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 ABSTRACT 
 

Metallic nanoparticles, in particular silver and gold nanostructures, are at 

the centre of the development of plasmon enhanced optical signals. There is a 

flurry of activities in the fabrication and testing of these nanostructures, especially 

in surface enhanced Raman scattering (SERS) and surface enhanced-infrared 

absorption (SEIRA), the two branches of surface-enhanced vibrational 

spectroscopy.  The need to develop an understanding of this general subject 

matter for practicing spectroscopists cannot be questioned. This work is a unique 

undertaking intended to examine some of the elements that give rise to surface-

enhanced spectroscopy.   

 The optical properties of nanoparticles are discussed in detail, beginning 

with a discussion of the electromagnetic theory describing the interaction of light 

and matter.  Exact solutions to the electromagnetic equations are used to model 

and calculate plasmonics of nanoparticles.  These methods include Mie theory, 

and extensions to Mie such as for concentric spheres and interacting spheres.    

Approximate methods are also discussed, such as the dipolar model for 

ellipsoids of rotation, and the coupled dipole equations for irregular or interacting 

particles.  These models are used to obtain optical properties as well as 

enhanced electromagnetic fields, applied to surface enhanced vibrational 

spectroscopy.  The origin of vibrational spectroscopy is briefly described, and 

quantum mechanical calculations are performed to describe a variety of the 

molecular possibilities arising through surface enhanced spectroscopy, such as 

aggregation, chemical adsorption, and surface selection rules. 
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CHAPTER ONE 

INTRODUCTION 

 

A. Plasmonics and Optical Properties of Nanoparticles  

 The following dissertation may best be understood to be part of the field of 

plasmonics.  Plasmonics is the study of the electronic oscillation, or plasmon, 

which is created by the interaction of light with a nanostructured material.1  It is 

the optical response of noble metals, dominated by the behavior of their 

conduction electrons, which can produce collective oscillations of the electrons, 

or, plasmon. The interaction between electromagnetic radiation (from infrared to 

the ultraviolet) and a metal surface may lead to surface plasmon excitation, as 

this interaction creates electronic plasma oscillations on the surface of the metal.  

When speaking of a plasmon, it is necessary to differentiate whether the 

collective excitation of electrons of the metal is contained within the metal or is a 

surface excitation. 

 Should the excitation be found within the metal (e.g., bulk plasmons), the 

oscillations due to fluctuations in the electronic density of the metal are 

longitudinal2-4.  In this case, the condition for plasmon formation is that the real 

part of the dielectric function is zero, which is only true at a specific frequency of 

light.  This frequency is termed the plasma frequency, and, in practice, is very 

distinctive among different materials.  For metallic surfaces, however, there 

exists a surface plasmon with an amplitude that dies off quickly away from the 

surface.  This surface excitation is a coupling of the incident photons with the 

oscillation of the conduction electrons and it polarizes the surface.  The surface 

plasmon is often thus referred to as the surface plasmon-polariton, clearly 

indicating that this excitation is a coupling of the light and a material.  This 

concept is shown in Figure 1.1, which is an idealized image of the charge, and 

the decay of the electric field away from the surface. 
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Figure 1.1 Illustration of surface charge and electric field in a surface plasmon.   

 
 The electromagnetic field of a surface plasmon at the metal/dielectric 

interface is the evanescent solution of Maxwell’s equations, applying the correct 

continuity conditions at the surface.  This work deals with the surface plasmons 

in a specific size regime: that of metal nanoparticles.  These excitations depend 

strongly on both the size and shape of the particle or particles involved, and thus 

are very different from the surface plasmon created in a flat surface.  These are 

often termed localized surface plasmons, or localized surface plasmon 

resonances (LSPR), as they are confined to nanometric particles, leading to 

resonances that depend on the size, shape, and dielectric function of the material 

that the particle is made up of.  Discussing the solution of Maxwell’s equations for 

this problem will be one of the main subjects of this work.  

 Although plasmonics is a relatively new field, (the term was first appeared 

in the literature in 2001)5 , the study of plasmons has had a much longer history.  

For example, the use of colloidal gold and silver particles in the Lycurgus cup 

give it unique optical properties6.  These gold and silver particles, as will be 

shown in detail later (See chapter 2, p.18) absorb and scatter light primarily in the 

shorter wavelengths of the visible region.  When viewed using reflected light, the 

cup is a green colour.  When lit from inside, however, the gold and silver particles 

embedded in the glass matrix allow only the red light to transmited7.  Another 
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historic application for the scattering of light by metal particles is seen in the 

windows of temples, churches, and other buildings, as well as in other forms of 

stained glass artwork.  The bright colours of the stained glass are due to metallic 

nanoparticles, the specific colour depending on the size and material of the 

particle.   

The first systematic understanding of the phenomenon that would later 

develop into the field of plasmonics was through Mie’s solution to Maxwell’s 

equations for a dielectric sphere8.   The exact solution of the interaction of light 

with a spherical body was now understood, given that the optical properties of 

the specific material were known.  In addition to colloidal metal particles, Mie’s 

solution applies to a wide variety of problems 9:  atomospheric dust, interstellar 

particles, solar coronas, scattering by raindrops10, and others.  The theory of 

electromagnetic absorption and scattering by small particles, as well as 

applications and computational techniques has been summarized by Kerker11 

and Bohren and Huffman10. 

Given the wide variety of techniques to fabricate nanoparticles, there are a 

plethora of possible shapes and sizes, even for the two most common materials, 

silver and gold.  Although spheres are probably the most common (due to the 

relative ease of synthesis through colloidal suspensions of gold and silver) some 

of the geometrically simple, yet interesting shapes include nanoshells12-15, 

ellipsoids of revolution16, triangles17, cubes18, and hexagons19.  These latter 

shapes make up a fairly small sample that reveals possibility of modifying the 

nanoparticle shape.  Fortunately, this modification of shape allows for control 

over the resonance wavelength, amplitude, and bandwidth.  Another important 

development is that of interacting particles, such as dimers of spheres and 

shells20, and of triangles17, forming nano ‘bow-ties’.  The problem of two 

interacting particles is one of the few that can be treated exactly, or at least 

approximated well, while still having some of the essential features of a system of 

particles. 

The confinement of electromagnetic field to the particle gives the surface 

plasmon an extraordinary sensitivity to surface features.  This sensitivity is widely 
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used for studying adsorption on the surface, as well as surface roughness and 

related phenomena. Devices based on the surface plasmon are used in chemical 

and biological sensors21. The enhancement of the electromagnetic field at the 

interface is responsible for phenomena such as optical amplification surface: the 

intensification of the surfaces by Raman scattering (SERS), where it is possible 

to detect a single molecule; second harmonic generation; fluorescence, and so 

on. In addition, the two-dimensional nature of the surface plasmon makes it 

particularly interesting in building plasmon circuits, where the information is 

transmitted through a surface plasmon, with potential applications in optical 

computing.  The fabrication, manipulation, and characterization of nanometric 

surfaces has recently become relatively easier, thanks to developments in 

techniques such as high resolution electron microscopy, AFM, and STM, allowing 

for novel opportunities in optoelectronics and photonic devices, with length 

scales much smaller than traditional electronic or optical methods, down to the 

scale of nanometers.  As a result of these developments, as well as increasing 

knowledge of other characteristics of surface plasmon, there is now more interest 

in new technologies, as well as in the study of new physical phenomena in which 

plasmons play a leading role.  Taken together, this interest has lead the the field 

known as plasmonics. 
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B. Definition of The Optical Constants 

 The optical constants arise from Maxwell’s equation with a time harmonic 

field.  Starting from the derivative form22: 

 

ρ=⋅∇ D       (1.1) 

0=⋅∇ B         (1.2) 

0=
∂
∂−−×∇

t

D
JH

     (1.3) 

0=
∂
∂+×∇

t

B
E

     (1.4) 

In general, the macroscopic manifestation of the fields, D and H, called the 

electric displacement and magnetic field, respectively, depend on the electric or 

magnetic polarization of the medium, P and M.  Assuming that the contribution of 

the quadrupole and higher moments to the polarization are small compared to 

the dipole, and can be neglected, these are:  

PED += 0ε       (1.5) 

M
B

H −=
0µ       (1.6) 

For a proof of the above, please refer to Jackson, Classical Electrodynamics, 

chapter 6, section 6.22 

 In any media besides vacuum, constitutive relations are used to describe 

the fields.  Assuming linear, isotropic, and homogeneous media, the derived 

fields D and H can take simple forms.  The linearity implies that an electric or 

magnetic field induces a polarization proportional to the field.  For the sake of 

consistency, the permittivity will be symbolized by ε̂ , rather than ε, which will be 

reserved for the relative permittivity, or the dielectric function. 

ED ε)=       (1.7) 

HB µ=       (1.8) 

Finally, Ohm’s law is used to describe the flow of current in the medium. 
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EJ σ=       (1.9) 

 Although the above restrictions to the medium seem stringent, they are 

applicable to a large class10; however, they are not appropriate for ferroelectric or 

ferromagnetic materials, or when the applied fields are very high. 

