻܧ ܹሺ߱ሻหܪ൫݁௝ఠ൯ െ ሺ߱ሻห௣݀߱Ω಺ܦ
, are also adopted to formulate design problems. 
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In general, IIR filter design methods can be classified into two groups: direct and 

indirect ways. It should be mentioned here that direct design methods are often referred 

to as those methods that are carried out directly in the ݖ domain and indirect design 

methods are generally considered to be those methods based on analog filters [2]. In this 

dissertation, however, we adopt somewhat different definitions for direct and indirect 

design methods. In the direct design strategy, the best approximation to a given ideal 

frequency response is found without any intermediate step. In the indirect design strategy, 

a design problem is first transformed to an FIR filter design problem. Then, model 

reduction techniques can be deployed to achieve an IIR digital filter, which can best 

approximate the FIR digital filter. As presented before, in general, FIR filter design 

problems can be equivalently cast as convex optimization problems and then efficiently 

solved. Therefore, the performances of indirect design methods are mainly determined by 

the second step, i.e., FIR approximation by IIR digital filters. In this dissertation, we 

mainly study IIR filter designs using the direct design strategy. But it should be 

mentioned that the proposed design methods can be straightforwardly applied in indirect 

IIR filter designs by replacing the desired frequency response ܦሺ߱ሻ by a well-defined 

FIR frequency response ܨሺ݁௝ఠሻ and the frequency bands of interest Ωூ  by the whole 

frequency band [0, ߨ]. 

As mentioned earlier, if the phase response is also under consideration, stability is 

an important issue to be addressed. On the other hand, the sensitivity of pole locations to 

coefficient quantization increases with decreasing distances of poles to the unit circle. 

The poles close to the unit circle may also cause considerable noise due to signal 

quantization. Thus, in practical designs, it is desirable to specify a maximum pole radius, 

which should be less than 1. Generally speaking, the stability issue can be overcome in 

two different ways: explicit and implicit descriptions. The explicit description of stability 

requirements, which is widely used in a variety of design methods, is to construct 

constraints or barrier functions on denominator coefficients to keep all poles inside the 

stability domain. Bounded input and bounded output (BIBO) is the classical definition of 

system stability. All the known stability constraints follow from this definition. Generally 

speaking, explicit stability constraints can be categorized into two groups, i.e., time-

domain stability constraints and frequency-domain stability constraints. Many time-
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domain stability constraints try to control the l2-norm of denominator coefficients ࢗ at a 

reasonable level or force the impulse responses ݍො௠ of the inverse filter ෠ܳሺݖሻ = 1/ܳሺݖሻ to 

approach 0 as ݉ ՜ ∞. The frequency-domain stability constraints are mainly derived 

from complex analysis. Compared with time-domain stability constraints, frequency-

domain stability constraints are much more tractable. Many frequency-domain stability 

constraints are formulated in convex forms, such that they can be readily incorporated in 

optimization-based design methods. However, these convex frequency-domain stability 

constraints are only sufficient conditions for stability. This means that some stable IIR 

filters could be excluded from the set of admissible solutions. For the implicit 

description, the stability of designed IIR filters can be automatically guaranteed by design 

procedures. For example, by adjusting the step size at each iteration to keep all the 

updated poles staying inside the stability domain, some sequential design methods can 

always obtain stable designs without any explicit stability constraint. 

1.3 Motivations and Objectives 

This dissertation focuses on general IIR digital filter designs, in which the design 

requirements on magnitude and phase (or group delay) responses are both considered. In 

essence, IIR filter design problems are nonconvex optimization problems. Thereby, 

globally optimal solutions cannot be definitely attained, especially for those design 

methods in which local searches are utilized to gradually reduce approximation errors. 

On the other hand, even if a global design were obtained, it would be indeed difficult to 

confirm its optimality. In this dissertation, one of our major aims is to overcome the 

nonconvexity of design problems. We shall try to directly transform design problems into 

commonly used convex optimization models, such as SOCP and SDP. Convex relaxation 

techniques are to be introduced to achieve this goal. Since the feasible sets of the relaxed 

design problems are essentially larger than the ones of the original design problems, the 

global optima cannot be excluded from the convex formulations of these design 

problems. In the subsequent design procedures, we can gradually screen out unqualified 

solutions to approach the optimal designs. When a design problem is cast as a convex 

optimization problem, it can be solved reliably and efficiently using numerical algorithms 
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developed for convex optimization. Actually, many well-developed mathematical tools 

are available for solving these convex optimization problems. 

So far, a large number of IIR filter design methods have been proposed. Although 

the effectiveness of these methods has been demonstrated by many examples in the 

literature, their design performances could be impaired by insufficient stability 

constraints adopted by these design methods, or their practical applications could be 

restricted by the unguaranteed convergence of these design methods. These issues will 

also be addressed in this dissertation. 

Although it is difficult to completely resolve the nonconvexity and stability issues of 

IIR filter design problems, in this dissertation we shall try to alleviate these difficulties to 

some extent, such that the proposed design methods have more chances to approach 

optimal designs than traditional design methods. 

1.4 Organization of the Dissertation 

The rest of this dissertation is organized as follows: In Chapter II, some important 

IIR digital filter design methods will be briefly reviewed. Their advantages and 

disadvantages will be discussed. In Chapter III, a sufficient and necessary stability 

condition is to be derived from the argument principle of complex analysis, which can be 

combined with a sequential SOCP design method proposed in the WLS sense. In Chapter 

IV, another sequential SOCP design method is to be developed but in the minimax sense. 

Relaxation technique is to be introduced in this design method to achieve a relaxed 

design problem in convex form. A real minimax solution can be further attained by a 

sequential procedure based on the relaxed design problem. In Chapter V, a novel design 

method using SDP relaxation technique will be presented in the minimax sense. As in 

Chapter IV, convex relaxation technique will be utilized to formulate a relaxed SDP 

feasibility problem, which will be solved sequentially in a bisection search procedure. To 

achieve a real minimax design, an inner bisection search procedure is to be further 

introduced. The stability of designed IIR filters can also be guaranteed by the inner 

bisection search procedure. Conclusions and suggestions for future study will be 

presented in Chapter VI. 
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1.5 Main Contributions 

In this dissertation, we are mainly studying IIR filter design problems under the 

WLS and minimax criteria. All the proposed design methods are primarily devoted to 

tackle the nonconvexity and stability issues of design problems. The main contributions 

of the research work reported in this dissertation are summarized as follows: 

Firstly, a novel stability condition is derived from the argument principle of complex 

analysis. Compared with some other frequency-domain stability conditions, it is both 

sufficient and necessary. In practice, however, this stability condition is still nonconvex. 

Thereby, some approximation techniques need to be employed to achieve an approximate 

stability condition in a quadratic form, such that it can be readily combined with the 

sequential WLS design procedure. This approximate stability condition can guarantee the 

stability of designed IIR digital filters, if the sequential design method is convergent and 

a regularization parameter is appropriately selected. 

Secondly, convex relaxation techniques are introduced in minimax IIR filter designs. 

The major idea of this design strategy is to relax the original nonconvex design problems 

so as to achieve design problems in convex forms, which can be efficiently and reliably 

solved. Furthermore, by solving these relaxed design problems, we can obtain some 

important information about optimal solutions of the original nonconvex design 

problems, e.g., lower and upper bounds of the minimum approximation error. In this 

dissertation, two different types of convex relaxation techniques are used in minimax 

designs. The resulting relaxed design problems are formulated, respectively, as SOCP 

and SDP optimization problems. In the SDP formulation, a sufficient condition for an 

optimal design of the original design problem is presented, which can be used to detect 

the optimality of IIR filters designed by the proposed design method. 

Finally, in conjunction with convex relaxation techniques, novel sequential design 

methods are presented for minimax designs. Since generally we cannot achieve real 

minimax designs by only solving the relaxed design problems, these sequential 

procedures are proposed to gradually reduce the discrepancy between the original and 
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relaxed design problems. Due to the essential nonconvexity of IIR filter design problems, 

some approximation techniques have to be further employed to achieve this goal. 
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CHAPTER II 

REVIEW OF IIR DIGITAL FILTER DESIGN METHODS 

Compared with an FIR filter design problem, an IIR filter design problem is more 

challenging due to its nonconvex nature. As mentioned before, the nonconvexity is 

mainly incurred by the denominator ܳሺݖሻ whose roots can be anywhere in the ݖ plane. 

Recently, a number of design methods [7]-[43] have been proposed to solve various IIR 

filter design problems. These methods can be roughly classified into three groups: 

sequential design methods [7]-[27], nonsequential design methods [28]-[32], and model 

reduction methods [33]-[43]. We shall briefly review some important design methods in 

this chapter. It is worth emphasizing that this classification is not unique, since strictly 

some methods can be classified into two groups. For example, some model reduction 

methods also involve sequential procedures. We group these methods based on their 

basic design strategies. Another point, which should be mentioned here, is that many 

design methods depend on a variety of optimization methods [44]-[48] (e.g., quasi-

Newton methods, sequential quadratic programming method, simplex method, and 

interior-point methods) to solve these design problems. Essentially speaking, these 

optimization methods involve iterations. Nevertheless, in this dissertation, we shall focus 

on convex formulations and analyses of IIR filter design problems. Thereby, these 

optimization methods can be viewed as black-box subroutines, which can be invoked to 

solve practical problems formulated by designers. These optimization methods have been 

provided by many well-developed software. 

2.1 Sequential Design Methods 

The most prevalent design strategy is to employ sequential procedures [7]-[27] to 

gradually approach optimal solutions. At each iteration, original design problems are 

reformulated through some approximation techniques. These approximate design 

problems can then be more efficiently solved than the original design problems. 
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The Steiglitz-McBride (SM) scheme [49] is adopted in many sequential design 

methods [7]-[13] under various design criteria. At each iteration, the denominator of an 

approximation error is replaced by its counterpart obtained at the previous iteration and 

combined with a prescribed weighting function. Then, the original objective functions 

can be approximated by convex functions of filter coefficients. Accordingly, the IIR filter 

design problems can be transformed to convex optimization problems. Different stability 

constraints are utilized in these design methods, such as the positive realness [7]-

[8], [10]-[11], the Lyapunov theory [12], and the argument principle [13] based stability 

constraints. Although the SM scheme does not completely tackle the nonconvexity of IIR 

filter design problems, compared with classical descent techniques, it can avoid being 

stuck at local minima near the initial points. Its effectiveness has been demonstrated by 

many examples reported in the literature. The major drawback of the SM design 

approaches is that the convergence of these sequential methods cannot be definitely 

guaranteed. 

A design strategy similar to the SM scheme is used by the design method proposed 

in [14]. By introducing an inverse filter ෠ܳሺݖሻ corresponding to the denominator ܳሺݖሻ, 

i.e., ෠ܳሺݖሻܳሺݖሻ  = 1, numerator and denominator designs can be decoupled into two 

separate optimization problems. The optimal numerators can be explicitly expressed in 

terms of coefficients of the inverse filter. The denominator design can be simplified as a 

QP problem by adopting an approximation technique similar to the SM scheme. The 

stability of designed filters can be ensured by flipping the poles outside the unit circle 

into the inside at each iteration. A variant of the design method [14] has been presented in 

the time domain by [15]. Instead of the approximation error ܧௐ௅ௌሺ࢞ሻ defined by (1.18), 

the design objective is to minimize the model-fitting error between the desired impulse 

responses and significant samples of an IIR digital filter system, i.e., ԡࢎ െ ௗԡଶࢎ
ଶ where ࢎ 

= [݄ሺ0ሻ ݄ሺ1ሻ … ݄ሺܮሻ]T denotes the impulse responses of ܪሺݖሻ and ࢎௗ = [݄ௗሺ0ሻ ݄ௗሺ1ሻ … 

݄ௗሺܮሻ]T represents the desired impulse responses. 

Another design method employing the reweighting technique has been proposed 

by [16], in which a minimax design can be achieved by taking advantage of WLS designs. 

At each iteration, a new weighting function is determined by the magnitude envelope of 
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the complex approximation error of the IIR filter obtained at the previous iteration. Then, 

by solving a WLS design problem constructed by the new weighting function, the 

minimax error can be simultaneously reduced. The major drawback of this design method 

is that stability constraints cannot be directly incorporated into the design procedure. 

Thus, the resulting filters may be unstable. A similar strategy is also used by the minimax 

design method proposed in [17]. However, the magnitude of the complex approximation 

error of the IIR filter obtained at the previous iteration is directly employed to determine 

the weighting function. 

Since the frequency response ܪሺ݁௝ఠሻ  is a nonlinear function of denominator 

coefficients, many design methods use its Taylor series to simplify design problems. 

Based on this idea, a minimax design method has been developed by [18]. At each 

iteration, given a denominator the optimal numerator design is first obtained. By fixing 

the numerator, ܪሺ݁௝ఠሻ is then approximated by its first-order Taylor series with respect 

to denominator coefficients, i.e., ܪሺ௞ାଵሻ൫݁௝ఠ൯  ൎ ܪሺ௞ሻ൫݁௝ఠ൯ + ሺ௞ሻ൫݁௝ఠ൯ܪࢗ׏ሺ௞ାଵሻ்ࢗ∆ , 

where ݇  denotes the iteration index and ∆ࢗሺ௞ାଵሻ  represents a descent direction of 

denominator coefficients to be determined. Using this linearized frequency response, the 

design problem at each iteration can be formulated as a convex optimization problem. 

Line search is employed to guarantee the convergence of this sequential design method. 

Provided the initial design is stable, the stability of a designed IIR filter can be 

guaranteed by adjusting the step size ߙ  at each iteration, such that the updated 

denominator coefficients ࢗሺ௞ାଵሻ = ࢗሺ௞ሻ+ࢗ∆ߙሺ௞ାଵሻ is always within the stability domain. 

Generally, the computational complexity of this design method is relatively low. 

However, since the descent direction is determined based on the local information, the 

design performance is sensitive to the selection of initial points. 

Taylor series approximation is also utilized by the SOCP method [19] under the 

minimax criterion and the Gauss-Newton (GN) method [20] under the WLS criterion. 

Instead of separating the numerator and denominator designs, these two design methods 

approximate ܪሺ݁௝ఠሻ by its first-order Taylor series with respect to both numerator and 

denominator coefficients. In [19], while the numerator still adopts the direct form as in 

(1.4), the denominator polynomial is factorized as a product of second-order sections and 
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a first-order section if the denominator order ܯ  is odd. Then, the resulting stability 

constraints can be expressed by a set of linear inequality constraints in terms of these 

factorized denominator coefficients. The advantage of using the factorized denominator 

is that the corresponding stability constraints can be easily expressed by a set of linear 

inequality constraints, which are sufficient and almost necessary for stability. Different 

from the SOCP method [19], the GN design method [20] adopts numerator and 

denominator polynomials both in the direct form. The Rouché’s theorem based stability 

constraint is used in the GN design method, which is less restrictive than the positive 

realness based stability constraint [32]. Both the SOCP and GN design methods suffer the 

same drawback as SM design methods regarding nonguaranteed convergence. Another 

design method using a similar design strategy has been proposed by [21]. A linearized 

argument principle based stability constraint is employed to guarantee the stability of 

designed IIR filters. 

By adopting linearized frequency responses, the approximation errors in [19]-[21] 

can generally be written as convex quadratic forms, i.e., ଵ
ଶ

࢞∆ࡳ்࢞∆ ൅  ࢞∆ where ,ࢍ்࢞∆

denotes a descent direction of filter coefficients ࢞ ࢍ ,  represents the gradient of the 

original approximation errors with respect to ࢞ , and ࡳ  is a positive definite matrix 

generally determined by the gradient. The matrix ࡳ can be viewed as an estimate of the 

Hessian of the original approximation errors. The real Hessian of the approximation error 

is utilized by the design method proposed in [22] under the Lp-norm error criterion. The 

modified Newton’s method is employed to solve the design problem. The stability of 

designed IIR filters can be ensured by a similar strategy adopted in [18]. 

A multistage design method has been proposed by [23]. The SM [11], GN [20], and 

classical descent methods (e.g., BFGS and Newton’s method) are successively applied to 

achieve a better design in the WLS sense. A linear matrix inequality (LMI) stability 

constraint in terms of positive realness has been developed in [23]. It can be proved [23] 

that the stability domain defined by the Rouché’s theorem based stability constraint [20] 

is contained in the one given by the LMI stability constraint. In order to incorporate this 

LMI stability constraint, all the design problems in [11] and [20] should be reformulated 

as equivalent SDP optimization problems. Starting from the WLS design obtained from 
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the multistage design method [23], a minimax design [24] can be obtained by 

successively optimizing numerators using the reweighting technique proposed by [16]. 

A special class of sequential design methods have been developed by [25]-[26] 

based on a sufficient condition for the optimal rational approximation, which states that 

the approximation error has a specific number of extremal points over the frequency 

bands of interest. The Remez exchange algorithm is employed to identify these extremal 

points. In order to achieve satisfactory designs, the initial point should be selected close 

enough to the optimal solution to guarantee the convergence of the sequential procedure. 

The Remez exchange algorithm is also employed by the minimax design method 

proposed by [27]. However, the transfer function of an IIR filter in [27] is in the form of a 

parallel connection of two allpass filters. 

2.2 Nonsequential Design Methods 

In practice, optimal designs cannot be definitely achieved even using the sequential 

design methods described earlier. In practice, if an obtained solution satisfies the 

prescribed specifications, it can be taken as a successful design. On the other hand, as 

mentioned before, the convergence of some sequential design methods cannot be always 

ensured. Therefore, some design methods [28]-[30] abandon the sequential design 

strategy and try to strictly formulate design problems as unconstrained optimization 

problems, which are then solved by a variety of efficient and robust unconstrained 

optimization methods. In [28]-[29], the objective functions of the WLS design problems 

consist of two components. The first part reflects the WLS approximation error, while the 

second one serves as a barrier function to control poles’ positions for stability. Gradient-

based optimization methods can be applied to solve these unconstrained optimization 

problems. In general, designers should provide at least the gradients of the objective 

functions. Satisfactory designs can be obtained by repeating the design procedures from 

different initial points. 

In [30], the IIR filter design problem is formulated as a nonlinear optimization 

problem, whose objective function is expressed as a weighted sum of magnitude and 

group delay approximation errors. Instead of the direct form, the transfer function in [30] 
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is decomposed as a cascade of second-order sections. The Fletcher-Powell algorithm [50] 

is employed in [30] to solve this nonlinear design problem. The stability of designed 

filters can be ensured by the same technique used in [18]. 

In [31], the design problem is first formulated as a multiple-criterion optimization 

problem, in which both magnitude and group delay approximation errors are 

simultaneously minimized. This multiple-criterion design problem can be further 

transformed to a constrained nonlinear programming problem and then solved by 

sequential quadratic programming method. In [30] and [31], the design problems are both 

formulated under the Lp-norm error criterion. 

An LP design method has been proposed by [32] under the minimax criterion. In 

order to simplify the design problem, the denominator of the complex approximation 

error ܧሺ߱ሻ defined by (1.21) is neglected, such that the peak error constraint |ܧሺ߱ሻ| ≤ ߜ 

is transformed to a quadratic form, which can be further approximated by a set of linear 

inequality constraints. The stability of designed IIR digital filters can be assured by a 

positive realness based constraint. Despite its simplicity, it is hard to obtain a true 

minimax design by this method. However, in practice, we can use this method at the 

beginning of some sequential design methods to achieve initial designs [18]. 

2.3 Model Reduction Design Methods 

Sequential and nonsequential design methods described above both belong to the 

category of direct design methods, that is, given a desired frequency response, we can 

directly obtain an IIR digital filter using these design methods. Another category of 

methods [33]-[43] design IIR digital filters through an indirect way. An FIR digital filter 

satisfying prescribed specifications are designed first, and then model reduction 

techniques are applied to approximate the FIR digital filter by a reduced-order IIR digital 

filter. Specifically, for the WLS and minimax designs, the desired frequency response 

 ൫݁௝ఠ൯ of an FIR digitalܨ ሺ߱ሻ in (1.18) and (1.21) is replaced by the frequency responseܦ

filter, which is designed first to approximate the ideal frequency response ܦሺ߱ሻ by any 

existing FIR design method. 
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The indirect design scheme has two advantages: 

1. Since an FIR filter design problem can be conveniently formulated as a convex 

optimization problem in a finite-dimensional space, which has been extensively 

studied, the second step becomes the kernel of an IIR filter design problem. By 

contrast with direct IIR digital filter design methods, the FIR approximation by IIR 

digital filters is less complicated. 

2. In most of indirect design methods, the FIR approximation by IIR digital filters can 

substantially guarantee the stability of designed IIR digital filters, which also 

facilitates the design procedures. 

However, even though the optimal results can be obtained in each step of indirect 

design methods, it cannot be concluded that the optimal solutions of the original IIR filter 

design problems can be definitely attained by indirect design methods. 

2.4 Filter Designs Using Convex Optimization 

The mathematics of convex optimization [51]-[55] has been studied for about one 

century. However, new research interests in this topic have been rejuvenated due to the 

advances of interior-point methods developed in the 1980s. Recently, many applications 

of convex optimization have been discovered in various fields of applied science and 

engineering, such as automatic control system, signal processing, VLSI circuit design, 

mechanical structure design, statistics and probability, and finance. There are many 

advantages of utilizing convex optimization to solve practical engineering problems. The 

most important one is that when a problem is equivalently cast as a convex optimization 

problem, any local solution is also a global optimum. Furthermore, a convex optimization 

problem can be solved very efficiently and reliably, using interior-point methods [70]-

[71]. 

Recently, convex optimization has been applied to FIR [4]-[5], [56]-[61], 

allpass [62]-[63], and IIR [6]-[8], [10]-[13], [19], [21], [23]-[24], [32], [35] digital filter 

designs. It has been shown in Chapter I that given a desired frequency response, the WLS 

and minimax FIR filter design problems can be cast as equivalent convex optimization 
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problems. Thus, the optimal designs can be definitely obtained. Compared with FIR filter 

designs, allpass filter designs face more challenges due to the same difficulties as 

encountered in IIR filter designs. An important property which can be exploited is the 

mirror symmetric relation between numerator and denominator, i.e., ܲሺݖሻ = ିݖெܳሺିݖଵሻ. 

Note that if the transfer function of an allpass filter is still defined by (1.4) with ܰ = ܯ, 

this property can be described by a set of linear equality constraints ݌ெି௠ = ݍ௠ for ݉ = 

 Therefore, most of optimization-based IIR filter design methods described in .ܯ ,… ,1 ,0

the proceeding sections can also be used to design allpass filters. However, this design 

strategy does not make full use of the characteristics of allpass digital filters, and hence 

some computation resources will be wasted. Since allpass filters have the fullband unity 

magnitude responses, the design problems can also be formulated in terms of phase 

response approximation error. Let ߠௗሺ߱ሻ and ߶ொሺ߱ሻ denote, respectively, the ideal phase 

response to be approximated and the phase response of the denominator ܳሺݖሻ. Then, the 

phase response approximation error ߠ௘ሺ߱ሻ  can be calculated by ߠ௘ሺ߱ሻ  = െ߱ܯ െ

ௗሺ߱ሻߠ െ 2߶ொሺ߱ሻ. Since the tangent function is an increasing function within [െ2/ߨ ,2/ߨ], 

we can reduce the phase response approximation error by minimizing the error limit of 

tan ఏ೐ሺఠሻ
ଶ

 over Ωூ , where tan ఏ೐ሺఠሻ
ଶ

 = ∑ ௤೘ ୱ୧୬ థ೘ሺఠሻಾ
೘సబ

∑ ௤೘ ୡ୭ୱ థ೘ሺఠሻಾ
೘సబ

 and ߶௠ሺ߱ሻ = ݉߱ െ ெఠାఏ೏ሺఠሻ
ଶ

. It 

can be seen that the approximation error is a linear fractional function of denominator 

coefficients. Accordingly, allpass filter design problems can be transformed into quasi-

convex optimization problems. 

As discussed in the previous sections, convex optimization has been widely used to 

solve IIR filter design problems, especially in a variety of sequential design methods. 

Since IIR filter designs are essentially nonconvex optimization problems, generally it is 

impossible or computationally costly to achieve optimal designs. Furthermore, even if an 

optimal design were given, it would be hard to confirm that it was indeed the global 

optimum. However, this difficulty can be alleviated to some extent, under the framework 

of convex optimization. For example, convex relaxation techniques can be applied to 

transform the original nonconvex design problems into convex forms. Then, lower 

bounds of optimal values of the original design problems can be obtained. These lower 

bounds provide us some important information regarding the globally optimal designs. 
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CHAPTER III 

IIR DIGITAL FILTER DESIGN WITH NEW STABILITY 

CONSTRAINT BASED ON ARGUMENT PRINCIPLE 

Stability is a critical concern in an IIR filter design problem. So far, many stability 

constraints have been proposed in frequency domain. However, some of these stability 

constraints are only sufficient conditions, which means stable filters could be excluded 

from the feasible sets of design problems. Recently, a stability constraint based on the 

argument principle of complex analysis has been developed in [21], which is both 

sufficient and necessary. By truncating the higher-order Taylor series components, the 

resulting stability constraint becomes a linear equality constraint. However, through a 

large number of simulations, it is found that this linearized constraint could be invalid in 

some situations. As an attempt to resolve this problem, a new stability constraint is 

proposed in this chapter, which is also based on the argument principle. Unlike the 

linearized stability constraint in [21], this new stability constraint is approximated in a 

quadratic form. The effectiveness of this approximate stability constraint can be 

demonstrated by theoretical analysis and many simulation examples. 

