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ABSTRACT 
 

Divergent selection between contrasting habitats has the potential to drive adaptive 

divergence and the evolution of reproductive isolation in the face of initially high gene 

flow. This work explores the genetic divergence in a young ecological species pair, 

Daphnia pulex and Daphnia pulicaria, during habitat transition events, by surveying 363 

individuals from 9 lakes and 8 ponds in Southern Ontario and Michigan. I conducted a 

phylogenetic and population genetics study using the mitochondrial NADH 

dehydrogenase 5 (ND5) gene, the nuclear Lactate dehydrogenase A (Ldh-A) locus, and 

21 microsatellite markers. A discordant phylogenetic signal between nuclear and 

mitochondrial markers suggests a prolonged history of hybridization and introgression 

between lake and pond species. Population genetic analysis, based on nuclear markers, 

reflects a low level of contemporary gene flow, clear genetic differentiation between 

pond and lake populations, and additional substructure within lakes, suggesting the 

existence of strong habitat isolating barriers between ponds and lakes. 
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CHAPTER I 

INTRODUCTION 

Ecological speciation with gene flow 

Ecological processes are central to the formation of new species when barriers to gene 

flow evolve between populations as a result of ecologically-based divergent selection 

(Schluter and Conte 2009; Rundle and Nosil 2005) such as in a habitat transition event. 

Habitat isolation is usually based on the inability of a species to use another species’ 

environment, and rests on genetically based differences in fitness associated with habitat 

use (Coyne and Orr 2004). The process of populations becoming differentially adapted to 

occupy distinct habitats or utilize different resources while reproductive isolation 

develops incidentally is called by-product speciation (Rice 1987; Rice and Hostert 1993; 

Rundle and Whitlock 2001). Several laboratory experiments have simulated by-product 

speciation using Drosophila (Kilias et al. 1980; Dodd 1989; Rice and Salt 1990) and the 

yeast Saccharomyces cerevisiae (Dettman et al. 2007). However, examples of speciation 

by habitat isolation from nature are rare (Schluter 2002), mainly because it is difficult to 

assess if habitat separation is the main mechanism that reduces gene flow during the 

incipient stage of speciation (Coyne and Orr 2004). However, a few cases of ecological 

speciation have been explored in which ecological factors were the main driving force of 

speciation. For example, the freshwater amphipod, Hyalella azteca exhibits substantial 

adaptive, genetically based phenotypic variation among populations that occupy distinct 

habitat types and likely experienced recent ecological speciation (McPeek and Wellborn 

1998). Lakes with fish contain a small-bodied form of the amphipod, and fishless ponds 

and marshes contain a large-bodied form (Wellborn 1994). Different morphs of the three-
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spined stickleback fish, Gasterosteus aculeatus, evolved independently across multiple 

lake-stream habitat transitions that usually coincide with limnetic-benthic ecotones 

(Berner et al. 2009). These ecological populations have diverged with gene flow within a 

few thousand generations and make a case for ecological speciation in a parapatric 

context.  

Speciation in the face of gene flow is generally thought to be difficult, because gene flow 

constrains population differentiation and prevents the evolution of strong reproductive 

isolation (Mayr 1963; Coyne and Orr 2004). However, recent studies show that strong 

natural selection may promote local adaptation and ecological speciation, even in the face 

of extensive gene flow. Niemiller et al. (2008) present phylogenetic evidence from 

nuclear and mitochondrial genealogies suggesting that the Tennessee cave salamander 

(Gyrinophilus palleucus) originated from its sister species, the surface-dwelling spring 

salamander (Gyrinophilus porphyriticus) via divergence with gene flow. In the sympatric 

host races of the larch budmoth, Zeirphera diniana, evidence from RFLP markers show 

that strong divergent selection acts on a few linkage groups, while the selectively neutral 

part of the genome is subjected to homogenizing gene flow between races (Emelianov et 

al. 2004). The two forms are considered host races rather than full species because of the 

potential for hybridization, but sympatric differentiation is maintained by selection. In 

another study of the African malaria mosquito, Anopheles gambiae, which is divided into 

two sympatric, partially isolated subtaxa, the M and S form, a genome scan revealed that 

differentiation between the two forms is only present in three small regions of the 

genome (Turner et al. 2005). These regions of differentiation likely contain genes 
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responsible for the ecological and behavioral isolation between the M and S form of the 

mosquito. 

In ecological speciation with gene flow, divergence can occur in some genes even if there 

is significant exchange of other regions (Hey 2006; Via 2009). A simple model by Hey 

(2006) proposes that hybrids carry a full set of genes from each population, but backcross 

hybrids do not, and so it is possible for some genes to pass between populations if 

backcross hybrids vary in their fitness depending on which genes they carry. An 

extension of this idea is the “transporter” hypothesis (Schluter and Conte 2009) which 

proposes that in the early stages of divergence, standing variation of one population is 

maintained by recurrent gene flow from another population. A slightly different model is 

proposed by Via (2009), where she describes the genome of sister species in early 

speciation as having a mosaic nature, where ecologically important genomic regions 

resist gene exchange, while gene flow continues over most of the genome. Evidence for 

gene flow may be revealed by discordance between different gene genealogies often 

caused by hybridization (Wang et al. 1997; Dopman et al. 2005; Bull et al. 2006; Putman 

et al. 2007; Chen et al. 2009), and suggests a history of divergence with gene flow.  

Despite the above mentioned studies, demonstrating divergence with gene flow remains 

somewhat difficult because weak genetic differentiation between taxa could be due to 

recent divergence, gene flow, or a combination of both (Nosil 2008). Our understanding 

of the genetics of ecological speciation is very limited (Rundle and Nosil 2005; Schluter 

2009) and future work on the ecological and genetic factors reducing gene flow can help 

increase our understanding of the conditions that facilitate divergence in the face of gene 
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flow (Nosil 2008). To accomplish this, new model systems are needed to better 

understand the evolutionary forces driving speciation with gene flow, such as during 

habitat transition.  

Studying the concept of speciation is best achieved through comparative studies of 

evolutionary young lineages where the process of strengthening reproductive isolation is 

still active (Bernatchez 2004; Via 2009). Daphnia (Crustacea: Branchipoda) has been 

used as a model organism in many diverse areas of biology (Peters and de Bernandi 

1987) and its wide geographic distribution across many aquatic environments, easy 

cultivation under controlled conditions, as well as the availability of many genomic 

resources, makes it also an ideal study system for studies of speciation. In this study, I am 

using two ecological sister species (Daphnia pulex and Daphnia pulicaria) which are part 

of the Daphnia pulex species complex to study speciation with gene flow during habitat 

transition between lakes and ponds. By conducting both a phylogenetic and population 

genetics study and using a variety of different genomic markers, I evaluate contemporary 

and historical patterns of gene flow between and among the two ecological sister species. 

I also examine the population structure and the colonization history of these species. 

Ultimately, this study introduces Daphnia as a model system for the study of speciation 

with gene flow during habitat transition and reveals interesting findings about speciation 

in freshwater organisms. 
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CHAPTER II 

SPECIATION WITH GENE FLOW IN DAPHNIA PULEX AND DAPHNIA 

PULICARIA* 

INTRODUCTION 

Speciation in Daphnia 

The relative contribution of geography and ecology to the diversification of freshwater 

organisms is little understood. While allopatric isolation is considered the main 

mechanism of speciation in zooplankton species such as Daphnia (Adamowicz et al. 

2009), colonization of new aquatic habitats has been also proposed to initiate many 

speciation events in cladocerans (Lynch 1985). The genus Daphnia (Cladocera) is a 

group of widespread freshwater crustaceans which includes about 200 species (Colbourne 

et al. 1997), of which 34 species inhabit North America (Hebert 1995). It is believed that 

this genus originated over 200 million years ago, during the Mesozoic (Colbourne and 

Hebert 1996), and fossil records from Australia confirm that the genus has been in 

existence for at least 70 million years and closely related genera have existed for at least 

120 million years (Fryer 1991). The genus includes 3 subgenera (Daphnia, 

Hyalodaphnia, and Ctenodahnia) comprised of about 15 species complexes (Colbourne 

and Hebert 1996) that possess strong dispersal abilities due to their diapausing eggs being 

encased in a modification of the female’s carapace known as an ephippium, typical of 

Anomopoda zooplankton. 

 
*This chapter is the outcome of joint research as stated in the declaration of co-authorship page. 
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Attempts to understand taxonomic relationships within the genus Daphnia have been 

limited by the constrained morphological diversity and dramatic phenotypic plasticity of 

this group (Hebert 1978; Dodson 1989; Lampert 1994; Ghadouani and Pinel-Alloul 

2002), the occurrence of interspecific hybrids (Taylor and Hebert 1992; Hebert and 

Finston 1996; Spaak 1997; Weider et al. 1999), the total suppression of sexual 

reproduction in some groups (Crease et al. 1989; Crease and Lynch 1991; Hebert et al. 

1993), and the occurrence of polyploidy (Dufresne and Hebert 1994; Adamowicz et sl. 

2002; Mergeay et al. 2008; Vergilino et al. 2009). All these factors make the 

establishment of species boundaries difficult. Allozyme analyses have traditionally been 

used to distinguish between species in the Daphnia pulex complex (Hebert 1987) and 

more recently, sequence analysis provided more insight into the evolutionary history of 

this group (e.g. Colbourne and Hebert 1996; Adamowicz et al. 2009). Lynch (1985) was 

the first to propose an explicit mechanism of speciation for cladocerans where he argues 

for a combined role of founder effect and adaptive divergence in Daphnia speciation. 

According to his model, speciation via the founder effect is much more likely to occur if 

it is accompanied by a shift in environment since this can facilitate the development of 

reproductive isolation through different selective pressures in different habitats. De 

Meester et al. (2002) extended this idea and argued that once a population is locally 

adapted, a strong colonization “priority effect” reduces much of the gene flow between 

differently adapted aquatic habitats. This priority effect is achieved by founder events, 

rapid population growth and local adaptation upon colonization, resource 

monopolization, and the buildup of large resting egg banks, which together resists the 
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persistence of newly invading genotypes and results in high genetic subdivision and 

speciation.  

Daphnia pulex and Daphnia pulicaria 

It has been suggested that habitat transitions followed by local adaptation played an 

important role in the evolution of the Daphnia pulex species complex (Lynch et al. 1999; 

Pfrender et al. 2000), which includes several ecological species inhabiting a variety of 

different freshwater habitats (Adamowicz et al. 2009). Some of the species in this 

complex include: Daphnia middendorffiana which is an arctic lake species (Hobaek and 

Weider 1999), Daphnia tenebrosa which inhabits both ponds and lakes in the Arctic 

(Edmondson 1955), Daphnia melanica that is found in sand dune ponds (Hebert 1995), 

Daphnia pulex which is a temperate pond species, and Daphnia pulicaria which is one of 

the most widely distributed North American lake species (Hebert 1995). The two sister 

species, Daphnia pulex and Daphnia pulicaria, are estimated to have diverged ~82,000 

years ago but still experience significant levels of gene flow (Omilian and Lynch 2009). 

Hybrids of the two species can be successfully produced in laboratory settings (Heier and 

Dudycha 2009), and can be found in nature in disturbed, deforested ponds, and generally 

reproduce by obligate parthenogenesis (Hebert and Crease 1983). The opportunity for 

gene flow between lake and pond populations is high because Daphnia can easily 

disperse across wide distances (Cohen and Shurin 2003) when its long term dormant 

eggs, that are enclosed with an ephippial case, are transported by wind, rain (Cáceres and 

Soluk 2002), or animal vectors (Allen 2009). However, despite Daphnia’s ability to 
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disperse between water bodies, genetic data indicates low levels of achieved gene flow 

between lake and pond populations (Pfrender et al. 2000). 

It has been proposed that barriers to gene flow between lake and pond Daphnia are likely 

ecologically based (Lynch 1985; Heier and Dudycha 2009) and divergent selection 

between D. pulex and D. pulicaria populations should be substantial. Several studies 

have found that lakes and ponds have different physical and biotic conditions (Wellborn 

et al. 1996), and that Daphnia in these habitats differs significantly in its life history traits 

(Dudych and Tessier 1999; Dudycha 2003; Dudycha 2004). Daphnia pulex is present in 

shallow, fishless, temporary ponds for a short period of time in the spring, while D. 

pulicaria populations can persist in stratified lakes year-round (Cáceres and Tessier 

2004). In lakes, Daphnia populations feed on phytoplankton and are usually exposed to 

predation by fish, while in temporal ponds, they also feed on detritus, experience mainly 

invertebrate predation and experience, anoxia, and complete freezing (Colbourne et al. 

1997). In the presence of fish, D. pulicaria inhabits the cold hypolimnetic region to avoid 

fish predation and competition from other Daphnia species (Wright and Shapiro 1990), 

while in the absence of fish, D. pulicaria largely feeds in the epilimnetic waters (Werner 

et al. 1977) and has been observed to be up to 3 times more abundant (Leibold 1991). 

