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Abstract

This dissertation proposes a number of significant enhancements to the
conventional Marciniak-Kuczynski (MK) approach including a more sgaldefinition
of the imperfection band, consideration of strain rate sensitiitithe effect of material
anisotropy. Each enhancement was evaluated by comparing the tipnsdi¢o

experimental FLCs found in the literature.

An analytical method of determining the forming limit curve (fjLof sheet
materials was developed by Marciniak & Kuczynski in 1967 and been used
extensively since then. In the current research, a numericalaxldeveloped based on
the MK analysis in order to predict the FLCs of sheet metalsrgoithg plane-stress
loading along non-proportional strain paths. The constitutive equationsgtivatn
plastic behaviour were developed using Hill's 1948 vyield function and theciased

flow rule.

Stress-based FLCs were also predicted with this MK analgsis and the strain-
path dependency of SFLCs was investigated for different non-proportioading
histories. It was found that the SFLC remains essentially wgedh for lower
magnitudes of prestrain, but after significant levels of pagstit was observed to shift

up somewhat toward the vicinity of plane-strain deformation.

Two different work hardening models were implemented in the MK mtulel
predict the FLC. Both isotropic hardening and mixed isotropic — nonlikieamatic
hardening models were used in cases that involve unloading and subselpaelinge
along a different strain path. The FLC predicted with the chixadening model was in
better agreement with experimental data when the prestrainnwhg domain of the
positive minor strains, but the assumption of isotropic hardening leccdeptable
agreement with experimental data when the prestrain was giothain of the negative

minor strains.



The consideration of a through-thickness stress applied during th@andor
process was also added to the model and it was shown that the stnesal has a
positive effect on formability. Moreover, changes in certain mechaproperties can

significantly increase the sensitivity to the normal stress.

Finally, a non-quadratic yield criterion was implemented irte predictive
model and it was found that, generally, a non-quadratic yield funtdims to more

accurate predictions of the FLC.

Vi
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Chapter 1

Forming limits of sheet metals

1.1.Introduction

The stamping of tin-plated steel sheets to form food containers at@n0dlaid the
foundation for the sheet metal working industry as it is known todahoédh metal
stamping was well established by 1900, the main growth of this igdcoatne when
mass production became a common feature of the automobile industry. rAsathe
came with the rapid expansion of the home appliance industry aftdd W@ | with
such items as vacuum cleaners, washing machines, refrigeaatdrtoasters. All these
developments created a large demand for sheet metal whiaghetéy low-carbon steel,
which offered the advantages of uniform thickness, good surface finish and low cost.

The most predominant sheet-metal forming operation, stamping,storci
forming a sheet metal blank between two mating dies. It carbalsoted that stamping
involves essentially two different deformation modes: drawingsairedching. As a result
of the two dies closing during a press stroke, metal in the tgraraof the blank is
typically stretched over the punch face whereas drawing faleese in the peripheral
region of the blank as it is drawn into the die cavity. The foilty of a sheet metal is
defined as its ability to undergo plastic deformations, eithestrigtching or drawing

modes, without failure.



There are a variety of possible failures in sheet metalpsitey that would require
rejecting a part: scoring, wrinkling, necking, splitting @aring, not to mention parts that
fail to meet dimensional specifications or parts that exhiipihcceptable cosmetic
appearance. However, the most common and most obvious failure o gpditting or
tearing of the sheet metal, which is a result of excessidenan-uniform deformation.
Splitting is usually preceded by a series of increasingly mevere evidences of damage
as the deformation proceeds: the first evidence of excessive d@fmmnmay appear
simply as a roughening of the sheet surface. The nex stabe progression of damage
is the onset of necking which appears as a narrow band in whichisherdetectable
reduction in thickness. As deformation progresses further, thasstagialize in this band
and necking becomes more severe until ultimately the reduced trsckthasetal is not
able to bear the load and the sheet tears. The formability dfsnest metals is limited
by the occurrence of localized necking in the stamped part.

Punch-stretch tests or simply “cupping” tests have been usedlfog time to
gualitatively assess the formability of sheet materials. Tan parameter that is
determined during a cupping test is the strain to fracture. Thehgiretch test consists
simply of clamping a blank firmly around its edges between twgsrior dies and
applying a force to the central area of the specimen, using a punththe cup
fractures. The testing procedure is described in the ASTM Stha®#3. Several punch-
stretch tests have been developed throughout the years. Unfortuhéslg simple
“cupping” tests do not satisfactorily predict the formability afsheet; only rough
differences in formability can be determined. This has ledhto development of
improved simulative tests, described in the next paragraphs. Neesgh “cupping”
tests are routinely used for inspection purposes since they providekairgication of
ductility; they also show changes in surface appearance of the sheetfdurimg.

The poor correlation between the common “cupping” test and the actual
performance of the sheet metal in a stamping operation ledtigatess to search for
more fundamental formability parameters. A significant breakiih came in 1963,
when Keeler and Backofen [1.1] reported that during sheet streictiiagonset of
localized necking required a critical combination of major andomstrains (along two

perpendicular directions in the plane of the sheet). Subsequently, thisptomas



extended by Goodwin [1.2] to drawing deformations and the resulting suprncipal
strain space is known as the Keeler-Goodwin curve or the forimiitgcurve (FLC). A

typical FLC is shown in Figure 1.1 [1.3].
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Figure 1.1: Typical FLC of an aluminum alloy [1.3]

The FLC has become an important tool for formability evaluatiod i@ is
obtained experimentally by stretching sheet metal samplesadwamnispherical punch. A
regular grid electro-etched or printed onto the un-deformed blank enphlecipal
surface strains to be measured: the greater of the two plistigias is called the major
strain and is always positive, whereas the minor strain caithez regative or positive
depending on the mode of deformation.

The left side of the FLC (negative minor strains) is obtainedttstch forming

rectangular strips or notched blanks of various widths and interruptoigtest at the



onset of necking. The geometry of the blank determines the strairfi.patthe ratio of
principal strains) which varies from uniaxial tension to planearstiension. The right
side of the FLC is obtained by using rectangular blanks of asorg width and by
applying lubrication to the blank: necking can thus be obtained for gia#ins that vary
from plane-strain to balanced biaxial stretching. The FLC igilodd by plotting a lower-
bound line beneath all data points where necking was observed. The vegler the
curve is therefore considered to be safe for any deformation nwbdegas combinations
of principal strains that lie above the FLC lead to a part thaither failed or presents a
risk of failure. The higher the FLC lies in principal strain spathe greater the
formability of the sheet material. In order to account for viama in the stamping
process, however, another curve is generally plotted at 10% stlain the FLC (Figure
1.1) thus creating a marginal zone between the two curves. And iatiystactice
requires that a stamped part be rejected if there are aatyolog in the part where the
combination of principal strains falls in the marginal or failure zones.

The FLC has been widely used around the world as a meassteef metal
formability in the metal forming industry for almost half a cegt It is routinely used to
evaluate the forming severity of virtual parts after the migaksimulation of a forming
process and is the basis for modifying or validating tool designpeocess design. The
FLC is also used to assess the forming severity of prototype giger they are formed
and provides a basis for making minor modifications to existing prgmndies.
Moreover, the FLC can be used on occasion during a production run to detbowine

the wear in the dies might affect the quality of the parts and the robustnespoddess.

1.2. Motivations

Although the FLC has been such an effective tool in the metalrfgrmdustry,
the experimental determination of FLC is relatively costlyitasequires specialized
equipment, tooling and experienced personnel. It is also time-constonaaypduct the
formability tests, measure the strains and reliably interghetre in strain space the onset
of necking actually begins. The experimental determination of Ru@Gt be done

carefully, consistently and with an acceptable level of acgushuce it is used to



establish the quality of large volumes of production parts. The kwawability in FLC
data and the somewhat subjective nature of the experimental deteomiof FLC have
underscored the need for a more objective determination of theoRLtbe basis of
theoretical models.

It is well known that sheet deformation in many industrial mdtaming
processes is characterized by nonlinear strain paths and it élabserved by many
researchers [1.4-1.10] that the as-received FLC can translkhtdistort significantly in
strain space due to a nonlinear loading path. This signifies baag-received FLC
cannot be used to assess the forming severity of parts that were formednséty-stage
forming operations. Furthermore, since each material point in swamaonent may
follow a different (nonlinear) loading path, therefore each locatidhe part potentially
has a different FLC. It is obviously not possible to experimentitgrmine the FLC for
every nonlinear strain path in a given part, and even if it wagould be practically
unmanageable to accurately carry out an analysis of formiregise So although 80%
of stamped parts can be reliably evaluated with the as-recdi€] there are
nevertheless a number of complex stamped parts and parts formedigtageiiforming
processes where the as-received FLC is not adequate yoocarformability analyses.
For this reason alone, researchers have been motivated to develble rieoretical
methods to predict sheet forming limits.

The advantages of such predictive FLC models are many. Theberagfit is no
doubt the fact that an FLC can be predicted almost instantaneodsét sery little cost
using known mechanical properties that can easily be determinesdabglard tests.
Moreover, the underlying theoretical foundation of a predictive mousdles the user to
consider a wide range of forming conditions, deformation modes arnd bistories
which would be unduly difficult or costly to carry out experimentallizere are very
definite incentives for developing an accurate model to predictotiset of plastic
instability (i.e. necking) in sheet metals.

The formability of most sheet metals is limited by the omnwoe of localized
necking. However, the prediction of neck initiation and growth in thitahsheets is by
no means a simple task. Nevertheless much theoretical rebearbleen conducted in an

attempt to predict the FLC. A review of this research showstlileaFLC is affected by



many different factors such as the strain history, cigspaphic texture and anisotropy,
yield behaviour, work hardening behaviour, the presence of throudiméisie stresses,
microstructure and material inhomogeneity as well as othemgdeas which all deserve
due consideration. In spite of the challenge, the ability to a&tynatedict the onset of
localized necking would indeed be of great benefit to the sheetnigprimdustry as it
would provide a reliable and unambiguous failure criterion for evaluatorgplex,
multi-stage metal forming processes, accelerate tool desigh lelp reduce
manufacturing costs.

Among the various theoretical approaches for predicting the FLC, the Mikocthet
has probably been the most widely used. The MK approach is a nshapproach
proposed by Marciniak & Kuzcynski [1.11], in which the inhomogeneity that exists in the
sheet metal is modeled as a geometric band with a slightly reduckdetss compared to
the rest of the sheet. Biaxial stresses are progressipplied to the sheet and the onset
of necking is determined when the ratio of strains in the banubge toutside the band
reach a critical value. Since the original MK method was propws&867, substantial
improvements have been proposed by various researchers to make qedictire
accurate. With the incorporation of more realistic constitutive nsotte¢ predicted FLC
correlate reasonably well with as-received experimentél &ata for most sheet metals.
As a result, the MK method is arguably the theoretical toolt mosxmonly used to
predict sheet metal forming limits, and this method will beutised at greater length
throughout this dissertation.

Other researchers have attempted to predict the FLC of stetats by using
analytical bifurcation [1.12-1.14] or damage methods [1.15-1.16]. However, the piedicte
results have not always been convincing, although they do provide eapticsimplified
solutions for the critical angles and the corresponding criticains of localized neck

formation in sheet metals.

1.3 Objectives

In spite of many years of research in this field, moshefgredictive methods for

FLC determination are still insufficiently accurate for monplex forming processes,



and there is a real need for further research to improve thentunodels. The main
objective of this research is to develop more advanced numericaltbopledict the
forming limits of sheet metals more accurately and reliably than isntiyrmossible. The
MK method was selected as the basic approach and several taadetrelopments
have been proposed to enhance the MK method and improve its ability ta piedic
under complex forming conditions, including nonlinear strain paths that@nmon in
multistage forming operations. In addition, the influence of alitmaterial parameters
(e.g. work hardening behaviour) and mechanistic parameters Ieogigh-thickness

stresses) on the forming limits of metal sheets will also be investigated

1.4 Overview of the dissertation

The second chapter of this dissertation presents a comprehenswviewwd the
various theoretical approaches that have been proposed to predicteheforexking in
thin metal sheets, and also delves into some of the aspects dafutimesinodelling that
are considered essential to improve the prediction of FLC.

It has been proposed by some researchers that the onset of negangsden
reaching a critical state of stress rather than a @risiate of strain. The main advantage
presented in favour of a stress-based FLC is its strain patpeindence. The third
chapter is an investigation on the uniqueness of forming limitsesssgpace, and is an
exact reproduction of a paper jointly written by the presefioa#nd his supervisor and
published in the International Journal of Material Forming [1.17].

Different sheet metals exhibit different work hardening behaviéurd the
constitutive description of the material should correctly accounthforevolution of the
yield locus as it work hardens. However, most FLC prediction methawas employed
the overly-simplistic isotropic hardening rule for forming lirdgtermination. Different
hardening models were implemented into the MK analysis for FleQigifon and this
work is described in the fourth chapter of the dissertation. Again,ctiapter is a
reproduction of a paper co-authored by the present writer and publighéke i

International Journal of Mechanical Sciences [1.18].



FLC determination theories have usually been developed for plaass str
conditions, although there are many industrial forming processeshich wnaterial
undergoes significant out-of-plane stresses. Chapter five is tedlita studying the
influence of this through-thickness stress on limit strains intshetals. Once again, this
chapter is a reproduction of a paper published in the International Dofirkkaterial
Forming [1.19].

Non-ferrous sheet materials often exhibit a normal anisotropfficient that is
less than 1.0, and it is well known that a quadratic yield functionatgoredict their
plastic behaviour correctly. Many non-quadratic yield criteriachbgen proposed for
aluminum alloys and the sixth chapter describes the implatn@mtof such a non-
guadratic yield function into the MK analysis.

The final chapter presents the conclusions of this research and praploses

improvements that can be implemented into the MK predictive model.
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Chapter 2

Literature review

2.1. Introduction

Various theoretical and analytical methods have been developed pluyedby
different researchers to predict the forming limits of sheetals. In this chapter the most
common theoretical methods of FLC prediction will be reviewed, alwily their
historical background and development: these include void-damagesmnbidetcation
methods, and the Marciniak-Kuczynski (MK) approach.

Researchers have also proposed that the forming limits of stedetials are
more likely dependent on locally reaching a critical statstress than a critical state of
strain. Therefore an increasing number of researchers and ersghme/e adopted the
stress-based forming limit (SFLC) to evaluate the formingersgy of metal forming
operations. The background as well as the distinct advantadbis @pproach will be
discussed in detail in this chapter.

Each of the above-mentioned formulations for calculating formingslie based
on the classical continuum plasticity theory in which a yield fonctiescribes the onset
of plastic deformation in stress space and a strain hardeningefaves the evolution of
the yield locus as plastic deformation progresses. Since batke #lements have a

profound influence on the prediction of the plastic behaviour of netaliterials, it is
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essential that the prediction of forming limits be based upon therepesentative yield
criteria and hardening laws. Therefore, the main hardening calesdered throughout
this research — isotropic hardening, kinematic hardening, and nsgeapic-kinematic
hardening laws — will be presented and briefly discussed in thigesh& more detailed
investigation on the influence of the strain hardening model wil bés presented in
chapter 4. The influence of the yield function will be reviewed in detail in chapter 6.
Finally, this chapter concludes with a presentation of therditteaspects of the
prediction of FLC that were specifically developed and that caotestibriginal

contributions to this field of research.

2.2. Theoretical methods in FLC calculation

Three different theoretical approaches have been proposed anedutilipredict the
FLC as accurately as possible. They can be described as follows:

a) Void/damage models

b) Bifurcation methods

¢) Marciniak & Kuczynski (MK) analysis

2.2.1. Void/Damage models

At the microscopic scale, every sheet metal contains defedtsiaomogeneities
such as particles, inclusions, voids and micro-cracks which affecttength and load-
bearing capacity of the material. When plastic deformation oacwlgctile metal alloys,
voids will nucleate at the interface between hard particles and tloeisdimg material, at
grain boundaries or between different phases in the microstru&sreleformation
progresses further, the number and the size of voids increaseBidgsee 2.1). This
phenomenon was the reason some researchers began to study tfenicto-defects on
forming limits of the sheet metals and their investigatiomstte the development of
damage-based FLC criteria.

11
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Figure 2.1. Damage (stages of ductile fracture) [2]

In 1978, Needleman and Triantafyllidis [2.2] investigated the abloid growth
on the onset of localized necking in biaxially stretched shegals This research was
conducted based-on the Marciniak-Kuczynski analysis [2.3-2.4] and ctinstitelations
proposed by Gurson [2.5]. They concluded that void growth has a wealeffengon
biaxially stretched sheets, and the appearance of a localizkdsnie evidence of the
forming limit for every loading path. In their analysis, the mateanhomogeneity was
defined in terms of micro-defects and the forming limit wasligted when the evolution
of these micro-defects reached a critical limit. HoweWeejr results showed that this
approach is not suitable for materials with a high rate of work hardening.

In 1980, Chu and Needleman [2.6] considered the influences of the void density
variation during deformation on the forming limit curves. Their wehowed that a
strain-controlled void nucleation process has a significant effecthe shape of the
forming limit curve; however a stress-controlled void nucleation gg®chas little
influence on the shape of the FLC.

In 1985, Lemaitre [2.7] employed the concept of effective stress wdad of

thermodynamics to introduce a new damage model. The model wasabfgplio
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isotropic, ductile materials. The work of Lemaitre showed thadisigibution of voids
and inclusions is the same in all directions. This work also indichte damage varies
linearly with the equivalent strain.

In 1977, Chow, Yu, and Demeri [2.8] proposed a damage model to calculate
forming limit curves and predicted the FLC of a 6111-T4 alumindioy.aThey
considered the effect of micro-cracks and micro-voids on shdet fagure and divided
the forming process into different stages including diffuse neckacglized necking and
rupture. These researchers showed that orthotropic damage od¢harstian isotropic
damage at large plastic strains. Since their model was devatmpepresent this type of
damage, their predictions were more accurate than those of conventiotkalls which
assume isotropic damage. Later in 1998, Demeri, Chow, and Tai [2.9] edothieir
original formulation to include the influence of strain path changeser-LC of the
vacuum-degassed, interstitial-free (VDIF) steel sheets. The mowpoedel was verified
against experimental FLC data that were generated for nonlioading paths. They
demonstrated that a damage-based model can accurately gfe@ictor nonlinear

loading paths; their results showed that a plane-strain pre@traive range of, = 0.02 -

0.08) has no significant effect on the FLC of VDIF steel sheets.

One of the most important deficiencies of these damage moddie isery
approximate way in which the void volume fraction and the constant® isttess/strain
evolution laws are estimated. This is difficult to overcome, howebecause the
experimental measurement of void volume fraction is difficult, amdnecurrent
measurement methods are still insufficiently precise to melieble predictions of FLC
based on microstructural damage.

The physical damage mechanisms that take place at a nogioscale and upon
which these damage theories are developed can indeed be observedieltedmuut the
direct extrapolation of microscopic behaviour to the macroscopie secay not always
be valid. Moreover, there are no straightforward experimentdéhads to accurately
measure damage density in metals at the micro-scale wieams that the options for
improving damage-based models are somewhat limited and this methatbthheen

verified experimentally in different sheet metals.
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2.2.2. Bifurcation methods

The approach known as the bifurcation or instability method determines a
localized neck will develop in a uniform sheet as a resultrofapplied load. The
bifurcation method has been used since the 1950's and is essentialhalginca
approach which directly predicts the limit strains without reggi® computationally-
expensive numerical simulation. Therefore, it is advantageous fam tise press shop. It
is useful to distinguish between the different bifurcations-basethods and the
following are some of the main models that have been used in sheet metagformi

e Swift's diffuse necking criterion
e Bifurcation analysis with flow theory
e Bifurcation analysis with vertex theory

e Perturbation analysis

2.2.2.1. Swift's diffuse neck instability criterion

For the first time in 1952, Swift [2.10] predicted the onset of diffuseking by
developing an instability criterion based on the maximum load definitioder
proportional loading. He showed that the major limit strain in diffuseking could be

calculated as follow:

2
gt _ 2nd+p+p7) (2.1)

(p+D)(2p° - p+2)

where, p is the strain ratio (ratio of the minor strain tiee major strain). Swift's
bifurcation method can cover the entire range ofomeation modes typically
encountered in sheet metal forming, which is betweriaxial tension 4 =-0.5) and
equibiaxial tension 4 =1). Obviously, diffuse necks cannot be observedieformed
sheet metal components, therefore, the plasti¢ Strins predicted with Swift's method
are usually considered the onset of localized meckather than diffuse necking. But it is

evident that diffuse necking appears at lower s¢rdhan localized necking, therefore
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limit strain results from Swift's bifurcation apmch will be conservative compared to
strains measured experimentally in localized ndoksnegative strain ratios. It can be
concluded that Swift's method for FLC predictionlyorprovides an approximate
estimation of limit strains and is therefore notraiable method for industrial

applications.

2.2.2.2. Bifurcation method with flow theory

Bifurcation analysis began from the work of HilB&2) [2.11], who assumed that
once a discontinuity appears in the Cauchy stnedgtee velocity, this indicates the onset
of failure. Hill then formulated the restrictions ¢the flow stress and the rate of work
hardening in the growth of the localized neck. ldgedoped a method that shows how a
local neck starts in the zero-extension directionsbeet metal surface during uniform
deformation and at instability condition the magdg of plastic work decreases below
the minimum value is required for uniform deforroatalong zero extension direction.

According to Hill's theory, the angle between thermal to the neck and the

major strain direction is defined as:

6 =tan(/-p) (2.2)

However, this equation only has a real solutionmitiee minor strain is negative; that is
for loading paths on the left hand side of the FILBerefore the drawback of this theory
is that it cannot predict limiting strains on thght hand side of the FLC where minor
strains are positive. But obviously, there are tsmo the formability of sheets stretched
in biaxial tension.

When Hollomon power lawd, = Ke_') is used to represent the relation between

the effective stress and the effective strain,’$ittheory predicts that the major in-plane

limit strain will be:
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Lee and Kobayashi (1975) [2.12] and Korhonen (1928)3] combined Swift's
instability method and Hill’s criterion. They recamended using Swift's formulation to
calculate the limit strain on the right side of tReC where instability occurs with
positive strain ratios, and Hill's analysis to cédt¢e limit strains on the left side of the
FLC where the strain ratio is negative.

These researchers also investigated the influehtleeostrain path on the FLC
and they observed that the onset of localized ngciki nonlinear loading paths depends
on the previous deformation history. The FLC casrefore be determined by calculating
the accumulated effective plastic strain at evéages of deformation. They noticed that
an equibiaxial prestrain improves sheet metal fdifitg in the subsequent loading stage
whereas a plane-strain prestrain has the oppoBget @end decreases the amount of
remaining formability. They also found that FLC giation depends directly on the
stress-strain relation and the anisotropy factositered in theory.

In other work, Hillier (1966) [2.14] and Negroni el. (1968) [2.15]
independently studied the effects of changes airsprath on a sheet metal’s limit strains.
They assumed that once the forces applied to tketsinetal reach a critical value,
localized necking will appear and their work indemshfirmed the path dependency of

limit strains.

2.2.2.3. Bifurcation method with vertex theory

Line (1971) [2.16] predicted the onset of a shayiex at the loading point on the
yield locus of a polycrystalline material. His wovkas based on physical theories of
plasticity which employ simple crystallographicpsinodels. The creation of vertices or
corners on a yield locus during deformation has #éeen validated by the continuum
theory of plasticity and has been confirmed by expental studies conducted by Hecker
(1976) [2.17]. In his experimental work, Heckersled that a vertex on the yield surface
can occur at the loading point and in the directbthe stress path. However it was not
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possible to experimentally determine the shapehefuertex, and it still is not clear
whether the vertex is a sharp point on the yietthoor if it is a rounded corner.

Storen and Rice (1975) [2.18] developed a new txéfion theory by using th#
deformation theory of plasticity, which is a vereased theory, to predict the FLC for
the whole range of strain paths between uniaxiaditen and equibiaxial tension. They
supposed that localized necking will occur for eathin path when a corner appears on
the yield locus at the forming limit. They also sleal that on the left hand side of the
FLC (i.e. for negative minor strains), the orieittatof a local neck is not parallel with
the zero-strain direction, but on the right hartksof the FLC (positive minor strains),
the local neck is parallel with the minor strairedtion. However, Stéren and Rice had to
employ a numerical method to obtain limit straioslbading paths with negative minor
strains, because it was not possible to predictnihek orientation using bifurcation
methods.

