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Abstract 

 

This dissertation proposes a number of significant enhancements to the 

conventional Marciniak-Kuczynski (MK) approach including a more realistic definition 

of the imperfection band, consideration of strain rate sensitivity and the effect of material 

anisotropy. Each enhancement was evaluated by comparing the predictions to 

experimental FLCs found in the literature. 

An analytical method of determining the forming limit curve (FLC) of sheet 

materials was developed by Marciniak & Kuczynski in 1967 and has been used 

extensively since then. In the current research, a numerical code was developed based on 

the MK analysis in order to predict the FLCs of sheet metals undergoing plane-stress 

loading along non-proportional strain paths. The constitutive equations that govern 

plastic behaviour were developed using Hill’s 1948 yield function and the associated 

flow rule. 

Stress-based FLCs were also predicted with this MK analysis code and the strain-

path dependency of SFLCs was investigated for different non-proportional loading 

histories. It was found that the SFLC remains essentially unchanged for lower 

magnitudes of prestrain, but after significant levels of prestrain, it was observed to shift 

up somewhat toward the vicinity of plane-strain deformation. 

Two different work hardening models were implemented in the MK model to 

predict the FLC. Both isotropic hardening and mixed isotropic – nonlinear kinematic 

hardening models were used in cases that involve unloading and subsequent reloading 

along a different strain path. The FLC predicted with the mixed hardening model was in 

better agreement with experimental data when the prestrain was in the domain of the 

positive minor strains, but the assumption of isotropic hardening led to acceptable 

agreement with experimental data when the prestrain was in the domain of the negative 

minor strains. 



 vi

The consideration of a through-thickness stress applied during the forming 

process was also added to the model and it was shown that the normal stress has a 

positive effect on formability. Moreover, changes in certain mechanical properties can 

significantly increase the sensitivity to the normal stress. 

Finally, a non-quadratic yield criterion was implemented into the predictive 

model and it was found that, generally, a non-quadratic yield function leads to more 

accurate predictions of the FLC. 
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Chapter 1 

Forming limits of sheet metals 

1.1. Introduction 

 
The stamping of tin-plated steel sheets to form food containers around 1850 laid the 

foundation for the sheet metal working industry as it is known today. Although metal 

stamping was well established by 1900, the main growth of this industry came when 

mass production became a common feature of the automobile industry. Another surge 

came with the rapid expansion of the home appliance industry after World War I with 

such items as vacuum cleaners, washing machines, refrigerators and toasters. All these 

developments created a large demand for sheet metal which was met by low-carbon steel, 

which offered the advantages of uniform thickness, good surface finish and low cost. 

The most predominant sheet-metal forming operation, stamping, consists of 

forming a sheet metal blank between two mating dies. It can also be noted that stamping 

involves essentially two different deformation modes: drawing and stretching. As a result 

of the two dies closing during a press stroke, metal in the central part of the blank is 

typically stretched over the punch face whereas drawing takes place in the peripheral 

region of the blank as it is drawn into the die cavity. The formability of a sheet metal is 

defined as its ability to undergo plastic deformations, either in stretching or drawing 

modes, without failure. 
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There are a variety of possible failures in sheet metal stamping that would require 

rejecting a part: scoring, wrinkling, necking, splitting or tearing, not to mention parts that 

fail to meet dimensional specifications or parts that exhibit unacceptable cosmetic 

appearance. However, the most common and most obvious failure is that of splitting or 

tearing of the sheet metal, which is a result of excessive and non-uniform deformation. 

Splitting is usually preceded by a series of increasingly more severe evidences of damage 

as the deformation proceeds: the first evidence of excessive deformation may appear 

simply as a roughening of the sheet surface. The next stage in the progression of damage 

is the onset of necking which appears as a narrow band in which there is a detectable 

reduction in thickness. As deformation progresses further, the strains localize in this band 

and necking becomes more severe until ultimately the reduced thickness of metal is not 

able to bear the load and the sheet tears. The formability of most sheet metals is limited 

by the occurrence of localized necking in the stamped part. 

Punch-stretch tests or simply “cupping” tests have been used for a long time to 

qualitatively assess the formability of sheet materials. The main parameter that is 

determined during a cupping test is the strain to fracture. The punch-stretch test consists 

simply of clamping a blank firmly around its edges between two rings or dies and 

applying a force to the central area of the specimen, using a punch, until the cup 

fractures. The testing procedure is described in the ASTM Standard E643. Several punch-

stretch tests have been developed throughout the years. Unfortunately, these simple 

“cupping” tests do not satisfactorily predict the formability of a sheet; only rough 

differences in formability can be determined. This has led to the development of 

improved simulative tests, described in the next paragraphs. Nevertheless, “cupping” 

tests are routinely used for inspection purposes since they provide a quick indication of 

ductility; they also show changes in surface appearance of the sheet during forming. 

The poor correlation between the common “cupping” test and the actual 

performance of the sheet metal in a stamping operation led investigators to search for 

more fundamental formability parameters. A significant breakthrough came in 1963, 

when Keeler and Backofen [1.1] reported that during sheet stretching, the onset of 

localized necking required a critical combination of major and minor strains (along two 

perpendicular directions in the plane of the sheet). Subsequently, this concept was 
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extended by Goodwin [1.2] to drawing deformations and the resulting curve in principal 

strain space is known as the Keeler-Goodwin curve or the forming limit curve (FLC). A 

typical FLC is shown in Figure 1.1 [1.3]. 

 

 

 
Figure 1.1: Typical FLC of an aluminum alloy [1.3]  

 

The FLC has become an important tool for formability evaluation and it is 

obtained experimentally by stretching sheet metal samples over a hemispherical punch. A 

regular grid electro-etched or printed onto the un-deformed blank enables principal 

surface strains to be measured: the greater of the two principal strains is called the major 

strain and is always positive, whereas the minor strain can be either negative or positive 

depending on the mode of deformation.  

The left side of the FLC (negative minor strains) is obtained by stretch forming 

rectangular strips or notched blanks of various widths and interrupting each test at the 
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onset of necking. The geometry of the blank determines the strain path (i.e. the ratio of 

principal strains) which varies from uniaxial tension to plane-strain tension. The right 

side of the FLC is obtained by using rectangular blanks of increasing width and by 

applying lubrication to the blank: necking can thus be obtained for strain paths that vary 

from plane-strain to balanced biaxial stretching. The FLC is obtained by plotting a lower-

bound line beneath all data points where necking was observed. The region under the 

curve is therefore considered to be safe for any deformation mode, whereas combinations 

of principal strains that lie above the FLC lead to a part that is either failed or presents a 

risk of failure. The higher the FLC lies in principal strain space, the greater the 

formability of the sheet material. In order to account for variations in the stamping 

process, however, another curve is generally plotted at 10% strain below the FLC (Figure 

1.1) thus creating a marginal zone between the two curves. And industrial practice 

requires that a stamped part be rejected if there are any locations in the part where the 

combination of principal strains falls in the marginal or failure zones. 

The FLC has been widely used around the world as a measure of sheet metal 

formability in the metal forming industry for almost half a century. It is routinely used to 

evaluate the forming severity of virtual parts after the numerical simulation of a forming 

process and is the basis for modifying or validating tool design and process design. The 

FLC is also used to assess the forming severity of prototype parts after they are formed 

and provides a basis for making minor modifications to existing stamping dies. 

Moreover, the FLC can be used on occasion during a production run to determine how 

the wear in the dies might affect the quality of the parts and the robustness of the process. 

1.2. Motivations 

 
Although the FLC has been such an effective tool in the metal forming industry, 

the experimental determination of FLC is relatively costly as it requires specialized 

equipment, tooling and experienced personnel. It is also time-consuming to conduct the 

formability tests, measure the strains and reliably interpret where in strain space the onset 

of necking actually begins. The experimental determination of FLC must be done 

carefully, consistently and with an acceptable level of accuracy since it is used to 
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establish the quality of large volumes of production parts. The known variability in FLC 

data and the somewhat subjective nature of the experimental determination of FLC have 

underscored the need for a more objective determination of the FLC on the basis of 

theoretical models. 

It is well known that sheet deformation in many industrial metal forming 

processes is characterized by nonlinear strain paths and it has been observed by many 

researchers [1.4-1.10] that the as-received FLC can translate and distort significantly in 

strain space due to a nonlinear loading path. This signifies that the as-received FLC 

cannot be used to assess the forming severity of parts that were formed, say in multi-stage 

forming operations. Furthermore, since each material point in such a component may 

follow a different (nonlinear) loading path, therefore each location in the part potentially 

has a different FLC. It is obviously not possible to experimentally determine the FLC for 

every nonlinear strain path in a given part, and even if it was, it would be practically 

unmanageable to accurately carry out an analysis of forming severity. So although 80% 

of stamped parts can be reliably evaluated with the as-received FLC, there are 

nevertheless a number of complex stamped parts and parts formed in multistage forming 

processes where the as-received FLC is not adequate to carry out formability analyses. 

For this reason alone, researchers have been motivated to develop reliable theoretical 

methods to predict sheet forming limits.  

The advantages of such predictive FLC models are many. The main benefit is no 

doubt the fact that an FLC can be predicted almost instantaneously and at very little cost 

using known mechanical properties that can easily be determined by standard tests. 

Moreover, the underlying theoretical foundation of a predictive model enables the user to 

consider a wide range of forming conditions, deformation modes and strain histories 

which would be unduly difficult or costly to carry out experimentally. There are very 

definite incentives for developing an accurate model to predict the onset of plastic 

instability (i.e. necking) in sheet metals. 

The formability of most sheet metals is limited by the occurrence of localized 

necking. However, the prediction of neck initiation and growth in thin metal sheets is by 

no means a simple task. Nevertheless much theoretical research has been conducted in an 

attempt to predict the FLC. A review of this research shows that the FLC is affected by 
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many different factors such as the strain history, crystallographic texture and anisotropy, 

yield behaviour, work hardening behaviour, the presence of through-thickness stresses, 

microstructure and material inhomogeneity as well as other parameters which all deserve 

due consideration. In spite of the challenge, the ability to accurately predict the onset of 

localized necking would indeed be of great benefit to the sheet forming industry as it 

would provide a reliable and unambiguous failure criterion for evaluating complex, 

multi-stage metal forming processes, accelerate tool design and help reduce 

manufacturing costs. 

Among the various theoretical approaches for predicting the FLC, the MK method 

has probably been the most widely used. The MK approach is a mechanistic approach 

proposed by Marciniak & Kuzcynski [1.11], in which the inhomogeneity that exists in the 

sheet metal is modeled as a geometric band with a slightly reduced thickness compared to 

the rest of the sheet. Biaxial stresses are progressively applied to the sheet and the onset 

of necking is determined when the ratio of strains in the band to those outside the band 

reach a critical value. Since the original MK method was proposed in 1967, substantial 

improvements have been proposed by various researchers to make predictions more 

accurate. With the incorporation of more realistic constitutive models, the predicted FLC 

correlate reasonably well with as-received experimental FLC data for most sheet metals. 

As a result, the MK method is arguably the theoretical tool most commonly used to 

predict sheet metal forming limits, and this method will be discussed at greater length 

throughout this dissertation. 

Other researchers have attempted to predict the FLC of sheet metals by using 

analytical bifurcation [1.12-1.14] or damage methods [1.15-1.16]. However, the predicted 

results have not always been convincing, although they do provide explicit and simplified 

solutions for the critical angles and the corresponding critical strains of localized neck 

formation in sheet metals.  

1.3 Objectives 

 
In spite of many years of research in this field, most of the predictive methods for 

FLC determination are still insufficiently accurate for more complex forming processes, 
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and there is a real need for further research to improve the current models. The main 

objective of this research is to develop more advanced numerical tools to predict the 

forming limits of sheet metals more accurately and reliably than is currently possible. The 

MK method was selected as the basic approach and several theoretical developments 

have been proposed to enhance the MK method and improve its ability to predict FLC 

under complex forming conditions, including nonlinear strain paths that are common in 

multistage forming operations. In addition, the influence of critical material parameters 

(e.g. work hardening behaviour) and mechanistic parameters (e.g. through-thickness 

stresses) on the forming limits of metal sheets will also be investigated. 

1.4 Overview of the dissertation 

 
The second chapter of this dissertation presents a comprehensive overview of the 

various theoretical approaches that have been proposed to predict the onset of necking in 

thin metal sheets, and also delves into some of the aspects of constitutive modelling that 

are considered essential to improve the prediction of FLC. 

It has been proposed by some researchers that the onset of necking depends on 

reaching a critical state of stress rather than a critical state of strain. The main advantage 

presented in favour of a stress-based FLC is its strain path independence. The third 

chapter is an investigation on the uniqueness of forming limits in stress space, and is an 

exact reproduction of a paper jointly written by the present author and his supervisor and 

published in the International Journal of Material Forming [1.17].  

Different sheet metals exhibit different work hardening behaviour. And the 

constitutive description of the material should correctly account for the evolution of the 

yield locus as it work hardens. However, most FLC prediction methods have employed 

the overly-simplistic isotropic hardening rule for forming limit determination. Different 

hardening models were implemented into the MK analysis for FLC prediction and this 

work is described in the fourth chapter of the dissertation. Again, this chapter is a 

reproduction of a paper co-authored by the present writer and published in the 

International Journal of Mechanical Sciences [1.18]. 
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FLC determination theories have usually been developed for plane stress 

conditions, although there are many industrial forming processes in which material 

undergoes significant out-of-plane stresses. Chapter five is dedicated to studying the 

influence of this through-thickness stress on limit strains in sheet metals. Once again, this 

chapter is a reproduction of a paper published in the International Journal of Material 

Forming [1.19]. 

Non-ferrous sheet materials often exhibit a normal anisotropy coefficient that is 

less than 1.0, and it is well known that a quadratic yield function cannot predict their 

plastic behaviour correctly. Many non-quadratic yield criteria have been proposed for 

aluminum alloys and the sixth chapter describes the implementation of such a non-

quadratic yield function into the MK analysis. 

The final chapter presents the conclusions of this research and proposes other 

improvements that can be implemented into the MK predictive model.  
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Chapter 2 

Literature review 

 

2.1. Introduction 

Various theoretical and analytical methods have been developed and employed by 

different researchers to predict the forming limits of sheet metals. In this chapter the most 

common theoretical methods of FLC prediction will be reviewed, along with their 

historical background and development: these include void-damage models, bifurcation 

methods, and the Marciniak-Kuczynski (MK) approach.  

Researchers have also proposed that the forming limits of sheet materials are 

more likely dependent on locally reaching a critical state of stress than a critical state of 

strain. Therefore an increasing number of researchers and engineers have adopted the 

stress-based forming limit (SFLC) to evaluate the forming severity of metal forming 

operations. The background as well as the distinct advantages of this approach will be 

discussed in detail in this chapter. 

Each of the above-mentioned formulations for calculating forming limits is based 

on the classical continuum plasticity theory in which a yield function describes the onset 

of plastic deformation in stress space and a strain hardening law defines the evolution of 

the yield locus as plastic deformation progresses. Since both these elements have a 

profound influence on the prediction of the plastic behaviour of metallic materials, it is 
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essential that the prediction of forming limits be based upon the most representative yield 

criteria and hardening laws. Therefore, the main hardening rules considered throughout 

this research – isotropic hardening, kinematic hardening, and mixed isotopic-kinematic 

hardening laws – will be presented and briefly discussed in this chapter. A more detailed 

investigation on the influence of the strain hardening model will also be presented in 

chapter 4. The influence of the yield function will be reviewed in detail in chapter 6. 

Finally, this chapter concludes with a presentation of the different aspects of the 

prediction of FLC that were specifically developed and that constitute original 

contributions to this field of research. 

2.2. Theoretical methods in FLC calculation 

Three different theoretical approaches have been proposed and utilized to predict the 

FLC as accurately as possible. They can be described as follows: 

a) Void/damage models 

b) Bifurcation methods 

c) Marciniak & Kuczynski (MK) analysis  

 

2.2.1. Void/Damage models 

 
At the microscopic scale, every sheet metal contains defects and inhomogeneities 

such as particles, inclusions, voids and micro-cracks which affect the strength and load-

bearing capacity of the material. When plastic deformation occurs in ductile metal alloys, 

voids will nucleate at the interface between hard particles and the surrounding material, at 

grain boundaries or between different phases in the microstructure. As deformation 

progresses further, the number and the size of voids increases (see Figure 2.1). This 

phenomenon was the reason some researchers began to study the role of micro-defects on 

forming limits of the sheet metals and their investigations led to the development of 

damage-based FLC criteria. 
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Figure 2.1. Damage (stages of ductile fracture) [2.1] 

 

In 1978, Needleman and Triantafyllidis [2.2] investigated the role of void growth 

on the onset of localized necking in biaxially stretched sheet metals. This research was 

conducted based-on the Marciniak-Kuczynski analysis [2.3-2.4] and constitutive relations 

proposed by Gurson [2.5]. They concluded that void growth has a weakening effect on 

biaxially stretched sheets, and the appearance of a localized neck is the evidence of the 

forming limit for every loading path. In their analysis, the material inhomogeneity was 

defined in terms of micro-defects and the forming limit was predicted when the evolution 

of these micro-defects reached a critical limit. However, their results showed that this 

approach is not suitable for materials with a high rate of work hardening. 

In 1980, Chu and Needleman [2.6] considered the influences of the void density 

variation during deformation on the forming limit curves. Their work showed that a 

strain-controlled void nucleation process has a significant effect on the shape of the 

forming limit curve; however a stress-controlled void nucleation process has little 

influence on the shape of the FLC.  

In 1985, Lemaitre [2.7] employed the concept of effective stress and rules of 

thermodynamics to introduce a new damage model. The model was applicable to 
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isotropic, ductile materials. The work of Lemaitre showed that the distribution of voids 

and inclusions is the same in all directions. This work also indicated that damage varies 

linearly with the equivalent strain. 

In 1977, Chow, Yu, and Demeri [2.8] proposed a damage model to calculate 

forming limit curves and predicted the FLC of a 6111-T4 aluminum alloy. They 

considered the effect of micro-cracks and micro-voids on sheet metal failure and divided 

the forming process into different stages including diffuse necking, localized necking and 

rupture. These researchers showed that orthotropic damage occurs rather than isotropic 

damage at large plastic strains. Since their model was developed to represent this type of 

damage, their predictions were more accurate than those of conventional models which 

assume isotropic damage. Later in 1998, Demeri, Chow, and Tai [2.9] modified their 

original formulation to include the influence of strain path changes on the FLC of the 

vacuum-degassed, interstitial-free (VDIF) steel sheets. The proposed model was verified 

against experimental FLC data that were generated for nonlinear loading paths. They 

demonstrated that a damage-based model can accurately predict FLC for nonlinear 

loading paths; their results showed that a plane-strain prestrain (in the range of 1ε = 0.02 - 

0.08) has no significant effect on the FLC of VDIF steel sheets. 

One of the most important deficiencies of these damage models is the very 

approximate way in which the void volume fraction and the constants in the stress/strain 

evolution laws are estimated. This is difficult to overcome, however, because the 

experimental measurement of void volume fraction is difficult, and even current 

measurement methods are still insufficiently precise to make reliable predictions of FLC 

based on microstructural damage. 

The physical damage mechanisms that take place at a microscopic scale and upon 

which these damage theories are developed can indeed be observed and modelled, but the 

direct extrapolation of microscopic behaviour to the macroscopic scale may not always 

be valid. Moreover, there are no straightforward experimental methods to accurately 

measure damage density in metals at the micro-scale which means that the options for 

improving damage-based models are somewhat limited and this method has not been 

verified experimentally in different sheet metals.  
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2.2.2. Bifurcation methods 

 
The approach known as the bifurcation or instability method determines when a 

localized neck will develop in a uniform sheet as a result of an applied load. The 

bifurcation method has been used since the 1950's and is essentially an analytical 

approach which directly predicts the limit strains without requiring a computationally-

expensive numerical simulation. Therefore, it is advantageous for use in the press shop. It 

is useful to distinguish between the different bifurcations-based methods and the 

following are some of the main models that have been used in sheet metal forming:  

• Swift's diffuse necking criterion 

• Bifurcation analysis with flow theory 

• Bifurcation analysis with vertex theory 

• Perturbation analysis 

 

2.2.2.1. Swift's diffuse neck instability criterion 
 

For the first time in 1952, Swift [2.10] predicted the onset of diffuse necking by 

developing an instability criterion based on the maximum load definition under 

proportional loading. He showed that the major limit strain in diffuse necking could be 

calculated as follow: 
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where, ρ is the strain ratio (ratio of the minor strain to the major strain). Swift's 

bifurcation method can cover the entire range of deformation modes typically 

encountered in sheet metal forming, which is between uniaxial tension (ρ =-0.5) and 

equibiaxial tension (ρ =1). Obviously, diffuse necks cannot be observed in deformed 

sheet metal components, therefore, the plastic limit strains predicted with Swift’s method 

are usually considered the onset of localized necking rather than diffuse necking. But it is 

evident that diffuse necking appears at lower strains than localized necking, therefore 
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limit strain results from Swift’s bifurcation approach will be conservative compared to 

strains measured experimentally in localized necks for negative strain ratios. It can be 

concluded that Swift’s method for FLC prediction only provides an approximate 

estimation of limit strains and is therefore not a reliable method for industrial 

applications. 

 

2.2.2.2. Bifurcation method with flow theory  
 

Bifurcation analysis began from the work of Hill (1952) [2.11], who assumed that 

once a discontinuity appears in the Cauchy stress and the velocity, this indicates the onset 

of failure. Hill then formulated the restrictions on the flow stress and the rate of work 

hardening in the growth of the localized neck. He developed a method that shows how a 

local neck starts in the zero-extension direction on sheet metal surface during uniform 

deformation and at instability condition the magnitude of plastic work decreases below 

the minimum value is required for uniform deformation along zero extension direction. 

According to Hill’s theory, the angle between the normal to the neck and the 

major strain direction is defined as: 

 

)(tan 1 ρθ −= −  (2.2) 

 

However, this equation only has a real solution when the minor strain is negative; that is 

for loading paths on the left hand side of the FLC. Therefore the drawback of this theory 

is that it cannot predict limiting strains on the right hand side of the FLC where minor 

strains are positive. But obviously, there are limits to the formability of sheets stretched 

in biaxial tension. 

When Hollomon power law ( n
ee Kεσ = ) is used to represent the relation between 

the effective stress and the effective strain, Hill’s theory predicts that the major in-plane 

limit strain will be: 
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Lee and Kobayashi (1975) [2.12] and Korhonen (1978) [2.13] combined Swift's 

instability method and Hill’s criterion. They recommended using Swift’s formulation to 

calculate the limit strain on the right side of the FLC where instability occurs with 

positive strain ratios, and Hill's analysis to calculate limit strains on the left side of the 

FLC where the strain ratio is negative.  

These researchers also investigated the influence of the strain path on the FLC 

and they observed that the onset of localized necking in nonlinear loading paths depends 

on the previous deformation history. The FLC can therefore be determined by calculating 

the accumulated effective plastic strain at every stage of deformation. They noticed that 

an equibiaxial prestrain improves sheet metal formability in the subsequent loading stage 

whereas a plane-strain prestrain has the opposite effect and decreases the amount of 

remaining formability. They also found that FLC prediction depends directly on the 

stress-strain relation and the anisotropy factor considered in theory. 

In other work, Hillier (1966) [2.14] and Negroni et a1. (1968) [2.15] 

independently studied the effects of changes in strain path on a sheet metal’s limit strains. 

They assumed that once the forces applied to the sheet metal reach a critical value, 

localized necking will appear and their work indeed confirmed the path dependency of 

limit strains. 

 

2.2.2.3. Bifurcation method with vertex theory 
 

Line (1971) [2.16] predicted the onset of a sharp vertex at the loading point on the 

yield locus of a polycrystalline material. His work was based on physical theories of 

plasticity which employ simple crystallographic slip models. The creation of vertices or 

corners on a yield locus during deformation has also been validated by the continuum 

theory of plasticity and has been confirmed by experimental studies conducted by Hecker 

(1976) [2.17]. In his experimental work, Hecker showed that a vertex on the yield surface 

can occur at the loading point and in the direction of the stress path. However it was not 
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possible to experimentally determine the shape of the vertex, and it still is not clear 

whether the vertex is a sharp point on the yield locus or if it is a rounded corner. 