This chapter is organized as follows. In Section 3.1, a sequential SOCP method 

without any stability constraint is first introduced to design IIR digital filters in the WLS 

sense. Then, peak error constraints are incorporated as SOC constraints. In Section 3.2, a 

novel stability constraint is developed from the argument principle of complex analysis, 

which is then combined with the sequential design method. Design examples are 

presented in Section 3.3 to illustrate the performance of the proposed method. 

3.1 WLS Design of IIR Digital Filters 

3.1.1 Sequential Design Procedure 

In the WLS sense, the IIR filter design problem can be expressed by 
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 min
࢞ୀሾࢗ೅ ೅ሿ೅࢖

ௐ௅ௌሺ࢞ሻ (3.1)ܧ

where the approximation error ܧௐ௅ௌሺ࢞ሻ has been defined by (1.18). By introducing an 

auxiliary variable (3.1) ,ߜ can be reformulated as 

min (3.2) ߜ

s.t. න ܹሺ߱ሻ ቤ
ܲሺ݁௝ఠሻ
ܳሺ݁௝ఠሻ െ ሺ߱ሻቤܦ

ଶ

݀߱
Ω಺

൑ ଶ (3.2.a)ߜ

Because of the existence of denominator ܳሺ݁௝ఠሻ in the integrand, the constraint 

(3.2.a) cannot be cast as a convex form. Here, we employ the Steiglitz-McBride 

scheme [49] to simplify the above design problem. This strategy has been widely used by 

many design methods [7]-[13]. At the ݇th iteration, the constraint (3.2.a) is modified as 

     න ܹሺ௞ିଵሻሺ߱ሻหܲሺ௞ሻ൫݁௝ఠ൯ െ ሺ߱ሻܳሺ௞ሻ൫݁௝ఠ൯หଶ݀߱ܦ
Ω಺

 

ൌ න ܹሺ௞ିଵሻሺ߱ሻห்ࢉሺ߱ሻ࢞ሺ௞ሻหଶ݀߱
Ω಺

 

൑  ଶߜ

(3.3)

where ࢞ሺ௞ሻ denotes the current filter coefficients to be determined, and the vector ࢉሺ߱ሻ is 

defined by 

 
ሺ߱ሻࢉ ൌ ቈ

െܦሺ߱ሻ࣐ெሺ݁௝ఠሻ

࣐ேሺ݁௝ఠሻ
቉ (3.4)

The major modification is on the weighting function, i.e., ܹሺ௞ିଵሻሺ߱ሻ, which is defined 

by 

 
ܹሺ௞ିଵሻሺ߱ሻ ൌ

ܹሺ߱ሻ
|ܳሺ௞ିଵሻሺ݁௝ఠሻ|ଶ (3.5)
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Here, the denominator obtained at the previous iteration is taken into (3.5) to construct a 

new weighting function. Obviously, the left hand side of the inequality (3.3) is in a 

convex quadratic form with respect to ࢞ሺ௞ሻ, which can be expressed by 

 ࢞ሺ௞ሻ்࡭ሺ௞ିଵሻ࢞ሺ௞ሻ ൑ ଶ (3.6)ߜ

where 

ሺ௞ିଵሻ࡭  ൌ න ܹሺ௞ିଵሻሺ߱ሻ · Reሼࢉሺ߱ሻࢉுሺ߱ሻሽ݀߱
Ω಺

 (3.7)

Since ࡭ሺ௞ିଵሻ is a symmetric and positive definite matrix, (3.6) can be further cast into an 

SOC constraint 

 ቛൣ࡭ሺ௞ିଵሻ൧ଵ/ଶ࢞ሺ௞ሻቛ
ଶ

൑ (3.8) ߜ

where ࡭ଵ/ଶ denotes the square root of the matrix ࡭. 

In practice, for the sake of robustness of the sequential design procedure, the filter 

coefficients are updated by 

 ࢞ሺ௞ሻ ൌ ࢞ሺ௞ିଵሻ ൅ ,ሺ௞ሻࣁߛ 0 ൏ ߛ ൏ 1 (3.9)

where ࢞ሺ௞ିଵሻ is the coefficient vector obtained at the previous iteration, ߛ is a fixed step 

size, and ࣁሺ௞ሻ is the updating vector at the current iteration. By specifying ݔ଴
ሺ௞ሻ = 1 or 

equivalently ߟ଴
ሺ௞ሻ = 0 for all ݇ ≥ 0, the design problem (3.2) with the SOC constraint (3.8) 

can be rewritten by 

min (3.10) ߜ

s.t. ߟ଴
ሺ௞ሻ ൌ 0 (3.10.a)

 ฮࡲሺ௞ିଵሻࣁሺ௞ሻ ൅ ሺ௞ିଵሻฮଶࢍ ൑ (b.3.10) ߜ

where 
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ሺ௞ିଵሻࡲ  ൌ ሺ௞ିଵሻ൧ଵ/ଶ࡭ൣ
 (3.11)

ሺ௞ିଵሻࢍ  ൌ ሺ௞ିଵሻ൧ଵ/ଶ࢞ሺ௞ିଵሻ (3.12)࡭ൣ

The sequential design procedure continues until the following condition is satisfied 

 ฮࣁሺ௞ሻฮଶ ൑ (3.13) ߝ

where ߝ  is a prescribed convergence tolerance, or ݇  exceeds a specified maximum 

number of iterations. Although so far the convergence of the sequential procedure has not 

been definitely guaranteed, the effectiveness of the SM scheme has been demonstrated by 

many filter examples in a variety of papers. 

3.1.2 Peak Error Constraint 

In [7] and [8], linearized peak error constraints have been developed to control the 

peak errors. Here, we shall reformulate the peak error constraints as a set of SOC 

constraints, which can better approximate the true peak error constraints. 

The peak error constraints can be strictly expressed by 

 
ቤ
ܲሺ݁௝ఠ೔ሻ
ܳሺ݁௝ఠ೔ሻ െ ሺ߱௜ሻቤܦ ൑ ,ሺ߱௜ሻߤ ߱௜ א Ωூ, ݅ ൌ 1,2, … , (3.14) ܭ

where ߤሺ߱ሻ denotes the prescribed peak error limit at a specific frequency ߱. Like the 

difficulty encountered in formulating the design problem (3.2), the real peak error 

constraint also has the denominator on the left hand side of (3.14). Adopting a similar 

technique employed in (3.3) and rearranging terms, we obtain 

     หܲሺ௞ሻ൫݁௝ఠ೔൯ െ ܳሺ௞ሻ൫݁௝ఠ೔൯ܦሺ߱௜ሻห

ൌ ฮ࡮ሺ߱௜ሻࣁሺ௞ሻ ൅  ሺ߱௜ሻ࢞ሺ௞ିଵሻฮଶ࡮

൑ ሺ߱௜ሻߤ · หܳሺ௞ିଵሻ൫݁௝ఠ೔൯ห, ߱௜ א Ωூ, ݅ ൌ 1,2, … ,  ܭ

(3.15)

where 
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ሺ߱ሻ࡮  ൌ ሾReሼࢉሺ߱ሻࢉுሺ߱ሻሽሿଵ/ଶ (3.16)

Note that in [7] and [8] the IIR filter design problems are cast, respectively, into LP and 

QP problems, in which only linear constraints can be handled. Therefore, the 

approximation of a circle by a regular polygon is applied to linearize the constraint (3.14). 

Although this approximation is applicable when the edge number of a regular polygon is 

large enough, the total number of peak error constraints is rapidly increased. 

3.2 Argument Principle Based Stability Constraint 

A new stability constraint based on the argument principle is to be developed in this 

section. First of all, the argument principle is to be reviewed. The stability constraint 

derived from the argument principle is then to be approximated by a quadratic constraint 

and combined with the sequential design method described in Section 3.1. 

3.2.1 Argument Principle 

If ݂ሺݖሻ is analytic in a region ܴ enclosed by a contour ܥ in the ݖ plane except at a 

finite number of poles, let ௭ܰ be the number of zeros and ௣ܰ be the number of poles of 

the function ݂ሺݖሻ in ܴ, where each zero and pole is counted according to its multiplicity. 

Then we have 

 
௭ܰ െ ௣ܰ ൌ

1
݆ߨ2 ර

݂ᇱሺݖሻ
݂ሺݖሻ ݖ݀

஼
 (3.17)

This result is called the argument principle [64]-[65]. 

In order to develop a practical stability constraint for IIR digital filter designs, we 

consider the following monic polynomial function 

 ݂ሺݖሻ ൌ ሻݖெܳሺݖ

ൌ ෍ ெି௠ݖ௠ݍ
ெ

௠ୀ଴

, ଴ݍ ൌ 1 
(3.18)



 

28 

Obviously, ݂ሺݖሻ has ܯ zeros and no poles in the finite ݖ plane. The contour ܥ is chosen 

as an origin-centered circle with a prescribed maximum pole radius ݎ, i.e., ܥ ൌ ሼݖ: |ݖ| ൌ

,ݎ ݎ ൏ 1ሽ. Then, according to the argument principle described above, all zeros of ݂ሺݖሻ 

lie strictly in the region ܴ enclosed by ܥ, if and only if the following equality condition is 

satisfied 

 
ܯ ൌ

1
݆ߨ2 ර

݂ᇱሺݖሻ
݂ሺݖሻ ݖ݀

஼
 (3.19)

The integral in (3.19) is carried out counterclockwise along ܥ. Note that 

 
ර

݂ᇱሺݖሻ
݂ሺݖሻ ݖ݀

஼
ൌ ර݀ln݂ሺݖሻ

஼

ൌ ර݀ln|݂ሺݖሻ|
஼

൅ ݆ ර݀arg݂ሺݖሻ
஼

 
(3.20)

where arg݂ሺݖሻ denotes the argument of ݂ሺݖሻ. The first term on the right-hand side of the 

second equation of (3.20) is always equal to zero, since the logarithmic function is single-

valued and ܥ is closed. According to (3.18), arg݂ሺݖሻ can be expanded as ߱ܯ ൅ argܳሺݖሻ 

on ܥ, and then the stability constraint (3.19) can be simplified as 

 1
ߨ2 ර݀argܳሺݖሻ

஼
ൌ 0 (3.21)

Thus, the stability constraint (3.21) of an IIR digital filter is stated as: An IIR digital filter 

with the denominator ܳሺݖሻ is stable, if and only if the total change in the argument of 

ܳሺݖሻ is equal to 0, when the integral is carried out along ܥ counterclockwise. 

3.2.2 Argument Principle Based Stability Constraint 

The polynomial function ܳሺݖሻ can be expressed as 

 ܳሺݖሻ|௭ୀ௥௘ೕഘ ൌ ܳோ൫݁ݎ௝ఠ൯ ൅ ݆ܳூ൫݁ݎ௝ఠ൯ (3.22)

where 
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 ܳோ൫݁ݎ௝ఠ൯ ൌ Re൛ܳሺ݁ݎ௝ఠሻൟ ൌ Re൛࣐ெ
் ሺ݁ݎ௝ఠሻൟ(3.23) ࢗ

 ܳூ൫݁ݎ௝ఠ൯ ൌ Im൛ܳሺ݁ݎ௝ఠሻൟ ൌ Im൛࣐ெ
் ሺ݁ݎ௝ఠሻൟ(3.24) ࢗ

The argument of ܳሺ݁ݎ௝ఠሻ is then computed by 

 
argܳ൫݁ݎ௝ఠ൯ ൌ arctan

ܳூ൫݁ݎ௝ఠ൯
ܳோሺ݁ݎ௝ఠሻ

ൌ arctan
Im൛࣐ெ

் ሺ݁ݎ௝ఠሻൟࢗ
Reሼ࣐ெ

் ሺ݁ݎ௝ఠሻሽࢗ
 

(3.25)

By taking differentials with respect to ߱ on both sides of (3.25) and rearranging terms, 

we have 

 ݀
݀߱ argܳ൫݁ݎ௝ఠ൯ ൌ െ

ࢗ௝ఠሻ݁ݎሺࢸࢫ்ࢗ
|ܳሺ݁ݎ௝ఠሻ|ଶ  (3.26)

where 

ࢫ  ൌ diagሼ0,1, … , ሽ (3.27)ܯ

 ௝ఠ൯݁ݎ൫ࢸ    

ൌ Re൛࣐ெ൫݁ݎ௝ఠ൯࣐ெ
ு ൫݁ݎ௝ఠ൯ൟ 

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ 1 ଵcos߱ିݎ ڮ ߱ܯெcosିݎ

ଵcos߱ିݎ ଶିݎ ڮ ሺெାଵሻିݎ cosሺܯ െ 1ሻ ߱

ڭ ڭ ڰ ڭ

߱ܯெcosିݎ ሺெାଵሻିݎ cosሺܯ െ 1ሻ ߱ ڮ ଶெିݎ ے
ۑ
ۑ
ۑ
ۑ
ې (3.28)

In (3.27), diagሼܽ଴, ܽଵ, … , ܽ௡ሽ represents a diagonal matrix with ܽ௜ on its ݅th diagonal. By 

taking (3.26) into (3.21) and computing the integral over [0, ߨ], the stability constraint 

(3.21) is transformed to 

 ߬ሺݎ, ሻࢗ ൌ ,ݎሺࡳ்ࢗ ࢗሻࢗ ൌ 0 (3.29)

where 
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,ݎሺࡳ ሻࢗ ൌ න

௝ఠ൯݁ݎ൫ࢸࢫ ൅ ࢫ௝ఠሻ݁ݎሺࢸ
2|ܳሺ݁ݎ௝ఠሻ|ଶ ݀߱

గ

଴
 (3.30)

If ܳሺݖሻ  has ܮ ܥ roots outside (ܯ ≥)   and ܯ– ܮ   roots inside ܥ , it can be verified that 

߬ሺݎ, ,ݎሺ߬ ,ࢗ Then, given a denominator .ߨܮ = ሻࢗ  .ݎ ሻ has a stair shape with respect toࢗ

Unfortunately, the stability constraint (3.29) cannot be directly incorporated into the 

design problem (3.10), due to the following difficulties: 

1. The stability condition (3.29) represents a nonlinear equality constraint. 

2. The matrix ࡳሺݎ,  .ࢗ ሻ is dependent on denominator coefficientsࢗ

3. The matrix ࡳሺݎ,  .ሻ is indefiniteࢗ

The first difficulty can be overcome by adopting the following inequality 

 ߬ሺݎ, ሻࢗ ൌ ,ݎሺࡳ்ࢗ ࢗሻࢗ ൑ (3.31) ߩ

Decreasing ߩ makes more poles move inside the circle ܥ. When 0 < ߨ > ߩ, all poles will 

lie inside ܥ. In order to tackle the second difficulty, we adopt a similar technique used in 

Section 3.1. At the ݇th iteration, ߬ሺݎ,  ሻ is modified byࢗ

 ߬൫ݎ, ሺ௞ሻ൯ࢗ ൌ ,ݎ൫ࡳሺ௞ሻ்ࢗ ሺ௞ሻ (3.32)ࢗሺ௞ିଵሻ൯ࢗ

Since ࡳ൫ݎ, ሺ௞ିଵሻ൯ࢗ  is an indefinite matrix, this explicit stability constraint cannot be 

directly transformed into an SOC constraint. Therefore, we combine the stability 

constraint with the constraint (3.6) and obtain 

 ࢞ሺ௞ሻ்࡭෡ሺ௞ିଵሻ࢞ሺ௞ሻ ൑ ଶ (3.33)ߜ

where 

෡ሺ௞ିଵሻ࡭  ൌ ሺ௞ିଵሻ࡭ߙ ൅ ሺ1 െ ,ݎ෡൫ࡳሻߙ ሺ௞ିଵሻ൯ (3.34)ࢗ

 
,ݎ෡൫ࡳ ሺ௞ିଵሻ൯ࢗ ൌ ൥

,ݎ൫ࡳ ሺ௞ିଵሻ൯ࢗ ૙ሺெାଵሻൈሺேାଵሻ

૙ሺேାଵሻൈሺெାଵሻ ૙ሺேାଵሻൈሺேାଵሻ
൩ (3.35)
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In (3.35), ૙௠ൈ௡ denotes a zero matrix of size ݉-by-݊. Accordingly, ࡭ሺ௞ିଵሻ in (3.11) and 

(3.12) is replaced by ࡭෡ሺ௞ିଵሻ. If the sequential design procedure described in Section 3.1 

converges, it follows that ݏሺ௞ሻሺ߱ሻ = หொሺೖሻሺ௘ೕഘሻห
หொሺೖషభሻሺ௘ೕഘሻห

 → 1 for [ߨ ,0] א ߱׊ as ݇ → +∞. Then, 

we can obtain that 

,ݎ൫ࡳ      ሺ௞ିଵሻ൯ࢗ

ൌ න
௝ఠ൯݁ݎ൫ࢸࢫ ൅ ࢫ௝ఠ൯݁ݎ൫ࢸ

2|ܳሺ௞ሻሺ݁ݎ௝ఠሻ|ଶ · ሺ௞ሻሺ߱ሻ൧ଶ݀߱ݏൣ
గ

଴
ቤ

௞՜ାஶ
 

ൎ ,ݎ൫ࡳ  ሺ௞ሻ൯ࢗ

(3.36)

In practice, we can decrease ߙ  to achieve lower ߬൫ݎ, ሺ௞ሻ൯ࢗ , which corresponds to 

decreasing ߩ  of (3.31) as ݇  ՜ +∞. Therefore, besides the prescribed maximum pole 

radius ݎ, the regularization coefficient ߙ also plays an important role of restricting poles’ 

locations. It is noteworthy that decreasing ߙ makes ࡭෡ሺ௞ିଵሻ approach an indefinite matrix, 

which cannot be used to formulate the SOC constraint in (3.10). Thus, ߙ cannot be too 

small. Fortunately, generally ߙ is large enough to guarantee the positive definiteness of 

෡ሺ௞ିଵሻ࡭ . Simulation experience indicates that ߙ  is normally within the range [0.99, 

0.999999]. The effects of ߙ on the final design results will be illustrated by Example 2 in 

the next section. 

Finally, the major steps of the proposed sequential design method are summarized 

below: 

Step 1. Given an ideal frequency response ܦሺ߱ሻ, filter orders ܰ and ܯ, a weighting 

function ܹሺ߱ሻ, set ݇ = 0 and choose an initial guess ࢞ሺ଴ሻ. 

Step 2. Set ݇ = ݇+1, and compute ܹሺ௞ିଵሻሺ߱ሻ by (3.5), ࡭෡ሺ௞ିଵሻ by (3.34) and ࡮ሺ߱ሻ by 

(3.16). Then utilize ࡭෡ሺ௞ିଵሻ to calculate ࡲሺ௞ିଵሻ by (3.11) and ࢍሺ௞ିଵሻ by (3.12). 

Finally, solve for ࣁሺ௞ሻ the SOCP problem (3.10) with peak error constraints 

(3.15). 

Step 3. Update coefficients ࢞ሺ௞ሻ by (3.9). If the stopping condition (3.13) is satisfied, 
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or ݇ exceeds a predetermined maximum number of iterations, terminate the 

sequential design procedure. Otherwise, go to Step 2 and continue. 

3.3 Simulations 

In this section, four examples are presented to demonstrate the effectiveness of the 

proposed design method. At each iteration, the SOCP problem (3.10) is to be solved by 

SeDuMi [66] in MATLAB environment. Besides the peak and ܮଶ errors of magnitude 

(MAG) and group delay (GD), we also adopt the WLS approximation error ܧௐ௅ௌ defined 

by (1.18) to evaluate design performances. In our designs, the step size ߛ in (3.9), the 

convergence tolerance ߝ in (3.13), and the maximum number of iterations are always 

chosen as 0.8, 10-6, and 200, respectively. 

3.3.1 Example 1 

The first example taken from [7] is to design a lowpass digital filter. The ideal 

frequency response is defined by 

ሺ߱ሻܦ  ൌ ቊ
݁ି௝ଵହఠ 0 ൑ ߱ ൑ ߨ0.5

݁ିଵ଼଺.଺ሺ଴.ହగିఠሻ݁ି௝ଵହఠ ߨ0.5 ൏ ߱ ൏ ߨ
 

Filter orders are chosen as ܰ = 18 = ܯ. The maximum pole radius is set to 0.99 = ݎ. The 

weighting function ܹሺ߱ሻ  is set equal to 1 over the entire frequency band. The 

regularization coefficient ߙ of (3.34) is chosen as 0.999 in this example. All the initial 

numerator coefficients are chosen equal to 1, and the initial denominator coefficient 

vector is set to [1 0 … 0]T. The sequential design procedure converges to the final solution 

after 49 iterations. The maximum pole radius of the obtained IIR filter is 0.9226. All the 

filter coefficients are given in Table 3.1. The magnitude and group delay responses are 

shown in Fig. 3.1. All the error measurements are summarized in Table 3.2. For 

comparison, we also design a lowpass filter using the least 4-power method [7] under the 

same set of specifications. The maximum pole radius of the IIR filter obtained by [7] is 

0.9407. The design results are also shown in Fig. 3.1 as dashed curves. All the error 

measurements of the corresponding IIR filter are also given in Table 3.2 for comparison. 



 

33 

It can be seen that the proposed method can achieve much better performances in the 

WLS sense. 

 

Table 3.1 Filter Coefficients (݌଴ to ݌ே and ݍ଴ to ݍெ) of IIR digital filters Designed in Example 1 

Proposed 
WLS 
design 

 ସ -1.0713e-002 -1.3178e-002 8.9219e-003 9.5276e-004 -8.1651e-003݌~଴݌
 ଽ -1.9799e-003 1.0818e-002 1.7638e-003 -1.5605e-002 -8.9659e-004݌~ହ݌
 ଵସ 2.5278e-002 -1.2083e-003 -5.2009e-002 7.5360e-003 2.2659e-001݌~ଵ଴݌
  ଵ଼ 4.4907e-001 4.7822e-001 3.0489e-001 1.1057e-001݌~ଵହ݌
 ସ 1.0000e+000 -2.5196e-001 9.3246e-001 -2.2941e-001 8.3066e-002ݍ~଴ݍ
 ଽ 2.2442e-002 -1.6792e-002 -5.7370e-003 5.6841e-003 1.9017e-003ݍ~ହݍ
 ଵସ -2.1488e-003 -5.2038e-004 5.4899e-004 -2.1759e-004 7.2785e-004ݍ~ଵ଴ݍ
  ଵ଼ 8.4456e-004 -4.4200e-003 5.6961e-003 -3.3667e-003ݍ~ଵହݍ

Proposed 
WLS 
design 
with peak 
error 
constraints 

 ସ -3.7274e-003 -2.4165e-003 4.6995e-003 -2.8594e-003 -1.9867e-003݌~଴݌
 ଽ 5.2531e-004 5.0396e-003 -1.9890e-003 -8.0441e-003 4.2797e-003݌~ହ݌
 ଵସ 1.4556e-002 -9.6013e-003 -3.4800e-002 2.6837e-002 1.9091e-001݌~ଵ଴݌
  ଵ଼ 3.4038e-001 3.4966e-001 2.1667e-001 8.0380e-002݌~ଵହ݌
 ସ 1.0000e+000 -8.3160e-001 1.6551e+000 -1.1865e+000 7.9640e-001ݍ~଴ݍ
 ଽ -3.1829e-001 3.8143e-002 3.6156e-002 -1.4048e-002 -9.7852e-003ݍ~ହݍ
 ଵସ 7.9478e-003 5.1406e-003 -1.0034e-002 -1.2727e-003 2.2218e-002ݍ~ଵ଴ݍ
  ଵ଼ -3.7153e-002 3.5275e-002 -2.0688e-002 6.5262e-003ݍ~ଵହݍ

 

 
Fig. 3.1 Magnitude and group delay responses of IIR filters designed in Example 1. Solid curves: 

designed by the proposed method. Dashed curves: designed by the least 4-power method [7]. 
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Table 3.2 Error Measurements of Design Results in Example 1 

Method WLS Error ܧௐ௅ௌ 
(in dB) 

Passband MAG 
(Peak/L2 in dB) 

Passband GD 
(Peak/ L2) 

Proposed -48.586 -18.829/ -37.594 2.754/ 2.691e-1 
Least 4-power [7] -43.699 -20.308/ -33.920 1.849/ 3.364e-1 

 

In order to illustrate the effectiveness of peak error constraints formulated in (3.15), 

we introduce a transition band into the original design, and then the ideal frequency 

response ܦሺ߱ሻ is modified as 

ሺ߱ሻܦ  ൌ ቊ
݁ି௝ଵହఠ 0 ൑ ߱ ൑ ߨ0.5

0 ߨ0.55 ൑ ߱ ൏ ߨ
 

The regularization coefficient ߙ is set to 0.99996 in this design. Then, we impose peak 

error constraints on 90 equally-spaced frequency points over the stopband [0.55ߨ ,ߨ] with 

 for ݅ = 1, 2, …, 90. The weighting function [ߨ ,ߨ0.55] א ሺ߱௜ሻ = 0.0178 (−35 dB) for ߱௜ߤ

is set to 1 over the passband and stopband, and 0 over the transition band. After 65 

iterations, the design procedure converges to the final solution. The maximum pole radius 

of the obtained filter is 0.9732. Both numerator and denominator coefficients of the 

obtained IIR filter are also listed in Table 3.1. The design results are shown in Fig. 3.2 as 

solid curves. We also adopt the WLS method [11] to design an IIR filter under the same 

set of specifications. Note that the WLS method [11] is essentially a special case of the 

least ݌-power method [7] with 2 = ݌. The maximum pole radius of the IIR filter designed 

by [11] is 0.9620. The design results are also shown in Fig. 3.2 as dashed curves, and all 

the error measurements are summarized in Table 3.3 for comparison. In [11] and [7], the 

positive realness based stability constraint is employed to guarantee the stability of 

designed IIR filters, which is expressed by 

 Re൛ܳ൫݁௝ఠ൯ൟ ൌ ்ࢗ · Re൛࣐ெ൫݁௝ఠ൯ൟ ൒ ,ߥ ߱׊ א ሾ0, ሿ (3.37)ߨ

where ߥ is a small positive number. This stability constraint is only sufficient. Simulation 

results indicate that IIR filters designed by the proposed method do not always satisfy 

(3.37), whereas the obtained IIR filters are still stable. 
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Fig. 3.2 Magnitude and group delay responses of IIR filters designed in Example 1 with peak error 

constraints. Solid curves: designed by the proposed method. Dashed curves: designed by the 
WLS method [11]. 

