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Abstract

Artificial neural networks are widely used in many applications such as signal processing,

classification, and control. However, their practical implementation is challenging due to

the number of inputs, the cost of storing the required weights, and the difficulty in realizing

the activation function.

In this work, Continuous Valued Number System (CVNS) distributed neural networks

are proposed which are providing the network with self-scaling property. This property aids

the network to cope spontaneously with different number of inputs. The proposed CVNS

DNN can change the dynamic range of the activation function spontaneously according to

the number of inputs providing a proper functionality for the network.

In addition, multi-valued CVNS DRAMs are proposed to store the weights as CVNS

digits. These memories scan store up to 16 level, equal to 4 bits, on each storage cell.

In addition, they use error correction codes to detect and correct the error over the stored

values.

A synapse-neuron module is proposed to decrease the design cost. It contains both

synapse and neuron and the relevant components. In these modules, the activation function

is realized through analog circuits which are far more compact compared to the digital

look-up-tables while quite accurate.
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ABSTRACT

Furthermore, the redundancy between CVNS digits, together with the distributed struc-

ture of the neuron make the proposal stable against process variations and reduce the noise

to signal ratio.
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Chapter 1

Introduction

In the past decades, studies have been performed to use Artificial Neural Networks (ANNs)

in different applications such as signal processing, pattern recognition, control, and many

others [2–8]. One of the important features of an ANN is its scalability which means how

the network responds if the number of inputs changes as different applications may need

different number of inputs.

In conventional lumped ANNs, there is one neuron corresponding to all the synapses in

each layer, where changing the number of inputs results in malfunctioning of the network

[9]. In the case of a sigmoidal neuron, increasing the number of inputs would cause a larger

saturation area for the neuron which changes the sigmoidal function to a hard limiting

function. Decreasing the number of inputs, on the other hand, will result in a low-gain

function. To overcome these problems, the neuron should be redesigned whenever the

number of inputs changes which is not possible in hardware implementations. Therefore,

the application of a lumped ANN becomes limited to applications with a certain number of

inputs.

1



1. INTRODUCTION

Resistive-type Distributed Neural Network (DNN) was introduced as an alternative for

lumped neural networks [2,3,9,10]. DNNs provide a self-scaling property for the network

to cope with variable number of inputs, spontaneously. In DNNs, there are sub-neurons

instead of neurons. Each sub-neuron is dedicated to one input; consequently, changing

the number of inputs changes the number of sub-neurons. Therefore, DNNs can stretch or

shorten the dynamic range of the activation function to keep the overall neuron characteris-

tic in its proper functionality for different number of inputs. This causes an instant change

in the dynamic range of the overall activation function according to the number of inputs.

The use of sub-neurons in DNNs also provides some advantages for the network such as

higher immunity to noise and process variations [9]. Noise to Signal Ratio (NSR) can be

used to study the noise immunity of the ANNs [11]. Generally, a distributed configuration

decreases the NSR compared to the lumped networks [3, 9, 10]. Here, NSR is used instead

of signal to noise ratio to create a simple analytical expression.

In this work, a structure for feed-forward neural networks is proposed based on the

Continuous Valued Number System (CVNS) as a derivative of conventional DNNs. The

CVNS [12, 13] is a redundant number system which has been successfully employed in

building high performance low power arithmetic units, multi-valued memories, and neural

networks [14–20].

Considering inputs and outputs of the CVNS memory as binary digits, it is shown that

there is an easy way for converting digits from binary to the CVNS and vise versa. The

general representation of an (m + 1)-bit binary value is as follows.

x = ±
m∑

i=0

xi · βi (1.1)

where xi represents binary digits and β shows the radix; β = 2 for a binary radix.

For example, a binary value of x = 101001 is equal to 1× 25 + 0× 24 + 1× 23 + 0×
22 + 0× 21 + 1× 20 = 41.

A CVNS set is an ensemble of multiple CVNS digits, ((x))i, which are generally gen-

erated based on two methods: a series method and a parallel method [13]. The former one,

2



1. INTRODUCTION

called cascade Digit Generation, starts from the first CVNS digit and generates digits one

by one in series; each digit is extracted from the previously generated digits.

An other method called Modular Reduction Digit Generation is used in this work. It

generates all the CVNS digits at the same time, in parallel, and independent to each other.

Thus, this method provides a higher speed of conversion together with a lower complexity

compared to the series method and is as follows.

((x))n−i =
( x

M
· βn−i+1

)
modβ =

( x

M
· 2n−i+1

)
mod2 (1.2)

where n is the maximum index of the CVNS digits, 0 ≤ i ≤ n. M is the maximum

representation range, and β is the CVNS radix which is chosen low, equal to 2 (β = 2),

in order to reduce the complexity of the circuit further more. mod stands for the modular

reduction operation on any continuous real value such that (a)modβ = a − I × β where

0 ≤ (a)modβ < β. I is an integer (I = 0, 1, · · · , β − 1) which in this case is either 0 or 1.

In order to simplify the conversion between binary and CVNS, the maximum range of

the representation for both the binary and the CVNS systems is selected as 2m+1 = 2n+1 =

M . Therefore, the number of binary digits, m + 1, and the CVNS digits, n + 1, are the

same.

Under these conditions, a CVNS digit is directly generated from its corresponding bi-

nary digits through a general expression by modifying expression (1.2) as follows.

((x))n−j =

m−j∑
i=0

xi · 2i+j−m , j = 0, 1, ..., n (1.3)

By eliminating mod2 operation in digit generation, this pre-congruent relation reduces

the number of required gates for system implementation. According to the expression given

by the equation (1.3), the CVNS digit generation directly from the binary digits can be

realized employing simple weighted current mode mirrors. A block diagram representation

of equation (1.3) is shown in Figure 1.1, where squares show the weighted sum operation

units.

3



1. INTRODUCTION

xm xm-1 xm-2 x2 x1 x0 

((x))n

((x))n-1

((x))2

((x))1

((x))0

((x))n-2

.

. . .

.

.

.

.

.
.
.
.

. . .

.

.
. .
. .

.

. . .
. .

Figure 1.1: Block diagram of the CVNS digit generation from binary digits.

Table 1.1 shows the first five CVNS digits, ((x))i, of an arbitrary chosen value in radix-

10 with maximum level of redundancy. Here, the original value is 89.0537412.

Table 1.1: An example for radix-10 CVNS digits

((x))n ((x))n−1 ((x))n−2 ((x))n−3 ((x))n−4

8.90537412 9.0537412 0.537412 5.37412 3.7412

In Table 1.1, {8} appears only in the first CVNS digit, {9} is repeated in only first two

CVNS digits while {3, 7, 4, 1, 2} are repeated in first five CVNS digits. In other words, in

a CVNS digit set, lower index CVNS digits can be rebuilt from higher index CVNS digits

(((x))n−3 = (((x))n−2 × 10)mod10 = (((x))n−1 × 102)mod10 = (((x))n × 103)mod10).

Also, lower index CVNS digits can help in recovering the higher index ones (((x))n =

8 + ((x))n−1/10 = 8.9 + ((x))n−2/102).

4



1. INTRODUCTION

The CVNS representation also offers some degrees of freedom in selecting some rep-

resentation dimensions such as the level of information overlap between the digits and the

number of the required CVNS digits according to design demands. The CVNS digit gen-

eration is limited by the resolution of the environment. Therefore, truncation methods are

applied to the CVNS digits to make them cope with lower resolution environments while

still keeping the CVNS properties [14, 15]. One of the advantages of applying these meth-

ods is reducing the area consumption; however, it may result in lower accuracy as well.

Consequently, the CVNS digits have information overlap with each other; every digit

has some level of knowledge about the digits with lower indices in the same set. This digit

level redundancy is used to detect and correct errors in the digit set which makes the system

more robust against the noise. The proposed CVNS DNN has all the advantages of using

DNNs; furthermore, it results in a reduced NSR for the network compared to conventional

DNNs. This makes the CVNS DNNS a great candidate for hardware implementations.

The CVNS can be implemented through current-mode analog circuitries which gener-

ally provide lower noise, lower voltage swing, and the ability of working with lower power

supply voltages [21–23]. Nevertheless, some functions such as addition can be easily real-

ized through current-mode circuitries.

In this work, a current-mode synapse-neuron module is designed based on the CVNS

which can be used as the building block for a wide variety of applications. The synapse-

neuron module decreases the design cost and increases the fan-out [3]. The weights to this

module are considered to be equal to 13 bits. Truncated CVNS digits equivalent to weights

are generated and stored in multi-valued DRAMs with the ability of error correction [14,

15]. These memories can store up to 16-level equivalent to 4-bit on each storage cell.

Each two adjacent CVNS digits, in the proposed DRAM, has equivalent to one binary

digit overlap; this common digit is used for error correction in the system. This configura-

tion provides a novel multi-valued DRAM with increased noise margin and reduced area.

A fast Analog to Digital Converter (ADC) [24] is proposed for the refreshing circuitry. This

5



1. INTRODUCTION

ADC has a parallel configuration and can convert two bits simultaneously. It can reduce

the overall delay of the refreshing circuitry.

The proposed DRAM has to be refreshed continuously; the voltage over the storing

capacitor drops after a while due to the leakage currents of the storage cell. During the

refreshing cycle, the storage capacitor is charged to the correct value indicated by the error

correction codes.

Except for the multi-valued memory, the proposed synapse-neuron module contains

multiplication module, interface module, and sub-neuron. The multiplication module mul-

tiplies the truncated CVNS digits by the input. A voltage-mode Analog to Digital Converter

(ADC) extracts the digits of the input for the sake of multiplication. The inputs are con-

verted to a 4-bit value and are applied as multipliers to the multiplication modules.

Sign, the 13th bit of the weight, is applied to the multiplier output in the interface

module releasing the final synapse output which goes to a Common Node (CN). CN is

common between all the synapse-neuron modules in a layer and acts as an input/output

node. In this node, currents from synapses are added up together and divided by the number

of sub-neurons. Accordingly, all the sub-neurons receive an identical current. Each sub-

neuron in the synapse-neuron module decides the output value based on this current.

The sigmoid function is selected as the activation function which always has a value be-

tween 0 and 1. A new analog resistive-type neuron is designed which generates the sigmoid

function based on the transistor characteristics in both triode and saturation regions.

To justify the design concept, the proposed synapse-neuron modules are used to de-

sign a prototype 4-3-2 network with four digital inputs and two final digital outputs. This

prototype is trained off-line based on a classification pattern. The circuitries are designed,

simulated, and laid out in 0.18µm TSMC CMOS technology [25] using a power supply

voltage of 1.8V .

6
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1.1 Summary of Contributions

In this dissertation, a new family of the CVNS DNNs are introduced. The scalability and

noise immunity of the proposal are studied and compared to the lumped and conventional

distributed networks. Studies show that it outperforms the previous structures because of

its low NSR.

The proposed CVNS DNN is implemented considering the environmental resolution

limitations which is equal to 4-bit in the employed technology. Multi-valued DRAMs with

error correction abilities are designed to convert and store the weights in the form of the

CVNS digits. The proposed multi-valued memories are a significant progress in this field

because of their lower area and power consumption as well as lower refreshing cycle time.

A 4-3-2 network is designed, laid out, and trained off-line based on a pattern set. The

post-layout simulations are performed which show the proper functionality of the design.

1.2 Outline of the Thesis

The next chapters are organized as follows. In Chapter 2, the structures of a typical lumped

ANN and a conventional DNN are shown and the proposed CVNS DNN structure is in-

troduced. It also studies the scalability in the proposed DNN, and shows how the CVNS

DNN is used to solve an XOR problem. Designing CVNS fully distributed neural network

according to the CVNS DNN is discussed. A Stochastic NSR model is used, and NSR of

different sigmoidal Adalines are compared together.

Chapter 3 presents the environmental limitations for implementation of the proposed

CVNS DNN. Truncated methods are used to cope with these limitations. The effect of

truncation on the performance and noise immunity are studied. Simulations show that

the truncated CVNS DNN still has lower NSR compared to the lumped and conventional

distributed neural networks.

The synapse-neuron module is presented in Chapter 4. The sub-modules of each synapse-

7



1. INTRODUCTION

neuron module are the storage module, multiplication module, interface module, and sub-

neuron. For each sub-module, the task and circuitries are discussed. The synapse-neuron

module is designed in current-mode. There is also a voltage-mode ADC to convert the

output of each layer to 4 bits that can be used as the input to the next layer.

The proposed current-mode multi-valued CVNS DRAM is introduced in detail in Chap-

ter 5. In this chapter, the CVNS is described and the truncated CVNS is introduced in

detail. Sub-modules of the CVNS DRAM and their circuitries are presented. The pro-

posed DRAM is using a series combination of ADC and DACs for conversion, storage, and

correction. A fast current-mode ADC method is proposed and compared to current-mode

ADC methods in literature. A method for decreasing the refresh rate is also proposed. Error

correction in this DRAM is discussed based on the CVNS features. Finally, the proposed

memory is compared to current-mode memories in literature.

In chapter 6, a prototype 4-3-2 network is designed. This network is trained based

on a pattern set to solve a classification problem. The weights and biases are calculated in

MATLAB and used for post-layout simulations. The final layout and post-layout simulation

results are also shown in this chapter. The circuitries are designed in 0.18µm TSMC CMOS

technology.

Finally, concluding remarks and future work are presented in Chapter 7.