Additionally, sediment egg banks contain a larger volume of resting eggs in lakes than in 

ponds (Cáceres and Tessier 2004), and this is likely caused by a lower hatching rate in 

the lakes due to differences in environmental cues between lake and pond habitats 

(Cáceres and Tessier 2003). Pond Daphnia grow faster and have shorter life spans 

(Dudych and Tessier 1999; Dudycha 2003; Dudycha 2004), experience greater changes 

in density, and have greater early reproductive output than lake Daphnia (Dudycha 
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2004). All these differences between pond D. pulex and lake D. pulicaria indicate that the 

two species have diverged ecologically and make for a good study system of ecological 

speciation with gene flow involving habitat transition between lakes and ponds.  

Divergence and speciation between Daphnia pulex and Daphnia pulicaria 

Models for gene exchange between the ecologically distinct Daphnia pulex and Daphnia 

pulicaria have previously been proposed. Pfrender and colleagues (2000) suggest that in 

Oregon, permanent lake populations periodically colonize temporary ponds following 

floods and must then quickly adapt to an ephemeral habitat (Pfrender et al. 2000). 

Despite this long-term gene flow, D. pulex and D. pulicaria in Oregon form 

monophyletic clades (based on 10 allozyme and 6 microsatellite loci, Morgan et al. 

2001). However, an allozyme screen has been used in the past as a diagnostic marker to 

distinguish between pond D. pulex and lake D. pulicaria (Hebert et al. 1989; Hebert et al. 

1993), where pond individuals are usually homozygous for the “slow” (S) allele and lake 

individuals are homozygous for the “fast” (F) allele. Additionally, a recent study of 

variation at six nuclear protein-coding loci indicates that Daphnia pulex and Daphnia 

pulicaria form distinct genetic clusters and are also monophyletic with respect to their 

closest relative, D. arenata (Omilian and Lynch 2009). The study also reports high levels 

of gene flow between D. pulex and D. pulicaria. However, based on mitochondrial data, 

as much as 19% sequence divergence separates the different lineages found within this 

complex (Colbourne et al. 1998). North American D. pulex and D. pulicaria belong to the 

same major clade within this complex, with North American D. pulicaria consisting of 

several species that include, polar, western, and eastern D. pulicaria lineages.  
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Since D. pulex and D. pulicaria are not completely reproductively isolated but clearly 

occupy different habitats, there is a need to study the extent of genetic mixing, both 

between and among habitats, to better understand the colonization and evolutionary 

history of Daphnia. For this study, I most often use Van Valen’s (1976) ecological 

species concept that defines a species as a lineage which occupies an adaptive zone 

minimally different from that of any other lineage in its range and which evolves 

separately from all lineages outside its range. Using the mitochondrial ND5 gene, the 

nuclear Ldh-A gene, and 21 microsatellite markers, I explore the evolutionary 

consequences of habitat transition events in the Daphnia pulex complex. I present a 

phylogenetic and population genetics study using 363 Daphnia isolates collected from 

natural ponds and lakes in Southern Ontario and Michigan. Specifically, I evaluate the 

extent of gene flow between lake and pond D. pulicaria and D. pulex populations in 

Southern Michigan and Ontario, examine the population structure and explore the history 

of the lake species.  
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MATERIALS AND METHODS 

Sample collection 

Lake samples were collected by towing a plankton net vertically through the deepest part 

of each lake, while pond samples were taken with a dip net from shore. After collection, 

single individual female Daphnia were placed in separate 250 ml beakers and allowed to 

reproduce parthenogenetically to establish clonal lines, hereafter referred to as isolates. 

The isolates were maintained in filtered river water at 15 - 18°C with a 12-h light, 12-h 

dark photoperiod and fed every 3-4 days with a combination of the microalgae species 

Nannochloropsis and Tetraselmis (Reed Mariculture) diluted in ddH2O. After several 

weeks, 6-10 clonal individuals were collected from each beaker and immediately stored 

at -20°C.  

D. pulex and D. pulicaria were collected from a total of 15 habitats (9 lakes and 8 ponds) 

across Michigan, Illinois, and Ontario (figure 2.1). The mitochondrial ND5 gene was 

used to conduct a phylogenetic study on a large number of isolates (363) with low 

sampling (3-14 individuals) per habitat (tables 2.1A, 2.1B). In contrast, the population 

genetic survey was based on a focal geographic area (southwestern Ontario and 

Michigan) and on an intensive sampling of 3 lakes (165 isolates) and 2 ponds (101 

isolates) with 35-86 isolates per habitat. The 165 lake D. pulicaria isolates were collected 

in July 2008 and May 2009 from three permanent lakes; Lawrence and Warner Lakes in 

Barry County and Three Lakes II in Kalamazoo County all located in southwestern 

Michigan, USA (figure 2.1, table 2.1B). All three lakes are hard water lakes with small 

surface area (<30 ha), relatively deep (>10m), thermally stratified (Leibold and Tessier 
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1991), and have similar zooplankton communities dominated by D. pulicaria and D. 

galeata mendotae (Haney and Hall 1975; Leibold and Tessier 1991). Warner Lake also 

contains D. retrocurva (Leibold and Tessier 1991). The 101 D. pulex isolates were 

collected from two temporary ponds, Disputed and Solomon, located in Southern Ontario 

and Michigan, respectively, in the spring and early summer of 2007 2008, and 2009 

(table 2.1A). 

Sexuality tests 

During optimal conditions, cyclically parthenogenetic (CP) females produce diploid eggs 

by apomixis which develop into genetically identical daughters. Certain environmental 

cues, such as warm temperatures and crowding can induce the production of males and 

haploid diapausing eggs, which need to be fertilized (Hebert and Crease 1983). Some 

populations reproduce by obligate parthenogenesis (OP), in which case the diapausing 

eggs are also produced by apomixis and do not require fertilization. Unlike the apomictic 

eggs, which develop directly into juveniles in the female’s brood pouch, the diapausing 

eggs are expelled into an ephippium, where they can remain dormant for days or decades 

(Heier and Dudycha 2009). D. pulicaria shows large between-population variation in the 

magnitude of investment in dormancy or sex (Cáceres and Tessier 2004), while D. pulex 

is more consistent and produces dormant eggs every year before its temporary habitat 

dries up. 

Since D. pulex is known to consist of cyclically parthenogenetic (CP) populations, 

obligately parthenogenetic (OP) populations, as well as populations with mixed 

reproductive strategies (Hebert and Crease 1983), extensive sexuality tests were 
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conducted on all pond isolates to determine their reproductive strategy. Single females 

were isolated and their mode of reproduction was determined using the method of Innes 

et al. (1986). Since lake populations were previously reported to be reproducing solely by 

CP (Tessier and Leibold 1997), sexuality tests were performed on a subset of 10 isolates 

from each lake to confirm that their mode of reproduction was indeed CP.  

Mitochondrial DNA amplification  

DNA was extracted from isolate cultures using the CTAB protocol described by Doyle 

and Doyle (1987) and the final yield of DNA was resuspended in 100 µl of H2O. An 897 

bp fragment of the NADH dehydrogenase 5 (ND5) gene was amplified using the forward 

primer: 5’GGGGTGTATCTATTAATTCG 3' and reverse primer: 

5’ATAAAACTCCAATCAACCTTG 3' (Colbourne et al. 1998). PCR was carried out in 

a 25 µl volume consisting of 1.5 µl DNA template, 1X PCR buffer with 0.25 mM of 

MgCl2, 2.5 units of Taq polymerase, 0.1 µM of dNTP, and 0.08 mM of each of the 

forward and reverse primers. The thermal cycle program included an initial denaturation 

step of 3 min at 95°C followed by 5 cycles of 35 s denaturation at 94°C, 35 s annealing at 

54°C, 40 s extension at 72°C followed by 30 cycles of 35 s at 94°C, 35 s at 50°C, and 40 

s at 72°C, with a final extension at 72°C for 4 min. PCR products were verified on a 1% 

agarose gel and sequenced with the forward primer using BigDye terminator sequencing 

chemistry. The reactions were resolved on an ABI 3130XL genetic analyzer (Applied 

Biosystems). Sequences were inspected and aligned using CODONCODE ALIGNER 2.0 

(CodonCode Corporation, Dedham, MA) and manually corrected.  
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Nuclear Lactate dehydrogenase survey  

Previous surveys of allozyme variation (Hebert et al. 1989; Hebert et al. 1993) have 

shown that lake populations are generally fixed for an electrophoretically “fast” (F) allele 

at the Lactate dehydrogenase A locus (Cristescu et al. 2008). Pond populations are either 

fixed for a “slow” (S) allele or are SF heterozygotes. SF heterozygotes have been 

reported to reproduce by OP (Innes et al. 1986) and been considered F1-generation 

hybrids of D. pulex and D. pulicaria (Hebert et al. 1993; Hebert and Finston 2001). 

Allele specific primers (Crease et al. 2010) were used to determine the Ldh-A genotype 

of each isolate (table AA). Primers that amplify the F allele are LdhAF-F; 

5’GAGCGATTTAACGTTGCGCCT’ and LdhAF-R: 

5’GGACGACTTGTGTGTGAATTTC. Primers that amplify the S allele are LdhAS-F; 

5’GAGCGATTTAACGTTGCGCCC3’ and LdhAS-R: 

5’GGACGACTTGTGTGTGAATTTG3’. Each isolate was tested with both sets of 

primers. PCR reactions and cycling conditions were the same as those used for ND5 

amplification. Alleles were resolved on a 1.5% agarose gel. To confirm the results, 

fifteen individuals were additionally analyzed using the traditional method of allozyme 

electrophoresis (Hebert and Beaton 1989). 

Microsatellite survey 

Twenty one unlinked and previously mapped microsatellite markers were chosen from 

different linkage groups of the D. pulex linkage map (Cristescu et al. 2006) and were 

used to genotype 266 isolates from three lake and two pond populations. The forward, 

sequence-specific primers were 5'-extended with the M13(-21) oligonucleotide, 
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according to the method described by Schuelke (2000). The PCR was performed in 12 µl 

reactions with 0.98 µl DNA template, 1X PCR buffer with 25 nmol of MgCl2, 0.5 units 

of Taq polymerase, 2.5 nmol of dNTP, 1 pmol of forward primer, 2 pmol of reverse 

primer, and 2 pmol of a universal fluorescently-labeled M13(-21) primer (NED, PET, 

FAM, VIC). A touchdown PCR was used to reduce nonspecific amplification. Thermal 

cycle programs include an initial denaturation step of 3 min at 95°C followed by 10 

cycles of 35 s denaturation at 94°C, 35 s at 60°C with the annealing temperature 

decreased by 1°C every cycle during each of the 9 following cycles, 45 s extension at 

72°C followed by 30 cycles of 35 s at 94°C, 35 s at 53°C, and 45 s at 72°C, with a final 

extension at 72°C for 10 min. Reactions were denatured for 5 min at 90°C, quickly 

cooled on ice and resolved on an ABI 3130 XL automated sequencer with GeneScanTM -

500 LIZTM internal size standard. Genotypes were scored using GENEMAPPER v4.0 

(Applied Biosystems) and verified manually by eye. 

Phylogenetic analyses 

Unique mitochondrial ND5 haplotypes were identified using DnaSP v.5.0 (Librado and 

Rozas 2009). Genetic diversity for mtDNA was characterized by the standard indices of 

haplotype diversity and nucleotide diversity using DNASP v 5.00.07 (Rozas et al. 2003). 

Phylogenetic analyses were performed using neighbor-joining (NJ) and Bayesian 

inference (BI) methods. Based on the phylogeny of the D. pulex complex constructed by 

Adamowicz et al. (2009), European Daphnia pulex (GenBank accession number 

DQ235231) was chosen as an outgroup. MODELTEST 3.7 (Posada and Crandall 1998) 

was used to select the best-fit model of sequence substitution (HKY+G). Neighbor-
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joining phylogenetic analysis was conducted in MEGA 4.0 (Tamura et al. 2007) based on 

nucleotide distances corrected using the Tamura–Nei model (Tamura & Nei 1993) with a 

gamma rate distribution (0.3241). Confidence level for the topology of the tree was 

estimated using bootstrap analyses with 1000 replicates. Bayesian phylogenetic analyses 

were performed in MrBayes 3.1.2 (Ronquist & Huelsenbeck 2003). All searches used 

random starting trees and employed four independent runs. Trees were sampled every 

100 generations for 6 million generations and the first 25% of all the trees were discarded 

as burn-in. The 50% majority rule consensus tree was generated from the remaining trees 

and the posterior probability of each node was calculated as the percentage of trees 

recovering any particular node. 