 

Table 3.3 Error Measurements of Design Results in Example 1 with Peak Error Constraints 

Method WLS Error ܧௐ௅ௌ 
(in dB) 

Passband MAG 
(Peak/L2 in dB) 

Passband GD 
(Peak/ L2) 

Stopband MAG 
(Peak/L2 in dB) 

Proposed -74.162 -29.668/ -47.348 3.675/ 2.221e-1 -35.001/ -47.305 
WLS [11] -63.911 -28.466/ -42.058 7.528/ 4.687e-1 -36.467/ -42.709 

 

3.3.2 Example 2 

The second example is to design a halfband highpass filter [11], [28]. The ideal 

frequency response is given by 

ሺ߱ሻܦ ൌ ቊ
݁ି௝ଵଶఠ ߨ0.525 ൑ ߱ ൏ ߨ

0 0 ൑ ߱ ൑ ߨ0.475
 

Numerator and denominator orders are chosen as 14 = ܰ = ܯ. The prescribed maximum 

pole radius is set equal to 1 = ݎ. The weighting function is chosen as ܹሺ߱ሻ = 1 over the 

passband [0.525ߨ ߨ , ] and the stopband [0, 0.475ߨ ], and 0 over the transition band 

ߨ0.475) ߙ The regularization coefficient .(ߨ0.525 ,  is selected as 0.99996. The initial 
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numerator coefficients are all set equal to 1 as in Example 1. The initial poles are 

uniformly located on the unit circle, i.e., ݁േ௝ቀమഏ೘
ಾ ି ഏ

ಾቁ for ݉ = 1, 2, …, 2/ܯ. Therefore, the 

initial denominator polynomial is chosen by 

 
ܳሺ଴ሻሺݖሻ ൌ ෑ ൤1 െ ଵ݁௝ቀଶగ௠ିݖ

ெ ିగ
ெቁ൨ · ൤1 െ ଵ݁ି௝ቀଶగ௠ିݖ

ெ ିగ
ெቁ൨

ெ/ଶ

௠ୀଵ

 

ൌ ෑ ൤1 െ ଵcosିݖ2 ൬
݉ߨ2

ܯ െ
ߨ
൰ܯ ൅ ଶ൨ିݖ

ெ/ଶ

௠ୀଵ

 

(3.38)

Note that this initial IIR filter is unstable. In many sequential design methods (e.g., the 

GN method [20]), unstable IIR filters cannot be used as initial designs. Otherwise, the 

stability constraints therein could become invalid. However, this is not required by the 

proposed design method. The stability of IIR filters designed by the proposed method can 

always be assured, provided the design procedure converges and the regularization 

parameter is appropriately selected. Starting from the initial point (3.38), the sequential 

design procedure reaches the final solution after 72 iterations. The maximum pole radius 

of the designed IIR filter is 0.9782. All the filter coefficients are listed in Table 3.4. The 

magnitude and group delay responses of the designed IIR filter are shown as solid curves 

in Fig. 3.3. For comparison, we also adopt the WLS method [28] proposed under the 

weighted integral of the squared error (WISE) criterion to design an IIR filter under the 

same specifications. The maximum pole radius of the obtained IIR filter is 0.9950. The 

magnitude and group delay responses of the corresponding IIR filter are also presented as 

dashed curves in Fig. 3.3. All the error measurements are given in Table 3.5. Apparently, 

the proposed method can achieve much better performances than the WISE method [28]. 

 
Table 3.4 Filter Coefficients (݌଴ to ݌ே and ݍ଴ to ݍெ) of IIR Digital Filter Designed in Example 2 

 ସ 6.8821e-005 8.6792e-003 1.3100e-002 6.2211e-003 -2.3882e-003݌~଴݌
 ଽ 3.1138e-003 1.0164e-002 -5.8755e-003 -2.0533e-002 1.8923e-002݌~ହ݌
 ଵସ 5.1744e-002 -1.5480e-001 2.1374e-001 -1.5531e-001 8.2951e-002݌~ଵ଴݌
 ସ 1.0000e+000 1.5137e+000 2.3726e+000 2.2287e+000 1.5549e+000ݍ~଴ݍ
 ଽ 7.3344e-001 1.8059e-001 -2.7787e-002 -5.4524e-002 -4.7085e-002ݍ~ହݍ
 ଵସ -3.9418e-002 -2.0828e-002 7.1364e-005 7.5728e-003 3.8850e-003ݍ~ଵ଴ݍ
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Fig. 3.3 Magnitude and group delay responses of IIR filters designed in Example 2. Solid curves: 

designed by the proposed method. Dashed curves: designed by the WISE method [28]. 

 

Table 3.5 Error Measurements of Design Results in Example 2 

Method WLS Error ܧௐ௅ௌ 
(in dB) 

Passband MAG 
(Peak/L2 in dB) 

Passband GD 
(Peak/ L2) 

Stopband MAG 
(Peak/L2 in dB) 

Proposed -70.869 -27.769/ -47.505 1.887/ 1.234e-1 -23.064/ -42.801 
WISE [28]  -64.096 -23.748/ -42.684 4.086/ 2.418e-1 -21.362/ -39.942 

 

In order to demonstrate the effects of parameter ߙ on final design results, we repeat 

the design procedure for 20 times by increasing ߙ from 0.99 to 1. In all the designs, the 

admissible maximum pole radius is always set to 1. Fig. 3.4 shows the variation of 

maximum pole radii of the obtained IIR filters with respect to ߙ. It can be observed that 

some poles approach the boundary of the prescribed stability domain when gradually 

augmenting ߙ, which coincides with the previous discussion. Note that when 1 = ߙ, the 

design problem is essentially formulated without any stability constraint. We also plot the 

variation of total number of iterations in each design with respect to ߙ in Fig. 3.5. When 

 the design procedure cannot converge within the specified maximum number of ,1 = ߙ

iterations. All the other design procedures converge to the final solutions within 40 

iterations. Furthermore, it can be observed that with a smaller ߙ the design procedure can 

converge to the final solution within a less number of iterations. However, the maximum 
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pole radius of the designed IIR filter can accordingly be reduced, which may degrade the 

design performance. Thus, in practical designs, the regularization coefficient ߙ should be 

appropriately selected, such that we can achieve the balance between the design 

performance and the convergence speed. The simulation results presented in Fig. 3.4 

and Fig. 3.5 suggest a way to choose ߙ. First of all, given a maximum pole radius ݎ, 

choose 1 = ߙ and perform the design procedure. If the design procedure converges within 

the specified maximum number of iterations and all poles of the obtained IIR filter lie 

inside the prescribed stability domain, the design result can be accepted as the final 

solution. Otherwise, ߙ  should be gradually decreased until a satisfactory design is 

obtained. Actually, the values of ߙ adopted in all the designs presented in this section are 

determined in this way. 

 

 
Fig. 3.4 Variation of maximum pole radii of designed IIR digital filters with respect to the regularization 

parameter α. 

 

3.3.3 Example 3 

Another lowpass digital filter with the following ideal frequency response is 

designed in this example 
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Fig. 3.5 Variation of total number of iterations with respect to the regularization parameter α. 

 

ሺ߱ሻܦ ൌ ቊ
݁ି௝ଵଶఠ 0 ൑ ߱ ൑ ߨ0.4

0 ߨ0.56 ൑ ߱ ൏ ߨ
 

The design specifications are exactly the same as those used by the first example in [21]. 

Filter orders are chosen as ܰ = 15 and 4 = ܯ. The prescribed maximum pole radius is set 

to 0.84 = ݎ. The weighting function is specified as 

ܹሺ߱ሻ ൌ ൞

1 0 ൑ ߱ ൑ ߨ0.4

2.6 ߨ0.56 ൑ ߱ ൏ ߨ

0 otherwise

 

The regularization coefficient ߙ  used in (3.34) is set to 0.999992. The same initial 

numerator and denominator coefficients are chosen as the same as in Example 1. After 12 

iterations, the sequential design method converges to the final solution. The maximum 

pole radius of the designed IIR digital filter is 0.7896. Both numerator and denominator 

coefficients of the obtained IIR filter are summarized in Table 3.6. We also utilize the 

WLS method [21] to design an IIR filter under the same set of specifications. The 
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maximum pole radius of the corresponding filter is 0.7233. The magnitude and group 

delay responses of designed IIR filters are shown in Fig. 3.6. And all the error 

measurements are given in Table 3.7 for comparison. It can be observed that the proposed 

design method can achieve much reduction on the WLS approximation error ܧௐ௅ௌ. 

 

Table 3.6 Filter Coefficients (݌଴ to ݌ே and ݍ଴ to ݍெ) of IIR digital filter Designed in Example 3 

 ସ -3.9873e-003 -1.4152e-003 6.1913e-003 3.7134e-003 -1.0342e-002݌~଴݌
 ଽ -8.8568e-003 1.6292e-002 1.9862e-002 -2.5760e-002 -4.9525e-002݌~ହ݌
 ଵସ 4.6060e-002 2.3067e-001 3.4924e-001 3.0320e-001 1.5781e-001݌~ଵ଴݌
     ଵହ  4.1217e-002݌
 ସ 1.0000e+000 -5.3440e-001 7.9664e-001 -2.4615e-001 6.1287e-002ݍ~଴ݍ

 

 
Fig. 3.6 Magnitude and group delay responses of IIR filters designed in Example 3. Solid curves: 

designed by the proposed method. Dashed curves: designed by the WLS method with linearized 
argument principle based stability constraint of [21]. 

 

Table 3.7 Error Measurements of Design Results in Example 3 

Method WLS Error ܧௐ௅ௌ 
(in dB) 

Passband MAG 
(Peak/L2 in dB) 

Passband GD 
(Peak/ L2) 

Stopband MAG 
(Peak/L2 in dB) 

Proposed -89.138 -33.069/ -52.705 0.239/ 2.382e-2 -37.890/ -57.177 
WLS [21]  -72.213 -31.547/ -44.707 0.223/ 5.946e-2 -36.990/ -49.421 
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A stability constraint based on the linearized argument principle is used by the WLS 

design method [21]. At the kth iteration, ߬൫ݎ,  ሺ௞ሻ൯ is approximated by its first-orderࢗ

Taylor series, and then the stability constraint (3.29) can be expressed by 

 ߬൫ݎ, ሺ௞ሻ൯ࢗ ൎ ߬൫ݎ, ሺ௞ିଵሻ൯ࢗ ൅ ,ݎ൫்߬׏ ௤ࣁሺ௞ିଵሻ൯ࢗ
ሺ௞ሻ ൌ 0 (3.39)

where ࣁ௤
ሺ௞ሻ  is composed of the first 1+ܯ elements of ࣁሺ௞ሻ  to update the denominator 

coefficients. Assuming that at the previous iteration all poles lie inside ܥ, then we have 

߬൫ݎ,  ሺ௞ିଵሻ൯ = 0. Thus, the stability constraint (3.39) is simplified asࢗ

,ݎ൫்߬׏  ௤ࣁሺ௞ିଵሻ൯ࢗ
ሺ௞ሻ ൌ 0 (3.40)

which is a linear equality constraint with respect to ࣁ௤
ሺ௞ሻ. The design procedures, which 

incorporate (3.40) as the stability constraint, have to start from a stable initial point. Fig. 

3.7 shows the values of ்߬׏൫ݎ, ௤ࣁሺ௞ିଵሻ൯ࢗ
ሺ௞ሻ during the design procedure of the proposed 

method. It can be observed that the maximum pole radius of the designed IIR filter is still 

less than ݎ, even though the linearized stability constraint (3.40) is not satisfied. 

 
Fig. 3.7 Values of ்߬׏൫ݎ, ௤ࣁሺ௞ିଵሻ൯ࢗ

ሺ௞ሻ during the design procedure of the proposed method. 



 

42 

3.3.4 Example 4 

The last example is to implement an equalization and anti-aliasing filter [20], [67], 

which follows an analog anti-aliasing filter and a sampler, to equalize the magnitude and 

phase (or group delay) responses of the analog filter in the passband and increase the 

attenuation in the stopband. The ideal frequency response of the cascaded system is 

defined by 

௖ሺ߱ሻܦ ൌ ൞
݁ି௝ఠఛ೏ 0 ൑ ߱ ൑

ߨ
16

0
ߨ3
16 ൑ ߱ ൏ ߨ

 

Then, the desired frequency response of the IIR equalization and anti-aliasing filter is 

 ௔ሺ݆߱/ܶሻ is the frequency response of the analog filter andܪ ௔ሺ݆߱/ܶሻ, whereܪ/௖ሺ߱ሻܦ

here ܶ denotes the sampling period. The transfer function ܪ௔ሺݏሻ of the analog filter has 

been given in [67]. The desired delay ߬ௗ can be used as a free parameter to minimize the 

approximation error. In [67], the best FIR filter design according to the complex 

Chebyshev criterion has been presented with ߬ௗ = 35, while an IIR filter with ߬ௗ = 32 has 

been designed in [20] under the least-squares sense. In our designs, the best result can be 

obtained when ߬ௗ = 34. Filter orders are chosen as ܰ = 20 and 4 = ܯ. The prescribed 

maximum pole radius is chosen as 0.99 = ݎ. The regularization coefficient ߙ is selected 

as 0.99994. In our design, the weighting function is chosen as 

ܹሺ߱ሻ ൌ

ە
ۖ
۔

ۖ
100ۓ 0 ൑ ߱ ൑

ߨ
16

1
ߨ3
16 ൑ ߱ ൏ ߨ

0 otherwise

 

The initial numerator and denominator coefficients are also chosen as ࢖ሺ଴ሻ = [1 1 … 1]T, 

and ࢗሺ଴ሻ  = [1 0 … 0]T. The proposed method converges to the final solution after 69 

iterations. The maximum pole radius of the designed IIR filter is 0.9673. All the filter 

coefficients are given in Table 3.8. The magnitude responses, phase response errors, and 

group delays of analog filter, designed IIR equalization and anti-aliasing filter, and 
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cascaded system are all shown in Fig. 3.8. For comparison, we also design an IIR 

equalization and anti-aliasing filter under the same set of specifications using the GN 

method proposed by [20]. The maximum pole radius of the corresponding IIR filter is 

0.9810. All the error measurements of IIR equalization and anti-aliasing filters are 

summarized in Table 3.9 for comparison. It can be seen that the proposed method can 

achieve better performances except the peak error of group delay on the passband. 

 
Table 3.8 Filter Coefficients (݌଴ to ݌ே and ݍ଴ to ݍெ) of IIR Digital Filter Designed in Example 4 

 ସ 4.4725e-003 -8.8140e-003 5.2339e-003 -1.5784e-003 -2.5343e-004݌~଴݌
 ଽ -1.0631e-004 8.3618e-005 2.8017e-004 4.4110e-004 5.3299e-004݌~ହ݌
 ଵସ 5.3437e-004 4.4628e-004 2.8717e-004 9.3356e-005 -9.4123e-005݌~ଵ଴݌
 ଵଽ -2.3516e-004 -3.0346e-004 -2.4784e-003 9.2375e-003 -1.4547e-002݌~ଵହ݌
     ଶ଴  8.2835e-003݌
 ସ 1.0000e+000 -3.6483e+000 5.0585e+000 -3.1553e+000 7.4664e-001ݍ~଴ݍ

 

 
Fig. 3.8 Magnitude and group delay responses, and phase error of IIR filter designed in Example 4. Solid 

curves: cascaded system. Dashed curves: equalizer designed by the proposed method. Dash-
dotted curves: analog filter. 

 
Table 3.9 Error Measurements of Design Results in Example 4 

Method WLS Error ܧௐ௅ௌ 
(in dB) 

Passband MAG 
(Peak/L2 in dB) 

Passband GD 
(Peak/ L2) 

Stopband MAG 
(Peak/L2 in dB) 

Proposed -77.786 -46.979/ -63.413 0.774/ 3.693e-2 -27.225/ -44.750 
GN [20]  -74.334 -33.147/ -60.577 0.677/ 6.532e-2 -26.166/ -44.356 
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In [20], the Rouché’s theorem is employed to develop a stability constraint: Given 

an initial denominator ܳሺ଴ሻሺݖሻ chosen with all its roots inside ܥ, then all denominators 

ܳሺ௞ሻሺݖሻ (݇  = 1, 2, …) have their roots inside ܥ  if the denominator updates ߂ሺ௞ሻሺݖሻ ൌ

ܳሺ௞ሻሺݖሻ െ ܳሺ௞ିଵሻሺݖሻ satisfy 

 ห߂ሺ௞ሻ൫݁ݎ௝ఠ൯ห ൌ ቚ࣐ெ
் ൫݁ݎ௝ఠ൯ࣁ௤

ሺ௞ሻቚ

൑ หܳሺ௞ିଵሻ൫݁ݎ௝ఠ൯ห, ߱׊ א ሾ0,  ሿߨ
(3.41)

Like (3.37), the Rouché’s theorem based stability constraint is only a sufficient condition 

to ensure stability. Moreover, these two constraints must be satisfied for [ߨ ,0] א ߱׊. A 

traditional way to incorporate these constraints is to impose them on a set of frequency 

points densely sampled over [0, ߨ], which, however, greatly increases the number of 

constraints. Another efficient way is to employ a multiple exchange algorithm to keep 

tracking the active constraints, such that only a finite number of stability constraints need 

to be incorporated. Unlike (3.37) and (3.41), the proposed stability constraint is realized 

over the whole frequency band [0, ߨ] instead of at each specific frequency. Thus, we do 

not need to enforce the stability constraint on a large number of frequency points or 

employ an inner iterative procedure for the multiple exchange algorithm. 
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CHAPTER IV 

MINIMAX DESIGN OF IIR DIGITAL FILTERS USING 

SEQUENTIAL SOCP 

In this chapter, we shall develop a new sequential design method in the minimax sense. 

Compared with some other sequential design methods, the most important advantage of 

this design method is that the convergence of the design procedure can be guaranteed. In 

order to tackle the nonconvexity of the original design problem, convex relaxation 

technique is to be introduced, such that the original design problem can be transformed to 

a relaxed SOCP design problem. By solving this relaxed design problem, lower and 

upper bounds of the minimum approximation error can be further estimated. By reducing 

the discrepancy between the original and relaxed design problems, a real minimax design 

can be finally obtained. 

This chapter is organized as follows. The original design problem is first presented 

in Section 4.1. Then, convex relaxation technique is introduced to transform the original 

nonconvex design problem into a convex form. A sequential design procedure is 

presented in Section 4.1. Some practical issues are discussed in Section 4.2. Several 

design examples are presented in Sections 4.3. 

4.1 Minimax Design Method 

4.1.1 Problem Formulation 

Using the complex approximation error ܧሺ߱ሻ defined by (1.21) and the minimax 

approximation error ܧெெሺ࢞ሻ defined by (1.20), the design problem of an IIR digital filter 

in the (weighted) minimax sense can be strictly expressed by 

 min
࢞

ெெሺ࢞ሻܧ ൌ min
࢞

max
ఠאΩ಺

ሺ߱ሻ| (4.1)ܧ|

By introducing an auxiliary variable ߜ, the design problem (4.1) can be formulated as 
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min (4.2) ߜ

s.t. ݔ଴ ൌ 1 (4.2.a)

 
หܧሺ߱ሻܳ൫݁௝ఠ൯หଶ ൌ ԡ࡯ሺ߱ሻ࢞ԡଶ

ଶ

൑ ߜ · หܳ൫݁௝ఠ൯หଶ ൌ ߜ · ԡࡲሺ߱ሻࢗԡଶ
ଶ, ߱ א Ωூ 

(4.2.b)

where 

 
ሺ߱ሻ࡯ ൌ ܹሺ߱ሻ ൥

Re൛ܦሺ߱ሻ࣐ெ
் ሺ݁௝ఠሻൟ െRe൛࣐ே

் ሺ݁௝ఠሻൟ

Im൛ܦሺ߱ሻ࣐ெ
் ሺ݁௝ఠሻൟ െIm൛࣐ே

் ሺ݁௝ఠሻൟ
൩ (4.3)

 
ሺ߱ሻࡲ ൌ ൥

Re൛࣐ெ
் ሺ݁௝ఠሻൟ

Im൛࣐ெ
் ሺ݁௝ఠሻൟ

൩ (4.4)

Note that the term |ܧሺ߱ሻ| in the original problem (4.1) has been replaced by its squared 

value in (4.2). The variable ߜ can be viewed as the (squared) approximation error limit in 

(4.2). It is obvious that the solution of (4.1) is also optimal to (4.2) and vice versa. 

Thereby, these two design problems are essentially equivalent to each other. In the design 

problems (4.1) and (4.2), there is an implicit constraint on the denominator ܳሺݖሻ, that is, 

all roots of ܳሺݖሻ should lie inside the unit circle. For ease of discussion, we shall first 

describe the design method without any stability constraint. Then, the stability issue will 

be addressed in Section 4.2. 

4.1.2 Convex Relaxation 

It can be noticed that only the magnitude of the denominator is required on the right 

hand side of the inequality constraint (4.2.b), which will be used to develop the design 

method. 

By introducing another polynomial ܴሺݖሻ with coefficients ݀௠ (݉ = െܯ, െ1+ܯ, …, 

 it can be verified that ,(ܯ ,1–ܯ
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ܳሺݖሻܳሺିݖଵሻ ൌ ൭ ෍ ௠ିݖ௠ݍ

ெ

௠ୀ଴

൱ ൭ ෍ ௠ݖ௠ݍ
ெ

௠ୀ଴

൱

                        ൌ ෍ ݀௠ିݖ௠
ெ

௠ୀିெ

 

             ൌ ܴሺݖሻ 

(4.5)

where the polynomial coefficients of ܴሺݖሻ can be computed by 

 
݀௠ ൌ ݀ି௠ ൌ ෍ ௜ା௠ݍ௜ݍ

ெି௠

௜ୀ଴

, ݉ ൌ 0,1, … , (4.6) ܯ

It is well known that {݀݉, ݉ = െܯ ,… ,1 ,0 ,1− ,… ,ܯ} is an autocorrelation sequence. 

Some important properties can be directly derived from (4.6): 

1. ݀଴ = ∑ ௠ݍ
ଶெ

௠ୀ଴  = ԡࢗԡଶ
ଶ 

2. ݀േெ = ݍ଴ݍெ = ݍெ, where ݍ଴ = 1 

3. ห݀േ௠ห = หࢗ௠,ଵ
் ԡଶࢗ௠,ଶฮଶ ≤ ԡࢗ௠,ଵฮଶ·ฮࢗ௠,ଶห ≤ ฮࢗ

ଶ = ݀଴ (݉ = 0, 1, …, ܯ), where ࢗ௠,ଵ 

଴ݍ] = ெି௠ݍ …  ]T and ࢗ௠,ଶ ௠ݍ] =  ெݍ …  ]T. The first inequality follows from the 

Cauchy-Schwartz inequality. 

By defining ࢊ = [݀଴ ݀ଵ … ݀ெ]T and ࢙ሺ߱ሻ = [1 2cos߱ … 2cos߱ܯ]T, and evaluating 

(4.5) on the unit circle, we have 

 หܳ൫݁௝ఠ൯หଶ ൌ ԡࡲሺ߱ሻࢗԡଶ
ଶ

ൌ  ሺ߱ሻ்࢙ࢊ

ൌ ܴሺ݁௝ఠሻ 

(4.7)

Using (4.7), the constraint (4.2.b) can be cast as a hyperbolic constraint by replacing 

หܳሺ݁௝ఠሻหଶ
 by ்࢙ࢊሺ߱ሻ  on the right hand side of the inequality. It is known that a 

hyperbolic constraint can be further transformed to an equivalent SOC constraint [68]. 