Stören and Rice (1975) [2.18] developed a new bifurcation theory by using the J2 

deformation theory of plasticity, which is a vertex-based theory, to predict the FLC for 

the whole range of strain paths between uniaxial tension and equibiaxial tension. They 

supposed that localized necking will occur for each strain path when a corner appears on 

the yield locus at the forming limit. They also showed that on the left hand side of the 

FLC (i.e. for negative minor strains), the orientation of a local neck is not parallel with 

the zero-strain direction, but on the right hand side of the FLC (positive minor strains), 

the local neck is parallel with the minor strain direction. However, Stören and Rice had to 

employ a numerical method to obtain limit strains for loading paths with negative minor 

strains, because it was not possible to predict the neck orientation using bifurcation 

methods. 

For the sake of simplicity, if a local neck develops parallel with the minor strain 

direction (i.e. for a loading path with a positive minor strain), there is an analytical 

solution [2.18] to obtain the limit strains as a function of the strain ratio (ρ) and the strain 

hardening exponent (n) as follows: 
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These relationships yield acceptable limit strain predictions for the right hand side 

of the FLC of strain-rate insensitive materials, but underestimate the forming limits on 

the left side of the FLC. Therefore Equations (2.4) are not recommended for the 

prediction of FLC if it is to be used for a critical assessment of forming severity, 

particularly if the sheet material exhibits strain-rate sensitivity. 

Hutchinson and Neale (1978a) [2.19] employed the vertex theory with both the 

flow and deformation theories of plasticity to predict limit strains of sheet metals. Their 
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predictions were significantly better than previous predictions with the vertex method, 

but the predicted limit strains were still not sufficiently accurate for the left hand side of 

the FLC. 

Until the early 1980’s, vertex-based bifurcation analyses were all developed for 

linear loading paths; therefore they only can be employed in applications in which the 

loading paths are proportional. In order to investigate cases with nonlinear loading paths, 

Chu (1982) [2.20] extended the work of Stören and Rice (1975) [2.18]. Although his new 

method was limited to isotropic hardening, Chu succeeded in studying the effect of a 

prestrain on the FLC. In his prediction of limit strains, Chu observed that the stress state 

in the final forming stage is really the only factor that determines whether or not necking 

will take place. 

According to classical plasticity theory there is a corresponding equivalent strain 

state for every stress state, therefore it is reasonable to suppose that every sheet material 

has an effective limit strain, and regardless of the number of deformation stages, plastic 

instability will take place once the total effective strain reaches this critical value. This 

can be written as: 
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where εe
Limit denotes the effective limit strain of the sheet material when it is deformed to 

failure in a single forming stage without prior prestrain, and superscripts 1, 2, 3 … N 

indicate the order of successive forming stages. 

 

2.2.2.4. Perturbation analysis 
 

Perturbation analysis is another method of predicting plastic instability using the 

bifurcation method. In this method the sheet material is assumed to be homogeneous at 

the beginning of deformation. However after every increment of plastic deformation, a 

perturbation is considered to affect the homogeneous flow. The criterion employed in this 

method is based on the fact that the magnitude of the perturbation increases or decreases 

over time as deformation progresses. This concept was initially developed to study the 
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dynamics of flow in fluids, but it was adapted to the plastic flow in solids by researchers 

such as Zbib and Aifantis (1988) [2.21, 2.22]) in order to study shear bands and localized 

necking of sheet samples deformed in uniaxial tension. 

The concept of effective instability as a perturbation analysis was applied by 

Dudzinski and Molinari (1991) [2.23] and they were able to successfully predict FLC for 

sheet metal forming analysis. For each loading path they defined a critical value of the 

instability growth rate as an indication of the onset of localized necking which in turn 

corresponds with a point on the FLC. The effective instability approach is somewhat 

similar to the MK method that was briefly introduced in the previous chapter: in the 

effective instability method there is an instability intensity factor, similar to the initial 

geometric non-uniformity factor in the MK analysis. And in each case, the factor 

increases with deformation until it reaches a critical value, and instability occurs. The 

accuracy of the perturbation method was later improved by Toth, Dudzinski and Molinari 

(1996) [2.24] who employed the viscoplastic crystallographic slip theory with Taylor's 

strain compatibility assumption. The FLC was then predicted for aluminum sheets. 

In brief, if the bifurcation method is selected to predict the FLC of metal sheets, it 

is recommended that Hill’s flow bifurcation theory be used for the right hand side of the 

FLC and Stören-Rice’s bifurcation method for the left hand side of the FLC. 

 

2.2.3. Marciniak and Kuczynski method 

 

The MK method was developed by Marciniak and Kuczynski in 1967 [2.3], and is 

no doubt the most common theoretical approach for calculating the FLC of sheet 

materials. In recent years it has been used by several researchers, such as Yoshida, 

Kuwabara and Kuroda (2007) [2.25], Butuc (2007) [2.26], Nurcheshmeh and Green 

(2011) [2.27, 2.28] and others. The MK approach assumes a sheet material is initially 

inhomogeneous due to, for instance, a non-uniform distribution of micro-voids or the 

roughness at the surface of the sheet. Marciniak and Kuczynski [2.3] modelled this 

inhomogeneity in a sheet specimen as a geometric defect in the form of a narrow band 

with a reduced thickness. Figure 2.2 shows a schematic of the MK model in which the 

imperfection band is designated as region “b”, and region “a” is the area outside the 
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band. This pre-existent defect could be any combination of geometric and material non-

uniformities, but the most common approach is to model the initial imperfection as a 

variation in sheet thickness. In their original study, Marciniak & Kuczynski actually 

machined shallow grooves into sheet specimens that were then stretched to failure in 

equibiaxial tension; they observed that there is no reduction in the forming limit strain 

when the thickness ratio of the groove to the nominal area is 0.990<( ab tt 00 )<1.000.  

 

 
Figure 2.2. Schematic of the MK model with a thickness imperfection in the sheet 

 

In order to predict the onset of necking, the MK model of a sheet is subjected to a 

uniform, proportional state of stress. As plastic deformation proceeds, the major strain in 

the band becomes increasingly greater than in the rest of the sheet. Consequently, the 

thickness ratio ( ab tt ) decreases until, eventually, a localized neck is formed. 

Throughout the deformation it is assumed that the strain component in the neck direction 

in the imperfection band is always the same as the corresponding strain outside the 

groove. 

 

b
tt

a
tt dd εε =  (2.6) 
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Furthermore, the equilibrium of the normal and shear forces across the 

imperfection are also maintained throughout the deformation, i.e.: 

 

b
nn

a
nn FF =  (2.7a) 

b
nt

a
nt FF =  (2.7b) 

 

where subscripts n and t denote the normal and tangential directions of the groove, 

respectively, and F is the force per unit width, i.e.: 

 

aa
nn

a
nn tF σ=  (2.8a) 

bb
nn

b
nn tF σ=  (2.8b) 

aa
nt

a
nt tF σ=  (2.8c) 
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b
nt tF σ=  (2.8d) 

 

Although the strain ratio ( 12 εερ ddd = ) outside the groove remains constant 

during the deformation, it actually decreases inside the groove until it eventually 

approaches plane-strain deformation ( bb dd 12 εε = 0). At this stage, the principal strains 

outside the groove are identified as the limit strains for this material under the 

corresponding deformation mode.  

As was already mentioned, the initial inhomogeneity is generally modelled as a 

local thickness variation, which may in fact originate from the surface roughness of the 

sheet as a result of the cold rolling process. When the material inhomogeneity is thus 

modelled as a geometrical thickness variation, the physical problem is thereby simplified 

to a single dimension. Because of the plane-stress assumption, the stress and strain 

increments inside the neck can be solved directly in terms of the strain increments 

prescribed outside the neck. The original analysis proposed by Marciniak and Kuczynski 
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only modelled biaxial stretching (i.e. positive major and minor strains), however their 

approach has since been used extensively to predict both the left and right sides of the 

FLC. This method is now commonly referred to as the MK method. 

Azrin and Backofen (1970) [2.29] subjected a large number of sheet materials to 

in-plane stretching. They discovered that a thickness ratio 97.00 ≤= ab ttf  was required 

to obtain agreement between the MK analysis and the experiments. However, grooves of 

this size cannot be detected with the naked eye. Accordingly, even though the MK 

analysis is a simple and elegant way to model the development of a local neck, there was 

an inconsistency between its predictions and the experimental data. Similar trends have 

also been observed by Sowerby and Duncan (1971) [2.30], as well as by Marciniak et al. 

(1973) [2.4]. In addition, Sowerby and Duncan also found that the MK predictions of 

limit strains are very dependent on material anisotropy. 

Ghosh (1977) [2.31] found that strain-rate sensitivity becomes important after the 

ultimate tensile stress of the material has been reached. The additional hardening effect 

due to strain rate sensitivity plays a significant role in increasing the forming limits by 

preventing an overly rapid concentration of strains inside the neck. 

Ghosh (1978) [2.32] also found that the MK method tends to predict very high 

limit strains for strain states near balanced biaxial tension. In other words, the MK 

method under-predicts the limit strains near plane-strain deformation, but over-predicts 

them in balanced biaxial stretching. 

The effects of different types of initial non-uniformity on FLCs have been 

examined by several authors (Van Minh, et a1 (1975) [2.33]; Yamaguchi and Mellor, 

(1976) [2.34]). Tadros and Mellor (1975) [2.35] proposed that a local neck does not start 

at the beginning of the deformation but at the point of instability defined by Swift. They 

also carried out experiments (Tadros and Mellor. 1978) [2.36] which showed that no 

significant necking occurs up to the Swift instability. 

Even though the MK method was initially applied only to the region where both 

strain components are positive, (because the orientation of the initial imperfection was 

assumed to be in the minor strain direction, and it is thus impossible to obtain a different 

critical strain), their approach led to very significant developments in the prediction of 

FLCs. Further detailed analyses based on the MK method were numerically carried out 
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by Hutchinson and Neale (1978) [2.19] where the entire FLC was predicted. In their 

analysis, they allowed the initial imperfection to have different orientations, and obtained 

the minimum critical strains. Their work has made important contributions to gaining 

insight into the effects of constitutive equations and plasticity theories on FLCs. 

Following the pioneering work of the above mentioned authors, the MK method has been 

adopted by other researchers. The sources of disagreement between the calculated and 

observed FLCs have been identified and studied in detail, resulting in refined models 

leading to more reasonable quantitative correlations between analytical and experimental 

limit strains. 

More recently, Friedman and Pan (2000) [2.37] introduced an angle parameter 

based on the point on the yield surface defined by the initial strain path and that of plane-

strain. Since this parameter denotes the extent of deformation change from a particular 

loading path to plane-strain, it can be used to predict the effects of yield surface on limit 

strains. 

In a typical MK analysis, the computations of stress and strain in regions “a” and 

“b” are carried out independently, and the connection between them is realized through 

the MK conditions: force equilibrium and geometrical compatibility. Small increments of 

equivalent strain are imposed in the homogeneous region (region “a”). Through the 

theory of plasticity, the stress and strain states in the homogeneous zone are computed. In 

order to define the strain and stress states in the heterogeneous band (region “b”), 

numerical methods can be used to solve the final differential equation obtained by the 

yield criterion and the strain compatibility requirement in tangential direction of the 

imperfection band.  

In the MK analysis local necking is reached when the effective strain increment in 

the groove becomes more than ten times greater than that in the homogeneous region: i.e. 

ab dd εε 10≥ . When this necking criterion is reached, the computation terminates and the 

corresponding strains ),( 21
aa εε  and stresses ),( 21

aa σσ  accumulated at that moment in the 

homogeneous zone represent the limit strains and limit stresses, respectively. The 

analysis can be repeated for different initial orientations ( oφ ) of the groove in the range 

between 0o and 45o and the forming limit can be obtained after minimizing the a
1ε  versus 
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oφ  curve. The same calculation is then repeated for each individual strain path from 

uniaxial tension ( 5.0−=ρ ) to balanced biaxial tension ( 0.1+=ρ ), and the FLC is 

defined by connecting the limit strain data across the entire range of strain paths. This 

calculation procedure is presented in the form of a flow chart in Figure 2.3. 

In predictions of the FLC for nonlinear loading paths, the loading is simulated as 

two successive deformation stages involving a first prestrain in the homogeneous zone 

followed by loading along a different strain path as follows: 

 

1ρρ =  for ∗< εε  (stage 1) (2.9a) 

 

2ρρ =  for ∗> εε  (stage 2) (2.9b) 

 

where 1ρ  and 2ρ  represent the two different strain paths that are imposed and ∗ε  is the 

effective prestrain value. The simulation of nonlinear loading paths can also be extended 

to a series of successive linear strain paths. 

It is worth underlining the fact that the MK analysis is able to calculate the stress-

based forming limit curve (SFLC) at the same time as the strain FLC. Indeed, both the 

stress state and the strain state, inside and outside the imperfection band, are calculated 

after each load increment. A typical MK analysis code consists of a main program where 

the loading is applied, equilibrium and compatibility conditions are prescribed and stress 

and strain are calculated with the help of subroutines where the yield condition, the work 

hardening law and the constitutive equations are defined. The general structure of a MK 

analysis code is shown in the flow chart in Figure 2.3 [2.26]. 
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Figure 2.3. Code structure to predict FLC and SFLC [2.26] 

 

2.3. Stress-based forming limit curve (SFLC) 

 
The FLC remains a useful approach for evaluating the severity of sheet metal 

forming processes, however, the observed dependence of the FLC on strain path changes 

limits its applicability to linear or quasi-linear loading paths. The path-dependence of the 
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FLC is a real concern to designers of industrial sheet metal products, since a change in 

strain path during the forming process can lead to a significant translation of the FLC in 

strain space, which then renders the as-received FLC unreliable. 

Kleemola and Pelkkikangas (1977) [2.38] discussed the limitations of the FLC in 

the case of copper, brass and steel sheets formed in a deep-drawing operation followed by 

a flanging operation. They observed significant variability of the FLC after this two-stage 

forming process and the resulting nonlinear strain paths, and recommended the use of a 

stress-based forming limit curve (SFLC) as an alternative to the FLC. They also provided 

experimental data that showed the path independence of the stress-based forming limit 

curves for these alloys.  

Arrieux et al. (1982) [2.39] also pointed out the non-uniqueness of the FLC after 

nonlinear loading cases and again proposed the use of a stress-based forming limit curve 

in applications where there is more than one loading stage.  

Graf and Hosford (1993) [2.40-2.41], showed theoretically and experimentally 

that strain based FLC translates in strain space significantly due to nonlinear loading 

path. They studied different preloading paths effects on FLC path dependency including 

uniaxial, plane-strain and equibiaxial prestrains in aluminum alloys. 

Despite the great significance of these observations, the evaluation of formability in 

stress space never really gained widespread attention nor was it employed for formability 

evaluation till the turn of the century. Several factors contributed to the slow adoption of 

the SFLC. Perhaps the first reason is that the stamping process leads to essentially linear 

loading paths for approximately 80% of industrial sheet metal parts and therefore the 

strain-path dependence of the FLC was not widely recognized. A second reason is that, the 

results of finite element simulations of metal forming processes were not as reliable as they 

are today and the predicted stress states in formed parts were not considered reliable. 

Finally the main obstacle to the widespread implementation of the SFLC is the prohibitive 

cost and inaccessibility of experimental stress measurements in the metal forming industry. 

Therefore press shops continued to measure the strains in stamped parts and to evaluate the 

measured strains against the well-known FLC [2.42- 2.43].  

Today, the situation is very different and the reasons for avoiding the use of the 

SFLC to evaluate formability are, for the most part, no longer applicable. Indeed, an 
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increasing number of metal forming processes are now being manufactured with multiple 

successive operations which can generate complex nonlinear loading paths, and in such 

cases it is not appropriate to use the as-received FLC for formability evaluation. For 

instance, there has been an increased use of tubular hydroformed components in vehicle 

structures since the early 1990’s and these thin-walled tubes are typically bent prior to 

being hydroformed. The tube-bending operation leads to very severe prestrains and the 

subsequent hydroforming can cause strain paths that are drastically different from the 

prestrain path; it would be practically impossible to reliably evaluate the forming severity 

of such parts with the conventional FLC.  

Secondly, FE analysis software is now used extensively by manufacturers to 

design parts, forming tools and the forming process. And since the predictions of 

numerical simulations have become so much more accurate (due to the increasing 

accuracy of constitutive models as well as the increase in expertise and experience of 

simulation analysts) it is now straightforward to evaluate the forming severity in a virtual 

part and to assess the robustness of the proposed forming process by comparing the 

predicted stresses to the SFLC.  

Finally, since many critical mechanical responses are dependent on the stress state 

[2.42], such as plastic yielding, wrinkling and buckling it does seem appropriate to also 

evaluate the onset of plastic instability on the basis of the stress state rather than the strain 

state.  

Similar to the FLC, the SFLC divides the principal stress space into a safe zone 

and failure zone (Figure 2.4). And the assessment of forming severity is carried out in the 

same way as it is with the FLC, by modifying the design of the part or of the forming 

process until all stress data in the virtual part lie safely beneath the SFLC. 
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Figure 2.4. Typical stress-based forming limit curve (SFLC) 

 

Stoughton [2.42, 2.44] showed that the SFLC is almost path-independent and his 

investigation indicated that formability situation can be evaluated accurately using a 

combination of the SFLC and finite element simulation, not only for proportional loading 

but also in cases where a sheet element has a complex strain history. According to the 

Stoughton method while it is still difficult to experimentally determine the SFLC, it can 

be easily determined from the as-received FLC; hence predicting the FLC is still useful. 

In 2005, Yoshida et al. [2.45] performed biaxial tension tests on an aluminum 

alloy tubes utilizing a tension–internal pressure testing machine to verify the path-

independence of forming limit stress. They confirmed that the forming limit stresses are 

path-independent. Yoshida et al. [2.25] subsequently calculated the forming limit stresses 

for a variety of two-stage combined stress paths using the Marciniak and Kuczynski 

(MK) model [2.3] based on a phenomenological plasticity theory to clarify the 

mechanism behind the path-independent SFLC. In this work they confirmed the 

experimental observations of Yoshida et al. [2.45]. Again, Yoshida et al. [2.46] 

investigated the path dependency of the SFLC using different work hardening models. 



 29

They concluded that the path dependency of SFLC depends on the stress-strain behaviour 

during subsequent loading stages. Their work shows that SFLC is only path independent 

when the work hardening behaviour remains unchanged with a change of strain path. 

In order to take advantage of the path-independence of the SFLC in a prototype 

shop or a manufacturing plant, it is possible to predict the FLC from the SFLC once the 

strain path in a given location of a part is known [2.47]. 

2.4. Strain-hardening law 

In general, materials can be categorized in three different classes, depending upon 

the way their strength evolves with deformation [2.48]:  

a- Strain-hardening materials 

b- Perfectly-plastic materials 

c- Strain-softening materials 

The majority of metals and their alloys usually exhibit strain-hardening (or work-

hardening) which signifies that increasing levels of stress are required to achieve further 

deformation. In contrast, geotechnical materials typically show evidence of strain-

softening. Strain hardening materials are stable. In 1951, Drucker [2.49] introduced a new 

classification of materials which is known as Drucker’s postulate. The mathematical 

framework for describing the plastic behaviour of metals depends on Drucker’s postulate. 

Drucker defined the condition for a stable plastic material. According to his 

postulate, a deformable solid object subjected to the boundary tractions ti causes some 

displacements ui. Tractions changing into ti+∆ti will induce increased displacements ∆ui. 

To satisfy the stability condition of material according to Drucker’s rule, the work done 

by the tractions ∆ti through the displacements ∆ui should be zero or positive for all ∆ti. 

As a result of this theory, every stable plastic material should possess a convex yield 

surface, the plastic strain rate should be normal to the yield surface which indicates 

associated flow rule, and the strain hardening rate should be positive or zero. As an extra 

requirement for materials to obey Drucker’s postulate, the principle of maximum plastic 

resistance should be satisfied in order to be considered a stable material. 

The strain-hardening phenomena that are observed in most metals can be 

formulated as hardening rules that describe how the stress state evolves with plastic 
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deformation. As a result of experimental studies conducted by many researchers for well 

over a century, it is now well known that the yield locus may undergo a combination of 

expansion, translation, distortion, and rotation as a result of plastic deformation. In this 

section, the most common hardening rules used in the numerical simulation of metal 

forming processes will be reviewed: isotropic hardening (when the yield surface simply 

expands uniformly), kinematic hardening (when the yield surface merely translates in 

stress space) and mixed isotropic-kinematic hardening (when the yield surface expands 

and translates).  

 

2.4.1. Isotropic hardening 

 

Strain-hardening is called isotropic hardening when the initial yield surface 

expands uniformly in all directions in stress space during plastic deformation. Isotropic 

hardening is illustrated in Figure 2.5(a).  

 

 
Figure 2.5. (a)- Isotropic hardening (b) Schematic equivalent stress-strain curve [2.48]  

 

In isotropic hardening, the yield function can be defined as: 

 

( ) 2Yf ij =σ  (2.10) 
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where Y denotes the yield stress of the material. Y also represents the radius of the yield 

locus. As the magnitude of Y increases, the yield locus expands in all directions. Y can be 

expressed as a function of strain hardening quantities such as the plastic work per unit 

volume or the equivalent incremental plastic strain [2.48]. The plastic work per unit 

volume is defined as: 

  

∫ ∫== pp
ijij

p ddW εσεσ  (2.11) 

 

and the equivalent plastic strain increment is determined as: 

 

( ) 5.0
3/2 p

ij
p
ij

p ddd εεε =  (2.12) 

 

and the equivalent stress for an isotropic (von Mises) material is defined as: 

 

( ) 5.02/3 ijij SS=σ  (2.13) 

 

where, Sij represents the deviatoric stress tensor.  

The isotropic hardening rule is very simple to implement in a numerical 

simulation code and has been used extensively to describe the work hardening behaviour 

of sheet metal components. However, it does not accurately represent the behaviour that 

is observed in many metals, because it over-predicts the yield stress in reverse loading. 

 

2.4.2. Kinematic hardening 

 

According to the rule of isotropic hardening, the elastic region becomes 

increasingly larger as plastic deformation progresses and the yield stress in reverse 

loading is the same as the flow stress after the first loading. However, this is often not the 

behaviour that is observed experimentally. In fact in many metals, the yield stress in 

reverse loading is actually much smaller than what would be expected: this is called the 

Bauschinger effect. In order to more accurately model the Bauschinger effect, Prager 
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[2.50] introduced the kinematic strain hardening rule for the first time in 1956. Kinematic 

hardening signifies that the yield surface can translate in stress space without any rotation 

or expansion, and therefore the shape and size of the yield surface remains unchanged 

with plastic deformation. Later, Hodge [2.51] showed how this rule should be applied in 

nine-dimensional stress space. 

The initial yield surface in nine-dimensional stress space can be defined as: 

 

0)( =ijf σ  (2.14) 

 

and with the kinematic hardening rule subsequent yield surfaces can be described by: 

 

0)( =− ijijf ασ  (2.15) 

 

where αij is a kinematic hardening indicator that represents the translation of the centre of 

the initial yield locus; αij is called the back stress tensor. 

 If the von Mises yield function for isotropic materials is used, the yield function can be 

written as: 

 

22))(( Kss ijijijij =−− αα  (2.16) 

 

where K2 =1/3Y2. In order to define the evolution of the back stress tensor αij in stress 

space, Prager [2.50] proposed a linear relationship with the plastic strain increment such 

that: 

 

p
ijij cdd εα =  (2.17) 

 

where c is a material constant that can be determined by fitting the theoretical stress-

strain curve to the experimental one. In 1959, Ziegler [2.52] modified Prager’s definition 

of the back stress tensor in the following way:  
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0,)( >−= µασµα ddd ijijij  (2.18) 

 

where dµ is a material parameter. 

The limitation of the linear kinematic hardening rule is that it is only valid for 

materials with a bilinear stress-strain curve in loading and reverse loading; however, most 

metallic materials exhibit nonlinear stress-strain behaviour. The combination of non-

linear stress-strain relation and linear kinematic hardening leads to behaviour in reverse 

loading that has never been observed (Figure 2.6(a)). Therefore the linear kinematic 

hardening rule gives an incorrect prediction of work hardening for materials with 

nonlinear stress-strain curve. 