Since I was interested at looking at the close relationship of mitochondrial haplotypes 

between pond and lake individuals, a network was generated using all ND5 haplotypes 

from the panarctic Daphnia pulex clade and MI lake Daphnia pulicaria clade and 

excluding the western Daphnia pulicaria clade using TCS 1.0 (Clement et al. 2000). The 

program estimates genealogical relationships among sequences at the population level 

using the 95% statistical parsimony algorithm (Templeton et al. 1992).  

A NJ phylogeny was constructed based on microsatellites by calculating the commonly 

used Nei’s standard genetic distance Dm (1972) between genotypes of all pairs of 

individuals in POPULATIONS 1.2.30 (Langella 1999).  
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Population genetics analyses 

Allelic richness (Ar) at microsatellite loci was measured in each of the three lake and two 

pond populations as the number of alleles independent of sample size using FSTAT v. 

2.9.3.2 (Goudet 2001). Weir and Cockerham’s (1984) inbreeding coefficient (FIS ) was 

calculated for each population and linkage disequilibrium (LD) was measured between 

all pairs of loci in each population using GENEPOP online v.4.0.10 (Raymond and 

Rousset 1995). Alleles with a frequency of less than 10% were removed from linkage 

disequilibrium analysis because the rare alleles often give false positives.  

A probability test with Markov chain (1000 dememorization steps, 100 batches, and 1000 

iterations per batch) was conducted to determine the likelihood of two pairs of loci being 

in linkage disequilibrium. Significance levels were determined after Bonferonni 

correction of P-values (P<0.00048).  

Observed heterozygosity (HO) and unbiased estimates of expected heterozygosity from 

Hardy-Weinberg assumptions (HE) as well as P-values for tests of Hardy-Weinberg 

equilibrium (HWE) were calculated using ARLEQUIN version 3.1 (Excoffier et al. 

2005). Tests for deviations from HWE used Markov chain (1000 dememorization steps, 

100 batches, 1000 iterations per batch) and sequential Bonferonni correction was applied 

to determine significant P-values. The presence of null alleles was tested with the 

software MICRO-CHECKER version 2.2.0 (van Oosterhout et al. 2004). 

Repeated multilocus genotypes were detected using GENALEX v. 6 (Peakall and 

Smouse 2006). Repeated genotypes were removed from the dataset for all subsequent 

analyses because clonal amplification of genotypes can influence data interpretation 
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(Sunnucks et al. 1997). Microsatellite data analysis was performed with one 

representative of each genotype (i.e. clonal copies removed).  

Pairwise estimates of the fixation index, FST  from Weir and Cockerham (1984) were 

calculated as a measure of genetic differentiation among populations and tested for a 

significant departure from zero using permutation procedures in ARLEQUIN ver. 3.0 

(Excoffier et al. 2005). To examine fine-scale genetic patterns between lakes and ponds 

and among the three lake populations, I used GENALEX v.6 (Peakall and Smouse 2006) 

to construct a Principal Coordinates Analysis (PCA) to explore multivariate patterns of 

molecular diversity relative to populations. 

To further determine if there was genetic structure between ponds and lakes and among 

the lakes, a Bayesian inference of population structure was conducted using 

STRUCTURE v. 2.3.1 (Pritchard et al. 2000; Falush et al. 2003). This program uses 

multilocus genotypic data to define a set of populations with distinct allele frequencies, 

hereafter referred to as clusters, and assign individuals probabilistically to these defined 

clusters without prior knowledge of sampling location. Two separate analyses were 

conducted, the first included 2 ponds and 3 lakes and the second included only the 3 

lakes. For the lake and pond analysis I assessed likelihoods for models with the number 

of clusters (K) ranging from K = 1 to K = 5 (total number of populations) and for lakes K 

ranged from K = 1 to K = 3. For each value of K, I carried out 5 independent Markov 

Chain Monte Carlo (MCMC) runs with 100,000 generations discarded as burn-in 

followed by an additional 1,000,000 generations and results were consistent across runs. 

The optimal number of clusters was estimated by comparing the log-likelihood of the 
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data given the number of clusters [ln P(X|K)] (Pritchard et al. 2000) and by examining the 

standardized second order rate change of ln P(X|K) (∆K) (Evanno et al. 2005). Individual 

multilocus genotypes were then assigned to a cluster according to the HWE criteria 

(Pritchard et al. 2000). 

To illustrate the historical dispersal patterns between sites, a Bayesian method was used 

to calculate emigration and immigration rates with MIGRATE version 3.0.3 (Beerli 

2008). The number of migrants (Nm) per generation was calculated as θi Mi, where θi 

equals xNe
(i)µ and Mi equals mi/µ. Among the parameters, x is the inheritance parameter; 

Ne
(i) is the effective population size; µ is the mutation rate per locus per generation; and 

mi is the immigration rate. For my analysis, x was set as 4. This value is commonly used 

for nuclear gene data, and other parameters were estimated from the data by the program. 

A Brownian motion mutation model was used. I used 10 short chains (10,000 iterations) 

and 3 long chains (1,000,000 iterations) with 50,000 iterations discarded as an initial 

'burn-in' for the Bayesian search strategy. MIGRATE assumes that all interbreeding 

populations have been sampled, despite this limitation, I have chosen to use this software 

since it allows to estimate both emigration and immigration rates between all the 

populations.  
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RESULTS 

Phylogenetic Analyses 

The 687 bp long mitochondrial ND5 sequence-alignment of the 363 isolates contained 

539 conserved sites and 148 variable sites of which 88 were parsimony-uninformative. 

There were more haplotypes found among the two ponds (25) than among the three lakes 

(17; table 2.2) and haplotype diversity was slightly higher for ponds (0.89) than for lakes 

(0.82). However, nucleotide diversity was lower for ponds (0.006) than for lakes (0.025). 

The 50 unique haplotypes identified formed two well supported clades that correspond to 

the panarctic D. pulex (ppx) and western D. pulicaria (wpc) lineages identified by 

Colbourne et al. (1998). All isolates collected from ponds grouped within the ppx clade 

while lake isolates were found either in the ppx clade or in the wpc clade (figure 2.2). All 

but one of the isolates from Three Lakes II had a ppx mitochondrial profile (table 2.1B). 

Four isolates from Warner Lake had ppx mtDNA with the rest of the isolates having wpc 

mtDNA. In Lawrence Lake, 47% of the isolates were found to have ppx mtDNA and 

53% had wpc mtDNA.  

The network of the ppx clade displayed a star-shaped pattern. Two separate groups were 

detected within the network (figure 2.3) that corresponded with the clades observed in the 

NJ and BI analysis (figure 2.2). The most common haplotype, haplotype 2 (ppx), was the 

only one found in both lakes and ponds. Many of the haplotypes differed from haplotype 

2 by only 1-4 nucleotide differences, while a distinct group of lake haplotypes 

(corresponding with clade B in figure 2.2) differed from haplotype 2 by at least 8 
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nucleotides. Only lake isolates were found among this more distinct group, except some 

lake-pond hybrid (LDH heterozygotes) sampled from Windsor ponds. 

A neighbor-joining (NJ) phylogram was constructed based on 21 microsatellite loci 

(figure 2.4) and shows a clear separation with no overlap between lake and pond habitats. 

All of the pond isolates group into one clade, while all the lake isolates group into 

another. Lake isolates with the two different mitochondrial profiles group together. 

Genotypes at the Ldh-A locus  

Despite the occurrence of both ppx and wpc mtDNA in lake populations, all lake isolates 

were homozygous for the F allele at the Ldh-A locus and are referred to as Daphnia 

pulicaria. Moreover, all pond isolates that were determined to reproduce by CP were 

homozygous for the S allele and are referred to as Daphnia pulex. Out of the 136 total 

pond individuals screened in the large phylogenetic survey, 19 were determined to be OP 

and were either homozygous (SS) or heterozygous (SF) at the Ldh-A locus (table 2.1A, 

figure 2.2).  

Population genetics analyses 

The total number of alleles at each microsatellite locus ranged from 1 to 10 (table 2.3, 

figure 2.5). The allelic richness for the ponds ranged from 2.000 to 8.863, and for the 

lakes from 1.000 to 4.974. The observed heterozygosity for each microsatellite locus in 

each population ranged from 0 to 0.925. In total, 50 private alleles were found among the 

two pond populations and 6 private alleles in the three lakes, all with a frequency below 

25% except for one allele at locus d153 in Solomon Pond, which had a frequency of 68%. 
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At locus d174 on linkage group I, all lake populations were fixed for the same allele. 

Additionally, genetic diversity was very low in the lake populations at loci d015 and 

d111, on linkage groups II and VI respectively. Fifty-four out of 105 tests of HWE across 

all populations and loci were nominally significant (P<0.05) and 25 were significant after 

sequential Bonferroni adjustment (table 2.3). Each lake had ~3-4 loci (14-19% of loci) 

out of HWE. Disputed and Solomon ponds had 3 and 9 loci (14%, 43%) out of HWE 

respectively. Almost all loci that were out of HWE in the two ponds showed heterozygote 

deficiency (8 out of 9 in Solomon Pond and 3 out of 3 in Disputed Pond). There was no 

clear pattern of heterozygote deficiency or excess in the lakes. Low levels (10-24%) of 

null alleles were detected among the lakes and ponds (table 2.3). Isolates that had the 

same genotype at all 21 microsatellite markers were identified and clones were removed 

for all subsequent microsatellite analysis. 

Linkage disequilibrium 

The test for linkage disequilibrium (LD) between pairs of microsatellite loci indicated 

that lake populations have higher numbers of loci in LD than pond populations. After 

Bonferroni correction for multiple tests (P<0.00048), Lawrence Lake had the highest 

number of pairs of loci in LD with 34 out of 210 pairs, Warner Lake had 18 out of 210 

pairs in linkage disequilibrium, and Three Lakes II had the lowest number with 10 out of 

210 pairs of loci (table 2.6). The two pond populations had much lower levels of linkage 

disequilibrium; Solomon Pond had 3 pairs out of 210 pairs and Disputed Pond had 0 out 

of 210 pairs of loci in disequilibrium. A separate analysis was conducted for Lawrence 

Lake based on its mitochondrial profile; individuals with ppx mtDNA (Law2) had higher 
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levels of LD (31 pairs) than individuals with wpc mtDNA (Law1, 13 pairs). Locus pairs 

d186-d006 and d186-d148 were in LD in all the lake habitats. In addition 6 loci were 

found to be in LD with either of the three mitochondrial clades (A and B, or C) in 

Lawrence Lake; d027, d029, d186, d006, d148, d016 (table 2.7). Ten loci were identified 

(d070, d027, d087, d127, d029, d186, d042, d006, d148, d016) to be in LD with either 

mitochondrial haplotypes within clade A or B. 

Population differentiation and genetic distance 

Microsatellite markers revealed marked genetic differentiation among the lake and pond 

habitats. For example, pairwise FST values between the ponds and lakes ranged from 

0.438 to 0.481 (table 2.4). FST values among lakes were between 0.076 and 0.147 

between ponds was 0.080. A separate analysis comparing the two mitochondrial groups 

in Lawrence Lake (Law1 and Law2) revealed an FST value of 0.109 between the two 

groups within the same lake (APPENDIX table S.1). All FST values were significantly 

different from 0 (P<0.05). Principal component analysis (PCA) indicated the existence of 

two clusters corresponding to ponds and lakes (figure 2.7A). The PCA analysis of only 

the lake isolates did not show any pattern of population subdivision.  

The STRUCTURE analysis based on microsatellites indicated the highest posterior 

probability for two clusters, corresponding to the pond and lake groups (figure 2.6A). The 

lakes-only analysis indicated that there are two distinct clusters within the lakes (figure 

2.6B). The method recommended by Evanno et al. (2005) confirmed two genetic clusters 

for both the global data set and also for the lakes subset. Warner Lake was mostly part of 

one cluster, Three Lakes II was mostly part of another cluster, and Lawrence Lake was a 
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mixture of the two clusters. In Lawrence lake (where there is a mixture of individuals 

with both ppx and ppc mtDNA), there was no correlation between the clustering pattern 

observed in STRUCTURE and the mitochondrial type of each individual. 

Analysis of emigration and immigration rates (number of migrants/generation=Nm) 

revealed that the highest level of gene flow can be observed among ponds with Nm of 1.5 

migrants/generation, while the lowest level of gene flow was observed between lakes and 

ponds with Nm ranging from 0.48 to 1.34 (table 2.5). The number of migrants among the 

lakes was variable and ranged from 0.47 to 0.80.  
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DISCUSSION 

Divergence with gene flow 

Mitochondrial gene introgression may be detected without any evidence for nuclear gene 

mixing when hybrids from one habitat successfully introgress into a different habitat type 

and are subject to strong selection pressures at the nuclear genome level. It is striking that 

two divergent mitochondrial lineages occur in 5 out of 9 lakes surveyed in this study 

(figure 2.2). Daphnia pulex mitochondrial DNA lineage (ppx mtDNA) was previously 

found in lakes from Michigan (Crease et al. 1989), the arctic (Dufresne and Hebert 1997) 

and western Canada (Crease et al. 1997). However, no previous study detected the 

presence of both ppx mtDNA and wpc mtDNA within the same habitat. In this study, all 

lakes examined from Michigan (Three Lakes II, Warner, Lawrence, Bassett, and Mill) 

had both mitochondrial types. It is likely that the large sample size enabled me to detect 

both mitochondrial types since each lake had one common type and one rare type, except 

for Lawrence Lake which had both mitochondrial types in equal proportions. Of course, I 

cannot rule out the possibility that the occurrence of the different mitochondrial types 

within the same lake is not a common occurrence in lake Daphnia pulicaria and that the 

lake system presented here is unique.  