On the other hand, the feasible ࢗ and ࢊ should satisfy (4.7) for [ߨ ,0] א ߱׊. Then, the 

design problem (4.2) can be reformulated as 
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min (4.8) ߜ

s.t. ݔ଴ ൌ 1 (4.8.a)

 ԡ࡯ሺ߱ሻ࢞ԡଶ
ଶ ൑ ߜ · ,ሺ߱ሻ்࢙ࢊ ߱׊ א Ωூ (4.8.b)

 ԡࡲሺ߱ሻࢗԡଶ
ଶ ൌ ,ሺ߱ሻ்࢙ࢊ ߱׊ א ሾ0, ሿ (4.8.c)ߨ

Note that the hyperbolic constraint (4.8.b) is enforced over Ωூ , while the quadratic 

equality constraint (4.8.c) must be satisfied for [ߨ ,0] א ߱׊. Although the trigonometric 

polynomial coefficients ࢊ are introduced as auxiliary variables in (4.8), they are closely 

related to the denominator coefficients ࢗ  through (4.6). In order to establish the 

equivalence between the design problems (4.2) and (4.8), the constraint (4.6) should be 

incorporated in (4.8). However, the equality constraint (4.8.c) implies that the polynomial 

ܴሺݖሻ  is nonnegative on the unit circle. Then, based on the theorem of spectral 

factorization [69], we can find a causal polynomial ܨሺݖሻ  = ∑ ௠݂ିݖ௠ெ
௠ୀ଴  with real 

coefficients such that ܨሺݖሻܨሺିݖଵሻ  = ܴሺݖሻ . Although the spectral factorization is not 

unique, among all the possible spectral factorizations, there is only one minimum-phase 

polynomial. Then, in view of the stability requirement, ܨሺݖሻ  should be the unique 

minimum-phase polynomial. Thereby, ܳሺݖሻ is equivalent to ܨሺݖሻ, and (4.6) becomes a 

redundant constraint. 

Due to the existence of the quadratic equality constraint (4.8.c), the design problem 

(4.8) is still nonconvex. However, we can relax it into a convex problem by replacing 

(4.8.c) by another hyperbolic inequality constraint ԡࡲሺ߱ሻࢗԡଶ
ଶ ൑ ሺ߱ሻ்࢙ࢊ . Then, the 

design problem (4.8) is transformed to 

min (4.9) ߜ

s.t. ݔ଴ ൌ 1 (4.9.a)

ெݔ  െ ݀ெ ൌ 0 (4.9.b)

 ԡ࡯ሺ߱ሻ࢞ԡଶ
ଶ ൑ ߜ · ,ሺ߱ሻ்࢙ࢊ ߱׊ א Ωூ (4.9.c)
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 ԡࡲሺ߱ሻࢗԡଶ
ଶ ൑ ,ሺ߱ሻ்࢙ࢊ ߱׊ א ሾ0, ሿ (4.9.d)ߨ

Since the equality constraint (4.8.c) is replaced by the SOC constraint (4.9.d), the 

variables ࢗ and ࢊ in (4.9) may not satisfy the equality constraint (4.6) any longer. For 

ease of later discussion, we represent the resulting difference between หܳሺ݁௝ఠሻหଶ
 and 

 ሺ߱ሻ by்࢙ࢊ

 
,ሺ݀଴ߣ ሻࢗ ൌ

1
ߨ න ቂหܳ൫݁௝ఠ൯หଶ െ ሺ߱ሻቃ்࢙ࢊ ݀߱

గ

଴
 

ൌ ԡࢗԡଶ
ଶ െ ݀଴ 

(4.10)

From (4.9.d), we have ߣሺ݀଴,  ,ሻ ≤ 0. Hence, by introducing the relaxed constraint (4.9.d)ࢗ

the Property 1 of (4.6) has been accordingly relaxed to ԡࢗԡଶ
ଶ ൑ ݀଴. Although the equality 

constraint (4.8.c) has been replaced by (4.9.d), the nonnegativity of ܴሺݖሻ on the unit 

circle is still guaranteed. According to the theorem of spectral factorization, {݀݉, ݉ = 

െܯ ,… ,1 ,0 ,1− ,… ,ܯ} in (4.9) is still an autocorrelation sequence. Thus, the Property 3 

of (4.6) can be automatically satisfied. The Property 2 of (4.6) is ensured by the 

constraint (4.9.b), which can pre-filter out unqualified ݔெ and ݀ெ. 

Let כߜ denote the optimal value of the original design problem (4.8), and ߜ௥௘௟
כ  be the 

optimal value of the relaxed design problem (4.9). Since the feasible set defined by the 

relaxed constraint (4.9.d) is larger than that of (4.8.c), we always have ߜ௥௘௟
כ  which ,כߜ ≥ 

means a lower bound on the optimal value of the original design problem (4.8) can be 

obtained by solving (4.9). However, due to the existence of the relaxed constraint (4.9.d), 

௥௘௟ߜ
כ  is not equal to the real (squared) minimax error of the IIR filter obtained by (4.9), 

which is denoted by ߜ௠௠
כ  = maxఠאΩ಺|ܧሺ߱ሻ|ଶ . Furthermore, ߜ௠௠

כ  serves as an upper 

bound of כߜ, i.e., ߜ௥௘௟
כ ௠௠ߜ ≥ כߜ ≥ 

כ . By reducing the discrepancy between ߜ௥௘௟
כ  and ߜ௠௠

כ , 

satisfactory designs can be achieved. 

4.1.3 Sequential Design Procedure 

In general, by solving the relaxed design problem (4.9), the obtained optimal value 

௥௘௟ߜ
כ  is less than the real (squared) minimax error ߜ௠௠

כ , and the corresponding ࢞ and ࢊ 
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cannot exactly satisfy the quadratic equality constraint (4.8.c) over the whole frequency 

band [0, ߨ]. Hence, they are not the true solution for the minimax design problem (4.8). 

In this section, we will develop a design procedure, in which a sequence of SOCP 

problems based on (4.9) are subsequently solved so as to gradually reduce the 

discrepancy between ்࢙ࢊሺ߱ሻ and ԡࡲሺ߱ሻࢗԡଶ
ଶ  in (4.9.d). At the ݇ th iteration, the filter 

coefficients ࢞ and the trigonometric polynomial coefficients ࢊ are updated by 

 ࢞ሺ௞ሻ ൌ ࢞ሺ௞ିଵሻ ൅ Δ࢞ሺ௞ሻ (4.11)ߙ

ሺ௞ሻࢊ  ൌ ሺ௞ିଵሻࢊ ൅ ሺ௞ሻ (4.12)ࢊΔߙ

where the step size ߙ is chosen within the range of (0, 1), ࢞ሺ௞ିଵሻ and ࢊሺ௞ିଵሻ are obtained 

at the previous iteration, and the search direction Δ࢞ሺ௞ሻ = ൣ࢛ሺ௞ሻ் ࢜ሺ௞ሻ் ൧்
 and Δࢊሺ௞ሻ are 

determined at the current iteration. In Δ࢞ሺ௞ሻ, subvectors ࢛ሺ௞ሻ and ࢜ሺ௞ሻ are used to update 

the denominator and numerator coefficients, respectively. Suppose ݔ଴
ሺ௞ሻ = 1 for ݇ ൒ 0. 

Then, (4.9.a) can be replaced by another linear equality constraint Δݔ଴
ሺ௞ሻ = 0. Since the 

integrand of (4.10) is always non-positive, ቚߣሺ݀଴
ሺ௞ሻ,  ሺ௞ሻሻቚ can be regarded as the totalࢗ

discrepancy between ԡࡲሺ߱ሻࢗԡଶ
ଶ and ்࢙ࢊሺ߱ሻ over [0, ߨ] at the ݇th iteration. Based on 

this observation, the proposed sequential design procedure attempts to gradually reduce 

ቚߣሺ݀଴
ሺ௞ሻ, ሺ݀଴ߣሺ௞ሻሻቚ as ݇ → +∞. When ቚࢗ

ሺ௞ሻ,  ሺ௞ሻሻቚ is reduced to 0, the relaxed inequalityࢗ

constraint (4.9.d) will become the equality constraint (4.8.c). Let ߜ௥௘௟
ሺ௞ሻ denote the optimal 

value of the relaxed design problem (4.9) to be solved at the ݇th iteration, and ߜ௠௠
ሺ௞ሻ  

represent the corresponding squared minimax error of the obtained IIR filter. Then, 

according to the above analysis, we have lim௞՜ାஶቀߜ௠௠
ሺ௞ሻ െ ௥௘௟ߜ

ሺ௞ሻቁ  = 0 if 

lim௞՜ାஶቚߣሺ݀଴
ሺ௞ሻ,  ሺ௞ሻሻቚ = 0. This property implies that a real minimax design can beࢗ

attained by decreasing ቚߣሺ݀଴
ሺ௞ሻ,  .ሺ௞ሻሻቚࢗ

Define a ratio ߛሺ௞ሻ by 
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ሺ௞ሻߛ ൌ

ቚߣሺ݀଴
ሺ௞ሻ, ሺ௞ሻሻቚࢗ

ቚߣሺ݀଴
ሺ௞ିଵሻ, ሺ௞ିଵሻሻቚࢗ

 (4.13)

At the ݇th iteration, we can impose the constraint ߛሺ௞ሻ ≤ 1 > ߛ on ߣሺ݀଴
ሺ௞ሻ,  ሺ௞ሻሻ, which isࢗ

equivalent to 

ቀ݀଴ߣ    
ሺ௞ሻ, ሺ௞ሻቁࢗ ൌ ฮࢗሺ௞ሻฮଶ

ଶ െ ݀଴
ሺ௞ሻ

൒ ߛ · ቀ݀଴ߣ
ሺ௞ିଵሻ, ሺ௞ିଵሻቁࢗ ൌ ߛ · ቀฮࢗሺ௞ିଵሻฮଶ

ଶ െ ݀଴
ሺ௞ିଵሻቁ 

(4.14)

Applying the above inequality recursively, we have 

ሺ݀଴ߣ 
ሺ௞ሻ, ሺ௞ሻሻࢗ ൒ ௞ߛ · ሺ݀଴ߣ

ሺ଴ሻ, ሺ଴ሻሻ (4.15)ࢗ

As ݇ → +∞, the right-hand side of the above inequality will approach 0. Combined with 

ሺ݀଴ߣ
ሺ௞ሻ, ሺ௞ሻሻࢗ  ≤ 0, it can be concluded that lim௞՜ାஶቚߣሺ݀଴

ሺ௞ሻ, ሺ௞ሻሻቚࢗ  = 0. The major 

obstacle to incorporate the inequality constraint (4.14) into the relaxed SOCP design 

problem (4.9) is that (4.14) is still nonconvex. Here, the first-order Taylor series 

approximation is employed to linearize ߣሺ݀଴
ሺ௞ሻ, ሺ௞ሻሻ at ݀଴ࢗ

ሺ௞ିଵሻ and ࢗሺ௞ିଵሻ. The constraint 

ሺ݀଴ߣ
ሺ௞ሻ, ߛ ≤ ሺ௞ሻሻࢗ · ሺ݀଴ߣ

ሺ௞ିଵሻ,  ሺ௞ିଵሻሻ is then approximated byࢗ

ቀ݀଴ߣ    
ሺ௞ሻ, ሺ௞ሻቁࢗ െ ቀ݀଴ߣ

ሺ௞ିଵሻ, ሺ௞ିଵሻቁࢗ

ൎ ቀ݀଴ߣ்׏
ሺ௞ିଵሻ, ሺ௞ିଵሻቁࢗ ൥

݀଴
ሺ௞ሻ െ ݀଴

ሺ௞ିଵሻ

ሺ௞ሻࢗ െ ሺ௞ିଵሻࢗ
൩ 

ൌ െΔ݀଴
ሺ௞ሻ ൅  ሺ௞ିଵሻ்࢛ሺ௞ሻࢗ2

൒ ሺߛ െ 1ሻ · ቀ݀଴ߣ
ሺ௞ିଵሻ,  ሺ௞ିଵሻቁࢗ

(4.16)

Note that ߣሺ݀଴
ሺ௞ሻ, ሺ௞ሻሻ is a (convex) quadratic function of ݀଴ࢗ

ሺ௞ሻ and ࢗሺ௞ሻ. Then, the first-

order Taylor series approximation serves as a global under-estimator of ߣሺ݀଴
ሺ௞ሻ,  .ሺ௞ሻሻࢗ
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Therefore, by imposing (4.16) on ݀଴
ሺ௞ሻ  and ࢗሺ௞ሻ  (or, equivalently, Δ݀଴

ሺ௞ሻ  and ࢛ሺ௞ሻ ), the 

inequality (4.14) can be definitely ensured. However, since the search direction is 

restricted in the halfspace defined by (4.16) instead of the original nonconvex set defined 

by (4.14), it cannot be guaranteed that the globally optimal solution will be certainly 

achieved by the proposed sequential design procedure. 

Incorporating (4.16) into the relaxed design problem (4.9), then at the ݇th iteration 

the design problem (4.9) can be reformulated as 

min ߜሺ௞ሻ (4.17)

s.t. Δݔ଴
ሺ௞ሻ ൌ 0 (4.17.a)

 Δݔெ
ሺ௞ሻ െ Δ݀ெ

ሺ௞ሻ ൌ 0 (4.17.b)

 െΔ݀଴
ሺ௞ሻ ൅ ሺ௞ିଵሻ்࢛ሺ௞ሻࢗ2 ൒ ሺߛ െ 1ሻ · ሺ݀଴ߣ

ሺ௞ିଵሻ, ሺ௞ିଵሻሻ (4.17.c)ࢗ

 
ฮ࡯ሺ߱௜ሻ࢞ሺ௞ିଵሻ ൅ ሺ߱௜ሻΔ࢞ሺ௞ሻฮଶ࡯

ଶ ൑ ሺ௞ሻߜ · ൫ࢊሺ௞ିଵሻ ൅ Δࢊሺ௞ሻ൯்࢙ሺ߱௜ሻ

    ߱௜ א Ωூ, ݅ ൌ 1, 2, … , ܮ
 (4.17.d)

 
ฮࡲ൫ ௝߱൯ࢗሺ௞ିଵሻ ൅ ൫ࡲ ௝߱൯࢛ሺ௞ሻฮ

ଶ
ଶ ൑ ൫ࢊሺ௞ିଵሻ ൅ Δࢊሺ௞ሻ൯்࢙൫ ௝߱൯

    ௝߱ א ሾ0, ,ሿߨ ݆ ൌ 1, 2, … , ܭ
 (4.17.e)

For simplicity, both (4.9.c) and (4.9.d) are imposed on a set of grid frequency points as 

(4.17.d) and (4.17.e), respectively. In (4.17), the decision variables are ߜሺ௞ሻ, Δ࢞ሺ௞ሻ (or 

࢛ሺ௞ሻ and ࢜ሺ௞ሻ), and Δࢊሺ௞ሻ. After solving (4.17), the obtained Δ࢞ሺ௞ሻ and Δࢊሺ௞ሻ are used to 

update the filter coefficients ࢞ሺ௞ିଵሻ and the trigonometric polynomial coefficients ࢊሺ௞ିଵሻ 

through (4.11) and (4.12), respectively. 

The sequential design procedure continues until the following condition is satisfied 

 ቚߣሺ݀଴
ሺ௞ሻ, ሺ௞ሻሻቚࢗ ൑ (4.18) ߝ
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where ߝ is a prescribed convergence tolerance. Based on the previous analysis, which has 

shown that lim௞՜ାஶቚߣሺ݀଴
ሺ௞ሻ,  ሺ௞ሻሻቚ = 0, the convergence of the design procedure can beࢗ

definitely assured. From (4.15), it can be further deduced that the design procedure will 

be terminated at the kth iteration if ߛ௞ · ቚߣሺ݀଴
ሺ଴ሻ,  By taking logarithm on both .ߝ ≥  ሺ଴ሻሻቚࢗ

sides of this inequality, an estimated maximum number ݇୫ୟ୶ of iterations required by the 

sequential procedure can be obtained by 

 
݇୫ୟ୶ ൌ ቨ

ln ߝ െ ln ቚߣቀ݀଴
ሺ଴ሻ, ሺ଴ሻቁቚࢗ

ln ߛ ቩ ൅ 1 (4.19)

where ۂݔہ denotes the largest integer less than or equal to ݔ. Moreover, if ݇ becomes 

large enough, owing to 0 ≤ ߣሺ݀଴
ሺ௞ሻ, ሺ݀଴ߣ–ሺ௞ሻሻࢗ

ሺ௞ିଵሻ, ሺ݀଴ߣ– ≥ ሺ௞ିଵሻሻࢗ
ሺ௞ିଵሻ,  ሺ௞ିଵሻሻ, we haveࢗ

ቀ݀଴ߣ    
ሺ௞ሻ, ሺ௞ሻቁࢗ െ ቀ݀଴ߣ

ሺ௞ିଵሻ, ሺ௞ିଵሻቁࢗ

ൌ ฮ࢛ሺ௞ሻฮଶ
ଶ ൅ ሺ௞ିଵሻ்࢛ሺ௞ሻࢗ2 െ Δ݀଴

ሺ௞ሻ 

ൎ 0 

(4.20)

The constraint (4.16) indicates that 2ࢗሺ௞ିଵሻ்࢛ሺ௞ሻ–Δ݀଴
ሺ௞ሻ ≥ 0. Then, it follows from (4.20) 

that ฮ࢛ሺ௞ሻฮଶ ≈ 0, which means there is no significant change on ࢗሺ௞ሻ as ݇ → +∞. 

4.2 Practical Considerations 

4.2.1 Convergence Speed 

As discussed in Section 4.1.3, the convergence of the sequential design procedure 

can be guaranteed if the linear inequality constraint (4.16) is incorporated. Obviously, a 

larger ߛ yields a larger feasible set for the search direction. Therefore, it is reasonable to 

choose ߛ as close to 1 as possible in order to achieve a satisfactory design. However, if ߛ 

is too close to 1, (4.19) shows that the total number of iterations required by the proposed 

design procedure could be too large. As an attempt to resolve this dilemma, we introduce 
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a new variable ߚሺ௞ሻ ≥ 0 to replace the term ሺߛ െ 1ሻ ൉ ଴݀)ߣ
ሺ௞ିଵሻ,  ሺ௞ିଵሻ) on the right handࢗ

side of (4.16). Then, (4.16) is rewritten by 

 െΔ݀଴
ሺ௞ሻ ൅ ሺ௞ିଵሻ்࢛ሺ௞ሻࢗ2 ൒ ሺ௞ሻ (4.21)ߚ

In (4.21),  ߚሺ௞ሻ serves as a soft threshold at each iteration. Apparently, in order to achieve 

the fastest convergence speed, we want to maximize ߚሺ௞ሻ (or minimize െߚሺ௞ሻ) at each 

iteration, while minimizing ߜሺ௞ሻ to reduce the approximation error. A common way to 

solve this bi-objective optimization problem is to minimize the weighted sum of these 

two objectives. By introducing a relative weight ߞ  > 0, the design problem (4.17) is 

expressed by 

min ߜሺ௞ሻ െ ߞ · ሺ௞ሻ (4.22)ߚ

s.t. Δݔ଴
ሺ௞ሻ ൌ 0 (4.22.a)

 Δݔெ
ሺ௞ሻ െ Δ݀ெ

ሺ௞ሻ ൌ 0 (4.22.b)

 െΔ݀଴
ሺ௞ሻ ൅ ሺ௞ିଵሻ்࢛ሺ௞ሻࢗ2 െ ሺ௞ሻߚ ൒ 0 (4.22.c)

ሺ௞ሻߚ  ൒ 0 (4.22.d)

 
ฮ࡯ሺ߱௜ሻ࢞ሺ௞ିଵሻ ൅ ሺ߱௜ሻΔ࢞ሺ௞ሻฮଶ࡯

ଶ ൑ ሺ௞ሻߜ · ൫ࢊሺ௞ିଵሻ ൅ Δࢊሺ௞ሻ൯்࢙ሺ߱௜ሻ

    ߱௜ א Ωூ, ݅ ൌ 1, 2, … , ܮ
 (4.22.e)

 
ฮࡲ൫ ௝߱൯ࢗሺ௞ିଵሻ ൅ ൫ࡲ ௝߱൯࢛ሺ௞ሻฮ

ଶ
ଶ ൑ ൫ࢊሺ௞ିଵሻ ൅ Δࢊሺ௞ሻ൯்࢙൫ ௝߱൯

    ௝߱ א ሾ0, ,ሿߨ ݆ ൌ 1, 2, … , ܭ
 (4.22.f)

The selection of parameter ߞ is a tradeoff between the convergence speed and the design 

performance. The convergence of the sequential design procedure can be accelerated by 

increasing ߞ, while the better performance can be attained by decreasing ߞ. It seems that 

the effects of ߞ used in the regularized design problem (4.22) are similar to those of ߛ 

used in (4.17). However, it should be emphasized that given ߛ the ratio ߛሺ௞ሻ is confined at 
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each iteration by the constraint (4.16), and hence the convergence speed cannot be further 

improved. In contrast, the restriction on ߛሺ௞ሻ has been removed in (4.21) by introducing 

the soft threshold ߚሺ௞ሻ . Thereby, the modified design method can achieve faster 

convergence speed, which has been verified by a large number of simulation examples. 

In practice, when ߞ  is small enough, decreasing ߞ  contributes less to the performance 

improvement, and the convergence speed of the design procedure could be too slow for 

practical designs. If at each iteration the following constraint is still valid for some 1 > ߛ 

ሺ௞ሻߚ  ൒ ሺߛ െ 1ሻ · ሺ݀଴ߣ
ሺ௞ିଵሻ, ሺ௞ିଵሻሻ (4.23)ࢗ

the convergence of the modified design method can also be strictly guaranteed. However, 

it should be noticed that (4.23) is only a sufficient condition for the convergence of the 

sequential design procedure, which implies that even without (4.23), the sequential 

procedure can still converge to the final solution when ߞ is appropriately selected. The 

effects of ߞ on final design results will be illustrated in Example 1 to be presented in the 

next section. 

4.2.2 Stability Constraint 

A sufficient condition for the stability of IIR filters in terms of positive realness has 

been proposed by [23], which can be stated as: If ܳሺ௞ିଵሻሺݖሻ is a Schur polynomial, i.e., 

all roots of ܳሺ௞ିଵሻሺݖሻ lie inside the unit circle of the ݖ plane, and the transfer function 

ሻ = 1ݖሺ௞ሻሺܩ ൅ ௨ሺೖሻሺ௭ሻ
ொሺೖషభሻሺ௭ሻ

 is strictly positive real (SPR), i.e., 

 Re൛ܩሺ௞ሻ൫݁௝ఠ൯ൟ ൐ 0, ߱׊ א ሾ0, ሿ (4.24)ߨ

where ݑሺ௞ሻሺݖሻ = ࢛ሺ௞ሻ்࣐ெሺݖሻ (ݑ଴
ሺ௞ሻ = 0), then the weighted sum of ܳሺ௞ିଵሻሺݖሻ and ݑሺ௞ሻሺݖሻ, 

i.e., ܳఈ
ሺ௞ሻሺݖሻ  = ܳሺ௞ିଵሻሺݖሻ + ሻݖሺ௞ሻሺݑߙ  for ߙ׊  .is also a Schur polynomial ,[1 ,0] א 

According to this condition, a stability domain with an interior point ࢗሺ௞ିଵሻ  can be 

defined by ܦ௦ = {࢛ሺ௞ሻ: ܩሺ௞ሻሺݖሻ is SPR}. The condition that ܩሺ௞ሻሺݖሻ is SPR is equivalent 

to requiring that 
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ሻݖሺ௞ሻሺܩ    ൅  ଵሻିݖሺ௞ሻሺܩ

ൌ
2ܳሺ௞ିଵሻሺݖሻܳሺ௞ିଵሻሺିݖଵሻ ൅ ଵሻିݖሻܳሺ௞ିଵሻሺݖሺ௞ሻሺݑ ൅ ܳሺ௞ିଵሻሺݖሻݑሺ௞ሻሺିݖଵሻ

ܳሺ௞ିଵሻሺݖሻܳሺ௞ିଵሻሺିݖଵሻ  
(4.25)

is real and positive on the unit circle. Since the denominator of (4.25) is positive on the 

unit circle, it follows that the symmetric numerator polynomial of (4.25) must be positive 

on the unit circle, which is further cast in [23] as an LMI constraint independent of 

frequency ߱. It has been proved [23] that this stability constraint defines a larger feasible 

domain than the Rouché’s theorem based stability constraint [20]. 

Since SOCP problems cannot cope with LMI constraints, we express the stability 

constraint ܩሺ௞ሻ൫݁௝ఠ൯+ܩሺ௞ሻ൫݁ି௝ఠ൯ > 0 as the following linear inequality constraints: 

 Re൛ܳሺ௞ିଵሻ൫݁ି௝ఠೕ൯࣐ெ
் ൫݁௝ఠೕ൯ൟ · ࢛ሺ௞ሻ ൒ ߤ െ หܳሺ௞ିଵሻ൫݁௝ఠೕ൯หଶ

    ௝߱ א ሾ0, ,ሿߨ ݆ ൌ 1, 2, … , ܭ
 (4.26)

where ߤ is a specified small positive number. If all poles of the designed IIR filters are 

required to lie inside a prescribed circle of radius 1 > ߩ for robust stability, ࣐ெሺ݁௝ఠሻ and 

ܳሺ௞ିଵሻሺ݁௝ఠሻ in (4.26) should be replaced by ࣐ெሺ݁ߩ௝ఠሻ and ܳሺ௞ିଵሻሺ݁ߩ௝ఠሻ, respectively. 

In general, parameter ߤ can be selected within [10-3, 10-6]. Simulation results show that 

generally design results are not very sensitive to the selection of ߤ. 

4.2.3 Selection of Initial IIR Digital Filter 

For sequential design methods, the selection of the initial design is a critical step to 

find a satisfactory solution. Without any prior knowledge of optimal IIR filters, initial 

guesses can be chosen as optimal FIR filters as suggested in [20], or IIR filters designed 

by the LP method [32] as suggested in [18]. Some other methods utilize more 

complicated multistage initialization strategy [23]. 