8



Chapter 2

CVNS Distributed Neural Network

In this chapter, a new family of resistive-type feed-forward distributed neural networks is

proposed based on the CVNS. The proposed CVNS DNN is used for off-line training of a

prototype XOR. A stochastic model is employed to formulate NSR of a sigmoidal Adaline

based on the proposed CVNS DNN. This is compared to the NSR of sigmoidal Adalines

based on other comparable structures. A fully distributed neural network is designed based

on the proposed CVNS DNN which can provide even lower level of NSR in the network

while using more neurons. The reduced sensitivity to noise property of the proposed struc-

tures makes them robust against process variations; hence, they are potential candidates for

hardware applications such as industrial sensors.

2.1 Previous Structures of Resistive-Type ANNs

In resistive-type ANNs, the neuron function is realized by a nonlinear load that receives

current from the synapses in a general node and generates a corresponding voltage at the

9



2. CVNS DISTRIBUTED NEURAL NETWORK

same node [3, 9, 10].

Although numerous designs of neural networks have been reported, in this chapter, the

basic structure of resistive-type feed-forward neural networks is categorized into two main

groups: lumped and distributed neural networks.

2.1.1 Lumped Neural Network

Lumped ANN is the original structure of neural networks in which all synapses are con-

nected to one neuron in each layer. The block diagram of a (k + 1)-input resistive-type

lumped ANN for the lth layer is shown in Figure 2.1. Each input is multiplied by a synap-

tic weight. All of the multiplication results are added up together in a common node, and

the result goes to an activation function to generate the final output.

z0
►

.

.

.

.

z1
►

zk
►

Yl

w|l,0

w|l,1

w|l,k
f

Figure 2.1: (k + 1)-input resistive-type lumped neural network.

The output of the neuron, Yl, is generated through the following equation.

Yl = f(
k∑

t=0

Zt × w|l, t) (2.1)

where Zt shows the tth input, and w|l, t shows its corresponding synaptic weight. Activa-

tion function is represented by f .
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2.1.2 Conventional Distributed Neural Network

Resistive-type DNNs provide one neuron for each synapse. The block diagram of a (k+1)-

input resistive-type DNN [3, 9, 10] is shown in Figure 2.2.

Here, instead of one neuron, sub-neurons are used to realize the activation function.

The input and weight multiplication results are added up together. The result is divided by

the number of sub-neurons so that each sub-neuron receives the same amount of current.

It should be noted that in each layer, all the sub-neurons have the same activation function.

The output of such a network is calculated as follows.

Yl = f(
1

k + 1

k∑
t=0

Zt × w|l, t) (2.2)

►

.

.

.

.

►

►

.

.

f

f

f

.

w|l,0

w|l,1

w|l,k

Yl

z0

z1

zk

Figure 2.2: Block diagram of a (k + 1)-input resistive-type DNN.

As there is one sub-neuron corresponding to each input, the number of sub-neurons

changes by the number of inputs. This self-scaling property of the DNN causes an increase

or a decrease in the dynamic input range of the activation function as the number of inputs

increases or decreases, respectively. The scalability feature of DNNs is used to build a new

family of neural networks as is discussed next.
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2. CVNS DISTRIBUTED NEURAL NETWORK

2.2 CVNS Distributed Neural Network

The proposed network is a distributed neural network in which weights are stored as CVNS

digits. A family of CVNS neural networks was introduced in [20] where the output was

generated from a Reverse Evolution (RE) unit using complicated sub-functions. In the

proposed network, the design is modified to avoid RE and sub-functions which decreases

the network complexity and makes it more suitable for practical hardware implementations.

Figure 2.3 shows the proposed (k + 1)-input resistive-type CVNS DNN configuration

for the lth layer.

In Figure 2.3, ((w))n−j |l,t (j = 0, 1, ..., n and t = 0, 1, ..., k) stands for the CVNS

presentation of weights which are generated through the following equation.

((w))n−j|l,t = (
wt

M
∗Bj+1) mod B j = 0, 1, ..., n (2.3)

where wt stands for the value of the weight corresponding to the tth input, M is the maxi-

mum acceptable value of weights, and B is the CVNS radix.

In a CVNS digit set, digits with higher indices have information overlap with the lower

index digits. For example the equivalent CVNS digits of the randomly chosen value of

wt = 31.89 for M = 100 and B = 10 are ((w))3 = 3.189, ((w))2 = 1.89, ((w))1 = 8.9,

((w))0 = 9. These CVNS digits can be shown in a CVNS digit set as {3.189, 1.89, 8.9, 9}.

The CVNS multiplication [13] of Zt (t = 0, 1, ..., k) and ((w))n−j (j = 0, 1, ..., n) is

calculated as follows.

First, the digits of the multiplier, (Z)D−d, are extracted as is shown in the following

equation.

(Z)D−d = (Zt ×Bd)mod B − (Zt ×Bd+1)mod B

B
(2.4)

where D shows the number of digits of Zt and d = 0, 1, ..., D − 1.

In the next step, the CVNS multiplication result, ((u))n−j , is calculated through the
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Figure 2.3: Proposed resistive-type CVNS DNN configuration.

following equation. The block diagram representation is shown in Figure 2.4.

((u))n−j = Z
⊗

((w))n−j

= {(Z)D × ((w))n−j

+
D−1∑
i=1

(Z)D−i × ((w))n ×Bj−i}mod B (2.5)

Case study 1: In a high resolution environment, the CVNS multiplication result for a
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Figure 2.4: Block diagram representation of the CVNS multiplication (equation (2.5)).

multiplier of Zt = 2.14 (digits are [2, 1, 4]) and a CVNS digit set multiplicand of {3.189, 1.89, 8.9, 9}
with B = 10 is as follows:

((u))3 = {2× 3.189 + 1× 3.189× 10−1 + 4× 3.189× 10−2}mod 10 = 6.82446

((u))2 = {2× 1.89 + 1× 3.189× 100 + 4× 3.189× 10−1}mod 10 = 8.2446

((u))1 = {2× 8.9 + 1× 3.189× 101 + 4× 3.189× 100}mod 10 = 2.446

((u))0 = {2× 9.0 + 1× 3.189× 102 + 4× 3.189× 101}mod 10 = 4.46

Digits in the multiplication output set, {6.82446, 8.2446, 2.446, 4.46}, are CVNS digits

as they fit in the following equation which shows the relation between digits in a CVNS
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digit set.

(((x))n−j ×B) mod B = ((x))n−j−1 j = 0, 1, ..., n (2.6)

As it is shown in equation (2.6), there is a redundancy between the CVNS digits. Lower

index CVNS digits can be calculated from the higher index digits; however, the process can

not be reversed. In other words, the higher the index of a CVNS digit is, the higher the level

of its information will be. However, to add the CVNS digits together, they have to be of

the same information level. To meet this requirement, ((u))n−j |l,t is multiplied by B−j

(j = 0, 1, ..., n) in Figure 2.3.

In Figure 2.3, the total output of the CVNS DNN is calculated as Yl = f(y) where y is

generated from the CVNS multiplication outputs as follows.

y =
1

k + 1
{((u))n|l,0 +

((u))n−1|l,0
B

+ ... +
((u))0|l,0

Bn

+((u))n|l,1 +
((u))n−1|l,1

B
+ ... +

((u))0|l,1
Bn

+ ...

+((u))n|l,k +
((u))n−1|l,k

B
+ ... +

((u))0|l,k
Bn

} (2.7)

From the CVNS features, it can be observed that CVNS addition of different CVNS

digit sets results in CVNS digits as well. The following example shows the CVNS addition

of four randomly chosen CVNS digit sets: {2.345, 3.45, 4.5, 5}, {7.891, 8.91, 9.1, 1},

{3.042, 0.42, 4.2, 2}, and {9.157, 1.57, 5.7, 7}.

(2.345 + 7.891 + 3.042 + 9.157)mod10 = 2.435

(3.45 + 8.91 + 0.42 + 1.57)mod10 = 4.35

(4.5 + 9.1 + 4.2 + 5.7)mod10 = 3.5

(5 + 1 + 2 + 7)mod10 = 5

The output digit set is a CVNS digit set according to equation (2.6).

In equation (2.7), the CVNS digits with the same index can be added up together as

follows.

(((u))n−j|l,0 + ((u))n−j|l,1 + ... + ((u))n−j|l,k)mod B = ((y))n−j|l (2.8)
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It should be noted that A = A mod B + I ×B where I shows the quotient of A divided

by B. Therefore, equation (2.8) can be rewritten as the following equation.

((u))n−j|l,0 + ((u))n−j|l,1 + ... + ((u))n−j|l,k = ((y))n−j|l + In−j ×B (2.9)

According to equation (2.9), equation (2.7) can be represented as follows.

y =
1

k + 1
{((y))n|l +

((y))n−1|l
B

+ ... +
((y))0|l

Bn
+ Cons} (2.10)

where Cons is equal to
n∑

j=0

In−j ×B

Bj
.

2.2.1 Scalability

For studying the self-scaling property of the proposed DNN, the value of the total current

entering the sub-neurons, y × (k + 1), is considered to be between −60µA and 60µA for

1-input (k = 0). Consequently for 5-input (k = 4), the corresponding current, y × (5),

will be in the range of −300µA and 300µA. Self-scaling property of the proposed DNN is

shown in Figure 2.5 where it compares the output for networks with 1 and 5 inputs together

for a sigmoidal activation function.

As is shown in Figure 2.5, the network is properly stretching the dynamic range to cope

with the increased number of inputs. Note that without a proper scaling, the output of 5-

input case will be equal to 0V for all inputs in the range of [−300µA,−60µA] and will be

1.8V for inputs in the range of [60µA, 300µA].

2.2.2 2-2-1 XOR

The proposed CVNS DNN is used to build a prototype 2−2−1 XOR as is shown in Figure

2.6.

Here, B is chosen equal to 10, sigmoid function is chosen as the activation function,

and n is selected equal to 5. The network is trained off-line using the back propagation

algorithm [5, 26], and weights are calculated while the biases are considered to be zero.
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Figure 2.5: Scalability of the proposed DNN for a sigmoidal activation function.

The training result is shown in Figure 2.7. Random sets of weights are selected for

initialization. The error from the ideal value is less than 0.05 (5.0%) for all input combina-

tions.

2.3 CVNS Fully Distributed Neural network

Based on the proposed CVNS DNN, a Fully Distributed Neural Network (FDNN) is intro-

duced. In this fully distributed CVNS network, the number of neurons depends not only

on the number of inputs, k + 1, but also on the number of the CVNS digits in each CVNS

digit set of weights, n + 1.

The block diagram of the proposed CVNS FDNN with (k+1)-input is shown in Figure

2.8.

The output is Yl = f(y), where y is calculated using the following equation.

y =
1

(k + 1)(n + 1)
{((y))n|l +

((y))n−1|l
B

+ ... +
((y))0|l

Bn
+ Cons} (2.11)
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Figure 2.6: Block diagram of the 2− 2− 1 XOR network.

Although this network benefits from the feature of scalability, the number of neurons

in this design is more than that of the CVNS DNN. Adding one input to the network will

result in a n + 1 increase in the number of neurons. Sensitivity of the proposed structures

to the noise is studied by calculating the NSR in the next section.

2.4 Stochastic Model

A stochastic model based on the one presented in [11] is used in this section to find the

NSR of different sigmoidal Adalines and to compare them together.
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Figure 2.7: Off-line network training by back propagation algorithm.

According to this model, NSR of a (k+1)-input sigmoidal Adaline with lumped neuron

is as follows [11].

NSRLumped = g(
√

k + 1σZσw)× (
σ2

∆Z

σ2
Z

+
σ2

∆w

σ2
w

) (2.12)

where g is the stochastic gain function, ∆Z and ∆w show input error and weight error,

respectively. σ stands for the standard deviation, and σ2 is the variance.

In a DNN, the effect of each weight is divided by the number of inputs: σwDNN =
σw

k + 1
,

σ2
wDNN

=
σ2

w

(k + 1)2
, and ∆wDNN =

∆w

k + 1
. Therefore, NSR of a sigmoidal Adaline with

distributed neuron is calculated as follows [9].

NSRDNN = g(
√

k + 1σZ
σw

k + 1
)× (

σ2
∆Z

σ2
Z

+
σ2

∆w/(k + 1)2

σ2
w/(k + 1)2

)

= g(
σZσw√
k + 1

)× (
σ2

∆Z

σ2
Z

+
σ2

∆w

σ2
w

) (2.13)

In a CVNS network, weights are CVNS digits with digit level redundancy. An error in
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Figure 2.8: (k + 1)-input resistive-type CVNS fully distributed neural network.

a CVNS digit is corrected in the CVNS generation module except for the error in the digit

with the lowest index [13]. Therefore, the only weight vulnerable to error is ((w))0 which

has an effect of ((w))n/Bn. ((w))n has the highest level of information in the CVNS digit

set.
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Accordingly, equation (2.14) is proposed to calculate NSR of a sigmoidal Adaline with

a CVNS DNN structure. Note that the effect of each weight is still divided by the number

of inputs because of its distributed nature.

NSRCV NS−DNN = g(
σZσ((w))n

Bn
√

k + 1
)× (

σ2
∆Z

σ2
Z

+
σ2

∆((w))n

σ2
((w))n

) (2.14)

The NSR of a sigmoidal Adaline with a CVNS fully distributed structure is similar to

the NSR of a sigmoidal Adaline with the CVNS DNN structure except for the fact that

effect of each weight is also decreased by the number of CVNS digits.