Mitochondrial introgression between two young species can reveal historical patterns of 

gene flow and can shed light on possible habitat transition events. The mitochondrial 

phylogenetic reconstruction revealed three monophyletic clades with high statistical 

support (figure 2.2): a Western D. pulicaria clade (clade C), a more diverse panarctic D. 

pulex clade (clade A), and a third previously unrecognized D. pulicaria clade (clade B) 
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which is very closely related to panarctic D. pulex. The Western D. pulicaria clade 

consists of only lake isolates. Clade A includes all the pond isolates and some of the lake 

isolates, including the most common haplotype (haplotype 2, figure 2.5) that was the only 

one shared between lakes and ponds. Clade B mostly consists of lake isolates and pond-

lake hybrids (SF LDH heterozygotes) from ponds in Windsor. The ppx mtDNA 

haplotypes of lake D. pulicaria do not form a monophyletic group relative to the D. pulex 

cluster, indicating that at least three independent habitat transition events from ponds to 

lakes have occurred. The first corresponds to basal clade C and likely represents the 

initial establishment of lake Daphnia from ponds. The second event corresponds to clade 

B, which is more recent than the well established Western D. pulicaria clade (clade C). 

Since clade B is highly statistically supported and contains only lake individuals and F1 

hybrids, it seems reasonable to suggest that this is a separate D. pulicaria clade that may 

be genetically distinct from other D. pulicaria groups. I call this clade, MI lake Daphnia 

pulicaria. Clade A corresponds to the most recent transition event from ponds to lakes, 

where the presence of shared haplotypes between lake and pond suggests that transition 

or hybridization events are ongoing. An overall pattern of historical gene flow from 

ponds to lakes is supported by the mitochondrial phylogeny. 

This proposed scenario of multiple, unidirectional habitat transitions is further supported 

by the results of the network analyses. The ND5 haplotype network exhibits a star-shaped 

pattern with two major groups recovered (figure 2.3). These two groups correspond to the 

two clades (A and B) identified in the NJ phylogenetic analyses (figure 2.2). Group A 

displays a typical star shape with haplotype 2 appearing to be the ancestral haplotype and 

including a total of 35 haplotypes. A single ancestral haplotype often gives rise to 
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multiple descendant haplotypes yielding a haplotype tree with true multifurcations 

(Posada and Crandall 2001), as is seen with the network in this study. The large number 

of derived haplotypes in this group suggests population expansion within this species. 

The second group enclosed by a rectangle in figure 2.3 includes only one F1 hybrid 

haplotype and 7 lake haplotypes that are divided into two groups. The network indicates 

that this group is separated by at least 8 mutation steps and suggests that the transition 

from lakes to ponds of lineages with type B mitochondria happened earlier than did 

transitions from lakes to ponds of lineages with type A.  

Differences between a species’ mitochondrial gene genealogy and its nuclear gene 

genealogy can provide initial support for divergence with gene flow. The higher mutation 

rate of microsatellite markers than mitochondrial markers indicate that microsatellite data 

reflect a more contemporary pattern, whereas mitochondrial data show a more historical 

perspective. The nuclear microsatellite phylogram based on allele frequencies (figure 2.4) 

shows two distinct clades corresponding to lake and pond habitats, indicating that 

populations of lakes and ponds are currently diverging. The pond isolates show more 

diversity than the lake isolates and this same pattern can also be observed from the 

mitochondrial data (figure 2.3). Since the lake and pond clades in the microsatellite 

phylogram (figure 2.4) do not overlap, it is reasonable to conclude that isolates with 

either mitochondrial haplotype found in the lakes are interbreeding and that these 

mitochondrial patterns are remnants of past colonization events. Despite introgression in 

the mitochondria, nuclear data clearly supports divergence between lakes and ponds and 

the formation of the two incipient lineages supports a case of divergence with gene flow. 
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Discordance between nuclear Ldh and mitochondrial data 

Past work on allozymes in pond and lake Daphnia indicate that certain nuclear loci show 

a consistent pattern corresponding to each type of habitat (Hebert et al. 1989; Hebert et 

al. 1993) and this study is strongly concordant with previous findings. The Ldh-A 

genotype of all the lake isolates, regardless of their mitochondrial lineage, has a typical 

lake profile (FF). The Ldh-A genotype of the isolates was also consistent with the 

microsatellite data since it provided evidence of discordance between the mitochondrial 

data and a nuclear coding region. Based on nucleotide variation analysis at the Ldh-A 

locus of Daphnia, Crease et al. (2010) found that this locus is under strong purifying 

selection in the lakes and the occurrence of a selective sweep in lake populations was 

associated with the appearance of the fast (F) allele at Ldh-A. Lactate dehydrogenase 

(LDH) catalyses the interconversion of pyruvate and lactate, is involved in the terminal 

step of anaerobic glycolysis, and the conversion of lactate to glucose in gluconeogenesis 

(Powers et al. 1991). In the fish Fundulus heteroclitus, LDH enzyme activity was found 

to change with temperature (Crawford and Powers 1989) and differences in Ldh gene 

expression exist between populations adapted to different thermal habitats (Schulte et al. 

2000). Ldh may directly affect many biological functions such as: differences in oxygen 

consumption, metabolic flux, developmental rate, hatching time, swimming performance, 

survival at elevated temperatures (Powers and Schulte 1998), and tolerance to hydrostatic 

pressure (Nishiguchi et al. 2010). This study again points out the importance of the LDH 

locus to Daphnia’s survival in a pond versus a lake habitat.  
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What multi locus nuclear data reveals about lake and pond Daphnia 

Relatively lower numbers of alleles at each locus (figure 2.5) as well as lower allelic 

richness in lakes (table 2.3) compared to the ponds may be due to genetic drift or a recent 

colonization of these lakes. This is in agreement with a previous study showing lower 

nucleotide diversity levels in lake Daphnia than in pond Daphnia at six protein coding 

loci (Omilian and Lynch 2009). However, the presence of three different mitochondrial 

lineages in the lakes may be contributing to the higher levels of mitochondrial nucleotide 

diversity observed in these lakes compared to the ponds. Locus d174 may be located in a 

potential region involved in lake adaptation as this locus was found to be fixed for the 

same allele in all the lakes examined. Locus d174 is found in the exon region of a zinc-

finger protein (wFleaBase), which is a class of proteins that are involved in DNA 

recognition, RNA packaging, transcriptional activation, regulation of apoptosis, protein 

folding and assembly, and lipid binding (Laity et al. 2001). Further work on this genomic 

region is needed to determine whether it is in fact under strong natural selection in the 

lakes and whether the fixation at this locus was caused by drift or a selective sweep 

which is consistent with the locus being under strong natural selection.  

Most of the microsatellite loci were in HWE (81-86%) in the lakes and ponds, except 

Solomon pond (57% loci in HWE). Genotype frequencies closer to HWE are typical of a 

CP, randomly mating pond population (Morgan et al. 2001) and deviations from HWE 

due to homozygous excess is indicative of inbreeding, which is the pattern seen in 

Solomon pond. The cyclical parthenogenetic life history of Daphnia makes it possible for 

populations to experience prolonged periods of clonal selection (Morgan et al. 2001), and 
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since Solomon pond was the only habitat sampled later in the season, clonal selection 

likely accounts for the HWE deviations in this pond. The occurrence of null alleles in this 

study as suggested by MICRO-CHECKER is quite low and is not detected at many loci 

that are out of HWE, therefore I suggest that null alleles have a minimal impact on the 

results of this study. 

Difference in linkage disequilibrium between lakes and ponds 

I found higher levels of linkage disequilibrium (LD) in the lake populations than in the 

ponds (table 2.6A) and there are three possible reasons to explain this observed pattern: 

(1) sampling strategy, (2) clonal selection, and (3) natural selection. (1) Sampling size or 

strategy may cause the high LD observed in the lakes because lake habitats are much 

larger than ponds and contain many more Daphnia individuals, and it is thus more 

difficult to get an accurate representation of the lake population, even though there is a 

lower effective population size observed in lakes compared to ponds (Omilian and Lynch 

2009). (2) The cyclical parthenogenetic life history of Daphnia makes it possible for 

populations to experience prolonged periods of clonal selection (Morgan et al. 2001), 

especially in the lakes since D. pulicaria is present in the water column for extended 

periods of time before engaging in sexual reproduction. Since lake individuals engage in 

sex less often than pond populations (Cáceres and Tessier 2004) LD may decay more 

slowly in lakes than in ponds. (3) High LD in the lake populations may indicate that 

certain combinations of alleles are particularly favored by natural selection in one 

environment, but not in the other, such as is often seen in ecological species (Schluter 

2009). Furthermore, LD is found between certain microsatellite markers and specific 



 

 35

mitochondrial type (ppx or wpc; table 2.7), and between some markers and the two 

different mtDNA clades (clades A and B). This indicates that the three clades (A, B, and 

C) may be on different evolutionary trajectories in the lakes. 

Population differentiation between the different habitats  

Based on the FST estimates (table 2.4) this study suggests low levels of gene flow between 

lakes and ponds, and based on migration rates (table 2.5) a slightly higher level of gene 

flow from ponds to lakes than the other way around is evident. However, the gene flow 

estimates based on frequency data of 21 microsatellite markers are lower than the 

estimate of Omilian and Lynch (2009) based on 6 nuclear coding regions. Gene flow 

among the ponds is much higher (1.5 migrants/generation) than among the lakes (0.5- 0.8 

migrants/generation), indicating that, despite their close geographic proximity, habitat 

segregation among the lakes is common. The FST values between the two groups in 

Lawrence Lake (based on mitochondrial type) was low (0.109), but significantly different 

from 0 (table S.1 in appendix), indicating that there may still be some distinction between 

the two mitochondrial groups within this lake. 

Based on the results of STRUCTURE analysis (figure 2.6), the nuclear neighbor-joining 

(NJ) phylogram (figure 2.4), as well as the principal component analysis (figure 2.7A), it 

can be clearly seen that lakes and ponds form two distinct groups. I also detected two 

genetic clusters within the lakes from a separate STRUCTURE analysis (figure 2.7B). 

However, this clustering pattern within the lakes was not as pronounced as the distinction 

between lakes and ponds. Although this genetic clustering observed in the lakes is not 

likely caused by local adaptations to food resources (Allen et al. 2010), other differences 
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may be responsible for this pattern. For example, the lack of complete homogenization of 

nuclear genomes in some lake individuals, compared to more established or older lake 

groups may be causing this partitioning within the lakes. 

Difference in predation pressures and conditions in the lakes may account for the 

observed genetic pattern. The invertebrate Chaoborus preys mainly on Daphnia in both 

lakes and ponds, while the Bluegill Sunfish (Lepomis macrochirus) is the most abundant 

planktivorous fish species in the surveyed lakes (Werner et al. 1977; Osenberg et al. 

1988; Werner and Hall 1988) and is not found in ponds. Three lakes II has the highest 

Chaoborus density compared to the other lakes (Leibold and Tessier 1991) and has 

dystrophic conditions and high dissolved organic content (Haney and Hall 1975; Leibold 

and Tessier 1991), much like the pond environment. Daphnia experiences the strongest 

predation pressure from fish (Lepomis macrochirus) in Warner Lake and lowest in 

Lawrence Lake (Osenberg et al. 1988; Leibold and Tessier 1991).  

In addition to differences between the lakes in this study, each lake contains two habitats: 

the shallow, warm epilimnion, where fish predation is high (Hall and Werner 1977; 

Werner and Hall 1988) and the deeper colder, anoxic hypolimnion, where fish are usually 

absent. Since clonal habitat and depth specialization is common in D. pulicaria, it may be 

useful to conduct future work exploring the relationship between the genetic clustering 

observed in this study and habitat partitioning within the same lake habitat. Although the 

sampling protocol in this study was consistent across all the lakes, it does not allow such 

an analysis. 
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Discordance between multiple nuclear markers and mitochondrial phylogenies 

Describing and interpreting historical and contemporary patterns of divergence between 

species is one of the principal goals of evolutionary biology. However, for recently 

diverged populations or species with incomplete reproductive isolation, gene genealogies 

from different markers may be discordant, which often supports a history of divergence 

with gene flow. The analysis of nuclear microsatellite markers indicates a high FST value 

between lakes and ponds (table 2.4) with low levels of gene flow (table 2.5), and a 

clustering pattern separating lakes and ponds (figures 2.5, 2.6, 2.7). At the same time, the 

mitochondrial phylogenetic analysis indicates that some lake haplotypes group with pond 

haplotypes (figure 2.2). This pattern suggests that introgression of pond D. pulex is 

occurring in the lakes and the low levels of mitochondrial sequence divergence between 

ppx mtDNA haplotypes in lakes and ponds indicates that these events are very recent.  