For the sake of simplicity, if a local neck devedggarallel with the minor strain
direction (i.e. for a loading path with a positin@nor strain), there is an analytical
solution [2.18] to obtain the limit strains as adtion of the strain ratigd) and the strain

hardening exponenhy as follows:

2 2
1|_imit _ 3p°+n (22"‘/7) p>0
21+ p+p7)(2+ p)
(2.4)
g Limit _ . n . <0
@+ p)|—n)/2++/@+n)? 14— pni(a+ p)’ |

These relationships yield acceptable limit straiedpctions for the right hand side
of the FLC of strain-rate insensitive materialst boderestimate the forming limits on
the left side of the FLC. Therefore Equations (2a#¢ not recommended for the
prediction of FLC if it is to be used for a criticassessment of forming severity,
particularly if the sheet material exhibits stradtte sensitivity.

Hutchinson and Neale (1978a) [2.19] employed theéexetheory with both the
flow and deformation theories of plasticity to peedimit strains of sheet metals. Their
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predictions were significantly better than previquedictions with the vertex method,
but the predicted limit strains were still not stifntly accurate for the left hand side of
the FLC.

Until the early 1980’s, vertex-based bifurcatioralgees were all developed for
linear loading paths; therefore they only can beleged in applications in which the
loading paths are proportional. In order to invg cases with nonlinear loading paths,
Chu (1982) [2.20] extended the work of Stéren aid RL975) [2.18]. Although his new
method was limited to isotropic hardening, Chu seded in studying the effect of a
prestrain on the FLC. In his prediction of limitashs, Chu observed that the stress state
in the final forming stage is really the only factbat determines whether or not necking
will take place.

According to classical plasticity theory there isa@aresponding equivalent strain
state for every stress state, therefore it is regse to suppose that every sheet material
has an effective limit strain, and regardless ef tiamber of deformation stages, plastic
instability will take place once the total effe@igtrain reaches this critical value. This

can be written as:

Limit
e

(N)

1 2
g =gt EL .t e, (2.5)

wherees"™ denotes the effective limit strain of the sheeterial when it is deformed to
failure in a single forming stage without prior gr@in, and superscripts 1, 2, 3 N.
indicate the order of successive forming stages.

2.2.2.4. Perturbation analysis

Perturbation analysis is another method of preicfilastic instability using the
bifurcation method. In this method the sheet malkeési assumed to be homogeneous at
the beginning of deformation. However after evergrement of plastic deformation, a
perturbation is considered to affect the homogesdow. The criterion employed in this
method is based on the fact that the magnitudbeeoperturbation increases or decreases
over time as deformation progresses. This concegt initially developed to study the
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dynamics of flow in fluids, but it was adapted be tplastic flow in solids by researchers
such as Zbib and Aifantis (1988) [2.21, 2.22]) idey to study shear bands and localized
necking of sheet samples deformed in uniaxial tensi

The concept of effective instability as a pertuidratanalysis was applied by
Dudzinski and Molinari (1991) [2.23] and they wailde to successfully predict FLC for
sheet metal forming analysis. For each loading fatly defined a critical value of the
instability growth rate as an indication of the enef localized necking which in turn
corresponds with a point on the FLC. The effeciiv&ability approach is somewhat
similar to the MK method that was briefly introddcen the previous chapter: in the
effective instability method there is an instapilibtensity factor, similar to the initial
geometric non-uniformity factor in the MK analysidnd in each case, the factor
increases with deformation until it reaches a aaltivalue, and instability occurs. The
accuracy of the perturbation method was later imgadoy Toth, Dudzinski and Molinari
(1996) [2.24] who employed the viscoplastic crystaphic slip theory with Taylor's
strain compatibility assumption. The FLC was thesdicted for aluminum sheets.

In brief, if the bifurcation method is selectedptedict the FLC of metal sheets, it
is recommended that Hill’s flow bifurcation thedsg used for the right hand side of the
FLC and Stdren-Rice’s bifurcation method for thi¢ hend side of the FLC.

2.2.3. Marciniak and Kuczynski method

The MK method was developed by Marciniak and Kuskym 1967 [2.3], and is
no doubt the most common theoretical approach &cutating the FLC of sheet
materials. In recent years it has been used byralewesearchers, such as Yoshida,
Kuwabara and Kuroda (2007) [2.25], Butuc (200726¢2. Nurcheshmeh and Green
(2011) [2.27, 2.28] and others. The MK approaclumes a sheet material is initially
inhomogeneous due to, for instance, a non-unifoistribution of micro-voids or the
roughness at the surface of the sheet. Marciniak kaunczynski [2.3] modelled this
inhomogeneity in a sheet specimen as a geometigctde the form of a narrow band
with a reduced thickness. Figure 2.2 shows a schemiathe MK model in which the
imperfection band is designated as regibh ‘and region &’ is the area outside the
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band. This pre-existent defect could be any contibinaf geometric and material non-
uniformities, but the most common approach is talehdhe initial imperfection as a
variation in sheet thickness. In their original dstu Marciniak & Kuczynski actually
machined shallow grooves into sheet specimenswiat then stretched to failure in
equibiaxial tension; they observed that there igeduction in the forming limit strain

when the thickness ratio of the groove to the naianea is 0.990¢f /t2 )<1.000.
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Figure 2.2. Schematic of the MK model with a thickess imperfection in the sheet

In order to predict the onset of necking, the MKdmloof a sheet is subjected to a
uniform, proportional state of stress. As plastfodmation proceeds, the major strain in
the band becomes increasingly greater than ind@beaf the sheet. Consequently, the

thickness ratio t /t,) decreases until, eventually, a localized neckfdsmed.

Throughout the deformation it is assumed that treenrscomponent in the neck direction
in the imperfection band is always the same asctireesponding strain outside the

groove.

del = deg; (2.6)
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Furthermore, the equilibrium of the normal and shéarces across the

imperfection are also maintained throughout th@wheétion, i.e.:

F2=F> (2.7a)

Fa=Fa (2.70)

where subscript®h andt denote the normal and tangential directions of dhmove,

respectively, ané is the force per unit width, i.e.:

F2=g? (o (2.8)
FP=cop t° (2.8b)
Fi=ont® (2.8¢)
Fp=ont’ (2.8d)

Although the strain ratiodp = d¢,/d¢, ) outside the groove remains constant
during the deformation, it actually decreases msidle groove until it eventually
approaches plane-strain deformatiatz/de; = 0). At this stage, the principal strains
outside the groove are identified as the limit isgafor this material under the
corresponding deformation mode.

As was already mentioned, the initial inhomogenetgenerally modelled as a
local thickness variation, which may in fact origie from the surface roughness of the
sheet as a result of the cold rolling process. Wihenmaterial inhomogeneity is thus
modelled as a geometrical thickness variation ptisical problem is thereby simplified
to a single dimension. Because of the plane-stasssimption, the stress and strain
increments inside the neck can be solved directlyerms of the strain increments

prescribed outside the neck. The original analgsiposed by Marciniak and Kuczynski
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only modelled biaxial stretching (i.e. positive wrapnd minor strains), however their
approach has since been used extensively to prediictthe left and right sides of the
FLC. This method is now commonly referred to asNtkemethod.

Azrin and Backofen (1970) [2.29] subjected a langenber of sheet materials to

in-plane stretching. They discovered that a thiskmatio f, =t, /t, < 097 was required

to obtain agreement between the MK analysis an@xperiments. However, grooves of
this size cannot be detected with the naked eyeomingly, even though the MK
analysis is a simple and elegant way to model éveldpment of a local neck, there was
an inconsistency between its predictions and tiperxental data. Similar trends have
also been observed by Sowerby and Duncan (1973Q][2as well as by Marciniadt al.
(1973) [2.4]. In addition, Sowerby and Duncan disond that the MK predictions of
limit strains are very dependent on material anigot

Ghosh (1977) [2.31] found that strain-rate sengjtivsecomes important after the
ultimate tensile stress of the material has beanhed. The additional hardening effect
due to strain rate sensitivity plays a significasle in increasing the forming limits by
preventing an overly rapid concentration of stramssde the neck.

Ghosh (1978) [2.32] also found that the MK methedds to predict very high
limit strains for strain states near balanced lkilaxeénsion. In other words, the MK
method under-predicts the limit strains near plsinain deformation, but over-predicts
them in balanced biaxial stretching.

The effects of different types of initial non-umifioity on FLCs have been
examined by several authors (Van Minh, et al (19253]; Yamaguchi and Mellor,
(1976) [2.34]). Tadros and Mellor (1975) [2.35] posed that a local neck does not start
at the beginning of the deformation but at the poirninstability defined by Swift. They
also carried out experiments (Tadros and Melloiz8)92.36] which showed that no
significant necking occurs up to the Swift instépil

Even though the MK method was initially appliedyotd the region where both
strain components are positive, (because the atientof the initial imperfection was
assumed to be in the minor strain direction, ansl ihus impossible to obtain a different
critical strain), their approach led to very sigraht developments in the prediction of

FLCs. Further detailed analyses based on the MKiodetvere numerically carried out
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by Hutchinson and Neale (1978) [2.19] where thererELC was predicted. In their
analysis, they allowed the initial imperfectionhave different orientations, and obtained
the minimum critical strains. Their work has madgortant contributions to gaining
insight into the effects of constitutive equatioard plasticity theories on FLCs.
Following the pioneering work of the above mentma@thors, the MK method has been
adopted by other researchers. The sources of dsagnt between the calculated and
observed FLCs have been identified and studiedetaild resulting in refined models
leading to more reasonable quantitative correlatioetween analytical and experimental
limit strains.

More recently, Friedman and Pan (2000) [2.37] chiced an angle parameter
based on the point on the yield surface definethbynitial strain path and that of plane-
strain. Since this parameter denotes the extedefdfrmation change from a particular
loading path to plane-strain, it can be used tdiptéhe effects of yield surface on limit
strains.

In a typical MK analysis, the computations of sérasd strain in region&™ and
“b” are carried out independently, and the connedbieiwveen them is realized through
the MK conditions: force equilibrium and geometricampatibility. Small increments of
equivalent strain are imposed in the homogeneog®me(region &’). Through the
theory of plasticity, the stress and strain statéee homogeneous zone are computed. In
order to define the strain and stress states inh#terogeneous band (regioh”);
numerical methods can be used to solve the firfldrdntial equation obtained by the
yield criterion and the strain compatibility reqemment in tangential direction of the
imperfection band.

In the MK analysis local necking is reached whenéffective strain increment in

the groove becomes more than ten times greatetthlain the homogeneous region: i.e.

dz® >10dz?. When this necking criterion is reached, the cawiinn terminates and the

corresponding strainks; , 5 gnd stresseéo; o5 accumulated at that moment in the
homogeneous zone represent the limit strains amit ktresses, respectively. The

analysis can be repeated for different initial ot@ions ¢,) of the groove in the range

between Band 45 and the forming limit can be obtained after mirzimg the &?* versus
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¢, curve. The same calculation is then repeated foh @adividual strain path from
uniaxial tension p=-05) to balanced biaxial tensionp(=+10), and the FLC is

defined by connecting the limit strain data acribes entire range of strain paths. This
calculation procedure is presented in the form fid\a chart in Figure 2.3.

In predictions of the FLC for nonlinear loading lp@tthe loading is simulated as
two successive deformation stages involving a farsstrain in the homogeneous zone

followed by loading along a different strain paghfallows:

p=p for e <& (stage 1) (2.9a)

p=p,fore>g" (stage 2) (2.9b)

where p, and p, represent the two different strain paths thatirmposed ands” is the

effective prestrain value. The simulation of noeénloading paths can also be extended
to a series of successive linear strain paths.

It is worth underlining the fact that the MK anabyss able to calculate the stress-
based forming limit curve (SFLC) at the same tirsettee strain FLC. Indeed, both the
stress state and the strain state, inside anddeutise imperfection band, are calculated
after each load increment. A typical MK analysisle@onsists of a main program where
the loading is applied, equilibrium and compatipiltonditions are prescribed and stress
and strain are calculated with the help of subrmastiwhere the yield condition, the work
hardening law and the constitutive equations afimel The general structure of a MK

analysis code is shown in the flow chart in FigRu@[2.26].
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Figure 2.3. Code structure to predict FLC and SFL(2.26]

2.3. Stress-based forming limit curve (SFLC)

The FLC remains a useful approach for evaluatirgg gaverity of sheet metal

forming processes, however, the observed dependasdribe FLC on strain path changes

limits its applicability to linear or quasi-linebvading paths. The path-dependence of the
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FLC is a real concern to designers of industri@eshmetal products, since a change in
strain path during the forming process can lead sognificant translation of the FLC in
strain space, which then renders the as-receiv€iuriceliable.

Kleemola and Pelkkikangas (1977) [2.38] discuskedimitations of the FLC in
the case of copper, brass and steel sheets fomsedaep-drawing operation followed by
a flanging operation. They observed significaniatality of the FLC after this two-stage
forming process and the resulting nonlinear stpaiths, and recommended the use of a
stress-based forming limit curve (SFLC) as an adteve to the FLC. They also provided
experimental data that showed the path independeintiee stress-based forming limit
curves for these alloys.

Arrieux et al. (1982) [2.39] also pointed out the non-uniquergdshie FLC after
nonlinear loading cases and again proposed thefusstress-based forming limit curve
in applications where there is more than one |laadtage.

Graf and Hosford (1993) [2.40-2.41], showed theca#yy and experimentally
that strain based FLC translates in strain spageifisiantly due to nonlinear loading
path. They studied different preloading paths é¢$fen FLC path dependency including
uniaxial, plane-strain and equibiaxial prestramaluminum alloys.

Despite the great significance of these observsitite evaluation of formability in
stress space never really gained widespread attentir was it employed for formability
evaluation till the turn of the century. Severaitéas contributed to the slow adoption of
the SFLC. Perhaps the first reason is that theptaprocess leads to essentially linear
loading paths for approximately 80% of industriaest metal parts and therefore the
strain-path dependence of the FLC was not widelggeized. A second reason is that, the
results of finite element simulations of metal forgiprocesses were not as reliable as they
are today and the predicted stress states in foqpaetd were not considered reliable.
Finally the main obstacle to the widespread implaateon of the SFLC is the prohibitive
cost and inaccessibility of experimental stresssmesmnents in the metal forming industry.
Therefore press shops continued to measure thessinsstamped parts and to evaluate the
measured strains against the well-known FLC [22423].

Today, the situation is very different and the oeasfor avoiding the use of the

SFLC to evaluate formability are, for the most pad longer applicable. Indeed, an
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increasing number of metal forming processes arelb@ng manufactured with multiple
successive operations which can generate completnear loading paths, and in such
cases it is not appropriate to use the as-receilg€dl for formability evaluation. For
instance, there has been an increased use of tuiydeoformed components in vehicle
structures since the early 1990’s and these thitewvaubes are typically bent prior to
being hydroformed. The tube-bending operation ldadgery severe prestrains and the
subsequent hydroforming can cause strain pathsatieatirastically different from the
prestrain path; it would be practically impossitdeeliably evaluate the forming severity
of such parts with the conventional FLC.

Secondly, FE analysis software is now used extehsilsy manufacturers to
design parts, forming tools and the forming processd since the predictions of
numerical simulations have become so much moreraiecydue to the increasing
accuracy of constitutive models as well as theeiase in expertise and experience of
simulation analysts) it is now straightforward t@kiate the forming severity in a virtual
part and to assess the robustness of the proposeth§i process by comparing the
predicted stresses to the SFLC.

Finally, since many critical mechanical responsesdgpendent on the stress state
[2.42], such as plastic yielding, wrinkling and klieg it does seem appropriate to also
evaluate the onset of plastic instability on thei®af the stress state rather than the strain
state.

Similar to the FLC, the SFLC divides the princigéless space into a safe zone
and failure zone (Figure 2.4). And the assessnigoriming severity is carried out in the
same way as it is with the FLC, by modifying thesida of the part or of the forming
process until all stress data in the virtual parsafely beneath the SFLC.
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Figure 2.4. Typical stress-based forming limit cure (SFLC)

Stoughton [2.42, 2.44] showed that the SFLC is atnpath-independent and his
investigation indicated that formability situatiman be evaluated accurately using a
combination of the SFLC and finite element simwlatinot only for proportional loading
but also in cases where a sheet element has a e@omsipain history. According to the
Stoughton method while it is still difficult to eepmentally determine the SFLC, it can
be easily determined from the as-received FLC; é@medicting the FLC is still useful.

In 2005, Yoshideet al. [2.45] performed biaxial tension tests on an atumi
alloy tubes utilizing a tension—internal pressuesting machine to verify the path-
independence of forming limit stress. They confidntleat the forming limit stresses are
path-independent. Yoshidd al.[2.25] subsequently calculated the forming liniesses
for a variety of two-stage combined stress pathsguthe Marciniak and Kuczynski
(MK) model [2.3] based on a phenomenological ptésti theory to clarify the
mechanism behind the path-independent SFLC. In wusk they confirmed the
experimental observations of Yoshidda al. [2.45]. Again, Yoshidaet al. [2.46]
investigated the path dependency of the SFLC udiffigrent work hardening models.
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They concluded that the path dependency of SFLE@repon the stress-strain behaviour
during subsequent loading stages. Their work shbaisSFLC is only path independent
when the work hardening behaviour remains unchangglda change of strain path.

In order to take advantage of the path-independehtiee SFLC in a prototype
shop or a manufacturing plant, it is possible tedpt the FLC from the SFLC once the
strain path in a given location of a part is knd@7].

2.4. Strain-hardening law

In general, materials can be categorized in thiféereint classes, depending upon
the way their strength evolves with deformatio§2-

a- Strain-hardening materials

b- Perfectly-plastic materials

c- Strain-softening materials

The majority of metals and their alloys usually iexthstrain-hardening (or work-
hardening) which signifies that increasing levdlstoess are required to achieve further
deformation. In contrast, geotechnical materialpicglly show evidence of strain-
softening. Strain hardening materials are stahl&@961, Drucker [2.49] introduced a new
classification of materials which is known as Dreick postulate. The mathematical
framework for describing the plastic behaviour atals depends on Drucker’s postulate.

Drucker defined the condition for a stable plastiaterial. According to his
postulate, a deformable solid object subjectech&oloundary tractions tauses some
displacements;uTractions changing inteHAt; will induce increased displacemerntts;.
To satisfy the stability condition of material aodiog to Drucker’s rule, the work done
by the tractions\t; through the displacementas; should be zero or positive for all;.
As a result of this theory, every stable plastideanal should possess a convex yield
surface, the plastic strain rate should be normathe yield surface which indicates
associated flow rule, and the strain hardeningshteild be positive or zero. As an extra
requirement for materials to obey Drucker’'s pos&ylghe principle of maximum plastic
resistance should be satisfied in order to be densd a stable material.

The strain-hardening phenomena that are observediast metals can be

formulated as hardening rules that describe howsthess state evolves with plastic
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deformation. As a result of experimental studiesdemted by many researchers for well
over a century, it is now well known that the yiéddus may undergo a combination of
expansion, translation, distortion, and rotatioraagsult of plastic deformation. In this
section, the most common hardening rules used enntimerical simulation of metal

forming processes will be reviewed: isotropic hardg (when the yield surface simply
expands uniformly), kinematic hardening (when theldy surface merely translates in
stress space) and mixed isotropic-kinematic handetwhen the yield surface expands
and translates).

2.4.1. Isotropic hardening

Strain-hardening is called isotropic hardening whba initial yield surface
expands uniformly in all directions in stress spdaoeng plastic deformation. Isotropic
hardening is illustrated in Figure 2.5(a).

(a)

Figure 2.5. (a)- Isotropic hardening (b) Schematiequivalent stress-strain curve [2.48]

In isotropic hardening, the yield function can ledinkd as:

f(o, )=Y? (2.10)
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whereY denotes the yield stress of the mateiYaalso represents the radius of the yield
locus. As the magnitude dfincreases, the yield locus expands in all direstig can be
expressed as a function of strain hardening qiesitduch as the plastic work per unit
volume or the equivalent incremental plastic stf@m8]. The plastic work per unit
volume is defined as:

WP = [o,def = [5dz” (2.11)
and the equivalent plastic strain increment isrdeiteed as:

de® =/2/3(dePds ) (2.12)
and the equivalent stress for an isotropic (vonelslisnaterial is defined as:

5 =3/2(55,)” (2.13)

where,S; represents the deviatoric stress tensor.

The isotropic hardening rule is very simple to iempent in a numerical
simulation code and has been used extensivelydoride the work hardening behaviour
of sheet metal components. However, it does natrately represent the behaviour that
is observed in many metals, because it over-piethet yield stress in reverse loading.

2.4.2. Kinematic hardening

According to the rule of isotropic hardening, th&aséc region becomes
increasingly larger as plastic deformation progegesand the yield stress in reverse
loading is the same as the flow stress after tiselbading. However, this is often not the
behaviour that is observed experimentally. In factmany metals, the yield stress in
reverse loading is actually much smaller than wiatld be expected: this is called the
Bauschinger effect. In order to more accurately ehdde Bauschinger effect, Prager
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[2.50] introduced the kinematic strain hardeninig for the first time in 1956. Kinematic
hardening signifies that the yield surface candiia@e in stress space without any rotation
or expansion, and therefore the shape and sizkeoyield surface remains unchanged
with plastic deformation. Later, Hodge [2.51] shawew this rule should be applied in
nine-dimensional stress space.

The initial yield surface in nine-dimensional stepace can be defined as:

f(o;)=0 (2.14)
and with the kinematic hardening rule subsequegitiygurfaces can be described by:

f(o. —a;)=0 (2.15)

ij — Yij
whereg; is a kinematic hardening indicator that represtrgdranslation of the centre of
the initial yield locusy; is called the back stress tensor.

If the von Mises yield function for isotropic métds is used, the yield function can be

written as:

(5 —a)(s —a;) = 2K? (2.16)
whereK? =1/3Y%. In order to define the evolution of the back stréensom; in stress
space, Prager [2.50] proposed a linear relationsitip the plastic strain increment such
that:

daij :Cd‘gijp (2.17)
wherec is a material constant that can be determineditbggf the theoretical stress-

strain curve to the experimental one. In 1959, [Breff.52] modified Prager’s definition

of the back stress tensor in the following way:
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da; =du(o; —a;) ,du>0 (2.18)

wheredu is a material parameter.

The limitation of the linear kinematic hardeninderus that it is only valid for
materials with a bilinear stress-strain curve adimg and reverse loading; however, most
metallic materials exhibit nonlinear stress-straghaviour. The combination of non-
linear stress-strain relation and linear kinemhticdening leads to behaviour in reverse
loading that has never been observed (Figure 2.6{&grefore the linear kinematic
hardening rule gives an incorrect prediction of kvdrardening for materials with
nonlinear stress-strain curve.

(a) G by o

o
\ y /dﬂ

@

Figure 2.6. Schematic linear kinematic hardening ofmaterials with (a) nonlinear stress-strain curve
(b) bilinear stress-strain curve [2.48]

In Figure 2.6(b), the effect of the linear kinemaltiardening rule is shown in
terms of the loading and reverse loading behavada material with a bilinear stress-
strain curvel is the initial yield stress arulis a material parameter that represents the
slope of the stress-strain curve and at the same itishows linear kinematic hardening
effect. In this case, linear kinematic hardening lsa simply defined as:

da =hdeP (2.19)
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If we consider the case of uniaxial loading, thekustress increment will be as:

da 0 O 2/3de 0 0
doy =0 0 0| and do*™*™=dg; —%dakké]j =10 ~da/3 0 (2.20)
0O 0O 0 0 —da /3

Considering Equation 2.17, we have:

2/3da = cde® (2.22)
And using Equations 2.19 and 2.21 the expressioh becomes:

h=3/2c (2.22)
Therefore, the stress-strain curve formula in lngds:

o=Y+he? (2.23)
Finally the definition of the yield function for rexials with nonlinear loading curves is:

f(o, —a) =Y? (2.24)

2.4.3. Mixed Hardening

In order to overcome the limitations of the isotoopnd kinematic hardening
rules, Hodge [2.51] proposed a combination of b@idening laws in 1957. This mixed
hardening rule allows the yield locus to expandarmly and to translate in stress space

at the same time. Yield surface translation wagddfby the back stress tensgr and
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the variation oK describes its expansion. Therefore, fackdenda; are not constant in
the case of combined isotropic—kinematic hardemrigquation 2.24.

For the same reason that the linear kinematic harderule is not suitable to
predict the behaviour of metals subjected to revéoading, the combined isotropic-
linear kinematic-hardening rule is also not able pi@dict this type of behaviour.
Therefore the kinematic portion of the mixed hardgmule requires some modification.
In 1966, Armstrong and Frederick [2.53] proposatbalinear kinematic hardening rule
in which the back stress tensor is defined asvidlo

doy = 2/3cde - ya;, dg® (2.25)

wherec andy are material constants that can be obtained bydithe predicted stress-
strain curve to the experimental data. This noalirrelation has gained much popularity
and is now widely used in numerical simulationsnaftal forming processes, particularly

when seeking to predict the springback after a fiognoperation.

