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ABSTRACT

Microchannels have several advantages over traditional large tubes. Heat transfer
using microchannels recently have attracted significant research and industrial design
interests. Open literatures leave with question on the applicability of classical macro-
scale theory in microchannels. Better understanding of heat transfer in various
microchannel geometries and building experimental database are continuously urged. The
purpose of this study is to contribute the findings and data to this emerging area through

carefully designed and well controlled experimental works.

The commercially important glycol-water mixture heat transfer fluid and multi-
port slab serpentine heat exchangers are encountered in heating and cooling areas, e.g. in
automotive, aircraft, and HVAC industries. For a given heat duty, the large diameter
tubes experience turbulent flow whereas the narrow channels face laminar flow and often
developing flow. Study of low Reynolds number developing glycol-water mixture
laminar flow in serpentine microchannel heat exchanger with parallel multi-port slab is
not available in the open literature. Current research therefore experimentally investigates
glycol-water mixture and water in simultaneously developing laminar flows. Three multi-

port microchannel heat exchangers; straight and serpentine slabs, are used for each fluid.

Friction factors of glycol-water mixture and water flows in straight slabs are

higher than conventional fully developed laminar flow. If a comprehensive pressure
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balance is introduced, the results are well compared with conventional Poiseuille theory.
Similar results are found in serpentine slab. The pressure drop for the straight core is the
highest, manifolds are the intermediate, and serpentine is the least; which are beneficial

for heat exchangers.

The heat transfer results in serpentine slab for glycol-water mixture and water are
higher and could not be compared with conventional fully developed and developing
flow correlations. New heat transfer correlations are therefore developed in current study.
The experimental data are compared with improved scheme of modified Wilson Plot
Technique and numerical simulation having the same geometries and operating
conditions. Very good agreements in results were found in all cases. The presence of
adiabatic serpentine bend in multi-port flat slab heat exchanger enhances more heat
transfer with less pressure drop penalty as compared to the initial entrance condition

caused by the inlet manifold.
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NOMENCLATURE

m Mass flow rate of working fluid [kg/s]

v Volume flow rate of working fluid [m?/s]

2-D Two dimensional

3-D Three dimensional

A Area [m’]; Variable in Equation (2.19)

A Cross-sectional area (1D%/4) of a channel or tube [m’]

Agr Free flow area (at airside) of the finned-tube MCHEX [mz]
Ag Frontal area of the finned-tube MCHEX [mz]

Al Aluminum and Precision error component in uncertainty analysis
A Channel or tube surface area (DL = PL) [m’]

AVDEV Average deviation

B Variable in Equation (2.19)
Br Brinkman number [M]
KAT
C Constant in Poiseuille number Equation (2.10)
Cc* Ratio of experimental to theoretical Poiseuille numbers
CAD Computer aided design
Cp Specific heat of working fluid at a given temperature [J/kg.°C]
Cu Copper
D Diameter [m]
DFM Digital flow meter
Dy Hydraulic diameter of a port in the multi-port microchannel slab [m]
D; Inside diameter of a port in the multi-port microchannel slab [m]
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H

hy
HVAC/R
HX

ID

MC

MCHS

PhD Dissertation

Outside diameter of a single microchannel port or MPE tube slab [m]

Friction factor

LMTD correction factor

Darcy friction factor (4f;)
Fanning friction factor (fy/4)
Gravitational acceleration [m/s’]

Mass velocity or mass flux [kg/m’.s]

_ 3
Grashof number w

v
Heat transfer coefficient [W/m?*.°C]

Test slab thickness i.e. height in Y-direction [mm)]
Head loss [m]

Heating, ventilation, air-condition, and refrigeration
Heat exchanger

Inner diameter

Thermal conductivity [W/m.°C]

Knudsen number (Kn = A / Dy)

Flow length; test slab length [m]

Hydrodynamic entrance length [m]

Log-mean temperature difference

Thermal entrance length [m]

Mass of the fluid [kg]

Microchannel

Microchannel heat sink
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MCHX Microchannel heat exchanger

MEMS Micro-Electro-Mechanical Systems

MFD Micro-Flow Devices or Micro-Fluidic Devices
MPE Multi-port extruded

MSE Mean square error

NTU Number of transfer unit

Nu Nusselt number (h D/k)

P Perimeter or circumference of tube or channel port [m]
Pe Peclet number (VD/a = Re.Pr)

Po Poiseuille number (fRe)

Pr Prandtl number ['UTCp]

PTD Pressure transducer (for liquid side)

PTDD Differential pressure transducer (for airside)

Heat transfer rate [W]

R Universal gas constant [J/kg.K]

Re Reynolds number (pVD/p)

RTD Resistance temperature detector (for liquid side)

Si Silicon

SS Stainless steel

STDEV Standard deviation

T Temperature [°C]

t Thickness

Ty Bulk flow temperature of working fluid (T; + T,) /2 [°C]
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Tta Film temperature of flowing air (T, + Ts,) / 2 [°C]

Ts Surface temperature of flow channel [°C]

U Overall heat transfer coefficient; Uncertainty variable

v Heat exchanger volume or heat transfer volume in channel [m’]
A% Mean velocity of flowing fluid [m/s]

w Test slab width in Z-direction i.e. airflow direction [mm)]

WC Water column (measuring instruments’ capacity)

X" Dimensionless axial distance in Equation (2.16b)

y Coefficient in Equation (2.12)

Z Characteristic length [m]

Greek letters

) Boundary layer thickness [m]

B Coefficient of thermal expansion [K™']

p Density of working fluid [kg/m’]

0 Dimensionless temperature

1) Dynamic viscosity of working fluid [kg/m.s or N.s/m’]

% Kinematic viscosity or Momentum diffusivity of working fluid [m?/s]
A Molecular mean free path [um]

c Smaller-to-larger area ratio at point where flow area changes
€ Surface roughness height [m]

Ap Pressure difference or Pressure Drop [Pa]

AT Mean temperature difference between two locations [°C]

Tw Wall shear stress [Pa]
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Subscripts
a Air
b Bulk
bucket Bucket-weigh-stop watch method
ch Channel
cr Critical
d Darcy
dev Developing
DFM Digital flow meter
em Exit manifold
emt Exit manifold tube
emt-c Exit manifold tube contraction
f Fanning; fin
F Fitting
Glycol-water mixture
H H-boundary condition (constant surface heat flux)
hy Hydrodynamic
1 Inlet or entrance; inner side
im Inlet manifold
imt Inlet manifold tube
imt-e Inlet manifold tube expansion
L Loss
lam Laminar
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liq
LMTD

serp

serp-bend

th

total

turb

PhD Dissertation

Liquid

Log-mean temperature difference
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CHAPTER -1

INTRODUCTION
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1.0 INTRODUCTION

Energy use is a vital part of everyday life, and thus its production and appropriate
consumption are the keys to sustainable economic growth. Environmental concerns with
respect to thermal, air, and water pollution, as well as the disposal of waste have resulted
in the proliferation of energy conservation and recovery measures, and the
implementation of clean new and renewable energy sources. Heat exchangers are a
central component of many of the above processes. The importance and diverse
application of heat exchangers have witnessed significant gains over the decades across
multiple industry sectors including power generation, transportation, HVAC/R,
electronics, and manufacturing. The dominant use of heat exchangers, however, is

encountered in the energy and thermo-hydrodynamic areas.

Heat exchangers provide for the flow of thermal energy and allow the heat
transfer between two fluids at different temperatures separated by a flow passage wall.
Entropy is generated by the transfer of heat across a finite temperature difference and by
irreversible friction flow by the flow friction dissipated losses [1]. Because the
minimization of entropy generation generally leads to the conservation of energy, there is
a focus on both enhanced heat transfer as well as improved flow performance. A forced
convection mechanism accounts for heat transfer in almost all heat exchangers. It is
governed by the total thermal resistance of the participating fluids, the heat transfer

surface, and the tube walls. The thermal resistance is determined by the boundary layer
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thickness that develops on the heat transfer surface. Generally, performance
improvements are achieved by augmenting the heat transfer coefficient between the fluid
and the wall surface, which in turn increases the thermodynamic efficiency and reduces

the operating cost.

In broad terms, the enhancement of heat transfer is associated with thermal design
modifications that minimize entropy generation and improve the heat transfer coefficient.
The dependence of numerous industry sectors on heat exchangers has driven the
development of techniques to reduce the thermal resistance and to enhance the convective

heat transfer in order to improve efficiency and reduce cost.

Numerous studies [1-6] have proposed various methods to enhance heat transfer
performance, minimize pressure drops, and reduce the unit sizes of conventional heat
exchangers already available. In the laminar flow regime, the maximum heat transfer
enhancement limit associated with many of the proposed augmentation techniques is of
the same order of magnitude, and it is independent of the wall boundary condition [1].
Applications where size is limited have led to the development of compact heat
exchangers with a variety of tube shapes and sizes in various orientations; they offer high

heat transfer surface density of about 700 m*m? [6-7].

Traditional air-to-liquid crossflow heat exchangers consist of conventional tubes
of varying shapes and sizes; the airside generally accounts for about 80% of the total

thermal resistance. Some authors have reported the airside thermal resistance up to 96%
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[8-9]; such values indicate the importance of selecting the proper airside heat transfer
correlation for the relevant heat exchanger design and application. Traditional heat
exchangers generally use the flow passage sizes of 6 mm and larger with various
geometries, orientations, and enhanced surfaces. However, the research into efficiency
gains based on heat transfer augmentation, size shrinking, and thermal resistance
diminution techniques has almost reached its limits with respect to the sizes and shapes of

flow passages that are commercially available today.

Growing energy demands, space limitations for device packaging, energy and
materials savings, ease of unit handling, etc., have focused the demand for miniaturized,
light weight heat exchangers that can provide high heat transfer. The heat transfer
intensification in thermo-fluid applications, which refers to the practices of obtaining
increased heat transfer out of decreased sized heat exchangers has become a
progressively demanding and growing research area [10]. The viability of small flow
conduits has now come to the forefront because it is intuitive that smaller channel sizes

increase heat transfer and reduce the unit size.

Current advancements in micro-machining and micro-miniaturization techniques
have made possible the fabrication of small flow passages or ‘microchannels’.
Microchannels are broadly characterized by small flow passages of 1 mm in diameter or
less, which allows for heat transfer surface densities to be 10000 m%m?® or more [7, 10-
11]; this value contrasts with compact heat exchangers having a density of 700 m%m®.

Note that the heat exchanger density in current study is 4000 m*m? which is about 6
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times higher than the traditional compact heat exchanger. Due to the higher heat transfer,
lower weight, and their space, energy, and materials savings potentials over their
traditional tube and enhanced surface heat exchanger counterparts, microchannels can

meet all the above mentioned challenges.

Microchannel thus represents an emerging technology in heat transfer
enhancement research [12]. In the field of advanced energy systems, micro and
nanotechnology have widespread potential such as to: improve energy storage, enhance
renewable energy sources, achieve energy savings through advanced materials, and
reduce combustion pollutants through nanoporous filters etc.; as well as in fuel cell
catalysts and in hydrogen storage [13]. Advancement has also been made in generating
electricity using novel nano-electromechanical systems and microfluidic devices such as
the nano-engine, microchannel battery, micro-heat engine etc. [14]. Because of small
diameters, microchannel arrays can increase the effective area for reactants and hence

increase the power density of a fuel cell for the same flow rates [15-16].

To improve the efficiency and effectiveness of such narrow channel devices,
superior understanding of the thermodynamic behaviors in microchannel flows is
necessary [17]. As primary candidates for future heat exchanger components,

microchannels and the technology have attracted extensive research attentions.

The heat transfer process in microchannels depends on the heat transfer surface

area As, which varies linearly with the channel diameter D or hydraulic diameter Dy. The
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channel flow rate, on the other hand, depends on the cross sectional area A. of the

channel, which varies linearly with D? Hence the heat transfer surface area to volume

ratio, As/V varies as 1/D. As D decreases, the A¢/V increases. In the laminar flow regime

for a microchannel, the local heat transfer coefficient, h, varies inversely with the channel

diameter i.e. h o« 1/D. Therefore as the channel diameter decreases the heat transfer

coefficient increases as can be seen in Figure 1.1. As a result, the decreased channel

diameter improves both the compactness of the unit as well as the heat transfer rate.

Heat transfer
coefficient, A

Laminar flow

v

umsize  mm size

Channel width or diameter, D

Figure 1.1. Effect of channel size D on heat transfer coefficient h in laminar flow

Efforts to explore smaller sized channels have resulted in a steady shift from

larger diameter tubing (10 to 20 mm) to smaller diameter channels (1 mm to 0.01 mm).

The term ‘microchannel’ has become an accepted classifier for heat transfer and fluid

flow processes at smaller scale [18]. Some authors have attempted to classify small flow

passages of typical thermal heat exchanger technology at microscale geometry with
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respect to some key biological and engineering systems [19-20]. Any flow channel
diameter or hydraulic diameter of 1 mm or below is broadly classified in the heat transfer
and fluid flow literature as “microchannel”, “microtube” or “micro-device” [10, 21-28].

Figures 1.2 (a) and (b) illustrate two sample flow passages for different uses.

Figure 1.2a. Non-circular microchannel flow passages seen in heat sinks in electronics cooling.

Figure 1.2b.  Microchannel slab with circular ports used as core in thermal heat exchangers.
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Some narrative features of a crossflow air-to-water microchannel heat exchanger
(MCHYX) relative to a conventional sized heat exchanger are: increased heat transfer rate,
minimized air supply fan or blower capacity, reduced water supply pump power for a
given flow rate, lower weight, and reduced unit size [12, 22, 29-31]. The flatness of a
multi-port microchannel slab, which is the focus of current long-term research, can
reduce the airside flow resistance, and result in increased airflow or reduced fan or

blower power, or both.

For a given heat duty, the high heat transfer property of microchannels results in
shorter channel lengths. Undesired axial heat conduction is also minimized because the
channel length and fluid residence time are shortened as well as the entire bulk fluid stays
in close contact with the microchannel walls. The fluid flow in multi-port MCHX slab is
parallel and usually well distributed over a large number of small passages. This
distribution reduces the flow velocity in each individual channel. Therefore the shorter
parallel channel lengths and minimal axial heat conduction, combined with the well
distributed flow, result in a low channel side pressure drop and hence reduce the

requirements of liquid side pump capacity.

In the early stages of the development of microchannel heat sinks (MCHS), fin
arrays both with and without variable tip clearance were analyzed for fully developed
laminar flow [32]. It was confirmed that a capped, finned heat sink exhibits significant

improvement in thermal performance over designs that are open at the fin tips. By
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conducting experiments on the heat transfer characteristics of water flow in MCHS
fabricated in a silicon wafer, it was demonstrated that the cooling of electronic
components can be accomplished by the use of forced convective flow of fluid through
microchannels [33-34]. With the surface temperature maintained at less than 130°C, the
dissipated heat flux was observed to be on the order of 1.3 x 10" W/m?. The study
confirmed the potential of microchannel technology in the field of electronics cooling and

other heat transfer applications.

The concepts of electronics cooling have been further developed using MCHX
[35]. A comprehensive review of published works on MCHS for electronics cooling is
available, including critical findings and the effectiveness of such devices [36]. Research
in this area focuses on solving the problems of electronics cooling using microchannels
and MCHS. The heat generated by the circuitry is removed either by a liquid coolant flow
through the channels or by airflow over the heated face of the object and thereby the heat
transfer rates are investigated. For some investigation the channel surface was heated
electrically and cold air was blown. In either case, the airflow is located as close as
possible to the heat source. In some typical thermal-hydraulic applications, such as the
single phase gas-to-liquid orientation, the heat exchangers generally use a metallic multi-

port-in-flat-slab geometry.

The process of parallel, counter, or crossflow heat transfer in heat exchangers
occurs between two fluids that are in motion, such as in the air-to-liquid crossflow heat

exchanger in automotive applications. The magnitude of heat duty of heat exchangers
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used in thermal and energy applications is typically higher than the heat duty of heat
sinks used in electronics cooling. In many cases the geometric configurations, fluid flow
orientations, and heat exchange processes of MCHX and MCHS are also different. Direct
comparison of MCHX for thermal applications with MCHS used in electronics cooling
research may not be relevant [22]. There is limited research in the open literature that
focuses on heat transfer and fluid flow on MCHX for such thermal applications.

Moreover, research data on MCHX is rarely cited in the open literature.

Compared to MCHS for electronics cooling applications, the research and
development of microchannels and MCHX for thermal and other engineering
applications is relatively recent. The investigation and application of microchannels can
be found primarily in laboratory, micro-electro-mechanical systems (MEMS), micro-
fluidic devices (MFD) settings. Applications for automotive heat exchangers exist as
proprietary or in-house packages only. The mass production and application of
microchannels as MCHX core elements are not very common in the commercial
marketplace yet. Microchannels have yet to penetrate current heating and cooling
applications, possibly due to: the lack of availability of adequate and well established
data and design correlations in the open literature; insufficient understanding of heat
transfer and fluid flow behaviors in microchannels; or the lack of systematic thermo-

hydrodynamic characteristics and mechanical procedures for MCHX design methods.

The review of the literature reveals an open question: do the classical fluid flow

and heat transfer theories, correlations, and design methodology equally hold valid for
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microchannel flow and geometry? In recent studies it is however still not clear whether
the correlations developed for classical macro-size tubes (>6 mm) are directly applicable
for use in further down-sized flow passage such as in mini or microchannels (<3 mm)
Existing arguments can be made to both sides of the question. Many authors thus
emphasize the needs for more research in this area to develop data to help consolidate the
arguments. In light of this view, research needs to be devoted to building the fluid flow
and heat transfer correlations for microchannels, and thereby establish appropriate design
parameters for the MCHX. From there, this information must be widely disseminated to

foster growth and in today’s various heating and cooling application needs.

The current paper surveys the open literature on the status and potential of
microchannels and MCHX, identifies research needs, and scopes the potential of current
research, as presented in the next sections. “Open literature” here implies access to the

information.

Current research objectives focus on the experimental investigation of liquid flow
friction factor in multi-port straight microchannel slab; and liquid heat transfer in multi-
port serpentine microchannel slab and prototype MCHX in the air-to-liquid crossflow
orientation. It aims at developing and validating the design correlations for microchannels
and MCHX and addressing the discrepancies seen in previous studies [23, 37-38]. An

example of such discrepancies in published results can be visualized in Figure 1.3 [37].
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1.E+02 — — =C*=1
! o Data

1.E+01 Note:
- C* _ (Po)experimental _ (f Re)experimental
© (Po)theoretical (f Re)theoretical

1.E+00 - and C* is found to vary between

0.6 and 1.4.
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Figure 1.3. Variation of Poiseuille number, Po ratio (C*) with Reynolds number (Re);

where C*, as defined above, is the ratio of the published experimental results for microchannel

flow to the theoretical values for traditional pipe

(Source: Steinke and Kandlikar 2006 [37], with permission)

The execution of a rigorous test procedure with high quality equipment and
instruments may lead to a relatively more accurate data set with results that may be inline
with a subset of the published results, possibly leading to the establishment of a
consensus on microchannel quantitative results within the research community. This
research will assess, quantify, and qualify the thermo-hydraulic performance and

potential of MCHX for thermal applications.
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The review of open literature included such issues as the critical Reynolds number
for microchannel flow, and the applicability of classical heat transfer and fluid flow
correlations in microchannels. In an attempt to explore some of these issues, a dynamic
single phase crossflow experimental test facility is developed and microchannel test
specimens with various flow passage geometries are fabricated in support of the current
research. The test facility incorporates modern high accuracy instrumentation and
automated data acquisition features into a highly flexible and versatile test bench. It
provides heat transfer and fluid flow research capability for different microchannel
geometries and shapes, across a number of fluids, in laminar to turbulent flow regimes,

for a wide range of pressure and temperature.

Each fabricated microchannel test specimen can be used to investigate the
fundamentals of heat transfer and pressure drop. Data on the mentioned test specimens
are used to compare friction factor versus Reynolds number (f-Re) and to develop Nusselt
number versus Reynolds number (Nu-Re) relationships. The main focus of current
research was the heat transfer characteristics of internal working fluid flowing inside
MCHX test slabs. Nevertheless, the other associated performance parameters like the
heat exchanger effectiveness, NTU, and overall and individual thermal resistances etc. for

the MCHX test specimens have also been studied and analyzed as additional works.
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The information on the designed test specimens, test chamber, test facility, and
instrumentation is presented in relevant chapters. The integrity of the developed

experimental setup is examined through liquid-to-air crossflow heat balance experiments.

1.1 Motivation

Microchannel technology and the use of microchannels in heat transfer and fluid
flow applications are heading to replace the use of traditional tubes [12, 19-20, 39-41].
Microchannels represent the next generation heat exchangers because a MCHX made of
microchannel cores in general can offer some advantages over the traditional and

compact heat exchangers, which are summarized below.

e Improved heat transfer performance per unit volume (about 10 times or more)

— giving a cost-effective and high efficiency heat exchanger [12, 42-44].

e Reduced air-side pressure drop — requiring less fan or blower power, hence
cutting the initial costs for fan and cutting the energy consumption thus saving

the cost and environment [42-43].

e Highly compact, reduced coil size, and very lightweight heat exchanger -
Larger heat transfer surface area per unit volume, which is 10,000 m*m?® or
more, i.e. about 15 times higher than the traditional heat exchangers or more

[12, 30, 42-44].
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e Substantial refrigerant charge reduction, less risk of pollutant emission due to

leakage, and hence less complexity in refrigerant handling [44, 45-49].

e For a given heat duty, lower tube-side fluid flow rate and hence the pressure
drop — lowering the pump power leading to less initial costs for pumping and

less energy consumption thus saving the cost and the environment [30-31, 43].

e Increased reliability as a result of better corrosion resistance with improved

materials and enhanced structural robustness [12, 30, 42-44].

e Future research needs for huge experimental data on heat transfer and fluid

flow correlations and design parameters for complete heat exchanger [43].

The motivation of using flat tube multi-port microchannel slabs as the test
specimens in current study is that the flat tubes present better heat transfer and pressure
drop performances for both internal and external working fluids over other comparable
geometries. These advantages are quantitatively and qualitatively described below in
section 3.0 in literature survey. Also aluminum flat tubes provide better device
compactness and light-weightiness, which are an important concern for many heating and

cooling industries; particularly in the automotive and aviation heat transfer applications.
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1.2 Obijectives and method of approach

PhD Dissertation

Comprehensive literature review on previous works in microchannel heat
transfer and fluid flow in order to realize the potential applications of MCHX,

identify current investigation and design necessity, and future research needs.

Acquire understandings on microchannel geometries, flow regimes, and heat

transfer correlations required to investigate, analyze and design the MCHX.

Summarize the information of literature on needs for design and experimental

investigation of microchannels and MCHXs for thermal applications.

Sum up the investigation and correlations requirements and the best methods

for analyzing and designing the air-to-liquid crossflow MCHX.

Design, construct, and develop a fluid flow and heat transfer experimental test

facility with modern instrumentation and data acquisition (DAQ) system.

Design straight and serpentine multi-port microchannel slab and prototype

MCHX test specimens and wind tunnel test chamber for their experiments.

Experimentally investigate the pressure drop and friction factor characteristics
of 50% ethylene glycol-water mixture and water flow in straight microchannel

slab and examine the results with traditional pipe flow characteristics.
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e Experimentally investigate the heat transfer characteristics of ethylene glycol-
water mixture in serpentine microchannel slab and prototype MCHX in

laminar developing flow and compare the results with traditional pipe flow.

e From experimental data - determine Nu using measured surface temperatures
around the serpentine bend of the test specimens, obtain Nu = f (Re, Pr)

correlation by employing Wilson plot technique, and compare the results.

e Generate thermo-hydrodynamic experimental database for water and glycol-
water mixture flow in multi-port serpentine microchannel slab and MCHX,

which is a continuous need in the research community in this promising area.

To successfully accomplishing the above objectives of current research, a flow
chart was developed on step-by-step action plan, which was followed to reach the goal.

The chart is presented in Figure 1.4 below.
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Figure 1.4.

PhD Dissertation

TITLE: Experimental investigation of heat transfer
characteristics of glycol-water mixture in multi-port

serpentine microchannel slab and heat exchanger

1. Comprehensive Open Literature Survey

¥

2. Acquire understandings on MCHX geometries,
flow regime and required design correlations

¥

3. Summarize needs for research & design objects

|

4. Identify best methods for experiments & analysis

L !

5. Design and develop Heat transfer & Fluid flow
Test facility with modern instrumentation & DAQ

|

6. Design microchannel slab and MCHX test

specimens; wind tunnel test section for experiment
- J

|

7. Commission test setup and heat balance using
MCHX. run experiments. obtain heat transfer data

¥

8. Analyze data, develop heat transfer correlations,
compare results with published literature & theory

|

9. Propose heat transfer design correlations for
MCHX and oublish iournal and conference pnapers

]

S

10. Generate thermo-hydrodynamic experimental
database for water & glycol-water mixture in MCHX

~

J

Mesbah G. Khan; Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada

Flow chart of method of approach in reaching current research goal

Page no. 18



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

CHAPTER - 2

BACKGROUND THEORY AND CORRELATIONS

PhD Dissertation Mesbah G. Khan; Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 19



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

20 BACKGROUND THEORY AND CORRELATIONS

Fundamentally the heat transfer and fluid flow mechanisms in microchannels are
similar to that of the conventional pipe flow except for the different ways, in some cases,
of experimenting, analyzing, error estimating, and treating the contributing parameters as
well as consolidating the correlations as appropriate for narrow channel flow.
Traditionally the heat transfer and fluid flow phenomena and parametric relationships are
functionally represented by various non-dimensional parameters each of which has
certain physical and thermo-hydrodynamic significance as described below. If not stated

otherwise, all fluid properties are evaluated at bulk temperature for all equations below.

2.1  Dimensionless parameters in heat transfer and fluid flow

In forced convection heat transfer to and from any object or surface, the non-
dimensional heat transfer coefficient is usually expressed by the Nusselt number (Nu).
The Nu depends on at least two other important dimensionless parameters namely the
Reynolds number (Re) and the Prandtl number (Pr), which are described at the firsthand.
The flow velocity, fluid type, and the channel diameter together determine the Re. And
the Re is used to describe the nature and regime of the flow. The Pr on the other hand
explains the growth of thermal boundary layer thickness on the heat transfer surface. The

thermal boundary layer is a barrier to the heat transfer.
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There are a few other important dimensionless parameters associated to heat
transfer and fluid flow. The Grashof number (Gr), which identifies and quantifies the
existence of natural convection in forced convection heat transfer. The Knudsen number
(Kn) used to quantify the rarefaction effect, which is a measure of the departure from the
classical continuum assumption. The Brinkman Number (Br) measures the relative
importance of viscous heating. Relative roughness (¢&/D) that describes how smooth a
pipe surface is relative to its diameter. The friction factor (f) attributed to the surface
roughness of the flowing channels is related to the pressure drop along the flow length.
The Poiseuille number (Po) relates the f and Re depending on flow channel geometry.

These dimensionless numbers are further defined below.

2.1.1 Reynolds Number (Re):

It is named after the founder the British engineer and physicist “Osbourne
Reynolds”. The Re is defined as the ratio of the inertial force to the viscous force within
the flowing fluid. As defined below, it is used in momentum, and heat and mass transfer
areas to account for the dynamic similarity, fluid flow velocity, and to characterize the

nature of the flow.

_ Inertia Force _ Mass x Acceleration  pAV?2  pVZ _VZ

~ Viscous Force  Shear Stress x Area ,U\L A M v (2.1)
VA

Re
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where Z is the characteristic length and traditionally defined by Z = D, =4A/P, for
circular and non-circular cross sections. The pressure drop of fully developed laminar
single-phase flow in smooth channels of arbitrary cross-sections has been numerically
modeled [50]. The model was compared and found to be within 8% of the published
results for a variety of cross-sections. The authors used and proposed a new characteristic
length, as Z = \/A, to define the Reynolds number and concluded that this characteristic
length scale is superior to the conventional hydraulic diameter Dy, [50]. For water and
glycol-water mixture flows in current study, Z was replaced with the diameter of a single

channel D of the multi-port microchannel slab.

For external working fluid flowing over the test slab surface, which is airflow in
current study, the characteristic length Z and the product pV are replaced respectively
with airside hydraulic diameter Dy, and the airside streamwise mass velocity G across the
heat exchanger as defined by Kays and London [51]. Typically the viscous stresses
within a fluid tend to stabilize and organize the flow, whereas excessive fluid inertia
tends to disrupt the organized flow leading to a chaotic turbulent behavior. Therefore the
Re governs the flow regime in forced convection and determines the flow whether it is

viscous dominated or inertia dominated.
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2.1.2 Prandtl Number (Pr):

A German scientist “Ludwig Prandtl” pioneered the concept of thermal boundary
layer in 1904 and developed a dimensionless parameter, which was named after him as
“Pr”. It is defined as the ratio of the momentum diffusivity to the thermal diffusivity and

is generally described in the following form.

Pr— Momentum Diffusivity

1%
Thermal Diffusivity «

7
P

Generally in heat transfer and particularly in free and forced convection analyses,
the convection heat transfer rate anywhere along the surface of a body is directly related
to the temperature gradient at that location. The fluid flow velocity has a strong influence
on the temperature profile, and hence the development of the velocity boundary layer

relative to the thermal boundary layer has strong effect on the convection heat transfer.

In laminar flow regime, the relative thickness of the velocity and the thermal

boundary layers are best described by the Pr as follows.
P
pr— [ﬁj (2.2a)

PhD Dissertation Mesbah G. Khan; Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 23



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

where the exponent n is taken to be 1/3 and the velocity boundary layer thickness, o, is
obtained in terms of the local Re and corresponding to the local distance from the leading
edge [52]. In laminar flow Pr provides a measure of the relative effectiveness of
momentum and energy transport by diffusion in the velocity and thermal boundary
layers. The velocity boundary layer gets thinner as the free stream velocity gets higher.
Compared to the momentum, the heat diffusion is quicker in fluids with Pr <<1, and

slower in fluids with Pr >> 1 [53].

Consequently as compared to the velocity boundary layer, the thermal boundary
layer is thicker for fluids with Pr <<1 and thinner for fluids with Pr >> 1. On the other
hand in turbulent flow the boundary layer development is influenced strongly by the
random fluctuations in the fluid and not by the molecular diffusion, and hence, the
relative boundary layer growth does not necessarily depend on the value of Pr. In such
cases both thicknesses are similar, i.e. 8, ~ oy, and therefore the turbulent Pr is defined in

the form of the ratio of energy of fluctuating components.

2.1.3 Grashof Number (Gr):

It is defined as the ratio of the buoyancy force to the viscous force acting on the
flowing fluid. Like the Re dictates the flow regime in forced convection, the Gr governs
the flow regime in natural convection. The Gr, as defined below, determines whether the

forced convection or the natural convection is dominant in a flow system.
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_ Buoyancy Forces  g(Ap)(Volume) gAAT(Volume) g BATZ3

ar 23
Viscous Forces pv? V2 V2 (2.3)
where, [ = L [K1], AT =AT = |Ti —TS| [°C], and Z = characteristic length.
Te +273.15

2.1.4 Knudsen Number (Kn):

It is named after its founder the Danish scientist and researcher “Knudsen”. As the
size of a flow channel gets smaller and smaller it approaches the mean free path between
two molecules, which is particularly true for a gaseous flow. The traditional continuum
assumption in flow analysis may not hold valid in such smaller channel flows. The Kn is

a measure of the departure from the continuum assumption.

As Kn gets larger, the departure from the continuum becomes significant and as a
result a simple wall velocity correction can no longer handle the complex wall and
intermolecular interactions within the flow field. In such cases, e.g. for gas flow in very
narrow channel, the heat transfer and fluid flow problems are treated and solved by using
statistical mechanics or molecular dynamics simulations. The Kn is also used to further
classify the fluid flow based on its degree of departure from the continuum assumption
[19-20]. The Kn is defined as the ratio of the fluid molecular mean free path (A1) to the

flow channel size Dy,.
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Kn:i, where A = 'U\/;

Dh PN 2RT

x 10°  [um] (2.4)

where, R, T, p, and u are the universal gas constant [J/kg.K], absolute temperature [K],

density [kg/m’], and dynamic viscosity [kg/m.s] respectively.

2.1.5 Brinkman Number (Br):

The Br measures the relative importance of viscous heating (i.e. the work done
against viscous shear) to the conduction of flowing fluid along the channel. It is defined
as the ratio of heat generated by viscous dissipation to the heat transferred by conduction.

Over any cross-section of heat transfer interest, it is expressed as follows.

2
Br :% 2.5)

where, V, AT, k, and  are the mean fluid flow velocity, wall flow temperature difference,

thermal conductivity of the channel material, and dynamic viscosity respectively.

The Br is usually ignored for low-speed and low-viscosity flows through

conventional sized channels of short lengths. It can become most important for long pipe
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flow. The length-to-diameter ratio can be very large in flow through narrow tubes and
microchannels that can be compared to flows through conventional-sized long pipelines.

Thus the Br may become important for heat transfer analyses in narrow channels [54].

2.1.6 Relative roughness (&D)

The roughness height (¢) in pipe flow problem refers to the surface finish of a
pipe. The relative roughness (&/D) describes how smooth or rough a pipe surface relative
to its diameter. The magnitude of this parameter varies from zero (perfectly smooth) to
0.05 (considerably rough) [59]. The pressure drop in conventional pipe is independent of
the relative roughness in laminar flow regime and for very high Re, but is dependent in
turbulent flow regime for moderate Re. The conventional turbulent correlations for rough
pipe flow relating friction factor with the relative roughness and Re are available. They

are however rare for laminar rough or smooth pipe flows.

For a given surface finish, the narrow diameter pipe has more relative roughness
than a large diameter pipe. As described in literature review, some authors indicated that
the pressure drop and friction factor could be dependent on the relative roughness in
microchannels even in laminar flow. No correlation however is found for microchannel
flow that relates the relative roughness with friction factor and Re. Current study uses
1 mm diameter channel cut with laser beam, which is reasonably considered as smooth

channel where the effect of relative roughness can be ignored without much error.
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2.1.7 Friction factor (f)

The friction factor is a non-dimensional shear stress attributed to the surface
roughness and often related to the pressure head loss. The friction factor is never zero
even for a hydrodynamically smooth pipe (&= 0) since there is always some microscopic
surface roughness acting as no-slip boundary condition that requires a fluid to stick to any
solid surface it flows over. In traditional pipe flow the f is commonly termed as the Darcy

friction factor (f4). From dimensional analysis it is non-dimensionally given as follows.

D
—— (2.6)

where, Ap is the frictional pressure loss over the flow length L and D, p, and V are the
channel diameter, fluid density, and mean flow velocity respectively. By rearranging
Equation (2.6) the frictional pressure drop Ap can be represented in terms of friction

factor as follows.

Ap=f, =2 2.7)

In heat transfer literature another form of friction factor representation is often

observed is the Fanning friction factor (ff). It generally represents primarily the frictional
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component of the Ap and is used when a given heat transfer surface has roughly the same
frictional Ap per unit length along the direction of the flow [3]. The Fanning friction
factor and the Darcy friction factor are basically the same thing. There is no fundamental

difference in the physical interpretation.

For a horizontal pipe flow, the pressure gradient of the flow is related to the wall

shear stress as follows.

dp _dzy _Ap (2.8)
dx D L '

The dimensionless wall shear stress and friction factor can be obtained from above as,

fd =4 w :4ff . (29)

Japv?

From the above equation, it is seen that the Darcy and Fanning friction factors are related

to each other by a factor of 4 as expressed below.

fd =4 ff (293)

The friction factors and their relationships expressed above depend on a variety of

situations such as the flow regimes (laminar or turbulent), flow conditions (fully
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developed or developing flow), flow channel cross-sectional geometry, the channel
surface conditions (smooth or rough wall) etc. The f can be determined from above
equations if the parameters and the specific flow and channel conditions are known. In
order to determine the f in a variety of practical situations, a number of studies have been
carried out and various correlations are proposed by various researchers. Some key

correlations are described in the next section.

2.1.8 Poiseuille number (Po)

In the study of fluid flow resistance in tubes in laminar flow, Jean Louis Poiseulle
devised a dimensionless group “Poiseuille number”, which was named after him. It is a
constant and depends on the flow channel geometry and given by the product of the f and

Re to represent the fully developed laminar flow friction data as expressed below.

Po=f Re=C, where C is a constant that depends on channel geometry (2.10)

2.1.9 Nusselt Number (Nu) — the dimensionless heat transfer coefficient

The most familiar and convenient method of representing the heat transfer is
through a non-dimensional group called the Nusselt Number (Nu), which was named

after a German notable heat transfer luminary Ernst Kraft Wilhelm Nusselt. It is often
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called the dimensionless form of the heat transfer coefficient (h) and is defined as the
ratio of the convection to the conduction heat transfer rates. In other words, it is described

as the ratio of the fluid layer resistance to the convective resistance as represented below.

Nu = Fluid layer resistance Z/k hZ

= = 2.11
Covective resistance 1/h k ( )

where Kk and h are the thermal conductivity and convection heat transfer coefficient of the
participating fluids. The term Z = D, = 4A / P is the characteristic length that depends on
the shape and orientation of the heat transfer surface. In current study for water and
glycol-water mixture flow inside microchannel, the Z is replaced with the diameter of a
single channel D of the multi-port slab. On the other hand for airflow over the slab or
MCHX surface, the Z is replaced with airside hydraulic diameter Dy, as and defined by

Kays and London [51].

The Nu can be readily calculated from Equation (2.11) if the h is known. A
variety of heat exchanger geometries, channel shapes, orientations and heat transfer
surfaces are used in practical applications where the h may not be known a priori. In such
cases the h is estimated either by experimental investigation or from two fluid heat

balance using heat rate equations or from any other available heat transfer correlations.

The well known fact is that the heat transfer either for a single tube, channels in
multi-port, or for a tube bank in heat exchanger is influenced by the flow velocity, fluid
thermophysical properties, heat flux intensity, heat flux direction, wall temperature
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conditions, arrangement of the flow channels etc. Thus most of the available heat transfer
correlations exist in the form of dimensionless heat transfer coefficient, i.e. the Nu with
its dependency on other controlling parameters like the Re, Pr, fluid properties, tube

arrangement etc. The dimensionless relation can therefore be generalized as follows [55].

Nu = fLRe, pr, 4 K S o S 5} (2.12)
Hs K Cos ps 2L

The geometric factor Z/L accounts for the effects on local Nu. Current study used

the fixed geometry and orientation of the test samples on both fluid sides for a given

experimental run and estimates the overall mean Nu that includes all the local effects.

The effects of variations of tube orientations S./Z (airside) and length to diameter ratio

Z/L (liquid side) on Nu are absent in current study and therefore are excluded.

The forced convection heat transfer is usually simplified through the dimensional
analysis. After the simplification the overall Nu is seen to depend on the fluid flow
velocity and the thermal boundary layer thickness. The velocity is represented by the Re
and the thermal boundary layer by the Pr. The effects of the variations of thermophysical

properties of viscous fluids in the thermal boundary layer are often accounted for by the

ratios ofﬁ, L, —, =
Hs ks Cp,s Ps
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For flow of fluids with temperature-dependent properties, the associated property
ratio terms are often added in the heat transfer correlations for external and internal

flows. In less viscous external fluid flow over a surface, such as the air, the property

_ . o . (P
variation effect is accounted for by the addition of the Pr ratio (ﬁ] For moderately

P

viscous fluid flow inside channel like water it is mainly the viscosity that varies with the

temperature across the boundary layer. This variation is then taken in to account by the

Hp

inclusion of viscosity ratio (
Hs

j . Therefore by taking the major influencing factors into

consideration, the heat transfer experimental data can be generalized in the following

functional relationships [56].

p
Nu=yRe™Pr" [1;&] , for external flow over a surface (2.12a)
I‘S
and
p
Nu = yRe™ Pr" (&J , for internal flow (liquid flow in current study) (2.12b)
Hs

where y is the coefficient and m, n, and p are the exponents determined by experimental
analyses and curve fitting. The exponent n is taken as n = 1/3 depending on the nature of
the temperature profile in thermal boundary layer determined by the Pr. However, for a
variety of flow conditions, from an comprehensive study on various fluids in different

tubes in cross flow, the exponent n is proposed as 0.37 for Pr < 10 and 0.36 for Pr > 10.
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. : P
The introduced property ratios, (P_rbj for external flow over a surface and (&j
Ig Hy

for internal flow inside channel also account for the effect of direction of heat flow (i.e.
the heating or cooling of the fluid). These two parameters can be dropped from any heat
transfer correlations in flow conditions when these variations are absent or very little.
Present study used hot water and hot glycol-water mixture as the working fluids. These
hot fluids were cooled down by the constant flow of cold air. The properties of these
fluids do not significantly change with a little variation in temperature such as £1°C.
Although glycol property may slightly vary but the test condition was maintained such
that, without much error, the property could be considered as independent of temperature
variation. Therefore these variations can also be excluded and the above equations could

further be simplified in a generalized form as expressed below.

Nu = yRe™ Pr" (2.12¢)

This equation takes the form of Dittus-Boelter [57] generalized correlation for
traditional liquid pipe flow in turbulent regime. Their proposed relationship was
reviewed, verified and explained by Winterton [58] and for liquid flow the exponent n
was recommended to be 0.4 for heating the liquid and 0.3 for cooling the liquid. The
above generalized equation is traditionally used in determining heat transfer correlations

for both laminar and turbulent flow regimes. Depending on flow conditions and regimes
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the values of m and n exponents are different. Current study presents the results in the

above form for laminar developing flow in multi-port serpentine bend microchannel slab.

2.2  Available equations or correlations for traditional pipe flow

Over time, a number of researchers have proposed a variety of fluid flow and heat
transfer correlations for conventional pipe flow for various fluids in different geometry,
cross-section, and orientations of flow channels and heat exchangers. Some of the key
and commonly used and referred correlations are briefly described below. The detail
information however can be available in most heat exchanger [3, 6, 11, 51], heat transfer
[52-53], fluid mechanics [59] and hydraulics [60] books as well as in some key review,

edition and comprehensive research works in this area [61-63].

The fluid flow in any duct or channel experiences different regimes dictated by
the magnitude of the flow velocity. The Reynolds number (Re) usually determines three
regimes of flow in conventional channel namely the laminar, laminar-to-turbulent
transition and turbulent flows. A classification of flow regimes, are given in Table 2.1
below. A generalized schematic of laminar duct flow is shown in Figure 2.1 below for the
purpose of pictorial illustrations of fluid flow and heat transfer parameters that appear in

the correlations provided in this section.
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Table 2.1. Classification of flow regimes for traditional pipe flow [5, 53]
Flow regimes Range of Reynolds number (Re)
Laminar Re <2300
Laminar-to-turbulent transition 2300 < Re <4000
Turbulent Re > 4000

Re =2300 is considered as the critical Re at which flow transition occurs

T.=T X=w
x=0 X =Ly x=Ly T=T,
T==T VaVixy.2) | T=Txyz |
yi ¥ -t ‘:['“L/ :
[ ' . N ! R H
S ; .: e cd
o x L e T : z
At ! !
[
E /[\ciw - s :_'"' S E E
VosVp T=T("t T.=T, ! T,>T ' D
i _ Hydrodynamically _ . Thermally : Hydrodynamically & '
<" developing flow = |~ developing flow ! Thermally -
' ' ! fully developed flow !
Figure 2.1. Hydrodynamically developing followed by thermally developing flows in a laminar

ducts flow at constant wall temperature (T,, = constant) boundary condition.

Although the main focus of current study is laminar flow in general and
developing laminar flow in particular, for the completeness of the sequence of
understanding the correlations and functional parameters e.g. the flow rate (V or m),
pressure drop (Ap), Reynolds number (Re), pressure head loss (hp), friction factor (f),
Poiseuille number (Po), hydrodynamic and thermal entrance lengths (L, and Ly,), Nusselt

number (Nu) etc. for all flow regimes are briefly summarized in the next sub sections.
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2.2.1 Fluid flow equations and correlations

LAMINAR FLOW IN CIRCULAR PIPES

The laminar flow is characterized by the smooth parallel streamlines (i.e. the lines
tangent to the velocity field) with no rotation and the highly ordered motion of fluid
particles (i.e. particle velocities are free from random fluctuations at every point in the
flow field). The type of flow for steady incompressible laminar flow through a straight
circular duct of constant cross-section is commonly called the Hagen-Poiseuille flow or
simply the Poiseuille flow. The well known Navier-Stokes equations and the solution for
steady incompressible laminar flow are tagged to the experimental works independently

done by Hagen and Poiseuille.

Flow rate () and pressure drop (Ap) in laminar pipe flow

In fully developed (i.e. the velocity profile is same at any cross-section of the
pipe) laminar horizontal pipe flow, Poiseuille’s law relates the volume flow rate (V) and

the pressure drop (Ap) as given below.

ApzxD*

B _128Vul  128m vL  32uLV
128l

7D* 7D* D2

Ap (2.13)

where L is the pipe length in fully developed section and s is the viscosity of the fluid.
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In heat exchanger device the frictional pressure drop dominates the core pressure
drop. The core pressure drop usually refers to the pressure drop in the straight flow path.
The overall pressure drop is dependent on the geometric parameters and some times on
the type of fluids [5]. In heat exchanger pressure drop analysis for fully developed
laminar flow Shah and Sekulic [5] presented another form of equation that relates the Ap

with the mass flow rate (M), and Poiseuille number (Po) as follows.

IR RVIC IR EVIC
Ap_D{Zp A m(dee)}_W[Zp A m Po (2.14)

where A, is the heat transfer surface area of the core.

The pressure head loss (Ap) in fully developed laminar pipe flow with a variety of
pipe cross sections and surface roughness can also be derived from Darcy-Weisbach head

loss equation for hy in terms of Darcy friction factor and dynamic pressure [5, 53, 59].

2
Darcy-Weisbach Equation for Head Loss: h, = f %V— = Ap=f

29

pV?
2

(2.15)

Olr
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Friction factor (f) and Poiseuille number (Po) in laminar pipe flow

Fully developed laminar f and Po are defined above in Equations (2.6) through
(2.10). Various researchers proposed different correlations for f as a function of Re
depending on particular flow situation, which can be theoretically and experimentally
derived as described in many available sources [5, 18, 61-63]. The Po for fully developed
laminar flow in conventional circular pipe is dependent on channel cross-section and
usually independent of Re and has a constant value of 64 (if used Darcy f4) and 16 (if
used Fanning ff). The common representation of the f as a function of Re for traditional

circular pipe is as follows.

Using Darcy friction factor, f = % = Po=fRe=C =64 (Laminar flow) (2.15)
e

Either for fully developed or developing laminar flow in microchannel well
established f-Re correlation is not found in the open literature. Some researchers reported
that the Po in microchannel is dependent on Re even in laminar flow and showed
different values than the conventional tubes. This information can be found next in the

literature review in Section 3.
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Hydrodynamic entrance region in laminar pipe flow

As shown in Figure 2.1 when the fluid from free stream velocity enters a pipe, the
fluid particles in contact with the wall comes to a complete stop because of wall friction
and also causes the adjacent fluid particle to slow down. To conserve the mass flow rate
through the pipe this velocity reduction must be compensated by the increase in
midsection velocity and thus a velocity boundary layer is developed along the pipe. The
thickness of this layer increases in the flow direction until it reaches the pipe centre and
fills the entire pipe. The length of this region from inlet to a location where the boundary
layer merges at the centerline of the pipe is called the hydrodynamic entrance length
(Lny). Beyond this point the flow is hydrodynamically fully developed where the velocity

profile is parabolic in laminar pipe flow and somewhat flatter in turbulent flow.

The pressure drop (Ap) is always higher in entrance region because of the higher
friction factor (f) attributed to the highest wall shear stress at the zero boundary layer
thickness [53]. The f gradually decreases along the pipe up to the point where the flow is
fully developed. The length from the pipe entrance to the point where the f reaches within
+2% of the fully developed value is often taken as the entrance length. Alternately it is
the length along a pipe flow that is required to achieve a maximum pipe cross-section
velocity as 99% of the fully developed flow when the entering fluid velocity is uniform

[5]. The analytically derived entrance length is given by Equation (2.16a) [5, 18, 53, 61,
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64] and the dimensionless axial distance (X') for the hydrodynamically developing flow

region is given by Equation (2.16b) [5, 61] as follows.

Ly, lam = 0.056Re D for flow of Re <2100 (2.16a)

In addition there is another loss that contributes to the pressure drop (Ap) is the
effect of the entrance geometry of the flow passage. In estimating the Ap or f in a pipe, a

flow developing pressure loss given by Equation (2.17) is often considered [5, 18].

2
Ap, =K, 2V 2.17)

where the K is the loss coefficient at pipe entrance also known as the Hagenbach’s
factor [18] or the incremental pressure drop number [5, 62] that accounts for the pressure
loss due to the entrance flow friction, developing region effects, and the change of

momentum rate.

For circular tube, it is estimated that the fully developed region begins at
K, =1.28 [65]. The same value is analytically obtained and presented by Shah and
Sekulic for fully developed circular duct flow [5]. However, Shah and Sekulic mentioned
that this value may not truly represent the flow in microchannel geometry. The K, values

for relatively small diameter pipes are not yet available. In this absence, as given by
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Equation (2.17a), a Reynolds number dependent K, relationship for circular conventional
pipe is sometimes used, which was proposed by Chen [66] and recommended by Olsson

and Sunden [67].

Kw:1.20+ﬁ. (2.17a)
Re

LAMINAR-TO-TURBULENT TRANSITION FLOW IN CIRCULAR PIPES

The flow regime between the laminar and turbulent is termed as the transition
flow where the laminar boundary layer tends to become locally unstable with a little flow
disturbances. As the Re increases and exceeds the critical value of 2300 the orderly

pattern of fluid particles transform to a disordered turbulent pattern.

Bhatti and Shah [63, 68] proposed a Darcy friction factor correlation for

transitional flow in conventional smooth pipes as given below.

fd:0.0216+9.2*10-8Re% for 2100<Re <4000. (2.18)

Another correlation for Darcy friction factor for conventional smooth pipe was
empirically proposed by Churchill [69], which interestingly spans all over the laminar,

transition, and turbulent flow regimes and Re ranges. The correlation is given below.
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g \2 1 2 0.9 0 375307
f=8/| —| +——| ,for A=2457|1n e and B = 5 . (2.19)
3
Re (A+ B)A Re Re

TURBULENT FLOW IN CIRCULAR PIPES

A flow is considered turbulent when the fluid particles do not travel in orderly
manner. The turbulence is difficult to define and quantify in simple terms as it depends
on several factors such as the irregular fluctuations of velocity, presence of eddies, large
scale mixing etc. Unlike laminar flow, turbulent boundary layer has multi-layer character.
It is very complex flow process much of which still remains to be understood [59]. Most
of the correlations developed for turbulent flow are based on experimental studies and
empirical correlations because of the difficulty in dealing with the complex process

theoretically. The available and commonly encountered correlations are listed below.

Friction factor (f) in turbulent pipe flow

Blasius correlation: As expressed by Equation (2.20), this is considered the
most widely used friction factor versus Reynolds number relationship in traditional

smooth pipe for relatively low Reynolds number turbulent flow [5, 11, 64, 68].

_0.316 _0.0791 3 5
fd_w or ff —w for 4x10°<Re<10° . (220)

PhD Dissertation Mesbah G. Khan; Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 43



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Karman-Nikuradse correlation: The approximated and simplified form of
their original correlations for turbulent flow in conventional smooth circular pipes is
given by Equation (2.21) [11]. This correlation is also cited by other authors but as the

McAdams correlation [5, 68].

0.184 o _0.046
TR0z T TTR02

fy for 3x10*<Re<10° . (2.21)

Petukov correlation [53, 70]: Presented by Equation (2.22), it is said to be
Petukov’s 1* correlation for friction factor in fully developed turbulent flow in traditional

smooth circular pipes.

fy =[0.790*In(Re)—1.64]2 for 3x103 <Re<5x10° . (2.22)

Bhatti and Shah correlation [5, 68]: As defined by Equation (2.23), their
correlation for turbulent flow in smooth conventional circular and non-circular pipes that

covers a wide range of Reynolds number starting near the transition regime.

f,=0.00512+0.4572Re 31! for 4x10° <Re <107. (2.23)
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Colebrook formula: The moody chart, found in most fluid mechanics textbook,
presents the friction factor as a function of Re and relative roughness. The Colebrook
turbulent friction factor formula, as expressed by Equation (2.24), is said to be valid for

the entire non-laminar range of the Moody chart [59].

251
= -2.0log %’ o1 (2.24)

T Re T,

Pressure drop (Ap) in turbulent pipe flow

The theoretical Ap relationship for fully developed turbulent flow in horizontal
traditional pipe is presented for the Re range of 3x10* <Re<10° [5]. As given by
Equation (2.25), this expression shows the dependency of Ap on friction factor, flow rate,

fluid property, and surface geometry.

Ly 0368 2 (2L)"
_D{zp A (fR)} D{ 2, A m': ] (2.25)

The Darcy friction factor fq in Equation (2.25) is taken from Karman-Nikuradse
correlation from Equation (2.21). There may be different relations for Equation (2.25)

depending on the turbulent range and the use of f from any of the above correlations.
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Hydrodynamic entrance region in turbulent pipe flow

The basics of hydrodynamic entrance region are described above in laminar flow
sub-section. As opposed to laminar flow, the hydrodynamic entrance lengths in turbulent
flow are known to be almost independent of Reynolds number. The turbulent flow
friction factors in entrance region are also higher than the fully developed flow. The
entrance length is much shorter in turbulent flow than the laminar flow, which is
generally less than 10 times the diameter of the pipe. This is because the other sources of
losses in the entrance region dominate the pressure drop in turbulent flow as compared to
viscous shear effect. Thus the pressure drop evaluation in turbulent flow usually ignores
the contribution from turbulent developing flow region. Most commonly, the entrance

length in turbulent flow for any Reynolds number is considered to be as follows.

L, turb ~ 10D (2.26a)

For developing turbulent flow in a circular pipe, from the analysis of apparent
friction factor and Reynolds number product it was observed that this product is
dependent on dimensionless hydrodynamic entrance length and the Reynolds number
[68]. A different entrance length correlation was proposed, as given below, showing the

dependency of entrance length on Reynolds number for Re > 10000 [5, 68].

1
Lhy, turb = 1.359 Re/l D for turbulent flow Re > 10* (2.26b)
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2.2.2 Heat transfer equations and correlations

LAMINAR FLOW HEAT TRANSFER IN CIRCULAR PIPES

Since the flow physics of laminar flow is briefly described above in sub-section
2.2.1, only the associated equations and available correlations are summarized in short in
this section. In fully developed laminar flow the forced convection Nusselt number Nu is
a constant, which is independent of Reynolds number Re and Prandtl number Pr but is
dependent on the conditions of the thermal boundary layer [5]. Figure 2.1 above
illustrates the hydrodynamic and thermal boundary layers. There are several thermal
boundary conditions adopted in heat transfer problems such as the constant and uniform
wall temperature (T boundary conditions) and the constant wall heat flux (H boundary

conditions); and rest are their supplementary sub-category combining these two.

The dynamic crossflow situation in current study practically might not follow
strictly either of the T or H boundary conditions but could be a mixture of the two.
However, the experimental operating conditions in current study (i.e. keeping both fluids
inlet temperatures at a constant value) and there is no constant heat input to the test slab,
ideally a T boundary condition is considered. Therefore to analyze the experimental data
and compile the correlations, major focus is given on the T boundary conditions; and the

correlations for T boundary conditions are mainly summarized below.
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Heat transfer in fully developed laminar flow in smooth circular pipe

In circular flow passage, for hydrodynamically fully developed laminar flow
corresponding to the thermally fully developed temperature distribution profile, the mean
Nu achieves constant values, which, for T and H boundary conditions, are presented in

several sources [11, 53, 62].