Pfrender and colleagues (2000) proposed that much of the subdivision within ponds in 

Oregon is due to some populations containing “lake-like” nuclear alleles. They have 

suggested that permanent lake lineages periodically colonize temporary ponds following 

floods and quickly adapt to an ephemeral habitat (Pfrender et al. 2000), likely through 

hybridization and introgression with the resident pond lineage. My data shows that the 

most common mitochondrial haplotype is shared between ponds and lakes (figure 2.3) 

and this suggests a pattern of pond individuals invading lakes and introgressing into the 

lake population, since at the nuclear level all the lakes group together (figures 2.5, 2.6, 

2.7). It is quite possible that certain individuals in ponds already contain “lake-like” 

alleles and can more easily migrate and introgress into a permanent lake habitat. The 
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results of this study show that gene flow is occurring in both directions (from ponds to 

lakes and from lakes to ponds), but introgression of pond migrants into lakes happens 

more easily than the introgression of lake migrants into ponds.  

Conclusions 

This study explores the evolutionary consequences of habitat transition events in lake and 

pond Daphnia. The mitochondrial phylogenetic survey revealed the occurrence of three 

different mitochondrial lineages within lake D. pulicaria, which likely correspond to 

three separate habitat transition events into the lakes. This finding based on the 

mitochondrial ND5 marker is in contrast with the phylogenetic signal revealed by the 

nuclear markers that consistently group Daphnia based on habitat. The strong discordant 

phylogenetic signal between nuclear and mitochondrial markers suggests that 

hybridization and introgression of pond D. pulex genes into the D. pulicaria genome has 

been occurring in the lakes and that some of these events are relatively recent. 

Additionally, the detection of two genetic units within the lakes needs further 

investigation to determine the cause of this genetic subdivision within the lakes. Despite 

historical evidence for hybridization and gene flow revealed by phylogenetic analysis 

between lake and pond populations, population genetic data indicates low levels of 

contemporaneous gene flow suggesting the existence of strong habitat isolating barriers 

between ponds and lakes. The results of this study point to a divergence with gene flow 

scenario for the speciation of pond D. pulex and lake D. pulicaria. 
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Table 2.1A Habitat location and sampling size for pond Daphnia pulex populations. 

Habitat locations, mitochondrial and nuclear profiling for the study of 271 Daphnia 

isolates with ID, location code, N1, number of individuals analyzed using mitochondrial 

marker ; N2, number of individuals analyzed using 21 microsatellite markers and 

mitochondrial marker; Ldh, nuclear lactate dehydrogenase A profiling, SS- homozygous 

slow, FF- homozygous fast, SF-heterozygous; mtDNA, mitochondrial profiling, ppx, 

panarctic Daphnia pulex, wpc, western Daphnia pulicaria,; Cld, indicates which Daphnia 

pulex clade the individuals belong to in phylogenetic analysis based on mtDNA (figure 

2.2); Rep, reproduction mode, CP-cyclical parthenogenesis, OP-obligate parthenogenesis; 

Prov/St, province or state of habitat, MI-Michigan, ON-Ontario.  

 

Ponds ID Prv/St Lat Long N1 N2 Ldh mtDNA Cld Rep 

Disputed Disp ON 42.175 -83.035 52 50 SS ppx A CP 

Solomon Sol MI 42.719 -85.388 53 51 SS ppx A CP 

Canard 1 Can1 ON 42.12 -82.98 13 - SS/SF ppx A CP/OP 

Canard 2 Can2 ON 42.16 -83.02 3 - SF ppx A OP 

Canard 3 Can3 ON 42.12 -82.92 6 - SS/SF ppx A CP/OP 

Gesto Ges ON 42.13 -82.88 2 - SF ppx A CP/OP 

West Gull WG MI 42.41 -85.44 4 - SS ppx A OP 

Grimey Grm MI 42.31 -85.36 3 - SS ppx A OP 

Total    136 101     
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Table 2.1B Habitat location and sampling size for lake Daphnia pulicaria populations 

with ID, location code, N1, number of individuals analyzed using mitochondrial marker 

only; N2, number of individuals analyzed using 21 microsatellite markers and 

mitochondrial marker; Ldh, nuclear lactate dehydrogenase A profiling, FF- homozygous 

fast; mtDNA, mitochondrial profiling ppx, panarctic Daphnia pulex, wpc, western 

Daphnia pulicaria, epc, eastern Daphnia pulicaria,; Cld, indicates which Daphnia pulex 

clade the individuals belong to in the phylogenetic tree based on mtDNA (figure 2.2); 

Rep, reproduction mode, CP-cyclical parthenogenesis, OP-obligate parthenogenesis; 

Prov/St, province or state of habitat, MI-Michigan, ON-Ontario, IL-Illinois. 

 

Lakes ID Prv/St Lat Long N1 N2 Ldh mtDNA Cld Rep 

Lawrence  Law MI 42.26 -85.21 86 86 FF 40 ppx  

46 wpc 

A/B CP 

Three Lakes 

II 

3L2 MI 42.21 -85.26 38 35 FF 37 ppx, 1wpc A/B CP 

Warner Warn MI 42.28 -85.31 63 44 FF 4 ppx, 59wpc A/B CP 

Bassett  Bas MI 42.40 -85.29 12 - FF 9 ppx, 3 wpc - CP 

Mill Mill MI 42.27 -85.15 14 - FF 13 ppx, 1 wpc - CP 

Long Lng IL 40.14 -87.44 4 - FF ppx A CP 

Sportsman Spm IL 40.14 -87.44 3 - FF ppx A/B CP 

Clear  Clr IL 40.14 -87.44 3 - FF ppx A CP 

Big Gull BG ON 44.88 -78.75 3 - FF 2 wpc, 1epc - CP 

Total     226 165  113 ppx 

 112 wpc 

1epc 
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Table 2.2 Genetic diversity indexes for 2 pond and 3 lake populations based on a 687 bp 

sequence of the mitochondrial NADH dehydrogenase 5 gene. 

 

 Number of 

isolates 

Number of 

haplotypes 

Haplotype 

diversity 

Nucleotide 

diversity 

Ponds 108 25 0.887 0.006 

Solomon  54 17 0.793 0.006 

Disputed 54 8 0.751 0.002 

Lakes 192 17 0.820 0.025 

Warner 63 7 0.313 0.005 

Three Lakes II 37 6 0.751 0.009 

Lawrence 92 8 0.765 0.025 
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Table 2.3 Genetic diversity at 21 microsatellite loci for 6 populations of Daphnia pulex 

and Daphnia pulicaria. N, sample size; A, number of alleles; Ar, allele richness; HO, 

observed heterozygosity; HE, expected heterozygosity; FIS, inbreeding coefficient; PHW, 

exact P-value for Hardy-Weinberg equilibrium test; r, frequency of null allele. Values in 

bold indicate a deviation from HWE after sequential Bonferroni correction. 

Abbreviations for the different populations are given in tables 2.1A, 2.1B. 

 

 

Locus  Index Disp Sol Warn Law 3L2 

d070 N 49 48 45 87 35 

 

A/Ar 5/4.931 6/5.296 3/2.604 4/3.985 3/2.994 

 HO 0.6735 0.5625 0.8444 0.9081 0.4571 

 HE 0.7259 0.6340 0.5136 0.6475 0.4932 

 FIS 0.0729 0.1138 -0.6771 -0.4058 0.0465 

 PHW 0.0879 0.0080 0.0000 0.0000 0.0845 

 r - - - - - 

d027 N 51 50 45 86 35 

 A/Ar 8/6.627 7/6.550 3/2.941 3/3.000 3/3.000 

 HO 0.6275 0.7400 0.4222 0.3372 0.4000 

 HE 0.7164 0.6600 0.5271 0.5295 0.5694 

 FIS 0.1252 -0.1226 0.1997 0.3645 0.2688 

 PHW 0.2938 0.5870 0.3280 0.0004 0.0062 

 r - - - 0.158 - 

d117 N 50 49 45 86 35 
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Locus  Index Disp Sol Warn Law 3L2 

d117 A/Ar 7/6.193 7/6.238 3/2.604 2/2.000 3/3.000 

 HO 0.3200 0.5102 0.4889 0.4070 0.4286 

 HE 0.3683 0.5742 0.5061 0.3527 0.4302 

 FIS 0.1323 0.1124 0.0066 0.1549 0.0113 

 PHW 0.1221 0.0009 0.6329 0.2182 0.0021 

 r - - - - - 

d078 N 51 50 45 84 35 

 A/Ar 10/7.646 9/8.436 1/1.000 2/1.991 1/1.000 

 HO 0.8040 0.6 - 0.0238 - 

 HE 0.7321 0.6946 - 0.0237 - 

 FIS -0.9920 0.1373 - -0.0061 - 

 PHW 0.0278 0.0001 - 1.0000 - 

 r - - - - - 

d087 N 48 46 43 82 35 

 A/Ar 7/5.812 8/7.502 3/2.261 2/2.000 2/2.000 

 HO 0.6042 0.4783 0.0465 0.4390 0.2000 

 HE 0.7347 0.7131 0.0462 0.3582 0.2273 

 FIS 0.1792 0.3318 -0.0056 -0.227 0.1250 

 PHW 0.0364 0.0002 1 0.0576 0.4450 

 r - 0.157 - - - 

d088 N 50 46 45 85 35 

 A/Ar 5/4.989 7/6.591 4/3.588 4/3.894 3/3.000 

 HO 0.6800 0.5000 0.2444 0.6 0.4857 

 HE 0.7313 0.5538 0.2257 0.4862 0.4207 
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Locus  Index Disp Sol Warn Law 3L2 

d088 FIS 0.0708 0.0980 -0.0782 -0.2358 -0.1677 

 PHW 0.1994 0.2999 1.0000 0.0000 1.0000 

 r - - - - - 

d166 N 49 41 43 85 35 

 A/Ar 5/4.998 6/5.915 3/2.866 4/3.883 2/1.806 

 HO 0.4898 0.5854 0.5814 0.5294 0.0286 

 HE 0.72691 0.7552 0.5152 0.5165 0.0286 

  FIS 0.3285 0.2271 -0.1495 -0.0252 - 

 PHW 0.0022 0.0006 0.0074 0.0111 1.0000 

 r 0.156 0.111 - - - 

d050 N 50 46 45 85 35 

 

A/Ar 4/3.160 3/2.630 1/1.000 2/2.000 2/1.999 

 HO 0.1400 0.4348 - 0.0000 0.0571 

 HE 0.2331 0.4589 - 0.0685 0.1093 

 FIS 0.4019 0.0531 - 1.0000 0.4815 

 PHW 0.0363 0.4493 - 0.0000 0.0877 

 r 0.141 - - 0.186 - 

d127 N 50 41 45 80 34 

 A/Ar 4/3.925 3/3.000 2/1.992 4/4.000 3/2.973 

 HO 0.5600 0.4878 0.0222 0.3500 0.6765 

 HE 0.5727 0.4264 0.1061 0.4380 0.5342 

 FIS 0.0224 -0.1461 0.7930 0.2020 -0.2911 

 PHW 0.0189 0.5564 0.0030 0.0000 0.0090 

 r - - 0.182 - - 
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Locus  Index Disp Sol Warn Law 3L2 

d105 N 49 41 40 81 34 

 A/Ar 6/5.020 3/3.000 4/3.897 3/3.000 3/3.000 

 HO 0.4082 0.4878 0.3000 0.2840 0.2941 

 HE 0.5306 0.5658 0.5117 0.6050 0.5953 

 FIS 0.2326 0.1393 0.4295 0.5322 0.4777 

 PHW 0.0024 0.0235 0.0014 0.0000 0.0000 

 r 0.112 - 0.205 0.232 0.207 

d029 N 50 48 44 86 34 

 A/Ar 5/4.971 6/5.604 3/2.999 3/3.000 3/3.000 

  HO 0.5400 0.5833 0.7727 0.7209 0.7353 

 HE 0.6956 0.6985 0.5687 0.5695 0.5272 

 FIS 0.2254 0.1663 -0.3985 -0.2679 -0.4133 

 PHW 0.0180 0.0169 0.0000 0.0125 0.0010 

 r 0.101 - - - - 

d174 N 50 47 45 87 35 

 A/Ar 7/6.377 9/7.945 1/1.000 1/1.000 1/1.000 

 HO 0.5400 0.7021 - - - 

 HE 0.7640 0.8003 - - - 

 FIS 0.2953 0.1238 - - - 

 PHW 0.0016 0.2065 - - - 

 r 0.141 - - - - 

d015 N 48 29 39 87 34 

 A/Ar 11/8.863 8/8.000 2/1.690 1/1.000 2/1.829 

 HO 0.5417 0.4483 0.0256 - 0.0294 
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Locus  Index Disp Sol Warn Law 3L2 