NSRCV NS−FDNN = g(
σZσ((w))n

Bn
√

k + 1(n + 1)
)× (

σ2
∆Z

σ2
Z

+
σ2

∆((w))n

σ2
((w))n

) (2.15)

Case study 2: For a sigmoidal Adaline with k + 1 = 9, considering both inputs and

weights uniformly distributed in the range of [−10, 10], input and weight variances will

be σ2
Z = σ2

w = σ2
((w))n

=
202

12
. Weight error variance for a 12-bit quantization scheme

is σ2
∆w = σ2

∆((w))n
=

(20/212)2

12
. Note that 20/212 is the equivalent space between levels.

Input error variance, σ2
∆Z is considered to be zero as the aim is to study the effect of noise

introduced to weights on the networks.

NSR of the four considered sigmoidal Adalines is calculated as shown in Table 2.1. For

the CVNS networks, B and n + 1 are assumed to be 2 and 3, respectively.

Table 2.1: NSR of sigmoidal Adalines from case study 2

Structure NSR Improvement

Lumped ANN 3.21× 10−6 = −54.94dB −
DNN 3.84× 10−7 = −64.16dB 16.78%

CVNS DNN 1.2× 10−7 = −69.2dB 25.95%

CVNS FDNN 6× 10−8 = −72.22dB 31.45%

According to equations (2.12), (2.13), (2.14), and (2.15), as the number of inputs
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2. CVNS DISTRIBUTED NEURAL NETWORK

changes, stochastic gain function will change. Stochastic gain function, g, of all four net-

works are compared together for an input range of [9, 25]. The comparison result is shown

in Figure 2.9 where σZσw = σZσ((w))n is a constant value, B = 2, and n + 1 = 3. It should

be noted that g(X) is almost equal to 1 for X < 2 and can be estimated by the following

equation for X > 2 [9].

g(X) = 0.5 + 0.53×X (2.16)

From Figure 2.9(a), stochastic gain function of the DNN, Proposed 1 (CVNS DNN),

and Proposed 2 (CVNS FDNN) are almost half, one forth, and one twelfth of that of

the lumped ANN, respectively. Stochastic gain function of the lumped neuron is great-

est among all, and it increases by the number of inputs. Larger stochastic gain function

will result in a larger NSR, Figure 2.9(b). Lumped neurons should be redesigned as the

number of inputs increases to keep the NSR lower. The other three networks, because of

their distributed neurons, can cope with an increase in the number of inputs which will also

decrease the NSR gradually.

The NSR of a sigmoidal Madeline is calculated similarly to that of a sigmoidal Adaline

by considering the effect of NSR of each layer on the next layer. Figure 2.9(c) and Figure

2.9(d) compare the NSR of Madalines with five and ten sigmoidal Adalines of Case study

2, respectively. Although the NSR of each layer is slightly bigger than the NSR of the

previous layer, the proposed structures result in a smaller total NSR for the Madaline.

The number of CVNS digits is another variable in the proposed networks which can

decrease the NSR. By increasing the number of CVNS digits, Bn becomes larger resulting

in a smaller stochastic gain function. In the fully distributed neural network, increasing

the number of CVNS digits also increases the n + 1 factor, which decreases the NSR even

more; however, it causes an increase in the number of sub-neurons.

According to Figure 2.9, practical implementation of the lumped neural network looks

impossible as the number of layers increases. However, the distributed configuartions still

look promising for hardware implementations of networks with up to 10 layers.
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Figure 2.9: Comparison for input range of [9, 25]: (a) Stochastic Gain Function for Adaline,

NSR for (b) Adaline, (c) 5-layer Madaline, (d) 10-layer Madaline.

2.5 Comparison

Applying equation (2.16) in the NSR calculation of lumped sigmoidal Adaline, equation

(2.12), the NSR of the lumped sigmoidal Adaline can be rewritten as follows.

NSRLumped = (0.5 + 0.53
√

k + 1σZσw)× (
σ2

∆Z

σ2
Z

+
σ2

∆w

σ2
w

)

= (0.5 + 0.53R)D ≈ RD (2.17)
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where R and D stand for
√

k + 1σZσw and
σ2

∆Z

σ2
Z

+
σ2

∆w

σ2
w

, respectively. This approximation

is correct specially for a large number of inputs.

Accordingly, the NSR of the other three sigmoidal Adalines are approximated in Table

2.2. The number of CVNS digits is equal to n + 1 when applicable.

Table 2.2: Comparison of different sigmoidal Adalines for a k + 1 input

NN Number of
NSR Neuron× NSR

Structure Neurons

Lumped
1 RD RD

ANN

DNN k + 1 RD

k + 1
RD

CVNS
k + 1 RD

Bn(k + 1)

RD

BnDNN

CVNS
(k + 1)(n + 1) RD

Bn(k + 1)(n + 1)

RD

BnFDNN

There is a tradeoff between the number of neurons and the value of NSR in distributed

neural networks. To measure the overall efficiency of each network in Table 2.2, a com-

parison factor, Neuron×NSR, is defined which is the result of multiplying the number of

neurons by NSR for each structure. It is shown that the proposed networks outperform the

other two networks due to their smaller Neuron×NSR values.

2.6 Conclusion

Two novel CVNS Distributed Neural Networks are proposed. They have the self-scaling

property which can potentially decrease the noise to signal ratio. The NSR of the proposed
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2. CVNS DISTRIBUTED NEURAL NETWORK

structures are compared to those of lumped neural networks and conventional distributed

neural networks. It is shown that significant improvements are attained specially as the

number of inputs increases. The proposed CVNS DNN can defeat both lumped ANN and

conventional DNN with its low NSR while it uses the same number of neurons as the latter

one does.
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Chapter 3

Truncated CVNS Distributed Neural

Network

the CVNS has been used to build a new family of distributed neural networks [16] where

it is used in a high resolution environment. The CVNS DNN was shown to provide a

NSR lower than that of the conventional DNNs. However, practical implementation of

the CVNS systems is limited by the resolution of the environment. For example, a CVNS

digit which is extracted from 12 binary bits needs at least a reliable 12-bit resolution for

hardware implementation, which is not the case in generally using technologies.

Truncation methods are applied to the CVNS digits to make them cope with lower

resolution environments while still keeping the CVNS properties such as the redundancy

between digits [14, 15]. One of the advantages of applying these methods is reducing the

area consumption; however, it may result in lower accuracy as well.

Here, the CVNS DNN is studied according to the environmental considerations. The

resolution is limited by the 0.18µm CMOS technology characteristics. Studies are per-
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3. TRUNCATED CVNS DISTRIBUTED NEURAL NETWORK

formed on the accuracy and the NSR of the proposed truncated CVNS DNN for an envi-

ronment with the reliable resolution of 4-bit. Studies show that the NSR is higher than the

NSR of the complete CVNS DNNs, as expected; however, it is still less than that of the

conventional DNNs.

3.1 Truncated CVNS DNN

The acceptable resolution for 0.18µm CMOS technology using a power supply voltage of

1.8V is considered to be 4-bit [15]. As a result, all arithmetic operations are assumed to be

correct up to 4 bits, and additional values may need to be checked and corrected.

The first truncation is applied to the number of bits which are used to generate each

CVNS digit. This number of bits is called group length and is selected as 4 for the sake of

the practical resolution. In other words, in this work, each CVNS digit is generated from

up to 4 bits.

Another flexible parameter in the CVNS digit sets is called digit link which is the num-

ber of common bits used to generate the CVNS digits. Keeping the digit link in its maxi-

mum means that the number of the CVNS digits and the binary digits are exactly the same

when the radices are equal as is shown in equation (3.1); there will be 13 CVNS digits

equivalent to 13 bits. This will increase the number of partial multiplications and additions

and consequently the complexity of the system.

((w))n−j|l,t =

m−j∑
i=0

wi · 2i+j−m , j = 0, 1, ..., n (3.1)

To overcome this problem, digit link is decreased to its minimum which is equal to

1. This reduces the redundancy as well as the noise immunity of the digits. However, a

proper design of the CVNS generation module will suppress this problem; error correction

is generally performed over digits in a CVNS generation module [13].

The following equation shows the CVNS digit generation from binary digits with group
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3. TRUNCATED CVNS DISTRIBUTED NEURAL NETWORK

length of 4 and digit link of 1 [15].

((w))n−j =

m−j(4−1)∑

i=m−j(4−1)−4+1

wi · 2i+j(4−1)−m , j = 0, 1, ..., n (3.2)

where wi shows the ith bit in binary representation.

There is a relation between the number of binary digits, m + 1, and the number of the

CVNS digits, n + 1, as follows.

n + 1 = R(
m + 1

group length− digit link
) (3.3)

where R is the classical Rounding function.

Using the CVNS digit set generated from equation (3.2) as the multiplicand, the CVNS

multiplication equation is no longer applicable. This equation needs the maximum link

between digits as well as the maximum group length to be adjusted.

A new method is proposed to perform the multiplication over the truncated CVNS

digits. Here, the proposed multiplication method is particularized for a case that the multi-

plicand is a CVNS digit set with 4 CVNS digits, ((x))i (i = 3, ..., 0), and the multiplier has

4 bits, (Z)i (i = 4, ..., 1). The radix of the CVNS system is equal to 2.

First, four partial results, yi (i = 3, ..., 0), are generated.

y3 = ((w))3 ×
1∑

i=4

(Z)i 2i−4

y2 = (((w))2mod 1)×
1∑

i=4

(Z)i 2i−4

y1 = (((w))1mod 1)×
1∑

i=4

(Z)i 2i−4

y0 = (((w))0mod 1)×
1∑

i=4

(Z)i 2i−4 (3.4)

The mod1 shows the modulo 1 operation and is applied as there is 1 digit link between

the CVNS digits. This operation omits the effect of the first binary digit, digit link, in y2,

28
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y1, and y0; therefore, it prevents the double effect of the common digit in the final result.

It should be noted that finally the partial results are added up together to generate the final

synapse output.

Note that the partial results are not in the CVNS form as there is no longer any overlap

between them; they are just continuous values equivalent to 8 bits.

There is one total output for the synapse; thus, these partial results are scaled and added

up together as follows.

y = ((y0 × 2−3 + y1)× 2−3 + y2)× 2−3 + y3 (3.5)

However, there are some practical limitations applied to equations (3.4) and (3.5) be-

cause of the resolution of the environment. These are discussed through the following case

study.

Case study 1: The randomly chosen value for multiplicand is ‘0111, 1101, 0101, 1’, and

the multiplier is chosen equal to ‘1110’. The CVNS digits for the multiplicand are extracted

using equation (3.2): [0.875, 1.75, 0.625, 1.375]. The partial results are calculated through

equation (3.4) as is shown in Table 3.1.

The first columns in Table 3.1 shows the partial results in a high resolution environ-

ment. The results in an environment with 4-bit resolution are shown in the second columns.

They are rounded values of the previous column. Therefore, the classic Rounding function

should be added for partial results extractions in equation (3.4) for hardware implementa-

tions.

The lower resolution environment also has an effect on equation (3.5). According to

equation (3.5), the final output in the high resolution environment is found as shown in

Figure 3.1 which is equal to ‘0110, 1101, 1010, 1101, 0’, 6.8547 in decimal.

In a 4-bit resolution environment, the classic Rounding function should be added for

each scaling addition in equation (3.5). Consequently, each 7-bit result will be rounded to

a 4-bit equivalent result and be scaled for the next addition.
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Table 3.1: Multiplication partial results for case study 1.

High Resolution Low Resolution

Partial Result Equivalent Bits Partial Result Equivalent Bits

y3 = 1.53125 0110, 0010 y3 = 0.75 0110

y2 = 1.3125 0101, 0100 y2 = 0.625 0101

y1 = 1.09375 0100, 0110 y1 = 0.5 0100

y0 = 0.65625 0010, 1010 y0 = 0.375 0011

0 1 1 0 0 0 1 0

0 1 0 1 0 1 0 0

0 1 0 0 0 1 1 0

0 0 1 0 1 0 1 0

+

+

+

0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0

Figure 3.1: Final multiplication result in a high resolution environment.

Figure 3.2 shows the multiplication process in a 4-bit resolution environment. The

result,‘0111’ (7 in decimal), is the rounded value of the result in Figure 3.1.

From Figure 3.2, the effect of the lower index digits is contributed to the highest index

digits. Without this, the output would be only calculated from the first CVNS digit resulting

in ‘0110’ (6 in decimal) which is far from the right answer.

The proposed truncated CVNS DNN is used to build a 2− 2− 1 XOR with sigmoidal

activation function. The simulation result is shown in Figure 3.3.
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0 1 0 0

0 0 1 1+

0 1 0 0 0 1 1 0 1 0 0 0 1 0 1

0 1 0 0+

0 1 0 1 1 0 0 0 1 1 0 0 1 1 0

0 1 1 0+

0 1 1 0 1 1 0 0 1 1 1 

Figure 3.2: Final multiplication result in a low resolution environment.
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Figure 3.3: Simulation result of an XOR based on the truncated CVNS DNN.

3.2 Effect of Truncation on Performance

In this environment, with 4-bit resolution, each partial result can effect the next partial

result as long as it has a value greater than ‘0100’. In other words, each partial result has a

chance of P (yi, yi+1) = 16−5
16 which is equal to 69% to effect the next partial result. However,

each partial result is added to the scaled previous partial result, and the result will be scaled

to be added to the next partial result. Therefore, the previous partial result can increase

the probability of the second and the third partial results to effect the final result. If the

current partial result is ‘0100’, the previous partial result can increase it to ‘0101’. The new

probability of effecting the final result for the middle partial results is 0.69 + 0.69 ∗ 1
16 = 0.73.
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Subsequently, the probability of each partial result for effecting the final answer, P (yi, y),

is roughly estimated as follows.