2.5. Methodology

In this research the MK method was selected abde approach for predicting
the FLC and SFLC of sheet metals. However, in otdemmprove the accuracy and
robustness of the MK method, several additions emtthncements are proposed. These

various improvements will now be presented oneris/ 0

2.5.1. Definition of the imperfection factor

One of the main drawbacks of the conventional Migrapch is the somewhat
arbitrary determination of the initial imperfectiofactor (f, =tg/t3). Indeed, the
predicted forming limits are very sensitive to teue selected for this factor and, in

many cases, it has simply become an adjustmendrfaxfit theoretical results to known

experimental data. In order to overcome this deficy, it is proposed that the thickness
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imperfection be correlated to an actual, measurablece of heterogeneity such as the
surface roughness of the as-received sheet. Bytiagop definition of the initial
imperfection that is based on a physical paraméter, MK method will no longer be
dependent on the subjective and arbitrary seledidthe best fitting factor”, and it will
be easier to determine which constitutive parareedee most significant for predicting

the onset of plastic instability.

2.5.2. Orientation of the imperfection band

Another assumption made in the original MK analysias to consider the
imperfection band to be perpendicular to the maxmprincipal stress direction, but in
general, this band could be oriented in any dioectith respect to the principal loading
axes (Figure 2.2). In the current work, just asepthesearchers have done, the
imperfection band will be made to rotate in smalirements relative to the principal
loading axes so that the most critical orientatiam be determined at every stage of
deformation and for each strain path. This feaisi®onsidered essential for the accurate
prediction of the FLC.

2.5.3. Extend calculations for multi-stage loading

As mentioned already, many industrial sheet fornpngcesses inherently cause
the sheet metal or the thin-walled tube to defotam@ nonlinear strain paths. During
multi-stage forming processes the loading path eaen change abruptly from one
direction to another in strain space. Since the K. Gtrongly path dependent, the as-
received FLC (generated by experiments in whichsthen paths are quasi-linear) is not
valid in most cases for formability evaluationidttherefore necessary that a numerical
code for predicting FLC be able to determine thesebrof plastic instability for any
random, nonlinear loading path that might be entared in an actual forming process.

This ability to model nonlinear load paths will tinily be implemented as a bilinear
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strain path, knowing that this can easily be ex¢end multi-linear strain paths which are

in fact a reasonable approximation of nonlineaistpaths.

2.5.4. Investigation on the path dependency of SFLC

Due to the considerable strain-path dependencyL@f, it may be questionable
whether the FLC should even be utilized as a foiihalevaluation tool in the case of
forming processes involving complex loading patigen in a virtual forming process,
where each integration point in the FE model cdiovioa different loading path, the FLC
at each point may be sufficiently different onenfréhe other that it becomes practically
unmanageable to carry out an evaluation of forngagerity. One of the best ways to
overcome this challenge is to consider forming témn stress space rather than strain
space. Experimental investigations on the SFLC hstvewn that it is almost path-
independent in many cases of nonlinear loading,elrewfurther research is needed to
determine the extent and limitations of this queath-independence. The current work will
therefore ensure that the MK analysis is able koutate both stress-based and strain-based
FLC simultaneously, so that the purported straithrgadependence of SFLC can be

investigated.

2.5.5. Hardening rules

The prediction of FLC using the MK analysis is lmhsa the classical continuum
theory of plasticity. As such, a yield criterionhardening law and a flow rule must be
used to establish the constitutive equations reduin the analysis. However, the
influence of the hardening model on the predicodr=LC has never been investigated
broadly. Isotropic hardening is the simplest andstwaidely used strain hardening rule
and it is well suited to predict the outcome of ahefiorming processes involving
monotonic loading. Therefore it has been always hesed in the MK analysis.

As discussed in section 2.4, both linear and nealirkinematic hardening models
have also been proposed in order to model the Bagger effect when the forming
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process involves unloading, reverse loading oricyolading. However, under complex
loading histories, some discrepancies still exetiMeen actual material behaviour and
that predicted by these purely kinematic modelsit$® now common to combine both
isotropic and nonlinear kinematic hardening modelglasticity calculations to obtain

results that are closer to the actual hardeningwehbr of metals.
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Figure 2.7. Schematic plot of stress-strain behauvim under (A) isotropic or kinematic hardening
under proportional loading and (B) isotropic hardering following unloading and reloading under a
different loading condition, and (C) kinematic hardening following unloading and reloading under a

different loading condition. [2.44]

Until now, the effects of the hardening rules orCHhave not been systematically
investigated. Moreover, many common grades of stiefbrmed in a process that
involves loading, unloading and reloading will édxhia transient yielding behaviour
upon reloading (path C in Figure 2.7) [2.44]. Thiansient behaviour can only be
accurately predicted with a nonlinear kinematicdeaing law. Therefore, it seems
essential to implement different work hardening eiledinto the MK analysis to

investigate the effect of the hardening law onFh€, when the metal is subject to such
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nonlinear loading paths. First, isotropic hardemmyj be considered to determine the
FLC in cases involving loading, unloading and rding along a different strain path.
Secondly, FLCs will be predicted with the mixed tispic - nonlinear kinematic
hardening model proposed by Armstrong-Frederickpand later by Chaboche [2.54].

2.5.6. Yield function effect

In classical plasticity theory, the yield functiowhich is generally assumed to
take the same form as the plastic potential funcfassociated flow rule), plays a very
important role. It defines not only the directiohtbe plastic strain increments via the
flow rule, but also the material anisotropy anddity by its variation during plastic
deformation.

Because of its simplicity and good accuracy, Hill38 yield criterion [2.55] has
been widely used to predict the behaviour of ortifmt steel sheets. This quadratic yield
function only requires a limited number of mechahjroperties to determine the shape
of the yield locus: under plane-stress conditiamdy three parameters are sufficient,
namely the plastic anisotropy coefficients in thalimg (Ro) and transverse g
directions and the yield stress in uniaxial tensiorither the rolling directionog) or in
the transverse directiowdp).

Throughout the present research Hill's 1948 yiglitedon [2.55] was used to
describe material anisotropy and to predict formimgits. However, in spite of its
widespread usage, Hill's 1948 yield criterion alsms some drawbacks which will be
discussed in more detail in chapter 6, but noteast of which is its inability to describe
the behaviour of aluminum alloys. In such caseso@quadratic yield criterion is more
suitable than Hill’s first yield criterion. There® Hosford’s 1979 non-quadratic yield
function [2.56] will also be implemented in the Mifalysis to investigate the effect of

the yield function on the FLC.
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2.5.7. Through-thickness stress component effect

Forming limit diagrams were initially developeddetermine the conditions under
which plastic instability would occur in thin metsheets. Therefore, predictions of the
FLC have generally assumed plane-stress condi@ms the through-thickness stress
component has been neglected in the calculatidase Btress conditions certainly pertain
in traditional stamping operations, but in many ahdbrming processes today, very
significant through-thickness stresses can be g&tker For instance, when sheet steels
with increasingly high tensile strengths are fornogdr a die radius, the contact forces at
the interface between the sheet and the die radusead to through-thickness stresses that
are no longer negligible. Similarly, when hydrofangn thin-walled tubes the internal fluid
pressure can generate very significant throughktieiss stresses in the tube wall in the
areas of contact with the die. Some studies haea dene to consider the effect of the
third principal stress on the formability of shee¢tals (Gotolet al. [2.57], Smithet al.
[2.58]) and these works show that the through-tiesls compressive stress component has
the potential to delay the onset of necking ancetieraise the level of the FLC.

In this research, the influence of the out-of-platress component on the FLC
will be investigated. Additionally, the effect dieset material properties on the sensitivity
of the FLC to the applied out-of-plane stress congmb will also be studied: for instance,
this study will consider how the sensitivity of tR&C to the through-thickness stress
may vary for sheet materials with different strmrdening coefficients (n), a different
strain rate sensitivity (m) or a different initgtheet thicknessft

Following the implementation of these various feaguinto a numerical MK
analysis code, it is expected that it will be pblesito predict FLCs and SFLCs more

accurately and reliably than it was possible umtilv.
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Chapter 3

Investigation on the strain-path dependency of stigs-based

forming limit curves

3.1. Introduction

The formability of sheet metals is commonly evaddausing a forming limit
curve (FLC), a curve in principal strain space tlisfines a boundary between
combinations of strain that lead to a part thdtae of necks and those that present a risk
of necking and splitting. The concept of the FLCsvimitially developed by Keeler and
Backhofen [3.3] and Goodwin [3.4] and provides afusempirical gauge of forming
severity in the absence of a visible neck or splite shape and location of the forming
limit curve (FLC) in principal strain space are haracteristic of the metal that is
independent of the forming process or work piecenggry. Forming limit curves are
determined experimentally by conducting hemisplaéqzinch stretching tests up to the
onset of necking on gridded blanks. The experinlemésting and grid strain
measurement procedure is costly, time-consuming@aquires both experience and care
in order to determine accurate forming limits. Téfere many researchers have sought to

better predict the forming limits of sheet matevial
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The most common analytical approach for the predicdf FLCs have generally
relied on the continuum theory of plasticity, whicttludes a yield criterion, a flow or
hardening rule and an instability criterion [3.Bl.recent years, however, various aspects
of the microstructure have been incorporated ih® theoretical methods to improve
their predictive capability [3.6-3.8]. In a metdle®t, failure by splitting usually occurs
when the local thickness strain reaches a critedle, such that the sheet has thinned
significantly and can no longer sustain the imposeglane tensile stresses. The
theoretical estimation of the limit strain, whick the largest strain produced in the
neighborhood of a neck before failure, is evideraty extremely difficult proposition
when all of the relevant parameters in the formopgration are duly taken into
consideration.

The influence of strain path changes on the FLCitdinits applicability to
processes in which the loading path is quasi lineasther words, one in which the ratios
of the plastic strains are approximately constdwbughout the forming process.
However, many industrial stampings of complex skapeolve multistage forming, and
in such cases, the FLC is unreliable. Both the slzaql the position of the FLC in strain
space are dependent on the strain history, andhéisi®©een shown for all sheet materials
including steel, copper and brass, as reported, eample, by Kleemola and
Pelkkikangas [3.9].

Some researchers [3.10- 3.14] have proposed tedbtmability of sheet metals
should be based on stress state rather than dtaie. They constructed the stress
forming limit curve (SFLC) by plotting the combimas of stress at the onset of
localized necking. They found that the SFLC is atpath-independent. Moreover, if
the path-dependence of the SFLC can be quantédidter experimentally or analytically,
then the limits of formability will be predicted @gately using a combination of the
SFLC and finite element simulation, not only fooportional loading but also in cases
where a sheet element has a complex strain higdr§y- 3.17].

In 2005, Yoshideet al. [3.18] carried out biaxial tension tests on anmahum
alloy tube using a tension—internal pressure tgstiwachine in order to verify the path-
independence of forming limit stress. They measdoeching limit stresses, which are

determined from the load, internal pressure anang&y measurements of the tube, for
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many linear and combined stress paths and conclidédhe forming limit stresses are
path-independent. Yoshidsd al.[3.19] subsequently calculated the forming liniesses
for a variety of two-stage combined stress patheguthe Marciniak and Kuczynski
(MK) model [3.20] based on a phenomenological pitagt theory with isotropic
hardening in order to clarify the mechanism behima path-independent SFLC. In this
work they confirmed the experimental observatioris Yoshida et al. [3.18] and
Kuwabaraet al. [3.21] that the work hardening behaviour of amahum alloy tube is
well described by the isotropic hardening rule ionjanction with an appropriate
anisotropic yield function and that the forming ilirstresses of the aluminum alloy tube
are almost path independent.

Butuc et al. [3.22] performed a detailed experimental and thgcal study to
validate the use of a stress-based forming limitve&u They considered different
constitutive equations in conjunction with the Miebry, and investigated the influence
of the hardening law and yield criterion on strbased forming limit curves. These
researchers concluded that the SFLC is indeperafesitain path and proposed a path-
induced anisotropic hardening model to better emp@é&ress-based forming limit curves
obtained under combined loading histories.

Finally, Yoshidaet al.[3.23] investigated the path dependency of theGGE&ing
different work hardening models. They concluded tha path dependency of SFLC is
related to the stress-strain relation during tleesd loading stage. Their work shows that
SFLC is only path independent when the work hartgibiehaviour remains unchanged
with a change of strain path.

In the present work, history-dependent forming ticurves were computed for
sheet metals undergoing various combinations afieptdress loading conditions. This
paper presents a modified MK model for predictiri.Ss. Forming limit curves were
calculated for AISI-1012 steel and AA-2008-T4 skeahd were compared with the
corresponding experimental data [3.1- 3.2]. Findtye path dependency of SFLCs based
on different non-proportional loading histories veasluated quantitatively.
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3.2. Theoretical analysis

3.2.1. Strain-based forming limit curves

The stress-based forming limit curve represents ftmming limit of a sheet
material in terms of the in-plane principal stressponents. The stress state cannot be
measured directly on industrial parts but it can dmculated using appropriate
constitutive equations. Knowing the experimentalpogdicted forming limits in strain
space, the forming limit stresses can be compuedyiclassical plasticity theory. In this
work a modified MK model was used to predict theCFL

The MK analysis used in this work assumes a prstiegj thickness imperfection
in the form of a groove inclined relative to thenpipal strain directions, as shown in
Figure 3.1. In this model, the area of nominal kh&ss is designated by (a) and the

weaker area is denoted by (b).

O,

Figure 3.1. Thickness imperfection in the MK method

The physical basis for the MK analysis was wellspréged by McCarroet al.
[3.24]. In their study, imperfections in the forrh grooves were machined into samples

made from two different steels and tested undeibégual stretching. It was found that
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no reduction in the forming limit strain was obsahfor shallow grooves: i.e. when the
imperfection factofy - the ratio of the thickness in the groove to tileeninal thickness -
was greater than 0.992. The imperfection factorasgnts the micro-structural defects
that exist in the sheet material prior to deforoati

In the current work, the initial imperfection factof the groovefo, is defined as

the thickness ratio as follow:

=0 (3.1)

wheret denotes the sheet thickness, and subscript ‘Obtdenthe initial state. From
consideration of Equation (3.1), it is possible dalculate an updated thickness

imperfection as deformation progresses as below:

— =dg) —ds? (3.2a)

f = f,expel—&l) (3.2b)

where &,' denotes the true thickness strain. Consideringiaion (3.2), it was

considered that the imperfection factor change$ whe deformation of the sheet. In
order to estimate the initial value of the impeti@t factor, it is reasonable to relate it to
the surface roughness of the sheet. By supposaighlk maximum thickness difference
between regionsb] and @) is equal to the surface roughness of the shketjmitial

imperfection factor can be written as follows:

- t; — 2R, (3.3)

ty

whereR;is the maximum surface roughness of the sheet.
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Research carried out by Stachowicz [3.25] shows$ shaface roughness also
changes with deformation and these changes depgmwdinitial surface roughness, grain

size, and strain, according to the following engailirelation:
R, = R,, +Cd ¢ (3.4)

where R,,' is the surface roughness before deformati®is a material constang is
the effective strain, and, is the initial grain size. Combining Equations2(3.(3.3) and
(3.4) yields:

a 05=b
(b 2|R,, + Cd2%2" ] (3.58)

to

t2 —2|R,, + Cdz"|

to

f = expel — &2) (3.5b)

As shown in Figure 3.1, the orientatigh of the thickness imperfection with
respect to the minor principal stress directiondasidered in the analysis. Furthermore,
the initial value of this angle at the start of theformation can be arbitrarily selected,
since it changes throughout the deformation; ireothords, the anglé between the
imperfection and the principal direction is updafedm an initial valuef, at each
increment of plastic deformation. Sing and Rao §B.&howed that by considering
uniform deformation, the rotation of the initialickness imperfection can be expressed
as a function of the strain increments in the nainemea §) of the sheet as follows:

1+deg
1+ de;

tan@ + d@) = tan(@) (3.6)

Where &;% and d,® are the major and minor principal strains in tbenmal area of the

sheet, respectively.
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Sheet material is generally anisotropic, and it assumed that the principal axes
of anisotropy are coincident with the principaless directions in the sheet. Hill's
quadratic yield function [3.27] was adopted to dscthe sheet anisotropy, and for
plane-stress conditions, this function can be amits:

2h:0::(G+H)fo+(F+H)05y—2HO' o +2P0'fy (3.7)

XX Yy

where F, G, H and P are anisotropic constantsdéwatbe calculated by the following
expressions [3.27]:

K (3.8a)
Ry @+ Ry) .
G=%il (3.8b)
H= %?1 (3.8¢)
G+H=1 (3.8d)

where R, and R,, are the anisotropic coefficients in the rollinglaransverse directions,

respectively.
The associated flow rule in the principal axesrtfiatropic anisotropy is expressed in the
form [3.28]:

, oh
de; =dA’ — (3.9)

80‘ij

where,dA' = de,

is the plastic multiplier.

O

52



Material work hardening is expressed in an equitailerm using Swift's power

law:

o, =k&' (g, +&;)" (3.10)

where o, and &, are the effective stress and strain values, réspgc Moreover, it is

assumed that the yield surface expands isotropiraitress space.
The hardening law can also be expressed in diffiaidorm:

d(Ine,)=md(In £e) + nd(In(s, + &,))

where g, is a uniform prestrain applied to the sheet pathe current forming process;

mis the strain-rate sensitivity coefficient; amés the strain-hardening coefficient.

Considering the vyield criterion and its associafled rule, the strain pathp can be

written as:

de, (F+H)a—H

= 3.11
P de, 1-He ( )
where « is the ratio of principal stresses:
0=02_%w (3.12)

de;, dep, 61 ando, are the principal strain increments and the ppalcstresses in the area
of nominal thickness (i.e. in regioa)(of the sheet).

The basic compatibility equations for the MK anayare:

del =dg] (3.13)
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where d¢2 and de; denote the tangential strain increment to the \g¥da regions &)

and @), respectively. The requirement of force equiliomi across the imperfection
groove is written as:
F2=F> (3.14)

F2=F> (3.15)

where F2 and F? denote the force per unit width in the directimrmal to the groove

in regions &), and b), respectively, and? and F" are the shear forces per unit width

in regions &) and p), respectively, i.e.:

Fon = ot

(3.16)
Fb — O_b tb
Fo = ot”

(3.17)
Fo = ont’

Considering these MK equations, the governing eguatf strain for each region
can be determined. A biaxial stress state is inghasethe nominal area and causes
development of strain increments in both the nohanaa ) and in the weaker areb)(
Strain development in thinner regiob) (is greater than in thicker regioa)(and the
difference in strain rate between both regionseases with deformation. The limiting
strains due to necking are calculated numericajlyabcombination of the Newton-
Raphson and the '4order) Runge-Kutta methods, with the assumptiat tiecking
occurs once the effective strain rate in the groaxea reaches 10 times that in the

nominal area; that is wheiz?/de2>10. The limiting values of; ande; in area 4) were
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determined for various linear strain paths randmg p = ¢,/¢, = —-05to 1.0 and were

plotted on the FLC.

3.2.2. Stress-based forming limit curves

In order to determine stress-based FLCs, the gemeethod proposed by
Stoughton [3.11] was employed to translate limigiss into limit stresses. If a prestrain

leads to an initial strain staltg,, s, , and a secondary forming operation results imal fi
strain statge;;,¢,;), then the principal stresses at the end of thenskry stage are

given by [3.13]:

_G(&(ey,65) +E(ey —&y,65 —&5))

o, = (3.18)
E(aleyr —&5) (e —&y))
and
o, = a(ﬂj o, (3.19)
&1 — &y
& =& + Agy (3.20)

The plasticity assumptions used in the MK analysse also used to calculate
parameterSa(p) and A(p) and transform the forming limit curve into stresgmce; i.e.
Hill's quadratic yield function, the associatedwloule and Swift's work hardening law.
The related formulation is presented in appendx iéference [3.13].

Equations (3.18) and (3.19) can be used to cakule limit stresses for bilinear strain
paths. These equations can also be employed tola@ahe SFLC for the as-received

state, and in this case there is no prestrajn¢,, = ). 0
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3.3. Results

3.3.1. Material characterization

The materials considered throughout this investgaor model verification are a
low carbon steel AISI-1012 [3.1] and AA-2008-T4 ogted by Graf and Hosford [3.2].
Tables 3.1 and 3.2 present the anisotropy coefiicjethe corresponding yield stresses
and other related material properties for AISI-1@i2i AA-2008-T4 alloys [3.1- 3.2],

respectively.

Table 3.1: Material properties of AISI-1012 low cabon steel [3.1]

Ro Rss Rao F G H K (MPa)
1.4 1.05 1.35 0.432 0.41y 0.583 238
n m do (u) | Rzo (um) C to (Mm)
0.30 | 0.01 25 6.5 0.104 2.5
Table 3.2: Average mechanical properties of AA-20084 [3.2]
Ro Ras Roo F G H K (MPa)
0.58 0.48 0.78 0.246 0.633 0.367 535
n m do(n) | Rzo(um)| C to (mm)
0.27 | -0.003 8* 2.5% 0.70* 1.7

* Data determined by calibration

As a result of Equations (3.3) and (3.4), the vaithe initial imperfection factor
in the MK analysis i$, = 0.995 for AISI-1012 steel arigl= 0.997 for AA-2008-T4 alloy.

3.3.2. Validation of the MK model
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The proposed MK model was used to calculate the &ilL&3-received AISI-1012
low carbon steel sheets, and Figure 3.2 shows ahgarison between the theoretical
results and the experimental FLC [3.1]. It can eensthat the predicted FLC is in good
agreement with the experimental data for as-redefd&1-1012. In order to validate the
proposed MK model for bilinear strain paths, thedicted FLC for the AA-2008-T4
alloy was calibrated to the experimental FLC in #sereceived state by adjusting the
values ofC, d, Ry (these material constants were not provided ig]J3The values of
the material parameters determined by the caltmatiereC = 0.70,dy = 8.0Qum and
Rzo = 2.5um. Then forming limit curves were calculated forotwsets of bilinear strain
paths for which experimental data were provided3i2]. First, FLCs were determined
after 4 and 12 percent equibiaxial prestrains auwrsdly, FLCs were calculated after 5
and 12 percent uniaxial prestrains. The predictddCsF and the corresponding
experimental FLCs for the AA-2008-T4 alloy [3.2kahown in Figures 3.3 and 3.4.

A Exp. —IH

Major Strain

-0.45 -0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35
Minor Strain

Figure 3.2. Comparison of theoretical and experimetal FLC AISI-1012 low carbon steel in the as-
received state
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& As-Received (Exp.)
B 0.04 Prestrain (Exp.)
A 0.12 Prestrain (Exp.)
As Received

= +0.04 Prestrain

= = 0.12 Prestrain

Major strain

0.05 -

-0.25 0.2 -0.15 0.1 005 0 - 0.05 0.1 0.15 0.2 0.25
Minor Strain

Figure 3.3. Theoretical and experimental FLCs of AA2008-T4 with 4 and 12 percent equibiaxial
prestrain after calibrating the MK model to the as+eceived FLC.

o

=
g
n
S,
[35]
2 L} .
b15 | & As-Received (Exp.)
' .
' ! ® 0.05 Prestrain (Exp.)
\‘ :0,1 . A 0.12 Prestrain (Exp.)
o — As-Received
\11.05 1 = 0.05 Prestrain
\‘ - = 0.12 Prestrain
-0.21 -0.16 -0.11 -0.06 -0.01 0.04 0.09 0.14 0.19

Minor Strain

Figure 3.4. Theoretical and experimental FLCs of AA2008-T4 with 5 and 12 percent uniaxial
prestrain after calibrating the MK model to the as+eceived FLC.
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As can be seen, the correlation between prediatedeaperimental FLC after

bilinear strain paths is quite good for both shmeaterials.

3.3.3. Predicted FLCs for bilinear strain paths

The theoretical MK model described in section 2 wasd to compute FLC of
AISI-1012 sheet material for a variety of non-lins&rain histories that consisted of two
successive loading stages. The first stage wasgtept strain in each of the following
modes: uniaxial tension, plane-strain tension,emdbiaxial tension. The second loading

stage consisted of a set of strain paths rangiom funiaxial tension $=-05) to
equibiaxial tension 4= 100) at incrementsAp = 005in order to determine the

complete FLC. Every bilinear strain-path was sirtedawith the MK model without
unloading between the first and second loadingestaand three cases of prestrain will be
discussed.