 Optical properties and spectroscopic studies necessarily use oscillating 

fields.  A harmonic oscillating field can be used without loss of generality, as 

different oscillating fields can be produced by superposition.  It is also 

advantageous at this time to introduce complex notation.  The complex time-

harmonic field, F is expressed as 

    
ti

Cet ω−= FF )(        (1.10) 

where 

    ImRe FFF iC +=      (1.11) 

The partial derivative of the complex time-harmonic field is then: 

( ) )(
)(

ImReImRe tieeieie
tt

t titititi FFFFF
F ωωω ωωωω −=+−=+

∂
∂=

∂
∂ −−−−

 (1.12) 

 

Thus, evaluating the partial derivatives with respect to time, and inserting the 

constitutive relations 1.7-1.9, equations 1.1-1.4 can be re-written as: 

 

ε
ρ
)=⋅∇ E

      (1.13) 

0=⋅∇ H         (1.14) 

0=+−×∇ EEH εωσ )
i     (1.15) 

0=−×∇ HE µωi      (1.16) 

The permittivity can now be seen to be a complex number.  Although the 

permeability will also in general be complex, the majority of this work focuses on 

the electric part, and the magnetic properties will not be treated.  Factoring the 

electric field in equation 1.15, which is possible as the medium is assumed to be 

isotropic, yields: 
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( ) 






 +−=−=×∇ ε
ω
σωεωσ )) i

ii EEH
   (1.17) 

The complex permittivity is then:  

ω
σεε i

C += ))

      (1.18)  

Although the assumption of time-harmonic fields has been made, there is not yet 

any indication of how the electromagnetic fields extend in space.  Only certain 

fields will satisfy Maxell’s equations, 1.13-1.16.  To form a solution, the curl of 

equations 1.17 and 1.16 is taken: 

    ( ) 0=×∇+×∇×∇ EH ωεCi
)

    (1.19) 

( ) ( ) 0=×∇−×∇×∇ HE µωi     (1.20) 

Using the triple product  

    ( ) ( ) aaa 2∇−⋅∇∇=×∇×∇     (1.21) 

and inserting equations 1.13 and 1.14: 

02 =×∇+∇− EH Ci εω )

    (1.22) 

( ) 0
ˆ

2 =×∇−∇−






∇ HE µω
ε
ρ

i
   (1.23) 

Equation 1.23 requires some comment at this point.  Many texts assume 

that no free charges are present, giving divergence free equations.  This is not 

completely necessary for this analysis, as the form of the permittivity used here 

comes with the assumptions of the medium being both homogeneous and 

isotropic. Therefore, both the free charge density and the permittivity of the 

system are divergence free, causing the first term in equation 1.23 to be zero.  It 

is not required that no free charges exist:  rather, only that they are divergence-

free.   

Substituting 1.16 and 1.17 back into 1.22 and 1.23, and simplifying gives 

022 =+∇ HH Cεµω )

     (1.24) 

022 =+∇ EE Cεµω )

     (1.25) 

which are the wave equations. 
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A possible solution is a plane wave traveling in the x direction.  Similar to 

time-harmonic fields, however, many complicated fields, including those such as 

pulsed fields, can be represented by a superposition of plane waves: 
( )tii

Cet ω−⋅= xkFF )(      (1.26) 

where k is the wavevector, and x is the direction of travel, and F represents either 

the electric or magnetic field.  Inserting the general plane wave solution into 

equation 1.25 (the magnetic field equations will yield a symmetric result) gives: 

    0),(),( 22 =+− ttk C xExE εµω )

   (1.27) 

Solving for k: 

    
ωεµ Ck

)=
      (1.28) 

It is clear that with a complex permittivity, the wavevector is also complex.  The 

phase velocity of the wave is defined for non-magnetic materials as:22 

0

ˆ

ˆ
1

ε
ε

εµ
ω

c

c

n

n

c

k
v

=

===

     (1.29) 

where c is the speed of light, and n the index of refraction of material, which is 

also in generally complex.  As well, it is common to see the dielectric function, 

often labelled the dielectric constant for regions where it is insensitive to 

frequency, defined as: 

0

2 ˆ

ε
εε cn ==       (1.30) 

The complex index of refraction and the dielectric function are referred to as the 

optical properties of the materials.  Their definition comes from Maxwell’s 

equations, and are thus considered macroscopic parameters to describe the 

objects in question.  When using classical electrodynamics to solve a problem, 

however, these macroscopic values are quite appropriate.   

 So there are two sets of optical constants which are generally used side 

by side, although it is important to note that they are not independent.  The 

complex forms of these optical constants are defined as 
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'''

'

εεε i

iknn

+=
+=

      (1.31) 

where the complex dielectric function ε is related to the complex index of 

refraction n by 

( ) 222 '2' kkinnn −+==ε     (1.32) 

and n can be recovered by taking the real and imaginary parts of the dielectric 

function, although care should be taken near the region of the branch cut of 

square root function, which lies along the line ε’’=0 while ε’<0.  

 Understanding the dielectric function is best achieved through the use of a 

model, in this case a classical model of the dielectric function that is appropriate 

for both metals and molecules, the Lorentz model.  This follows the damped and 

driven harmonic oscillator quite closely, although the model phrases the problem 

in terms of electrodynamics rather than classical mechanics.  An oscillator of 

mass m, and charge q has three forces acting on it:  a restoring spring force kx, 

where k is the spring constant, and x the displacement from equilibrium, a 

damping force γv, where γ is the damping constant, and v the velocity, and a 

driving force produced by the local electric field E.  The equation of motion is 

then  

    Exxx qkm =++ &&& γ ,     (1.33) 

There are two parts to the solution of equation 1.33, the first being a transient 

part which dies away quickly due to the damping.  The oscillatory solution, which 

oscillates at the same frequency as E is similar to those derived in classical 

mechanics23 

m

m

k

i
m

q

γ

ω

ωωω

=Γ

=

Γ−−
=

2
0

22
0

E
x

     (1.34) 

Although the usual method is to derive the amplitude and phase angles in this 

case, it is more useful to use this solution to derive the macroscopic optical 
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constants10.  The dipole moment that is induced by this oscillator is p=qx.  If 

there are N oscillators per unit volume, the electric polarization P, the number of 

dipoles per unit volume, appearing in equation 1.5 is 

0

2
2

022
0

2

ε
ω

ε
ωωω

ω

m

Nq

i
NqN

p

p

=

Γ−−
=== ExpP

   (1.35) 

This specific example of the polarization can be put into equation 1.5 to obtain 

EEED 022
0

2

022
0

2

0 1 ε
ωωω

ω
ε

ωωω
ω

ε 










Γ−−
+=

Γ−−
+=

ii
pp   (1.36) 

When this is compared to equation 1.7, the permittivity is apparent, and thus the 

relative permittivity, or the dielectric function can be written as 

ωωω
ω

ε
Γ−−

+=
i

p

22
0

2

1     (1.37) 

 While the Lorentz model is an idealized model, it has utility from the 

generality.  The charge carriers may be electrons or nuclei, or entire atoms, 

depending on what the physical system is. 

The Drude model is a further approximation to the Lorentz model, by 

assuming that electrons in metals are near the Fermi level can be excited by very 

small amounts of energy, making them essentially free.  The electrons are now 

the oscillators, and as they are free, the restoring force in the Lorentz oscillator is 

zero, causing the resonance frequency ω0 also to be zero.  In the Drude model 

the dielectric function is then  

ωω
ω

ε
Γ+

−=
i
p

2

2

1      (1.38) 

The Drude model demonstrates when bulk plasmon formation is possible, when 

the dielectric function goes to zero, which occurs when  

2

4

0

22

22

p

p

i

i

ω
ω

ωωω

+Γ−±Γ−
=

=−Γ+
.    (1.39) 
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Assuming that the damping is much smaller than the plasma frequency, the 

plasmon condition is 
2
Γ−+= i

pωω , where the sign uncertainty is dropped as the 

negative branch of the plasma frequency, will give a negative frequency.  The 

bulk plasmon is thus a well defined entity, an oscillation of electrons with a 

lifetime defined by Г.  Localized surface plasmons are not quite so neatly 

captured, but an understanding of the Drude model is a valuable tool to 

understanding plasmonics. 

Although it is possible to look up plasma frequencies ωp and damping constants 

for most materials, and thus generate optical properties of metals from the Drude 

model, the model ignores many aspects, such as anisotropy, interband 

transitions, and differences between free and bound electrons.  Tabulated values 

are available for many materials, and these give more realistic results than the 

Drude and Lorentz models. 

