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ABSTRACT

Through the use of a general empirical model for the density of states functions,

one that considers valence band band, valence band tail, conduction band band, and

conduction band tail electronic states, the sensitivity of the joint density of states

function to variations in the conduction band tail breadth, all other parameters being

held fixed at nominal hydrogenated amorphous silicon values, is examined. It is

found that when the conduction band tail is narrower than the valence band tail, its

role in shaping the corresponding spectral dependence of the joint density of states

function is relatively minor. This justifies the use of a simplified empirical model for

the density of states functions that neglects the presence of the conduction band tail

states in the characterization of the optical response.

A simplification of such an empirical model for the density of state functions asso-

ciated with hydrogenated amorphous silicon is then suggested, reducing the number

of independent modeling parameters from six to five as a result. As a consequence

of this simplification, it is found that one is able to cast joint density of states eval-

uations into a dimensionless formalism, this formalism providing an elementary and

effective platform for the determination of the underlying modeling parameters from

experiment. This simplification is justified by showing, for reasonable hydrogenated

amorphous silicon modeling parameter selections, that the joint density of states re-

sults are very similar to those determined using a more general approach.
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Using our dimensionless joint density of states formalism for the quantitative char-

acterization of the optical response associated with hydrogenated amorphous silicon,

a critical comparative analysis of a large number of different optical absorption data

sets is then considered. When these data sets are cast into this dimensionless frame-

work, a trend is observed that is almost completely coincident for all of the data

sets considered. This suggests that there is a universal character associated with the

optical absorption spectrum of hydrogenated amorphous silicon.

Finally, the role that defect states play in shaping the optical response of this

material are probed.
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CHAPTER 1

Introduction

1.1 Introduction to disordered semiconductors

Much of the progress that has occurred in electronics over the years has arisen as

a result of making the constituent electron devices within electronic systems faster,

smaller, cheaper, and more reliable. These developments have occurred as a conse-

quence of a detailed and quantitative understanding of the material properties of the

materials used in the fabrication of these devices. Electron devices are fabricated

from conductors, insulators, and semiconductors. While conductors and insulators

have been well understood for many years, interest in the material properties of semi-

conductors really only found its genesis with the fabrication of the first transistor in

1947 [1, 2]; prior to that time, semiconductors were considered a laboratory curios-

ity. Since that time, however, there has been a considerable amount of study into

the material properties of these materials. As further progress in electronics will un-

doubtedly require an even greater understanding of the properties of these materials,

it seems likely that interest in the material properties of semiconductors will remain

intense for many years to come.

While shrinking device features may be the focus of conventional electronics, there
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are electron devices that require larger sizes in order to be useful. Displays [3, 4],

scanners [5], solar cells [6, 7], and x-ray image detectors [8], for example, are all large

area electron devices. The focus in large area electronics, as this field is now referred

to as, is on substrates of the order of a square-meter [9]. This contrasts with the

sub-micron device feature focus of conventional electronics. As crystalline silicon (c-

Si), the material which dominates conventional electronics, can not be deposited over

large areas, alternate electronic materials must be employed instead for large area

electron device applications [10, 11]. Typically, the electronic materials employed

for large area electronics are deposited as thin films over a substrate. Examples

of such materials include hydrogenated amorphous silicon (a-Si:H), polycrystalline

silicon (poly-Si), amorphous selenium (a-Se), and amorphous carbon (a-C). These

materials are collectively referred to as disordered semiconductors, as the distribution

of their constituent atoms does not possess the long-range order characteristic of a

crystalline semiconductor.

Progress in large area electronics has occurred through advances in our under-

standing of the material properties of disordered semiconductors. The study of such

semiconductors was initiated in the 1950s. Initially, chalcogenide semiconducting

glasses [12–14], such as As2Se3 and GeS2, were the focus of attention; chalcogenide

glasses refer to those that include the elements sulfur (S), selenium (Se), and tellurium

(Te), the chalcogen elements referring to those in column VI of the periodic table.

Pioneering studies into the material properties of these glasses, which are fabricated

by cooling from a melt [11], allowed researchers to first probe the important role that

disorder plays in shaping the electronic properties of these materials [12, 13, 15, 16].

In addition, a number of interesting device applications were implemented as a result

of these studies. For example, the first xerographic copying machine was fabricated

using an a-Se photoconductor [11].
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Interest in amorphous silicon (a-Si) began in the 1960s. Initially, a-Si was pre-

pared through sputtering or thermal evaporation [11]. Unfortunately, the material

that was produced was of extremely poor quality. Defects, arising as a consequence of

dangling bonds and vacancies, led to distributions of electronic states deep within the

gap region. This rendered the material extremely difficult to dope. In addition, the

disorder present made the resultant electron and hole transport very poor. In partic-

ular, the mobilities found in a-Si are orders of magnitude lower than those found for

c-Si. As a result, initially at least, a-Si did not attract much attention.

Hydrogenated amorphous silicon (a-Si:H) was a late arrival in the study of disor-

dered semiconductors [11]. It was found to exhibit much improved electronic proper-

ties when contrasted with that of its unhydrogenated counterpart. As a consequence,

it is considered much more appropriate for electron device applications. This ma-

terial was first fabricated in the late 1960s [11] through the use of glow discharge

deposition [17]. Since that time, a variety of deposition techniques, such as hot-

wire (HW), chemical vapour deposition (CVD), plasma enhanced chemical vapour

deposition (PECVD), and others, have been employed in order to produce this mate-

rial [18]. The improved electronic properties of a-Si:H were found to arise primarily as

a consequence of the passivation of the dangling bonds with hydrogen atoms. These

passivated dangling bonds do not contribute to the electronic states within the gap.

As a consequence, the number of electronic states within the gap is greatly reduced for

a-Si:H. This makes the material much more suitable for electron device applications.

There are a number of features associated with a-Si:H that make it a useful ma-

terial for electron device applications. In particular, it can be doped [19], it exhibits

a reasonable photoconductive response [11], and junctions may be readily formed [20]

using a-Si:H. Using modern plasma deposition techniques, a-Si:H may be inexpen-

sively and uniformly deposited over large substrate areas [21]. As this material is
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silicon based, many of the device processing techniques that have been developed for

the case of c-Si can also be employed for the case of a-Si:H. Finally, the same plasma

deposition technique that is used to fabricate the material itself may also be used

to deposit the dielectric and passivation layers needed for the realization of actual

devices [22].

1.2 Distribution of atoms

Crystalline silicon (c-Si) is a tetrahedrally bonded material. That is, each silicon

atom within c-Si is bonded to four other nearest neighbor silicon atoms. Ideally,

the bonding environment about each such atom is exactly the same as all of the

other silicon atoms within the crystal. This tetrahedral structure is thus repeated

periodically throughout the entire volume of the crystal. As a consequence, ideal c-Si

is said to possess long-range order. A two-dimensional schematic representation of

the long-range order characteristic of c-Si is shown in Figure 1.1 [23]. A defect within

c-Si corresponds to any departure from this perfect order.

In amorphous silicon (a-Si), however, such long-range order is not present. While

most silicon atoms within a-Si are bonded to four other silicon atoms, there are vari-

ations in the bonding environment from one silicon atom to the next. In particular,

variations in the bond lengths and bond angles occur. Dangling bonds are also found,

although it should be noted that dangling bonds are much rarer than their tetrahe-

dral counterparts; within a-Si, there are typically of the order of 1019 dangling bonds

per cm3 [11] while there are of the order of 1023 tetrahedral bonds per cm3, i.e.,

there is one dangling bond for every 10,000 tetrahedral bonds in a-Si. As a result

of these variations in the bond lengths and bond angles, a-Si is said to possess no

long-range order. Owing to the fact that the environment around any given silicon

atom is similar to that of the other silicon atoms, however, a-Si is said to possess a
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Figure 1.1: A schematic depiction of the distribution of silicon atoms within c-Si and a-Si.
The atoms are represented by the solid circles. The bonds are represented by the solid lines.
The scale of the disorder within a-Si has been exaggerated for the purposes of illustration.
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form of short-range order. A two-dimensional representation of the short-range order

characteristic of a-Si is also depicted in Figure 1.1 [23].

Ideal a-Si corresponds to a fully bonded tetrahedral network of silicon atoms,

i.e., each silicon atom is bonded to four other silicon atoms. While such a continuous

random network may be ideal for the case of a-Si, disorder is present, even within the

framework of this ideal theoretical construct, i.e., variations in the bond lengths and

bond angles occur, these being inherent to the amorphous state. Any departure from

such an ideal network corresponds to the presence of a defect within a-Si. Vacancies

and dangling bonds are examples of defects that are present within a-Si. These

defects may be characterized in terms of the coordination number associated with each

silicon atom, the coordination number being the number of nearest neighbor atoms

associated with the atom in question. In an ideal a-Si network, all atoms are fully

coordinated, i.e., the coordination number associated with each silicon atom is four.

In contrast, with defects being present, variations in the coordination number of the

constituent silicon atoms within a-Si are found. Such variations in the coordination

number, corresponding to the specific case of a-Si, are schematically represented in

Figure 1.2.

Within an a-Si network, the displacement of one silicon atom from its usual posi-

tion will create dangling bonds with its four neighboring silicon atoms, each neighbor-

ing silicon atom having a dangling bond [18]. A schematic representation of silicon

dangling bonds within a-Si is shown in Figure 1.3. For the case of a-Si:H, however,

Si-Si bonds, Si-H bonds, and silicon dangling bonds are found. Detailed studies have

found that the hydrogen atoms within a-Si:H, which are present in copious quanti-

ties during the deposition process and in the resultant a-Si:H films, bond to most of

the dangling bonds that are present within a-Si; most device-quality a-Si:H films are

found to have around 10 atomic % hydrogen content [11]. The density of dangling
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Figure 1.2: The coordination numbers associated each silicon atom in a representative
sample of a-Si. The geometry has been exaggerated for the purposes of illustration.

7



Chapter 1

 
 

 
 

 

Figure 1.3: A schematic representation of dangling bonds within a-Si. The atoms are
represented by the solid spheres. The dangling bonds are represented by the dotted lines.
The Si-Si bonds are represented by the solid lines. The ratio of the dangling bonds to the
Si-Si bonds within a-Si has been exaggerated for the purposes of illustration.
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bonds found within a-Si:H is thus substantially reduced when contrasted with that of

its unhydrogenated counterpart, a-Si; there are typically of the order of 1015 dangling

bonds per cm3 within device quality a-Si:H [11]. Many of the hydrogen atoms that

are present within a-Si:H are singly coordinated with their host silicon atoms.

1.3 Device applications

Disordered semiconductors are employed in a variety of device applications. Early

applications of disordered semiconductors include the aforementioned a-Se photocon-

ductor based xerographic copying machine that was introduced to the market in the

1950s and the a-Si:H based photovoltaic solar cell that was introduced to the market

in the 1970s. Specifically focusing on the case of a-Si:H, this being the most widely

used disordered semiconductor today, current major applications for this material in-

clude displays, solar cells, thin-film opto-electronic devices, photoreceptors, sensors,

light emitting diodes, x-ray imagers, and scanners [3–8]. New applications are being

devised on a yearly basis.

At present, the primary use of a-Si:H is for electronic displays. These displays cur-

rently have a large market value, i.e., billions of dollars. Electronic displays are used

in televisions, computers, automobiles, telecommunication systems, and biomedical

systems. Each application has its own special requirements and customized optimiza-

tions must be performed with these requirements in mind. The diversity of electronic

display offerings will continue to grow as new applications are developed. Variations,

in terms of size, speed, power requirements, color range, brightness, contrast, and

many other parameters, are being offered [24].

Solar cells is another area in which a-Si:H is finding use. Solar cells are semiconductor-

based electron devices that are capable of producing electricity from solar energy

through the photovoltaic effect. For large scale energy production, individual solar
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cells may be connected together into an array. At present, a-Si:H based solar cells

have an efficiency that ranges between 10 to 12 % [6, 7]. The solar cell panels should

last for twenty or more years, with low maintenance and low environmental impact.

That is, they do not produce air pollution, operate quietly, and do not interfere with

the natural environment.

1.4 The optical response

The performance of many of the devices fabricated from disordered semiconduc-

tors depends critically on the optical properties of these materials. Light attenuates

in intensity as it propagates through a material. Specifically, for monochromatic light,

i.e., all photons having the same value of photon energy, the intensity of light dimin-

ishes exponentially as it passes through a material. For the case of light normally

incident on a material, as shown in Figure 1.4, in the absence of any reflection, for

light propagating from the left, the intensity of the light, as a function of the depth

from the surface of the material, z, may be expressed as

I (z) = Io exp(−αz), (1.1)

where Io denotes the intensity at the surface of the material, z = 0, and α represents

the optical absorption coefficient. This coefficient describes the rate at which this

exponential attenuation occurs. A quantitative determination of this optical absorp-

tion coefficient, α, for various values of photon energy, will allow for the quantitative

analysis of the optical response of these materials. This in turn will allow for the

quantitative prediction of the device performance of many disordered semiconductor

based devices. Optimization of proposed designs may thus be considered.

The optical absorption coefficient exhibits a spectral variation. That is, the op-
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Figure 1.4: The intensity of light as a function of the depth, z, from the surface of the
material, z = 0, for light normally incident on a material and propagating from the left, in
the absence of reflection.
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tical absorption coefficient, α, depends on the photon energy, ~ω, i.e., α (~ω). From

the spectral dependence of the optical absorption coefficient, insights into the char-

acter of these materials may be gleaned. In a disorderless crystalline semiconductor,

the optical absorption spectrum terminates abruptly at the energy gap. In an amor-

phous semiconductor, however, the optical absorption spectrum instead encroaches

into the otherwise empty gap region. In Figure 1.5, the optical absorption spectrum

associated with a hypothetical crystalline semiconductor is contrasted with that of its

amorphous counterpart. While the optical absorption spectrum terminates abruptly

at the energy gap for the case of the hypothetical crystalline semiconductor, for the

case of an amorphous semiconductor, three distinct regions are observed. The low-

absorption region, i.e., α < 100 cm−1, denoted Region A in Figure 1.5, exhibits a

broad exponential dependence that encroaches deeply into the otherwise empty gap

region. The mid-absorption region, i.e., 100 cm−1 < α < 104 cm−1, Region B in

Figure 1.5, exhibits a sharp exponential increase corresponding to increased photon

energies, its breadth being much narrower than that exhibited by Region A. This

region is often referred to as the Urbach tail region, its breadth being referred to as

the Urbach tail breadth. It plays an important role in the physics of amorphous semi-

conductors, and has been the focus of a considerable amount of analysis. Finally, the

high-absorption region, i.e., α > 104 cm−1, denoted Region C in Figure 1.5, exhibits

an algebraic functional dependence.

This thesis aims to develop models that will allow for the quantitative analysis

of the spectral dependence of the optical absorption coefficient, α (~ω), associated

with a-Si:H. These models will stem from empirical models for the distributions of

electronic states, these distribution of electronic states models being rooted in a-Si:H

phenomenology. The ultimate aim of this analysis is to provide a framework for the

critical comparative analysis of disparate a-Si:H optical spectra, that will allow for
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Figure 1.5: The spectral dependence of the optical absorption coefficient, α (~ω), associ-
ated with hypothetical crystalline and amorphous semiconductors.
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the identification of general trends in these spectra. From the insights gleaned from

this study, greater understanding into the material properties of this semiconductor

will be obtained. These insights could be used in order to improve the performance

of future generations of a-Si:H based devices.

1.5 Distributions of electronic states

The disorder present within a-Si and a-Si:H has a profound impact on the dis-

tributions of electronic states. Accordingly, the electronic properties associated with

these materials are somewhat distinct from those exhibited by c-Si [11]. In a dis-

orderless material, these distributions terminate abruptly at the valence band and

conduction band band edges. This leads to a well defined energy gap that separates

the distribution of electronic states associated with the valence band from that as-

sociated with the conduction band. In contrast, in a-Si and a-Si:H, distributions of

electronic states encroach into the otherwise empty gap region. These tail states, as

the encroaching distributions of electronic states are often referred to as, are associ-

ated with the intrinsic disorder associated with a-Si and a-Si:H, i.e., the unavoidable

variations in the bond lengths and bond angles. Defects, i.e., dangling bonds and

vacancies, are responsible for states deeper in the gap region. A schematic represen-

tation of these distributions of electronic states is depicted in Figure 1.6.

Detailed analyzes have demonstrated that some of the electronic states associated

with the tail states are actually localized by the disorder. That is, the wavefunctions

associated with such states are confined to a small volume rather than extending

throughout the entire volume of the material; all the wavefunctions associated with

ideal (disorderless) crystalline semiconductors extend throughout the entire volume

of the material. A comparison of the wavefunctions associated with localized and

extended electronic states is depicted in Figure 1.7 [25]. Further studies have demon-
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Figure 1.6: A schematic representation of the distributions of electronic states associated
with a hypothetical amorphous semiconductor.
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Figure 1.7: A schematic representation of the wavefunctions associated with localized and
extended electronic states. This figure is taken after Morigaki [25].
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strated that there exist critical energies, termed mobility edges, which separate the

localized electronic states from their extended counterparts, one associated with the

valence band, the other associated with the conduction band. That is, there is a mo-

bility edge associated with the valence band that separates the localized valence band

electronic states from their extended counterparts. Similarly, there is a mobility edge

associated with the conduction band that separates the localized conduction band

electronic states from their extended counterparts. These mobility edges are depicted

in Figure 1.8. The difference in energy between these mobility edges is referred to as

the mobility gap.

In the study of crystalline semiconductors, the periodicity inherent to the dis-

tribution of atoms allows for the quantitative determination of the energy levels of

the electronic states in terms of the electron wave-vector, ~k. The distributions of

electronic states that result may thus be characterized in terms of a band diagram

that specifies how the electronic energy levels vary with ~k. In the case of a disor-

dered semiconductor, however, such as a-Si and a-Si:H, the disorder renders ~k a poor

quantum number. As a result, band diagrams can not be used for the analysis of

these materials. Nevertheless, as it is the nearest neighbor environment that primar-

ily determines the electronic character of a material, it seems reasonable to expect

the existence of bands within a-Si and a-Si:H, of similar shape and character to those

found within c-Si. As a consequence, it is expected that many of the properties found

for a-Si and a-Si:H are similar to those exhibited by c-Si.