 

 
Figure 2.6. Schematic linear kinematic hardening of materials with (a) nonlinear stress-strain curve 

(b) bilinear stress-strain curve [2.48] 
 

In Figure 2.6(b), the effect of the linear kinematic hardening rule is shown in 

terms of the loading and reverse loading behaviour of a material with a bilinear stress-

strain curve. Y is the initial yield stress and h is a material parameter that represents the 

slope of the stress-strain curve and at the same time it shows linear kinematic hardening 

effect. In this case, linear kinematic hardening can be simply defined as: 

 

phdd εα =  (2.19) 
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If we consider the case of uniaxial loading, the back stress increment will be as: 
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Considering Equation 2.17, we have: 

 

pcdd εα =3/2  (2.21) 

 

And using Equations 2.19 and 2.21 the expression for h becomes: 

 

h=3/2c (2.22) 

 

Therefore, the stress-strain curve formula in loading is: 

 

phY εσ +=  (2.23) 

 

Finally the definition of the yield function for materials with nonlinear loading curves is: 

 

2)( Yf ijij =−ασ  (2.24) 

 

2.4.3. Mixed Hardening 

 

In order to overcome the limitations of the isotropic and kinematic hardening 

rules, Hodge [2.51] proposed a combination of both hardening laws in 1957. This mixed 

hardening rule allows the yield locus to expand uniformly and to translate in stress space 

at the same time. Yield surface translation was defined by the back stress tensor αij, and 
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the variation of K describes its expansion. Therefore, factors Y and αij are not constant in 

the case of combined isotropic–kinematic hardening in Equation 2.24. 

For the same reason that the linear kinematic hardening rule is not suitable to 

predict the behaviour of metals subjected to reverse loading, the combined isotropic-

linear kinematic-hardening rule is also not able to predict this type of behaviour. 

Therefore the kinematic portion of the mixed hardening rule requires some modification. 

In 1966, Armstrong and Frederick [2.53] proposed a nonlinear kinematic hardening rule 

in which the back stress tensor is defined as follows: 

 

p
ij

p
ijij dcdd εγαεα −= 3/2  (2.25) 

 

where c and γ are material constants that can be obtained by fitting the predicted stress-

strain curve to the experimental data. This nonlinear relation has gained much popularity 

and is now widely used in numerical simulations of metal forming processes, particularly 

when seeking to predict the springback after a forming operation. 

 

2.5. Methodology 

In this research the MK method was selected as the basic approach for predicting 

the FLC and SFLC of sheet metals. However, in order to improve the accuracy and 

robustness of the MK method, several additions and enhancements are proposed. These 

various improvements will now be presented one by one. 

 

2.5.1. Definition of the imperfection factor 

 

One of the main drawbacks of the conventional MK approach is the somewhat 

arbitrary determination of the initial imperfection factor ( ab ttf 000 = ). Indeed, the 

predicted forming limits are very sensitive to the value selected for this factor and, in 

many cases, it has simply become an adjustment factor to fit theoretical results to known 

experimental data. In order to overcome this deficiency, it is proposed that the thickness 
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imperfection be correlated to an actual, measurable source of heterogeneity such as the 

surface roughness of the as-received sheet. By adopting a definition of the initial 

imperfection that is based on a physical parameter, the MK method will no longer be 

dependent on the subjective and arbitrary selection of “the best fitting factor”, and it will 

be easier to determine which constitutive parameters are most significant for predicting 

the onset of plastic instability. 

 

2.5.2. Orientation of the imperfection band 

 

Another assumption made in the original MK analysis was to consider the 

imperfection band to be perpendicular to the maximum principal stress direction, but in 

general, this band could be oriented in any direction with respect to the principal loading 

axes (Figure 2.2). In the current work, just as other researchers have done, the 

imperfection band will be made to rotate in small increments relative to the principal 

loading axes so that the most critical orientation can be determined at every stage of 

deformation and for each strain path. This feature is considered essential for the accurate 

prediction of the FLC. 

 

2.5.3. Extend calculations for multi-stage loading 

 

As mentioned already, many industrial sheet forming processes inherently cause 

the sheet metal or the thin-walled tube to deform along nonlinear strain paths. During 

multi-stage forming processes the loading path can even change abruptly from one 

direction to another in strain space. Since the FLC is strongly path dependent, the as-

received FLC (generated by experiments in which the strain paths are quasi-linear) is not 

valid in most cases for formability evaluation. It is therefore necessary that a numerical 

code for predicting FLC be able to determine the onset of plastic instability for any 

random, nonlinear loading path that might be encountered in an actual forming process. 

This ability to model nonlinear load paths will initially be implemented as a bilinear 
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strain path, knowing that this can easily be extended to multi-linear strain paths which are 

in fact a reasonable approximation of nonlinear strain paths. 

 

2.5.4. Investigation on the path dependency of SFLC 

 

Due to the considerable strain-path dependency of FLC, it may be questionable 

whether the FLC should even be utilized as a formability evaluation tool in the case of 

forming processes involving complex loading paths. Even in a virtual forming process, 

where each integration point in the FE model can follow a different loading path, the FLC 

at each point may be sufficiently different one from the other that it becomes practically 

unmanageable to carry out an evaluation of forming severity. One of the best ways to 

overcome this challenge is to consider forming limits in stress space rather than strain 

space. Experimental investigations on the SFLC have shown that it is almost path-

independent in many cases of nonlinear loading, however further research is needed to 

determine the extent and limitations of this quasi path-independence. The current work will 

therefore ensure that the MK analysis is able to calculate both stress-based and strain-based 

FLC simultaneously, so that the purported strain-path independence of SFLC can be 

investigated. 

 

2.5.5. Hardening rules 

 

The prediction of FLC using the MK analysis is based on the classical continuum 

theory of plasticity. As such, a yield criterion, a hardening law and a flow rule must be 

used to establish the constitutive equations required in the analysis. However, the 

influence of the hardening model on the prediction of FLC has never been investigated 

broadly. Isotropic hardening is the simplest and most widely used strain hardening rule 

and it is well suited to predict the outcome of metal forming processes involving 

monotonic loading. Therefore it has been always been used in the MK analysis. 

As discussed in section 2.4, both linear and nonlinear kinematic hardening models 

have also been proposed in order to model the Bauschinger effect when the forming 
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process involves unloading, reverse loading or cyclic loading. However, under complex 

loading histories, some discrepancies still exist between actual material behaviour and 

that predicted by these purely kinematic models. So it is now common to combine both 

isotropic and nonlinear kinematic hardening models in plasticity calculations to obtain 

results that are closer to the actual hardening behaviour of metals. 

 

 
Figure 2.7. Schematic plot of stress-strain behaviour under (A) isotropic or kinematic hardening 

under proportional loading and (B) isotropic hardening following unloading and reloading under a 
different loading condition, and (C) kinematic hardening following unloading and reloading under a 

different loading condition. [2.44] 
 

Until now, the effects of the hardening rules on FLC have not been systematically 

investigated. Moreover, many common grades of steel deformed in a process that 

involves loading, unloading and reloading will exhibit a transient yielding behaviour 

upon reloading (path C in Figure 2.7) [2.44]. This transient behaviour can only be 

accurately predicted with a nonlinear kinematic hardening law. Therefore, it seems 

essential to implement different work hardening models into the MK analysis to 

investigate the effect of the hardening law on the FLC, when the metal is subject to such 
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nonlinear loading paths. First, isotropic hardening will be considered to determine the 

FLC in cases involving loading, unloading and reloading along a different strain path. 

Secondly, FLCs will be predicted with the mixed isotropic - nonlinear kinematic 

hardening model proposed by Armstrong-Frederick [2.53] and later by Chaboche [2.54].  

 

2.5.6. Yield function effect 

 

In classical plasticity theory, the yield function, which is generally assumed to 

take the same form as the plastic potential function (associated flow rule), plays a very 

important role. It defines not only the direction of the plastic strain increments via the 

flow rule, but also the material anisotropy and rigidity by its variation during plastic 

deformation. 

Because of its simplicity and good accuracy, Hill’s 1948 yield criterion [2.55] has 

been widely used to predict the behaviour of orthotropic steel sheets. This quadratic yield 

function only requires a limited number of mechanical properties to determine the shape 

of the yield locus: under plane-stress conditions, only three parameters are sufficient, 

namely the plastic anisotropy coefficients in the rolling (R0) and transverse (R90) 

directions and the yield stress in uniaxial tension in either the rolling direction (σ0) or in 

the transverse direction (σ90). 

Throughout the present research Hill’s 1948 yield criterion [2.55] was used to 

describe material anisotropy and to predict forming limits. However, in spite of its 

widespread usage, Hill’s 1948 yield criterion also has some drawbacks which will be 

discussed in more detail in chapter 6, but not the least of which is its inability to describe 

the behaviour of aluminum alloys. In such cases, a non-quadratic yield criterion is more 

suitable than Hill’s first yield criterion. Therefore Hosford’s 1979 non-quadratic yield 

function [2.56] will also be implemented in the MK analysis to investigate the effect of 

the yield function on the FLC. 
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2.5.7. Through-thickness stress component effect 

 

Forming limit diagrams were initially developed to determine the conditions under 

which plastic instability would occur in thin metal sheets. Therefore, predictions of the 

FLC have generally assumed plane-stress conditions and the through-thickness stress 

component has been neglected in the calculations. Plane stress conditions certainly pertain 

in traditional stamping operations, but in many metal forming processes today, very 

significant through-thickness stresses can be generated. For instance, when sheet steels 

with increasingly high tensile strengths are formed over a die radius, the contact forces at 

the interface between the sheet and the die radius can lead to through-thickness stresses that 

are no longer negligible. Similarly, when hydroforming thin-walled tubes the internal fluid 

pressure can generate very significant through-thickness stresses in the tube wall in the 

areas of contact with the die. Some studies have been done to consider the effect of the 

third principal stress on the formability of sheet metals (Gotoh et al. [2.57], Smith et al. 

[2.58]) and these works show that the through-thickness compressive stress component has 

the potential to delay the onset of necking and thereby raise the level of the FLC.  

In this research, the influence of the out-of-plane stress component on the FLC 

will be investigated. Additionally, the effect of sheet material properties on the sensitivity 

of the FLC to the applied out-of-plane stress component will also be studied: for instance, 

this study will consider how the sensitivity of the FLC to the through-thickness stress 

may vary for sheet materials with different strain hardening coefficients (n), a different 

strain rate sensitivity (m) or a different initial sheet thickness (t0). 

Following the implementation of these various features into a numerical MK 

analysis code, it is expected that it will be possible to predict FLCs and SFLCs more 

accurately and reliably than it was possible until now. 
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Chapter 3 

Investigation on the strain-path dependency of stress-based 

forming limit curves 

 

3.1. Introduction 

 

The formability of sheet metals is commonly evaluated using a forming limit 

curve (FLC), a curve in principal strain space that defines a boundary between 

combinations of strain that lead to a part that is free of necks and those that present a risk 

of necking and splitting. The concept of the FLC was initially developed by Keeler and 

Backhofen [3.3] and Goodwin [3.4] and provides a useful empirical gauge of forming 

severity in the absence of a visible neck or split. The shape and location of the forming 

limit curve (FLC) in principal strain space are a characteristic of the metal that is 

independent of the forming process or work piece geometry. Forming limit curves are 

determined experimentally by conducting hemispherical punch stretching tests up to the 

onset of necking on gridded blanks. The experimental testing and grid strain 

measurement procedure is costly, time-consuming and requires both experience and care 

in order to determine accurate forming limits. Therefore many researchers have sought to 

better predict the forming limits of sheet materials. 
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The most common analytical approach for the prediction of FLCs have generally 

relied on the continuum theory of plasticity, which includes a yield criterion, a flow or 

hardening rule and an instability criterion [3.5]. In recent years, however, various aspects 

of the microstructure have been incorporated into the theoretical methods to improve 

their predictive capability [3.6-3.8]. In a metal sheet, failure by splitting usually occurs 

when the local thickness strain reaches a critical value, such that the sheet has thinned 

significantly and can no longer sustain the imposed in-plane tensile stresses. The 

theoretical estimation of the limit strain, which is the largest strain produced in the 

neighborhood of a neck before failure, is evidently an extremely difficult proposition 

when all of the relevant parameters in the forming operation are duly taken into 

consideration. 

The influence of strain path changes on the FLC limits its applicability to 

processes in which the loading path is quasi linear; in other words, one in which the ratios 

of the plastic strains are approximately constant throughout the forming process. 

However, many industrial stampings of complex shapes involve multistage forming, and 

in such cases, the FLC is unreliable. Both the shape and the position of the FLC in strain 

space are dependent on the strain history, and this has been shown for all sheet materials 

including steel, copper and brass, as reported, for example, by Kleemola and 

Pelkkikangas [3.9]. 

Some researchers [3.10- 3.14] have proposed that the formability of sheet metals 

should be based on stress state rather than strain state. They constructed the stress 

forming limit curve (SFLC) by plotting the combinations of stress at the onset of 

localized necking. They found that the SFLC is almost path-independent. Moreover, if 

the path-dependence of the SFLC can be quantified, either experimentally or analytically, 

then the limits of formability will be predicted accurately using a combination of the 

SFLC and finite element simulation, not only for proportional loading but also in cases 

where a sheet element has a complex strain history [3.15- 3.17]. 

In 2005, Yoshida et al. [3.18] carried out biaxial tension tests on an aluminum 

alloy tube using a tension–internal pressure testing machine in order to verify the path-

independence of forming limit stress. They measured forming limit stresses, which are 

determined from the load, internal pressure and geometry measurements of the tube, for 



 48

many linear and combined stress paths and concluded that the forming limit stresses are 

path-independent. Yoshida et al. [3.19] subsequently calculated the forming limit stresses 

for a variety of two-stage combined stress paths using the Marciniak and Kuczynski 

(MK) model [3.20] based on a phenomenological plasticity theory with isotropic 

hardening in order to clarify the mechanism behind the path-independent SFLC. In this 

work they confirmed the experimental observations of Yoshida et al. [3.18] and 

Kuwabara et al. [3.21] that the work hardening behaviour of an aluminum alloy tube is 

well described by the isotropic hardening rule in conjunction with an appropriate 

anisotropic yield function and that the forming limit stresses of the aluminum alloy tube 

are almost path independent. 

Butuc et al. [3.22] performed a detailed experimental and theoretical study to 

validate the use of a stress-based forming limit curve. They considered different 

constitutive equations in conjunction with the MK theory, and investigated the influence 

of the hardening law and yield criterion on stress-based forming limit curves. These 

researchers concluded that the SFLC is independent of strain path and proposed a path-

induced anisotropic hardening model to better explain stress-based forming limit curves 

obtained under combined loading histories. 

Finally, Yoshida et al. [3.23] investigated the path dependency of the SFLC using 

different work hardening models. They concluded that the path dependency of SFLC is 

related to the stress-strain relation during the second loading stage. Their work shows that 

SFLC is only path independent when the work hardening behaviour remains unchanged 

with a change of strain path. 

In the present work, history-dependent forming limit curves were computed for 

sheet metals undergoing various combinations of plane-stress loading conditions. This 

paper presents a modified MK model for predicting SFLCs. Forming limit curves were 

calculated for AISI-1012 steel and AA-2008-T4 sheets and were compared with the 

corresponding experimental data [3.1- 3.2]. Finally, the path dependency of SFLCs based 

on different non-proportional loading histories was evaluated quantitatively. 
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3.2. Theoretical analysis 

 

3.2.1. Strain-based forming limit curves 
 

The stress-based forming limit curve represents the forming limit of a sheet 

material in terms of the in-plane principal stress components. The stress state cannot be 

measured directly on industrial parts but it can be calculated using appropriate 

constitutive equations. Knowing the experimental or predicted forming limits in strain 

space, the forming limit stresses can be computed using classical plasticity theory. In this 

work a modified MK model was used to predict the FLC. 

The MK analysis used in this work assumes a pre-existing thickness imperfection 

in the form of a groove inclined relative to the principal strain directions, as shown in 

Figure 3.1. In this model, the area of nominal thickness is designated by (a) and the 

weaker area is denoted by (b). 

 

 
Figure 3.1. Thickness imperfection in the MK method 

 

The physical basis for the MK analysis was well presented by McCarron et al. 

[3.24]. In their study, imperfections in the form of grooves were machined into samples 

made from two different steels and tested under equibiaxial stretching. It was found that 
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no reduction in the forming limit strain was observed for shallow grooves: i.e. when the 

imperfection factor f0 - the ratio of the thickness in the groove to the nominal thickness - 

was greater than 0.992. The imperfection factor represents the micro-structural defects 

that exist in the sheet material prior to deformation.  

In the current work, the initial imperfection factor of the groove, f0, is defined as 

the thickness ratio as follow: 
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where t denotes the sheet thickness, and subscript ‘0’ denotes the initial state. From 

consideration of Equation (3.1), it is possible to calculate an updated thickness 

imperfection as deformation progresses as below: 
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where ' 3ε ' denotes the true thickness strain. Considering Equation (3.2), it was 

considered that the imperfection factor changes with the deformation of the sheet. In 

order to estimate the initial value of the imperfection factor, it is reasonable to relate it to 

the surface roughness of the sheet. By supposing that the maximum thickness difference 

between regions (b) and (a) is equal to the surface roughness of the sheet, the initial 

imperfection factor can be written as follows: 
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where RZ is the maximum surface roughness of the sheet. 
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Research carried out by Stachowicz [3.25] shows that surface roughness also 

changes with deformation and these changes depend upon initial surface roughness, grain 

size, and strain, according to the following empirical relation: 
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where ' 0ZR ' is the surface roughness before deformation, C is a material constant, ε  is 

the effective strain, and 0d  is the initial grain size. Combining Equations (3.2), (3.3) and 

(3.4) yields:  
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As shown in Figure 3.1, the orientation θ  of the thickness imperfection with 

respect to the minor principal stress direction is considered in the analysis. Furthermore, 

the initial value of this angle at the start of the deformation can be arbitrarily selected, 

since it changes throughout the deformation; in other words, the angle θ between the 

imperfection and the principal direction is updated from an initial value θ0 at each 

increment of plastic deformation. Sing and Rao [3.26] showed that by considering 

uniform deformation, the rotation of the initial thickness imperfection can be expressed 

as a function of the strain increments in the nominal area (a) of the sheet as follows: 
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Where dε1
a and dε2

a are the major and minor principal strains in the nominal area of the 

sheet, respectively.  
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Sheet material is generally anisotropic, and it was assumed that the principal axes 

of anisotropy are coincident with the principal stress directions in the sheet. Hill’s 

quadratic yield function [3.27] was adopted to describe the sheet anisotropy, and for 

plane-stress conditions, this function can be written as: 

 

2222 22)()(2 xyyyxxyyxxe PHHFHGh σσσσσσ +−+++==  (3.7) 

 

where F, G, H and P are anisotropic constants that can be calculated by the following 

expressions [3.27]: 
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where 0R  and 90R  are the anisotropic coefficients in the rolling and transverse directions, 

respectively. 

The associated flow rule in the principal axes of orthotropic anisotropy is expressed in the 

form [3.28]: 
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Material work hardening is expressed in an equivalent form using Swift’s power 

law: 
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where eσ  and eε  are the effective stress and strain values, respectively. Moreover, it is 

assumed that the yield surface expands isotropically in stress space. 

The hardening law can also be expressed in differential form: 
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where 0ε  is a uniform prestrain applied to the sheet prior to the current forming process; 

m is the strain-rate sensitivity coefficient; and n is the strain-hardening coefficient. 

Considering the yield criterion and its associated flow rule, the strain path ρ  can be 

written as: 
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where α  is the ratio of principal stresses: 
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dε1, dε2, σ1 and σ2 are the principal strain increments and the principal stresses in the area 

of nominal thickness (i.e. in region (a) of the sheet). 

The basic compatibility equations for the MK analysis are: 
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where a
ttdε  and b

ttdε  denote the tangential strain increment to the groove in regions (a) 

and (b), respectively. The requirement of force equilibrium across the imperfection 

groove is written as: 
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where a
nnF  and b

nnF  denote the force per unit width in the direction normal to the groove 

in regions (a), and (b), respectively, and a
ntF  and b

ntF  are the shear forces per unit width 

in regions (a) and (b), respectively, i.e.: 
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Considering these MK equations, the governing equation of strain for each region 

can be determined. A biaxial stress state is imposed in the nominal area and causes 

development of strain increments in both the nominal area (a) and in the weaker area (b). 

Strain development in thinner region (b) is greater than in thicker region (a) and the 

difference in strain rate between both regions increases with deformation. The limiting 

strains due to necking are calculated numerically by a combination of the Newton-

Raphson and the (4th order) Runge-Kutta methods, with the assumption that necking 

occurs once the effective strain rate in the groove area reaches 10 times that in the 

nominal area; that is when dε b
e /dε a

e >10. The limiting values of ε1 and ε2 in area (a) were 
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determined for various linear strain paths ranging from 5.012 −== εερ to 1.0 and were 

plotted on the FLC. 

 

3.2.2. Stress-based forming limit curves 
 

In order to determine stress-based FLCs, the general method proposed by 

Stoughton [3.11] was employed to translate limit strains into limit stresses. If a prestrain 

leads to an initial strain state ),( 21 ii εε , and a secondary forming operation results in a final 

strain state ),( 21 ff εε , then the principal stresses at the end of the secondary stage are 

given by [3.13]: 
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The plasticity assumptions used in the MK analysis were also used to calculate 

parameters ( )ρα  and )(ρλ  and transform the forming limit curve into stress space; i.e. 

Hill’s quadratic yield function, the associated flow rule and Swift’s work hardening law. 

The related formulation is presented in appendix d of reference [3.13]. 

Equations (3.18) and (3.19) can be used to calculate the limit stresses for bilinear strain 

paths. These equations can also be employed to calculate the SFLC for the as-received 

state, and in this case there is no prestrain ( 021 == ii εε ). 
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3.3. Results 

 

3.3.1. Material characterization 
 

The materials considered throughout this investigation for model verification are a 

low carbon steel AISI-1012 [3.1] and AA-2008-T4 reported by Graf and Hosford [3.2]. 

Tables 3.1 and 3.2 present the anisotropy coefficients, the corresponding yield stresses 

and other related material properties for AISI-1012 and AA-2008-T4 alloys [3.1- 3.2], 

respectively. 

 

Table 3.1: Material properties of AISI-1012 low carbon steel [3.1] 
R0 R45 R90 F G H K (MPa) 

1.4 1.05 1.35 0.432 0.417 0.583 238 

n m d0 (µµµµ) RZ0 (µµµµm) C t0 (mm)  

0.30 0.01 25 6.5 0.104 2.5  

 

Table 3.2: Average mechanical properties of AA-2008-T4 [3.2] 
R0 R45 R90 F G H K (MPa) 

0.58 0.48 0.78 0.246 0.633 0.367 535 

n m d0 (µµµµ) RZ0 (µµµµm) C t0  (mm)  

0.27 -0.003 8* 2.5* 0.70* 1.7  

* Data determined by calibration 

 

 

As a result of Equations (3.3) and (3.4), the value of the initial imperfection factor 

in the MK analysis is f0 = 0.995 for AISI-1012 steel and f0 = 0.997 for AA-2008-T4 alloy. 

 

3.3.2. Validation of the MK model 
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The proposed MK model was used to calculate the FLC of as-received AISI-1012 

low carbon steel sheets, and Figure 3.2 shows the comparison between the theoretical 

results and the experimental FLC [3.1]. It can be seen that the predicted FLC is in good 

agreement with the experimental data for as-received AISI-1012. In order to validate the 

proposed MK model for bilinear strain paths, the predicted FLC for the AA-2008-T4 

alloy was calibrated to the experimental FLC in the as-received state by adjusting the 

values of C, d0, RZ0 (these material constants were not provided in [3.2]). The values of 

the material parameters determined by the calibration were C = 0.70, d0 = 8.00µm and 

RZ0 = 2.5µm. Then forming limit curves were calculated for two sets of bilinear strain 

paths for which experimental data were provided in [3.2]. First, FLCs were determined 

after 4 and 12 percent equibiaxial prestrains and secondly, FLCs were calculated after 5 

and 12 percent uniaxial prestrains. The predicted FLCs and the corresponding 

experimental FLCs for the AA-2008-T4 alloy [3.2] are shown in Figures 3.3 and 3.4. 
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Figure 3.2. Comparison of theoretical and experimental FLC AISI-1012 low carbon steel in the as-

received state 
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Figure 3.3. Theoretical and experimental FLCs of AA-2008-T4 with 4 and 12 percent equibiaxial 

prestrain after calibrating the MK model to the as-received FLC. 
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Figure 3.4. Theoretical and experimental FLCs of AA-2008-T4 with 5 and 12 percent uniaxial 

prestrain after calibrating the MK model to the as-received FLC. 
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As can be seen, the correlation between predicted and experimental FLC after 

bilinear strain paths is quite good for both sheet materials.  