With the complex definition of the optical constants, we have seen the 

generation of a new field in the study of optical properties of materials.  As the 

permittivity is frequency dependent, it is important to remember that the square 

root of a complex number contains a branch cut along the negative part of the 

real axis, meaning that the principle square root will be discontinuous along the 

negative real axis.  This is not usually a problem, as real materials will have a 

small positive imaginary value, representing attenuation in the medium.   A new 

class of materials, however, referred to as metamaterials 24, or left-handed 

materials, have complex permittivity and permeability, where for both quantities 

the real part is negative, and the imaginary part positive.  Explicitly defining these 

complex quantities 

ImRe εεε )))
iC +=       (1.40) 

ImRe µµµ +=C      (1.41) 

the product will be: 

( )ReImImReImImReRe µεµεµεµεµε ))))) ++−= iCC   (1.42) 
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As the imaginary parts are small, the real part of the product is dominated by the 

product of the real parts, giving a positive real part.  The imaginary part, however, 

will be negative: however, as both terms are products of the negative real parts, 

and the positive imaginary parts.  A positive imaginary part will be required after 

the square root, however, to represent that these materials are lossy.  So the 

principle square root is multiplied through by a negative, giving a negative real 

part, and a positive imaginary part.  The term left-handed material arises from the 

fact that, in this special case, the wave vector has a real part pointing in the 

opposite direction of propagation.  This is of interest as many metals at optical 

frequencies posses a negative real permittivity in the bulk. It is through 

manipulation of the structure that this effect occurs. 
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C. Surface Enhanced Vibrational Spectroscopy 

 Surface enhanced spectroscopy is a complex field as it includes many 

different concepts of the surface, the enhancement, and the spectroscopy.  For 

the purposes of this dissertation, the two main groups to be considered are 1)  

Surface Enhanced Vibrational Spectroscopy25, including surface enhanced 

Raman scattering (SERS), surface enhanced resonance Raman scattering 

(SERRS), surface enhanced infrared absorption (SEIRA), and 2) Surface 

Enhanced Fluorescence (SEF).  By far, SER(R)S has the most publications of 

the field, as the enhancement effect is quite dramatic.   

 Surface enhancement is defined here as enhancement of the intensity of 

the optical signal when is coupled to the localized surface plasmon excitation of 

metal nanostructures.  Other aspects include the chemical effect, or chemical 

enhancement 26,27, which can arise from spectroscopic changes due to 

interactions with the surface (chemical adsorption), leading to changes in the 

electronic structure of the molecule, the breaking or creation of chemical bonds, 

or from charge transfer to and from the surface to the molecule.  While all these 

factors certainly effect the observed spectroscopic result, it is the plasmon 

enhancement which provides the main contribution to the SERS effect27.  

Localized surface plasmons can be supported by nanorods, nanowires, and a 

plethora of nanoparticles of other different shapes (cubes, stars, cones, etc.), 

and, in particular, by metallic tips. The latter give rise to Tip Enhanced Raman 

Spectroscopy (TERS)28,29. 

 A schematic of the energy levels involved in absorption, emission and 

scattering spectroscopies to be discussed is shown in Figure 1.2, for a simplified 

version of molecular energy levels:  The two-state system, being the ground and 

the excited electronic states |g> and |e>. Each of these states has many 

vibrational states within it, labeled ν, starting with ν = 0, the fundamental 

vibrational state.  Raman scattering in this context is excitation by a 

monochromatic source to a virtual state, and returning to a different vibrational 

state than the original.  Since the virtual state is not a stationary state of the 

system, the molecule spends no time in it, and so the shape and energy of this 
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state are not important.  The key point is the difference in energy between the 

incident photon and the Raman scattered photon.  If there is no difference in 

energy, or the photon is elastically scattered, the effect is Rayleigh scattering.  

Infrared absorption is a transition within an electronic state, defined here as being 

a simple increase in vibrational state.  As opposed to Raman, infrared 

spectroscopy uses a broad source and a photodetector, with the frequencies 

modulated by an interferometer, resulting in an interferogram leading to a Fourier 

transform infrared, or FT-IR spectrum.  Infrared absorption and Raman 

scattering, although probing the same vibrational states, have intensity that 

depends on different quantities.  In the case of the infrared, the absorption 

intensity is proportional to the derivative of the dipole moment with respect to the 

normal coordinate of the vibrational mode, whereas for Raman, the intensity is 

proportional to the derivative of the polarizability with respect to the normal 

coordinate.  The use of the techniques together is a full complementary 

spectroscopic method, as vibrations which are weak in one technique may be 

very strong in the other. 

 Resonant Raman scattering is similar to Raman scattering, except that the 

energy of the incident light is matched to the energy difference between the 

ground and excited electronic states.  This causes the molecule to be excited, 

and it has a possibility for a finite lifetime and movement on the excited state.  As 

the photon returns to the ground state to a different vibrational state, it may have 

the character of the excited state, causing differences in relative intensities 

between RS and RRS. 

 



 

  15 

  

Figure 1.2.  Schematic of Raman scattering (RS), resonant Raman scattering 
(RRS), Infrared Absorption (IR), and Fluorescence. 
 

 Fluorescence is a two part process, the first being absorption (annihilation) 

of a photon and formation of an excited state.  The molecule may exist in the 

excited state for a period of time (lifetime), and may plummet down vibrational 

levels, or even back to the ground state by non-radiative processes, without 

emission of a photon.  If the decay is radiative (photon creation), it may involve a 

variety of vibrational and rotational levels, causing a relatively large bandwidth 

that is generally not resolvable in room temperature experiments of liquids and 

solids.   

 Unlike the case for isolated molecules, surface enhanced spectroscopies 

rely on the total local field at the nanostructure location of the molecule, rather 

than the incident field of the light to provide the excitation.  The local field 

enhancement, M can be defined as  

    
0

0

E

EE
M l +

=       (1.34) 

where El is the local field due to the presence of the nanostructure, and E0 the 

incident field.  The concept of surface enhanced spectroscopy is that the metal 

nanoparticles create a local field considerably stronger than the incident field, 

causing a significant field enhancement.  
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 The different surface enhanced spectroscopies follow different physical 

pathways, and thus, are enhanced in different ways.  There is considerable 

evidence that both SERS30 and SEF31 are both enhanced to the fourth power of 

the field enhancement, meaning that a change in the order of magnitude of the 

electric field causes massive signal increases.  In SEF, however, there is non-

radiative decay near the metal surface31,32 as well as enhancement of the field, 

and these competing mechanisms will determine the  observed enhancement 

factor SEF. 

 Surface enhanced spectroscopy is coupling of light, the localized surface 

plasmon excitation of metal nanostructures, and a molecule.  Classical 

electrodynamics is used to model the interaction of light with the nanoparticle 

through the use of macroscopic optical constants to calculate the local 

electromagnetic field.  Although many different techniques have arisen from 

solutions to the different problems that the variety of possible nanoparticle 

shapes, they are most often treated through the framework of electrodynamics, 

the fundamentals of which are given above. 
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CHAPTER TWO 

MIE THEORY 

A.   Solution to Maxwell’s Equations for a Sphere 

The exact solution of the scattering and absorption by a sphere, known as 

Mie theory8, who explained the variation in colour of gold colloids suspended in 

water.  Since that time, this method has been used numerous times in a wide 

variety of applications.  Although the mathematics may be cumbersome, and 

certainly not trivial, they are quite amenable to computation.  While obtaining 

extinction and scattering cross sections for arbitrary radius and optical properties 

is not too difficult, understanding and visualizing the results tends to be a more 

complex task.  This is especially important for the case of field enhancement for 

the various surface enhanced spectroscopies, as it is the fields themselves, 

rather than the integrated results, which are of interest.   

 Although Mie theory, due to the exact nature, is correct for arbitrary size 

and index of refraction, two important details must be kept in mind when 

comparing it to experimental results.  First, and most obvious, is that the 

treatment is for a sphere.  Secondly, the particles are isolated.  While these 

requirements are quite stringent, it is often the case that Mie results can provide 

a good first approximation for many systems, such as ellipsoids, or thin island 

films. 

 This derivation is similar in kind to that of Bohren and Huffman10, although 

some of the notation and formalism is taken from Jackson.22  While Bohren and 

Huffman present a well structured solution to the problem, the older notation, in 

terms of the associated Legendre polynomials, is less elegant that the spherical 

harmonic approach. 

 It has been shown previously that the time-harmonic fields in a linear, 

isotropic, homogeneous medium obey the following vector wave equations: 

022 =+∇ HH Cεµω )

     (2.1) 

022 =+∇ EE Cεµω )

     (2.2) 
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These fields are divergence free, and are not independent from one another.  

This can be summarized through Maxwell’s equations. 

0=⋅∇ E       (2.3)  

0=⋅∇ H         (2.4) 

0=+×∇ EH εω )
i      (2.5) 

0=−×∇ HE µωi      (2.6) 

To solve the wave equations, suppose there is a vector function M, built from a 

scalar function ψ and some constant vector c, such that 

( )
( )( ) 0=×∇⋅∇=⋅∇

×∇=
ψ

ψ
cM

cM

    (2.7) 

M is used to try and solve the vector wave equations.   Clearly it satisfies the 

divergence equations.   The vector Laplacian of M is: 

    ( ) ( )MMM ×∇×∇−⋅∇∇=∇2

   (2.8) 

The first term is clearly zero, from above.  The curl of M is  

( )( ) ( )( ) ( )ψψψ cccM 2∇−⋅∇∇=×∇×∇=×∇   (2.9) 

where the vector identity for the triple vector product was used.  The curl of this 

result is required, or: 

( ) ( )( )[ ] ( )[ ]ψψ ccM 2∇×∇−⋅∇∇×∇=×∇×∇  (2.10) 

The first term here, however, can be recognized as the curl of a gradient, which 

is zero.  Thus, the Laplacian of M is 

( ) ( )( )ψcMM 22 ∇×∇=×∇×−∇=∇    (2.11) 

The vector Laplacian can be simplified 

( ) ( )( ) ( )( )
( ) [ ]
( ) ( )cc

cccc

ccc

×∇×∇−∇⋅∇=
×∇+×∇×∇−⋅∇+∇⋅∇=

×∇×∇−⋅∇∇=∇

ψψ
ψψψψ

ψψψ2

  (2.12) 

To clean up the notation slightly, the gradient of the scalar function is called d.  