Pe, D
Nup=357] | for PO <10
, with the Peclet number, Pe =Re.Pr (2.27)

Nuy =4364) | Peb[% 10

where Nu is independent of Re, Pr, and the surface roughness ¢.

The effect of fluid axial conduction for fully developed flow with T boundary
condition is negligible since the dimensionless temperature becomes a function of the
radial coordinate alone, as seen in Figure 2.1 and Equation (2.29). This is especially the
case for higher Pe when Pe = Re.Pr = VD/a > 10. For the lower Pe, the axial conduction
may exist. This effect is taken into account via Michelsen and Villadsen [71]

recommended different, as presented below.

(2.28)

4.180654—0.183460P¢, for Pey =Re, Pr, < 1.5
T 13.656794+4.487/Pe,  for Pe, =Re, Pr, > 5
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Developing laminar flow in smooth circular pipe

The heat transfer in developing laminar flow is greatly influenced by the thermal
entrance length (Ly). It is also dependent on the flow situations whether the flow is
simultaneously developing or any of the hydrodynamic or thermal boundary layers
developed earlier and the other one is still developing determined by the entrance lengths
dictated by Pr. A generalized schematic is provided by Figure 2.2 for a simultaneously
developing laminar flow in traditional smooth pipe with T boundary condition (i.e. the

wall temperature is constant), which can be closely compared to the case of current study.

x=0
= _ V =Wy, z)
E T V=Vixy 2 6= 6x, y, 2) E \ 8= ay, z)
] L f’ 1 s
Yy N L ' %\ r*
T [ R et i Y
B e - -
o — — S = : .__ ______ ~r - S4===
) . A i —_—
: - L’ | 8, : 7/ o
L Le—=" Sy 1, : s
Vo=V T.=T( 1 T.> T ! T>T,
i Simultaneously developing flow : Hydrodynamically &
< —i
E (for Pr> 1, causing Ly, > Lp,) ; Thermally
H x=L. fully developed flow
Figure 2.2. Simultaneously developing laminar flow in a traditional circular pipe at constant

wall temperature (T,, = constant) boundary condition.
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Temperature profile in thermally fully developed laminar flow

The local temperature T of a flowing fluid is a function of both the radial and
axial co-ordinates, the bulk mean temperature Ty, is the function of the axial coordinate,
and the dimensionless temperature &, defined by Equation (2.29) is the function of the
radial coordinate alone [5]. The general temperature profile in the thermally developed
region may vary in the axial flow direction; however the dimensionless temperature

profile &, remains unchanged. This dimensionless profile is termed as hydrodynamically

and thermally developed or simply fully developed temperature profile for 6, > 0.99.

T,-T
Dimensionless temperature, 6, = TW , where w and b refer to wall and bulk. ~ (2.29)
w b

Thermal entrance length

The thermal entrance length Ly, is defined as the axial distance required for the
dimensionless temperature profile &, to achieve fully developed state or a value of 0.99
or for the local Nu value to achieve a value 1.05 times of the fully developed Nu value.
To the extent at which the thermal effects diffuse normally from the pipe wall towards
the centre of the pipe until the flow is developed is referred to as the thermal boundary

layer thickness, o,.
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As seen in Figure 2.2, in a simultaneously developing flow the viscous and
thermal effects diffuse simultaneously from the pipe wall starting at x = 0 and the rates of
diffusions depend on the Pr. For a fluid flow with Pr > 1, the boundary layer thicknesses
at any given point are J, > & that means that the velocity boundary layer grows faster and
the thermal entrance length becomes longer than the hydrodynamic entrance length i.e.

x = L¢ = L > Lyy. Opposite scenario is observed when Pr < 1.

For Pr =1, the viscous and the thermal effects diffuse at the same rate. In internal
flow this equality is not a sufficient condition to say that the boundary layer thicknesses
are equal 1.e. &, = & or the entrance lengths are equal 1.e. Ly, = Ly, although it is the case
for external flow. This is because the applicable differential equations for energy and
momentum do not become analogous to each other in internal flow as they do in external
flow. As seen in Figure 2.2, the region 0 < x <L, is usually called the combined entrance
region. The magnitude of the Pr determines whether the thermal or the hydrodynamic
entrance length is dominating the flow. The thermal entrance length in developing

laminar flow is generally expressed in the following form [61, 64, 68].

Lih, 1am = 0.056Rey, Pri, D ~ 0.056Pe, D (2.30a)

Dimensionless entrance length: The dimensionless entrance length for hydro-

dynamically developed but thermally developing flow is given as follows [5, 61-62, 68].
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X X +
X*zﬁz@zx_ (2.30b)
Reb Prb Peb Prb

The dimensionless thermal entrance lengths at H and T boundary conditions with

Pr=0, Pr=1 and P >> 1 for two different flow situations are presented below [5, 62].

Hydrodynamically developed and thermally developing flow:

L1, tam = {0.0430 for Pr>>1

L:: 0.500 for Pr=1 (2.30¢)
BT lam ™3 6 0335 for Pro>>1

Simultaneously developing flow:

0.042 for Pr=0
Lht lam 10.053 for Pr=0.7, e.g. Air
0.043 for Pr= o
0.028 for Pr=0
LthT, tam ~10.037 for Pr=0.7, e.g. Air
0.033 for Pr= «

(2.30d)
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Heat transfer correlations

Hydrodynamically developed and thermally developing laminar flow in smooth

traditional pipe:

The solution of Nusselt-Graetz problem for heat transfer to an incompressible
fluid flow through circular duct with constant fluid property was numerically solved at T

and H boundary conditions [11, 61-62], which are given in Equation (2.31) below.

)5
3
NuT=1.61(Reb—Pr“Dj ; where (RebPrb Dj=(Peb I:)j>103 (2.31a)
L L L
And
Rey, Py, D % Rey, P, D Pe, D
NuH:1.953(ebTbj ; where ( ebLb j:( ellj j>1o2 (2.31b)

Gnielinski [72] proposed a correlation for circular smooth duct in laminar
developing flow with T boundary condition as given below. The axial conduction effects

must be considered when PeD/L < 0.1 and in such case Equation (2.28) should be used.
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4
Nup :{3.663+1.613 (Reb—frwﬂ . for 0.1<(Reb IL’rb Dj:(Pet Dj<1o4 (2.32)

Sieder and Tate [73] proposed one heat transfer correlation for developing
laminar flow in circular duct with T boundary condition to take into account for the
entrance region effect as well as the effect of thermo-physical property variation with

temperature. The correlation is given below by Equation 2.33.

o.14 [for 0.48 <Pry <16,700

5
NuT = 186(Mb—ile [&

, T
) |and 0.0044 < (&j <9757 @ Tva (2.33)

X iy

Whitaker [74] further recommended that the Sieder and Tate [73] correlation
should be used only for a value of A >2 in Equation 2.32. This is because the fully
developed flow status will be established from developing flow for A <2 and then the

fully developed Nu has to be approximated using Equation (2.27) from above.

Simultaneously developing laminar flow in smooth traditional pipe with entrance effect:

When the heat transfer starts as soon as the fluid enters a flow passage (as the case

in current study), the velocity and temperature profiles start developing simultaneously as
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mentioned above in the entrance length section. These complex problems are mostly

solved by numerical methods [61-62].

Hausen (1959) developed an empirical correlation for laminar flow in the thermal
entrance region of a circular duct with constant fluid properties and constant wall

temperature [11], which is given below.

0.8
o.19[ %P0/ ) Re, Pr. D
- for 0.1<(&)<104

Nup =| 3.66+ :
0.467
1+o.117(Reb Pr %)

(2.34)

Edwards et al. [75] expressed one correlation for laminar flow in the thermal
entrance region of a circular duct with constant fluid properties and constant wall
temperature, which is presented below. It is based on the assumption that the flow is
already hydrodynamically developed before entering the heat transfer section. However

approximation is made that it could be used for simultaneously developing flow as well.

0.065( D/ ) Rey, Pr,

1+0.04[( D/ )Re, Prb}% |

Nur =|3.66+ (2.35)
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Pohlhausen (1921) represented the Nu values by one asymptotic equation for
simultaneously developing laminar flow over a flat plate in the case of short duct length

with a T boundary condition [11] as given below.

h
2
NuT=o.664(Reb—IL)rbDj P V/6; for (Reb—frbDjxm and 0.5<Pr, <500 (2.36)

For most engineering applications with short circular pipe (i.e. D/L > 0.1),
whichever of the Gnielinski, Hausen, and Pohlhausen correlations given above in

Equations (2.32), (2.34), and (2.36) gives the highest Nu can be used [11].

LAMINAR-TO-TURBULENT TRANSITIONAL FLOW IN CIRCULAR PIPES

The initiation of transition flow is influenced by the entrance configurations of the
flow channel (e.g. smooth, abrupt, sharp etc.), which dictate the lower limits of the
critical Reynolds number (Re;). For a sharp square inlet configuration the Re,, is about
10 to 15% lower than that of the rounded inlet conditions [5]. The availability of heat
transfer correlations in smooth circular pipes is limited because of the complexity of the
flow process in this regime. One correlation for transitional flow in non-circular duct is

developed [5, 68]. Tam and Ghajar developed the Nu correlations in transitional flow for
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various inlet conditions are proposed [5, 53], which are not similar to the configurations

of current study test specimen.

Taborek proposed the heat transfer correlation for transitional flow in circular

smooth duct [5], which is given below.

Nu = ¢Nuy,, +(1-@)Nuy,4; where p=1.33 _610{_060 ; applicable for 2000 < Re <8000 (2.37)

where Nuy, is the value of Nu for fully developed laminar flow taken from
Equation (2.27) above. The Nuy, i1s the value of Nu in fully developed turbulent flow,
which can be estimated from any of the reasonable turbulent flow correlations discussed

and given by Equations (2.39), (2.40) and (2.43) below depending on the range of Re.

TURBULENT FLOW HEAT TRANSFER IN CIRCULAR PIPES

Like the laminar flow, the turbulent flow can also be divided into four types
namely the fully developed, hydrodynamically developing, thermally developing, and
simultaneously developing flows. The divisions are similar to laminar flow illustration as
shown in Figure 2.1 and 2.2. The developing turbulent flow starts right after laminar-to-
turbulent transition flow. The hydrodynamic and thermal entrance lengths are much

shorter in turbulent flow and the boundary layer thickness is multi-layer in character. The
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value of Re in fully developed turbulent flow depends on the pipe cross-section, surface

roughness, inlet geometry etc.

Thermal entrance length in turbulent pipe flow

The thermal entrance length in turbulent flow, for both gas and liquid, is almost
independent of both the Re and the boundary condition. In circular smooth pipe flow, the
dimensionless entrance length Ly/D varies approximately between 8 and 15 for air and
less than 3 for liquid. In non-circular flow passage this length could be higher, from 30 to
40, because of the presence of corners that creates the laminar flow [5]. The following

generalized relation is often used in most practical cases [5, 53, 61, 64, 68].

Lih, turb = 10D (2.38)

Heat transfer correlations in turbulent pipe flow

In fully developed turbulent forced convection for Pr> 0.7 the effect of thermal
boundary conditions on Nu is almost negligible [5], which is particularly the case in
current study since the used working fluids water and glycol-water mixture both have
Pr > 0.7. Therefore the correlations for transitional flow given above and the correlations
for fully developed turbulent flow summarized below can both be used for either H or T
boundary conditions [5-11]. However, for fluids with Pr<0.7, the thermal boundary
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conditions and hence the Nu are dependent on both Re and Pr. The Nu values in fully
developed laminar flow on the other hand is independent of Re and Pr but dependent on
thermal boundary conditions. In turbulent flow, most of the thermal resistances gather
near the wall and within the viscous sub-layer causing temperature and velocity profiles
relatively flat over major portion of the pipe cross-section. Therefore except for the non-
rounded inlet configuration the influence of channel shape on the heat transfer in

turbulent flow is less significant as compared to the laminar flow.

In turbulent forced convection through traditional ducts, numerous studies have
proposed a number of analytical solutions and empirical correlations, which are available
in many sources, such as [5-11, 68]. Since the developing laminar flow in circular smooth
microchannel slab is the main focus of current study, only the best recommended heat
transfer correlations for turbulent flow are compiled here for circular smooth ducts and

the preference is given on liquid correlations unless otherwise mentioned.

Petukov-Popov [76] 1% correlation for heat transfer for fully developed turbulent

flow in smooth circular duct.

The proposed heat transfer correlation for fully developed turbulent flow in
smooth circular ducts for liquids and gases with Pr>0.5 [76] is given by Equation
(2.39a). According to some authors, it is the very accurate correlation that correlates

most of the experimental data well within £5% [5-68].
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- (%)Reb Prb2
C+12.7 (%)(Prbé —1j

; for 4000 < Rey, < 5x10° and 0.5 < Pr, <10° (2.39)

900 0.63

where C =1.07+ —
Reb 1+10Prb

and f can be estimated from any of the above Equations

(2.20) through (2.23) or preferably from Equation (2.22), i.e. Petukov’s 1% correlation.

Petukov-Popov [70] 2™ correlation for heat transfer for fully developed turbulent

flow in smooth circular duct.
It was proposed for the heat transfer for fully developed turbulent flow in smooth

circular ducts for liquids and gases with Pr > 0.5 [70]. It is a simplified version of the 1%

correlation having little less accuracy as given by Equation (2.39b) below.

Nu=

(%)Reb PI'b
; for 4000<Rey, <5x10% and 0.5<Pr, <10° (2.39b)

1.07+12.7 (%)[Prt%—lj’

Gnielinski [77] heat transfer correlation for transitional and fully developed

turbulent flow in smooth circular duct.

Gnielinski [77] modified the Petukov-Popov 2™ correlation (Equation 2.39b) to

extend its applicability in the lower Re regime starting from Re = 2300 and arrived in a
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form which is given by Equation (2.40a) below. This correlation is said to be one of the
most widely used Nu-Re correlations. Shah and Sekulic [5] and Bhatti and Shah [68]
mentioned that it is in best accord with Petukov-Popov 2™ correlation within -2% and
+7% accuracy and they had taken this correlation as the basis of comparison for all other
correlations in this series. They however pointed out that this correlation does not

translate data very good in the transition regime.

(%)(Reb—IOOO)Prb

Nu = , for 2300 <Rey, <5x10%; and 0.5 < Pr, <2000 (2.40a)

14127 (%)[Prb%—l]

Gnielinski [77] provided a further simplified version of the above correlation for

easy use in the higher Re without major error that is given in Equation (2.40b).

Nu=0.012(Re¥7-280) Pr4, for 3000 <Rey, <106 and 1.5 <P, <500 (2.40b)

Churchill [78] heat transfer correlation for fully developed flow in smooth

circular duct that spans over all the laminar, transitional, and turbulent regimes.

Churchill [78] provided one comprehensive Nu-Re correlation for fully developed

flow in smooth circular ducts that spans over all the laminar, transition and turbulent flow
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regimes [78]. Bhatti and Shah [68] compared this correlation with the widely used
Gnielinski [77] correlation and concluded that it has good accuracy with Gnielinski [77]
correlation in laminar and transitional regimes but relatively less accuracy, i.e. -12% to

+17%, for higher Re above Re = 104 [68]. The correlation for the range of

10 <Re, <10% and 0 <P, <10° is presented below.

5
exp[(zzo;); Reb)} 1
Nu'® = (Nuyy, ) + oy . (2.41)
(Nulam) (Nu)

Where the Nuy,, is the fully developed value of Nu in laminar flow in smooth circular
duct as determined by Equation (2.27) above, i.e. Nujym, v = 3.657 (T-boundary condition)
and Nujym, 1 = 4.364 (H-boundary condition). The Nuy is the fully developed Nu value

for turbulent flow, which is determined from Equation (2.41a) given below.

Nuturb = Nuo +

f
0.079, /( 4 ) Rey, Pr, 4.8 for T-Bounday condition
; here, Nu, =

yA % 6.3 for H-Bounday condition  (2-412)
[1 +Pr/> j

PhD Dissertation Mesbah G. Khan; Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 62



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Dittus-Boelter [57] heat transfer correlation for fully developed turbulent flow in smooth
circular duct.

Dittus-Boelter [57] proposed heat transfer correlation for both heating and cooling
of liquids and gases in fully developed turbulent flow in smooth circular duct as given by
Equation (2.42) below. This correlation is in the form of theoretically simplified Equation
(2.12c) as described in section 2.1.8. Winterton [58] further detailed and explained this
correlation as described in section 2.1.8 above. According to Bhatti and Shah [68], this
correlation estimate 17 to 33% higher Nu for air and -26% (lower) to +7% (higher) Nu
for water as compared to the widely used Gnielinski [77] correlation. They concluded
that this correlation can be used for approximate calculation of Nu but not for accurate

estimation [68].

0.024Re, Pr," (heating of liquid)

Nu for 2500 <Rey, <1.24x10° &0.7<Pr, <120.  (2.42)

0.026Re8 P, (cooling of liquid)

Shah and Sekulic [5] simplified the Petukov-Popov 1% correlation (Equation
2.39a) by taking a fixed value of Pr exponent as ‘0.4’ as recommended by [64, 77] and
leaving the Re exponent values open as ‘n’, where the ‘n’ is dependent on both the Re

and Pr. The value of ‘n’ can be extracted from their presented graph [5].

Nu=0.024Rel! Pr. " ; for 2500 <Re, <1.24x10° and 0.7 <Pr, <120 . (2.43)
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2.3  Conclusions on the availability of correlations

As seen from above, the detailed correlations for fluid flow and heat transfer in
traditional pipe flow are well established and widely available. Unfortunately, except for
a few proposed (as can be noticed in literature review in next section) and still
unconsolidated, no well established correlation for microchannel flow is available yet that

can be utilized in designing a microchannel heat exchanger.

This unavailability of correlations does not necessarily indicate the complete
validity of traditional correlations in microchannel flow nor does it conclude that the
correlations in microchannel flow are different. This area needs more and more research
and experimental data for the scientific community to conclude on either of the above
statements; and we will observe this continuous call in the literature survey in next

section.
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CHAPTER - 3

LITERATURE SURVEY AND SCOPE OF CURRENT

STUDY
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3.0 LITERATURE SURVEY AND SCOPE OF CURRENT STUDY

Along the avenue of exploring the smaller sized channels for better heat transfer
performance, there has been a steady shift from larger diameter tubing (10 to 20 mm) to
smaller diameter channels (1 mm to 0.01 mm). The term *microchannel’ has become an
accepted classifier for heat transfer and fluid flow processes at smaller scale [18]. A few
authors have proposed some classification of small flow passages for typical thermal heat
exchanger technology at microscale geometry with respect to some key biological and
engineering systems, where 1 mm diameter size is termed as meso-channel [19-20].
However, generally yet a flow channel diameter or hydraulic diameter of 1 mm or below
is broadly classified in the heat transfer and fluid flow literature as “microchannel”,

“microtube” or “micro-device” [10, 21-28].

It has been observed after the works of Tuckerman and Pease [33], Tuckerman
[34], Mundinger et al. [35], and a review article by Goodling [36] in the area of
electronics cooling using microchannels that more interest has been paid to diversify the
applications of microchannels in other areas of heating and cooling applications. There
are studies found in the open literature that extend research on both single phase and two
phase fluid flow and heat transfer in microchannels. Based on the objectives of current
research in this area, the major review focus was given on the experimental works on

fluid flow and heat transfer of single phase liquids. Some relevant facts were also
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extracted from numerical study and works on gas and two phase flows in microchannels,

MCHXs, or MCHS.

As a part of current research, a number of papers on narrow channel heat transfer
and fluid flow appearing between 1928 and 2009 have been critically reviewed to
develop a statistical history on some key information including the types of channel cross
sections, channel materials, and working fluids used in previous studies. Among the
reviewed papers, a review summary of 123 such works [24-27, 33, 37-39, 41, 79-192] is
chronologically presented in Table A in the Appendix-A. Throughout this dissertation,
wherever it mentions any percentage share of previous investigations, current study refers
to these summarized 123 papers. This percentage chart gives a glimpse but critical key

information on the past works that helps identify and justify further research needs.

3.1 Fluid flow and heat transfer characteristics in microchannels and MCHXs

3.1.1 Flow friction (f) and Poiseuille number (Po) for single phase flow in

microchannels

The friction factor (f), as mentioned in section 2.1.6 above, is a gage of surface
roughness that influences the pressure drop (Ap) and heat transfer. The Poiseuille number
(Po) described in section 2.1.7 in Equation 2.10 is a measure in fluid flow to represent the

fully developed laminar flow friction data for traditional pipe flow. For fully developed
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laminar flow in conventional pipe, the Po is usually independent of Re and has a constant

value of Po = fRe = 64 for circular pipe using Darcy friction factor.

The friction coefficient or Fanning friction factor (fr) in heat transfer literature and
the Darcy friction factor (fg) in fluid mechanics are commonly used with their
relationship as fq = 4f;. The conventional conduit flow correlations for f and Po in the
laminar range and f in the post laminar regimes are well established, which are usually
offered as a function of Re depending on flow situation and duct cross section. They can

be readily theoretically and experimentally derived [61, 63, 68].

Arbitrary or No Data If and/or Po higher in MC
15% (24% Work)
\ ]

and/or Po Not tested
(12.5% Work)

\

if and/or Po in MC . Y
(6.3% Work) f and/or Po similar in f and/or Po lower in MC

MC (11% Work)
(31% Work)

Of and/or Po higher in MC B f and/or Po lower in MC
Of and/or Po similar in MC O£ and/or Po chaotic in MC
B f and/or Po Not tested O Arbitrary or No Data

Figure 3.1. Statistics on f and/or Po observations in microchannels in reviewed past works
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It is generally said that the f in microchannel is higher than the conventional
pipes. Among the reviewed and summarized key works [24-27, 33, 37-39, 41, 79-192],
the f or Po in microchannel was observed both higher, lower, similar, and anarchic (i.e.
simultaneously lower, higher, similar or inconclusive) as compared to the classical
values. For some of the works this information could not be extracted. The statistics is
portrayed in Figure 3.1. The lower values of f and/or Po were observed particularly for
gas flow where f decreased with the Knudsen number (Kn) and increased with the Mach
numbers (Ma) for Ma > 0.3, which according to some authors might have been caused by

the gas compressibility or rarefaction effects [88, 97, 100, 105, 107, 116-117, 132, 136].

In conventional pipe flow, it is well known that the f is influenced by the relative
roughness of the pipe walls in turbulent flow regimes. For microchannel flow however,
some works reported that the f depends on the wall relative roughness even in laminar
flow [81, 110, 123, 133-134, 137-139, 161, 163, 168, 171]. While several authors
reported that the Po in laminar microchannel flow is similar to the classical value, a large
group however observed the Po to depend on the Re in laminar flow and showed
different values than the values for conventional smooth pipe [87, 96, 103, 113, 134, 139,

151, 171, 174].
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Friction factor (f) in laminar flow in microchannel

A few f-Re correlations proposed for fully developed laminar flow in straight
smooth non-circular narrow channels, mostly in rectangular cross-section, can be found
such as one by Hartnett and Kostic (1989) as cited by Kim et al. [166]. The correlation is

given by Equation (3.1) below.

1-1.3553AR +1.9467 AR? —1.7012AR®
Po=fRe=24 ,forRe <2100, (3.1)

+0.9564AR* —0.2537 AR®

where Re is based on hydraulic diameter and AR is the height-to-width known aspect

ratio of the flow channel.

The proposed correlation for fully developed laminar flow in circular
microchannel is rare. A correlation for fully developed laminar flow in straight smooth
circular micro-tube available in the open literature was proposed by Yu et al. [110] as
given in Equation (3.2) below. The authors experimentally investigated the characteristics
of nitrogen gas and water flows through silica made micro-tubes in the Reynolds number
range of 220 < Re <19500. They observed lower Darcy f in micro-tubes, which are lower
than the established value of 64 for conventional circular pipe. The lower values were
from 0.77 to 0.81 times of the conventional value. Although the reported critical Re was

2000, the transition however observed from Re = 1700 to 6000.
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f =%, for Re <2000 (Fully developed laminar flow in micro-tube) . (3.2

Re

Pressure drop (Ap) in laminar flow in microchannel

The pressure drop (Ap) in fully developed laminar flow in traditional pipe is a
direct function of the Darcy friction factor (fs), which is given by Equation (2.7) in
section 2.1.6 above. The Poiseuille law in fully developed laminar flow in traditional pipe
relates the pressure drop (Ap) to the volume flow rate (V) as presented by Equation
(2.13) in section 2.2.1 above. For developing laminar flow in traditional pipe, in addition
to the effect of entrance region, another effect often contributes to the pressure drop is the
active apparent friction factor attributed to the flow developing effect, which could be

more prominent in narrow flow passage.

To account for this effect, a flow developing pressure loss as given in
Equation 2.17 in section 2.2.1 often considered when estimating the pressure drop or
friction factor in a pipe flow [5, 18]. For K., in Equation 2.17, Shah and Sekulic [5], from
an analytical solution, presented a constant value of K, =1.28 for fully developed
circular duct flow. However, they mentioned that this value may not truly represent the
flow in microchannel geometry. In the absence of an established correlation for this K.,

for microchannel geometry, Olsson and Sunden [67] recommended that the Re dependent
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K., relationship for circular conventional pipe flow proposed by Chen [66] can be
employed for microchannel flow. Some authors also supported the use of this relationship
for narrow channels [18]. Thus, as applicable, this correlation is used in estimating

pressure drop or friction factor in current work.

Friction factor (f) in turbulent flow in microchannel

There are a number of established f-Re correlations available for turbulent flow in
traditional pipe as described in section 2.2.1 above. However, such any correlation for
turbulent flow in microchannel is not readily available. Kim et al. [166] proposed that, for
turbulent flow in both circular and non-circular microchannels, the well known Blasius
correlation [5, 11, 64, 68] established for conventional smooth pipes, given in section
2.2.1 in Equation 2.20, could be employed in microchannel flow to represent the f data

without much error.

Some modifications to the Blasius Equation 2.20 was also proposed by Phillips
[193] by defining it through the apparent Fanning friction factor (f; 4op) as a function of Re
as expressed by Equation (3.3), which is said to cover both the developed and developing
turbulent flow regimes in conventional pipe flow. Kandlikar et al. [18] has suggested that

this modified Blasius Equation (3.3) can also be attempted for microchannel flow.
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[_0_268_0.3293J
ff,app—AReB—{0.0929+1'0X1612JRe o J; (Turbulent pipe flow).  (3-3)
D

Yu et al. [110], in their investigation of nitrogen gas and water flows through
silica made micro-tubes, proposed the f-Re correlation in the Reynolds number range of
220 < Re £19500. They observed some lower Darcy f in micro-tubes, which are 0.7 to
0.9 times of that of the values estimated from traditional Blasius equation. They observed
the transition-to-turbulent regime over the Reynolds number range of 1700 < Re < 6000.

Their proposed correlation is cited below by Equation (3.4).

~0.302

f= Re0-25 !

for 6000 < Re < 20000 (Developed turbulent flow in micro-tube). (3.4)

Webb and Zhang [125] studied the turbulent flow and heat transfer natures of
liguid R134a in 9-channel multi-port circular and rectangular microchannels in the
Reynolds number range of 5000 < Re <25000. Their friction data compared well with
traditional pipe flow correlations such as Blasius correlation [5, 11, 64, 68] given by
Equation (2.20); and Petukov correlation [53, 70] given by Equation (2.22). The authors
proposed an f-Re correlation for turbulent flow in circular and rectangular microchannels

in form, which is defined by Equation (3.5) below.
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f =0.0605Re 022 for 5000 < Re < 25000 (Turbulent flow in microchannel). (3.5)

Comments on friction factor (f) for flow in microchannel

From the above review it is seen that the f values for microchannel flow are about
0.5 to 5 times of that of the f values for traditional pipe flow. This trend of data scatter
and discrepancies in microchannel flow are also compiled and reported by some authors

[37]. Examples of these deviations in published result are displayed by Figure 1.3.

It is also seen that the differences in the reported results spread among a broad
range of diameters or hydraulic diameters as surveyed for single phase flows in
microchannels in current study. Important fact is that the study or the proposed
correlation for developing flow in either straight or in serpentine bend circular

microchannel is not available in the open literature.

3.1.2 Critical Reynolds number (Rec) for single phase flow in microchannels

The critical Reynolds number (Rec) for fully developed laminar classical internal
circular pipe flow is well established to be Re. ~ 2300. Traditionally for Re > 2300 in

internal pipe flow the onset of laminar to turbulent flow transition begins. The findings
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from one study to the other in the past work [24-27, 33, 37-39, 41, 79-192] give
information that the Re. in microchannels to occur at some values which are higher,

lower or similar compared to classical value of 2300.

Arbitrary / No Data Re,cr higher in MC| |Re,cr lower in MC
‘ 18% Work N (1.6% Work) (25.6% Work)

J

Re,cr not tested| Re,cr chaotic in MC Re,cr similar in MC
35% Work (4.7% Work) (15% Work)

O Re,cr higher in MC B Re,cr lower in MC ORe,cr similar in MC
ORe,cr chaotic in MC  HRe.cr not tested O Arbitrary / No Data

Figure 3.2. Statistics on observations of Re., natures in microchannels in reviewed past works

Information on Re., could not be extracted from some work for either not studied
or not reported. The observations on Re. in microchannel flow are illustrated in
percentile form in Figure 3.2 above. Early transition from laminar to turbulent i.e.
Rec <2300 in microchannels are reported by many researchers. According to some
authors, early transition occurs when the hydraulic diameter of the channel decreases [28,
88, 103, 114, 138, 145, 174]. A delayed transition in other words relatively higher Re in

microchannel i.e. Re., > 2500 was also reported by some authors [110, 163, 181].
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Some works pointed that the Rec in microchannel flow depends on the channel
wall roughness and occurs in a different way as compared to the conventional pipe [39,
81, 101, 104, 106, 108, 114, 121, 130, 133-134, 148, 163]. Several works indicated that
the transition from laminar to turbulent flow in microchannels begins at a Re value
similar to the conventional value of 2300 [27-28, 38, 95, 132, 136, 142, 149, 152-153,
155, 158-159, 165, 182-183, 186]. While many these works, with acceptable data
deviations, reported that the Re. in microchannel flow are similar to the conventional
value, much lower Rec, in microchannel flow i.e. Re, < 1100 were however observed by

many other researchers [39, 81, 99, 101, 103, 114, 148, 174, 184, 191].

Some authors reported that the flow in microchannels can be considered in
transition for 2300 < Re <3000 for circular microchannels and 2100 < Re <2700 for
rectangular microchannels [166]. The fully developed turbulent flows are established in
microchannels when Re > 4000 [166]. They also suggested that the transition flows in
microchannels can not be analyzed using the classical correlations before any
modifications are introduced [166]. The details of such modifications however are not

explained in their article.
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3.1.3 Heat transfer characteristics — the Nusselt number (Nu) for single phase flow

in microchannels

The Nusselt number (Nu), as described and expressed by Equations 2.11 and 2.12
in section 2.1.8 above, is a non-dimensional group usually used to represent the
dimensionless heat transfer coefficient of a heat exchanging device. An accepted notion
is that the Nu generally is higher in microchannels. The review of the past work [24-27,
33, 37-39, 41, 79-192] sees that the Nu observations follow similar trends to that of f, Po,
and Reg, trends described in above section. This means that the observed Nu in past

works has also different values.

A number of authors reported the Nu in microchannels is higher while others
found lower than conventional tube. A few researcher observed chaotic and different
trends of Nu in microchannels as compared to the conventional pipe flow situation (i.e.
simultaneously higher, lower, similar or inconclusive) [93, 108-109, 111, 113-114, 128,
133, 146, 152-153, 157, 162, 179, 191]. It is well intuited that the Nu increases with the
increase of Re. The Nu decreases when Re increases were also observed by some authors
[93, 101, 121, 153]. The Nusselt number (Nu) for fully developed laminar flow in
traditional pipe is generally independent of Re and Pr but is dependent on the thermal
boundary conditions [5,11]. Some authors observed the Nu dependency on Re and Pr in

laminar microchannel flow. In laminar microchannel flow, several authors reported that
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the Nu increases with the increase of Re and the exponent of Re ranged from 0.3 to 1.96

[82, 88, 95, 112, 115, 125, 148, 171].

Many works stated that the Nu in microchannels can be predicted, without much

error, by employing the classical correlations developed for conventional pipe flow.

Figure 3.3 above depicts a glimpse of this statistics.

Arbitrary / No Data

6% Work

Figure 3.3.
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Statistics on observations of Nu nature in microchannels in reviewed past works
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Heat transfer characteristics (Nu) in laminar flow in microchannel

Some authors have proposed the heat transfer correlations for fully developed
laminar flow in straight smooth narrow channels, mostly on rectangular and few on

circular cross-sections, as discussed below.

As cited by Kim et al. [166], Hartnett and Kostic (1989) proposed one heat
transfer correlation for fully developed laminar flow in smooth straight narrow
rectangular duct with H boundary condition (i.e. the constant wall heat flux), which is

presented by Equation (3.6) below.

1—2.0421AR +3.0853AR% — 2.4765AR®
Nuy =8.2354 s . , for Re <2100, (3.6)
+1.0578AR* —0.1861AR

where Re is based on hydraulic diameter and AR is the height-to-width known aspect
ratio of the flow channel. For the fully developed laminar flow in smooth straight
rectangular duct with any other arbitrary boundary conditions, i.e. the wall heat flux or
wall temperature boundary conditions, the Nu may stay somewhere between 3 and 6.5
unless the aspect ratio AR approaches zero or infinity (which are the situation of being

vertical or horizontal flat plates).
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Proposed heat transfer correlation for fully developed laminar flow in circular
microchannel is limited in the open literature. In developing flow the Nu exhibits higher
value than the developed flow. The heat transfer correlation for developing laminar flow
in straight circular microchannels in general and channels with serpentine bend in
particular is not available in the open literature. Some heat transfer correlations for fully
developed laminar flow in narrow channels are proposed in the open literature, which are

described below.

Choi et al. [88] conducted experiments on nitrogen gas in laminar and turbulent
flow regimes using silica made straight circular rough micro tubes in the range of
30 < Re £20000. The relative roughness of the tubes was between 0.0023 and 0.08. The
laminar flow Nu was found higher than that predicted using conventional correlations.
Their proposed correlation however predicts lower Nu values than that predicted by
Hausen correlation [11] given by Equation (2.33) for traditional laminar flow. The
authors reported that the Nu depends on both the Re and the Pr even in laminar flow
regime. As given by Equation (3.7) below, their correlation is in the similar form of the

simplified Nu-Re-Pr relationship described in section 2.1.8 (Equation 2.12c).

Nu=9.72 x 104 ReL 17 Pr/3; for Re<2000 (Laminar flow in micro-tube) (3.7)
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Heat transfer characteristics (Nu) in turbulent flow in microchannel

In turbulent flow, most of the thermal resistances gather near the wall and within
the viscous sub-layer, which causes the temperature and velocity profiles to become
relatively flat over major part of the pipe cross-section [5]. Therefore except for the non-
rounded inlet configuration, the influence of channel cross-sectional geometry on the heat
transfer in turbulent flow is less significant as compared to the laminar flow. A few
authors proposed the heat transfer correlations for fully developed turbulent flow in

straight smooth narrow channels, as discussed below.

Wang and Peng [101] proposed a heat transfer correlation for turbulent flow in

straight narrow rectangular duct as given by Equation (3.8) below.

Nu =0.00805 Re®® Pr'/3; for Re > 1500 (Turbulent flow, rectangular duct) ~ (3.8)

Jiang et al. [148] proposed another correlation for developed turbulent flow in

smooth straight narrow rectangular duct as given by Equation (3.9) below.

Nu=a , (3.9
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where the coefficient a and the exponent b depend on the parameter X in parenthesis, i.e.

for X <0.05,a=0.52,b=-0.62 and for X >0.05,a=2.02, b =-0.31.

Webb and Zhang [125] studied the turbulent flow and heat transfer natures of
liquid R134a in 9-channel multi-port circular and rectangular microchannels in the
Reynolds number range of 5000 < Re <25000. Their single-phase heat transfer data
showed acceptable agreements with the traditional pipe flow correlation provided by
Petukov [70, 76] as given by Equation (2.38) above. The authors proposed a Nu-Re
correlation valid for turbulent flow both in circular and rectangular microchannels as
given by Equation (3.10) below. Their correlation is similar to the simplified Nu-Re-Pr
relationship described in section 2.1.8 in Equation 2.12c and presented in the form of

Dittus-Boelter turbulent correlation [57-58] as given in Equation (2.41) above.

Nu =0.0172Re%84 Pr/3 : for 5000 < Re < 25000 (Turbulent flow in microchannel) ~ (3.10)

Choi et al. [88] conducted experiments on nitrogen gas in laminar and turbulent
flow regimes using silica made straight circular rough micro tubes in the range of
30 < Re <£20000. The Nu is significantly higher in turbulent regime, i.e. from 7 to 16
times of that predicted by conventional turbulent correlations such as the Colburn
analogy. They proposed a Nu-Re-Pr correlation for turbulent flows in micro-tubes, which
is given by Equation (3.11) below. Their correlation is presented in similar form of the

simplified Nu-Re-Pr relationship as described above in section 2.1.8 (Equation 2.12c).
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Nu =3.82x10-6 ReL% Pr3: for 2500 < Re < 20000 (Turbulent flow in micro-tube)  (3.11)

For turbulent flow in microchannel, some authors suggest that the employment of
the Gnielinski correlation [77] given by Equation (2.39) or the Dittus—Boelter correlation
[57] given by Equation (2.41) could estimate the Nu in microchannels without serious
error [24, 27, 125, 159, 183]. According to several other authors, some corrections are
necessary for these traditional correlations to be suitably employed in in turbulent flow in

microchannels [24, 27, 93, 101, 110, 112, 125].

One such modification to the Gnielinski [77] correlation, for both circular and
non-circular cross-section, was proposed by Adams et al. [122] and verified by Adams et
al. [127] to employ it in microchannels. The modified version can be expressed by
Equation (3.12) below, where the adopted factor F depends on the Re and the channel

diameter D or the hydraulic diameter Dy,.

Nu = Nug,, (1+ F) (3.12)

2
where, F =7.6x10" Re[l[%} } and Do = 1.167 mm. The Nug is the Gnielinski’s [77]

heat transfer correlation for fully developed turbulent flow in conventional smooth pipe

as given by Equation (2.39) above, which is invoked and presented below.
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for 2300 <Re <5x106 and 0.5 < Pr < 2000. (2.39a)

where the friction factor f is the Darcy friction factor, which is determined using
Petukov’s turbulent friction correlation given by Equation (2.22) as repeated below. All

the fluid properties for Equations (2.22) and (2.39a) are evaluated at bulk temperature.

fq =[0.790*In(Re) -1.64]72 for 3x10° < Re <5x10° (2.22)

Comments on heat transfer characteristics (Nu) for flows in microchannel

The surveyed literature for single phase flow and heat transfer in microchannels
spanned the channel size range of 0.001 < D, <4.1 mm. Within this size range, it is
observed that there appear noticeable disparities in heat transfer results i.e. the Nu values
in microchannels are found about 0.21 to 16 times of that of the conventional value.
When a flow is not fully developed, the Nu can be locally significantly higher than the
value of Nu in developed flow. In such conditions the Nu can be estimated
experimentally or from any appropriate correlation (if available). While few correlations
for developing laminar flow for traditional pipe are available as seen in section 2.2.2, the

correlation for developing laminar flow in circular microchannel is not available yet.
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Therefore the important statistics summarized from the above review is that the
study or any proposed correlation for liquid flow in developing laminar regime in either
straight or in serpentine bend circular microchannel is not available in the open literature.
No study is found in the open literature that focuses glycol-water mixture flow in narrow

channel in developing laminar flow regime, which is the main focus in current research.

3.1.4 Fluid flow and heat transfer characteristics in MCHX

Compared to the research on MCHS for electronics cooling the works on single
phase gas-to-liquid fluid flow and heat transfer on MCHX for thermal and energy
applications are limited in the open literature. Some researcher reported the aspects of
fabrication process of MCHX such as one on crossflow micro heat exchanger [157] and
the other on extruded channel structures [194]. In other study, better performance was
observed in un-finned micro bare tube heat exchanger as compared to the conventional
gas-liquid heat exchangers [195-196]. Some authors studied the effects of fin spacing in
condensation using finned MCHX. They found a reduced airside pressure drop and about
30 to 40% increased overall heat transfer coefficient and up to 70% increased heat duty

compared to traditional coil for a given face area [197].

The effectiveness and pressure drop in micro crossflow heat exchanger have been

studied to develop a model that predicts the thermal and fluidic characteristics to be used
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in the design [187]. Some authors studied the single phase pressure drop measurements in
microchannels and MCHX using liquid, vapor, and nitrogen flows [186, 198]. Their
studied configuration and shape somewhat comparable to the crossflow air-to-liquid
MCHX. Works on glycol-water mixture flows in narrow channels are rare in the open
literature. A work investigated rectangular minichannels with hydraulic diameter of
Dp=2.6 mm and larger [177, 200]. The authors found both the f and Nu to vary with Re
in the trend of turbulent f and Nu even for Re < 1000. The study in prototype air-to-liquid
single phase MCHX comparable to automotive and other thermal heat exchangers is still

limited in the open literature and the systematic design data are also rare.

3.1.5 Summary of literature review on fluid flow and heat transfer in

microchannels and MCHXs

The fluid flow and heat transfer behaviors in microchannels in laminar, turbulent,
and especially in the transition flow regimes are reported to be similar to or different
from the conventional sized tubes. Not only in flow regimes, have the results reported in
previous works also deviated from one investigation to the other. Many reasons for these
deviations, in general, are mentioned that include the effects of channel surface
roughness, entrance region, channel curvature, and more importantly the measurement
uncertainty. Effects of any one or all of these factors might have contributed to these

deviations.
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Several authors showed that the transitional flows in microchannels are influenced
by the fluid temperature, velocity, and channel sizes [81-82, 88, 90, 92, 101, 109, 113,
166]. High relative wall roughness in microchannels increases the convective heat
transfer but they also contribute to the high pressure drop [140-141, 149, 171]. The
existence of channel roughness affects the flow velocity profile and hence the Re in

transitional flow regime [27].

The variation of viscosity with temperature in microchannels also affects the heat
transfer [94, 106, 109, 120, 130, 143, 146, 164, 173]. To take the effect of viscosity
variations into account the inclusion of the Brinkman number (Br) in the heat transfer
correlation are also proposed [143, 190]. Some researcher reported that, to some extent,
the friction factor (f) depends on the channel materials and also on the types of the test
fluids evidencing the importance of electro-osmotic phenomena or electric double layer

(EDL) effect at microscales [39, 87, 90, 135, 143, 155].

The measurement uncertainty affects the accuracy of investigation prominently;
especially those are propagated from the channel dimension measurement [18, 23, 37,
162, 181, 199]. Many authors confirmed that the fluid flow and heat transfer phenomena
for the single phase flow in microchannels can be predicted by employing the classical
correlations within some acceptable accuracy limits. A large number of works on the
other hand reported different and opposite observations. A critical review of experimental

works on single phase convective heat transfer in microchannels summarized that many
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of the experimental results for microchannels largely deviate from the classical
correlations and interestingly these deviations increase as the channel flow rates and
hence the Re increases [23]. For a flow passage, a lower size limit of 1.2 mm was stated

by some authors above which these deviations might not occur [122, 127].

These divisive observations in microchannel flows still continue to exist even in
the recent studies. For example, one study in the year 2007 did not find any unexplained
physical phenomena for rectangular channel’s hydraulic diameter falling in these
channels size [183]. A later study in the same year 2007 found the Po to agree with the
standard laminar flow predictions only up to Re <1500 instead of up to Re, = 2300
[184]. They observed the Reg to occur in the range from Re = 1500 to 1700 for the
straight microchannels and from Re = 100 to 200 for the serpentine microchannels [184].
The authors pointed that the unaccountability of increased pressure drop in the entrance
region and the undependable accounting process of inlet and outlet losses may be the
reasons for the discrepancy in published results. Other authors mentioned that the liquid
flow friction and heat transfer in microchannel can be adequately described by the
classical conventional correlations in the hydraulic diameter range of and

0.001 < Dy, < 1 mm [28, 189].

Park and Punch (2008) investigated the friction factor f and the heat transfer Nu of
water flow in rectangular microchannels in the size and Re ranges of 0.1 < D, < 0.3 mm
and 69 < Re <800 respectively [190]. While the classical fully developed laminar flow

theory could predict their experimental f data, the Nu data however deviated from the
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classical fully developed laminar theory. By incorporating the Brinkman number (Br),
they proposed a correlation to predict the heat transfer in microchannels applicable within

their experimental range and condition.

Jiang et al. [191] studied the fluid flow and heat transfer of water in rectangular
microchannel with D = 0.5 mm and found that the f decreases as the Re increases and the
f values are 20 to 30% smaller than the value for classical duct flow. They observed
Re. ~ 1100, which is also smaller than the conventional value of Rec, = 2300. Their Nu
data showed chaotic nature, which is constant and lower than classical value in the
laminar regime but greatly exceeds the conventional value for transition and turbulent
flow regimes. They suggested the necessity for further research in this area by stating that

the fluid flow and heat transfer nature in microchannel is complex and less understood.

Mokrani et al. [27] reported the fluid flow and heat transfer characteristics of
water flow in rectangular microchannel in the size range of 0.1 <Dy <1 mm. They
remarked that the classical correlations for smooth tubes should remain valid in
microchannel flow and the Rec should be similar to the conventional value of 2300. In
the same year Naphon and Khonseur [192] examined the airflow in rectangular MCHS in
the Reynolds number range of 200 < Re <1000 focusing electronics cooling and

concluded that the f and heat transfer in microchannels still need to be validated.

These varied observations, differing results, and opposing opinions regarding the

fluid flow and heat transfer characteristics in small size flow passages still continue even
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in recent studies. Jokar et al. [200] investigated the single-phase laminar flow
(Re <1000) and heat transfer of glycol-water mixture in rectangular meso-channel
compact heat exchangers for air-conditioning applications. They observed the fluid flow
and heat transfer behaviors in their meso-channels having d, = 2.6 mm to 4.1 mm, which
were very different from that of the conventional laminar theory. Both the f and Nu were
higher than the conventional values. None of the well-established traditional macro-scale
heat transfer and pressure drop correlations through the circular or non-circular channels
could directly predict their experimental data. Therefore, according to their conclusion it
is still unclear whether the traditional correlations are directly applicable for use in small

size flow passages with hydraulic diameters of d, <3 mm [200].

Noticeable is that compared to the deviation and difference in earlier results, the
divergence in recent investigations are less, which is inline with the observation as
reported in a critical review [23]. This may probably be attributed to the availability of
modern microchannel fabrication techniques; sophisticated experimental instrumentation,
automated data collection, and computer based data processing facilities etc. From the
review, it is observable that the differences in results and observations and divisive
comments still appear in the recent studies. The validity of conventional fluid flow and
heat transfer theories to be applicable in microchannel flows is still disputed and there

exits information and data sets that support both sides of the arguments.

Thus, further research is needed in this promising area is truly understandable to

reconcile the issues. Many of the investigations used non-circular and non-metallic
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standalone microchannels as the basic shapes. More research using different applied
microchannel geometries and shapes such as the multi-port straight and serpentine test
slabs (for thermal heat exchangers applications) and various working fluids are necessary

in developing experimental database to help establish design guideline for MCHX.

3.2  Scope of current research

The scope of further research is the experimental investigation of fluid flow and
heat transfer characteristics of glycol-water mixture flow inside flat tube multi-port
serpentine microchannel slab heat exchanger in air-to-liquid crossflow orientation. In
order to carryout the proposed research, the required heat transfer and fluid flow
experimental facility in a closed-loop thermal wind tunnel environment has been
designed and developed. In addition to the principal heat transfer study of internal
working fluid, the investigation of pressure drops and friction factors of water and glycol-

water mixture flows in multi-port straight microchannel slab have also been carried out.

The geometries of the flat tube multi-port microchannel test specimens chosen in
current study are one 1-pass straight slab, one 2-pass slabs with serpentine bend, and one
prototype heat exchanger having 15-pass slabs with serpentine bends (for heat transfer
investigation). As portrayed in the experimental infrastructure in next section, the multi-
port slab test specimens and the prototype microchannel heat exchanger (MCHX) are

made of the same material with identical dimensions and geometric configurations.
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The outcome of the investigation will help consolidate the fundamental fluid flow
and heat transfer data, validate them with conventional correlation, to be useful as a
systematic design guideline. Current research, in the developed versatile experimental
test facility with high accuracy instrumentation, expects to obtain reasonably accurate
measurement data that can be analyzed and compared with the available similar works.
The investigation will be carried out in a variety of Re regimes with particular focus on
developing laminar flow to obtain heat transfer correlation in this regime, which is not

available in the open literature yet.

3.3  Basis of test specimen designs and working fluid selection for current study

Figure 3.4 below represents the test slab cores that have been used in current

study. The selection criteria of channel size and cross-section; the flow passage geometry,

shapes, patterns, and materials of test slabs; and working fluids are described below.
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Figure 3.4a.  Channel cross section and shape used in current research (Straight slab)
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Figure 3.4b.  Channel cross section and shape used in current research (Serpentine slab)
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3.3.1 Channel size — hydraulic diameter range

All the works reviewed in this article [24-27, 33, 37-39, 41, 79-192, 200] spanned
in the size range of 0.001 <Dy <4 mm. In general, a channel diameter or hydraulic

diameter of 1 mm and less is broadly termed as microchannel in small scale fluid flow

and heat transfer [10, 21-28].

The work of Adams et al. [122] on capillary tubes with D, =0.76 and 1.08 mm
was further verified in a later study by Adams et al. [127] using non-circular
microchannel with Dp=1.13mm. Adams et al. [122, 127] suggested that the
Dp=1.2mm could be a reasonable lower size limit of a flow channel for the
conventional fluid flow and heat transfer correlations to hold valid. On the other hand
Jokar et al. [200] verified that the traditional correlations are not directly applicable for
rectangular channels having hydraulic diameters of D, = 2.6 mm to 4.1 mm. Since
Adams et al. [127] suggested a lower size limit of 1.2 mm, the channel size of 1 mm was
chosen in current study as a generalized dimension limit of microchannel, which is also
less than the size range of conventional compact heat exchangers (3 mm) and also less
than the size range studied by Jokar et al. [200]. The selected size is well within the size
limits of most of the reviewed works. As a result the outcomes of current heat transfer
investigations could well be compared with the available works and the applicability of

classical correlations in this size range could be verified.
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3.3.2 Channel cross section — circular or non-circular

The reviewed papers [24-27, 33, 37-39, 41, 79-192] used a number of flow
channel cross sections such as rectangular, circular, trapezoidal, triangular, square, and
few others. Figure 3.5 gives a quick quantitative view of the types of channel cross
sections used in past works. No information on the channel cross section could be
extracted from few of the works. As seen in Figure 3.5, the majority of the works used
the rectangular cross section. The specific reason of using a particular type of channel

cross section is not available in most of the papers.

Square /S
(3% Work)

Arbitrary / No Data
(4% Work)

Traingular /Tri
(1.5% Work) |

Trapezoidal /Trp|
(12% Work)

Rectangular
(50% Work)

Circular /C
(29.5% Work)

ORectangular M Circular O Trapezoidal
O Traingular B Square O Arbitrary / No Data
Figure 3.5. Statistics of cross sections used in microchannels in the reviewed past works

The circular channels offer overall best thermo-hydrodynamic performance for a
MCHX among various other shapes [21]. The work on circular ports is less in the open

literature. This may be because of the easier fabrication process of non-circular ports than
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the round ones. A square or rectangular port can be easily made by slot cutting on a plate
and then covering the top with a flat lid. In most of the earlier studies, the ports were
made with chemical etching. Etching leaves higher channel surface roughness and non-
uniform channel dimensions as compared to the ports made with laser beam or multi-port

extruded (MPE) tubing.

Present study thus chooses the multi-port microchannel slabs with circular cross
sections as the basic flow passages. The test slabs are MPE tubing which have smoother
channel surface and more uniform channel diameter than the ports made with etching
process. The test specimens have 1 mm port diameter with surface roughness height of
about 0.05% of the channel diameter making a relative roughness, e/D = 0.0005; and the

maximum uncertainty in channel diameter is about +1.5% [202].

Kandlikar et al. [149] investigated the effect of channel roughness on pressure
drop and heat transfer in 1.067 and 0.62 mm diameter circular tubes in the Re range from
500 to 3000. The tubes were treated with acid solutions to create three different relative
roughness (e/D) values for each tube. They observed more increase in Nu and Ap in
0.62 mm tube than in 1.067 mm tube. Negligible variations of Nu and Ap with Re in
1.067 mm tube due to varying &/D from 0.00178 to 0.00225 were observed. But
significant variations were noticed in 0.62 mm tube for &/D from 0.00161 to 0.00355.
They recommended that the larger diameter tubes above 1.067 mm with /D = 0.003 may
be treated as smooth tube but for the small size tubes below 0.62 mm diameter is treated
as rough tubes since the Nu and Ap depend on &/D for tube size of <0.62 mm. The

transition to turbulence also gets affected by the change in /D above 0.003. In current
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study the relative roughness value is €/D = 0.0005 [202] and 1 mm diameter channel is
within the size range between 0.62 and 1.067 mm. Therefore the channels in this study

are considered smooth and the effects of ¢/D on Nu and Ap are ignored.

3.3.3 Flow passage — multi-port slab or single bare tubes

A multi-port slab, i.e. a slab with multiple channels, is an applied geometry
usually used as core elements in many practical heat exchangers. A single tube is a basic
geometry used in laboratory and in other applications different from the interests of
thermal heat exchangers. A slab with multiple ports has several advantages over any

single or isolated bare tubes of the same numbers and diameter as the ports of the slab.

As an example, Figure 3.6 (not to scale) displays a multi-port slab with N number
of channels each has a diameter of D, which are separated by very thin metallic walls
making the liquid flow unmixed. Figure 3.6 also shows the equal N number of isolated
bare tubes of diameter D, which are separated by low conductive but thermally highly
resistive air media. The outside total heat transfer surface areas of the slab and the bare
tubes are the same or similar. The thermal conductivity of a solid, such as Aluminum in

current test slab, is always higher than air, water, and glycol-water mixture.

In force convective liquid cooling in a liquid-to-air heat exchanger, the high
conductive metallic walls collectively pick and transfer most of the bulk liquid’s heat
from the centers of the channels to the slab surface where the quick heat transfer takes

place with the flowing air. For the isolated bare tubes the flowing air is the only heat
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transfer media for the tubes and between the separating gaps of the individual tubes.
Since the air has very high thermal resistance compared to bulk liquid and solid walls, for

a given operating condition the heat transfer is slower and weaker than the slab.

Multi-port Microchannel Slab  gjiq media Single Wake region

\

— = T 0DO000O0O00O0O0OOOT=

Air Flow >
_—
e 0.0 00/0/00/0)0/00)0/0]0,

Air media f
Multiple wake regions = # of tubes

Isolated bare Microchannels

Figure 3.6. Comparison of a multi-port flat slab with same number and diameter of bare tubes.