In order to provide a quantitative framework for the determination of the prop-

erties associated with disordered semiconductors, an alternate approach to the band

diagrams used for the analysis of crystalline semiconductors must be sought. It is

found that the distributions of electronic states associated with these materials may be

quantitatively characterized through the valence band and conduction band density of
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Figure 1.8: The distributions of electronic states associated with a hypothetical amorphous
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the dashed lines. The defect states have been neglected.
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states (DOS) functions, Nv (E) and Nc (E), respectively, Nv (E) ∆E and Nc (E) ∆E

representing the number of valence band and conduction band electronic states, per

unit volume, between energies [E,E + ∆E]. This means of characterizing the cor-

responding distributions of electronic states may be employed both for crystalline

semiconductors and their amorphous counterparts.

1.6 Relation between the optical absorption spec-

trum and the DOS functions

For the specific case of a-Si:H, Jackson et al. [26] developed a relationship between

the spectral dependence of the imaginary part of the dielectric function, ε2 (~ω), and

the valence band and conduction band DOS functions, Nv (E) and Nc (E), respec-

tively. This relationship is key to the analysis presented in this thesis. Accordingly, a

review of the analysis of Jackson et al. [26], relating ε2 (~ω) with Nv (E) and Nc (E),

is presented in this section. The application of this relationship to the interpretation

of the optical properties associated with a-Si:H will be presented later in the thesis.

Jackson et al. [26] employ a linear response approach within the framework of

a one-electron formalism, i.e., many electron effects are neglected. Assuming zero-

temperature statistics, i.e., that all valence band states are completely filled and that

all conduction band states are completely empty, Jackson et al. [26] contend that

ε2 (~ω) = (2πq)2 2

V

∑
v,c

|~η · ~Rv,c|2δ (Ec − Ev − ~ω) , (1.2)

where q is the electron charge, V is the illuminated volume, ~η is the polarization

vector, and ~Rv,c =< c|~r|v > is the dipole matrix element associated with the valence

band and conduction band electronic states, |v> and |c>, respectively, the sum in

Eq. (1.2) being taken over all the single-spin states of the valence band and conduction
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band; as this expression for ε2 (~ω) is expressed in terms of the dipole matrix elements,

the general approach adopted by Jackson et al. [26] is referred to as a dipole operator

based formalism. For unpolarized light, on average, |~η · ~Rv,c|2 reduces to |Rv,c|2
3

, where

|Rv,c| denotes the amplitude of the dipole matrix element. Accordingly, Eq. (1.2)

reduces to

ε2 (~ω) = (2πq)2 2

3V

∑
v,c

|Rv,c|2δ (Ec − Ev − ~ω) . (1.3)

Defining the average squared dipole matrix element

[R′ (~ω)]
2 ≡

∑
v,c |Rv,c|2δ (Ec − Ev − ~ω)∑

v,c δ (Ec − Ev − ~ω)
, (1.4)

Jackson et al. [26] conclude that

ε2 (~ω) = (2πq)2 2

3V
[R′ (~ω)]

2
∑
v,c

δ (Ec − Ev − ~ω) . (1.5)

Thus far, the expression for ε2 (~ω) that has been derived, i.e., Eq. (1.5), applies

equally to both c-Si and a-Si:H. In order to facilitate a direct comparison between

the spectral dependencies of [R′ (~ω)]2 associated with these two distinct materials, it

would seem reasonable that this matrix element should be normalized by the number

of optical transitions corresponding to each material. The number of optical tran-

sitions from any given single-spin state in the valence band, associated with a-Si:H

and c-Si, are shown in Figure 1.9. In a-Si:H, the number of optical transitions from

any given single-spin state in the valence band is 2ρAV , ρA denoting the density of

silicon atoms within a-Si:H. In contrast, for the case of c-Si, the number of optical

transitions from any given single-spin state in the valence band is four; all of these

optical transitions conserve ~k. Clearly, the number of optical transitions that can
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Figure 1.9: The number of optical transitions allowed from a single-spin state in the
valence band for the cases of c-Si and a-Si:H. For the case of a-Si:H, there are 2ρAV possible
optical transitions, since there is no momentum conservation. However, for the case of c-Si,
there are only four possible optical transitions. The figure is taken after Jackson et al. [26]
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occur from any given single-spin state in the valence band associated with a-Si:H is

greater than that associated with c-Si, and thus, it might be expected that the dipole

matrix elements associated with these transitions are of a lesser magnitude than those

associated with c-Si. Thus, a normalized average squared dipole matrix element,

R2 (~ω) ≡ [R′ (~ω)]
2

(
2ρAV

4

)
, (1.6)

is introduced, this matrix element being normalized by the ratio of the number of

optical transitions allowed for the case of a-Si:H with respect to that allowed for the

case of c-Si. Accordingly, Eq. (1.5) reduces to

ε2 (~ω) = (2πq)2 1

3ρA
R2 (~ω)

4

V 2

∑
v,c

δ (Ec − Ev − ~ω) . (1.7)

From the definition of a single-spin state, it may be seen that

Nv (E) =
2

V

∑
v

δ (E − Ev) , (1.8)

and

Nc (E) =
2

V

∑
c

δ (E − Ec) . (1.9)

By introducing the joint density of states (JDOS) function

J (~ω) ≡
∫ ∞
−∞

Nv (E)Nc (E + ~ω) , (1.10)

from Eqs. (1.8) and (1.9), it can be shown that

J (~ω) =
4

V 2

∑
v,c

δ (Ec − Ev − ~ω) . (1.11)
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Thus, using Eq. (1.11), Eq. (1.7) may be represented as

ε2 (~ω) = (2πq)2 1

3ρA
R2 (~ω) J (~ω) . (1.12)

For the specific case of a-Si:H, where ρA is roughly 5× 1022 per cm−3, Eq. (1.12) may

be simply expressed as

ε2 (~ω) = 4.3× 10−45R2 (~ω) J (~ω) , (1.13)

where R2 (~ω) is in units of Å2 and J (~ω) is in units of states2eV−1cm−6. It is upon

this expression that the subsequent analysis is built.

The spectral dependence of the optical absorption coefficient, α (~ω), may be

determined by noting that

α (~ω) =
ω

n (~ω) c
ε2 (~ω) , (1.14)

where n (~ω) denotes the spectral dependence of the refractive index and c represents

the speed of light in a vacuum. For the purposes of this analysis, the spectral depen-

dence of n (~ω) is determined by fitting a tenth-order polynomial to the experimental

data of Klazes et al. [27]; the original experimental data is depicted in Figure 4 of

Klazes et al. [27]. The resultant fit, and the original experimental data, are depicted

in Figure 1.10. This fit is only valid over the range of the experimental data of Klazes

et al. [27], i.e., for 0.77 eV < ~ω < 3.2 eV.

1.7 Free electron density of states

In light of the important role that the form of the valence band and conduction

band DOS functions, Nv (E) and Nc (E), respectively, play in determining the form
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Figure 1.10: The spectral dependence of the refractive index associated with a-Si:H. The
tenth-order polynomial fit is depicted with the solid line. The experimental data points of
Klazes et al. [27] are represented with the solid points.
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of the optical absorption spectra, it is obvious that they must be determined in order

for this analysis to proceed. It is instructive to consider the form of the density of

states for the free electron case. Consider an electron confined within a cubic volume,

of dimensions L × L × L, surrounded by infinite potential barriers; see Figure 1.11.

According to quantum mechanics, in steady-state, the wavefunctions associated with

this electron may be described by Schrödinger’s equation, i.e.,

− ~2

2m
∇2Ψ (~r) + V (~r) Ψ (~r) = EΨ (~r) , (1.15)

where ~ denotes the reduced Planck’s constant, m represents the mass of the electron,

V (~r) is the potential energy, and E is the electron energy; in three-dimensions, ∇2

represents the mathematical operator ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . If the electron is free within

the cubic volume, i.e., V (~r) = 0 for 0 ≤ x ≤ L, 0 ≤ y ≤ L, and 0 ≤ z ≤ L, and if

the potential is infinite elsewhere, then it may be shown that

Ψ (~r) = Ψnx,ny ,nz (x, y, z) =

(
2

L

)3/2

sin
(πnx
L

x
)

sin
(πny
L

y
)

sin
(πnz
L

z
)
, (1.16)

where nx, ny, and nz denote the quantum numbers, i.e., positive integers, associated

with electron motion in the x, y, and z directions, respectively. It should be noted

that on account of the electron spin, there are actually two electronic states associated

with each unique selection of nx, ny, and nz.

Substituting the solution for the wavefunction, i.e., Eq. (1.16), back into Schrödinger’s

equation, it is seen that

Enx,ny ,nz =
~2

2m

[(πnx
L

)2

+
(πny
L

)2

+
(πnz
L

)2
]
, (1.17)

where Enx,ny ,nz denotes the energy level corresponding to the wavefunction, Ψnx,ny ,nz (x, y, z).
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Figure 1.11: The representation of an electron confined within a cubic volume, of dimen-
sions, L× L× L, surrounded by infinite potential barriers.
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If one was to consider each unique combination of quantum numbers, nx, ny, and nz,

as a unique point in a contellation of such points in the first octet of three-dimensional

n-space, such as that shown in Figure 1.12, for sufficiently high energies, i.e., when the

granularity of these points becomes a continuum, it is seen that the radial quantum

number, i.e., the radius within which all selections of nx, ny, and nz, yield energies

less than or equal to E,

ñ (E) =

√
2mL2E

~2π2
. (1.18)

Thus, the number of electronic states, per unit volume, up to and including energy

E, may be expressed as an integral over the DOS function, i.e.,

∫ E

−∞
N (u) du = 2

(
4π

3

)
1

8

1

L3
ñ (E)3 , (1.19)

where the factor of two refers to the two spin levels per unique selection of nx, ny, and

nz, the factor of 4π
3

denotes the prefactor for a spherical volume, the factor of eight

in the denominator corresponding to the fact the nx, ny, and nz integers only occupy

the first octet of three-dimensional n-space, and the factor of L3 represents the fact

that this is defined on a per unit volume basis; there is a unity density of points in

the first octet of three-dimensional n-space. Differentiation of Eq. (1.19) yields

N (E) =

√
2m3/2

π2~3

√
E. (1.20)

It is seen that this DOS function has no dependence on L. That is, when the electron

becomes completely free, i.e., when L → ∞, the DOS function is exactly the same.

This square-root DOS function, also known as the free-electron DOS, will form the

cornerstone of the subsequent analysis.
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dimensional n-space. The density of such points is unity.
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1.8 A review of empirical density of states models

The exact form of the DOS functions associated with disordered semiconductors

remains the focus of considerable debate. There are fundamental questions related

to the nature of the band states and the tail states associated with each band. In

addition, the form of the defect states remains unknown. In fact, despite many

years of study, the exact role that disorder plays in shaping these DOS functions

remains unknown. Even for the case of a-Si:H, the most well studied disordered

semiconductor, the band tailing that occurs has been attributed both to disorder [28]

and to the presence of hydrogen atoms [29]. As a consequence, a specification for the

DOS functions, Nv (E) and Nc (E), that stems directly from first-principles, would

likely be too complex in order to allow for insights into the material properties of

these semiconductors to be gleaned.

For the purposes of materials characterization, and in order to predict device per-

formance, a number of empirical models for the valence band and conduction band

DOS functions, Nv (E) and Nc (E), respectively, associated with disordered semicon-

ductors, have been devised. These models provide an elementary means whereby

the properties associated with disordered semiconductors may be determined. Most

empirical DOS models are built upon disordered semiconductor phenomenology. A

brief review of the empirical DOS models that have been developed for the analysis

of the optical properties of disordered semiconductors is provided next.

In 1966, Tauc et al. [30] introduced an empirical model for the valence band

and conduction band DOS functions. Tauc et al. [30] assumed the free electron DOS

model, i.e., Eq. (1.20), for both the valence band and conduction band DOS functions.
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That is, Tauc et al. [30] assumed that

Nv (E) =


0, E > Ev

Nvo

√
Ev − E, E ≤ Ev

, (1.21)

and

Nc (E) =


Nco

√
E − Ec, E ≥ Ec

0, E < Ec

, (1.22)

where Nvo and Nco denote the valence band and conduction band DOS prefactors,

respectively, Ev and Ec representing the valence band and conduction band band

edges. This model for the DOS functions associated with a disordered semiconductor,

i.e., Eqs. (1.21) and (1.22), forms the basis for the most common interpretation for the

determination of the energy gap associated with such semiconductors. The resultant

DOS functions, for the nominal selection of DOS modeling parameters tabulated in

Table 1.1, are depicted in Figure 1.13. The use of this model in determining the

energy gap associated with a disordered semiconductor is further discussed in the

literature.

In 1981, Chen et al. [31] improved on the empirical DOS model of Tauc et al. [30]

by grafting an exponential distribution of valence band tail states onto the square-

root distribution of valence band band states, the conduction band DOS function,

Nc (E), being exactly the same as that assumed by Tauc et al. [30]. In particular,
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Figure 1.13: The empirical DOS model of Tauc et al. [30].
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Table 1.1: The nominal DOS modeling parameter selections employed for the empirical
DOS models described in this section. These modeling parameters are representative of
a-Si:H.

Parameter (units) Tauc et Chen et Redfield [32] Cody [33] O’Leary et
al. [30] al. [31] al. [34]

Nvo (cm−3eV−3/2) 2× 1022 2× 1022 - 2× 1022 2× 1022

Nco (cm−3eV−3/2) 2× 1022 2× 1022 - 2× 1022 2× 1022

N∗vo (cm−3eV−3/2) - 5× 1021 5× 1021 - -
N∗co (cm−3eV−3/2) - - 5× 1021 - -

Ev (eV) 0.0 0.0 0.0 0.0 0.0
Ec (eV) 1.7 1.7 1.7 1.7 1.7

Ev − EvT
(meV) - - - - 25

EcT − Ec (meV) - - - - 13.5
γv (meV) - 50 50 50 50
γc (meV) - - 27 - 27

Chen et al. [31] assumed that

Nv (E) =


N∗vo exp

(
Ev − E
γv

)
, E > Ev

Nvo

√
Ev − E, E ≤ Ev

, (1.23)

and

Nc (E) =


Nco

√
E − Ec, E ≥ Ec

0, E < Ec

, (1.24)

where N∗vo denotes the valence band tail DOS prefactor and γv represents the valence

band tail breadth, Nvo, Nco, Ev, and Ec being as defined earlier. The resultant

DOS functions, for the nominal selection of DOS modeling parameters tabulated in

Table 1.1, are depicted in Figure 1.14.

In an effort to understand how the valence band tail states and the conduction

band tail states influence the resultant optical properties, in 1982 Redfield [32] in-
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Figure 1.14: The empirical DOS model of Chen et al. [31].
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troduced an alternate empirical DOS model that includes both exponential valence

band tail states and exponential conduction band tail states. Redfield [32], however,

assumes flat distributions of valence band band states and conduction band band

states. That is, Redfield [32] assumes that

Nv (E) =


N∗vo exp

(
Ev − E
γv

)
, E > Ev

N∗vo, E ≤ Ev

, (1.25)

and

Nc (E) =


N∗co, E ≥ Ec

N∗co exp

(
E − Ec
γc

)
, E < Ec

, (1.26)

where N∗co denotes the conduction band tail DOS prefactor and γc represents the con-

duction band tail breadth, N∗vo, Ev, Ec, and γv being as defined earlier. The resultant

DOS functions, for the nominal selection of DOS modeling parameters tabulated in

Table 1.1, are depicted in Figure 1.15.

In 1984, Cody [33] developed an empirical model that builds upon the empirical

DOS model of Chen et al. [31]. While Chen et al. [31] just added an exponential

valence band tail onto a terminated square-root valence band DOS function, Cody [33]

instead assumed that the interface between the square-root and exponential regions

of the valence band occurs below the valence band band edge, Ev. That is, drawing
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Figure 1.15: The empirical DOS model of Redfield [32].
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upon a conservation of states argument, Cody [33] assert that

Nv (E) =


Nvo

√
3

2
γv exp

(
−3

2

)
exp

(
Ev − E
γv

)
, E > Ev − 3

2
γv

Nvo

√
Ev − E, E ≤ Ev − 3

2
γv

, (1.27)

and

Nc (E) =


Nco

√
E − Ec, E ≥ Ec

0, E < Ec

, (1.28)

where Nvo, Nco, Ev, Ec, and γv are as defined earlier. The resultant DOS functions,

for the nominal selection of DOS modeling parameters tabulated in Table 1.1, are

depicted in Figure 1.16.

In 1997, O’Leary et al. [34] proposed an empirical DOS model that further builds

upon this rich tradition. In particular, square-root distributions of band states and

exponential distributions of tail states are assumed, both for the valence band and for

the conduction band. O’Leary et al. [34] further assume that the valence band and

conduction band DOS functions, Nv (E) and Nc (E), and their derivatives, are con-

tinuous at the critical energies at which the square-root and exponential distributions

interface. That is, O’Leary et al. [34] assume that

Nv (E) = Nvo



√
γv
2

exp

(
−1

2

)
exp

(
Ev − E
γv

)
, E > Ev − γv

2

√
Ev − E, E ≤ Ev − γv

2

, (1.29)
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Figure 1.16: The empirical DOS model of Cody [33].
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and

Nc (E) = Nco



√
E − Ec, E ≥ Ec + γc

2

√
γc
2

exp

(
−1

2

)
exp

(
E − Ec
γc

)
, E < Ec + γc

2

, (1.30)

where Nvo, Nco, Ev, Ec, γv, and γc are as defined previously. The resultant DOS func-

tions, for the nominal selection of DOS modeling parameters tabulated in Table 1.1,

are depicted in Figure 1.17. The critical energies at which point the square-root and

exponentials interface, Ev − γv

2
for the valence band and Ec + γc

2
for the conduction

band, are clearly marked.