Case 1:the FLC was determined after the sheet metal wasally prestrained 0.20 in
uniaxial tension along the rolling direction. TheG=predicted for this case is plotted in
Figure 3.5 with the corresponding as-received FalSo( predicted with this MK model).
Theoretical results in this FLC show that afteraxml prestraining, the forming limit
decreases somewhat for subsequent drawing opesdtiennegative minor strains), but
improves for stretch-forming operations (i.e. pgsitminor strains). Also, the plain-strain
intercept of the FLC shifts slightly towards thegagve minor strains.

Case 2:In order to observe the effects of a prestrairplane-strain, the FLC was
calculated after the material was prestrained t28lane-strain along the sheet rolling
direction. The influence of this prestrain is shownFigure 3.6, where the as-received
and prestrained FLCs are compared. It appearsafteata prestrain in plane-strain, the
forming limit increases for all deformation modesept plane-strain where the forming
limit remains almost unchanged. It should be notemyever, that isotropic hardening
was assumed in this MK model and an assumptionirenkatic or mixed isotropic-

kinematic hardening may well lead to different dosmns.
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Case 3:The FLC was computed after a 0.20 prestrain inbéaxial tension. The effect
of a prestrain in equibiaxial tension is shown iigufe 3.7, and it can be observed that the
left hand side of the FLC shifts up significantbyt the plain-strain intercept of the FLC
decreases and shifts towards the positive minainstrresulting in a decrease in
formability for strain paths on the right side b&tFLC.

The strain-path dependency of the FLC can be eteaduay considering the various FLCs
in Figure 3.8 for these three cases of prestrais.dvident from this figure that the FLC
is strongly path dependent as evidenced by theestiagnges and significant translations

of the FLCs in strain space for all prestrain modes

=— As Received
=—0.20 Uniaxial Prestrain

Major Strain

.

Minor Strain

Figure 3.5. Effect of 0.20 uniaxial prestrain on FIC for AISI-1012 steel
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Figure 3.7. Effect of 0.20 equibiaxial prestrain orFLC for AISI-1012 steel
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Figure 3.6. Effect of 0.20 plane-strain prestrain n FLC for AISI-1012 steel
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H
P

— As-Received
=&-(.20 Equi-Biaxial Prestrain

=/=0.20 Plane Strain Prestrain

=¥=0.20 Uniaxial Prestrain

Major Strains

0.2 0.4 0.6

Minor Strains

Figure 3.8. Predicted FLCs after 0.20 prestrain iruniaxial tension, plane-strain tension, and
equibiaxial tension for AISI-1012 steel

3.3.4. Stress-based forming limit curves

According to the investigations of Arrieux [3.1@toughton [3.13- 3.14] and
other researchers [3.9, 3.11, 3.16], the most fagmit characteristic of stress-based
forming limit curves (SFLC) is their strain-pathdependence. However, more recent
experimental investigations by Yoshida al. [3.18- 3.19] have pointed out that abrupt
changes in strain path can lead to some path-depepaf the SFLC.

In order to further investigate this path-dependeat SFLCs, the current MK
model was used to predict the FLC of AISI-1012 Isgéeeets after a prestrain in either
uniaxial tension or in equibiaxial tension. In adu, the FLC was computed in each
case for values of effective prestrain= 010, 0.20 and 0.45. As mentioned in Section
2.2, the theoretical SFLCs were obtained by ustogighton’s method [3.13] to translate
the limiting strains into stress space, using t#@es constitutive assumptions as in the
MK model. In other words, for every FLC predicteding the current modified MK
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analysis, a corresponding SFLC was also predidtied.stress-based forming limit curve
of as-received AISI-1012 steel is shown in Figu& 3

300

250

Major Stress (MPa)

=
o
o

50

0 50 100 150 200 250 300
Minor Stress (MPa)

Figure 3.9. Stress-based forming limit curve (SFLChf as-received AlISI-1012 steel

Figure 3.10 demonstrates the effect of variousIéewé prestrain in uniaxial
tension on the SFLC of AISI-1012 steel. It can bersthat the SFLCs obtained after an
effective prestrain in uniaxial tensioa = 010and £ = 020are practically identical.
However, the SFLC obtained after an effective pagste = 045in uniaxial tension is
significantly different than those obtained at lov&vels of prestrain, with the greatest
difference being in the mode of plane-strain.

The final evaluation was carried out to determime influence of the magnitude
of prestrain in equibiaxial tension on the SFLOni#r to the previous case, the FLC
was predicted with the MK model after the matewak prestrained to an effective strain
in equibiaxial tensioa = 010, 0.20, and 0.45, and the SFLC was calculated fttoen
FLC. Once again, no strain-path dependency wasnadxsdor lower levels of prestrain
(¢ = 010 and £ = 020), however, some path dependency was observetiddnighest

value of prestraing = 045) as seen in Figure 3.11.
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Figure 3.10. Comparison of the SFLC after differentevels of prestrain in uniaxial tension with the
as-received SFLC of AISI-1012 steel
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Figure 3.11. Comparison of the SFLC after differentevels of prestrain in equibiaxial tension with
the as-received SFLC of AISI-1012 steel
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In order to visually compare the path dependenah@fSFLC after both types of
prestrain, the SFLCs obtained after an effectivestipain £ = 045in uniaxial and in
equibiaxial tension are shown together in Figude 3lt is clear from this figure that the
path dependency of SFLC is similar for both typdspcestrain, and the greatest
discrepancy with the as-received SFLC occurs artli@anode of plane-strain.

2006

o
250
000000
<
& 200
=
N—r
[0
0
[0 150 A
S
= .
n & As-Received
S
o S .
T —8- Uni-Axial Prestrain
s 100 A
—o— Equi-Biaxial Prestrain
50
-50 0 50 100 150 200 250 300

Minor Stress (MPa)

Figure 3.12. Comparison of the SFLC after an effeate prestrain &€ = 045in uniaxial and
equibiaxial tension with the as-received SFLC of A$I-1012 steel

In order to quantify the strain path dependencySBL.Cs as a function of the
magnitude of prestrain and the type of strain pt,absolute difference in major stress
(for a given strain ratio) was determined betwden3$FLC predicted after bilinear strain
paths and the as-received SFLC. These absolutdtiffes are presented in Figures 3.13-
3.15 in terms of a percent deviation as a funatibthe principal strain ratio for effective
prestrainse = 010, 0.20 and 0.45, respectively. According to thdsarts, the difference
in major stress between the as-received and presdr&FLCs is less than 1.0% when the
effective prestrain is¢ = 010 and ¢ = 020 (Figures 3.13 & 3.14). However, the
maximum deviation from the as-received SFLC reaabesit 5.0% for an effective
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Loading path at the second loading stage

Figure 3.13. Deviation in major stress between présined and as-received SFLCs for an effective
prestrain £ = 010in AISI-1012 steel sheets
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Figure 3.14. Deviation in major stress between présined and as-received SFLCs for an effective
prestrain £ = 020in AISI-1012 steel sheets
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prestraing = 045(Figure 3.15). In Figure 3.15 the deviation frome tis-received SFLC
is greatest in the vicinity of plane-strain defotioa and less severe for other modes of
deformation, however it reveals the non-uniquerédsbe SFLC when loading follows a

bilinear strain path and when the prestrain exceezstain value.

P
P

50 == Uniaxial Prestrain

=/ Equibiaxial Prestrain

Deviation percent

PN
oo

-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9 11
Loading path at the second loading stage

Figure 3.15. Deviation in major stress between présined and as-received SFLCs for an effective
prestrain &€ = 045in AISI-1012 steel sheets

In order to understand how the maximum deviatiomegor stress between the
prestrained and as-received SFLCs evolves witlctfte prestrain, additional levels of
prestrain were considered up to an effective pagstr = 0.5. The maximum deviation
between the prestrained and as-received SFLCs alaslated and plotted as a function
of effective prestrain (Figure 3.16). This figuteos/s that the deviation between the two
SFLCs increases above 1% for effective prestramesitgr thans = 035. Although
prestrains greater tha= 035are not common in stamping operations, they caseba
in tube bending prior to a hydroforming applicatiém such cases the as-received SFLC
would not be a reliable measure of formability. f@fere the non-uniqueness of the
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SFLC appears to be dependent on the magnitudes gfréstrain in a bilinear strain path,
as was reported by Yoshidaal.[3.18].

10

Max. Deviation Percent
al

1 o o

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Effective Prestrain

Figure 3.16. Maximum deviation in major stress betwen prestrained and as-received SFLCs for

different effective prestrain values in AISI-1012 teel sheets

Further work is still required to understand thituence of the magnitude of the
prestrain in the first stage of the bilinear strpath and the influence of the severity of
the strain path non-linearity on the SFLC. A polesitause of this dependency is the
manner in which the yield locus changes with waakdiening during the first stage of the
strain path. Indeed, isotropic hardening assunedstitie yield locus expands uniformly in
both stages of the bilinear strain path, but kintegnar mixed isotropic-kinematic
hardening assumes there is some translation ofiéhe locus. Furthermore, Yoshicd
al. [3.23] demonstrated that the change in work-hamdgbehaviour during the second
loading stage is the main reason for path dependehthe SFLC. Also, the transient
effects that might exist during the reloading betwéehe first and second stages of the

strain history may also have an effect on the dimiuof the SFLC. Finally, as the
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prestrain increases, the yield locus may expand ti/t plane-strain region above the
SFLC, which may have an effect on the shape chahtfee SFLC that was observed in
the vicinity of plane-strain deformation.

3.4. Conclusion

In this paper, the MK analysis was employed to stigate the strain path
dependency of stress-based forming limit curves Girrent model was developed in
such a way as to incorporate effects of materiap@rties such as grain size, surface
roughness, and rotation of the initial thicknespenfiection (Equation 3.6). The thickness
imperfection was considered to be a function of sheface roughness, and both the
surface roughness and the thickness ré#tiiere incrementally updated throughout the
loading process (Equations 3.4 and 3.5) as thetaféestrain evolved. The FLC of AISI-
1012 steel and AA-2008-T4 aluminum sheets werera@ed with this MK model for
bilinear strain paths where various magnitudesre$tpain were applied in either uniaxial
or equibiaxial tension. Finally, Stoughton’s metf8dL.3] was subsequently employed to
translate limit strains into limit stresses, usihg same constitutive assumptions as in the
MK analysis.

Results indicate that the SFLC remains essentislbhanged for lower levels of
prestraining and therefore the path dependency FIECS is neither evident nor
significant for effective prestrains less than= 035. However, a large prestrain
(¢ = 035) in either uniaxial or equibiaxial tension cauaesupward shift in the SFLC in
the vicinity of plane-strain deformation. Furthem@athe SFLCs obtained after a prestrain
in uniaxial and equibiaxial tension with the saraeel of effective strain are practically
identical, therefore the SFLC appears to be mopendent on the magnitude of the
prestrain than on the strain path itself.

Further work is still required to fully understatite sources of path dependendy
in SFLCs. Nevertheless, in comparison with strasda FLCs that show a very
significant strain-path dependency, stress-base@sFitemain much less sensitive to
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strain

path. And the current observations certaisiypport the use of SFLCs for

formability evaluation in finite element analysdswetal forming processes in which the

material undergoes nonlinear strain paths with derate level of prestrain.
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Chapter 4

Prediction of sheet forming limits with Marciniak and
Kuczynski analysis using combined isotropic—non liear

kinematic hardening

4.1. Introduction

The formability of sheet metal, or the amount offanm deformation the sheet
can sustain in a forming process, is limited by dlceurrence of localized necking, i.e.
non-uniform strains within a small region in thamé of the sheet. The forming limit of a
metal sheet is generally given in terms of thetlimgi principal strains under different
loading conditions and represented by the so-cétleding limit curve (FLC). The shape
and location of the FLC in principal strain spaedines the boundary between strain
states that are always free of necks from thoseat®aprone to necking and splitting.
Therefore, the distance between the FLC and athefmeasured or predicted strains
throughout a formed part characterizes the degresafety. However, the deformation
behavior of metals is strongly dependent on thelifga history, in particular, on the
specific strain paths imposed by the forming preces

The forming limit curve, initially developed by Klee and Backhofen in 1964
[4.1] and Goodwin in 1968 [4.2], has provided afuksempirical gauge of forming
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severity for stamping processes for almost halfeatury. However the FLC of as-

received sheets is valid only in processes in wiiehloading path is quasi linear; in

other words, one in which the ratio of the pladicains is constant throughout the
forming process. The changes in shape and posfighe FLC in strain space due to
non-linear strain paths is typical of all sheet enials including steel, copper and brass,
as reported, for example, by Kleemola and Pelkigkan[4.3]. Therefore the strong

influence of strain path changes on the FLC isfanide disadvantage when evaluating
the forming severity of industrial stampings thatdlve multistage forming operations.

In view of the difficulty to experimentally deterng the forming limits of sheet
materials that have been subjected to a non-lisieain history, many researchers have
sought to predict the FLC. Three different appreachave been introduced to calculate
FLC: the bifurcation method, damage analysis ardMarciniak and Kuczynski (MK)
approach. Bifurcation analysis was first proposgdHill in 1952 [4.4], then further
developed by Stéren and Rice [4.5] and by Hutchiresad Neale [4.6- 4.7]. The damage
method considers micro-defects in the materialcstne and FLC is predicted when the
density of micro-defects reaches a specified aliti@lue. This method was applied by
Tjotta [4.8] to predict void growth during plastieformation and using a finite element
model to study uniaxial tension and plane-stramsiten. Similarly, Huanget al. [4.9]
used a microscopic yield function for anisotropgiest metal to predict rupture progress
that can be used to investigate the failure oftsimetals under forming operations.

In 1967, Marciniak and Kuczynski [4.10- 4.11] deymdd another method to
predict failure in thin sheets based on classitastizity theory by assuming a higher
void volume fraction inside a randomly oriented erfpction band, and by modeling this
imperfection as a geometric groove in the sheeis &pproach is commonly called the
MK method and the physical basis for the MK analysas presented by McCarrenal.
[4.12]. Chowet al. [4.13] developed a viscoplastic constitutive lasing an anisotropic
damage model. In their study, imperfections in then of grooves were applied to
samples loaded in equal biaxial stretching andyguieir proposed damage criterion for
localized necking, the FLCs of AA6111-T4 under mo@&r strain paths were predicted
in good agreement with the experimental resultsvds found that no reductions in the

forming limit strain were obtained with shallow gre@s for which the imperfection

74



index, which was defined as the thickness ratithefgroove to the nominal area, was
greater than 0.990 and 0.992 for two different Istedhese imperfection indices
represented the pre-existing micro-structural defacthe two steels.

In classical plasticity theory, a yield functiontelenines the stress states beyond
which plastic deformation occurs, and is generaigumed to take the same form as the
plastic potential function. This function deternsneot only the direction of the plastic
strain increments via the associated flow rule, &lsb the material stiffness by its
variation during plastic deformation.

In order to predict the work hardening behaviosloéet materials the most widely
used assumption is that of isotropic hardeningclwlassumes the yield locus expands
uniformly with plastic deformation. This hardeningpdel is well suited to predicting the
outcome of metal forming processes involving monmtdoading.

Another well-known type of hardening model is theeknatic hardening model,
initially proposed by Prager [4.14] and Zieglerld]. to model the Bauschinger effect.
However, under complex loading histories, such lassé involving unloading and
reloading, substantial deviation of actual matebhavior from that predicted by these
two models is often observed.

It is also common to implement a combination oftrigpic and kinematic
hardening models in plasticity calculations, in@rtb more accurately represent actual
hardening behavior. The combined strain hardeniadahseems particularly well suited
to applications that include nonlinear loading gath

In the present study, two different work hardemngdels were implemented in a
modified version of the imperfection approach pgab by Marciniak and Kuczynski
[4.10] to predict the forming limit curve (FLC) eft different nonlinear loading paths.
First, isotropic hardening was considered to detgnthe FLC in cases that involve
unloading and subsequent reloading along a diffesgain path. Secondly, FLCs were
predicted with the mixed isotropic and nonlineareknatic hardening model proposed by
Armstrong-Frederick [4.16] or Chaboche [4.17]. Ressobtained from both hardening
methods were validated with available experimedéa for AISI-1012 [4.18] and 2008-
T4 [4.19] alloys in the as-received state and alben subjected to an initial prestrain.

For the AISI-1012 steel sheet, a 10 percent priesimauniaxial tension and an 8 percent

75



prestrain in equibiaxial tension were applied ptodetermining the FLC [4.18]. For the
2008-T4 aluminum alloy, sheets were prestrainesl amd 12 percent in uniaxial tension
and to 4 and 12 percent in equibiaxial tensiong§.The proposed MK model was used
to predict the FLC for each of these materialsfan@ach nonlinear loading path.

4.2. Theoretical approach

As mentioned already, one of the best known thaademethods to predict the
onset of localized deformation was introduced byd#aak and Kuczynski [4.10- 4.11].
The MK approach is based on the assumption thhinasheet has an initial geometric
imperfection (Figure 4.1) and a localized neck wlodevelop from this region. This
explanation of localized necking is based on thet fthat inhomogeneities are
unavoidable in actual sheet materials. In realityisi more likely that the initial
imperfection is a material inhomogeneity. The MKthoel has been used with different
plasticity theories and hardening models to predistory-dependent forming limits
[4.12-4.13, 4.20-4.21].

Figure 4.1. Thickness imperfection in MK method
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As it is shown in Figure 4.1, it was assumed thatprincipal axes of anisotropy
are collinear with the principal axes of applietesses. In other words, the principal in-
plane directions (i.e. direction of major and mirstress components) are parallel with
the rolling and transverse directions of the shestpectively. The effects of having
principal stress axes that are rotated comparédet@rthotropic axes were discussed by
other researchers [4.22- 4.25].

In the MK model, a sheet with a nominal thicknesassumed to have an area (in
the shape of a groove) that is slightly thinneesthtwo areas are denoted by (a) and (b),

respectively. The initial imperfection factor oktlgroove, f,, is defined as the thickness

ratio:
tb

fo = t‘; 4.1)
0

wheret denotes the sheet thickness, and subscript ‘Obtderthe initial state. In most
cases, researchers consider the imperfection faxtoe an arbitrary constant that can be
adjusted within a reasonable range to better @iggiredictions with experimental data.
In order to estimate the initial imperfection fagtd seems reasonable to relate it to the
surface roughness of the sheet. Research carriedyo8tachowicz [4.26] shows that
surface roughness changes with deformation ance tbbanges depend upon initial
surface roughness, grain size, and strain. Byimglahe thickness difference between
regions (a) and (b) to the surface roughness ofhieet metal, the imperfection factor not
only takes on a value that has physical meaninglsotthe option of adjusting this value
so that the predicted FLC better fit experimentatadis eliminated. Stachowicz’s
assumption was adopted in this work and the impgdie factor was assumed to change
with the deformation of the sheet according toftlewing relationship:

_13-2[R,o + Cd%e"]

to

fo

(4.2a)
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_ 12— 2JRyp +Cd®e?

to

f

expes - &3) (4.2b)

whereRy is the surface roughness before deformatighis the effective strain in region
(b), &b is the material’s initial grain size, and C is aterial constant that shows how the
surface roughness varies with plastic deformatibnis constant can be determined

experimentally by measuring the surface roughnedsgfarent levels of effective plastic

strains, and based on the empirical equatigrRR=Cd.°c”), C represents the slope of

a line fitted to the data points on the*Rzy” vs. “dS 2" graph [4.26]. Additional

details regarding the calculation of the imperfactifactor are also provided in the
authors’ previous work [4.27].

As shown in Figure 4.1, the thickness imperfectisnconsidered with an
orientationd inclined to the principal stress directions. Aliigh the value of this angle at
the start of the deformation can be arbitrarilyestdd, it changes with deformation. In
other words, the angke between the imperfection and the principal diecis updated
from an initial valuedy at each increment of the plastic deformation. $ind Rao [4.28]
showed that with consideration of uniform deforroati the rotation of the initial
thickness imperfection can be expressed as a émofithe true plastic strain increments

in the nominal area (a) of the sheet as follows:

1+de!

tan@+do) =tan@
( ) ()1+dg§

(4.3)

where d;* and d&,® are the major and minor principal strains in tleenimal area of the
sheet, respectively.

In this investigation, both isotropic hardening aaenbined isotropic — nonlinear
kinematic hardening were considered. With isotrop&rdening, the yield surface
expands uniformly in all directions in stress spacel the center of the yield locus
remains fixed (Figure 4.2). However, with mixed deming the yield surface not only
expands, but the centre of the yield surface almtstates simultaneously (Figure 4.3) as

a result of work hardening. The translation of tkeatre of the yield surface was defined
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by a nonlinear function of the plastic strain comguats and will be further described in

the following paragraphs.

______ Saturation

a, Hardening
€2
Yield
Initial yield Subsequent, expanded yield
surface surfaces after plastic deformation
Figure 4.2. Schematic representation of isotropicdrdening [4.29]
Expanded yield surface
(isotropic hardening)
after many cycles
a o
\ 2_Au:_--_"_--_-L.,._____________________Z_A_ ________
ot “ag, -7
_____ = B
/
1
/
/
>
€2
o Plasticity
Initial yield recommences
surface
Tr'anslate'd yield sgrtace Expanded hysteresis
(kinematic hardening) loop resulting from

isotropic hardening

Figure 4.3. Schematic representation of combinedatropic and kinematic hardening [4.29]
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A constitutive equation was derived in which thelgifunction can be expressed
in the following general form for isotropic hardegiand mixed hardening in Equations
(4.4a) and (4.4b), respectively:

3 1/2 .

f = (E L\ Suj — g orepe (4.4a)
3 12 _

f = (E(S“ —a;) N (S —¢g )j — g irediH & NLKH (4.4b)

where, S is the deviatoric stress tensdy, is a tensor that includes the anisotropic
constants of Hill's 1948 vyield function [4.30], andis the back-stress tensor that
describes the translation of the centre of thedyselrface.

In this work, non-linear kinematic hardening wagirtkrl by the Armstrong-Frederick
[4.16] or Chaboche relation [4.17] in which the leNion of the back stress is defined as

follows:
da; =dd¢;” -y o dg;° (4.5a)

wherec andy are material constants. By integrating Equatiobgftand takingz; to be

zero wheng? = 0, we obtain:
C P
a; = > @-e”) (4.5b)

As the plastic strain increases, the back stegssn Equation (4.5b) saturates to

the valuecly, where the constant determines the rate of stress saturation afmpd
determines the magnitude of the saturation stress.

For plane-stress conditions, the plastic poteffitiattion is written as Equations
(4.6a) and (4.6b) for the isotropic and mixed handg cases, respectively:
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2h=(G+H)o,’+(F+H)o,*-2Ho,0, +2No,, = f? (4.6a)

2h=(G+H)(o, —a,)*+(F + H)(o, —ay)2 -2H (o, ~a,)(o,~a,)+

(4.6b)
2N(0Xy—axy)2 =f?
where F, G, H and N can be calculated using th&éoipic coefficients.
Strain hardening is described by the power law:
o, :k(;;ej (6.+&,)" (4.7)

wheregg is a prior uniform pre-strain applied to the sheetis the strain-rate sensitivity
coefficient, n is the strain-hardening coefficiemt, and &, are the effective stress and

strain, respectively.
The power law used for the second stage loadittgers modified according to the
prestrain level. The power laws used in the nomamal weak areas of the sheet at the

second loading stage are represented by the foltpeguations, respectively:

o a

ol = k(ge J (P2 + P2 1 g))" (4.8a)

e

«b\™
b b b
o, = k[eej (89(1) +$e(2) +&y)" (4.8b)

WhereeP? andeMP are the effective plastic strains reached in tiestpaining stage.

The associated flow rule was used to calculat@lhstic strain components:

de, = dA grad(h) = dz;—h (4.9)

ij
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Where d is a plastic multiplier, and h is the plastic puital function.