Because of the flatness and the presence of solid walls in the slab, the temperature
distribution is more uniform than the isolated bare tubes. Wake region usually reduces the
heat transfer on the downstream tube and airside fin region. For the bare tubes, multiple
wake regions i.e. one on the downstream of each tube form and as a result the heat
transfer greatly reduces. As seen in Figure 3.6, the slab has only a single wake region at
the downstream of the slab. Most of the flowing air comes in close contact with the slab
surface due to the flat profile in the slab. This and the single wake region together help
higher heat transfer to occur in the slab than in bare tubes. The flatness of the slab also
helps reduce the airside pressure drop significantly and hence lowers the pumping cost as
compared to the tubes. Due to these inherent features, slabs are obviously preferred over

single or isolated bare tubes for typical thermal heat exchanger applications.
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As seen in literature review above, most of the earlier works on narrow-size tubes
recommended and emphasized the research on MCHX. Very little works on MCHX are
found in the open literature that used slabs having multiple ports and majority of them
used rectangular and square shapes of the ports. The work on slabs with circular ports is
limited in the open literature. As discussed in section 3.3.2 above, the circular cross-
section offers best thermal and hydraulic performance over other non-circular cross-
sections [21]. Therefore, flat slabs with multi-port circular microchannels, as shown in

Figure 3.4, were chosen in current research.

3.3.4 Multi-port slab shape - flat tube or round tube

In an air-to-liquid crossflow heat exchanger, for the airside the flat-tube
configuration or the multi-port slab offers some demanding advantages over the round
tubes, which have been described by many authors such as by Webb and Kim [2]. As
discussed above, the wake region downstream of flat-tube does not reduce heat transfer
as much as it does in round-tube. Flat-tube offers less airside pressure drop and occupy
less space than the round tube. The flat-tube has also better fin efficiency and its study
has expanded from the applications in automotive heat exchangers to the applications in

heating, ventilation, air-conditioning and Refrigeration (HVAC&R) [203].

In an effort to explore the efficient microtube profiles for outdoor evaporator

applications, Ozdemir [204] numerically studied both the liquid side and airside
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performances of the straight microchannel (SMC) tube and the round microchannel
(RMC) tube. The SMC tube has rectangular and the RMC tube has trapezoidal multi-
ports. All the ports both for SMC and RMC tubes have the same hydraulic diameter. In
fact if the SMC tube is bent to form a circular pattern, it takes the form of the RMC tube

with its rectangular multi-ports taking the trapezoidal shapes.

Cold fluid exits pipe

dy D,

\
@A ERTEEENENED)

Hot fluid enters microchannels

Straight Microchannel
Tube or Slab (SMC)

Cold fluid exits pipe

Figure 3.7a.  Multi-port straight microchannel (SMC) tube inside large pipe

Round Microchannel
Tube (RMC)

Figure 3.7b.  Multi-port round microchannel (RMC) tube inside large pipe
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Figures 3.7a and 3.7b (drawn not to scale) depict the SMC and RMC tubes. As
seen in the Figures, the SMC and RMC tubes were placed inside large round pipes to
form tube-in-pipe counter flow heat exchangers shell where the shell will act as water
jacket. The large pipe shell for SMC has the similar diameter as the pipe shell of RMC
tube shell. Hot fluid entered the multi-ports in SMC and in RMC tubes in one direction
and the cold fluid as coolant entered the large pipe (water jacket) from opposite direction

in counter flow orientation.

Ozdemir [204] reported the comparative performances of the SMC and RMC

tubes as follows.

e SMC showed 24% higher liquid-side Nu than RMC
e 40% increased (cooling effect) airside heat transfer in SMC than RMC
e 2.6 times higher liquid-side pressure drop in RMC than SMC

e In SMC less liquid-side mass flow rate (Re = 15) gives high Nusselt
number (Nu = 15.3) and in RMC relatively high mass flow rate (Re = 32)

gives still low but comparable Nusselt number (Nu = 13.1)

e SMC provides higher compactness factor, CF, than RMC, i.e. CFsmc =90

over CFrmc = 39; where the CF was defined by Equation 3.13 below;

, 2
CF :M {m_} where Ay = Perimeter *Length* No. of Channels  (3.13)
Moot | KO/
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e For an outdoor evaporator of 4 tons of refrigeration capacity, the RMC will
take as much as 6 times more space than the SMC; space-wise one RMC

will fit 3 SMCs.

3.3.5 Multi-port slab patterns — straight and serpentine

Curved or serpentine circular flow passages with or without fins are common in
most practical heat exchangers in thermal and energy applications. Intuitively, the
channel curvature can increase both the heat transfer and flow friction. Any application
specific tradeoff between the heat transfer and the fluid flow can be adjusted if the heat

transfer and pressure drop data on such channels are widely available.

Most of the previous studies [24-27, 33, 37-39, 41, 79-192] used fundamental
configuration in their investigations such as the straight and standalone single stream
flow passage. Some authors conducted studies in straight and multiple rectangular
channels or grooves [22, 29-30, 33, 37, 92, 109, 111, 125, 128, 159-160, 177, 179, 191,
200]. Only a few works presented the observations on curved or serpentine channels
[180, 184, 189]. Two other authors reported that the channel curvature can enhance the
heat transfer significantly at the expense of increased flow resistance and the mean
Nusselt number (Nu) alters radically when the flow changes from stable steady to

temporal oscillating in curved zone [189].
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Studies on microchannel slabs having multiple circular channels are also limited
in the open literature. One evaluation was made for the effects of size and shape of the
channels on the performance of MCHX [21]. The results indicate that for the same heat
exchanger volume, increased number of channels give augmented effectiveness but also
raise the pressure drop. Work that deals with finned microchannels to account for the
relative contributions of the fins to the increased heat transfer, are rare in the open
literature. Therefore the straight and serpentine circular multi-port slabs (Figures 3.4a and
3.4b above) with and without external fins at airside were designed and fabricated as the

test specimens to conduct current research.

3.3.6 Multi-port slab material — metallic or non-metallic

In reviewed open literature [24-27, 33, 37-39, 41, 79-192], it is summarized that
the flow channels used in the investigations were fabricated using various materials such
as Silicon (Si), Stainless Steel, Copper (Cu), Aluminum (Al), Glass, and other Metals as
shown in Figure 3.8 below. No data on the channel materials could be extracted for about

17% of the total works reviewed in this study.

The reasons for using particular type of materials in most studies are however not
well explained. It is assumed that the fabrication facility and access to availability may be

the reason to use certain type of materials. From the view point of electronics cooling
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devices, conceivably due to the compatibility of micromachining and micro fabrication
techniques in the semiconductor producing processes in electronics industries, Silicon

possibly was the most used materials for microchannels [157].

Different materials have different thermal conductivities (k) and surface finishes
or roughness (). The k dictates the heat transfer and the & influences the frictional
pressure drop. With the same &, surface finish can vary from one material to the other and
hence the friction factor (f). The f depends on the material of the channel walls (metals,
semiconductors etc.) and also on the type of test fluids. These phenomena were reported

by several authors [39, 87, 90, 135, 143, 155, 171].

Aluminum /Al Arbitrary /No Data Silicon /Si
(5.8% Work) (17.3% Work) (38.4% Work)

Other Materials
(6.5% Work)

Glass
(8% Work)

Copper /Cu
(8% Work) Stainless steel /SS

(16% Work)
O Silicon /Si B Stainless steel /SS O Copper /Cu

OGlass B Other Materials O Aluminum /Al
l Arbitrary / No Data

Figure 3.8. Statistics of materials used in microchannels in the reviewed past works
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No statements, however, clearly found in the literature on the particular type of
channel material that has either high or low & The f depends on the relative roughness of
the channel walls in laminar regime were reported by some authors [81, 110, 123, 133-
134, 137-139, 144, 148-149, 161, 163, 168, 171]. Aluminum made metallic flow
passages have been very common to use as heat exchanger components in automotive,
thermal, energy, HVAC and other industries. The k of Al is higher than stainless steel but
relatively lower than Cu. For light weight feature while holding comparable structural
strength of stainless steel and greater pressure limit than Cu, Al alloy is chosen to

fabricate the test specimen for further study, which also has smooth surface finish.

3.3.7 Working fluids

In the review [24-27, 33, 37-39, 41, 79-192], it is noticed that various kinds of
working fluids were used in internal channel flow. As portrayed by Figure 3.9, water is
seen the most used fluid and air and other gases are next to water. Other fluids include
nitrogen (gas and liquid), common refrigerants, alcohols, and silicon oils. Some works
reported that the f to some extent depends on the types of test fluids evidencing the
importance of electro-osmotic phenomena or electric double layer (EDL) effect at
microscales [39, 87, 90, 135, 143, 155, 171]. Statement on any particular fluid type for

EDL however, not clearly found in the reviewed literature.
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It appears that the water, as the fundamental working fluid, used in majority of the
previous research in basic geometries. The study with applied geometry and orientation
such as the MCHX at cross flow of air for typical thermal applications is limited in the
open literature. Only a few studies are available that deals with the single phase air-to-
liquid cross flow orientation using microchannel slabs or MCHXs having non-circular
shape of multi-port [22, 177, 200]. Viscosity, which varies from one fluid to other, plays
an important role in fluid flow and heat transfer processes [94, 106, 120, 130, 143, 146,
164, 173]. The development and validation of necessary correlations for different fluids
in microchannels need fluid based diverse investigations. Different fluids have different
industrial interests. In this research, the distilled deionized (DDI) water as the
fundamental and the 50% ethylene glycol-water mixture as the applied working fluids

were chosen to conduct the experiments.

Glycol-H20 Mix
(0.70% Work)

Arbitrary / No data

(1.5% Work)

Air & Gasses J
(18.8% Work)

Water /H20
(57% Work)

Other liquids
(22% Work)

| @Water / H20 B Other Liquids OAir & Other Gasses
OGlycol-H20 Mixtrure B Arbitrary / No data

Figure 3.9. Statistics of working fluids used in microchannels in the reviewed past works
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3.4  Choice of operating flow regimes in current study

The works on small diameter channel flows, as mentioned in the above literature
survey summary [24-27, 33, 37-39, 41, 79-192], spanned all over the laminar,
transitional, and turbulent flow regimes as seen from the scale of Re range
0.0008 < Re <40000 in Table-Al. Interestingly two works one very earlier and the other
relatively the recent, extended the investigations to the high flow regimes, which are
outside of the general flow regimes tested by most of the other researchers as reviewed in
current study. Among these works one was by Gambill and Bunby [80] in the range
9000 < Re < 270000 and the other by Qi et al. [26] in the range 10000 < Re < 90000.
However the overall observation in the literature survey is that the laminar flow in narrow
channels is less studied and the differences in reported results is more in laminar flow
than in turbulent flow. This suggests the necessity of further research in single-phase

laminar flow regime.

Single-phase heat transfer and fluid flow have many practical interests for
example in automotive and fuel cell heat exchangers among other applications. Heat
transfer fluids in such heat exchangers usually have relatively higher viscosities and
hence the flow regime is laminar. It is known that the better heat transfer is associated
with a turbulent flow regime or a change of phase such as condensation or evaporation.
The operation of the process and the system maintenance of the two-phase heat transfer is

always more complex than the single-phase. A single-phase narrow tube system can be a
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competitor of two-phase flow heat exchange device and thereby can simplify the overall
necessity and complexity of a two-phase device [4]. Even in laminar flow through small
diameter tube achieving a high heat transfer coefficient is possible if an appropriately
optimized heat exchanger design can be applied. The laminar flow offers a better heat

transfer and pressure drop ratio than a turbulent flow [203].

The flat tubes have some advantages over the round tubes such as less airside
pressure drop, good fin efficiency, better fluid to surface contact and hence the heat
transfer, and less wake region. Because of these features the flat tube air-to-liquid heat
exchangers have been dominantly used in automotive and similar other applications. If
the multi-port flat-tubes are used in such a heat exchanger, the multi-port is usually used
at the liquid side and fins on the flat surface are assigned for the airside since air has high
thermal resistance. For these applications such as the radiator, condenser, intercooler, air-
conditioner etc., the compactness is very important. Better energy efficiency in these
kinds of heat exchangers can be achieved in laminar flow if the smaller cross-sectional

geometries of the flow passages are adopted [205].

The Reynolds number usually does not exceed 10000 in most practical
automotive heat exchanger applications [6]. The typical flow regime for various
automotive heat exchangers falls within the range of 1 < Re < 10000 [206]. The design
parameters for many automotive heat exchangers usually prescribe the low Reynolds
number flow, which may be classified as laminar flow regime for Re <2000 [207]. As

discussed in the literature survey, not much investigation is found in the open literature
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that deals with heat transfer in multi-port narrow channels in the laminar flow regime.
Even no study is found in developing laminar flow. And no correlation is available for
glycol-water mixture flow in narrow channels in developing laminar flow regime. In
order to select a suitable flow cross-section and to predict the heat transfer performance
in such flow passage for the design of a microchannel heat exchanger, further study is
very important. It is of great necessity for engineers and scientists to understand how to

predict narrow channel side liquid flow heat transfer performance.

Therefore, in view of the automotive and similar other typical thermal heat
exchanger applications, the hot water and ethylene glycol-water mixture flows in multi-
port MCHX slabs in developing laminar flow regimes (Re <2300) were chosen in
current study. The cold air as the external fluid was chosen to flow over the test slab
surface at a given inlet temperature. The liquid flow Reynolds number inside the MCHX
slab was varied between 200 and 2000 and the airflow was maintained constant in the

range between 50 and 70 km/h.

35 Conclusions and recommendations

Ever increasing energy demands, and concerns for space, energy and materials
savings highlight the necessity for miniaturized light weight heat exchangers that can
provide high heat transfer. Microchannels have superior features in this respect compared

to other conventional counterparts. As such, they have significant potential for use as heat
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exchanger components in typical thermal and energy applications. Relative to the
microchannel heat sinks in the electronics cooling industry, there is only limited research
and development on microchannel heat exchangers for large scale thermal and energy

applications.

The sort of widely available fluid flow and heat transfer correlations and design
procedures for traditional heat exchanger tubes are not yet well established for
microchannels. Indeed, the arguments are mixed on the validity and the applicability of
classical macroscale theories in microchannel flows. Many authors thus emphasize the
need for more research to develop experimental databanks to help reconcile the

arguments and supplement the data in the research community.

The current study surveys the literature to date on the status and potential of
microchannels for thermal and energy applications. It identifies further research needs
and the scopes of such research. While deviations and differences in results were reported
in earlier studies, the variations and discrepancies are less in recent investigations.
Divergence of findings and divisive comments, however, continue to appear in the recent
investigations. This difference calls for additional research and experimental works to
consolidate the data and close the disparity gap. Moreover, with a few exceptions, most
of the reviewed works used a basic, stand alone microchannel geometry and fundamental
working fluids. Practical heat exchangers in typical thermal applications tend to use core

elements with complex geometric configurations. Therefore, extended investigations
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using various applied channel shapes, configurations, manifold geometries, and a variety

of working fluids are required to represent the real life heat exchangers.

The present work provides information on the test specimens and experimental
infrastructure that have been designed and developed to undertake the type of research
indicated by the presented literature review. In particular, a versatile single phase air-to-
liquid crossflow dynamic test rig was developed that is capable of offering fluid flow and
heat transfer research facility, for various working fluids (liquids and gases), with a
variety of microchannel geometries, as well as prototype microchannel heat exchangers,
for use under wide operating conditions. The execution of a rigorous test procedure with
the introduced high quality equipment and accurate instruments may lead to a relatively
more accurate data set with results that may be inline with a subset of the published
results, possibly leading to the establishment of a consensus on microchannel quantitative

results within the research community in this area.

The findings of this literature review, identification of further research, and the
scope and proposals for current study were documented and sent for journal publication.
Current objectives are recognized as the necessity for further research and are published

in peer-reviewed journal [201].
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CHAPTER - 4

DEVELOPMENT & COMMISSIONING OF

EXPERIMENTAL FACILITY AND DESIGN OF TEST

PROCEDURES
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40 DEVELOPMENT & COMMISSIONING OF EXPERIMENTAL

FACILITY AND DESIGN OF TEST PROCEDURES

A significant part and challenge of current research were to design and fabricate
the microchannel test specimens and to design, develop and commission of a heat transfer
and fluid flow test facility from the scratch for conducting the proposed experimental
investigation. With some pros and cons, finally these challenges were met successfully,
which are described below. It is worth mentioning that the requirements for developing
an experimental test facility and selecting the types of test specimens in current study
were recognized by the scholars in this area and the details of the developed test facility

and proposed research were accepted and documented through journal publication [201].

In the literature review, the differences in reported results from one work to other,
large scatter in experimental data, and the deviations from classical theory may have been
originated from the measurement uncertainty being one of the major sources of errors and
discrepancies [23, 199]. The measurement uncertainty includes but not limited to the
capability of the test facility, experimental method, instrumentation, data collection and
the data processing system. All the key parameters the i.e. f, Ap, and Nu are driven by the
flow rate, temperature and pressure of the working fluids. Literature survey reveals many
works that used manual flow measurements such as the timed catch-weigh method [27,
87, 155, 180] and several others used graduated rotameter [4, 29, 122, 127, 149, 177, 182,

187, 191, 196, 208]. Some works used mechanical pressure gages to measure Ap in
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microchannel [29, 87], which usually has less accuracy and also poses human error. Most
of the works used type T or K thermocouples in measuring the fluid temperature through
microchannel instead of highly accurate other possible means, such as the Resistance

Temperature Detector (RTD) [4, 27, 29, 33, 99, 149, 182, 177, 183, 191, 199, 208].

Minimizing the flow fluctuations and ensuring better accuracy in flow, pressure,
and temperature measurements to obtain reasonably accurate data could significantly
reduce the measurement error and hence the deviations in reported results. The reliable
experimental data depend on the high accuracy measuring instruments such as the digital
flow meters, pressure and temperature sensors, and automated data acquisition systems
including the proper choice of components of experimental facility such as the liquid

pump, flow control and monitoring devices etc.

A large group in the surveyed works used test rig where major focus was given on
the internal fluid flow and/or heat transfer through a single standalone microchannel or
multi-port MCHS, where the heat transfer role of the external fluid flow was realized by
electrical heating i.e. constant heat flux [4, 27, 33, 127, 149, 183, 208]. Many works used
open-loop experimental setup where the liquid flow was pressure driven or syringe
pushed and exited to the atmosphere [39, 87, 149, 180, 182, 184, 196]. These types of
experimental setup and methods may not be relevant for current heat exchanger in focus
[22]. A few studies used liquid-to-liquid crossflow experiments but their cubical heat
exchanger configurations and orientations do not represent the crossflow automotive or

other similar thermal heat exchanger applications [157, 187]. Comparable operating
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conditions for crossflow automotive or similar other typical thermal heat exchanger

applications, as the capacity factor of a test facility is also limited in the literature.

A crossflow heat transfer and fluid flow test facility, where the liquid flows
internally through the MCHX flow passages and the air flows externally across the
MCHX, is rare in the open literature. Papers that describe and provide comprehensive
information on the test facility are also limited in the open literature. A single phase
liquid flow test facility was developed by earlier authors focusing the internal flow [208],
which provided relatively more information over others. Other review works on liquid
flow experimental procedure in microchannels also give some useful information [199].
This promising area however is in short supply of established guidelines for setting up an
experimental facility and lacks the standard or recommended procedures for investigating

the fluid flow and heat transfer in microchannels and MCHX.

In current study, on the basis of statistics gathered from the literature survey and
necessity of further research, as described above in section 3.3, first the test specimens
were designed and fabricated. Depending on the necessity of current research, a dynamic
well instrumented single phase crossflow experimental infrastructure has been developed
to investigate the fluid flow and heat transfer in microchannel and MCHX test specimens.
A great deal of attention was paid to the key components, high accuracy measuring
instruments, and automated data monitoring and acquisition systems. The concept design,
3-D modeling and 2-D drafting of the test facility and its components were done by the

candidate using CATIA V5 R16 CAD package. While a schematic and picture of the
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developed test facility are given in Figure 4.1 below, other details and photographs of the

test facility and components are provided in Figures B1 through BS5 in Appendix B1.
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Figure 4.1b. Photograph of the developed thermo-fluid experimental facility in current research.
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The test rig contains a closed loop thermal wind tunnel for producing airflow and
a liquid handling system. The flexibility of the liquid handling system and the
incorporated instrumental capability make the test bench versatile that provides fluid flow
and heat transfer research facilities for different microchannel geometry in a broad
laminar to turbulent flow regime and in wide pressure and temperature ranges. The setup
is designed in a way, if the pump-tank unit is replaced by a pressurized gas reservoir, it
can also handle various gas flow through microchannel. As required the test setup is

capable of being operated in closed-loop or open-loop by just maneuvering two valves.

Starting with the details of the test specimens, this section introduces with the
liquid handling system, supporting components, air handling systems, instruments
required to deliver and handle metered working fluids, data acquisition scheme,
experimental procedure, commissioning of test rig, and system’s heat balance. This
section also provides information on experimental comparative comparisons of two
traditional and one prototype microchannel heat exchangers, which were performed in the

test rig as a preparedness step for next subsequent experiments.

4.1  Design and fabrication of microchannel test specimens

The concept design of the test specimens were made right after the first phase of

literature review. Since commercial laser fabrication of microchannel was not readily
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available, majority of the works in reviewed literature used the standalone custom built
test samples made in house mostly by etching method using chemical solutions. This
etching process leaves microchannel surface with countable roughness. Channels cut with
laser beams virtually leave no surface roughness. Therefore in current study, the process
of searching sophisticated fabrication technology using laser beam and the associated
manufacturer started in late 2005. At the time only two such manufacturers could be
found (to the best of candidate’s knowledge) who are USA based and used to
commercially fabricate the narrow flow channels. They are Hydro Aluminum and

Modine Manufacturing Company.

Communications were developed with both of the manufacturers for possible
fabrication of microchannel test specimens. They make bulk production and supply.
Since few different test samples for current research need different manufacturing
settings and adjustments, getting the test specimens fabricated by the vendor was very
difficult. However, design communications with Hydro Aluminum through 2005 to 2007
made all the test specimens fabrication possible. Therefore, in addition to candidate’s
proposed research goal, every effort was given in developing the test facility and in
designing the test samples in a way so that the laboratory can extend and conduct its

further research in a long-term basis.

With this view, five independent microchannel slab test specimens and a
prototype MCHX were designed by the candidate, which were supplied by Hydro

Aluminum in mid 2007. The flow passages of all the I mm multi-port extruded (MPE)
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test slabs were fabricated using laser beam technology. At the manufacturing facility,
each of the test slabs was hydro tested to check the pressure endurance capability and to
see if there is any blockage in any of the 68 independent channels. The MPE test slabs are
capable of withstanding a moderate to high working pressure of 15 MPa and no blockage
was found [202]. The ends of the slabs were set thru the inlet and exit manifolds where
the brazing technology was applied to join the surfaces only on the outside. This method
of joining needs no internal weld. Thus there is no presence of residues or scraps that
could otherwise cause the blockage to the manifolds. The cross-sectional view and
dimensions of a single straight slab and a serpentine slab are shown in Figures 3.4b and
3.4c in section 3.3.2 above. The inlet and exit connection configurations of a basic slab is

illustrated in a not-to-scale Figure 4.2 below, where not all the 68 channels are shown.
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Figure 4.2. Inlet and exit connections and configurations of multi-port MCHX test slab.
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These highly engineered and high precision MPE test slabs were fabricated using
Aluminum alloys; Al 3102 for the microchannel slabs and Al 6005 for the manifolds
[202]. Each of the test specimens has the identical dimensions. The uncertainty in
diameter measurement of these new and smooth flow passages was reported to be no
more than maximum +1.5%, i.e. Up = £1.5% [202]. The average surface roughness
height of the ports is about 0.05% of the channel diameter making a relative roughness of
&D = 0.0005 [202]. Each of the ports in the multi-port microchannel slabs are equally

spaced over a 100 mm width as shown in Figure 3.4 above and in Figure 4.3 below.

T 343 mm (end-to-end inside inlet & exit manifolds)
304.8 mm (Effective heat transfer section)

g

2mm @ 1mm
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{00000 O0000000OVOOODO00O00000000000: 5
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Figure 4.3. Cross-sectional view and dimensions of a single 1-pass MCHX test slab.

Kandlikar et al. [149] investigated the effect of channel roughness on pressure
drop and heat transfer in 1.067 and 0.62 mm diameter circular tubes in the Re range from
500 to 3000. The tubes were treated with acid solutions to create three different relative

roughness (¢/D) values for each tube. They observed more increase in Nu and Ap in

0.62 mm tube than in 1.067 mm tube. Negligible variations of Nu and Ap with Re in
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1.067 mm tube due to varying &/D from 0.00178 to 0.00225 were observed. But
significant variations were noticed in 0.62 mm tube for &/D from 0.00161 to 0.00355.
They recommended that the larger diameter tubes above 1.067 mm with /D = 0.003 may
be treated as smooth tube but for the small size tubes below 0.62 mm diameter is treated
as rough tubes since the Nu and Ap depend on &/D for tube size of <0.62 mm. The
transition to turbulence also gets affected by the change in /D above 0.003. In current
study the relative roughness value is /D =0.0005 [202] and 1 mm diameter channel is
within the size range between 0.62 and 1.067 mm. Therefore the channels in this study

are considered smooth and the effects of &¢/D on Nu and Ap are ignored.

For identification purposes, each of the designed six test specimens was named by

microchannel heat exchanger (MCHX) as follows.

1. MCHX #1:  Un-finned 1-pass straight test slab (Figure 4.4a)

2. MCHX #2:  Finned 1-pass straight test slab (Figure 4.4b)

3. MCHX #3:  Un-finned 2-pass serpentine test slab (Figure 4.4c)

4. MCHX #4:  Finned 2-pass serpentine test slab (Figure 4.4d)

5. MCHX #5:  Un-finned 3-pass (3-circuit) straight distributor test slabs; 3

open exits at one ends and other ends connected to manifold (Figure 4.4¢)

6. MCHX #6:  Finned 3-circuit 15-pass (5 passes per circuit) serpentine

prototype microchannel heat exchanger (Figure 4.4f)
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The design concepts were based on typical thermal heat exchanger applications.
Figures 4.4a through 4.4f portray all of the designed and fabricated test specimens and
Table 4.1 provides the geometric data and specifications of each of the test samples. The
inlet and exit manifold tubes were compressed fitted with the liquid handling flow loop as

discussed next.

Figure 4.4a. MCHX #1: Un-finned 1-pass straight microchannel test slab.

Figure 4.4c. MCHX #3: Un-finned 2-pass serpentine microchannel test slab.
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Figure 4.4e. MCHX #5: Un-finned 3-pass (3-circuit) straight microchannel distributor test slabs

with 3 open exits at one ends and other ends are connected to a manifold.

Figure 4.4f. MCHX #6: Finned 3-circuit 15-pass (5 passes per circuit) serpentine prototype

microchannel heat exchanger.
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Table 4.1. Geometric data and specifications of the MCHX test specimens (units are in mm)

PARAMETERS

MCHX #1 MCHX #2 MCHX #3 MCHX #4 MCHX #5 MCHX #6

Illustrating Figure #

# of channels / ports in a slab
Port or channel diameter, D
Port-to-port distance, S

Slab web thickness, W+

Slab length (X-axis, liquid), L
Slab width (Z-axis, airflow), W
Slab thickness (Y- axis), H
Serpentine curve ID, dgp

# of Flow circuits

# of Flow passes

Fin type

Fin density per 25.4 mm

Fin height, H;

Fin thickness, t;
Inlet-exit Header tube:
Inner diameter, d;

Outer diameter, d,

4.4a

68

1

1.463

0.463

304

100

4.76

6.35

4.4b
68

1
1.463
0.463
304

100

Wavy

20

0.10

4.76

6.35

4.4c

68

1

1.463

0.463

304

100

20

4.76

6.35

4.4d
68

1
1.463
0.463
304

100

20

Wavy

20 —top
10 — bot

0.10

4.76

6.35

4.4e 4.4
68 68
1 1

1.463 1.463

0.463 0.463

304 304
100 100
2 2
- 20
3 3
3 15
- Wavy
- 12
- 16
- 0.10
4.76 4.76
6.35 6.35

In current study, the MCHX #1, MCHX #2, MCHX #3, and MCHX #6 were

investigated. As mentioned before, the developed laboratory will use rest of the test

specimens to conduct further research. The test specimen MCHX #5 is specifically
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designed to observe and investigate the distribution nature of liquid or gas flow through
each of the independent channels in the test slabs. Other details of the modeling and

photographs of the test specimens are given in Figures B6 through B11 in Appendix B2.

4.2  Design and fabrication of wind tunnel test chamber

Rendered by Figure 4.5 below, a unique wind tunnel test chamber made with
6.5 mm thick Plexiglas is designed by the candidate and locally fabricated by technical
support centre at university of Windsor. It has slotted slider mechanism that can fit all the
above five test specimens i.e. MCHX #1 to MCHX #5. For the prototype MCHX #6, a
separate test chamber was built. The inside dimensions of the test section are
304.8 mm x 304.8 mm in the X-Y plane and 609.6 mm long in the +Z direction i.e. in the
direction of airflow. The thick walled test chamber forms a sealed cubicle that helps the
heat transfer domain not participate in any heat transfer activity with the outside
environment. Yet, some extra insulation was provided properly as a double protection.
Therefore only the portion of the MCHX test specimen is of interest remains exposed

inside the test chamber for the heat transfer to take place between the liquid and the air.

For measuring the airflow velocity at the inlet of the test canal, a PO12A-CF 12
inch Pitot static probe (shown in Figure 4.16a) along with a thermocouple probe is
installed at the center of the X-Y cross sectional plane. The static and total pressure ports

of the Pitot static tube are tapped and paralleled to connect to a high accuracy digital duct
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calibrator, an airside differential pressure transducer (PTDD), and to the data acquisition
(DAQ) scheme. The duct calibrator, PTDD, and DAQ are shown in Figures 4.17, 4.19
and 4.20. The digital duct calibrator with computerized data logging and processing
features is used to calibrate the wind tunnel, which is also used to monitor the
experimental condition and record backup data. As seen the circular holes in Figure 4.5
on the test chamber and solid circular pairs (P1-P1°, P2-P2’, and P3-P3’) in Figure 4.7a
on the front view of the test section, several pressure taps on two vertical side walls of the
test chamber were drilled to measure the airflow pressure drop across the MCHX at

various vertical locations in the Y-direction.

+X: Direction of liquid flow
iquid from main system inside MCHX Test Slab
enters the inlet manifold
tube of MCHX Test Slab

Figure 4.5. Designed and fabricated test chamber in current research.
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As seen in Figure 4.5 above, several small holes are also drilled along the
circumference of the test chamber at the inlet (A-A") and exit (B-B’) to measure the
airflow velocity and temperature to make their flow profiles. Additionally two other holes
are drilled at the top of the chamber to measure the humidity of the flowing air using the
duct calibrator’s digital humidity sensor. The large door of the test chamber located at the
top assists easy replacement of the test specimens from one experiment to the other. The
detail modeling, 2D layouts and photographs of the test chambers are presented in

Figures B3 to B3.6 in Appendix B3.

4.3  Air handling system — the closed-loop thermal wind tunnel

The source of cold and hot air supply in present study is a closed loop thermal
environmental wind tunnel whose detailed descriptions can be found in [209-210]. The
key segment including the view of the test chamber in Y-Z plane is shown in Figure 4.5
above. The wind tunnel has a test section with square cross-section in the middle of the
circulating loop, which is 305 mm x 305 mm x 610 mm (i.e. 1ftx 1 ftx 2 ft). With a
contraction ratio of 6.25 the wind tunnel is capable of producing the air velocities up to
30 m/s with no blockage and up to 17 m/s at full blockage i.e. in the presence of the
prototype MCHX #6 in current study. The pressurized hot or cold water supply, as
required, is tapped from the building district facility between 275 and 345 kPa (i.e. 40

and 50 psi) and mixed in a mixing network to prepare for wind tunnel internal heat
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exchanger. As displayed by Figure 4.6, the water flow mixing network is designed by the
candidate and locally fabricated by the technical support centre at university of Windsor.

The detail models and photographs are given by Figures B4 to B4.2 in Appendix B4.
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Figure 4.6. Designed and fabricated water flow mixing network used in current test setup.

The mixing chamber can mix and make up the hot and cold water anywhere
between 5 and 45°C. This prepared water is fed into the open-loop internal heat
exchanger of the wind tunnel. The wind tunnel internal heat exchanger makes up the hot
or cold air, as required in the experiment, through the heat transferred by the drawn water

to the circulating loop air inside wind tunnel.

Earlier experiments had been conducted in this wind tunnel at different blockage

ratios to model the inlet air velocity profile [209-210]. At different air velocities, it was
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observed that the free stream airflow in the +Z direction exhibited nearly flat velocity
profiles throughout the entire X-Y cross sectional plane, which is the inlet A-A’ section in
Figure 4.7a below. The centerline air velocity measurement at the inlet (A-A") could
account for the entire inlet cross section with a multiplying factor of 0.90. Further in
current research several Pitot traverse surveys in the test chamber have been made using
Log-Tchebycheff point distribution method [211]. This is one of the accurate methods
recommended by the ASHRAE to measure and model the air velocity or the mass flow

rate in a duct. This method, as used in current study, is described next.

Closed-loop thermal wind tunnel test chamber

Pitot static tube for

Test Chamber with MCHX #6 measuring air velocity
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Duct survey ports for obtaining air velocity profile

Figure 4.7a. Schematic of the measurement locations in the test chamber.
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4.3.1 Air velocity modeling in wind tunnel test section using Log-Tchebycheff

point distribution method

Pitot traverse survey is usually necessary to perform when the mean velocity or
mass flow rate throughout an entire cross-sectional plane of a duct is required. The
traverse survey involves measurements at various positions or points across the duct.
Selection of suitable points has to be made prior to conducting a traverse survey. Either
of the methods of Centroids of Equal Areas or Log-Tchebycheff point distribution may be
used. The simple average of the selected individual point velocities however provide
reasonably accurate results if Log-Tchebycheff points distribution is used [211]. Because
of location of traversing points, this method accounts for the effect of wall friction and
the reduction of velocity at near wall of the ducts and thereby provides the highest

accuracy in measurement [211].

In current study the Log-Tchebycheff point distribution method was therefore used
to model the air velocity at the entrance plane upstream to the test specimen inlet sitting
in the test section. Since the duct size in current study was relatively smaller
(Hor W<750 mm), measurement at the recommended 5-point distribution (i.e.
5x5=49) [211-212] was used as shown in Figure 4.7b below. The time-weighted
average reading at each point was taken in the calculation in order to account for any

fluctuating velocity at the traverse plane.
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Figure 4.7b. Log-Tchebycheff 5-point distribution locations for air velocity measurement

The time weighted average velocity measurement at each of the 25 points was

taken as follows.

k
ZVj; where j=3to 5, 4.1)

The mean velocity across the traverse plane, i.e. the upstream of the test section,

was then consolidated using Equation (4.2) below.

_ 111
Va :_Zva

where i =1 to 25, (4.2)
Ni=1

5i;
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This gives the mean mass flow rate by the following continuity relations,

. : 12 .
m, = (pava ) = Ajuct E-Z (0a,iVai); wherei=1 to 25, 4.3)
i=I

Velocity profile of Inlet Air, V_a,i [m/s] vs X [mm], Y [mm]

[y
[=]

V_a,i [m/s]

=T R S R FE R O - T - -

\r]!]j]i‘]f]j]f]flflf.lf

Figure 4.7c. Air velocity profile at the inlet plane using Log-Tchebycheff 5-point distribution

Figure 4.7c above shows the air velocity profile at nominal velocity of 8.5 m/s at
the inlet cross-sectional plane of the wind tunnel test section (A-A’ in Figure 4.7a), which
was measured using Log-Tchebycheff 5-point distribution method. The velocity contour
plots of this survey are provided in Figure B7.5 in Appendix B7. The mean values of the

traverse surveys were compared with the values measured by single point measurement at
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the center of the traverse plane. In this measurement, the standard and the average
deviations were 0.31 m/s and 0.22 m/s respectively. The survey results suggest that the
single-point centerline velocity measurement could fairly represent the mean velocity

across the entire plane with the use of a consolidated multiplication factor of 0.87.

Therefore, for the air velocity all the experimental measurements were performed
at the inlet centre location of the test section (see Figure 4.7b above and balloon 5 in
Figure 4.8a below) and the new multiplication factor (0.87) was taken into account in
velocity translation. A hot wire anemometer (shown in Figure 4.18) was also installed at
the inlet section of the test chamber for monitoring and also for backup measurements of
the centerline air velocity. The measurement data from hot-wire anemometer also agreed

with the measurements data using Pitot static tube and the duct calibrator.

4.3.2 Thermal grids for air temperature measurements in wind tunnel test section

Two thermal measurement grids were designed and installed, one at the inlet and
the other at the exit of the test section in order to precisely measure the airflow
temperatures across the MCHX. As seen in Figure 4.7 above, the cross-sections A-A" and
B-B' are the inlet and exit locations of the test chamber. The thermal grids are expanded
and illustrated in Figure 4.8. As seen in Figure 4.8a above and 4.8b below, the inlet
thermal grid has equally spaced 3 x 3 =9 grid points (from T100 to T108) and the exit

grid has equally spaced 5 x 5 = 25 grid points (from T109 to T131 and T200 to T201).
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Figure 4.8al. Schematic of the thermal grid points at the test section inlet in the wind tunnel.

Figure 4.8a2. Photograph of the thermal grid points at the test section inlet in the wind tunnel.
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Figure 4.8b1. Schematic of the thermal grid points at the test section exit in the wind tunnel.
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Figure 4.8b2. Photograph of the thermal grid points at the test section exit in the wind tunnel.
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The well calibrated type-T thermocouple probes were installed at each grid points,
which were then hooked up with a data acquisition (DAQ) for automated measurements.
As defined by Equations 4.4 and 4.5 below, the mean inlet and exit airflow temperatures,
Tai and T,,, were sampled from the time-averaged data of several experimental runs and

then used in the calculation and analysis.

n
Tai -1 > (T100+.....4+T108); forn=1t0 9, (Mean air inlet temperature) (4.4)
’ Nn=1

and

n
T,o = 1 > (T109+.....4+T201); forn=11to 25, (Mean air exit temperature). 4.5)
’ n

n=1

4.4  Liquid handling system

The liquid handling system in current study is shown in developed experimental
facility in Figure 4.1 above. The liquid pump draws liquid from the source tank and
impels to the microchannel slab test specimen via heating unit. The hot liquid transfers
heat to the cold air flowing over the test slab and then returns back to the source tank or

exits to the atmosphere.
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The system contains the liquid tank, pump motor unit, circulation heater (CH),
piping network (PN), flow management accessories, flow monitoring devices, and flow
measurement instruments. The flow management accessories include ball valves (BV),
bypass arrangement, pressure relief valve (PRV), needle valve (NV), micro-filter (MF),
flow drainage facet etc. The flow monitoring and measurement instruments consist of
pressure gauges (PG), temperature gages (TG), digital flow meter (DFM), impeller flow
meter (IFM), pressure transducers (PTD), and Resistance Temperature Detector (RTD).
The 3D, 2D and pictorial illustrations of the above components of the liquid handling

system are provided in details in Appendix B1 via Figures B1 through BS.

A centrifugal pump is undesirable because the flow rate is dependent on the
change in upstream pressure [197]. Many authors used gear pumps (GP) in their
investigations since they deliver a constant volume of liquid at a fairly steady flow rate
regardless of the change in upstream system pressure [149, 208]. Garimella and Singhal
[28] discussed the single-phase flow, heat transfer and pumping requirements for MCHS,
which can be useful in selecting proper pump over required flow rate. As shown in
Figure 4.9, a variable speed gear pump was therefore selected for the developed test

facility.

The pump is operated by a frequency driven 5.6 kW electrical motor. The pump

can handle water, glycol, and other moderately viscous oils and operate up to a maximum
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working pressure of about 1 MPa. To provide additional precision to the flow stability, a

needle valve NV is also installed in the flow loop in addition to the gear pump.

discharge
suction

Gear'Pump Motor (Variable
(Variable Speed) Speed)

Figure 4.9. Schematic of the liquid flow gear pump-motor unit used in current test setup.

As shown in Figure 4.10 below, the liquid heating element in the system is an
inline 6 kW circulation heating coil (CH) that serves as a constant heating source for the
flowing liquid. The heater unit can handle water, glycol, and other liquid oils as well as
various gases with a working pressure up to 6.8 MPa and temperature of 150°C. The

heater is assembled in the liquid tank cart-unit. The heater is integrated with a
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programmed control panel that allows setting, controlling, and maintaining a certain
heating temperature. After commissioning the test facility, the shell of the heating unit

was locally changed because of finding some debris from original source.

Hot liquid
exits to flow
system

Circulation
Heater (CH)

Cold liquid

enters the
Heater, ="

Controller S

& Heater

Figure 4.10. Schematic of the liquid tank and circulation heating coil used in current test setup.

An inline micro filter (MF) is installed before the digital flow meter DFM. The
digital flow meter DFM, as shown in Figure 4.11(a) below, was installed after the MF to
measure the volume flow rate through the microchannel slab. Three FV4000 series DFM
for different flow ranges are used depending on the experimental conditions. This DFM
has several special features: handles water, glycol, and other oils as working fluids;
simultaneously measures and displaysV , T, and p of the flowing fluid; and sends voltage
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signals of all these parameters to the DAQ system for automated data acquisition.
Because of this instant and simultaneous measurements of all three parameters, by
evaluating the density (p) theV can be instantly converted into mass flow rate (m ). One
Impeller Flow Meter (IMF), shown in Figure 4.11(b), was also installed at the exit of the
flow loop to take the backup measurement for verification as well as for the event if DFM

seizes to function during any experimental runs.

Inlet FV Series Digital Flow Meter (DFM) Impeller Flow Meter (IFM) at flow-loop exit

o

Liquid &.
Inlet /

Instant flow rategp & T Displays

(b)
(@)

Figure 4.11. (a) Digital flow meter, DFM and (b) Impeller flow meter, IMF used in current setup.

Two sets of pressure transducers (PTD) and temperature sensors (RTD) are
installed; one set (PTD1 and RTD1) at the inlet and the other set (PTD2 and RTD2) at the
exit of the microchannel test slab. Before and after the PTD1 and PTD2, two mechanical
pressure gauges (PG) were installed to visually monitor the experimental operating
conditions and to check the status of the digital pressure measurements. A sample PTD

and a mechanical pressure gauge are shown in Figure 4.12 below.
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Liqui!side Pres$ ri Monitoring Gauge (PG)
Transducer (PTD)

(b)
(@)

Figure 4.12. (a) Pressure transducer (PTD) and (b) pressure gauge (PG) used in current setup.

Different flow rate gives different system pressure p and hence different Ap. With
respect to accuracy, a single broad ranged PTD unit is a poor choice to measure flow
pressure in a wide span. In order to measure the p accurately in both low and moderate
ranges, several PTDs with various slim measurement band widths will be used. They
offer different narrow measurement ranges covering pressure capacity from 0 to 680 kPa.
As described below, the ultra precision Resistance Temperature Detector (RTD) sensors
with a high 1/10 DIN accuracies (£0.012°C) were used in current study to measure the
liquid side inlet and exit temperatures. All the PTDs and RTDs were connected with the

DAQ panel for data recording and processing.
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The most common resistance value of a Pt100 RTD is 100 ohms at 0°C. The
temperature coefficient () is used in dealing with RTD, which is the average slope
between 0°C and 100°C. According to DIN 43760 standard, a Pt100 RTD has a value of
a=0.00385 ohm/ohms/°C that for a 100 ohm wire corresponds to +0.385 ohms/°C at
0°C. Both the slope and the lead impedance of the wire can contribute a significant error
to temperature measurement. To minimize these errors, bridge connection is usually used
where the bridge output voltage is considered an indirect measure of the RTD resistance.
A bridge needs four connection wires, one external source, and three resistors with zero
temperature coefficients. The 3-wire Wheatstone bridge connection creates some non-
linear relationship between the change of resistance and the output voltage of the bridge.

A 4-wire connection eliminates this problem and provides better measurement accuracy.

The Resistance Temperature Detector (RTD) is a more linear and accurate device
than any thermocouple and a 4-wire bridge connection measurement has also the best
measurement accuracy over either of 2 or 3 wire RTD connections (National Instruments
DAQ User Manual). Therefore, the ultra precision RTD sensors (Pt100) with a high 1/10
DIN accuracies (£0.012°C) in 4-wire bridge connections were used in measuring the

liquid side inlet and exit temperatures.
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45 Instrumentation and calibration

The measuring instruments in developed experimental facility are carefully
selected giving major attention on their accuracy and ability for DAQ connectivity. The
better accuracy and performance are achieved if an instrument is used in medium scale
span of measuring capacity. In order to ensure this choice, several sets of instruments and
sensors of different measurement ranges are laid on the test facility. As required, the
narrow range higher accuracy instruments were hooked up with the DAQ for data

monitoring and collection.

The specifications of the instruments are provided in Table 4.2. The accuracy
information of the instruments as provided in Table 4.2 based on manufacturer’s supplied
data, accompanying documentation, and on instruments’ label of specification. The
accuracy of each instrument, probe, and sensor as provided in Table 4.2 represents the
overall instrument error estimated from the root sum square (RSS) of all known errors as
given by Equation 4.6. These may include any or all of the known errors e.g. the
resolution, absolute error, sensitivity, linearity, repeatability, hysteresis, effects of scale

range (FSO), stability, zero offset, various drifts, reproducibility, precision etc.

e =2 +e2+..+ed (4.6)
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where e is the known error(s) 1, 2, 3, .....N and the € is the overall instrument error some
times used as consolidated accuracy term by manufacturer and denoted by +% or by
absolute value. Table 4.3 describes the information and specifications of the precision

calibrators those were used to calibrate the instruments in current research.
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4.5.1 Calibration of liquid flow meters (DFM & IFM)

The digital flow meters (DFM) shown in Figure 4.11(a) above were supplied with
the calibration data and response curves for water and 50%-50% ethylene glycol-water
mixture. The DFMs are capable of handling a variety of liquids with low to moderate
viscosities, therefore the calibration data and the curves were provided with respect to
liquid viscosity versus DFM output voltage followed by other data. Table 4.4 shows the
data and Figure 13 presents the calibration curves. The detail calibration certificates, data

and response curves for the DFMs are provided in Figures B5.1 to B5.3 in Appendix BS.

Table 4.4. DFM Flow meter’s calibration data: LPM vs. VDC vs. kinematic viscosity (v)

DFM: 04012SN16-TPD S/N 00143490

Flow rate Output VDC at different Kinematic viscosities, v [cSt]
LPM v=031| v=0868| v=100| v=200| v=4.00| v=7.00
60.57 5.31 5.21 5.07 4.84 4.79 4.75
53.00 4.64 4.55 4.43 4.23 4.19 4.15
45.42 3.96 3.89 3.79 3.62 3.58 3.55
37.85 3.29 3.22 3.15 3.01 2.98 2.96
30.28 2.61 2.56 2.51 2.40 2.38 2.36
22.71 1.94 1.90 1.88 1.79 1.78 1.76
15.14 1.26 1.23 1.24 1.18 1.18 1.16
7.57 0.58 0.57 0.60 0.58 0.58 0.57
3.79 0.29 0.29 0.28 0.26 0.26 0.26
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Figure 4.13a. DFM, Flow meter calibration data - LPM vs. VDC vs. kinematic viscosity (v).

Flow Response Curve: Model 04012SN16-TPDF3; S/N: 00143490 (LPM vs. VDC)
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Figure 4.13b. DFM, Flow meter response & calibration curve - LPM vs. VDC (Water).
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Flow Response Curve: Model 04004SN1-TPDF3; S/N: 00168771(LPM vs. VDC)
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Figure 4.13c. DFM, Flow meter response & calibration curve - LPM vs. VDC (Glycol & Water).

The impeller flow meter (IFM) is installed at the exit of the liquid loop

downstream of the test specimen. Shown in Figure 4.11(b) above, the meter gives pulse,

i.e. numeric counts for each rotation of its impeller, which was calibrated for water flow

at 39°C using the readings of the DFM and backed up by bucket-weigh-stop watch

measurements. Table 4.5 shows the data and Figure 14 presents the calibration curves.

Table 4.5.

PhD Dissertation

Flow meter’s calibration data: LPM vs. VDC vs. kinematic viscosity (v)
Step  Display Count vDC LPM  Kg/Sec

1 38.48 1.902 5.00 0.1023

2 54.37 2.973 7.50 0.1400

3 7217 4.190 10.00 0.1814

4 89.65 5.460 12.50 0.2215

5 110.38 6.747 15.00 0.2655

6 124.61 7.850 17.50 0.3006

7 147.79 9.437 20.82 0.3556
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Figure 4.14a. IFM, Calibration curve - LPM vs. VDC (for water).
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Figure 4.14b.
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During all experiments, for almost all the data sets the manual flow measurements
were also taken as backup and to verify the automated recorded data. Excellent
consistency was achieved and followed for all the data sets, which can be seen from
Figure 4.14b. Experiments were repeated for data sets those are not consistent or have
little large variations among these three systems of flow measurements. The details of
bucket and stop watch methods as used in current study are briefly described in

uncertainty analysis section in Appendix E.

4.5.2 Calibration of liquid side pressure transducers (PTD)

The liquid pressure transducers PTDs were supplied with calibration data by the
manufacturer (Omegadyne Inc). The calibrations were performed by NIST traceable
instrumentation and standards. The pressures in psi are fairly linear with the DC voltage
output of the transducers. The functionality and responses of the liquid side PTDs were
tested in the system by running the liquid loop at some given pressure. The PTDs were
then compared with the readings of the installed PGs and the outputs of pressure sensors
of the DFM. The supplied calibration data were found in excellent agreement with DFM
and PGs. As mentioned before, different sets of liquid side PTDs were used depending on
the flow and narrow pressure ranges to allow maximum accuracy in measurements. The
PTD calibration equations are presented in Table 4.6 by Equation 4.7 and the calibration

curves and data reports are provided in Appendix B6 via Figures B6.1 to B6.7.
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Table 4.6. Calibration equations of liquid side pressure transducers (PTDs) — VDC vs. psi

PTD name and range Serial number Calibration Equation Eqn. #

P1A: 5 psig, 0—5VDC 0717071034 p=0.9998*VDC-0.0002 [psig] (4.7a)
P2B: 5 psig, 0—5VDC 0717071039 p=1.0001*VDC-0.0005 [psig] (4.7b)
P1B: 15 psig, 0 — 5 VDC 58721 p=3.0071*VDC-0.0213 [psig] (4.7¢)
P2C: 15 psig, 0 — 5 VDC 55391 p=3.0076* VDC —0.0426 [psig] (4.7d)

P1C: 100 psig, 0—5 VDC 60044 p=20.015*VDC-0.0712 [psig] (4.7¢)

4.5.3 Calibration of RTD and Thermocouple probes

The resistance temperature detectors RTDs and the thermocouples both were
directly connected to the measurement channels of the DAQ scheme. They were
configured and calibrated online with the DAQ as such that they display and record data
directly in °C without the need for further application of offline offsets or adjustments.
The RTD and thermocouple sensors were online calibrated generally at 5°C intervals
directly in DAQ LabVIEW using a highly stable CL-770A precision dry block and highly
accurate one handheld RTD-Thermocouple calibrators shown in Figure 4.15 below. The
calibration curve for the calibrator is given in Figure 4.15c. A sample online calibration

data for thermocouple probes and the mean square error are presented in Table 4.7 below.
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rl: OMEGA

(a) (b)

Figure 4.15. (a) Precision thermocouple and RTD calibrator (Dry block) and (b) Highly

accurate handheld digital dual thermocouple-RTD calibrator used in current study.
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Figure 4.15c. Calibration curve for precision dry block calibrator bath.
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Table 4.7. Sample calibration data in °C for T-104 probe located at the centre of air inlet

Reference | Un-calibrated | Difference Calibrated Difference in
) ] ] Squared Error ] .
temperature | T-104 reading | in reading reading of T-104 reading
(Y-X)
(X) (Y) (Y-X) (Y1) (Y1-X)
0 -0.093 -0.093 0.0086 0 0
22.110 22.221 0.111 0.0123 22.110 0
25.075 25.254 0.179 0.0320 25.075 0
26.663 26.841 0.178 0.0317 26.663 0
30.011 30.079 0.068 0.0046 30.011 0
45.015 45.171 0.156 0.0243 45.015 0
50.000 50.217 0.217 0.0471 50.000 0
Mean Squared Error shown by DAQ: 0.0150 - -
The mean square error (MSE) often statistically given as follows,
1
MSE = WZ(Y - X)2 , from where MSE = 0.014959 = 0.0149. (4.8)

After adopting the calibrations all the thermocouple probes were carefully and

firmly installed at the wind tunnel inlet and exit thermal grids and on the surface of the

test specimens. The same wind tunnel thermal grids (Figures 4.8a and 4.8b) were used for

all the experiments. However, since each test specimen is unique, the surface temperature

locations were different for each test specimen. The thermocouple locations for the

airside inlet and exit to the test chamber are shown via wind tunnel thermal grids in

Figures 4.8a and 4.8b above and details in Figure B5 in Appendix B1 below.
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The post-calibrated recordings of the thermocouple probes were verified during
Log-Tchebycheff point distribution Pitot traverse survey on wind tunnel duct. These
included the thermal grids at wind tunnel inlet and exit and at the surface of MCHX #1.
Figures 4.15d and 4.15e below portray the temperature profiles at wind tunnel thermal
grids. The temperature contours are plotted in Figures B8.1 and 8.2 in Appendix B8. As
seen from Figure 4.15d and 4.15e, all the thermocouples read fairly similar readings with

reasonably flat profiles at both inlet and exit cross-sectional planes of the wind tunnel.

Temperature profile of Tai [C] vs X [mm], Y [mm]

228
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22.3
T _a,i[C] 2.1
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21.3

211
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25.4 0
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Figure 4.15d. Airside temperature profile at inlet thermal grid at A-A’ (Figures 4.7a & 4.8a).
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T_a0[C]

Figure 4.15e
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Figure 4.15f Schematic of test specimen surface thermocouple locations — MCHX #1.
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The thermocouple locations for the test specimen MCHX #1 are displayed in
Figure 4.15f and details in Figure B8.3a in Appendix B8. Figure 4.15g shows the surface
temperature profile for the same mean data set as used in Figures 4.15d and 4.15e above.

The surface temperature contours are plotted in Figures B8.3b and 8.3c in Appendix BS.

Temperature profile of Ts,0 [C] vs X [mm], Z [mm]
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Figure 4.15g. Test slab surface temperature profile at surface thermal grid (Figure 4.15f).

The liquid side inlet and exit temperatures were measured using two insertion
RTDs (RTD1 and RTD2). The locations are shown in Figure 4.1a above and details in
Figure B5 in Appendix B1 and in Figure B3.6b in Appendix B3. According to Table 4.7
and Equation 4.8, the pre-calibrated readings of these RTDs are plotted against calibrator
reference temperature in Figure 4.15h. After adopting the calibrations, their readings
were also verified for the same mean data set as wind tunnel duct survey. It is noted that

there was only air flow but no liquid flow. The data are plotted in Figure 4.151 below.
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Figure 4.15h. Pre-calibrated RTD readings vs. Calibrator reference Temperature [C].
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Figure 4.15i. Post-calibrated RTD1 & RTD2 readings for 2 hours (25 samples for nominal Airflow

over test specimen at V, = 8.5 m/s and T,; = 22.5°C but no Liquid flow inside test specimen).

Mesbah G. Khan; Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 159

PhD Dissertation



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Overall for all the 82 thermocouples the average and standard deviations were
0.082°C and 0.103°C respectively. The plots of calibrated RTD1 and RTD2 readings
show the maximum and average deviations of 0.037°C and 0.007°C and a mean square
error (MSE) of 0.00013°C. These slight variations could be the combined effect of the
probe uncertainty as well as the positional (spatial) variation of real temperature within
the envelope. However, the fatnesses of the temperature graphs indicate the goodness of
the calibration as well as the proper functionality of the probes that allowed acquiring

better accuracy in experimental data in current study.