 

3.3.3. Predicted FLCs for bilinear strain paths 
 

The theoretical MK model described in section 2 was used to compute FLC of 

AISI-1012 sheet material for a variety of non-linear strain histories that consisted of two 

successive loading stages. The first stage was 20 percent strain in each of the following 

modes: uniaxial tension, plane-strain tension, and equibiaxial tension. The second loading 

stage consisted of a set of strain paths ranging from uniaxial tension ( 5.0−=ρ ) to 

equibiaxial tension ( 00.1=ρ ) at increments 05.0=∆ρ in order to determine the 

complete FLC. Every bilinear strain-path was simulated with the MK model without 

unloading between the first and second loading stages, and three cases of prestrain will be 

discussed. 

Case 1: the FLC was determined after the sheet metal was virtually prestrained 0.20 in 

uniaxial tension along the rolling direction. The FLC predicted for this case is plotted in 

Figure 3.5 with the corresponding as-received FLC (also predicted with this MK model). 

Theoretical results in this FLC show that after uniaxial prestraining, the forming limit 

decreases somewhat for subsequent drawing operations (i.e. negative minor strains), but 

improves for stretch-forming operations (i.e. positive minor strains). Also, the plain-strain 

intercept of the FLC shifts slightly towards the negative minor strains. 

Case 2: In order to observe the effects of a prestrain in plane-strain, the FLC was 

calculated after the material was prestrained 0.20 in plane-strain along the sheet rolling 

direction. The influence of this prestrain is shown in Figure 3.6, where the as-received 

and prestrained FLCs are compared. It appears that after a prestrain in plane-strain, the 

forming limit increases for all deformation modes except plane-strain where the forming 

limit remains almost unchanged. It should be noted, however, that isotropic hardening 

was assumed in this MK model and an assumption of kinematic or mixed isotropic-

kinematic hardening may well lead to different conclusions. 
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Case 3: The FLC was computed after a 0.20 prestrain in equibiaxial tension. The effect 

of a prestrain in equibiaxial tension is shown in Figure 3.7, and it can be observed that the 

left hand side of the FLC shifts up significantly, but the plain-strain intercept of the FLC 

decreases and shifts towards the positive minor strains resulting in a decrease in 

formability for strain paths on the right side of the FLC. 

The strain-path dependency of the FLC can be evaluated by considering the various FLCs 

in Figure 3.8 for these three cases of prestrain. It is evident from this figure that the FLC 

is strongly path dependent as evidenced by the shape changes and significant translations 

of the FLCs in strain space for all prestrain modes. 
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Figure 3.5. Effect of 0.20 uniaxial prestrain on FLC for AISI-1012 steel 
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Figure 3.6. Effect of 0.20 plane-strain prestrain on FLC for AISI-1012 steel 
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Figure 3.7. Effect of 0.20 equibiaxial prestrain on FLC for AISI-1012 steel 
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Figure 3.8. Predicted FLCs after 0.20 prestrain in uniaxial tension, plane-strain tension, and 

equibiaxial tension for AISI-1012 steel 
 

3.3.4. Stress-based forming limit curves 
 

According to the investigations of Arrieux [3.10], Stoughton [3.13- 3.14] and 

other researchers [3.9, 3.11, 3.16], the most significant characteristic of stress-based 

forming limit curves (SFLC) is their strain-path independence. However, more recent 

experimental investigations by Yoshida et al. [3.18- 3.19] have pointed out that abrupt 

changes in strain path can lead to some path-dependency of the SFLC.  

In order to further investigate this path-dependence of SFLCs, the current MK 

model was used to predict the FLC of AISI-1012 steel sheets after a prestrain in either 

uniaxial tension or in equibiaxial tension. In addition, the FLC was computed in each 

case for values of effective prestrain 10.0=ε , 0.20 and 0.45. As mentioned in Section 

2.2, the theoretical SFLCs were obtained by using Stoughton’s method [3.13] to translate 

the limiting strains into stress space, using the same constitutive assumptions as in the 

MK model. In other words, for every FLC predicted using the current modified MK 
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analysis, a corresponding SFLC was also predicted. The stress-based forming limit curve 

of as-received AISI-1012 steel is shown in Figure 3.9.  
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Figure 3.9. Stress-based forming limit curve (SFLC) of as-received AISI-1012 steel 

 

Figure 3.10 demonstrates the effect of various levels of prestrain in uniaxial 

tension on the SFLC of AISI-1012 steel. It can be seen that the SFLCs obtained after an 

effective prestrain in uniaxial tension 10.0=ε and 20.0=ε are practically identical. 

However, the SFLC obtained after an effective prestrain 45.0=ε in uniaxial tension is 

significantly different than those obtained at lower levels of prestrain, with the greatest 

difference being in the mode of plane-strain. 

The final evaluation was carried out to determine the influence of the magnitude 

of prestrain in equibiaxial tension on the SFLC. Similar to the previous case, the FLC 

was predicted with the MK model after the material was prestrained to an effective strain 

in equibiaxial tension 10.0=ε , 0.20, and 0.45, and the SFLC was calculated from the 

FLC. Once again, no strain-path dependency was observed for lower levels of prestrain 

( 10.0=ε  and 20.0=ε ), however, some path dependency was observed for the highest 

value of prestrain ( 45.0=ε ) as seen in Figure 3.11. 
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Figure 3.10. Comparison of the SFLC after different levels of prestrain in uniaxial tension with the 

as-received SFLC of AISI-1012 steel 
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Figure 3.11. Comparison of the SFLC after different levels of prestrain in equibiaxial tension with 

the as-received SFLC of AISI-1012 steel 
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In order to visually compare the path dependency of the SFLC after both types of 

prestrain, the SFLCs obtained after an effective prestrain 45.0=ε in uniaxial and in 

equibiaxial tension are shown together in Figure 3.12. It is clear from this figure that the 

path dependency of SFLC is similar for both types of prestrain, and the greatest 

discrepancy with the as-received SFLC occurs around the mode of plane-strain. 
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Figure 3.12. Comparison of the SFLC after an effective prestrain 45.0=ε in uniaxial and 
equibiaxial tension with the as-received SFLC of AISI-1012 steel 

 

In order to quantify the strain path dependency of SFLCs as a function of the 

magnitude of prestrain and the type of strain path, the absolute difference in major stress 

(for a given strain ratio) was determined between the SFLC predicted after bilinear strain 

paths and the as-received SFLC. These absolute differences are presented in Figures 3.13-

3.15 in terms of a percent deviation as a function of the principal strain ratio for effective 

prestrains 10.0=ε , 0.20 and 0.45, respectively. According to these charts, the difference 

in major stress between the as-received and prestrained SFLCs is less than 1.0% when the 

effective prestrain is 10.0=ε  and 20.0=ε  (Figures 3.13 & 3.14). However, the 

maximum deviation from the as-received SFLC reaches about 5.0% for an effective  
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Figure 3.13. Deviation in major stress between prestrained and as-received SFLCs for an effective 

prestrain 10.0=ε in AISI-1012 steel sheets 
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Figure 3.14. Deviation in major stress between prestrained and as-received SFLCs for an effective 

prestrain 20.0=ε in AISI-1012 steel sheets 
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prestrain 45.0=ε (Figure 3.15). In Figure 3.15 the deviation from the as-received SFLC 

is greatest in the vicinity of plane-strain deformation and less severe for other modes of 

deformation, however it reveals the non-uniqueness of the SFLC when loading follows a 

bilinear strain path and when the prestrain exceeds a certain value. 

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9 1.1
Loading path at the second loading stage

D
ev

ia
tio

n 
pe

rc
en

t

Uniaxial Prestrain

Equibiaxial Prestrain

 
Figure 3.15. Deviation in major stress between prestrained and as-received SFLCs for an effective 

prestrain 45.0=ε in AISI-1012 steel sheets 
 

In order to understand how the maximum deviation in major stress between the 

prestrained and as-received SFLCs evolves with effective prestrain, additional levels of 

prestrain were considered up to an effective prestrain 5.0=ε . The maximum deviation 

between the prestrained and as-received SFLCs was calculated and plotted as a function 

of effective prestrain (Figure 3.16). This figure shows that the deviation between the two 

SFLCs increases above 1% for effective prestrains greater than 35.0=ε . Although 

prestrains greater than 35.0=ε are not common in stamping operations, they can be seen 

in tube bending prior to a hydroforming application. In such cases the as-received SFLC 

would not be a reliable measure of formability. Therefore the non-uniqueness of the 
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SFLC appears to be dependent on the magnitude of the prestrain in a bilinear strain path, 

as was reported by Yoshida et al. [3.18]. 
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Figure 3.16. Maximum deviation in major stress between prestrained and as-received SFLCs for 

different effective prestrain values in AISI-1012 steel sheets 

 

Further work is still required to understand the influence of the magnitude of the 

prestrain in the first stage of the bilinear strain path and the influence of the severity of 

the strain path non-linearity on the SFLC. A possible cause of this dependency is the 

manner in which the yield locus changes with work hardening during the first stage of the 

strain path. Indeed, isotropic hardening assumes that the yield locus expands uniformly in 

both stages of the bilinear strain path, but kinematic or mixed isotropic-kinematic 

hardening assumes there is some translation of the yield locus. Furthermore, Yoshida et 

al. [3.23] demonstrated that the change in work-hardening behaviour during the second 

loading stage is the main reason for path dependency of the SFLC.  Also, the transient 

effects that might exist during the reloading between the first and second stages of the 

strain history may also have an effect on the evolution of the SFLC. Finally, as the 
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prestrain increases, the yield locus may expand into the plane-strain region above the 

SFLC, which may have an effect on the shape change of the SFLC that was observed in 

the vicinity of plane-strain deformation. 

 

3.4. Conclusion 

 

In this paper, the MK analysis was employed to investigate the strain path 

dependency of stress-based forming limit curves. The current model was developed in 

such a way as to incorporate effects of material properties such as grain size, surface 

roughness, and rotation of the initial thickness imperfection (Equation 3.6). The thickness 

imperfection was considered to be a function of the surface roughness, and both the 

surface roughness and the thickness ratio, f, were incrementally updated throughout the 

loading process (Equations 3.4 and 3.5) as the effective strain evolved. The FLC of AISI-

1012 steel and AA-2008-T4 aluminum sheets were determined with this MK model for 

bilinear strain paths where various magnitudes of prestrain were applied in either uniaxial 

or equibiaxial tension. Finally, Stoughton’s method [3.13] was subsequently employed to 

translate limit strains into limit stresses, using the same constitutive assumptions as in the 

MK analysis. 

Results indicate that the SFLC remains essentially unchanged for lower levels of 

prestraining and therefore the path dependency of SFLCs is neither evident nor 

significant for effective prestrains less than 35.0=ε . However, a large prestrain 

( 35.0≥ε ) in either uniaxial or equibiaxial tension causes an upward shift in the SFLC in 

the vicinity of plane-strain deformation. Furthermore the SFLCs obtained after a prestrain 

in uniaxial and equibiaxial tension with the same level of effective strain are practically 

identical, therefore the SFLC appears to be more dependent on the magnitude of the 

prestrain than on the strain path itself.  

Further work is still required to fully understand the sources of path dependendy 

in SFLCs. Nevertheless, in comparison with strain-based FLCs that show a very 

significant strain-path dependency, stress-based FLCs remain much less sensitive to 
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strain path. And the current observations certainly support the use of SFLCs for 

formability evaluation in finite element analyses of metal forming processes in which the 

material undergoes nonlinear strain paths with a moderate level of prestrain.   

 

3.5. References 

 

[3.1] Molaei B., Strain path effects on sheet metal formability, Amirkabir University of 

Technology, Iran (1999) PhD thesis. 

[3.2] Graf A., Hosford W., Effect of changing strain paths on forming limit diagrams of 

Al 2008-T4, Metallurgical Transactions 24A (1993) 2503- 2512. 

[3.3] Keeler S.P., Backhofen W.A., Plastic instability and fracture in sheet stretched 

over rigid punches, ASM Transactions Quarterly 56 (1993) 25-48. 

[3.4] Goodwin G.M., Application of strain analysis to sheet metal forming in the press 

shop, SAE (1968) paper 680093. 

[3.5] Hillier M.J., Tensile plastic instability under complex stress, International Journal 

of Mechanical Sciences 5 (1963) 57-67. 

[3.6] Kim K.K., Kim D.W., Effect of void growth on the limit strains of steel sheets, 

International Journal of Mechanical Sciences 25 (1983) 293-300. 

[3.7] Tai W.H., Predictions of limit strains in sheet metal using a plastic damage model, 

International Journal of Mechanical Sciences 30 (1988) 119-126. 

[3.8] Bressan J.D., Williams J.A., The use of a shear instability criterion to predict local 

necking in sheet metal deformation, International Journal of Mechanical Sciences 

25  (1983) 155-168. 

[3.9] Kleemola H.J., Pelkkikangas M.T., Effect of pre-deformation and strain path on the 

forming limits of steel, copper and brass, Sheet Metal Industries 63 (1977) 559-59. 

[3.10] Arrieux R., Bedrin C., Boivin M., Determination of an intrinsic forming limit 

stress diagram for isotropic sheets, Proceedings of the 12th IDDRG Congress 2  

(1982) 61-71. 

[3.11] Gronostajski I., Sheet metal forming limits for complex strain paths, Journal of 



 71

Mechanical Working Technology 10 (1984) 349-362. 

[3.12] Zhao L.R., Sowerby R., Sklad M.P., A theoretical and experimental investigation 

of limit strains in sheet metal forming, International Journal of Mechanical 

Sciences 38 (1996) 1307-1317. 

[3.13] Stoughton T.B., A general forming limit criterion for sheet metal forming, 

International Journal of Mechanical Sciences 42 (2000) 1-27. 

[3.14] Stoughton T.B., Stress-based forming limits in sheet metal forming, Journal of 

Engineering Materials and Technology, ASME 123 (2001) 417-422. 

[3.15] Zimniak Z., Application of a system for sheet metal forming design, Journal of 

Materials Processing Technology 106 (2000a) 159-162. 

[3.16] Zimniak Z., Implementation of the forming limit stress diagram in FEM 

simulations, Journal of Materials Processing Technology 106 (2000b) 261-266. 

[3.17] Stoughton T.B., Yoon J.W., Sheet metal formability analysis for anisotropic 

materials under non-proportional loading, International Journal of Mechanical 

Sciences 47 (2005) 1972-2002. 

[3.18] Yoshida K., Kuwabara T., Narihara K., Takahashi S., Experimental verification of 

the path dependence of forming limit stresses, International Journal of Forming 

Processes 8 (2005) 283-298. 

[3.19] Yoshida K., Kuwabara T., Kuroda M., Path-dependence of the forming limit 

stresses in a sheet metal, International Journal of Plasticity 23 (2007) 361-384. 

[3.20] Marciniak Z., Kuczynski K., Limit strains in the processes of stretch-forming 

sheet metal, International Journal of Mechanical Sciences 9 (1967) 609-620. 

[3.21] Kuwabara T., Yoshida K., Narihara K., Takahashi S., Anisotropic plastic 

deformation of extruded aluminum alloy tube under axial forces and internal 

pressure, International Journal of Plasticity 21 (2005) 101-117. 

[3.22] Butuc M.C., Gracio J.J., Barata da Rocha A., An experimental and theoretical 

analysis on the application of stress-based forming limit criterion, International 

Journal of Mechanical Sciences 48 (2006) 414-429. 

[3.23] Yoshida K., Suzuki N., Forming limit stresses predicted by phenomenological 

plasticity theories with anisotropic work-hardening behavior, International Journal 

of Plasticity 24 (2008) 118-139. 



 72

[3.24] McCarron T.J., Kain K.E., Hahn G.T., Flanagan W.E., Effect of geometrical defects 

in forming sheet steel by biaxial stretching, Metallurgical Transactions 19A (1988) 

2067-2074. 

[3.25] Stachowicz F., Effect of annealing temperature on plastic flow properties and 

forming limits diagrams of Titanium and Titanium alloy sheets, Transactions of 

the Japan Institute of Metals 29 (1988) 484-493. 

[3.26] Sing W.M., Rao K.P., Influence of material properties on sheet metal formability 

limits, Journal of Materials Processing Technology 48 (1995) 35-41. 

[3.27] Hill R., The mathematical theory of plasticity, Oxford University press (1950). 

[3.28] Ravishankar C., Venkadesan S., Ductility of sheet metal in the negative minor 

strain region of forming limit diagrams, Scripta Materialia 35 (1996) 323-326. 



 73

Chapter 4 

 

Prediction of sheet forming limits with Marciniak and 

Kuczynski analysis using combined isotropic–non linear 

kinematic hardening 

4.1. Introduction 

 

The formability of sheet metal, or the amount of uniform deformation the sheet 

can sustain in a forming process, is limited by the occurrence of localized necking, i.e. 

non-uniform strains within a small region in the plane of the sheet. The forming limit of a 

metal sheet is generally given in terms of the limiting principal strains under different 

loading conditions and represented by the so-called forming limit curve (FLC). The shape 

and location of the FLC in principal strain space defines the boundary between strain 

states that are always free of necks from those that are prone to necking and splitting. 

Therefore, the distance between the FLC and all of the measured or predicted strains 

throughout a formed part characterizes the degree of safety. However, the deformation 

behavior of metals is strongly dependent on the loading history, in particular, on the 

specific strain paths imposed by the forming process. 

The forming limit curve, initially developed by Keeler and Backhofen in 1964 

[4.1] and Goodwin in 1968 [4.2], has provided a useful empirical gauge of forming 
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severity for stamping processes for almost half a century. However the FLC of as-

received sheets is valid only in processes in which the loading path is quasi linear; in 

other words, one in which the ratio of the plastic strains is constant throughout the 

forming process. The changes in shape and position of the FLC in strain space due to 

non-linear strain paths is typical of all sheet materials including steel, copper and brass, 

as reported, for example, by Kleemola and Pelkkikangas [4.3]. Therefore the strong 

influence of strain path changes on the FLC is a definite disadvantage when evaluating 

the forming severity of industrial stampings that involve multistage forming operations. 

In view of the difficulty to experimentally determine the forming limits of sheet 

materials that have been subjected to a non-linear strain history, many researchers have 

sought to predict the FLC. Three different approaches have been introduced to calculate 

FLC: the bifurcation method, damage analysis and the Marciniak and Kuczynski (MK) 

approach. Bifurcation analysis was first proposed by Hill in 1952 [4.4], then further 

developed by Stören and Rice [4.5] and by Hutchinson and Neale [4.6- 4.7]. The damage 

method considers micro-defects in the material structure and FLC is predicted when the 

density of micro-defects reaches a specified critical value. This method was applied by 

Tjotta [4.8] to predict void growth during plastic deformation and using a finite element 

model to study uniaxial tension and plane-strain tension. Similarly, Huang et al. [4.9] 

used a microscopic yield function for anisotropic sheet metal to predict rupture progress 

that can be used to investigate the failure of sheet metals under forming operations. 

In 1967, Marciniak and Kuczynski [4.10- 4.11] developed another method to 

predict failure in thin sheets based on classical plasticity theory by assuming a higher 

void volume fraction inside a randomly oriented imperfection band, and by modeling this 

imperfection as a geometric groove in the sheet. This approach is commonly called the 

MK method and the physical basis for the MK analysis was presented by McCarron et al. 

[4.12]. Chow et al. [4.13] developed a viscoplastic constitutive law using an anisotropic 

damage model. In their study, imperfections in the form of grooves were applied to 

samples loaded in equal biaxial stretching and, using their proposed damage criterion for 

localized necking, the FLCs of AA6111-T4 under nonlinear strain paths were predicted 

in good agreement with the experimental results. It was found that no reductions in the 

forming limit strain were obtained with shallow grooves for which the imperfection 
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index, which was defined as the thickness ratio of the groove to the nominal area, was 

greater than 0.990 and 0.992 for two different steels. These imperfection indices 

represented the pre-existing micro-structural defects in the two steels.  

In classical plasticity theory, a yield function determines the stress states beyond 

which plastic deformation occurs, and is generally assumed to take the same form as the 

plastic potential function. This function determines not only the direction of the plastic 

strain increments via the associated flow rule, but also the material stiffness by its 

variation during plastic deformation. 

In order to predict the work hardening behavior of sheet materials the most widely 

used assumption is that of isotropic hardening, which assumes the yield locus expands 

uniformly with plastic deformation. This hardening model is well suited to predicting the 

outcome of metal forming processes involving monotonic loading. 

Another well-known type of hardening model is the kinematic hardening model, 

initially proposed by Prager [4.14] and Ziegler [4.15] to model the Bauschinger effect. 

However, under complex loading histories, such as those involving unloading and 

reloading, substantial deviation of actual material behavior from that predicted by these 

two models is often observed. 

It is also common to implement a combination of isotropic and kinematic 

hardening models in plasticity calculations, in order to more accurately represent actual 

hardening behavior. The combined strain hardening model seems particularly well suited 

to applications that include nonlinear loading paths. 

In the present study, two different work hardening models were implemented in a 

modified version of the imperfection approach proposed by Marciniak and Kuczynski 

[4.10] to predict the forming limit curve (FLC) after different nonlinear loading paths. 

First, isotropic hardening was considered to determine the FLC in cases that involve 

unloading and subsequent reloading along a different strain path. Secondly, FLCs were 

predicted with the mixed isotropic and nonlinear kinematic hardening model proposed by 

Armstrong-Frederick [4.16] or Chaboche [4.17]. Results obtained from both hardening 

methods were validated with available experimental data for AISI-1012 [4.18] and 2008-

T4 [4.19] alloys in the as-received state and also when subjected to an initial prestrain. 

For the AISI-1012 steel sheet, a 10 percent prestrain in uniaxial tension and an 8 percent 
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prestrain in equibiaxial tension were applied prior to determining the FLC [4.18]. For the 

2008-T4 aluminum alloy, sheets were prestrained to 5 and 12 percent in uniaxial tension 

and to 4 and 12 percent in equibiaxial tension [4.19]. The proposed MK model was used 

to predict the FLC for each of these materials and for each nonlinear loading path. 

 

4.2. Theoretical approach 

 
As mentioned already, one of the best known theoretical methods to predict the 

onset of localized deformation was introduced by Marciniak and Kuczynski [4.10- 4.11]. 

The MK approach is based on the assumption that a thin sheet has an initial geometric 

imperfection (Figure 4.1) and a localized neck would develop from this region. This 

explanation of localized necking is based on the fact that inhomogeneities are 

unavoidable in actual sheet materials. In reality it is more likely that the initial 

imperfection is a material inhomogeneity. The MK method has been used with different 

plasticity theories and hardening models to predict history-dependent forming limits 

[4.12-4.13, 4.20-4.21].  

 

 
Figure 4.1. Thickness imperfection in MK method 
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As it is shown in Figure 4.1, it was assumed that the principal axes of anisotropy 

are collinear with the principal axes of applied stresses. In other words, the principal in-

plane directions (i.e. direction of major and minor stress components) are parallel with 

the rolling and transverse directions of the sheet, respectively. The effects of having 

principal stress axes that are rotated compared to the orthotropic axes were discussed by 

other researchers [4.22- 4.25]. 

In the MK model, a sheet with a nominal thickness is assumed to have an area (in 

the shape of a groove) that is slightly thinner; these two areas are denoted by (a) and (b), 

respectively. The initial imperfection factor of the groove, 0f , is defined as the thickness 

ratio: 

 

a

b

t

t
f

0

0
0 =  (4.1) 

 

where t denotes the sheet thickness, and subscript ‘0’ denotes the initial state. In most 

cases, researchers consider the imperfection factor to be an arbitrary constant that can be 

adjusted within a reasonable range to better correlate predictions with experimental data. 

In order to estimate the initial imperfection factor, it seems reasonable to relate it to the 

surface roughness of the sheet. Research carried out by Stachowicz [4.26] shows that 

surface roughness changes with deformation and these changes depend upon initial 

surface roughness, grain size, and strain. By relating the thickness difference between 

regions (a) and (b) to the surface roughness of the sheet metal, the imperfection factor not 

only takes on a value that has physical meaning but also the option of adjusting this value 

so that the predicted FLC better fit experimental data is eliminated. Stachowicz’s 

assumption was adopted in this work and the imperfection factor was assumed to change 

with the deformation of the sheet according to the following relationship:  
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where RZ0 is the surface roughness before deformation, εe
b is the effective strain in region 

(b), d0 is the material’s initial grain size, and C is a material constant that shows how the 

surface roughness varies with plastic deformation. This constant can be determined 

experimentally by measuring the surface roughness at different levels of effective plastic 

strains, and based on the empirical equation (RZ-RZ0=
b
eCd ε5.0

0 ), C represents the slope of 

a line fitted to the data points on the “RZ-RZ0” vs. “ b
ed ε5.0

0 ” graph [4.26]. Additional 

details regarding the calculation of the imperfection factor are also provided in the 

authors’ previous work [4.27]. 