P (y3, y) = 1 = 100%

P (y2, y) = P (y2, y3)× P (y3, y) = 0.73× 1 = 0.73 = 73%

P (y1, y) = P (y1, y2)× P (y2, y) = 0.73× 0.73 = 0.53 = 53%

P (y0, y) = P (y0, y1)× P (y1, y) = 0.69× 0.53 = 0.37 = 37%

Each multiplicand CVNS digit is multiplied by the multiplier generating a partial result

equivalent to 8-bit rounded to 4-bit. The minimum value for the 8-bit result to be considered

in the rounded result is equivalent to ‘0000, 1001’. Thus, the probability of the first CVNS

digit not to affect the 4-bit partial result is as follows.

P (((w))3, y3) = P (0000, Z) + P (0000, ((w))3)

+ P (0001, Z)× [P (0001, ((w))3) + P (0010, ((w))3)

+P (0011, ((w))3) + P (0100, ((w))3)]

+ P (0010, Z)× [P (0001, ((w))3) + P (0010, ((w))3)]

+ P (0011, Z)× P (0001, ((w))3)

+ P (0100, Z)× P (0001, ((w))3)

= 1
16

+ 1
16

+ 1
16
× [ 4

16
] + 1

16
× [ 2

16
] + 1

16
× [ 1

16
]

+ 1
16
× [ 1

16
] = 0.16 = 16% (3.6)

However, this is only correct for the first CVNS digit as there is a modulo operation

for the others. This operation deletes the effect of the first bit making each CVNS digit

equivalent to 3 bits. Therefore, all the 1
16

in the previous equation corresponding to the

CVNS digits, should be changed to 1
8

for all the CVNS digits except for the first one. In

this case, P (((w))i, yi) for i = 2, 1, 0 would be equal to 25%.

According to equation (3.6), the probability of the first CVNS digit to affect the relevant

partial result is P (((w))3, y3) = 1 − 0.14 = 0.86 = 86% while this probability is equal to 75%
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for the other CVNS digits. The probability of each CVNS digit to effect the final result is

estimated through the following equations.

P (((w))3, y) = P (((w))3, y3)× P (y3, y) = 86%

P (((w))2, y) = P (((w))2, y2)× P (y2, y) = 55%

P (((w))1, y) = P (((w))1, y1)× P (y1, y) = 40%

P (((w))0, y) = P (((w))0, y0)× P (y0, y) = 28%

Consequently, the CVNS implementation in a low resolution environment provides a

considerable probability to a high resolution value aiding the production of an accurate

result.

3.3 NSR Calculation

Noise to signal ratio is a very important feature in neural networks which shows their

immunity to noise and dictates the required resolution for synaptic weight implementations.

Lower NSR makes the network less vulnerable to errors and violations and makes it more

potential for hardware implementations.

The NSR of the proposed truncated CVNS DNN is calculated here for an Adaline. It is

compared to Adalines with lumped, distributed, and complete CVNS distributed structures.

The NSR of a (k + 1)-input sigmoidal Adaline with lumped structure is calculated

through a model based on the stochastic gain function, g, proposed by Piche [11].

NSRLumped = g(
√

k + 1σZσw)× (
σ2

∆Z

σ2
Z

+
σ2

∆w

σ2
w

) (3.7)

where ∆Z shows input error and ∆w stands for weight error. σ is the standard deviation,

and σ2 is the variance.

Sub-neurons in a DNN cause a dividing in the effect of each weight: σwDNN = σw

k+1 ,

σ2
wDNN

= σ2
w

(k+1)2 , and ∆wDNN = ∆w
k+1 . Therefore, NSR of a sigmoidal Adaline with distributed
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structure is calculated as follows.

NSRDNN = g(
σZσw√
k + 1

)× (
σ2

∆Z

σ2
Z

+
σ2

∆w

σ2
w

) (3.8)

In a CVNS digit generation module, the error in a CVNS digit is corrected using the

redundancy between the digits. However, the lowest index digit is not subject to this error

correction, and it is the only digit which might be corrupted with errors [13]. ((w))0, as the

lowest index digit, has an effect of ((w))n/B
n on the system where ((w))n is the digit with

the highest level of information in the CVNS digit set. Note that ((w))0 should be multiplied

by Bn to be in the same order as ((w))n is.

Accordingly, the NSR of a sigmoidal Adaline with a complete CVNS DNN structure is

calculated as follows.

NSRCV NS−DNN = g(
σZσ((w))n

Bn
√

k + 1
)× (

σ2
∆Z

σ2
Z

+
σ2

∆((w))n

σ2
((w))n

) (3.9)

In the case of the proposed truncated CVNS DNN, the effect of each weight is still

divided by the number of inputs due to the distribution of sub-neurons. The CVNS digits

are also generated in the modules with error correction capabilities. However, the lowest

index CVNS digit in a truncated digit set, has an effect of ((w))nn/B
nn. Here, the highest

index is nn where nn + 1 = R( n+1
group length−digit link ) which is equal to R(n+1

3 ) with group

length of 4 and digit link of 1. The NSR will be calculated through the following equation.

NSRTruncated = g(
σZσ((w))nn

Bnn
√

k + 1
)× (

σ2
∆Z

σ2
Z

+
σ2

∆((w))nn

σ2
((w))nn

) (3.10)

The NSR of the proposed truncated network is compared to that of other structures

through the following case study.

Case study 2: NSR of all configurations are compared together for an input range of

[1, 25], constant value for σZσw = σZσ((w))n , B = 2, and n+1 = 13 resulting in nn+1 = 4.

The NSR is calculated for Adalines and 5-layer Madalines as is shown in Figure 3.4. In

Madalines, NSR of each layer has an effect on NSR of the next layer.
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As is shown in in Figure 3.4, the NSR in lumped neural network is increasing as the

number of inputs increases, and it is always less than the NSR of other structures. The

other distributed structures are facing a decrease in NSR for higher number of inputs. The

truncated CVNS DNN has an NSR larger than that of the complete CVNS DNN; however,

its NSR is always less than the NSR of both lumped and conventional distributed neural

networks. It should be noted that the number of interconnections and the CVNS weights

in the truncated network are less than those numbers in the complete CVNS network. This

fact will result in less area consumption for the truncated CVNS DNN compared to the

complete one. Furthermore, it is completely practical for hardware implementations in an

environment with low resolution of 4-bit. However, it should be noted that as the number of

layers increases, the hardware implementation of the truncated structure looks impossible

because of the high value of the NSR.
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Figure 3.4: NSR comparisons for Adalines and 5-layer Madalines.

3.4 Conclusion

The truncated CVNS distributed neural network is proposed which is adaptable for imple-

mentation in a low resolution environment. The proposed network is simulated in 0.18µm

CMOS technology with 4-bit resolution where it shows a proper functionality. The NSR

is calculated for Adaline and Madaline with the proposed truncated CVNS structures. The
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NSR calculations show that the truncated CVNS network surpasses both the lumped and

conventional distributed structures.

36



Chapter 4

Synapse-Neuron Module

ANNs usually have two main parts: synapses and neurons. A synapse receives the input and

multiplies it by the corresponding stored weights. The result goes into the neuron where the

output value is generated from the input based on the activation function. In a distributed

neural network, there is one sub-neuron for each synapse. Therefore, the synapse and its

corresponding neuron can be merged together resulting in a synapse-neuron module.

Using the synapse-neuron module will decrease the design cost and interconnections

[2]. Once designing the synapse-neuron module, it can be used as building block of neural

networks where it needs setting up the interconnections between synapse-neuron modules.

The block diagram of the proposed synapse-neuron module is shown in Figure 4.1.

A 13-bit multi-valued CVNS DRAM is used to store the weights, w12, ..., w0. The

DRAM generates the CVNS digits, ((w))3, ..., ((w))0, from the binary weights and stores

them on the storage cells. The stored CVNS digits proceed to the multiplication module.

Multiplication module performs the multiplication of the stored CVNS digits by the

input. The input is converted to 4 bits, (Z)4, ..., (Z)1. Consequently, the CVNS digits are
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Figure 4.1: Block diagram of the proposed synapse-neuron module.

multiplied by the binary bits resulting in an analog value with 4-bit resolution.

The interface unit applies the sign, w0, to the multiplication output and transfers the

result to the common node. In this node, the currents from all the synapse-neuron mod-

ules are added up together and divided by the number of modules. A sigmoidal neuron

is employed to extract the output according to the received current in the Common Node

(CN).

There is also a voltage-mode ADC to convert the input to each layer to 4 bits. Note that

as the input to the network is digital, there is no need of using an ADC for the inputs to the

first layer. (Z)4 is the only digit which is changing from ‘0’ to ‘1’, and the other three digits

are considered to be equal to ‘0’. Accordingly, The maximum value for the input happens

for an input equal to 1.8V which is equivalent to ‘1000’.

This synapse-neuron module is the building block in implementing distributed neural

networks.

4.1 CVNS DRAM

The 13-bit DRAM contains four 4-bit (16-level) multi-valued DRAMs [14,15] as is shown

in Figure 4.2.

Working in current-mode, each 16-level DRAM generates a CVNS digit in the form of
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Figure 4.2: Block diagram of the 13-bit multi-valued DRAM.

current from the corresponding 4-bit input in the form of voltage.

There is a 4-bit Digital to Analog Converter (DAC) in each one of 4-bit DRAMs which

is responsible for the CVNS digit generation. This DAC contains four 1-bit weighted cur-

rent sources. In this work, the current sources of DAC are designed to generate currents

equal to 8µA, 4µA,2µA, and 1µA for the first (most significant), the second, the third, and

the fourth (least significant) bits, respectively. The output currents from the current sources

are summed up together, and the result generates a CVNS digit in the form of a current
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changing between 0 to 15µA.

Each CVNS digit is stored on a dynamic current mirror (current copier) [27]. Each

storage cell has the ability of storing up to 4 bits equivalent to 16 levels with the capacitor

size of 20.3fF .

There is a link of 1-bit between the CVNS digits; the Least Significant Bit (LSB) input

to each 4-bit DRAM is repeated as the Most Significant Bit (MSB) to the next 4-bit DRAM

as is shown in Figure 4.2. This common bit is used as the Error Correction Code (ECC).

The value of stored CVNS digits changes with the time because of the leakage current of

the storage capacitor. This changes the stored value and causes an error. In each refreshing

cycle, the possible error is detected and corrected based on the redundancy between the

stored CVNS digits, ECC.

Figure 4.3 shows the layout of the 13-bit multi-valued CVNS DRAM. The capacitors

are metal-insulator-metal capacitors and are laid out using metal 5 and metal 6.

Capacitors

DRAM 1 DRAM 2

DRAM 3 DRAM 4

Figure 4.3: Layout of the 13-bit multi-valued DRAM.
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4.2 Multiplier Module

The output of this module is in the form of current and is generated through the block

diagram of Figure 4.4.
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.

. Output

Figure 4.4: Block diagram of the multiplier module.

In Figure 4.4, mod1 is the modulo 1 operation module. Partial multiplication modules

are generating the partial results as is shown in Figure 4.5. Weighted current mirrors are

used for scaling purposes.

((w))i

Weighted

 

Current Mirror

1-to-1

(Z)4

1-to-2  

Current  Mirror

-1

ui

(Z)3

(Z)2

(Z)1

1-to-2  

Current  Mirror

-0

1-to-2  

Current  Mirror

-3

1-to-2  

Current  Mirror

-2

Figure 4.5: Block diagram of the partial multiplication module.
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Here, the multiplier digits are applied as switches. For a digit of ‘1’, the switch is close,

and the CVNS digit in the form of current is passing through it.

The simulation result for multiplication of ‘1, 1111, 1010, 1011’ by ‘0111’ in the pro-

posed circuitries for the multiplier module is shown in Figure 4.6.
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((w))

((w))

((w))

0: 11uA : 1011

Figure 4.6: Simulation result of ‘1, 1111, 1010, 1011’ multiplied by ‘0111’.

The layout of the multiplier is shown in Figure 4.7.

4.3 Interface Circuit

The schematic of the interface circuit is shown in Figure 4.8. This circuit, applies the sign,

w0, to its input current and sends the result to the CN. If w0 is one, the output current is

negative and flows away from the CN. For w0 equal to zero, on the other hand, the output

current is positive and flows to the CN.
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Figure 4.7: Layout of the multiplication module.

► ►

►

16/1

►

Iin

►

16/1 16/1

8/1

►► w0w0
_

Iout

Figure 4.8: Schematic of the interface circuit.

In addition, the interface circuit scales the input current to the input range of the sig-

moidal neuron.
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4.4 Sigmoidal Neuron

The resistive-type neuron is designed using 6 transistors [28]. NMOS and PMOS char-

acteristics in triode and saturation regions are used to realize the sigmoid function as the

activation function of the network. The schematic of the neuron is shown in Figure 4.9.

Transistors M5 and M6 have their gates connected to their drains and are used for

biasing. They are providing the same biasing voltage, V B, as they are connected together.

These two transistors are sized so that V B = V dd−V ss
2

which in this case is equal to 0.9V .

► ►

►

M5:1.6/1

►

►

►

..Iin
►

Vout

M2:1/2 M4:8/1 M6:8/1

M3:1.6/1M1:3/1

VB

VB

Figure 4.9: Schematic of the proposed resistive-type neuron to realize the sigmoid function.

The sigmoidal neuron is working for a range of currents between −60µA and 60µA

and in three operating regions: 0 to (V B − V tn), (V B − V tn) to (V B + |V tp|), and

(V B + |V tp|) to V dd. The simulation result of the resistive-type sigmoidal neuron is

shown in Figure 4.10.
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Figure 4.10: Simulation result of the sigmoidal neuron.