4.5.4 Installation and calibration of Pitot Static probe

Shown by Figures 4.16 below and B7.1 in Appendix B7, two Pitot Static Tube
probes of model PO12A-CF and temperature limit of 426°C were supplied by
FlowKinetics LLC. The probes were made such that they have correction coefficient of 1
for the tip-to-static holes correction factor. One was installed at the center of the test
section inlet cross-section 1 diameter upstream of the test specimen. The other was kept
reserved and some times used in parallel with the first one to model the air velocity at the

test section inlet.

The Pitot static probe was carefully installed to make the probe head as parallel to

the flow direction as possible (i.e. <<< 15 degrees), which was periodically checked
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during and after each experimental run. The probes have suitable insertion lengths
(12” = 304 mm) to cover the wall-to-wall locations inside the test section as required. The
stem diameters of the probes (1/8” =3 mm) were selected such that the hydraulic

diameter of the test section duct was sufficiently larger (i.e. >>> 30 times) than their stem

diameters [213].

f I D <FLow |

STATIC PRESSURE PORT (Famb)

A P
TOTAL PRESSURE PORT (Fi)
(a) Schematic (with permission from FlowKinetics LLC [213]) (b)

Figure 4.16. (a) Schematic and (b) Photograph of Pitot Static Probe used in current study.

The Pitot static probe was connected in parallel with the FlowKinetics FKT series
precision duct calibrator manometer and a differential pressure transducer (PTDD). The
output of the PTDD was connected to the data acquisition system (DAQ). The precision
duct calibrator manometer is shown in Figure 4.17 below. The pictorial illustrations of

the PTDD and the DAQ are given next in Figures 4.19 and 4.20.
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differential & Labsolute
pressures, 1 temperature,
and 1 humidity

Thermocouple sensor

[ e giwe |

Uhit and Scale
Selection Knob

FKT Series Precision Duct Calibrator & Manometer

Figure 4.17. Precision duct calibrator manometer used in current study.

The FKT series calibrator manometer shown in Figure 4.17 has built-in
thermophysical properties of air and other ideal gases that can be selected during
operation. It can measure the absolute air pressure, temperature, density, humidity, three
differential pressures through 3-pair of pressure ports, and the velocity in various units

such as kPa, psi, m/s, ft/s, inch of water column, and inch of mercury column. To use all
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these features, the temperature and pressure of a location need to be fed into this
calibrator via its pressure and temperature channels. The thermocouple sensor from the
FKT calibrator was carefully attached with the Pitot static probe to measure and feed to
the FKT the temperature of dynamic pressure measuring location. The absolute pressure
in the test section was measured in the FKT device. The static pressure port of the
Pitot-static tube was simultaneously connected to the absolute pressure measuring port
and one of the differential pressure ports of the FKT, as indicated in Figure 4.16c. This
arrangement allowed the measurements of airside absolute pressure as well as the

velocity directly in kPa and m/s units respectively.

FKT: Absolute
Pressure Port

A
ﬁ‘

DAQ:
Receiving PTDD Output
Voltage Signals

A
TEMP. SENSOR

PTDD (Differential Temp FKT:
pressure transducer) Differential
STATIC PRESSURE PORT (Pamb) Pressure Port
AN / Pabs

Splitter

/

TOTAL PRESSURE PORT (Ff)

Figure 4.16¢. Pressure tube connection schematic for Pitot Static Probe [213].

The differential pressure from the Pitot static probe via the PTDD was measured
at the DAQ end in terms of voltage, which is the difference between the total and the
static pressures, i.e. the dynamic pressure. From this dynamic pressure the actual airflow
velocity was deduced using Equation 4.9 below [213].
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Va,i = K\/zAp =K ZAp 2 5
Paji Pabs + (1 —K=)Ap (4.9)
R(T +273.15)

where the gas constant is R = 287.026 J/kg.K and the flow coefficient of Pitot static probe
K =1 in current study. The p,,s and T are the absolute pressure and temperature inside the
test chamber at the velocity measuring location. The Ap is the differential pressure

reading from the Pitot static probe.

In current study the pus and T were measured by FKT unit. Since the pays and T
sensors were fed into the FKT calibrator manometer, the unit could measure the air
velocity directly in m/s by evaluating the air density and by using Equation 4.9. For
comparison and calibration purpose, the DAQ recorded VDC corresponding to Pitot
probe’s each differential pressure was first converted into pressure unit using the
calibration curve of the PTDD. Then the pressure unit was converted into velocity unit
using Equation 4.9. The DAQ measured velocity was compared with the FKT measured
velocity as shown in Figure 4.16d. The standard deviation in this velocity measurement
by DAQ was 0.095 m/s and the mean square error calculated by Equation 4.10 was 0.01.
The curves were fairly linear to each other with an R-squared value of 0.9997 indicating

both readings to be in excellent agreement.

The mean square error, MSE = ﬁzw _X)2 =0.00947 . (4.10)
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Air velocity measurement: FKT calibrator vs. DAQ-PTDD

25.00

V_a [DAQ] = 0.9969 FKT (V) + 0.0735

20.00 -

15.00 A

10.00 -

5.00 -

Measured DAQ VDC converted into V_a [m/s]

0.00 . T T T
0.00 5.00 10.00 15.00 20.00 25.0

V_a directly measured by FKT calibrator [m/s]

Figure 4.16d. Calibration of wind tunnel air velocity — DAQ VDC converted into velocity (m/s)

vs. Velocity (m/s) directly measured by FKT.

First the installed Pitot static probe was calibrated using the FKT series precision
duct calibrator manometer and then it was connected with the DAQ scheme via a
differential pressure transducer (PTDD). The calibration was done for 23 different wind
tunnel speeds at different temperature and in different days. All the data were then
compiled to develop a consolidated velocity versus VDC relationship. The calibration
curve-fit and plot are given by Equation 4.11 and Figure 4.16e below. The measured

velocity data from where the calibration curve is produced are provided in Table B7.1 in
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Appendix B7. During each experiment, the FKT was always kept connected in parallel

with Pitot static probe for backup measurements and verification of DAQ measured data.

Calibration equation: V, ; = 6.387*(VDC)*>%* [m/s]; withan R?=0.9997.  (4.11)

Air velocity measurement: FKT calibrator vs. DAQ-PTDD

220

20.0
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V_a=6.387(vDC)*®"
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Actual air velocity, V_a [m/s]
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Velocity measured by DAQ in VDC, V_a [Volts]

Figure 4.16e. Calibration of wind tunnel air velocity — DAQ [volt] vs. FKT velocity [m/s].

After calibration, all the PTDDs are tested and verified by running the system at a
variety of air velocities and their outputs are recorded and verified. The Pitot system

readings were further verified using one independently installed hotwire anemometer
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probe (HWA), which is shown in Figure 4.18 below. The adopted calibrations for all the

PTDDs found consistent with the calibration data supplied by the manufacturer.

rga

Figure 4.18. Handheld digital hot-wire anemometer (HWA) — backup air velocity measurement.

455 Calibration of airside differential pressure transducer (PTDD) & test section

inlet wind tunnel air velocity

The airside differential pressure transducers PTDDs were also supplied with
calibration data by the manufacturer. The calibrations were performed by NIST traceable
instrumentation and standards. The functionality and responses of the PTDDs were tested
in the system by running the wind tunnel at some given velocity. The output voltage of
PTDD received at the DAQ end was then compared with the readings of the FKT

calibrator and hotwire anemometer (HWA). Consistent and excellent agreements were
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observed in all the readings. Depending on the wind tunnel speed, blockage ratio and the
ranges of the operating pressures, two of the PTDDs were alternately used with Pitot
static tube probe for air velocity measurements. The PTDDs are shown in Figure 4.19.

Further details on calibration are provided in Figures B7.2 to B7.4 in Appendix B7.

rY=0OMEGA
@ = \f’_\

Supply: 12 - 35VDC & 10mA
Output: 0~ 10VDC (0= 1"H20)
Output Nature: Linear (Volt vs. Pressure)
Accuracy: £1% FS (-18 - BO*C)

P: 3" WC, Output Volt: 1 —5 VDC

(b)
@)

Figure 4.19. Differential pressure transducers (PTDD) used in current study; (a) 0 — 1" WC,
and (b) 3 WC [NOTE: WC = Water column].
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4.6  Data acquisition (DAQ) scheme

The investigations of fluid flow and heat transfer in a dynamic test facility, like
the one developed in current study, may involve several operating parameters at many
measurement locations to deal with. The total capability of the data acquisition system
(DAQ) is 128-channel (4 x 32), which are gradually developed in different phases based
on the necessity of current research (Figure 4.20). One 32-channel terminal block is used
to feed the excitation current to the RTDs and the rest three 32-channel blocks are used
for receiving experimental data. The DAQ system thrice malfunctioned and went down,

which took considerable amount of time to troubleshoot, fix and replace components.

Data Acquisition (DAQ) Scheme

SCXI Signal Conditioner
LabVIEW gl S s
& Figh 1102 | 1102 | 1102 | 1581
NIDAQmx S 3 ; | SCXI Terminal Block / TB*
22
O =2 [1303 ] 1303 [ 1303 | 1300 |
| [ i a A A A
z : | |
/
Measurement Signal il ‘
e Mouse Qutputs from Sensors’ at |
*Note: 32Ch x 4TB = 128 Ch Experimental site

@)

Supply and receive ends (Excitation voltage supply and

measurement signals to and from sensors) (b)

Figure 4.20. The data acquisition (DAQ) scheme used in present study. (a) General load flow

schematic, and (b) On-site physical installation
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All the accessories such as the card, modules, components, and computers were
selected and purchased by the candidate. Except for the computer, all the components of
the DAQ were purchased from National Instruments. The instruments electromechanical

probe wiring, connectivity, and configurations were also done by the candidate.

The 128-channel DAQ system has multiplex mode reception. This means that it
receives data simultaneously for all the channels through single cable connectivity with
the DAQ card installed in the PC. The system has has a 16-bit high resolution type NI-
PCI-6052E DAQ card. The multiplex mode allows the system to receive and process
measurement signals simultaneously from many locations. The faster data sampling rate
offers better accuracy in measurements. The scheme is capable of sampling the data at a
rate of 100 kHz. More details on DAQ components, assembly and installations are

provided in Figures B4 (s, t, u, and w) in Appendix BI.

The DAQ unit could receive and process the voltage, current and frequency as the
measurement signals. To maintain homogeneity in installations and measurements, all the
measuring instruments and sensors, except for the thermocouples and RTDs, were
selected and purchased in such a way that they require voltage for excitation and return
only voltage outputs as measurement signals. The common range of excitation voltage is
5—-32 V DC and the signal outputs are within regular range of 0 —5 V DC. The 16-bit
DAQ card translates into +28.6 uV measurement accuracy for the measuring signals

range of 0 — 5V DC. The major components of the scheme are the chassis, modules,
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signal conditioner, terminal block, and the signal cable. No matter how small but each of
these components has individual error parameters that contribute to the measurement
uncertainty. Details of these errors are discussed and treated in combined in the

uncertainty analysis section below.

All the measuring instruments and sensors were connected to the DAQ system.
Only exception is that the humidity sensors for the test section are two isolated handheld
digital devices that manually monitor the experimental conditions separately. As a result,
current configurations and sensors incorporations have made the DAQ scheme capable of
monitoring, reading, and recording data for 96 individual experimental parameters from
96 different measurement locations via 96 channels. The parameters are monitored and

the data was recorded for processing using National Instruments’ software LabVIEW 8.0.

4.7  Commissioning and troubleshooting of developed test facility and

experimental preparations and procedures

Once developed, the test facility was successfully commissioned and all the
problem areas such as the leakages, operation of valves, heater functionality, pressure
loads, drainage, insulation, temperature loads, maximum and minimum liquid and air
flow capability, and the micro-filter sieve performance etc. were checked and troubleshot.
In a broad range of hot and cold water and air flows the response of the test developed

test facility and the performance of all the components, instruments, and sensors are
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scrutinized and documented [201]. This information was applied to set and select the
proper range of components and instruments pertinent to the certain operating conditions

during experiments in current study.

In trial operation of the test facility, on third day increased pump pressure with
decreased flow rate were observed even the distilled water was used. Any blockage or
increase of flow constrictions somewhere in the flow loop may cause this pressure rise.
Intuitively, as a first attempt the micro-filter (MF) was dismantled from the loop for
checking. The 45 micron filter element, i.e. the inside sieve of the MF, was found

severely blocked with debris and un-dissolved iron oxide as seen in Figure 4.21 below.

New sieve for MF@ micron)

g —

Opeﬁing the micro-filter

2

b
d with debris

@)

Figure 4.21. Inline micro-filter (MF): (a) New sieve and (b) Blocked sieve with debris.
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Neéw sieve re-installed in MF housing

Figure 4.21. Inline micro-filter (MF): (c) Cleaning of filter housing and (d) Filter re-installation.

Considering such unforeseen situation, several filter elements were stocked from
Swagelok Ontario. The MF housing was properly cleaned in beaker, as seen in
Figure 4.21c. The dirty sieve was not re-used; rather a new filter element from stock was
re-installed, as seen in Figure 4.21d. After installation of MF in the flow loop, the liquid
system was further operated but it appeared that the problem is not solved. It was spotted
that the circulation heater was the source debris since the inside wall of the shell was
rusty from origin (i.e. vendor). A new shell was replaced locally with the help of the

technologist of this University.
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Owing to the contribution of the gear pump itself and additionally the needle
valve, the liquid flow rates could quickly stabilize, in about 20 minutes for higher flow
rates and in about 30 minutes for lower flow rates. The inline circulation heater unit
performed well to give a fairly stable inlet measurement temperature, which within £1°C
for the range of 60-75°C and within +0.5°C for the range of 40-60°C. The thermal wind
tunnel took about 20 minutes to stabilize the velocity and temperature of the airflow at

the test section inlet.

Before beginning any data collection, on an average 25 minutes were needed to
allow to monitor the running system and to ensure that the overall system stabilization
and hence the steady state is achieved. For a given setting of any operating condition, the
steady state was considered achieved when the fluctuations in flow rates and temperature

of the working fluids were no more than 3% at any location in the system.

As mentioned above, the working fluids used in current research were the 50%
ethylene glycol water solution and distilled deionized water, which have different
Reynolds number for the same flow rates and hence their operating conditions were
different. Therefore test matrices were produced for a number of operating conditions for
each set of experiment, which are presented in respective chapters in the next for each
test specimen investigated. These matrices covered mainly the laminar flow regime in the
test specimens with a few exceptions for friction factor study for water flow in MCHX #1

(chapter 6, section 6.1) where some turbulent flow regime was possible to achieve.
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The principal focus of current study was the liquid flow inside microchannels.
Therefore for a given inlet temperature the liquid side flow velocities were varied and the
airside flow rate and temperature were kept constant for each set of experiment. The
variation of liquid flow velocities was achieved by changing the speed of the variable
speed gear pump; in addition a further precision to the flow velocity was provided by
operating the needle valve. The temperature of the liquid flow was regulated with the aid
of electronic control panel integrated with the heater-tank unit (Figures 4.10, B4k, B4x).
The airflow temperature at the inlet of the test section was kept fixed by maneuvering the
cold water flow through the internal heat exchanger of the wind tunnel via flow mixing

network (Figures 4.6 and B4).

The inlet and exit temperatures of liquid and air flows; inlet and exit pressures of
liquid flow; liquid flow rates; airflow velocity at the inlet of the test chamber; and the
surface temperature of the multi-port test slabs were the major parameters to be
experimentally determined in current study. All these parameters were measured and
recorded using the DAQ scheme. Corresponding to each separate setting of flow rate and
temperature, several fluid flow and heat transfer data sets were collected to observe the
effects of Re on f (for the test samples of MCHX #1 and MCHX #2) and the effects of Re

on pressure drop and Nu (for the test specimens of MCHX #4 and MCHX #6).
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The DAQ scheme is capable of sampling the data at a rate of 100 kHz. The faster
data sampling rate offers better accuracy in measurements. Initially the DAQ channels
were sampled at various rates along with the information of signal amplitudes and
frequencies to optimize a reasonable faster rate for the current system. Out of 128
channels in the DAQ system, 32 channels were used for RTD excitation. The rest 96
channels were used to read the data individually and simultaneously in multiplex mode
from 96 different measurement locations in the flow system. For this reason, to stay away
from any possible data jam or data inaccuracy or the system interruptions, a better
sampling rate could be set at 1 kHz. Thousands of samples for each measurement

parameter were collected and their mean and standard deviations were documented.

A single data set in current study is defined as the steady state time averaged
mean data set (TAMDS) of around 3000 to 6000 samples for each of the 96 parameters
via 96 independent channels in the DAQ system for a given operating set point. This

measurement and sampling method can be represented by Equation (4.12) below.

n k
TAMDS :l > (l > TAMDSJ- J, where n =3 ~ 5 repetitions, (4.12)
Nn=1{ K j=1

where the variable K is the sample counter ranging from 1 to 6000 samples and n is the
total number of repetitions. This gives an independent total number of sample population

N = n*k. This multi populated mean data set obtained by following Equation (4.12) not
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only assists in reaching superior measurement reliability, but it also facilitates the better

statistical evaluation of the data and improved error estimation in uncertainty analysis.

The main focus of current study is laminar flow. Therefore the operating flow
regimes were mainly laminar and developing laminar flow. For pressure drop and heat
balance tests in MCHX #1, the flow regime was extended to turbulent flow. The details

of necessity for flow regime selection in current study are described in section 3.4 above.

4.8  Heat balance (HB) on the developed test rig using MCHX #1

The appropriate balance between the heat released by one fluid and heat
transported away by the other fluid is important in heat transfer study in a two-fluid heat
exchanger. The heat released by the external fluid, which in majority of the studies the
applied wall heat flux boundary condition, was considered as equivalent to the heat taken
away by the internally flowing fluid such as [22, 94, 108, 171, 173]. This consideration
may be relevant for the situation of constant wall heat flux condition (H-condition) but
not for the condition of constant wall temperature (T-condition). For an air-to-liquid heat
exchanger the temperature difference drives the heat transfer mechanism and therefore
the T-condition often more closely describes the conditions at the wall better than the H-
condition [214-215]. Other works regarded the heat rate as simply the average of the heat
delivery rate by hot fluid and capture rate by cold fluid without any heat balance between

two working fluids, such as [152].
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In the heat transfer study of a two-fluid typical thermal heat exchanger the proper
heat balance between two fluids is necessary for a dynamic test configuration where both
fluids are in motion, which is the case of current study. In order to examine the integrity
of the developed test facility, initial heat balance experiments were conducted on
MCHX #1 (shown in Figures 4.4a, B2.1c, B3) in air-to-water crossflow orientation. The
heat transfer mode in this heat balance experiments was water cooling i.e. Ty > Ts> T,;,
where the subscripts a, i, s and w refer to air, inlet, surface and water respectively. The
distilled deionized hot water, collected from the Chemistry laboratory at university of
Windsor, was passed through the microchannel test specimens and the cold air in the

wind tunnel was blown over the test slab.

The temperature and velocity of wind tunnel cold airflow, which are inlet to the
test chamber, were kept constant at 21.85+0.05°C and 8.05%0.15 m/s respectively. For
this preset air velocity and temperature, the water flow rates through the test slab were
varied for a given temperature. The temperature of hot water flow at the test specimen
inlet was maintained constant at 76+0.8°C while the flow rates were varied in the
Reynolds number range of 1170 <Re <3780. Upon reaching the steady state condition,
the flow rate and for each flow rate the inlet and exit temperatures differentials of both
water and air flows were measured. Unless otherwise stated, all the thermophysical

properties were evaluated for both water and air at their respective bulk temperatures.
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The steady state heat transfer between the hot water and the cold air via test slab
wall was essentially due to the forced convection mechanism, which can be estimated

from the respective fluid side heat rate Equations 4.13a and 4.13b as follows.

Ow =My Cpw (Tyi = Tw,0) =My C, wAT,,;  (Waterside heat transfer rate) (4.13a)

and

Oy =MyCpa(Tao —Tai) =M,Cy,AT,;  (Airside heat transfer rate) (4.13b)

a“p,a

where q,m, C, and T are the heat transfer rate, mass flow rate, specific heat and
temperature respectively. As usual the subscripts ‘w’ stands for water, ‘a’ for air, ‘i’ for
inlet and ‘o’ for outlet or exit. The above heat rate should ideally be the same for both the
internal and external fluids to give Qw = .. However in practice this is never the case.
Several factors include but not limited to the system response, experimental error, heat
gain or loss due to improper insulation etc. are responsible for these differences, which

practically give Qy # (.

The percentile difference of the heat released by water gy and the heat gained by
air (, is defined as the heat balance (HB) in current study. The heat balance between the
water and the air flows with respect to waterside heat rate q, can be expressed by

Equation 4.14a as follows.
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HB, = G =G » 100; (Heat balance with respect to waterside heat rate). (4.14a)
Ow

For an air cooled heat exchanger the ASME PTC 30-1991 [216] recommended a
heat balance method, which has to be performed with respect to the effective or mean

heat transfer rate in the form as given by Equation 4.14b below.

0w — Y : :
HB,,, =———=*100 (Heat balance with respect to effective heat rate), (4.14b)

avg

where the ., 1s defined as the arithmetic average of waterside and airside heat transfer

rates as given in Equation (4.14c) below.

(Oy +0,)

Qave = s (Effective or mean heat transfer rate). (4.14¢)

According to the ASME PTC, if the result obtained from Equation (4.14b)
exceeds beyond +15%, an inspection of the test setup, equipment and instruments should
be made to determine the causes for the differences or the heat transfer tests need to be
repeated. If the result agrees within +15%, then any of the heat loads such as the Qw, Qavg
or (, can be used to interpret the experimental heat transfer data. Since the liquid flow

temperatures in current study were measured using ultra precision RTDs with better
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accuracy (£0.012°C), the waterside heat transfer rate was more reliably used in heat

transfer calculations.

The heat balance results here are presented as function of waterside Reynolds
number. The Reynolds number, in general, is defined by Equation (2.1) above, which is
adapted to the flow situations in MCHX #1 via Equation 4.15 below. Assuming an equal
and uniform flow distribution of water from the manifold through N channels in the
multi-port test slab, the Reynolds number of water flow through a single channel is

determined from the following expression.

Re, = vz = am, , (Waterside Reynolds number in a single channel).  (4.15)
H w N i Dch

where x# and M are the dynamic viscosity and total mass flow rate of water through the

main liquid handling system and D, is the diameter of a single channel or port in the test
specimen MCHX #1. The number of ports or channels N in current study is 68 for all the

test specimens.

The water side heat rate gy is plotted against water side Reynolds number Re, in
Figure 4.22. As expected, the ¢y, increased with the increase of Rey,. Few scatters in data
might have resulted from the fluctuations of flow or temperature or both during the
experiments. As shown by the solid line in Figure 4.22, as expected a power law curve fit

with a positive exponent correlated g vs. Re data well with an R-squared value of 0.96.
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Figure 4.22. Variations of waterside heat rate (q,,) with waterside Reynolds number (Rey).

The variations of non-dimensional water flow temperatures are also plotted
against waterside Reynolds number in Figure 4.23. The dimensionless temperature was
defined as the ratio of the difference in inlet and exit temperatures to the inlet temperature
of water flow as given in Equation 4.12 [201]. The dimensionless temperature decreased
with the increase of water mass flow rate and hence with the increase of Re. This data

also followed a power law relationship but with a negative exponent as expected.

. : Tyi—Two AT
Non-dimensional temperature of water flow =-— 5 = ¥ (4.12)

PhD Dissertation Mesbah G. Khan; Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 182



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

0.024 r T T r r r r r

0.022

0.020

0.018

0.016

ATy ! Ty

0.014

0.012

0.010

0.008

0_006 1 1 i 1 1 1 1 )
800 1200 1600 2000 2400 2800 3200 3600 4000

Re,,

Figure 4.23. Variations of waterside non-dimensional temperature with waterside Re,,.
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Figure 4.24. Variations of heat balance (HB) with respect to waterside Reynolds number Re,,.
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Thus the heat balance between water and air with respect to waterside heat rate gy
and the effective heat balance between water and air with respect to the average heat rate
Jave Were estimated from Equations 4.14a and 4.14b respectively. Both the heat balance

results are plotted in Figure 4.24 above against water side Reynolds number.

As seen in Figure 4.24 above, the variation of g, is found from -5% to +15% with
respect to gy and from -3% to +7% with respect to (g respectively. The mean effective
heat balance in conducted experiments with respect to (avg is £7%, which is well within

the acceptable limit of £15% as recommended by the ASME PTC 30-1991 [216].

The above result represents a very good heat balance performance of the
developed test facility and hence its better integrity. Nevertheless, further insulation was
provided and extra attention was paid to minimize any possible error that could occur in
all other subsequent experiments. For better measurement and analyses, the data that falls
within £5% of the heat balance with respect to Qaye or g, could be the reasonable choice
to interpret the experimental data. Therefore this thought was applied in all heat transfer

experiments in current research.
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CHAPTER - 5

DATA REDUCTION, EMPLOYMENT OF WILSON PLOT

TECHNIQUE, AND UNCERTAINTY ANALYSES
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5.0 DATA REDUCTION, EMPLOYMENT OF WILSON PLOT TECHNIQUE,

AND UNCERTAINTY ANALYSES

As mentioned before two internal working fluids, i.e. the 50%-50% ethylene
glycol-water solution and distilled deionized water and one external working fluid i.e. the
air were used in current study. In this dissertation the subscripts g, w, a, and s represent
the glycol-water mixture, water, air, and surface of the test specimen respectively. For
clarity and for general representation the subscript ‘liq’ for liquid is used in this chapter
in place of either ‘g’ or ‘w’. This is applicable to situations where a certain relationship or
equation equally hold valid for both the liquids. In this dissertation, the 50%-50%

ethylene glycol-water solution sometimes named as glycol-water or just glycol for clarity.

Assumptions were made that the used fluids are incompressible Newtonian fluids
and their properties are independent of pressure but the functions of temperature only.
The liquids were assumed to be uniformly distributed through all the channels in the test
slab. This is a reasonable assumption because the distributing and collecting manifolds

were about 10 times larger than the diameter of a single channel of the test slab.

In the experiments the measurements and data were taken for the fundamental and

independent parameters. These parameters were as follows.
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Liquid side (Internal working fluid):

1. Mass flow rate (my, ;)

2. Inlet or entrance temperature (Tiiq;;)
3. Exit or outlet temperature (Tiig,o)

4. Inlet or entrance pressure (Piiq,i) and
5. Exit or outlet pressure (Piig0)

Air side (External working fluid):

1. Flow velocity (V,), through differential of total to static pressures
2. Inlet or entrance temperatures (T,;)

3. Exit or outlet temperatures (T,,)

4. Absolute pressure at the inlet or entrance (Pj.ans) and

5. Differential pressure across test specimens (Piig,o)

Test specimen structure (heat transfer wall):

1. Outer surface temperature (T,)

Depending on which test specimen was tested (as described in next chapters), all
the above parameters were measured for a number of liquid side flow rate settings to
gather a plenty of data sets for better evaluation. The data from these measurements was

then deduced to obtain the other dependent fluid flow and heat transfer parameters as
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outlined in this section below. On purpose the data reduction processes for some of the
parameters already are described before, which are repeated in this section but no detail

descriptions are provided.

5.1  Evaluations of thermophysical properties of working fluids

Unless otherwise stated, usually the thermophysical properties of the working
fluids in current study were evaluated at bulk flow temperature between the inlet and exit
of the flow path. Considering a linear variation of temperature between the inlet and exit

of both fluids, the bulk temperatures were deduced as follows.

f +T.
Liquid side bulk flow temperature, T, ;. = w (5.1a)
and
T . +T,,
Air side bulk flow temperature, T,, = M (5.1b)

where the T,_., T T. and 'I: are the consolidated mean inlet and exit temperatures

ligi *> 'ligo > “ai
of the flowing liquid and air. The processes of the consolidated mean values of these

parameters are described in sections 5.2.1 through 5.2.3 below.
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Unless otherwise stated, all the thermophysical properties of all the working fluids
were evaluated at their respective bulk temperature defined by Equation 5.1 above. The
properties of 50% ethylene glycol-water mixture for each data point were derived from
the ASHRAE Handbook of Fundamentals 2005 [212]. The properties for water and air
were evaluated from the built-in database of EES (Engineering Equation Solver) using

the bulk temperature and bulk flow pressure [218].

5.2  Consolidated mean data sets of measured parameters

The independent parameters were measured at various locations and for a number
of repeated times. The mean data sets were produced from the time averaged collection
of data samples, which are described above in section 4.7 via Equation (4.4). However,
some of the parameters need to be described further that are used in data reduction to

obtain other dependent secondary parameters.

As mentioned before, in addition to the low thermally conductive thick Plexiglas
wall, the test domain was properly insulated so that virtually it did not take part in any
heat transfer activity with the outside environment but the test section only. As sample
examples, the pictorial comparative illustrations of the un-insulated and insulated test

sections are provided in Figure 5.1 below.
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Liquid Inlet (RTD1 & PTD1)

Serpentine Bends
(Outside of heat transfer tes X (Liquid Flpw)
section where local surface
temperatures are measured)

Z (Air Flow)
Liquid Exit (RTD2 & PTD2)

Circuit-wise inlet manifolds

MCHX iﬂﬁ {(Test Specimen)

(@)

Figure 5.1. (a) Display of un-insulated test specimen inside the test section.

RTD1 (inlet Temp.
measuring sensor)

Serpentine beénds & manifolds
are insulatgd (black areas)

Proper insulation is provided on Serpentine bends & Manifolds
(located outside of heat transfer section) to make them adiabatic

Inlet manifolds (3-Circuit MCHX#6) \\ dP air, MCHX#6 l/

\
Main Inlet Manifold / Distributor Main

Figure 5.1. (b) Display of insulated test specimen inside the test section.
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It is worth mentioning that all the measuring sensors were within the insulated
domain and the outside environment did not affect or very minimally affected their
functionality and performance. The serpentine bend portions of the test specimens were
also within the insulated domain but outside of the heat transfer section. As a result the
bend portion served as a non-heat transfer section in other words as adiabatic section. The
local outside surface temperatures of the test specimen were measured around this

serpentine bends and at manifold entrance and exit for each of the flow circuits.

5.2.1 Liquid side measured parameters

Liquid side temperature measurements

The inlet and exit temperatures of the liquid flow were measured using two
calibrated insertion-type ultra precision RTD with accuracy of £0.012°C, the RTD]1 at the
inlet and the RTD2 at the exit, as shown in Figures 4.1a, 5.1, and B1-B5. By following

Equation 4.4 in section 4.3.2, the consolidated mean of the inlet and exit temperatures of

the liquid flow, T, . and T.  were determined as follows.

iq,i lig,0

101k .
Tiiqi © Tiigo = n ZI[E '21 (Tiig,i O Tiig,o) j], where n = 3 ~ 5 repetitions, (5.2)
n= j=
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where K is the time averaged mean of 3000 to 6000 samples at steady state condition.
Since each of the experiments was conducted to cool the hot liquid, the inlet temperature

was always higher. The temperature differentials of liquid flow were deduced as follows.

lig,i lig,0

Liquid side temperature differential, AT, = (T_ —T_) (5.3)

Liquid side pressure measurements

The inlet and exit pressures of the liquid flow through MCHX test slab were
measured using two pressure transducers (PTD); the PTDI1 at the inlet and the PTD2 at
the exit, as can be seen in Figures 4.1a and 5.1 above. Within various capacities of the
collected sensors (0 — 100 psig or 0 — 690 kPa) a minimum of three sets of PTDs were
alternately used depending on the flow rate. The narrow pressure range of each PTD at
each flow rate was selected and maintained for better measurement accuracy. The

accuracies of the PTDs are tabulated in Table 4.2 in section 4.5.

All the PTDs give 0 — 5 DC voltages as measurement outputs to the DAQ system,
which were compared with manufacturer’s supplied calibration data and curves. The
voltage signals were almost linear with the corresponding psi pressure units. By

following Equation 4.4 in section 4.3.2, the consolidated mean of the inlet and exit

pressures of the liquid flow, p,,; and p,,, , were first recorded in voltage unit in DAQ.

The voltage units were then converted into psi units according to the obtained psi vs.
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VDC calibration equations as listed in Table 4.6 by Equations 4.7. Finally the pressure

values in psi units were converted into Pa (Pascal) unit to use in further analyses.

The pressure differential between the inlet and exit (uncorrected raw pressure

drop) and the bulk flowing pressures were deduced as follows.

Liquid side pressure differential (i.e. pressure drop), Ap,, = (qu— phq,o) (5.4)

and

0.+ D,
Liquid side bulk flow pressure, p,;, = (pl'ql—zphq") (5.5)

Liquid side mass flow rate measurements

As described in section 4.4 and shown in Figure 4.11a, the main system flow
meter was installed at the upstream of the test section inlet as shown by DFM in
Figure 4.1a. This digital flow meter gives a measurement output voltages from 0 — 5
VDC to the DAQ. The calibration data and curves for both glycol-water mixture and
water for a variety of viscosity values were supplied by the manufacturer. The calibration
data were supplied by the vendor, which was done by using NIST procedure and
instrumentation. Nevertheless, before the experiments the calibrations were compared
with measured mass flow rate using bucket-stop watch-weigh method and found

reasonably comparable. During each experiment, randomly direct mass flow rate
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measurements were taken as back up to DFM data. These data were later verified and
found quite consistent.

The voltage signals for the flow meter were linear with little off-set with

corresponding liter per minute (LPM) or gallon per minute (GPM) units. By following

Equation 4.4 in section 4.3.2, the consolidated mean liquid volume flow rate Vﬁq was

kg/s (M,

first determined in voltage unit. The voltage units were then converted into LPM and in
liq

) units according to the supplied and produced calibration curves. The total

liquid mass flow rate through the system was determined as follows.

— p.Y,
Total liquid mass flow rate through the system, My ,p, = Pia Tigpin

- (5.6a)
60000

where th’DFM, Py, and My, are in LPM, kg/m’, and kg/s units. The total mass flow

rates that were measured during experiment using bucket-stop watch-weigh method could
be expressed as follows.

Total liquid mass flow rate through the system, m

lig,bucket ==

= (5.6b)
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5.2.2 Air side measured parameters
Air side temperature measurements

The inlet and exit temperatures of the air flow were measured using two thermal
grids attached with the wind tunnel at the test section inlet (A-A’) and exit (B-B’) as
shown in Figures 4.7a and 4.8 in section 4.3 above and in Figure BS in Appendix B

below. By following Equation 4.4 in section 4.3.2, the consolidated mean of the inlet and

exit temperatures of the air flow 1: and 'I: were determined as follows.

Air inlet:

1
Ti00--Tr08 “

) .
> ( > (any of Tygg .- Tyog); J, where k = 3 ~ 5 repetitions, (5.7a)
k=1\_Ji=1

From there the mean temperature of air for the entire inlet cross-section was deduced as,

T, = lZ(‘%+ ..+ Tj03), where n =9 thermocouples. (5.7b)
S

Alr exit:

y :
T109--T201 —& > ( 2. (any of Tygg ... Togy); j, where k =3 ~ 5 repetitions, (5.8a)

k=1
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From there the mean temperature of air for the entire exit cross-section was deduced as,

'I; = lZ@f..Jﬁ%), where n = 25 thermocouples, (5.8b)
’ n
For the Equations 5.7 and 5.8 above, the j is the time averaged means of 3000 to 6000

samples at steady state condition.

Since each of the experiments was conducted to cool the hot liquid flow inside
MCHX by the flow of cold air, the exit temperature of air flow was always higher. The

temperature differentials of air flow were deduced as follows.

Air side temperature differential, AT, = (T_ —T_) (5.9

a,0 a,i

Air side velocity measurements

As mentioned in section 4.3, the air velocity was measured at the centre of the test
section inlet at A-A’ (Figure 4.7a). The combination of Pitot static probe (Figure 4.16)
and differential pressure transducer (PTDD) (Figure 4.19) with DAQ as well as
separately by using the FKT duct calibrator (Figure 4.17). The PTDD gives measurement
outputs from 0 — 5 VDC to the DAQ. The calibration data and curves for all the PTDDs,

based on NIST instrumentation and procedures, were supplied by the manufacturer.
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Nevertheless, as mentioned above, prior to the experimental runs the calibrations were
compared with directly measured air velocity using the duct calibrator and a handheld
hot-wire anemometer and found good agreements. During each experiment, as backup

the velocity was also measured directly using FKT calibrator and hot-wire anemometer.

The voltage signals for the air velocity were fairly linear with the differential
pressure unit of the PTDD in inch of water column. However the DAQ voltage was not
linear with the velocity directly measured by the FKT calibrator in m/s since the
differential pressure is a function of velocity squared and density. Therefore the DAQ
voltage was converted into velocity unit in m/s according to obtained and produced

calibration as defined by Equation 4.11 repeated below.

Calibration equation: V, ; = 6.387*(VDC)*>0* [m/s]; withan R?=0.9997.  (4.11)

By following Equation 4.4 in section 4.3.2, the consolidated mean air flow

velocity \Z was first determined in voltage unit and then converted into m/s according to

Equation 4.11. Since this measurement was taken at the center location of the inlet plane,
to account for the entire cross-sectional plane the converted value was further corrected
with the multiplication factor of 0.87. This multiplication factor was obtained through
Pitot traverse survey on test section inlet cross-sectional plane using Log-Tchebycheff

point distribution method [211], which is described in section 4.3.1 above.
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Air side pressure measurements

For evaluating thermophysical properties of air using EES built-in library, the
pressure and temperature both were required. The absolute pressure of airflow in the test
section was measured using FKT duct calibrator’s absolute pressure sensor as described
in section 4.5.4 in Figures 4.16c and 4.17. The humidity of airflow at test section inlet
and exit were also monitored to observe the operating conditions. The airflow pressure
drops across MCHX test specimens were measured at the middle of the test section at the
pressure port pair of P2-P2” (Figure 4.7a). The voltage signal transformation process of
the PTDD used here are similar to the PTDD used with Pitot static tube probe. Since the
current study dealt with internal working fluid the flow rate of the external fluid, i.e. the

air, was kept constant that gave a single data point for pressure drop.

5.2.3 Test specimen side surface temperature measurements

The outside surface temperatures of the MCHX test specimens were measured for
heat transfer tests. Calibrated Type-T thermocouple probes were used and the tip of each
thermocouple was gently but firmly fixed on the surface of the test specimen using
Omega supplied highly conductive special surface adhesive for thermocouple probe
attachment. Because of using this material, there was no surface left around each

thermocouple that could cause a barrier to heat transfer. Total 48 thermocouples were
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used to measure the surface temperature with their identifying names from T202 ... T231
and T300... T317. For each of the test specimens the surface temperature locations were
different and every time a test specimen was removed and changed from the test section,
all the thermocouple probes were removed, checked, and re-calibrated for further

installation. Any damaged thermocouple was replaced with a calibrated new one.

By following Equation 4.4 in section 4.3.2, the consolidated mean surface

temperature 'ITS was determined as follows.

- k i
Tr02--T317 :%kzl[%_zl (any of Ty, ... T317); j, where k = 3 ~ 5 repetitions, (5.10a)
= i=

and

Tso = lZ('%+ +'E), where n = 48 thermocouples, (5.10b)
? n

By running the system the surface temperatures were measured for MCHX #1 just
to observe the nature of variation and profile of surface temperatures. The measurement
locations are displayed in Figure 5.2 and other details are provided in Appendix —BS.
Different scenarios were analyzed such as hot and cold liquid flow with no air flow, hot
and cold air flow with no liquid flow, hot liquid and cold air flow, cold liquid and hot air

flow, and no liquid or air flow at room temperature. The surface temperature profile with
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no liquid or air flow was very flat and each of the thermocouples read and measured
almost the same temperature within a maximum variation of £0.05°C. All other profiles

have different but consistent nature, which are shown in Figure B17 in Appendix — BS.

LU |
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Figure 5.2 Schematic of test specimen surface thermocouple locations — MCHX #1.

The locations of thermocouples for other test specimens are described in their

respective chapter, i.e. chapters 7 and 8 and in Appendix — B8.

5.3 Heat transfer rates and heat balance of the working fluids

The respective fluid side forced convection heat transfer rates are described in
section 4.8 above and defined by Equations 4.13a and 4.13b. In this section the heat rate

equation for liquid flow is generalized and rewritten as follows.
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Liquid side heat transfer rate through heat rate equation,

Qiiq = MiqCp,tiq Tig,i — Tig,o) = MiqCp,ligATiiq = CiiqATiigs (5.11)

where g,m, C, and T are the heat transfer rate, mass flow rate, specific heat and

temperature of liquid respectively.

The heat transfer rates can also be determined from Newton’s law of cooling if
other parameters are known, such as the heat transfer coefficients of each side of the fluid

or their respective thermal resistances and the surface temperature of the flow passage.

Liquid side heat transfer rate determined from Newton’s law of cooling,

Uiq = hiiq Aviq (To,tig = Ts)» (5.12a)

and

Airside heat transfer rate determined from Newton’s law of cooling,

Oa =N A (Tha —Tra)s (5.12b)
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where h and A are the respective fluid side heat transfer coefficients and the heat transfer
surface areas. The T, is the film temperature at airside, which is defined as the average

temperature of wall surface and the approach airflow as given below.

4T,
Tea ~(ai*lso) (5.12¢)

The heat balance on MCHX #1 is described in details in section 4.8 in light of
ASME PTC [216], which was followed to perform the heat balances on other test

specimens investigated in current study. The heat balance is given by Equation 5.13.

Heat balance with respect to liquid side heat transfer rate,

HB,, = [M]*IOO (5.13a)
qliq

and

Heat balance with respect to effective or mean heat transfer rate,

HB,y; =(MJ*100, (5.13b)

Oefr
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where the qa is defined by Equation 4.13b and the effective or mean heat transfer rate Qesr
is defined as the arithmetic average of liquid side and airside heat transfer rates as

expressed by Equation 5.13c below.

_(qliq+qa) (513C)

off = o -
2

5.4 Heat transfer performance parameters

The heat transfer performance of any heat exchange device is associated to some
key parameters such as the overall heat transfer coefficient, thermal resistance, number of
transfer units (NTU), effectiveness, fin efficiency, individual fluid side heat transfer

coefficients, etc., which are described and deduced in this section.

5.4.1 Overall heat transfer coefficient (U)

Traditionally for a two-fluid crossflow heat exchanger the overall heat transfer
coefficient in forced convection is determined in light of Newton’s law of cooling as
given by Equation 5.14, provided the mean heat transfer rate and the inlet and exit

temperatures of the working fluids are known, which is the case in current study.

Qi = (UAN AT yrmp )(F) - (5.14)
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where the Qesr, A, ATLmTd, and F are respectively the effective or mean heat transfer rate,
heat transfer surface area, log-mean temperature difference, and log-mean temperature

difference correction factor for crossflow orientation.

Because of using ultra precise RTD for liquid side temperature measurements, for
more reliably the liquid side heat transfer rate qjiq was used in current study as the overall
heat transfer rate in place of Qesr. The heat transfer surface area A can be either internal
fluid side or the external fluid side depending on how the equation is presented or which
area is readily available without any complexity. In present study the internal surface area

could be easily calculated rather than external although both the areas were calculated.

The log-mean temperature difference (LMTD) used in Equation 5.14 was defined

by Equation 5.15 as follows [219]:

ATl — ATZ where {ATI = Thot, in Tcold, out — Tliq,i _Ta,o

AT == .
(AT, AT, =T, Toodin = Tico = Tui (5.15)
n cold, in iq,0 ai

ot,out

The crossflow correction factor F is defined as the ratio of the true mean
temperature difference to the log-mean temperature difference, i.e. F = AT./ATimr.
While the ATy mrp 1s the same for all flow arrangements except for the parallel flow, the
ATy, values are different for various flow configurations. This dimensionless F is a

function of the effectiveness of temperature loadings P, capacity ratio R, and the flow

arrangement. The definitions of P and R are widely available in many textbooks on heat
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transfer. The F is unity for a true counter flow arrangement and for all other arrangements

it is determined from some empirical relationship or graphical charts [5, 11].

Most of the reference books on heat transfer and heat exchangers present the
values of F by equations or charts only for some common flow-pass configurations [5,
11, 52-53]. Current study used some unique flow-pass configurations for which the F
value is not readily available in any available sources. Haglund Stignor [203] and
Haglund Stignoret et al. [214] mentioned that the heat exchangers with eight or more
flow- passes behave like a counter flow heat exchanger where F can be set to unity. In
light of this recommendation and by consulting the Bowman et al. [219] work, the
crossflow correction factor F for current study could be set to unity. The F however was
determined for the respective P and R temperature loadings and found to vary between

0.994 and 0.998, which are close to unity.

The product of the overall heat transfer coefficient U and the heat transfer surface

area A was calculated using Equation 5.16 as follows.

Oetr Gig
UA=——  ~ . (5.16)
FAT v FAT v

From Equation 5.16 the U can be easily determined based on the heat transfer surface

area on a particular side of the heat exchanger if it is known.
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5.4.2 Thermal resistances (Rin)

Thermal resistance in heat transfer is the barrier that resists the heat transfer,
which is deduced by following the electrical analogy. In forced convention heat transfer,

the Equation 5.14 above can be expressed in the following form.

Ougr ~ G = FAT urp _ FAT v (5.17)
e iq 1 : .
oa R

oV

where R,, = 1/(UA) is defined as the overall thermal resistance from the bulk liquid flow
inside MCHX through the free stream air flow in the test chamber. This overall resistance
includes all the individual resistances in the heat flow path, which for current study are

defined by Equation 5.18 below.

1 FAT,
Rov = ) Ry = Rth,liq + Rth,wall + Rth,a =—~—LMID

.1
UA Qiiq (5-18)

where Rinjig, Rinwai, and R, are the individual thermal resistances at liquid side, for test

specimen wall, and at air side respectively.

The liquid side and airside thermal resistances are deduced from Equations

(5.12a) and (5.12b) as follows.
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1 (i =Ts) _ AThs
hiiq Aviq Uiig Glig

Rinliq = (5.19)

and

Riha = = =, (5.20)

In current study, except for the MCHXI1 the other test specimens have identical
fins at airside but no internal fins at liquid side. Therefore to account for this fin effect,
the Equation 5.18 was re-written by introducing the airside overall surface or fin

efficiency as follows.

1 R 1

1
Rov === = Riniig + Rinwan + Ria =7——+ Ry + ———- 5.21
th,liq th, th, hliiniq th, noh A ( )

oV UA

There are some straight methods available in the heat transfer textbooks to deduce
the Rty wan for single circular or non-circular walls. The flow passage configuration in
current study is such that these available equations cannot be directly applied, although
choosing the circular tube (cylindrical) relation can be a reasonable approximation. The
thickness of the test specimen wall is very small and the thermal conductivity of the wall

material is relatively high. Therefore for simplicity in the subsequent analyses the wall
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thermal resistance in Equation 5.21 could be ignored and set to Rinwan = 0 without much

error, which can be seen in next in section 5.5 and in chapters 6 and 7 below.

5.4.3 Airside overall surface or fin efficiency (7,)

There have been several studies on heat exchanger fin geometry [51]. To
characterize an array of fins at airside, the overall surface efficiency or the temperature

effectiveness or the overall airside fin efficiency 7, was first expressed as follows [5].

Mo =1—%(l—nﬁn),- (5.22)

ot

The details of the airside fin geometry for current test specimens are given in not-
to-scale Figure 5.3 below. Although current test specimens have very low wavy fins in
the direction of airflow, the flat fin geometry is drawn in Figure 5.3 for simplicity. The
fin efficiency 7sn in Equation 5.22 for both flat and wavy fins is described by Shah and
Sekulic [5]. For uniform fin cross-section, as is the case in current test specimens, the fin
efficiency #7s, can be calculated for both flat and low wavy fin geometries using
Equation 5.23 below [5]. Therefore Equation 5.22 was adopted in current study to deduce
the fin efficiencies 7, for the test samples. The fin efficiencies in current study varied

between 0.90 and 0.92 for 74, and between 0.92 and 0.93 for 7.
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Figure 5.3 Airside fin geometry for test specimens MCHX #4 & MCHX #6 in current study.
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5.4.4 Effectiveness and NTU

The heat exchanger effectiveness of the test specimens were realized from the

following relation.

Effectiveness, &= thi , (5.24)

max
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where the (i was determined from Equation 5.11a and (max was defined as follows.

Omax = Cmin (Tliq,i _Ta,i) = CminATi 5. (525)

The C in Equation 5.25 is the heat capacity ratio, which is the product of mass

flow rate and the specific heat of respective fluid and the C, 1s defined below.

Ciiq = MigCpiiiq

2
Ca = r‘hacp,a (5 6)

C,;, =min {

The number of transfer unit (NTU) is usually proportional to the heat transfer
surface area A. Traditionally the larger the NTU the larger the heat exchanger. However,
in a MCHX the value of NTU may indicate how large is the heat transfer surface area as
compared to the total size or in other words how small a MCHX can be for a given heat

load. The NTU were determined from the following relationship.

1
NTU = = ; -+ R, =— see Equation 5.18 and 5.21).
C_ ( UA q ) (5.27)
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55  Employment of Wilson Plot technique to isolate the individual thermal

resistances

The information on surface temperature T; is necessary to calculate the individual
fluid side heat transfer coefficient from the measured heat rate. Measuring T for a finned
surface, like the one used in this study, is very difficult. In this event the Wilson Plot
Technique plays a great role to isolate the individual fluid side thermal resistances
without the information of surface temperature T. This method was originally devised by
Wilson in 1915 for separating the individual thermal resistances from a two-fluid single-
phase flow heat exchanger without the information of surface temperature [220]. By
assuming a tube side Re exponent of 0.82, the two unknowns i.e. the shell side resistance

and the tube side Re coefficient were determined from a regression analysis.

Over the decades, few modifications and improvements have been proposed by
different authors to apply this method on a variety of heat exchangers situations in the
presence of more than two unknowns. In other words, in the situations when the Re
coefficients and exponents are unknown for both the fluids. For determining three
unknowns rather than only two, Briggs and Young (1969) proposed a modification to the
original Wilson plot technique through two-step successive linear regression analyses of

a non-linear equation, which is so called the “modified Wilson Plot Technique” [221].

In the literature survey it is seen that the study using Wilson Plot Technique is

limited although it is a useful tool in deducing heat transfer coefficient in the absence
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surface temperature information. Some available works on the review, applicability
comparisons, and modifications of this technique are consulted [222-223]. Briggs and
Young proposed some modification to the original technique to widen its applicability
[221]. Khartabil and Christensen [222] compared their experimental data using the Briggs
and Young modified version of the technique and noticed some convergence problem. In
this event Khartabil and Christensen [224] proposed and presented an improved non-
linear regression scheme, which according to them guarantees the convergence if a
solution exists. To the best of candidate’s knowledge from literature review, the Khartabil
and Christensen work [224] is so far the latest improvement on Wilson Plot technique in
finding the heat transfer coefficient. Therefore this improved scheme was adopted in

employing the Wilson Plot technique in current study.

Application of the Wilson plot technique is not very straight-forward job for any
general experimental situations. In order to employ the Wilson Plot Technique, some

minimum restrictions in conducting the experiments apply as follows [222-223].

1. All the data sets must be taken within a single flow regime,

2. The flow rates of the fluid of interest must be varied and the flow rate of

the other fluid must be kept constant for the entire data taking process, and

3. The bulk temperature of the constant flow fluid should be kept constant to

allow the thermal resistances of that fluid and wall to remain unchanged.
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In current study the liquid side was the main focus and therefore the experiments
were accordingly carried out by maintaining the airside conditions fairly constant.
Attempts were made to measure the T, on the surface of the MCHX #4 and MCHX #6
immediate before and after the test section and around the serpentine bends using 48
thermocouples placed on un-finned exposed surfaces (chapters 6 and 7 and Figure B17 in
Appendix — B8). As mentioned before and as shown in Figure 5.1 above, these un-finned
exposed surfaces were well insulated and located outside of the effective heat transfer
zone in the test section. The effective heat transfer zone is marked in Figures B9a and
Blla in Appendix — B2. Although difficult, the T, measurements were performed to
compare the results obtained from the Wilson Plot Technique with that of the results
calculated using Equation 5.12. As explained before, constant wall temperature boundary

condition (T-condition) was assumed to be closer to the current experimental situations.

The liquid side and the airside thermal resistances, Ry, =L and
’ hio A
liqg " Yiq
Rina :+, in Equation 5.21 and hence the individual fluid side heat transfer

coefficients, hijq, and h,, were separated using modified Wilson Plot Technique as
described next. The measured mean T, for each data set was used to separately calculate
the liquid side and the airside heat transfer coefficients, hjiq and h,, using Newton’s law of

cooling defined in Equation 5.12 in the following forms.
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;i
hy, =———,. 5.28
i Aiiq (Tliq - Ts) ( )
and
;i
h a (5.29)

T 770Aa,tot(Ts _Ta) B

The estimation of liquid side Nusselt number Nuy;q from the deduced heat transfer

rate (jiq and measured surface temperature T, was based on Equation 2.11 as follows.

h,.D h;. D h,.D
Nuliq — lig ~ch — liq =port — liq .. (530)
kliq kliq

The operating conditions for current heat transfer experiments were in the
developing laminar flow regime. In a developing laminar pipe flow the Nusselt number
generally depends on Reynolds number and Prandtl number. Therefore, by following the
simplified form given in Equation 2.12c, the liquid side Nusselt number was defined as

follows to employ the Wilson Plot Technique in current experimental data.

|
Nuy, =C, Rej, Prlé ,. (5.31)
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By combining the above Equations 5.30 and 5.31, the liquid side heat transfer

coefficient was given in the following form.

k a 1 Ky
hy, = (Nu _] ~C,Re, P/’ o (5.32)
liq

ch ch

Khartabil & Christensen Improved Modified Wilson Plot Technique [224]:

By rearrangement of Equations 5.21 and 5.32, the overall thermal resistance in the

heat flow path, R,, = 1/UA could be given by the following expression.

Rov = L = L + Rth,wall + L’ or

UA hliq Aliq U ha Aa
iz 1 K +[Rthwa11(z0)++j or

1 . ’
C, Re;;q(prlé i AﬁqJ oA (5.33)
ch G
%/—/
w
1 1

UA  C Ref,W

where W is constant since all the values within the parenthesis are known for a given

operating point. The C, is also constant since the experiments were conducted by keeping

the airside flow and temperature constants.
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If the restrictions mentioned above are properly followed in employing Wilson
plot technique, the constant airflow will essentially lead to the un-altered thermal
resistances at both airside and at test specimen wall for all varied flow rates at liquid side.
For simplicity, since the test specimen wall is very thin and relatively highly conductive,

the term R, wan can be dropped from Equations 5.21 and 5.33 without countable error.

Now the Equation 5.33 is re-written in a linear form as given below, which is the

main equation that needs to be solved by regression analysis in Wilson Plot Technique.

Variable, Y =R, :L
UA

1

Slope, m=—
Y=mX+C; where C (5.34)

Variable, X :;

Rej, W
Constant, C=C,

Application of least-square method to Equation 5.34 requires the minimization of

the following quantity if not zero.

(Y, —mX; -C)’ (5.35)

M=z

S:
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Normal equations can be produced from Equation 5.35 by taking partial
derivatives and by solving the normal equations one can form the set of equations for the

slope m and constant C in terms of the two other variables X and Y as follows.

Y,

Mz

N3 -2 X

m = 'ZN: flz'“: X'

i=1

1

jz : (5.36)

and

- —=, (5.37)
ND X?- in)

Taking partial derivatives with respect to Re exponent a in Equation 5.35, the

minimization quantity requires that the function f(a) to be zero or at least the minimum.