As shown in Figure 4.1, the thickness imperfection is considered with an 

orientation θ inclined to the principal stress directions. Although the value of this angle at 

the start of the deformation can be arbitrarily selected, it changes with deformation. In 

other words, the angle θ between the imperfection and the principal direction is updated 

from an initial value θ0 at each increment of the plastic deformation. Sing and Rao [4.28] 

showed that with consideration of uniform deformation, the rotation of the initial 

thickness imperfection can be expressed as a function of the true plastic strain increments 

in the nominal area (a) of the sheet as follows: 
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where dε1
a and dε2

a are the major and minor principal strains in the nominal area of the 

sheet, respectively. 

In this investigation, both isotropic hardening and combined isotropic – nonlinear 

kinematic hardening were considered. With isotropic hardening, the yield surface 

expands uniformly in all directions in stress space and the center of the yield locus 

remains fixed (Figure 4.2). However, with mixed hardening the yield surface not only 

expands, but the centre of the yield surface also translates simultaneously (Figure 4.3) as 

a result of work hardening. The translation of the centre of the yield surface was defined 
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by a nonlinear function of the plastic strain components and will be further described in 

the following paragraphs.  

 

 
Figure 4.2. Schematic representation of isotropic hardening [4.29] 

 

 
Figure 4.3. Schematic representation of combined isotropic and kinematic hardening [4.29] 
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A constitutive equation was derived in which the yield function can be expressed 

in the following general form for isotropic hardening and mixed hardening in Equations 

(4.4a) and (4.4b), respectively: 
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where, S is the deviatoric stress tensor, N is a tensor that includes the anisotropic 

constants of Hill’s 1948 yield function [4.30], and α is the back-stress tensor that 

describes the translation of the centre of the yield surface.  

In this work, non-linear kinematic hardening was defined by the Armstrong-Frederick 

[4.16] or Chaboche relation [4.17] in which the evolution of the back stress is defined as 

follows: 

 

p
ijij

p
ijij ddcd εαγεα −=  (4.5a) 

 

where c and γ are material constants. By integrating Equation (4.5a) and taking ijα  to be 

zero when p
ijε = 0, we obtain: 
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As the plastic strain increases, the back stress ijα  in Equation (4.5b) saturates to 

the value c/γ, where the constant γ determines the rate of stress saturation and c/γ 

determines the magnitude of the saturation stress. 

For plane-stress conditions, the plastic potential function is written as Equations 

(4.6a) and (4.6b) for the isotropic and mixed hardening cases, respectively: 
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where F, G, H and N can be calculated using the anisotropic coefficients. 

Strain hardening is described by the power law: 
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where ε0 is a prior uniform pre-strain applied to the sheet, m is the strain-rate sensitivity 

coefficient, n is the strain-hardening coefficient, eσ  and eε  are the effective stress and 

strain, respectively. 

The power law used for the second stage loading is then modified according to the 

prestrain level. The power laws used in the nominal and weak areas of the sheet at the 

second loading stage are represented by the following equations, respectively: 
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Where εe
(1)a and εe

(1)b are the effective plastic strains reached in the prestraining stage.  

The associated flow rule was used to calculate the plastic strain components: 
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Where dλ is a plastic multiplier, and h is the plastic potential function. 

Equation (4.9) was used to determine the plastic strain increments for mixed 

hardening: 
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The coefficients of Equation (4.6b) can be determined at the condition of initial 

yielding (αx=αy=0 and f=1) [4.31]: 
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where Y
xσ , Y

yσ , and Y
Bσ  are the yield stresses in the x, y, and equibiaxial directions, 

respectively. Anisotropy data provided in Tables 4.1 and 4.2 are valid for isotropic 

hardening, but for the mixed hardening case, when a tensile stress (σ ) is applied on the 

specimen at an angle (β) to the rolling direction [4.31], Lankford’s coefficients can be 

calculated by the following equation: 
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Finally, the following relations can be written: 
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Assuming that the necking strain in the nominal area is εij
(2)a during the second 

loading stage, the final forming limit as a result of a bilinear strain path can be calculated 

by: 
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Where εij is the forming limit and εij
(1)a is the plastic prestrain in the nominal area. 

The basic equations for the MK analysis are the geometric compatibility equations 

expressed as: 
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and the force equilibrium equations across the imperfection groove: 
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where subscripts n and t denote the normal and tangential directions of the groove, 

respectively, and F is the force per unit width, i.e.: 
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By combining Equations (4.1), (4.7) and (4.16a,b), we obtain: 
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From the Equations (16) and the stress transformation rule: 
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where ra is a stress path factor and is equal to the ratio of the minor stress component (σ2) 

to the major stress component (σ1) in the nominal area: 

 

ra = σ2
a/ σ1

a (4.19) 

 

With consideration of Equations (4.6), (4.9), (4.14), and the strain transformation rule: 
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Equations (4.17), (4.18), and (4.20) were used to develop a final differential 

equation which can be used to determine the onset of necking. This final governing 

equation is expressed as a function of the ratio of effective strains η=εe
b
/εe

a and indicates 

the evolution of η as deformation progresses; the rate at which η increases determines the 

onset of strain localization in the sheet. 

Using the formulation and assumptions of the MK approach and the plasticity 

equations previously described, a biaxial stress state can be incrementally imposed in the 

nominal area. The imposed stresses cause a development of strain both in the nominal 

area (a) and in the weaker area (b). The strain and stress states in region (b) are calculated 

numerically from the stress and strain states in region (a) by the governing equation using 

a combination of Newton-Raphson and Runge-Kutta methods. Because of the thickness 

difference between the two areas, the strain rate increases faster in the thinner region (b) 

than in the thicker region (a) and it is assumed that localized necking takes place once the 

effective strain rate in the groove exceeds 10 times that in the nominal area. In other 

words, the limit strains were obtained when η=εe
b
/εe

a >10. When this condition is 

reached, the values of ε1 and ε2 in area (a) represent the limiting strains for a given linear 

strain path (ρ=ε2/ε1 constant). This procedure is then repeated for different linear strain 

paths in the range of -0.5 ≤≤ ρ 1.0 and the limiting strains in each case are used to plot 

the FLC. The same method was followed to obtain the FLC for non-linear loading paths, 

by subjecting the sheet material to two different linear loading paths and by considering 

the values of the principal strain components at the end of the first loading stage as the 

initial strain values for the second loading stage. This procedure can also be expanded to 

compute the limit strains after multiple loading stages. 

As mentioned earlier in this section, there is a particular orientation of the 

imperfection band that minimizes the computed limit strains for each strain path 

(Equation 4.3). In order to determine the lowest limit strains for each linear loading path, 
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the initial orientation of the imperfection band was incrementally rotated between 0 and 

45 degrees until the minimum limit strains were found. The same approach was also 

followed in the case of bilinear strain paths, and the value of the critical band orientation 

in the first deformation stage was used as the initial orientation for the second loading 

stage. This method can also be followed for multi-linear strain paths. 

4.3. Results and discussion 

4.3.1. Material characterization 
 

The materials considered in this investigation for model verification are a low carbon 

steel (AISI-1012) [4.18] and 2008-T4 aluminum [4.19]. Table 4.1 presents the plastic 

anisotropy coefficients for the rolling, diagonal and transverse directions and other 

mechanical properties for the steel and Table 4.2 shows the same data for the 2008-T4 

aluminum alloy. 

 

Table 4.1. Material properties of AISI-1012, low carbon steel [4.18] 
R0 R45 R90 F G H K(IH) 

(MPa) 
K(MH) 
(MPa) 

n(IH) 

1.4 1.05 1.35 0.432 0.417 0.583 238 230 0.35 
n(MH) m d0 (µµµµm) RZ0 

(µµµµm) 
C t0 (mm) c γγγγ  

0.33 0.01 25 6.5 0.104 2.5 500 60  
 

Table 4.2. Material properties of 2008-T4 aluminum [4.19] 
R0 R45 R90 F G H K(IH) 

(MPa) 
K(MH) 
(MPa) 

n(IH) 

0.58 0.48 0.78 0.246 0.633 0.367 535 500 0.27 
n(MH) m d0 (µµµµm) RZ0 

 (µµµµm) 
C t0   

(mm) 
c γγγγ  

0.29 -0.003 8* 2.5* 0.70* 1.7 1350 40  
* Data determined by calibration of the predicted FLC with the experimental as-received FLC 

 

Some material constants (C, d0, RZ0) were not provided in [4.19], therefore these 

values were calibrated by adjusting the FLC of the 2008-T4 alloy predicted using isotropic 
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hardening until it correlated with the experimental as-received FLC. The material 

parameters determined by the calibration were C = 0.70, d0 = 8.00 µm and RZ0 = 2.5 µm.  

Equation (4.2a) was used to calculate the value of the initial imperfection factor in 

the MK analysis. It was found that f0 = 0.995 for AISI-1012 steel and f0 = 0.997 for 2008-

T4 aluminum. 

The determination of strain hardening coefficients is straightforward for isotropic 

hardening: K and n are the only two unknowns and they are determined by fitting the 

theoretical stress-strain curve nKεσ = to the experimental stress-strain curve. However, 

there are four parameters (K, n, c and γ) which need to be identified for mixed isotropic – 

nonlinear kinematic hardening behavior, and in this case, K and n are likely to differ from 

the values for isotropic hardening. The best way to obtain these four coefficients is to use 

experimental stress-strain data obtained after reverse or cyclic loading of the specimen. 

When cyclic data is not available it is nevertheless possible to estimate these parameters 

with an acceptable level of accuracy by using an experimental monotonic stress-strain 

curve. The theoretical stress-strain curve for the mixed hardening law should coincide 

with the experimental monotonic stress-strain curve both before any unloading takes 

place and also after the transient Bauschinger effect appears [4.32]. It should be pointed 

out that this fitting technique does lead to a single value of the c/γ ratio.  

The fit of the theoretical stress-strain curve calculated with the mixed hardening 

rule and with the monotonic experimental stress-strain curve is shown in Figure 4.4 for 

AISI-1012 steel. The strain hardening coefficients (K, n, c and γ) that were obtained are 

also given in Table 4.1. The experimental stress-strain curve for the 2008-T4 aluminum 

alloy was not provided in [4.19] but the strain hardening coefficients (K and n) were 

given. By fitting the theoretical stress-strain curve obtained using the mixed hardening 

rule with the stress-strain curve calculated with parameters K and n before unloading 

takes place and after the transient Bauschinger effect disappears, the kinematic hardening 

coefficients (K, n, c, and γ) were obtained for this alloy (Figure 4.5) and the related strain 

hardening data are listed in Table 4.2. 
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Figure 4.4. Experimental and predicted stress-strain curves for AISI-1012 steel alloy 
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Figure 4.5. Stress-strain curves predicted with different hardening laws for 2008-T4 aluminum 
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4.3.2. Validation of the MK model 
 

In order to validate this MK model, the FLCs of AISI-1012 steel and 2008-T4 

aluminum sheets were calculated with both isotropic and mixed isotropic – nonlinear 

kinematic hardening rules, and the predicted FLCs were compared with experimental 

data [4.18- 4.19] determined for both the as-received sheets and also after the application 

of nonlinear loading paths.  

Molaei [4.18] determined the experimental FLC of as-received AISI-1012 sheets 

by carrying out stretch forming tests using rectangular and notched blanks of various 

widths with different conditions of lubrication to achieve a range of strain states 

0.15.0 12 ≤=≤− εερ . Each blank was electro-etched with a 3.0-mm diameter circle 

grid and formed over a hemispherical punch until the onset of local necking became 

apparent. The major and minor strains were measured directly from the deformed grids 

using a profile projector. FLCs were also determined experimentally for sheet specimens 

subjected to nonlinear loading paths [4.18]; in this case, stretch forming tests were carried 

out on sheets that were previously subjected to either uniaxial or equibiaxial tension. The 

tensile tests were performed at a speed of 5 mm/min using a servo-hydraulic Instron 

testing machine, and equibiaxial tests were conducted by stretch forming large blanks 

over a 210-mm diameter flat bottom punch. 

Figure 4.6 shows good agreement between theoretical predictions and 

experimental data for this sheet steel in its as-received state. The level of FLC in the 

plane-strain region predicted by the mixed hardening rule is greater than that calculated 

with the isotropic hardening assumption, and is closer to the experimental data in this 

region. Since plane-strain deformation is the most critical deformation mode in sheet 

metal forming, it is important to accurately predict the FLC in this region. For other 

deformation modes, the difference in limit strains predicted with the two hardening 

models is not significant. However, the prediction with isotropic hardening is slightly 

closer to the experimental data on the left hand side of the FLC, whereas the mixed 

hardening rule yields a better prediction on the right side of the FLC. 

FLCs were also calculated for specimens loaded along two types of non-linear 

strain paths: in one case, specimens were subjected to 8 percent prestrain in equibiaxial 
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tension, and in the other case, specimens were prestrained by 10 percent strain in uniaxial 

tension, and the corresponding FLCs are shown in Figures 4.7 and 4.8, respectively. After 

the equibiaxial prestrain (Figure 4.7), it can be seen once again that the two hardening 

rules lead to FLCs that are quite similar, except in the vicinity of plane-strain deformation 

(i.e. near the bottom of the cusp) where the difference is somewhat significant. However, 

the prediction of FLC with the mixed hardening rule is in better agreement with 

experimental data for lower levels of minor strain ( 05.01.0 2 ≤≤− ε ), whereas the 

isotropic hardening assumption leads to a better prediction of the FLC on the far left hand 

side ( 15.03.0 2 −≤≤− ε ).  

Similar observations can be made for the prediction of FLC after a prestrain in 

uniaxial tension (Figure 4.8); the FLC predicted with the assumption of isotropic 

hardening is in better agreement with experimental forming limit data on the left hand 

side of the FLC ( 1.02 −≤ε ), but the prediction using the mixed hardening rule is more 

consistent with experimental data on the right side of the shifted FLC ( 05.02 −≥ε ). 
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Figure 4.6.  Comparison of predicted and experimental FLCs of as-received AISI-1012 steel sheets 
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Figure 4.7. Comparison of predicted and experimental FLCs of AISI-1012 steel after 8% prestrain in 

equibiaxial tension 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-0.55 -0.45 -0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35 0.45

Minor Strain

M
aj

o
r 

S
tr

ai
n

Exp.

Mixed NLKH & IH

IH

 
Figure 4.8. Comparison of predicted and experimental FLCs of AISI-1012 steel after 10% prestrain 

in uniaxial tension 
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The developed MK model was further validated by comparing predicted and 

experimental FLCs of 2008-T4 aluminum. FLCs were calculated using the two different 

strain hardening rules, and for both as-received sheets and sheets subjected to bilinear 

loading paths [4.19]. 

Graf and Hosford [4.19] determined the experimental FLCs of 2008-T4 aluminum 

by using an MTS formability tester with a 101.6 mm diameter hemispherical punch. 

Sheet specimens with different width and lubrication conditions were stretched over the 

punch as it moved at a speed of 25 mm/min. For most stretch-forming tests, neoprene 

rubber and/or oil were used for lubrication, but dry specimens (i.e. without lubrication) 

were used to determine intermediate data between plane-strain and equibiaxial tension. A 

pattern of non-interlaced 2.54 mm diameter circles was applied to each blank using a 

photo-resist technique and principal surface strains were measured from the distorted 

circles. Tests were interrupted as soon as a localized neck was observed. Graf and 

Hosford [4.19] reported that for this aluminum alloy, localized necks were sharp due to 

the negative strain rate sensitivity of the material, so it was easy to distinguish necked and 

safe locations. Further details regarding the experimental procedures for bi-linear loading 

are provided in [4.19]. Finally, Figures 4.9-4.11 show the comparison between predicted 

and experimental FLCs for this 2008-T4 aluminum. 

Since some of the material constants (C, d0, RZ0) used to calculate the initial 

imperfection factor (Eq. 2) of this 2008-T4 aluminum alloy were not provided by Graf 

and Hosford [4.19], they were adjusted so that the FLC predicted with the isotropic 

hardening assumption would be calibrated to the experimental as-received FLC. The FLC 

was also predicted for this alloy using the combined isotropic – nonlinear kinematic 

hardening model and Figure 4.9 shows that both hardening models lead to very similar 

curves. 

Figure 4.10 shows the comparison of predicted and experimental FLCs after a 

prestrain of 0.04 and 0.12 in equibiaxial tension; once again, the two hardening models 

yield essentially the same FLC, except for a slight increase in limit strains in the vicinity 

of plane-strain deformation for the combined isotropic – nonlinear kinematic hardening 

model. 
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Figure 4.9.  Comparison of predicted and experimental FLCs of as-received 2008-T4 aluminum 

sheets 
 

Although the FLCs predicted with both hardening models are quite accurate, the 

mixed hardening model correlates somewhat better with the experimental data. The 

comparison between predicted and experimental FLC after preloading to 0.05 and 0.12 in 

uniaxial tension is shown in Figure 4.11; again, both hardening models lead to similar 

and accurate predictions of the experimental FLC data. Finally, it can be observed in 

Figures 4.10 and 4.11 that the shape of the FLC at the bottom of the cusp is less sharp, 

and therefore more realistic, with the mixed hardening model than it is with the isotropic 

hardening model; and this becomes more noticeable as the level of prestrain increases. 

4.3.3. FLCs in bilinear strain paths 
 

Having validated the present MK model with experimental FLCs obtained after a 

variety of bi-linear strain paths, this MK model was further used with the two different 

work hardening assumptions to predict the FLCs for the AISI-1012 steel sheet, but for 

additional preloading paths and prestrain levels. Although there is no available 
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experimental data with which to validate these predictions, the differences between the 

predicted FLCs can be observed and discussed. 
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Figure 4.10. Comparison of predicted and experimental FLCs of 2008-T4 aluminum after different 

levels of prestrain in equibiaxial tension 
 

FLCs were calculated for bilinear strain paths in which the first deformation stage 

was in either uniaxial tension, plane-strain tension, or equibiaxial tension. The second 

deformation stage consisted of different strain paths ranging from uniaxial tension 

( 5.0−=ρ ) to equibiaxial tension ( 0.1=ρ ) in small increments ( 05.0=ρd ) to cover 

multiple strain paths in this range. For each secondary strain path, loading was continued 

until the onset of necking and the FLC was determined. As mentioned already, three bi-

linear loading histories were considered:  
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Figure 4.11. Comparison of predicted and experimental FLCs of 2008-T4 aluminum after different 

levels of prestrain in uniaxial tension 
 

Case 1: The sheet metal was prestrained to 0.15 and 0.30 effective strain in uniaxial 

tension in the rolling direction, and further loaded in strain paths ranging from 

0.15.0 ≤≤− ρ  up to the onset of necking. The FLCs calculated with the two different 

hardening rules are compared in Figure 4.12. This figure indicates that after a prestrain in 

uniaxial tension, formability decreases with increasing prestrain on the left hand side of 

the FLC, but improves on the right hand side of the FLC, which is consistent with prior 

published experimental data [4.18- 4.19]. Furthermore, the FLCs calculated with the 

mixed hardening rule are significantly higher in the region of plane-strain deformation 

than those predicted with the isotropic hardening rule. 

Case 2: In order to observe the effects of a prestrain in plane-strain with different 

hardening rules, the material was preloaded to 0.15 and 0.30 effective strain in plane-

strain with the greater principal strain being in the rolling direction, and followed by a 

second loading stage that covered a range of strain paths from uniaxial to equibiaxial 

tension. The effects of the plane-strain prestrain is shown in Figure 4.13 where it can be 
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seen that material formability improves somewhat with increasing magnitude of prestrain 

in all deformation modes apart from plane-strain deformation. It can be observed that the 

mixed hardening assumption predicts slightly higher formability in the plane-strain 

region compared to that predicted with the isotropic hardening rule, but for this grade of 

steel (AISI-1012) the difference between the FLCs predicted with these two hardening 

models is not significant for deformation modes other than plane-strain. 

Case 3: In this case, 0.15 and 0.30 effective prestrains were applied in equibiaxial 

tension, followed by a second loading in the same range of strain paths as for previous 

cases. As it can be seen in Figure 4.14, there is a significant lateral translation of the FLC 

with equibiaxial prestrain. This leads to a remarkable increase in formability on the left 

side of the FLC but a slight decrease in formability in the region from plane-strain to 

equibiaxial tension. Again, the greatest difference between the FLC predicted with 

isotropic and mixed hardening models is in the plane-strain region. However the 

differences between the FLCs predicted with these two models seem to disappear with 

increasing equibiaxial prestrain. 
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Figure 4.12.  FLCs predicted after different amounts of prestrain in uniaxial tension using the MK 

model with isotropic and mixed hardening 
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Figure 4.13. FLCs predicted after different amounts of prestrain in plane-strain tension using the 

MK model with isotropic and mixed hardening 
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Figure 4.14. FLCs predicted after different amounts of prestrain in equibiaxial tension using the MK 

model with isotropic and mixed hardening 
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It is evident from Figures 4.12-4.14 that the greatest influence of the hardening rule 

on the prediction of FLC is in the mode of plane-strain deformation (i.e. at FLC0, the plane-

strain intercept in the second stage of deformation). The combined isotropic – nonlinear 

kinematic hardening rule consistently predicts better formability in the vicinity of plane-

strain than the isotropic hardening rule, regardless of the level and type of prestrain.  

The differences in FLC0 from isotropic to mixed hardening were determined for 

each prestrain path and for each level of effective prestrain and the results are shown in 

Figure 4.15. It can be seen that the smallest difference (about 11%) between the FLC0 

predicted with both hardening rules is in the mode of plane-strain and the largest 

difference (from 18-21%) is in the mode of equibiaxial tension. Figure 4.15 also shows 

that the differences between the predictions with these two hardening rules decreases 

with increasing prestrain for a prestrain in uniaxial tension (i.e. on the left hand side of 

the FLC), whereas the differences increase with increasing prestrain for a prestrain in 

equibiaxial tension (i.e. on right hand side of the FLC). 
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Figure 4.15. Percentage increase in FLC0 from IH to mixed hardening after different amounts of 

prestrain in different loading paths 
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4.4. Conclusion 

 
In this paper, isotropic and mixed (isotropic-nonlinear kinematic) hardening rules 

were employed in conjunction with the MK analysis to predict the FLCs of a low carbon 

steel sheet AISI-1012 and a 2008-T4 aluminum alloy. The current model incorporates the 

effects of material properties such as grain size, surface roughness, and rotation of the 

initial imperfection. The value of the thickness inhomogeneity was considered as a 

function of surface roughness, and grain size of the sheet material. In this analysis, the 

imperfection rotation, the surface roughness and the thickness ratio, f, were updated 

throughout the loading history. In this investigation, the FLC was predicted for non-linear 

strain paths in which the prestrain was either in uniaxial tension, plane-strain tension or 

equibiaxial tension.  

The MK model was developed with both hardening rules and was validated with 

available experimental data for AISI-1012 steel and 2008-T4 aluminum sheets in their as-

received state and also for non-proportional loading histories. Good agreement between 

theoretical predictions and experimental data was observed for both steel and aluminum. 

For as-received sheet materials, the differences observed between the FLCs predicted 

with isotropic hardening and mixed hardening rules were not significant, except for the 

plane-strain region. Under bi-linear loading paths, the FLCs predicted with the mixed 

hardening rule were consistently higher in the plane-strain region than those calculated 

with isotropic hardening. The FLC predicted with the mixed hardening model was in 

better agreement with experimental data when the prestrain was in the direction of 

positive minor strains, but the assumption of isotropic hardening led to acceptable 

agreement with experimental data when the prestrain was in the direction of negative 

minor strains in both the steel and the aluminum alloy. 

For a given level of prestrain, there is an increase in formability on the right hand 

side of the FLC when the sheet is prestrained towards negative minor strains and a more 

significant increase in formability on the left hand side of the FLC when the sheet is 

prestrained towards positive minor strains. For prestrains in plane-strain, both hardening 

models yielded similar results except in the plane-strain region where the difference is 

somewhat significant. 
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It is likely that differences in the FLCs predicted with these two hardening models 

would be more significant for sheet materials that exhibit greater Bauschinger effect. 
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Chapter 5 

Influence of out-of-plane compression stress on limit strains in 

sheet metals 

5.1. Introduction  

 

The poor correlation between the common “cupping” test and the actual 

performance of sheet metal in industrial forming operations led researchers to look at 

some more fundamental parameters. A significant breakthrough came in 1963, when 

Keeler and Backofen [5.2] reported that during sheet stretching, localized necking 

required a critical combination of major and minor strains (along two perpendicular 

directions in the plane of the sheet). Subsequently, this concept was extended by 

Goodwin [5.3] to sheet drawing and the resulting curve is known as the Keeler-Goodwin 

curve or the forming limit curve (FLC). In other words, Keeler developed the right side 

of the FLC (i.e., positive minor strain), and Goodwin extended the forming limit curve to 

include negative minor strains. 