4.5 Voltage-Mode ADC

An ADC is used to convert the output of each hidden layer which is a voltage between

0 and 1.8V for a 4-bit value. These four bits act as the multiplier set ((Z)4, (Z)3, (Z)2,

and (Z)1) for the next layer (Figure 4.1). Considering that ‘1000’ stands for the voltage

of 1.8V , 1.8−0
8

= 0.225V shows the equivalent voltage spacing between levels where there

are 8 levels between ‘0000’ and ‘0111’.

This voltage-mode ADC is designed based on the CMOS inverter characteristic. The

input to the ADC goes to 8 set of inverters. The schematic of an inverter set is shown in

Figure 4.11. The outputs, Ai (i = 1, ..., 8), are either ‘1’ or ‘0’ and move into an encoder

which generates an equivalent 4-bit output. These 4 bits are inputs to the next layer, (Z)i

(i = 4, ..., 1).
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M1

►

►

..

►

►

..
M2

M3

M4

y Ai

Figure 4.11: schematic of a set of inverters used in the proposed voltage-mode ADC.

Based on the CMOS inverter characteristics, VIL is the lowest value of the input voltage

which generates a high output voltage. The proposed design is based on changing the W/L

ratio of NMOS/PMOS transistors to alter the VIL of the inverters. In Figure 4.11, a higher

value for L of M1, as well as a higher value for W of M2, results in a lower VIL.

Each set of the 8 inverters is designed with a specific value for VIL to cover a voltage

level from 0 to 1.8V , and the difference between each VIL and the next one is equal to

0.225V .

The encoder generates each bit using XOR gates as follows.

(Z)4 = A8

(Z)3 = A4 ⊕ A8

(Z)2 = A2 ⊕ A4 ⊕ A6 ⊕ A8

(Z)1 = A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕ A5 ⊕ A6 ⊕ A7 ⊕ A8

The proposed voltage-mode ADC is laid out in CMOS 0.18µm technology with the

total area of 491.55µm2, and its power consumption is 7.52µw. These values are at least

1000 times smaller than those of the ADCs in literature [29–31]. Although, the working

frequency in the proposed ADC is much smaller than that of the state-of-the-art, speed of

the ADC is not a bottleneck in this application. Therefore, a small and low power design is

preferred.
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4.6 Conclusion

A synapse-neuron module based on the resolution of the environment, 4-bit, is proposed. In

this module, CVNS multi-valued memories are used to generate the truncated CVNS digits

from the weights and store them; in addition, these memories have got ECCs to correct

the possible error in the CVNS digits. A multiplier multiplies the weights in the form of

the CVNS digits by the input in the form of a 4-bit value. Analog sigmoidal neurons are

used to realize the activation function. By properly arranging the proposed synapse-neuron

modules, they can be used to build any neural network.
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Chapter 5

CVNS Multi-Valued Dynamic Memory

One imortant aim in any memory circuit design is to properly store more data on a smaller

area which results in a highly dense memory. In general, multi-valued DRAMs, with the

ability of storing more than one bit per storage cell, have a main advantage over the con-

ventional DRAMs, two-level DRAMs, which store each bit on one storage cell. Compared

to a conventional DRAM, less area will be consumed to store information bits on a multi-

valued memory as more than one bit can be stored on each capacitor; capacitors are usually

the main area consumers in a memory design. Therefore, they provide higher bits-per-cell

storage capacity in comparison to ordinary conventional DRAMs [1, 32–48]. Multi-valued

DRAMs can be used in applications where a large number of values has to be stored on the

chip such as neural network implementations [32–37].

Systematically, in a two-level system, the signal level is either Vdd (the highest voltage

in the system) or Vss (the lowest system voltage). In multi-valued systems, on the other

hand, signal can also have levels between Vdd and Vss [49, 50]. For example, in a 4-level

system with Vss = 0, the signal levels are Vdd, 2
3
Vdd, 1

3
Vdd, and 0.
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In multi-valued DRAMs, noise margin and consequently reliability of the system is

reduced. Noise margin in such systems is calculated as follows.

Noise Margin = (Vdd − Vss)/2(n− 1) (5.1)

where n shows the number of signal levels or, in this case, storage values.

Thus, Error Correction Codes (ECCs) are generally used to increase noise margin and

reliability of multi-valued systems [1,38–42,47]. Using ECCs will increase the complexity

of the system.

In other words, multi-valued DRAMs may offer a denser storage scheme compared to

two-level DRAMs. However, this will result in a decrease in noise margin. Noise margin

compensation by using ECCs will cause an increase in the complexity of the system. The

increased complexity is comparable to the complexity of a conventional DRAM specially

as the number of stored bits increases.

In this chapter, error correction based on the CVNS is used. The CVNS is a fault

tolerant multi-valued number system [13]. By decreasing the number of gates and inter-

connections in the system, the CVNS may result in lower area consumption. The CVNS

has been applied as an alternative number system in developing new types of area-efficient

arithmetic and signal processing units [14, 17–19, 51].

The CVNS values are represented by a set of continuous digits. The digits have infor-

mation overlap with each other; every digit has some level of knowledge about the digits

with lower index in the same set. This digit level redundancy is used to detect and correct

errors in any digit set.

Based on the system specifications, level of redundancy can be selected. In the proposed

system, the aim is to reduce the area by reducing the number of storage cells needed to store

information bits; therefore, minimum level of information redundancy is chosen. This will

result in savings in area while providing enough redundancy for error correction.

Any two adjacent CVNS digits, in the proposed DRAM, have equivalent to one binary

digit overlap which is used for error correction in the system. This configuration provides
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a novel multi-valued DRAM with increased noise margin and reduced area.

The CVNS digits can be easily implemented through current-mode circuits, where basic

functions are easy to implement [21–23]. In addition, current-mode circuits can operate

with small voltage swings and consequently lower power supply voltages. In the proposed

DRAM, the storage and refreshing circuits are designed in current-mode.

The proposed DRAM has to be refreshed continuously; the voltage over the storing

capacitor drops after a while due to the leakage currents of the storage cell. During the

refreshing cycle, the storage capacitor is charged to the correct value indicated by the error

correction codes.

A fast Analog to Digital Converter (ADC) [24] is used for the refreshing circuitry with

a parallel configuration that can potentially convert two bits simultaneously. It can reduce

the overall delay of the refreshing circuitry.

Dynamic memories with refreshing circuitries based on the CVNS number system were

first introduced in [17] where modular ADCs were used in the refreshing circuitry as a part

of error correction circuitry. An improved version was reported in [14], where it employed

the ADC of [24]. Note that a faster ADC in the refreshing circuitry will result in a faster

error correction after each refreshing; corrected data will be available in a shorter time.

The proposed storage and refreshing scheme for DRAM is an extended version of [14].

In the proposed work, all circuits are improved and redesigned for a minimum area con-

sumption, and layouts are also extracted. Post layout simulations show lower delay and

power consumption for the proposed circuits compared to those of [14].

In addition, it is proven mathematically how a CVNS-based scheme can result in a

doubled noise margin. Nevertheless, error correction using the CVNS is formulated for the

proposed design. In the storage scheme, using resistor is proposed to decrease the leakage

current and increase the refreshing rate (doubled refreshing rate compared to that of [14]).

It means that the proposed memory can store the correct value for a longer time and needs

less number of refreshing.
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The proposed storage and refreshing circuitry are designed and simulated for a dynamic

current-mode multi-valued DRAM with the ability of storing up to 16-level (equivalent to

4 bits) per cell in a 90nm CMOS process technology with a power supply voltage of 1.2V ;

the layout is extracted and simulated with parasitic elements to confirm the performance.

The proposed multi-valued DRAM will be useful to extend the application of the CVNS in

design and implementation of neural networks.

In section 5.1, we discuss how we have chosen optimum dimensions of the CVNS num-

ber system based on our available technology. Section 5.2 formulates the noise margin and

error correction for the proposed CVNS-based design. CVNS-based storage configuration

and related circuits are presented in section 5.3. Details of the refreshing circuitry are pro-

vided in 5.4. The simulation results and comparisons to similar systems are presented in

5.5 followed by the conclusion.

5.1 CVNS Modifications for Implementation

As can be observed from equation (1.3) and Table 1.1, the CVNS digit with the highest in-

dex contains the whole information of the original value or root value which is represented

by the CVNS system. Therefore, the term Most Significant Bit (MSB) is not suitable, and

Most Informed Digit (MID) is used instead.

Based on the equation (1.3), to generate more informed digits within a digit set, a high

resolution environment is needed. For example, a reliable environment with 16-bit resolu-

tion is required to generate the MID digit from a 16-bit binary input value. To overcome

this problem, a truncated method called group method is applied for conversion. In this

method, the length of group, ψ, indicates the maximum number of binary digits which are

used to generate each of the CVNS digits at a time. However, group method reduces the

digit-level redundancy; each CVNS digit has information about only ψ binary digits as
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follows.

((x))n−j =

m−j∑

i=m−j−ψ+1

xi · 2i+j−m , j = 0, 1, ..., n (5.2)

The value of the ψ is chosen based on the maximum reliable resolution of the imple-

mentation environment, and is technology dependent. For ψ = 4 the block diagram of the

modified conversion equation is shown in Figure 5.1.

Comparing Figure 5.1 to Figure 1.1, the number of interconnections is reduced consid-

erably after applying the group method.

xm xm-1 xm-2 x1 x0 

((x))n

((x))n-1
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.

.
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. .

xm-3.
.
.

xm-4

.

.

xm-5

.

((x))n-3

. . .
. .

((x))n-4

. . .

Figure 5.1: Block diagram of simplified CVNS digit generation using the group method.

Squares show the weighted sum operation units.

The number of the CVNS digits in each CVNS digit set is another controllable feature

which depends on the chosen radix of the CVNS representation. In general, the higher the

CVNS radix is, the less the number of the required CVNS digits will be. In this design,

the CVNS radix is chosen equal to two to reduce the circuit complexity, however, the same
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number of binary and the CVNS digits are required which means that the CVNS digits

are linked to each other with the maximum information redundancy. For example, a 16-bit

binary input is represented by sixteen radix-2 CVNS digits. If the CVNS radix was chosen

higher than two, the number of the required CVNS digits would have been less than that

of the binary representation. The trade-off here is that the low CVNS radices have lower

circuit complexity, while requiring more number of digits.

To overcome this limit while keeping the CVNS radix low, equal to 2, the link of infor-

mation between the CVNS digits can be reduced. Thus, another feature is defined which

represents the maximum digit link between each two neighboring CVNS digits. According

to this, the equation (5.2) will be modified as follows.

((x))n−j =

m−j(ψ−ν)∑

i=m−j(ψ−ν)−ψ+1

xi · 2i+j(ψ−ν)−m , j = 0, 1, ..., n (5.3)

where ν indicates digit links and ν < ψ.

Reducing the number of digit links between the CVNS digits results in the less number

of the required CVNS digits corresponding to a certain binary input.

From equation (5.3), each CVNS digit is generated from ψ binary digits where ψ−ν−1

digits are not reused for generation of other CVNS digits. Therefore, the number of the

CVNS digits, n + 1, becomes smaller than the number of input binary digits, m + 1, for

ν < (ψ − 1).

The effect of different group lengths and digit links is shown in the following example.

Example: For the radix-10 value of 89.0537412, Table 5.1 shows the first five equivalent

CVNS digits for different values of ψ and ν. Radix-10 example is chosen as it is easier to

follow.

To store up to 4 bits per storage cell in the proposed DRAM, group length, ψ, and

digit link, ν, are chosen as 4 and 1, respectively. The block diagram representation of this

configuration is shown in Figure 5.2. ν is chosen equal to one to provide the minimum

possible overlap between two adjacent digits which results in less number of the required
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Table 5.1: An example for the CVNS digits with different group lengths and digit links

ψ ν ((x))n ((x))n−1 ((x))n−2 ((x))n−3 ((x))n−4

9 8 8.90537412 9.0537412 0.537412 5.37412 3.7412

9 4 8.90537412 7.412 - - -

6 5 8.90537 9.05374 0.53741 5.37412 3.7412

6 3 8.90537 5.37412 4.12 - -

6 2 8.90537 3.7412 1.2 2 -

4 2 8.905 0.537 3.741 4.12 1.2

4 1 8.905 5.374 4.12 2 -

CVNS digits.

5.2 Noise Margin and Error Correction Based on CVNS

In order to increase the noise margin and reliability of the proposed system, error correction

is unavoidable. This section discusses the error correction based on the CVNS theory and

shows its effect on the noise margin.

To discuss the noise immunity of a multi-valued memory, noise margin is introduced

as a suitable quantity based on the quantized levels [1, 38, 39]. Noise margin of a multi-

valued memory is defined as the maximum allowable positive or negative change in the

stored value so that it still represents a correct value, neither a greater nor a smaller one.

According to this definition, the multi-valued memories generally have a noise margin

equal to the minimum difference between each two levels.

In the proposed DRAM, error correction is considered to suppress the errors due to the

leakage current as the major source of error; therefore, noise margin is applied only for

negative changes in the stored value.

In the reported CVNS-based memory, each CVNS digit is generated from 4 binary input
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Figure 5.2: Block diagram of the modified CVNS digit generation with ψ = 4 and ν = 1.

bits and stored on one memory cell; each memory cell contains one CVNS digit. The LSB

input to each cell is repeated as the MSB input to the next cell for error correction which is

equivalent to one digit link between each two adjacent cells. It is shown in [1, 38, 39] that

error correction using M number of digit links increases the noise margin of a multi-valued

memory system by a factor of 2M . As a result, the noise margin in the proposed DRAM is

increased by a factor of 2.