In our designs, the initial IIR filters are obtained by solving the relaxed SOCP 

problem (4.9). For stability, the constraint (4.26) should be incorporated in (4.9). The 

initial denominator can be simply assumed as ݍ଴
ሺିଵሻ = 1 and ݍ௠

ሺିଵሻ = 0 for ݉ = 1, 2, …, ܯ. 

In this situation, the stability constraint (4.26) is equivalent to the positive realness based 
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stability constraint (3.37) proposed in [32]. Although only the lower and upper bounds on 

the optimal value כߜ of the original nonconvex problem (4.8) can be obtained, we find 

that the corresponding filter coefficients ࢞  and the trigonometric coefficients ࢊ  can 

always lead to satisfactory solutions for all the designs we have tried so far. Some other 

guesses can also be utilized as the initial points of the sequential procedure. But ࢗሺ଴ሻ and 

 .ሺ଴ሻ should satisfy (4.9.b) and (4.9.d)ࢊ

Finally, the major steps of the proposed sequential design method are summarized as 

follows: 

Step 1. Given an ideal frequency response ܦሺ߱ሻ , filter orders ܰ  and ܯ , and a 

weighting function ܹሺ߱ሻ, set ݇ = 0 and solve the relaxed design problem (4.9) 

to obtain initial coefficients ࢞ሺ଴ሻ and ࢊሺ଴ሻ. 

Step 2. Set ݇ = ݇+1, and solve the SOCP problem (4.22) to obtain Δ࢞ሺ௞ሻ and Δࢊሺ௞ሻ. 

Update coefficients ࢞ሺ௞ሻ and ࢊሺ௞ሻ by (4.11) and (4.12). 

Step 3. If the stopping criterion (4.18) is satisfied, terminate the sequential design 

procedure. Otherwise, go to Step 2 and continue. 

Some remarks about the proposed design method are made below: 

1. In practice, after the sequential procedure converges to the final solution, some 

local optimization methods can be further applied to refine the design results. In our 

post-processing, we keep the obtained denominator coefficients fixed, and then the 

numerator coefficients are updated by solving the following SOCP problem: 

min (4.27) ߜ

s.t. ԡࡳሺ߱௜ሻ࢖ െ ሺ߱௜ሻԡଶࢍ ൑ ,ߜ ߱௜ א Ωூ, ݅ ൌ 0,1, … , (a.4.27) ܮ

where 
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ሺ߱ሻࡳ ൌ ܹሺ߱ሻ

ۏ
ێ
ێ
ێ
Reۍ ቊ

࣐ே
் ሺ݁௝ఠሻ

ܳሺ݁௝ఠሻ ቋ

Im ቊ
࣐ே

் ሺ݁௝ఠሻ
ܳሺ݁௝ఠሻ ቋ

ے
ۑ
ۑ
ۑ
ې
 (4.28)

 
ሺ߱ሻࢍ ൌ ܹሺ߱ሻ ቈ

Reሼܦሺ߱ሻሽ

Imሼܦሺ߱ሻሽ
቉ (4.29)

For a given ࢗ, the numerator obtained by (4.27) is optimal. 

2. According to the previous analysis, it is clear that parameter ߞ used in (4.22) should 

be appropriately selected. Through a large number of simulations, it is found that 

generally ߞ can be chosen within [10-6, 10]. Simulation results also show that both 

ቚߣሺ݀଴
ሺ௞ሻ,  ሺ௞ሻሻቚ and the minimax approximation error can be dramatically reduced atࢗ

the first several iterations even though ߞ ݇ As .1 ا   increases, the convergence 

speed gradually slows down. Moreover, as ݇ is large enough, we cannot achieve 

much reduction on the approximation error at each iteration. This observation 

implies that in practice, we can also employ a variable ߞ  in (4.22) during the 

proposed sequential design procedure. At the beginning of the sequential procedure, 

 can be chosen as a small value, such that the feasible set defined by (4.21) can be ߞ

as large as possible. As ݇ increases, parameter ߞ  can be accordingly augmented, 

such that the convergence of the sequential design procedure can be accelerated. 

Example 4 will be presented in the next section to demonstrate the effectiveness of 

the usage of a variable ߞ. 

4.3 Simulations 

In this section, four examples are presented to demonstrate the effectiveness of the 

proposed design method. We still use the SeDuMi [66] in MATLAB environment to 

solve the SOCP problems (4.9) and (4.22). Besides the peak and L2 errors of magnitude 

(MAG) and group delay (GD) over Ωூ, we also employ the minimax error ܧெெ defined 

by (1.20) to evaluate the design results. Without explicit declaration, the weighting 
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function is always set to ܹሺ߱ሻ = 1 for א ߱׊ Ωூ and ܹሺ߱ሻ = 0 otherwise. Similarly, the 

admissible maximum pole radius ߩ  is always set equal to 1, unless it is explicitly 

specified. Parameter ܭ is always equal to 101. Let ܵ be the set of equally-spaced grid 

points over [0, ߨ], i.e., ܵ = { ௝߱: ௝߱ = గሺ௝ିଵሻ
௄ିଵ

 The hyperbolic constraints .{ܭ ,… ,2 ,1 = ݆ ,

(4.9.c) and (4.22.e) are then imposed on a set of frequency points taken from ܵ, that is, 

{߱௜ : ߱௜  .can lead to a more accurate design ܭ Ωூ}. Generally speaking, a largerתܵ א 

However, in practice, this effect is almost negligible when ܭ is large enough, e.g., 100 or 

more. With a larger ܭ, the proposed sequential design procedure needs more computation 

time to find the final solution. Note that the total number of iterations is normally not 

changed. The extra computation time is expended to construct the extra constraints and 

solve the SOCP problem of a larger size at each iteration. Our simulation experience 

indicates that when ܭ is between 100 and 500, the computation time is acceptable. In all 

the simulation examples, step size ߙ and parameter ߝ used in (4.18) are set, respectively, 

to 0.5 and 10-5. In our designs, parameter ߤ  used in the stability constraint (4.26) is 

always chosen as 10-3. 

4.3.1 Example 1 

The first example is to design a lowpass IIR filter whose specifications are the same 

as those adopted in [20]. The ideal frequency response is defined by 

ሺ߱ሻܦ ൌ ቊ
݁ି௝ଵଶఠ 0 ൑ ߱ ൑ ߨ0.4

0 ߨ0.56 ൑ ߱ ൏ ߨ
 

Filter orders are chosen as ܰ = 15 and 4 = ܯ. In this design, parameter ߞ used in (4.22) is 

set to 0.001. After 24 iterations, the sequential procedure converges to the final solution. 

The maximum pole radius of the obtained IIR filter is 0.8598. All the filter coefficients 

are listed in Table 4.1. The magnitude and group delay responses are shown as solid 

curves in Fig. 4.1. The magnitude of the weighted complex error ܧሺ߱ሻ is plotted in Fig. 

4.2. For comparison, we also employ the design method proposed by [19] to design an 

IIR filter under the same set of specifications. Instead of an ܯth-order polynomial used in 

(1.4), the denominator utilized by [19] is expressed as a product of second-order factors 
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and a first-order factor if ܯ is odd, i.e., ܳሺݖሻ = ሺ1 ൅ ܾ଴ିݖଵሻ ∏ ሺ1 ൅ ܾ௜,ଵିݖଵ ൅ ܾ௜,ଶିݖଶሻூ
௜ୀଵ , 

where ܾ଴ = 0 if ܯ is even, and ܫ = ሺܯ െ 1ሻ/2 if ܯ is odd or 2/ܯ if ܯ is even. Then, the 

first-order Taylor series approximation is directly applied on the frequency response 

 ௡ (݊ = 0, 1, …, ܰ) and the factorized݌ ሺ݁௝ఠሻ with respect to the numerator coefficientsܪ

denominator coefficients ܾ଴, ܾ௜,ଵ, and ܾ௜,ଶ (݅ = 1, 2, …, ܫ), and subsequently the design 

problem at each iteration can be formulated as an SOCP problem. The advantage of 

adopting the factorized denominator is that the stability constraint can be cast as a set of 

linear inequality constraints in terms of ܾ଴, ܾ௜,ଵ, and ܾ௜,ଶ, which are independent of the 

frequency ߱: 

 
ቈ

1

െ1
቉ ܾ଴ ൅ ଶߩ ቈ

1

1
቉ ൒ ૙ଶൈଵ (4.30)

 

൦

1 1

െ1 1

0 െ1

൪ · ቈ
ܾ௜,ଵ

ܾ௜,ଶ
቉ ൅ ଶߩ ൦

1

1

1

൪ ൒ ૙ଷൈଵ, ݅ ൌ 1, 2, … , (4.31)  ܫ

These constraints are sufficient and near necessary conditions for stability. At the 

beginning of the SOCP design method [19], all poles are simply placed at the origin, i.e., 

ܾ଴ = ܾ௜,ଵ = ܾ௜,ଶ = 0 for ݅ = 1, 2, …, ܫ. The initial numerator is obtained by solving (4.27) 

with the initial denominator specified above. The maximum pole radius of the IIR filter 

designed by [19] is 0.8590. The magnitude and group delay responses of the 

corresponding IIR filter are also shown in Fig. 4.1 as dashed curves. All the error 

measurements of both designs are summarized in Table 4.2 for comparison. It can be 

observed that the proposed method can achieve slightly better performance in ܧெெ than 

the SOCP method [19]. 

 

Table 4.1 Filter Coefficients (݌଴ to ݌ே and ݍ଴ to ݍெ) of IIR Digital Filter Designed in Example 1 

 ସ -2.7223e-003 -2.2388e-003 3.8713e-003 3.6209e-003 -6.7370e-003݌~଴݌
 ଽ -8.1179e-003 1.0796e-002 1.7887e-002 -1.7854e-002 -4.5345e-002݌~ହ݌
 ଵସ 3.4012e-002 2.2196e-001 3.7787e-001 3.7109e-001 2.2094e-001݌~ଵ଴݌
     ଵହ  7.5230e-002݌
 ସ 1.0000e+000 -4.5908e-001 8.9299e-001 -2.5445e-001 8.1335e-002ݍ~଴ݍ
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Fig. 4.1. Magnitude and group delay responses of IIR filters designed in Example 1. Solid curves: 

designed by the proposed method. Dashed curves: designed by the SOCP method [19]. 

 

 
Fig. 4.2. Magnitude of weighted complex error of IIR filters designed in Example 1. Solid curves: 

designed by the proposed method. Dashed curves: designed by the SOCP method [19]. 

 
Table 4.2 Error Measurements of Design Results in Example 1 

Method Minimax Error 
 ெெ (in dB)ܧ

Passband MAG 
(Peak/L2 in dB) 

Passband GD 
(Peak/ L2) 

Stopband MAG 
(Peak/L2 in dB) 

Proposed -45.721 -45.722/ -55.167 2.814e-1/ 2.560e-2 -45.719/ -50.355 
SOCP [19] -45.615 -45.785/ -55.148 2.785e-1/ 2.538e-2 -45.657/ -50.396 
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In order to illustrate the effects of the regularization parameter ߞ on the final design 

results, we repeat the experiment using ten different ߞ ’s, which are taken within the 

interval [5×10-4, 5×10-3]. All the other design specifications are unchanged. Fig. 4.3 

shows the variation of the minimax error ܧெெ versus the regularization parameter ߞ. It 

can be noticed that the design performances can be improved by decreasing ߞ . This 

coincides with our previous discussion. In all the designs, the sequential design procedure 

can converge to final solutions within at most 28 iterations. However, when ߞ is too small 

(in this example, ߞ  ≤ 10-4), the sequential design procedure converges in a very slow 

speed. Moreover, as ߞ is sufficiently small (in this example, 10-3 ≥ ߞ), it is difficult to 

further improve the design performance. Fig. 4.3 suggests us a way to find an appropriate 

regularization parameter ߞ: First of all, we can choose a large value for ߞ (e.g., 1). Then, 

we gradually reduce the value of ߞ  until the improvement of design performances is 

negligible, or the sequential design procedure cannot converge within a prescribed 

maximum number of iterations (e.g., 50). Except the variable ߞ adopted in Example 4, the 

values of ߞ used in all the other examples presented in this section are chosen in a similar 

way. 

 

 
Fig. 4.3. Variation of minimax error ܧெெ versus parameter ߞ. 
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4.3.2 Example 2 

The second example is to design a highpass IIR filter [11], [28]. The filter orders are 

chosen as ܰ = 14 = ܯ, and the ideal frequency response is defined by 

ሺ߱ሻܦ ൌ ቊ
݁ି௝ଵଶఠ ߨ0.525 ൑ ߱ ൏ ߨ

0 0 ൑ ߱ ൑ ߨ0.475
 

Originally, the maximum pole radius is set as 1 = ߩ. However, the design results show 

that there is a magnitude overshoot within the transition band. Thereby, we reduce ߩ from 

1 to 0.96. Correspondingly, parameter ߞ  is set equal to 0.3. After 30 iterations, the 

sequential design procedure converges to the final solution. The maximum pole radius of 

the obtained IIR filter is 0.9559. All the filter coefficients are listed in Table 4.3. The 

magnitude and group delay responses are shown as solid curves in Fig. 4.4. The 

magnitude of the weighted complex error is plotted in Fig. 4.5. During the sequential 

design procedure, the optimal value ߜ௥௘௟
ሺ௞ሻ and the real minimax approximation error ߜ௠௠

ሺ௞ሻ  

are recorded at each iteration. The variation of discrepancy between ߜ௠௠
ሺ௞ሻ  and ߜ௥௘௟

ሺ௞ሻ, i.e., 

௠௠ߜ
ሺ௞ሻ െ ௥௘௟ߜ

ሺ௞ሻ, versus the iteration index ݇ is shown in Fig. 4.6. The changes of ߜ௠௠
ሺ௞ሻ  and 

௥௘௟ߜ
ሺ௞ሻ at various iterations are also presented in Fig. 4.6. It can be observed that at the 

initial stage of the sequential procedure (in this example, ݇ ≤ 5), ߜ௠௠
ሺ௞ሻ  and ߜ௠௠

ሺ௞ሻ െ ௥௘௟ߜ
ሺ௞ሻ 

decrease fast. Then, the sequential design procedure reaches a steady stage until the 

stopping condition is satisfied. In contrast, the optimal value ߜ௥௘௟
ሺ௞ሻ of the design problem 

(4.22) first increases, and then gradually decreases. Actually, in all the designs we have 

tried so far, ߜ௠௠
ሺ௞ሻ െ ௥௘௟ߜ

ሺ௞ሻ, ߜ௠௠
ሺ௞ሻ  and ߜ௥௘௟

ሺ௞ሻ change at each iteration in a similar way. 

 

Table 4.3 Filter Coefficients (݌଴ to ݌ே and ݍ଴ to ݍெ) of IIR Digital Filter Designed in Example 2 

 ସ -9.1215e-003 1.7383e-002 5.5492e-003 -3.6005e-003 -9.0162e-003݌~଴݌
 ଽ 6.9193e-003 9.9406e-003 -1.5344e-002 -1.3480e-002 4.9121e-002݌~ହ݌
 ଵସ 5.3284e-002 -1.8564e-001 3.5661e-001 -2.5639e-001 1.8654e-001݌~ଵ଴݌
 ସ 1.0000e+000 7.6364e-001 1.225e+000 7.5411e-001 4.5514e-001ݍ~଴ݍ
 ଽ 3.1573e-001 2.5391e-001 1.4183e-001 -4.7181e-003 -8.9604e-002ݍ~ହݍ
 ଵସ -9.1586e-002 -7.0897e-002 -6.7160e-002 -5.2190e-002 -3.5435e-002ݍ~ଵ଴ݍ
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Fig. 4.4. Magnitude and group delay responses of IIR filters designed in Example 2. Solid curves: 

designed by the proposed method. Dashed curves: designed by the SM method [8]. 

 

 
Fig. 4.5. Magnitude of weighted complex error of IIR filters designed in Example 2. Solid curves: 

designed by the proposed method. Dashed curves: designed by the SM method [8]. 
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Fig. 4.6. Variation of discrepancy between ߜ௠௠

ሺ௞ሻ  and ߜ௥௘௟
ሺ௞ሻ versus iteration number ݇. 

 

For comparison, we also utilize the SM method [8] to design an IIR filter under the 

same set of specifications, except that the maximum pole radius is chosen as 1 = ߩ. The 

initial denominator for the SM method [8] is simply set as ࢗሺ଴ሻ = [1 0 … 0]T, and the 

initial numerator is chosen as the optimal FIR filter of order ܰ  = 14, which can be 

obtained by solving (4.27) with the initial denominator ࢗሺ଴ሻ. The maximum pole radius of 

the obtained IIR digital filter is 0.9427. All the error measurements for both designs are 

listed in Table 4.4 for comparison. Apparently, the proposed method can achieve about 

2dB reduction on the minimax approximation error ܧெெ than the SM method [8]. 

 

Table 4.4 Error Measurements of Design Results in Example 2 

Method Minimax Error 
 ெெ (in dB)ܧ

Passband MAG 
(Peak/L2 in dB) 

Passband GD 
(Peak/ L2) 

Stopband MAG 
(Peak/L2 in dB) 

Proposed -27.334 -27.456/ -37.093 3.823/ 3.076e-1 -27.359/ -32.341 
SM [8]  -25.273 -26.081/ -33.597 4.011/ 3.399e-1 -25.740/ -30.240 
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4.3.3 Example 3 

The third example is to design a two-band IIR digital filter [28] with the desired 

frequency response given by 

ሺ߱ሻܦ ൌ ቊ
݁ି௝ଵସ.ଷఠ 0 ൑ ߱ ൑ ߨ0.46

0.5݁ି௝ଶ଴ఠ ߨ0.54 ൑ ߱ ൏ ߨ
 

The maximum pole radius is set as 0.95. A group of IIR filters are designed by the 

proposed method, each of them totally having 31 filter coefficients, i.e., ܰ+31 = 1+ܯ. 

The denominator order ܯ changes from 0 to 15. Table 4.5 lists the minimax error of each 

design. The best design is attained when 6 = ܯ and ܰ = 24. The corresponding ߞ used in 

this design is 0.005. The maximum pole radius of the obtained filter in the best design is 

0.9486, and all the filter coefficients are given in Table 4.6. The magnitude and group 

delay responses over Ωூ are shown in Fig. 4.7. The magnitude of ܧሺ߱ሻ is plotted in Fig. 

4.8. For comparison, we also utilize the WISE method [28] to design an IIR filter. Since 

the WISE method is originally proposed for the WLS designs, the reweighting technique 

is used by [28] to achieve minimax designs. At each iteration, the original weighting 

function is successively multiplied by the envelope of หܧሺ௞ሻሺ߱ሻห, such that the minimax 

error can be accordingly reduced at the next iteration by solving the WLS design problem 

with the new weighting function. The minimax errors for IIR filters designed by the 

WISE method are also given in Table 4.5 for comparison. Obviously, the proposed 

sequential design method can achieve much better performances than the WISE 

method [28] in most of designs. 

 
Table 4.5 Minimax Errors of Design Results in Example 3 

ெெܧ ܯ ெெܧ ܯ ெெܧ ܯ
Proposed WISE [28] Proposed WISE [28] Proposed WISE [28] 

0 6.484e-2 2.605e-1 6 1.054e-2 1.180e-1 12 2.385e-2 1.611e-1 
1 6.668e-2 2.625e-1 7 1.122e-2 1.182e-1 13 3.154e-1 5.744e-1 
2 1.133e-2 1.133e-1 8 1.513e-2 1.452e-1 14 3.114e-1 5.590e-1 
3 1.155e-2 1.141e-1 9 1.130e-2 1.191e-1 15 5.103e-1 7.232e-1 
4 1.073e-2 1.211e-1 10 2.463e-2 1.859e-1    
5 1.077e-2 1.236e-1 11 2.964e-2 1.755e-1    
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Table 4.6 Filter Coefficients (݌଴ to ݌ே and ݍ଴ to ݍெ) of IIR Digital filter (ܰ = 24, 6 = ܯ) Designed 
in Example 3 

 ସ -2.6325e-003 1.2557e-002 3.2471e-003 4.5004e-003 -5.1975e-004݌~଴݌
 ଽ 7.3894e-003 4.2937e-003 -8.8385e-003 -6.6589e-003 1.5448e-002݌~ହ݌
 ଵସ 1.2607e-002 -3.3186e-002 -3.3382e-002 1.3066e-001 4.3430e-001݌~ଵ଴݌
 ଵଽ 6.8400e-001 7.0396e-001 4.9731e-001 1.9775e-001 -7.8242e-002݌~ଵହ݌
 ଶସ 2.2166e-001 -3.0361e-001 2.5119e-001 -1.3502e-001 4.0037e-002݌~ଶ଴݌
 ସ 1.0000e+000 1.2759e-001 1.1538e+000 1.1822e-001 2.0907e-001ݍ~଴ݍ
    ଺ 8.2517e-004 -1.7973e-002ݍ~ହݍ

 

 
Fig. 4.7. Magnitude and group delay responses of IIR filter designed in Example 3. 

 
Fig. 4.8. Magnitude of weighted complex error of IIR filter designed in Example 3. 
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4.3.4 Example 4 

The last example is to design a full-band differentiator [32]. The ideal frequency 

response is given by 

ሺ߱ሻܦ ൌ
߱
ߨ ݁௝ሾ଴.ହగିሺఛೞା଴.ହሻఠሿ, 0 ൑ ߱ ൑  ߨ

where ߬௦  assumes an integer value. In the argument of ܦሺ߱ሻ defined above, a half of 

sample delay is added to eliminate the discontinuity of the desired phase response [32]. 

Filter orders are chosen as ܰ ܯ =   = 17. In this example, we adopt a variable 

regularization parameter ߞሺ௞ሻ in (4.22). At the ݇th iteration, ߞሺ௞ሻ is chosen as ߞሺ௞ሻ = 0.01݇ 

for ݇ ≥ 1 and used in (4.22) to determine the search direction Δ࢞ሺ௞ሻ and Δࢊሺ௞ሻ. Naturally, 

there are some other ways to select the variable ߞሺ௞ሻ during the sequential procedure. We 

change the integer group delay  ߬௦ from 8 to 17. The best design can be attained when ߬௦ 

is equal to 15. After 19 iterations, the sequential design procedure converges to the final 

solution. The maximum pole radius of the obtained IIR differentiator is 0.9635. All the 

numerator and denominator coefficients are listed in Table 4.7. The design characteristics 

and the approximation errors of magnitude and group delay responses are shown in Fig. 

4.9. It can be seen that near the origin of the frequency axis, the group delay (or phase 

response) of the designed IIR differentiator has a large error. This is mainly because we 

use the absolute error in this design to construct the objective function. In practice, a 

better way to design differentiators is to adopt a relative or normalized error as the 

objective function [2]. Since the magnitude responses on the frequencies near the origin 

are almost equal to zero, the overall approximation errors on these frequencies are still 

quite small. This can be verified by the magnitude of the complex error, i.e., |ܧሺ߱ሻ|, 

which is shown in Fig. 4.10. Therefore, when computing the error measurements of 

group delay listed in Table 4.8, the approximation errors of group delay within [0, 0.01ߨ] 

are neglected. 

For comparison, we also design a group of IIR differentiators using the LP 

method [32] under the same set of specifications. The best design result can be attained 

when the integer group delay ߬௦ is equal to 14. The corresponding filter coefficients have 
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been reported in [32]. The maximum pole radius of this best IIR differentiator is 0.9821. 

All the error measurements are also summarized in Table 4.8. It can be observed that the 

LP method can achieve better group delay responses, whereas the proposed design 

method can obtain much better magnitude responses and much lower minimax 

approximation error. 

 

Table 4.7 Filter Coefficients (݌଴ to ݌ே and ݍ଴ to ݍெ) of IIR Digital Differentiator (߬௦ = 15) 
Designed in Example 4 

 ସ -3.0503e-003 -2.7413e-003 -3.8702e-004 -1.8694e-006 -2.0119e-004݌~଴݌
 ଽ 1.2524e-004 -2.3072e-004 3.4058e-004 -3.7793e-004 5.8881e-004݌~ହ݌
 ଵସ -9.4826e-004 1.7485e-003 -3.1625e-003 7.9066e-003 -2.8664e-002݌~ଵ଴݌
   ଵ଻ 3.5891e-001 1.8208e-002 -3.5417e-001݌~ଵହ݌
 ସ 1.0000e+000 1.0531e+000 6.6768e-002 -1.0020e-002 3.7019e-003ݍ~଴ݍ
 ଽ -1.7434e-003 7.5298e-004 -5.1406e-004 3.2175e-004 -3.5136e-004ݍ~ହݍ
 ଵସ 2.4046e-005 -1.6413e-004 1.0602e-005 -1.7735e-004 -1.7353e-004ݍ~ଵ଴ݍ
   ଵ଻ -6.6872e-004 -1.1545e-003 -8.5683e-004ݍ~ଵହݍ

 

 
Fig. 4.9. Design characteristics and errors of IIR differentiator designed in Example 4. 