d015 HE 0.7730 0.7066 0.0256 - 0.0294 

 FIS 0.3015 0.3697 - - - 

 PHW 0.0000 0.0016 1.0000 - 1.0000 

 r 0.138 0.182 - - - 

d186 N 46 38 44 86 35 

 A/Ar 8/7.356 7/6.943 4/4 4/4 5/4.805 

 HO 0.5217 0.3947 0.7045 0.7209 0.5429 

 HE 0.7076 0.8193 0.7325 0.6832 0.5019 

 FIS 0.2648 0.5216 0.0092 -0.0556 -0.0752 

 PHW 0.0003 0.0000 0.0005 0.0191 0.9338 

 r 0.103 0.247 - - - 

d111 N 44 34 - 86 35 

 A/Ar 8/7.870 4/4.000 1/1.000 2/1.884 1/1.000 

 HO 0.8182 0.4118 - 0.0116 - 

 HE 0.8130 0.6054 - 0.0116 - 

 FIS -0.0065 0.3231 - 0.0000 - 

 PHW 0.8666 0.0004 - 1.0000 - 

 r - 0.147 - - - 

d153 N 45 36 39 87 35 

 A/Ar 6/5.998 2/2.000 3/2.652 2/1.874 1/1.000 

 HO 0.7778 0.5278 0.0769 0.0115 - 

 HE 0.8040 0.4409 0.0756 0.0115 - 

 FIS 0.0330 -0.2004 -0.0174 0.0000 - 

 PHW 0.4323 0.2813 1.0000 1.0000 - 
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Locus  Index Disp Sol Warn Law 3L2 

d153 r - - - - - 

d042 N 32 32 37 85 35 

 A/Ar 6/5.884 4/3.906 2/2.000 4/3.989 3/3.000 

 HO 0.1563 0.2500 0.5405 0.5765 0.3429 

 HE 0.3120 0.4896 0.4976 0.5093 0.5453 

 FIS 0.5032 0.4934 -0.1559 -0.1328 0.3564 

 PHW 0.0059 0.0011 0.7334 0.0024 0.0235 

 r 0.179 0.219 - - - 

d006 N 49 48 44 86 35 

 A/Ar 8/7.525 8/7.032 3/2.998 5/4.974 3/2.806 

 HO 0.7551 0.5625 0.7500 0.5930 0.2571 

 HE 0.7690 0.7886 0.5465 0.5947 0.2306 

  FIS 0.0182 0.2889 -0.4112 0.0028 -0.1131 

 PHW 0.2495 0.0000 0.0226 0.0519 1.0000 

 r - 0.139 - - - 

d148 N 48 46 42 87 34 

 A/Ar 5/4.391 4/3.726 3/3.000 3/3.000 4/4.000 

 HO 0.1667 0.1087 0.5714 0.4828 0.7941 

 HE 0.3805 0.1842 0.6004 0.4757 0.7239 

 FIS 0.5646 0.4125 0.0349 -0.0149 -0.0749 

 PHW 0.0000 0.0001 0.0006 0.5694 0.0000 

 r 0.233 0.131 - - - 

d182 N 44 34 38 76 33 

 A/Ar 5/4.644 5/4.853 3/3.000 4/4.000 3/2.853 
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Locus  Index Disp Sol Warn Law 3L2 

d182 HO 0.2955 0.5000 0.579 0.500 0.4849 

 HE 0.4582 0.6602 0.5632 0.4468 0.3800 

 FIS 0.3578 0.2455 -0.0828 -0.1201 -0.2956 

 PHW 0.0086 0.0058 0.0765 0.9397 0.3726 

 r 0.160 - - - - 

d016 N 51 50 44 87 35 

 A/Ar 4/3.567 7/5.738 3/2.999 3/3.000 3/2.994 

 HO 0.3137 0.7000 0.4318 0.3333 0.3143 

 HE 0.3896 0.6343 0.3790 0.4257 0.2787 

 FIS 0.1964 -0.1047 -0.1263 0.2181 -0.1257 

  PHW 0.0452 0.1350 0.8635 0.0000 1.0000 

 r - - - - - 

Total number of loci out of 

HWE in each population 

3 9 3 4 3 

heterozygote deficiency  3 8 1 2 2 
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Table 2.4 Pairwise FST estimates between five populations of Daphnia pulex and 

Daphnia pulicaria based on 21 microsatellite loci. All FST values are significantly 

different from 0 (P < 0.05). Abbreviations for the different populations are given in tables 

2.1A, 2.1B. 

 

 Disp Sol Warn Law 

Sol 0.0790       

Warn 0.4750    0.4434      

Law 0.4810   0.4505    0.0764     

3L2 0.4669    0.4384    0.1466    0.0868    
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Table 2.5 Migration rates (Nm, number of migrants per generation) between lake and 

pond populations. Results are averaged over 21 microsatellite loci. Source populations 

are listed by column, recipient populations listed by row. Abbreviations for the different 

populations are given in tables 2.1A, 2.1B. 

 

 Disp Sol Warn Law 3L2 

Disp - 1.5206 1.1256 1.3294 1.1151 

Sol 1.5333 - 1.1073 1.3376 1.0606 

Warn 0.5278 0.5855 - 0.6715 0.7656 

Law 0.5622 0.5966 0.8022 - 0.6426 

3L2 0.5510 0.4829 0.4670 0.5539 - 
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Table 2.6 Linkage disequilibrium between all pairs of loci in each population of Daphnia 

pulex and Daphnia pulicaria. Abbreviations for the different populations are given in 

tables 2.1A, 2.1B, with Law, all individuals from Lawrence Lake; Law1, Lawrence lake 

individuals with Daphnia pulicaria mitochondrial DNA; Law2, Lawrence lake 

individuals with Daphnia pulex mitochondria DNA. Values are P-values and those in 

bold are significant after Bonferroni correction. 

 

Locus1 Locus2 Sol Disp 3L2 Warn Law Law1 Law2 

d070 d027 0.3229 0.5593 0.0245 0.8807 0.2030 0.0233 0.6085 

d070 d117 0.2108 0.0300 0.0143 0.0321 0.0002 0.3632 0.0000 

d027 d117 0.1565 0.0473 0.0002 0.0298 0.1988 0.0000 0.1893 

d070 d078 0.0411 0.6930 - - 0.4492 1.0000 0.2788 

d027 d078 0.5372 0.8615 - - 0.4042 1.0000 0.1520 

d117 d078 0.4079 0.8828 - - 1.0000 0.5124 1.0000 

d070 d087 0.2689 0.9627 0.0179 1.0000 0.0004 0.0089 0.0006 

d027 d087 0.0269 0.9546 0.0001 0.2941 0.1061 0.0719 0.0442 

d117 d087 0.0280 0.6893 0.0406 0.0103 0.6663 0.7873 0.1826 

d078 d087 0.1104 0.8330 - - 1.0000 1.0000 1.0000 

d070 d088 0.2517 0.6070 0.0026 0.6859 0.2752 0.5186 0.5171 

d027 d088 0.7142 0.5491 0.2117 0.0198 0.0040 0.0157 0.0004 

d117 d088 0.8801 0.0146 0.6689 0.1766 0.0793 0.2341 0.2779 

d078 d088 0.4496 0.4309 - - 0.0835 0.1173 0.2352 

d087 d088 0.0208 0.5617 0.048 1.0000 0.3014 0.5418 0.7930 

d070 d166 0.0460 0.5438 0.5568 0.1113 0.0000 0.0152 0.0000 
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Locus1 Locus2 Sol Disp 3L2 Warn Law Law1 Law2 

d027 d166 0.5832 0.5820 1.0000 0.0032 0.0728 0.3111 0.1586 

d117 d166 0.0821 0.3670 0.4714 0.0019 0.2326 0.6697 0.0319 

d078 d166 0.0000 0.9180 - - 0.7220 1.0000 1.0000 

d087 d166 0.0036 0.8306 1.0000 0.6378 0.3100 0.0269 0.5444 

d088 d166 0.0235 0.6939 0.0270 0.2714 0.3417 0.8761 0.0336 

d070 d050 0.9059 0.3776 0.0114 - 0.3755 - 0.0639 

d027 d050 0.9720 0.1275 0.4003 - 0.1282 - 0.3775 

d117 d050 0.4386 0.1849 0.3625 - 0.2926 - 0.3390 

d078 d050 0.1372 0.8918 - - 1.0000 - 1.0000 

d087 d050 0.0198 0.8653 0.2883 - 0.2700 - 0.0742 

d088 d050 0.4377 0.5990 0.1793 - 0.4529 - 0.6120 

d166 d050 0.0056 0.5164 1.0000 - 0.4679 - 0.4011 

d070 d127 0.0367 0.5859 0.0122 0.2200 0.0001 0.0140 0.0009 

d027 d127 0.6451 0.9584 0.0046 0.0424 0.0000 0.0006 0.0105 

d117 d127 0.4410 0.7649 0.2507 0.1021 0.4101 0.1279 0.0001 

d078 d127 0.0803 0.2779 - - 1.0000 1.0000 1.0000 

d087 d127 0.5803 0.1159 0.5398 0.0476 0.0329 0.0796 0.0610 

d088 d127 0.3851 0.3616 0.3001 0.5544 0.4307 0.1512 0.5104 

d166 d127 0.0051 0.4993 1.0000 0.7980 0.3006 0.6878 0.0128 

d050 d127 0.2058 0.3092 0.0335 - 0.2046 - 0.4963 

d070 d105 0.2639 0.2303 0.2371 0.6405 0.0002 0.0838 0.0001 

d027 d105 0.6451 0.8585 0.0000 0.0001 0.0000 0.0003 0.0046 

d117 d105 0.0232 0.1953 0.0062 0.3577 0.0000 0.0340 0.0090 

d078 d105 0.1004 0.7109 - - 0.8359 1.0000 1.0000 
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Locus1 Locus2 Sol Disp 3L2 Warn Law Law1 Law2 

d087 d105 0.0173 0.1392 0.0126 0.0210 0.0018 0.0000 0.2793 

d088 d105 0.0891 0.9456 0.0073 0.0002 0.0354 0.1995 0.0784 

d166 d105 0.1412 0.5308 1.0000 0.2421 0.0000 0.0038 0.0002 

d050 d105 0.3062 0.7628 0.1204 - 0.0019 - 0.0146 

d127 d105 0.1527 0.7016 0.0029 0.0527 0.0688 0.2648 0.0744 

d070 d029 0.4172 0.5129 0.0227 0.3511 0.0000 0.0000 0.0006 

d027 d029 0.6347 0.7234 0.0391 0.4485 0.0687 0.0225 0.0157 

d117 d029 0.7364 0.4037 0.0251 0.0007 0.0105 0.0080 0.0945 

d078 d029 0.0000 0.9579 - - 0.2938 0.1381 1.0000 

d087 d029 0.4728 0.0524 0.0735 0.0208 0.0137 0.0117 0.3971 

d088 d029 0.2845 0.8694 0.6441 0.0340 0.0003 0.0304 0.0109 

d166 d029 0.0541 0.1825 1.0000 0.9096 0.0079 0.1079 0.0001 

d050 d029 0.3718 0.3077 0.0811 - 0.8126 - 1.0000 

d127 d029 0.6961 0.2176 0.0768 0.0326 0.0251 0.0164 0.0167 

d105 d029 0.2008 0.7404 0.0473 0.0887 0.3711 0.1590 0.0109 

d070 d174 0.9178 0.0386 - - - - - 

d027 d174 0.0308 0.8284 - - - - - 

d117 d174 0.2003 0.6787 - - - - - 

d078 d174 0.3648 0.7642 - - - - - 

d087 d174 0.5073 0.5767 - - - - - 

d088 d174 0.2837 0.8133 - - - - - 

d166 d174 0.2761 0.5419 - - - - - 

d050 d174 0.9769 0.2962 - - - - - 

d127 d174 0.5408 0.5273 - - - - - 
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Locus1 Locus2 Sol Disp 3L2 Warn Law Law1 Law2 