The empirical DOS model of O’Leary et al. [34] was further generalized by Jiao

et al. [35] in 1998. As with the model of O’Leary et al. [34], the empirical model of

Jiao et al. [35] assumes square-root distributions of band states and exponential dis-

tributions of tail states. While the valence band and conduction band DOS functions

are continuous in the model of Jiao et al. [35], the further assumption of O’Leary et

al. [34], that their derivatives must also be continuous, is relaxed. In particular, Jiao

et al. [35] assume that

Nv (E) = Nvo



√
Ev − EvT

exp

(
EvT
− Ev
γv

)
exp

(
Ev − E
γv

)
, E > EvT

√
Ev − E, E ≤ EvT

,

(1.31)
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Figure 1.17: The empirical DOS model of O’Leary et al. [34].
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and

Nc (E) = Nco



√
E − Ec, E ≥ EcT

√
EcT − Ec exp

(
Ec − EcT

γc

)
exp

(
E − Ec
γc

)
, E < EcT

, (1.32)

where EvT
and EcT are the critical energies at which point the square-root and expo-

nential distributions interface, Nvo, Nco, Ev, Ec, γv, and γc being as defined previously.

It should be noted that in this case, EvT
≤ Ev and EcT ≥ Ec. It is seen that for the

special case of EvT
set to Ev− γv

2
and EcT set to Ec + γc

2
, the empirical DOS model of

Jiao et al. [35] reduces to that of O’Leary et al. [34]. That is, Eqs. (1.31) and (1.32)

reduce to Eqs. (1.29) and (1.30), respectively.

1.9 Modeling of the optical response

In this thesis, an empirical model for the DOS functions will be used in order to

compute the optical properties associated with a-Si:H. The analysis starts with the

general empirical DOS model of Jiao et al. [35], i.e., Eqs. (1.31) and (1.32). Focusing

on the specific case of the valence band DOS function, Nv (E), an examination of how

the valence band tail breadth, γv, influences the form of this function is provided in

Figures 1.18 and 1.19. For Nvo and Ev set to the nominal DOS modeling parameter

selections provided in Table 1.1, i.e., the selections of O’Leary et al. [34], for the case

of EvT
set to Ev − γv

2
, a number of valence band DOS results, for different selections

of γv, are depicted in these figures, Figure 1.18 being depicted on a linear scale and

Figure 1.19 being cast on a logarithmic scale. It is seen that as γv is increased from

0 meV, that a tail of electronic states, of increasing breadth, encroaches into the

otherwise empty gap region. A similar observation is observed for the conduction

band, as may be seen from Figures 1.20 and 1.21. It is noted that for the case that
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Figure 1.18: The valence band DOS function, Nv (E), for a number of selections of γv,
plotted on a linear scale. This function, specified in Eq. (1.31) with EvT set to Ev −
1
2γv, is evaluated assuming the nominal DOS modeling parameter selections Nvo = 2 ×
1022 cm−3eV−3/2 and Ev = 0 eV for all cases. The abscissa axis represents the energy, E,
while the ordinate axis depicts the corresponding valence band DOS value.
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Figure 1.19: The valence band DOS function, Nv (E), for a number of selections of
γv, plotted on a logarithmic scale. This function, specified in Eq. (1.31) with EvT set to
Ev − 1

2γv, is evaluated assuming the nominal DOS modeling parameter selections Nvo =
2× 1022 cm−3eV−3/2 and Ev = 0 eV for all cases. The abscissa axis represents the energy,
E, while the ordinate axis depicts the corresponding valence band DOS value.
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Figure 1.20: The conduction band DOS function, Nc (E), for a number of selections
of γc, plotted on a linear scale. This function, specified in Eq. (1.32) with EcT set to
Ec + 1

2γc, is evaluated assuming the nominal DOS modeling parameter selections Nco =
2×1022 cm−3eV−3/2 and Ec = 1.7 eV for all cases. The abscissa axis represents the energy,
E, while the ordinate axis depicts the corresponding conduction band DOS value.
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Figure 1.21: The conduction band DOS function, Nc (E), for a number of selections of
γc, plotted on a logarithmic scale. This function, specified in Eq. (1.32) with EcT set to
Ec + 1

2γc, is evaluated assuming the nominal DOS modeling parameter selections Nco =
2×1022 cm−3eV−3/2 and Ec = 1.7 eV for all cases. The abscissa axis represents the energy,
E, while the ordinate axis depicts the corresponding conduction band DOS value.
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EvT
is set to Ev − γv

2
, that as γv → 0, that Eq.(1.31) reduces to

Nv (E)→


0, E > Ev

Nvo

√
Ev − E, E ≤ Ev

. (1.33)

Similarly, for the case that EcT is set to Ec+
γc

2
, that as γc → 0, that Eq.(1.32) reduces

to

Nc (E)→


Nco

√
E − Ec, E ≥ Ec

0, E < Ec

. (1.34)

That is, the empirical DOS model of Jiao et al. [35], for the special case of EvT
set to

Ev − γv

2
and EcT set to Ec + γc

2
, i.e, the empirical DOS model of O’Leary et al. [34],

reduces to that of Tauc et al. [30], i.e., Eqs. (1.21) and (1.22), in the limit that γv → 0

and γc → 0. This limit is henceforth referred to as the disorderless limit, γv and γc

providing a measure of the amount of disorder present.

A closed form expression for the resultant JDOS function was determined by

O’Leary in 2004 [36]. For the special case of γv = γc = γ, for the nominal DOS

modeling parameter selections tabulated in Table 1.1, for the special case of EvT

set to Ev − γv

2
and EcT set to Ec + γc

2
, the resultant JDOS functions are shown in

Figures 1.22 and 1.23, for a number of different γ selections; Figure 1.22 is depicted

on a linear scale while Figure 1.23 is cast on a logarithmic scale. It is seen that as γ

increases, the JDOS function further encroaches into the otherwise empty gap region.

For each value of γ considered, an exponential tail, of tail breadth γ, is observed.

In the limit of γ → 0, i.e., the disorderless limit, it is seen that the JDOS function

terminates abruptly at the energy difference between Ev and Ec. Analytically, for

the special case of EvT
set to Ev − γv

2
and EcT set to Ec + γc

2
, i.e, the empirical DOS
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Figure 1.22: The JDOS function, J (~ω), determined through an evaluation of Eq. (1.10),
for various selections of γc and γv, depicted on a linear scale. For all cases, the DOS
modeling parameters are set to their nominal values tabulated in Table 1.1.
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Figure 1.23: The JDOS function, J (~ω), determined through an evaluation of Eq. (1.10),
for various selections of γc and γv, depicted on a logarithmic scale. For all cases, the DOS
modeling parameters are set to their nominal values tabulated in Table 1.1.
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model of O’Leary et al. [34], from Eqs. (1.31) and (1.32), for γv = γc = γ = 0 meV,

it may be shown that

J (~ω)→


NvoNco

π

8
(~ω − Eg)2 , ~ω ≥ Eg

0, ~ω < Eg

, (1.35)

where the energy gap

Eg ≡ Ec − Ev. (1.36)

This result also corresponds to that determined using the empirical DOS model of

Tauc et al. [30], i.e., Eqs. (1.21) and (1.22).

The empirical DOS model of Jiao et al. [35], i.e., Eqs. (1.31) and (1.32), allows

for the consideration of four different types of optical transitions. In the valence band

DOS function, Nv (E), there are valence band band (VBB) and valence band tail

(VBT) electronic states, these states being separated by the critical energy, EvT
, that

separates the square-root and exponential distributions. Similarly, in the conduction

band DOS function, Nc (E), there are conduction band band (CBB) and conduction

band tail (CBT) electronic states, these states being separated by the critical energy,

EcT , that seperates the square-root and exponential distributions. Optical transitions

from the VBB states to the CBB states (VBB-CBB optical transitions), from the VBB

states to the CBT states (VBB-CBT optical transitions), from the VBT states to the

CBB states (VBT-CBB optical transitions), and from the VBT states to the CBT

states, are thus considered within the framework of the empirical DOS model of Jiao

et al. [35]. For the special case of EvT
set to Ev − γv

2
and EcT set to Ec + γc

2
, for the

nominal DOS modeling parameter selections tabulated in Table 1.1, representative

VBB-CBB, VBB-CBT, VBT-CBB, and VBT-CBT optical transitions are depicted
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in Figure 1.24.

In 2002, Malik and O’Leary [37] determined the contributions to the JDOS func-

tion attributable to each type of optical transition. A means of evaluating the various

contributions to the JDOS function attributable to these four types of optical transi-

tions is depicted in Figures 1.25 and 1.26. In particular, the functional dependence of

Nv (E) and Nc (E + ~ω) independently, and their product, Nv (E)Nc (E + ~ω), are

depicted, for the cases of ~ω set to 2.1 eV and ~ω set to 1.4 eV, i.e., above and below

the separation in energy between EvT
and EcT . For the case of ~ω set to 2.1 eV, a

considerable amount of overlap in these DOS functions is found, the resultant JDOS

integrand, Nv (E)Nc (E + ~ω), being quite large in magnitude. In contrast, for the

case of ~ω set to 1.4 eV, the overlap is found to be considerably smaller. The con-

tributions to the JDOS function corresponding to the four different types of optical

transitions, i.e., VBB-CBB, VBB-CBT, VBT-CBB, and VBT-CBT, corresponds to

the regions of overlap of the respective DOS functions. That is, the contribution to

the JDOS function attributable to the VBB-CBB optical transitions corresponds to

the values of E over which Nv (E) is in the VBB region and Nc (E + ~ω) is in the

CBB region. The overall contribution to the JDOS function attributable to VBB-

CBB optical transitions may be obtained by integrating over the range of energies

over which this condition is satisfied. The other contributions to the JDOS function

may be obtained in a similar manner.

In an effort to simplify matters, for the specific case of a-Si:H, O’Leary and

Malik [38] introduced a simplified empirical DOS model. Noting, for the specific case

of a-Si:H, that the valence band tail associated with this material is much broader than

the corresponding conduction band tail, O’Leary and Malik [38] suggest neglecting

the CBT in their modeling of the DOS functions. That is, O’Leary and Malik [38]
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Figure 1.24: The valence band and conduction band DOS functions associated with a-
Si:H. The nominal DOS modeling parameter selections tabulated in Table 1.1 are employed
for the purposes of this analysis. EvT is set to Ev − γv

2 and EcT is set to Ec + γc

2 for
the purposes of this figure. The critical energies, EvT and EcT , that separate the square-
root distributions from the exponential distributions, are clearly depicted. Representative
VBB-CBB, VBB-CBT, VBT-CBB, and VBT-CBT optical transitions, are also shown.
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Figure 1.25: The factors in the JDOS integrand, Nv (E) and Nc (E + ~ω), and the re-
sultant product, Nv (E)Nc (E + ~ω), for the case of ~ω set to 2.1 eV. The nominal DOS
modeling parameter selections, tabulated in Table 1.1, are employed for the purposes of this
analysis. Ranges of energy, corresponding to VBB-CBB, VBB-CBT, and VBT-CBB optical
transitions, are depicted. VBT-CBT optical transitions do not occur for this selection of
~ω. This figure is taken after O’Leary [36].
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Figure 1.26: The factors in the JDOS integrand, Nv (E) and Nc (E + ~ω), and the re-
sultant product, Nv (E)Nc (E + ~ω), for the case of ~ω set to 1.4 eV. The nominal DOS
modeling parameter selections, tabulated in Table 1.1, are employed for the purposes of this
analysis. Ranges of energy, corresponding to VBB-CBT, VBT-CBB, and VBT-CBT optical
transitions, are depicted. VBB-CBB optical transitions do not occur for this selection of
~ω. This figure is taken after O’Leary [36].
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assume that

Nv (E) = Nvo



√
Ev − EvT

exp

(
EvT
− Ev
γv

)
exp

(
Ev − E
γv

)
, E > EvT

√
Ev − E, E ≤ EvT

,

(1.37)

and

Nc (E) =


Nco

√
E − Ec, E ≥ Ec

0, E < Ec

, (1.38)

where Nvo, Nco, Ev, Ec, γv, and EvT
are as defined previously. For the special case

of EvT
set to Ev − γv

2
, for the nominal DOS modeling parameter selections tabulated

in Table 1.1, the resultant DOS functions are depicted in Figure 1.27. Note that now

only VBB-CBB and VBT-CBB optical transitions are considered. The simplified

empirical DOS model of O’Leary and Malik [38], i.e., Eqs. (1.37) and (1.38), forms

the basis of the analysis presented in this thesis.

1.10 Objective of this thesis

This thesis aims to devise a quantitative model for the spectral dependence of the

optical properties associated with a-Si:H, which allows for the ready determination

of the underlying modeling parameters from the results of experiment. This analysis

stems directly from a simplified empirical model for the DOS functions, Nv (E) and

Nc (E), that only considers VBB, VBT, and CBB electronic states, i.e., the CBT

electronic states are neglected. This model assumes square-root distributions of VBB

and CBB electronic states, and an exponential distribution of VBT states. The

optical properties of a-Si:H will then be determined through the evaluation of the

corresponding JDOS function, J (~ω). A comparison with the results of experiment
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Figure 1.27: The valence band and conduction band DOS functions associated with a-
Si:H for the simplified empirical DOS model of O’Leary and Malik [38]. The nominal
DOS modeling parameter selections tabulated in Table 1.1 are employed for the purposes
of this analysis. EvT is set to Ev − γv

2 . The critical energy, EvT , separating the square-
root valence band band distribution from the exponential valence band tail distribution,
is clearly depicted. Representative VBB-CBB and VBT-CBB optical transitions are also
shown.
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will be used in order to validate the model and in order to gain insight into the

character of the optical response of a-Si:H.

In order to justify the neglect of the CBT states, initially, for the specific case

of a-Si:H, it will be shown that the neglect of the CBT states has no real impact

on the obtained JDOS function, and that, therefore, the optical properties of a-Si:H

may be accurately determined using this simplified empirical model for the DOS

functions. This will be done through the use of the general empirical model for the

DOS functions of O’Leary et al. [36]; this model is the same as that suggested by

Jiao et al. [35], i.e., Eqs. (1.31) and (1.32), this model including VBB, VBT, CBB,

and CBT electronic states. Square-root distributions of VBB and CBB states and

exponential distributions of VBT and CBT are employed for the purposes of this

analysis. By examining the role that the conduction band tail breadth, γc, plays in

determining the form of the resultant JDOS function, J (~ω), it will be shown that

when the conduction band tail breadth, γc, is significantly less than the valence band

tail breadth, γv, that the CBT states can be ignored in the determination of the JDOS

function, J (~ω). Experimental evidence will be presented that confirms this to be

the case for the specific case of a-Si:H. Thus, the use of a simplified empirical DOS

model, that neglects CBT states, is justified for the specific case of this material.

In order to further simplify this empirical model for the DOS functions, it will

be further assumed that the derivative of the valence band DOS function is continu-

ous at the energy at which the square-root and exponential functional dependencies

interface; it was already assumed that the valence band DOS function is continuous

at this interface. This simplification allows for the casting of the JDOS evaluation

into a dimensionless format. This dimensionless formalism for the JDOS function will

be shown to provide a platform for the comparison of disparate optical absorption

spectra, with differing energy gaps and Urbach tail breadths. The applicability of this
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formalism is then tested through an analysis of a large number of a-Si:H experimental

data sets. From this analysis, insights into the optical response of this material may

be gleaned.

Finally, the role that defect states play in shaping the optical response of a-

Si:H will be probed. In order to perform this analysis, the empirical model for the

DOS functions will be modified in order to include valence band defect (VBD) and

conduction band defect (CBD) states. This is done through splining exponential tails,

of greater breadth than the VBT and CBT tail breadths, onto the VBT and CBT

distributions, these new exponential distributions modeling the distributions of defect

states. With this model for the VBD and CBD states established, the contributions to

the JDOS function, attributable to the various types of optical transitions involving

these defect states, may then be assessed. A comparison with the results of experiment

is used in order validate this modeling approach.

1.11 Thesis organization

This thesis is organized into 6 chapters. Chapter One provides the background

material relevant to this analysis. In particular, an introduction to disordered semi-

conductors, a brief history of research into disordered semiconductors, and an overview

of their electronic and optical properties is provided. A detailed review of empirical

models for the DOS functions, and their use in determining the optical response of

these materials, is also provided, this analytical framework forming the background

to this thesis.

In Chapter 2, the use of an empirical model for the DOS functions, that neglects

the presence of CBT states, is justified. In particular, using a general empirical model

for the DOS functions, that includes VBB, VBT, CBB, and CBT states, the resultant

JDOS function is determined, for a number of parameter selections. Assuming square-
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root distributions of VBB and CBB states and exponential distributions of VBT and

CBT states, for a fixed selection of the valence band tail breadth, γv, the sensitivity of

the JDOS function to variations in the conduction band tail breadth, γc, is examined.

It is found that when γc is smaller than γv, the JDOS function is virtually independent

of γc. Through a comparison with the results of experiment, for the specific case of

a-Si:H, it is shown that γc is always less than γv for the case of this material. As a

result, an empirical model for the DOS functions, that neglects the CBT states, is

justified for the case of a-Si:H.

In Chapter 3, this empirical DOS model is further simplified. In particular, by

assuming that the valence band DOS function, Nv (E), and its derivative, are con-

tinuous at the interface between the exponential and square-root distributions, the

number of empirical DOS modeling parameters can be reduced. As a consequence,

the JDOS evaluations may be cast into a dimensionless form, one that allows for

the ready extraction of parameters from the results of experiment. Moreover, it is

found that this dimensionless JDOS function provides a means whereby disparate

optical absorption spectra, with differing energy gaps and differing Urbach tails, may

be directly compared. Through an analysis of three a-Si:H optical absorption exper-

imental data sets, a general ‘universal’ character in the optical absorption spectrum

associated with this material is hinted at.