Thus 

( ) ( ) ( )cddcc ××∇−⋅∇=∇ ψ2

   (2.13) 

Applying the vector formulae 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )cddcdccdcd

cddccddcdc

∇⋅−∇⋅+⋅∇−⋅∇=××∇
×∇×+×∇×+∇⋅+∇⋅=⋅∇

 (2.14) 

yields 

( ) ( ) ( ) ( ) ( )dccdcddcc ⋅∇+⋅∇−×∇×+×∇×=∇ ψ2

 (2.15) 

The curls of d and c are zero, as d is a gradient.  Also, the divergence of c is 

zero.   Finally, the result is recognized as the scalar Laplacian. 

( ) ( ) ( )ψψψ 22 ∇=∇⋅∇=∇ ccc     (2.16) 

So the Laplacian of the vector function is: 

( )ψ22 ∇×∇=∇ cM      (2.17) 

 With the Laplacian derived, it is a trivial matter to use the vector function in 

the wave equation. 

( ) ( ) ( )[ ]ψψψψ 222222 kkk +∇×∇=×∇+∇×∇=+∇ cccMM  (2.18) 

Therefore, M is a solution to the vector equation if ψ is a solution to the scalar 

wave equation.  Another vector function can be constructed from M, N.  If N is 

MN ×∇=
k

1

     (2.19) 

then following the same development as M: 

( ) ( )
{ }( ) ( )( ) ( )ψψ 22

2

111 ∇×∇×∇=∇×∇×∇=×∇×∇×∇−=

×∇×−∇=×∇×−∇=∇

ccM

NNN

kkk  (2.20) 

Thus, N will also be a solution to the vector wave equation if is a solution to the 

scalar wave equation.  The problem is now reduced to a fairly simple one, solving 

the scalar wave equation.   

The derivation so far is general.  The specific problem to be solved is that 

of a sphere, and thus the generating function ψ must satisfy the wave equation in 

spherical coordinates.  Using the usual spherical coordinates choice of r,θ,φ, 

being the radius, zenith angle (from +z axis), and azimuthal angle (from +x), and 

the Laplacian definition from Jackson22, the scalar wave equation is 

0
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rrr

r
rr   (2.21) 
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Separating out radial and angular parts, 

( ) ( )φθψ ΦΘ= )(rR      (2.22) 

Using the ‘prime’ notation to signify derivatives with respect to the argument (ie. 

R’(r)= ∂R(r)/∂r, then this is substituted in: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) 0''
sin

'sin
sin

)('
1 2

222
2

2 =ΦΘ+ΦΘ+Θ
∂
∂Φ+ΦΘ

∂
∂ φθφ

θ
θθθ

θθ
φφθ rRk

r

rR

r

rR
rRr

rr
 (2.23) 

If the equation is multiplied by r2sin2θ/(RΘΦ) then: 

( ) ( )( ) ( ) ( )( ) ( ) ( ) 0sin''
1

'sin
sin

'
sin 2222

2

=+Φ
Φ

+Θ
∂
∂

Θ
+

∂
∂ θφ

φ
θθ

θθ
θθ

rkrRr
rrR   (2.24) 

The third term depends on only φ, and no other term depends on φ.  It is 

therefore isolated, and must yield a constant of separation, called m2. 

( ) ( ) ;0'' 2 =Φ+Φ φφ m       (2.25) 

This has solutions  

    ( ) φφ ime±=Φ        (2.26) 

which is single valued for integer m.  Dividing by sin2θ gives  

( ) ( )( ) ( ) ( )( ) 0
sin

'sin
sin

1
'

1 22
2

2
2 =+−Θ

∂
∂

Θ
+

∂
∂

rk
m

rRr
rrR θ

θθ
θθθ  (2.27) 

Separating out the zenith angle terms, and setting x=cos θ gives 

( ) ( ) ( )
x

x

∂
Θ∂−→

∂
Θ∂=Θ θ

θ
θθ sin'

   (2.28) 

Evaluating the equation to a constant C yields 
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x

 (2.29) 

This is Legendre’s associated differential equation33, and thus C is recognized as 

n(n+1).  The solutions are then the associated Legendre polynomials, labeled 

Pm
n(cosθ). 
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Similarly, the radial part can be separated out, and evaluated to a constant 

n(n+1): 

( )( ) ( ) 0)()1(' 222 =+−+
∂
∂

rRnnrkrRr
r   (2.30) 

Due to the inclusion of k, this should be evaluated in dimensionless variables.  

Defining ρ=kr, referred to as the size parameter, and Z=R(r)(ρ)1/2, gives 
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 (2.31) 

Evaluating the derivatives gives 
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 (2.32) 

Multiplying through by (ρ)1/2 cleans the equation up slightly 
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  (2.33) 

This is Bessel’s differential equation33, and the solutions are half integer order, 

n+1/2 is an integer.  The solutions are then the spherical Bessel functions  
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    (2.34) 

where j and y are the spherical Bessel functions of the first and second kind, J 

and Y the Bessel functions of the first and second kind, and h(1) and h(2) the 

spherical Hankel functions of the first and second kind, sometimes referred to as 
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spherical Bessel functions of the third kind.  The index n is now an integer.  Both j 

and y are solutions, so thus the Hankel functions are also solutions, being linear 

combinations of solutions.  Thus, the full solution is 

( ) ( ) φθψ imm
nnmn ePkrz ±= cos     (2.35) 

where zn is one of the four Bessel functions defined above.  Although this result 

is similar to that derived by Bohren and Huffman, it is slightly more general, and 

avoids the use of trigonometric functions of azimuthal angle.  Rather then split 

functions into even and odd categories, the real part of this result is even, and 

the imaginary part is odd.  It is also possible to change to spherical harmonics at 

this point, which will help as the normalization and orthogonality conditions are 

well known.  Bohren and Huffman’s derivation requires splitting the scalar 

function into even and odd parts, due to the use of trigonometric functions, and 

also because they avoid the use of negative m.  Spherical harmonics, however, 

form a complete set22, and thus the sign uncertainty can be dropped.  Without 

worrying about normalization, since it is the vector functions themselves that will 

be normalized, the scalar functions are thus written 

( ) ( )φθψ ,m
nnmn Ykrz=      (2.36) 

as 

( ) ( )
( ) ( ) φθ

π
φθ imm

n
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n eP
mn

mnn
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4
12

,
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−+=

  (2.37) 

Where again, normalization will not yet be considered.  The derivatives with 

respect to the angular are then: 
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  (2.38) 

Explicit forms of vector spherical harmonics, M and N, first require the choice of a 

pilot vector, c.  Although this choice is arbitrary, a convenient choice is to make it 

the radius vector r.  This defines M as being tangential to any sphere, or r*M=0.  

M can then be written   
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The part of this vector which depends on Yn
m bears a resemblance to the angular 

momentum operator, L.  Defining L as  

     ∇×−= rL i      (2.40) 

which differs from the usual quantum mechanical L by a factor of ħ.  Working 

LYn
m out explicitly gives 
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(2.41) 

which differs from the vector part of M by a factor of i.  As the solution to the 

differential equation multiplied by a constant is still a solution, M can be written 
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This helps in normalization, as the LYn
m part is well studied.  In fact, the 

normalized spherical harmonics used by Jackson are defined by22  
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An orthogonal M can now be written 
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The equation for N requires derivatives with respect to r.  A change of variables 

gives 
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ρρ ∂
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rr     (2.46) 
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Recalling that the Legendre polynomials were obtained through the equation 
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the radial part of N can be cleaned up, and N written explicitly: 
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The orthogonality of N is given by22:  
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(2.50) 

and finally 
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( ) ( ) 0)()(
1 *

'''2''
* =Ω×∇⋅=Ω⋅ ∫∫ drzrz
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d mnnnmnmnnm XXNM

  (2.51) 

With N and M firmly in hand, it is now possible to expand any wave as a function 

of these vector spherical harmonics, including, most importantly, the incident field 

and the scattered field by a sphere.  The resulting fields are those important for 

SERS, and the origin of the enhanced field that is amplifying the scattering. 
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B. Expansion of Incident Field 

 If a circularly polarized plane wave that is incident from the z is on the 

sphere, the incident field can be written as 

( ) ikz
i ei 2ˆˆ εεE 1 ±=      (2.52) 

where the two possible helicities are shown.  As it is only the spherical Bessel 

functions of the first kind that are finite at the origin, they are the function of 

choice in this problem.  Any arbitrary field can be expanded into the vector 

spherical harmonics as:  
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The coefficients A and B can be calculated by multiplying through from the right 

by X*mn, and integrating over the solid angle: 
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The second term is zero, by orthogonality, as given above.  Also, the first term is 

zero for all m’,n’≠m,n.  This gives 
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   (2.55) 