In order to predict the FLC, Marciniak and Kuczynski [5.1] proposed that the 

inhomogeneity of the sheet material could be modeled by a geometric defect in the sheet. 

In their study, an imperfection in the form of a shallow groove was applied to specimens 

stretched in equibiaxial tension. The severity of the imperfection was quantified by the 

ratio of the thickness in the groove to the nominal thickness of the sheet. In general, no 

reductions in the forming limit would be seen when the value of the imperfection factor is 
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between 0.99 and 1.00. In this model, the initial inhomogeneity of the material develops 

continuously with plastic deformation until a localized neck eventually appears.  

In 1970, Azrin and Backofen [5.4] subjected a large number of materials to in-

plane stretching. They discovered that an imperfection factor of about 0.97 or less was 

required to obtain agreement between the MK analysis and experimental FLC data. 

Accordingly, even though the MK method provided a simple predictive model, there was 

inconsistency between its predictions and experimental data. Similar trends were also 

observed by Sowerby and Duncan [5.5] as well as by Marciniak et al. [5.6]. In addition, 

Sowerby and Duncan [5.5] also reported that limit strains predicted with the MK method 

showed a considerable dependence on material anisotropy. 

Ghosh [5.7] found that material strain rate sensitivity is important during post-

uniform deformation. The additional hardening due to strain rate sensitivity plays a 

significant role in increasing the forming limits by delaying strain localization inside the 

neck. 

The physical soundness and the simplicity of the MK analysis has no doubt been 

the reason this method has been the most popular theoretical approach for FLC 

calculation, and it has been used by many researchers, even in recent years: for instance 

Butuc et al. [5.8] in 2006, Yoshida et al. [5.9] in 2007 and Nurcheshmeh and Green 

[5.10] in 2011.  

The prediction of the FLC of sheet metals traditionally assumes plane stress 

loading conditions and the effect of the normal stress is usually neglected. Therefore FLC 

predictions are only strictly valid for open die and free forming processes. However, 

many metal forming processes lead to the development of non-negligible normal stresses 

in the sheet when it is formed over a die radius. Through-thickness stresses become even 

more significant in hydroforming processes, where a pressurized fluid compresses a sheet 

or a tube against the surface of the die. In many hydroforming applications, the pressure 

of the forming fluid can generate such high contact pressures that the through-thickness 

stress exceeds the in-plane stresses. The existence of a significant through-thickness 

compressive stress creates a hydrostatic stress state that has the potential to increase the 

formability of the sheet and therefore requires consideration in the prediction of the FLC.  
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Very few sheet formability studies have taken into account the effect of the 

normal stress and further research is required in this area. Gotoh et al. [5.11] presented an 

analytical expression that predicts an increase in the plane-strain forming limit in strain 

space due to the presence of through-thickness compressive stresses. They demonstrated 

theoretically that an out-of-plane stress (even as small as one tenth of the yield stress) can 

raise the forming limit strain and thus can be effectively used to delay the onset of 

fracture in press forming. Smith et al. [5.12] developed a new sheet metal formability 

model that takes into account the through-thickness normal stress for materials that 

exhibit planar isotropy. Their model predicts a greater increase in formability due to 

compressive stresses than that predicted by Gotoh’s model. They also examined the 

influence of the strain hardening coefficient (n value) on the sensitivity of the FLC to the 

normal stress.  

Finally, Banabic and Soare [5.13] used the MK analysis to study the influence of 

fluid pressure normal to the sheet surface on the forming limits of thin, orthotropic sheets. 

Their model was used to predict the FLC of AA3104-H19 aluminum alloy subject to 

different fluid pressures ranging from 0 (plane stress condition) to 200 MPa. They 

showed that the formability of this aluminum alloy improves with the application of a 

fluid pressure, especially on the right side of the forming limit diagram. Experimental 

data was available in the plane stress condition which was predicted satisfactory and used 

to calibrate their model. 

In the present paper, a three-dimensional stress state was implemented in a 

modified version of the MK model to predict FLC with different through-thickness stress 

values. The imperfection factor was related to the surface roughness and grain size of the 

sheet and was updated throughout the deformation of the sheet. The imperfection band 

was oriented perpendicular to the first principal stress, and its rotation was also 

considered as the sheet was plastically deformed. This modified MK model was validated 

in plane-stress conditions with experimental FLC data obtained for AISI-1012 steel 

[5.14] and it was also compared with other theoretical results obtained by the present 

authors [5.10]. The validation of the model for cases that involved through-thickness 

stresses was done with published experimental FLC data for AA6011 aluminum [5.15] 

and STKM-11A steel [5.16] sheets. The sensitivity of the predicted FLC to the applied 
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out-of-plane stress component was also analyzed as a function of variations in different 

material properties and the results of this sensitivity analysis will be discussed. 

 

5.2. Theoretical approach 

 
Marciniak and Kuczynski [5.1, 5.6] presented a theoretical framework for prediction 

of FLC that is commonly known as the MK method, which has been shown to predict FLCs 

with reasonable accuracy. This approach is based on the fact that inhomogeneities are 

unavoidable in actual sheet materials, and it is assumed that this inherent material 

inhomogeneity can be modeled as a geometric imperfection in the form of a narrow band 

(Figure 5.1) with a slightly different thickness than the rest of the sheet. Although this 

approach was originally proposed for plane stress conditions, the current work includes the 

third stress component in the MK model and is shown as 3σ  in Figure 5.1. 

 

 
Figure 5.1. Thickness imperfection in the MK model 

 

Figure 5.1 schematically represents a shallow groove on sheet surface, which 

effectively divides it into two separate regions: region (a) with nominal thickness, and 

region (b) with the reduced thickness in the groove. The initial imperfection factor of the 

groove, 0f , is defined as the thickness ratio between the two regions as follows: 
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0 =  (5.1) 

where t denotes the sheet thickness and subscript ‘0’ denotes the initial state. The 

thickness difference between these two regions is critical element in the MK theory 

because the predicted limiting strains are very sensitive to the initial value of the 

imperfection factor. In most studies, this coefficient is simply assumed to have a fixed 

value close to 1.0 and that can be adjusted so that the predicted FLC will better fit the 

experimental data. However, it has been proposed [5.10] that a more realistic approach 

would be to relate the initial thickness difference between the two regions to the surface 

roughness of the sheet. Indeed, research carried out by Stachowicz [5.17] shows that 

surface roughness changes with deformation and these changes depend upon initial 

surface roughness, grain size, and effective plastic strain. By relating the thickness 

difference between regions (a) and (b) to the surface roughness of the sheet metal, the 

imperfection factor not only takes on a value that has physical meaning but also the 

option of adjusting this value so that the predicted FLC can better fit experimental data is 

eliminated. Stachowicz’s assumption was adopted in this work and the imperfection 

factor was assumed to change with the deformation of the sheet according to the 

following relationship:  
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where 0ZR  is the surface roughness before deformation, C is a material constant, beε  is 

the effective strain in region (b), and 0d  is the material’s initial grain size. Additional 

details on the calculation of the imperfection factor are provided in the authors’ previous 

work [5.10]. 

In general, the imperfection band is randomly oriented and its orientation can be 

determined by the angle θ between the groove axis and the direction of the second 
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principal stress (Figure 5.1). When plastic deformation begins, this angle will slowly start 

to change as the groove rotates with respect to the loading axes, and its orientation can 

affect the limiting strains. In order to obtain FLC predictions with good accuracy, the 

variations in the groove orientation should therefore be considered in the calculation of 

the forming limit strains by updating its value at each increment throughout the plastic 

deformation. This rotation of the imperfection band during deformation was well 

researched by Sing and Rao [5.18] and they proposed an empirical formula in which the 

orientation varies as a function of the true plastic strain increments in region (a) of the 

sheet as follows:  
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where ad 1ε  and ad 2ε  are the major and minor principal strains in the nominal area of the 

sheet, respectively. 

A constitutive equation was derived in which the yield function can be expressed 

in the following general form for isotropic hardening: 
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 (5.4) 

 
where, S is the deviatoric stress tensor and N is a tensor that describes the anisotropy of 

the sheet material in terms of the anisotropic constants in Hill’s 1948 yield function 

[5.19]. 

With consideration of the third principal stress component, the three-dimensional 

plastic potential function was implemented in the MK analysis: 

 

2222 222)()(2 fGFHGFHFh xzyzyxzyx =−−−++++= σσσσσσσσσ  (5.5) 

 
where the anisotropic coefficients F, G and H can be calculated from the yield stresses in 

the principal directions. 
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Strain hardening is described with the power hardening including strain rate sensitivity 

effect as follows: 
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 (5.6) 

 
where 0ε  is a uniform prestrain applied to the sheet, m is the strain-rate sensitivity 

coefficient, n is the strain-hardening coefficient, eσ  and eε  are the effective stress and 

strain, respectively. 

The associated flow rule was employed to calculate plastic strain increments as 

follows: 
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where λd  is the plastic multiplier and h is the plastic potential function. 

There are two main assumptions in the MK analysis. The first one is the geometric 

compatibility equation expressed as the equality of the tangential plastic strain 

components inside and outside the imperfection band, 
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and the second assumption is the equilibrium of the normal and shear forces across the 

imperfection, i.e.: 

 

b
nn

a
nn FF =  (5.9a) 

 
b

nt
a

nt FF =  (5.9b) 

 
where subscripts n and t denote the normal and tangential directions of the groove, 

respectively, and F is the force per unit width, i.e.: 
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By combining Eq. (5.1), (5.6) and (5.10a,b) the following relation is obtained: 
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Since the strain rate is defined as dtd ee εε =
•

, it follows that: 
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Finally, the stress transformation rule leads to the expressions: 
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where α is the ratio of the second true principal stress component ( 2σ ) to the first true 

principal stress component (1σ ) in the nominal area which indicates the stress path. 

Expressions similar to Eq. (5.12a) and (5.12b) can be written for region (b), and using Eq. 

(5.9), (5.10), and (5.12) we obtain: 
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With consideration of the consistency condition, the plastic potential function and the 

strain transformation rule: 
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where β is the ratio of the third true stress component to the first true stress component, 

such that: 

 

xz σσσσβ == 13  (5.15) 

 
By combining Eq. (5.11), (5.13), and (5.14), the final governing equation was 

analytically determined as a function of the ratio of the effective plastic strain inside and 

outside the imperfection band a
e

b
e εεη = . This final differential equation indicates the 

evolution of the effective plastic strain ratio η as the sheet is deformed under a three-

dimensional loading condition. 

The plastic deformation of the sheet begins as strain increments are imposed 

along a linear strain path (i.e. for a constant value of 12 εερ = ) in the nominal region, 

and the stress components are calculated from the strain state in the nominal area. Then 

the strains and stresses in the imperfection region are calculated from the strains and 

stresses in the nominal area by using the governing equations described above. During 

the analysis, it is assumed that the normal stress applied on the surface of the sheet or 

tube is identical for both region (a) and region (b) of the MK model. But since the 

thickness in region (b) is less than that in the rest of the sheet, the strain rate increases 
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faster in region (b) than in region (a). Moreover, the difference in strain rate between the 

two regions will intensify as the deformation progresses, and eventually the strains will 

localize in the imperfection region. It is generally assumed that plastic instability occurs 

when the effective plastic strain in the imperfection region reaches 10 times that in 

nominal area ( a
e

b
e εε 10= ). Once the onset of necking takes place, the in-plane plastic 

strain components in the nominal area (a
1ε  and a

2ε ) identify a point on the FLC for the 

specified strain path ρ. In order to generate the entire FLC, the value of the strain ratio ρ 

is modified and the procedure is repeated for each new strain path. The FLC is thus 

determined from the limiting strain data obtained for strain paths that vary in increments 

∆ρ = 0.05 from uniaxial tension (ρ = −0.5) to equibiaxial tension (ρ = 1.0). 

 

5.3. Experimental validation of the modified MK model 

 
The theoretical MK analysis model presented in the previous section was 

implemented into a numerical code. This proposed model was then used to predict the 

FLC of actual sheet and tube materials, both with and without applied normal stresses, in 

order to validate the numerical code. 

 

5.3.1. Description of materials 
 

The materials that were considered for the validation of the proposed MK model 

are a low carbon steel (AISI-1012) [5.14], AA6011 aluminum alloy [5.15], and STKM-

11A steel [5.16] (the designation of this last steel grade follows the Japanese standard and 

it is equivalent to an MT1010 steel in the ASTM standard). The mechanical properties of 

these materials are listed in Table 5.1. It is also worth noting that in these publications, 

AISI-1012 refers to a flat stock sheet metal, whereas AA6011 and STKM-11A refer to 

thin walled tubes. 
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Table 5.1. Mechanical properties of materials 
Material K 

(MPa) 

n m R 

(Normal) 

t0 

(mm) 

AISI-1012 [5.14] 238 0.35 0.015 1.21 2.5 

AA6011 [5.15] 254.9 0.265 ------ 0.574 1.86 

STKM-11A [5.16] 1450 0.14 ------ 2.14 1.4 

 

Eq. (5.2a) was used to calculate the initial imperfection factor value in the MK 

analysis. It was found that f0 = 0.995 for AISI-1012 steel, f0 = 0.997 for AA6011 

aluminum, and f0= 0.991 for STKM-11A steel. 

 

5.3.2. Validation of the proposed MK model 
 

In order to validate the three-dimensional FLC model described in the previous 

section, theoretical FLCs were calculated in both plane stress and three-dimensional 

stress conditions and the predicted FLCs were compared with published experimental 

data [5.14-5.16]. 

The new model was verified first under plane stress conditions, in the absence of 

through-thickness stresses ( 0=β ). Theoretical FLC were compared with the 

experimental FLC of as-received AISI-1012 sheet steel [5.14] which were obtained by 

carrying out stretch forming tests using rectangular and notched blanks of various widths 

with different conditions of lubrication to achieve a range of strain states 

0.15.0 12 ≤=≤− εερ . Each blank was electro-etched with a 3.0 mm diameter circle 

grid and formed over a hemispherical punch until the onset of local necking. The major 

and minor strains were measured directly from the deformed grids using a profile 

projector. The FLC predicted with the proposed MK model was also compared with the 

FLC predicted by a different MK analysis code developed previously by the same authors 

for purely plane stress conditions [5.10]. The predicted and experimental FLCs for this 

grade of steel are shown in Figure 5.2. 
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Figure 5.2.  Comparison of predicted and experimental FLCs of AISI-1012 steel sheet in-plane stress 

condition [5.14] 
 

Figure 5.2 shows good agreement between the theoretical and experimental FLCs 

obtained under plane stress conditions, and the developed model predicts the FLC for this 

steel with acceptable accuracy. Furthermore, it can be seen that the FLC predicted under 

plane stress conditions with the new three-dimensional model is essentially identical to 

the FLC predicted with the previous two-dimensional analysis code [5.10]. 

The proposed MK analysis model was also verified for more general loading 

conditions where the out-of-plane stress component is non-negligible ( 0≠β ). This 

further validation of the three-dimensional MK model was carried out by predicting the 

FLC of AA6011 aluminum tubes that were hydroformed with up to 15-MPa internal 

pressure (which corresponds to 3σ ≈7.5 MPa). Hwang et al. [5.15] prepared 200-mm long 

tube specimens with a 1.86-mm wall thickness, and a 51.9-mm outer diameter. The tube 

specimens were annealed at 410°C for 2 hours and then a grid of 5-mm-diameter circles 

with a spacing of 1-mm was electrochemically etched onto the surface of undeformed 

tubes for the purpose of strain measurement. Tubes were pressurized in a bulge test 

apparatus without axial feeding to generate positive minor strains. Other tubes were also 

pressurized in a hydroforming test machine with axial feeding to generate strain paths 
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with negative minor strains. After the tubes were deformed, the circle grids in the vicinity 

of the burst were measured by a three-dimensional digital image processing system and 

the major and minor strains were determined. The limiting strain data from these tests 

was used to construct the left side of the FLC of these aluminum tubes. The comparison 

of the predicted and experimental FLCs is shown in Figure 5.3.  
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Figure 5.3.  Comparison of predicted and experimental FLCs of AA6011 aluminum sheets under 15 

MPa internal pressure [5.15] 
 

It can be seen from Figure 5.3 that there is good agreement between the experimental 

data and the predicted FLC on the left side of the diagram. This may seem surprising 

considering that the analysis was carried out using Hill’s 1948 yield criterion. Indeed, it is 

well known that Hill’s quadratic yield function is not suitable for predicting the biaxial 

behaviour of aluminum alloys and more recent, non-quadratic yield functions have been 

shown to be much more appropriate [5.20]. However, it can be seen that the experimental 

FLC data in Figure 5.3 corresponds with deformation modes between plane strain and 

uniaxial tension, and for such deformation modes the quadratic yield function is capable of 

predicting reasonably accurate results. Non-quadratic yield functions typically lead to 

improved predictions of the forming behaviour of aluminum alloys for deformations in 
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biaxial tension, because they are better able to represent the shape of the yield locus between 

plane strain and balanced biaxial tension: this corresponds with the right side of the FLC for 

which no experimental data is available. No doubt the predictions of FLC in the region of 

plane strain would be improved with the use of a non-quadratic yield function. 

The proposed model was also validated with another set of experimental limiting 

strain data for STKM-11A steel presented by Kim et al. [5.16]. These authors determined 

the experimental FLC by hydroforming straight tubes with both an axial end-feed force 

and 56-MPa internal pressure (leading to 3σ  ≈ 28 MPa). A constant ratio of high internal 

pressure and relatively low axial force was applied with an end displacement rate of 2.33-

mm/s using a PC-based controller. During these experiments, tubes were pressurized 

until they burst, and the average burst pressure was 56 MPa, with the split occurring 

parallel with the tube axis and positioned toward the middle of the tube. Strain 

measurements were taken as near to the fractured edge as possible in order to determine 

limit strains. Figure 5.4 shows a comparison of predicted and experimental FLC for 

negative minor strains. 
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Figure 5.4. Comparison of predicted and experimental FLCs of STKM-11A steel sheet under 56MPa 

internal pressure [5.16] 
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It can be seen in Figure 5.4 that the FLC predicted by the proposed MK analysis 

lies slightly above the experimental FLC for this grade of steel. This discrepancy between 

the theoretical and the experimental FLC data is likely due to the fact that experimental 

strains were not actually measured in local necks since these tubes were allowed to burst, 

but they were measured in the uniformly deformed material right next to the fractured 

edge of burst tubes. Therefore these experimental strain data represent a conservative 

estimation of the actual FLC. Limiting strain data was not available for the right hand 

side of the diagram because Kim et al. [5.16] were only able to apply a compressive axial 

force to the ends of the tubes, whereas a tensile axial force is required to obtain positive 

minor strains [5.21]. 

It is also worth pointing out that the experimental FLC data [5.14-5.16] used to 

validate the current MK model were obtained using the well-known circle grid analysis 

technique. This technique relies on the measurement of deformed grids on the surface of 

the specimens as well as the somewhat subjective interpretation about whether necking 

has begun or not in a specific grid location. This technique is therefore dependent on the 

experimentalist’s experience and the accuracy of the strain measurements, and therefore 

it inevitably leads to some variability in the results. According to the author’s experience, 

the experimental error that can be expected in FLC strain data obtained with the circle 

grid technique is estimated to be within ±2.5% strain. More advanced techniques are now 

being used to determine the forming limits of sheet materials with greater repeatability 

and reproducibility. For instance, digital image correlation is used to measure the strain 

field across the entire specimen gauge area and numerical interpolation methods are then 

used to determine the strains at the onset of necking [5.22-5.26]. These techniques are 

very powerful as they can determine limiting strains even for very high strength materials 

that tend to fracture without necking.  

However, although there is some experimental error in the published experimental 

FLC data [5.14-5.16], the comparisons between the predicted and experimental FLC 

(Figures 5.2-5.4) nevertheless show that the proposed three-dimensional MK model 

provides a good prediction of the FLC, whether the through-thickness stress component 

is significant or not. 
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5.4. Influence of the through-thickness stress on the FLC 

 
The primary purpose of this work is to study the effect of the through-thickness 

stress component on the forming limit curve. In this section, the sensitivity of the FLC to 

the out-of-plane stress component will be studied by applying different levels of through-

thickness stress to the surface of AISI-1012 steel sheets. The FLC was predicted for a 

normal stress ranging from 3σ = 0 (plane stress condition) to 3σ  = 35 MPa. The 

theoretical results are presented in Figure 5.5.  
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Figure 5.5. FLC of AISI-1012 sheet steel predicted as a function of the applied normal stress 

 

It can be seen from Figure 5.5 that the FLC is quite sensitive to the normal stress: 

indeed, the entire FLC is observed to shift up the vertical axis when the applied normal 

stress increases. The formability of this sheet steel is seen to improve with a normal stress 

as low as 10 MPa. Furthermore, it is apparent from Figure 5.5 that the increase in 

formability is not proportional to the increase in normal stress: indeed, the rate of 

increase in formability also increases with the normal stress. 
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5.5. Influence of mechanical properties on the sensitivity of FLC to out-of-

plane stresses 

 
In the previous section it was shown (Figure 5.5) that the FLC of AISI-1012 sheet 

steel is dependent on the magnitude of the applied normal stress. Therefore it is also of 

further interest to determine if this dependence varies from one material to another, and if 

so, how individual material properties may affect the sensitivity of the FLC to the normal, 

or through-thickness, stress. The constitutive equations in this three-dimensional version 

of the MK model are capable of fully describing the elasto-plastic behaviour of sheet 

materials; therefore it is possible to investigate the effect of individual material 

parameters on the sensitivity of the FLC to the out-of-plane stress. In this study, the 

influence of some of the more significant properties of sheet materials – the strain 

hardening coefficient (n), the strain rate sensitivity (m), the plastic anisotropy coefficients 

(R), grain size ( 0d ) and initial sheet thickness (0t ) were investigated. Each parameter was 

therefore modified one by one to observe its effect on the sensitivity of the FLC to 

increases in the out-of-plane stress, and the results of this study are presented in this 

section. 

Since the work hardening ability of a sheet material is such a significant material 

property in sheet metal forming, the effect of a change in the strain hardening coefficient 

is presented first. All the mechanical properties of the AISI-1012 sheet steel (Table 5.1) 

were kept unchanged except for the value of the strain hardening coefficient which was 

doubled from n = 0.35 to n = 0.70. While this change leads to a fictitious material for 

which the experimental FLC is not readily available, the present three-dimensional 

version of the MK analysis nevertheless enables us to predict the dependence of the FLC 

on the applied normal stress. Figure 5.6 shows the FLC of a very formable sheet material 

(n = 0.7) for various levels of applied normal stress ranging from 3σ  = 0 (plane stress) to 

3σ  = 35 MPa. 
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Figure 5.6.  FLC of a sheet material that differs from AISI-1012 only by its strain hardening 

coefficient (n=0.70), predicted as a function of the applied normal stress 
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Figure 5.7.  Increase in FLC0 as a function of the applied normal stress for two sheet steels that differ 

only by their strain hardening coefficient (n=0.35 and n=0.70) 
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Figure 5.6 shows that the predicted FLC is almost independent of the applied 

normal stress for a sheet material with a very high strain hardening coefficient. In order to 

better visualize the effect of the strain hardening coefficient on the FLC, the vertical shift 

of the FLC relative to the plane stress condition was plotted as a function of the applied 

normal stress. More specifically, the percent increase in the limiting major strain in plane 

strain (FLC0) due to increases in the out-of-plane stress component was plotted for both 

materials considered (n = 0.35 and n = 0.70) and shown in Figure 5.7. This figure 

indicates that through-thickness stresses always improve the formability of sheet 

materials, but the positive effect of the out-of-plane stress is far more significant for 

lower-formability sheet materials than it is for higher-formability materials. 
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Figure 5.8.  FLC of a sheet material that differs from AISI-1012 only by its strain rate sensitivity 

(m=0.030) predicted as a function of the applied normal stress 
 

The next mechanical property considered in this study on the forming limits of 

sheet metal formed under three-dimensional stress states is the strain rate sensitivity (m). 