Equation (4.9) was used to determine the plast&instincrements for mixed
hardening:

de, = dA[(G+H) (o, ~a,)-H(o,~a,)]

(4.10a)
de, = dA|-H (o, - &)+ (H +F)(o, -a,)]

(4.10b)
de, =—(de, +ds,) (4.10c)

The coefficients of Equation (4.6b) can be deteadiat the condition of initial
yielding (ax=0,=0 andf=1) [4.31]:

2=t 1, 1 (4.11a)
()" (oy)" (0%)

2F= :\](- 2~ :\I(- 2t :\](- 2 (4.11b)
(0y)" (o) (0%)

2H= % 2 :\I(- 2~ % 2 (4.11c)
()" (oy)” (0%)

Y

where o, o,, and oy are the yield stresses in the x, y, and equibliai@ctions,

respectively. Anisotropy data provided in Tabled 4nd 4.2 are valid for isotropic
hardening, but for the mixed hardening case, whamsile stressd) is applied on the
specimen at an anglg)(to the rolling direction [4.31], Lankford’s coé&ffents can be

calculated by the following equation:
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R, ={|(G+H)(ccog f-a,) - H(osin® f-a,)|sin? g
+|[(H +F)(osin® p-a,)-H(o cog f-a,)|cos p (4.12a)
—2N(o'sinBcosp -a,,)sinBcosp {G(ocos f—a,)+F(osin® f-a,)}

Finally, the following relations can be written:

o H-Ha, +(H+F)a,

(4.12b)
0 G-Ga,-Fa,

cH+(G+H)a, -Ha

! 4.12c
° o F-Ga,-Fa, ( )

(2)a

Assuming that the necking strain in the nominabaee; "~ during the second

loading stage, the final forming limit as a resfla bilinear strain path can be calculated

by:
& = 5”-(1)"" + 5”-(2)3 (4.13)

Daj;

Whereg; is the forming limit and;;* is the plastic prestrain in the nominal area.

The basic equations for the MK analysis are theng#oc compatibility equations

expressed as:

deg = dsy (4.14)
and the force equilibrium equations across the mfepton groove:

Fon=Fm (4.15a)

Foi = Fu (4.15b)
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where subscript® andt denote the normal and tangential directions of ghaove,

respectively, and F is the force per unit widté,:i.

a_ __aza
an_o-nnt

b _ __byib
an_o_nnt

a_ _aja
Fnt _O-ntt

b_ __bib
I:nt _O-ntt

By combining Equations (4.1), (4.7) and (4.16ay®,0btain:

a b e M e M
[jﬂ/bﬁ;}f[[eow:] e J/{[eow:] el J
From the Equations (16) and the stress transfoomatile:

nt o

b a o2 —q? 2 o2 —q?
o _ I _[(r2 ~1)sing cosd] 1+(F+H)( 2 @J —2H[2§J
Om  Onn O, — @, O, — @,

05

(4.16a)

(4.16b)

(4.16c)

(4.16d)

(4.17)

(4.18)

wherer? is a stress path factor and is equal to the odtthe minor stress componesb)

to the major stress componest)(in the nominal area:

réd= 0'2a/ 0'1a

(4.19)

With consideration of Equations (4.6), (4.9), (4,Jahd the strain transformation rule:
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a

—dge(“la‘“l) {(F+H)(Ji_aij—H}co§9+(1—H(o-i_a§Bsin29 =
o, O, — O G2 T2 (4.20)

by b _ b b_ b b_ P
deg (o) —ay) {(HH)[% aij—H}coszen{l—H(di aiDsinza
o} o, —a, O, — &,

Equations (4.17), (4.18), and (4.20) were used deeldp a final differential

equation which can be used to determine the orfseecking. This final governing

equation is expressed as a function of the ratieffettive straingj= s and indicates
the evolution ofy as deformation progresses; the rate at whiagtcreases determines the
onset of strain localization in the sheet.

Using the formulation and assumptions of the MKrapph and the plasticity
equations previously described, a biaxial streste stan be incrementally imposed in the
nominal area. The imposed stresses cause a dewsiomhstrain both in the nominal
area (a) and in the weaker area (b). The strairstirds states in region (b) are calculated
numerically from the stress and strain statesgiore(a) by the governing equation using
a combination of Newton-Raphson and Runge-Kuttehous. Because of the thickness
difference between the two areas, the strain rateeases faster in the thinner region (b)
than in the thicker region (a) and it is assumex lihcalized necking takes place once the
effective strain rate in the groove exceeds 10 giri&at in the nominal area. In other
words, the limit strains were obtained whem &>&® >10. When this condition is
reached, the values ef ande; in area (a) represent the limiting strains foiveeng linear
strain path 6= &)/& constant). This procedure is then repeated foewfft linear strain
paths in the range of -0s50 <1.0 and the limiting strains in each case are tgquot

the FLC. The same method was followed to obtainRb& for non-linear loading paths,
by subjecting the sheet material to two differenéar loading paths and by considering
the values of the principal strain components atdhd of the first loading stage as the
initial strain values for the second loading stafas procedure can also be expanded to
compute the limit strains after multiple loadinggs.

As mentioned earlier in this section, there is atipaar orientation of the
imperfection band that minimizes the computed lirsitains for each strain path

(Equation 4.3). In order to determine the lowasitlistrains for each linear loading path,
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the initial orientation of the imperfection band sMacrementally rotated between 0 and
45 degrees until the minimum limit strains wererfdu The same approach was also
followed in the case of bilinear strain paths, #melvalue of the critical band orientation
in the first deformation stage was used as thé&limitrientation for the second loading

stage. This method can also be followed for muiedr strain paths.

4.3. Results and discussion

4.3.1. Material characterization

The materials considered in this investigatiomnfimdel verification are a low carbon
steel (AISI-1012) [4.18] and 2008-T4 aluminum [4.19able 4.1 presents the plastic
anisotropy coefficients for the rolling, diagonahdatransverse directions and other
mechanical properties for the steel and Table Bd®vs the same data for the 2008-T4

aluminum alloy.

Table 4.1. Material properties of AISI-1012, low cabon steel [4.18]

Ro Rus Roo F G H K(H) | K(MH) | n(iH)
(MPa) | (MPa)
1.4 1.05 1.35 0.432 | 0.417| 0.583 238 230 0.35
n(MH) m do (p,m) Rzo C to (mm) c Y
(um)
0.33 0.01 25 6.5 0.104 2.5 500 60
Table 4.2. Material properties of 2008-T4 aluminuni4.19]
Ro Rus Reo F G H K(IH) [ K(MH) | n(IH)
(MPa) | (MPa)
0.58 0.48 0.78 0.246 | 0.633 | 0.367 535 500 0.27
n(M H) m do (um) Rzo C to C Y
(um) (mm)
0.29 -0.003 8* 2.5 | 0.70* 1.7 1350 40

* Data determined by calibration of the predicted FLi@ the experimental as-received FLC

Some material constants (G, ®z0) were not provided in [4.19], therefore these

values were calibrated by adjusting the FLC 0f2068-T4 alloy predicted using isotropic
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hardening until it correlated with the experiments-received FLC. The material
parameters determined by the calibration were (76, @ = 8.00um and Ro = 2.5um.

Equation (4.2a) was used to calculate the valukeoinitial imperfection factor in
the MK analysis. It was found thit= 0.995 for AISI-1012 steel arfgl= 0.997 for 2008-
T4 aluminum.

The determination of strain hardening coefficiaststraightforward for isotropic
hardening: K and n are the only two unknowns aray thre determined by fitting the
theoretical stress-strain curee= Ke"to the experimental stress-strain curve. However,
there are four parametels, (n, c andy) which need to be identified for mixed isotropic —
nonlinear kinematic hardening behavior, and in tlase, K and n are likely to differ from
the values for isotropic hardening. The best waghttain these four coefficients is to use
experimental stress-strain data obtained afterrsever cyclic loading of the specimen.
When cyclic data is not available it is neverthglpsssible to estimate these parameters
with an acceptable level of accuracy by using apegrmental monotonic stress-strain
curve. The theoretical stress-strain curve for rfiged hardening law should coincide
with the experimental monotonic stress-strain cupe¢h before any unloading takes
place and also after the transient Bauschingecteffiepears [4.32]. It should be pointed
out that this fitting technique does lead to a Einglue of thec/y ratio.

The fit of the theoretical stress-strain curve ghlted with the mixed hardening
rule and with the monotonic experimental stresashstcurve is shown in Figure 4.4 for
AISI-1012 steel. The strain hardening coefficiefits n, candy) that were obtained are
also given in Table 4.1. The experimental stressrsturve for the 2008-T4 aluminum
alloy was not provided in [4.19] but the strain dening coefficientsK andn) were
given. By fitting the theoretical stress-strainaimobtained using the mixed hardening
rule with the stress-strain curve calculated widtagmeterK and n before unloading
takes place and after the transient Bauschingecteflisappears, the kinematic hardening
coefficients K, n, ¢ andy) were obtained for this alloy (Figure 4.5) and tbkated strain

hardening data are listed in Table 4.2.
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4.3.2.Validation of the MK model

In order to validate this MK model, the FLCs of AB)12 steel and 2008-T4
aluminum sheets were calculated with both isotrapd mixed isotropic — nonlinear
kinematic hardening rules, and the predicted FL@sewcompared with experimental
data [4.18- 4.19] determined for both the as-resgbisheets and also after the application
of nonlinear loading paths.

Molaei [4.18] determined the experimental FLC ofraseived AISI-1012 sheets
by carrying out stretch forming tests using rectdagand notched blanks of various
widths with different conditions of lubrication tachieve a range of strain states

-05< p=¢,/g <10. Each blank was electro-etched with a 3.0-mm diameircle

grid and formed over a hemispherical punch un& dmset of local necking became
apparent. The major and minor strains were meadiiredtly from the deformed grids
using a profile projector. FLCs were also determiegperimentally for sheet specimens
subjected to nonlinear loading paths [4.18]; iis ttase, stretch forming tests were carried
out on sheets that were previously subjected teeiiniaxial or equibiaxial tension. The
tensile tests were performed at a speed of 5 mmising a servo-hydraulic Instron
testing machine, and equibiaxial tests were comdubly stretch forming large blanks
over a 210-mm diameter flat bottom punch.

Figure 4.6 shows good agreement between theorefzadictions and
experimental data for this sheet steel in its asived state. The level of FLC in the
plane-strain region predicted by the mixed hardgmirle is greater than that calculated
with the isotropic hardening assumption, and isetao the experimental data in this
region. Since plane-strain deformation is the nwgical deformation mode in sheet
metal forming, it is important to accurately preadice FLC in this region. For other
deformation modes, the difference in limit strajpedicted with the two hardening
models is not significant. However, the predictiwith isotropic hardening is slightly
closer to the experimental data on the left hawoi@ sif the FLC, whereas the mixed
hardening rule yields a better prediction on tigétrside of the FLC.

FLCs were also calculated for specimens loadedgatao types of non-linear

strain paths: in one case, specimens were subjézt®gercent prestrain in equibiaxial
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tension, and in the other case, specimens weréares] by 10 percent strain in uniaxial
tension, and the corresponding FLCs are shownguares 4.7 and 4.8, respectively. After
the equibiaxial prestrain (Figure 4.7), it can leersonce again that the two hardening
rules lead to FLCs that are quite similar, exceghe vicinity of plane-strain deformation
(i.e. near the bottom of the cusp) where the diffiee is somewhat significant. However,
the prediction of FLC with the mixed hardening rute in better agreement with
experimental data for lower levels of minor strgin 0.1< ¢, < 005), whereas the
isotropic hardening assumption leads to a betetiption of the FLC on the far left hand
side (-03<¢, <- 015.

Similar observations can be made for the predictbRLC after a prestrain in
uniaxial tension (Figure 4.8); the FLC predictedthwihe assumption of isotropic
hardening is in better agreement with experimefaiahing limit data on the left hand

side of the FLC &, <— 0}, but the prediction using the mixed hardeningg risl more

consistent with experimental data on the right sithne shifted FLC £, > - 00p

(23N
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Figure 4.6. Comparison of predicted and experimemtl FLCs of as-received AISI-1012 steel sheets
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Figure 4.8. Comparison of predicted and experimenta=LCs of AISI-1012 steel after 10% prestrain
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The developed MK model was further validated by parng predicted and
experimental FLCs of 2008-T4 aluminum. FLCs werlewated using the two different
strain hardening rules, and for both as-receivezbtshand sheets subjected to bilinear
loading paths [4.19].

Graf and Hosford [4.19] determined the experimeRtals of 2008-T4 aluminum
by using an MTS formability tester with a 101.6 nthameter hemispherical punch.
Sheet specimens with different width and lubricattmnditions were stretched over the
punch as it moved at a speed of 25 mm/min. For msiwstch-forming tests, neoprene
rubber and/or oil were used for lubrication, bug dpecimens (i.e. without lubrication)
were used to determine intermediate data betwesregtrain and equibiaxial tension. A
pattern of non-interlaced 2.54 mm diameter circles applied to each blank using a
photo-resist technique and principal surface strauere measured from the distorted
circles. Tests were interrupted as soon as a kmxhlneck was observed. Graf and
Hosford [4.19] reported that for this aluminum glldocalized necks were sharp due to
the negative strain rate sensitivity of the matesa it was easy to distinguish necked and
safe locations. Further details regarding the erpertal procedures for bi-linear loading
are provided in [4.19]. Finally, Figures 4.9-4.Xow the comparison between predicted
and experimental FLCs for this 2008-T4 aluminum.

Since some of the material constants (g;, Rko) used to calculate the initial
imperfection factor (Eq. 2) of this 2008-T4 alunmwalloy were not provided by Graf
and Hosford [4.19], they were adjusted so that Rh€ predicted with the isotropic
hardening assumption would be calibrated to theexyental as-received FLC. The FLC
was also predicted for this alloy using the comdimgotropic — nonlinear kinematic
hardening model and Figure 4.9 shows that botheménd models lead to very similar
curves.

Figure 4.10 shows the comparison of predicted aqueremental FLCs after a
prestrain of 0.04 and 0.12 in equibiaxial tension¢ge again, the two hardening models
yield essentially the same FLC, except for a sligbtease in limit strains in the vicinity
of plane-strain deformation for the combined ispito- nonlinear kinematic hardening

model.
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— Calibrated by IH
— Mixed NLKH & IH
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0.1 1
-0.21 -0.16 -0.11 -0.06 -0.01 0.04 0.09 0.14 0.19
Minor Strain

Figure 4.9. Comparison of predicted and experimemtl FLCs of as-received 2008-T4 aluminum
sheets

Although the FLCs predicted with both hardening elsedare quite accurate, the
mixed hardening model correlates somewhat bettéh tie experimental data. The
comparison between predicted and experimental Rte preloading to 0.05 and 0.12 in
uniaxial tension is shown in Figure 4.11; againthbleardening models lead to similar
and accurate predictions of the experimental FL@G.dginally, it can be observed in
Figures 4.10 and 4.11 that the shape of the FLfieabottom of the cusp is less sharp,
and therefore more realistic, with the mixed handgmodel than it is with the isotropic
hardening model; and this becomes more noticealtleealevel of prestrain increases.

4.3.3. FLCs in bilinear strain paths

Having validated the present MK model with expemtaé FLCs obtained after a
variety of bi-linear strain paths, this MK model svurther used with the two different
work hardening assumptions to predict the FLCstlier AISI-1012 steel sheet, but for
additional preloading paths and prestrain levelsthduigh there is no available
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experimental data with which to validate these fotezhs, the differences between the

predicted FLCs can be observed and discussed.

P
P

B 0.04 Prestrain (Exp.)
A 0.12 Prestrain (Exp.)
= 0.04 Prestrain (IH)
= = 0.12 Prestrain (IH)
=—0.04 Prestrain (Mixed NLKH & IH)
=—0.12 Prestrain (Mixed NLKH & IH)

0.5 A

Major strain

0.1+

o
\v)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
Minor Strain

Figure 4.10. Comparison of predicted and experimenl FLCs of 2008-T4 aluminum after different
levels of prestrain in equibiaxial tension

FLCs were calculated for bilinear strain paths ol the first deformation stage
was in either uniaxial tension, plane-strain tensior equibiaxial tension. The second
deformation stage consisted of different strainhpatanging from uniaxial tension

(p=-05) to equibiaxial tension 4 =1.0) in small increments dp = 005) to cover

multiple strain paths in this range. For each sdaonstrain path, loading was continued
until the onset of necking and the FLC was deteechirAs mentioned already, three bi-

linear loading histories were considered:
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—0.12 Prestrain (Mixed NLKH & IH)
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Figure 4.11. Comparison of predicted and experimenl FLCs of 2008-T4 aluminum after different
levels of prestrain in uniaxial tension

Case 1:The sheet metal was prestrained to 0.15 and Gf86tige strain in uniaxial
tension in the rolling direction, and further loddén strain paths ranging from
—05< p <10 up to the onset of necking. The FLCs calculatetth whe two different
hardening rules are compared in Figure 4.12. Tigigé indicates that after a prestrain in
uniaxial tension, formability decreases with in@ieg prestrain on the left hand side of
the FLC, but improves on the right hand side of Rh€, which is consistent with prior
published experimental data [4.18- 4.19]. Furtheemahe FLCs calculated with the
mixed hardening rule are significantly higher ire ttegion of plane-strain deformation
than those predicted with the isotropic hardening.r

Case 2:In order to observe the effects of a prestraimplane-strain with different
hardening rules, the material was preloaded to @rid 0.30 effective strain in plane-
strain with the greater principal strain being e trolling direction, and followed by a
second loading stage that covered a range of gpatins from uniaxial to equibiaxial

tension. The effects of the plane-strain prestsishown in Figure 4.13 where it can be
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seen that material formability improves somewhdhwicreasing magnitude of prestrain
in all deformation modes apart from plane-straifodeation. It can be observed that the
mixed hardening assumption predicts slightly higf@mability in the plane-strain
region compared to that predicted with the isotrdmardening rule, but for this grade of
steel (AISI-1012) the difference between the FL@=dted with these two hardening
models is not significant for deformation modeseotthan plane-strain.

Case 3:In this case, 0.15 and 0.30 effective prestraimsewapplied in equibiaxial
tension, followed by a second loading in the saamge of strain paths as for previous
cases. As it can be seen in Figure 4.14, theresignaficant lateral translation of the FLC
with equibiaxial prestrain. This leads to a rembt&ancrease in formability on the left
side of the FLC but a slight decrease in formapilit the region from plane-strain to
equibiaxial tension. Again, the greatest differermween the FLC predicted with
isotropic and mixed hardening models is in the @latmnain region. However the
differences between the FLCs predicted with these rhodels seem to disappear with

increasing equibiaxial prestrain.

Major Strain

= Mixed NLKH & IH-15% Prestrain
= = Mixed NLKH & IH-30% Prestrain
= |H- 15% Prestrain

== |H- 30% Prestrain

T T T T \v} T T T T
-0.45 -0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35 0.45
Minor Strain

Figure 4.12. FLCs predicted after different amouns of prestrain in uniaxial tension using the MK
model with isotropic and mixed hardening
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-0.45 -0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35
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0.45

Figure 4.13. FLCs predicted after different amountsof prestrain in plane-strain tension using the

MK model with isotropic and mixed hardening

Major Strain

Mixed NLKH & IH-15% Prestrain
=— +Mixed NLKH & IH-30% Prestrain
=——=|H- 15% Prestrain

—|H- 30% Prestrain

-0.45

-0.3

-0.15 0 0.15 0.3

Minor Strain

0.45

Figure 4.14. FLCs predicted after different amountsf prestrain in equibiaxial tension using the MK

model with isotropic and mixed hardening
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It is evident from Figures 4.12-4.14 that the gestinfluence of the hardening rule
on the prediction of FLC is in the mode of plangistdeformation (i.e. at FL&the plane-
strain intercept in the second stage of deformatibhe combined isotropic — nonlinear
kinematic hardening rule consistently predictsdseftbrmability in the vicinity of plane-
strain than the isotropic hardening rule, regasdtéshe level and type of prestrain.

The differences in FLEfrom isotropic to mixed hardening were determihed
each prestrain path and for each level of effegbrestrain and the results are shown in
Figure 4.15. It can be seen that the smallestrdifiee (about 11%) between the RKLC
predicted with both hardening rules is in the madeplane-strain and the largest
difference (from 18-21%) is in the mode of equilgdxension. Figure 4.15 also shows
that the differences between the predictions whithsé two hardening rules decreases
with increasing prestrain for a prestrain in urgdxension (i.e. on the left hand side of
the FLC), whereas the differences increase witlheesing prestrain for a prestrain in
equibiaxial tension (i.e. on right hand side of ).

25
@ 15% effective prestrain

S 30% effective prestrain
— N
L 20 \
o
>
©
>
%’ 15
£
()
(%]
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5 10 1
£
()
(@]
8
T 5
ud
()
o

0 |

Uniaxial Plane Strain Equibiaxial
Prestrain Path

Figure 4.15. Percentage increase in FLgdrom IH to mixed hardening after different amounts of
prestrain in different loading paths
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4.4. Conclusion

In this paper, isotropic and mixed (isotropic-naehr kinematic) hardening rules
were employed in conjunction with the MK analysispredict the FLCs of a low carbon
steel sheet AISI-1012 and a 2008-T4 aluminum alldye current model incorporates the
effects of material properties such as grain seeface roughness, and rotation of the
initial imperfection. The value of the thicknessh@mogeneity was considered as a
function of surface roughness, and grain size efgheet material. In this analysis, the
imperfection rotation, the surface roughness are thickness ratio, f, were updated
throughout the loading history. In this investigatithe FLC was predicted for non-linear
strain paths in which the prestrain was eithernraxial tension, plane-strain tension or
equibiaxial tension.

The MK model was developed with both hardeningsw@ed was validated with
available experimental data for AlISI-1012 steel 2868-T4 aluminum sheets in their as-
received state and also for non-proportional logdiistories. Good agreement between
theoretical predictions and experimental data vieeved for both steel and aluminum.
For as-received sheet materials, the differencegrgbd between the FLCs predicted
with isotropic hardening and mixed hardening rudese not significant, except for the
plane-strain region. Under bi-linear loading pattie FLCs predicted with the mixed
hardening rule were consistently higher in the @latrain region than those calculated
with isotropic hardening. The FLC predicted withe tmixed hardening model was in
better agreement with experimental data when tlst@in was in the direction of
positive minor strains, but the assumption of it hardening led to acceptable
agreement with experimental data when the prestais in the direction of negative
minor strains in both the steel and the aluminuayal

For a given level of prestrain, there is an incegasformability on the right hand
side of the FLC when the sheet is prestrained tdsvaegative minor strains and a more
significant increase in formability on the left lthside of the FLC when the sheet is
prestrained towards positive minor strains. Foseagns in plane-strain, both hardening
models yielded similar results except in the platrain region where the difference is

somewhat significant.
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It is likely that differences in the FLCs predicteith these two hardening models

would be more significant for sheet materials thdtibit greater Bauschinger effect.
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Chapter 5

Influence of out-of-plane compression stress on lifnstrains in

sheet metals

5.1. Introduction

The poor correlation between the common *“cuppingsttand the actual
performance of sheet metal in industrial formingm@ions led researchers to look at
some more fundamental parameters. A significanakiheough came in 1963, when
Keeler and Backofen [5.2] reported that during sh&teetching, localized necking
required a critical combination of major and mirgirains (along two perpendicular
directions in the plane of the sheet). Subsequerilis concept was extended by
Goodwin [5.3] to sheet drawing and the resultingzeus known as the Keeler-Goodwin
curve or the forming limit curve (FLC). In other vds, Keeler developed the right side
of the FLC (i.e., positive minor strain), and Goadwxtended the forming limit curve to
include negative minor strains.

In order to predict the FLC, Marciniak and Kuczyngk1] proposed that the
inhomogeneity of the sheet material could be matiblea geometric defect in the sheet.
In their study, an imperfection in the form of albw groove was applied to specimens
stretched in equibiaxial tension. The severityhsd tmperfection was quantified by the
ratio of the thickness in the groove to the nomthatkness of the sheet. In general, no
reductions in the forming limit would be seen witlea value of the imperfection factor is
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between 0.99 and 1.00. In this model, the initilomogeneity of the material develops
continuously with plastic deformation until a loe&ld neck eventually appears.

In 1970, Azrin and Backofen [5.4] subjected a langenber of materials to in-
plane stretching. They discovered that an impadedactor of about 0.97 or less was
required to obtain agreement between the MK armlgsid experimental FLC data.
Accordingly, even though the MK method providedrae predictive model, there was
inconsistency between its predictions and experiatesiata. Similar trends were also
observed by Sowerby and Duncan [5.5] as well aslasciniak et al [5.6]. In addition,
Sowerby and Duncan [5.5] also reported that linmdiss predicted with the MK method
showed a considerable dependence on material eopgot

Ghosh [5.7] found that material strain rate sewisjtiis important during post-
uniform deformation. The additional hardening doestrain rate sensitivity plays a
significant role in increasing the forming limity delaying strain localization inside the
neck.

The physical soundness and the simplicity of the atalysis has no doubt been
the reason this method has been the most popukoretical approach for FLC
calculation, and it has been used by many reseacieen in recent years: for instance
Butuc et al [5.8] in 2006, Yoshidat al [5.9] in 2007 and Nurcheshmeh and Green
[5.10] in 2011.