N
f(a)= {Z XiYi In((Reyy); )}
T S N ; (5.38)
{ Z X 2In((Rey))+CY. X, 111((Reuq)i)}
i=1

i=1

For the solution of the above equations, a parametric table is always helpful as
given in Table 5.1 below. Because of the presence of the unknowns in the equations, to
produce results from Wilson Plot Technique, some computer iteration steps need to be

performed as per following steps. Manual iteration of such problem is nearly impossible.

PhD Dissertation Mesbah G. Khan; Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 217



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Table 5.1. Parametric table for variables that are used to employ Wilson plot technique

_ 1 Y =Ry = m =
T ReAW | 1LUA 1/C,

Tests Rejiq W C In (Rejig) f(a)

Deduce | Deduce by

Deduce | ForN | For N | Deduce
Measure from  |assuming an Deduce
, i from data | data from from
1 | experimen- |known and|initial value of ) ]
. experimen- | points, | points, [experimen-
tally measured |“a“ with small P P Eqgn.

tal data find find tal data
parameters| increment (5.38)

from from and
2 Measure Deduce Deduce Deduce | o _ Deduce
iteration|iteration Check
3 Measure | Deduce Deduce Deduce | ysing | using | Deduce | for zero
4 Measure Deduce Deduce Deduce Ean. | EaAn. | peduce (-)r-the
(5.36) | (5.37) minimum
5 Measure Deduce Deduce Deduce Deduce

NOTE: Do it for several values of ‘a’. If f(a) in Eqn. (5.38) is not the minimum, repeat the process.

Computer scheme for iteration:

[1] Start with a low guess value of Re exponent “a” and find X values for all

the data points and find the m and C using Equations (5.36) and (5.37).

[2] Check the function f(a) in Equation (5.38) for the requirement f(a) ~ 0,
which could rarely be achieved. However, preferably a convergence

criterion can be set as follows.

[fa+s,)-f@+s,)|_ ..«
B TR 63
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[3] When the process in Step-2 is stopped or converged, write an output file for

the new values of a, m, and C for further processing in another sub-routine.

[4] If the process in step-2 is not converged, keep continuing the loop within

step-1 and step-2 until a solution is obtained.

Guess an initial value of
: T
A @+ 9) B Solve for other parameters
v in different sub-routines
Find X in Equation (5.34)
F Y
for each data point
Write solution data file
v with a, m, C, f(a) values
Find f(a) in Equation (5.38) A
for the entire data set
Find final m & C using
Equations (5.36) & (5.37)
Convergence
No i
Satisfied for f(a) ?

Check Equation (5.39)

Figure 5.3. Solution and iteration flow chart for Wilson Plot Technique described above.

To perform the iteration process and to solve for the unknowns in experimental
data using the Wilson Plot technique, the detail computer solution algorithm was written

in and solved by MATLAB.
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Upon finding the appropriate exponent “@” for the Re and the value of Cj, the
Nusselt number correlation in Equation (5.31) were consolidated in different sub-routine
in EES and in Excel spreadsheet. The values of the individual and overall thermal
resistances were determined by using Equations (5.33) and (5.34), which also give the

way to deduce the heat transfer coefficient of the liquid side as well as airside.

Briggs & Young Modified Wilson Plot Technique [221]:

They made two-step successive linear regression analyses of a non-linear equation

(5.40) to solve for the Re exponent and slope of the Wilson Plot curve as follows.

oo o 2] Al
! Do liq De lig hA i C,Pr" Re” Re’ Jy, (5.40)

ch
%,—/
z

From Equation (5.33) the 1% linear equation was derived to solve as follows.

R, =2 1 +( ! ] = Y, =mX,+C,

oV ;1,: Re{giq 770 ha Aa (5 4 1)
C
Xi 1
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The 2™ linear equation was produced from Equation (5.41) and solved as follows.

-C =2 ! = ! =iRe{°iq
Ref, R,-C Z

ov

oV

(5.42)

ROV Cl Z r:‘]H #
2 X
Y, C, ?

The solution procedure (Y1 is calculated beforehand from experimental data).
(1) Guess a small value of Re exponent “p” in Eqn. (3) and calculate “X;”
(2) Iteratively solve Eqn. (3) to find m; & C, using entire data set
(3) Calculate X; & Y, using m1 & C; found in step ‘2’
(4) Iteratively solve Eqn. (4) to find m, & C, using the same data set
(5) Continue steps 1 to 4 if (my — Pguess) # 0 OF [M2- Pguess| / Pauess = 0.0001

(6) Stop 1f (M2 — Pguess) = 0 or set criteria [Mo- Pguess| / Pauess < 0.0001

(7) Write final values of m; (i.€. pfina), mi, C,, C; for further analysis in other sub-

routine

(8) Determine hiig, Nuiiq, and R jiq and the Nu-Re correlation
According to Khartabil & Christensen [224], there are some data sets that may not

be converged using Briggs & Young [221] two successive linear regression analyses of a

non-linear equation. Therefore they improved the solution using non-linear regression.

PhD Dissertation Mesbah G. Khan; Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 221



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

5.6  Uncertainty analysis and error estimation

The accuracy information of the instruments and sensors is based on
manufacturer’s data and the accompanying documentation, which were listed in
Table 4.2. The accuracies in Table 4.2 are the overall instrument error that were
accounted from the root sum square (RSS) of all known sources of errors such as the
resolution, linearity, repeatability, sensitivity, hysteresis, scale effect (FSO), zero offset,

precision, various drifts, reproducibility etc. according to the Equation given below.

lass =y 12+ 12+ 412 (5.43)

where | is the instruments’ known error(s) from various sources e.g. 1, 2, .....N and the

Irss 1s the overall instrument error.

The experimental uncertainty analysis was carried out in light of the ASME
Journal of Heat Transfer Editorial (1993) and ASME Journal of Fluids Engineering
Editorial (1991) [225-226]. Other available resources were also consulted [227-230].
Errors from the on the measured primary parameters propagate into the secondary
variables depending on their relationships. If A is a secondary parameter, which depends
on other primary measured parameters like A;, Ay, As, ... then the errors from measured

primary parameters propagate into the secondary parameter A according to the
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relationship between A and A;, Ay, As, ..... The absolute uncertainty U of A was then

calculated using root sum square (RSS) method as given by Equation (5.44).

2 2
U, = (S_:UA‘] +[§T2UA2J +... (5.44)

i ivati O0A O0A O0A
The partial derivatives A A A A A A of the secondary or dependent

parameters are derived from their relationship with the primary or independent

parameters.

The individual uncertainties of the independent parameters U, .U, .U, ... are

estimated from the bias and precision errors of both the experiments and the instruments
(Irss from Equation 5.43). The relative uncertainty is generally obtained dividing the

absolute uncertainty by the mean value as shown in Equation (5.45) below.

2 2
OA O0A
U_A_ [aA,U’*j +[6A2UA2) +... (5.45)
A

B [f(A, A, ..J°

The detailed uncertainty analyses procedure and a sample calculation for some

selected key parameters are provided in Appendix — E.
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5.7  Calculations and data analyses tools

The time averaged raw data from experimental runs were recorded and stored in
DAQ system where they were one step filtered and processed using NI LABVIEW
software. The data were then summarized to obtain time averaged mean data sets
(TAMDS) and parametric data tables were developed using Microsoft Excel spread sheet.
In engineering equation solver (EES), based on the relationships and equations defined in
data reduction section, different equation codes and calculation procedures were written
for data analysis, calculations, and data plotting. Most of the TAMDS were analyzed

using EES and few were directly analyzed using Microsoft Excel spreadsheet.
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CHAPTER - 6

PRESSURE DROP AND FLOW FRICTION OF WATER

AND 50% ETHYLENE GLYCOL-WATER MIXTURE

FLOWS IN MULTI-PORT STRAIGHT MICROCHANNEL

SLABS
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6.0 PRESSURE DROP AND FLOW FRICTION OF WATER AND 50%
ETHYLENE GLYCOL-WATER MIXTURE FLOWS IN MULTI-PORT

STRAIGHT MICROCHANNEL SLABS

As seen in earlier review works discussed above in section 3.1 (Figures 1.3, 3.1,
and 3.2), there have been a lot of controversy and differences in reported results on
pressure drop and hence the friction factor as well as on the early or delay occurrence of
critical Re in narrow channel flow. The deviations are more in laminar flow than in
turbulent flow. Moreover, study of pressure drop in developing laminar flow in narrow
channel is limited. To the best of candidate’s knowledge, the work on developing laminar
flow in microchannels using 50% ethylene glycol-water mixture as the working fluid is
not available in the open literature. This commercially important heat transfer fluid has a
lot of use and significance in industries like automotive, heating-cooling, HVAC, and

similar other thermal applications.

The understanding of flow frictional characteristics in narrow channels and
building experimental database are important. This is required to verify the validity of
macroscale theories in microchannel flow as well as to optimize the design and

application tradeoffs between the pressure drop expense and the heat transfer duty.

Therefore the pressure drop and friction behavior of water and 50%-50% ethylene

glycol-water mixture flow in 1-pass multi-port straight microchannel test slabs have been
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experimentally investigated. Current research results on glycol-water mixture flow in the
test slab have been peer-reviewed and documented [231]. The experimental results for

both water and glycol-water mixture flows in two test slabs are presented in this chapter.

The test specimen MCHX-1 was used for water flow and MCHX-2 for 50%
glycol-water mixture flow. The internal configurations and geometries for liquid flow for
the test specimens MCHX-1 and MCHX-2 are the same. The schematics and geometrical
specifications of these two test specimens are provided in Figures 4.3, 4.4a, and 4.4b and

in Table 4.1 in section 4.1 above.

6.1 Treatment and separation of pressure losses in the test slab

The internal configurations of two employed test specimens are the same. The
temperature and pressure sensors and the measurement locations for both the test
specimens during both fluid operations were the same. Therefore the treatments and
considerations of pressure losses in their cores and the separation of the losses from that
of the measured total pressure drop are also similar and common for both fluids, which

are described below via Figure 6.1 and Equations 6.1 through 6.16.

The test specimens employed in current study can be viewed as typical thermal
heat exchanger cores. While the pressure drop estimation for large diameter pipe is some
what straight forward, it is however very involved and tedious in heat exchanger core

made with narrow flow channels. As summarized in the literature review, improper
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considerations or underestimation of various losses may lead to very differing result. In
this study attempts have therefore been made to account for all possible area of various
losses in the flow route. From the total measured pressure drop Apial the isolation of core
loss, i.e. the pressure drop of a port in the test slab (5) Apme, are performed according to
Equation 6.1 [5, 18, 175, 198]. The subscripts associated with Figure 6.1 and

Equation 6.1 for nine pressure drop segments (1) to (9) are defined in the nomenclature.

(6) APrc-e (5) APme (4) APmec
|'
. — . D |
Test Specimen: T
i MCHX-1 Jh
(7 Apem < or | #(3) APim
MCHX-2 i
- +— I
" (8 AP emt-c (2) Ap imt-e "‘
Liquid ||| Measurement ||| Liquid
Exit (9) APemt Sensors (1) APime Inlet
RTD2 PTD2 RTD1 PTD1

Figure 6.1. Segment-wise pressure losses from inlet to exit flow route of MCHX-1 or MCHX-2.

Aptotal =P—=P

= Apimt + Apimt-e + Apim + Apmc-c + Apmc + Apmc-e + Apem + Apemt-c + Apemt (61)
—_— — — — — — — — —_—
) ) 3 “) ©) (6) @) ®) ©)

It is noted here that the temperature at which the fluid properties are evaluated in

Equation 6.1 were considered at the inlet for (1) to (4), at the bulk for (5) Apmc and at the
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exit for (6) to (9). The bulk flow pressure, as given by Equation 5.5, was taken to
evaluate the fluid properties for all losses since the variation of fluid properties were

mainly temperature dependent and very weakly on pressure.

During all the experiments the total mass flow rates through the system were
measured according to the expressions given by Equations 5.6a and 5.6b. The total mass
flow rate is the quantity that flows through (1) to (3) and through (7) to (9) in Figure 6.1
and Equation 6.1. The flow passages in these segments have hydraulic diameters larger
than 4.7 mm; therefore the traditional friction factor correlations were employed to
deduce the pressure drops in these segments. By considering new and smooth circular
pipes, depending on Reynolds number (Re) values, the flow friction factors (f) in all the
manifold tubes and manifolds are estimated from f= 64/Re for laminar flow and from

Blasius relation given in Equation 2.20 for turbulent flow.

Each of the 1-pass multi-port test specimens has 68 internal channels or ports. The
hydraulic diameter of the inlet manifold was approximately 10 times larger than the
diameter of a channel in the test slab. Assumption was made that the liquid is
incompressible and the total liquid mass flow rate is equally distributed through all the
channels. The assumption was reasonable as described next in chapter 7. Therefore the

mass flow rates in a single channel in the test slab m,; were calculated as follows.

M., - Miiq.oFM _ Piiq VliqDFM ’ (6.2a)
¢ 68 4.08*10°
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or

m _ n.']liq,bucket _ E
ch 68 68*At’

(6.2b)

where Vliq,DFM is the total liquid volume flow rate through the system measured in LPM

at the inlet flow meter (DFM) and Am is the weight of fetched liquid over a time of At.

The mass velocity or the mass flux (G) is often used in heat exchanger
engineering in order to eliminate or minimize the effect of variation of fluid density on
the result if the Ap is presented against G rather than either m or Re. Also, different heat
exchanger frontal areas can be taken into comparable account if the Ap is plotted with
respect to G rather than m [5]. The mass velocity (G) is defined in terms of flow

velocity, mass flow rate and flow cross-sectional area, in generalized form as follows.

G=pV = m , where A. is the flow cross-sectional area. (6.3)

The definitions and treatment of pressure losses in each of the nine segments,

from (1) to (9) in Figure 6.1 and in Equation 6.1, are presented below.
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(1) The losses in the inlet manifold tube, Apim¢

The working fluid flows into the heat exchanger core through the pipe or tube
connected to the flow dividing inlet manifold. The major and minor pressure losses
associated with this tube are the factors for flow or wall friction (f) over the straight flow

length and geometric or fitting loss (Kr), as estimated from following derived expression.

/2
AP, = {p 17liq ( f L+ ZKFH , in terms of velocity head
d
imt
8mz
=— liq [ f £+ EKF} , in terms of mass flow rate, and (6.4)
©2pd? imt
17 1mt
G2
_ . lig [ f E + zKF} , in terms of mass velocity.
pi imt

where m;;, is the total mass flow rate through the system; and L, d, Vj; and K are length,

internal diameter, liquid velocity and fitting loss factor in the inlet manifold tube.

(2) Pressure drop or rise due to area increase at the inlet manifold tube exit, APimt-e

The fluid experiences sudden expansion at the exit of the inlet manifold tube, i.e.
at the entrance of the manifold. This is attributed to the changes in flow cross-sectional

area from smaller diameter inlet manifold tube to the larger diameter inlet manifold. The
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pressure drop due to expansion can be presented in terms of velocity head, mass flow

rate, and mass velocity with an expansion coefficient of K. as given in Equation 6.5a.

PV112 81 "'121 Gl%
A . = K | = —q K . = q K .
plmt-e |: e :|lmt . 2 dént [ € ]1mt-e 2 [ € ]1mt—e (653)

By applying the momentum and Bernoulli equations across the expansion section

the Borda-Carnot equation can be derived as follows [5] to give the value of K. [18, 59].

2
K,=(1-0) = {1—2*“—“} : (6.5b)
arger

The o in Equation 6.5b is the smaller-to-larger area ratio at the cross-sectional
plane where the flow area changes. The Equation 6.5b is valid for Re = o and the
obtained value of K. is usually used for sudden expansion in a single pipe. The K. in
Equation 6.5a is usually obtained from Equation 6.5b, which is not a function of Re. The
values can also be derived from other graphical charts representing the K. from one
extreme for sharp-edged exit where o =~ 0 (flow area changes from very small to very
large area) with K. = 1 to the other extreme where o= 1 (no area change) with K. = 0
[59]. The fluid property, i.e. the density in Equation 6.5a has to be evaluated at the bulk
temperature and pressure. The pressure drop calculation based on Equations 6.5a and

6.5b is a liberal estimate for general pipe flow.
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A heat exchanger and its pumping device should not be oversized or undersized
for a given flow and heat duty. For the interest of such design, the pressure drop
calculation needs to be performed in more conservative and involved manners so that all
possible effects are taken into consideration. At sudden expansion, the fluid experiences
two phenomena. One is the pressure gain due to the deceleration caused by area increase
and the other is the pressure loss associated with the irreversible free expansion and
momentum rate changes following a sudden expansion. These two effects are lumped
together to account for the total rise or drop of pressure at the expansion, which is

presented in the following form as given in Equation 6.6 [5].

G G2
APinge = ﬂ[Ke] _ﬂ[l _62]
2p, 2p,

Aploss Apgain
G2
_ lig [K —1+o2 ] , in terms of mass velocity
2 € imt-¢
o (6.6)
8mz2
S— [K —1+0? J , in terms of mass flow rate, and
2 -d-4 © imt-¢
T pl mt
\/ 2
_P 121“1 I:Ke —1+0?2 ]imt_e , in terms of velocity head.

where the loss coefficient K, is a function of the area ratio o, Re, and flow cross-sectional
geometry. For use in Equation 6.6, Kays and London [51] presented the values for K.
with respect to o, Re, and flow passage geometry in graphical form, which can also be

obtained from few other sources [5, 11, 18].
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(3) The losses in the inlet manifold, Apim

Before entering the MCHX ports, the working fluid inside the flow dividing inlet
manifold experiences major and minor losses. The major loss is attributed to the flow or
wall friction (f) over the straight flow length. The minor loss is due to the geometric
configuration of the manifold, which is taken into account via a manifold loss coefficient

(Kif). This loss is estimated from the expression given in Equation 6.7 below.

\/ 2
Ap,, = {M[ f L + K, ﬂ , in terms of velocity head
2 :

d,
8m?
_ %{ f L n Kmf} , in terms of mass flow rate and (6.7)
TP (dh )im dh im
2
_ liq| ¢ L +K |, in terms of mass velocity.
2p,| 4, im

where My, is the total mass flow rate through the system; and L, dy, V), and Ky are the
straight flow length, hydraulic diameter, liquid velocity and manifold loss coefficient of
the inlet manifold. The end of the MCHX test slab are slightly extended inside the

manifold as can be seen in Figure 4.2, which makes the geometric configuration of

current manifold quite unique.
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(4) Losses at the inlet of the MCHX slab port, Apmc-c

The fluid experiences sudden contraction at the entrance of the MCHX port as it
flows from the large diameter inlet manifold to the small diameter microchannel port.
The entrance geometry of the multi-port MCHX test slab can be viewed in Figure 4.2.
The pressure drop due to contraction can be expressed in terms of velocity head, mass

flow rate, and mass velocity with a contraction coefficient of K. as follows.

2
APee = {KC %} , in terms of velocity head

2
8m?2 .
=——2-[K.] .., interms of mass flow rate (6.8a)
oDy e
2
- %[ K, ]mc_c , in terms of mass velocity.
P

To obtain the value of K. the experimentally derived ratio of vena contracta area
to the pipe area is necessary. As quoted by Shah and Sekulic [5], the Crane Co. in 1976

presented a technical paper on K. vs. o relationship for a single pipe as follows.

K.=0.5(-0)= 0.5[1—M} , (6.8b)

arger
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The Equation 6.8b is valid for Re = o and the obtained value of K, is usually used
for sudden contraction in a single pipe. The K. in Equation 6.8a is usually obtained from
Equation 6.8b, which is not a function of Re. The values can also be derived from other
graphical charts representing the K. from one extreme for the sharp-edged entrance where
o =~ 0 (flow area changes from very large to very small) with K. = 0.5 to the other
extreme where o = 1 (no area change) with K. = 0 [59]. The fluid property, i.e. the
density in Equation 6.8a has to be evaluated at the bulk temperature and pressure. The
calculation of contraction pressure drop based on Equations 6.8a and 6.8b is a liberal

estimate for general pipe flow problem.

As mentioned before, for the interest of compact or narrow heat exchanger design,
the pressure drop calculation needs more rigorous considerations to account for all the
possible effects. At sudden contraction, the fluid flow encounters two phenomena. One is
the pressure loss due to area change and the other is associated with the irreversible free
expansion that follows the sudden contraction. The flow separation and secondary flows
are created at the region of vena contracta and cause the pressure loss [5]. The change in
momentum rate due to any non-uniformity in flow also produces pressure loss. The
resulting pressure is caused by the change in momentum rate at the downstream of the
vena contracta. All these effects are taken into account through a combined expansion,

which is presented by Equation 6.9 below.
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2
Gch

G3,
_ [ 2
APpec = S [1-02] + 5 [K.]
Pi Pi
Aploss, due to change in flow area Aploss, due to change in momentum rate after the vena contracta
G 2
= —Ch[ K,+1-0? Jmc o in terms of mass velocity
2p (6.9)
8m2 .
= —Ch[ K, +1- 02] , in terms of mass flow rate and
2 D4 ¢ mc-c
77 PV

PV, 2 : :
= T[ K.+l-o ]mc_c , in terms of velocity head.

where the contraction loss coefficient K. is a function of the area ratio o, Re, and flow
cross-sectional geometry. The K, includes the effects of expansion and the rate of change
in momentum immediate downstream of the vena contracta. For use in Equation 6.9,
Kays and London [51] presented the values for K, with respect to o, Re, and flow

passage geometry in graphical form, which can also be obtained from few other sources

[5, 11, 18].

(5) The pressure losses in the multi-port MCHX test slab channel, App,

The core pressure drop Apmc in a single channel in the MCHX test slab consists of
the pressure required to accelerate the fluid through the channel (Ap,), pressure loss due
to the wall or flow friction (f) along the straight flow length of the channel (Aps), and the

pressure fault or pressure defect resulting from the flow development effect at the
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entrance region of the channel (Apmcdev = APw). The core pressure drop Apme associated

with current test condition can be expressed by Equation 6.10 below [5, 18].

G2 . .
APy =[AP, +Ap; +Ap, ], =— 2(&—1j+&(i+ij(fmil+&o , (6.10)
2p:1 \po 2\ p P Do) &~

Apa Apf mc

where p; and p, are the fluid densities evaluated at the inlet and exit temperatures

respectively.

The contribution of the acceleration loss Ap, in current experiment is very small
as compared to other loss components. For simplicity, this part can thus be dropped from
Equation 6.10. The flow developing pressure loss term Ap, can also be discarded from
Equation 6.10 if the flow is already fully developed before entering the MCHX ports. The
status of the flow in current study is discussed in sections 6.1 and 6.2 for respective

working fluids. The above Equation 6.10 could therefore be simplified as follows.

G2 | o
Ap,. = h [&(l+L]( f LJ + KOO} in terms of mass velocity,
mc ch
2pi 2 P P DCh me

2
= 8m—°h A L+i fp L +K, | interms of mass flow rate, and (6.11)
7 p,Dd P Po Den me

2 C
2
_AVa o1 L f Ly K., in terms of velocity head.
2 2 P Po ch me
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The flow development loss coefficient K, for narrow channel flows is not
available. Therefore in this absence as suggested by some researchers [18, 67], the value
could be estimated from Chen [66] proposed K, vs. Re relationship for large size tube as

given in Equation 2.17a above.

(6) Losses at the exit of the MCHX slab port, Apmc-e

The fluid flow experiences sudden expansion again at the exit of the MCHX slab
port during entering the exit manifold i.e. the flow combining manifold. This is attributed
to the changes in flow cross-sectional area from smaller channel diameter of MCHX slab
to the larger diameter exit manifold. The pressure drop calculation processes and the
physical flow phenomenon for this expansion segment are the same as (2) APimte and
Equations 6.5 and 6.6 above. Only exceptions are that the parameters need to be

employed for this segment, which are shown through Equations 6.12 and 6.13 below.

Ve 8, G,
APpee =| K 20 | = T 1] =g ] ,
pmc-e |: [ 2 j|mc—e ﬂzijh [ e]mc_e 2p [ e]mc.e (6 12)

where the K. is deduced from Equation 6.5b by applying the area ratio o for this segment.

The fluid property, i.e. the density in Equation 6.12 has to be evaluated at the bulk
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temperature and pressure. Again the pressure drop calculation based on Equations 6.12

and 6.5b is a liberal estimate for the interest of general pipe flow problem.

Detail considerations for the interest of heat exchanger are presented through

Equation 6.13 below [5].

Glziq . .
ApPee = 2—[ K,-1+0? ]mc_e , in terms of mass velocity
8mc2h 2 :
= ﬁ[ K.-1+0 ]mc_e , in terms of mass flow rate, and (6.13)
TPy Dch
2
p"TVCh[ K.-1+0? ]mc_e , in terms of velocity head.

where the Re and o dependent expansion loss coefficient K. can be obtained from the
original graphical presentation by Kays and London [51] or from the other available

sources [5, 11, 18].

(7) The losses in the exit manifold, Apem

The exit end of the MCHX test slab are slightly extended inside the exit manifold

as can be seen in Figure 4.2. This makes the geometric configuration of current manifold

quite unique, as mentioned before. The pressure loss calculation in the exit manifold is

same as the inlet manifold described above for (3) Apem. Therefore this loss can be
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estimated using the same Equation 6.7 above with fluid property, i.e. the density

evaluated at exit temperature.

(8) Pressure drop due to area decrease at the exit manifold tube entrance, APemt-c

The fluid flow experiences sudden contraction again at the end of the exit
manifold during entering the exit manifold tube. This is attributed to the changes in flow
cross-sectional area from larger manifold diameter to the smaller diameter exit manifold
tube. The pressure drop calculation processes and the physical flow phenomenon for this
contraction segment are the same as (4) APmec. Only exceptions are that the parameters

need to be employed for this segment, which are shown in Equations 6.14 and 6.15.

leizq . .
Ap.ie =| K. —— ,  1nterms of velocity head
2
emt-c
8m2
= %[ K.].. .., interms of mass flow rate, and, (6.14)
d 4 emt-c
73 ,0 emt
G2
= %[ Kelomie in terms of mass velocity.
P

where the K, is deduced from Equation 6.8b by applying the area ratio o for this segment.
The fluid property, i.e. the density in Equation 6.14 has to be evaluated at the bulk
temperature and pressure. Again the pressure drop calculation based on Equations 6.14

and 6.8b is a liberal estimate for the interest of general pipe flow problem.
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For the interest of typical heat exchanger design, the detail considerations for

contraction losses at this segment are presented via Equation 6.15 below [5].

Pemtce = [ Fl-0o ]emt_c , in terms of mass velocity
(o]
8n'112iq )
= —[ K, +1- 02] , In terms of mass flow rate, and (6.15)
72-2 pod jmt emt-c

V,
= poth [K +1-02 ]emt_c ,  interms of velocity head.

where the Re and o dependent contraction loss coefficient K, can be obtained from the

original graphical presentation by Kays and London [51] or from the other available

sources [5, 11, 18].

(9) The losses in the exit manifold tube, Apemt

The working fluid flows out of the heat exchanger core through the exit manifold
pipe or tube connected to the flow combining exit manifold. The major and minor losses
associated with this tube are the same as the inlet manifold tube (1) Apim.. Only
exceptions are that the parameters such as L, d, and K¢ have to be employed for this

segment of the tube and the fluid property, i.e. the density be evaluated at the exit

PhD Dissertation Mesbah G. Khan; Mechanical, Auto. and Materials Engineering, University of Windsor, ON Canada Page no. 242



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

temperature. Therefore Equation 6.4 is modified to take these changes into account,

which is presented by the Equation 6.16 below.

\V&
APy = {,00 liq ( f L + ZKFH , in terms of velocity head
2 d

emt

8m?
= ﬁ{ f L+ ZKF} , in terms of mass flow rate, and (6.16)
T pode4mt emt
hq [ f —+2ZK } , in terms of mass velocity.
2/00 emt

Now, by plugging the Equations 6.4 through 6.16 into Equation 6.1, the pressure
drop in a straight channel in the multi-port MCHX test slabs could be isolated from the

experimentally measured total pressure drop.

6.2 Experimental procedures for water and glycol-water flows

The descriptions of the experimental setup and the test specimen are provided in
chapter 4 via Figures 4.1 through 4.4a and 4.4b. With the help of a gear pump
(Figure 4.9) the liquid from the supply tank was passed through the test specimens. The
inline circulation heater (Figure 4.10) was used to prepare the hot liquid as required. To
obtain a number of pressure drop data of the fluids in multi-port test slab, the flow rate

was varied by operating the gear pump and by adjusting the needle valve NV
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(Figure 4.1a). The flow rate was measured both using calibrated FV4000 series digital
flow meters (shown in Figure 4.11) and manually by fetch-weigh method with a digital
balance. The differences in measurements between the flow meters and the manual
method were observed well within +1% for water flow and +2.5% for 50% ethylene

glycol-water mixture flow.

At each flow rate step, sufficient time was allowed to achieve a fairly steady state
condition before starting any data collection. The steady-state was assumed to reach
when the fluctuations in liquid flow rate and mean inlet flow temperature were no more
than 3% at any location in the flow system. The inlet temperatures of the liquids were
kept constant at certain value for all flow rates to achieve various Reynolds numbers, Re

in the test slab channel in the range from laminar to turbulent regime.

The liquid flow temperatures and pressures were measured at the inlet and exit of
the test slab using two pairs of temperature and pressure sensors, RTD1 & PTDI1 and
RTD2 & PTD2 as shown in Figures 4.1a and 6.1. The PTD is shown in Figure 4.12a. The
descriptions of the measuring sensors, functionality and their locations are given in
section 4.4 and their capacity and accuracy data in Table 4.2. The instrumentation and
calibration information of the measuring instruments are provided in section 4.5 and in
Table 4.3. After adopting the calibrations, both RTD readings were checked by running

the test rig at some given temperatures from 22.7 to 23.3°C and they were found to read

and measure within a maximum difference of +0.037°C.
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The fundamental key parameters i.e. the flow rate, inlet and exit temperatures and
inlet and exit pressures data of the flowing fluids were measured and collected using a
DAQ system. The information on DAQ system is provided in section 4.6 and in
Figure 4.20. According to Equations 4.12 and 5.2, the time averaged mean data sets

(TAMDS) for each of the key parameters were then acquired for analysis.

6.3 Data reduction for water and glycol-water mixture flows

As required, the thermophysical properties of water were evaluated at their inlet
and exit temperatures as well as at their respective bulk flow temperatures and pressures;
according to section 5.1, Equation 5.1a and section 5.2.1 Equation 5.5. The properties for
water were evaluated from built-in library of EES [218] and for 50% ethylene glycol-
water mixture the properties were extracted from ASHRAE Handbook of Fundamentals
2005 [212]. The deduction of the Re and fully developed Darcy friction factor (f) in a

channel in the test slab are discussed below.

Using Equation 2.1 the liquid side Reynolds number in a single channel in the test

slab, Rew,, was calculated from Equation 4.15. The Rejq for undivided flow in the

segments (1) through (3) and (7) through (9) in Figure 6.1 was deduced as follows.
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4m;.
_ liq
Rey, =—2

7ud
Gllqd . .
= , in terms of mass velocity,
7

, in terms of mass flow rate and

(6.17)

where My, and G, are the total mass flow rate and total mass velocity through the system

and d is the diameter of the respective segment. The my, and G;;, were calculated from

liq

experimental data using Equations 5.6 and 6.3 respectively.

In order to obtain the friction factor (f) in a channel in the test slabs, the
Equation 6.11 was rearranged as expressed by Equation 6.18 below. For current test
situation, Equation 6.18 compares and represents the Darcy friction factor (f) for fully

developed traditional pipe flow as given in Equation 2.6 above.

f, = Po (D 2p iAzme -K, |, in terms of mass velocity,
Lo\ L Jen Ga
2
= —O(BJ 2'0iA§2Apm° - Km}, in terms of mass flow rate, and (6.18)
po\LJa| Mg
= &[Bj &p‘;“ -K, }, in terms of velocity head.
Po\L/m| Va4

where p, is the fluid density at bulk temperature and A, is the flow cross-sectional area of

a channel in the test slab. In Equation 6.18, the Ap,,. was deducted from Equation 6.1 and

the Hagenbach’s factor, K, was estimated from Equation 2.17a.
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Another parameter that was compared with current experimental pressure drops
data for both fluids is the theoretical pressure drops for traditional fully developed
laminar pipe flow, which is the Poiseuille pressure drop and flow rate relationship given

in Equation 2.13. In current test condition, these Equations were rearranged as follows.

_ 128:umch Lch _ 32:UGCh Lch

theory, Po —

Ap , (Poiseuille relation from Eqn. 2.13),  (6.19)

prDy, PO,

where p is the fluid density at bulk temperature; and A and A, are the internal flow cross-

sectional area and heat transfer surface area of a channel in the test slab.

The loss coefficients ZKg in Equations 6.4 and 6.16 for fittings and tube bends
were obtained from available sources [59-60]. As mentioned before, the inner geometry
for both inlet and exit manifolds and their connectivity with the straight part of the test
slab port are unique in current study whose loss coefficient is not readily available. In the
absence of a loss coefficient K.,r in Equation 6.7, a value was chosen by consulting the

work of Yin et al. [198] on pressure drop in microchannel heat exchanger.

There is no correlation available on hydrodynamic entrance lengths for
microchannel flows. Therefore the hydrodynamic entrance lengths in current study were
calculated using traditional hydrodynamic entrance length correlations for laminar and

turbulent flows as described in section 2.2.1 through Equations 2.16 and 2.25.
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6.4 Results and discussions on water flow

The DDI water flows inside the test specimen were investigated from laminar-to-
turbulent regimes in the range 480 < Re < 3800. The detail uncertainty analysis of all the
parameters associated with current study was carried out according to the procedures
described in Chapter 5 in Section 5.6. The estimated mean uncertainties of some key

parameters are presented in Table 6.1 below.

Table 6.1. Mean experimental uncertainty in the study of water flow
Parameters Mean uncertainty
Measured pressure drop, Ap,,, ,, [Pa] +4.00 %
Measured total mass flow rate, m,,, [kg/s] +1.5%
Reynolds number in a channel in test slab, Regp, +5.3 %
Friction factor in a channel in test slab, f, +10 %
Poiseuille number in a channel in test slab, Poc, = (fRe)ch +11 %

In order to determine whether the flow is fully developed or developing, the
hydrodynamic entrance length in the test slab channel was calculated for each flow rate
using Equations 2.16 and 2.25. The straight part of the test slab is 343 mm long. For the
lowest flow rate at Re = 480, the hydrodynamic entrance length was found to be 27 mm
occupying about 8% of the slab length. The flow then stayed fully developed for the rest

316 mm along the flow path until exiting from the test slab. At the flow rate in the
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laminar regime boundary at Re = 2300, the flow was developing up to 129 mm along the
flow path. For the highest flow rate at Re = 3800, the entrance length was 10 mm since

the flow was in the turbulent regime.

It is now evident that none of the flows was hydrodynamically fully developed
before entering the test channels. This is because the flow had to take a 90-degree turn in
the inlet manifold to enter to the channels as can be seen in Figures 4.2 and 6.1. All the
flows however exited from the channels to the exit manifold with fully developed status.

Therefore K., in Equation 6.11 was considered and was obtained from Equation 2.17a.

6.4.1 Pressure drop in the test slab core, APy

As mentioned before, the channel side pressure drops were separated using
Equations 6.11 through 6.16. The Re., was achieved between 482 and 2013 for relatively
colder water flow at 23+1°C, which gave the pressure loss per unit length of the flow
channel Appe/Lm ranging from 30 to146 kPa/m. For the water flow at 75.5+£1°C, the Regy,
attained the values from 1310 to 3780 with relatively lower pressure gradients i.e. from
16 to 100 kPa/m. This is expected because the pressure drop in the channel is dictated by
the viscosity of the flowing water, which for the same flow rate was lower for the hot
water than the cold water. This lower viscosity accounts for a higher Re even at lower or

same flow rate than cold water.
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The measured Apy and calculated Apy. are plotted against Req, and G, in
Figures 6.2a and 6.2b respectively with sample uncertainty error bars. For comparison the
theoretical pressure drops calculated from Equations 6.19 are also plotted in these figures.

As expected, the Ap in general increased with the increase of Re and G.

180000 , : : , I R
| =%~ APyotal (Experiment: Cold water) —4—APiota) (Experiment: Hot water) ]
160000 i .
—0— APmc (Experiment: Cold water) X —®—ApPme (Experiment: Hot water)
| ——APtheory,po (current Cold water) %; % ~ APiheory,po (Current Hot water)
140000+
120000+
= N —— APpe (Hot) = 0.00593.(Recy, )28" [R? = 0.96]
&, 100000 . R
i A
L 'y 4
80000 [ &
—— AP (Cold) = -3166.34 + 27.398-Rey, [R = 0.996] ;‘A/&‘
L | / 4

&
60000 /

40000

20000+

\ T \ \ \ T
400 800 1200 1600 2000 2400 2800 3200 3600 4000
Recp

Figure 6.2a. Variation of Ap with respect to Re, for Water flow in MCHX-1.

The measured total pressure drops varied non-linearly with Re because of the
presence of other losses. As seen in Figure 6.2a, there are some scatters in both for cold
and hot flow data, which could be due to some flow and temperature fluctuations during
experiments. The fluid property in the channel segment was evaluated at bulk mean

temperature assuming a linear temperature variation between inlet and exit, which to
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some extent might have supplemented to this variation. The horizontal variation along Re
axis in Figure 6.2a is however due to the fluid property variation between cold and hot
water that depended on operating conditions. Plotting of Ap against G helped collapsing

the data scatter and reducing the horizontal variation significantly as seen in Figure 6.2b.

180000 T T T T T T T T T
i —%— APyota (Experiment: Cold water) |
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—O0— APmc (Experiment: Cold water)
——= APt po (current Cold water)
140000 sory.ro
—h— AP, (Experiment: Hot water)
120000 total
—®—Apnc (Experiment: Hot water)
w === APtheary,Po (current Hot water)
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Q
S | 4
80000
L —— AP (Cold) = -4748.64 + 30.735-G, [R2 = 0.998]
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40000+
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e I, o —— APmc (Hot) = 0.0418.(Gy, )25 [R2=0.96]
D 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1
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Figure 6.2b. Variation of Ap with respect to G, for Water flow in MCHX-1.

As can be seen in Figure 6.2, the theoretical fully developed laminar Ap deduced
from Poiseuille flow law (Equations 6.19) covered experimental data well. Expectedly
the theoretical Ap for cold and hot water flows exhibited linear increment with the
increase of both Re and G for the entire Re range tested. The experimental Apy,. however

increased linearly with Re only in the range 482 <Re <2013, for cold water and
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1310 <Re <2012 for hot water. The linear curve-fits within these ranges captured
current experimental data well, which can be seen from the R* values of 0.996 and 0.998
in Figures 6.2a and 6.2b respectively. It is noted here that the linear curve-fits correlated
current data better than power-law curve fits. At lower Re the experimental and
theoretical Ap curves are in-line and fell well within the experimental uncertainty. This is
because the flow gets fully developed faster at lower Re than at higher Re within the

laminar flow regime.

As compared to the theoretical Ap line for the cold water flow, there are two little
jumps rather than gradual shifts in experimental Ap. data at around Re =~ 700 and
Re = 1400. The reasons could be the change of pressure sensors from lower to higher
capacity range during the measurement at these moments. Although the experimental Ap
varied fairly linearly with Re, it however started deviating from the theoretical Ap line at
Re = 1200. It can be reiterated that the theoretical curves are based on the fully developed
flow for the entire flow length of current test slab. The flows were not fully developed
and there was hydrodynamic entrance length at each flow rate. Therefore the deviations

of experimental Ap from theoretical Ap line for Re > 1200 is sensible.

The variation of experimental Apy,. with Re is non-linear for higher Re range,
which visibly diverged from the theoretical Ap curve at about Re~ 2100 as seen in
Figure 6.2a for hot water flow. Past this point the curve difference (experimental to
theoretical) no longer falls within the experimental uncertainty nor within any data scatter

as seen by the red solid circular data points in Figure 6.2a. Rather than the linear curve-
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fit, the power-law curve-fit with an R? value of 0.96 correlated the experimental AP

data well within the experimental uncertainty.

Mala and Li [39] and Xiong and Chung [184] studied the water flow in
microchannels and found significant deviation of their Ap from the theoretical value even
in laminar flow regime. Mala and Li [39] observed the deviations at Re = 300-900 and as
the reasons they pointed on the early transition and the surface roughness effect even in
the laminar regime. Xiong and Chung [184] on the other hand observed this deviation at
about Re = 1500. They pointed to the improper accounting or not accounting for the
additional pressure losses as the reasons rather than the early transition. Although present
data showed very little qualitative similarity with their findings, the difference of current
data with the theory is not noticeable as their result. The reasons could be the use of little
higher diameter in current study than they used; and accounting for all possible losses in
the pressure loss calculation method than their process. The divergence of Ap—Re slope
from theoretical line at Re = 2100 may be an indication of laminar-to-turbulent flow

transition in current study, which is the general case for traditional pipe flow.

6.4.2 Flow friction in the test slab channel, f.,

Current experimental Darcy friction factor f;, and the theoretical Darcy flow
friction for fully developed laminar circular pipe flow (f=64/Re) are estimated from

Equations 6.18 and 2.15. They are portrayed with respect to Rey, in a log-log plot in
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Figure 6.3. As expected, the f linearly decreased with the increase of Re, which continued
up to about Re ~ 2100 showing a strong dependence on Re. The theoretical f line and

present data both are nearly parallel and overlapping in the range 480 < Re <2100.

109 | | | | [
] O (1) fep [Current Experiment, Water flow in MCHX-1]
T —(2) fiheory = 64/Regy, [validity: laminar fully developed traditional circular pipe flow up to Re = 2300]
1 o--- (3) fehurchin (1977) [validity: laminar, transition and turbulent flow for traditional pipe for any Re]
| (4) fBhatti,shan (1987) [validity: circular transitional pipe flow in the range 2100<Re<4000]
N —(5) fgjasius [Validity: fully developed turbulent flow in smooth circular pipe for 4000<Re<105]
_| === {(6) fpetukov (1970) [validity: fully developed turbulent flow in smooth circular pipe for 3000<Re<5x108
o5
1071
102 \ \ 1 |
3x102 5x102 103 Re 2x103 5x103
ch

Figure 6.3. Variation of channel side flow friction f, with respect to Re., for Water flow in MCHX-1.

As seen in Figure 6.3, there are two vertical shifts in data, one at around Re = 700
and the other at Re ~ 1400. As mentioned before, these shifts are at the locations where
the measuring pressure sensors were changed from lower to higher range as the flow rates
were increased. The pressure for entire Re range as tested in current study could be
measured using a single set of broad range pressure transducer, which could lead to a

higher measurement uncertainty. To avoid inaccuracy in data, several sensors were used.
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It appears that the current experimental f data in the range 480 < Re <2100 could
be predicted by the classical laminar flow theory. Again, the departure of f-Re curve
from the theoretical line for Re > 2100 is an indication of flow transition from laminar to
turbulent regime. Although Re ~ 2100 is a little lower than the conventional value of
Re. = 2300, it is however still within the neighborhood of experimental uncertainty.
Therefore current study concludes that the occurrence of flow transition and hence the

critical Re for water flow in 1 mm channel is similar to traditional laminar flow theory.

The experimental f data deviated from the classical laminar flow f curve for
Re > 2100 and showed independency or minimal dependency on Re, which continued for
rest of the Re range tested. The well known Blasius and Petukov expressions [5, 11, 53,
68] for Darcy f vs. Re correlations for traditional turbulent flow in smooth circular duct
(Equations 2.20 and 2.22) are compared with current data in Figure 6.3 in the range
3180 <Re <£3780. As seen in Figure 6.3, the above traditional turbulent correlations
compared current f data well. The experimental data and the turbulent theoretical
predictions have good agreements and they fall within the experimental uncertainty as
can be seen from the error bars. Current f-Re relationship in the turbulent regime suggests
that the classical turbulent correlations established for smooth circular tube can predict

the f-Re data well for the channel size tested in current study.

Correlations for transitional flow are limited in the open literature because of its

complex patterns. The transition flow regime in current study fell in the range of
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2100 < Re < 3100. Two available correlations, one proposed by Bhatti and Shah [63, 68]
given in Equation 2.18 and the other by Churchill [69] given in Equation 2.19 were
compared with current data in Figure 6.3. It is worth mentioning that a single correlation
proposed by Churchill [69] is valid for all laminar, transitional, and turbulent flow
regimes for any value of Re. The Bhatti and Shah [63, 68] correlation is only valid for
transition regime within the Re values of 2100 <Re <4000. As seen in Figure 6.3, the
Churchill correlation predicted current data very well for laminar and turbulent flows. In
transitional flow none of these two correlations captured current f data very well.
However taking the experimental uncertainty into account, the correlation by Bhatti and

Shah [63, 68] could compare majority of the experimental data in this range.

6.4.3 Effect of Re on Po in the test slab channel

The channel side Poiseuille number (Po = fRe) for current experimental data is
calculated by multiplying Equations 6.17 and 6.18. The theoretical Poiseuille number for
fully developed traditional laminar circular pipe flow (Po = fRe = 64) is estimated from
Equation 2.10. Both the experimental and theoretical Po are plotted against Re in
Figure 6.4. The experimental Po data exhibited the independency on Re in the range
480 < Re <2100, which is expected since the Po is supposedly to be geometry dependent
in laminar flow regime but not on the Re. In this range, the data points run almost parallel
and overlapped with the theoretical Po line. Within the experimental uncertainty, all the

data could be represented by the theoretical Po curve for Re <2100 as seen from the error
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bars. The mean experimental fRe in the range 480 < Re <2100 is found to be 67, which
is only about 5% higher than the theoretical value of 64. This higher value however

belongs to the experimental uncertainty band.
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O (1) Pogy = (f Re)e, [Current Experiment, Water flow in MCHX-1] B
220_— =(2) POgeory = 64 [validity: laminar fully developed traditional circular pipe flow up to Re =2300] -
200_— -~~~ (3) Pogy, [taking the fy, from Churchill (1977)] 6 .
5 122_— (4) Pog, [taking the T, from Bhatti & Shah (1987)] ( ) P .
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Figure 6.4. Variation of channel side Po., with respect to Re¢, for Water flow in MCHX-1.

As seen in Figure 6.4, the experimental Po remained almost the same in a
horizontal line for Re <2100 and then started deviating from the theoretical laminar Po
curve. The experimental Po curve then continued to increase with Re for the rest of the
Re range investigated. This phenomenon demonstrates the fRe dependency on Re for

Re > 2100, which can be explained by the onset of laminar to turbulent flow.
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Current Po data in the turbulent range are compared with theoretical Po by
extracting the f from the Balsius and Petukov correlations from Equations 2.20 and 2.22.
Within the range of 3180 <Re <3780, all the theoretical fRe increment with Re
compared current data well. Little scatters in data as seen in Figure 6.4 can be bound by
the experimental error bars. The theoretical Po calculated using Blasius relationship
confined the experimental data better than other theoretical curves. This is reasonable
since Blasius correlation is recommended for low Re turbulent flow, which is the case in
current study. The pattern of f-Re variation in current data confirms that the classical
turbulent correlations developed for traditional smooth circular duct can predict the water

flow in multi-port microchannel slab.

In the transitional regime of current data i.e. in 2100 < Re <3100, the Bhatti and
Shah [63, 68] and Churchill [69] correlations, which are explained above, are also
compared in Figure 6.4. As seen in Figure 6.3, the Churchill correlation predicted current
data very well for laminar and turbulent flows. In transitional flow none of the
correlations predicted current f data very well. Considering the experimental error bar, the
correlation by Bhatti and Shah [63, 68] could compare majority of the experimental data
in this range. Both the correlations however are comparable with current Po data in the

transitional regime.
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6.4.4 Conclusions on water flow in the test slab

Open literatures leave with varied opinions on fluid flow nature and the
applicability of traditional theory in microchannel flows. Better understanding of
frictional characteristics in various microchannel geometries and building the
experimental database are therefore important to optimize the design and application
tradeoffs between the pressure drop expense and the heat transfer duty. In this view, to
obtain and analyze the pressure drop and friction data, experiments are conducted in

multi-port straight microchannel slab on water flows in the range 480 < Re < 3800.

Water flow inside multi-port microchannel is investigated from laminar-to-
turbulent regimes in the range of 480 < Re < 3800. For the range of 480 < Re <2100, the
experimental Ap linearly increased with the increase of Re and agreed with the theoretical
Ap, which is estimated from Poiseuille flow-pressure relationship. The Ap however non-
linearly increased with the increase of Re for Re > 2100 evidencing the flow transition.
The macroscale laminar and turbulent correlations could predict current experimental
water flow friction data well within 480 < Re <2100 and 3100 < Re < 3780 respectively.
The Blasius classical turbulent correlation envisaged current water flow f data very well
in the range 3100 <Re <3800. The Bhatti and Shah [63, 68] and Churchill [69]
correlations could compare current data also in the transitional regime i.e. in

2100 <Re <3100, although the comparison is not as good as the laminar and turbulent
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flow regimes. Based on experimental uncertainty consideration, no evidence of early

transition for water flow in current test specimen is reported here.

Current study therefore confirms the validity of classical flow theory in multi-port
straight microchannel slab for the channel size and Re range investigated. The
experimental pressure drop data for multi-port MCHX-1 test slab are tabulated in
Table D1 in Appendix D. The present finding will be helpful to the research community
in this area and the obtained experimental data will be useful in the design of heat

exchanger using multi-port microchannel slab.
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6.5 Results and discussions on glycol-water mixture flow

The 50% ethylene glycol-water mixture flows in MCHX-2 were investigated in
developing laminar flow regime in the Reynolds number range of 346 < Re < 1637. A
maximum Re of 1637 was achieved for glycol-water flow at 64+1°C in this test specimen
with the current test set up. The detail uncertainty analysis associated with current study
was performed according to the procedures described in Chapter 5 in Section 5.6. The

estimated mean uncertainties of some key parameters are presented in Table 6.2 below.

Table 6.2. Mean experimental uncertainty in the study of glycol-water mixture flow
Parameters Mean uncertainty

Measured pressure drop, Ap,, , [Pa] +4.5 %
Measured total mass flow rate, M, , [kg/s] +1.75 %
Pressure drop in a channel in the test slab, Ap,,. , [Pa] +6.3 %
Reynolds number in a channel in the test slab, Regp +5.8 %
Friction factor in a channel in the test slab, f., +11 %
Poiseuille number in a channel in test slab, Po., = (fRe).n +13 %

Same procedure as water flow was followed to determine the fully developed or

developing status of the flow. The hydrodynamic entrance length was calculated for each
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flow rate using Equations 2.16 and 2.25. The straight part of the test slab is 343 mm long.
At the lowest flow rate i.e. at Re = 346, the hydrodynamic entrance length was found to
be 20 mm, which occupied about 6% of the total slab length. The flow then gained fully
developed status for the rest of the 323 mm length along the flow path and exited at the
exit manifold. For the highest flow rate i.e. at Re = 1637, the flow was still developing

along the entrance region of the test slab, with a hydrodynamic entrance length of 92 mm.

It was observed that none of the flows was hydrodynamically fully developed
before approaching the test slab channels. This is because of 90-degree flow turn in the
inlet manifold as discussed above in water flow section. The flow developing loss
coefficient K, obtained from Equation 2.17a was therefore considered in Equation 6.11.

All the flows however exited from the channels with fully developed status.

6.5.1 Pressure drop in the test slab core, APy

As mentioned before, the channel side measured pressure drops were corrected
using Equations 6.1 through 6.16. Within the investigated range of 346 < Re < 1637, the
pressure drop for hot glycol-water mixture flow per unit channel length Apme/Lmc varied
from 17 to 138 kPa/m. The measured Api and corrected App, are plotted against Regy
and G, in Figures 6.5a and 6.5b respectively with uncertainty error bars. For comparison
the theoretical pressure drops calculated from Equations 6.19 are also plotted in these

figures. As expected, the Ap in general increased with the increase of both Re and G.
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Figure 6.5a. Variation of Ap with respect to Re, for Glycol-water mixture flow in MCHX-2.

For all the data points in the investigated Re range, the measured total pressure
drops varied non-linearly with Re, which probably because of the presence of other losses
in it. There are some data scatters seen in the figure, which could be due to some flow
and temperature fluctuations during the experiments. Although the experiments were
conducted in a well insulated sealed test section without any heat transfer, still some 0.3
to 1.2% temperature rise in experimental periods was observed at the channel exit
compared to the inlet. The fluid property in the channel segment was evaluated at bulk

mean temperature assuming a linear temperature variation from the inlet to the exit. The
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linear temperature variation may not be the case always, which to some extent could have
supplemented to this data scatter via fluid viscosity variation. Credited to the property,
the hotter fluid bids less pressure drop than a colder one for the same Re orm . Owing to
the sensitivity of viscosity, a little instability or rise in glycol-water mixture temperature
can cause both the Ap and the Re to vary even for the same m and hence can result in
data scatter. As seen in Figure 6.5b, the plotting of Ap with respect to G has helped

collapsing the scatters and reducing the horizontal variation significantly.
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Figure 6.5b. Variation of total and channel side Ap with respect to mass velocity G, for Glycol-

water mixture flow in MCHX-2.

PhD Dissertation Mesbah G. Khan; Mechanical, Auto. and Materials Engineering, University of Windsor, ON Canada Page no. 264



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

60000 . ‘ . T ' \ ' . | | |

55000__ © AP (Experimental data: Glycol-water flow)

= — AP =-5344.71 + 28.93-Re, [Linear curve-fit: R? = 0.954] -

50000
=== AP theory,Po [cUrrent Glycol-water flow]

T
- A -
45000+ a o 4

|| 4 AP, (data: 1/4th of the Total measured pressure drop) 7
40000 —A— AP, =-10225.7 + 30.41-Re, [Linear curve-fit: RZ= 0.95] A

35000+

300004

Ap [Pa]

250004

20000+

15000

10000+

50004

0 I T I T T T I T I T I T
200 400 600 800 1000 1200 1400 1600 1800

Rec h

Figure 6.5c. Variation of channel side (core) Ap with respect to Re, for Glycol-water mixture

flow in MCHX-2.

For better visibility, only the channel side experimental and theoretical pressure
drops are presented against Re in Figure 6.5c. As can be seen in Figures 6.5a, 6.5b, and
6.5c the theoretical fully developed laminar Ap deduced from Poiseuille flow law
(Equations 6.19) compared experimental data well. Expectedly both the theoretical and
experimental Ap showed linear increment with the increase of both Re and G for the
entire Re range tested. The experimental Apn,. data was better correlated by a linear
curve-fit than other fits with the R* values of 0.95 and 0.97 in Figures 6.5a and 6.5b

respectively. Around relatively lower Re range the experimental and theoretical Ap
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curves are fairly in-line and fell well within the experimental uncertainty as seen from the
error bars. This is because of the reason that the flow develops faster at lower Re than at

higher Re in the laminar flow regime.

Although the experimental Ap varied fairly linearly with Re, it however slightly is
deviated from the theoretical Ap line at around Re ~ 800. It is worth noting here that the
theoretical curve is based on the fully developed flow for the entire flow length of current
test slab. As mentioned before, the experimental flows were not fully developed and there
were some hydrodynamic entrance length at each flow rate. Therefore this slight
deviation of experimental Ap from the theoretical Ap line at Re = 800 is reasonable. The
variation of experimental Ap data with Re is somewhat non-linear for higher Re range,
which visibly started departing from the theoretical Ap line at about Re ~ 1300 as seen in
Figure 6.5. Beyond this point the curve difference (experimental to theoretical) no longer

falls within the experimental uncertainty or within any data scatter.