Example1: For a 10-bit binary input of ′1001100101′, the first three CVNS digits with

ψ = 4 and ν = 1 are extracted from equation (5.3) as follows.

((x))n = 1× 20 + 0× 2−1 + 0× 2−2 + 1× 2−3

((x))n−1 = 1× 20 + 1× 2−1 + 0× 2−2 + 0× 2−3

((x))n−2 = 0× 20 + 1× 2−1 + 0× 2−2 + 1× 2−3 (5.4)

Here, the bit ′1′ which is multiplied by 2−3 in ((x))n has the least significance among

the other 3 bits. This ′1′ is repeated in ((x))n−1 and multiplied by 20 which gives it the most

significance. Therefore, if the value of the bit ′1′ multiplied by 2−3 in ((x))n decreases due

to the error (it is the most vulnerable bit to error in the set as it has the least significance),
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its original correct value can still be observed and restored using its value in ((x))n−1 where

it has the most significance and the least vulnerability to error.

To simplify the equations, equation (5.3) is rewritten for ψ = 4 and ν = 1 as follows;

this equation is referred now on.

((x))n−j =

m−j(3)∑

i=m−j(3)−4+1

xi · 2i+j(3)−m , j = 0, 1, ..., n (5.5)

To ease the calculations, two sides of equation (5.5) are multiplied by 23. Therefore,

two adjacent CVNS digits (with j = 0 and 1) can be represented as follows.

((x′))n = 23 × ((x))n = xm 23 + xm−1 22

+ xm−2 21 + xm−3 20

((x′))n−1 = 23 × ((x))n−1 = xm−3 23 + xm−4 22

+ xm−5 21 + xm−6 20 (5.6)

where for a binary system, xm, ..., xm−6 are always either 0 or 1.

Error in a CVNS digit, ε, can be stated through the following equation:

ε = | [[[((x′))n−jmod23]mod22
]
mod21

]− b((x′))n−j−1c/23| (5.7)

where the floor function over ((x))n for radix 2 is defined as ((x))n − [((x))nmod23] and

j = 0, 1, ..., n.

For example, for the first CVNS digit of equation (5.6), [[[((x′))nmod23]mod22] mod21]

is xm−3 20, and b((x′))nc is xm 23.

An ADC is employed to extract the b((x′))n−jc and [[[((x′))n−jmod23]mod22] mod21]

of each cell in the form of binary bits which will be employed as x3 and x0, respectively.

Then, the x0 extracted from each cell is compared to the extracted x3 of the next adjacent

cell through an XOR gate.

An errored CVNS digit, ((x′))n−j
′, with error of ε can be written as follows.

((x′))n−j
′

= xm−3j 23 + xm−3j−1 22

+ xm−3j−2 21 + [xm−3j−3 − ε] 20 (5.8)
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In the proposed refreshing circuitry, a constant current equal to xi×20, where xi = 1, is

applied when required to correct the error. Therefore, the corrected CVNS digit, ((x′))n−j
′′,

will be as follows.

((x′))n−j
′′

= ((x′))n−j
′
+ 1× 20 (5.9)

which represents the same value as the ((x′))n−j does.

Using one digit link, error can be corrected as long as equation (5.7) is smaller than 21

which is equal to two levels resulting in a doubled noise margin.

Example2: For the CVNS digits of Example1, consider an error occurred in ((x′))n =

23 × ((x))n.

((x′))n
′
= 1× 23 + 0× 22 + 0× 21 + 0× 20 (5.10)

The error is calculated from equation (5.7) as follows.

ε = |0× 20 − 1× 23/23| = 1× 20 (5.11)

The errored CVNS digit will be corrected using equation (5.9) as follows.

((x′))n
′′

= 1× 23 + 0× 22 + 0× 21 + 0× 20 + 1× 20

= 1× 23 + 0× 22 + 0× 21 + 1× 20

= ((x′))n (5.12)

In the proposed radix-2 CVNS-based memory with ψ = 4 and ν = 1, the basic current

of 0.5µA is dedicated to 20; accordingly, for 21, 22, and 23, the corresponding currents are

1µA, 2µA, and 4µA, respectively. Here, step size is defined as the minimum difference

between current levels which is equal to 0.5µA. Table 5.2 shows an example of error

correction in this system for a 16-bit digital input. Note that in this case, n and m are 4 and

15, respectively.

There is a trade-off between area and order of noise margin in the multi-valued memo-

ries. In order to increase the noise margin, more digit links should be used which will need

more area for hardware implementation. According to the equation (5.3) and Table (5.1) as
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Table 5.2: An example for error correction when the binary input is 1011, 0101, 1110, 0011

Error

j x15−3j, ... ((x′))4−j ((x′))
′
4−j Correction ((x′))

′′
4−j

, x12−3j Current

0 1011 5.5µA 5µA 0.5µA 5.5µA

1 1010 5µA 5µA 0 5µA

2 0111 3.5µA 3µA 0.5µA 3.5µA

3 1100 6µA 5.5µA 0.5µA 6µA

4 0011 1.5µA 1.5µA 0 1.5µA

the number of digit links increases, the number of the CVNS digits, n + 1, will increase.

Therefore, more cells are needed to store all equivalent CVNS digits. Considering the total

area consumption as a function of number of storage cells (CVNS digits), n+1, there is an

almost linear relation between the number of digit links and area consumption as follows.

Total Area = (n + 1)× Area of one Cell (5.13)

In the proposed design, using one digit link, the area is minimized while a double noise

margin is achieved.

5.3 CVNS-Based Storage Circuitry

The overall block diagram of the CVNS DRAM is shown in Figure 5.3. This section is

dedicated to the storage cells saving the refreshing circuitry for the next section.

In the proposed 16-level DRAM, equivalent to four binary digits can be stored on each

cell. By correcting errored digits due to leakage currents, the CVNS number system can

provide an appropriate noise margin for storing multi-valued information.
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 Storage Cell
Input Output

 Refreshing

 Circuitry

...

...

Figure 5.3: Overall block diagram of the proposed memory

Each CVNS digit is supposed to be stored on one storage cell. Each two cells has one

digit in common, digit link. This overlap is used for error correction. Since each CVNS

digit is generated from four binary digits, five storage cells are required to store a 16-bit

digital input. Figure 5.4 shows the proposed arrangement for storing a 16-bit binary input

on the 16-level CVNS memory cells.

b15    b14    b13    b12

b12    b11    b10    b9

b9      b8     b7      b6

b6      b5     b4      b3

b3      b2     b1      b0

b0

Cell1

Cell2

Cell3

Cell4

Cell5

Figure 5.4: General storage scheme for a 16-bit input. In order to increase the reliability of

the cells, the LSB input to each cell is repeated and is used for error correction.
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Dynamic current mirrors (current copiers) [27] with the capability of storing more than

one bit of information are used to implement storage cells in this memory as shown in

Figure 5.5.

►

S01

C0

M01
►

M11

S11

C1

S02

►

M02

►

S13

M12

Iin Iout

S12S03.
. ..

. .

M01, M11: 6/1

M02, M12: 6/1

C0, C1: 30fF

Figure 5.5: Self-biased dynamic current mirror memory (current copier)

Transistor M02 is added in series to transistor M01 to reduce the output conductance

[52]. Therefore, sensitivity of the cell to the power supply variations will be decreased [39]

which allows Iout to be equal to Iin independent of voltage variations. Transistor M02

should be biased; this can be performed in two ways: self-biased mirror and externally

biased mirror [52]. Self-biased method (stacked memory) is used in the proposed mem-

ory cell, and transistors M11, M12, C1, and relevant switches perform the mirror part for

biasing the transistor M02 in Figure 5.5.

In the self-biased memory, there are two complimentary sets of transistors and switches

(base set and mirror set), and each set operates in two states: store and sink. When the base

set operates in the store state, the mirror set operates in the sink state and vice versa.

The detail of each state starting from the base set is as follows. Store state happens
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when S01 and S02 switches are closed and S03 is open. In this state, storage capacitor, C0,

starts to charge through the closed switches till the drain current of transistor M01 matches

the input current, Iin, meanwhile all the mirror set switches are in the sink state.

In the sink state, the S01 and S02 become open and S03 closes. In this state, transistor

M01 sinks a current equal to Iin from the loud, Iout. At the same time, all the mirror set

switches are in the store state.

It is important for the Si1 and Si2 (i = 0, 1) switches to stay close long enough so that

the charge on the corresponding storage capacitor, Ci, reaches the proper value. Note that

the charge leakage over the capacitor limits the time of circuit operation in the sink state.

Simulations confirm that the circuit can store up to 4-bit with a capacitor as low as

30fF .

To decrease the leakage current of the storage capacitor, resistance should be increased.

Resistors are added in the sources of M01 and M11 as resistors are more stable than the

transistors, and their resistance would not change with voltage variations. Adding the re-

sistor, there is a drop in the output current, but the output current value shrinks slower

during the time. However, the larger the value of the resistor is, the higher the layout area

consumption will be.

A range of resistors between 1KΩ and 40KΩ are examined and the storage cell output

current for each case is measured during 1.5µs for the maximum circuit current (where

the input is ′1111′). The simulation result of the storage cell output current using different

resistors is shown in Figure 5.6. In the top picture, solid line shows the initial output current

while the dash-dot line shows the output current after 1.5µs. The bottom picture shows the

current reduction rate in 1.5µs.

As can be observed from Figure 5.6, for smaller resistors, the initial output current

is almost equal to the input current, 7.5µA, while the current reduction rate is noticeably

large. For larger resistors, on the other hand, current reduction rate is small, but they cause

a large initial current drop. The idea of adding resistors is to reduce the current reduction
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Figure 5.6: Simulation results of different resistors in storage cell.

rate while trying to keep the area consumption and current drop as low as possible.

The 10KΩ resistor is chosen as the output current drop is negligible (
(7.5− 7.45)

7.5
=

0.4%) and the current reduction rate is 0.3µA per 1.5µs. The proposed storage cell with

no resistor needs to be refreshed each 2µs while its refreshing rate is doubled (4µs) by

adding the 10KΩ resistor. Greater refreshing rate means that the storage cell can keep the

information for a longer time which is a desirable factor in DRAMs as it will result in less

number of refreshing [38, 39, 46, 47, 53, 54].

Layout of the proposed storage cell without resistors and capacitors is shown in Figure

5.7. The overall area is 10.81µm× 6.49µm.

The 10KΩ resistor is laid out using Unsilicided P+ Poly (rpporpo). The 30fF capaci-

tor is laid out using Metal Capacitor (cmimmk).

Figure 5.8 shows the post layout simulation result of the storage cell when the binary

input is ′1111′. It also shows the value of switches during each period. As is shown in Fig-
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Figure 5.7: Storage cell layout

ure 5.8, the current stored on the storage cell is reduced gradually, but after each refreshing

time (4µs) it is restored to its original value due to the error correction in the refreshing

circuitry.
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Figure 5.8: Simulation result of storage cell layout for ′1111′ binary input.

Table 5.3 presents the results of power consumption measurements of the schematic
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storage cell and layout storage cell. Power consumption is measured for different binary

inputs of ′1111′, ′1000′, and ′0001′. The average power is calculated per one period.

Table 5.3: Schematic storage cell and layout storage cell simulation results

Schematic storage Cell Layout Storage Cell

Average Power 9.669µw 9.672µw

5.4 CVNS-Based Refreshing Scheme and Circuits

In multi-valued memories, storing more than one digit on one cell can reduce the area

while reducing the noise margin as a drawback. Error Correction Codes have been used

in the refreshing circuitry to increase the noise margin by detecting and hence correcting

one or more errored values [1, 38–42, 47]. However, because of the complex decoding

and addressing configurations applied in the refreshing circuitry, these systems generally

have high design complexity. The CVNS number system, offering a low complexity con-

figuration, can serve as an alternative to store more than one bit per cell while increasing

the noise margin. Use of any kind of complex decoding schemes can be avoided because

the CVNS-based systems can be easily implemented through low resolution current mode

analog circuits as shown here.

The base of the CVNS DRAM cell is a transistor and a capacitor similar to a conven-

tional DRAM cell. The voltage over the capacitor will be reduced after a while due to the

leakage current; therefore, it needs to be refreshed to recover the capacitor voltage.

The series configuration of ADC and DAC units in the refreshing circuitry has been

used in some previous published works [1, 34, 35, 38, 39, 46, 47]. The proposed refreshing

circuitry is based on this general configuration and is modified to perform CVNS represen-

tation requirements as is shown in Figure 5.9.
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 Refreshing Circuitry
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Circuitry

Figure 5.9: Block diagram of the refreshing system for a CVNS DRAM cell.

Here, the current quantizers and capacitors of [1,38,39] and phase detectors of [1,34,35,

38,39] are avoided which results in reducing the area, power consumption, and complexity.

The general system operation is as follows. First, the value stored on a memory cell is

converted to digital through a 4-bit ADC.

A 4-bit ADC [14, 24] is designed which can convert 2-bit at the same time resulting

in a faster conversion compared to continuous Modular ADCs [17, 18, 21, 22, 55, 56]. In

addition, employing a DAC, the designed 4-bit ADC consumes less area than ADCs with

no DAC [29, 57–59]. The 4-bit ADC is made of a combination of current comparators,

DAC, and encoders.