d105 d174 0.5305 0.0362 - - - - - 

d029 d174 0.2776 0.5581 - - - - - 

d070 d015 0.2597 0.2912 0.5368 1.0000 - - - 

d027 d015 0.6012 0.7128 0.3666 1.0000 - - - 

d117 d015 0.8180 0.3031 1.0000 0.5221 - - - 

d078 d015 0.8447 0.7610 - - - - - 

d087 d015 0.3415 0.0613 1.0000 1.0000 - - - 

d088 d015 0.1766 0.0456 0.2268 1.0000 - - - 

d166 d015 0.7088 0.6017 1.0000 - - - - 

d050 d015 0.1922 0.2892 1.0000 - - - - 

d127 d015 0.0530 0.7471 1.0000 1.0000 - - - 

d105 d015 0.8454 0.9000 0.5944 - - - - 

d029 d015 0.5335 0.0065 1.0000 1.0000 - - - 

d174 d015 0.8019 0.7903 - - - - - 

d070 d186 0.1842 0.9020 0.0216 0.0752 0.0000 0.0000 0.0000 

d027 d186 0.8492 0.0661 0.0110 0.0000 0.0007 0.0003 0.1497 

d117 d186 0.1164 0.6088 0.0223 0.0000 0.0000 0.0000 0.0028 

d078 d186 0.1628 0.3822 - - 1.0000 0.4670 0.2383 

d087 d186 0.4085 0.2734 0.0006 0.0976 0.0068 0.4185 0.0000 

d088 d186 0.8617 0.7961 0.0032 0.0000 0.1478 0.0297 0.8967 

d166 d186 0.1635 0.5965 0.5461 0.0000 0.0052 0.4396 0.0000 

d050 d186 0.0456 0.5383 0.1661 - 0.0359 - 0.1436 

d127 d186 0.3035 0.4304 0.0015 0.0508 0.0003 0.0034 0.0069 

d105 d186 0.7632 0.0970 0.2565 0.0000 0.0000 0.0491 0.0000 
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Locus1 Locus2 Sol Disp 3L2 Warn Law Law1 Law2 

d029 d186 0.2996 0.2360 0.0037 0.0004 0.0000 0.0000 0.0020 

d174 d186 0.6384 0.3397 - - - - - 

d015 d186 0.0157 0.8302 1.0000 0.1979 - - - 

d070 d111 0.1264 0.8664 - - 1.0000 1.0000 - 

d027 d111 0.31514 0.9332 - - 1.0000 1.0000 - 

d117 d111 0.9872 0.5094 - - 1.0000 0.5113 - 

d078 d111 0.5769 0.3496 - - 1.0000 1.0000 - 

d087 d111 0.5433 0.2117 - - 1.0000 1.0000 - 

d088 d111 0.3055 0.1577 - - 1.0000 0.5403 - 

d166 d111 0.0144 0.7448 - - 0.2083 0.2132 - 

d050 d111 0.8156 0.2891 - - 1.0000 - - 

d127 d111 0.4062 0.3817 - - 1.0000 1.0000 - 

d105 d111 0.3123 0.4123 - - - - - 

d029 d111 0.4113 0.9564 - - 0.2714 0.6345 - 

d174 d111 0.3305 0.1897 - - - - - 

d015 d111 0.3524 0.3293 - - - - - 

d186 d111 0.5375 0.2074 - - 1.0000 1.0000 - 

d070 d153 0.8245 0.5564 - 0.4631 1.0000 1.0000 - 

d027 d153 0.6554 0.6941 - 0.0408 1.0000 1.0000 - 

d117 d153 0.4994 0.5325 - 0.7437 1.0000 0.5153 - 

d078 d153 0.1445 0.3983 - - 1.0000 1.0000 - 

d087 d153 0.8846 0.4263 - 1.0000 1.0000 1.0000 - 

d088 d153 0.0856 0.5474 - 1.0000 1.0000 0.5326 - 

d166 d153 0.3243 0.6337 - 0.4361 0.2082 0.2159 - 
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Locus1 Locus2 Sol Disp 3L2 Warn Law Law1 Law2 

d050 d153 0.0619 0.2360 - - 1.0000 - - 

d127 d153 0.1046 0.8428 - 1.0000 1.0000 1.0000 - 

d105 d153 0.0598 0.1289 - 1.0000 - - - 

d029 d153 0.1009 0.9890 - 0.2880 0.2721 0.6294 - 

d174 d153 0.9791 0.8957 - - - - - 

d015 d153 0.1512 0.9095 - 1.0000 - - - 

d186 d153 0.5645 0.6139 - 0.0258 1.0000 1.0000 - 

d111 d153 0.2717 0.0000 - - 0.0111 0.0205 - 

d070 d042 0.4281 0.8003 0.1740 0.9432 0.0028 0.2612 0.0000 

d027 d042 0.5612 0.6547 0.0045 0.6522 0.0240 0.0008 0.1505 

d117 d042 0.6636 0.9802 0.0009 0.0031 0.0000 0.0000 0.0000 

d078 d042 0.4106 0.2724 - - 0.6474 1.0000 1.0000 

d087 d042 0.5893 0.0149 0.0169 0.1101 0.0000 1.0000 0.0002 

d088 d042 0.2873 0.6088 0.1568 0.0123 0.3619 0.1758 0.1343 

d166 d042 0.2866 0.9776 0.6124 0.8964 0.0273 0.2862 0.0000 

d050 d042 0.3071 1.0000 0.4248 - 0.2205 - 0.1240 

d127 d042 0.7419 0.3091 0.1115 0.3571 0.3423 0.0465 0.0005 

d105 d042 0.1647 0.8220 0.0087 0.0466 0.0089 0.0853 0.0000 

d029 d042 0.5841 0.3264 0.0399 0.1398 0.0040 0.0079 0.0283 

d174 d042 0.5521 0.9993 - - - - - 

d015 d042 0.3346 0.6411 0.3136 1.0000 - - - 

d186 d042 0.6303 0.9528 0.0014 0.0255 0.0000 0.0060 0.0000 

d111 d042 0.6504 0.3151 - - 0.4616 0.3684 - 

d153 d042 0.6174 0.1458 - 1.0000 0.4578 0.3713 - 
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Locus1 Locus2 Sol Disp 3L2 Warn Law Law1 Law2 

d070 d006 0.3025 0.8888 0.5581 1.0000 0.0000 0.0119 0.0000 

d027 d006 0.0002 0.4137 0.0635 0.0028 0.0007 0.0177 0.0860 

d117 d006 0.0396 0.8015 0.0000 0.0101 0.0000 0.0000 0.0012 

d078 d006 0.1400 0.6920 - - 0.1417 0.1733 0.5588 

d087 d006 0.0087 0.1247 0.4939 0.0472 0.0117 0.4664 0.0020 

d088 d006 0.2287 0.0107 0.2612 0.0453 0.0004 0.0442 0.0072 

d166 d006 0.0922 0.8248 0.2506 0.0041 0.0072 0.2407 0.0002 

d050 d006 0.8876 0.9059 1.0000 - 0.0402 - 0.1350 

d127 d006 0.1710 0.3855 0.0033 0.0037 0.0328 0.1105 0.0091 

d105 d006 0.0711 0.5077 0.0430 0.0022 0.0538 0.2513 0.0403 

d029 d006 0.6334 0.7319 0.2264 0.0003 0.0000 0.0029 0.0000 

d174 d006 0.6294 0.6163 - - - - - 

d015 d006 0.1756 0.1151 1.0000 0.3594 - - - 

d186 d006 0.6055 0.4057 0.0000 0.0000 0.0000 0.0000 0.0000 

d111 d006 0.0150 0.6942 - - 0.2105 0.5200 - 

d153 d006 0.6958 0.7531 - 0.2274 0.2192 0.5298 - 

d042 d006 0.5237 0.0585 0.0334 0.5250 0.0024 0.2334 0.0008 

d070 d148 0.4071 0.6425 0.0001 0.2957 0.0000 0.0477 0.0000 

d027 d148 0.6459 0.8643 0.0200 0.0908 0.0000 0.1935 0.0021 

d117 d148 0.2905 0.4904 0.0012 0.0302 0.9701 0.7968 0.0290 

d078 d148 0.7111 0.8593 - - 0.0674 0.4045 0.1278 

d087 d148 0.4818 0.1293 0.0000 1.0000 0.0000 0.0108 0.0000 

d088 d148 0.0572 0.8676 0.0004 0.0066 0.0529 0.6022 0.0373 

d166 d148 0.2417 0.5081 1.0000 0.2846 0.0001 0.0000 0.1034 
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Locus1 Locus2 Sol Disp 3L2 Warn Law Law1 Law2 

d050 d148 0.0453 0.8378 0.0039 - 0.5816 - 0.0466 

d127 d148 0.8829 0.0968 0.0011 1.0000 0.3235 0.4475 0.3366 

d105 d148 0.1211 0.0594 0.0088 0.0595 0.0007 0.0025 0.1667 

d029 d148 0.9187 0.4368 0.0003 0.0038 0.0006 0.0207 0.0147 

d174 d148 0.2053 0.4296 - - - - - 

d015 d148 0.6260 0.4428 0.2075 - - - - 

d186 d148 0.3483 0.0047 0.0000 0.0000 0.0002 0.3957 0.0000 

d111 d148 0.5440 0.0022 - - 1.0000 1.0000 - 

d153 d148 0.0958 0.2399 - 1.0000 1.0000 1.0000 - 

d042 d148 0.3380 0.1879 0.0000 0.0242 0.0013 0.1928 0.0005 

d006 d148 0.4791 0.7868 0.0039 0.0011 0.0000 0.0341 0.0000 

d070 d182 0.2607 0.6053 0.6641 0.0743 0.3042 0.2284 0.0058 

d027 d182 0.3414 0.3855 0.2565 0.4561 0.3897 0.1062 0.1196 

d117 d182 0.5163 0.5444 0.1368 0.0018 0.0271 0.0589 0.6740 

d078 d182 0.4985 0.5963 - - 0.5200 0.6052 0.3604 

d087 d182 0.0002 0.6272 0.0137 0.4452 0.4739 0.3706 0.7298 

d088 d182 0.3946 0.2184 0.0048 0.1231 0.9692 0.6622 0.5083 

d166 d182 0.1366 0.7696 1.0000 0.8717 0.5958 0.2216 0.1543 

d050 d182 0.2165 0.5605 0.2733 - 0.6915 - 1.0000 

d127 d182 0.5559 0.4540 0.0584 0.4957 0.7420 0.8040 0.0341 

d105 d182 0.3355 0.4129 0.0029 0.6343 0.0767 0.0014 0.3938 

d029 d182 0.6340 0.7668 0.2606 0.0056 0.0000 0.0004 0.0266 

d174 d182 0.9436 0.6218 - - - - - 

d015 d182 0.5761 0.9197 0.4894 - - - - 
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Locus1 Locus2 Sol Disp 3L2 Warn Law Law1 Law2 

d186 d182 0.2857 0.6430 0.0052 0.0026 0.0263 0.6570 0.025 

d111 d182 0.8568 0.3196 - - - - - 

d153 d182 0.0933 0.7906 - 0.5776 - - - 

d042 d182 0.9108 0.2133 0.3996 0.2700 0.3789 0.1074 0.6918 

d006 d182 0.3636 0.1176 0.0557 0.0046 0.0000 0.0010 0.0002 

d148 d182 0.8357 0.0697 0.0135 0.0000 0.0904 0.0278 0.1542 

d070 d016 0.0063 0.5472 0.1128 0.4966 0.0000 0.1819 0.0000 

d027 d016 0.1507 0.2863 0.0838 0.0009 0.0933 0.3862 0.0883 

d117 d016 0.2445 0.5058 0.1164 0.0001 0.0459 0.0541 0.0062 

d078 d016 0.0699 0.6671 - - 0.2497 1.0000 0.1556 

d087 d016 0.0080 0.5075 0.3428 0.1348 0.0596 0.7882 0.0012 

d088 d016 0.0328 0.6606 0.0134 0.0000 0.0613 0.0001 0.8740 

d166 d016 0.0428 0.2395 0.3024 0.9943 0.0502 0.9683 0.0005 

d050 d016 0.3655 0.1748 0.0086 - 0.0176 - 0.0188 

d127 d016 0.3363 0.5462 0.0131 0.3428 0.0026 0.0015 0.1010 

d105 d016 0.0648 0.8894 0.0011 0.0051 0.0272 0.9061 0.0266 

d029 d016 0.8784 0.7738 0.0037 0.0000 0.0898 0.4834 0.0271 

d174 d016 0.6099 0.2867 - - - - - 

d015 d016 0.6288 0.6633 1.0000 1.0000 - - - 

d186 d016 0.4745 0.8034 0.0011 0.0000 0.0000 0.0673 0.0000 

d111 d016 0.0521 0.5582 - - 0.2100 0.3083 - 

d153 d016 0.7462 0.5308 - 0.4299 0.2091 0.2935 - 

d042 d016 0.0137 0.3475 0.0747 0.0000 0.2597 1.0000 0.0001 

d006 d016 0.2593 0.8048 0.0116 0.00121 0.0000 0.0245 0.0000 
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Locus1 Locus2 Sol Disp 3L2 Warn Law Law1 Law2 

d148 d016 0.2152 0.2878 0.0229 0.0004 0.1748 0.7001 0.0000 

d182 d016 0.0732 0.9056 0.0019 0.0009 0.0474 0.2184 0.0010 

Total loci in LD  3 0 10 18 34 31 13 
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Table 2.7 Linkage disequilibrium between 21 microsatellite loci and mitochondrial 

profiles of Daphnia pulex and Daphnia pulicaria. Abbreviations for the different 

populations are given in table 2.1, with Law, all individuals from Lawrence Lake; Law2, 

Lawrence lake individuals with Daphnia pulex mitochondria DNA; clade AB/C, 

indicates LD between a given microsatellite locus and an association with any 

mitochondrial profile (either panarctic D. pulex clade and MI lake D. pulicaria clade, 

clade A and B, or western D. pulicaria clade C); clade A/B, indicates any LD between a 

microsatellite locus and either clade A or clade B (figure 2.2). Values are P-values and 

those in bold are significant after Bonferroni correction. 