The prediction of the FLC of sheet metals tradaibn assumes plane stress
loading conditions and the effect of the normagssris usually neglected. Therefore FLC
predictions are only strictly valid for open diedafree forming processes. However,
many metal forming processes lead to the developofamn-negligible normal stresses
in the sheet when it is formed over a die radidsotligh-thickness stresses become even
more significant in hydroforming processes, whepgessurized fluid compresses a sheet
or a tube against the surface of the die. In mamydiorming applications, the pressure
of the forming fluid can generate such high confaessures that the through-thickness
stress exceeds the in-plane stresses. The exist#naesignificant through-thickness
compressive stress creates a hydrostatic straestktd has the potential to increase the

formability of the sheet and therefore requiressideration in the prediction of the FLC.
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Very few sheet formability studies have taken iacount the effect of the
normal stress and further research is requiredignarea. Gotobt al [5.11] presented an
analytical expression that predicts an increasienplane-strain forming limit in strain
space due to the presence of through-thickness ressipe stresses. They demonstrated
theoretically that an out-of-plane stress (evearaall as one tenth of the yield stress) can
raise the forming limit strain and thus can be afiely used to delay the onset of
fracture in press forming. Smitkt al [5.12] developed a new sheet metal formability
model that takes into account the through-thicknessnal stress for materials that
exhibit planar isotropy. Their model predicts aajee increase in formability due to
compressive stresses than that predicted by Gotolodel. They also examined the
influence of the strain hardening coefficientv@alue) on the sensitivity of the FLC to the
normal stress.

Finally, Banabic and Soare [5.13] used the MK asgialyo study the influence of
fluid pressure normal to the sheet surface ondhaihg limits of thin, orthotropic sheets.
Their model was used to predict the FLC of AA31089Haluminum alloy subject to
different fluid pressures ranging from 0 (planeess$r condition) to 200 MPa. They
showed that the formability of this aluminum allogproves with the application of a
fluid pressure, especially on the right side of theming limit diagram. Experimental
data was available in the plane stress conditioiclwivas predicted satisfactory and used
to calibrate their model.

In the present paper, a three-dimensional strese stas implemented in a
modified version of the MK model to predict FLC tidifferent through-thickness stress
values. The imperfection factor was related tositnace roughness and grain size of the
sheet and was updated throughout the deformatidheoSheet. The imperfection band
was oriented perpendicular to the first principéless, and its rotation was also
considered as the sheet was plastically deformieid. fhodified MK model was validated
in plane-stress conditions with experimental FLGadabtained for AlISI-1012 steel
[5.14] and it was also compared with other theoattresults obtained by the present
authors [5.10]. The validation of the model for emghat involved through-thickness
stresses was done with published experimental Fai@ fbr AA6011 aluminum [5.15]
and STKM-11A steel [5.16] sheets. The sensitivityhe predicted FLC to the applied
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out-of-plane stress component was also analyzedfasction of variations in different

material properties and the results of this sentitanalysis will be discussed.

5.2. Theoretical approach

Marciniak and Kuczynski [5.1, 5.6] presented a tbical framework for prediction
of FLC that is commonly known as the MK method, eihinas been shown to predict FLCs
with reasonable accuracy. This approach is basetherfact that inhomogeneities are
unavoidable in actual sheet materials, and it isuragd that this inherent material
inhomogeneity can be modeled as a geometric ingienfiein the form of a narrow band
(Figure 5.1) with a slightly different thicknessaththe rest of the sheet. Although this

approach was originally proposed for plane stressliions, the current work includes the

third stress component in the MK model and is shaswi; in Figure 5.1.

Figure 5.1. Thickness imperfection in the MK model

Figure 5.1 schematically represents a shallow groon sheet surface, which
effectively divides it into two separate regionsgion @) with nominal thickness, and
region ) with the reduced thickness in the groove. Thgahimperfection factor of the

groove, f,, is defined as the thickness ratio between therégmns as follows:
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fo= 1 (5.1)

S o

SR

where t denotes the sheet thickness and subscript ‘O’ tdenthe initial state. The
thickness difference between these two regionsritcal element in the MK theory
because the predicted limiting strains are verysitge to the initial value of the
imperfection factor. In most studies, this coeffidi is simply assumed to have a fixed
value close to 1.0 and that can be adjusted scthiapredicted FLC will better fit the
experimental data. However, it has been proposdd]3hat a more realistic approach
would be to relate the initial thickness differerbmween the two regions to the surface
roughness of the sheet. Indeed, research carriedbyoStachowicz [5.17] shows that
surface roughness changes with deformation ance tkbanges depend upon initial
surface roughness, grain size, and effective pladtiain. By relating the thickness
difference between regiong)(and p) to the surface roughness of the sheet metal, the
imperfection factor not only takes on a value thas physical meaning but also the
option of adjusting this value so that the predidé& C can better fit experimental data is
eliminated. Stachowicz’s assumption was adoptedhis work and the imperfection
factor was assumed to change with the deformatibrthe sheet according to the

following relationship:

to — Z[RZO + Cdg'sgé’]

ty

f, = (5.2a)

_ 5 — 2Ry + Clfs?

to

f expel —&2) (5.2b)
where R,, is the surface roughness before deformat@®is a material constant? is
the effective strain in regiorb), and d, is the material’s initial grain size. Additional

details on the calculation of the imperfection éacire provided in the authors’ previous
work [5.10].
In general, the imperfection band is randomly dedrand its orientation can be

determined by the angleé between the groove axis and the direction of theosd
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principal stress (Figure 5.1). When plastic defdramabegins, this angle will slowly start
to change as the groove rotates with respect téodming axes, and its orientation can
affect the limiting strains. In order to obtain Flgfedictions with good accuracy, the
variations in the groove orientation should therefbe considered in the calculation of
the forming limit strains by updating its valueestch increment throughout the plastic
deformation. This rotation of the imperfection baddring deformation was well
researched by Sing and Rao [5.18] and they propasesimpirical formula in which the
orientation varies as a function of the true ptastrain increments in regiom)(of the

sheet as follows:

1+de!
1+ de,

tan@+do) = tan@) (5.3)
where de and de; are the major and minor principal strains in tbenimal area of the

sheet, respectively.
A constitutive equation was derived in which thelgifunction can be expressed

in the following general form for isotropic hardegi

3 1/2
f :(ES”. :N:S”.j -0, (5.4)

where,Sis the deviatoric stress tensor ddds a tensor that describes the anisotropy of
the sheet material in terms of the anisotropic @ons in Hill's 1948 yield function
[5.19].

With consideration of the third principal stressngmnent, the three-dimensional

plastic potential function was implemented in thK Bhalysis:

2h=0*+(F +H)o,* +(F +G)o? - 2Ho0, - 2F0,0,-2Go,0, = f° (5.5)

where the anisotropic coefficierfis G andH can be calculated from the yield stresses in

the principal directions.
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Strain hardening is described with the power hardemcluding strain rate sensitivity

effect as follows:

o, = k(:eej (e.+&)" (5.6)

where ¢, is a uniform prestrain applied to the sheatjs the strain-rate sensitivity
coefficient,n is the strain-hardening coefficient,, and &, are the effective stress and

strain, respectively.
The associated flow rule was employed to calcybdastic strain increments as

follows:

oh

de, = dAxgrad(h) = dix (5.7)

ot

wheredA is the plastic multiplier and is the plastic potential function.
There are two main assumptions in the MK analy§iee first one is the geometric
compatibility equation expressed as the equality tké tangential plastic strain

components inside and outside the imperfection pand

del =deg, (5.8)

and the second assumption is the equilibrium ofnitienal and shear forces across the

imperfection, i.e.:

Fo=Fo (5.9a)

Fa=F> (5.9b)

where subscript®1 andt denote the normal and tangential directions of ghaove,

respectively, anéF is the force per unit width, i.e.:
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Fon =0t (5.10a)

Foon = ont” (5.10b)
F2=oat? (5.10c)
Fo=ont’ (5.10d)

By combining Eq. (5.1), (5.6) and (5.10a,b) thédwing relation is obtained:

] /[%8)- o[l il ) [l ) 6110

Since the strain rate is defined és: de,/dt, it follows that:

[U%}/{O—%}Zf €0+£§]/[go+g:])n[d5§/d5:]m (5.11b)
o

O-e e

Finally, the stress transformation rule leads todhpressions:
oa = 05 COS () + o sin’(6) (5.12a)

oy =—(o; —oy)sin@)cosp) = o;[(a -1 sin@) cosp)] (5.12b)

where ¢ is the ratio of the second true principal stremsgonent ¢,) to the first true

principal stress component) in the nominal area which indicates the stres$.pa

Expressions similar to Eg. (5.12a) and (5.12b)mmritten for region (b), and using Eq.
(5.9), (5.10), and (5.12) we obtain:
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on 0% _(a—1)sin(@)cosp) (5.13)
o o2 cog(8)+asin’(6) '

nn nn

With consideration of the consistency conditiore filastic potential function and the

strain transformation rule:

9 [(F + Hyxa® ~ F5* ~ Hp? o 0+ (LG - Ha Jo? sin? 0) =
O
i (5.14)
agd_‘i?{[(p +H)xa® ~FB° —H|cog 0+ (1- G - Ha")sin® 0}
O,

e

where/f is the ratio of the third true stress componerthtofirst true stress component,

such that:

ﬂ = 0-3/0-1 = O-Z/O-X (515)

By combining Eg. (5.11), (5.13), and (5.14), theafi governing equation was
analytically determined as a function of the ratidhe effective plastic strain inside and

outside the imperfection bang= &> /s2. This final differential equation indicates the

evolution of the effective plastic strain ratipas the sheet is deformed under a three-
dimensional loading condition.

The plastic deformation of the sheet begins adnsirerements are imposed
along a linear strain path (i.e. for a constanueadf p = ¢, /¢, ) in the nominal region,
and the stress components are calculated fromtthia state in the nominal area. Then
the strains and stresses in the imperfection regrencalculated from the strains and
stresses in the nominal area by using the goveredumtions described above. During
the analysis, it is assumed that the normal s@appsied on the surface of the sheet or
tube is identical for both regiora)( and region If) of the MK model. But since the

thickness in regionbj is less than that in the rest of the sheet, ttensrate increases
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faster in regionk) than in regiond). Moreover, the difference in strain rate betwten

two regions will intensify as the deformation pregges, and eventually the strains will
localize in the imperfection region. It is geneyadlssumed that plastic instability occurs
when the effective plastic strain in the imperfectiregion reaches 10 times that in

nominal area £ =10&2). Once the onset of necking takes place, the aneplplastic

strain components in the nominal areg (and ¢;) identify a point on the FLC for the

specified strain patp. In order to generate the entire FLC, the valuthefstrain ratigp
is modified and the procedure is repeated for eaml strain path. The FLC is thus
determined from the limiting strain data obtained gtrain paths that vary in increments

Ap = 0.05 from uniaxial tensiomp(= —0.5) to equibiaxial tensiomE 1.0).

5.3. Experimental validation of the modified MK model

The theoretical MK analysis model presented in fhrevious section was
implemented into a numerical code. This proposedehwas then used to predict the
FLC of actual sheet and tube materials, both wiith &ithout applied normal stresses, in

order to validate the numerical code.

5.3.1. Description of materials

The materials that were considered for the valtatf the proposed MK model
are a low carbon steel (AISI-1012) [5.14], AA601@ninum alloy [5.15], and STKM-
11A steel [5.16] (the designation of this last ggade follows the Japanese standard and
it is equivalent to an MT1010 steel in the ASTMnstard). The mechanical properties of
these materials are listed in Table 5.1. It is alwoth noting that in these publications,
AISI-1012 refers to a flat stock sheet metal, waerdA6011 and STKM-11A refer to

thin walled tubes.
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Table 5.1. Mechanical properties of materials

Material K n m R to
(MPa) (Normal) (mm)
AISI-1012 [5.14] 238 0.35 0.01% 1.21 2.5
AA6011 [5.15] 254.9 0.265  ------ 0.574 1.86
STKM-11A[5.16]| 1450 0.14 | ----- 2.14 14

Eq. (5.2a) was used to calculate the initial imgetibn factor value in the MK
analysis. It was found thdp = 0.995 for AISI-1012 steelfy = 0.997 for AA6011
aluminum, andy= 0.991 for STKM-11A steel.

5.3.2. Validation of the proposed MK model

In order to validate the three-dimensional FLC matkscribed in the previous
section, theoretical FLCs were calculated in bodng stress and three-dimensional
stress conditions and the predicted FLCs were coedpwith published experimental
data [5.14-5.16].

The new model was verified first under plane stsglitions, in the absence of

through-thickness stressesfg €0). Theoretical FLC were compared with the

experimental FLC of as-received AISI-1012 shee¢ls®.14] which were obtained by
carrying out stretch forming tests using rectangatad notched blanks of various widths
with different conditions of lubrication to achieva range of strain states

-05< p=¢,/¢, <10. Each blank was electro-etched with a 3.0 mm diemeircle

grid and formed over a hemispherical punch ungl dhset of local necking. The major
and minor strains were measured directly from teéorned grids using a profile

projector. The FLC predicted with the proposed MKd®l was also compared with the
FLC predicted by a different MK analysis code depeld previously by the same authors
for purely plane stress conditions [5.10]. The mtedl and experimental FLCs for this

grade of steel are shown in Figure 5.2.
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Figure 5.2. Comparison of predicted and experimemt FLCs of AISI-1012 steel sheet in-plane stress
condition [5.14]

Figure 5.2 shows good agreement between the tiedrahd experimental FLCs
obtained under plane stress conditions, and thelaleed model predicts the FLC for this
steel with acceptable accuracy. Furthermore, itbmseen that the FLC predicted under
plane stress conditions with the new three-dimeragionodel is essentially identical to
the FLC predicted with the previous two-dimensicaalysis code [5.10].

The proposed MK analysis model was also verified fmre general loading
conditions where the out-of-plane stress componmenion-negligible 3=0). This
further validation of the three-dimensional MK mbudes carried out by predicting the
FLC of AA6011 aluminum tubes that were hydroformeith up to 15-MPa internal
pressure (which correspondsdg~7.5 MPa). Hwangt al [5.15] prepared 200-mm long

tube specimens with a 1.86-mm wall thickness, aBd.@-mm outer diameter. The tube
specimens were annealed at 410°C for 2 hours amdatgrid of 5-mm-diameter circles
with a spacing of 1-mm was electrochemically etcbatb the surface of undeformed
tubes for the purpose of strain measurement. Twere pressurized in a bulge test
apparatus without axial feeding to generate pasitinor strains. Other tubes were also
pressurized in a hydroforming test machine withabkeeding to generate strain paths
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with negative minor strains. After the tubes weeéodmed, the circle grids in the vicinity

of the burst were measured by a three-dimensiagabdimage processing system and
the major and minor strains were determined. Timitifig strain data from these tests
was used to construct the left side of the FLCheké aluminum tubes. The comparison

of the predicted and experimental FLCs is showrigure 5.3.
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Figure 5.3. Comparison of predicted and experimemt FLCs of AA6011 aluminum sheets under 15
MPa internal pressure [5.15]

It can be seen from Figure 5.3 that there is gopeesnent between the experimental
data and the predicted FLC on the left side of dlagram. This may seem surprising
considering that the analysis was carried out usiifitg 1948 yield criterion. Indeed, it is
well known that Hill's quadratic yield function sot suitable for predicting the biaxial
behaviour of aluminum alloys and more recent, needeatic yield functions have been
shown to be much more appropriate [5.20]. Howetvaan be seen that the experimental
FLC data in Figure 5.3 corresponds with deformatwodes between plane strain and
uniaxial tension, and for such deformation modesairadratic yield function is capable of
predicting reasonably accurate results. Non-quadsaeld functions typically lead to
improved predictions of the forming behaviour ofiminum alloys for deformations in
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biaxial tension, because they are better ablepi@sent the shape of the yield locus between
plane strain and balanced biaxial tension: thisesponds with the right side of the FLC for
which no experimental data is available. No dobbt gredictions of FLC in the region of
plane strain would be improved with the use of aquoadratic yield function.

The proposed model was also validated with anateepf experimental limiting
strain data for STKM-11A steel presented by Kitral [5.16]. These authors determined
the experimental FLC by hydroforming straight tubeth both an axial end-feed force

and 56-MPa internal pressure (leadingtp~ 28 MPa). A constant ratio of high internal

pressure and relatively low axial force was appligtth an end displacement rate of 2.33-
mm/s using a PC-based controller. During these rexpats, tubes were pressurized
until they burst, and the average burst pressure 3 aMPa, with the split occurring
parallel with the tube axis and positioned towah#g tmiddle of the tube. Strain
measurements were taken as near to the fractugslasdpossible in order to determine
limit strains. Figure 5.4 shows a comparison ofdmted and experimental FLC for

negative minor strains.
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Figure 5.4. Comparison of predicted and experimenta=LCs of STKM-11A steel sheet under 56MPa
internal pressure [5.16]
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It can be seen in Figure 5.4 that the FLC preditiyethe proposed MK analysis
lies slightly above the experimental FLC for thiade of steel. This discrepancy between
the theoretical and the experimental FLC datakislyi due to the fact that experimental
strains were not actually measured in local netkseghese tubes were allowed to burst,
but they were measured in the uniformly deformedenna right next to the fractured
edge of burst tubes. Therefore these experimetraihsdata represent a conservative
estimation of the actual FLC. Limiting strain datas not available for the right hand
side of the diagram because Kahal [5.16] were only able to apply a compressive laxia
force to the ends of the tubes, whereas a tensidé farce is required to obtain positive
minor strains [5.21].

It is also worth pointing out that the experimerftalC data [5.14-5.16] used to
validate the current MK model were obtained usimg well-known circle grid analysis
technique. This technique relies on the measureofesieéformed grids on the surface of
the specimens as well as the somewhat subjectiggpretation about whether necking
has begun or not in a specific grid location. Teshnique is therefore dependent on the
experimentalist’'s experience and the accuracy efsthain measurements, and therefore
it inevitably leads to some variability in the résuAccording to the author’'s experience,
the experimental error that can be expected in Blz@in data obtained with the circle
grid technique is estimated to be within +2.5%istriore advanced techniques are now
being used to determine the forming limits of shmeterials with greater repeatability
and reproducibility. For instance, digital imageretation is used to measure the strain
field across the entire specimen gauge area anénahinterpolation methods are then
used to determine the strains at the onset of ngdk.22-5.26]. These techniques are
very powerful as they can determine limiting stsa@ven for very high strength materials
that tend to fracture without necking.

However, although there is some experimental eénrtre published experimental
FLC data [5.14-5.16], the comparisons between tregligted and experimental FLC
(Figures 5.2-5.4) nevertheless show that the pewpdbree-dimensional MK model
provides a good prediction of the FLC, whetherttireugh-thickness stress component
is significant or not.
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5.4. Influence of the through-thickness stress on the FLC

The primary purpose of this work is to study theedf of the through-thickness
stress component on the forming limit curve. Irs théction, the sensitivity of the FLC to
the out-of-plane stress component will be studiedgplying different levels of through-
thickness stress to the surface of AlISI-1012 steekts. The FLC was predicted for a

normal stress ranging fronw,= O (plane stress condition) te, = 35 MPa. The

theoretical results are presented in Figure 5.5.
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Figure 5.5. FLC of AISI-1012 sheet steel predicteds a function of the applied normal stress

It can be seen from Figure 5.5 that the FLC isegsénsitive to the normal stress:
indeed, the entire FLC is observed to shift upvieical axis when the applied normal
stress increases. The formability of this sheet steseen to improve with a normal stress
as low as 10 MPa. Furthermore, it is apparent ffeigure 5.5 that the increase in
formability is not proportional to the increase mormal stress: indeed, the rate of

increase in formability also increases with thenmarstress.
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5.5. Influence of mechanical properties on the sensitivity of FLOtout-of-

plane stresses

In the previous section it was shown (Figure T4} the FLC of AISI-1012 sheet
steel is dependent on the magnitude of the apploethal stress. Therefore it is also of
further interest to determine if this dependenagegdrom one material to another, and if
so, how individual material properties may affém sensitivity of the FLC to the normal,
or through-thickness, stress. The constitutive o in this three-dimensional version
of the MK model are capable of fully describing thlasto-plastic behaviour of sheet
materials; therefore it is possible to investigadie effect of individual material
parameters on the sensitivity of the FLC to the-ajytlane stress. In this study, the
influence of some of the more significant propertef sheet materials — the strain
hardening coefficientn), the strain rate sensitivityn], the plastic anisotropy coefficients

(R), grain size @,) and initial sheet thickness,( were investigated. Each parameter was

therefore modified one by one to observe its effacttthe sensitivity of the FLC to
increases in the out-of-plane stress, and thetgesiilthis study are presented in this
section.

Since the work hardening ability of a sheet makésiguch a significant material
property in sheet metal forming, the effect of arae in the strain hardening coefficient
is presented first. All the mechanical propertieshe AISI-1012 sheet steel (Table 5.1)
were kept unchanged except for the value of trerstrardening coefficient which was
doubled fromn = 0.35 ton = 0.70. While this change leads to a fictitioustenal for
which the experimental FLC is not readily availablbe present three-dimensional
version of the MK analysis nevertheless enable® ypsedict the dependence of the FLC
on the applied normal stress. Figure 5.6 show$Li& of a very formable sheet material

(n=0.7) for various levels of applied normal stressging fromo, = 0 (plane stress) to

o, = 35 MPa.
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Figure 5.6. FLC of a sheet material that differsfom AISI-1012 only by its strain hardening
coefficient (n=0.70), predicted as a function of #happlied normal stress

70

—+—n=0.35 f

60
—=—n=0.70 /
50

o /
[a]
m
- 40
)
%)
©
9 30+
o
£
> 20
10
./: ————— ————— s — —0
° N | ‘ ‘ T T T
0 5 10 15 20 25 30 - 40

Through Thickness Stress (MPa)

Figure 5.7. Increase in FLG as a function of the applied normal stress for twgheet steels that differ
only by their strain hardening coefficient (n=0.35and n=0.70)
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Figure 5.6 shows that the predicted FLC is almodependent of the applied
normal stress for a sheet material with a very Bigain hardening coefficient. In order to
better visualize the effect of the strain harderdogfficient on the FLC, the vertical shift
of the FLC relative to the plane stress conditiasglotted as a function of the applied
normal stress. More specifically, the percent iaseein the limiting major strain in plane
strain (FLG) due to increases in the out-of-plane stress comtowas plotted for both
materials considerech (= 0.35 andn = 0.70) and shown in Figure 5.7. This figure
indicates that through-thickness stresses alwaygrowe the formability of sheet
materials, but the positive effect of the out-cds@ stress is far more significant for

lower-formability sheet materials than it is fogher-formability materials.
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Figure 5.8. FLC of a sheet material that differsfom AISI-1012 only by its strain rate sensitivity
(m=0.030) predicted as a function of the applied mmal stress

The next mechanical property considered in thiglyston the forming limits of
sheet metal formed under three-dimensional sttessssis the strain rate sensitivity)(
It is well known that positive strain rate sensijivhelps to improve formability by
delaying the onset of necking and by strengtherimg material as the strain rate

increases in the area where strains are localibintis investigation, all the mechanical
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properties of the AISI-1012 sheet steel (Table Wué)e kept unchanged except for the
strain rate sensitivity which was doubled fram= 0.015 tom = 0.030. The three-
dimensional MK model was then used to calculateRh€ for each level of applied
normal stress, and the predicted FLCs are plottddgure 5.8. It is evident from Figure
5.8 that the predicted FLC remains very dependerthe through-thickness stress after
the strain rate sensitivity was increased by aofast two. However, comparing Figure
5.8 to Figure 5.5, the sensitivity of the FLC tee tthrough-thickness stress does not
appear to have changed significantly.
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Figure 5.9. Increase in FLG as a function of the applied normal stress for twgheet steels that differ
only by their strain rate sensitivity (m=0.015 andm=0.030)

In order to quantify the effect of the strain raensitivity ( value) on the
dependence of FLC to the normal stress the pegeemiarease in FLLwas plotted as a
function of the applied normal stress for both skeeels ih = 0.015 anan = 0.030), and the
results are shown in Figure 5.9. It is immediatgpparent from this figure that, while
formability significantly increases with normaless for both materials, changes in strain rate
sensitivity practically have no effect on the dejmce of FLC to the through-thickness

stress.
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Figure 5.10. FLC of a sheet material that differdrom AISI-1012 only by its plastic anisotropy
coefficients (R=2.8 and R¢=2.7), predicted as a function of the applied normastress

Another mechanical parameter that was considereithigninvestigation is the
anisotropy of the sheet material. It is well knottat, according to the MK analysis,
variations in anisotropy are seen to have a sicamti effect on the formability of a sheet
material, and this effect is primarily evident dre tright hand side of the FLC (i.e. for
positive minor strains). Although experimental Ft&ta do not generally show such an
influence of anisotropy on the forming limits [5]2he sensitivity of FLC to the applied
through-thickness stress was nevertheless caldulffate a fictitious material whose
mechanical properties are identical to those oflA[BL2 steel except for the anisotropy
coefficients; the plastic anisotropy coefficientsresdoubled fronRy= 1.4 andRgp = 1.35
to Ry = 2.8 andrgp = 2.7. It can be pointed out that, while the aimgwy of this fictitious
material is expressed in terms of planar anisotiasfficients Ry andRyg) the level of
planar anisotropy is actually lowAR = (Ro+Rgo—2R4s)/2 = 0.85), but the normal
anisotropy, that is, the through-thickness anigmtrois quite significant R =
(Ro+Roo+2R4s5)/4 = 2.42). The FLC of this material was then calculater increasing

levels of applied normal stress and the resultslaogn in Figure 5.10.
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Figure 5.10 shows that the formability of a sheatamal with significant normal
anisotropy also increases with increasing nornrakses. Nevertheless, a comparison of
Figures 5.5 and 5.10 seems to indicate that the fd€@mes somewhat less sensitive to
the through-thickness stress as normal anisotropyeases. To better evaluate the
sensitivity of the FLC to the normal stress fofeliént degrees of normal anisotropy, the
percent increase in Flg@rom the plane stress condition was calculatedofiih sets of

anisotropy coefficients and plotted in Figure 5.11.
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Figure 5.11. Increase in FLG as a function of the applied normal stress for twsheet steels that
differ only by their plastic anisotropy coefficients (Ry=1.4 and R=1.35 versus B=2.8 and R¢=2.7)

Figure 5.11 indeed supports the observation mazte ffigure 5.10 that, while
FLC, continues to increase with the normal stressyadte of increase of FL{s lower
for sheet materials with more pronounced normaa@ropy. It can also be observed that
the increase in formability is practically proportal to the increase in normal stress for
the sheet material with the greater anisotropy.