Then, the x0 of each cell is compared to the x3 of the next line. As only one bit is used

for error detection, a simple XOR gate can be used for comparison. It should be noted that

analog current comparators are needed when two adjacent cells have more than one digit

in common. A zero in the XOR gate output shows that no error has happened and the two

compared bits are the same. On the other hand, appearance of a one means that the two

compared bits are different; the cell value is altered due to the leakage currents, and it needs

to be refreshed.

The output of the XOR gate goes to a 1-bit DAC which acts as a current generator.

When error occurs, this gate adds a constant current corresponding to xi× 20 where xi = 1
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to the output current of the 4-bit DAC resulting in a total refreshing current which will be

restored on the memory cell.

The 4-bit DAC is a parallel combination of four simple weighted current sources. The

circuit operation of ADC and DAC modules are given next.

5.4.1 Analog to Digital Converter

Figure 5.10 shows the block diagram of the system which is proposed to convert the CVNS

analog digits into their corresponding binary values. Each 4-bit conversion is performed in

two stages. In other words, there is a parallel structure to generate each 2-bit at the same

time resulting in a decrease in total conversion time. Using a fast ADC in the refreshing

circuitry decreases the delay time of error correction after each refreshing.

More significant bits, x3 and x2, are produced from the analog input value (input cur-

rent) in the first stage. According to the output values of the first stage, the second stage

generates the other two bits, x1 and x0. The Table 5.4 shows the value of Irefi
and Iconsti

(i = 1, 2, 3).

Comp. 

1Iref1

Comp. 

2
Iref2

Comp. 

3Iref3

Encoder 

1

x3

x2

DAC

Iconst1

Iconst2

Iconst3

Comp. 

11

Comp. 

22

Comp. 

33

x1

x0

Encoder 

2

.

.

Current 

Mirror

2

Current 

Mirror

1

Iin

Figure 5.10: Block diagram of the ADC

The detail of 4-bit ADC operation is as follows. In the first stage, current comparators,

Comp.i (i = 1, 2, 3), compares the analog input, Iin, to constant reference currents, Irefi
.

Current comparators are simple current mirror comparators [60].
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Table 5.4: Values of all currents in the ADC block diagram

Iref1 Iref2 Iref3

2µA 4µA 6µA

Iconst1 Iconst2 Iconst3

0.5µA 1µA 1.5µA

Here, the output of Comp.i is one when Iin > Irefi
and zero otherwise. According

to the three current comparator outputs, the Encoder1 indicates the values of x3 and x2

(Table 5.5).

Table 5.5: Extraction of x3 and x2 from the output of current comparators.

Comp. 3 Comp. 2 Comp. 1 x3 x2 DAC Output

0 0 0 0 0 0

0 0 1 0 1 2µA

0 1 1 1 0 4µA

1 1 1 1 1 6µA

It is observed from Tables 5.4 and 5.5 that if the output of Comp.i (i = 1, 2, 3) is one,

the output of Comp.j would be also one as long as j < i. x3 and x2 are extracted as

follows.

x3 = Comp. 2

x2 = Comp. 3 + (Comp. 1 · Comp. 2) (5.14)

where . and + shows AND and OR operations, respectively.

Due to the values of x3 and x2, DAC generates a current as is shown in Figure 5.5.

This current is added to each constant currents, Iconsti (i = 1, 2, 3), resulting in a cur-

rent called the total reference current. Current comparators of the second stage, Comp.ii
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Table 5.6: Comparison made between the proposed ADCM and some published methods

for a 4-bit ADC

Comparators Digital Gates Delay Area Delay*Area

Method series total series total (ns) (trans.) (ns · trans.)

Radha [29] 1 16 4 XOR + 3 OR 7 XOR + 4 OR 1×2.5+4×0.21+3×0.16=3.79 16×16+7×12+4×6=364 1379

Tipsu [57] 1 16 14 XOR 18 XOR + 4 OR 1×2.5+14×0.21=5.44 16×16+18×12+4×6=496 2698

Chuen [59] 1 16 14 XOR 18 XOR + 4 OR 1×2.5+14×0.21=5.44 16×16+18×12+4×6=496 2698

Agarwal [56] 4 4 - - 4×2.5=10 4×22=88 880

Narin [22] 4 4 - - 4×2.5=10 4×21=84 840

Salama [21] 4 4 - - 4×2.5=10 4×21=84 840

Proposed 2 6 4 AND/OR 4 AND/OR 2×2.5+4×.016=5.64 6×16+4×6=120 676.8

(ii = 11, 22, 33), compare Iin to each of these total reference currents. According to their

comparison results, x1 and x0 are generated by Encoder2. Equations of (5.14) is changed

to be used for Encoder2 as follows.

x1 = Comp. 22

x0 = Comp. 33 + (Comp. 11 · Comp. 22) (5.15)

The proposed ADC method is compared to some of reported ADC methods in Table

5.6.

The first three methods (first group ADCs) are those with a parallel structure which have

lots of comparators together with some digital gates. The second three methods (second

group ADCs), on the other hand, have a completely series configuration and generally no

digital gates.

Note that for area consumption estimation all the components are important, while for

delay estimation only series components are considered. It should also be noted that the

delay of a comparator is much larger (more than 10 times) than the delay of digital gates,
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and it uses more transistors and consequently more area than the digital gates.

Accordingly, the proposed method consumes less area (almost one forth) compared

to the first group ADCs as it has less number of total components and transistors. The

proposed method area consumption is slightly more than the second group ADCs.

The delay of the proposed ADC method is almost equal to the first group ADCs as they

almost have the same number of series components. However, the proposed ADC method

presents a delay about half of the second group ADCs delay as it has only two comparators

in series.

Totally, the proposed ADC method presents the smallest delay×area than the first and

second group ADCs.

Layout of the 4-bit ADC is shown in Figure 5.11. C.M.1 and C.M.2 blocks refer to the

current mirrors. The total area consumption is 23.32µm× 26.67µm.

Comp.1Comp.2 Comp.0

Comp.11Comp.22 Comp.33

Encoder1

Encoder2

DAC

C.M. 1

C.M. 2

Figure 5.11: 4-bit ADC layout
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Table 5.7 compares the schematic ADC and layout ADC in terms of delay and power

consumptions. Capacitor loads are connected to the outputs. A pulse with period of 200ns

is applied to the inputs. Power consumption is measured for different input currents of

7.5µA, 4µA, and 0.5µA. The average power is calculated per one period.

Table 5.7: Schematic ADC and layout ADC simulation results

Schematic ADC Layout ADC

Delay 12ns 12.65ns

Average Power 97.5µw 95.66µw

The main building block of the ADC is the current comparator; current mirrors also

play an important rule in the design. The next subsections discuss these two blocks.

5.4.1.1 Current Comparators

Current comparators are 12-transistor current mirrors with size of (w/L) = 4/1. Figure

5.8 shows the schematic of the employed current comparators.

Each current comparator needs a current source as shown in Figure 5.13 to generate a

constant reference current for comparison.

Size of current source transistors for each Current Comparator (Comp.), and their Sim-

ulated Constant Current Values (SCCVs) in the ADC layout is summarized in Table 5.8.

Note that transistors M1 and M2 have the same size.

Recalling that the step size is 0.5µA, SCCVs have a value almost 40% of the step

size (0.2/0.5) below the desired values listed in Table 5.4. In other words, a decrease in

input currents due to the system errors will not cause an error in the output as long as that

decrease is within the 40% of the step size. This will make the system more accurate and

can increase the reliability.
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Figure 5.12: Schematic of a current comparator
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M4
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►

Figure 5.13: Schematic of a current source

5.4.1.2 Current Mirrors

Current Mirrors act as both current transferors and matching circuits; therefore, design

of such units requires careful consideration of their output current in respect to the input
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Table 5.8: Transistor sizes for each current source in the layout

Comp.1 Comp.2 Comp.3 Comp.11 Comp.22 Comp.33

M1 1/1 1.3/1 1.3/1 1/1 1.3/1 1/1

M3 2.3/1 1/1 1/1 1.75/1 1.3/1 2.75/1

M4 1.3/1 1.75/1 2.75/1 1/1 2.25/1 1/1

SCCV 1.83µA 3.77µA 5.77µA 0.315µA 0.797µA 1.305µA

current and range of acceptable output loads. Design of current mirrors becomes even

more challenging when there is a wide range of input current to deal with (0 − 7.5µA in

this design).

There are two main current mirrors in the ADC design. The first current mirror, C.M.1,

serves for transferring input current to all six current comparators. C.M.1 is a combination

of Wilson current mirror for NMOSs and Cascode current mirrors for PMOS branches as

shown in Figure 5.14.

Since the input current is in the range of 0−7.5µA, nonlinearity of transistors shows up

which decreases the overall accuracy: the current mirrors output current goes lower than

the input current for larger input currents. In order to solve this problem, a transistor with

the size of (0.5/1) is added in parallel to the transistor M . It generates a small current as

its gate voltage increases corresponding to larger input currents.

The second current mirror, C.M.2, is a Cascode current mirror as shown in Figure 5.15

and transfers output current of DAC to each of the three current comparators in the second

stage. According to Figure 5.5, the DAC output is either 0, 2, 4, or 6.

5.4.2 Digital to Analog Converter

In the proposed multi-valued DRAM, the CVNS digits have been used. To form the CVNS

digits, groups of 4 binary inputs have been used. Therefore, the maximum required reso-
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Figure 5.14: Schematic of the first current mirror

lution for digital to analog conversions is 4. In this design, digital to analog converter is

made from four parallel 1-bit analog to digital converters as is shown in Figure 5.16.

Each 1-bit converter is a weighted current source (current mirror) which produces a

certain current according to the order of the binary input. The schematic of a 1-bit DAC is

shown in Figure 5.17.

The output of this 4-bit DAC is produced by adding output currents of all four 1-bit

converters in a current summation node.

The current levels of the proposed memory are selected as 0.5µA, 1µA, 2µA, and 4µA

for x0, x1, x2, and x3, respectively. Four separate weighted current mirrors are used to

produce these currents.

In Figure 5.17, when the input binary bit is one, transistor M1 will be in triode region

as VGS − Vt ≥ VDS while the other transistors work in saturation region. The current of
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Figure 5.15: Schematic of the second current mirror
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Figure 5.16: Overall configuration of the 4-bit DAC.
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Figure 5.17: Schematic of a one-bit weighted current mirror

M3 and M4 are calculated from the following well known equation [61].

ID =
1

2
µpCox

W

L
(|VGS| − |Vt|)2(1 + λ|VDS|) (5.16)

According to equation (5.16), size of transistor M4 can be calculated from size of M3

as follows.

(W/L)4 = (W/L)3 × I4

I3

(1 + λ|VDS3|)
(1 + λ|VDS4|)

(5.17)

Some issues must be considered for designing the transistor sizes. First, current of

transistor M3, I3, must be small to decrease the power consumption. Second, the number

of transistors and their sizes (both W and L) should be minimized to make an area efficient

design. Therefore, another transistor the same as M1 is added in series to M1 to decrease

the VGS of M1 resulting in a smaller I3. If I3 is much larger than the desired output current,

according to equation (5.17) either W of M3 or L of M4 must be large.

The size of M1, M2, M3, and M4 transistors are designed for each current mirror as

is shown in Table 5.9. Table also shows the simulated output currents. The error between
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simulated output currents and the ideal currents is 0%, 2%, 4%, and 0.8% for 4µA, 2µA,

1µA, and 0.5µA, respectively.

Table 5.9: Transistor sizes for each current mirror

I4 I3 (W/L)1 (W/L)2 (W/L)3 (W/L)4

4µA 1.34µA 1.3/1 1.3/1 1.3/1 3.3/1

1.96µA 1.55µA 1/1 1/1 2/1 2/1

1.04µA 1.7µA 1.3/1 1.3/1 2.6/1 1/1

0.504µA 2µA 1/1 0.66/1 4/1 0.4/1

Layout of the designed DAC is shown in Figure 5.18, and the simulated output currents

for binary input of ′1111′ are shown in Figure 5.19.

x3 x2 x1 x0

Figure 5.18: DAC layout

From Figure 5.19, the difference between post layout extracted DAC currents and ideal

currents is 2.75%, 0.7%, 8.7%, and 1.06% for 4µA, 2µA, 1µA, and 0.5µA, respectively.

Table 5.10 compares the schematic DAC and layout DAC in terms of delay and power

consumptions. NMOS loads with size of (W/L) = 2/1 are connected to the outputs. A

pulse with period of 200ns is applied to the inputs. Power consumption is measured for

different binary inputs of ′1111′, ′1000′, and ′0001′. The average power is calculated per

one period.
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Figure 5.19: DAC layout simulation results for input of ′1111′

Table 5.10: Schematic DAC and layout DAC simulation results

Schematic DAC Layout DAC

Delay 619ps 920ps

Average Power 4.41µw 4.57µw

5.5 Simulation Results and Comparisons

The refreshing and storage circuits of the proposed CVNS DRAM are designed and simu-

lated in 90nm CMOS technology using the power supply voltage of 1.2V with the storage

capacitor size of 30fF . Total post layout circuit simulation for binary input of ′1110′ equal

to 7.0µA is shown in Figure 5.20.

The storage cell is being refreshed every 4µs. There is a trade-off between the re-

freshing time and the size of storage capacitor; as the capacitor size becomes larger, the

refreshing time will increase. On the contrary, the area increases as the size of capacitor
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Figure 5.20: Post layout simulation result of total circuit for ′1110′ binary input.

grows. In this design, the size of storage capacitor is selected as small as possible to re-

duce the area consumption while providing a large enough refreshing period of 4µs. This

refreshing time offers the switches of storage cell enough time to complete both store and

sink states properly. Moreover, the stored information will not be errored more than two

levels in this time which is the system noise margin and can be corrected easily.