As mentioned in water flow section above, Mala and Li [39] observed the
deviations at Re = 300-900 for their water flow in microchannels. They defined the
reasons to be due to early transition and the surface roughness effect even in the laminar
regime [39]. Xiong and Chung [184] on the other hand observed similar deviation at
about Re = 1500. According to them this deviation is not because of early transition,
rather it is due not to properly account for the additional pressure losses at the entrance
region. Current investigation did not span over the entire laminar Re range. Therefore the

conclusion on the divergence of the Ap—Re slope from the theoretical line at about
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Re 1300 is not proper to make. It may be an indication of laminar-to-turbulent flow
transition in current glycol-water mixture study in narrow channel or may still be within

the experimental error and variations.

Attempts were also made to examine whether the channel side core pressure drop
has any direct relationship such as any arithmetic multiple with the total measured
pressure drop. Various multiplication factors are verified and one-fourth of the total
measured pressure drop seems like compare the channel side pressure drop closer, which
is plotted and curve-fitted in Figure 6.5c. It is seen that the 0.25Apt. data underestimated
the channel side pressure drop, which on average is about 27% lower than the
experimental App. calculated from Equation 6.1. Nevertheless, the pressure drop
relationship for current test specimen proposed by Equation 6.20 below will provide a
rough estimate that can be a guideline prior to conducting similar pressure drop

experiments.

Ap,.. = 0.25Ap,..., (approximately 28% lower estimate than actual) . (6.20)

6.5.2 Flow friction in the test slab channel, f,

The experimental and theoretical Darcy friction factors are estimated from

Equations 6.18 and 2.15 and are plotted with respect to Res, in a log-log plot in
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Figure 6.6. As expected, the f linearly decreased with the increase of Re. This decrease of
f continued up to Rex 1300 showing a strong dependence on Re. Within the
experimental uncertainty, with some rises and falls, present data fairly overlap the
traditional theoretical f line up to the range of 346 < Re < 1300. This suggests that current

experimental f data could be predicted by the classical laminar flow theory for Re < 1300.
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=
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Figure 6.6. Variation of channel side flow friction f, with respect to Re¢, for Glycol-water

mixture flow in MCHX-2.

As seen in Figure 6.6, current f data started deviating from the theoretical line for

Re > 1300 and none of the data shows any falls to become overlapping with the
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theoretical line. This departure could be a message of flow transition from laminar to
turbulent regime anytime for Re > 1300. It could also be any other different phenomena
other than the experimental uncertainty. Further study on glycol-water flow in current test

specimen in the range of 1300 < Re <2300 will help concluding on this deviation.

6.5.3 Effect of Re on Po in the test slab channel

Calculated from Equations 6.17, 6.18 and 2.10, the experimental and theoretical
Poiseuille numbers (Po = fRe) are plotted against Re in Figure 6.7. As mentioned before,
the Po in traditional fully developed laminar pipe flow is usually dependent on flow
passage geometry but independent of Re. Expectedly the experimental Po data in
Figure 6.7 exhibited the independency on Re in the range 346 < Re < 1300. In this range
the data points ran almost parallel and overlapped with the theoretical Po curve.
Therefore all the data in this range are covered by the theoretical Po line. There are some
variations in data, which are well bound by the experimental error bars. The mean
experimental fRe is found to be 67 for the entire investigated range of 346 < Re < 1637,
which is 4.7% higher than the theoretical value of 64. The average experimental fRe in
the range 346 < Re < 1637 is found to be 64.5, which is similar to the theoretical value of
64. This suggests that the experimental data within 346 < Re < 1300 should predicted by

classical laminar flow theory.
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Figure 6.7. Variation of channel side Poiseuille number Po¢, with respect to Re., for Glycol-

water mixture flow in MCHX-2.

As seen in Figure 6.7, the experimental Po leaves sign of departing from the
theoretical Po line for Re = 1300. The Po curve then continued to increase with Re for the
rest of the Re range investigated i.e. showing some dependency of Po on Re. The mean
experimental fRe in the range 1300 < Re < 1637 is calculated to be 76.2, which is about
20% higher than the theoretical value of 64. The deviation tendency of current data at
Re > 1300 could be a hint to flow transition anytime sooner or due to some other reasons,

which further study in the range of 1300 < Re < 2300 can help to answer.
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6.5.4 Conclusions on glycol-water flow in the test slab

Microchannel flow passages have attracted significant research attention in fluid
flow and heat transfer areas because of their enhanced characteristics as compared to
larger sized tubes. As mentioned before, open literatures on small diameter tube flows
reported differing opinions on the applicability of macro-scale correlations in narrow
channel flows. Better understanding of frictional characteristics in narrow geometries and
building the experimental database are therefore important to optimize the design and

application tradeoffs between the pressure drop expense and the heat transfer duty.

The ethylene glycol-water mixture is a commercially very important fluid
encountered in many heating and cooling applications. Research data on ethylene glycol-
water mixture flows in multi-port test slab in general and in developing laminar flow in
particular are not available in the open literature. Therefore, experiments were conducted
on 50% ethylene glycol-water mixture flows in multi-port straight microchannel slab in
developing laminar flow in the range 346 < Re < 1637 in order to obtain and analyze the

pressure drop and friction data.

Expectedly the pressure drop increased with the increase of Re. The Ap fairly
linearly varied with Re in the range 346 < Re < 1300 and agreed with the theoretical Ap,
which is estimated from Poiseuille flow-pressure relationship. In this range the traditional

macro-scale correlation could predict present Ap, f and Po data well. The glycol-water

PhD Dissertation Mesbah G. Khan; Mechanical, Auto. and Materials Engineering, University of Windsor, ON Canada Page no. 271



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

mixture flow did not show any sign of early transition in the range 346 < Re < 1300.
However, it left with signs of departure from the theoretical line for Re > 1300. This
deviation tendency could an indication of flow transition or could be a result of little
larger experimental error beyond Re = 1300. Any conclusion on this phenomenon cannot
be drawn without further flow investigation in the higher range of Re that spans through

laminar and transition regimes.

Present results confirm that the traditional macro-scale flow theory should be
applicable for glycol-water flow in 1 mm multi-port straight microchannel in the range of
346 < Re < 1300. The experimental pressure drop data for multi-port MCHX-2 test slab
are tabulated in Table D2 in Appendix D. Present finding, which has been documented
through peer reviewed publication [231], will be beneficial to the research community in
this area,. The obtained experimental data will be useful in the design of heat exchanger

using multi-port microchannel slab for glycol-water mixture as the working fluid.
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CHAPTER - 7

HEAT TRANSFER AND PRESSURE DROP

CHARACTERISTICS OF WATER FLOW IN 2-PASS

MULTI-PORT SERPENTINE MICROCHANNEL SLAB

HEAT EXCHANGER
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7.0 HEAT TRANSFER AND PRESSURE DROP CHARACTERISTICS OF
ETHYLENE GLYCOL-WATER MIXTURE FLOW IN 2-PASS MULTI-

PORT SERPENTINE MICROCHANNEL SLAB HEAT EXCHANGER

The principal focus of current research is the investigation of heat transfer and
pressure drop characteristics of glycol-water mixture flow in multi-port slab serpentine
microchannel heat exchanger, which is described in Chapter-8. An experimental facility
was developed in current study that needed to be commissioned and tested. Since the
glycol-water mixture fluid is expensive and hazardous in handling, the functionality
check of the test setup and the preparatory experiments were conducted using water. The
preparatory experiments were conducted with water for acquiring better understanding on
the test setup for next experiments on glycol-water mixture as well as for comparing the

data with glycol-water mixture results.

Water being the fundamental heat transfer fluid is used in a number of practical
heat exchangers. Heat exchangers with multi-port configurations have many applications.
Literature review revealed that research on multi-port parallel narrow channels having
serpentine bend is rare. While works on large diameter developing laminar pipe flow are
available, such studies in narrow channels with serpentine bend are scarce. Study of water
flow in simultaneously developing laminar regime in applied core geometry is limited in
the open literature. Therefore the experiments have been conducted on water flow in

multi-port parallel microchannel test slab (MCHX-4) in 2-pass flow configurations with
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U-type serpentine bend to serve two purposes. The experimental descriptions and the

pressure drop and heat transfer results of the water flow are presented in this chapter.

7.1 Methods of experiments and measurements

The details of the experimental facility instrumentation and calibration, and the
test procedures in general are provided in Chapter 4. The schematics of the test facility
are given in Figures 4.1, B1, and B5. The design details and specifications of MCHX-4
test specimen are provided in Figures 4.3, 4.4d and B2.4 and in Table 4.1 and 4.2.

Figures 4.5 and 7.1 show the position of the test specimen and the directions fluid flow.

The MCHX-4 Test Specimen

is housed in Test Chamber Air Inlet
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Details of this cross-section M-M is shown
as Front view in Figure B2.4 (Appendix-B2)

Figure 7.1a. Schematic of test chamber with MCHX-4 test specimen
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Figure 7.1b. Test specimen MCHX-4 housed in test chamber (Photo before insulation is made)

As seen in Figures 7.2, 4.4d, B2.4, and B8.4a, the 2-pass MCHX-4 test specimen
has two slabs (top & bottom) forming U-shape via a continuous serpentine. The 366 mm
straight length of the top slab runs from inside the inlet manifold through the entrance of
the serpentine bend. The 343 mm straight length of the bottom slab starts at the exit of the
serpentine bend and runs up to the inside of the exit manifold. These are the straight part
of the hydrodynamic flow lengths of top and bottom slabs. The serpentine U-bend (semi-
circular) has a mean diameter of 22 mm, which gives a circumferential flow length of
about 34.5 mm. The effective heat transfer length for each of the top and bottom slabs is

304.8 mm, which remains inside the test chamber. Whether the flow is developed or

PhD Dissertation Mesbah G. Khan; Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 276



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

developing before entering the straight parts of the channels was estimated from the

magnitude of hydrodynamic entrance lengths by using Equations 2.16 and 2.25.

As shown in Figure 7.1, the hot liquid (here water) flow entered the inlet at ‘A’
and took a 90-degree flow turn to the left at the inlet manifold. From exit manifold the
stream distributed through all the 68 channels and flowed towards positive X-direction.
After the first pass, the liquid flow reversed by taking U-turn around the serpentine bend
and again flowed back through the channels in negative X-direction in 2™ pass. At the
exit manifold the liquid streams combined together and exited at ‘B’. The wind tunnel
cold air on the other hand flowed inside the test chamber across the test specimen along
positive Z-direction. The heat transfer took place between the liquid and the air within the

effective heat transfer section in the test chamber (see Figure B2.4a).

The parameters that were necessary to measure in these experiments are the flow
rate and inlet and exit temperatures of liquid flow; velocity and inlet and exit
temperatures of air flow; and the surface temperature of the test specimen. As seen in
Figure 7.1b, the RTD1 and RTD2 were used to measure the inlet and exit temperatures of
the flowing liquid. The inlet and exit flow pressures of the liquid were measured with
PTDI and PTD2. The flow rate of the liquid was measured using an electronic digital
flow meter (section 4, Figure 4.11) installed upstream of RTD1 location. The inlet and
exit temperatures of air flow were measured using the inlet and exit thermal measurement
grids, which are described in section 4.3.2 and Figure 4.8. As described in section 4.5.4 in

Figures 4.16 through 4.19 and B7.1, a Pitot static probe in combination with airside
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differential pressure transducer (PTDD) and FKT series duct calibrator manometer was

used to measure the air velocity inside the test chamber.

The surface temperatures of the MCHX-4 test slab were measured using 48
calibrated thermocouples. They were affixed at 4 major and 2 minor positions along the
liquid flow (X-direction). For each of the major positions at liquid side, 8§ to 10
thermocouples were placed along the air flow (Z-direction) as shown in Figure B8.4. Due
to the presence of the airside fins, all the thermocouples were placed on the un-finned
exposed surface of the test slab, which are just outside of the test chamber. The test
chamber and the surroundings were well insulated in such a way that these
thermocouples were virtually measuring within the adiabatic (no heat transfer) zone. The
major positions mentioned here are the locations immediate before and after the effective

heat transfer section including the adiabatic serpentine zone.

All the measurements were taken at steady state condition, which for current
study, is explained in section 4.7. The data were monitored and recorded into a DAQ
system. The descriptions of the DAQ are provided in section 4.6 via Figures 4.20 and B4
and the data sampling methods are discussed in section 4.7. According to Equation 4.12,
the time averaged mean data set was acquired for each of the parameter and stored for

post processing and analyses.
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7.2  Treatment and separation of pressure losses in the test slab

As seen in the literature review, improper considerations and under or over
estimation of various pressure losses and ignoring some minor losses in narrow channels
heat exchangers may lead to very differing results. A comprehensive pressure balance is
necessary in such heat exchanger. The test specimen used in current study is viewed as
typical thermal heat exchanger. The pressure drop separation in this type of heat
exchanger is therefore not straight forward as it is for the large diameter pipe. Many
minor losses are neglected in large size pipe flow because of their fewer magnitudes as
compared to the other loss areas. These minor losses are however important to consider

when dealing with pressure drop in heat exchangers having narrow channels flow.

The locations of the temperature and pressure sensors, segment-wise pressure
drops route for current test specimen and the procedure for pressure balancing are
described below via Figure 7.2. A comprehensive pressure balance model is formulated
for the test specimens MCHX-1 and MCHX-2, which is described in section 6.1 via
Figure 6.1 and Equations 6.2 through 6.16 above. The same model and Equations are
applied to isolate the pressure drop in MCHX-4 except for the addition of serpentine bend
loss and another straight multi-port slab at the bottom. The pressure balance model for

MCHX-4 is given by Equation 7.1 and described below.

PhD Dissertation Mesbah G. Khan; Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 279



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

i (5) Apuc (Top Slab) (4) Apumc-c
L e Sk,
P 1 E——
[ v 1
[ — «—— &
e MCHX-4 <« 4
} <«——— (Top Slab, 1t Pass) +—— *Jlr - (3) Apim
I - «———
- p—l
(2) Apimt-e “‘
]| Liquid
1 (1) AIJim
- (6) Apserp—bend
(7) Apme (E}\ottom Slab) 8) éplnt—e
I,;-— i S
| — — *+
I —_— MCHX-4 —_— *T
: ——> (Bottom Slab, 2™ Pass) ——> :I 2 (9) APen
| E— - |
L — —
(10) A}’emt—c "'{. ’
Liquid P
Exit (11) Apemt

Figure 7.2. Segment-wise pressure losses from inlet to exit flow route of MCHX-4.

Aptotal =P P,

= Apimt + Apimt—e + Apim + Apmc—c, top + Apmc—top + Apserp—bend +
1 @) €) &) ®) (6) (7.1)

Apmc-bottom + Apmvz-e, bottom + Apem + Apemt-c + Apemt
—_— — — ——
@) ®) ©) (10) 1)

Some K-loss factors for turbulent flow U-bends are available [5] and some are

available for U-bends connected with fittings such as via flanges, threads etc. [59]. The
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serpentine U-bend in current test specimen is not connected to any fittings (it is
continuous with the multi-port slabs) and the flow in current study is not turbulent either.
The method of pressure drop consideration for the U-type serpentine bend in laminar
developing flow, as is the case in present study, is not widely available. Therefore the
pressure drop for serpentine U-bend was estimated from a relationship presented in a
comprehensive source by Idelchick [60]. The smooth bend of circular cross-section is a
function of Re, bend radius-to-channel diameter ratio, and the angle of the flow, which

for current situation is given by Equation 7.2 below.

Apserp—bend Rsp
serp-bend T W =0.017540 Dch 5 (72)
2

where 0 is the turn angle and A = I(Re, R% j The above relationship is valid for
ch

K

R
% >3 and %) >10, which are the cases in current study since the MCHX-4 has
ch ch

. R .
these ratios as % =11 and %) =343 respectively.
ch ch

The factor A has different functional relationships depending on Re and D/R ratio.

Since current test conditions, both for water and glycol-water mixture flows, fall within

the range of 50 < Re /D% R < 600, the factor A could be defined by Equation 7.3.
sp

20 D 0.175

— ch

RS {FJ 7
Sp
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The K-loss factor for serpentine U-bend in current experiments takes the following form.

K

serp-ben

0.825
L =71.125 (—Pj Re 065 (7.4)

ch

7.3 Results and discussions on water flow

In the experiments the inlet temperature of hot water was maintained at 76+0.3°C
and the flow rate was varied five steps in the Reynolds number range from 850 to 2250.
The temperature and velocity of cold wind tunnel airflow at the inlet to the test chamber
was kept constant at 14.0+£0.1°C and 4.5+0.1 m/s for all five water flow rate steps. At
each flow rate the TAMDS of about 5000 to 6000 steady state samples were recorded for
analysis for which the mean uncertainties of some key parameters are listed in Table 7.1.

The analyses were carried out according to the procedures described in Section 5.6.

Table 7.1. Mean experimental uncertainty in the study of water flow
Parameters Mean uncertainty

Measured pressure drop, Ap,,, ., [Pa] +5.7 %

Measured total mass flow rate, m,,, [kg/s] +1.65 %

Reynolds number in a channel in test slab, Regp, +5.7 %

Heat transfer rate, gy, [W] +4.8 %
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Dehghandokht, Mesbah and co-workers (2011) numerically simulated current test
specimen with same geometry and same experimental operating conditions [232]. They
compared the numerical results with current experimental data set. The numerical model

compared current data very good and the experimental findings were reflected well.
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Figure 7.3. Flow distribution of water through all the channels in MCHX-4 test slab.
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Figure 7.4. Channel number designation along flow directions.
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The system liquid mass flow rate was well distributed through all the channels in
the test slab from the inlet manifold as can be seen in from Figure 7.3 [232]. This justifies
the assumption of equal and uniform flow distributions in all the channels. The flow

directions and the channel number designations for Figure 7.3 is illustrated in Figure 7.4.

The maximum and minimum hydrodynamic entrance lengths were found to be
48 mm and 125 mm at Re., = 850 and 2200 respectively; occupying 13% to 33% of the
test slab length. This indicated that no flow step was fully developed before approaching
the channels. The maximum and minimum hydrodynamic entrance lengths are shorter
than the straight flow length of the top slab, which signifies that all the flow steps exited
from the top slab and entered the serpentine bend with fully developed status. Due to the
flow reversal, the flow may gain developing status again at the exit of the serpentine bend

i.e. at the entrance of the straight part of the bottom slab, which will be discussed next.

7.3.1 Total, core and segment-wise pressure drops

The pressure drops in the core of MCHX-4 i.e. in the straight parts of top and
bottom slabs were isolated from the measured total pressure drop as per Figure 7.2 and
Equations 6.1 to 6.16 and 7.1 to 7.4. In order to compare the experimental data, the
pressure drop in the core of current test slab was isolated according to Kasagi et al.[233]

one-third approximation and Jokar et al. [200] estimation. Jokar et al. [200] deducted the
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manifold pressure losses from the total measured pressure drop to extract the core loss.
The theoretical Ap for fully developed conventional laminar pipe flow for current test
conditions was deduced from Equation 6.19. The measured total pressure drop Apiotar 1S
plotted with respect to Res, in Figure 7.5. All the experimental, approximated, and
theoretical core pressure drops, the separated segment-wise pressure drops for the inlet

and exit manifolds and for the serpentine bend are also plotted.

40 T ‘ T l T l T l T l T l T T T
X (1) Aptotal [Experimentally measured data: Water flow] |
35 ® (2) APmc [Current MCHX-4 core Ap - isolated from all losses]
| =(3) APtheory,po Current MCHX-4 core Ap - Conventional Poiseuille Flow theory]
’ X
|~ (4) APJokar,estimate [CUrrent MCHX-4 core Ap - Jokar et al. (2010) estimates] 1
304 L-(5) APKasagi,approx [Current MCHX-4 core Ap - Kasagi et al. (2003) approximation]
| —#(6) APmanifolds [CUrrent MCHX-4 manifold Ap - isolated from all losses] |
25 —O-(7) APserpen [Current MCHX-4 serpentine Ap - isolated from all losses]
= 25
o | ===(2) APmec = -2.82{r +0.0057-Rep, [Curve-fit of Current data] i
3 20
154
10+
5
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Figure 7.5. Variation of Ap with respect to channel side Re., for Water flow in MCHX-4.

The Apiwta nearly linearly increased with the increase of Re. All other pressure

losses linearly increased with the increase of Re as expected. The theoretical pressure
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drop, estimated from Poiseuille flow law for conventional pipe, is shown as in solid line
(#3). If all the losses are properly taken into account, current core pressure drop could be
compared with theoretical line, which is the case in here. The core pressure drop was
isolated using the pressure balance model formulated above. The first data point is
somewhat off the comparison, which might have happened in the process of data
handling or due to some experimental error. There are some variations between the
theoretical line and the other experimental data points. These variations can be explained
by: the experimental uncertainty and the difference between an already fully developed

flow (theoretical) and a calculated fully developed flow by deducting coupled losses.

The method used by Jokar et al. [200] could not predict the core pressure drop for
current test specimen. This is because deducting only the manifolds’ pressure losses from
the total measured pressure drop is not sufficient to get the core pressure drop; other
possible losses must be taken into proper account. Kasagi et al. [233] approximation did
not compare theoretical Ap very well at the lowest and highest data points. It however
estimated current core pressure drop closer, which is much better than Jokar et al. [200].
Within the experimental uncertainty it however compared theoretical Ap for the

intermediate data points, as can be seen in Figure 7.5.

The slope of Kasagi et al. [233] and current core Ap line are steeper than the
theoretical Ap line. This can be explained that the theoretical line is based only on fully

developed laminar flow in conventional pipe that excludes any other losses. Whereas

current case is a developing laminar flow that includes all the losses for fittings, bends,
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manifolds, flow areas changes etc., which have been excluded from measured pressure
drop by using a pressure balance model. This little difference is reasonable as can be seen

further from a numerical comparison.

The pressure drops in the inlet and exit manifolds and in the serpentine bend are
isolated using the same pressure model as formulated above in section 6.1. The core
pressure drop in the straight part of the top and bottom slabs is the highest, which is due
to flow friction. This study showed that the second highest areas of pressure losses are the
inlet and exit manifold together. The lowest pressure loss occurred in the serpentine bend.
The serpentine portion has less pressure drop than the manifolds and it helps mixing of
fluid streams inside bend and also creates second flow developing effect at the entrance

of the bottom slab. All these effects are beneficial for heat transfer in a heat exchanger.

Figure 7.6 compared the experimentally measured and the numerically simulated
APiotar Tesults with respect to Re [232]. As usual the Apyar increased as the Re increased.
Both the experimental and numerical Apy compared very well within an average
percentile difference of 6.2% respectively. The model isolated the total pressure drops
into three segments (as seen in Figure 7.7). The results show that the highest pressure
drop occur along the straight flow paths (top and bottom slabs), which is due to the flow
friction and the lowest around the serpentine bend due to the flow reversal. The inlet and
exit manifolds have the next highest pressure drops, which probably because of the
complex manifold geometry and 90-degree flow turns. The numerical results are well

inline with the findings of current study as can be seen in Figures 7.5, 7.6, and 7.7.
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Figure 7.6. Variation of water flow Ap with Re¢, (Experimental & numerical comparisons) [232]
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Figure 7.7. Variation of water flow Ap with Re¢, (Segment-wise Numerical results) [232]

PhD Dissertation

Mesbah G. Khan; Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada

Page no. 288



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

7.3.2 Heat transfer characteristics

From the measured values of the fundamental parameters, the waterside and
airside heat transfer rates, gy, and g, were deduced using Equations 4.13a and 4.13b. The
heat balance between two fluids was performed using Equation 4.14b. The percentile
difference of heat transfer rates between two fluids were quite well within the ASME
PTC-30 [216] recommended limit of 15%. The waterside inlet to exit temperature

differences ATy, and the heat rates gy are plotted against Re,, in Figure 7.8.
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Figure 7.8. Variations of water flow ¢ and AT with respect to channel side Reg,.
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Expectedly the AT,, decreased with the increase of Re. The airside and waterside
inlet temperatures were maintained constant. As a result the exit temperature of water
flow was driven by the heat transfer mechanism. At lower flow rate and hence at the
lower Re the fluid residence time inside the channel is more than what is at higher Re.
This dictates the fluid to loose more temperature at lower Re than at higher Re. Therefore
the exit temperature is lower at lower Re and higher at higher Re causing the inlet-to-exit
temperature difference to be higher at lower Re and lower at higher Re. The ATy, and Re
relationship in current data can be described well by exponential variation with the
goodness of curve-fit coefficient of R* = 0.99 (Figure 7.8). The measured and the
numerically obtained water flow exit temperatures compared very well with the
maximum and minimum deviations of only 2.7% and 0.52% [232]. The deviation is
higher at lower Re and decreases as the Re increases, which can be explained that the
experimental uncertainty in exit temperature measurement is higher at lower temperature

driven by the lower Re.

As seen in Figure 7.8, the gy, on the other hand increased with the increase of Re
and vice versa, which is also expected. It is known fact that the increase of Re generally
increases the (. This can be explained that the decrease of AT,, with the increase of Re is
adjusted by the increase of mass flow rate in a way that the q increases with the increase
of Re. The variation of gy, with Re in current data could be defined by the power law
curve-fit, which shows best curve-fit coefficient of R* = 0.92 than other curve-fits. All the

gw data in the investigated range were captured by this curve-fit line well within the
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experimental uncertainty. Good agreement was observed in comparing current g,, data

with the numerically obtained q,, results within 7% variation [232].

The measurement of surface temperature for a finned heat exchanger that

represents the mean surface temperature is very difficult and not common task. In current

study this task was performed by making the inlet, serpentine bend, and the exit portions

of the test specimen as zones of no heat transfer (adiabatic) where the probes were placed

to measure the surface temperature (described above with illustration). This measurement

represented the mean surface temperature very well as seen in Figure 7.9 from the

comparison of measured data with numerically obtained results [232]. The maximum

deviation between measured data and numerical result was only 0.60%.
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Figure 7.9. Variations of surface temperature with Re¢, (Measured data & Numerical results).
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From the experimentally measured parameters, the waterside Nusselt number,
Nuy, was deduced using Equations 5.11, 5.28, and 5.30. The Nu,, is plotted against Re., in
Figure 7.10. The fully developed laminar Nu for conventional pipe flow, at both T and H
boundary conditions, are also charted in Figure 7.10. The experimental Nu increased with

the increase of Re showing dependency on Re.

15—{ —®-Nu,, [Current Experiment: Simaltaneously developing Laminar flow @T,, 4 = Constant]
14__—NuFD!|_amm [Theory: Nu = 3.66 for Fully developed Laminar flow @ Tygy = Constant]

L —=Nugp | amn) [Theory: Nu = 4.36 for Fully developed Laminar flow @dg; = Constant]
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Figure 7.10. Variations of experimental Nu,, with respect to Re., for Water flow in MCHX-4.

The experimental Nu showed higher values than the fully developed Nu values.
This is expected since of the flow steps were neither hydrodynamically nor thermally
fully developed before entering the straight flow path of the channels. And the variation
of Nu with Re in developing flow should be higher and proven to follow the trend of
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Equation 2.12¢. All the flow steps however became developed before exiting from the
test slabs. It is known fact the Nu is higher in simultaneously developing flow than in

hydrodynamically developed but thermally developing flow.
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Figure 7.11. Variation of entrance lengths, Ln, & Ly, With respect to Reg, in current experiments.

(a) Straight flow path of 1% pass (Top slab), and (b) Straight flow path of 2 pass (Bottom slab)
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The flow steps in current study could be described as simultaneously developing
flow, as shown in Figure 7.11. Since the entrance length correlation for microchannel
flow is not available, the lengths were estimated from conventional correlations for large
diameter pipes using Equations 2.16a and 2.29a. As seen in Figure 7.11, the countable

portions of the flows were in the developing zone that caused increased the heat transfer.

The heat transfer is affected by the thermal boundary conditions for flows that are
not developed and therefore in addition on Re the Nu also depends on the Prandtl number
Pr. The Nu as a function of both Re and Pr are plotted in Figure 7.12. The variation

followed a power law relationship with a curve-fit goodness coefficient of R* = 0.97.
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Figure 7.12. Comparison of Nuy, = f(Reg, Pry); Experimental result & available correlations
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Some commonly used heat transfer correlations for conventional developing
laminar pipe flow are also compared in Figure 7.12. The experimental Nu was
significantly higher and none of the correlations could compare current data. The
correlations compared in Figure 7.12 were developed with the assumption that the flow is
already hydrodynamically developed before entering the heat transfer section. The
correlation proposed by Edwards et al. seen by number (4) in Figure 7.12 (Equation 2.34)

is recommended to be valid also for simultaneously developing flow [11, 75].

The reasons for higher Nu in current study than conventional correlations could
be that the compared correlations themselves since they were not for simultaneously
developing flow. The reason could also be that the correlations were developed by taking
only one flow developing effect into account for the stream-wise straight flow, which was
caused by the flow inlet condition. Whereas two flow developing effects, one at the
entrance of each test slab, exist in current study for the same chunk of fluid flow. First
developing effect is caused by 90-degree flow turn and area change in the inlet manifold
of the top slab and the second and new flow developing effect occurs at the entrance of

the bottom slab, which is formed by the presence of serpentine bend.

The adiabatic serpentine segment can be viewed in Figures B2.4a and 2.4c. The
presence of this serpentine U-bend at the exit of 1% slab (top slab) and at the entrance of
2" slab (bottom slab) enhances heat transfer in the test section. Upon exchanging heat
and hence loosing the temperature, the fully developed fluid streams from the 1% pass

(top slab) enter the serpentine bend. The near wall fluid elements loose more temperature
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than the centerline fluid particles. For fully developed flow, the centerline fluid particles
are the fast moving and the near wall elements are the least moving ones. Inside the
serpentine bend the relatively hotter centerline fluid elements move outward to the outer
wall of the bend due to centrifugal action, which results in secondary flow pattern. The
secondary flow causes the relatively colder least moving fluid particles from the near
wall to move toward the centerline and the inner wall of the bend. Therefore all the fluid

particles get agitated and well mixed inside the serpentine.

Since no heat transfer occurs around this serpentine, the well mixed fluid particles
further exchange heat in the 2 pass (bottom slab) inside test section. The fluid mixing
itself results in increased heat transfer. Due to the presence of U-serpentine new entrance
region is formed at the beginning of the 2nd pass (bottom slab). This new entrance region
causes the flow to be further simultaneously developing as it passes. The extra heat
transfer enhancement acquired in current study could have been attributed to these two
effects, which are absent in the compared correlations. The higher Nu in current study as
compared to the conventional correlations is therefore reasonable and quite expected. A
Nuy = f(Ree, Pry) correlation for simultaneously developing laminar water flow in
circular channels is developed in current study as presented by Equation 7.5. The
correlation developed for the investigated range 850 < Re <2200 is expected to be useful

in the design of heat exchanger with geometric configuration similar to current study.

1
Nu,, =0.30.Re%4?? Prvé ;850 <Re<2200. (7.5)
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7.4 Conclusions on water flow

The necessity and importance for thermo-hydraulic studies of liquid flow in an
applied geometry in the developing laminar flow regime is described in the literature
review in Chapter 3 and in section 6.4.4. Experiments have been conducted on laminar
developing hot water flow, in range of 850 <Re <2250, in parallel multi-port
microchannel slabs having serpentine U-bend. The tests were aimed at understanding the
pressure drop and heat transfer characteristics of the liquid flow in the test specimen and
building the experimental database. The experimental data were compared with
numerical simulation having the same geometry and operating conditions [232]. Very
good agreements between them were found. The experimentally obtained data are

provided in Table D3 in Appendix D.

For the investigated range, the experimental Ap linearly increased with the
increase of Re, which compared very well with numerical results. The core pressure drop
estimated from general formulation cannot predict current core pressure drop. Current
core pressure drop isolated from measured pressure drop using a comprehensive pressure
balance model, as described in section 6.1, compares the theoretical pressure drop line
well. Kasagi et al. [233] one-third approximation of total pressure drop could roughly
estimate the channel side pressure drop. The highest pressure drop occurred in the
straight parts of the channel due to flow friction and the next highest occurred in the inlet

and exit manifolds. At the serpentine U-bend the pressure drop was however the least,

PhD Dissertation Mesbah G. Khan; Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 297



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

which is beneficial for heat transfer. This is because the bend mixes the fluid stream and
also creates a second flow developing or entrance effect at the inlet of the 2™ slab (2™
pass). This means that the existence of this type of serpentine bend with parallel multi-
port flow channels in a heat exchanger will promote the heat transfer with less pressure
drop tax; as compared to the heat transfer enhancement and pressure drop penalty

attributed to the entrance effect caused by the inlet manifolds.

The waterside heat transfer rate increased with the increase of Re in a power law
manner. The inlet to exit temperature differences decreased exponentially as the Re
increased. As the Re increased the Nu also increased and the dependency could be well
described by the power law relationship. Current test condition was simultaneously
developing. The conventional correlations for developing laminar flow could not predict
experimental Nu data. Current Nu was higher than the conventional fully developed or
hydrodynamically developed but thermally developing Nu values. The near wall and far
wall fluid elements from the 1% pass get well mixed in the serpentine bend before
entering the 2" pass. New temperature profile is created via the flow reversal. Since the
serpentine is adiabatic, the mixed fluid exchanges heat only in the test section at the 2™
pass. The presence of serpentine bend creates a new entrance condition at the beginning
of the 2™ pass, which causes another step increased heat transfer. Therefore the higher Nu

in current study is expected and reasonable.

The existence of serpentine U-bend in multi-port flat slab enhances more heat

transfer with less pressure drop penalty as compared to the entrance condition caused by
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the inlet manifold when flow enters the channel inlet at beginning of the flow. From
current data, a Nu versus Re and Pr correlation is developed. The acquired experimental
data and the findings in this study will be useful in further research in this area and in the

design of heat exchanger using multi-port microchannel slab.
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CHAPTER - 8

HEAT TRANSFER AND PRESSURE DROP

CHARACTERISTICS OF ETHYLENE GLYCOL-WATER

MIXTURE FLOW IN 2-PASS MULTI-PORT SERPENTINE

MICROCHANNEL SLAB HEAT EXCHANGER
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8.0 HEAT TRANSFER AND PRESSURE DROP CHARACTERIS-TICS OF
ETHYLENE GLYCOL-WATER MIXTURE FLOW IN 2-PASS MULTI-

PORT SERPENTINE MICROCHANNEL SLAB HEAT EXCHANGER

Many practical heat exchangers use multi-port configurations as their core and
ethylene glycol-water mixture as the heat transfer fluid, such as automotive and HVAC
industry to name a few. Some works on large diameter pipes are available for
hydrodynamically developed but thermally developing laminar flow using water as the
fundamental working fluid. Such studies in narrow channels with continuous smooth
serpentine bend are scarce. Narrow channel heat exchangers experience simultaneously

developing laminar flow because of their short flow path (miniature device).

Study of ethylene glycol-water mixture flow in a simultaneously developing
laminar regime in this type of applied geometry, to the best of candidate’s knowledge, is
not available in the open literature. Therefore experiments have been conducted on 50%
ethylene glycol-water mixture flow in parallel multi-port serpentine microchannel test
slab (MCHX-4) in 2-pass flow configurations with U-type serpentine bend. The
experimental findings and pressure drop and heat transfer data are presented in this
chapter. The findings and results from this experiment are documented through peer

reviewed publication [234].
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8.1 Methods of experiments and measurements

The details of the experimental facility instrumentation and calibration, and the
test procedures in general are provided in Chapter 4. The rest details are described above
in section 7.1 in water flow study. The status of the flow i.e. whether developed or
developing before and after entering the heat transfer test section, was estimated from the

conventional hydrodynamic entrance lengths relationship using Equations 2.16 and 2.25.

As shown in Figure 7.1, the hot liquid (here glycol-water mixture) flow entered
the inlet at ‘A’ and took a 90-degree flow turn to the left from the inlet manifold. From
the inlet manifold the stream equally distributed through all the 68 channels and flowed
towards the entrance of the serpentine bend (end of 1* pass). The liquid flow is reversed
by the serpentine bend. The streams then flowed back (2™ pass) to the exit manifold
where they are combined together and exited at ‘B’. The wind tunnel cold air on the other
hand flowed inside the test chamber across the test specimen along positive Z-direction.
The heat transfer took place between glycol-water mixture and the air within the effective

heat transfer test section in the test chamber (see Figure B2.4a).

The heat transfer and pressure drop parameters were measured similar to the
process as water flow (section 7.1). All the measurements were taken at steady state
condition, which for current study, is explained in section 4.7. The data were monitored

and recorded into a DAQ system.
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8.2  Treatment and separation of pressure losses in the test slab

The ethylene glycol-water mixture flow in current study used the same test
specimen (MCHX-4) as the water flow in Chapter 7. The temperature and pressure
sensors and the measurement locations are also the same. Therefore the treatments of
pressure drops and the separation of all the losses from the measured total pressure drop
follow the same pressure balance model as described in section 7.2 in Chapter 7 and in
section 6.1 in Chapter 6. The segment-wise pressure drops route is illustrated in

Figure 7.2 and the calculation procedures are described via Equations 7.1 to 7.4.
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8.3  Results and discussions on glycol-water mixture flow

In order to obtain the general pressure drop and heat transfer data and the nature
of the test fluid, experiments have been conducted on 50% ethylene glycol and water
solution in a serpentine microchannel slab (MCHX-4) having 68 individual channels of
I mm diameter. The Reynolds number effects on pressure drop, heat transfer, test
specimen NTU and effectiveness, overall thermal resistance, and on the Nusselt number

are documented in peer-reviewed publication [234], which are presented in this section.

Hot glycol-water solution was pumped through the test slab Reynolds number
range between 400 and 1800 and the cold wind tunnel air was blown over the test slab
with a constant velocity of 16.7+0.2 m/s. The hot glycol-water inlet temperature to the
test specimen was maintained at 76.0+0.4°C and the bulk temperature of the cold wind
tunnel airflow was kept constant at 9.0+0.2°C. The glycol-water mixture flow in the test

slab was in the simultaneously developing laminar flow regime.

The inlet temperature of liquid was maintained using heater controller
(Figures 4.1 and 4.10). To employ the Wilson Plot Technique, it was required to keep the
airside bulk flow temperature constant. It was realized by manipulating the cold water
flow rate through the wind tunnel built-in internal heat exchanger (Figure B4.b) using the
flow mixing network (Figure 4.6). The liquid side flow rates on the other were varied and

maintained by means of variable speed gear pump (Figures 4.1 and 4.9) and a needle
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valve (Figure 4.1 and B4.e). At each flow rate, several thousands of steady state samples
were collected using DAQ system and their mean and standard deviations were recorded.

A single data set in current study i.e. the TAMDS was acquired using Equation 4.12.

The glycol-water mixture flow inside the channels is the focus of current study.
Assumptions were made that the liquid is an incompressible Newtonian fluid and its
properties are independent of pressure but the functions of temperature. Since the
hydraulic diameter of the distributing manifold was about 10 times larger than the
diameter of a channel, the liquid was assumed to be equally distributed through all the
channels in the test slab. This assumption was reasonable based on the explanations

provided in section 7.3 via Figures 7.3 and 7.4 and also according to [235].

Dehghandokht, Mesbah, and co-workers (2011) numerically studied water and
50% glycol-water mixture flows in current test specimen with the same geometry and
same experimental operating situations as the boundary conditions [235]. They compared
the numerical results for water and glycol-water mixture with current experimental data
set. The numerical model compared current data and the experimental findings well. The
glycol-water mixture mass flow rate also was well distributed through all the channels in
the test slab from the inlet manifold as can be seen in from Figure 8.1 [235]. This justifies
the assumption of equal flow distributions in all the channels. The flow directions and the

channel number designations for Figure 8.1 is given in Figure 7.4.
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Figure 8.1. Flow distribution of water and glycol-water mixture through the channels in
MCHX-4 test slab (numerical simulation [235]).

The flow distributions in Figure 8.1 followed the patterns of Figure 7.3. There is a
little drop in flow through channel numbers from 68 to 66. This can be explained by the
expansion and change of momentum in flow due to area change since the tube diameter
before the inlet manifold is smaller than the diameter of the inlet manifold itself. At the
entrance of the inlet manifold (around channels 68 to 66), due to increase in flow area the
flow gets decelerated (Figure 7.4). In an expanded flow, the fluid streams around the
corner edges also experience flow turn-around (reverse flow / circulation) and often the
effect of secondary flow causing slightly less quantity of fluid flow in these areas. A little
lower mass flow rate in channels 68 to 66 has happened because of the above reasons.
The lower flow in these three channels however has insignificant effect on the average of
total 68 channels. Therefore the consideration of mean single channel flow as the average

of all 68 channels was reasonable.
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The primary independent parameters i.e. the mass flow rate and inlet and exit
temperatures and pressures of the liquid flow; and the velocity and inlet and exit
temperatures and absolute pressure of the air flow were directly measured for 20 different
operating conditions. The thermophysical properties were evaluated at the bulk flow
temperatures. The glycol-water solution properties were derived from the ASHRAE
Handbook of Fundamentals 2005 [212] and for the air they were evaluated from EES

built-in property functions [218].

In view of Equation 2.1, the channel side (liquid flow) Reynolds number, Re., in a
single channel of the test slab was calculated using Equations 4.15, 5.6 and 6.2. The
forced convection heat transfer rates of liquid and the air flows were computed from
Equations 5.11 and 4.13b. The derivation methods for other dependent parameters are
provided next in respective section. The uncertainty analyses were carried out in light of
the Editorials of ASME Journal of Heat Transfer and Journal of Fluids Engineering [25-
26] as described in Section 5.6. The estimated mean uncertainties for some liquid side

key parameters are given in Table 8.1.

Table 8.1. Mean experimental uncertainty in the study of glycol-water mixture flow

Parameters Mean uncertainty
Measured pressure drop, Ap,y, , [Pa] 6.7 %
Measured total mass flow rate, m,, [kg/s] +1.35%
Reynolds number in a channel in test slab, Regp, +6.0 %
Nusselt number, Nu, +12.5%
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8.3.1 Total, core and segment-wise pressure drops

The pressure drops in the core of MCHX-4 (straight top and bottom slabs) were
separated from the measured total pressure drop using Equations 6.2 to 6.16 and 7.1 to
7.4 according to the flow route shown in Figure 7.2. The pressure drop along the core of
the test slabs was empirically isolated from Api as per estimation and approximation
used by Jokar et al. [200] and Kasagi et al. [233]. To determine the core pressure drop,
Jokar et al. [200] deducted only the manifold pressure losses from the total measured
pressure drop and Kasagi et al. [233] approximated the core pressure drop to be the one-
third of the total measured pressure drop. The theoretical Ap for fully developed
conventional laminar pipe flow for current test conditions was deduced from

Equation 6.19. The core pressure drop varied from 25 to 80 kPa/m of the flow length.

The glycol-water side total measured pressure drops, Ap are plotted against Rey
in Figure 8.2. The measured total Ap non-linearly increased with the increase of Re,
which is reasonable since it includes the core and other pressure losses. The theoretical,
experimental, estimated, and approximated core pressure drops as well as the separated
segment-wise pressure drops for the inlet and exit manifolds and for the serpentine bend
are also plotted in Figure 8.2. All the Ap increased with the increase of Re except for the
manifold, which increased non-linearly. The non-linear variations may be due to the flow

development effects since the Ap is always higher around the entrance regions.
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Figure 8.2. Variations of segment-wise glycol-water mixture flow Ap with respect to Regy,.

Kasagi et al. [233] approximation showed closeness to the Poiseuille theoretical
Ap as well as to the current core Ap better than Jokar et al. estimation; it however
underestimated the Ap for the most part of the investigated range. Jokar et al. [200]
estimation overestimated current core Ap. This may be because their channels had some
bumps that affected the core Ap and their approximation possibly only valid in their test

situations. The method used by Jokar et al. [200] could not predict the core Ap for current
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test specimen. This is because deducting only the manifolds’ pressure losses from the
total measured pressure drop is not sufficient to get the core pressure drop. Other possible

losses must be taken into proper account.

The step-by-step pressure isolation from that of the measured total pressure drop
is shown in Figure 8.2. Data no. 2 is the Ap that excludes all the minor losses but includes
the core, manifold, serpentine bend, and flow development losses. Data no. 3 excludes all
the minor losses and inlet and exit manifold losses but includes the core, serpentine bend,
and the flow development losses. Data no. 4 excludes all the minor losses, inlet and exit
manifold losses, and serpentine bend loses. The core Ap still includes the flow
development pressure defects. Data no. 5 is the final core Ap after isolating all the
possible losses. Current core Ap compared very well with the theoretical Ap line when all
the losses were properly treated and isolated from the measured total Ap. This signifies

that improper pressure balance will lead to an error or differing result.

Other noticeable findings in current study are that the highest pressure drop
occurred in the straight flow path (top and bottom slabs), next highest occurred in the
manifolds, and the least loss was incurred by the serpentine bend. These findings are
inline with the findings in water flow above. This shows that the pressure drop penalty at
serpentine portion is less than the manifold side. The serpentine portion helps mixing of
fluid streams inside bend and also initiates second flow developing effect at the entrance

of the bottom slab, which are particularly beneficial for heat transfer in a heat exchanger.
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8.3.2 Heat balance between glycol-water mixture and air

The glycol-water side and the airside heat transfer rates, g, and q, were calculated
from Equations 5.11 and 4.13b. The air side heat rates are plotted in Figure 8.3 against
glycol-water side heat rates in order to compare the deviations. The data followed a linear
variation with some scatters within £2.6%. Ideally the heat rates should be the same i.e.
0z = 0. since the heat released by one is taken away by the other. However, practically
this is rarely the case because of the existence of errors in system response, experiments,
heat leakage etc. To address this variation, the heat balance procedures described in

sections 4.8 and 5.3 are followed.
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Figure 8.3. Deviations of airside heat transfer rate from that of glycol-water side
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Figure 8.4. Heat balance between two fluids (glycol-water mixture & air) with respect to Re.

According to ASME PTC-30-1991 [216], the percentage difference between the
heat lost by the liquid and that gained by the air is defined as the heat balance (HB) in
current study, which is expressed by Equation 4.14b. The HB results are presented in
Figure 8.4 with respect to Rec,. From 0,y the deviations of g, were observed to be from -
2.11% to +1.95% and that for g, from -2.13% to +1.93% respectively. The differences
were within only a maximum deviation of +2.25%. This very good HB not only shows
the integrity of the developed test facility, it also demonstrates the reliability and accuracy

of the acquired experimental data.
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The ASME PTC 30-1991 recommends an acceptable limit of +15% for which any
of the heat rates i.e. (g, Oavg, O 0, can be used for heat transfer calculations. Because of
using ultra precise RTD for liquid side temperature measurements, as more reliable

choice, the liquid side heat rate g, was taken in subsequent calculations in this study.

8.3.3 Heat transfer rate and temperature variations

The overall log-mean temperature difference ATpvtp 1s calculated from
Equation 5.15. The surface temperatures are measured using 48 thermocouple probes
whose locations can be viewed in Figure B8.4a. The mean T is consolidated using
Equation 5.10b. The measurement of surface temperature for a finned heat exchanger is a
difficult task. In current study a method is devised to perform this job, which is described
in sections 5.2.3 and 7.2.2. This measurement approach could represent the mean surface

temperature very well as has been shown in Figure 7.8 [232].

The liquid side inlet to exit temperature differential AT,, the AT mrp, and the T
are plotted with respect to Re in Figure 8.5. Expectedly the AT, decreased with the
increase of Re. The variation followed a power relationship with negative exponent. The
airside bulk and glycol-water side inlet temperatures were maintained constant. As a
result the exit temperature of glycol-water flow was dictated by the heat transfer

mechanism. At the lower flow rate and hence at the lower Re the fluid residence time
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inside the channel is more than the higher Re. This allows the fluid to loose more
temperature at lower Re than at higher Re. Therefore the exit temperature becomes lower
at lower Re and higher at higher Re thereby causing the inlet-to-exit temperature
difference to be higher at lower Re and lower at higher Re. The AT, dependency on Re

could be described by exponential variation with a curve-fit coefficient of R* = 0.995.
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Figure 8.5. Variations of temperatures (ATy, AT urp @nd Ts) with respect to channel side Re.

As seen in Figure 8.5 the ATpyrp and the T both increased with the increase of
Re. This is also expected because the AT, is higher at lower Re, which keeps the heat
exchanger wall surface colder at lower Re. As Re increases the AT, decreases meaning

less temperature exchange and therefore the surface gradually becomes hotter at higher
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Re. The dependency of Ts and AT mtp on Re in current data could be defined by power

law and logarithmic variations.
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Figure 8.6. Variation of gq with respect to channel side Re.
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Determined from Equation 5.11, the heat transfer rate g, is plotted against Reg, in

Figure 8.6. As expected the g, increased with the increase of Re and vice versa. This can

be explained that the decrease of AT, with the increase of Re is compensated by the

increase of glycol-water mass flow rate in a way that the q increases with the increase of

Re. As compared to other curve-fits, the variation could be best described by a power-law

relationship with an R? value of 0.97. Few scatters in data are seen at relatively higher Re,
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which might have generated from little flow and temperature fluctuations during
experiments. The deviations are however well within the experimental uncertainty. On an
average about 4 kW of heat transfer could be achieved from the test slab with an LMTD

of 61°C within current test conditions.

8.3.4 The NTU and Effectiveness of the test specimen

The effectiveness € and NTU for the test specimen are determined using
Equations 5.24 through 5.27 and are plotted with respect to channel side Re in Figure 8.7.
Both ¢ and NTU monotonically decreased with the increase of Re. The ¢ decreased from
0.43 to 0.14 and the NTU from 0.57 to 0.16. For a given operating condition, especially
the flow regime such as the Re, Figure 8.7 can provide values of both € and NTU for a
heat exchanger. This sort of presentation helps in designing and in operating a heat

exchanger for a chosen flow regime based on a given condition.

In Figure 8.8 the heat transfer rate ¢, and the isolated core pressure drop Apmc
both are plotted against the €. Both the g, and Apy,. both decreased when the € increased.
The q, decreases linearly and Ap decreases in power-law manner. At higher effectiveness
both the g, and Apy,. are lower and at the lower effectiveness they both are higher. This
means that at lower flow rate and hence at lower Re the heat transfer rate is lower as well
as the core pressure drop is also lower. This kind of parametric representation is common

in heat exchanger subject area [187]. This plotting helps in designing a heat exchanger
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and in optimizing an operating point for a particular chosen duty. The trends of current

results in Figure 8.8 showed excellent qualitative agreement with Kang and Tseng [187].
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Figure 8.7. Variations of NTU and effectiveness with respect to channel side Re.
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Figure 8.8. Variations of glycol-water side g4 and Ap with respect to test slab effectiveness.
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8.3.5 Overall thermal resistance (R ov = 1/UA)

The overall thermal resistance R, based on experimentally measured

parameters was calculated from Equations 5.17 and 5.18. The same Ry, was also

predicted for current test conditions using Khartabil and Christensen [224] improved

scheme of modified Wilson Plot Technique. The modified Wilson Plot Technique was

proposed by Briggs and Young [221]. The details of the original, modified and improved

scheme of Wilson Plot Technique are described in section 5.5 and the applicable

experimental procedures are provided, which were followed in current study.

0.0185 T T T T
® Ry, oy = 1/UA [Overall thermal resistance - Current data]
0.0180
X Ry oy = 11UA [Predicted from Modified Wilson Plot Technique
= using current test conditions and data] E
_ N
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Figure 8.9. Variation of overall thermal resistance Ry, oy With Reg, (Current data & Wilson Plot)
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The Ry, oy for measured data and that predicted from Wilson Plot Technique are
plotted against channel side Re in Figure 8.9 . Both the Ry, asymptotically decreased
with the increase of Re. The Ry, predicted from Wilson Plot Technique was well
bounded by the scatters in experimentally measured Ry, v data. The maximum deviation
between the measured and the predicted results was no more than £1.50%. This closeness

of results in Ry oy provides supports the better accuracy of experimentally measured data.

8.3.6 Nusselt number characteristics

The glycol-water flow experimental Nusselt numbers Nu, were deduced in two
ways; one from liquid side using Equations 5.11, 5.28 and 5.30 and the other via airside
using Equations 5.18, 5.20, 5.22, 5.23, and 5.29. They are plotted against channel side Re
in Figure 8.10. As expected the Nu increased with the increase of Re and the variations
followed power-law relationships. At low Re some differences are observed in Nu data
between. These variations can be explained that the airside heat transfer rate was used for
airside thermal resistance and there is already a little difference (£2.25%) between airside
and liquid side heat transfer rates as seen in the heat balance section (Figure 8.4). In
addition to this, since more parameters are involved in airside thermal resistance
calculation, little more experimental errors have contributed to these differences. At

higher Re, the differences are however less.
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Figure 8.10. Variation of Nug with respect to channel side Re (Current data & Wilson Plot)

For current test conditions the Nu, were also predicted from Briggs and Young
[221] proposed modified Wilson Plot Technique and from Khartabil and Christensen
[224] improved scheme using Equations 5.31 to 5.38. For the interest of comparison, they
are also plotted against Re in Figure 8.10. Briggs and Young [221] prediction
(Equations 5.40 to 5.42) underestimated the Nu, which are lower than both the
experimental data and the prediction from Khartabil and Christensen [224] scheme
(Equations 5.33 to 5.39). In Briggs and Young proposed modified Wilson Plot Technique,

the non-linear equations were solved through two successive linear regression analyses.
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Some of the Khartabil and Christensen experimental data sets could not produce expected
result using Briggs and Young such regression model. Because of this variation in
prediction, Khartabil and Christensen proposed an improved scheme to solve the non-
linear equations using non-linear regression analyses, which eventually produced good

results. Therefore their scheme is used in current study.

All the experimental Nu values are higher than the Briggs and Young prediction.
They are higher than Khartabil and Christensen scheme only in the range
400 < Re < 1300. Above this range the Nu values overlap with each other. There are some
scatters in experimental Nu data more in the range 400 < Re, < 1300 and less thereafter.
This can be explained that the T were more stable at higher Re than at lower Re. As seen
from the error bars in Figure 8.10, the experimental Nu data can be bound by the values
predicted from Khartabil and Christensen scheme. The Briggs and Young prediction

could not compare current data even within the scope of experimental uncertainty.

The heat transfer is influenced by the thermal boundary conditions for flows
which are not developed and therefore in addition on Re the Nu also depends on the
Prandtl number Pr. To account for the effect of Pr, the Nu as a function of both Re and Pr
i.e. Nu = f (Re, Pr) are plotted in Figure 8.11. The variation followed a power law
relationship similar to Equation 5.31. In Figure 8.11 experimental Nu result is compared
with available conventional and microchannel flow correlations. None of the
conventional or microchannel correlations could compare experimental Nu data. Current

results are higher than fully developed conventional laminar flow at T (Nur = 3.66) and H
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(Nug = 4.36) boundary conditions and also higher than the conventional thermally
developing laminar flow correlation with T-condition proposed by Gnielski [77]. This
correlation was developed with the assumption that the flow is already hydrodynamically
developed before entering the heat transfer section. One can expect higher Nu in
simultaneously developing flow (current data) than a flow which is only thermally

developing (Gnielinski correlation [77]).

- * -
14 V' (1) Nu [Fully developed Laminar conventional flow, T,=Const.] (Z;)Eé)’
G (2) Nu [Fully developed Laminar conventional flow, g;=Const.]
[~ O (3) Nu [Developing conventional Laminar flow - Gnielinski 1976] ]
12— X (4) Nu [Current experiment: Developing Laminar flow - using Wilson Plot Tech.]