 

Table 4.8 Error Measurements of Design Results in Example 4 

Method ߬௦ 
Minimax Error 

ெெܧ (in dB) 
MAG 

(Peak/L2 in dB) 
GD 

(Peak/ L2) 
Proposed 15 -50.102 -50.176/ -53.769 9.877/ 6.818e-1 
LP [32] 14 -30.298 -30.636/ -51.783 3.585e-1/ 2.337e-2 
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Fig. 4.10. Magnitude of weighted complex error of IIR differentiator designed in Example 4. 
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CHAPTER V 

MINIMAX DESIGN OF IIR DIGITAL FILTERS USING SDP 

RELAXATION TECHNIQUE 

Since IIR filter design problems are nonconvex, there are many local minima on error 

performance surfaces. From an initial point, using various local optimization methods, we 

can find a local optimum near the initial point. However, for nonconvex design problems, 

it is hard to guarantee that global solutions can be definitely obtained. On the other hand, 

even if a global solution were achieved, in practice it could be difficult or impossible to 

confirm that it was indeed the global solution. This difficulty, however, could be 

mitigated, to some extent, in the framework of convex optimization. In this chapter, a 

new design method will be proposed for minimax IIR filter designs. Using the SDP 

relaxation technique, the original design problem can be transformed to an SDP 

feasibility problem, which will be solved sequentially in a bisection search procedure. A 

sufficient condition for optimal designs can be derived from the proposed design method. 

This chapter is organized as follows. In Section 5.1, a bisection search procedure is 

first introduced. Then, the SDP relaxation technique is applied to formulate a feasibility 

problem. A trace heuristic approximation method is presented later in Section 5.1 to 

achieve real minimax solutions. The stability of designed IIR filters can be ensured by a 

monitoring strategy, which is finally described in Section 5.1. Several numerical 

examples are presented in Section 5.2 to demonstrate the effectiveness of the proposed 

design method. 

5.1 Minimax Design Method 

5.1.1 Bisection Search Procedure 

Instead of trying to find the minimum (squared) error limit כߜ  by directly 

minimizing the error limit ߜ in (4.2), a bisection search procedure is employed in the 
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proposed design method. At each iteration, a fixed error limit ߜሺ௞ሻ is used to reformulate 

the constraint (4.2.b). The major steps of the bisection search procedure are shown below: 

Step 1. Given a set of design specifications, set ݇ = 0, and then estimate the initial 

upper bound ߜା
ሺ଴ሻ and lower bound ିߜ

ሺ଴ሻ for the minimum error limit כߜ. 

Step 2. Set ݇ = ݇+1, and choose ߜሺ௞ሻ = ටߜା
ሺ௞ିଵሻ · ିߜ

ሺ௞ିଵሻ, i.e., the geometric mean of 

ାߜ
ሺ௞ିଵሻ  and ିߜ

ሺ௞ିଵሻ . Then, solve a feasibility problem, where the original 

constraint (4.2.b) is recast with the fixed error limit ߜሺ௞ሻ. If a feasible solution 

is found, which indicates ߜା
ሺ௞ିଵሻ ≥ ߜሺ௞ሻ ିߜ ≤ כߜ ≤ 

ሺ௞ିଵሻ, then choose the new 

upper and lower bounds as ߜା
ሺ௞ሻ = ߜሺ௞ሻ and ିߜ

ሺ௞ሻ = ିߜ
ሺ௞ିଵሻ. On the contrary, if 

no feasible solution exists, which means ߜା
ሺ௞ିଵሻ כߜ ≤  ሺ௞ሻߜ <  ିߜ ≤ 

ሺ௞ିଵሻ , then 

choose the new upper and lower bounds as ିߜ
ሺ௞ሻ = ߜሺ௞ሻ and ߜା

ሺ௞ሻ = ߜା
ሺ௞ିଵሻ. The 

formulation of the feasibility problem will be presented later. 

Step 3. If a predetermined accuracy criterion of locating כߜ is satisfied, terminate the 

bisection search procedure. Otherwise, go to Step 2 and continue. 

Several remarks on the bisection search procedure described above are made here: 

1. This bisection search procedure is different from the usual bisection search 

procedure, where ߜሺ௞ሻ is chosen as the arithmetic mean of ߜା
ሺ௞ିଵሻ and ିߜ

ሺ௞ିଵሻ, i.e., 

ሺ௞ሻߜ  = 0.5 ቂߜା
ሺ௞ିଵሻ ൅ ିߜ

ሺ௞ିଵሻቃ . When כߜ  is small, choosing ߜሺ௞ሻ  as the geometric 

mean instead of the arithmetic mean can result in a smaller number of iterations 

required to achieve relative accuracy in locating כߜ  [6]. Actually, the bisection 

search procedure presented above is performed with the arithmetic mean of 

logଵ଴ ାߜ
ሺ௞ሻ and logଵ଴ ିߜ

ሺ௞ሻ. 

2. The bisection search procedure will be terminated, if the following condition is 

satisfied: 
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ାߜ 
ሺ௞ሻ െ ିߜ

ሺ௞ሻ

ିߜ
ሺ௞ሻ ൑ ୫୧୬ (5.1)ߢ

where ߢ୫୧୬ > 0 is a prescribed small number. Let ௢ܶ  denote the total number of 

iterations and it can be verified that 

 
௢ܶ ൑ ඍlogଶ ൭

logଵ଴ ାߜ
ሺ଴ሻ െ logଵ଴ ିߜ

ሺ଴ሻ

logଵ଴ሺ1 ൅ ୫୧୬ሻߢ ൱එ ൅ 1 (5.2)

For convenience of the latter discussion, we assume that ߢ୫୧୬  can be chosen 

arbitrarily small so as to accurately locate the minimum error limit כߜ. 

3. Normally, the initial upper and lower bounds of כߜ can be arbitrarily selected as 

long as the condition 0 < ିߜ
ሺ଴ሻ ≤ ߜ ≥ כߜା

ሺ଴ሻ is satisfied. However, it can be observed 

from (5.2) that ௢ܶ could be reduced if ିߜ
ሺ଴ሻ and ߜା

ሺ଴ሻ are closer to each other. As an 

attempt to obtain a lower ߜା
ሺ଴ሻ, we first utilize the LP method [32] to design an IIR 

filter under the given specifications. Then, ߜା
ሺ଴ሻ can be chosen as the squared error 

limit, i.e., maxఠאΩ಺|ܧሺ߱ሻ|ଶ, of the obtained IIR filter. Some other design methods 

can also be deployed here to achieve smaller ߜା
ሺ଴ሻ  for כߜ . In order to obtain a 

reasonable ିߜ
ሺ଴ሻ  for כߜ , we utilize the SDP relaxation technique to convert the 

nonconvex constraint (4.2.b) into a convex form. With the relaxed constraint, the 

design problem can be solved by directly minimizing ߜ . Since the feasible set 

defined by the relaxed constraint is larger than that of (4.2.b), we always have 

௥௘௟ߜ
כ ൑ כߜ , where ߜ௥௘௟

כ  denotes the optimal value of the relaxed design problem. 

Then, ߜ௥௘௟
כ  can be chosen as the lower bound ିߜ

ሺ଴ሻ . The formulation of such a 

relaxed design problem using the SDP relaxation technique is to be presented at the 

end of this section. 

5.1.2 Formulation of Feasibility Problem Using SDP Relaxation Technique 

In this section, we will construct a feasibility problem, in which the nonconvex 

constraint (4.2.b) is transformed to a convex form using the SDP relaxation technique. 
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This feasibility problem will be solved in Step 2 of the bisection search procedure 

described earlier. The feasibility problem will be first formulated without any stability 

constraint. The stability issue will be considered later in this section. 

In practice, the constraint (4.2.b) can be imposed on a set of discrete frequency 

points, i.e., ߱௜ Ωூ א   for ݅ ܮ ,… ,1 ,0 =  . At the ݇ th iteration of the bisection search 

procedure, given the error limit ߜሺ௞ሻ, the constraint (4.2.b) can be rewritten by 

   หܹሺ߱௜ሻൣܦሺ߱௜ሻܳ൫݁௝ఠ೔൯ െ ܲ൫݁௝ఠ೔൯൧หଶ

ൌ ܹଶሺ߱௜ሻሾ|ܦሺ߱௜ሻ|ଶ ൅ 2Reሼܦሺ߱௜ሻࢉுሺ߱௜ሻሽഥ࢞ ൅ ഥ்࢞࡭ሺ߱௜ሻഥ࢞ሿ 

൑ ሺ௞ሻߜ · หܳ൫݁௝ఠ೔൯หଶ 

ൌ ሺ௞ሻߜ · ൣ1 ൅ 2Re൛ഥ࣐ ெ
ு ൫݁௝ఠ೔൯ൟࢗഥ ൅  ഥ൧ࢗሺ߱௜ሻ࡮ഥ்ࢗ

߱௜ א Ωூ, ݅ ൌ 0, 1, … ,  ܮ

(5.3)

where 

ഥࢗ  ൌ ሾݍଵ ଶݍ … ெሿ் (5.4)ݍ

 ഥ࢞ ൌ ሾࢗഥ் ሿ் (5.5)்࢖

 ഥ࣐ ெሺݖሻ ൌ ሾିݖଵ ଶିݖ … ெሿ் (5.6)ିݖ

 
ሺ߱ሻࢉ ൌ ൥

ሺ߱ሻഥ࣐ெ൫݁௝ఠ൯ܦ

െ࣐ே൫݁௝ఠ൯
൩ (5.7)

ሺ߱ሻ࡭  ൌ Reሼࢉሺ߱ሻࢉுሺ߱ሻሽ (5.8)

ሺ߱ሻ࡮  ൌ Re൛ഥ࣐ ெ൫݁௝ఠ൯ഥ࣐ெ
ு ൫݁௝ఠ൯ൟ (5.9)

It is noteworthy that now the constraint (5.3) is formulated in terms of ഥ࢞ instead of ࢞ in 

(4.2.b). Since the first denominator coefficient ݍ଴ (namely, ݔ଴) is always chosen equal to 

1, the constraint formulated by (5.3) is still equivalent to (4.2.b). Although the terms on 

both sides of (5.3) are convex quadratic functions of ഥ࢞, it is difficult to directly transform 
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(5.3) into an equivalent convex constraint. Here, a symmetric matrix is introduced in 

order to further simplify (5.3) 

 
ࢄ ൌ ഥ࢞ഥ்࢞ ൌ ቈ

ഥ்ࢗഥࢗ ்࢖ഥࢗ

ഥ்ࢗ࢖ ்࢖࢖
቉ ൌ ቈ

௤ࢄ ௤,௣ࢄ

௤,௣ࢄ
் ௣ࢄ

቉ (5.10)

Substituting ࢄ into (5.3) for the quadratic terms of ഥ࢞, we can rewrite the constraint (5.3) 

in a matrix form: 

ሺ߱௜ሻ|ଶܦ|     ൅ 2Reሼܦሺ߱௜ሻࢉுሺ߱௜ሻሽഥ࢞ ൅ Trሼ࡭ࢄሺ߱௜ሻሽ 

൑
ሺ௞ሻߜ

ܹଶሺ߱௜ሻ · ൣ1 ൅ 2Re൛ഥ࣐ெ
ு ൫݁௝ఠ೔൯ൟࢗഥ ൅ Tr൛ࢄ௤࡮ሺ߱௜ሻൟ൧ 

߱௜ א Ωூ, ݅ ൌ 0, 1, … ,  ܮ

(5.11)

where Trሼ·ሽ denotes the trace of a matrix. By introducing ࢄ, the original nonconvex 

constraint (4.2.b) is transformed into a linear inequality constraint in terms of ഥ࢞ and ࢄ. 

By combining (5.10) and (5.11), we can construct a feasibility problem as 

min (5.12) ݖ

s.t.    |ܦሺ߱௜ሻ|ଶ ൅ 2Reሼܦሺ߱௜ሻࢉுሺ߱௜ሻሽഥ࢞ ൅ Trሼ࡭ࢄሺ߱௜ሻሽ 

൑
ሺ௞ሻߜ

ܹଶሺ߱௜ሻ · ൣ1 ൅ 2Re൛ഥ࣐ெ
ு ൫݁௝ఠ೔൯ൟࢗഥ ൅ Tr൛ࢄ௤࡮ሺ߱௜ሻൟ൧ ൅  ݖ

߱௜ א Ωூ, ݅ ൌ 0, 1, … , ܮ

(5.12.a)

ࢄ  ൌ ഥ࢞ഥ்࢞ ൌ ቈ
௤ࢄ ௤,௣ࢄ

௤,௣ࢄ
் ௣ࢄ

቉ where ഥ࢞ ൌ ቈ
ഥࢗ

࢖
቉ (5.12.b)

An auxiliary variable ݖ is introduced into (5.12). It can be verified that a feasible solution 

(ഥ࢞, ࢄ) exists under the constraints (5.10) and (5.11) if and only if the minimum value of ݖ 

obtained by solving (5.12) is less than or equal to 0. Then, the upper bound ߜା
ሺ௞ሻ can be 

replaced by ߜሺ௞ሻ, and taken into the next iteration of the bisection search procedure. On 

the contrary, if the minimum value of ݖ is larger than 0, which means given ߜሺ௞ሻ  the 
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constraints (5.10) and (5.11) cannot be simultaneously satisfied. Then, in Step 2 of the 

bisection search procedure, the lower bound ିߜ
ሺ௞ሻ will be replaced by ߜሺ௞ሻ, and taken into 

the next iteration to determine ߜሺ௞ାଵሻ. 

There is an obstacle to solve the feasibility problem (5.12). The matrix equality 

constraint (5.10) is nonconvex. In order to overcome this obstacle, we relax (5.10) as 

ࢄ ظ ഥ࢞ഥ்࢞ , which represents ࢄ െ ഥ࢞ഥ்࢞  is a positive semi-definite (PSD) matrix. The 

relaxed constraint ࢄ ظ ഥ࢞ഥ்࢞ is equivalent to [72] 

 
ࢆ ൌ ቈ

1 ഥ்࢞

ഥ࢞ ࢄ
቉ ظ 0 (5.13)

Then, the feasibility problem (5.12) can be recast as 

min (5.14) ݖ

s.t.    |ܦሺ߱௜ሻ|ଶ ൅ 2Reሼܦሺ߱௜ሻࢉுሺ߱௜ሻሽഥ࢞ ൅ Trሼ࡭ࢄሺ߱௜ሻሽ 

൑
ሺ௞ሻߜ

ܹଶሺ߱௜ሻ · ൣ1 ൅ 2Re൛ഥ࣐ெ
ு ൫݁௝ఠ೔൯ൟࢗഥ ൅ Tr൛ࢄ௤࡮ሺ߱௜ሻൟ൧ ൅  ݖ

߱௜ א Ωூ, ݅ ൌ 0, 1, … , ܮ

(5.14.a)

ࢆ  ൌ ቈ
1 ഥ்࢞

ഥ࢞ ࢄ
቉ ظ 0 where ࢄ ൌ ቈ

௤ࢄ ௤,௣ࢄ

௤,௣ࢄ
் ௣ࢄ

቉ and ഥ࢞ ൌ ቈ
ഥࢗ

࢖
቉ (5.14.b)

Now (5.14.a) is a linear inequality constraint in terms the elements of ࢆ and the auxiliary 

variable ݖ. Compared with (5.12.b), the constraint (5.14.b) defines a larger feasible set. 

Thus, for a given ߜሺ௞ሻ, if a feasible solution (ഥ࢞, ࢄ) exists for (5.12), by taking (ഥ࢞, ࢄ) into 

(5.14.a) and (5.14.b), it can be verified that the relaxed feasibility problem (5.14) also has 

a feasible solution ࢆ, and the corresponding minimum value of ݖ is definitely less than or 

equal to 0. It should be mentioned that even if a feasible solution ࢆ with 0 ≥ ݖ exists for 

(5.14), there is no guarantee that the original feasibility problem (5.12) also has a feasible 

solution (ഥ࢞, ࢄ). On the contrary, if the minimum value of ݖ for (5.14) is greater than 0, it 

implies that there is no feasible solution ࢆ satisfying both the linear inequality constraint 

(5.11) and the relaxed LMI constraint (5.14.b). Accordingly, the original feasibility 
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problem (5.12) does not have a feasible solution (ഥ࢞, ࢄ) for the given error limit ߜሺ௞ሻ. 

However, even though there is no feasible solution existing for (5.12), the relaxed 

feasibility problem (5.14) may still have a feasible solution ࢆ with 0 ≥ ݖ. Here, it should 

be emphasized that if the rank of ࢆ obtained by solving (5.14) is equal to 1, the relaxed 

constraint (5.14.b) is reduced to (5.12.b). Then, the feasibility problems (5.12) and (5.14) 

are equivalent to each other. 

Combined with the bisection search procedure described earlier, relaxed feasibility 

problems (5.14) with different ߜሺ௞ሻ are sequentially solved. Based on the analysis above, 

we arrive at the following sufficient condition for the optimal solution of the original 

design problem: 

Proposition 1: Let ࢆ෩ or, equivalently, ൫෥࢞,  ෩൯ be the final output of the bisectionࢄ

search procedure, in which the relaxed feasibility problem (5.14) is solved at each 

iteration. The corresponding final error limit is denoted by ߜሚ. Then, ߜሚ is equal to כߜ, and 

࢞௢௣௧ = [1 ෥࢞T]T is the optimal solution of the minimax design problem (4.1), if the rank of 

 .෩ is equal to 1ࢆ

Proof: Suppose that the rank of ࢆ෩ is equal to 1. Then, ෥࢞ and ࢄ෩ satisfy the equality 

constraint (5.12.b), and ෥࢞ is a minimax solution to the original design problem (4.1). On 

the other hand, from the discussion earlier, it follows that by successively solving the 

relaxed feasibility problem (5.14), we can find a lower bound of כߜ, i.e., ߜሚ ≤ כߜ. Suppose 

that ߜሚ < כߜ, which means that we could find another solution, which can achieve a lower 

minimum error limit than כߜ . However, it contradicts the assumption that כߜ  is the 

minimum error limit of the original minimax design problem (4.1). Therefore, ߜሚ should 

be equal to כߜ. Accordingly, ࢞௢௣௧ = [1 ෥࢞T]T is the optimal solution of (4.1). 

□ 

This proposition implies that if we can find a rank-1 solution using the bisection 

search procedure, then it is the optimal solution of the original design problem indeed. 

Example 1 will be presented in Section 5.2 to demonstrate the capability of the proposed 

bisection search procedure to achieve optimal designs. However, rank-1 solutions cannot 

always be attained, especially when the denominator order ܯ is large and/or the design 
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specifications are stringent. Furthermore, the stability issue has not been taken into 

account during the bisection search procedure. It is known that when 2 < ܯ, the stability 

domain cannot be strictly expressed as a convex set with respect to denominator 

coefficients ݍ௠. On the other hand, when the obtained ࢆ has a rank higher than 1, the 

corresponding solution ࢞ = [1 ഥ࢞T]T is not a real minimax design. This problem will be 

addressed in the next section. 

5.1.3 SDP Formulation Using Trace Heuristic Approximation 

In order to obtain a rank-1 solution, we can constrain the rank of ࢆ equal to 1 in the 

relaxed feasibility problem (5.14) during the bisection search procedure. However, in 

general, the rank constraint is nonconvex, and incorporating it could make the feasibility 

problem computationally intractable. Here, we employ a trace heuristic method [73] to 

approximate the design problem with the rank constraint. This approximation technique 

is based on the observation that the rank of the PSD matrix ࢆ, represented by rank  can ,ࢆ

be expressed by 

 
rank ࢆ ൌ ෍ ሻሻࢆ௜ሺߣ଴ሺܫ

ேାெାଶ

௜ୀଵ

 (5.15)

where ߣ௜ሺࢆሻ (݅ = 1, 2, …, ܰ+2+ܯ) denote the real eigenvalues of the symmetric matrix ࢆ. 

Without loss of generalization, we can assume that ߣ௜ሺࢆሻ are arranged in a non-ascending 

order, i.e., ߣଵሺࢆሻ ≥ ߣଶሺࢆሻ ≥ ߣ ≤ ڮேାெାଶሺࢆሻ. In (5.15), ܫ଴ሺݔሻ is an indicator function 

which is defined by 

 
ሻݔ଴ሺܫ ൌ ቊ

1 ݔ ൐ 0

0 ݔ ൑ 0
 (5.16)

Then, we approximate the indicator function ܫ଴ሺݔሻ  by ݔ  in (5.15), and incorporate a 

regularization term Trሼࢆሽ  = ∑ ሻ௜ࢆ௜ሺߣ  into the objective function of (5.14). Since ࢆ  is 

PSD, Trሼࢆሽ equals ԡࢫሺࢆሻԡଵ = ∑ ሻ|௜ࢆ௜ሺߣ|  = ∑ ሻ௜ࢆ௜ሺߣ , where ԡ·ԡଵ denotes the l1-norm of a 

vector and ࢫሺࢆሻ ሻࢆଵሺߣ] =  ሻࢆଶሺߣ  ሻࢆேାெାଶሺߣ …  ]T. If the regularization coefficient is 

sufficiently large, it is known that by minimizing ԡࢫሺࢆሻԡଵ some components of ࢫሺࢆሻ 
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will be driven to zero, leading the final ࢫሺࢆሻ to a sparse vector [51]. This means that 

minimizing Trሼࢆሽ renders many of the eigenvalues of ࢆ as zeros, resulting in a low-rank 

matrix. When the rank of ࢆ is close to 1, we have Trሼࢆሽ ≈ ߣଵሺࢆሻ ≈ 1+ԡഥ࢞ԡଶ
ଶ. Therefore, in 

practice, the regularization coefficient cannot be too large. Otherwise, Trሼࢆሽ could be 

over-attenuated and, accordingly, ԡഥ࢞ԡଶ  becomes too small to achieve a satisfactory 

design. 

We modify the objective function of (5.14) as the weighted sum of Trሼࢆሽ and ݖ. 

Then, the relaxed feasibility problem (5.14) is modified as 

min ߙTrሼࢆሽ ൅ ሺ1 െ (5.17) ݖሻߙ

s.t.    |ܦሺ߱௜ሻ|ଶ ൅ 2Reሼܦሺ߱௜ሻࢉுሺ߱௜ሻሽഥ࢞ ൅ Trሼ࡭ࢄሺ߱௜ሻሽ 

൑
ሺ௞ሻߜ

ܹଶሺ߱௜ሻ · ൣ1 ൅ 2Re൛ഥ࣐ெ
ு ൫݁௝ఠ೔൯ൟࢗഥ ൅ Tr൛ࢄ௤࡮ሺ߱௜ሻൟ൧ ൅ ݖ

    ߱௜ א Ωூ, ݅ ൌ 0,1, … , ܮ
 

(5.17.a)

ࢆ  ൌ ቈ
1 ഥ்࢞

ഥ࢞ ࢄ
቉ ظ 0 where ࢄ ൌ ቈ

௤ࢄ ௤,௣ࢄ

௤,௣ࢄ
் ௣ࢄ

቉ and ഥ࢞ ൌ ቈ
ഥࢗ

࢖
቉ (5.17.b)

where 0 ≤ 1 ≥ ߙ. When 0 = ߙ, the regularized feasibility problem (5.17) is reduced to 

(5.14). The regularization coefficient ߙ should be chosen as small as possible so as to 

best approximate the relaxed feasibility problem (5.14) as well as avoid Trሼࢆሽ being 

over-attenuated. In order to determine an appropriate value for ߙ , another bisection 

search procedure is introduced. Note that for the complete method, there are two nested 

bisection search procedures. They play different roles in the proposed design method. 

The outer bisection search procedure is used to locate the minimum error limit כߜ. Given 

a fixed error limit ߜሺ௞ሻ at the ݇th outer iteration, the inner bisection search procedure is 

invoked to find an appropriate ߙ to make the rank of the obtained matrix ࢆ close to 1. 

The inner bisection search procedure can also be used to restrict all the poles’ positions 

for stability, which will be discussed in detail later. For clarity, in the following, we use ݈ 

to represent the iteration index of the inner bisection search procedure, while ݇ for the 

outer bisection search procedure. Accordingly, ݖ ߙ , , and ࢆ  in (5.17) are replaced by 
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 ሺ௞,௟ሻ at the iteration step (݇, ݈), respectively. The major steps of theࢆ ሺ௞,௟ሻ, andߙ ,ሺ௞,௟ሻݖ

inner bisection search procedure are shown below: 

Step 1. Given ߜሺ௞ሻ, set ݈ = 0, and then choose the initial upper bound ߙା
ሺ௞,଴ሻ and lower 

bound ିߙ
ሺ௞,଴ሻ, respectively. 

Step 2. Set ݈  = ݈ +1, and choose ߙሺ௞,௟ሻ  = ටߙା
ሺ௞,௟ିଵሻ · ିߙ

ሺ௞,௟ିଵሻ . Using ߜሺ௞ሻ  and ߙሺ௞,௟ሻ , 

solve the regularized feasibility problem (5.17). If the ratio 

 
ሺ௞,௟ሻ൯ࢆ൫ߟ ൌ

ሺ௞,௟ሻ൯ࢆଶ൫ߣ
ሺ௞,௟ሻሻࢆଵሺߣ ൏ (5.18) ߝ

set ߙା
ሺ௞,௟ሻ ሺ௞,௟ሻߙ =   and ିߙ

ሺ௞,௟ሻ ିߙ = 
ሺ௞,௟ିଵሻ . Otherwise, choose ିߙ

ሺ௞,௟ሻ ሺ௞,௟ሻߙ =   and 

ାߙ
ሺ௞,௟ሻ = ߙା

ሺ௞,௟ିଵሻ. 

Step 3. If the predetermined accuracy of locating the minimum value of ߙ is satisfied, 

terminate the inner bisection search procedure. Otherwise, go to Step 2 and 

continue. 