The proposed system specifications are compared with some of the existing designs

published in literature where information was available as shown in Table 5.11.

Note that in voltage mode designs, special circuits are employed to make reference

voltages as a division of power supply voltage. For example, in the 16-level design of [46],

the storage levels are 80 − 100mV . Therefore, the minimum acceptable power supply

voltage for 16-level storage must be greater than 16× 0.08 + Vth = 1.28V + Vth which is

not suitable for CMOS technologies equal or smaller than 90nm.

The work which is more comparable to the proposed memory, due to the current-mode

design and structure, is the one reported by Lee et al. [1, 38, 39]. The block diagram is
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Table 5.11: Comparison made between the proposed DRAM circuit and available published

structures

Storage Cap. Cap. Power CMOS Extra Operation

Architecture Level Size Technology Supply Technology Components Mode

Hotchet [34, 35] 16 2.5 pF - 5 V 2µm Phase Detector Voltage

Lee 16 - - 3.3 V 1.2µm Phase Detector Current

[1, 38, 39] Latch

Birk 4 25 fF - 2.5 V 0.25µm Sense Amplifier Voltage

[41] Extra capacitors

Okuda 4 60 fF high dielectric 2.5 V 0.15µm Sense Amplifier Voltage

[43] constant material Extra capacitors

Gillingham 4 30 fF - 3.3 V 0.6µm Sense amplifier Voltage

[44] Extra capacitors

Furuyama 4 40 fF twin-tub 5 V - Sense Amplifier Voltage

[45] CMOS process Extra capacitors

Horiguchi 16 60 fF - 5 V 1.3µm Sense Amplifier Voltage

[46, 47] Extra capacitors

Yunan 2/4/5/8 50 fF - 1.8 V 0.18µm Sense Amplifier Voltage

[53] Extra capacitors

Khodaba [55] 8 40 fF - 1 V 90 nm - Current

Proposed Cell 16 30 fF - 1.2 V 90 nm - Current
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shown in Figure 5.21. The ADC function is performed using Quantized Level Generators

(QLGs) and a 1-bit counter. Each QLG contains two current copiers.

Figure 5.21: Block diagram of the DRAM proposed by Lee et al. [1]

Each current copier needs at least 0.5µs, in 90nm CMOS technology, to load the correct

current. Therefore, in the DRAM reported by Lee, the refreshing time for a 16-level data

takes at least 16× 0.5µs = 8µs to generate the corrected data. Adding this time to the 4µs,

the refreshing time of the proposed DRAM, the refreshing time will be 12µs; the other

blocks are considered to have much smaller delay times than 0.5µs.

Simulations show that the minimum capacitor size to cope with 12µs refreshing time

in Lee’s design, considering the storage cell of Fig 5.5, is 200fF. Consequently, with the

refreshing time of 12µs and the capacitor size of 200fF, corrected data in the Lee’s DRAM
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is available 8µs after refreshing.

In the proposed DRAM, on the other hand, it takes only 0.5µs to provide the corrected

value after each refreshing (Figure 5.20). In the other words, the proposed DRAM correc-

tion speed is 16 times more than the DRAM designed by Lee while the area consumption

is almost the same. Nevertheless, the proposed DRAM can provide the 12µs refreshing

time with the capacitor size of 100fF which is half of the transistor size in Lee’s design.

It should also be noted that the DRAM designed by Lee can not operate with capacitors

smaller than 130fF for 16-level storage; this size of capacitor is needed to keep the stored

value in the correctable range for at least 8µs.

In comparison to other designs, following advantages are obtained in the proposed

current-mode DRAM. First, the proposed memory using a CVNS-based storage scheme

can store up to 16-level (equal to 4-bit) per storage cell. Second, the circuits are simplified

as extra components like phase detectors and sense amplifiers in refreshing circuitry are

avoided; the CVNS-based scheme is provided which is much easier for implementation

while quite efficient. Moreover, repeating the LSB input to each cell as the MSB input

to the next cell according to the features of the CVNS, a doubled level of noise margin is

achieved compared to the systems without error correction. In addition, the small size of

the storage capacitor results in a reduced area design of storage cell in particular. Finally,

small power supply voltage of 1.2V is used which can cause the total power consumption

of the system to be decreased comparing to DRAMs with higher power supply voltages

(voltage-mode DRAMs in particular).

5.6 Conclusion

In this chapter, design and implementation of storage and refreshing schemes for a current-

mode multi-valued DRAM is proposed. The proposed system is designed according to the

CVNS features and has the ability of storing 16-level equivalent to 4-bit on one storage cell.
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Resistors are added to the storage cell to increase the refreshing time. For error correction,

LSB input to each cell is stored on the next neighboring cell which also doubles the noise

margin. Refreshing circuitry implementation is based on current-mode DAC and ADC

modules. A fast ADC module is used that has a parallel configuration and can convert two

bits at the same time. Due to the special CVNS-based design and small size of the storage

capacitor, the overall area of the system is reduced.
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Chapter 6

A 4-3-2 CVNS DNN using

Synapse-Neuron Modules

Synapse-neuron modules based on the CVNS are used to design a prototype 4-3-2 network

with four digital inputs and two final digital outputs. This prototype is trained off-line based

on a classification pattern. The circuitries are designed, simulated, and laid out in 0.18µm

TSMC CMOS technology using a power supply voltage of 1.8V .

Comparisons show that the proposed mixed-signal structure solve the storing problem

of analog ANNs while the activation function is realized through analog circuits instead of

the huge Look-Up-Tables (LUTs) of digital ANNs.

6.1 Prototype CVNS DNN

The proposed synapse-neuron module is used to build a 4-3-2 network as a proof of concept

design. Here, there are 4 digital inputs for the network which will lead into two final digital
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outputs. The configuration is shown in Figure 6.1.
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Figure 6.1: Block diagram of the 4-3-2 CVNS DNN.

In Figure 6.1, each Inputi (1 = 1, ..., 4) is a digital value. y11, y12, and y13 are the

outputs which are generated in the first, second, and third common nodes of the first layer.

Each of them is converted to a 4-bit digit through a voltage-mode ADC and gets through

the second layer. Out1 and Out2 are the final digital outputs produced in the first and

second common nodes of the last layer.

The 4-3-2 network is trained off-line to solve a classification problem as is shown in

Figure 6.2.

The weights are calculated in MATLAB and then loaded through the implemented net-

work for simulations. The corresponding weights and biases referred to Figure 6.2 are as
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Figure 6.2: Training pattern set for the 4-3-2 CVNS DNN.
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follows.

w1 =




−2.6543 7.9883 11.2109 −7.4902

−10.2441 8.2461 1.1406 −14.3066

6.4375 14.6484 1.7383 −8.6465




w2 =


 −8.7207 13.4648 1.3203

9.9570 10.0273 −8.8066




b1 =




0

−8.002

4


 b2 =


 −0.2520

−2.2520




The layout of the proposed 4-3-2 CVNS distributed neural network is shown in Figure

6.3. The area consumption is 676× 570µm2.

Figure 6.3: Layout of the proposed 4-3-2 CVNS DNN.
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The simulation result of the trained network for different values of input is shown in

Figure 6.4. Here, four square waves with different periods are applied to the inputs to cover

all possible input combinations.

0 2 5 . 0 5 0 . 0 7 5 . 0 1 0 0 . 0 1 2 5 . 0 1 5 0 . 0
time (us)

2 . 0

0 . 0

V
 (

V
)

V
 (

V
)

2 . 0

0 . 0

V
 (

V
)

V
 (

V
)

2 . 0

0 . 0

V
 (

V
)

V
 (

V
)

2 . 0

0 . 0

V
 (

V
)

V
 (

V
)

2 . 0

− . 2 5

V
 (

V
)

V
 (

V
)

2 . 0

− . 2 5

V
 (

V
)

V
 (

V
)

 / i n 1  

 / i n 2  

 / i n 3  

 / i n 4  

 / o u t 1  

 / o u t 2  

time (us)

1 1

00 0

0

1

1

1

0 0

0

Figure 6.4: Simulation result of the 4-3-2 CVNS DNN to solve the classification problem

of Figure 6.2.

As is shown in Figure 6.4, the outputs are exactly matching the expected outputs for

valid combinations of inputs.

6.2 Comparisons

The proposed structure is a mixed-signal design where the synapse is mixed-signal and the

neuron is analog.

Analog neural networks generally consumes less power compared to the digital ones;

however, the reconfigurability is not achieved by analog neural networks [62, 63]. More-
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over, analog networks are more sensitive to noise. The proposed network is more like

analog neural networks than digital ones; therefore, the power consumption will be less

than digital networks.

Nevertheless, the usage of synapse-neuron modules together with the distributed neu-

rons make the network reconfigurable and decrease the design cost. Once designing the

synapse-neuron module, it can be used in different network configurations. The inputs

should be assigned, and outputs should be connected to the relevant common nodes.

Implementation of functions like summation and activation function is much more area

efficient in analog networks compared to the digital ones [64, 65]. The proposed network

performs all the summations in analog circuitries as well as the activation function which

is realized through analog neurons. It should be noted that in digital neural networks, huge

LUTs are used for realization of activation function.

Storing the weights is a major problem in analog neural networks [66]. This problem is

subdued in the proposed structure by using the CVNS DRAMs where the digital values for

the weights are converted to the CVNS digits and stored on multi-valued storage cells. This

module also provides error correction on the stored values which will deflate the possibility

of error for the stored weights.

This network also profits from the benefits of the distributed neural networks such as

scalability and increased robustness [3, 9, 10]. Moreover, the CVNS redundancy increases

the noise immunity furthermore.

Although the NSR is greater than the NSR of the one with complete CVNS digits [16],

this is still less than the NSR of the non CVNS conventional distributed neural network

[9]. Therefore, the CVNS DNN even in a low resolution environment results in better

noise immunity. It should be noted that the number of sub-neurons in the truncated CVNS

distributed network is equal to the number of sub-neurons in conventional DNNs.
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6.3 Conclusion

The CVNS synapse-neuron module is used to build a 4-3-2 network which is trained by a

classification pattern. The prototype is designed, simulated, and laid out in 0.18µm CMOS

technology. The proposed structure is more like an analog ANNs; however, the problem of

storing the weights is solved by using the multi-valued DRAMs.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The CVNS distributed neural network is introduced. It has all the advantages of conven-

tional distributed neural networks such as scalability and higher noise immunity. However,

the CVNS decreases the vulnerability of the proposed structure to noise.

The practical implementation of the proposed structure is limited by the resolution of

the environment. Truncated methods are used to make the CVNS digits within each CVNS

digit set compatible with the resolution of the environment. In case of the CMOS 0.18µm

technology, this resolution is considered equal to 4-bit. Digit link is selected as its minimum

value to decrease the number of the CVNS digits. Consequently, the 13-bit weights are

converted to 4 CVNS digits.

A multi-valued DRAM is also proposed based on the CVNS. This memory converts

binary digits to truncated CVNS digits and stores them on the storage cells. In the proposed

CVNS DRAM, a DAC is used for generating the CVNS digits. The results are then stored
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on the storage cells. The redundancy between the CVNS digits, digit link, is used to detect

and correct the error of leakage current over the storage cell. A fast ADC is used to convert

each two bits at the same time. This ADC is used together with an XOR and a 1-bit DAC

to detect and correct the error.

The multi-valued CVNS DRAM is used in the proposed synapse-neuron module to

store the weights. Except for the DRAM, the synapse-neuron module contains the mul-

tiplication module, the interface module, and the neuron. The multiplication module is a

mixed-signal module that multiplies the weights by the inputs. The interface module is

used to apply the sign to the multiplication module output and to generate the final synapse

output. Finally, analog neurons are used to realize the sigmoid function as the activation

function and to generate the final output in the common node.

Using the proposed synapse-neuron module as the building block, a 4-3-2 network is

designed and laid out to justify the concept. A pattern set is used to train the network off-

line. Post-layout simulations are performed to test the architecture; results show the proper

functionality of the network.

The proposed CVNS DNN consumes less power and area compared to digital ANNs. It

also alleviates the problem of storing the weights in analog ANNs. Simulations show that

the NSR of the proposed CVNS distributed network is less than the NSR of both lumped

neural networks and conventional DNNs.

7.2 Future Work

The proposed neural network can be used in applications such as photo sensors. The pro-

posed synapse-neuron module can be used to generate different kind of networks. However,

it will need some peripherals to be designed. For example in the case of photo sensors ap-

plications, proper sensors to sense the light are inevitable. Moreover, interface circuits are

necessary to match the sensors output to the input of the neural network.
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In addition, the proposed structure is suggested to be used to implement an ANN with

on-line training. The prototype design is working with 13-bits of weights which is the

minimum number of weights which is generally necessary for on-line training. Therefore,

the proposed structure has the potential of being used in a network trained on-line. In this

case, additional modules and modifications are unavoidable.

The module to realize the deviation of the activation function is suggested to be de-

signed through analog circuitries. This module is necessary for realizing the algorithms

such as the back propagation algorithm used for on-line training. Nevertheless, we suggest

the realization of other arithmetic modules used for on-line training through conventional

analog/mixed-signal circuits. For example for the back propagation algorithm, some mul-

tiplication and addition modules are used to update the new values for both weights and

biases; these modules can be realized through the circuits similar to what we have already

proposed. In addition, we are suggesting to apply some methods to the whole system to

synch the modules during the on-line training.
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