In Chapter 4, using the dimensionless JDOS formalism devised in Chapter 3,

a critical comparative analysis of a large number of different a-Si:H experimental

optical absorption data sets is considered. When these data sets are cast into this

dimensionless framework, a trend that is almost completely coincident for all of the

data sets considered is observed. This suggests that there is a ‘universal’ character

associated with the optical absorption spectrum of a-Si:H

In Chapter 5, the empirical DOS model is modified in order to account for the
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presence of defect states. This is done by splining additional exponential distributions

onto the VBT and CBT distributions, these exponential distributions corresponding

to the electronic states related to defects. With this model established, how the dis-

tributions of such states shape the optical response of this material is examined. The

contributions to this response, attributable to the various types of optical transitions,

are also determined. Finally, it is demonstrated that this formalism is able to capture

the spectral dependence of the optical absorption coefficient associated with a defect

absorption influenced sample of a-Si:H.

Finally, the conclusions of this thesis are presented in Chapter 6. Recommenda-

tions for further study are also presented.
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CHAPTER 2

The sensitivity of the optical response of
hydrogenated amorphous silicon to

variations in the conduction band tail
breadth

A version of this paper was published in Solid State Communications.

“Reprinted with permission from Thevaril, J.J. and O’Leary, S.K., The role that
conduction band tail states play in determining the optical response of hydrogenated
amorphous silicon, vol. 151, no. 7, pp. 730-733, Copyright [2011].”

The following equations, introduced in this chapter, were introduced previously in
this thesis:
Eq. (2.1) ⇒ Eq. (1.13)
Eq. (2.2) ⇒ Eq. (1.10)
Eq. (2.3) ⇒ Eq. (1.31)
Eq. (2.4) ⇒ Eq. (1.32)
Eq. (2.5) ⇒ Eq. (1.29)
Eq. (2.6) ⇒ Eq. (1.30)
Eq. (2.7) ⇒ Eq. (1.34)
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2.1 Introduction

The optical response of hydrogenated amorphous silicon (a-Si:H) has been a focus

for intensive investigation for many years [1–10]. Insights into this response have

been gleaned through the development of models for the spectral dependence of the

imaginary part of dielectric function associated with a-Si:H, ε2 (~ω). Such models

serve two useful functions: 1) they provide a theoretical framework for the purposes

of materials characterization, and 2) they allow for the quantitative prediction of

device performance [11]. For the specific case of a-Si:H, Jackson et al. [12] suggest

that

ε2 (~ω) = 4.3× 10−45 R2 (~ω) J (~ω) , (2.1)

where R2 (~ω), the normalized dipole matrix element squared average, is in units of

Å2, and J (~ω), the joint density of states (JDOS) function, is in units of cm−6eV−1.

At zero temperature,

J (~ω) ≡
∫ ∞
−∞

Nv (E)Nc (E + ~ω) dE, (2.2)

where Nv (E) and Nc (E) denote the valence band and conduction band density of

states (DOS) functions, respectively, Nv (E) ∆E and Nc (E) ∆E representing the

number of one-electron valence band and one-electron conduction band electronic

states, between energies [E,E + ∆E], per unit volume.

Many of the empirical models that have been proposed for the spectral depen-

dence of ε2 (~ω) are themselves built upon empirical models forNv (E) andNc (E) [13].

Such models include that proposed by Tauc et al. [14] in 1966, Chen et al. [15] in 1981,

Redfield [16] in 1982, Cody [17] in 1984, O’Leary et al. [18] in 1997, Jiao et al. [19]

in 1998, O’Leary and Malik [20] in 2002, and O’Leary [21] in 2004. The empirical
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model of O’Leary and Malik [20], reported in 2002, employs a simplified empirical

model for Nv (E) and Nc (E) associated with a-Si:H, one that neglects the conduc-

tion band tail (CBT) electronic states; the valence band tail (VBT) electronic states

were accounted for, however. It was shown that the resultant spectral dependence of

ε2 (~ω) agrees with that of experiment. In this paper, we aim to justify this neglect

of the CBT states by O’Leary and Malik [20] for the case of a-Si:H, noting that while

O’Leary and Malik [20] employ their simplified empirical model in order to fit some

a-Si:H experimental data, an explicit justification for the neglect of the CBT states

was not provided. The spectral dependence of the JDOS function, J (~ω), provides

the basis for our justification, as the optical response of a-Si:H is mostly shaped by

the spectral dependence of the JDOS function, J (~ω), the spectral dependence of

R2 (~ω) playing a relatively minor role [12, 22].

This paper is organized in the following manner. In Section 2.2, an analytical

framework for our analysis is presented. In particular, an empirical model for the DOS

functions is introduced and nominal a-Si:H modeling parameters are assigned. Then,

in Section 2.3 , we employ this empirical model for DOS functions in order to evaluate

the corresponding JDOS function, J (~ω). For the purposes of this analysis, we focus

on examining the sensitivity of the JDOS function to variations in the conduction

band tail breadth. Finally, the conclusions of our study are reported in Section 2.4.

2.2 Analytical framework

We cast our analysis within the framework of a general empirical model for the

DOS functions, Nv (E) and Nc (E), that captures the basic expected features. For the

case of a-Si:H, there is general consensus that Nv (E) and Nc (E) exhibit square-root

functional dependencies in the band regions and exponential functional dependencies
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in the tail regions. Following O’Leary [21], we thus set

Nv (E) = Nvo



√
Ev − EvT

exp

(
EvT
− Ev
γv

)
exp

(
Ev − E
γv

)
, E > EvT

√
Ev − E, E ≤ EvT

, (2.3)

and

Nc (E) = Nco



√
E − Ec, E ≥ EcT

√
EcT − Ec exp

(
Ec − EcT

γc

)
exp

(
E − Ec
γc

)
, E < EcT

, (2.4)

where Nvo and Nco denote the valence band and conduction band DOS prefactors,

respectively, Ev and Ec represent the valence band and conduction band band edges,

γv and γc are the breadths of the valence band and conduction band tails, EvT
and

EcT being the critical energies at which the exponential and square-root distributions

interface; it should be noted that this model implicitly requires that Ev − EvT
≥ 0

and EcT−Ec ≥ 0. It is noted that this general empirical model for the DOS functions

includes valence band band (VBB) states, VBT states, conduction band band (CBB)

states, and CBT states. We further note that there are eight independent modeling

parameters in this model, i.e., Nvo, Nco, Ev, Ec, γv, γc, EvT
, and EcT .1 It is clear,

from Eqs. (2.3) and (2.4), that both Nv (E) and Nc (E) are continuous functions of

energy, i.e., Nv

(
E−vT

)
= Nv

(
E+
vT

)
and Nc

(
E−cT
)

= Nc

(
E+
cT

)
.

In order to further narrow the scope of our analysis, we set EvT
to Ev− γv/2 and

1Given that the valence band and conduction band band energies, Ev and Ec, respectively, are
relative quantities, the number of truly independent modeling parameters for the general empirical
DOS model, i.e., Eqs. (2.3) and (2.4), is actually seven.
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set EcT to Ec + γc/2. With these settings, Eq. (2.3) reduces to

Nv (E) = Nvo



√
γv
2

exp

(
−1

2

)
exp

(
Ev − E
γv

)
, E > Ev − γv

2

√
Ev − E, E ≤ Ev − γv

2

, (2.5)

and Eq. (2.4) reduces to

Nc (E) = Nco



√
E − Ec, E ≥ Ec + γc

2

√
γc
2

exp

(
−1

2

)
exp

(
E − Ec
γc

)
, E < Ec + γc

2

, (2.6)

where now the number of independent modeling parameters has been reduced to six,

i.e., Nvo, Nco, Ev, Ec, γv, and γc.
2 We note that now the DOS functions, Nv (E) and

Nc (E), in addition to being continuous functions of energy, have derivatives that are

continuous functions of energy when γv and γc are non-zero. We also note that for

the special case that γc → 0,

Nc (E)→ Nco


√
E − Ec, E ≥ Ec

0, E < Ec

, (2.7)

which is in accord with the simplified empirical DOS model of O’Leary and Malik [20],

i.e., the CBT states are neglected. This empirical model for the DOS functions, Nv (E)

and Nc (E), i.e., Eqs. (2.5) and (2.6), forms the framework for our analysis. For the

nominal a-Si:H modeling parameters, Nvo = Nco = 2×1022 cm−3eV−3/2, Ev = 0.0 eV,

2For this special case of the general empirical DOS model, i.e., Eqs. (2.5) and (2.6), the number
of truly independent modeling parameters is actually five.
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Ec = 1.7 eV, γv = 50 meV, and γc = 27 meV, the corresponding DOS functions are

as depicted in Figure 2.1, these modeling parameter selections being representative

of a-Si:H [13, 19–27]. These nominal a-Si:H modeling parameter selections, employed

for the purposes of this analysis, are tabulated in Table 2.1.

Table 2.1: The nominal a-Si:H modeling parameter selections employed for the purposes
of this analysis. These modeling parameters relate to Eqs. (2.5) and (2.6).

parameter (units) value

Nvo (cm−3eV−3/2) 2× 1022

Nco (cm−3eV−3/2) 2× 1022

Ev (eV) 0.0
Ec (eV) 1.7
γv (meV) 50
γc (meV) 27

2.3 JDOS evaluation and analysis

We now evaluate the JDOS function, J (~ω), corresponding to our empirical

model for the DOS functions, i.e., with Nv (E) and Nc (E) as set in Eqs. (2.5) and

(2.6), respectively. For the purposes of this analysis, we examine the sensitivity of

this JDOS function to variations in the conduction band tail breadth, γc, the valence

band tail breadth, γv, being fixed at its nominal a-Si:H value, i.e., 50 meV. The other

modeling parameters are also set to their nominal a-Si:H values, i.e., Nvo = Nco =

2×1022 cm−3eV−3/2 and Eg ≡ Ec−Ev = 1.7 eV; Eg may be referred to as the energy

gap [21]. In Figure 2.2, we plot the spectral dependencies of the resultant JDOS

functions, J (~ω), for the γc selections 0, 35, and 50 meV. We note that in all cases,

two regions of behavior are observed: 1) for ~ω less than the band gap, the JDOS

function exhibits an exponential functional dependence, and 2) for ~ω greater than the

band gap, the JDOS function exhibits an algebraic functional dependence. We also
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Figure 2.1: The valence band and conduction band DOS functions associated with a-Si:H.
The valence band DOS function, Nv (E), specified in Eq. (2.5), is determined assuming the
nominal a-Si:H parameter selections Nvo = 2 × 1022 cm−3eV−3/2, Ev = 0.0 eV, and γv =
50 meV. The conduction band DOS function, Nc (E), specified in Eq. (2.6), is determined
assuming the nominal a-Si:H parameter selections Nco = 2×1022 cm−3eV−3/2, Ec = 1.7 eV,
and γc = 27 meV. Only differences between the energies Ev and Ec will impact upon the
obtained JDOS results. The critical points at which the band states and tail states interface,
EvT and EcT , are clearly marked with the dotted lines and the arrows.
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Figure 2.2: The JDOS function, J (~ω), associated with a-Si:H, determined through an
evaluation of Eq. (2.2), for various selections of γc. For all cases, Nvo, Nco, Ev, Ec, and
γv are held at their nominal a-Si:H values, i.e., Nvo = Nco = 2 × 1022 cm−3eV−3/2, Eg ≡
Ec − Ev = 1.7 eV, and γv = 50 meV.
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note that while the result corresponding to the γc = 0 meV case, which corresponds to

the simplified empirical DOS model of O’Leary and Malik [20], forms a lower bound,

the result corresponding to the γc = 50 meV case forms an upper bound, the result

corresponding to the γc = 35 meV case being sandwiched in between these bounds.

In order to further quantitatively examine the spectral dependence of the JDOS

function, we follow the spirit of the analysis of Orapunt and O’Leary [28] and define

the tail breadth as being the reciprocal of the logarithmic derivative of the JDOS

function, i.e.,

Eo (~ω) ≡
[
d ln [J (~ω)]

d~ω

]−1

, (2.8)

where we note that Eo, as defined, is a continuous function of the photon energy, ~ω;

for an exact exponential tail, this tail breadth, as defined, corresponds to a single num-

ber, the exponential breadth, but any deviations from an exact exponential depen-

dence will lead to a spectral dependence of Eo. For the same nominal a-Si:H modeling

parameter selections employed in Figure 2.2, i.e., Nvo = Nco = 2× 1022 cm−3eV−3/2,

Eg ≡ Ec −Ev = 1.7 eV, and γv = 50 meV, we plot the spectral dependence of Eo on

the photon energy, ~ω, for the three selections of γc considered in Figure 2.2, i.e., 0,

35, and 50 meV, in Figure 2.3. We note that for the case of γc set to 0 meV, that

Eo remains fixed at 50 meV, i.e., γv, until ~ω exceeds Ec − EvT
, beyond which it

monotonically increases, this monotonic increase corresponding to the transition be-

tween the exponential and algebraic regions of the JDOS function, as was previously

observed by Orapunt and O’Leary [28]. For the case of γc set to 35 meV, it is seen

that while Eo asymptotically approaches 50 meV for low photon energies, it is also

observed that for higher photon energies it increases monotonically with the photon

energy, the transition between the exponential and algebraic regions being less abrupt

than for the case of γc set to 0 meV. An even gentler transition between these regions
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Figure 2.3: The dependence of Eo, as defined in Eq. (2.8), on the photon energy, ~ω,
for a number of selections of γc. For all cases, Nvo, Nco, Ev, Ec, and γv are held at their
nominal a-Si:H values, i.e., Nvo = Nco = 2× 1022 cm−3eV−3/2, Eg ≡ Ec−Ev = 1.7 eV, and
γv = 50 meV.
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is observed for the case of γc set to 50 meV.

We continue our analysis by examining the dependence of Eo on γc for a fixed

value of the photon energy, ~ω. In particular, for the nominal a-Si:H parameter

selections, i.e., Nvo = Nco = 2× 1022 cm−3eV−3/2 and Eg ≡ Ec−Ev = 1.7 eV, setting

γv to 50 meV and ~ω to 1 eV, we examine the dependence of Eo on γc. We plot

this dependence in Figure 2.4. We note that Eo is essentially equal to 50 meV, i.e.,

γv, until γc exceeds γv, beyond which Eo seems to asymptotically approach γc. This

observation, and the symmetry in the JDOS function, suggests that an approximate

analytical expression for Eo may be obtained by setting

Eo ' max. (γv, γc) . (2.9)

We plot this approximate analytical expression for Eo in Figure 2.4 along with the

corresponding exact result, noting that only when γv and γc are of comparable values

that there is any noticeable deviation between the approximate and exact results. This

suggests that when γc is less than γv that the use of a model for the DOS functions

that neglects the presence of the CBT states, such as that devised by O’Leary and

Malik [20], is justified in the characterization of the optical response.

For the specific case of a-Si:H, we note that the conduction band tail is nar-

rower than the valence band tail. In Figure 2.5, for example, we plot experimentally

determined values of γv and γc corresponding to a-Si:H. Experimental results from

Sherman et al. [29], Tiedje et al. [30], and Winer and Ley [31], are employed for the

purposes of this analysis. We also plot the γv and γc values obtained by O’Leary [13]

through a fit with some a-Si:H ε2 (~ω) experimental data. We note that in all cases

the valence band tail breadth, γv, exceeds the corresponding conduction band tail

breadth, γc, and in most cases by a considerably margin. This clearly demonstrates
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Figure 2.4: The dependence of Eo, as defined in Eq. (2.8), on the conduction band
tail breadth, γc, for the photon energy, ~ω, set to 1 eV. For all cases, Nvo, Nco, Ev, Ec,
and γv are held at their nominal a-Si:H values, i.e., Nvo = Nco = 2 × 1022 cm−3eV−3/2,
Eg ≡ Ec − Ev = 1.7 eV, and γv = 50 meV. The approximate analytical expression for Eo,
i.e., Eq. (2.9), is also depicted with the dotted line.
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al. [29], Tiedje et al. [30], and Winer and Ley [31], are depicted. Results obtained from the
modeling analysis of O’Leary [13] are also shown.
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that, as far as the determination of the optical response is concerned, that the neglect

of the CBT states is justified for the case of a-Si:H. This justifies the use of the sim-

plified empirical DOS model of O’Leary and Malik [20] for the analysis of the optical

response of this material.

2.4 Conclusion

In conclusion, through the use of a general empirical model for the DOS functions,

one that considers VBB, VBT, CBB, and CBT states, we examined the sensitivity

of the JDOS function to variations in the conduction band tail breadth, γc, all other

parameters being held fixed at the nominal a-Si:H values. We found that when the

conduction band tail is narrower than the valence band tail, its role in shaping the

corresponding spectral dependence of the JDOS function is relatively minor. This

justifies the use of a simplified empirical model for the DOS functions that neglects

the presence of the CBT states, such as that devised by O’Leary and Malik [20],

in the characterization of the optical response. Experimental data corresponding to

a-Si:H, demonstrating that γc is less than γv, is presented, thereby justifying the use

of this simplified empirical DOS model for the analysis of the optical response of this

material.
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A dimensionless joint density of states
formalism for the quantitative

characterization of the optical response of
hydrogenated amorphous silicon
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The following equations, introduced in this chapter, were introduced previously in
this thesis:
Eq. (3.1) ⇒ Eq. (1.13)
Eq. (3.2) ⇒ Eq. (1.10)
Eq. (3.3) ⇒ Eq. (1.37)
Eq. (3.4) ⇒ Eq. (1.38)
Eq. (3.5) ⇒ Eq. (1.33)
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3.1 Introduction

Models for the spectral dependence of the imaginary part of the dielectric

function associated with hydrogenated amorphous silicon (a-Si:H), ε2 (~ω), serve two

useful functions: 1) they provide a theoretical framework for the purposes of ma-

terials characterization, and 2) they allow for the quantitative prediction of device

performance [1]. For the specific case of a-Si:H, Jackson et al. [2] suggest that

ε2 (~ω) = 4.3× 10−45 R2 (~ω) J (~ω) , (3.1)

where R2 (~ω), the normalized dipole matrix element squared average, is in units of

Å2, and J (~ω), the joint density of states (JDOS) function, is in units of cm−6eV−1.