 

Locus Mitochondrial 

profile 

3L2 Warn Law Law2 

d070 clade AB/C   0.5531 1.0000 0.30622 - 

d027 clade AB/C   0.6370 0.8252 0.0000 - 

d117 clade AB/C   1.0000 1.0000 0.0603 - 

d078 clade AB/C   - - 1.0000 - 

d087 clade AB/C   1.0000 1.0000 0.0005 - 

d088 clade AB/C   0.2533 1.0000 0.0025 - 

d166 clade AB/C   1.0000 1.0000 0.1976 - 

d050 clade AB/C   1.0000 - 0.0921 - 

d127 clade AB/C   1.0000 1.0000 0.0012 - 

d105 clade AB/C   0.5971 0.8204 0.0098 - 

d029 clade AB/C   1.0000 1.0000 0.0000 - 



 

 62

Locus Mitochondrial 

profile 

3L2 Warn Law Law2 

d174 clade AB/C   - - - - 

d015 clade AB/C   1.0000 1.0000 - - 

d186 clade AB/C   1.0000 0.9317 0.0002 - 

d111 clade AB/C   - - 1.0000 - 

d153 clade AB/C   - 1.0000 1.0000 - 

d042 clade AB/C   0.0985 0.7217 0.0006 - 

d006 clade AB/C   1.0000 1.0000 0.0000 - 

d148 clade AB/C   0.2346 0.2257 0.0000 - 

d182 clade AB/C   0.4998 0.6611 0.0091 - 

d016 clade AB/C   1.0000 0.7183 0.0001 - 

d070 clade A/B   0.0713 0.5346 0.0000 0.0000 

d027 clade A/B   0.3420 0.4835 0.0000 0.5240 

d117 clade A/B   0.1845 0.0140 0.0152 0.0265 

d078 clade A/B   - - 0.3964 0.3572 

d087 clade A/B   0.0006 0.3131 0.0003 0.1612 

d088 clade A/B   0.1429 0.0766 0.0280 0.3824 

d166 clade A/B   1.0000 0.6658 0.0025 0.0002 

d050 clade A/B   0.7456 - 0.0941 1.0000 

d127 clade A/B   0.4774 0.4375 0.0000 0.0032 

d105 clade A/B   0.1468 0.6444 0.0006 0.0251 

d029 clade A/B   0.0397 0.0003 0.0000 0.0054 
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Locus Mitochondrial 

profile 

3L2 Warn Law Law2 

d174 clade A/B   - - - - 

d015 clade A/B   1.0000 1.0000 - - 

d186 clade A/B   0.1382 0.7318 0.0000 0.0000 

d111 clade A/B   - - 1.0000 - 

d153 clade A/B   - 1.0000 1.0000 - 

d042 clade A/B   0.0028 0.7871 0.0001 0.0007 

d006 clade A/B   0.0994 0.4332 0.0000 0.1201 

d148 clade A/B   0.0093 0.3071 0.0000 0.0823 

d182 clade A/B   0.1351 0.6785 0.0085 0.0249 

d016 clade A/B   0.0071 0.0844 0.0000 0.0230 

Nd5 clade A/B   0.0289 0.0020 0.0000 - 

Total loci in LD with clade 

AB/C - - 6 - 

Total loci in LD with clade 

A/B 1 1 10 3 
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Figure 2.1 Distribution of collection sites in Michigan and Ontario. Lake habitats are 

denoted by black circles and pond habitats are denoted by white circles. The smaller 

circles represent habitats from which a low number of individuals were collected (3-14 

individuals from each site) and only screened with the mitochondrial NADH 

dehydrogenase 5 gene and Lactate dehydrogenase markers. Larger circles indicate 

populations that have been sampled intensely (>35 individuals from each site) and were 

screened with microsatellite, LDH, and mitochondrial markers.
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Figure 2.2 A Neighbor-joining (NJ) phylogeny of the mitochondrially encoded NADH 

dehydrogenase 5 gene (ND5) of Daphnia pulex and Daphnia pulicaria from Illinois, 

Michigan, and Ontario. The label code of each haplotype identifies the haplotype 

number, its location (see table 2.1), followed by lactate dehydrogenase A profile (FF- 

homozygous fast, SS-homozygous slow, SF-heterozygous slow/fast) and habitat (lake 

denoted by black circles, ponds denoted by white circles), * indicates populations 

reproducing by obligate parthenogenesis, all other populations reproduce by cyclical 

parthenogenesis. Numbers before and after dashes, beside nodes, represent bootstrap 

support with 1000 replicates and posterior probabilities, respectively. The tree was rooted 

with European D. pulex (GenBank accession number DQ235231). Only values > 50% are 

shown. The small panel on the left represents a NJ ND5 phylogeny of the D. pulex 

complex (Colbourne et al. 1998), branches in bold correspond to the two major clades in 

the phylogenetic reconstruction of this study.
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Figure 2.3. Unrooted statistical parsimony network of mitochondrial ND5 haplotypes of 

363 Daphnia pulex and Daphnia pulicaria isolates from Illinois, Michigan, and Ontario. 

The network was estimated under the 95% statistical limits of parsimony using the 

algorithm of Templeton et al. (1992). Numbered circles represent the label code of each 

haplotype. The area of the haplotype circles is scaled to represent the relative frequency 

of that haplotype. The outline of each circle identifies the specific habitat(s) from which 

each haplotype was collected. Lake populations are shaded in grey, pond populations are 

white with CP, cyclical parthenogenesis, and OP, obligate parthenogenesis. Small black 

circles on the branches represent a single nucleotide difference between haplotypes and 

are hypothetical haplotypes. Only Haplotype 2 is found in both lakes and ponds. The box 

corresponds to clade B in figure 2.2. 
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Figure 2.4 Unrooted neighbor-joining phylogram based on genetic distances at 21 

microsatellite loci in 101 Daphnia pulex and 165 Daphnia pulicaria from Michigan and 

Ontario. The two distinct, monophyletic groups correspond to pond and lake habitats. 

Different symbols identify specific habitats. Solid lines identify lineages that share D. 

pulex mitochondria while dashed lines identify D. pulicaria mitochondria.
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Figure 2.5 Number of alleles at 21 microsatellite loci in 101 Daphnia pulex collected from Solomon and Disputed ponds and 

215 Daphnia pulicaria isolates sampled from Warner, Lawrence, and Three Lakes II. 



 

70 

 

Figure 2.6. Results of a Bayesian STRUCTURE analysis of variation at 21 microsatellite 

loci. A) Genotypes of Daphnia pulex (101) and Daphnia pulicaria (165) from 5 habitats 

with best support for K = 2. B) Genotypes of Daphnia pulicaria (165) from 3 habitats 

with best support for K = 2. Each individual’s multilocus genotype is represented by a 

thin vertical line, which is partitioned into K shaded segments that represent the 

individual’s probability of belonging to each of the genetic clusters. Black lines separate 

different populations, which are labeled below the figure. Five STRUCTURE runs at 

each K-value produced nearly identical individual membership coefficients. The figures 

show the highest probability runs.  
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Figure 2.7. Genetic structure of Daphnia represented by a principle component analysis 

of variation at 21 microsatellite loci. A) 101 genotypes of Daphnia pulex and 165 

genotypes of Daphnia pulicaria from 2 ponds and 3 lakes. B) 165 genotypes of Daphnia 

pulicaria from lakes, with Lawrence lake divided into Law1, Daphnia pulicaria 

mitochondrial profile and Law2, Daphnia pulex mitochondrial profile. Different symbols 

represent the different populations. 
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CHAPTER III 

CONCLUSIONS AND FUTURE DIRECTIONS 

Identifying genomic regions under divergent selection 

Identification of genes and genomic regions under divergent selection in natural 

populations has become one of the major goals in evolutionary genetics (Makinen et al. 

2008), particularly in speciation. This study reveals that despite a prolonged history of 

hybridization and introgression between the ecological species, Daphnia pulex and 

Daphnia pulicaria, they are genetically diverged at the nuclear genome. In the face of 

gene flow, divergent selection may act on a few genomic regions, while other neutral 

regions homogenize, such as in the Z and E strain of the European corn borer moth 

(Ostrinia nubilalis) where only 1 out of the 5 genes examined, Tpi, was found to be 

divergent between the two moth strains (Dopman et al. 2005). A similar pattern can be 

observed between Daphnia pulex and Daphnia pulicaria at the Ldh locus, which is fixed 

for the fast allele in lake habitats (Hebert et al. 1989; Hebert et al. 1993; this study). A 

second potential genomic region identified in this study (locus d174 on linkage group I) 

seems to show similar pattern of one allele being fixed in all lake populations examined. 

Genomic regions for which one or both species are exclusive groups may mark the 

footprint of recent selective sweeps, as is suggested by Crease et al. (2010) from their 

Ldh sequence analysis in lake and pond Daphnia. These selective sweep regions may be 

closely linked to “speciation genes” or genes involved in reproductive isolation of 
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ecologically diverging populations. 

Despite Daphnia pulex’s genome being publically available (wFleaBase), our knowledge 

of potential regions under divergent selection is limited to the Ldh locus and perhaps 

locus d174 identified in this study. A multi locus screen is the best approach for detecting 

selective sweeps when no prior information is available on possible candidate regions. 

This approach has been successfully used for detecting selective sweeps in several model 

species such as marine and freshwater three-spined stickleback, Gasterosteus aculeatus 

(Makinen et al. 2008); the common sunflower, Helianthus annuus, adapted to drought 

and salt tolerance (Kane and Rieseberg 2007); populations of the house mouse Mus 

musculus from different parts of Europe; and two Drosophila species that experienced an 

out of Africa habitat expansion; Drosophila simulans (Schöfl and Schlötterer 2004) and 

Drosophila melangaster (Kauer et al. 2003). These studies used a sufficiently high 

density of neutral markers to identify regions that have recently experienced a selective 

sweep.  

The concept of hitchhiking can be used to pinpoint to specific regions of the genome that 

are under different selective pressures in different wild populations. Hitchhiking refers to 

the increase in frequency of neutral variations in a region of the genome that is closely 

linked to a locus under selection (Smith and Haigh 1974; Harr et al. 2002). Genomic 

regions under divergent selection are expected to show reduction of variation below 

neutral expectations and can indicate the presence of a “selective sweep” (Schlottere and 

Wiehe 1999), which may occur despite high levels of gene flow between diverging 

populations (Barton and Bengtsson 1986; Emelianov et al. 2004).  
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Daphnia is becoming an attractive new model system because various genomic tools 

have become available for this organism (Cristescu et al. 2006; wFleaBase). 

Microsatellites have been the marker of choice for various population genetics studies in 

the past (Chambers and Macavoy 2000; Ellegren 2000; Selkoe and Toonen 2006) due to 

their high mutation rate relative to the rest of the genome. They are particularly useful for 

inferring recent evolutionary events. For example, analysis of microsatellite variability 

offers a way to identify selective sweep regions and to ask whether they occur more often 

than expected by chance (Ihle et al. 2006). It is now possible to conduct a genome wide 

scan for signatures of selective sweeps in the Daphnia genome. This type of study can 

pinpoint regions of the genome experiencing divergent selection in lake verses pond 

habitats. The question of which genes or genomic regions facilitate the genetic adaptation 

of organisms to a new environment is central to ecological genetics and could contribute 

to a better understanding of how new species emerge. 
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APPENDIX 

Supplementary material 

Table S.1. Pairwise FST estimates for all microsatellite loci generated using ARLEQUIN. 

Lawrence Lake is divided into two groups based on different mitochondrial profiles of 

individuals in this lake. Law1 individuals contain Daphnia pulicaria mtDNA, law2 

individuals contain Dapnia pulex mtDNA, Law=(law1+ law2). All FST  values are 

significant (P<0.05). Abbreviations for the different populations are given in table 1. 

 Disp Sol Warn Law1 Law2 Law 

Sol 0.0797         

Warn 0.4751    0.4434        

Law1 0.4827    0.4570    0.0864       

Law2 0.4649    0.4310    0.1271    0.1094      

Law 0.4810    0.4505    0.0764       

3L2 0.4669    0.4384    0.1466    0.1415    0.0856    0.0868    
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