Some remarks regarding the inner bisection search procedure are made below: 

1. In practice, we use ߟ൫ࢆሺ௞,௟ሻ൯ < ߝ to replace the condition that the rank of ࢆሺ௞,௟ሻ is 

equal to 1 . Here, ߣଵ൫ࢆሺ௞,௟ሻ൯  and ߣଶ൫ࢆሺ௞,௟ሻ൯  denote the first and second largest 

eigenvalues of ࢆሺ௞,௟ሻ, and parameter 0 < ߝ represents a pre-specified small positive 

value. 

2. Before the inner bisection search procedure, the relaxed feasibility problem (5.14) 

should be solved first. Let ሺݖሺ௞,଴ሻ,  ሺ௞,଴ሻሻ denote the result obtained from (5.14). Ifࢆ

ሺ௞,଴ሻݖ  > 0, which means there is no feasible solution for the relaxed feasibility 

problem (5.14), then new upper and lower bounds of כߜ are appropriately selected 

and the design program can directly go to Step 3 of the outer bisection search 

procedure. If ݖሺ௞,଴ሻ ≤ 0 and ߟ൫ࢆሺ௞,௟ሻ൯ ≥ ߝ, the inner bisection search procedure will 

be triggered. 
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3. The inner bisection search procedure continues until the following condition is 

satisfied 

ାߙ 
ሺ௞,௟ሻ െ ିߙ

ሺ௞,௟ሻ

ିߙ
ሺ௞,௟ሻ ൑ ୫୧୬ (5.19)ߢ

Like the outer bisection search procedure, the convergence of the inner bisection 

search procedure can be guaranteed. Let ௜ܶሺ݇ሻ (݇ = 1, 2, …, ௢ܶ) represent the total 

number of the inner iterations at the ݇th outer iteration. Similar to (5.2), we have 

 
௜ܶሺ݇ሻ ൑ ඍlogଶ ൭

logଵ଴ ାߙ
ሺ௞,଴ሻ െ logଵ଴ ିߙ

ሺ௞,଴ሻ

logଵ଴ሺ1 ൅ ୫୧୬ሻߢ ൱එ ൅ 1 (5.20)

4. The initial upper and lower bounds of ߙ can be arbitrarily selected as long as the 

condition 0 < ିߙ
ሺ௞,଴ሻ ≤ ߙା

ሺ௞,଴ሻ ≤ 1 is satisfied. In order to reduce the total number of 

the inner iterations, in our design the initial upper and lower bounds of ߙ at the ݇th 

outer iteration are chosen as 

ାߙ 
ሺ௞,଴ሻ ൌ ାߙߛ

ሺ௞ᇲ,்೔ሺ௞ᇲሻሻ, 1 ൑ ݇ᇱ ൏ ݇ ൑ ௢ܶ (5.21)

ିߙ 
ሺ௞,଴ሻ ൌ ିߙଵିߛ

ሺ௞ᇲ,்೔ሺ௞ᇲሻሻ, 1 ൑ ݇ᇱ ൏ ݇ ൑ ௢ܶ (5.22)

where 1 < ߛ, and ߙା
ሺ௞ᇲ,்೔ሺ௞ᇲሻሻ and ିߙ

ሺ௞ᇲ,்೔ሺ௞ᇲሻሻ denote the final upper and lower bounds 

of ߙ determined by the inner bisection search procedure at the ݇ᇱth outer iteration. 

Obviously, the search range of ߙ can be extended by increasing ߛ. For the first time 

the inner bisection search procedure is invoked, the initial upper bound ߙା
ሺ௞బ,଴ሻ and 

lower bound ିߙ
ሺ௞బ,଴ሻ (݇଴ ≥ 1) should be specified by designers. Since there is no 

prior information to determine them, normally we can choose ߙା
ሺ௞బ,଴ሻ  and ିߙ

ሺ௞బ,଴ሻ 

close to 1 and 0, respectively. 

5. So far, it has not been strictly proved that there always exists some ߙ for which the 

rank of ࢆ is equal to 1. Nevertheless, in the extreme situation when ߙ  = 1, the 

constraint (5.17.a) can always be satisfied, because ݖ  can be arbitrarily selected 



 

82 

without any influence on the objective function of (5.17). Then, it can be deduced 

from (5.17) that the rank of ࢆ should be equal to 1, and all eigenvalues are equal to 

0 except ߣଵሺࢆሻ = 1. Thus, in practice, we can assume that when ߙ is large enough, 

the rank of the final output ࢆ is close to 1. 

6. Since the regularization term Trሼࢆሽ  is incorporated in the objective function of 

(5.17), even if the rank of the final output ࢆ is equal to 1, it cannot be concluded 

that the optimal solution is attained. However, as the minimum value of ߙ 

determined by the inner bisection search procedure is small enough, the regularized 

feasibility problem (5.17) can serve as a good approximation of the relaxed 

feasibility problem (5.14). 

5.1.4 Stability Issue 

So far, the proposed design method cannot definitely ensure the stability of designed 

IIR filters. Therefore, stability constraints need to be incorporated in the design procedure. 

Many stability constraints, such as the positive realness based stability constraint (3.37), 

the Rouché’s theorem based stability constraint (3.41), and the generalized positive 

realness based stability constraint (4.26), can be readily used in the proposed design 

procedure. 

In this dissertation, we adopt a monitoring strategy to make all poles lie inside the 

stability domain. The positive realness based stability condition [32] has been given in 

(3.37). This sufficient stability condition can be readily extended to the situation where 

all poles of the designed IIR filter are required to lie inside a circle of radius ߩ୫ୟ୶ ≤ 1 for 

robust stability: 

    Re൛ܳ൫ߩ୫ୟ୶݁௝ఠ൯ൟ

ൌ 1 ൅ ෍ ୫ୟ୶ߩ௠ݍ
ି௠ cos݉߱

ெ

௠ୀଵ

 

൒ ,ߥ ߱׊ א ሾ0,  ሿߨ

(5.23)

From (5.23), we have 
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   1 ൅ ෍ ୫ୟ୶ߩ௠ݍ

ି௠ cos݉߱
ெ

௠ୀଵ

൒ 1 െ ෍ ୫ୟ୶ߩ|௠ݍ|
ି௠

ெ

௠ୀଵ

                                                ൒ 1 െ ඩ ෍ ௠|ଶݍ|
ெ

௠ୀଵ

· ඩ ෍ ୫ୟ୶ߩ
ିଶ௠

ெ

௠ୀଵ

 

(5.24)

In (5.24), the second inequality is obtained by the Cauchy-Schwartz inequality. By 

combining (5.23) and (5.24), we can construct a stability condition as 

 

ԡࢗഥԡଶ ൌ ඩ ෍ ௠ݍ
ଶ

ெ

௠ୀଵ

൑
1 െ ߥ

ට෌ ୫ୟ୶ߩ
ିଶ௠ெ

௠ୀଵ

 (5.25)

It can be observed from (5.25) that if ߥ is fixed, we can force the poles to move towards 

the origin (i.e., ߩ୫ୟ୶ → 0) by suppressing ԡࢗഥԡଶ. When all poles lie on the origin (i.e., 

 ഥԡଶ = 0 and the designed IIR digital filter essentially degenerates toࢗ୫ୟ୶ = 0), we have ԡߩ

an FIR digital filter. However, the stability condition (5.25) is too restrictive to be 

directly applied in practical designs. Instead of employing a fixed upper bound for ԡࢗഥԡଶ, 

we can gradually reduce ԡࢗഥԡଶ
ଶ during the design procedure. Note that when rank  ,1 = ࢆ

the relaxed LMI constraint (5.14.b) is reduced to (5.12.b), and then we have Tr൛ࢄ௤ൟ = 

ԡࢗഥԡଶ
ଶ. Therefore, we can attenuate ԡࢗഥԡଶ

ଶ by reducing Tr൛ࢄ௤ൟ, which can be accomplished 

by augmenting the regularization coefficient ߙ in the objective function of (5.17). Since a 

large ߙ  may result in an over-attenuated Trሼࢆሽ , which degrades the performance of 

obtained IIR filters, the value of ߙ should be carefully selected. Here, we also resort to 

the inner bisection search procedure. In Step 2 of the inner bisection search procedure 

described earlier, after solving the regularized feasibility problem (5.17), besides the ratio 

 ,ሺ௞,௟ሻ൯, we also need to check the maximum pole radius of the obtained IIR filterࢆ൫ߟ

which is represented by ߩ൫ࢗሺ௞,௟ሻ൯  where ࢗሺ௞,௟ሻ  = ൣ1 ൫ࢗഥሺ௞,௟ሻ൯் ൧
்

. If ߟ൫ࢆሺ௞,௟ሻ൯ ߝ ≥   and 

ାߙ ୫ୟ୶, chooseߩ ≥ ሺ௞,௟ሻ൯ࢗ൫ߩ
ሺ௞,௟ሻ = ߙሺ௞,௟ሻ and ିߙ

ሺ௞,௟ሻ = ିߙ
ሺ௞,௟ିଵሻ such that at the next iteration 

ିߙ ሺ௞,௟ାଵሻ will be augmented. Otherwise, setߙ
ሺ௞,௟ሻ ൌ ାߙ ሺ௞,௟ሻ andߙ

ሺ௞,௟ሻ ൌ ାߙ
ሺ௞,௟ିଵሻ such that 
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at the next iteration ߙሺ௞,௟ାଵሻ will be reduced. Similarly, at each outer iteration, we need to 

check ݖሺ௞,଴ሻ, ߟ൫ࢆሺ௞,଴ሻ൯, and ߩ൫ࢗሺ௞,଴ሻ൯ after solving (5.14) in order to determine whether 

or not the inner bisection search procedure needs to be invoked. 

In practice, some other constraints can be imposed on ഥ࢞  and ࢄ  to refine the 

formulation of the feasibility problems (5.14) and (5.17), such that the relaxed feasibility 

problem can approach the original design problem as well as possible or the obtained IIR 

filters can satisfy some specific requirements. In our designs, the following linear 

inequality constraints in terms of the denominator coefficients ࢗഥ  and the diagonal 

elements ൣࢄ௤൧
ሺ௠,௠ሻ

 of ࢄ௤ are also incorporated: 

|௠ݍ|  ൑ ,ܯሺܥ ݉ሻߩ୫ୟ୶
௠ , ݉ ൌ 1,2, … , (5.26) ܯ

௤൧ࢄൣ 
ሺ௠,௠ሻ

൑ ሾܥሺܯ, ݉ሻߩ୫ୟ୶
௠ ሿଶ, ݉ ൌ 1,2, … , (5.27) ܯ

where ܥሺܯ, ݉ሻ !ሾ݉/!ܯ =  ሺܯ െ ݉ሻ!ሿ . It can be verified that (5.26) and (5.27) are 

necessary conditions for the stability of designed IIR filters. 

The flowchart of the complete design method is shown in Fig. 5.1. The dashed box 

indicates the inner bisection search procedure described in Section 5.1.3. It can be seen 

from Fig. 5.1 that the major computation is expended to solve the SDP feasibility 

problem (5.17). 

5.1.5 Initial Lower Bound Estimation Using SDP Relaxation 

The last issue we need to address is how to estimate the initial lower bound ିߜ
ሺ଴ሻ of 

the minimum error limit כߜ for the outer bisection search procedure. Obviously, the initial 

design (4.9) used by the sequential SOCP design method presented in Chapter IV can be 

directly applied here. In this section, we shall make use of the SDP relaxation technique 

described in Section 5.1.2 to reformulate an SDP design problem. By solving this relaxed 

design problem, we can also obtain an initial lower bound ିߜ
ሺ଴ሻ. It will be shown that this 

SDP design problem is related to the SOCP design problem (4.9). 
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Fig. 5.1 Flowchart of the complete design method. 
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The SDP relaxation technique described in Section 5.1.2 can be applied only on the 

right-hand side of (5.3), and then we can obtain the following SDP design problem 

min (5.28) ߜ

s.t. ሺ߱௜ሻ|ଶܦ|    ൅ 2Reሼܦሺ߱௜ሻࢉுሺ߱௜ሻሽഥ࢞ ൅ ഥ்࢞࡭ሺ߱௜ሻഥ࢞

൑
ߜ

ܹଶሺ߱௜ሻ · ൣ1 ൅ 2Re൛ഥ࣐ெ
ு ൫݁௝ఠ೔൯ൟࢗഥ ൅ Tr൛ࢄ௤࡮ሺ߱௜ሻൟ൧ 

where ഥ࢞ ൌ ሾࢗഥ் ሿ், and ߱௜்࢖ א Ωூ, ݅ ൌ 0,1, … ,  ܮ

(5.28.a)

ࢅ ൌ ቈ
1 ഥ்ࢗ

ഥࢗ ௤ࢄ
቉ ظ 0 (5.28.b)

In (5.28), the decision variables are ࢖ ,ߜ, and ࢅ. Unlike the linear inequality constraint 

(5.11) which is expressed in terms of ഥ࢞ and ࢄ, now (5.28.a) is a hyperbolic constraint, 

which can be recast as an LMI constraint [74]. Compared with (4.2.b), the constraints 

(5.28.a) and (5.28.b) define a larger feasible set. Therefore, a lower bound on the optimal 

value of the original design problem (4.2) can be obtained by solving (5.28). The major 

difference between (5.28) and (4.9) is that the trigonometric function ்࢙ࢊሺ߱ሻ in (4.9) has 

been replaced by a linear function of the denominator coefficients ࢗഥ and the elements of 

௤. When rankࢄ  ,ഥ் and, accordinglyࢗഥࢗ = ௤ࢄ we have ,1 = ࢅ

 
Trሼࢅሽ ൌ 1 ൅ Tr൛ࢄ௤ൟ ൌ ෍ ௠ݍ

ଶ
ெ

௠ୀ଴

 (5.29)

 
Tr௠ሼࢅሽ ൌ ෍ ௜ା௠ݍ௜ݍ

ெି௠

௜ୀ଴

, ݉ ൌ 1, 2, … , (5.30) ܯ

where Tr௠ሼࢅሽ denotes the sum along the ݉th diagonal of ࢅ. Comparing (5.29) and (5.30) 

with (4.6), we can find that if (4.5) is satisfied, Trሼࢅሽ = ݀଴ and Tr௠ሼࢅሽ = ݀௠ where ݀௠ is 

defined by (4.6). In both initial designs, i.e., (4.9) and (5.28), the convex relaxation 

techniques have been employed to transform the original nonconvex constraint (4.2.b) 

into convex forms. Specifically, the equality constraint (4.7) is relaxed to (4.9.d), while 
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the constraint ࢄ௤ = ࢗഥࢗഥ் is relaxed to (5.28.b). In practice, these two initial designs can 

generate similar lower bounds of the minimum error limit כߜ. 

It should be mentioned that although the relaxed constraints of (5.14) and (5.28) are 

both obtained by applying the SDP relaxation technique on the original nonconvex 

constraint (4.2.b), they are used in different situations and cannot be replaced by each 

other. In (5.14) the error limit ߜ must be fixed. Otherwise, (5.14.a) is cannot be directly 

incorporated in the convex feasibility problem (5.14). However, in (5.28), the objective 

function is chosen as ߜ  subject to a set of relaxed constraints. Therefore, the relaxed 

constraints of (5.14) cannot be applied to find an initial lower bound ିߜ
ሺ଴ሻ in (5.28). Given 

ሺ௞ሻߜ , the relaxed constraints (5.28.a) and (5.28.b) could be applied to construct the 

following feasibility problem, which is similar to (5.14) 

min (5.31) ݖ

s.t. ሺ߱௜ሻ|ଶܦ|    ൅ 2Reሼܦሺ߱௜ሻࢉுሺ߱௜ሻሽഥ࢞ ൅ ഥ்࢞࡭ሺ߱௜ሻഥ࢞

൑
ሺ௞ሻߜ

ܹଶሺ߱௜ሻ · ൣ1 ൅ 2Re൛ഥ࣐ெ
ு ൫݁௝ఠ೔൯ൟࢗഥ ൅ Tr൛ࢄ௤࡮ሺ߱௜ሻൟ൧ ൅  ݖ

where ഥ࢞ ൌ ሾࢗഥ் ሿ், and ߱௜்࢖ א Ωூ, ݅ ൌ 0,1, … ,  ܮ

(5.31.a)

ࢅ ൌ ቈ
1 ഥ்ࢗ

ഥࢗ ௤ࢄ
቉ ظ 0 (5.31.b)

However, this formulation will lead to problematical solutions. Assume that by solving 

(5.31) with a given ߜሺ௞ሻ, a set of ݖ, ഥ࢞, and ࢄ௤  (or ࢅ) have been obtained. Since ࢄ௤  is 

PSD, we can construct another PSD matrix ܾࢄ௤  for any ܾ  > 1, which satisfies 

Tr൛ܾࢄ௤࡮ሺ߱ሻൟ > Tr൛ࢄ௤࡮ሺ߱ሻൟ > 0 and ܾࢄ௤ ظ  ௤ into (5.31.a) andࢄܾ ഥ். Then, by takingࢗഥࢗ

(5.31.b), it can be verified that the scaled matrix ܾࢄ௤  can also satisfy these two 

constraints with the obtained ݖ and ഥ࢞. Thereby, in (5.31.a) the value of ݖ can be slightly 

reduced without changing the inequality sign of (5.31.a). This implies that by sufficiently 

scaling ࢄ௤, we can always make 0 ≥ ݖ. Under this circumstance, ߜା
ሺ௞ሻ will be chosen as 

ሺ௞ሻߜ  and eventually reduced to the initial lower bound ିߜ
ሺ଴ሻ . Obviously, the desired 
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minimum error limit and the corresponding filter coefficients cannot be obtained by 

applying (5.31) in the outer bisection search procedure to locate כߜ. 

5.2 Simulations 

In this section, four examples are presented to demonstrate the effectiveness of the 

proposed design method. Theoretically speaking, in order to approach a rank-1 solution, 

the value of parameter ߝ should be chosen as small as possible. In practice, however, this 

parameter cannot be too small, otherwise Trሼࢆሽ  could be over-attenuated. In all the 

examples presented in this section, parameter ߝ is chosen as 5×10-2, which is also suitable 

for most of designs we have tried so far. The value of parameter ߢ୫୧୬ can be arbitrarily 

selected. In general, a smaller ߢ୫୧୬ leads to a more accurate design, but the total number 

of iterations will accordingly be increased. In our designs, ߢ୫୧୬ is set equal to 10-3. The 

initial upper and lower bounds of parameter ߙ used by the outer iterations in which the 

inner bisection search procedure is invoked for the first time can be arbitrarily selected, 

provided they are sufficiently close to 1 and 0, respectively. In our designs, they are 

chosen, respectively, as 10-2 and 10-12. At the succeeding iterations, we choose 5 = ߛ in 

(5.21) and (5.22) to determine the upper and lower bounds ߙା
ሺ௞,௟ሻ  and ିߙ

ሺ௞,௟ሻ  of the 

regularization coefficient. Parameter ߛ can take some larger value to extend the search 

range of ߙ. However, according to (5.20)-(5.22), the inner bisection search procedure 

needs more iterations to find an appropriate ߙ. Linear inequality constraints (5.14.a) and 

(5.17.a) are both imposed on a set of discrete frequency points taken from 101 equally-

spaced grid points over the whole frequency band. If the weighting function ܹሺ߱ሻ is not 

explicitly defined in the specifications, it is always set equal to 1 over Ωூ , and 0 

otherwise. Similarly, without any explicit declaration, the admissible maximum pole 

radius is always chosen as ߩ୫ୟ୶ = 1. Besides the peak and L2 errors of the magnitude 

(MAG) and group delay (GD) responses over Ωூ, we also adopt the weighted minimax 

error ܧெெ defined by (1.20) to evaluate the performance of the designed filters. In our 

designs, all the SDP problems are solved by SeDuMi [66] in MATLAB environment. 
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5.2.1 Example 1 

The first example is to design a lowpass digital filter with the following ideal 

frequency response 

ሺ߱ሻܦ ൌ ቊ
݁ି௝ଵଶఠ 0 ൑ ߱ ൑ ߨ0.4

0 ߨ0.56 ൑ ߱ ൏ ߨ
 

The numerator and denominator orders are chosen, respectively, as ܰ = 15 and 4 = ܯ. 

The design specifications are exactly the same as those adopted by the first example 

of [20]. Using the proposed method, we design an IIR digital filter. All the filter 

coefficients are summarized in Table 5.1. The maximum pole radius of the obtained IIR 

filter is 0.8589. The magnitude and group delay responses are shown as solid curves 

in Fig. 5.2. The magnitude of the weighted complex approximation error, i.e., |ܧሺ߱ሻ|, is 

plotted in Fig. 5.3. Simulation result reveals that in this design ௢ܶ = 13 and ௜ܶሺ݇ሻ = 0 for 

݇ = 1, 2, …, 13, which implies that the inner bisection search procedure is actually not 

invoked. By analyzing the final output ࢆ, we find that except the largest eigenvalue 

 are negligible (≤ 8.9715×10-7). Then, by ࢆ ሻ (= 2.4617), all the other eigenvalues ofࢆଵሺߣ

ignoring ߣ௜ሺࢆሻ (݅ = 2, 3, …, ܰ+2+ܯ), the obtained ࢆ can be approximately regarded as a 

rank-1 matrix. In view of the Proposition 1 described in Section 5.1.2, it can be 

concluded that the final solution is very close to the optimal solution of the original 

design problem. Note that based on the Proposition 1, we can detect the optimality of the 

obtained IIR filter. However, there is no guarantee that it is the unique optimal solution. 

In this example the denominator order ܯ is not too high and the design specifications are 

not stringent. Hence, the optimal design can be obtained by only successively solving the 

relaxed feasibility problem (5.14). In general, however, the inner bisection search 

procedure has to be used to attain rank-1 solutions. The same set of specifications have 

been used by Example 1 in Chapter IV. By comparing the error measurements listed, 

respectively, in Table 4.2 and Table 5.2, we can find that the IIR filter designed by the 

sequential SOCP method proposed in Chapter IV is also very close to the optimal design, 

although its optimality cannot be verified therein. 
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Table 5.1 Filter Coefficients (݌଴ to ݌ே and ݍ଴ to ݍெ) of IIR Digital Filter Designed in Example 1 

 ସ -2.7732e-003 -2.2843e-003 3.9183e-003 3.6388e-003 -6.7658e-003݌~଴݌
 ଽ -8.1916e-003 1.0842e-002 1.7997e-002 -1.7897e-002 -4.5489e-002݌~ହ݌
 ଵସ 3.3981e-002 2.2224e-001 3.7818e-001 3.7119e-001 2.2084e-001݌~ଵ଴݌
     ଵହ  7.5101e-002݌
 ସ 1.0000e+000 -4.5733e-001 8.9053e-001 -2.5287e-001 8.0733e-002ݍ~଴ݍ
 

 
Fig. 5.2 Magnitude and group delay responses of IIR filters designed in Example 1. Solid curves: 

designed by the proposed method. Dashed curves: designed by the SM method [8]. 

 
Fig. 5.3 Magnitude of complex approximation error |ܧሺ߱ሻ| in Example 1. Solid curves: designed by the 

proposed method; Dashed curves: designed by the SM method [8]. 
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Table 5.2 Error Measurements of Design Results in Example 1 

Method Minimax Error 
 ெெ (in dB)ܧ

Passband MAG 
(Peak/L2 in dB) 

Passband GD 
(Peak/ L2) 

Stopband MAG 
(Peak/L2 in dB) 

Proposed -45.721 -45.721/ -55.162 2.773e-1/ 2.537e-2 -45.720/ -50.378 
SM [8]  -44.810 -45.998/ -54.561 2.933e-1/ 2.604e-2 -44.807/ -50.543 

 

For comparison, we also utilize the SM method [8] to design an IIR filter under the 

same set of specifications. The initial point is chosen as the optimal FIR design with the 

filter order equal to ܰ. The design result shows that the SM method can achieve a stable 

IIR filter even without the positive realness based stability constraint (3.37). The 

maximum pole radius of the obtained IIR filter is 0.8622. The magnitude and group delay 

responses are also plotted in Fig. 5.2 as dashed curves. The magnitude of the 

corresponding complex approximation error is also shown as dashed curves in Fig. 5.3. 

All the error measurements are summarized in Table 5.2. It can be observed that the 

proposed method can achieve slightly better performance except in peak error of the 

passband magnitude and L2 error of the stopband magnitude than those obtained by the 

SM method [8]. 

5.2.2 Example 2 

The second example, which is taken from [25], is to design another lowpass filter. 

The ideal frequency response is defined by 

ሺ߱ሻܦ ൌ ቊ
݁ି௝ହఠ 0 ൑ ߱ ൑ ߨ0.2

0 ߨ0.4 ൑ ߱ ൏ ߨ
 

Numerator and denominator orders are set equal to ܰ = 4 = ܯ. After 14 outer iterations, 

i.e., ௢ܶ = 14, the outer bisection search procedure converges to the final solution. Only at 

the second outer iteration, the inner bisection search procedure is invoked, and ௜ܶሺ2ሻ = 15. 

The minimum value of ߙ  determined by the inner bisection search procedure is 

2.3714×10-6. The maximum pole radius of the obtained IIR filter is 0.8975. The first and 

second largest eigenvalues of the final output ࢆ  of the proposed design method are 

19.6301 and 2.1717×10-5. Both numerator and denominator coefficients of the obtained 
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IIR filter are summarized in Table 5.3. The magnitude and group delay responses are 

plotted as solid curves in Fig. 5.4. The magnitude of the complex approximation error 

 .ሺ߱ሻ is shown in Fig. 5.5ܧ

For comparison, we also design an IIR digital filter using the design method [25] 

under the same set of specifications. This IIR filter design method is based on the 

formulation of a generalized eigenvalue problem by using the Remez exchange algorithm. 