In this investigation the imperfection factor inettMK analysis was defined,
amongst other parameters, as a function of the giae () of the sheet material. It is
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therefore of interest to determine if the sengitiaf the FLC to the normal stress varies
as a function of the grain size. In order to asties®ffect of the grain size, the FLC of a
fictitious sheet material, identical to the AISIAsteel except for its initial grain size
that was doubled from 25 um to 50 um, were caledldbr different values of the
applied normal stress. The predicted FLC are mldtig=igure 5.12, and once again, it is
evident that sheet formability continues to be deleat on the applied normal stress.
Similar to the previous cases, the percentage aserén the predicted FlgQvas
plotted as a function of the through-thicknesssstifer both the AISI-1012 steel and the
fictitious material with the increased grain siaed these data are presented in Figure
5.13. It appears that when the grain size of theenah increases the dependence of FLC
on the applied out-of-plane stress decreases soabewht the rate of increase in
formability still increases with the normal pressumhe initial grain size of the sheet
does not appear to a have a significant effecthendependence of the FLC to the

through-thickness stress.
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Figure 5.12. FLC of a sheet material that differ§rom AISI-1012 only by its grain size (=50 um),
predicted as a function of the applied normal stres
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Figure 5.13. Increase in FLG as a function of the applied normal stress for twsheet steels that
differ only by their initial grain size (d¢=25 um and ¢=50 um)
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Figure 5.14. FLC of a sheet material that differ§rom AISI-1012 only by its initial thickness
(to=1.25mm), predicted as a function of the applied nmal stress

The sheet material’s initial thickness was the pasameter that was considered in

this investigation. Once again, the FLC of a shmaterial with identical mechanical
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properties to those of AISI-1012 steel except far initial thickness that was reduced by
a half from 2.5 mm to 1.25 mm (it did not appeasanable to predict the FLC for a
sheet thickness that was doubled to 5.0 mm), wézilaged for different levels of
applied normal stress, and the predicted FLC ave/shin Figure 5.14.

Figure 5.14 shows that the sheet material withranér gauge is still sensitive to
the applied normal stress, but that the dependeht®e FLC on the through-thickness
stress seems to decrease somewhat as the iniéat fickness drops. Figure 5.15
confirms that this sensitivity to the through-thelss stress decreases when the sheet
thickness decreases, although the actual rate apédse in formability continues to
increase slightly with normal stress for this pard@r material with a 1.25 mm gauge.
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Figure 5.15. Increase in FLG as a function of the applied normal stress for twsheet steels that
differ only by their initial thickness (ty=1.25mm and $=2.5mm)

It should be mentioned, however, that the currenteh does not address the
influence of sheet thickness on limit strains i thresence of significant bending.
Indeed, when a sheet is drawn over a punch rabdricambination of stretching and
bending lead to inhomogeneous through-thicknessoreheition. Furthermore, the
through-thickness strain gradient increases witlialnsheet thickness and with the
severity of the bend. Ghosh and Hecker [5.28] sliothat an increase in out-of-plane
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(i.e. bending) deformation tends to delay the omdetecking and shifts the forming
limits toward higher strains. Therefore a differamproach is required to predict limit
strains in cases where there is significant benfhri9].

In order to compare the effect of each of theseenatparameters on the
sensitivity of FLC to the through-thickness stresise percent increase in F,C
(compared to the plane stress condition) was plotié-igure 5.16 for each of the factors
discussed. It can be seen that variations in ttaénshardening coefficient clearly have
the most significant effect on the sensitivity dletFLC to the normal stress: the
sensitivity to the normal stress increases shaspign the work hardening ability of the
material decreases. Similarly, the pressure seitginf the FLC increases when the
normal anisotropy decreases. Another factor thaiahsignificant effect on the sensitivity
of FLC to the normal stress is the initial sheétkhess however its effect is the reverse
of that of the other properties: the sensitivitytlié FLC to the normal stress increases
with the sheet thickness. Finally, any variationgmnain size or in strain rate sensitivity
does not appear to significantly affect the depeodef FLC on the normal stress unless

the normal stress becomes very large & 30 MPa in this case).
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Figure 5.16. Increase in FLG as a function of the applied normal stress for shet steels that differ
from AISI-1012 by only one mechanical property (se&able 5.1)

128



5.6. Conclusion

In this research, the through-thickness stress oaemt was included in the
traditional MK analysis to predict FLC in condit®rwhere an out-of-plane stress is
applied to the sheet surface. The current model waglated by comparing its
predictions to experimental FLC data with differéaels of applied normal stress. The
FLC of an AISI-1012 steel sheet obtained undergkiness conditions, and the FLC of
AA6011 aluminum and STKM-11A steel tubes subjed®d/arious levels of internal
pressure were all used to verify the proposed mollegjood correlation between the
theoretical and experimental FLCs was observed thrae cases.

The current MK model takes into account the effeftenaterial properties such
as grain size, surface roughness, and rotatioheoinitial imperfection. The value of the
thickness inhomogeneity was defined as a functf@udace roughness and grain size of
the sheet material. In addition, the rotation oé timperfection band, the surface
roughness and the thickness rafijowere updated throughout the loading history. This
MK analysis was implemented into a numerical cael the FLC of AISI-1012 sheet
steel was predicted for different values of theli@dpcompressive normal stress. The
results obtained from this series of analyses stdhat the FLC of a typical sheet steel
is very sensitive to the applied normal stress, @nedformability of the sheet always
improves as the through-thickness stress incred$esefore whenever it is applicable
the addition of, or increase in, through-thicknessess would undoubtedly help to
improve the formability of sheet materials in inttizd sheet and tube forming processes.
In many instances, the rate of increase in forntgbdlso increases with the normal
stress, providing additional benefit to even snmalieases in applied normal stress.

Finally, the influence of certain sheet mechanalperties on the sensitivity of
FLC to the through-thickness stress was also imestd using this predictive MK
analysis code. It was found that the work hardeainigity of the material has the greatest
influence on the pressure dependence of FLC. Indbeddependence of FLC on the
applied out-of-plane stress increases significamity the strain hardening exponent
decreases. Similarly, the sensitivity to the norrstiess increases as the normal

anisotropy R) decreases. The grain size and the strain ragtiség were found to
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have only a minor influence on the pressure depwedef the FLC. Finally, the

dependence of FLC on the normal stress was sdaorgase quite significantly with the

thickness of the sheet metal.

All in all, this investigation has shown that, wehihe dependence of the FLC on

the through-thickness stress can vary from one nmabht® another, the stress applied

normal to the sheet surface invariably enhancest$bemability. Therefore the pressure

dependence of the forming limits of metal sheetstam-walled tubes cannot be ignored

if the forming severity of formed components islie accurately evaluated and the

robustness of forming processes is to be optimized.
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Chapter 6

Prediction of FLC using Hosford’s 1979 yield functon

6.1. Introduction

According to the well-established mathematical theaf continuum plasticity
[6.1], three essential elements are required tordesthe plastic behaviour of metallic
materials [6.2]:
e ayield criterion that determines the boundarylastc deformation and the onset
of yielding in stress space
e a flow rule that establishes a relationship betwtbenstress state and the plastic
strain increments
e a strain hardening rule that describes the worlddrang behaviour of the
material and the manner in which the yield locusheas with plastic deformation
The yield stress on a uniaxial stress-strain cig\be point at which deformation
ceases to be elastic and fully recoverable, andnwireversible, plastic deformation
takes place. Since the transition from elastic kst behaviour is generally quite
gradual, common engineering practice is to defireeyield stress in uniaxial tension at
0.2 percent plastic strain. For multiaxial loadihgwever, the determination of yielding
is not as straightforward and a yield criteriomaguired. In order to determine the onset
of yielding in a multiaxial stress state, a relatimust be established between the
(principal) stress components and the experimgreld stress. This relationship is called

a yield function and usually has an implicit form:

133



f ((51, G2, 03, Y) =0 (61)

whereo, 62, o3 are the principal stress components and Y is idld gtress which can
obtained experimentally from a tension, compresdorshearing test. The function
described by Equation 6.1 actually represents sedlosmooth and convex surface in
three-dimensional principal stress space and refilve called a yield surface.

For incompressible materials such as metals, telel wurface has a cylindrical
shape with a cross section which varies dependiip® anisotropy of the material. For
isotropic materials, the yield surface can be defiby von Mises’ yield criterion, and in

this case the cross-section will be circular asshim Figure 6.1.

Von Mises 6>
Yield Surface ’

Axis
Tresca
Yield Surface
.13'3
T-plane
(Deviatoric Plane)

a| + o+ o3 =10

02
Figure 6.1. Von Mises and Tresca yield surfaces [.

All the points inside the yield surface denote tasiress states and points on the

yield surface represent a condition in which padtow is occurring. As plastic
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deformation progresses, the yield surface may ekp@anslate or rotate in stress space
or perhaps distort by a combination of these. Tbege points in stress space that lie
outside the yield surface do not have any physiEning.

In case of plane-stress loading (ecg=0), the yield surface can be represented
by a closed curve on the plane defined by the fastl second principal stress
components (e. @1, o2) and is referred to as the yield locus.

In this research, two different yield functions wemployed in the MK analysis
to predict forming limit curves following both liae and nonlinear (i.e. bilinear or multi-
linear) loading paths. These two yield criteria ldi¥s 1948 quadratic yield function and
Hosford’s 1979 non-quadratic yield function. Thgssld criteria will now be explained
in detail in the following paragraphs.

6.2. Hill's 1948 yield criterion

6.2.1. Description of Hill's 1948 yield criterion

In 1948 Hill [6.1] introduced a yield function theécame one of the most widely
used yield criteria for anisotropic sheet materidlsis quadratic yield function was an
extension of the Huber-Mises-Hencky criterion whighs proposed independently by
Huber in 1904 [6.4] and by von Mises in 1913 [@G&} later improved by Hencky [6.6].
Hill's 1948 yield criterion can be written in terrm$the stress components as follows:

2f(0;)=F(o, -0,)°+G(o,-0,)*+H (O'X—Uy)z + 2LT§Z +2M72 + 2Nrfy =1 (6.2)

where f denotes the yield functiorl;, G, H, L, M, N are anisotropic constants and
subscript, y, z represent the principal orthotropic axes, wherés'taken as the rolling
direction, Yy is the transverse direction and fs the normal direction to the sheet
surface.

Considering the yield stress in uniaxial tensiortha three principal anisotropy

directions asx’, oy”, o;’, respectively, the anisotropic coefficients cardbéined as:
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_G4H; S —H4F; L —F4G (6.3)

CoefficientsF, G andH can also be determined as a function of yieldssti@ata in

different directions &”, o, o;”), as follows:

p- bt L 1 (6.42)
2 2 2
y y y
o) o] oy
G-t Lt 1 (6.4b)
y y y
o) o] o)
-t 1 1 (6.4c)
y y y
oy o] o)

If the yield stress in simple shear in they, andz directions arer ’, 7,7, and z 7,

respectively, then:

[EEN
B
[EEN

(6.5)

CoefficientsF, G, andH are generally positive and only one of them wdwdnegative
in the unusual situation where there is a sigmificdifference between stress data in
different directions. However, coefficieritsM andN are always positive.

Therefore six independent axial and shear yiekksses &, o, o/, #’, 5/, and
77) should be determined in the principal axes o$amopy for a complete description of
yielding behaviour, and the yield function would bensidered as a surface in six-
dimensional stress space. In plane-stress state = 7,~0; o#0; ,#0; 5,#0), the yield

function reduces to:
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2f(0y)=(G+ H)o? —-2Ho,0, +(H + F)of + 2Nrfy =1 (6.6)

Using the definitions oF, G, H, andN as a function of yield stresses( oy, o', %/,

77), Equation 6.6 can be written in the followingrfor

1, 1 1 1 1 , 1 ,
50y —( 2 + 7T )UXO'y +—y2 o, +—yz Ty =1 (6.7)
o) o, o, O] o, )

In the event that the principal directions of sdresincide with the principal anisotropic

axes, the shear stress term disappears and HI#8 field function can be rewritten as:

120'12—[ 12+ 12— 12]0'10'2+i20'22—1 (6.8)
o

whereoi, op are non-zero principal stresses.

In sheet metal forming simulations, anisotropy Gomits are normally
determined from Lankford’'s coefficient®{ Rs4s, andRgg) and the yield stresses in the
principal anisotropic axes are designatedsds oy and oy’=09. Therefore the relation

between the anisotropic coefficienks G, H) and Lankford’s coefficients is as follows:

H H 1

H. _H. _ 1
ROZF’ Ro=—: Rs F+G 2 (6.9)

There is another relation between the yield steeasd Lankford’s coefficients as:

Oy R, @+ Ry,) (6.10)

Ogo Ry @1+ Ry)

From Equation 6.9 it can be deduced that:
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H=(F +G)(R45+%j (6.11)

or, from Equations 6.4a,b,c:

1 2R45+1_i R, + Ry
v? 2 O-g Ry @+ Ry)

z

2H =

(2Rys +1) (6.12)
o

Finally the following equation can be written [6.2]

1ak(g L gjuﬂﬁkﬁﬁ
Oy Og Oy I:'290(1"" Ro)

(6.13)

Lot R+Re 2 _
TR T R Ry eI

If the directions of principal stress are coincideith the principal anisotropic

axes px=o1, oy=0y, 1y=0), Hill's 1948 yield function can be rewritten: as

2o 2R e DR o (6.14)
1+ R R+ Ry)

or equivalently, by taking into account the Equat©10:

2 R RAR) o RARy) . 6.15)
1+R, 77 T Re@+R) T Roll+R)

Equations 6.14 and 6.15 show that only three mecalaproperties are required
to define the yield condition of sheet metals iang-stress state. These three mechanical
properties ardRy, Rgo, and one of the uniaxial yield stresses (eittgpr oyo), because

parameter®y, Roo, op and oy are related by Equation 6.10. In practice, theeslof the
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anisotropy coefficients and an average of the uaiagield stress §ave (oo + oy0)/2) are

used.

6.2.2. Advantages and disadvantages of Hill's 1@é&l criterion

The main advantage of Hill's 1948 yield functiorthe simplicity with which the
anisotropy coefficients can be determined from dashieet mechanical properties.
Moreover, only a limited number of material date aeeded to fully define yielding
behaviour. As already pointed out, only three irgelent material properties are
sufficient to define the coefficients in Hill's 184yield function in plane-stress
applications. Furthermore, many other yield crétesire only applicable to plane-stress
sheet metal forming analyses but Hill's 1948 yitldction is not limited in this way and
is applicable to a variety of three-dimensional ahébrming processes. Therefore this
yield function continues to be widely used in nuicedrsimulations.

Hill's 1948 yield criterion does however have sotnawbacks. Many non-ferrous

alloys including aluminum alloys have an averagesaropic coefficient that is
R=(R,+ 2R, +R,)/4< 10 and, for such sheet materials, Hil's 1948 yielmhdtion

does not adequately represent the shape of thd gigiface. This observation was
reported by Pearce [6.7] in 1968 and by Woodthape Pearce [6.8] in 1970. Also
second order “anomalous” behaviolRy/Reo>1 and oy/ogo<l) was observed in some
materials and Hill's 1948 is also not able to repre the anisotropy of such materials.
Another limitation of this yield criterion is thé#tis yield function can only predict two or
four ears in axi-symmetric cup-drawing, whereadsitpossible to observe six and
occasionally eight ears in cups drawn with shedenas which possess a high degree of
anisotropy. For these reasons, many researchees dexeloped yield criteria that are

able to more accurately represent the anisotrogh@wiour of metal sheets.
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6.3. Non-Quadratic yield criteria

The research to develop more accurate and vergaile criteria started in the
1970s and the outcome of this work was to propasequadratic yield functions for the
analysis of anisotropic plasticity of sheet matsridn this section, some of the better
known non-quadratic yield criteria will be reviewegince Hosford’'s 1979 yield criterion
overcomes the limitations of Hill's function, it wamplemented into the current MK

analysis code, and therefore this particular yoeigerion will be reviewed in greater detail.
6.3.1. Hosford’s 1979 yield criterion
In 1979 Hosford [6.9] introduced a non-quadrateldicriterion as follows:

" +Go, -0, +H =0t (6.16)

F‘O‘ -0 y‘

y z O,—0O
This yield function is the generalized form of amatyield function Hosford proposed in

1972 [6.10] for isotropic materials as:

a 1 a 1
+Zlo, -0 +=
2 2

a

=o® (6.17)

1
E‘ay -0, o,—0,

wherea is a positive integer much greater than two. Haks#nd coworkers related the
value of this exponent to the crystallographic ctriee of the material [6.11-6.14] and
proposeda=8 for face centered cubic (FCC) materials aré for body centered cubic
(BCC) materials as the most appropriate valuesstribe the shape of the yield surface
[6.13].

For plane-stress deformation, Hosford’s 1979 arogat yield criterion can be

written as:
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Oy

0,0, =Ry(R, +Do§ (6.18a)

Rulo|” +Rolor,|” + RoReo

or equivalently:

H

ax—aﬂa+kaa+qua=a§ (6.18b)
The ratio between the effective strain and the n@jmcipal strain {=&J¢,) is:

A :é(u ap) (6.19)

where{ is the ratio between the effective stress andrthpr principal stress&Eod o1)

and can be defined as follows in the case of noamiglotropy:

1 . N . 1/a
E= (ﬁ (L+|a” +RL-¢ )j (6.20)

and the relation between the strain and stress ipdibators (i.e. the relation between

p:82/81 and 61202/01) is:

a-1 _ a-1
p=& —rl-a) (6.21a)
l+r(l—a)?

or also:

a-1 __ _ a-1
p=re —H (1_1 2) (6.21b)
Hl-a)*+G
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The inverse relationy =« (p) cannot be given explicitly but must be numerigall

solved for each value ¢f using the equatiop =p (o). There are seven solutions to this

equation whera=8 and five solutions whea=6. However, only one of the solutions is
real.

Using the associated flow rule, the plastic stragnrements can be written as:

de, = dA|H Q- a)* '+ G| o2 (6.22a)
de, = dA[Fa®* - H (- a)* o> (6.22D)
de, = ~(ds, + ds,) = —dA|G + Fa* o (6.22¢)

Hosford’s non-quadratic yield criterion was implertexl into the author’'s MK numerical

code, and the limit strain was calculated in theesavay as was presented in chapters 3,
4 and 5.

6.3.2. Hill's 1979 yield criterion

A very similar non-quadratic yield function was posed by Hill [6.15] in the
same year:

F|O‘2—O'3|m+G|O'3—O'1|m+H|O'l—O'2|m+ (6.23)

L|20'l -0, —O'3|m +M |20'2 -0, —O'l|m + N|20'3 -0, —O'2|m -1=0

The main difference between Hosford’s and Hill'sisrquadratic yield criteria is
related to the method employed to determine th@mamt ' (m can be an integer or a

real non-integer number greater than one) whiaketsrmined by matching the effective

stress-strain curves for uniaxial and biaxial tests
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6.3.3. Hill's 1990 yield criterion

Hill (1990) [6.16] proposed another, more versatien-quadratic yield criterion
for thin orthotropic sheets:

Ogp
T

(m/2)-1
2‘ %

|al+02|m+( j |al—02|m+‘af+az (6.24)

[ 2a(6? - 62) + (0, - 5,) + b(, - 7,)? €020 OS2 — (2075)"™ = O

wherer is the yield stress in simple sheatg is the yield stress in equibiaxial tension
anda is the angle between the first principal stresstae orthotropic axes. Parametars
andb are defined as:

L_F-G | _F+G+4H-2N
F+G’ F+G

This yield function has proven to be more accurdi@n the original 1948
guadratic criterion, since it is defined by a geeatumber of parameters. The expomant
has often been used to fit the yield locus to teemental yield data. However, besides
the mechanical properties in uniaxial tensionlsoaequires the experimental yield stress
in equibiaxial tension and in simple shear; boththafse properties require specialized
testing equipment and therefore the tendency,ast e the industry, has generally been

to use a simpler yield function.

6.3.4. Hill's 1993 yield criterion

In 1993, Hill developed a new, supposedly usemttig, non-quadratic yield
criterion [6.17]. In this yield criterion the tetesiyield behaviour in both the rolling and
transverse directions is assumed to be essenttidhtical, which is a somewhat of a
restriction, but the associated strain ratios ao®anted differently
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2
o —(2—0-—2“}0102 +0o +[(p+ q) _Po*99, c,0,-02=0 (6.25)

Okp Okp

where p and q are dimensionless anisotropic coefficients. Thisiction is not
homogeneous and is not actually as user-friendiy wsas claimed to be. Finally, Hill's
1993 vyield criterion is recommended for use withn tAnisotropic sheets but is limited

only to the first tension quadrant of the planestrspace.

6.3.5. Barlat and Lian’s 1989 yield criterion

In 1989, Barlat and Lian [6.18] introduced a noradpatic yield criterion which is
frequently calledYld89 This yield function was developed for texturedypoystalline
sheets with planar anisotropy and is written aees:

K, +K,|" +alK, - K,|" + (2-a)]2K,|" -25™ =0 (6.26)

whereK; andK; are defined by:

Uxx+h0'yy axx—hayy 2 )
Ki=—— K, = || ———| +(poy)

2 2

anda, ¢, h, p are anisotropy coefficients calculated from thechamical properties, and
exponentm can be derived from the other anisotropy pararaet&ithough this yield
criterion is limited to plane-stress applicationdjas been shown to predict the shape of

the yield locus of aluminum sheets much better thélis yield criteria.

6.3.6. Barlat's YId2000-2d yield criterion

There were some issues Yitd96 such as it is not always possible to prove the
convexity of the yield surface defined by this ftion and therefore it is not always
possible to ensure the uniqueness of the plasamsancrement. Moreover, it is difficult
to determine the first and second derivatives efdyfunction in the form of an analytic
expression which creates a challenge for the impigation of this yield criterion into

numerical codes.
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In order to overcome the limitations of the prewagueld function Y1d96, Barlat
et al. 2003 [6.19] proposed a yield criterion capablenodelling the behaviour of metals
in a full three-dimensional stress state. This dyietiterion guarantees vyield locus
convexity and is easier to implement in a finiteneént code. In plane-stress conditions it

is written as follows:

26% =|X] = X3|" +[2X5 + X" +[2X]+ X)|* (6.27)
with
X'=L's and X'"=L'"c (6.28)

whereL’ andL"” are linear transformation tensors which can bly figfined with eight

independent anisotropy coefficients (o ag) and which can be determined from eight
uniaxial and biaxial mechanical properties. Thilgifunction is generally referred to as
the Y1d2000-2D criterion and it has become widatgepted as one of the most suitable

criteria for describing the plastic behaviour afrainum sheets.