At zero temperature,

J (~ω) ≡
∫ ∞
−∞

Nv (E)Nc (E + ~ω) dE, (3.2)

where Nv (E) and Nc (E) denote the valence band and conduction band density of

states (DOS) functions, respectively, Nv (E) ∆E and Nc (E) ∆E representing the

number of one-electron valence band and one-electron conduction band electronic

states, between energies [E,E + ∆E], per unit volume [3].1 Many of the empirical

models that have been proposed for the spectral dependence of ε2 (~ω) are themselves

built upon empirical models for Nv (E) and Nc (E) [4]. Such models include that

proposed by Tauc et al. [5] in 1966, Chen et al. [6] in 1981, Redfield [7] in 1982,

Cody [8] in 1984, O’Leary et al. [9] in 1997, Jiao et al. [10] in 1998, O’Leary and

1The JDOS function, J (~ω), as defined in Eq. (3.2), is in accord with the formalism of Jackson
et al. [2], which was specifically introduced for the case of amorphous semiconductors; Eq. (6) of
Jackson et al. [2] is Eq. (3.2) of this paper. It should not be confused with the JDOS function that
is often used in the analysis of crystalline semiconductors, as has been pointed out by Singh and
Shimakawa [3].
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Malik [11] in 2002, and O’Leary [12] in 2004.

In 2002, O’Leary and Malik [11] proposed a simplified empirical model for Nv (E)

and Nc (E) associated with a-Si:H, one that neglects the conduction band tail elec-

tronic states; the valence band tail electronic states were accounted for, however. It

was shown that the resultant spectral dependence of ε2 (~ω) agrees with that of ex-

periment. In this paper, we aim to further simplify this empirical model for the DOS

functions, reducing the number of independent modeling parameters from the six of

the simplified model of O’Leary and Malik [11] to five. In doing so, we aim to provide

a more elementary and effective platform for the determination of the underlying

modeling parameters from experiment; the reduction in the number of independent

modeling parameters restricts the parameter space that must be probed when ex-

tracting the underlying modeling parameters from the results of experiment, thereby

simplifying matters. In addition, we find that we are able to cast our analysis into a

dimensionless JDOS framework. We justify our simplification by demonstrating, for

reasonable a-Si:H modeling parameter selections, that the JDOS spectrum obtained

using our further simplified model is very similar to that determined using the more

general model of O’Leary and Malik [11]. We then show that this further simplified

model is as effective as its predecessor in capturing the results of experiment. Fi-

nally, we demonstrate the utility of our dimensionless JDOS formalism, using it for

the purposes of performing a critical comparative analysis of three different a-Si:H

optical absorption data sets.

This paper is organized in the following manner. In Section 3.2, an empirical

model for the DOS functions associated with a-Si:H will be presented, this model

forming the basis for our subsequent analysis. Then, in Section 3.3, we employ this

model in order to compute the JDOS function, J (~ω), casting our results into a

dimensionless format. The demonstration that our formalism is as effective as its
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predecessor in capturing the results of experiment is provided in Section 3.4, the

focus of our analysis being the spectral dependence of the imaginary part of the

dielectric function, ε2 (~ω), corresponding to a-Si:H. In Section 3.5, we employ our

dimensionless JDOS formalism in order to perform a critical comparative analysis of

three different a-Si:H optical absorption data sets. Finally, conclusions are drawn in

Section 3.6.

3.2 Modeling the distribution of electronic states

For the case of a-Si:H, there is general consensus that Nv (E) and Nc (E)

exhibit square-root functional dependencies in the band regions and exponential func-

tional dependencies in the tail regions. Noting, for the specific case of a-Si:H, that the

conduction band tail is considerably narrower than the valence band tail, O’Leary and

Malik [11] proposed a simplified empirical model for the DOS functions that neglects

conduction band tail electronic states. Building upon the earlier work of O’Leary et

al. [9] and Jiao et al. [10], O’Leary and Malik [11] set

Nv (E) = Nvo



√
Ev − EvT

exp

(
EvT
− Ev
γv

)
exp

(
Ev − E
γv

)
, E > EvT

√
Ev − E, E ≤ EvT

, (3.3)

and

Nc (E) = Nco


√
E − Ec, E ≥ Ec

0, E < Ec

, (3.4)

where Nvo and Nco denote the valence band and conduction band DOS prefactors,

respectively, Ev and Ec represent the valence band and conduction band band edges,

γv is the breadth of the valence band tail, and EvT
is the critical energy at which
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the exponential and square-root distributions interface; this model implicitly requires

that Ev −EvT
> 0. Note that there are six independent modeling parameters in this

model, i.e., Nvo, Nco, Ev, Ec, γv, and EvT
.2 It is clear, from Eqs. (3.3) and (3.4), that

Nv (E) and Nc (E) are continuous functions of energy, i.e., Nv

(
E−vT

)
= Nv

(
E+
vT

)
and

Nc (E−c ) = Nc (E+
c ).

We can further simplify Eq. (3.3) by assuming that the derivative of Nv (E)

is continuous at energy EvT
, i.e., N

′
v

(
E−vT

)
= N

′
v

(
E+
vT

)
; thus both Nv (E) and its

derivative are continuous functions of energy. This will only occur if EvT
= Ev− 1

2
γv.

We note that under this condition, the number of independent modeling parameters

is now reduced by one, i.e., the independent modeling parameters are now Nvo, Nco,

Ev, Ec, and γv.
3 In Figure 3.1, we plot the valence band DOS function, Nv (E), as

set in Eq. (3.3) with EvT
set to Ev − 1

2
γv, for a number of selections of the valence

band tail breadth, γv, for the nominal valence band modeling parameter selections

Nvo = 2 × 1022 cm−3eV−3/2 and Ev = 0 eV. We note that as γv → 0, that the

valence band DOS function reduces to a square-root distribution, i.e., it reduces to

the empirical DOS model of Tauc et al. [5]. That is,

Nv (E)→ Nvo


0, E > Ev

√
Ev − E, E ≤ Ev

. (3.5)

2Given that the valence band and conduction band band energies, Ev and Ec, respectively, are
relative quantities, the number of truly independent modeling parameters in the simplified empirical
DOS model of O’Leary and Malik [11], i.e., Eqs. (3.3) and (3.4), is five.

3For this further simplified empirical DOS model, i.e., Eqs. (3.3) and (3.4) with EvT
set to

Ev − 1
2γv, the number of truly independent modeling parameters is four.
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Figure 3.1: The valence band DOS function, Nv (E), for a number of selections of γv.
This function, specified in Eq. (3.3) with EvT set to Ev − 1

2γv, is evaluated assuming the
nominal modeling parameter selections Nvo = 2 × 1022 cm−3eV−3/2 and Ev = 0 eV for
all cases. The abscissa axis represents the energy, E, while the ordinate axis depicts the
corresponding valence band DOS value.
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3.3 JDOS formalism

We now evaluate the JDOS function, J (~ω), corresponding to our further

simplified empirical DOS model, i.e., with Nv (E) and Nc (E) as set in Eqs. (3.3) and

(3.4), respectively, with EvT
set to Ev − 1

2
γv. From Eqs. (3.2), (3.3), and (3.4), with

EvT
set to Ev − 1

2
γv, it may be shown that

J (~ω) = NvoNcoγ
2
v J

(
~ω − Eg

γv

)
, (3.6)

where the energy gap, Eg ≡ Ec − Ev, and the dimensionless JDOS function

J (z) ≡


z2Ξ

(
z − 1

2

z

)
+

1√
2

exp

(
z − 1

2

)
Y
(
z − 1

2

)
, z ≥ 1

2

1√
2

exp

(
z − 1

2

)
Y (0) , z < 1

2

, (3.7)

where Ξ (·) and Y (·) are as defined in O’Leary and Malik [11], i.e.,

Ξ (z) ≡
∫ z

0

√
x
√

1− x dx, (3.8)

and

Y (z) ≡
∫ ∞
z

√
x exp (−x) dx; (3.9)

O’Leary and Malik [11] demonstrated that

Ξ (z) =
1

4
sin−1

(√
z
)
− 1

4

√
z
√

1− z [1− 2z] , (3.10)

and

Y (z) =
√
z exp (−z) +

√
π

2
erfc

(√
z
)
, (3.11)
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where the complimentary error function

erfc (z) ≡ 2√
π

∫ ∞
z

exp
(
−u2

)
du. (3.12)

This dimensionless JDOS function, J (z), offers a dimensionless framework for

the evaluation of the JDOS function, J (~ω). We plot this dimensionless JDOS func-

tion, as a function of its argument, in Figure 3.2. Note that while there may be five

independent modeling parameters, the JDOS function itself is a function of only four

independent modeling parameters, i.e., Nvo, Nco, Eg, and γv.
4

In order to assess the impact of setting EvT
= Ev − 1

2
γv, within the framework

of the simplified model of O’Leary and Malik [11], we examine the sensitivity of the

JDOS function to variations in the selection of EvT
. The nominal modeling parameter

selections Nvo = Nco = 2 × 1022 cm−3eV−3/2, Eg = 1.7 eV, and γv = 50 meV

are adopted for the purposes of this analysis, these modeling parameter selections

being representative of a-Si:H [4, 10, 11, 13–16]. In Figure 3.3, we plot the resultant

JDOS spectra, corresponding to a number of EvT
selections, these EvT

selections

spanning the range of values found for a-Si:H; in fitting some a-Si:H experimental

data, O’Leary [4] found that EvT
= Ev − 4.3 meV (for γv = 60 meV), i.e., EvT

=

Ev − 0.07γv, while Jiao et al. [10] found that EvT
= Ev − 35 meV (for γv = 50 meV),

i.e., EvT
= Ev − 0.7γv. We observe, for all selections of EvT

considered, that the

JDOS result corresponding to setting EvT
= Ev− 1

2
γv forms an upper bound to all of

the other JDOS functions; we considered a large number of EvT
selections, not just

the ones represented in Figure 3.3, and found this to be the case for all the selections

we made. We find only minor differences in the JDOS functions corresponding to

these EvT
selections. Quantitatively, the JDOS function corresponding to EvT

set to

4For this further simplified empirical DOS model, i.e., Eqs. (3.3) and (3.4) with EvT
set to

Ev − 1
2γv, the number of truly independent modeling parameters is four.
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Ev−0.05γv is only a factor of 2 below that corresponding to EvT
set to Ev− 1

2
γv in the

low ~ω limit, i.e., when the difference is greatest. The JDOS function corresponding

to EvT
set to Ev − 3γv is only a factor of 5 below that corresponding to EvT

set to

Ev − 1
2
γv in the low ~ω limit. In light of the fact that these JDOS functions change

over many orders of magnitude, these differences in the JDOS functions are relatively

minor. As a result, we conclude that, for reasonable a-Si:H modeling parameter

selections, setting EvT
to Ev − 1

2
γv will lead to JDOS results that are very similar to

those produced through other selections of EvT
.

3.4 The imaginary part of the dielectric function

We now determine the spectral dependence of the imaginary part of the di-

electric function, ε2 (~ω), using our dimensionless JDOS formalism. For the purposes

of this analysis, we employ Eq. (3.1) in conjunction with an elementary model for

R2 (~ω). Jackson et al. [2] performed a series of experiments that aimed to determine

the spectral dependence of R2 (~ω) for the case of a-Si:H. Empirically, for a broad

range of photon energies, Jackson et al. [2] found that

R2 (~ω) = R2
o



(
Ed
~ω

)5

, ~ω ≥ Ed

1, ~ω < Ed

, (3.13)

where the characteristic energy, Ed = 3.4 eV, and the prefactor, R2
o = 10 Å2. Using

Eqs. (3.1) and (3.13), for the a-Si:H modeling parameter selections Nvo = Nco =

2.38×1022 cm−3eV−3/2, Eg = 1.68 eV, and γv = 48 meV, we plot the resultant spectral

dependence of the imaginary part of the dielectric function, ε2 (~ω), in Figure 3.4. The

corresponding experimental data of Jackson et al. [2] is also depicted. It is clear that
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result is indicated with the solid line. The characteristic energy, Ed, is indicated with the
arrow. We assume that Nvo = Nco = 2.38× 1022 cm−3eV−3/2, Eg = 1.68 eV, γv = 48 meV,
R2
o = 10 Å2, and Ed = 3.4 eV for the purposes of this analysis. We see that there is almost

complete agreement between our model and the experimental results of Jackson et al. [2],
except for ~ω < 1.4 eV.
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our modeling result for the imaginary part of the dielectric function is in satisfactory

agreement with the experimental data of Jackson et al. [2], except for ~ω < 1.4 eV.

This discrepancy may be attributable to the neglect of the conduction band tail states

in our formalism which then neglects the low energy transitions occurring between

the valence band tail states and the conduction band tail states.

3.5 The utility of the dimensionless JDOS formal-

ism

It is well known that the optical absorption spectrum associated with a-Si:H

exhibits a variety of features that hint at the presence of band states and tail states

within the underlying DOS functions. Unfortunately, thus far it has proven difficult

to quantitatively compare different spectra owing to differences in the energy gap and

the optical absorption tail breadth. We view our dimensionless JDOS formalism as

providing a remedy for this conundrum, it being an energy gap and tail breadth inde-

pendent platform for the critical comparison of dispirate optical absorption spectra.

In this analysis, we employ our dimensionless JDOS formalism in order to critically

compare three distinct a-Si:H optical absorption data sets, each of these optical ab-

sorption data sets corresponding to a different a-Si:H sample. Through a process of

rescaling, we recast the experimental data sets into a dimensionless form, one that is

compliant with the form of our dimensionless JDOS function, J (z), i.e., Eq. (3.7).

From the differences between the rescaled experimental results, energy gap and tail

breadth independent differences between the experimental results will be rendered

transparent.

The experimental optical absorption data sets that are considered correspond to:

1) a sample prepared by Cody et al. [17, 18] (this experimental data set corresponds
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to the TH = 293 K data set depicted in Figure 1 of Cody et al. [18]), 2) a sample

prepared by Remĕs [19] (this experimental data set corresponds to the standard GD-a

data set depicted in Figure 5.2 of Remĕs [19]), and 3) a sample prepared by Viturro

and Weiser [20] (this experimental data set corresponds to the CH = 1 % data set

depicted in Figure 4 of Viturro and Weiser [20]). Details, on the means of sample

preparation and on the approaches taken whereby these optical absorption spectra are

experimentally determined, are provided in the literature [17–20]. The three optical

absorption spectra are depicted in Figure 3.5. Noting that the optical absorption

spectrum

α (~ω) =
ω

n (~ω) c
ε2 (~ω) , (3.14)

where n (~ω) denotes the spectral dependence of the refractive index and c represents

the speed of light in a vacuum, it is seen, from Eqs. (3.1), (3.6), and (3.14), that

α (~ω) = 4.3× 10−45 ω

n (~ω) c
R2 (~ω)NvoNcoγ

2
v J

(
~ω − Eg

γv

)
. (3.15)

For the purposes of this analysis, we assume that the band parameters are not

influenced by the tail breadths. Thus, borrowing from the a-Si:H analysis presented

in Section 3.4, we set Nvo = Nco = 2.38 × 1022 cm−3eV−3/2 for all cases. The spec-

tral dependence of the refractive index, n (~ω), is determined by fitting a tenth-order

polynomial to the experimental results of Klazes et al. [21] (the experimental data

considered corresponds to that presented in Figure 4 of Klazes et al. [21]); this ap-

proach was used previously by Mok and O’Leary [22], the deviations from this model

for n (~ω) not being expected to be significant. We find that the selections 1) γv =

68.9 meV and Eg = 1.73 eV, 2) γv = 91.2 meV and Eg = 1.57 eV, and 3) γv = 193 meV

and Eg = 1.53 eV, lead to reasonably satisfactory agreement with the a-Si:H optical

absorption data sets corresponding to Cody et al. [18], Remĕs [19], and Viturro and
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Figure 3.5: Three a-Si:H optical absorption data sets plotted as a function of the photon
energy. The data sets considered include that corresponding to Cody et al. [18] (the TH =
293 K data set depicted in Figure 1 of Cody et al. [18]), plotted with the solid green points,
Remes̆ [19] (the standard GD-a data set depicted in Figure 5.2 of Remes̆ [19]), plotted
with the solid red points, and Viturro and Weiser [20] (the CH = 1 % data set depicted
in Figure 4 of Viturro and Weiser [20]), plotted with the blue solid points. The optical
absorption spectral dependencies obtained through our theoretical analysis, for the cases of
γv = 68.9 meV and Eg = 1.73 eV, γv = 91.2 meV and Eg = 1.57 eV, and γv = 193 meV
and Eg = 1.53 eV, are depicted using the green, red, and blue solid lines, respectively, these
parameter selections being made in order to fit the theoretical results with the experimental
data of Cody et al. [18], Remes̆ [19], and Viturro and Weiser [20], respectively; for all cases,
we set Nvo = Nco = 2.38× 1022 cm−3eV−3/2. The online version is depicted in color.
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Weiser [20], respectively. We see that there is almost complete agreement between our

model and the experimental results, except for the experimental results of Remĕs [19]

for ~ω < 1.4 eV.

In an effort to critically compare these dispirate optical absorption spectra, each

with its own distinct tail breadth and energy gap, we present a rescaled version of these

experimental data sets in Figure 3.6. For the ordinate axis, this rescaling is performed

by dividing each experimental value by 4.3 × 10−45 ω
n(~ω)c

R2 (~ω)NvoNcoγ
2
v . For the

abscissa axis, this rescaling is performed by substrating Eg from the photon energy

and then dividing the resultant number by γv, i.e., plotting ~ω−Eg

γv
. The dimensionless

JDOS function, J (z), as specified in Eq. (3.7), is also plotted. We see that, for

the most part at least, these curves are almost completely coincident. This suggests

that there is a universal character associated with the optical absorption spectrum

of a-Si:H [23].5 The deviations that occur at low values of z for the case of the

experimental data set of Remĕs [19] are attributable to the ~ω < 1.4 eV deviations

observed in Figure 3.5. The slight deviations that are observed for high values of z

might be related to uncertainty in the spectral dependence of the refractive index,

n (~ω), our polynomial fit to the experimental data of Klazes et al. [21] being subject

to uncertainties; there is no guarantee, of course, that the spectral dependence of

n (~ω) found by Klazes et al. [21] applies exactly for all a-Si:H samples. Further

analysis would be required in order to draw any stronger conclusion, however.