& (5) Nu [Laminar Micrechannel flow, Choi et al. 1991]

10— —*-(6) Nu [Microchannel Turbulent flow, Webb & Zhang 1998]

2 ——(7) Nu [Conventional Turbulent pipe flow, Dittus-Boelter 1930]
i — —
S 8-
= (4) Nu = 0.152.Re%-2%Pr"3 [Current correlation: Glycol-water flow]
(9)
6 “(4)
4]
| ) .
24 (2)
(1)
0 ] ] ] | | | ] ] |

T T T T T T T T
0 400 800 1200 1600 2000 2400 2800 3200 3600
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Figure 8.11. Variation of Nug with channel side Re and Pr (Comparisons of Current data with

available correlations)
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Choi et al. [88] proposed -correlation for laminar microchannel flow
underestimated the Nu for the entire Re range and crossed current Nu data for Re >1600,
which is not a comparable correlation. The Dittus and Boelter [57] correlation for
conventional turbulent pipe flow and Webb and Zhang [125] correlation for turbulent
flow in microchannel predicted much higher Nu than current data. This indicates that,
although the laminar flow Nu is higher in current study, its trend do not follow the trend

of turbulent flow heat transfer as found by Jokar et al. [200].

Several factors may be responsible for the higher Nu values in present study such
as: the presence of smooth U-type serpentine bend, internal narrowness at the entrance
and exit manifold connectivity due to manufacturing imperfections, inner channel
shrinking due to bending around serpentine, flow developing nature in narrow channels
could be different from the conventional formulation of Ly, = 0.056Re.Pr.D etc. However,
the candidate believes that the presence of serpentine bend and twice the effect of flow

developing are the major reasons.

The reason for predicting lower Nu by the compared correlations could also be
that the compared correlations were developed by considering only one flow developing
effect into account for the stream-wise straight flow path (caused by the flow inlet
condition only). Whereas two flow developing effects, one at the entrance of each test
slab, exist in current study for the same fluid flow. First developing effect is caused by

90-degree flow turn and area change in the inlet manifold of the top slab and the second

PhD Dissertation Mesbah G. Khan; Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 323



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

and new flow developing effect occurs at the entrance of the bottom slab formed with the

presence of serpentine U-bend.
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Figure 8.12. Range of current hydrodynamic and thermal entrance lengths with respect to Re

Since the entrance length correlation for microchannel flow is not available, these
lengths were estimated from conventional correlations for large diameter pipes using
Equations 2.16a and 2.29a. For illustration purpose, the hydrodynamic and thermal
entrance lengths for the 1% pass (top slab) are plotted against Re in Figure 8.12. As seen,

none of the flow is hydrodynamically developed before entering the heat transfer section
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but all the flow gained developed status before exiting the section. None of the flow steps
is thermally developed before entering the heat transfer section and except for the 1** flow
step none of them gained developed status before exiting the heat transfer section and
entering the serpentine bend portion. The flow is then reversed at the serpentine and a
new entrance is formed at the entrance of the bottom slab (2nd-pass) as a result none of
the flow steps had any chance to be thermally developed. Glycol-water mixture possesses
higher viscosity than water. The thermal entrance length thus occupied the entire flow
length causing higher heat transfer. Therefore the flow steps in current study could be

well described by the simultaneously developing flow, as shown in Figure 8.12.

The adiabatic serpentine segment can be viewed in Figures B2.4a and 2.4c. The
presence of this serpentine U-bend at the exit of 1% slab (top slab) and at the entrance of
2" slab (bottom slab) enhances heat transfer in the test section. Upon exchanging heat
and hence loosing the temperature, the fully developed fluid streams from the 1% pass
(top slab) enter the serpentine bend. The near wall fluid elements loose more temperature
than the centerline fluid particles. For fully developed flow, the centerline fluid particles
are the fast moving and the near wall elements are the least moving ones. Inside the
serpentine bend the relatively hotter centerline fluid elements move outward to the outer
wall of the bend due to centrifugal action, which results in secondary flow pattern. The
secondary flow causes the relatively colder least moving fluid particles from the near
wall to move toward the centerline and the inner wall of the bend. Therefore all the fluid

particles get agitated and well mixed inside the serpentine.
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Since no heat transfer occurs around this serpentine, the well mixed fluid particles
further exchange heat in the o pass (bottom slab) inside test section. The fluid mixing
itself results in increased heat transfer. Due to the presence of U-serpentine new entrance
region is formed at the beginning of the 2nd pass (bottom slab). This new entrance region
causes the flow to be further simultaneously developing as it passes. The extra heat
transfer enhancement acquired in current study could have been attributed to these two

effects, which are absent in the compared correlations.

For the above reasons the higher Nu in current study as compared to the
conventional correlations is reasonable and expected. A Nu = f(Re, Pr) correlation for
simultaneously developing laminar glycol-water mixture flow in parallel multi-port
serpentine circular channels is developed in current study as presented by Equation 8.1.
The correlation developed for the investigated range of 400 <Re <1800, which is
anticipated to be very useful in the design of heat exchanger with geometric configuration

similar to current study and in the research of narrow channel heat exchangers..

1
Nu = 0.152.Re?-50 Pré : for 400<Re<1800. (8.1)
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8.4  Conclusions on glycol-water mixture flow

The multi-port finned or un-finned serpentine flat slabs as the core elements and
the ethylene glycol-water mixture as the heat transfer fluid are frequently encountered in
practical heat exchangers. Research on these applied geometries and on this fluid using
narrow channel is rare in the open literature. The necessity and importance for thermo-
hydraulic studies of liquid flow in an applied geometry in the developing laminar flow

regime is described in the literature review in Chapter 3 and in section 6.4.4.

In present study, experiments have been conducted on simultaneously developing
laminar flow of 50% ethylene glycol-water solution in a parallel multi-port finned
serpentine bend microchannel channel slab in liquid-to-air crossflow orientation. The
liquid attained the developing laminar flow in the Reynolds number range between 400
and 1800. The objectives of the study were to investigate the pressure drop and heat
transfer characteristics of the test fluid inside channels, the performance of the test slab as
a heat exchanger, and to acquire experimental database on the test fluid. The findings in
this study are documented through peer-reviewed publication [234]. The experimentally

obtained data are provided in Table D4 in Appendix D.

The total measured pressure drop non-linearly increased from 28 to about 190 kPa
with the increase of Re. This non-linear variation is due to the presence of other major
and minor losses in the flow route. The core pressure drop, isolated using general

approach, cannot be predicted by the conventional Poiseuille flow theory for fully
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developed flow. In order to separate the core pressure drop a comprehensive pressure
balance model is formulated, which described in sections 6.1 and 7.2. Taking all the
possible losses into account, the core pressure drop separated using the pressure balance
model could be predicted well by the traditional Poiseuille flow theory. As expected the
core pressure drop increased linearly with the increase of Re ranging from 18 to 60 kPa
with the gradient from 25 to 80 kPa/m of the flow length. The core pressure drop roughly

compared with Kasagi et al. [233] one third approximation.

The pressure drops in three major segments i.e. the manifolds (inlet and exit
combined, serpentine bend, and the straight flow paths (top and bottom slabs combined)
are separated from the measured total pressure drop. It is found that the highest pressure
drop occurs in the straight flow path (top and bottom slabs), which is dominated by the
flow frictional pressure drop. The second highest loss occurs in the manifolds due to
complex geometric configuration, flow area change and flow turn. The serpentine bend
incurs the least pressure drop. As an example at Re = 1020 the percentage share of the
total pressure drop are 43.45% (core), 16.44% (manifolds), 4.02% (serpentine bend), and
33.83% (others). The smooth U-type bend in current study with serpentine radius to
channel diameter ratio (Rsy/Dcn) > 3 and straight flow length to channel diameter ratio
(L/D¢n) > 10 has least pressure drop but it has better heat transfer contribution as
compared to the inlet contribution caused by the inlet manifold. Therefore use of this type
of serpentine bends with multi-port parallel channels as heat exchanger core can enhance

heat transfer performance of a heat exchanger significantly with least pressure drop tax.
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About 4 kW of heat transfer could be achieved from the test slab with an LMTD
of 61°C in the test conditions considered. With the increase of Re the ( increased in a
power-law manner and the effectiveness (¢) decreased linearly. The NTU and & both
decreased with Re. The core pressure drop nonlinearly decreased with the increase of g,
which signifies that the pressure drop is low at higher € and high at lower €. The higher q
is achieved at lower € but at the expense of higher pressure drop. These variations help
optimize the design and operation of a heat exchanger. The NTU and ¢ values for current

test slab were found to vary from 0.16 to 0.57 and from 0.14 to 0.43 respectively.

The Nu determined experimentally and predicted from modified Wilson Plot
Technique both compared very well. Expectedly the Nu increased with Re in power law
manner and the mean value was higher than the values of conventional laminar
developing flow correlations. None of the flow entered the heat transfer section which is
hydrodynamically developed. Moreover, owing to the higher viscosity of glycol-water
mixture than water, the thermal boundary condition was such that all the flow steps were
developing and the thermal entrance lengths occupied the entire flow length for all the Re
investigated. Therefore the higher Nu has been attributed to the magnitude of thermal

entrance length, the presence of serpentine and to the effects of second developing flow.

One can argue that the flow reversal around a serpentine bend enhances heat
transfer but it also increases the pressure drop. In a heat exchanger the inlet manifold

usually is responsible for the entrance related pressure drop and heat transfer rise for the
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entrance flow disturbance. In sections 7.3.1 and 7.4.1 for both water and glycol-water
mixture flows, it has been shown that the pressure drop in current smooth U-type
serpentine bend is much lower than the manifolds but the heat transfer is noticeably
higher. This finding in current study is expected to significantly help heat exchanger

design, operation, and further research in this area.

For the studied geometry in the range 400 < Re < 1800, a heat transfer correlation

for simultaneously developing laminar flow of glycol-water solution is obtained in the

1
form of Nu=0.152.Re%0 Pré , which will be useful in the design of heat exchanger

and may serve as a roadmap in this promising area.
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Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

APPENDIX - B

DETAILS OF THE DEVELOPED TEST FACILITY, TEST

SPECIMENS, TEST CHAMBERS, INSTRUMENTS ETC.
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APPENDIX - B1

DETAILS OF THE DEVELOPED EXPERIMENTAL TEST

FACILITY
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Appendix — B1. Details of the developed experimental test facility
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Figure Bla. 3D Models of the developed thermo-fluid experimental facility in current research.
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Figure B1b. 2D Details of the developed thermo-fluid experimental facility in current research.
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Figure B2: 2D and 3D Models of Pump-Motor Unit
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Figure B2. Detail 2D layout of Pump-Motor unit for the experimental facility in current research.
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Figure B3. Detail 2D layout of Tank-Heater unit for the experimental facility in current research.
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Figure B4. Photographs in construction phase as test facility development progresses
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Figure B4. Photographs in construction phase as test facility development progresses (cont’d)
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Figure B4. Photographs in construction phase as test facility development progresses (cont'd)
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Figure B4. Photographs in construction phase as test facility development progresses (cont’d)
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Figure B4. Photographs in construction phase as test facility development progresses (cont’d)
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APPENDIX - B2

DETAILS OF THE DESIGN AND FABRICATED MCHX

TEST SPECIMENS
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Appendix — B2. Details of the design and fabricated MCHX test specimens
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Figure B2.1a. Multi-port microchannel test specimen design (3D/2D) for current study — MCHX-1
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Figure B2.1b. Solid Model of current fabricated multi-port microchannel test specimen — MCHX-1

Figure B2.1c. Photograph of current fabricated multi-port microchannel test specimen — MCHX-1
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Figure B2.2a. Multi-port microchannel test specimen design (3D /2D) for current study — MCHX-2
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Figure B2.2b. Solid Model of current fabricated multi-port microchannel test specimen — MCHX-2

Liquid Exit

Liquid Inlet

Figure B2.2c. Photograph of current fabricated multi-port microchannel test specimen — MCHX-2
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Figure B2.3a. Multi-port microchannel test specimen design (3D / 2D) for future study — MCHX-3
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Figure B2.3. Solid Model of fabricated multi-port microchannel test specimen — MCHX-3

(proposed for future study)
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Figure B2.4a. Multi-port microchannel test specimen design (3D/2D) for current study — MCHX-4
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Figure B2.4b. Solid Model of current fabricated multi-port microchannel test specimen — MCHX-4
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Figure B2.4c. Photograph of current fabricated multi-port microchannel test specimen — MCHX-4
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Figure B2.5a. Multi-port microchannel test specimen design (3D/2D) for future study — MCHX-5
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Figure B2.5. Solid Model of fabricated multi-port microchannel test specimen — MCHX-5

(proposed for future study)
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Figure B2.6a. Multi-port microchannel prototype design (3D/2D) for current study — MCHX-6
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Figure B2.6d. Photograph of fabricated microchannel prototype design in current study— MCHX-6
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APPENDIX - B3

DETAILS OF THE DESIGNED & FABRICATED TEST

CHAMBERS FOR MCHX
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Details of the designed & fabricated test chambers for MCHX

Appendix - B3
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Figure B3. Design of support test chamber for MCHX test specimens for current study (General)
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Figure B3.1 Design of test chamber support structures for test specimens MCHX-1
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Figure B3.2. Design of test chamber support structures for test specimens MCHX-2
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Figure B3.3. Design of test chamber support structures for test specimens MCHX-3
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Figure B3.4. Design of test chamber support structures for test specimens MCHX-4
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Figure B3.5. Design of test chamber support structures for test specimens MCHX-5
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Figure B3.6a. Design of test chamber support structures for test specimens MCHX-6.

Liquid Inlet (RTD1 & PTD1)

Serpentine Bends
(Outside of heat transfer tes X (Liquid Flpw)
section where local surface
temperatures are measured)

Z (Air Flow)

iquid Exit (RTD2 & PTD2)

Circuit-wise inlet manifolds

MCHX #9 (Test Specimen)

Figure B3.6b. Design of test chamber support structures for test specimens MCHX-6.
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APPENDIX - B4

DETAILS OF THE DESIGNED AND CONSTRUCTED

WATER FLOW MIXING AND SUPPLY NETWORK FOR

WIND TUNNEL INTERNAL HEAT EXCHANGER
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Details of the designed and constructed water flow mixing and

Appendix — B4.

supply network for wind tunnel internal heat exchanger
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Figure B4. Design of water flow mixing network for wind tunnel internal heat exchanger (3D/2D)
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Water Flow Mixing & Sup
Network for Wind Tunnel

Figure B4.1. Solid model of water flow mixing network for wind tunnel internal heat exchanger

Wind tunnel
Internal HX

Figure B4.2. Photograph of constructed and installed water flow mixing and supply network for

wind tunnel internal heat exchanger
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APPENDIX - B5

DETAILS OF FLOW METER (DFM) CALIBRATION

CERTIFICATE AND CURVE
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Details of flow meter (DFM) calibration certificate and curve

Appendix — B5.
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Figure B5.1. Digital flow meter (DFM-1) calibration data and certificate
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Figure B5.2. Digital flow meter (DFM-2) calibration data and certificate
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Figure B5.2. Digital flow meter (DFM-2) calibration data and certificate (cont’d...)
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‘Responses of 4012SN16 (4.5 - 60 LPM) Flow Meter @ 6 viscoisities‘
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Figure B5.3a. Digital flow meter (DFM-1) calibration curves at six different viscosities.

Flow Response Curve: Model 04012SN16-TPDF3; S/N: 00143490 (LPM vs. VDC)
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Figure B5.3b. Digital flow meter (DFM-1) response, trip point & calibration curve — LPM vs. VDC.
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Flow Response Curve: Model 04004SN1-TPDF3; S/N: 00168771(LPM vs. VDC) Water
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Figure B5.4a Digital flow meter (DFM-2) response & calibration curve - LPM vs VDC (Glycol/Water)

DFM Flow Display [LPM] vs. Mass Flow rate [kg/s] Calibration curves H20
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Figure B5.4b. Digital flow meter (DFM-2) calibration curve — Display LPM vs kg/s (Water)

PhD Dissertation Mesbah G. Khan, Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 415



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Temperature Response of Model 04012SN16-TPDF3; TEMP vbc
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Figure B5.5. Digital flow meter (DFM-1) temperature response & trip point — T vs. VDC.
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Figure B5.6. Digital flow meter (DFM-2) temperature response & trip point — T vs. VDC.
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PRESSURE  VDC
Pressure Response of Model 04012SN16 S/N 00143490 0.00 0.000
4910 2,500
550 99.20  5.000
500 108.00 5452
' [ 707.09] 0.000
4.50 VDC = 0.0504*p + 0.0085 Trip point
2 _ /
4.00 R™=1
5 350 pd
o
< 3.00
Q
Q 250
[m]
= 200
1.50
1.00
0.50
0.00
0 20 40 60 80 100 120
Pressure (psi)
Figure B5.7. Digital flow meter (DFM-1) pressure response & trip point — p vs. VDC.
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Figure B5.8. Digital flow meter (DFM-2) pressure response & trip point — p vs. VDC.
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Pressure Drop of DFM-1 Model #04012SN16-TPD
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Figure B5.9. Digital flow meter (DFM-1) pressure drop curve — dp vs. LPM.

Pressure Drop of DFM-2 Model #04004SN1-TPD
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Figure B5.10. Digital flow meter (DFM-2) pressure drop curve — dp vs. LPM.
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APPENDIX - B6

DETAILS OF LIQUID SIDE PRESSURE TRANSDUCER

(PTD) CALIBRATION
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Appendix — B6 Details of liquid side pressure transducer (PTD) calibration
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Figure B6.1. Liquid side pressure transducer calibration curve (PTD S/N. - 0717071034).
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Figure B6.2. Liquid side pressure transducer calibration curve (PTD S/N. - 0717071039).
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Figure B6.3. Liquid side pressure transducer calibration curve (PTD S/N. - 58721).
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Actual P [psi] vs. VDC at DAQ [Volt] Calib Curve: PTD 15 psig S/N
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Figure B6.4. Liquid side pressure transducer calibration curve (PTD S/N. - 55391).
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Figure B6.5. Liquid side pressure transducer calibration curve (PTD S/N. - 60044).
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OMEGADYNE INC.
CERTIFICATE OF CALIBRATION

Model Number: PX419-001G5V
Capacity: 1.00 PSIG

Serial Number: 401690 Excitation: 24.00 Vdc
Date: 10/1/2008 Technician: KAPOME
Pressure Connection: 1/4-18 NPT Male

WIRING CODE
Electrical Connection: PIN 1 =+ EXCITATION
PIN 2 = - EXCITATION
PIN 3 =+ QUTPUT

PIN 4 = N/C
CALIBRATION WORKSHEET
Pressure PSIG OUTPUT Vdc

0.00 0.005

0.50 2.508

1.00 5.013

0.50 2.509

0.00 0.006

NIST Traceable Number(s): C-1954, C-2491

Omegadyne Inc. certifies that the above instrumentation has been calibrated and tested to meet

or to exceed the published specifications. This calibration was performed using instrumentation

and standards that are traceable to the National Institute of Standards and Technology. This
document also ensures that all testing performed complies with MIL-STD 45662-A, ISO 10012-1, and
ANSI/NCSL Z540-1-1994 requirements. After Final Calibration our products are stored in an
environmentally controlled stock room and are considered in bonded storage. Depending on
environmental conditions and severity of use, factory calibration is recommended every one to

three years after the initial service installation date.

10/1/2008
Bruuce Lott Date
Accepted and Certified By

Figure B6.6. Liquid side pressure transducer calibration curve (PTD S/N. - 401690).
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OMEGADYNE INC.
CERTIFICATE OF CALIBRATION

Model Number: PX419-10WG35V
Capacity: 10.00 in H20

Serial Number: 410326 Excitation: 24.00 Vdc

Date: 9/19/2008 Technician: KAPOME

Pressure Connection: 1/4-18 NPT Male
WIRING CODE

Electrical Connection: PIN 1 =+ EXCITATION
PIN 2 = - EXCITATION
PIN 3 =+ QUTPUT

PIN 4 = N/C
CALIBRATION WORKSHEET
Pressure in H20 OQUTPUT Vdc

0.00 0.001

5.00 2.504

10.00 5.007

5.00 2.504

0.00 0.001

NIST Traceable Number(s): C-1954, C-2491

Omegadyne Inc. certifies that the above instrumentation has been calibrated and tested to meet

or to exceed the published specifications. This calibration was performed using instrumentation

and standards that are traceable to the National Institute of Standards and Technology. This
document also ensures that all testing performed complies with MIL-STD 45662-A, ISO 10012-1, and
ANSI/NCSL Z540-1-1994 requirements. After Final Calibration our products are stored in an
environmentally controlled stock room and are considered in bonded storage. Depending on
environmental conditions and severity of use, factory calibration is recommended every one to

three years after the initial service installation date.

9/19/2008
Bruce Lott hate
Accepted and Certified By

Figure B6.7. Liquid side pressure transducer calibration curve (PTD S/N. - 410326).
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APPENDIX - B7

DETAILS OF AIRSIDE DIFFERENTIAL PRESSURE

TRANSDUCERS (PTDD) AND WIND TUNNEL AIR

VELOCITY CALIBRATIONS
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Appendix - B7. Details of airside differential pressure transducers (PTDD) and

wind tunnel air velocity calibrations

X=1" =254 mm —=|
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U e
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20.02 [0.5] -8 EQUALLY
SPACED STATIC PRESSURE
PORTS

WALL THICKNESS 0.013 [0.33] —

HEX NUT @0.12[3.0) —= |=—
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/

POBA-CF, PO12A-CF: X=1[25.4], Y=1/2[12.7] TOTAL PRESSURE
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Figure B7.1a. Dimensions of the Pitot static probe used in current study [with permission, 213].
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Table B7.1. Wind tunnel air velocity [m/s] measurement: FKT calibrator vs converted DAQ-PTDD
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Figure B7.2. Wind tunnel air velocity measurements [m/s]: FKT calibrator vs. DAQ-PTDD.
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Figure B7.3. Wind tunnel air velocity calibration curve: FKT calibrator [m/s] vs. DAQ-PTDD [Volt].
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IBRATION REPORT

Accuracy Class: .5 %
Pressure Range: 0.00 / 3.00 "WC
Output Type: 1 - 5 VDC
Serial Number: 80509378
Date: 05-13-2008
Pressure Output Error Error
"WC VDC/ma % FSO % BSL
(Ref 4C)
0.000 1.004 0.11 0.19
0.750 2.003 0.06 0.15
1.500 2.998 -0.04 0.03
2.250 3.990 -0.26 -0.19°
3.000 4,991 -0.23 -0.16
2.250 3.9594 -0.14 -0.07
1.500 3.000 0.01 0.09 Excitation Voltage: 24VDC
0.750 2.004 Q.02 0.17 System Number: T
0.000 1.004 0.10 0.18 Y '

We certify that our calibration system complies with ISO 10012-1, ANSI/NCSL Z540-1 and that all standards used for
calibration are traceable to the National Institute of Standards and Technology. Pressure Standards: #215451,

& #737/202491-60. Electrical Standards: DC Volts 251625, AC Volts 245061, Res 811/251319, Freq VLF WWVB,
Resistor - AC 100072,DC 100071, R 100073 and FWWVBULSREC.

PRESSURE - PRESSURED%
Vout - VFSX PRESSURE FS. + Voul 0%

% FSO Error = — X 100
VFs

VEg= Voutjggg, - Vout o (Theoretical Max and Min)

55 Reference ANSI/ISA-S51.1 & ANSI/ISA-837.1 *
Calibrafor

Figure B7.4. Vendor supplied calibration report for airside diff. pressure transducer (PTDD).
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Figure B7.5a. Air velocity contours at the inlet plane using Log-Tchebycheff 5-point distribution.
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Figure B7.5b. Air velocity contours at the inlet plane using Log-Tchebycheff 5-point distribution.
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APPENDIX - B8

TEMPERATURE DISTRIBUTION AND PROFILES AT

WIND TUNNEL THERMAL GRIDS AND ON TEST

SPECIMEN SURFACE
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Temperature distribution and profiles at wind tunnel thermal

Appendix — B8.

grids and on test specimen surface

[wuw] x
¥2ST 0YZT 9101 T9. 805  t'ST 00  ¥S¢- 80§ 79/ 9T0T- 0/Z1-  +TsT-
| | | | | | | | | | | b ZST-
80T-L ¢0T-1
®. 6£86°TT . . -0zzT-
y \ \
L . 0£L£°2T
< . -9'10T-
ocLeTe
QI 13 A — ~29¢/-
88cr'ze < [ |
gsevze - 6szvee 805"
6zbze - 6917z
691422 — 6S0+'2z M L pz-
650022 - 6¥6cTz [ =<
6Y6ETC — 6E8ETLC T
6€8€'77 — 0ELETT 00 3
0EL£°2T — 0T9€°2T =
0z9czz - 015¢€°7Z I T
o1s€ee — ooveee M
0ovEZZ > [ | .
[D] le1 -80S
294
6/74'CT 6/.7'TT 9701
691H'CC
-0/21
90T-L 001-1
b'ZsT

[wuw] x [ww] A sa

[D] '™ 1 jo sunojuo) ainjesadwa)

Figure B8.1a. Airside temperature contours at inlet thermal grid at A-A’ (Figures 4.7a & 4.8a).
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Figure B8.1b. Airside temperature contours at inlet thermal grid at A-A’ (Figures 4.7a & 4.8a).
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Figure B8.2a. Airside temperature contours at exit thermal grid at B-B’ (Figures 4.7a & 4.8b).
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Figure B8.2a. Airside temperature contours at exit thermal grid at B-B’ (Figures 4.7a & 4.8b).
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Figure B8.3a. Test specimen surface thermocouple locations with identifying numbers — MCHX #1.
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Figure B8.3b. Surface temperature contours at surface thermal grid of MCHX #1.
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Figure B8.3c. Surface temperature contours at surface thermal grid of MCHX #1.

Mesbah G. Khan, Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 442

PhD Dissertation



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

B L ELELLL L CECEEE . PEEY PR EEEEL PEEEL SEPEE PERE PEEEY SEE PP

<——— wuw gj

< (ww g'p0Og) UoNIBS 1581 BpIsul YIBuST Jajsuel | 1eaH SANO8YT l

8¢¢

62T

0ee

00g

1 e

1 e

le

(ww gyg) Yibus| Jajuad aunuadias 0} 19Jua2 JIapeay IxJ

v# XHON

ww oL —>

leeL

L€l e

902

0z

€0¢

-R----*

10¢-1

Fle

20C-1 ¢

L0g-L

ww gy

(ww 2¢) YbBus| Jojuso aunuadies 0) JoUSD Jepeay 1aju|

X3

u|

Figure B8.4a. Test specimen surface thermocouple locations with identifying numbers — MCHX #4.
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APPENDIX - C

FLOW CHART AND TABLE FOR SOLVING THE NON-

LINEAR REGRESSION EQUATIONS OF WILSON PLOT

TECHNIQUE TO FIND HEAT TRANSFER COEFFICIENT
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APPENDIX C: FLOW CHART AND TABLE FOR SOLVING THE NON-
LINEAR REGRESSION EQUATIONS OF WILSON PLOT
TECHNIQUE TO FIND HEAT TRANSFER COEFFICIENT

Guess an initial value of

a T

A @+9 = Solve for other parameters
Y in different sub-routines
Find X in Equation (5.34)
7y
for each data point
Write solution data file
v with a, m, C, f(a) values
Find f(a) in Equation (5.38) A
for the entire data set
Find final m & C using
Equations (5.36) & (5.37)
Convergence
NO -
| Satisfied for f(a) ?

Check Equation (5.39)

Figure C1. Developed flow chart to iteratively solve the equations of Wilson Plot Technique using

non-linear regression analysis
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Table C1. Developed data table to iteratively solve equations of Wilson Plot Technique using non-

linear regression analysis

(Parameters associated to solving non-linear equations of Wilson Plot Technique)

) 1 Y= Rmr = m=
Tests Rejiq w X = c In (Reyig) f(a)
Re* W 1/UA 1/Cy
Deduce | Deduce by Ded Ded
educe ForN | ForN educe
Measure from |assuming an . ) ) f Deduce
rom ata ata rom
1 experimen- |known andinitial value of . ) from
experimen- | points, | points, [e@xperimen-
tally measured |“a“ with small P P | P  [F*P Eqn.
. tal data find find tal data (5.38)
parameters| increment :
from | from and
2 Measure Deduce Deduce Deduce Deduce
iteration |iteration Check
3 Measure Deduce Deduce Deduce | ysing | using | Deduce | forzero
4 Measure | Deduce Deduce Deduce | Edan. | Edn. | Deduce ?r.the
(5.36) | (5.37) minimum
5 Measure Deduce Deduce Deduce Deduce
NOTE: Do it for several values of ‘a’. If f{a) in Eqn. (5.38) is not the minimum, repeat the process.
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APPENDIX - D

TABLES OF EXPERIMENTALLY OBTAINED DATA FOR

WATER AND 50%-50% ETHYLENE GLYCOL-WATER

MIXTURE FLOWS IN MCHX TEST SPECIMENS
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APPENDIX D: TABLES OF EXPERIMENTALLY OBTAINED DATA FOR
WATER AND 50%-50% ETHYLENE GLYCOL-WATER
MIXTURE FLOWS IN MCHX TEST SPECIMENS

Table D1. Data for Water flow in multi-port straight microchannel slab (MCHX-1)

Total Mass Inlet Exit Total Inlet Total Exit MCHX-1 MCHX-1

Flow Rate, Temperature, Temperature, Pressure, Pressure, side Apchw  Side MCHX_l
mykolsl Tl TwolCl  PwilPal  puolPal  [Pal  Regy o0
0.024907 21.43 21.50 18636.54  100.87  10269.98 48221  0.117730
0.025950 21.46 21.53 20022.38 449.26 10645.48 502.76 0.112302
0.026882 21.48 21.55 21394.44 790.14 11064.62 521.06 0.108687
0.027769 21.50 21.57 22842.34 1150.74 11551.28 538.52 0.106274
0.028746 21.53 21.61 24262.66 1506.51 11935.57 557.92 0.102381
0.029699 21.57 21.64 25717.45 1874.00 12338.04 576.91 0.099059
0.030631 21.64 21.70 27199.83  1989.14  13018.39 59593  0.098241
0.030742 21.60 21.66 2721362  2249.07 12687.46 597.52  0.094961
0.031629 21.66 21.72 28702.89  2372.49 13379.45 615.65  0.094594
0.032628 21.68 21.75 30268.00 2755.84 13781.13 635.46 0.091476
0.033604 21.71 21.77 31826.21 3146.77 14164.94 654.86 0.088556
0.034579 21.74 21.80 33432.69  3548.04 14566.33 674.36  0.085919
0.034713 21.76 21.82 35025.38  3556.32 16040.30 677.28  0.094152
0.035711 21.80 21.86 36721.49 3953.46 16493.68 697.42 0.091400
0.036687 21.83 21.89 38396.92 4356.80 16917.97 716.99 0.088752
0.037618 21.89 21.95 39996.50  4759.45 17288.30 736.24  0.086183
0.038461 21.91 21.97 41678.82  5167.62 17796.94 75310  0.084831
0.039503 21.94 22.00 43416.30 5605.44 18129.16 774.06 0.081820
0.040435 21.96 22.02 45215.84 6053.60 18596.13 792.70 0.080048
0.041167 21.99 22.05 47049.84 647625 1930057 807.62  0.080157
0.042320 22.03 22.09 49001.06  6936.13 19654.63 831.04  0.077139
0.043451 22.06 22.12 50917.80 7398.08 19966.27 853.86 0.074236
0.044449 22.11 22.17 52758.70 7853.13 20322.70 874.50 0.072131
0.045514 22.14 22.20 5474439 831508 20723.87 896.09  0.070080
0.045957 22.18 22.24 5663356  8783.92 21671.47 905.67  0.071949
0.046955 22.21 22.27 58633.04 9280.35 22091.55 926.00 0.070195
0.047798 22.25 22.31 60646.31 9756.09 22699.56 943.51 0.069584
0.048595 22.30 22.37 62307.95 10183.56 23040.98 960.51  0.068280
0.049505 22.32 22.39 6436258 10693.77 23549.06 978.95  0.067205
0.050436 22.36 22.42 66424.12 11197.09 24029.15 998.19  0.066019
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Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Table D1. Data for Water flow in multi-port straight microchannel slab (MCHX-1) ... cont’d

Total Mass

Inlet Exit Total Inlet Total Exit MCHX-1 MCHX-1
Flow Rate,  Temperature, Temperature, Pressure, Pressure, sideApenw  Side MCHX—l
M, koSl TwlCl  TuolCl  pulPal  puclPal  [Pa]  Remu OO
0.051368 22.39 22.46 68527.02 11700.41 24532.60 1017.47 0.064938
0.052299 22.42 22.49 70671.29 12217.51 25045.33 1036.65 0.063914
0.053031 22.45 22.52 72326.03 12617.41 25412.62 1051.90 0.063038
0.053962 22.49 22.55 74463.41 13155.20 25866.41 1071.26 0.061922
0.054849 22.53 22.60 76531.84 13651.62 26331.67 1090.02 0.060974
0.055802 22.57 22.64 78738.16 14175.63 26805.56 1110.01 0.059923
0.056778 22.61 22.68 81013.43 14768.58 27231.99 1130.48 0.058751
0.057709 22.65 22.73 83219.75 15299.47 27691.17 1150.24 0.057787
0.058707 22.69 22.76 85563.97 15864.84 28146.00 1171.09 0.056708
0.059660 22.73 22.80 87977.14 16464.69 28675.89 1191.23 0.055907
0.060569 22.77 22.84 90114.51 16974.90 29062.34 1210.52 0.054927
0.061500 22.81 22.88 92320.84 17533.37 29421.74 1230.28 0.053886
0.064426 22.98 23.05 100870.34  19239.83 32106.69 1293.88 0.053570
0.065378 23.08 23.16 103007.72 19763.83 3233556 1316.31 0.052330
0.067272 22.57 22.66 109109.58 21184.15 33978.66 1337.85 0.051704
0.072026 22.17 22.25 123485.15 24262.66 37929.45 1419.43 0.050498
0.073024 22.17 22.25 126105.16  24862.50 38328.11 1439.10 0.049597
0.073999 22.25 22.33 128863.06 25531.30 38825.62 1461.08 0.048889
0.074819 22.29 22.37 131138.34 26082.88 39191.81 1478.68 0.048239
0.075727 22.37 22.46 133758.34 26710.30 39671.55 1499.63 0.047633
0.076658 22.45 22.53 136378.35 27337.72 40095.80 1520.75 0.046943
0.077544 22.51 22.60 138998.36  27951.36 40591.37 1540.69 0.046413
0.078452 22.61 22.70 141549.42  28571.89 40963.70 1562.41 0.045722
0.079404 22.70 22.79 144307.33  29240.68 41398.69 1584.73 0.045069
0.081019 22.90 23.00 148995.76  30392.10 42097.54 1624.77 0.043955
0.081639 22.97 23.06 150926.30 30847.16 42468.57 1639.70 0.043654
0.082525 23.03 23.12 153615.25 31495.26 42911.88 1659.82 0.043137
0.082700 23.15 23.24 154028.94 31612.47 42909.15 1668.02 0.042939
0.083162 23.35 23.44 155132.10 31881.37 42931.95 1685.18 0.042455
0.083404 23.46 23.55 155752.63 31502.16 43506.31 1694.41 0.042794
0.083757 23.53 23.63 157407.37  32246.79 43778.00 1704.56 0.042692
0.085505 23.77 23.86 162992.13 33556.80 44838.70 1749.63 0.041909
0.085503 23.84 23.92 162923.18 33032.80 45307.92 1752.23 0.042377
0.086433 23.91 24.00 165681.08 34191.11 45164.31 1774.36 0.041271
0.086431 23.99 24.08 165543.19 33618.85 45616.22 1777.61 0.041712
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Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Table D1. Data for Water flow in multi-port straight microchannel slab (MCHX-1) ... cont’'d

Total Mass Inlet Exit Total Inlet  Total Exit MCHX-1 MCHX-1

Flow Rate, Temperature, Temperature, Pressure, Pressure, side Apgw  Side M;:H;(-l
M, kaisl TGl TuelCl  pulPal  puolPal  [Pal  Rewy
0.087338 24.08 24.17 168232.14 34232.48 45978.00 1800.00 0.041138
0.087338 24.08 24.17 168232.14 34232.48 45978.00 1800.00 0.041138
0.087957 24.18 24.27 170093.73 34742.70 46158.68 1816.94  0.040692
0.088355 24.25 24.34 171403.73 35197.75 4625855 1828.09 0.040395
0.088730 24.32 24.41 172369.00 35383.91 46322.84 1838.82 0.040090
0.090540 23.71 23.81 177126.38 35811.38 46988.90 1850.32 0.038992
0.091252 23.59 23.69 179401.66 36321.60 47314.43 1859.69 0.038629
0.092280 23.29 23.40 177402.17 31447.00 48070.98 1867.76 0.038364
0.094660 23.95 24.05 190502.22 38900.24 48999.30 1945.28 0.037072
0.094654 24.18 24.28 190364.32 38831.29 48989.22 195551 0.037066
0.095730 24.65 24.75 193466.97 39500.08 49294.92 1999.17 0.036416
0.097023 24.37 24.47 198293.30 40672.19 50183.84 2013.22 0.036070
0.026291 76.21 74.68 14279.17  309.02  5541.26  1310.23  0.054280
0.026252 76.44 74.89 14243.43 354.36 5480.43 1312.03 0.053673
0.039980 76.73 75.68 32578.41  5216.96  8687.08 2012.19 0.035911
0.041573 76.32 75.34 36653.59  7107.93 942540 2082.21 0.036054
0.042256 76.49 75.55 37812.04 714416  9917.13 2121.73 0.036766
0.044089 76.13 75.15 41202.44 8030.42 10668.98 2202.85 0.036311
0.044658 76.36 75.41 42239.01  8082.08 11100.82 2238.45 0.036857
0.045218 76.57 75.70 4328259  8183.33 1149358 2273.70 0.037244
0.045825 76.31 75.44 44374.88 8351.66 11806.22 2296.59 0.037256
0.046475 76.03 75.15 45579.89 8527.70 12172.87 2320.63 0.037361
0.047090 76.04 75.17 46710.16  8599.37  12600.55 2351.62 0.037692
0.047760 76.03 75.16 47911.14  8824.07 12880.83 2384.95 0.037440
0.048889 75.75 74.91 50191.65  9569.29  13219.57 2432.86 0.036623
0.050005 76.18 75.39 52426.99 10132.62 13695.42 2503.12 0.036230
0.051018 76.29 75.53 54292.25 10119.22 14461.97 2557.96 0.036790
0.052308 74.76 73.97 56749.88  10969.24 14591.68 2570.31 0.035238
0.051583 76.27 75.53 55504.51  10699.12 14463.34 258591 0.035933
0.053116 75.50 74.76 57941.72 10786.60 15057.23 2636.15 0.035250
0.054027 76.17 75.46 60329.07 11619.37 15567.31 2705.44 0.035208
0.055751 75.94 75.24 64034.11 1224454 16597.56 2783.61 0.035263
0.058056 75.98 75.33 69062.70  13450.19 17593.44 2901.16 0.034406
0.060189 75.59 74.91 74099.56 14721.25 18641.69 2991.90 0.033890
0.062118 75.72 75.07 78945.44 14748.39 20936.14 3093.76 0.035880
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Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Table D1. Data for Water flow in multi-port straight microchannel slab (MCHX-1) ... cont’'d

Total Mass Inlet Exit Total Inlet  Total Exit MCHX-1 MCHX-1

Flow Rate, Temperature, Temperature, Pressure, Pressure,  side side MCHX_l
Mykals]  TuilCl  TwolCl  PuilPal  PuolPal Apa[Pa] Regu 00 ™
0.064132 75.40 74.74 84464.76  14636.21 2384212 3180.66 0.038529
0.066621 75.36 74.74 90986.17 16072.01 25460.45 3302.97 0.038102
0.066484 76.04 75.49 92501.03 16005.81 27344.27 3327.05 0.041283
0.068307 75.13 74.55 97583.23  17126.23 28578.72 3377.43  0.040873
0.068464 75.54 74.98 97666.54 15459.28 30114.16 3403.76 0.042994
0.070548 75.14 74.61 103130.79 16668.25 31286.53 3489.80 0.042020
0.072365 75.42 74.94 108391.47 17803.61 3267453 3594.12 0.041680
0.074365 75.33 74.86 11342523 18896.91 33515.64 3689.11 0.040409
0.075950 75.57 75.13 117664.11 19837.27 34313.02 3780.35 0.039605
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Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Table D2. Data for 50% Ethylene glycol-water mixture flow in multi-port straight microchannel
slab (MCHX-2)

Total mass flow Inlet Exit Total Inlet Total Exit MCHX-2 MCHX-Z MCHX-2
rate, mg [kg/s] temperature, temperature, Pressure, Pressure, side Apchg Side Recng side feng [
Tq.i [C] Too [C] Pg. [Pa] Pg.o [Pa] [Pa] [-]
0.022527 64.42 64.17 14550.70 905.76 6671.93 346.27 0.157600
0.022527 65.06 65.19 14514.50 1135.22 6412.11 353.14 0.151300
0.022527 66.47 66.59 14327.10 1396.53 5973.82 364.81 0.140600
0.022527 67.87 68.03 14790.16 1809.12 6033.98 376.90 0.142000
0.024092 66.46 65.76 15751.84 3.45 7823.33 386.38 0.161600
0.022527 69.26 69.49 15437.71 2457.50 6043.32 389.32 0.142100
0.024092 67.42 67.19 15908.56 111.90 7881.43 397.23 0.162700
0.024092 67.39 67.37 16115.33 301.51 7898.66 397.86 0.163000
0.024092 67.55 67.52 15976.47 194.43 7868.75 399.31 0.162400
0.031138 63.41 63.38 29845.97 6874.63 9915.84 468.61 0.122000
0.031138 63.82 63.82 29791.43 6851.19 9889.40 473.40 0.121600
0.031138 64.40 64.45 29617.75 6743.70 9831.28 480.22 0.120800
0.031138 64.99 65.06 28850.43 6191.77 9623.68 487.00 0.118200
0.032581 66.37 65.78 33543.56 8321.49 11005.45 522.17 0.123500
0.032581 67.44 67.35 34054.60 9321.23 10534.01 538.30 0.118000
0.032581 67.53 67.55 34020.61 9280.48 10543.57 540.01 0.118100
0.034464 66.17 65.76 42232.68 13760.56 12619.38 550.93 0.126700
0.034464 67.07 67.18 42389.88 13874.81 12679.23 565.86 0.127200
0.034464 67.08 67.30 42394.85 13960.92 12597.91 566.65 0.126400
0.038000 65.94 66.38 48444.58 19606.90 9683.62 610.16 0.078700
0.040836 63.75 63.89 54615.67 19740.18 12803.72 620.84 0.090720
0.038000 67.05 67.55 48558.21 19709.36 9714.03 626.38 0.078920
0.040836 64.32 64.45 54189.57 18949.49 13179.43 629.06 0.093450
0.043549 61.75 61.74 68398.16 27404.33 15943.94 630.20 0.099780
0.043549 62.04 62.07 68005.84 27430.25 15531.97 634.87 0.097090
0.038000 68.11 68.67 48808.14 19872.35 9818.46 642.16 0.079760
0.043549 62.54 62.59 68926.36 28408.76 15485.35 642.77 0.096760
0.043549 63.17 63.25 68562.53 28193.91 15351.84 652.60 0.095870
0.040836 66.60 66.80 55514.19 21058.87 12440.29 663.91 0.087920
0.043549 63.90 64.02 68254.54 27940.26  15314.25 664.24 0.095590
0.043942 66.48 67.03 69870.19 32130.34 12361.36 715.40 0.074980
0.043942 66.80 66.85 71060.57 32661.65 13020.05 716.39 0.079140
0.043942 67.27 67.79 70669.64 33174.07 12133.63 728.19 0.073500
0.051074 63.69 64.07 88026.99 38320.18 15637.93 77756 0.070110
0.051074 64.75 65.21 88192.60 38451.25 15703.37 797.86 0.070380
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Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Table D2. Data for 50% Ethylene glycol-water mixture flow in multi-port straight microchannel
slab (MCHX-2) ... cont'd

Total mass flow Inlet Exit Total Inlet Total Exit MCHX-2  MCHX-2 MCHX-2
rate, mg [kg/s] temperature, temperature, Pressure, Pressure, side Apchg Side Recng side fong [
T, [C] Tgo [C] Pg.i [Pa] Pg.o [Pa] [Pa] []
0.051074 65.71 66.23 88112.55 38393.26 15709.88 816.46 0.070380
0.051725 65.73 65.71 92540.23  40919.30 16755.92 822.09 0.073330
0.051725 66.13 66.53 92477.49 40771.82 16858.64 833.77 0.073780
0.051725 66.29 66.66 92632.55 40800.43 16988.57 836.65 0.074360
0.063771 64.38 64.91 138017.86 64902.58 20697.68 988.54 0.059010
0.063771 64.97 65.50 138168.16  64945.47 20829.16 1002.07  0.059390
0.066617 63.98 64.51 148036.98 68676.29 22279.80 1022.83 0.058180
0.070409 62.30 62.46 173479.95 84787.97 25028.15 1034.57 0.058590
0.067492 63.96 64.47 154947.67 73808.41 22588.70 1035.50 0.057430
0.066617 64.55 65.13 148080.00 68821.70 22204.75 1037.29 0.057960
0.067492 64.36 64.94 155078.25 74247.74 22301.58 1046.21 0.056640
0.070409 62.87 63.07 173720.99 84941.93 25145.45 1049.14 0.058860
0.069113 63.76 64.23 171089.54 86659.82 23100.48 1055.19 0.055930
0.069113 64.25 64.71 168306.40 82460.57 24542.26 1067.11  0.059620
0.070409 63.85 64.14 173245.19 84532.79 25126.15 1074.98 0.058780
0.078305 63.54 63.92 204517.61 98856.72 2745141 1187.97 0.051550
0.078305 64.71 65.15 203377.98 97383.04 27856.82 1221.83 0.052330
0.080726 63.80 64.25 241231.59 128217.16 30043.82 1233.29 0.053170
0.079003 65.53 65.92 214339.82 104262.22 30617.75 1255.95 0.056740
0.080726 64.71 65.24 241734.42 128831.69 29988.41 1260.75 0.053040
0.079003 66.00 66.65 213349.52 10375159 30172.20 1273.25 0.055850
0.080726 65.56 66.19 229602.26 112932.10 33807.15 1287.49 0.060200
0.087453 63.69 64.14 261112.08 130988.51 33151.86 1332.37 0.049810
0.087453 64.64 65.19 260991.63 130943.21 33148.02 1364.00 0.049780
0.087453 65.43 66.06 261354.84 131089.31 33416.06 1390.88 0.050180
0.089569 65.28 65.84 270681.80 133262.96 35937.46 1418.27 0.051540
0.089569 65.41 65.81 270844.24 133465.39 35903.66 1419.95 0.051490
0.103125 61.04 61.32 359048.14 183562.64 41534.21 1472.52 0.044620
0.103125 61.14 61.37 354192.09 176523.09 43716.24 147499 0.047140
0.103125 61.15 61.44 359087.58 182848.83 42293.84 1476.69  0.045490
0.103125 63.27 63.41 353707.53 176408.30 43542.26 1550.19 0.046880
0.108356 62.19 62.63 389072.89 194710.71 46964.81 1593.27 0.045750
0.103125 64.54 64.93 353821.09 176432.15 43761.30 1601.62 0.047100
0.108356 63.28 63.84 389517.40 194967.75 47267.90 1637.25 0.046040
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Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Table D3. Heat transfer and pressure drop data for Water flow in multi-port serpentine
microchannel slab (MCHX-4)

: Waterside
Waterside  \yaterside  Waterside Waterside Waterside MCHX-4
Total Mass - : Total
Test Inlet Exit Total Inlet Total Exit Surface
Flow Rate Pressure
Runs » Temperature, Temperature, Pressure, Pressure, Drop A Temperature,
M, ksl T €l Twe [ pulPal puolPal 0P T (C]
1. 0.01883668 75.37 60.94 105316.37 101317.40 3998.98 66.50
2. 0.02548844 75.97 64.86 114630.80 102458.62 12172.18 68.96
3. 0.03372392 75.99 67.40 128667.95 110430.53 18237.42 70.38
4. 0.03942096 75.89 68.48 140263.65 116967.51 23296.14 70.92
5. 0.04725660 75.87 69.69 162093.87 129103.14 32990.73 71.58

Table D3. Heat transfer and pressure drop data for Water flow in multi-port serpentine
microchannel slab (MCHX-4) ... cont’d

Waterside Waterside ) Airside
Channel Heat Heat Waterside Airside Inlet  Airside Exit
Test side Water Nusselt Total Mass
Transfer Transfer Temperature, Temperature,
Runs Flow . Number, Flow Rate,
Re Rate,  Coefficient, NU Tai [C] Tao [C]
T qu W] hy [WimPC Y, [kgls]
1. 850.93 1137.73 4528.89 6.99 0.506203 14.03 16.23
2. 1187.88 1185.68 5378.61 8.28 0.507468 14.00 16.31
3. 1599.22 1213.16 6100.18 9.37 0.506641 13.95 16.32
4, 1881.73 1223.38 6393.02 9.82 0.507569 13.82 16.22
5. 2273.78 1223.21 6722.27 10.32 0.507312 13.86 16.31
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Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Table D4. Heat transfer and pressure drop data for 50% Ethylene glycol-water mixture flow in

multi-port serpentine microchannel slab (MCHX-4)

MCHX-4 MCHX-4 MCHX-4

Glycol-sid Glycol-side side core side side
YEOUSIB® " Giyvcol-  Glycol-  Glycol-side Glycol-side Y Pressure  Pressure

Total Mass . . . . Total ) . Pressure
Test side Inlet side Exit Total Inlet  Total Exit Drop (in Drop in :
Flow Rate, Pressure ) . Drop in
Runs Temp. Temp. Pressure, Pressure, D straight top inlet & i

M, koSl To [C] Too [C] PuilkPal  poolkPal 0 &bottom exit o Pel

gi g0 9.l 9,0 _

g Ap [kPa] slabs), manifolds, U-bend,
Ap [kP

Ap[kPa]  Ap [kPa] P [kPa]

1. 0.029429 76.18 46.89 140226.77 111879.77 28.3500 18.2875 2.7742 1.1915
2. 0.039810 76.15 52.57 160409.04 119523.61 40.8900 23.2335 4.9835 1.7274
3. 0.047605 75.74 55.28 182959.91 132191.76 50.7700 26.0578 7.0552 2.1675
4. 0.054718 75.61 57.57 206653.27 144727.72 61.9300 29.7824 9.2517 2.5831
5. 0.058719 75.52 58.54 228102.13 159799.70 68.3000 31.5604 10.6149 2.8265
6. 0.062555 76.46 60.17 245623.35 171050.62 74.5700 33.1855 12.0046 3.0310
7. 0.063495 76.07 60.16 246603.23 169094.34  77.5100 34.9164 12.3601 3.1004
8. 0.066113 75.89 60.48 259184.34 177842.21 81.3400 35.3404 13.3736 3.2712
9. 0.070882 75.98 61.29 274404.42 185818.14 88.5900 36.0632 15.3196 3.5740
10. 0.072357 76.48 62.10 284699.62 191731.79 92.9700 38.3749 15.9450 3.6452
11. 0.074137 76.23 62.06 287625.21 192328.13 95.3000 38.0974 16.7206 3.7734
12. 0.077154 76.00 62.35 302278.90 201689.79 100.5900 38.8519 18.0755 3.9809
13. 0.082967 75.84 63.11 337350.91 222970.37 114.3800 43.4478 20.8296 4.3744
14. 0.092263 75.56 63.93 381024.68 248345.43 132.6800 45.7356 25.6335 5.0315
15. 0.099010 75.96 65.09 422630.60 272670.18 149.9600 50.4469 29.4236 5.4863
16. 0.107597 75.43 65.29 465443.12 294698.00 170.7500 53.9475 34.6233 6.1493
17. 0.113464 75.06 65.50 514898.21 326092.24 188.8100 59.4260 38.4148 6.6116
18. 0.089733 75.43 63.70 365982.35 236747.00 129.2400 46.7981 24.2781 4.8571
19. 0.071711 76.25 61.83 282698.89 190793.33 91.9100 38.2268 15.6692 3.6123
20. 0.034314 75.92 50.12 150448.58 115295.68 35.1500 21.7750 3.7358 1.4386
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Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Table D4. Heat transfer and pressure drop data for 50% Ethylene glycol-water mixture flow in

multi-port serpentine microchannel slab (MCHX-4) ... cont’d

Channel oy, BVeokside - Glycolside

MCHX-4 C;Idel sideyT-loe:elt Experimental Ex y;:r(i)n:nselnfal Wilson Plot A|r|5|de Airside Airside

Test Surface cho Transfer Heat pNusselt predicted Total Mass Inlet Exit
Runs Temp. Flow Transfer b Nusselt oW Rate, Temp. Temp.
T, eynolds - Ra® - coefficient, MU Numper, y pgs) Ta 0] Teo [C]

s number Qg [kW] , Nu, AL ai a0
Reang hy [W/m®.C] Nug

1. 56.13 397.28 2.9659 3622.07 8.950 6.520 1.9298 8.02 9.57
2. 59.14 569.92 3.2400 4097.07 10.100 7.640 1.9257 8.13 9.81
3. 60.32 697.63 3.3662 4281.21 10.540 8.370 1.9172 8.20 9.94
4. 61.35 818.43 3.4158 4302.85 10.580 8.990 1.9166 8.30 10.09
5. 61.78 885.73 3.4519 4340.05 10.670 9.320 1.9151 8.34 10.15
6. 63.04 967.69 3.5332 4421.24 10.860 9.650 1.9101 8.41 10.27
7. 62.85 978.29 3.5018 4390.31 10.780 9.720 1.9105 8.36 10.22
8. 62.93 1020.10 3.5319 4436.43 10.890 9.910 1.9024 8.38 10.25
9. 63.38 1103.49 3.6117 4536.61 11.130 10.270 1.9048 8.36 10.24
10. 64.02 1141.31 3.6117 4523.78 11.100 10.400 1.8948 8.32 10.23
11. 63.89 1166.01 3.6459 4579.63 11.230 10.520 1.8925 8.32 10.22
12. 63.95 1214.12 3.6552 4617.63 11.330 10.730 1.8891 8.33 10.24
13. 64.26 1313.61 3.6669 4641.32 11.380 11.130 1.8913 8.33 10.26
14. 64.61 1468.92 3.7266 4790.35 11.740 11.740 1.8901 8.34 10.28
15. 65.41 1598.92 3.7410 4827.69 11.830 12.180 1.8909 8.40 10.36
16. 65.35 1732.49 3.7917 4995.70 12.240 12.680 1.8849 8.44 10.40
17. 65.42 1824.57 3.7695 5119.66 12.550 13.010 1.8887 8.39 10.37
18. 64.48 1423.39 3.6548 4744.25 11.630 11.570 1.8875 8.39 10.32
19. 63.87 1125.51 3.5884 4581.49 11.240 10.350 1.8833 8.34 10.24
20. 57.58 477.53 3.0512 3702.28 9.140 7.070 1.8875 8.06 9.70
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APPENDIX - E

UNCERTAINTY ANALYSIS
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APPENDIX E: UNCERTAINTY ANALYSES

The errors in experiments may originate from various sources and can influence
the measured primary variables. The errors then propagate into the dependent parameters
and into the end results according to the parametric relationships involved in the analysis.
The error sources can be divided into two bias (B) and the precision (P) components. In
treating and identifying the error limits assumptions, considerations, logics and
judgments are applied depending on the experimental situation. The overall uncertainty
issue is addressed in light of the ASME Journal of Heat Transfer Editorial (1993) and
ASME Journal of Fluids Engineering Editorial (1991) [225-226]. Other resources are also
consulted [227-230]. Brief descriptions and procedures are provided in section 5.6 above.

Details of the uncertainty calculations are presented below.