It is well known that positive strain rate sensitivity helps to improve formability by 

delaying the onset of necking and by strengthening the material as the strain rate 

increases in the area where strains are localizing. In this investigation, all the mechanical 
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properties of the AISI-1012 sheet steel (Table 5.1) were kept unchanged except for the 

strain rate sensitivity which was doubled from m = 0.015 to m = 0.030. The three-

dimensional MK model was then used to calculate the FLC for each level of applied 

normal stress, and the predicted FLCs are plotted in Figure 5.8. It is evident from Figure 

5.8 that the predicted FLC remains very dependent on the through-thickness stress after 

the strain rate sensitivity was increased by a factor of two. However, comparing Figure 

5.8 to Figure 5.5, the sensitivity of the FLC to the through-thickness stress does not 

appear to have changed significantly. 
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Figure 5.9.  Increase in FLC0 as a function of the applied normal stress for two sheet steels that differ 

only by their strain rate sensitivity (m=0.015 and m=0.030) 
 

In order to quantify the effect of the strain rate sensitivity (m value) on the 

dependence of FLC to the normal stress the percentage increase in FLC0 was plotted as a 

function of the applied normal stress for both sheet steels (m = 0.015 and m = 0.030), and the 

results are shown in Figure 5.9. It is immediately apparent from this figure that, while 

formability significantly increases with normal stress for both materials, changes in strain rate 

sensitivity practically have no effect on the dependence of FLC to the through-thickness 

stress. 
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Figure 5.10.  FLC of a sheet material that differs from AISI-1012 only by its plastic anisotropy 

coefficients (R0=2.8 and R90=2.7), predicted as a function of the applied normal stress 
 

Another mechanical parameter that was considered in this investigation is the 

anisotropy of the sheet material. It is well known that, according to the MK analysis, 

variations in anisotropy are seen to have a significant effect on the formability of a sheet 

material, and this effect is primarily evident on the right hand side of the FLC (i.e. for 

positive minor strains). Although experimental FLC data do not generally show such an 

influence of anisotropy on the forming limits [5.27], the sensitivity of FLC to the applied 

through-thickness stress was nevertheless calculated for a fictitious material whose 

mechanical properties are identical to those of AISI-1012 steel except for the anisotropy 

coefficients; the plastic anisotropy coefficients were doubled from R0 = 1.4 and R90 = 1.35 

to R0 = 2.8 and R90 = 2.7. It can be pointed out that, while the anisotropy of this fictitious 

material is expressed in terms of planar anisotropy coefficients (R0 and R90) the level of 

planar anisotropy is actually low (∆R = (R0+R90−2R45)/2 = 0.85), but the normal 

anisotropy, that is, the through-thickness anisotropy, is quite significant (R  = 

(R0+R90+2R45)/4 ≈ 2.42). The FLC of this material was then calculated for increasing 

levels of applied normal stress and the results are shown in Figure 5.10. 



 124

Figure 5.10 shows that the formability of a sheet material with significant normal 

anisotropy also increases with increasing normal stresses. Nevertheless, a comparison of 

Figures 5.5 and 5.10 seems to indicate that the FLC becomes somewhat less sensitive to 

the through-thickness stress as normal anisotropy increases. To better evaluate the 

sensitivity of the FLC to the normal stress for different degrees of normal anisotropy, the 

percent increase in FLC0 from the plane stress condition was calculated for both sets of 

anisotropy coefficients and plotted in Figure 5.11. 
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Figure 5.11.  Increase in FLC0 as a function of the applied normal stress for two sheet steels that 

differ only by their plastic anisotropy coefficients (R0=1.4 and R90=1.35 versus R0=2.8 and R90=2.7) 
 

Figure 5.11 indeed supports the observation made from Figure 5.10 that, while 

FLC0 continues to increase with the normal stress, the rate of increase of FLC0 is lower 

for sheet materials with more pronounced normal anisotropy. It can also be observed that 

the increase in formability is practically proportional to the increase in normal stress for 

the sheet material with the greater anisotropy. 

In this investigation the imperfection factor in the MK analysis was defined, 

amongst other parameters, as a function of the grain size (d0) of the sheet material. It is 
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therefore of interest to determine if the sensitivity of the FLC to the normal stress varies 

as a function of the grain size. In order to assess the effect of the grain size, the FLC of a 

fictitious sheet material, identical to the AISI-1012 steel except for its initial grain size 

that was doubled from 25 µm to 50 µm, were calculated for different values of the 

applied normal stress. The predicted FLC are plotted in Figure 5.12, and once again, it is 

evident that sheet formability continues to be dependent on the applied normal stress.  

Similar to the previous cases, the percentage increase in the predicted FLC0 was 

plotted as a function of the through-thickness stress for both the AISI-1012 steel and the 

fictitious material with the increased grain size, and these data are presented in Figure 

5.13. It appears that when the grain size of the material increases the dependence of FLC 

on the applied out-of-plane stress decreases somewhat, but the rate of increase in 

formability still increases with the normal pressure. The initial grain size of the sheet 

does not appear to a have a significant effect on the dependence of the FLC to the 

through-thickness stress. 
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Figure 5.12.  FLC of a sheet material that differs from AISI-1012 only by its grain size (d0=50 µm), 

predicted as a function of the applied normal stress 
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Figure 5.13.  Increase in FLC0 as a function of the applied normal stress for two sheet steels that 

differ only by their initial grain size (d 0=25 µm and d0=50 µm) 
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Figure 5.14.  FLC of a sheet material that differs from AISI-1012 only by its initial thickness 

(t0=1.25mm), predicted as a function of the applied normal stress 
 

The sheet material’s initial thickness was the last parameter that was considered in 

this investigation. Once again, the FLC of a sheet material with identical mechanical 
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properties to those of AISI-1012 steel except for the initial thickness that was reduced by 

a half from 2.5 mm to 1.25 mm (it did not appear reasonable to predict the FLC for a 

sheet thickness that was doubled to 5.0 mm), was calculated for different levels of 

applied normal stress, and the predicted FLC are shown in Figure 5.14.  

Figure 5.14 shows that the sheet material with a thinner gauge is still sensitive to 

the applied normal stress, but that the dependence of the FLC on the through-thickness 

stress seems to decrease somewhat as the initial sheet thickness drops. Figure 5.15 

confirms that this sensitivity to the through-thickness stress decreases when the sheet 

thickness decreases, although the actual rate of increase in formability continues to 

increase slightly with normal stress for this particular material with a 1.25 mm gauge. 
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Figure 5.15.  Increase in FLC0 as a function of the applied normal stress for two sheet steels that 

differ only by their initial thickness (t 0=1.25mm and t0=2.5mm) 
 

It should be mentioned, however, that the current model does not address the 

influence of sheet thickness on limit strains in the presence of significant bending. 

Indeed, when a sheet is drawn over a punch radius the combination of stretching and 

bending lead to inhomogeneous through-thickness deformation. Furthermore, the 

through-thickness strain gradient increases with initial sheet thickness and with the 

severity of the bend. Ghosh and Hecker [5.28] showed that an increase in out-of-plane 
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(i.e. bending) deformation tends to delay the onset of necking and shifts the forming 

limits toward higher strains. Therefore a different approach is required to predict limit 

strains in cases where there is significant bending [5.29].  

In order to compare the effect of each of these material parameters on the 

sensitivity of FLC to the through-thickness stress, the percent increase in FLC0 

(compared to the plane stress condition) was plotted in Figure 5.16 for each of the factors 

discussed. It can be seen that variations in the strain hardening coefficient clearly have 

the most significant effect on the sensitivity of the FLC to the normal stress: the 

sensitivity to the normal stress increases sharply when the work hardening ability of the 

material decreases. Similarly, the pressure sensitivity of the FLC increases when the 

normal anisotropy decreases. Another factor that has a significant effect on the sensitivity 

of FLC to the normal stress is the initial sheet thickness however its effect is the reverse 

of that of the other properties: the sensitivity of the FLC to the normal stress increases 

with the sheet thickness. Finally, any variation in grain size or in strain rate sensitivity 

does not appear to significantly affect the dependence of FLC on the normal stress unless 

the normal stress becomes very large (3σ  > 30 MPa in this case). 
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Figure 5.16. Increase in FLC0 as a function of the applied normal stress for sheet steels that differ 

from AISI-1012 by only one mechanical property (see Table 5.1) 
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5.6. Conclusion 

 
In this research, the through-thickness stress component was included in the 

traditional MK analysis to predict FLC in conditions where an out-of-plane stress is 

applied to the sheet surface. The current model was validated by comparing its 

predictions to experimental FLC data with different levels of applied normal stress. The 

FLC of an AISI-1012 steel sheet obtained under plane stress conditions, and the FLC of 

AA6011 aluminum and STKM-11A steel tubes subjected to various levels of internal 

pressure were all used to verify the proposed model. A good correlation between the 

theoretical and experimental FLCs was observed in all three cases. 

The current MK model takes into account the effects of material properties such 

as grain size, surface roughness, and rotation of the initial imperfection. The value of the 

thickness inhomogeneity was defined as a function of surface roughness and grain size of 

the sheet material. In addition, the rotation of the imperfection band, the surface 

roughness and the thickness ratio (f) were updated throughout the loading history. This 

MK analysis was implemented into a numerical code, and the FLC of AISI-1012 sheet 

steel was predicted for different values of the applied compressive normal stress. The 

results obtained from this series of analyses showed that the FLC of a typical sheet steel 

is very sensitive to the applied normal stress, and the formability of the sheet always 

improves as the through-thickness stress increases. Therefore whenever it is applicable 

the addition of, or increase in, through-thickness stress would undoubtedly help to 

improve the formability of sheet materials in industrial sheet and tube forming processes. 

In many instances, the rate of increase in formability also increases with the normal 

stress, providing additional benefit to even small increases in applied normal stress. 

Finally, the influence of certain sheet mechanical properties on the sensitivity of 

FLC to the through-thickness stress was also investigated using this predictive MK 

analysis code. It was found that the work hardening ability of the material has the greatest 

influence on the pressure dependence of FLC. Indeed, the dependence of FLC on the 

applied out-of-plane stress increases significantly as the strain hardening exponent 

decreases. Similarly, the sensitivity to the normal stress increases as the normal 

anisotropy (R ) decreases. The grain size and the strain rate sensitivity were found to 
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have only a minor influence on the pressure dependence of the FLC. Finally, the 

dependence of FLC on the normal stress was seen to increase quite significantly with the 

thickness of the sheet metal.  

All in all, this investigation has shown that, while the dependence of the FLC on 

the through-thickness stress can vary from one material to another, the stress applied 

normal to the sheet surface invariably enhances sheet formability. Therefore the pressure 

dependence of the forming limits of metal sheets and thin-walled tubes cannot be ignored 

if the forming severity of formed components is to be accurately evaluated and the 

robustness of forming processes is to be optimized.  
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Chapter 6 

Prediction of FLC using Hosford’s 1979 yield function 

6.1. Introduction 

According to the well-established mathematical theory of continuum plasticity 

[6.1], three essential elements are required to describe the plastic behaviour of metallic 

materials [6.2]: 

• a yield criterion that determines the boundary of elastic deformation and the onset 

of yielding in stress space 

• a flow rule that establishes a relationship between the stress state and the plastic 

strain increments  

• a strain hardening rule that describes the work hardening behaviour of the 

material and the manner in which the yield locus evolves with plastic deformation 

The yield stress on a uniaxial stress-strain curve is the point at which deformation 

ceases to be elastic and fully recoverable, and when irreversible, plastic deformation 

takes place. Since the transition from elastic to plastic behaviour is generally quite 

gradual, common engineering practice is to define the yield stress in uniaxial tension at 

0.2 percent plastic strain. For multiaxial loading, however, the determination of yielding 

is not as straightforward and a yield criterion is required. In order to determine the onset 

of yielding in a multiaxial stress state, a relation must be established between the 

(principal) stress components and the experimental yield stress. This relationship is called 

a yield function and usually has an implicit form: 
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f (σ1, σ2, σ3, Y) = 0 (6.1) 

 

where σ1, σ2, σ3 are the principal stress components and Y is the yield stress which can 

obtained experimentally from a tension, compression or shearing test. The function 

described by Equation 6.1 actually represents a closed, smooth and convex surface in 

three-dimensional principal stress space and is therefore called a yield surface. 

For incompressible materials such as metals, the yield surface has a cylindrical 

shape with a cross section which varies depending on the anisotropy of the material. For 

isotropic materials, the yield surface can be defined by von Mises’ yield criterion, and in 

this case the cross-section will be circular as shown in Figure 6.1. 

 

 
Figure 6.1. Von Mises and Tresca yield surfaces [6.3] 

 

All the points inside the yield surface denote elastic stress states and points on the 

yield surface represent a condition in which plastic flow is occurring. As plastic 
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deformation progresses, the yield surface may expand, translate or rotate in stress space 

or perhaps distort by a combination of these. Therefore, points in stress space that lie 

outside the yield surface do not have any physical meaning.  

In case of plane-stress loading (e. g. σ3=0), the yield surface can be represented 

by a closed curve on the plane defined by the first and second principal stress 

components (e. g. σ1, σ2) and is referred to as the yield locus. 

In this research, two different yield functions were employed in the MK analysis 

to predict forming limit curves following both linear and nonlinear (i.e. bilinear or multi-

linear) loading paths. These two yield criteria are Hill’s 1948 quadratic yield function and 

Hosford’s 1979 non-quadratic yield function. These yield criteria will now be explained 

in detail in the following paragraphs. 

6.2. Hill’s 1948 yield criterion 

6.2.1. Description of Hill’s 1948 yield criterion 

 
In 1948 Hill [6.1] introduced a yield function that became one of the most widely 

used yield criteria for anisotropic sheet materials. This quadratic yield function was an 

extension of the Huber-Mises-Hencky criterion which was proposed independently by 

Huber in 1904 [6.4] and by von Mises in 1913 [6.5] and later improved by Hencky [6.6]. 

Hill’s 1948 yield criterion can be written in terms of the stress components as follows: 

 

1222)()()()(2 222222 =+++−+−+−= xyzxyzyxxzzyij NMLHGFf τττσσσσσσσ  (6.2) 

 

where f denotes the yield function, F, G, H, L, M, N are anisotropic constants and 

subscripts x, y, z represent the principal orthotropic axes, where ‘x’ is taken as the rolling 

direction, ‘y’ is the transverse direction and ‘z’ is the normal direction to the sheet 

surface.  

Considering the yield stress in uniaxial tension in the three principal anisotropy 

directions as σx 
y, σy 

y, σz 
y, respectively, the anisotropic coefficients can be defined as: 
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Coefficients F, G and H can also be determined as a function of yield stress data in 

different directions (σx 
y, σy 

y, σz 
y), as follows: 
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If the yield stress in simple shear in the x, y, and z directions are τx 
y, τy 

y, and τz 
y, 

respectively, then: 

 

222

1
2;

1
2;

1
2

y
z

y
y

y
x

NML
τττ

===  (6.5) 

 

Coefficients F, G, and H are generally positive and only one of them would be negative 

in the unusual situation where there is a significant difference between stress data in 

different directions. However, coefficients L, M and N are always positive. 

Therefore six independent axial and shear yield stresses (σx
y, σy

y, σz
y, τx

y, τy
y, and 

τz
y) should be determined in the principal axes of anisotropy for a complete description of 

yielding behaviour, and the yield function would be considered as a surface in six-

dimensional stress space. In plane-stress state (σz=τxz=τyz=0; σx≠0; σy≠0; τxy≠0), the yield 

function reduces to: 
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Using the definitions of F, G, H, and N as a function of yield stresses (σx
y, σy

y, σz
y, τx

y, 

τz
y), Equation 6.6 can be written in the following form: 
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In the event that the principal directions of stress coincide with the principal anisotropic 

axes, the shear stress term disappears and Hill’s 1948 yield function can be rewritten as: 
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where σ1, σ2 are non-zero principal stresses. 

In sheet metal forming simulations, anisotropy coefficients are normally 

determined from Lankford’s coefficients (R0, R45, and R90) and the yield stresses in the 

principal anisotropic axes are designated as σx
y=σ0 and σy

y=σ90. Therefore the relation 

between the anisotropic coefficients (F, G, H) and Lankford’s coefficients is as follows: 
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There is another relation between the yield stresses and Lankford’s coefficients as: 
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From Equation 6.9 it can be deduced that: 
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or, from Equations 6.4a,b,c: 
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Finally the following equation can be written [6.2]: 
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If the directions of principal stress are coincident with the principal anisotropic 

axes (σx=σ1, σy=σ2, τxy=0), Hill’s 1948 yield function can be rewritten as: 
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or equivalently, by taking into account the Equation 6.10: 
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Equations 6.14 and 6.15 show that only three mechanical properties are required 

to define the yield condition of sheet metals in plane-stress state. These three mechanical 

properties are R0, R90, and one of the uniaxial yield stresses (either σ0 or σ90), because 

parameters R0, R90, σ0 and σ90 are related by Equation 6.10. In practice, the values of the 
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anisotropy coefficients and an average of the uniaxial yield stress (σave= (σ0 + σ90)/2) are 

used. 

 

6.2.2. Advantages and disadvantages of Hill’s 1948 yield criterion 

 

The main advantage of Hill’s 1948 yield function is the simplicity with which the 

anisotropy coefficients can be determined from basic sheet mechanical properties. 

Moreover, only a limited number of material data are needed to fully define yielding 

behaviour. As already pointed out, only three independent material properties are 

sufficient to define the coefficients in Hill’s 1948 yield function in plane-stress 

applications. Furthermore, many other yield criteria are only applicable to plane-stress 

sheet metal forming analyses but Hill’s 1948 yield function is not limited in this way and 

is applicable to a variety of three-dimensional metal forming processes. Therefore this 

yield function continues to be widely used in numerical simulations. 

Hill’s 1948 yield criterion does however have some drawbacks. Many non-ferrous 

alloys including aluminum alloys have an average anisotropic coefficient that is 

( ) 0.142 90450 <++= RRRR  and, for such sheet materials, Hill’s 1948 yield function 

does not adequately represent the shape of the yield surface. This observation was 

reported by Pearce [6.7] in 1968 and by Woodthorpe and Pearce [6.8] in 1970. Also 

second order “anomalous” behaviour (R0/R90>1 and σ0/σ90<1) was observed in some 

materials and Hill’s 1948 is also not able to represent the anisotropy of such materials. 

Another limitation of this yield criterion is that this yield function can only predict two or 

four ears in axi-symmetric cup-drawing, whereas it is possible to observe six and 

occasionally eight ears in cups drawn with sheet materials which possess a high degree of 

anisotropy. For these reasons, many researchers have developed yield criteria that are 

able to more accurately represent the anisotropic behaviour of metal sheets. 
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6.3. Non-Quadratic yield criteria 

 
The research to develop more accurate and versatile yield criteria started in the 

1970s and the outcome of this work was to propose non-quadratic yield functions for the 

analysis of anisotropic plasticity of sheet materials. In this section, some of the better 

known non-quadratic yield criteria will be reviewed. Since Hosford’s 1979 yield criterion 

overcomes the limitations of Hill’s function, it was implemented into the current MK 

analysis code, and therefore this particular yield criterion will be reviewed in greater detail. 

 

6.3.1. Hosford’s 1979 yield criterion 

 

In 1979 Hosford [6.9] introduced a non-quadratic yield criterion as follows: 
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This yield function is the generalized form of another yield function Hosford proposed in 

1972 [6.10] for isotropic materials as: 
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where a is a positive integer much greater than two. Hosford and coworkers related the 

value of this exponent to the crystallographic structure of the material [6.11-6.14] and 

proposed a=8 for face centered cubic (FCC) materials and a=6 for body centered cubic 

(BCC) materials as the most appropriate values to describe the shape of the yield surface 

[6.13].  

For plane-stress deformation, Hosford’s 1979 anisotropic yield criterion can be 

written as: 
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or equivalently: 

 

aa

x

a

y

a

yx GFH 0σσσσσ =++−  (6.18b) 

 

The ratio between the effective strain and the major principal strain (λ=εe/ε1) is: 
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where ξ is the ratio between the effective stress and the major principal stress (ξ=σe/σ1) 

and can be defined as follows in the case of normal anisotropy: 
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and the relation between the strain and stress path indicators (i.e. the relation between 

ρ=ε2/ε1 and α=σ2/σ1) is: 
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or also: 
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The inverse relation, α =α (ρ) cannot be given explicitly but must be numerically 

solved for each value of ρ using the equation ρ =ρ (α). There are seven solutions to this 

equation when a=8 and five solutions when a=6. However, only one of the solutions is 

real. 

Using the associated flow rule, the plastic strain increments can be written as: 
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Hosford’s non-quadratic yield criterion was implemented into the author’s MK numerical 

code, and the limit strain was calculated in the same way as was presented in chapters 3, 

4 and 5. 

 

6.3.2. Hill’s 1979 yield criterion 

 

A very similar non-quadratic yield function was proposed by Hill [6.15] in the 

same year: 
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The main difference between Hosford’s and Hill’s non-quadratic yield criteria is 

related to the method employed to determine the exponent ‘m’ (m can be an integer or a 

real non-integer number greater than one) which is determined by matching the effective 

stress-strain curves for uniaxial and biaxial tests.  
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6.3.3. Hill’s 1990 yield criterion 

 

Hill (1990) [6.16] proposed another, more versatile, non-quadratic yield criterion 

for thin orthotropic sheets: 
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where τ is the yield stress in simple shear, σEB is the yield stress in equibiaxial tension 

and α is the angle between the first principal stress and the orthotropic axes. Parameters a 

and b are defined as: 

 

GF

NHGF
b

GF

GF
a

+
−++

=
+
−

=
24

,  

 

 This yield function has proven to be more accurate than the original 1948 

quadratic criterion, since it is defined by a greater number of parameters. The exponent m 

has often been used to fit the yield locus to the experimental yield data. However, besides 

the mechanical properties in uniaxial tension, it also requires the experimental yield stress 

in equibiaxial tension and in simple shear; both of these properties require specialized 

testing equipment and therefore the tendency, at least in the industry, has generally been 

to use a simpler yield function.  

 

6.3.4. Hill’s 1993 yield criterion 

 
In 1993, Hill developed a new, supposedly user-friendly, non-quadratic yield 

criterion [6.17]. In this yield criterion the tensile yield behaviour in both the rolling and 

transverse directions is assumed to be essentially identical, which is a somewhat of a 

restriction, but the associated strain ratios are accounted differently 
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where p and q are dimensionless anisotropic coefficients. This function is not 

homogeneous and is not actually as user-friendly as it was claimed to be. Finally, Hill’s 

1993 yield criterion is recommended for use with thin anisotropic sheets but is limited 

only to the first tension quadrant of the plane-stress space.  

 

6.3.5. Barlat and Lian’s 1989 yield criterion 

 
In 1989, Barlat and Lian [6.18] introduced a non-quadratic yield criterion which is 

frequently called Yld89. This yield function was developed for textured polycrystalline 

sheets with planar anisotropy and is written as follows: 
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and a, c, h, p are anisotropy coefficients calculated from the mechanical properties, and 

exponent m can be derived from the other anisotropy parameters. Although this yield 

criterion is limited to plane-stress applications, it has been shown to predict the shape of 

the yield locus of aluminum sheets much better than Hill’s yield criteria.  

 

6.3.6. Barlat’s Yld2000-2d yield criterion 

 
There were some issues in Yld96 such as it is not always possible to prove the 

convexity of the yield surface defined by this function and therefore it is not always 

possible to ensure the uniqueness of the plastic strain increment. Moreover, it is difficult 

to determine the first and second derivatives of yield function in the form of an analytic 

expression which creates a challenge for the implementation of this yield criterion into 

numerical codes. 
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In order to overcome the limitations of the previous yield function (Yld96), Barlat 

et al. 2003 [6.19] proposed a yield criterion capable of modelling the behaviour of metals 

in a full three-dimensional stress state. This yield criterion guarantees yield locus 

convexity and is easier to implement in a finite element code. In plane-stress conditions it 

is written as follows: 

aaaa XXXXXX 211221 222 ′′+′′+′′+′′+′−′=σ  (6.27) 

with 

σσ LXLX ′′=′′′=′ and  (6.28) 

where L′ and L″ are linear transformation tensors which can be fully defined with eight 

independent anisotropy coefficients (α1 to α8) and which can be determined from eight 

uniaxial and biaxial mechanical properties. This yield function is generally referred to as 

the Yld2000-2D criterion and it has become widely accepted as one of the most suitable 

criteria for describing the plastic behaviour of aluminum sheets. 

 

6.3.7. Other Yield Criteria 

 
Many other non-quadratic yield criteria have been proposed such as that of Barlat 

et al. 1991 [6.20], Karafillis and Boyce 1993 [6.21], Barlat et al. 1997 [6.22], Banabic et 

al. [6.23] and Barlat et al. 2005 [6.24]. These more recent yield functions are generally 

from the same family of functions as Hosford’s yield criterion. 