3.6 Conclusions

In conclusion, we have simplified the empirical model of O’Leary and Ma-

lik [11] for the DOS functions associated with a-Si:H, the number of independent

5This universality can be exploited in order to distinguish between the various regions of the
optical absorption spectrum. The approach of Orapunt and O’Leary [23] can be used for the purposes
of such an analysis.
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Figure 3.6: The rescaled a-Si:H optical absorption data sets and the dimensionless JDOS
function, J (z), plotted as a function of the independent variable, z. The data sets consid-
ered include that corresponding to Cody et al. [18] (the TH = 293 K data set depicted in
Figure 1 of Cody et al. [18]), plotted with the solid green points, Remes̆ [19] (the standard
GD-a data set depicted in Figure 5.2 of Remes̆ [19]), plotted with the solid red points,
and Viturro and Weiser [20] (the CH = 1 % data set depicted in Figure 4 of Viturro and
Weiser [20]), plotted with the blue solid points. The dimensionless JDOS function, J (z),
plotted as a function of z, is also shown with the solid black line. The online version is
depicted in color.
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modeling parameters being reduced in the process. We have cast our JDOS evalua-

tions into a dimensionless form, this formalism providing an elementary and effective

platform for the determination of the underlying modeling parameters from experi-

ment. We then justified our simplification by showing, for reasonable a-Si:H modeling

parameter selections, that our JDOS results are very similar to those determined using

the more general approach of O’Leary and Malik [11]. We also showed that this sim-

plified model is as effective as its predecessor in capturing the results of experiment.

Finally, we demonstrated the utility of our dimensionless JDOS formalism, using it

for the purposes of performing a critical comparative analysis of three different a-Si:H

optical absorption data sets.
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CHAPTER 4

A universal feature in the optical absorption
spectrum associated with hydrogenated
amorphous silicon: A dimensionless joint

density of states analysis

A version of this manuscript was submitted to the Journal of Applied Physics. It is
co-authored with my supervisor, Dr. S. K. O’Leary.

The following equations, introduced in this chapter, were introduced previously in
this thesis:
Eq. (4.1) ⇒ Eq. (1.14)
Eq. (4.2) ⇒ Eq. (1.13)
Eq. (4.3) ⇒ Eq. (3.6)

100



Chapter 4

4.1 Introduction

Hydrogenated amorphous silicon (a-Si:H) possesses a number of interesting

material properties that have made it an attractive electronic material for a wide

variety of large area electron device applications [1, 2]. Current applications for this

material run the gamut from solar cells [3] to thin film transistors [4], and new appli-

cations are emerging with each passing year. As optical response is a key requirement

for many of the device applications implemented or envisaged for this material, the

optical properties of a-Si:H, and the other forms of thin-film silicon, have been the

focus of intense interest for many years. Accordingly, a number of theoretical [5–14]

and experimental [15–25] investigations into the spectral dependence of the optical

functions associated with this class of materials have been performed. As a conse-

quence of this body of work, the optical response of a-Si:H, and many of the other

forms of thin film silicon, are now thought to be relatively well understood.

Recently, Thevaril and O’Leary [26] developed an empirical model for the spec-

tral dependence of the optical functions associated with a-Si:H that stemmed from an

earlier analysis of O’Leary and Malik [12]; the analysis of Thevaril and O’Leary [26]

actually represents a simplification of the empirical model of O’Leary and Malik [12]

with a reduced number of independent modeling parameters, this reduction in the

number of parameters being shown to be justified for the specific case of a-Si:H. The

resultant joint density of states (JDOS) formalism, which allows for the quantitative

characterization of the optical response associated with this material, was shown to

provide an elementary and effective platform for the determination of the underlying

modeling parameters from experiment. Its dimensionless character permits the iden-

tification of energy gap and tail breadth independent differences between disparate

experimental a-Si:H optical absorption data sets.
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An interesting aspect of the analysis of Thevaril and O’Leary [26] is that it hints at

a universal feature in the optical absorption spectrum associated with a-Si:H. Through

a process of rescaling, recasting the three experimental a-Si:H optical absorption data

sets that were considered into a dimensionless form, Thevaril and O’Leary [26] find,

for the most part at least, that the rescaled experimental data curves are almost

completely coincident. In a field often characterized by disjoint, fragmented, and

disparate results, the convergence of the rescaled experimental results represents a

rather surprising finding. In this paper, through an examination of a much larger

number of experimental a-Si:H optical absorption data sets, we will critically examine

whether or not this universal feature is generally present in the optical absorption

spectrum associated with this material.

This paper is organized in the following manner. In Section 4.2, we will briefly

present our dimensionless JDOS formalism whereby we will model the spectral depen-

dence of the optical absorption coefficient associated with a-Si:H. Then, in Section 4.3,

we analyze experimental data corresponding to Cody et al. [17]. Experimental data

corresponding to Viturro and Weiser [27] and Remes̆ [28] is then examined in Sec-

tion 4.4. A critical comparitive analysis of all of the experimental data considered in

this analysis is then featured in Section 4.5. Finally, our conclusions are presented in

Section 4.6.

4.2 Modeling the optical response of a-Si:H

For the purposes of this analysis, we follow the approach of Thevaril and

O’Leary [26] in modeling the spectral dependence of the optical absorption coefficient,

α (~ω). We start by noting that

α (~ω) =
ω

n (~ω) c
ε2 (~ω) , (4.1)
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where n (~ω) denotes the spectral dependence of the index of refraction, c represents

the speed of light in a vacuum, and ε2 (~ω) is the imaginary part of the dielectric

function. The spectral dependence of n (~ω) is determined by fitting a tenth-order

polynomial to the experimental results of Klazes et al. [29]; this approach was previ-

ously employed by Mok and O’Leary [30]. For the specific case of a-Si:H, Jackson et

al. [18] find that

ε2 (~ω) = 4.3× 10−45 R2 (~ω) J (~ω) , (4.2)

where J (~ω), the JDOS function, is in units of cm−6eV−1, and R2 (~ω), the normal-

ized dipole matrix element squared average, is in units of Å2. Assuming square-root

distributions of valence band and conduction band band states, and an exponential

distribution of valence band tail states, i.e., neglecting the presence of tail states

associated with the conduction band, Thevaril and O’Leary [26] find that

J (~ω) = NvoNcoγ
2
v J

(
~ω − Eg

γv

)
, (4.3)

where Nvo and Nco denote the valence band and conduction band DOS prefactors,

respectively, γv represents the breadth of the valence band tail, Eg ≡ Ec − Ev is the

energy gap, where Ev and Ec represent the valence band and conduction band band

edges, and J (·) is the dimensionless JDOS function, defined in Eq. (7) of Thevaril and

O’Leary [26]. Eqs. (4.1), (4.2), and (4.3) form the basis for our subsequent analysis.

It should be noted that our modeling of the spectral dependence of the optical

absorption spectrum associated with a-Si:H, α (~ω), ignores defect absorption. De-

fect absorption, attributable to the presence of distributions of electronic states deep

within the gap region, is often exhibited by this semiconductor and many of the other

forms of thin-film silicon. The defects that lead to such distributions correspond to

departures from the continuous random network structure characteristic of an ‘ideal’
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amorphous semiconductor [1]. We are aiming to explore the scaling relationships that

are present within the optical absorption spectrum associated with a-Si:H. As defec-

tive forms of thin-film silicon are defective in so many different ways, for the purposes

of this analysis we will focus on the regions of the optical absorption spectrum that

are not influenced by defect absorption.

4.3 The experimental data of Cody et al.

The experimental a-Si:H optical absorption data sets first considered in this

analysis are those of Cody et al. [17]. In particular, ten optical absorption data sets

from Cody et al. [17] are considered. Seven of these data sets correspond to a a-Si:H

film from which hydrogen was evolved in a stepwise manner through isochronal heat-

ing in a vacuum (the heating temperatures considered, TH, are 293 K (calibration),

500, 525, 550, 575, 600, and 625 C), the remaining three data sets corresponding

to a similarly prepared a-Si:H film measured at three different temperatures (the

measurement temperatures considered, TM, are 12.7, 151, and 293 K). Plasma en-

hanced chemical vapor deposition was employed in order to fabricate the films. The

optical absorption spectra were determined through optical transmission measure-

ments [31, 32]. The ten experimental a-Si:H optical absorption data sets of Cody et

al. [17] are depicted in Figure 4.1.

We will now fit our model for the spectral dependence of α (~ω), i.e., Eqs. (4.1),

(4.2), and (4.3), to the experimental data sets of Cody et al. [17]. For the purposes of

this analysis, we follow Thevaril and O’Leary [26] and assume that the band parame-

ters, Nvo, and Nco, are not influenced by the valence band tail breadth, γv. Following

Thevaril and O’Leary [26], we thus set Nvo = Nco = 2.38 × 1022 cm−3eV−3/2 for all

cases, noting that this value is representative of a-Si:H [33–38]. Following Jackson et

al. [18], we set R2 (~ω) to 10 Å2 for all cases, noting that Jackson et al. [18] find that
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Figure 4.1: The experimental a-Si:H optical absorption data sets of Cody et al. [17]
and the corresponding fits. The experimental data itself is represented with the solid and
open colored points. The solid colored points correspond to experimental data that is not
believed to be influenced by defect absorption while the open colored points correspond to
experimental data that is believed to be influenced by defect absorption. The color scheme
is indicated in the legend within the figure. The identification of each data set borrows
directly from the classification scheme employed by Cody et al. [17]; see Figure 1 of Cody
et al. [17]. The fits to these experimental data sets are depicted with the corresponding
colored lines. The model parameter selections for these fits, i.e., the corresponding γv and
Eg values, are indicated in Table 4.1. The online version of this figure is depicted in color.
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R2 (~ω) exhibits little spectral variation over the range of ~ω considered. Thus, our

analysis reduces to the determination of γv and Eg corresponding to each experimen-

tal a-Si:H optical absorption data set of Cody et al. [17]. We find that the parameter

selections for γv and Eg tabulated in Table 4.1 lead to reasonably satisfactory agree-

ment with the experimental a-Si:H optical absorption data sets of Cody et al. [17].

Table 4.1: The model parameter selections corresponding to the fits to the experimental
a-Si:H optical absorption data sets of Cody et al. [17] depicted in Figure 4.1. The number
of excluded data points and the presence of a difference between the experimental results
and the corresponding fits, for each data set considered, are also indicated.

Data set γv (meV) Eg (eV) no. of excluded points slight high ~ω differences

TH = 293 K 67.9 1.724 yes
TH = 500 C 85.2 1.691 5 yes
TH = 525 C 78.1 1.649 yes
TH = 550 C 86.3 1.629 yes
TH = 575 C 96.8 1.618
TH = 600 C 103.2 1.597
TH = 625 C 105.3 1.566 2
TM = 12.7 K 52.9 1.787
TM = 151 K 68.9 1.775 1
TM = 293 K 72.4 1.718 6

Discrepancies between our modeling results and those of experiment are found,

however. In the high absorption region, for the most part at least, we note very

little deviation from our theoretical fit other than the usual scatter characteristic of

experimental data. We do note, however, some deviation for the TH = 293 K, TH =

500, TH = 525, and TH = 550 C data sets; for these cases, for higher values of ~ω, i.e.,

~ω > 1.8 eV, the theoretical results increase at a slightly greater rate than the exper-

imental results of Cody et al. [17] leading to a slight gap between the experimental
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results and that of the corresponding fits. Variations in the spectral dependencies

of R2 (~ω) and n (~ω) are the most likely causes for these deviations; the experi-

mental measurements of R2 (~ω) performed by Jackson et al. [18] are subject to a

considerable amount of uncertainty in this range of ~ω as both J (~ω) and ε2 (~ω) are

changing by many orders of magnitude [39]. The low absorption region is more prob-

lematic, however. A distinctive flaring in the low absorption region of the spectrum

is observed for many of the data sets of Cody et al. [17]. Roxlo et al. [32] suggest

that this spectral behavior of the optical absorption spectrum is the characteristic

signature corresponding to the onset of defect absorption. Roxlo et al. [32] further

point out that the limitations of the optical transmission measurements preclude the

accurate determination of the optical absorption coefficient for low levels of absorp-

tion, i.e., for α (~ω) less than 5 × 102 cm−1. On the basis of these considerations,

we believe that we have sufficient probable cause to reject the flaring low absorption

components of these data sets for the purposes of our analysis on the grounds that

they have likely been influenced by defect absorption. The rejected data is clearly

depicted in Figure 4.1.

In an effort to critically compare these disparate optical absorption spectra, each

with its own distinct tail breadth and energy gap, we present a rescaled version of

these experimental data sets in Figure 4.2. For the ordinate axis, this rescaling is

performed by dividing each experimental value by 4.3×10−45 ω
n(~ω)c

R2 (~ω)NvoNcoγ
2
v .

For the abscissa axis, this rescaling is performed by substrating Eg from the photon

energy and then dividing the resultant quantity by γv, i.e., plotting ~ω−Eg

γv
. This casts

the experimental data sets of Cody et al. [17] into a form that is compliant with the

form of the dimensionless JDOS function, J (·), specified in Eq. (7) of Thevaril and

O’Leary [26]. This dimensionless JDOS function is also plotted in Figure 4.2. We see

that, for the most part at least, ignoring the defect absorption influenced data, that
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Figure 4.2: The rescaled experimental a-Si:H optical absorption data sets of Cody et
al. [17] and the dimensionless JDOS function, J (z), plotted as a function of the indepen-
dent variable, z. The rescaled experimental data is represented with the solid and open
colored points. The solid colored points correspond to rescaled experimental data that is
not believed to be influenced by defect absorption while the open colored points correspond
to rescaled experimental data that is believed to be influenced by defect absorption. The
color scheme is indicated in the legend within the figure. The identification of each data set
borrows directly from the classification scheme employed by Cody et al. [17]; see Figure 1
of Cody et al. [17]. The dimensionless JDOS function, J (z), plotted as a function of z, is
also shown with the solid black line. The online version of this figure is depicted in color.
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these curves are almost completely coincident with the dimensionless JDOS function,

J (·), for the ten experimental a-Si:H optical absorption data sets of Cody et al. [17].

4.4 The experimental data of Viturro and Weiser

and the experimental data of Remes̆

We now consider the experimental a-Si:H optical absorption data sets of

Viturro and Weiser [27]. In total, ten optical absorption data sets from Viturro

and Weiser [27] are considered. These data sets correspond to a-Si:H films whose

hydrogen concentrations, CH, are found to be 1.0, 2.0, 4.0, 4.7, 5.5, 6.0, 6.3, 6.8,

7.5, and 8.5 % (atomic percent). A direct synthesis reaction between silicon and

hydrogen atoms was employed in order to fabricate the films. The optical absorption

spectra were determined through reflection and transmission measurements. The

ten experimental a-Si:H optical absorption data sets of Viturro and Weiser [27] are

depicted in Figure 4.3.

We now fit our model for the spectral dependence of α (~ω), i.e., Eqs. (4.1), (4.2),

and (4.3), to the experimental data sets of Viturro and Weiser [27]. As with the data

of Cody et al. [17], we set Nvo = Nco = 2.38× 1022 cm−3eV−3/2 and R2 (~ω) = 10 Å2

for all cases. We find that the parameter selections for γv and Eg tabulated in Ta-

ble 4.2 lead to reasonably satisfactory agreement with the a-Si:H optical absorption

data sets of Viturro and Weiser [27]. Unlike the case of Cody et al. [17], very few

discrepancies between our modeling results and those of experiment are found; we do

find, however, the same slight gap between the experimental results and that of the

corresponding fit as that found for some of the data sets of Cody et al. [17] for higher

values of ~ω, i.e., ~ω > 1.8 eV, for most of the data sets of Viturro and Weiser [27],

this most likely arising as a consequence of variations in the spectral dependencies of
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Figure 4.3: The experimental a-Si:H optical absorption data sets of Viturro and Weiser [27]
and the corresponding fits. The experimental data itself is represented with the solid points;
for the case of Viturro and Weiser [27] there are no experimental points that are believed to
be influenced by defect absorption. The color scheme is indicated in the legend within the
figure. The identification of each data set borrows directly from the classification scheme
employed by Viturro and Weiser [27]; see Figure 4 of Viturro and Weiser [27]. The fits to
these experimental data sets are depicted with the corresponding colored lines. The model
parameter selections for these fits, i.e., the corresponding γv and Eg values, are indicated
in Table 4.2. The online version of this figure is depicted in color.
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R2 (~ω) and n (~ω). As a consequence, when we plot the rescaled experimental data

using the same rescaling procedure as that employed for the analysis of the experi-

mental data of Cody et al. [17], we find that it is almost completely coincident with

the dimensionless JDOS function, J (·); see Figure 4.4.

Table 4.2: The model parameter selections corresponding to the fits to the experimental
a-Si:H optical absorption data sets of Viturro and Weiser [27] depicted in Figure 4.3. The
number of excluded data points and the presence of a difference between the experimental
results and the corresponding fits, for each data set considered, are also indicated.

Data set γv (meV) Eg (eV) no. of excluded points slight high ~ω differences

CH = 1.0 % 182.1 1.516 yes
CH = 2.0 % 155.8 1.537 yes
CH = 4.0 % 134.2 1.547
CH = 4.7 % 123.7 1.558 yes
CH = 5.5 % 113.2 1.584 yes
CH = 6.0 % 92.1 1.584
CH = 6.3 % 99.9 1.622 yes
CM = 6.8 % 75.5 1.626 yes
CM = 7.5 % 78.9 1.658
CM = 8.5 % 76.8 1.705

We now consider the experimental a-Si:H optical absorption data sets of Remes̆ [28].