E1l.  Addressing the uncertainty issues

The independent or primary variables are the parameters that are directly
measured in current study using various instruments. The independent variables in this
study include the basic geometric dimensions of the test specimens such as the channel
diameter, flow length, slab height and width, fin height, width, and thickness, etc. that are
tabulated in Table 4.1. The other independent variables include the liquid side and air
side measured parameters as listed in section 5.0. The dependent or secondary variables

are not directly measured but they are the functions of the primary measured parameters
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and the thermophysical properties of the fluids. The dependent variables in current study

are briefly listed below by their symbols and the notations are provided in nomenclature.

1. Geometric dimensions: A, A, A, P, Dy, and the fin dimensions (Figure 5.3),
2. Thermophysical properties of fluids: P Cp, 14, K, Pr, etc.,

3. Heat transfer and fluid flow parameters:
a. Liquid side: Tv, AT, M, Re, Ap, 0, h, Nu, C, R, Ly, L etc.
b. Air side: Tv, AT, V, m,Re, g, h, Nu, C, Ry, etc.

c. Testspecimens: T, LMTD, NTU, ¢ C*, UA, Ry, oy €tc.

Bias Limit (B):

The instruments’ resolution as applicable (£0.5 times of the instrument scale
resolution) is considered as the 0™ order uncertainty. The other instrumental errors,
consolidated by RSS of all errors (Equation 5.40), are taken as the 1* order uncertainty.
The bias limit for instruments as the design stage uncertainty is calculated from root sum

square (RSS) as follows.

B, =U, =JuZ + 12 = U2 +U?> . (Ela)

Other possible sources of errors are also considered as the bias, for example in case of
thermocouple, the wire length (B;), probe (B;), location (B3), etc. and the overall bias is

estimated as follows.
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B=yU2+B’+B2+B2+..+B} . (Elb)

Precision Error (P):
From the known and judged sources of information the precision error is

calculated using RSS of all errors as follows,

P:\/ID]2+P22+P32+...+PT§_ (E2)

where Pj, Py, ... are the repeatability, special, temporal, and other error components in

multiple samples such as the standard deviation, probe-to-probe variations etc.

E1.1 Uncertainty in independent (primary) parameters

Single sample measurement (N = 1):
The absolute and relative uncertainty of an independent parameter say an arbitrary
variable of ‘X’, which is directly measured as a single point sample, is calculated from

the root sum square (RSS) of bias and precision errors (Equation E1.1) as follows:

U, =+VB*+P? (absolute) (El.1a)

2 2
li(—x =+, /BX%P , (relative). (E1.1b)
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Multiple samples measurement (N >1):
In this case the bias limit is considered the same as Equation E1b. The precision
however is dependent on the experimental samples and the standard deviation, which for

an arbitrary independent variable ‘X’ is expressed at 95% confidence limit as follows.

S
Py = (tN—l, 95% )(Sy) = (tN—l, 959 ) [Tﬁl) for number of samples, N <20  (El.2a)

and

S
Pe = (ty, 950, )(Sy) = (ty, 95%)(T§lj for number of samples, N > 20 (E1.2b)

where X and t are the sample mean and student t-distribution and Sy is the standard

deviation of sample mean. The S, is the standard deviation defined by Equations E1.3.

For all the experiments the average sample size was N > 1000 and thus t = 1.962 was set.

1 N —\2 (E1.3a)
Sx = 2 ( X, =X ) for number of samples, N <20
N —Ti=
and
I N —\2
Sx = ﬁz(xi -X ) for number of samples, N > 20 (E1.3b)
i=1

Taking the precision error calculated from Equations E1.2 and E1.3, the uncertainty of

multiple samples of an independent parameter is determined using Equation E1.1.
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E1.2 Uncertainty in dependent (secondary) parameters

Now let us consider an arbitrary dependent variable ‘A’ that depends on other
primary parameters such as A;, Ay, As .... etc. according to the following functional

relationship.

A= (A, A, A, ... A, . (E1.4)

2

The absolute uncertainty of the dependent variable ‘A’ is calculated from the root sum

square (RSS) of the partial derivatives is expressed by,

UA:\/(%UAJ J{%UAJ +(%UA] F oo +(%U%j , and (E1.5a)
oA 7 oA, 7 oA, oA,

the relative uncertainty from Equations E1.5a and E1.4 is given as follows.

[aAUAj +(8AUA ] +(6AUAJ F e +(6AU j
u, LA ™h oA, M oA, s oA, (E1.5b)

A [A=f(A, Ay Ay, AT

OA O0A OA
oA’ OA," OA’

The partial derivatives ——, ——, —— - are derived from the functional relationship

given in Equation E1.4. The uncertainties in independent parameters U, , U, , U, , ..

are obtained from Equations E1.1, E1.2, and E1.3. Usually the absolute uncertainty is

represented by A = Ua. For clarity the sign is however ignored throughout the write up.
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E1.3 Uncertainty in thermophysical property evaluations

The uncertainty for respective thermophysical property may be 0.25 to 0.5 times
the absolute value [225-227]. If taken from any table, sometimes they are considered as
bias error limit even though they may have some precision error. For a given operating
condition, the temperatures are measured several times to give different population and
from where the mean, maximum, and minimum values are obtained. In current study the
thermophysical properties are considered as the dependent variables since they are
evaluated mostly at bulk temperatures, which are functions of independent parameters at

two different locations. Therefore their uncertainties are calculated as follows.

U, = %‘ (A@Tb, max A@Tb, min)

: (E1.6)

where Ty, is the bulk temperature as defined by Equation 5.1. The dependent variable ‘A’

is any property of fluid i.e. A= p, Cp, 4, K, or Pr.
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E2 Uncertainties in instruments, DAQ system, and sensors

These uncertainties include the errors in digital caliper used for geometric
dimension measurements, DAQ system engaged for data recording, and sensors
employed for measurements such as the thermocouple, RTD, pressure transducer, flow

meter, Pitot Static probe etc. The treatments of their uncertainties are described below.

E2.1 Digital caliper and geometric measurements

A Mitutoyo (Mitutoyo Corporation, Japan, Model CD CS 500-196), digital
caliper is used to measure various geometric dimensions of the test samples. The caliper
has a resolution (0th order bias limit) of B,s = By = 0.0125 mm = 0.0000125 m and an
accuracy of Byeey = Br=0.025 mm = 0.000025 m. The total 0™ order bias error, which is

fixed for other dimensional measurements in this series, is estimated as,

Beatiper = Bacomety = N B} +B; =2.795 x 10> mm =2.795x 10° m (E2.1)

The total uncertainty in any independent geometric parameter ‘X’ is calculated as from

Equations E1.2 and E2.1 as follows.

UX = \, Bczaliper + P)? (E22)

PhD Dissertation Mesbah G. Khan, Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 464



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Independent and dependent parameters in geometric measurements

The independent geometric parameters such as the L, D, H, W, t etc. associated
with each test specimen, wind tunnel test section and the inlet and exit pipe connections
were several times measured for N > 20 and their mean values were obtained. Since the
population was more than 20, their precisions at 95% confidence limits were determined
using Equations E1.2b and E1.3b. The total uncertainties were then calculated from
Equation E2.2. The exception is the microchannel diameter, which could not be measured
but as mentioned in section 4.1 its uncertainty information was obtained from the

manufacturer to be Up = £1.5% = £0.000015 m [202].

The uncertainties in the dependent parameters such as the A., A, Dy, etc. were
determined using Equations E1.4 and E1.5. As an example, the uncertainty calculation of

the surface area of a single channel is explained below.

A =7zDL, .. partial derivation with respect to D and L gives,

Z—g =L and A _ 7D; using Equations E7a and E7b one deduces
0 2 ) 2 2 2 E2.3
o) ] -

u 2 :
in relative form, —= = (U_Dj + (ﬁ)
A D L

Putting the values of A; = 0.0009574m’*, Up =~ £0.000015m and Uy ~ +0.000106m
in Equation E2.3, the absolute and relative uncertainties in surface area are estimated to

be Uas =10.00001437 m? = +1.5004%. Other parameters are similarly calculated.
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E2.2 Data Acquisition (DAQ) System

The DAQ system and its components, shown in Figures 4.1b and 4.20, were
obtained from National Instruments and configured in house. It has a PCI acquisition
card, multiplex mode signal cable, SCXI signal conditioner, and SCXI terminal block.
All these components, whatever little they may be, contribute to measurement errors,
which are treated and consolidated below. The accuracy specifications for these
components were collected from the manufacturer, which are given in Table E1 below. It
is noted that except for the PCI Card the combined accuracy of all other SCXI modules

(cable, signal conditioner, and terminal block) were supplied by the manufacturer.

Table E1. Accuracy specifications of DAQ components (Notes: m = mili, u = micro, V = volt)

DAQ Card (16-bit PCI-6052E) All SCXI modules combined Remarks /

Error sources

0-5VDC input 0-10VDCinput 0-5VDC input 0-10VDC input others
Resolution (Bo) 28.6 uv 57.3 uwv - - See Eqgn. E2.3

0.0353% of rdg; 0.0071% of rdg; 0.035% of rdg; or 0.025% of rdg; See Eqns. E2.4
Accuracy (Bio)

Max =2.119 mV Max =1.232mV Max=175mV Max=15mV & E2.14
Off-set (Bi1) 241.0 uv 476.0 nv 290.0 uv 500.0 Vv
Quantization & 21.7 uv 43.5 uv 25.0 uv 50.0 uVv Samples N > 100
Noise (Biz) 245.0 mV 491.0 mV 300.0 mV 600.0 mV Sample, N=1

Temperature drift 0.0006% rdg/°C 0.0001% rdg/°C ~ 50.0 uV/°C; 20.0 uvV/°C; 15-35°C Ambient
(Bia) Max =0.75mV Max=0.25mV Max=125mV Max=0.70 mV operation = 25°C

Sensitivity (Bia) 2.50 pv 2.50 pv - -

) ) 0.005% of rdg;  0.005% of rdg;
Non-linearity (Bis) %2 Bo = 14.3 uV % By = 28.65 uV
Max =0.25 mV Max = 0.50 mV

Digitization width,
. 76.3 uv 152.6 uVv - - See Eqgn. E2.6
precision (Po)
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Uncertainty in Data Acquisition Card:
The resolution of the 16-bit card (1 in 65,536) as the 0™ order bias limit is

calculated as follows.

Input__ —Input,_. Gain=2 for 0-5 VDC input range
B, = . T , Where ) ) (E2.4a)
Gain*2 Gain=1 for 0-10 VDC input range
The relative accuracy as the instrumental error is calculated as,
354%107°*V, > for 0 -5 VDC input range
0 = P . (E2.4b)
71*107*Vp,, for 0-10 VDC input range
or the maximum absolute accuracy at full scale (FS) could be given by,
2119*10~°Volt, for 0 -5 VDC input range
0 = S ) . (E2.4¢)
1232*107° Volt, for 0- 10 VDC input range

Either of Equations E2.4b or E2.4c can be considered but not both. Equation E2.4a is the
actual accuracy with the output of DAQ system by any given sensor. Equation E2.4b

maximum estimate of accuracy regardless of any sensor’s output via DAQ.

The temperature drift given in Table E1 is based on the ambient temperature
during operation of the DAQ system in the rangel5 < Ty < 35°C. All the experiments
and the DAQ was operated within the ambient temperature range of 20 to 25°C. The

reasonable maximum B value from Table E1 at T.m, =25°C is taken in all error
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calculations. If the system had to operate in an ambient temperature beyond this range i.e.

Tamb < 15°C or Tamp > 35°C, the following expressions would have to be considered.

B;; =| Reading®0.0006%/°C + Reading*0.001%/°C [*AT,

for ambient for offset ' (E2.5)
AT =T,,, 35, for T,,, >35°C
wnere
AT =15-T,,, for T, <15°C

amb »

The digitization code for the DAQ card is considered as the precision error,

which is calculated as follows.

PO

Input __ — Input . Gain=2 for 0 -5 VDC input range

Gain*2'® Gain=1 for 0-10 VDC input range

The total bias and the precision for the DAQ card is estimated from Table E1 and

Equations E2.3 to E2.6 using the RSS of all the bias elements as follows.

2 2 2 2 2 2 2
BDAQ—Card:\/ B, + Elg +§£+EE+ EE + Eﬁ + Eﬁ (E2.7)

—
Resolution ~ Accuracy ~ Off-set  Noise  Temp. drift ~ Sensitivity =~ Non-linearity

and

2
Poaq-card = \/ an . (E2.8)

Digitization code width

From Equations E2.7 and E2.8 the uncertainty in DAQ Card is calculated as,

_ 2 2
UDAQ-Card - \/ BDAQ-Card + I:)DAQ-Card . (EZ 9)
%/_J %/_J *
Bias Precision
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0-5VDC Range:

As applicable by adopting the relative and absolute values for bias and precision
limits from Table E1 into Equation E2.9, we can re-write the following expressions for

voltage input range of 0 — 5 Volt DC as,

(107°Volt)? *[(28.6)* +(353*V;,0)° +(241)* +(21.7)
+(150%Vpu)” +(2.5)* +(143.3)° +(76.3)*]

UDAQ-Card =

(E2.10)

= [\/85732.68 +147109% (Vo ) } *10"Volt

where Vpag is the DC voltage output of the DAQ system from a given sensor. The
maximum absolute uncertainty or the uncertainty at full-scale reading (FSR) is calculated

from Equation E2.10 by introducing Vpag =5 VDC as follows.

Upaocas =1939.96¥10Volt =1.94 mV | (E2.11)

To eliminate the calculation complexity, the absolute uncertainty in DAQ card
can be calculated using Equation E2.11 with an upper limit of error. Otherwise it can be

calculated using actual sensor supplied and DAQ measured voltage from Equation E2.10.

0-10 VDC Range:

Similarly by adopting the relative and absolute values for bias and precision limits
from Table E1 into Equation E2.9, we can re-write the following expressions for voltage

input range of 0 — 10 Volt DC as,
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(107°Volt)? *[(57.3)* +(71*Vp,, )’ +(476)* +(43.5)°
H(25%Vps0)” +(2.5)% +(28.65)” +(152.6)°]

U DAQ-Card —
(E2.12)

_ [\/255865.37 +5666*(Viyso ) }*10_6V0It

And by introducing Vpag =10 VDC in Equation E2.12 the maximum absolute or the

FSR uncertainty is calculated as follows.

Upaocas =906.9%10°Volt =0.91 mV | (E2.13)

To eliminate the calculation complexity, the absolute uncertainty in DAQ card
can be calculated using Equation E2.13 with an upper limit of error. Otherwise it can be

calculated using actual sensor supplied and DAQ measured voltage from Equation E2.12.

Uncertainty in Data Acquisition SCXI modules together:
The combined relative and the combined maximum absolute accuracies at FSR

of all the SCXI modules are given by Equation E2.14.

350¥107°*V,, > for 0-5VDC input range
0 = 6 , (E2.14a)
250*%107*Vy,,q, for 0-10 VDC input range
and
1750*10°°Volt, for 0 -5 VDC input range
0 = B ‘ . (E2.14b)
1500*107° Volt, for 0- 10 VDC input range

The expressions for temperature drift follow Equation E2.5 except for the

different values in Table E1. No precision limit for digitization code-width is available
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for the SCXI modules. The total bias is calculated from Table E1 using the RSS of all the

bias elements for the combined SCXI components as follows.

2 2 2 2 2

B =B, +B, +B,+ B; + B

DAQ-SCXI 10 11 12 13 14 (E2 1 5)
Accuracy  Off-set  Noise  Temp. drift ~ Non-linearity

And the total uncertainty in SCXI components is given by Equation E2.16,

2 2
UDAQ-SCXI = \/ BDAQ-SCXI + PDAQ-SCXI =0= BDAQ-SCXI . (E2.16)

Bias Precision

The consolidated uncertainties in SCXI for 0 — 5 VDC and 0 — 10 VDC ranges

follow the Equations E2.10 to E2.13 with different values, which are given below.

SCXIlin 0 -5 VDC Range:

(107°Volt)® *[(350 *V},,o) +(290)°
UDAQ—SCXI = ) ) )
+(25)" +(1.25)" +(250*V,,0)” ]

, (E2.17)
- [\/84726.56 +185000* (Vprq )2 }*106 Volt
and
Upagsext =2170.2%10° Volt =2.17 mV . (E2.18)

SCXIin 0-10 VDC Range:

(107 Volt)* *[(250*V,,,., ) +(500)*

Posasen Sy 501 4 (0.5 + (5004, Y
+( ) +( : ) +( DAQ) ] (E219)

- [\/252500.25 +312500% (Vi )2 } *107° Volt
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and

Upagsext = 3612.71¥10° Volt =5.61 mV .

Total uncertainty in the DAQ system:

(E2.20)

Using the RSS method the total uncertainty in the DAQ system is estimated from

Equations E2.9 and E2.16 as follows and details are given in Equations E2.22 to E2.25.

_ 2 2
Upag = \/ Upag-cad FYUbagsex -

0 -5 VDC Range:

Based on actual DAQ voltage output for a given sensor,

Upag = [\/170459.24 +332109% (Vg )2 }* 10°Volt, here V is in Volt

and at the FSR (Vpaq =5 VDC) i.e. the maximum absolute uncertainty,

Upag =2910.87*10° Volt =291 mV,,

0-10 VDC Range:

Based on actual DAQ voltage output for a given sensor,

Upro = [\/508365.62+318166*(VDAQ ) }*106\/0&,

and at the FSR (Vpag = 10 VDC) i.e. the maximum absolute uncertainty,

Uprg = 5685.5%10° Volt =5.69 mV
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E2.3 Temperature sensors — RTDs and Thermocouples

Resistance Temperature Detectors (RTDs)

The specifications, connection details, and the calibration process of the RTDs
used to measure the inlet and exit liquid flow temperatures are provided in Sections 4.4
and 4.5 and Table 4.2. The ultra-precise 1/10 DIN RTDs have total absolute instrumental
accuracy of Brrp =0.012°C (Equation E1b). Since the sample size for all experimental
runs were N > 1000, the student t was set to 1.962 in precision error calculation. The

uncertainty in RTD was estimated using Equations E1, E1.1, E1.2b and E1.3b as follows.

2
Upgrp =+/Birp + Parp = \/(0.012)2 +(1.962* jXWJ [°C]. (E2.26)

The total uncertainty in temperature that was measured using RTD and DAQ together is,

2
Urrp = YUnio +Uag = \/(0.012)2 +(1.962*\7xﬁj +Ug, [°Cl. (E2.27)

The uncertainty in DAQ due to RTD is obtained through the RTD sensitivity

(KrTp) linked with the DAQ response using RTD-Voltage output relationship as follows.

Vimp = lex Ry - (E2.28)
where Igx is the RTD excitation current (100 mili-Amp = 0.1 Amp in current study) and

Rr is the resistance and temperature relationship of RTD material.
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The Rr is generally obtained from widely used approximated curve-fit equation

proposed by Calendar-Van Dusen as follows [237].

A=3.9083*10""
Ry =R,[ 1+ AT +BT? +C(T ~100)’ | ohm, where {B=-5.775*10" (E2.29)
C=0forT>0

By combining Equations E2.28 and E2.29 together and getting partial derivatives of V

with respect to T, the RTD sensitivity Kgtp can be obtained.

Verp = Rolpx + Rolex AT + Ry 1, BT, (E2.30)

and

Kerp = 8\(;5?13 = Ryl x A+ 2R ;4 BT =Rl (A+2BT) Volt°C, (E231)

Dividing Equations E2.22 or E2.24, as applicable, by Equation E2.31, the uncertainty in
DAQ in terms of temperature can be deduced to use in Equation E2.27. With 4-wire
connectivity the RTDs were directly online calibrated in DAQ system using dry-block
precision calibrator and the cold junction compensation of the DAQ was activated to
built-in. These helped greatly reduce the other errors associated with resolution, wire,
connection, DAQ system, DAQ response with RTD sensitivity etc. It has been observed
that the magnitude of Upaq in Equation E2.27 is negligible as compared to the magnitude
of Urtp. Thus to minimize the complexity in calculations the Equations E2.28 to E2.31
were ignored and the Equation E2.27 was used in all calculations by dropping the term

Upagq without much sacrifice in error estimation.
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Thermocouples (TCs)

Type-T thermocouple is used in current study with an accuracy of 0.5°C at a

resolution of 0.1°C. The instrumental error was estimated as follows (Equation E1b).

By =+/(0.1)> +(0.5)> =0.509°C.. (E2.32)

Since the sample size for all experimental runs were N > 1000, the student t was
set to 1.962 in precision error calculation. The uncertainty in TC was estimated using

Equations E1, E1.1, E1.2b and E1.3b as follows.

2
U, =+/B2.+P2 = \/(0.509)2 +(1.962*STX\J [°C]. (E2.33)

The total uncertainty in temperature that was measured using TCs and DAQ together is,

2
Urre =Utc +Upug = \/(0.509)2 +(1.962*\7XW) +Up.o [°CI. (E2.34)

where the Upaq-tc can be deduced similar to Equation E2.31.

The TCs were directly online calibrated in DAQ system using dry-block precision
calibrator and the DAQ cold junction compensation was set to built-in, which helped
greatly reduce the other errors. Thus except for the accuracy the errors associated with
wire lengths, connections, TC spherical tips, DAQ system, TC sensitivity, linearity,
repeatability, etc. are considered to be already compensated in the calibration. It is also
seen that the Upaq in Equation E2.34 is negligible as compared to Upc magnitude.
Therefore to avoid tedious calculation the term Upsg was dropped from Equation E2.34

without any significant tax in error estimation.
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E2.4 Pressure transducers (PTD) — Liquid side

As mentioned before to capture best narrow range accuracy several PTD sets were
used depending on the range of liquid flow rate. Manufacturer supplied RSS accuracies
including all errors are given in Table 4.2 as Bprp = 0.25% & 0.08% of FS Vpag reading.
The sample size in all experiments were N > 1000 i.e. t=1.962 for precision error

calculation. The uncertainty in PTD was estimated using Equations E1 and E1.1 to E1.3.

2
Uprpp = Bl + P2y = \/(o.oozsvDAQ)z + [1.962 *STX\J [V]. (E2.35)

The Equations E2.22 and E2.23 for Upaq are applicable here since the PTDs were
set to 0-5 Volt DC nominal output to the DAQ system. The total uncertainty in volt unit

in pressure that was measured using PTDs and DAQ together is,

2
Uy =AU U =\/(0.0025VDAQ)2 150203 v,

- (E2.36a)
2 2 S
= [(4.12867*107") +(25.65562*107 *V, +(1.962*—Xj [V]
(412567107 ) 19627 S5
and at full scale reading of 5 Volt DC i.e. the maximum uncertainty in pressure,
U = [(132.40677%107) +| 1.962* Sx 2 \Y% (E2.36b)
p[v],max — ( . ) +| 1. W [ ] .

PhD Dissertation Mesbah G. Khan, Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 476



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

Equation E2.36 gives the uncertainty in PTD in voltage unit that need to be
converted first into psi and then into Pa unit. This is usually done using the voltage vs psi
calibration data supplied by the manufacturer and curve produced and verified by the
candidate during experiment. There are a number of linear calibration curves produced

(as presented by Equation 4.7 in Table 4.6 in Section 4.5.2) all of which follow the form,

Prpsi] = mV, AQ — C, where m =slope and C = constant vertical distance . (E2.37)

The uncertainty in p in psi unit is obtained from the slope of the calibration curve, which

is the sensitivity of the PTD. This is achieved by partial derivation of Equation E2.37.

0 Ppsiy
Npag

2
ap si 2 .
U psiy = (avp *Up[v]j =V(m*UpM) =m*U_, [psi]
DAQ

=m, [psi/Volt]

(E2.38)

The uncertainty in p in Pascal unit (Pa) is obtained from the relationship of unit

conversion between the psi and Pa as follows,

d
Py = 6894.76p,,; [Pa], and Prea _ 639476 [Pa/psi]

[psi]

(E2.39)

ap[Pa] * 2 * 2 *
U = 4| =22 *U o | = (6894.76 up[psi]) =6894.76*U . [Pa]

According to the range of PTD used in the experimental runs, the uncertainties in

respective pressure measurements are estimated using Equations E2.35 to E2.39 and 4.7.
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E2.5 Mass flow rate measurements — Liquid side

Digital volume flow meter (DFM)

The liquid side mass flow rates were calculated from the volume flow rates
measured using the DFM. The DFM is shown in Figure 4.11a and the manufacturer
supplied total absolute accuracy specifications and the calibration data are given in
Tables 4.2 and 4.4. The maximum error in DFM is Bprm = 2.5% of FSO Vpaq reading.

The uncertainty in DFM was deduced using Equations E1, E1.1, E1.2b and E1.3b.

2
U = By + Py = \/ (0.025Vp,0)" + (1.962 *STX\J [V]. (E2.40)

The Equations E2.22 and E2.23 for Upagq are applicable here since the DFM was
set to 0-5 Volt DC nominal output to the DAQ system. The total uncertainty in volt unit

in volume flow rate that was measured using in combination of DFM and DAQ is,

2
UV[V] = \/UéFM +U]§AQ :\/(O'OZSVDAQ)2 +(1962*jxﬁj +U]§AQ’

2
E \/(4.12867*10*‘ ) +(250.0710% ¥V, ) +(1.962*S—Xj [V]

JIN

or at full scale reading of 5 Volt DC i.e. the maximum uncertainty in volume flow rate,

(E2.41a)

U,

[v],max

£10- ) % _Ox 2
=\/<1254.46 104) +(1.962 \/Wj [V] (E2.41b)
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Equation E2.41 gives the uncertainty in DFM volume flow rate in voltage unit
that is converted into LPM and then m*/s unit. This is usually done using the voltage vs
LPM calibration data supplied by the manufacturer and curve produced and verified by
during experiments. There are two curves, one for water flow and the other for glycol-

water mixture flow as illustrated in Figure 4.13c. Both curves have following linear form,

V[LPM] =MVp,o +C, where m =slope, and C = constant vertical distance .  (E2.42)

The uncertainty in V in LPM unit is obtained from the slope of the calibration curve,

which is also the sensitivity of the DFM and derived from Equation E2.42 as follows.

ov
— — m, [LPM/Volt]
Npro

(E2.43)

) 2
ov 2
[LPM] _
Uspiong = (WDAQ *uwj = J(m*U,, ) =m*U, [LPM]

The uncertainty in V in m’/s is obtained from the relationship of unit conversion

relationship between LPM and m’/s as follows,

v v,
=M ], and — = 1.667%107° [m’/s/LPM]

Vo, .=
(51 60000 OV on
o 2 , (E2.44)
[m"/s] _
Ui = . *Ugppyg | =1.667*107*U, 0 [mi/s]
av[LPM]
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The uncertainty in liquid side total mass flow rate measurement using DFM was

obtained by partial derivation of Equation 5.6a as follows,

m=pV . [ke/s], getting partial derivatives, an =V ., and 6 m__ 05
[m’/s] 6 p [m’/s] av
[m®/s]
2 2 . (E2.452)
_|fom, om e w1\ . 2
U DRV [5 U p ] + av[m; /S] U V%/[m}, s] B \/( V[mB/ S] U P ) + (p U Vé/[nﬁ/a] [kg/S]

In relative term the absolute uncertainty in Equation E2.45a takes the following form,

| U 2 U. }
Um—PFM *100 = (_PJ + M *100 [%] (E2.45b)

m [m%/s]

Manual mass flow rate measurements- bucket-weigh-stop watch method

All the experimental runs for water flow were carried out using the DFM backed
by manual measurement using bucket-weigh-stop watch method. In some of the glycol
flow experiments the manual measurements were taken into consideration. A digital stop-

watch and a digital weighing scale were used in this measurement.

Errors in stop-watch: The stopwatch has an accuracy of Baccuracy = Br= 0.5 sec,
instrumental 0 order bias limit (half of the resolution) of Biesolution = Bo= 0.125 sec and a

digital error of Bgis= 0.05 sec. A digital device may have some digital error, which is
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usually taken as one half times the least digit and is considered as the bias error. In light

of Equation E1b, the total bias error associated with the stopwatch was estimated as,

Buopuareh = BE + B + Bl =v0.57 +0.1257 +0.05% =0.518 sec. (E2.46)

digit

The human errors such as the digit readability (taken as one half times the least
scale division of the stopwatch i.e. 0.05 sec) and handling the on-off switch in exact time
of liquid mass collection (assumed maximum 0.5 sec) were considered as the precision

errors. These gave a total stopwatch precision error as follows,

Propateh = | Padaoiy + Prnaing = V/(0.05)> +(0.5)* =0.502 sec (E2.47)

The uncertainty in stopwatch was estimated to be,

U, = BZmach + Paren =/(0.518)> +(0.502)> =0.723 sec. (E2.48)
Errors in weighing scale: A Pelouze 70 kg Model-4010 digital weighing scale
was used, which has a full-scale accuracy of Baccuracy = Bi= 0.0453 kg. The resolution or

the instrumental 0™ order bias limit of the scale was taken to be half of the accuracy i.e.

Bresolution = Bo=0.02265 kg. Te total bias error for the scale was as,

B = JBZ + B2 =/(0.0453)? +(0.02265)> =0.05065 kg.  (E2.49a)

weighing-scale
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The human errors associated with bucket handling and a little fluctuation of flow
were treated as the precision errors. These errors were assumed to be half of the scale

accuracy i.e. Ppycket= 0.0227 kg and Ppyctyation = 0.0227 kg and introduced as,

w

Pyeigningscate = \| P + P2 = /(0.0227)2 +(0.0227)* = 0.0321 kg . (E2.49b)

The uncertainty in weighing scale was estimated as follows,

=(0.05065) +(0.0321)> =0.059 kg.  (E2.50)

\/Bwelg,hlng, scale welghlng -scale
The uncertainty in liquid side total mass flow rate measurement using bucket-
weigh-stopwatch method was obtained by partial derivation of Equation 5.6b as follows,

. m
m=—
t

[kg/s], getting partial derivatives, 2 =t and %nz mt~;
m

o P fom,, Y (U, (m*U,
Ur'n-bucket :\/( 8m U j (ﬁt U j :\/(TJ +( t j [kg/S] . (EZSla)
:\/(0.05? kgj +(m>l<(0.t7223 sec)j (kes)

In relative term the absolute uncertainty in Equation E2.51a takes the following form,

2 2
U tivbucket. 1 ()() = \/(U_mj + (&j *100 [%]
m m t

_ \/(0.059 kgj2+((().723 sec)]z “100 [%]'
t

m

(E2.51b)
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E2.6 Velocity and mass flow measurements — Air side

The air flow velocity was measured at the center of the test section inlet. The
measurements were performed in combination with a differential pressure transducer
(PTDD), a Pitot Static Tube, and the DAQ system. This velocity was used to calculate the
mass flow rate across the test specimen in the wind tunnel test section. The manufacturer
supplied total RSS accuracy of the PTDD is +1% of FS (Table 4.2). The Pitot probe and

PTDD are shown in Figures 4.16c and 4.19a and their error analyses are presented below.

Errors in PTDD: The PTDD was set to 0—10 VDC output of the DAQ. From

Equations E1 and E2, the total maximum uncertainty in PTDD is as follows.

Upron = +/Birop + Pamp =(1#10/100)% +(0)> =0.1 Volt = 100mV.  (E2.52)

Errors in Pitot Static Probe: The stem of the Pitot-static tube has to be installed
as perpendicularly to the incoming air flow as possible. This means to make the total
pressure port at the tip perfectly parallel to the air flow. In practical situations some
misalignment may exist although a £15° variation is acceptable. To be more concerned in
uncertainty an installation bias error of £0.5% of the full scale reading is introduced [227]
to account for this error. In light of Equations E1 and E2, the maximum total uncertainty

in Pitot static probe was estimated to be,

Upio = v BRio + Pie =+/(0.5%10/100)° +(0)> =0.05 Volt = 50mV.  (E2.53)
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Errors in DAQ System: The actual and maximum uncertainties in DAQ

system are calculated by Equations E2.24 and E2.25 for the PTDD output of 0 — 10 VDC.

Errors in measurement: The error in measurements of Pitot static probe
reading (the dynamic pressure difference) at DAQ system in voltage unit is considered as
the precision error. This precision error is calculated using Equations E1.2 and E1.3 for

sample size of N > 1000.

The total actual and maximum uncertainties in Appit: reading in voltage unit are

estimated from the RSS of Equations E1.2b, E2.24, E2.25, E2.52, and E2.53 as follows.

2 2 2
+ U Pitot + U DAQ + U Measurement

U Appi [V] VDAQ \/U PTDD

) s\ (E2.54)
=, [12.5%107 +3.18166 %107 *(Vp0 ) +(1.962*—Xj [V], (Actual)
JN
and
2
U Appio [V] — =U VpaglV] \/U PTDD + U Pitot +U DAQ + U Measurement
, (E2.55)

S

2
=\/12.532*103 +(1.962* KI J [V], (Maximum)

where the Vpaq (mean of N samples) and Sx (standard deviation of N samples) are in
voltage units. Any of the Equations E2.54 or E2.55 can be used in uncertainty calculation

without much difference since the errors are mainly dictated by the error in PTDD.
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Errors in conversion of velocity (voltage unit to m/s): The error is deduced
from the sensitivity of the PTDD-Pitot-DAQ combination as follows using the calibration

equation presented in Figure 4.16e.

oV,
Vi = 6.387 *V, fg‘[‘v] [m/s], from partial derivatives, s —3.21905 *V[;?\"(‘f[g];
DAQ[V]

2 2
N, oA/ (E2.56)
U = ( = *UVDAQ[VJJ = [ = *UApM[VJJ )

8VDAQ[v] avDAQ[V]
= (3.21905*Vii )*Uoy, vy [mis]

where U, |y, is taken from Equations E2.54 or E2.55.

Uncertainty in air side mass flow rate calculation
The mass flow rate of air flow through the wind tunnel test section was deduced
from the continuity principles as discussed in section 4.3.1 and given by Equation 4.3.

The absolute uncertainty in air flow mass flow rate is calculated as follows.

m, = p,AV, [kg/s]; getting partial derivatives with respect to p,, A., and V, :

oM, _ AV,, on, _ oV, and an, _ P, A; from where the uncertainty is,
o, oA, v,
. 2 . 2 . 2 , (E2.57a)
Up = %*Up o My A |t an, *Uy |,
e, ) loa N, "

AV, Y + (VU ) +(p A, )

and the relative uncertainty is deduced by Equation E2.57b below.

u. u,Y) (U,Y (U, Y
M 100 = \/(_p] J{_‘%J +(_V] *100 [%]. (E2.57b)
m, Pa Ac Va
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The A. in Equation E2.57 is the 304.8 mm x 304.8 mm square inlet cross-
sectional area of the wind tunnel test section, which is inheritably set by the
manufacturer. Therefore no dimensional measurement of the area is taken and the

uncertainty in area is set to Ua, = 0. The V,, p,, and m, are the mean values of density,

velocity, and mass flow rate of air for any particular experimental run. The uncertainties
in density (U,,) and velocity (Uy,) are calculated from Equations E1.6 and E2.56. Using
these values the absolute and relative uncertainty in mass flow rate of air is deduced from

Equation E2.57a and E2.57b.

E3.  Uncertainty in basic dependent parameters
The uncertainties in the basic dependent parameters, that are a part of the pressure

drop and heat transfer results in this study, are first analyzed below.

E3.1 Bulk flow temperatures — Liquid and Air

By partial derivation of liquid side bulk temperature (defined by Equation 5.1a),

the following can be deduced,

T. . +T

T oT, oT,
Tolq = fol _Tgo . Dbl 1o Zoia L absolute uncertainty is
ot P (et t
Up =, || =9y, |+ 29y =— Ui +U7 | .
To.iq { aT]iq,i Thgi GTliq,o Tigo 7 Tigsi Tiigo (E31)
UT i -Igll 1 + 21 ,0
and the relative uncertainty is, —-*100 = N T e w0 [%]
b,liq Thql + lig,0
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where the UT]iqi and UTuq are obtained from Equation E2.27.

,0

Similarly by partial derivation of air side bulk temperature (defined by

Equation 5.1b) one determines the following,

The absolute uncertainty, UTba = %4 /UTz i +UT2a s and

) E3.2)
U Juz +u? (
T100 =3 X100 (%)

b,a ai a,0

The relative uncertainty,

where the U; and U;  are determined as follows.

N N
U =ﬁ /Zu% forN =9 and U; =ﬁ > 'U2 for N =25. (E3.3)
,1 |:1 1 a,0 |:1 1

The term Uy is obtained from Equation E2.34 above.

E3.2 Inlet-exit temperature differentials — Liquid and Air

By partial derivation of liquid side inlet and exit temperature differential (defined

by Equation 5.3), the following are obtained,

ATliq = Tliqi —TliCl o) =1& ——— =-1; the absolute uncertainty is,
, ’ aTliq,i aTliq,o
2 2
AT“q aTﬁq,i T]iq,i aTﬁq’o Tuq,o \/ Tliq,i T]iq,o > : ( . )
. . . U ATli -I?liq i -Igliq 0
and the relative uncertainty is, —*100 = ————*100 [%]
liq liq

where the UT]iqi and UT“C,O are obtained from Equation E2.27.
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Similarly for air side inlet and exit temperature differential one determines,

The absolute uncertainty, U7 =, /UTZ ]_ +UT2a _» and the

U U2‘ +U2 . (ESS)
AT k100 =T T wy00 [04]
T AT

a a

relative uncertainty,

where the Uy and U;  are determined from Equation E3.3.

E3.3 Microchannel cross-sectional area — Single channel

The internal diameter of a channel in the multi-port slab test specimens could not
be measured for uncertainty analysis. Manufacturer’s supplied mean diameter D = 1 mm
and the maximum uncertainty of Up = 1.5% of diameter (as described in section 4.1)

were taken for the uncertainty estimation.

2
A= i ;= %ZQ; the absolute uncertainty is,
4 oD 2
2
u, - (S_S*UDJ _ 7rD2UD —0.02356 mm? =2.3562*10m? and . (E3.6)

the relative uncertainty, U_A? *100 = 2UTD *100 = 3.0 [%]
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E3.4 Heat transfer surface area — Liquid side

The liquid side single channel surface area calculation is given by Equation E2.3.

E3.5 Surface temperature — Test specimen wall
As mentioned before, 48 thermocouples were used to measure the surface
temperatures of the test slab at different locations along the flows. The uncertainty in this

surface temperature measurements were estimated as follows.

N
U =ﬁ /ZU{ for N =48 (E3.7)
i=1

The UTi for each of 48 thermocouple probes is obtained from Equation E2.34 above.

E3.6 Log-mean temperature difference (LMTD) — Overall
The overall LMTD used in current study is defined by Equation 5.15. From the

partial derivatives the uncertainty is calculated as follows.

AT, — AT
AT v :Al-l-—z;
In 1
AT,
OAT ln(illj_(l_i?j OAT _ln@?}[g—l}
2 | 2 2 .
LMTD _ 2 and LMTD _ . (E3.8)

)T W]

2 2
The absolute uncertainty, U,y = \/ (mﬂ *U,r ] + (M*UAB ]
2AT, 0AT,

The U7 and U, are calculated via Equations E3.9 and E3.10 below,

PhD Dissertation Mesbah G. Khan, Mechanical, Automotive and Materials Eng., University of Windsor, ON Canada Page no. 489



Experimental investigation of heat transfer and Ap characteristics of glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

AT, =T, .-T ; = ﬂzl&ﬁAleh
1 lig,i a,0 8Tliq’i a_l_a,o
2 2 , and similarly (E3.9)
OAT OAT —
UATl = 1 *UTII J +( l *UT. J - UT1‘ i +UT
{ aTliq,i - aTa,o e ! o0

2 2
[ eaT, OAT, , e 310
Uyr, = LaT UTWJ +{a_|_ Ur | = ‘/UTW +U7 (E3.10)

where the Uy, UTqu , Ur ,and Uy are obtained from Equations E2.27 and E3.3.

E3.7 Mass velocity or mass flux — Liquid side

The liquid side mass velocity for a single channel in the test slab is defined by

Equation 6.3 from where by partial derivatives the uncertainty is calculated as follows.

oG m .
; > —=— and — =——; the absolute uncertainty,

m 1 m
A m A oA A%’

oG, Y (G, Y (U, [ mU,Y
o] ] (T

u U, Y (UaY
the relative uncertainty, EG *100 = (—mj + (TAJ *100 [%]
m

where the U, is calculated from Equations E2.45 or 2.51 as applicable and U, is

obtained from Equation E3.6.
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E3.8 Reynolds number — Liquid side

The Reynolds number for single channel is given by Equations 4.15 and 6.17.

4m GD oORe D ORe G ORe GD
Re= = = =—, —=—and —=——5
D  u oG u oD u ou u
2 2 2
Absolute uncertainty,URe\/(EUGJ +(EUD] +(—G—?Uﬂj ; . (E3.12)
H H H
2 2 2
U
Relative uncertainty, %*100: Yo + Yo +| £ | *100 [%]
Re G D Y7,

The Up=0.015 mm (supplied) and Ug and U,, are taken from Equations E3.11 and E1.6.

E4.  Uncertainty in fluid flow parameters — Liquid side

The uncertainties in liquid side fluid flow parameters are presented below.

E4.1 Pressure drops — Total measured & core theoretical
The uncertainty in liquid side total pressure drop is calculated from the total

pressures measured at the inlet and exit of the test slab as follows.

aAptotal =1 and aAptotal

APy = P; — P, = =1; now the

api apo
Absolute uncertainty, Uy, = | Puyy | [ BPuayy | Z G702
solute uncertainty, U,, = 3 o | T 3 o, | =yYp tUp . (E4.D)
pi po
| Uy, » U5
and the relative uncertainty, —*100 = —*100 [%]
total total

where the U, ;and U, , are obtained from Equation E2.39 for respective transducer.
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The uncertainty in liquid side theoretical core pressure drop is calculated from the

Poiseuille conventional fully developed laminar pipe flow relation from Equation 6.19.

1284GL _ OAPyp, _ 128GL  OADyp, _ 128l

A = —_ ) - b

P, po pD? ou pD? oG pD?
aApth, Po _ 128/16 aApth, Po _ —128/1G|_ and aApth, Po _ _256:uGL .

oL pD?* T op p*D? oD pD*

2 2, (E4.2)
128 2 2 2 U ’

U =—— |(GLU ) +(uLUs) +(uGU, ) +| uGL—£ | +| 24GL—2

2, pDz\/( u) +(uLUg ) +(4GU, ) [ﬂ p] (ﬂ D]

u u,\ : > (U, ’
APy, po *100 = (_/JJ +(U_Gj +(£) +[_p] +(2U_Dj *100 [%]
Apth, Po H G L P D

where Up=0.015 mm (supplied). The U, and U, are obtained from Equation E1.6 and
Ug and Uy are derived from Equations E3.11 and E2.3.

E4.2 Friction factor — Liquid side
The experimental uncertainty in liquid side friction factor at the channel core of

the MCHX test slab is calculated from simplified form of Equation 6.18 as follows.

fzg{szp_Kw}:gzz%p’ i;[@_&o}
G2 D L G

L] G? op
o D 2pAp | of 4pDAp o 2pD
— ==K, - , —=-— and = ; ,
oL 2 G> | oG LG? oAp  LG?

(E4.3)

[(2pLAP-K,G)U, | +(2DLAPU, ) +(2pDLU,, )’

T +|:D(KOOGZ—ZpAp)ULT+(%UGj2

where Up=0.015 mm. The U,, U,,, Ur and Ug are obtained from Equations E1.6, E4.1
or E4.2, E2.3 and E3.11 respectively.
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E4.3 Poiseuille number — Liquid side

The liquid side Poiseuille number is defined by Equation 2.10 from where by

partial derivatives the uncertainty is calculated as follows.

oPo oPo B

Po=fRe =—=Re, f;
of ORe

The absolute uncertainty, U = \/ ( ReU, )2 +( fUge )2 , and , (E4.4)

Yre

. . U, Uy ’
The relative uncertainty, —*100=, || — | +
Po f Re

2
j *100 [%]

where the Urand Ug, are taken from Equations E4.3 and E3.12..

E5.  Uncertainty in heat transfer results

The uncertainties in heat transfer results are presented below.

E5.1 Heat transfer rates — Liquid and Air sides
The liquid side heat transfer rate is given in Equations 4.13a and 5.11 from where

by partial derivatives the uncertainty is calculated as follows.

Oyiq = (mcpAT )liq , from partial derivatives ...

Aa) KR ) (o)
(am jliq ) (CpAT )liq , (acp ] ) (mAT )liq and (GAT jliq - (mcp)ﬁq ’

liq

2 > . (B5.D)

2
Absolute uncertainty, U, = \/(CpATUm )liq +(mATUCp ) + (meUAT )liq ’

liq

U U\’ u. Y U\
Relative uncertainty, —-*100 = (—m] +[ C*’] +£—ATJ *100 [%]
liq M Jiq \ Cp ), AT Jiq

where the Ucp,, U ; and Ut are obtained using Equations E1.6, E2.45/E2.51 and E3.4.
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The air side heat transfer rate is defined by Equation 4.13b. Similar to liquid side,

the uncertainty in airside heat transfer rate is calculated as follows.

" (me,Uy )

b
a

2
Absolute uncertainty, U, = \/(CPATU " )a + (r‘hATU , )

a

(E5.2)

2
U V(U ? ’
Relative uncertainty, —=*100 = (Uﬁj +£ CCDJ +(UA_ATTJ *100 [%]

a p

a a

where the Ucp, U ; and Uar are obtained using Equations E1.6, E2.57a and E3.5.

E5.2 Heat transfer coefficient — Liquid side

The liquid side heat transfer coefficient is deduced from Newton’s law of cooling

as defined by Equation 5.12a. From there the uncertainty is calculated as follows.

(A ) ) (1) () [ q
a1 AAT, aq ). | AAT | a | AAT
AAT, lig A i AAT, lig A lig A ATy liq

oh q .
and =\ ——/——> | > now the uncertainties are:

(E5.3)

2 2 2
! q q
Absolute, U, = U + U + U ,
o (ASATM qlq (AfATb,S ‘\l, (AS(ATb,S)Z “‘”J.

iq liq

U, U Y (U,) (Ug ¥
Relative, — #100 = (—q] +(—‘\J {A—T] *100 [%]
liq q lig A% liq b,s

liq

The Uy and Uy, are obtained from Equations E5.1 and E2.3 and the Uary ¢ is given below.

AT, =T, — T %:land %=—I;UAT_ =.JU: +U7. (E5.4)
s ,11q aTb,liq aT lig b,liq s .

S

where the Uy “ and Uy are calculated using Equations E3.1 and E3.7.
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E5.3 Nusselt number — Liquid side
The liquid side Nusselt number is defined by Equation 5.30. The uncertainty is
calculated by Equation E5.5. The Uy, and Uy are obtained from Equations E5.3 and E1.6.

hD ONu D ONu h ONu hD
Nuy, = R —=—,and —=——-;
liq

=>—=—, =——;
oh k oD k ok k?
2 2 2
Absolute uncertainty, UNu:\/(%Uh) +(DUDJ +(h—DUkj , and | (E5.5)

k k?

2 2 2
Relative uncertainty, % *100 = \/ (ﬁj + (U—DJ + (&j *100 [%]
u

h D k

E5.4 Thermal resistances — Overall and Liquid side

The overall thermal resistance is defined by Equation 5.18. The uncertainty is

calculated by Equation E5.6 as follows.

ROV — L — I:ATLMTD = aRov — E and aROV —_ I:ATIEMTD :
UA Giiq OATivmp 9 aq q
Usoo © [ FAT ’
Absolute uncertainty, U, =F (Mj +(—#U qJ , and (E5.6)
" q q

ATLMTD

ov

2 2
: : U Ryv s _ UATLMTD Uq 0
Relative uncertainty, R_ 100=, || —== | +| — | 100 [%]
q

where the U,y is determined from Equations E3.8 and E3.9 and the U, is calculated

using Equation E5.1. The value of F is usually 0.99 to 1 in current test conditions.
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The thermal resistance for liquid side is given by Equation 5.19. The uncertainty

is calculated in Equation E5.7 as follows.

AT, AT
Rintiq = LS GLT and P 7
higAig  Yiig OATys 9 aq q
. UATb ’ ATbS ?
Absolute uncertainty, Ug = ~| +|——U, |, and | (E5.7)
h q q .

2
. . U Rth * _ U ATb,s U q ’ 0
Relative uncertainty, —=*100=, || —= | +| — | 100 [%)]
Rth ATb,s q

where the U, and U, are determined from Equations E5.1 and E5.4.

E5.5 Test specimen Effectiveness

The effectiveness of the heat exchangers i.e. the test specimens MCHX4 and

MCHXG6 is given by Equation 5.24 from which the uncertainty is calculated as follows.

&= qliq, :a—gzLand 0 ___ 4

Omax 00 o OOmasx O

2 2
U
Absolute uncertainty, U, = \/(—q] +[— g Uq‘““J , and | (E5.8)

qmax qmaX

. U Uy Y (Yo Y
Relative uncertainty, —*100= || — | +| —= | *100 [%]
g q qmax

where the U, is obtained from Equation E5.1 and the U,  is derived below.
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The (max is described by Equations 5.25 and 5.26. The uncertainty is derived as follows.

Omax = CminATi’ = Zqﬂ = ATI and —aqmax =C

min aATl mn

2 2
Absolute uncertainty, U, = \/ (ATiU C.. ) + (CminU AT, ) , and . (BE5.9)

. . U q UC . ’ U AT, ’
Relative uncertainty, —==*100 = c mn |4 ATI *100 [%]

max 1

min

where the U yr and Ug_ are calculated below.

OAT, OAT, 2 2
ATi = Tliq,i _Ta,i = aTl . = 1 & aT = —1 - ATI = \/(UTliq,i ) + (UTa,i ) s (ESIO)
1q,1

a,i

where the UTliqi and Uy are obtained from Equations E2.27 and E3.3.

The C,;, is defined by Equation 5.26, which can be either for liquid side or for

air side depending on the minimum magnitude. The uncertainty in general (without any

subscript for liquid or air) is calculated as follows.

C=mc, :>£=CIO and £=m :>Uc=\/(CpUm)2+(mUcp)2’

om oc
[l o)

p

U =min (\/(cpum)2 +(mug, )zj

(E5.11)

lig
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The UC'D and U, are calculated using Equation E1.6 and either of Equations E2.45 or
E2.51 (as applicable) when (mcp) <(mcp) . If air side is the minimum i.e.

liq

(mcp) < (mcp >1' , the Ucp and U, are calculated using Equations E1.6 and E2.57.
a iq

E5.6 Test specimen NTU

The NTU for the heat exchanger test specimens is defined by Equation 5.27. The

uncertainty is calculated as follows.

NTU = UA _ 1 o 8(NTU): 2—1 & O(NTU) _ —12 :
Cmin Rovain aRov ROVCmin acmin Rovain
U (U ?
Absolute uncertainty, U 7, = (Rz CR: ] J{R (é“z J , and . (B5.12)

2 2
U U
Relative uncertainty, Yntu sjgoo | ZRe | 4 ZCun | %100 [%]
NTU R C...

mi

ov

where the Ug and U are obtained from Equations E5.6 and ES.11.
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APPENDIX - F

LIST OF CONTRIBUTIONS
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LIST OF CONTRIBUTIONS

1. Literature review in microchannel heat transfer and fluid flow subject areas
reveals varied and inconsistent reported results. There exists controversy on the
applicability of macro scale theory in microchannel flow. Current experimental
investigations suggest that the friction factors for developing laminar flows of
water and ethylene glycol-water mixture in 1 mm channel could be predicted by
macro scale theory. However the heat transfer of simultaneously developing
laminar flows of these fluids cannot be estimated by macro scale correlations
because they are higher in 1 mm channel and need new correlations, which have

been developed in current research.

2. Heat transfer and fluid flow in narrow channel parallel multi-port heat exchanger
core having continuous smooth serpentine bend has rarely been studied, which

has been investigated in current work.

3. In the open literature, there is a continuous urge for experimental data on narrow
channel flow, especially on microchannel heat exchanger. Current study generates
experimental database on heat transfer and pressure drop of water and ethylene
glycol-water mixture flows in various microchannel slabs and heat exchanger,
which will significantly contribute to further research, development and design of

miniature heat transfer and fluid flow devices.
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4. The heat transfer correlations for hydrodynamically developed but thermally
developing laminar flow in conventional pipe are widely available that account
for a single flow developing effect. The heat transfer correlation is not yet
available in the open literature for a conventional pipe flow which has twice
hydrodynamically and thermally developing effects. Current research
experimentally investigated the heat transfer characteristics of water as well as

glycol-water mixture flows in microchannel in double flow developing situations.

5. The heat transfer in simultaneously developing laminar flow of water in parallel
multi-port serpentine microchannel slab is found higher than the conventional
heat transfer correlations. A new Nu = f(Re, Pr) correlation is developed in

current study that includes double flow development effects in a same flow path.

6. 50% ethylene glycol-water mixture is a commercially important heat transfer fluid
used in many heat exchangers. The research on simultaneously developing
laminar flow of this fluid is rare in the open literature and not available for 1 mm
parallel multi-port serpentine channels. The heat transfer in simultaneously
developing laminar flow of glycol-water mixture in parallel multi-port serpentine
microchannel slab is observed to be higher than the traditional heat transfer
correlations. A new Nu = f(Re, Pr) correlation is developed in current study that

takes the effect of double flow development in a same flow stream.

7. The Wilson Plot Technique is a very useful tool for determining the heat transfer
coefficient in a heat exchanger where the surface temperature information is not

available. This technique is rarely used in conventional heat exchanger analysis
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because of difficulty to maintain its stringent experimental operating conditions.
Many literatures suggest that the modified version of this technique could predict
more accurate results in narrow channel heat exchanger over other methods. To
employ the modified Wilson Plot Technique for serpentine microchannel heat
exchanger, a problem statement and solution methodology is developed and
applied in current study in determining the heat transfer coefficient. This
formulation will help one determine heat transfer coefficient in microchannel heat
exchanger of current style provided the required experimental operating

conditions are maintained.

8. Estimation of heat transfer coefficient requires the data on surface temperature.
Measuring the surface temperature is very difficult job in a finned surface heat
exchanger. An approach is devised in current study to measure the mean surface
temperature of a finned heat exchanger. The measured surface temperatures are
verified and validated with numerical simulation within less than 1% variation.
The heat transfer coefficients determined from the measured surface temperature
compared very good with the Wilson Plot Technique prediction. Now one can use
the devised approach to measure the surface temperature of a finned heat

exchanger and determine the heat transfer coefficient.

9. Current study described and used a comprehensive pressure balance model to
account for the pressure losses in a multi-port parallel serpentine microchannel
heat exchanger. This model can be used to accurately separate the pressure drops

in each component of a heat exchanger. Present research finds the pressure drop
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in the core (straight part) is the highest, in the manifolds is the second highest and
in the serpentine is the least. This information would be very useful in the

research and design of a microchannel heat exchanger.

10. This study finds that the presence of adiabatic smooth U-type serpentine bend
enhances heat transfer significantly with the least penalty of pressure drop as
compared to the initial entrance geometry. Therefore the use of such adiabatic
serpentine bend in heat exchanger core will greatly increase the heat transfer with
minimal pressure drop. This finding will greatly contribute to the research and

design of a microchannel heat exchanger.

11. The heat transfer characteristics (Nu, thermal resistance, temperature drops, Re)
and the performances (temperature differentials, effectiveness, NTU, pressure
drop) of a prototype multi-port microchannel heat exchanger, having parallel
channels with adiabatic serpentine bends, are experimentally investigated in this
study. The information from the investigation and the acquired experimental data
will help in designing a microchannel and in optimizing the appropriate operating
conditions for such heat exchanger for given duty. The study provides an
indication that there could be a certain numbers of serpentine bends above which
the effect of increased heat transfer diminishes. Further experimental and
numerical study can help to identify this. However the information from this work
will help in designing; redesigning, optimizing and identifying the trade-off

between the cost and performance of a heat exchanger for a given heat duty.
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