Numerator and denominator coefficients of the corresponding IIR filter have been given 

in [25]. The maximum pole radius of the obtained IIR filter is 0.8771. The magnitude and 

group delay responses and the magnitude of complex approximation error are also shown 

as dashed curves in Fig. 5.4 and Fig. 5.5, respectively. All the error measurements are 

summarized in Table 5.4. It is obvious that the proposed method can achieve better 

performance than the design method [25]. 

 

Table 5.3 Filter Coefficients (݌଴ to ݌ே and ݍ଴ to ݍெ) of IIR Digital Filter Designed in Example 2 

 ସ -2.3339e-002 4.1194e-002 1.1390e-002 1.1163e-002 4.4441e-002݌~଴݌
 ସ 1.0000e+000 -2.5935e+000 2.9782e+000 -1.6947e+000 3.9670e-001ݍ~଴ݍ

 
Fig. 5.4 Magnitude and group delay responses of IIR filters designed in Example 2. Solid curves: 

designed by the proposed method. Dashed curves: designed by the Remez multiple exchange 
method [25]. 
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Fig. 5.5 Magnitude of complex approximation error |ܧሺ߱ሻ| in Example 2. Solid curves: designed by the 

proposed method; Dashed curves: designed by the Remez multiple exchange method [25]. 

 

Table 5.4 Error Measurements of Design Results in Example 2 

Method Minimax Error 
 ெெ (in dB)ܧ

Passband MAG 
(Peak/L2 in dB) 

Passband GD 
(Peak/ L2) 

Stopband MAG 
(Peak/L2 in dB) 

Proposed -33.437 -33.437/ -43.697 5.766e-1/ 7.114e-2 -33.437/ -38.931 
Remez [25] -32.613 -32.669/ -43.598 9.573e-1/ 8.654e-2 -32.617/ -36.826 

 

5.2.3 Example 3 

The third example is to design two full-band digital differentiators [18] with the 

ideal frequency response 

ሺ߱ሻܦ ൌ
߱
ߨ ݁௝ሾ଴.ହగିሺఛೞା଴.ହሻఠሿ, 0 ൑ ߱ ൏  ߨ

where ߬௦ is an integer delay. The first differentiator is of order 8, i.e., ܰ = 8 = ܯ. And the 

filter order in the second design is set to 5. In both designs, ߬௦ is chosen as 3. Therefore, 

the ideal group delay is equal to 3.5 over the whole frequency band. As proposed in [18], 

the weighting functions in both designs are chosen as 
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ܹሺ߱ሻ ൌ ቊ
߱⁄ߨ ߨ0.1 ൏ ߱ ൏ ߨ

10 0 ൑ ߱ ൑ ߨ0.1
 

In [18], an IIR differentiator of order 8 is first designed by the modified Ellacott-

Williams (EW) algorithm, which utilizes the first-order Taylor series to simplify the 

denominator design at each iteration, while the optimal numerator for a given 

denominator can be obtained by solving (4.27). However, the obtained differentiator of 

order 8 is a degenerate filter. There are three pairs of poles and zeros which nearly cancel 

each other. After removing these poles and zeros, the remaining poles and zeros are then 

used to construct an IIR differentiator of order 5, from which a new IIR differentiator of 

order 5 with the same ideal group delay is redesigned by the modified EW algorithm. The 

poles and zeros of these two differentiators are given in [18]. In both designs of [18], the 

admissible maximum pole radius is specified as 0.98. The maximum pole radii of the 

designed differentiators of order 8 and order 5 are 0.6829 and 0.4400, respectively. 

For comparison, we choose the admissible maximum pole radii as 0.7 and 0.5 in our 

designs. In the design of differentiator of order 8, after 14 outer iterations, i.e., ௢ܶ = 14, 

the design procedure converges to the final solution. At each outer iteration, the inner 

bisection search procedure is invoked, and simulation result shows that ௜ܶሺ1ሻ = 15 and 

௜ܶሺ݇ሻ = 12 for ݇  = 2, 3, …, 14. The minimum value of ߙ  determined by each inner 

bisection search procedure is within the range of [7.2448×10-7, 6.7989×10-5]. The largest 

eigenvalue of the final output ࢆ is 1.3300, and all the other eigenvalues are less than 

9.0490×10-8. Filter coefficients of the designed IIR differentiator of order 8 are listed 

in Table 5.5. In the design of differentiator of order 5, ௢ܶ = 13, and ௜ܶሺ1ሻ = ௜ܶሺ2ሻ = 0, 

௜ܶሺ3ሻ = 15, ௜ܶሺ݇ሻ  = 12 for ݇ = 4, 5, …, 13. The minimum value of ߙ determined by each 

inner bisection search procedure is within the range of [7.2385×10-6, 3.5142×10-5]. The 

final output ࢆ has eigenvalues ߣଵሺࢆሻ = 1.3651 and ߣ௜ሺࢆሻ ≤ 6.6688×10-7 (݅ = 2, 3, …, 12). 

Filter coefficients of the obtained differentiator of order 5 are also given in Table 5.5. The 

design characteristics and errors of these two IIR differentiators are shown in Fig. 5.6 

and Fig. 5.7, respectively. As in Example 4 of Section 4.3, the approximation errors of 

group delay response within the frequency band [0.05ߨ ,ߨ] are ignored when evaluating 

the peak and L2 errors of group delay. The magnitudes of ܧሺ߱ሻ of IIR differentiators are 
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both shown in Fig. 5.8, where solid and dashed curves correspond, respectively, to the 

IIR differentiators of order 8 and order 5. All the error measurements are summarized 

in Table 5.6. 

 

Table 5.5 Filter Coefficients (݌଴ to ݌ே and ݍ଴ to ݍெ) of IIR Digital Differentiators Designed in 
Example 3 

Order 8 

 ସ -1.0371e-002 1.9258e-002 -4.2066e-002 3.9520e-001 -3.2480e-001݌~଴݌
  6.0965e-002 5.1963e-002 -6.7226e-002 3.6988e-002- ଼݌~ହ݌
 ସ 1.0000e+000 1.8608e-001 -6.2769e-002 7.4670e-002 -9.7975e-002ݍ~଴ݍ
  8.4768e-003 1.8686e-004 -2.3250e-004 -2.0158e-003- ଼ݍ~ହݍ

Order 5 

 ସ -1.0459e-002 1.7395e-002 -3.9043e-002 3.8891e-001 -2.5654e-001݌~଴݌
     ହ  -1.0236e-001݌
 ସ 1.0000e+000 3.6826e-001 4.5442e-003 4.3005e-003 -7.1699e-004ݍ~଴ݍ
     ହ  7.3662e-003ݍ

 

Table 5.6 Error Measurements of Design Results in Example 3 

Method Order Minimax Error ܧெெ  
(in dB) 

MAG 
(Peak/L2 in dB) 

GD within [0.05π, π] 
(Peak/ L2) 

Proposed 8 -34.656 -35.122/ -43.737 3.197e-1/ 6.447e-2 
5 -33.032 -33.418/ -43.294 2.434e-1/ 6.143e-2 

Modified 
EW [18] 

8 -30.918 -32.776/ -41.718 3.580e-1/ 7.582e-2 
5 -27.883 -28.122/ -41.666 3.265e-1/ 7.859e-2 

 

 
Fig. 5.6 Design characteristics and errors of the differentiator of order 8 in Example 3. Solid curves: 

designed by the proposed method. Dashed curves: designed by the modified EW method [18]. 
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Fig. 5.7 Design characteristics and errors of IIR differentiator of order 5 designed in Example 3. Solid 

curves: designed by the proposed method. Dashed curves: designed by the modified EW 
method [18]. 

 

 

Fig. 5.8 Magnitudes of complex approximation error |ܧሺ߱ሻ| of IIR differentiators designed in Example 
3. Solid curves: differentiator of order 8; Dashed curves: differentiator of order 5. 
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5.2.4 Example 4 

The last example is to design a halfband highpass filter [11], [28]. The desired 

frequency response is given by 

ሺ߱ሻܦ ൌ ቊ
݁ି௝ଵଶఠ ߨ0.525 ൑ ߱ ൏ ߨ

0 0 ൑ ߱ ൑ ߨ0.475
 

Numerator and denominator orders are chosen as 14 = ܰ = ܯ. First of all, we directly 

utilize the proposed method to design an IIR filter with ߩ୫ୟ୶ = 0.98. The final solution is 

obtained after 14 outer iterations. The total number of inner iterations at each outer 

iteration is ௜ܶሺ1ሻ = 0, ௜ܶሺ2ሻ = 15, and ௜ܶሺ݇ሻ = 12 for ݇ = 3, 4, …, 14. The regularization 

coefficients determined by these inner bisection search procedures are within the range of 

[1.1814×10-6, 3.6685×10-6]. The largest eigenvalue of the final output ࢆ  is equal to 

2.5978, whereas ߣ௜ሺࢆሻ ≤ 7.2489×10-5 for ݅ = 2, 3, …, 30. The maximum pole radius of the 

designed filter is 0.9800. All the filter coefficients are given in Table 5.7. The magnitude 

and group delay responses, and the magnitude of |ܧሺ߱ሻ| are shown as dash-dotted curves 

in Fig. 5.9 and Fig. 5.10, respectively. The corresponding error measurements (referred as 

Proposed-1) are given in Table 5.8. For comparison, the SM method [8] is employed to 

design an IIR digital filter under the same specifications. The design procedure starts 

from an optimal FIR filter design. The maximum pole radius of the obtained IIR filter is 

0.9346. The corresponding magnitude of ܧሺ߱ሻ is also shown as dashed curves in Fig. 

5.10. Obviously, the proposed method can achieve much better performance. 

 
Table 5.7 Filter Coefficients (݌଴ to ݌ே and ݍ଴ to ݍெ) of IIR Digital Filters Designed in Example 4 

Proposed-1 

 ସ -8.9283e-003 1.5280e-002 6.9703e-003 -1.9689e-004 -7.7944e-003݌~଴݌
 ଽ 6.5802e-003 9.8544e-003 -1.7955e-002 -1.9061e-002 4.5495e-002݌~ହ݌
 ଵସ 4.2842e-002 -2.2074e-001 3.3228e-001 -2.8527e-001 1.6577e-001݌~ଵ଴݌
 ସ 1.0000e+000 5.8712e-001 6.9620e-001 -9.5168e-002 -4.0565e-001ݍ~଴ݍ
 ଽ -1.6947e-001 2.1597e-001 2.6214e-001 -2.6027e-002 -2.4264e-001ݍ~ହݍ
 ଵସ -1.4439e-001 1.0613e-001 2.3135e-001 1.6991e-001 5.8671e-002ݍ~ଵ଴ݍ

Proposed-2 

 ସ -5.9409e-003 1.3554e-002 7.6070e-003 -4.7667e-003 -1.9294e-002݌~଴݌
 ଽ -5.1246e-003 1.2685e-002 -1.6718e-003 -1.5201e-002 2.8330e-002݌~ହ݌
 ଵସ 4.2385e-002 -1.9479e-001 2.7198e-001 -2.0772e-001 1.3183e-001݌~ଵ଴݌
 ସ 1.0000e+000 9.7306e-001 1.1889e+000 3.3032e-001 -4.1280e-001ݍ~଴ݍ
 ଽ -5.5491e-001 -1.1038e-001 3.5085e-001 3.6545e-001 1.2937e-002ݍ~ହݍ
 ଵସ -3.0728e-001 -3.5532e-001 -2.1124e-001 -6.7584e-002 -5.0548e-003ݍ~ଵ଴ݍ
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Fig. 5.9 Magnitude and group delay responses of IIR filters designed in Example 4. Solid curves: 

designed by the proposed method (ρmax = 1) followed by rescaling q through (5.32) and solving 
(4.27). Dash-dotted curves: designed by the proposed method (ρmax = 0.98). Dash curves: 
designed by the SM method [8]. 

 

 
Fig. 5.10 Magnitude of complex approximation error |ܧሺ߱ሻ| in Example 4. Solid curves: designed by the 

proposed method (ρmax = 1) followed by rescaling q through (5.32) and solving (4.27). Dash-
dotted curves: designed by the proposed method (ρmax = 0.98). Dash curves: designed by the SM 
method [8]. 
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Table 5.8 Error Measurements of Design Results in Example 4 

Method Minimax Error 
 ெெ (in dB)ܧ

Passband MAG 
(Peak/L2 in dB) 

Passband GD 
(Peak/ L2) 

Stopband MAG 
(Peak/L2 in dB) 

Proposed-1 -30.714 -30.720/ -38.988 1.814/ 1.689e-1 -30.714/ -34.970 
Proposed-2 -32.212 -32.218/ -40.058 1.716/ 1.649e-1 -32.211/ -37.270 
SM [8]  -24.231 -25.333/ -32.497 4.062/ 4.030e-1 -25.051/ -29.538 

 

In Section 5.1.3, we mentioned that the regularization parameter ߙ  should be 

appropriately selected in order to avoid Trሼࢆሽ  and, accordingly, ԡഥ࢞ԡଶ  being over-

attenuated. In order to demonstrate the effects of over-attenuation on the design 

performances, we redesign an IIR filter using the proposed method under the same set of 

specifications except the admissible maximum pole radius ߩ୫ୟ୶ = 1. In so doing, the final 

solution can be obtained after 14 outer iterations. Simulation results show that ௜ܶሺ2ሻ = 15, 

௜ܶሺ݇ሻ  = 12 for ݇  = 3, 7, 9, and ௜ܶሺ݇ሻ  = 0 for ݇  = 1, 4, 5, 6, 8, 10, …, 14. The 

regularization coefficients determined by the inner iterations are within the range of 

[5.5412×10-8, 1.0228×10-6]. The largest eigenvalue of the obtained ࢆ is 5.1767, and other 

eigenvalues ߣ௜ሺࢆሻ (݅ = 2, 3, …, 30) are less than 0.0888. In order to make all poles lie 

inside the circle of the radius ߩ୫ୟ୶  = 0.98, we can simply rescale the denominator 

coefficients of the obtained IIR filter (with ߩ୫ୟ୶ = 1) as 

ො௠ݍ  ൌ ௠ݍ ቂఘౣ౗౮
ఘሺࢗሻ

ቃ
௠

(5.32) ܯ ,… ,2 ,1 = ݉      ,

where ݍො௠  denotes the rescaled denominator coefficients. Given ࢗෝ = [1 ݍොଵ ොெݍ …  ]T, the 

optimal numerator coefficients ࢖ෝ ଴̂݌] =  ଵ̂݌  ே̂݌ …  ]T can be determined by solving the 

SOCP problem (4.27). Filter coefficients of the obtained IIR filter are listed in Table 5.7. 

The design results and the magnitude of ܧሺ߱ሻ are plotted as solid curves in Fig. 5.9 

and Fig. 5.10, respectively. The corresponding error measurements (referred as Proposed-

2) are summarized in Table 5.8. Although by using (5.32) and (4.27) the obtained IIR 

filter is not guaranteed to be optimal, it can be observed from Table 5.8 that the current 

design can achieve better performance than the one directly obtained by the proposed 

method with ߩ୫ୟ୶ = 0.98. We also find that the regularization coefficient ߙ determined in 

the previous design (Proposed-1) is larger than the one determined in the current design 
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(Proposed-2). Consequently, in the previous design, the obtained ࢆ is much closer to a 

rank-1 solution, which can be verified by the ratio ߟሺࢆሻ  of both designs: ߟሺࢆሻ  = 

2.7904×10-5 for Proposed-1 and ߟሺࢆሻ  = 1.7154×10-2 for Proposed-2. We can further 

compare these two designs by examining the l2-norms of obtained filter coefficients, i.e., 

ԡ࢞ԡଶ = ԡ࢖ԡଶ+ԡࢗԡଶ. From Table 5.7, we can obtain ԡ࢞ԡଶ = 1.6118 in the first design and 

ԡ࢞ԡଶ = 2.1594 in the second design. Obviously, compared with the design result obtained 

by the Proposed-2 method, the l2-norm of filter coefficients obtained by the Proposed-1 

method has been over-attenuated. This is the major reason for the better performance of 

the Proposed-2 method in this example. 

It should be emphasized that such over-attenuation does not always appear when 

 ୫ୟ୶ < 1. For Examples 2 and 3 presented before, and many other designs with a similarߩ

level of filter requirements, the Proposed-1 method is able to arrive at a satisfactory 

design and no further improvement can possibly be achieved by the Proposed-2 method. 

The Proposed-2 method is also not necessary in those designs with much less stringent 

filter requirements such as Example 1, since the inner bisection search procedure is not 

even invoked. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE STUDY 

6.1 Conclusions 

In this dissertation, we have mainly studied three IIR filter design methods. Given a 

complex-valued desired frequency response ܦሺ߱ሻ, our design objective is to find an IIR 

digital filter with the transfer function ܪሺݖሻ defined by (1.4), which can best approximate 

 ሻݖሺ߱ሻ under the WLS or minimax criterion. Due to the existence of the denominator ܳሺܦ

whose roots can be anywhere in the ݖ plane, IIR filter design problems primarily face two 

difficulties: 1) The design problems are essentially nonconvex. Hence, there may be 

many local optima existing on error performance surfaces. 2) When 2 < ܯ, the stability 

domain is also nonconvex. In this dissertation, we have proposed three IIR filter design 

methods under the framework of convex optimization. The most important advantage of 

using convex optimization to solve design problems is that if a design problem can be 

strictly formulated as an equivalent convex optimization problem, its globally optimal 

solution can be efficiently and reliably obtained. For nonconvex IIR filter design 

problems, approximation and convex relaxation techniques have to be employed to 

transform original design problems into convex forms. 

In Chapter III, a sufficient and necessary stability condition has been presented for 

WLS IIR filter designs. A sequential design procedure is developed, in which the original 

design problem is transformed to an SOCP optimization problem using the SM scheme. 

The stability condition given by (3.29) is derived from the argument principle of convex 

analysis. However, in practice we cannot directly utilize this stability condition since it is 

also in a nonconvex form. As an attempt to tackle this difficulty, we first adopt an 

approximation technique similar to the SM scheme to transform the stability condition 

(3.29) into a quadratic inequality constraint, and then combine this approximate stability 

constraint with the sequential design procedure. It has been shown that if this sequential 

procedure is convergent and the regularization parameter ߙ is appropriately selected, the 
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argument principle based stability constraint can finally guarantee the stability of 

designed IIR filters. 

In Chapter IV, a sequential design method has been developed in the minimax sense. 

It has been demonstrated in (4.2) that the nonconvexity of the original minimax design 

problem is reflected by the constraint (4.2.b). By introducing a new polynomial ܴሺݖሻ = 

ܳሺݖሻܳሺିݖଵሻ and then replacing หܳሺ݁௝ఠሻหଶ
 on the right-hand side of (4.2.b) by ܴሺ݁௝ఠሻ, 

we can transform (4.2.b) into a hyperbolic constraint. However, in order to maintain the 

equivalence between ܴሺݖሻ  and ܳሺݖሻܳሺିݖଵሻ , we need to incorporate a nonconvex 

constraint ܴሺ݁௝ఠሻ = หܳሺ݁௝ఠሻหଶ
 for [ߨ ,0] א ߱׊ into (4.2). An SOCP design problem can 

be obtained by relaxing this quadratic equality constraint as หܳሺ݁௝ఠሻหଶ
 ≤ ܴሺ݁௝ఠሻ. By 

solving this relaxed design problem, we can achieve the lower and upper bounds of the 

optimal value of the original design problem (4.2). In practice, a real minimax solution 

can be attained by gradually reducing the discrepancy between หܳሺ݁௝ఠሻหଶ
 and ܴሺ݁௝ఠሻ 

over the whole frequency band [0, ߨ]. We can achieve this goal through a sequential 

procedure developed in Section 4.1.3. The convergence of this sequential procedure is 

definitely ensured. In order to increase the convergence speed, a regularization term can 

be incorporated in the objective function of the design problem. The generalized positive 

realness based stability constraints (4.26) are used to ensure the stability of designed IIR 

filters. 

Another minimax design method has been presented in Chapter V. A bisection 

search procedure is introduced to locate the minimum error limit. A feasibility problem 

with a fixed error limit is solved at each iteration of this bisection search procedure. In 

order to construct the feasibility problem, a symmetric matrix ࢄ = ഥ࢞ഥ்࢞ is introduced. By 

reformulating (4.2.b) in terms of ഥ࢞ and ࢄ, we can transform the constraint (4.2.b) to a 

linear inequality constraint (5.11). The equality constraint ࢄ = ഥ࢞ഥ்࢞ can be further relaxed 

to ࢄ ظ ഥ࢞ഥ்࢞ or, equivalently, ࢆ ظ 0 where ࢆ is defined by (5.13), such that the feasibility 

problem is in a convex form. It has been proved in Section 5.1.2 that if the final solution 

(ഥ࢞, ࢄ) of the bisection search procedure satisfies rank  the globally optimal design ,1 = ࢆ

is attained. This condition can be used to detect the optimality of IIR filters designed by 
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the proposed method. In practice, however, we cannot always obtain rank-1 solutions. 

Therefore, the constraint rank  has to be incorporated. Unfortunately, this rank 1 = ࢆ

constraint is still nonconvex. As an attempt to tackle this difficulty, the regularization 

term Trሼࢆሽ is introduced into the objective function of the SDP feasibility problem so as 

to drive many eigenvalues of ࢆ to zeros. Another bisection search procedure needs to be 

deployed within the outer bisection search procedure to determine an appropriate 

regularization parameter. The stability of designed IIR filters can also be assured by the 

inner bisection search procedure. 

The effectiveness of all the proposed design methods described in this dissertation 

has been validated by various simulation examples. The design performances have also 

been compared with some prevalent design methods. It has been demonstrated that the 

proposed design methods can achieve satisfactory designs in the WLS and minimax 

senses, respectively. 

6.2 Further Study 

All the design methods proposed in this dissertation are primarily devoted to tackle 

the nonconvexity and stability issues of IIR filter design problems. So far, the prevalent 

way to accomplish this purpose is to employ some approximation techniques to transform 

the original design problems to some simpler forms. For example, local approximation 

techniques, such as first-order Taylor series, can be used to achieve convex formulations 

of these design problems. In this dissertation, we prefer the convex relaxation techniques 

to local approximation techniques, since some more important information about optimal 

solutions can be simultaneously obtained. However, the remaining difficulty is that 

generally these relaxation techniques can only lead to approximate solutions rather than 

optimal designs. Thus, we still need to resort to some other approximation techniques to 

refine the design results. Apparently, if the relaxed design problems can be better defined, 

we can gain more information about optimal designs. Correspondingly, it is more 

possible to achieve optimal designs through the subsequent local search procedures. 

Following this idea, some more relationships between the original and relaxed design 

problems can be exploited to refine the convex formulations of the relaxed design 
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problems. Moreover, some special characteristics of the original design problems in time 

and/or frequency domains can also be used to screen out unqualified solutions from the 

enlarged feasible sets of the relaxed design problems. 

Stability is another important issue which needs to be addressed in IIR filter design 

methods. In this dissertation, a sufficient and necessary condition, i.e., (3.29), for the 

stability of designed IIR filters has been presented. The major difficulty of using this 

stability condition in practical designs is its nonconvexity, which is mainly incurred by 

the dependence of ࡳሺݎ, ,ݎሺࡳ and the infiniteness of ࢗ ሻ on denominator coefficientsࢗ  .ሻࢗ

In Chapter III, we adopted an approximation technique similar to the SM scheme to 

tackle these difficulties. The major concern about the approximate stability condition is 

that by introducing the approximation technique, at each iteration the approximate 

stability condition may be neither sufficient nor necessary. Although the stability of 

designed IIR filters can still be assured if the sequential design method is convergent and 

the regularization parameter is appropriately selected, generally speaking, sufficient 

conditions are more desirable in practical designs, since stable IIR filters can always be 

obtained by sufficient conditions even in nonsequential design methods. Such sufficient 

conditions should satisfy the following properties: 

1. Such stability conditions can be readily incorporated into a variety of optimization-

based design methods. In general, sufficient stability conditions in convex forms are 

most suitable for this purpose. 

2. The feasible set defined by such stability conditions should be large enough. In 

other words, these sufficient conditions can approximate the sufficient and 

necessary condition (3.29) as well as possible. 

Although some sufficient stability conditions, which satisfy the first requirement, 

have been developed so far, the stability domains defined by these conditions are much 

smaller than the real stability domains. Two illustrative examples have been given by 

Figs. 1 and 2 in [23], where the stability domains defined by the positive realness based 

stability condition (3.37), the Rouché’s theorem based stability condition (3.41), and the 

generalized positive realness based stability condition (4.24) are compared with the real 

stability domains. It can be found that the feasible sets defined by these sufficient 



 

105 

conditions are much smaller than the real stability domains. Thereby, the optimal designs 

could be excluded from the feasible sets of the design problems, especially when they are 

close to the boundary of the real stability domains. Since the stability condition (3.29) is 

both sufficient and necessary, the real stability domains can be strictly defined by (3.29). 

Thus, we can exploit appropriate approximation and convex relaxation techniques to 

derive sufficient stability conditions. 
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