As mentioned already, Hosford’s 1979 non-quadratic yield criterion was 

implemented in the author’s MK analysis code. The main reasons for selecting it are as 

follows: 

a) In the MK analysis used in this dissertation there are no shear stress components and 

in these cases, the plastic strains calculated from Hosford’s yield criterion are very 

similar to those predicted with more recent non-quadratic yield functions such as 

Yld2000-2D. 

b) In plasticity calculations using Hosford’s yield function there is a real benefit to 

working with fewer material constants. Indeed, one of the challenges with more 

recent yield criteria is the fact that a large number of parameters need to be defined 

from the various sheet mechanical properties and therefore a large number of material 
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characterization tests are required. One recent yield criterion requires 18 different 

mechanical properties obtained in 7 different orientations relative to the rolling 

direction of the sheet. This is really too onerous for use in industrial simulations of 

sheet metal forming operations. 

c) A survey of the literature reveals that Hosford’s 1979 yield function has been a 

successful non-quadratic yield criterion for FLC prediction of sheet materials that 

have an average plastic anisotropy ratio less than one [6.25-6.32]. 

 

6.4. Results 

 
Following the implementation of Hosford’s 1979 yield criterion into our MK 

analysis code, the predicted FLCs were compared with corresponding experimental FLCs 

for both as-received and bilinear loading paths. Two alloys were considered for the 

comparison: a low carbon sheet steel AISI-1012 [6.33] and the AA-2008-T4 aluminum 

sheets reported by Graf and Hosford [6.34]. The material properties of these two alloys 

were presented in chapter 3 (Tables 3.1 and 3.2). Moreover, in order to compare the 

accuracy of FLCs obtained from quadratic and non-quadratic yield criteria, the same 

FLCs were predicted using Hill’s 1948 yield function and are included in the 

comparisons.  

Figure 6.2 shows good agreement between both theoretical predictions and 

experimental data for AISI-1012 sheet steel in its as-received state. In this figure, the 

FLC predicted with Hosford’s yield function fits very well with the corresponding 

experimental curve in all regions of the diagram. Both yield criteria lead to the same 

prediction of the FLC in the region of plane-strain deformation which is a critical 

deformation mode in sheet metal forming. As anticipated, the FLC predicted with the 

non-quadratic yield function is in better agreement with the experimental data than that 

predicted with the quadratic yield function on the right side of the diagram (i.e. for 

positive minor strains) but the two criteria predict the left side of the FLC (i.e. for 

negative minor strains) with a similar level of accuracy. 
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Figure 6.2. Comparison of predicted and experimental FLCs of as-received AISI-1012 steel 

sheets 

The FLCs of AISI-1012 steel were also calculated for two nonlinear loading 

paths. In the first case sheet specimens were preloaded to 8% strain in equibiaxial tension 

and the FLC was determined following this prestrain by simulating a whole series of 

linear load paths in the range between ρ=-0.5 and ρ=1 (i.e. between uniaxial tension and 

equibiaxial tension). In the second case the sheet material was subject to a 10% prestrain 

in uniaxial tension followed by a range of linear loading paths between uniaxial tension 

and equibiaxial tension. The FLCs predicted for these two types of bilinear strain paths 

with either Hill’s or Hosford’s yield criterion are shown in Figures 6.3 and 6.4, 

respectively, along with the corresponding experimental data. 

In Figure 6.3, the published experimental data was only available for the left side 

of the FLC, however both plasticity models show good agreement with the experimental 

data after a prestrain in equibiaxial tension. Once again it can be observed that both yield 

criteria lead to the same prediction of limiting strains in the plane-strain region for both 

loading histories. But we also observe that Hosford’s non-quadratic yield criterion gives a 

better prediction in the regions to the left and right of plane-strain for steel specimens 

prestrained in uniaxial tension, as shown in Figure 6.4.  
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Figure 6.3. Comparison of predicted and experimental FLCs of AISI-1012 steel after 8% prestrain in 

equibiaxial tension 
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6.4. Comparison of predicted and experimental FLCs of AISI-1012 steel after 10% prestrain in 

uniaxial tension 
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Overall, it can be seen that the differences between the predictions using these 

two yield criteria is not significant for this particular grade of steel. 

The FLC of the AA-2008-T4 aluminum alloy sheet predicted with both Hosford’s 

and Hill’s yield criteria and the corresponding experimental data for the as-received 

condition are shown in Figure 6.5. As mentioned in chapters 3 and 4, some material 

constants (C, d0, RZ0) were not provided in Graf and Hosford’s publication [6.34], 

therefore these values were determined by calibrating the FLC of the AA-2008-T4 alloy 

predicted using Hill’s 1948 yield criterion to the experimental as-received FLC: the 

values determined by the calibration were C = 0.70, d0 = 8.00µm and RZ0 = 2.5 µm and 

the prediction of the FLC using Hosford’s yield function was also performed with the 

same material constants. It can be observed in Figure 6.5 that the predicted curves 

correlate very well with the experimental data, but the FLC predicted with the non-

quadratic yield criterion appears to provide a better fit than the one predicted with the 

quadratic function. 
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Figure 6.5. Comparison of calibrated/predicted and experimental FLCs of as-received 2008-T4 

aluminum sheets 
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The FLC of AA-2008-T4 sheet was also predicted for bilinear loading paths in 

which the prestrain was obtained in different modes of deformation. In the first case, the 

FLC was predicted for sheets prestrained to either 4% or 12% in equibiaxial tension. The 

curves calculated using both quadratic and non-quadratic yield functions are shown along 

with the corresponding experimental data in Figures 6.6 and 6.7, respectively. 

In Figure 6.6, it appears that Hosford’s yield criterion leads to a better prediction 

of the FLC for the samples with a 4% prestrain in equibiaxial tension. However, when a 

greater magnitude of prestrain is applied along the same strain path (ρ=1), Hill’s 

quadratic yield criterion seems to provide a slightly better correlation with experimental 

data. Nevertheless, both yield functions give very similar predictions and both criteria 

lead to an acceptable level of accuracy for this aluminum alloy. 
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Figure 6.6. Comparison of predicted and experimental FLCs of 2008-T4 aluminum after 4% 

prestrain in equibiaxial tension 
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Figure 6.7. Comparison of predicted and experimental FLCs of 2008-T4 aluminum after 12% 

prestrain in equibiaxial tension 

 

Graf and Hosford also published experimental FLC data for this aluminum alloy 

for a prestrain of either 5% or 12% in uniaxial tension. In order to further validate the 

FLC predictions using these two different plasticity models, the FLC was predicted for 

both strain histories with the present MK model. The predicted FLCs and the 

corresponding experimental data are shown in Figures 6.8 and 6.9. In Figure 6.8, after a 

5% prestrain in uniaxial tension, it can be seen that Hill’s yield criterion gives a better 

prediction of the right side of the FLC than Hosford’s criterion; but this is the only case 

amongst those investigated where the quadratic function gives a better prediction than the 

non-quadratic function. It can also be pointed out that, in this case, Hosford’s criterion 

still gives a better prediction in the region of plane-strain deformation and shows a more 

accurate trend on the left side of the FLC. For the AA-2008-T4 sheet samples deformed 

to a 12% prestrain in uniaxial tension, although the two plasticity models yield similar 

results, the non-quadratic criterion clearly provides a more accurate prediction than the 

quadratic yield function for both sides of the FLC.  
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Figure 6.8. Comparison of predicted and experimental FLCs of 2008-T4 aluminum after 5% 

prestrain in uniaxial tension 
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6.9. Comparison of predicted and experimental FLCs of 2008-T4 aluminum after 12% prestrain in 

uniaxial tension 
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6.5. Conclusion 

In this chapter a numerical MK analysis code was developed to predict the FLC of 

sheet metal using Hosford’s 1979 non-quadratic yield criterion. Forming limits were 

predicted for both linear and bilinear loading paths for AISI-1012 steel and AA-2008-T4 

aluminum sheets. The theoretical results that were obtained were compared with the 

corresponding experimental data and also with the FLCs predicted with Hill’s 1948 yield 

function at the same condition.  

Both anisotropic plasticity theories are able to predict the FLC of these two sheet 

materials very well, for both the as-received condition and also for samples prestrained in 

uniaxial or equibiaxial tension. Not only do the predicted FLCs follow the general shape 

of the experimental FLC, but their accuracy is also very good considering there is an 

estimated error of ±2.5% strain on the vertical position of an experimental FLC [6.35]. 

However, on the whole, the prediction of FLC using Hosford’s yield function is 

somewhat better than when Hill’s criterion is employed, especially on the right side of 

the FLC. In most cases, the predictions made with these two yield criteria were very 

similar, with only minor variations on the left side of the FLC. There was only one case 

where the prediction using Hill’s criterion was more consistent with experimental data 

than Hosford’s criterion, and this was on the right side of the FLC of the 2008-T4 

aluminum alloy after a 5% percent prestrain in uniaxial tension. 

Based on the observations made in this chapter, it may be concluded that 

Hosford’s non-quadratic yield function generally leads to more accurate predictions of 

limiting strains than Hill’s quadratic function, for as-received as well as prestrained 

material, whether it is prestrained in either uniaxial tension or equibiaxial tension, and for 

both steel and aluminum sheets. 
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Chapter 7 

 

Summary and conclusions 

 

7.1. Summary  

This dissertation presents a number of advanced mechanical models that help to 

calculate the forming limits of sheet materials more accurately and for a wider range of 

loading conditions than was previously possible. The well-known Marciniak-Kuczynski 

(MK) model was used as the basic method to predict forming limit curves both in strain 

space (FLC) and in stress space (SFLC). In order to predict the onset of plastic instability 

for sheets deformed in complex, multi-stage forming operations, the MK model was 

adapted to compute forming limits for sheets subject to nonlinear strain paths. Theoretical 

predictions of FLCs for linear and bilinear loading paths were compared with the 

corresponding experimental data for AISI-1012 steel and AA-2008-T4 aluminum alloys. 

The path dependency of SFLCs predicted for different non-proportional loading histories 

was also investigated.  

The MK approach was also used to compute the FLC in conjunction with two 

different work-hardening models: an isotropic hardening model and a mixed isotropic-

nonlinear kinematic hardening model which is capable of describing the Bauschinger 

effect. Once again, published experimental FLCs of AISI-1012 low carbon steel and AA-
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2008-T4 aluminum sheets that were subjected to various non-linear loading paths were 

compared to predictions using both hardening models.  

The conventional MK model was also extended to predict FLC for general, three-

dimensional stress states.  Indeed, the influence of the through-thickness principal stress 

on the formability of different grades of sheet metal was investigated in terms of the ratio 

of the third to the first principal stress components ( 13 σσβ = ). An analysis was also 

carried out to determine how the sensitivity of the FLC prediction to the through-

thickness stress changes with variations in mechanical properties and sheet thickness. The 

validation of the model for cases involving three-dimensional stresses was done with 

published experimental FLC data for AA-6011 aluminum and STKM-11A steel tubes.  

Finally the effect of the yield function on FLC prediction was investigated by 

implementing both a quadratic and a non-quadratic yield criterion into the MK analysis. 

FLCs were calculated with Hill’s 1948 quadratic yield function and Hosford’s 1979 non-

quadratic yield function using a numerical code that accounts for linear and nonlinear 

loading paths. Predictions of FLC were again compared with experimental data for AISI-

1012 steel and AA-2008-T4 alloys. 

 

7.2. Conclusions 

The following conclusions can be drawn from the research presented in this 

dissertation: 

 
1. This research emphasizes that the FLC is significantly strain-path dependent. 

Although the industrial practice of using a 10 percent safety margin beneath the 

FLC can, in many cases, be an effective way to ensure a robust sheet metal 

forming process, there are also many instances where FLC variation due to 

nonlinear loading can be significantly greater than this safety margin. Therefore 

the as-received FLC ought not to be used for formability evaluation unless it can 

be shown that the loading history is quasi-linear throughout the formed part. 
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2. The MK analysis was shown to predict both the FLC and the SFLC of sheet 

metals with acceptable accuracy provided critical material parameters, such as the 

imperfection factor, are defined appropriately. 

3. It is strongly recommended to include the rotation of the imperfection band, 

material anisotropy, and strain rate sensitivity in the MK analysis. The FLC can 

be very sensitive to the strain rate sensitivity of the sheet material.  

4. The SFLC remains practically strain-path independent for a significant range of 

prestrains. However, some path dependency is observed if the magnitude of the 

prestrain exceeds a certain level of equivalent strain ( 35.0≥ε  for AISI-1012 

steel) or when there are abrupt changes in strain path.  

5. In spite of some path dependency, the SFLC remains a good failure criterion for 

virtual forming simulations because the path dependency of SFLCs is much less 

significant than that of strain-based FLCs. 

6. Predictions of the FLC using the MK analysis have been shown to be dependent 

on the shape of the initial yield locus and on its evolution during work hardening; 

therefore the hardening model has a considerable influence on the predicted FLC. 

This work showed that the isotropic hardening rule leads to acceptable accuracy 

on the left side of the FLC (i.e. for negative minor strains), but that the mixed 

hardening rule provides a more accurate prediction of FLC in plane-strain and on 

the right side of the FLC (i.e. for positive minor strains) for the sheet materials 

considered. 

7. The formability of sheet metal was shown to be very sensitive to the applied 

normal stress, and the FLC always shifts upwards in strain space as the 

compressive through-thickness stress is increased. Therefore the assumption of 

plane-stress conditions is really only an approximation which can be made in a 

few cases such as open die stamping. Since many industrial sheet and tube 

forming processes lead to significant compressive through-thickness stresses, the 

effects of this normal stress on the formability of sheet metals should not be 

ignored.  

8. The analysis showed that among the material parameters considered in this 

research, the strain hardening coefficient has the most significant effect on the 
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dependency of FLC to the through-thickness stress, while the strain rate 

sensitivity coefficient has the least influence on this sensitivity. 

9. The anisotropy factor also has a significant effect on the dependency of FLC to 

the through-thickness stress. Sheet materials with a lower normal anisotropy, such 

as aluminum alloys, show greater formability improvement in the presence of a 

compressive stress than materials with a more pronounced normal anisotropy. 

10. Both Hill’s 1948 and Hosford’s 1979 yield criteria predict the left side of the FLC 

of AISI-1012 steel and AA-2008-T4 aluminum sheets with acceptable accuracy 

for both linear and nonlinear strain paths.  However the prediction of the right 

side of the FLC using Hosford’s 1979 non-quadratic yield function was somewhat 

better than that with Hill’s 1948 quadratic function. 

11. Calculation of the FLC using a non-quadratic yield function gives a more accurate 

prediction of the FLC in biaxial tension than with a quadratic yield function 

because a non-quadratic function is able to represent the shape of the yield surface 

more accurately in the region of biaxial tension. 

 

7.3. Future work 

The implementation of various mechanical models into the MK analysis has been 

shown to improve the accuracy of the FLC, particularly in cases of multi-stage loading 

and in the presence of through-thickness stresses. The implementation of more relevant 

yield criteria and hardening models was also shown to enhance the prediction of FLC. 

However, further work should be carried out in this area so that the most advanced and 

up-to-date plasticity models may be incorporated into numerical predictive codes. Indeed, 

while Hosford’s 1979 yield function and the mixed isotropic – nonlinear kinematic 

hardening model were helpful to improve the prediction of the FLC, there are no doubt 

other yield criteria and hardening models which would provide even more accurate 

forming limit data, especially in view of the increased use of advanced high strength 

steels, aluminum and magnesium alloys in the automotive metal forming industry. 
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Moreover, these various enhancements were implemented one at a time into the 

MK analysis, so that one code was initially developed with basic features such as the 

capability of following bilinear strain paths, Hill’s quadratic yield function and isotropic 

hardening. This basic code was then modified to replace Hill’s 1948 yield function with 

Hosford’s non-quadratic yield criterion, thus making a second predictive code. The 

original MK code was modified again, as a separate code, to replace isotropic hardening 

with the mixed hardening model. And again a fourth code was developed with the 

capability of including the through-thickness stress in the analysis. Therefore it is 

suggested that these individual modelling features all be included in a single code that has 

the flexibility of being able to independently modify the yield criterion, the hardening 

model and the magnitude of the through-thickness stress. 

In the MK approach, material inhomogeneity has generally been modelled as a 

geometric imperfection, and in this work, the geometric imperfection factor was related 

to the surface roughness of the sheet material. It is suggested, however, that the 

microstructural inhomogeneities in modern automotive sheet materials may be more 

significant than the surface roughness of the sheet. For instance, the segregation between 

softer and harder phases in advanced high strength steels such as martensite banding in 

dual phase steels may create a more severe inhomogeneity than the roughness at the 

surface of the sheet. It would be most interesting to investigate whether the imperfection 

factor in the MK analysis can be correlated to martensite banding, or with other sources 

of inhomogeneity that exist in other families of alloys. 

Finally, the MK analysis is not currently capable of predicting the onset of plastic 

instability when bending is superimposed on the in-plane deformation. The addition of 

bending strains creates a through-thickness strain gradient, which is known to delay the 

onset of necking, particularly as the bending radius decreases and as the sheet thickness 

increases. Therefore, it would be extremely useful to develop an analytical model that 

does take the bending deformation into consideration. 

Clearly, much more research is required to predict the forming limits of sheet 

materials with accuracy and reliability. 
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Appendix A 

 Determination of ηηηη=dεεεε
b
e/dεεεε

a
e  ratio in MK analysis 

In chapters 3, 4, and 5 it was mentioned that localized necking in sheet metal 

occurs once the effective strain rate in the groove area reaches 10 times that in the 

nominal area, that is when η=dε b
e /dε a

e >10. In the current research, the variation of η was 

monitored at every increment during the numerical prediction of the deformation. Figure 

A.1 shows a sample of the variation of η for a given loading path (ρ=0.95). 

The values of η shown in Figure A.1 indicate that the magnitude of η suddenly 

increases from 1.45 to 146.1 at the end of the deformation when necking occurs. This 

signifies that in this case, η > 2.0 would give the correct solution to the FLC calculation. 

Table A.1 presents the final η values for all the strain paths between uniaxial tension and 

equibiaxial tension for the AISI-1012 steel. 

It can be seen from this table that the final value of η at the onset of necking varies 

between 1.44 and 3.55. From a theoretical point of view, any η value greater than 3.5 will 

result in a correct and repeatable prediction of the FLC for all strain paths. In this table 

there is only one strain path for which the limiting value of η lies outside the mentioned 

range (η=6.61 when ρ=−0.10). For this particular loading path, the onset of necking will be 

virtually identical whether η=3.5 or η=6.61 because the difference in effective strain during 

this one additional increment is merely 001.0=eε . Although η > 4 will give a consistent 

prediction of FLC in different sheet metals, a broad survey of the literature shows that 

η=10 is commonly used in MK-based FLC calculation codes. 
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Figure A.1. Variation of ηηηη=dεεεε b
e /dεεεε a

e  during the computation of a FLC 

 

It should also be mentioned that, during the current research some uniaxial 

tension tests were conducted on DP600 steel specimens. The effective strain values were 

recorded using a commercial optical strain measurement device that uses digital image 

correlation to calculate strains. In these tests the average experimental value for the η 

coefficient was found to be η=4.1. 
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Table A.1. Final values of η at the onset of instability for AISI-1012 steel 

ρρρρ ηηηη ρρρρ ηηηη ρρρρ ηηηη 

1.00 1.55 0.50 1.76 -0.05 2.34 

0.95 1.45 0.45 2.93 -0.10 6.61 

0.90 1.76 0.40 2.60 -0.15 2.90 

0.85 1.47 0.30 1.87 -0.20 3.07 

0.80 1.48 0.25 3.55 -0.25 1.78 

0.75 1.60 0.20 3.25 -0.30 1.66 

0.70 1.93 0.15 2.34 -0.35 2.78 

0.65 2.34 0.10 2.22 -0.40 1.45 

0.60 1.89 0.00 2.03 -0.45 1.44 
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Appendix B 

 Error between predicted and experimental FLCs 

In order to quantify how well the predicted FLCs correlate with experimental 

curves, the area between the theoretical FLC and the experimental FLC was used to 

define a percentage of error for the theoretical results: 

 

100
FLCalexperimenttheunderArea

FLCalexperimenttheandltheoreticathebetweenArea
%Error ×=  (B1) 

 

The area under predicted and experimental FLC was calculated numerically for 

the range of minor strains for which experimental data was available, and the error data 

that was obtained is listed in Table B.1. 

 

Table B.1. Percent error of predicted FLCs 

Predicted FLC Error %  

FLC of AISI-1012 steel alloy in the as-received state using isotropic 
hardening rule and Hill’s 48 yield criterion (Figure 4.6) 

8.26 

FLC of AISI-1012 steel alloy in the as-received state using mixed 
hardening rule and Hill’s 48 yield criterion (Figure 4.6) 

5.43 

FLC of AISI-1012 steel alloy in the as-received state using isotropic 
hardening rule and Hosford’s 79 yield criterion (Figure 6.2) 

2.84 
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Table B.1. Percent error of predicted FLCs (continued) 

Predicted FLC Error % 

FLC of AISI-1012 steel alloy after 8% prestrain in equibiaxial tension 
using isotropic hardening rule and Hill’s 48 yield criterion (Figure 4.7) 

6.30 

FLC of AISI-1012 steel alloy after 8% prestrain in equibiaxial tension 
using mixed hardening rule and Hill’s 48 yield criterion (Figure 4.7) 

7.13 

FLC of AISI-1012 steel alloy after 8% prestrain in equibiaxial tension using 
isotropic hardening rule and Hosford’s 79 yield criterion (Figure 6.3) 

3.05 

  

FLC of AISI-1012 steel alloy after 10% prestrain in uniaxial tension using 
isotropic hardening rule and Hill’s 48 yield criterion (Figure 4.8) 

5.88 

FLC of AISI-1012 steel alloy after 10% prestrain in uniaxial tension using 
mixed hardening rule and Hill’s 48 yield criterion (Figure 4.8) 

5.00 

FLC of AISI-1012 steel alloy after 10% prestrain in uniaxial tension using 
isotropic hardening rule and Hosford’s 79 yield criterion (Figure 6.4) 

2.29 

FLC of 2008-T4 aluminum alloy after 4% prestrain in equibiaxial tension 
using isotropic hardening rule and Hill’s 48 yield criterion (Figure 4.10) 

4.68 

FLC of 2008-T4 aluminum alloy after 4% prestrain in equibiaxial tension 
using mixed hardening rule and Hill’s 48 yield criterion (Figure 4.10) 

4.69 

FLC of 2008-T4 aluminum alloy after 4% prestrain in equibiaxial tension 
using isotropic hardening rule and Hosford’s 79 yield criterion (Figure 6.6) 

2.31 

  

FLC of 2008-T4 aluminum alloy after 12% prestrain in equibiaxial tension 
using isotropic hardening rule and Hill’s 48 yield criterion (Figure 4.10) 

4.18 

FLC of 2008-T4 aluminum alloy after 12% prestrain in equibiaxial tension 
using mixed hardening rule and Hill’s 48 yield criterion (Figure 4.10) 

0.54 

FLC of 2008-T4 aluminum alloy after 12% prestrain in equibiaxial tension 
using isotropic hardening rule and Hosford’s 79 yield criterion (Figure 6.7) 

4.23 

  

FLC of 2008-T4 aluminum alloy after 5% prestrain in uniaxial tension 
using isotropic hardening rule and Hill’s 48 yield criterion (Figure 4.11) 

1.35 

FLC of 2008-T4 aluminum alloy after 5% prestrain in uniaxial tension 
using mixed hardening rule and Hill’s 48 yield criterion (Figure 4.11) 

1.30 

FLC of 2008-T4 aluminum alloy after 5% prestrain in uniaxial tension 
using isotropic hardening rule and Hosford’s 79 yield criterion (Figure 6.8) 

3.3 

  

FLC of 2008-T4 aluminum alloy after 12% prestrain in uniaxial tension 
using isotropic hardening rule and Hill’s 48 yield criterion (Figure 4.11) 

2.45 

FLC of 2008-T4 aluminum alloy after 12% prestrain in uniaxial tension 
using mixed hardening rule and Hill’s 48 yield criterion (Figure 4.11) 

0.93 

FLC of 2008-T4 aluminum alloy after 12% prestrain in uniaxial tension 
using isotropic hardening rule and Hosford’s 79 yield criterion (Figure 6.9) 

0.45 
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Table B.1. Percent error of predicted FLCs (continued) 

Predicted FLC Error %  

FLC of AA6011 aluminum alloy under 15 MPa internal pressure using 
isotropic hardening rule and Hill’s 48 yield criterion (Figure 5.3) 

10.23 

FLC of STKM-11A steel alloy under 56 MPa internal pressure using 
isotropic hardening rule and Hill’s 48 yield criterion (Figure 5.4) 

13.54 
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