The left hand side of the equation gives 
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Using the definitions of the angular momentum raising and lowering operators, L+ 

and L-
22, 
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The above can be represented as 
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So therefore,  
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Representing the exponential using22 
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yields 
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where the summation over n’ is removed due to the orthogonality of the spherical 

harmonics22: 
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Use of the orthogonality relationship over m implies that m must be positive or 

negative 1.  This finally gives: 
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Recalling that 
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yields 
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Much of the work for finding Bmn is already done.   The magnetic field can be 

represented as 
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and it can be expanded as 
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As before, multiplying through by the conjugate of Xmn and integrating over the 

solid angle gives 
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The left hand side can be put in terms of the incident electric field, and using the 

above result 
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The expansion of the plane wave electric field is finally 
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and the magnetic field is 
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The electric field in explicit vector form, this is 
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Bohren and Huffman10 use a different derivation, and comparing the functional 

forms of the plane wave is a useful exercise.  The radial parts are 
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The first two radial terms from Bohren and Huffman are then 
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whereas this work gives 
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has been used.  The two formulations differ by a factor of i, as well as the 

additional imaginary part introduced by the complex exponential.  In the angular 

directions, the dipolar term involves the derivative with respect to θ 
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and so  
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So although the angular directions, like the radial contribution, also differ by a 

phase factor between these formulations, they still agree in terms of magnitude. 
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C.  Scattered and Internal Fields 

 If the derived plane wave is incident on a homogeneous, isotropic sphere 

of radius a, at the surface of the sphere, the boundary conditions dictate that10 

( ) ( ) 0ˆˆ intint =×−+=×−+ rHHHrEEE scisci    (2.82) 

where Ei, Esca, and Eint are the incident, scattered, and internal fields, 

respectively.  Choosing the positive helicity for the polarization, which involves no 

loss of generality, the incident field is 
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where the superscript (1) refers to the use of spherical Bessel functions of the 

first kind (jn), and 
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Keeping a similar expansion for the internal and scattered fields, they can thus 

be written down as  
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where the superscript (1) and (3) refers to the use of spherical Bessel functions 

of the first kind (jn) and third kind (h(1)
n).  The Hankel functions of the first kind 

refer to outgoing waves.  While they are not well behaved at the origin, the 

scattered field only exists outside the sphere, so the singularity is not a problem.  

The problem is now reduced to finding a form for these scattering and internal 

field coefficients. 

 The boundary conditions above can be written in component form for any 

given n 
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The solution to these equations has been done in many texts:  notably, in 

Kerker11, and references therein.   A simple form of the scattering coefficients 

may be obtained by introducing the Riccati-Bessel functions, defined as33: 
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where jn and h(1)
n are the spherical Bessel functions of the first kind and spherical 

Hankel functions of the first kind.  Assuming a nonmagnetic material, or at least 

that the magnetic permeability of the sphere is the same as the magnetic 

permeability of the surrounding medium, the scattering coefficients are10 

    

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )mxxmxmx

mxxmxmx
b

mxxxmxm

mxxxmxm
a

nnnn

nnnn
n

nnnn

nnnn
n

''
''

''
''

ψξξψ
ψψψψ
ψξξψ
ψψψψ

−
−=

−
−=

   (2.89) 

where the size parameter x is x=kr, for brevity, and m the relative index of 

refraction, m=nsphere/nmedium. The prime notation refers to differentiation with 

respect to the argument of the function in each case.  The field coefficients for 

internal fields can be similarly written by taking equations 4.52 from Bohren and 

Huffman, equating µ and µ1, and changing to Riccati-Bessel functions: 
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An examination of these coefficients shows that the denominators of dn and an 

are equal, and the same with cn and bn.  Also, if the denominator of any particular 

coefficient goes to zero, it will dominate the scattered and internal fields.  This 

dominance condition for the an and dn modes is then 
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while, similarly, the bn and cn modes dominate when: 
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 While these conditions can be used to determine optical properties, radii, 

or the incident wavelength necessary for the desired resonance, to generate field 

strengths or absorption and scattering cross sections, it is necessary to calculate 

the coefficients across a range of wavelengths in any case.   
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D. Extinction and Scattering Cross Sections 

 The extinction and scattering cross sections are derived by taking the 

integrals of the Poynting vector of the scattered field, and the integral of the dot 

product of the scattered field interacting with the incident field to find power loss 

by scattering and extinction, respectively.  Then these powers are divided 

through by the incident intensity to obtain the cross sections.  For the case of a 

sphere, these can be written succinctly as: 
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A Mie program written for Maple is included in Appendix 1.  This program 

calculates extinction, scattering, and absorption cross sections as functions of 

incident wavelength.  The program also calculates scattered field as a function of 

wavelength at an arbitrary point, and scattered field on a grid of points at a 

selected wavelength.  For the wavelength dependent sections for sizes up to 100 

nm, the program is extremely fast, while for points on a grid, for grid sizes up to 

10000 points (100 nm x 100 nm, for example), the computation of course takes 

longer, depending on the size of the particle and the size of the grid.  This 

mapping of the scattered field may be commented out, allowing execution of the 

entire program to obtain only the wavelength dependant results.  The program 

uses Maple’s internal definitions of the spherical Bessel functions of the first kind, 

and the closed form for the spherical Hankel functions, which is more efficient 

than using Maple’s definitions.  Higher order functions are obtained by upwards 

recursion.  The program reads in dielectric function data for the material making 

up the sphere from a text file that is formatted into 2 columns, the data being the 

real and imaginary parts, with 1 nm resolution by default, although this is 

adjustable.  The data is taken from Palik’s Handbook of Optical Constants of 

Solids34, with this tabulated data being interpolated by fitting to a quadratic 

equation.  The radius of the sphere and the index of refraction of the host 

medium are also adjustable, although it is important to note that the index of 
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refraction of the medium should be real.  Finally, the calculation limits in terms of 

wavelength are also adjustable.  The resultant wavelength dependant electric 

field vectors are saved into memory for later analysis, although the program by 

default computes the magnitude.  The program does not save the vectors at all 

points on the grid, as for large grids this would overwhelm the available memory.  

Rather, it saves the magnitude instead, corresponding to a 6 fold decrease in 

memory usage.   

 The computation of the scattered field on a grid of points defaults to a grid 

that is perpendicular to the incident wave, chosen as being in the ẑ direction.    

The length of the grid is chosen as twice the radius of the sphere, resulting in 

120x120 points for a 30 nm sphere, rather than 200x200 points if the full grid was 

utilized.  This 50 nanometer sphere is calculated up to 5th order, corresponding to 

70 different spherical harmonics.  Even with this time saving measure, calculating 

the 1,000,800 vector spherical harmonics is not a suitable problem for a pocket 

calculator.   

 The vector spherical harmonics use the formal definition described in 

section A of this chapter.  Similar to the spherical Bessel functions, the 

associated Legendre polynomials and scalar spherical harmonics are not really 

well defined.  Both Legendre polynomials and the scalar spherical harmonics use 

a different phase, whereas these calculations always apply the Condon-Shortly 

phase22, and as well, different branch cuts.  To solve this problem, the associated 

Legendre polynomials are obtained by upwards recursion of the functions 

themselves, then multiplied through by the desired phase and an exponential 

factor in the case of the spherical harmonics, and called with the independent 

variables that they correspond with.  The Hankel functions in the vector spherical 

harmonics use the same closed form described before. 

 The advantage of using Maple is due to the ability to do precision 

calculations for the spherical Bessel functions.  Rather than using numerical 

recursion to calculate high orders, the ability to make functional definitions at 

each order means that there is no loss of precision due to floating point 

arithmetic.  This ability allows us to avoid the problem which has plagued this sort 
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of calculation in the past10.  Fortunately, this would be true even for extremely 

large particles, in the micrometer range, although this sort of calculation would 

take days using this program.   

 The plasmon response of a nanoparticle depends on 4 parameters: The 

size, the shape, the material of the nanoparticle, and the material of the host 

medium.  With Mie scattering, the shape is chosen, as it is the solution for a 

sphere, and variation of the three remaining parameters will cause a change in 

the plasmon of the particle.  Results will first be presented for varying size, then 

for varying the host medium, and finally, examples of different materials will be 

presented. 

The most common metal used for surface enhancement is silver.  The Mie 

scattering will demonstrate why it is the most efficacious material when used as a 

nanometric enhancer.  The extinction, absorption, and scattering cross sections 

for a 30 nm silver sphere, in vacuum (nhost=1), are shown in Fgure 2.1. 
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Figure 2.1. Extinction (solid), absorption (dotted), and scattering(dashed) cross 
sections as a function of wavelength for a 30nm silver sphere. 
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 The extinction, absorption, and scattering cross sections peak at values of 

368 nm, 370 nm, and 367 nm respectively.   For this size, the absorption is 

higher than the scattering, contributing 61.8 % of the extinction.  This is a fairly 

typical example of colloidal results.  While the absorption is a fairly symmetric, 

slightly truncated Lorentzian band, the scattering, and thus the extinction, are 

asymmetric.  As the sphere radius increases, three things occur:  (1) the cross 

sections increase, (2) the peaks shift to higher wavelengths, and (3) the peaks 

broaden.  However, it is difficult to directly compare cross sections for particles of 

different sizes, because, while other factors contribute to the intensity, the 

particle itself has a direct effect.  It is more useful to additionally calculate 

efficiencies (Q), defined as: 
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Q abs
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ext

ext === ;;
   (2.94) 

Where C is the extinction, absorption, or scattering cross section, and G is the 

cross section area.  In this case, the cross sectional area is easy to find, being 

πr2.  The changes in the spectra as a function of wavelength can be directly 

compared as efficiencies, as seen for 6 different radii in Figure 2.2 
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Figure 2.2.  Extinction efficiency of 15 nm, 20 nm (dot-dash), 25 nm (dotted), 30 
nm(dashed), 40 nm, and 60 nm silver spheres as a function of wavelength. 
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This trend towards increasing peak wavelength is clear, as well as a trend 

toward definite broadening of the peak.  There are two other interesting details, 

namely, that as the extinction efficiency reaches a peak, it begins to drop off, and 

for the largest size shown, the shoulder that existed in smaller sizes resolves into 

a separate peak.  The red-shift and damping of the main peak is due to radiation 

damping,35,36 a feature which is included in the Mie calculation due to the 

dynamic nature of the calculation.  When dipolar or dipolar and quadrupolar 

approximations are used, the radiation damping must be included in order to 

obtain results that agree with Mie theory, and thus experiment.  The arrival, and 

subsequent splitting of the second peak is due to contribution of higher order 

moments.  For smaller sizes, the higher order moments contribute, but not 

significantly, while for the larger sizes, the contribution approaches the same 

magnitude of the dipole moment.    The peak wavelength, intensity at the peak 

wavelength, full width at half maximum, peak area, extinction efficiency, and 

peak area divided by the cross sectional area, which are termed the area 

efficiency are given in table 2.1.  The full width at half maximum (FWHM) is 

determined using Grams/AI 7.0 peak fitting routines, with a mixed Gaussian-

Lorentzian band.  These area efficiencies are normalized values of the total 

signal in each case. 