In total, eleven optical absorption data sets from Remes̆ [28] are considered. These

data sets correspond to six a-Si:H films produced through hot wire deposition (HW39,

HW48, HW70, HW91, HW129, and HW132), three a-Si:H films produced through

plasma enhanced chemical vapor deposition, one of which has been annealed (stan-

dard GD, standard GD-a, and GD500), and two of the a-Si:H films produced through

very high frequency plasma enhanced chemical vapor deposition (VHF-GD (50%)

and VHF-GD (10%)). The optical absorption spectra were determined through a
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Figure 4.4: The rescaled experimental a-Si:H optical absorption data sets of Viturro
and Weiser [27] and the dimensionless JDOS function, J (z), plotted as a function of the
independent variable, z. The rescaled experimental data itself is represented with the solid
points; for the case of Viturro and Weiser [27] there are no experimental points that are
believed to be contaminated with defect absorption. The color scheme is indicated in the
legend within the figure. The identification of each data set borrows directly from the
classification scheme employed by Viturro and Weiser [27]; see Figure 4 of Viturro and
Weiser [27]. The dimensionless JDOS function, J (z), plotted as a function of z, is also
shown with the solid black line. The online version of this figure is depicted in color.
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combination of reflection and transmission measurements and constant photocur-

rent measurements. The eleven experimental a-Si:H optical absorption data sets of

Remes̆ [28] are depicted in Figure 4.5; in the interests of providing a fair comparison

with the results of Cody et al. [17] and Viturro and Weiser [27], we only consider

experimental data with optical absorption values excess of 102 cm−1. As the optical

absorption spectrum corresponding to the HW70 a-Si:H film seems somewhat distinct

from that of the other films in the high absorption region, i.e., the curvature seems

to be different when compared with the other optical absorption spectra, we will not

consider it in our analysis of the experimental a-Si:H optical absorption data sets of

Remes̆ [28]. This could arise as a consequence of this particular film’s composition;

see, for example, the analysis of Jun et al. [40]. Further study of the nature of this

HW70 film would be required in order to draw a more definitive conclusion on this

issue.

We now fit our model for the spectral dependence of α (~ω), i.e., Eqs. (4.1), (4.2),

and (4.3), to the experimental data sets of Remes̆ [28]. As with the data of Cody

et al. [17] and Viturro and Weiser [27], we set Nvo = Nco = 2.38 × 1022 cm−3eV−3/2

and R2 (~ω) = 10 Å2 for all cases. We find that the parameter selections for γv and

Eg tabulated in Table 4.3 lead to reasonably satisfactory agreement with the a-Si:H

optical absorption data sets of Remes̆ [28]; except, of course, for the HW70 film, as

has already been mentioned. As with the case of Viturro and Weiser [27], and unlike

the case of Cody et al. [17], very few discrepancies between our modeling results and

those of experiment are found. As a consequence, when we plot the rescaled experi-

mental data using the same rescaling procedure as that employed for the analysis of

the experimental data of Cody et al. [17] and Viturro and Weiser [27], we find that

they are almost completely coincident with the dimensionless JDOS function, J (·);

see Figure 4.6.
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Figure 4.5: The experimental a-Si:H optical absorption data sets of Remes̆ [28] and the
corresponding fits. The experimental data itself is represented with the solid points; for the
case of Remes̆ [28] there are no experimental points that are believed to be contaminated
with defect absorption. The HW70 a-Si:H film of Remes̆ [28] is not considered as it exhibits
a spectral variation that is distinct from the other spectra for high values of ~ω; it is depicted
with the open points. The color scheme is indicated in the legend within the figure. The
identification of each data set borrows directly from the classification scheme employed by
Remes̆ [28]; see Figure 5.2 of Remes̆ [28]. The fits to these experimental data sets are
depicted with the corresponding colored lines. The model parameter selections for these
fits, i.e., the corresponding γv and Eg values, are indicated in Table 4.3. The online version
of this figure is depicted in color.
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Figure 4.6: The rescaled experimental a-Si:H optical absorption data sets of Remes̆ [28]
and the dimensionless JDOS function, J (z), plotted as a function of the independent
variable, z. The rescaled experimental data itself is represented with the solid colored
points; for the case of Remes̆ [28] there are no experimental points that are believed to be
influenced by defect absorption. The HW70 a-Si:H film of Remes̆ [28] is not considered as it
has not been fit to our dimensionless JDOS formalism, i.e., Eqs. (4.1), (4.2), and (4.3). The
color scheme is indicated in the legend within the figure. The identification of each data
set borrows directly from the classification scheme employed by Remes̆ [28]; see Figure 5.2
of Remes̆ [28]. The dimensionless JDOS function, J (z), plotted as a function of z, is also
shown with the solid black line. The online version of this figure is depicted in color.
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Table 4.3: The model parameter selections corresponding to the fits to the experimental
a-Si:H optical absorption data sets of Remes̆ [28] depicted in Figure 4.5. The number of
excluded data points and the presence of a difference between the experimental results and
the corresponding fits, for each data set considered, are also indicated.

Data set γv (meV) Eg (eV) no. of excluded points slight high ~ω differences

HW39 67.4 1.592
HW48 59.4 1.635
HW70 all points
HW91 63.4 1.683
HW129 74.1 1.738
HW132 74.5 1.685

standard GD 67.4 1.711
standard GD-a 91.1 1.575 11

GD500 62.2 1.618
VHF-GD (50%) 77.6 1.751
VHF-GD (10%) 53.6 1.776

4.5 Critical comparative analysis

In order to more properly gauge how close the experimental data actually is

to our theoretical fits, and therefore, when the scaling factors are taken into account,

how close the rescaled experimental data is to the dimensionless JDOS function,

J (·), in Figure 4.7, for each experimental point in the experimental a-Si:H optical

absorption data sets of Cody et al. [17] we plot the ratio of the optical absorption

experimental value, αexpt, with the corresponding fit value, αfit; the corresponding

fit value, αfit, is determined using the fit at exactly the same value of ~ω as the

experimental data point. In light of the fact that these fits were determined over many

orders of magnitude, the fact that so many data points in Figure 4.7 crowd so closely
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Figure 4.7: Deviations between the experimental results and the corresponding fits as
determined through a ratio of the experimental and fit results for the experimental a-Si:H
optical absorption data sets of Cody et al. [17]. The ordinate values for this plot are obtained
by dividing each experimental value, αexpt, by the corresponding fit value, αfit, the abscissa
axis being the corresponding photon energy, ~ω. The online version of this figure is depicted
in color.
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about unity is interesting, particular when one considers that our fits were determined

by selecting only two parameters, γv and Eg, corresponding to each data set. We

note that the variations about unity become larger for lower photon energies. This

probably arises as a consequence of the increasing importance of defect absorption for

lower values of photon energy. The fact that instrumentation limits are approached

for lower values of photon energy may also account for these increasingly intense

variations. Similar results, corresponding to Viturro and Weiser [27] and Remes̆ [28],

are depicted in Figure 4.8 and Figure 4.9, respectively. It should be noted that for

high photon energies, the results of Viturro and Weiser [27] seem to monotonically

decrease below unity in a consistent fashion as the photon energy increases. This may

hint at variations in the matrix element that are not accounted for by simply setting

R2 (~ω) to 10 Å2, as was suggested earlier.

In an effort to further quantitatively assess the tightness of our fits to the ex-

perimental data, we introduce the factor β, which provides a measure of the stray

between the experimental and fit values. For each experimental data point, we exam-

ine whether or not the experimental optical absorption value, αexpt, lies between 1
β
αfit

and βαfit, i.e., whether 1
β
αfit ≤ αexpt ≤ βαfit; of course, the quantity β must exceed

unity. In Figure 4.10, we plot all of the experimental data points corresponding to

Cody et al. [17], Viturro and Weiser [27], and Remes̆ [28]; the data points that have

already been excluded on the grounds that they are influenced by defect absorption

are not considered. It is seen that for β set to 1.1, around 73 % of the experimen-

tal data points lie between 1
β
αfit and βαfit. Plotting the fraction of the experimental

points between 1
β
αfit and βαfit as a function of β in Figure 4.11, we see results corre-

sponding to the experimental results of Cody et al. [17], Viturro and Weiser [27], and

Remes̆ [28]. We see that the fraction of included experimental points monotonically

increases with β. For all cases, in excess of 70 % of the considered experimental data

118



Chapter 4

1.2 1.4 1.6 1.8 2 2.2
0.6

0.8

1

1.2

1.4
Viturro and Weiser [27]C

H

1.0 %

2.0 %

4.0 %

4.7 %

5.5 %

6.0 %

6.3 %

C
H

6.8 %

7.5 %

8.5 %

Photon Energy (eV)

α ex
pt

/α
fit

Figure 4.8: Deviations between the experimental results and the corresponding fits as
determined through a ratio of the experimental and fit results for the experimental a-Si:H
optical absorption data sets of Viturro and Weiser [27]. The ordinate values for this plot
are obtained by dividing each experimental value, αexpt, by the corresponding fit value, αfit,
the abscissa axis being the corresponding photon energy, ~ω. The online version of this
figure is depicted in color.
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Figure 4.9: Deviations between the experimental results and the corresponding fits as
determined through a ratio of the experimental and fit results for the experimental a-Si:H
optical absorption data sets of Remes̆ [28]. The ordinate values for this plot are obtained by
dividing each experimental value, αexpt, by the corresponding fit value, αfit, the abscissa axis
being the corresponding photon energy, ~ω. The online version of this figure is depicted in
color.
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Figure 4.10: Deviations between the experimental results and the corresponding fits as
determined through a ratio of the experimental and fit results for the experimental a-Si:H
optical absorption data sets of Cody et al. [17], Viturro and Weiser [27], and Remes̆ [28].
The ordinate values for this plot are obtained by dividing each experimental value, αexpt, by
the corresponding fit value, αfit, the abscissa axis being the corresponding photon energy,
~ω. For the optical absorption values not influenced by defect absorption, 219 of the 290
experimental points of Cody et al. [17], 117 of the 176 experimental points of Viturro and
Weiser [27], and 136 of the 181 experimental points of Remes̆ [28], lie between 1

βαfit and
βαfit, for the specific case of β set to 1.1.
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of β. The data sets of Cody et al. [17], Viturro and Weiser [27], and Remes̆ [28] are
considered in this analysis.
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points are included for β set to 1.11. This provides compelling evidence in favor of

the presence of a universal feature in the optical absorption spectrum associated with

a-Si:H. In light of the fact that the a-Si:H optical absorption data sets are drawn from

a variety of different forms of a-Si:H, this universal character seems to transcend the

exact nature of the material considered.

4.6 Conclusions

Using a dimensionless JDOS formalism for the quantitative characteriza-

tion of the optical response associated with a-Si:H, a critical comparative analysis of

a large number of disparate optical absorption data sets is considered. When these

data sets are cast into this dimensionless framework, we observe a trend that is almost

completely coincident for all of the data sets considered. This suggests that there is a

universal character associated with the optical absorption spectrum associated with

a-Si:H.
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Defect absorption and optical transitions in
hydrogenated amorphous silicon

A version of this paper was published in Solid State Communications.

“Reprinted with permission from Thevaril, J.J. and O’Leary, S.K., Defect absorp-
tion and optical transitions in hydrogenated amorphous silicon, vol. 150, no. 37-38,
pp. 1851-1855, Copyright [2010].”

The following equations, introduced in this chapter, were introduced previously in
this thesis:
Eq. (5.1) ⇒ Eq. (1.13)
Eq. (5.2) ⇒ Eq. (1.10)
Eq. (5.3) ⇒ Eq. (1.31)
Eq. (5.4) ⇒ Eq. (1.32)
Eq. (5.7) ⇒ Eq. (1.14)
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5.1 Introduction

The optical response of hydrogenated amorphous silicon (a-Si:H) has been

a focus for intensive investigation for many years [1–11]. Defects play an important

role in shaping this response. The distinctive broadening exhibited in the low energy

region of the imaginary part of the dielectric function associated with a-Si:H, ε2 (~ω),

for example, is attributable to the presence of distributions of defect states [12, 13].

While there has been some basic work performed on developing an understanding

as to how the underlying distributions of defect states shape the optical response of

this material [14–16], the role that the individual types of optical transitions play in

determining the character of this response remains unknown. Considering that funda-

mentally the optical response that occurs within a-Si:H is determined by the number

of allowed optical transitions and by the magnitude of the optical transition matrix

elements which couple the electronic states between which these optical transitions

occur [17], this present state of affairs is lamentable.

In an earlier letter, Malik and O’Leary [18] determined the contributions to the

optical response associated with a-Si:H corresponding to the various types of optical

transitions that occur. The empirical model for the density of states (DOS) functions

employed by Malik and O’Leary [18] considered valence band band (VBB) states,

valence band tail (VBT) states, conduction band band (CBB) states, and conduction

band tail (CBT) states. As optical transitions occur between the occupied valence

band states and the unoccupied conduction band states, only optical transitions from

the VBB states to the CBB states (VBB-CBB optical transitions), from the VBB

states to the CBT states (VBB-CBT optical transitions), from the VBT states to the

CBB states (VBT-CBB optical transitions), and from the VBT states to the CBT

states (VBT-CBT optical transitions) are considered in the analysis of Malik and
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O’Leary [18]; the presence of defect states was neglected.

In this Chapter, we aim to enrich the analysis of Malik and O’Leary [18], exam-

ining the role that defect states play in shaping the optical response of a-Si:H. We

do so by generalizing the empirical DOS model of Malik and O’Leary [18] to include

defect states. In particular, both valence band defect (VBD) states and conduction

band defect (CBD) states are added to the distributions of VBB, VBT, CBB, and

CBT states considered by Malik and O’Leary [18]. Accordingly, optical transitions

from the VBB states to the CBD states (VBB-CBD optical transitions), from the

VBT states to the CBD states (VBT-CBD optical transitions), from the the VBD

states to the CBB states (VBD-CBB optical transitions), from the VBD states to the

CBT states (VBD-CBT optical transitions), and from the VBD states to the CBD

states (VBD-CBD optical transitions), in addition to the aforementioned VBB-CBB,

VBB-CBT, VBT-CBB, and VBT-CBT optical transitions, are accounted for within

the framework of this more generalized empirical model for the DOS functions. Using

this enriched model, initially the contrast between results obtained with and without

defect states is used in order to examine how distributions of defect states influence

the corresponding optical response. Then, with defect states included, the contribu-

tions to the optical response attributable to the various types of optical transitions

will be determined. Finally, we demonstrate how we are able to capture the spectral

dependence of the optical absorption coefficient associated with a defect absorption

influenced sample of a-Si:H using our empirical DOS model with defect states in-

cluded.
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5.2 Analytical framework

For the specific case of a-Si:H, Jackson et al. [19] demonstrate that

ε2 (~ω) = 4.3× 10−45 R2 (~ω) J (~ω) , (5.1)

where R2 (~ω), the normalized dipole matrix element squared average, is in units of

Å2 and J (~ω), the joint density of states (JDOS) function, is in units of cm−6eV−1.

The experimental results of Jackson et al. [19] suggest, for ~ω between 0.6 and 3.0 eV,

that R2 (~ω) ' 10 Å2. As a result, for this range of photon energies, our analysis

reduces to the determination of the JDOS function itself. Assuming zero-temperature

statistics, this JDOS function may be expressed as an integral over the valence band

and conduction band DOS functions. That is,

J (~ω) ≡
∫ ∞
−∞

Nv (E) Nc (E + ~ω) dE, (5.2)

where Nv (E) and Nc (E) denote the valence band and conduction band DOS func-

tions, respectively, Nv (E) ∆E and Nc (E) ∆E representing the number of one-

electron valence band and conduction band states, between energies [E,E + ∆E],

per unit volume.

For the purposes of this analysis, we adopt an elementary empirical model for

these DOS functions that captures the basic expected features. In particular, in the

absence of defect states, we follow the approach of Jiao et al. [20] and O’Leary et

al. [18, 21–26], and assume exponential distributions of tail states and square-root
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distributions of band states. That is, we set

Nv (E) = Nvo



√
Ev − EvT

exp

(
EvT
− Ev
γv

)
exp

(
Ev − E
γv

)
, E > EvT

√
Ev − E, E ≤ EvT

, (5.3)

and

Nc (E) = Nco



√
E − Ec, E ≥ EcT

√
EcT − Ec exp

(
Ec − EcT

γc

)
exp

(
E − Ec
γc

)
, E < EcT

, (5.4)

where Nvo and Nco denote the valence band and conduction band DOS prefactors,

respectively, Ev and Ec represent the valence band and conduction band band edges,

γv and γc are the breadths of the valence band and conduction band tails, and EvT
and

EcT are the critical energies at which the exponential and square-root distributions

interface; this model is identical to that employed by Malik and O’Leary [18]. It should

be noted that this model implicitly requires that Ev −EvT
≥ 0 and EcT −Ec ≥ 0. It

should also be noted that Nv (E) and Nc (E) are continuous functions of energy.