6.3.7. Other Yield Criteria

Many other non-quadratic yield criteria have bessppsed such as that of Barlat
et al. 1991 [6.20], Karafillis and Boyce 1993 [6.21], Bdret al. 1997 [6.22], Banabiet
al. [6.23] and Barlaet al. 2005 [6.24]. These more recent yield functions geeerally
from the same family of functions as Hosford’s gietiterion.

As mentioned already, Hosford’s 1979 non-quadratield criterion was
implemented in the author's MK analysis code. Tre@mreasons for selecting it are as
follows:

a) In the MK analysis used in this dissertation there no shear stress components and
in these cases, the plastic strains calculated fdasford’s yield criterion are very
similar to those predicted with more recent noneljaic yield functions such as
Y1d2000-2D.

b) In plasticity calculations using Hosford’s yieldnittion there is a real benefit to
working with fewer material constants. Indeed, miethe challenges with more
recent yield criteria is the fact that a large nembf parameters need to be defined

from the various sheet mechanical properties aacktbre a large number of material
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characterization tests are required. One recerd yigterion requires 18 different
mechanical properties obtained in 7 different dagans relative to the rolling
direction of the sheet. This is really too onerémsuse in industrial simulations of
sheet metal forming operations.

c) A survey of the literature reveals that Hosford¥Q yield function has been a
successful non-quadratic yield criterion for FLCegliction of sheet materials that

have an average plastic anisotropy ratio less ¢nan6.25-6.32].

6.4. Results

Following the implementation of Hosford’s 1979 wyietriterion into our MK
analysis code, the predicted FLCs were comparedaoitresponding experimental FLCs
for both as-received and bilinear loading paths.oTalloys were considered for the
comparison: a low carbon sheet steel AISI-101236ahd the AA-2008-T4 aluminum
sheets reported by Graf and Hosford [6.34]. Theenatproperties of these two alloys
were presented in chapter 3 (Tables 3.1 and 8i8)eover, in order to compare the
accuracy of FLCs obtained from quadratic and nosdeatic yield criteria, the same
FLCs were predicted using Hill's 1948 vyield functioand are included in the
comparisons.

Figure 6.2 shows good agreement between both tiesdrgredictions and
experimental data for AISI-1012 sheet steel inagsreceived state. In this figure, the
FLC predicted with Hosford’s yield function fits nye well with the corresponding
experimental curve in all regions of the diagranotiByield criteria lead to the same
prediction of the FLC in the region of plane-straleformation which is a critical
deformation mode in sheet metal forming. As anéteg, the FLC predicted with the
non-quadratic yield function is in better agreemeith the experimental data than that
predicted with the quadratic yield function on thght side of the diagram (i.e. for
positive minor strains) but the two criteria predibe left side of the FLC (i.e. for

negative minor strains) with a similar level of aacy.
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—Hill-48
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Minor Strain

Figure 6.2. Comparison of predicted and experimeniad=LCs of as-received AlSI-1012 steel
sheets

The FLCs of AISI-1012 steel were also calculated tf@o nonlinear loading
paths. In the first case sheet specimens weregatetbto 8% strain in equibiaxial tension
and the FLC was determined following this prestriaynsimulating a whole series of
linear load paths in the range betwegen0.5 andp=1 (i.e. between uniaxial tension and
equibiaxial tension). In the second case the sieg¢trial was subject to a 10% prestrain
in uniaxial tension followed by a range of lineaadiing paths between uniaxial tension
and equibiaxial tension. The FLCs predicted foiséhewvo types of bilinear strain paths
with either Hill's or Hosford’'s yield criterion arshown in Figures 6.3 and 6.4,
respectively, along with the corresponding expentakdata.

In Figure 6.3, the published experimental data erdg available for the left side
of the FLC, however both plasticity models show djagreement with the experimental
data after a prestrain in equibiaxial tension. OCegain it can be observed that both yield
criteria lead to the same prediction of limitingagts in the plane-strain region for both
loading histories. But we also observe that Hoséondn-quadratic yield criterion gives a
better prediction in the regions to the left anghtiof plane-strain for steel specimens

prestrained in uniaxial tension, as shown in Figude
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Figure 6.3. Comparison of predicted and experimenta=LCs of AISI-1012 steel after 8% prestrain in

equibiaxial tension
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Figure

6.4. Comparison of predicted and experimental FLCsf AlSI-1012 steel after 10% prestrain in

uniaxial tension
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Overall, it can be seen that the differences betwtbe predictions using these
two yield criteria is not significant for this pemtilar grade of steel.

The FLC of the AA-2008-T4 aluminum alloy sheet peged with both Hosford’s
and Hill's yield criteria and the corresponding exdmental data for the as-received
condition are shown in Figure 6.5. As mentionecclapters 3 and 4, some material
constants @, do, Rz) were not provided in Graf and Hosford's publioati[6.34],
therefore these values were determined by caliigdahe FLC of the AA-2008-T4 alloy
predicted using Hill's 1948 vyield criterion to thexperimental as-received FLC: the
values determined by the calibration wé&re 0.70,dy = 8.0um andRz = 2.5um and
the prediction of the FLC using Hosford’s yield &tion was also performed with the
same material constants. It can be observed inr&igb that the predicted curves
correlate very well with the experimental data, bt FLC predicted with the non-
guadratic yield criterion appears to provide adyelit than the one predicted with the

guadratic function.

05 - A Exp.[34]
— Calibrated by Hill-48
= = Hosford-79
ey
I
n
S
‘©
P
0.1 -
-0.21 -0.11 -0.01 0.09 0.19
Minor Strain

Figure 6.5. Comparison of calibrated/predicted andxperimental FLCs of as-received 2008-T4
aluminum sheets
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The FLC of AA-2008-T4 sheet was also predicted dihnear loading paths in
which the prestrain was obtained in different mooiedeformation. In the first case, the
FLC was predicted for sheets prestrained to e#P&ior 12% in equibiaxial tension. The
curves calculated using both quadratic and non+giadyield functions are shown along
with the corresponding experimental data in Fig@ésand 6.7, respectively.

In Figure 6.6, it appears that Hosford’s yield enibn leads to a better prediction
of the FLC for the samples with a 4% prestrainguaibiaxial tension. However, when a
greater magnitude of prestrain is applied along shene strain pathp£l), Hill's
guadratic yield criterion seems to provide a slighetter correlation with experimental
data. Nevertheless, both yield functions give vargilar predictions and both criteria
lead to an acceptable level of accuracy for thasnahum alloy.

o>}
P

A 0.04 Prestrain (Exp.)[34]
05 - =—0.04 Prestrain (Hill-48)
= = 0.04 Prestrain (Hosford-79)

Major strain

fa)
I

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
Minor Strain

Figure 6.6. Comparison of predicted and experimenia=LCs of 2008-T4 aluminum after 4%

prestrain in equibiaxial tension
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Figure 6.7. Comparison of predicted and experimenia=LCs of 2008-T4 aluminum after 12%

prestrain in equibiaxial tension

Graf and Hosford also published experimental FL@ dar this aluminum alloy
for a prestrain of either 5% or 12% in uniaxialgem. In order to further validate the
FLC predictions using these two different plasyiaitodels, the FLC was predicted for
both strain histories with the present MK model.eThpredicted FLCs and the
corresponding experimental data are shown in Fgar@ and 6.9. In Figure 6.8, after a
5% prestrain in uniaxial tension, it can be seeat thill’'s yield criterion gives a better
prediction of the right side of the FLC than Hosffsrcriterion; but this is the only case
amongst those investigated where the quadratidimgives a better prediction than the
non-quadratic function. It can also be pointed thait, in this case, Hosford’s criterion
still gives a better prediction in the region chmpé-strain deformation and shows a more
accurate trend on the left side of the FLC. ForAl#e2008-T4 sheet samples deformed
to a 12% prestrain in uniaxial tension, althougé two plasticity models yield similar
results, the non-quadratic criterion clearly pr@gaca more accurate prediction than the

guadratic yield function for both sides of the FLC.
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Figure 6.8. Comparison of predicted and experimenia=LCs of 2008-T4 aluminum after 5%
prestrain in uniaxial tension
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6.9. Comparison of predicted and experimental FLCsf 2008-T4 aluminum after 12% prestrain in

uniaxial tension
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6.5. Conclusion

In this chapter a numerical MK analysis code wagetiped to predict the FLC of
sheet metal using Hosford’s 1979 non-quadraticdyigiterion. Forming limits were
predicted for both linear and bilinear loading pattr AISI-1012 steel and AA-2008-T4
aluminum sheets. The theoretical results that vedrmined were compared with the
corresponding experimental data and also with ti@sHoredicted with Hill's 1948 yield
function at the same condition.

Both anisotropic plasticity theories are able tedict the FLC of these two sheet
materials very well, for both the as-received ctindiand also for samples prestrained in
uniaxial or equibiaxial tension. Not only do theegicted FLCs follow the general shape
of the experimental FLC, but their accuracy is alsoy good considering there is an
estimated error of £2.5% strain on the verticalifpms of an experimental FLC [6.35].
However, on the whole, the prediction of FLC usiHgsford’s yield function is
somewhat better than when Hill's criterion is enyeld, especially on the right side of
the FLC. In most cases, the predictions made widsd two yield criteria were very
similar, with only minor variations on the left siaf the FLC. There was only one case
where the prediction using Hill's criterion was raaconsistent with experimental data
than Hosford’s criterion, and this was on the rigide of the FLC of the 2008-T4
aluminum alloy after a 5% percent prestrain in yiktension.

Based on the observations made in this chaptemay be concluded that
Hosford’s non-quadratic yield function generallyads to more accurate predictions of
limiting strains than Hill's quadratic function, rfas-received as well as prestrained
material, whether it is prestrained in either urahtension or equibiaxial tension, and for

both steel and aluminum sheets.
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Chapter 7

Summary and conclusions

7.1. Summary

This dissertation presents a number of advancedhanézal models that help to
calculate the forming limits of sheet materials enaccurately and for a wider range of
loading conditions than was previously possiblee Tell-known Marciniak-Kuczynski
(MK) model was used as the basic method to prédrating limit curves both in strain
space (FLC) and in stress space (SFLC). In ordpreddict the onset of plastic instability
for sheets deformed in complex, multi-stage formopmgrations, the MK model was
adapted to compute forming limits for sheets sulifgaonlinear strain paths. Theoretical
predictions of FLCs for linear and bilinear loadipgths were compared with the
corresponding experimental data for AISI-1012 ste®wl AA-2008-T4 aluminum alloys.
The path dependency of SFLCs predicted for diffierem-proportional loading histories
was also investigated.

The MK approach was also used to compute the FL€omunction with two
different work-hardening models: an isotropic haidg model and a mixed isotropic-
nonlinear kinematic hardening model which is capaibf describing the Bauschinger

effect. Once again, published experimental FLCAI&H-1012 low carbon steel and AA-
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2008-T4 aluminum sheets that were subjected tawarnon-linear loading paths were
compared to predictions using both hardening models

The conventional MK model was also extended toipté€C for general, three-
dimensional stress states. Indeed, the influeh¢keothrough-thickness principal stress
on the formability of different grades of sheet at@tas investigated in terms of the ratio

of the third to the first principal stress compatse(y = o,/0, ). An analysis was also

carried out to determine how the sensitivity of theC prediction to the through-
thickness stress changes with variations in mechbproperties and sheet thickness. The
validation of the model for cases involving thramensional stresses was done with
published experimental FLC data for AA-6011 alunmmand STKM-11A steel tubes.

Finally the effect of the yield function on FLC pietion was investigated by
implementing both a quadratic and a non-quadradéld ycriterion into the MK analysis.
FLCs were calculated with Hill's 1948 quadraticlgliéunction and Hosford’s 1979 non-
guadratic yield function using a numerical codet thecounts for linear and nonlinear
loading paths. Predictions of FLC were again comgavith experimental data for AlISI-
1012 steel and AA-2008-T4 alloys.

7.2. Conclusions

The following conclusions can be drawn from theeegsh presented in this

dissertation:

1. This research emphasizes that the FLC is signiligcastrain-path dependent.
Although the industrial practice of using a 10 metcsafety margin beneath the
FLC can, in many cases, be an effective way to renaurobust sheet metal
forming process, there are also many instances evkR&C variation due to
nonlinear loading can be significantly greater tliais safety margin. Therefore
the as-received FLC ought not to be used for forlityalevaluation unless it can

be shown that the loading history is quasi-linéaoughout the formed part.
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. The MK analysis was shown to predict both the Fl@ #he SFLC of sheet
metals with acceptable accuracy provided criticatarial parameters, such as the
imperfection factor, are defined appropriately.

. It is strongly recommended to include the rotatminthe imperfection band,
material anisotropy, and strain rate sensitivittie MK analysis. The FLC can
be very sensitive to the strain rate sensitivityhef sheet material.

. The SFLC remains practically strain-path indepehdena significant range of
prestrains. However, some path dependency is aidefthe magnitude of the

prestrain exceeds a certain level of equivalerdirst(e > 035 for AISI-1012

steel) or when there are abrupt changes in stedim p

. In spite of some path dependency, the SFLC renaamsod failure criterion for
virtual forming simulations because the path depang of SFLCs is much less
significant than that of strain-based FLCs.

. Predictions of the FLC using the MK analysis haeerbshown to be dependent
on the shape of the initial yield locus and oreitslution during work hardening;
therefore the hardening model has a considerabiesice on the predicted FLC.
This work showed that the isotropic hardening takds to acceptable accuracy
on the left side of the FLC (i.e. for negative nrirstrains), but that the mixed
hardening rule provides a more accurate predi@fdfLC in plane-strain and on
the right side of the FLC (i.e. for positive minstrains) for the sheet materials
considered.

. The formability of sheet metal was shown to be veepsitive to the applied
normal stress, and the FLC always shifts upwardsstiain space as the
compressive through-thickness stress is increaBeekefore the assumption of
plane-stress conditions is really only an approxiomawhich can be made in a
few cases such as open die stamping. Since mamnstimal sheet and tube
forming processes lead to significant compresdiveugh-thickness stresses, the
effects of this normal stress on the formability sbfeet metals should not be
ignored.

. The analysis showed that among the material pammetonsidered in this

research, the strain hardening coefficient hasntist significant effect on the
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dependency of FLC to the through-thickness stregsile the strain rate
sensitivity coefficient has the least influencetlois sensitivity.

9. The anisotropy factor also has a significant effatithe dependency of FLC to
the through-thickness stress. Sheet materialsaMithver normal anisotropy, such
as aluminum alloys, show greater formability imprment in the presence of a
compressive stress than materials with a more e normal anisotropy.

10.Both Hill's 1948 and Hosford’s 1979 yield critepaedict the left side of the FLC
of AISI-1012 steel and AA-2008-T4 aluminum sheetithvacceptable accuracy
for both linear and nonlinear strain paths. Howee prediction of the right
side of the FLC using Hosford’s 1979 non-quadrgiiétd function was somewhat
better than that with Hill's 1948 quadratic functio

11. Calculation of the FLC using a non-quadratic yieldction gives a more accurate
prediction of the FLC in biaxial tension than wighquadratic yield function
because a non-quadratic function is able to repteéke shape of the yield surface

more accurately in the region of biaxial tension.

7.3. Future work

The implementation of various mechanical models the MK analysis has been
shown to improve the accuracy of the FLC, partidulan cases of multi-stage loading
and in the presence of through-thickness stre3gesimplementation of more relevant
yield criteria and hardening models was also shtavaenhance the prediction of FLC.
However, further work should be carried out in thisa so that the most advanced and
up-to-date plasticity models may be incorporateéd mumerical predictive codes. Indeed,
while Hosford’'s 1979 yield function and the mixesbtropic — nonlinear kinematic
hardening model were helpful to improve the predicof the FLC, there are no doubt
other yield criteria and hardening models which ldoprovide even more accurate
forming limit data, especially in view of the inased use of advanced high strength

steels, aluminum and magnesium alloys in the autioemetal forming industry.
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Moreover, these various enhancements were impladente at a time into the
MK analysis, so that one code was initially develbmwith basic features such as the
capability of following bilinear strain paths, Hdlquadratic yield function and isotropic
hardening. This basic code was then modified téaoepHill's 1948 yield function with
Hosford’s non-quadratic yield criterion, thus makia second predictive code. The
original MK code was modified again, as a sepacatie, to replace isotropic hardening
with the mixed hardening model. And again a fouwrtide was developed with the
capability of including the through-thickness s¢rea the analysis. Therefore it is
suggested that these individual modelling featatielse included in a single code that has
the flexibility of being able to independently miydihe yield criterion, the hardening
model and the magnitude of the through-thickneesst

In the MK approach, material inhomogeneity has gahebeen modelled as a
geometric imperfection, and in this work, the getimamperfection factor was related
to the surface roughness of the sheet materials Isuggested, however, that the
microstructural inhomogeneities in modern autonetsheet materials may be more
significant than the surface roughness of the sli@gtinstance, the segregation between
softer and harder phases in advanced high strestgéhs such as martensite banding in
dual phase steels may create a more severe inhogibgeéhan the roughness at the
surface of the sheet. It would be most interestinmvestigate whether the imperfection
factor in the MK analysis can be correlated to evasite banding, or with other sources
of inhomogeneity that exist in other families dbgk.

Finally, the MK analysis is not currently capabfepeedicting the onset of plastic
instability when bending is superimposed on th@lane deformation. The addition of
bending strains creates a through-thickness sgradient, which is known to delay the
onset of necking, particularly as the bending radlacreases and as the sheet thickness
increases. Therefore, it would be extremely ustfullevelop an analytical model that
does take the bending deformation into considaratio

Clearly, much more research is required to prethiet forming limits of sheet

materials with accuracy and reliability.
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Appendix A

Determination ofn=d82/d8: ratio in MK analysis

In chapters 3, 4, and 5 it was mentioned that ibedl necking in sheet metal

occurs once the effective strain rate in the groakea reaches 10 times that in the

nominal area, that is wheyrde2/de 2>10. In the current research, the variatiomafias

monitored at every increment during the numericatjztion of the deformation. Figure
A.1 shows a sample of the variationrpfor a given loading pattp€0.95).

The values ofy shown in Figure A.1 indicate that the magnitudeyafuddenly
increases from 1.45 to 146.1 at the end of therdefbon when necking occurs. This
signifies that in this case, > 2.0 would give the correct solution to the FL&calation.
Table A.1 presents the finglvalues for all the strain paths between uniaxaakion and
equibiaxial tension for the AISI-1012 steel.

It can be seen from this table that the final valfig at the onset of necking varies
between 1.44 and 3.55. From a theoretical poinviesf, anyn value greater than 3.5 will
result in a correct and repeatable prediction ef FhC for all strain paths. In this table
there is only one strain path for which the lingtimalue ofry lies outside the mentioned
range {=6.61 wherp=-0.10). For this particular loading path, the ereganecking will be
virtually identical whethen=3.5 orn=6.61 because the difference in effective strainmngdu

this one additional increment is merely=0.  O@lIthoughn > 4 will give a consistent

prediction of FLC in different sheet metals, a lor@arvey of the literature shows that

n=10 is commonly used in MK-based FLC calculatiode
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Figure A.1. Variation of r|=dz-:2/da: during the computation of a FLC

It should also be mentioned that, during the curn@search some uniaxial
tension tests were conducted on DP600 steel spesiniée effective strain values were
recorded using a commercial optical strain measenerdevice that uses digital image
correlation to calculate strains. In these testsaherage experimental value for the

coefficient was found to bg=4.1.
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Table A.1. Final values ofn at the onset of instability for AISI-1012 steel

P n p n p M
1.00 | 1.55 | 050 | 1.76 | -0.05| 2.34

095 | 1.45 045 293 | -0.10] 6.61

090 | 1.76 040 2.60 | -0.15] 2.90

0.85 | 1.47 030 1.87 | -0.20| 3.07

0.80 | 1.48 025 355 | -0.25] 1.78

0.75 | 1.60 020 325 | -0.30| 1.66

0.70 | 1.93 015 234 | -0.35] 2.78

065 | 2.34 010 222 | -040| 1.45

0.60 | 1.89 000 2.03 | -045| 1.44
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Appendix B

Error between predicted and experimental FLCs

In order to quantify how well the predicted FLCsretate with experimental
curves, the area between the theoretical FLC aade#perimental FLC was used to

define a percentage of error for the theoreticslts:

Area betweenthe theoretichand the experimerdl FLC

Error % = -
Areaunderthe experimeral FLC

x100 (B1)

The area under predicted and experimental FLC \ab=ulated numerically for
the range of minor strains for which experimentatadwas available, and the error data

that was obtained is listed in Table B.1.

Table B.1. Percent error of predicted FLCs

Predicted FLC Error %
FLC of AISI-1012 steel alloy in the as-receivedeatasing isotropic 8.26
hardening rule and Hill's 48 yield criterion (Figu4.6)

FLC of AISI-1012 steel alloy in the as-receivedetasing mixed 5.43
hardening rule and Hill's 48 yield criterion (Figu4.6)

FLC of AISI-1012 steel alloy in the as-receivedetasing isotropic 2.84
hardening rule and Hosford’s 79 yield criteriongifie 6.2)
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Table B.1. Percent error of predicted FLCs (contined)

Predicted FLC Error %
FLC of AISI-1012 steel alloy after 8% prestraineiquibiaxial tension 6.30
using isotropic hardening rule and Hill's 48 yieldaterion (Figure 4.7)

FLC of AISI-1012 steel alloy after 8% prestraingiquibiaxial tension 7.13
using mixed hardening rule and Hill's 48 yield eribn (Figure 4.7)

FLC of AlSI-1012 steel alloy after 8% prestraireiguibiaxial tension usin 3.05
isotropic hardening rule and Hosford’s 79 yieldaston (Figure 6.3)

FLC of AISI-1012 steel alloy after 10% prestrairuimiaxial tension using 5.88
isotropic hardening rule and Hill’s 48 yield critan (Figure 4.8)

FLC of AISI-1012 steel alloy after 10% prestrairuimiaxial tension using 5.00
mixed hardening rule and Hill's 48 yield criteriffiiigure 4.8)

FLC of AISI-1012 steel alloy after 10% prestrairuimiaxial tension using 2.29
isotropic hardening rule and Hosford’s 79 yieldenion (Figure 6.4)

FLC of 2008-T4 aluminum alloy after 4% prestrairenuibiaxial tension 4.68
using isotropic hardening rule and Hill's 48 yieldterion (Figure 4.10)

FLC of 2008-T4 aluminum alloy after 4% prestrairenuibiaxial tension 4.69
using mixed hardening rule and Hill's 48 yield eribn (Figure 4.10)

FLC of 2008-T4 aluminum alloy after 4% prestraireguibiaxial tension 2.31
using isotropic hardening rule and Hosford’s 79dy@iterion (Figure 6.6)

FLC of 2008-T4 aluminum alloy after 12% prestraireguibiaxial tension 4.18
using isotropic hardening rule and Hill's 48 yieldterion (Figure 4.10)

FLC of 2008-T4 aluminum alloy after 12% prestraireguibiaxial tension 0.54
using mixed hardening rule and Hill's 48 yield eriobn (Figure 4.10)

FLC of 2008-T4 aluminum alloy after 12% prestraireguibiaxial tension 4.23
using isotropic hardening rule and Hosford’s 79dy@iterion (Figure 6.7)

FLC of 2008-T4 aluminum alloy after 5% prestrairuimaxial tension 1.35
using isotropic hardening rule and Hill's 48 yieldterion (Figure 4.11)

FLC of 2008-T4 aluminum alloy after 5% prestrairumaxial tension 1.30
using mixed hardening rule and Hill's 48 yield eribn (Figure 4.11)

FLC of 2008-T4 aluminum alloy after 5% prestrairumaxial tension 3.3
using isotropic hardening rule and Hosford’s 79dyaiterion (Figure 6.8)

FLC of 2008-T4 aluminum alloy after 12% prestrairuniaxial tension 2.45
using isotropic hardening rule and Hill's 48 yieldterion (Figure 4.11)

FLC of 2008-T4 aluminum alloy after 12% prestrairuniaxial tension 0.93
using mixed hardening rule and Hill's 48 yield eribn (Figure 4.11)

FLC of 2008-T4 aluminum alloy after 12% prestrairuniaxial tension 0.45

using isotropic hardening rule and Hosford’s 79dy@iterion (Figure 6.9)
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Table B.1. Percent error of predicted FLCs (contined)

Predicted FLC Error %
FLC of AA6011 aluminum alloy under 15 MPa interpatssure using 10.23
isotropic hardening rule and Hill's 48 yield critan (Figure 5.3)

FLC of STKM-11A steel alloy under 56 MPa interna¢gsure using 13.54

isotropic hardening rule and Hill's 48 yield critan (Figure 5.4)
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