Radius 

(nm) 

Peak 

(nm) 

Extinction 

Cross Section 

(10-11 cm2) 

FWHM 

(nm) 

Peak Area 

(10-9 

cm2nm) Efficiency 

Area 

Efficiency 

(nm) 

15 357 3.85 29.8 1.14 5.45 160.9 

20 359 8.94 33.8 3.38 7.11 269.3 

25 363 16.5 36.7 6.61 8.38 336.8 

30 368 25.1 48.2 15.2 8.87 538.7 

40 389 42.4 62.6 23.2 8.44 461.0 

60 359 58.5 22.8 42.5 5.17 37.6 

60 429 73.2 147.5 95.1 6.47 840.8 

Table 2.1.  Computed extinction results for silver spheres. 
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Figure 2.3.  Peak wavelength of main peak vs. radius for silver spheres. 

 

Although the efficiency peaks, the total normalized area of extinction in each 

case increases with size.  And, as seen in the plot of peak wavelength vs. sphere 

radius, although the peak does red-shift to higher wavelengths, it does so at the 

cost of a much less well defined extinction.   It is worthwhile noting that the 

sphere response to a static field is given by 

2
1

+
−=∝

ε
εα VCext      (2.95) 

for a sphere in vacuum, where α is the polarizability, V the volume, and ε is the 

dielectric function.  This simple equation is a good predictor of peak location for 

very small particles, as resonance will occur when the dielectric function is equal 

to -2.  For silver, this occurs at 354 nm, a value that is approached by for the 

smaller particles calculated with Mie theory.  Unfortunately, this concept certainly 

does not apply for anything larger than 20 nm. 

 As surface enhanced phenomena depend on the scattered field, the 

scattering cross section is often a better indicator of the field enhancement than 

of the total extinction.  The scattering efficiency for the same set of silver spheres 

is given in Figure 2.4, and numerical values in Table 2.2. 
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Figure 2.4.  Scattering efficiency of silver spheres of 15 nm (dotted), 20 nm 
(dashed), 25 nm (dot-dash), 30 nm, 40 nm, and 60 nm. 
 

Radius 

(nm) 

Peak 

(nm) 

Scattering 

Cross Section 

(10-11 cm2) 

FWHM 

(nm) 

Area (10-9 

cm2nm) Efficiency 

Area 

Efficiency 

15 358 0.255 29.0 0.791 0.361 11.2 

20 361 1.34 33.4 0.642 1.070 51.1 

25 365 4.41 37.8 2.37 2.248 120.8 

30 367 9.63 41.6 3.92 3.405 138.7 

40 364 18.9 21.8 1.46 3.764 29.1 

40 393 25.4 63.4 21.0 5.057 416.9 

60 359 34.9 23.6 2.28 3.083 20.2 

60 433 63.0 128.1 81.4 5.567 719.9 

Table 2.2.  Computed scattering results for silver spheres. 

 

The scattering efficiencies follow a different trend than the extinction.  For the 

smallest particles calculated, the scattering is only a very small part of the 

extinction, while for larger particles, it becomes the dominant mode of dispersion.   

The basic trend is for the scattering efficiency to increase, the absorption 
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efficiency to decrease, and the extinction efficiency to make relatively small 

changes due to the summation of the scattering and absorption.  Table 2.3 

highlights this trend with the relevant cross sections and efficiencies for the six 

sizes computed. 

So while it is true that the absorption efficiency decreases past 25 nm, it is 

also true that the absorption cross section begins to decrease after 40 nm, 

although these different sizes do have have the resolution necessary to make 

accurate determinations.  The contribution by scattering to extinction increases 

monotonically, in conjunction with both the scattering cross section and 

scattering efficiency. 

 As stated previously, the host medium also effects the plasmon response 

of the particle.  If the collective oscillations of the free electrons of the particle are 

considered to be harmonic oscillators, the dielectric medium surrounding the 

particle contributes to the damping, causing a red shift in peak frequency.  The 

Mie extinction cross sections of a 30 nm particle in transparent solvents of 

vacuum (nvac=1), water (naqt=1.33), ethanol (neth=1.36), carbon tetrachloride 

(nCCl4=1.46) and benzene (nbenz=1.50) are shown in Figure 2.5.  Figure 2.6 is a 

plot of peak wavelengths as a function of index of refraction of imbedding host. 
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Radius 

(nm) 

Extinction 

Cross 

Section 

(10-11 cm2) 

Scattering 

Cross 

Section 

(10-11 cm2) 

Absorption 

Cross Section  

(10-11 cm2) 

Extinction 

Efficiency 

Scattering 

Efficiency 

Absorption 

Efficiency 

% of 

Extinction due 

to Scattering 

15 3.85 0.255 3.60 5.45 0.36 5.09 6.6 

20 8.94 1.34 7.60 7.11 1.07 6.04 15.0 

25 16.5 4.42 12.0 8.38 2.25 6.14 26.8 

30 25.1 9.63 15.5 8.88 3.40 5.47 38.4 

40 42.4 25.4 17.0 8.44 5.06 3.38 59.9 

60 73.2 63.0 10.2 6.47 5.57 0.91 86.0 

Table 2.3.  Comparison of extinction, scattering, and absorption cross sections 

 and efficiencies for silver spheres. 
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Figure 2.5.  Mie Scattering cross sections of 30 nm silver particles in air, water 
(dotted), ethanol (dashed), carbon tetrachloride (dot-dash), and benzene. 
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Figure 2.6.  Plot of peak wavelength vs. Index of Refraction.   
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The relationship of peak wavelength with index of refraction is linear, with 

a regresion line of 7.1626.203max += nλ , with a very acceptable R2=0.9992.  The 

line parameters will be both a function of particle size and material, and other 

variations of these physical features may not have a fit that is quite so clear. 
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Figure 2.7.  Real part of dielectric functions of Silver (solid), Gold (dotted) and 
Copper (dashed) 
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Figure 2.8.  Real part of dielectric functions of Silver (solid), Gold (dotted) and 
Copper (dashed) 
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The final aspect of cross sections to consider is that of different materials.  

Three materials will be compared here, all noble metals:  Silver, gold, and 

copper.  Although the real part of the dielectric function is -2 in the visible range 

for each of them, at 354 nm, 486 nm, and 359 nm for silver, gold and copper 

respectively, the imaginary part of the dielectric function at these points are quite 

different, being 0.60, 3.96, 4.92 respectively.  The real and imaginary parts of the 

dielectric function for these three materials is plotted in Figures 2.7 and 2.8, 

respectively.  The imaginary part of the dielectric function corresponds to 

absorptive optical processes, and higher values will reduce the amount of 

scattering.  Additionally, the higher imaginary value can also be thought of as 

contributing to damping, causing a decrease in peak quality.  The low imaginary 

part of the dielectric function for silver is why it is used most often for plasmonics, 

as it has the clearest band strength, with little background.  The extinction and 

scattering cross sections are shown in Figure 2.9 and 2.10, respectively, for 30 

nm particles in vacuum. 
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Figure 2.9:  Extinction cross sections of Copper, Gold, and Silver.  The intensity 
for silver is scaled by a factor of 0.5. 
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Figure 2.10:  Scattering cross sections of Gold, Copper (dashed) and Silver.  The 
intensity for silver is scaled by a factor of 0.25. 
 

 The extinction spectrum for 30 nm gold spheres shows a well defined, 

asymmetric peak located at 503 nm.  It is noteworthy that this peak is 

approximately one sixth the intensity of that exhibited by silver for the same 

physical parameters, although these are both due to the dipolar resonance due 

to the dielectric function being -2, although it is slightly red-shifted due to the size 

of the particle.  This difference is again due to the imaginary part of the dielectric 

function, as the denominator in the polarizability has a greater magnitude in the 

case of gold.  The effect is even more pronounced in the case of copper, where 

there is no visible peak due to the very high damping.  This is seen even more 

clearly in the scattering, although a small band centered at 562 nm is defined.  

This is in fact due to a decrease in the imaginary part of the dielectric function in 

this region of the spectrum, even though the real part is around -5. 