With defect states included, we follow the spirit of the analysis Shur and Hack [27],

Shaw and Hack [28], Shur, Hack, and Shaw [29], and Slade [30] and spline additional

exponential distributions, of greater breadths than the valence band and conduc-

tion band tails, onto the valence band and conduction band tails.1 As a result, our

1An exact use of the model of Shur and Hack [27], in which the conduction band DOS below the
band edge is modeled by the sum of two exponential distributions, a narrow exponential distribution
corresponding to the tail states and a broad exponential distribution corresponding to the defect
states, makes it difficult to clearly dilenate between the tail and defect state distributions. The same
problem is found for the models of Shaw and Hack [28], Shur, Hack, and Shaw [29], and Slade [30].
Given that a clear separation between these states is vital to our analysis, we proposed an alternate
model for the DOS functions which does provide for a clear dileneation between the states. With
an appropriate selection of parameters, the differences between these models are relatively minor.
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empirical model for the DOS functions becomes

Nv (E) = Nvo



√
Ev − EvT

exp

(
EvT
− Ev
γv

)
exp

(
Ev − EvD

γv

)
exp

(
EvD
− E

γvD

)
,

E > EvD

√
Ev − EvT

exp

(
EvT
− Ev
γv

)
exp

(
Ev − E
γv

)
,

EvT
> E ≥ EvD

√
Ev − E,

E ≤ EvT

,

(5.5)

and

Nc (E) = Nco



√
E − Ec,

E ≥ EcT

√
EcT − Ec exp

(
Ec − EcT

γc

)
exp

(
E − Ec
γc

)
,

EcD ≤ E < EcT

√
EcT − Ec exp

(
Ec − EcT

γc

)
exp

(
EcD − Ec

γc

)
exp

(
E − EcD
γcD

)
,

E < EcD

,

(5.6)

where γvD
and γcD represent the breadths of the valence band and conduction band

defect distributions, and EvD
and EcD denote the critical energies at which the valence

band and conduction band tails interface with the corresponding defect distributions,

133



Chapter 5

Nvo, Nco, Ev, Ec, γv, γc, EvT
, and EcT being as defined previously; as with the

defect-free model, i.e., Eqs. (5.3) and (5.4), we note that Nv (E) and Nc (E) are

continuous functions of energy. We assume that γvD
≥ γv, γcD ≥ γc, EvD

> EvT
, and

EcT > EcD for the purposes of this analysis. Note that in the limit that γvD
reduces

to γv, that Eq. (5.5) reduces to Eq. (5.3), and that in the limit that γcD reduces to

γc, that Eq. (5.6) reduces to Eq. (5.4), i.e., our generalized empirical DOS model

with defect states included reduces to our defect-free empirical DOS model. For the

purposes of this analysis, we adopt the same nominal a-Si:H modeling parameter

selections as that employed by Malik and O’Leary [18], i.e., we set Nvo = Nco =

2 × 1022 cm−3eV−3/2, Ev = 0.0 eV, Ec = 1.7 eV, γv = 50 meV, γc = 27 meV,

and Ev − EvT
= EcT − Ec = 35 meV, noting that these parameter selections are

representative of a-Si:H [31, 32]. We complete our specification of parameters by

borrowing from the analysis of Slade [30], setting γvD
= 130 meV, γcD = 80 meV,

EvD
− Ev = 400 meV, and Ec − EcD = 200 meV.2 These nominal a-Si:H modeling

parameter selections, employed for the purposes of this analysis, are tabulated in

Table 5.1. The resultant DOS functions are depicted in Figure 5.1, the distributions

of VBB, VBT, VBD, CBB, CBT, and CBD electronic states being clearly depicted.

Representative VBB-CBB, VBB-CBT, VBT-CBB, VBT-CBT, VBD-CBB, and VBD-

CBT optical transitions are depicted. Representative VBB-CBD, VBT-CBD, and

VBD-CBD optical transitions are not depicted as they are found to make relatively

minor contributions to the JDOS function.

5.3 Results

In Figure 5.2, we plot the JDOS function associated with a-Si:H, J (~ω), de-

termined through an evaluation of Eq. (5.2). In order to determine the role that

2These values are actually rounded values from the selections of Slade [30].
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Figure 5.1: The valence band and conduction band DOS functions associated with a-Si:H.
The valence band DOS function, Nv (E), specified in Eq. (5.5), is determined assuming the
nominal a-Si:H parameter selections Nvo = 2×1022 cm−3eV−3/2, Ev = 0.0 eV, γv = 50 meV,
Ev − EvT = 35 meV, γvD = 130 meV, and EvD − Ev = 400 meV. The conduction band
DOS function, Nc (E), specified in Eq. (5.6), is determined assuming the nominal parameter
selections Nco = 2 × 1022 cm−3eV−3/2, Ec = 1.7 eV, γc = 27 meV, EcT − Ec = 35 meV,
γcD = 80 meV, and Ec − EcD = 200 meV. The critical points at which the band states
and tail states interface, EvT and EcT , are clearly marked with the dashed lines and the
arrows. The critical points at which the tail states and defect states interface, EvD and EcD ,
are also marked with the dashed lines and the arrows. Representative VBB-CBB, VBB-
CBT, VBT-CBB, VBT-CBT, VBD-CBB, and VBD-CBT optical transitions are depicted.
Representative VBB-CBD, VBT-CBD, and VBD-CBD optical transitions are not depicted
as they are found to make relatively minor contributions to the JDOS function.
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Figure 5.2: The JDOS function, J (~ω), associated with a-Si:H, determined through an
evaluation of Eq. (5.2). For the purposes of this analysis, we performed this evaluation
with and without the defect states taken into account. In the absence of defects, Nv (E)
and Nc (E) are as specified in Eqs. (5.3) and (5.4), respectively. With defects taken into
account, Nv (E) and Nc (E) are as specified in Eqs. (5.5) and (5.6), respectively. The
modeling parameters are set to their nominal a-Si:H values for the purposes of this analysis;
recall Table 5.1. EcT − EvT and EcT − EvD , critical energies in our JDOS analysis, are
clearly marked with the dashed lines and the arrows.
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Table 5.1: The nominal a-Si:H modeling parameter selections employed for the purposes
of this analysis.

parameter (units) value

Nvo (cm−3eV−3/2) 2× 1022

Nco (cm−3eV−3/2) 2× 1022

Ev (eV) 0.0
Ec (eV) 1.7
γv (meV) 50
γc (meV) 27

Ev − EvT
(meV) 35

EcT − Ec (meV) 35
γvD

(meV) 130
γcD (meV) 80

EvD
− Ev (meV) 400

Ec − EcD (meV) 200

defect states play in influencing this JDOS function, we perform this evaluation with

and without defect states taken into account. The modeling parameters are set to

their nominal a-Si:H values for the purposes of this analysis; recall Table 5.1. We

note that in the absence of defect states, the JDOS function exhibits the spectral

response characteristic of an ‘ideal’ amorphous semiconductor, i.e., an algebraic func-

tional dependence beyond the optical gap and a sub-gap exponential tail [19]. This

exponential tail, whose onset corresponds to the onset of optical transitions involving

the exponentially distributed tail states, i.e., ~ω < EcT − EvT
, has a breadth that is

determined by the dominant tail breadth, i.e., γv for the case of a-Si:H. With defect

states included, however, the JDOS function broadens considerably at low photon

energies, corresponding to the onset of significant optical transitions involving the

VBD states, i.e., ~ω < EcT − EvD
. The breadth of the JDOS function for this range

of photon energies is determined by the dominant defect distribution breadth, i.e.,

for our nominal a-Si:H parameter selections, γvD
.

In order to quantitatively assess the impact of each type of optical transition on

the overall JDOS function associated with a-Si:H, in Figure 5.3 we plot the fractional
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Figure 5.3: The fractional contributions to the overall JDOS function associated with the
various types of a-Si:H optical transitions. The contribution attributable to the VBB-CBB
optical transitions is shown with the solid blue line. The contribution attributable to the
VBB-CBT optical transitions is shown with the solid red line. The contribution attributable
to the VBT-CBB optical transitions is shown with the solid green line. The contribution
attributable to the VBT-CBT optical transitions is shown with the solid yellow line. The
contribution attributable to the VBD-CBB optical transitions is shown with the solid purple
line. The contribution attributable to the VBD-CBT optical transitions is shown with the
solid light blue line. The contributions to the JDOS function attributable to the VBB-CBD,
VBT-CBD, and VBD-CBD optical transitions are not depicted as they are found to make
relatively minor contributions to the JDOS function. The modeling parameters are set to
their nominal a-Si:H values for the purposes of this analysis; recall Table 5.1. EcT − EvT

and EcT −EvD , critical energies in our JDOS analysis, are clearly marked with the dashed
lines and the arrows. The online version is in color.
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contributions of the VBB-CBB, VBB-CBT, VBT-CBB, VBT-CBT, VBD-CBB, and

VBD-CBT optical transitions on the overall JDOS function as a function of the

photon energy, ~ω;3 the fractional contributions of the VBB-CBD, VBT-CBD, and

VBD-CBD optical transitions are not depicted as they are found to make relatively

minor contributions to the JDOS function. Once again, our modeling parameters are

set to their nominal a-Si:H values for the purposes of this analysis; recall Table 5.1.

We note that the contribution to the overall JDOS function attributable to VBB-CBB

optical transitions is nil until ~ω exceeds EcT − EvT
, beyond which it monotonically

increases with increasing ~ω. While VBB-CBB optical transitions dominate the form

of the overall JDOS for ~ω well in excess of the optical gap, other types of optical

transitions also play a role, albeit a diminishing one, as ~ω is increased for values of

~ω in excess of the optical gap. For ~ω set to 2 eV, 79.42, 7.04, and 13.53 % of the

overall JDOS function is attributable to the VBB-CBB, VBB-CBT, and VBT-CBB

optical transitions, respectively, VBT-CBT and VBD-CBT optical transitions making

no contribution to the JDOS function for this value of ~ω; small contributions to the

JDOS function attributable to VBB-CBD and VBD-CBB optical transitions are also

found, the VBT-CBD and VBD-CBD optical transitions making no contribution

to the JDOS function for this value of ~ω. For selections of ~ω well below the

optical gap, VBD-CBB and VBD-CBT optical transitions dominate, the contributions

attributable to the VBB-CBD and VBT-CBD optical transitions also playing a role,

albeit a diminishing one, as ~ω decreases. For ~ω set to 1.0 eV, 0.74, 0.69, 87.30,

and 11.23 % of the overall JDOS function is attributable to VBB-CBD, VBT-CBD,

VBD-CBB, and VBD-CBT optical transitions, respectively, VBB-CBB, VBB-CBT,

VBT-CBB, and VBT-CBT optical transitions making no contribution to the JDOS

3In order to determine the contribution to the JDOS function attributable solely to VBB-CBB,
VBB-CBT, VBB-CBD, VBT-CBB, VBT-CBT, VBT-CBD, VBD-CBB, VBD-CBT, and VBD-CBD
optical transitions, we integrate Eq. (5.2) over the appropriate energy intervals.
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function for this value of ~ω; small contributions to the JDOS function attributable

to VBD-CBD optical transitions are also found.

5.4 Comparison with experiment

We now demonstrate that our approach is able to capture the spectral depen-

dence of the optical absorption coefficient associated with a defect absorption influ-

enced sample of a-Si:H using our generalized empirical DOS model with defect states

included. The experimental optical absorption a-Si:H data set considered corresponds

to a sample prepared by Remĕs [33] (this experimental data set corresponds to the

“standard GD-a” data set depicted in Figure 5.2 of Remĕs [33]). Details, on the

means of sample preparation and on the approach taken whereby this optical absorp-

tion spectrum has been experimentally determined, are provided in the literature [33].

In order to determine the spectral dependence of the optical absorption coefficient,

α (~ω), we note that

α (~ω) =
ω

n (~ω) c
ε2 (~ω) , (5.7)

where n (~ω) denotes the spectral dependence of the index of refraction and c rep-

resents the speed of light in a vacuum. The spectral dependence of the refractive

index, n (~ω), is determined by fitting a tenth-order polynomial to the experimental

results of Klazes et al. [34] (the experimental data considered corresponds to that

presented in Figure 4 of Klazes et al. [34]); this approach was used previously by

Mok and O’Leary [25] and Thevaril and O’Leary [35], the deviations from this model

for n (~ω) not being expected to be significant. R2 (~ω) is set to 10 Å2. From Eqs.

(5.1), (5.2), (5.5), (5.6), and (5.7), the spectral dependence of α (~ω) may be deter-

mined. We find that by setting Nvo = Nco = 2.38 × 1022 cm−3eV−3/2, Ev = 0.0 eV,

Ec = 1.571 eV, γv = 75 meV, γc = 43 meV, Ev − EvT
= EcT − Ec = 35 meV,
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γvD
= 675 meV, γcD = 600 meV, EvD

− Ev = 425 meV, and Ec − EcD = 425 meV,

we are able to achieve a reasonably satisfactory fit with the a-Si:H experimental data

of Remĕs [33], this fit being shown in Figure 5.4. These a-Si:H modeling parameter

selections, employed for the purposes of this fit, are tabulated in Table 5.2. The large

values assigned to γvD
and γcD , 675 and 600 meV, respectively, are consistent with

that determined directly through the fit of an exponential function, αoD
exp

(
~ω
EoD

)
,

to the lower energy portion of the experimental a-Si:H optical absorption spectrum

of Remĕs [33]; we find that such a fit yields an EoD
value equal to 700± 40 meV. The

resultant fit is depicted in Figure 5.4.

Table 5.2: The a-Si:H modeling parameter selections employed for the purposes of the fit
to the experimental data of Remĕs [33] shown in Figure 5.4.

parameter (units) value

Nvo (cm−3eV−3/2) 2.38× 1022

Nco (cm−3eV−3/2) 2.38× 1022

Ev (eV) 0.0
Ec (eV) 1.571
γv (meV) 75
γc (meV) 43

Ev − EvT
(meV) 35

EcT − Ec (meV) 35
γvD

(meV) 675
γcD (meV) 600

EvD
− Ev (meV) 425

Ec − EcD (meV) 425

5.5 Conclusions

In conclusion, using an empirical model for the DOS functions associated with

a-Si:H, with defect states taken into account, we examined how the distributions of

such states shape the optical response of this material. The contributions to this

response attributable to the various types of optical transitions were also determined.
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Figure 5.4: The optical absorption spectrum, α (~ω), associated with a-Si:H. The exper-
imental data of Remes̆ [33] is depicted with the solid points; this experimental data set
corresponds to the “standard GD-a” data set depicted in Figure 5.2 of Remes̆ [33]. The fit
to this data set, determined using the modeling parameter selections specified in Table 5.2,
is shown with the solid line. The fit of the lower portion of this spectrum to an exponential
function, αoD exp

(
~ω
EoD

)
, is shown with the dashed line; the fit was obtained for experimen-

tal data with ~ω < 1.4 eV. The dashed line corresponding to this fit has been extrapolated
out to 1.45 eV so that it is observable. The determined value of EoD corresponding to this
fit is 700± 40 meV.
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Finally, we demonstrated that we are able to capture the spectral dependence of the

optical absorption coefficient associated with a defect absorption influenced sample

of a-Si:H using our empirical formalism for the DOS functions associated with this

material.
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Conclusions

A quantitative model for the spectral dependence of the optical properties asso-

ciated with amorphous semiconductors, which allows for the ready determination of

the underlying modeling parameters from the results of experiment, has been devised.

This model stems directly from a simplified empirical model for the DOS functions,

Nv (E) and Nc (E), that only considers VBB, VBT, and CBB electronic states, i.e.,

the CBT electronic states are neglected. This model assumes square-root distribu-

tions of VBB and CBB electronic states, and an exponential distribution of VBT

states. The optical properties of a-Si:H were then determined through the evaluation

of the corresponding JDOS function, J (~ω). A comparison with the results of exper-

iment was used in order to validate the model and in order to gain insight into the

character of the optical response of a-Si:H.

In order to justify the neglect of the CBT states, initially, for the specific case

of a-Si:H, it was shown that the neglect of the CBT states has no real impact on

the obtained JDOS function, and that, therefore, the optical properties of a-Si:H

may be accurately determined using this simplified empirical model for the DOS

functions. This was done through the use of a general empirical model for the DOS

functions of O’Leary et al. [1], this model including VBB, VBT, CBB, and CBT

electronic states. Square-root distributions of VBB and CBB states were assumed
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and exponential distributions of VBT and CBT were assumed. By examining the

role that the conduction band tail breadth, γc, plays in determining the form of the

resultant JDOS function, J (~ω), it was shown that when the conduction band tail

breadth, γc, is significantly less than the valence band tail breadth, γv, the CBT states

can be ignored in the determination of the JDOS function, J (~ω). Experimental

evidence was presented that confirmed this to be the case for the specific case of

a-Si:H. Thus, the use of a simplified empirical DOS model, that neglects CBT states,

was justified for the specific case of this material.

In order to further simplify this empirical model for the DOS functions, it was

further assumed that the derivative of the valence band DOS function is continuous

at the energy at which the square-root and exponential functional dependencies in-

terface; it was already assumed that the valence band DOS function is continuous

at this interface. This simplification allowed for the casting of the JDOS evaluation

into a dimensionless format. This dimensionless formalism for the JDOS function

was shown to provide a platform for the comparison of disparate optical absorption

spectra, with differing energy gaps and Urbach tail breadths. The applicability of

this formalism was then tested through an analysis of a large number of a-Si:H ex-

perimental data sets. From this analysis, insights into the optical response of this

material were gleaned. In particular, the similarity in the results suggest a ‘universal’

character common to the spectral dependence of all the optical absorption spectra

associated with this material.

Finally, the role that defect states play in shaping the optical response of a-Si:H

was probed. In order to perform this analysis, the empirical model for the DOS

functions was modified in order to include VBD and CBD states. This was done by

splining exponential tails, of greater breadth than the VBT and CBT tail breadths,

onto the VBT and CBT states, these new exponential distributions modeling the dis-
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tributions of defect states. With this model for the VBD and CBD states established,

the contributions to the JDOS function, attributable to the various types of optical

transitions involving these defect states, was then assessed. A comparison with the

results of experiment was used in order validate this modeling approach.

There are a number of further developments that can be pursued in order to

further develop this body of work. Whether or not this ‘universal’ relationship, found

for the case of a-Si:H, also applies to other materials, is certainly worthy of further

investigation. There is also the question as to whether or not, through the use of this

dimensionless JDOS formalism, there are efficient and effective means of extracting

the underlying parameters from the results of experiment more directly rather than

just a visual examination of the tightness of the resultant fit? Can this process be

systematized within the framework of a formal error analysis? There is also the

question as to whether or not it is possible to “map out” the optical response of

a-Si:H. Through an exhaustive examination of as many a-Si:H experimental optical

absorption data sets as possible, as yet unknown correlations between these modeling

parameters may be discovered. This may allow one to effectively reduce the number

of independent modeling parameters in the analysis of this material, allowing for the

entire parameter space to be probed much more efficiently and effectively. Finally,

there is the matter of using the obtained model in order to quantitatively predict and

improve on the device performance of a-Si:H based electron devices.
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