 The effect of the damping becomes clear when the polarizability equation 

is used.  The imaginary parts of the dielectric function for silver, gold, and copper 



 

  49  
 

at the wavelength where the real part of the dielectric function is -2 are 0.60, 

3.96, 4.92, which yield 
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Silver clearly has the greatest polarizability, and copper the least, causing the 

extinction and scattering to be considerably decreased in the case of gold and 

copper. 
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E.  Calculation of the Near Field 

 The extinction and scattering cross sections are both derived from spatial 

integrals of the scattered field, whereas for surface enhanced spectroscopy, 

especially in the case of single molecule detection, the field at a specific point is 

more important.  As surface enhanced Raman scattering, surface enhanced 

fluorescence, and surface enhanced infrared absorption all use detection of light 

over a spread of wavelengths to make spectroscopic characterization, it is 

important to be able to determine the field as a function of incident wavelength.   

The program included as Appendix B is able to calculate the scattered field as a 

function of frequency for an arbitrary point in space.  The results presented here 

choose the point to be on the surface of the particle, along the axis of the incident 

electric field.  Depending on the molecule that is used in surface enhancement, 

being at a point on the surface is highly probable, given that there may be 

molecule-metal chemical interactions that cause the molecule to chemically bond 

to the particle.  The scattered field at this optimal point for field enhancement for 

6 different sizes of silver spheres is presented in Figure 2.11. 

 The scattered field shows similar peaks to the scattering cross sections, 

although there they are slightly red shifted and broader.  This because of the 

particular point chosen, whereas other points in space (for example, on the side 

of the sphere perpendicular to the incident field) will be blue-shifted, less intense, 

and narrower, giving the integrated response seen in the scattering cross 

section.   
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Figure 2.11:  Scattered field by silver spheres of 15 nm(dotted), 20 nm (dashed), 
25 nm(dot-dash), 30 nm, 40 nm, and 60 nm radii. 
 

Although as the size increases, the scattering efficiency increases 

monotonically, the scattered field does not.  There is clearly a peak value of the 

radius for which the field is strongest, which for the silver, is somewhere between 

20 and 25 nm. This is because the scattering field exists at all points in space 

outside the particle.  Considering the surface of the particle, where the scattered 

field is strongest, the larger particle clearly has a much larger surface area, so 

that even considering two particles of the same efficiency, the larger particle will 

have less field at any particular point, although the spatial normalized integrals 

(the efficiency) will be the same due to the larger integration area.  Table 2.4 

shows this trend, with an extra column where the efficiency is further divided by 

the cube of the radius.  Because of the inherent asymmetry in the field peaks, 

due to the long tail at high wavelengths, they are curve fitted using a log-normal 

curve.  For comparison, the scattering cross sections results for peak and FWHM 

are given in parenthesis.  The scattered field intensity and volume normalized 

scattering efficiency are plotted in figure 2.12. 
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Radius 

(nm) 

Peak 

(nm) 

Relative 

Scattered 

Field Intensity 

FWHM 

(nm) Efficiency 

Efficiency/R3 

( 10-5 nm-3) 

15 359 

(358) 

11.0 51.6 

(29.0) 

0.36 10.7 

20 362 

(361) 

11.2 53.8 

(33.4) 

1.07 13.4 

25 366 

(365) 

10.8 58.8 

(37.8) 

2.25 14.4 

30 370 

(367) 

9.8 67.8 

(41.6) 

3.40 12.6 

40 399 

(393) 

8.2 96.7 

(63.4) 

5.06 7.9 

60 461 

(433) 

5.4 211.7 

(128.1) 

5.57 2.6 

Table 2.4.  Scattered field peak wavelength, relative intensity, FWHM, and 
scattering efficiency for silver spheres of 15, 20, 25, 30, 40, and 60 nm. 
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Figure 2.12  Plot of relative scattered field intensities (triangles) and extinction 
efficiencies divided by the cube of the radius (squares), as a function of radius. 
  

Although the scattered field intensities and volume normalized extinction 

efficiencies are different quantities physically, they follow a similar trend.  They 

each peak around the same wavelength (20-30nm), and decrease past that.  The 
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relationship between them can be seen directly by plotting the field intensity, a 

microscopic quantity that is not directly observable against the volume 

normalized extinction efficiency, which can be calculated by extinction 

measurements.  This is plotted in figure 2.13. 

0

2

4

6

8

10

12

14

0 5 10 15 20

R
el

at
iv

e 
S

ca
tte

re
d 

F
ie

ld
 I

nt
en

si
ty

Scattering Efficiency/R 3 (10-5 nm -3)

3
0

48.045.4
R

Q

E

E
scas +=

0

2

4

6

8

10

12

14

0 5 10 15 20

R
el

at
iv

e 
S

ca
tte

re
d 

F
ie

ld
 I

nt
en

si
ty

Scattering Efficiency/R 3 (10-5 nm -3)

3
0

48.045.4
R

Q

E

E
scas +=

 

Figure 2.13 Plot of relative scattered field intensity against volume normalized 
scattering efficiency. 

The regression line between these quantities is 
3

0

48.045.4
R

Q

E

E
scas += , with an 

R2=0.88, which shows a linear trend.  So although the peak size for 

enhancement may be determined for any material, it requires determination of 

the scattering for a variety of sizes.  Any particle that is outside of the validity of 

the Rayleigh approximation requires Mie scattering, and there is no simple 

relationship for intensity as a function of size in this case.    

 Although larger particles may not be the best enhancers, other aspects of 

the plasmon response to light may be of great value to the experimentalist.  The 

breadth of the peak, for example, means that the enhancement is well distributed 

for a variety of choices of laser lines, and a larger particle may be the best 

enhancer for high wavelength excitation.   An enhancing substrate that gives 
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moderate enhancement in both the visible and near infrared regions of the 

spectrum is an application for which large particles are very well suited. 

 Another variable to be considered is the field intensities at a point for 

different materials.  As seen previously, the integrated results for copper and gold 

make them less ideal candidates for surface enhanced spectroscopy than silver.  

The near field calculation, however, also shows different trends than the 

integrated results, and so the field at a point on the surface is still the best 

indicator of enhancement results.  The scattered field on the surface of 30 nm 

silver, gold, and copper particles in vacuum is shown in Figure 2.14. 
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Figure 2.14  Relative scattered field intensity of silver, gold (dotted), and copper 
as a function of wavelength.  The intensity of silver is scaled by 0.5. 
 
At all wavelengths above 340 nm, silver has the strongest scattered field, 

although the tails in all three cases go asymptotically to ~2.5.  Copper is a very 

consistent performer, being almost constant across the visible spectrum with a 

relative scattered field between 3 and 4 for the majority of wavelengths.  The 
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peak noted in the scattering cross sections at 564 nm is present again, due to the 

drop in the imaginary part of the dielectric function, and as well, a small peak at 

392 appears, corresponding to the dipolar resonance, which was not seen in the 

cross sections. 

 While scattered fields 10x higher than the incident field may not seem like 

much, the Raman signal goes as the 4th power of the total electric field30.   The 

30 nm silver particle discussed here will have a total field 11x higher than the 

incident, causing a surface enhanced Raman scattering (SERS) signal 1.4 105 

times higher, a signal increase that is noteworthy indeed.  As stated above, these 

three materials all have a relative scattered field around 2.5 as the near-infrared 

is approached, for a SERS enhancement of ~150.   

 The last variable to be considered in this section is the spatial distribution 

of the scattered field.  The magnitude of relative scattered field is taken on points 

on a square grid that is perpendicular to the incident light, with twice the size of 

the radius along each axis.  Results for 20 nm and 30 nm spheres are shown in 

Figure 2.15 with correct relative proportions, at 362 nm and 370 nm, respectively. 

 

 

Figure 2.15  Scattered Field Intensities for 20 and 30 nm Silver Particles. 

 

As seen in Figure 2.15   the regions of high intensity are in the direction of the 

incident field, with less intensity perpendicular to it.  Also, for the 30 nm sphere, 
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the high intensity appears to reach out further away from the particle.  The trend 

is shown in Figure 2.16. 
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Figure 2.16  Relative scattered field intensity as a function of distance from 
surface for 20nm (solid), 25 nm (dotted), and 30 nm (dashed) silver spheres. 
 

In materials, skin depth is defined as the distance it takes for the amplitude of a 

wave to drop by a factor of 1/e, where the intensity of the wave can be described 

by using an exponential37 

kxeEE −= 0      (2.97)  

where k in this case is the skin depth.    Since the plasmon is a wave bound to 

the metal, the scattered field should also decay exponentially away from the 

particle surface.  This suggests taking the natural logarithm of the above data to 

obtain straight lines, as seen in Figure 2.17 
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Figure 2.17  Natural logarithm of relative scattered field intensity as a function of 
distance from surface for 20nm (solid), 25 nm (dotted), and 30 nm (dashed) silver 
spheres. 
 

Although the theory and computation for a single sphere has been a 

subject of scientific inquiry for slightly over a century, it is still a relevant model for 

plasmonics of dispersed particles, and also serves as an first order 

approximation for more complex or interacting structures.  As well, the formalism 

that has been developed here has great utility for applications to more difficult 

problems, such as those seen in chapter 3, for nanoshells, and in chapter 5, for 

interacting spheres. 
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CHAPTER THREE 
NANOSHELLS 

A. Theoretical Background 

 Metal nanoshells occupy a prominent place in the field of metal 

nanostructures due to their remarkable optical properties.  In particular, by tuning 

the relative core and shell dimensions, gold or silver nanoshells can be fabricated 

that absorb or scatter light at any wavelength across the entire visible and near-

infrared regions of the electromagnetic spectrum1-6. 

Metal nanoparticles, in general, have surface plasmons that are sensitive 

to shape, size, and the dielectric properties of the surrounding medium, providing 

the variables that help to explain the particle’s response to electromagnetic 

radiation.  In addition, nanoshells have an additional unique degree of freedom 

provided by the thickness of the shell.  The shell’s thickness and size are shown 

to be the key variables in modeling and predicting the surface plasmon response 

to an electromagnetic field.  However, it is often difficult determining the 

thickness of the shell. 

 There are a variety of applications for metal nanoshells, including 

biosensing7 and drug delivery8, optical waveguides, and spectroscopies which 

involve the near field, such as SNOM and surface-enhanced spectroscopies.  

Nanoshells of novel materials are also being fabricated for catalytic applications9 

or humidity sensing10.  

 A great deal of the activity, especially with the optical properties of 

nanoshells, focuses on noble metal particles, especially gold.   The effect of the 

dielectric properties of the external environment has been well studied, both 

experimentally11 and with Mie scattering12, demonstrating that nanoshells are 

more sensitive to changes in external environments than collodial particles.  It 

has also been well shown, computationally and experimentally, that there is a 

dramatic red-shift in the peak frequency with decreasing shell thickness13.  The 

effects of rough and pinholed surfaces, as well as non-concentric sphere 

geometries, have been documented through FDTD14 methods and DDA15, and 
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work has also been done on the field densities on the surface and inside the core 

of nanoshells through modified Mie theory16. 

The following chapter examines the behaviour of surface plasmon 

resonances of metal nanoshells embedded with several different dielectric cores, 

using  the full Mie formalism for extinction and scattering.   The further 

examination of surface plasmons of catalytic materials, such as platinum, 

rubidium, and maganese oxide may have important applications for future 

catalytic studies.  Although the influence of the medium on single nanoparticles is 

well documented, there has been less work17 done on the effects of the core, 

especially for conducting cores, such as those seen with Ag/Au core/shell 

systems. 

Additionally, the use of novel core materials, such as dendrimers, which 

are well suited to the creation of uniform spherical structures, are discussed.  

Similar metal-organic hybrid materials may be generally characterized through 

techniques involving core/shell models such as those presented here. 

 Although the full Mie theory is the complete solution for computation of the 

optical properties of spherical particles18,  the physical interpretation of model 

systems is commonly found in the approximations, most notably, the static 

approximation. For example, for coated spheres the extinction cross section is 

given by19 : 

 
C =  4R k Im

 ( - )( - 2 ) + (1- g)( - )( + 2 )

( + 2 )( + 2 ) +  (1 -  g)(2  -  2 )( - )
 ext

2 shell m core shell core shell m shell

shell m core shell shell m core shell

ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε











(3.1) 

Where R is the outer radius, k is the wavenumber, g is the volume fraction of the 

shell layer, and εshell, εcore, and εm are the dielectric functions of the shell layer, 

core layer, and external medium, respectively. 

 Similar to the analysis by Templeton et al. 20 on monolayer protected gold 

clusters, we are interested in maximizing the plasmon absorption.  Since we are 

dealing with nanoshells, however, the shell thickness is a non-trivial quantity, and 

the approximation of the thickness going to zero would nullify the essential 

results. It is especially of interest to predict at what frequency or dielectric 

function value, the plasmon will be maximum, or, alternatively, for a chosen 



 

  61  
 

material, what shell thickness is required to maximize the plasmon for a selected 

frequency.  This allows for specific tailoring of the surface plasmon response of 

the nanoshell to whatever problem is at hand. 

The surface plasmon modes are maximized in intensity when the real part 

of the denominator of equation 3.1 is zero, with the constraint that the imaginary 

part is also small.  For clarity, the dielectric functions of the core and external 

medium are set to 1, although this is valid for any core and any non-absorbing 

external medium.  For the moment assuming the dielectric function of the metal 

is real, and expressing this as a polynomial, we obtain: 

 02)49(2

0)242)(1(252

0)1)(22)(1()21)(2(

2

22

=+−+
=−+−−+++

=−−−+++

ggg

g

g

εε
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  (3.2) 

where the dielectric function of the shell is expressed as ε  for simplicity.  This 

can be exactly true for a real ε , however, the materials of interest are absorbing, 

so we can express ε =ε ’+iε ”, and take the real part to obtain:: 

( ) 02)49(2 22 =+−′+′′−′ ggg εεε    (3.3) 

To obtain the thickness required for a specific material, g is solved for: 
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  (3.4) 

Calculation of the dielectric function necessary for a given g is not quite as easy, 

as the real and imaginary parts may vary independently. Taking the negative root 

from the quadratic formula: 

g

ggg

4

16728149 22ε
ε

′′+−−+−
=′

   (3.5) 

which admits a recursive solution.  Use of tabulated values or a Lorentz type 

function for the dielectric function for the material of interest generates the 

frequency of the plasmon. 

 Although the static expression of the extinction cross section is useful for 

probing the basic underlying physics of the problem, the solution is not valid for 

particles unless they are significantly smaller than the wavelength of light.  
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Additionally, this form of solution is only valid in regions where the imaginary part 

of the index of refraction is small.  For larger nanoshells, or in regions where the 

damping is high, the extended Mie equations must be used. 

 The Mie formalism extended to hollow particles is well detailed in a 

number of references18,21, although a brief outline of the modified Mie coefficients 

for the sake of clarity is presented here.   For a two layer sphere with inner radius 

a, and outer radius b, giving size parameters for x=ka and y=kb, and the indicies 

of refraction relative to the host medium of m1 and m2 for the core and shell, the 

scattering coefficients an and bn are: 
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where ψn, ςn, and ξn are the Riccati-Bessel functions of the first, second, and third 

kind, respectively, which are the spherical Bessel functions multiplied by the 

argument: 
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and An and Bn are 
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if m2=m1, An and Bn are both zero, reducing the problem to that of a sphere, as 

expected.   The extinction and scattering cross sections are the same as those of 

a sphere: 
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The convergence criterion given by Bohren and Huffman for spheres is applied.  

The calculations were done using Maple, and the optical properties of  the metals 

were taken from Palik’s Handbook22.  The program results were checked against 

published data to ensure proper coding. 
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B. Results 

 Due to the unique properties of nanoshells, the plasmon is tunable across 

a wide range of electromagnetic frequencies, allowing electromagnetic 

interaction for materials in regions that were not previously accessible.  The 

ability to predict the plasmon position in a systematic way opens possibilities to 

use existing, well known materials in novel ways.  For example, as demonstrated 

with gold shells over polystyrene cores23, the plasmon for gold is projected into 

the near infrared region for realistic geometries, allowing plasmon based 

phenomena, such as surface-enhanced spectroscopies, to be explored in 

regions which were not previously viable.  The theory presented in the previous 

section gives accurate results for small particles of ideal materials.  However, for 

practical applications, more rigorous methods must be used. 

The surface plasmon of nanoshells of gold, silver, and iridium are studied 

through extended Mie theory. for a variety of dielectric cores (vacuum, aqueous, 

silica, polystyrene, and dendrimer), for a range of sizes, ranging from 20nm to 

100 nm shell radii, with a variety of core radii.  Gold core/silver shell and silver 

shell/ gold core systems are also calculated for the same size range.   

 The surface plasmon extinctions for silver particles of outer radius 20nm 

are shown in Figure 3.1.  Both the core and external media are considered to be 

vacuum.  A strong red-shifting of the peak wavelength is observed with 

decreasing shell thickness, accompanied by a modest increase in extinction 

cross-section.  In order to compare the effects of changing the index of refraction 

of the core, the peak frequencies for the same shell sizes are calculated, and are 

seen to be linear, as shown in Figures 3.2 and 3.3 for vacuum, aqueous, silica, 

dendrimer cores for 60, 40, and 20 nm outer radii.  Polystyrene and dendrimers 

have a similar indicies of refraction (1.57 for dendrimer, and 1.59 for 

polystyrene).  Additionally, the peak position can be related to the index of 

refraction for the core, as also seen in Figures 3.2 and 3.3  for a silver nanoshell 

of constant volume ratios between inner and outer radii.   
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Figure 3.1. 20 nm outer radius of Ag:  a) Solid line, sphere.  b)  Long dash, 11 nm 
inner radius.  c)  Short dash, 17 nm inner radius.  d)  dotted line, 19 nm inner 
radius. 
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Figure 3.2: Peak wavelength vs. inverse shell thickness for Ag nanoshells of 60 
nm outer radius, and peak wavelength vs. core index of refraction for 0.587 
core/shell volume ratio for Ag nanoshells of 60nm outer radius. 
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Figure 3.3: Peak wavelength vs. inverse shell thickness for Ag nanoshells of 20 
and 40 nm outer radius, and peak wavelength vs. core index of refraction for 
0.587 core/shell volume ratio for Ag nanoshells of 20 and  40nm outer radius. 

 

Taking a least-square fit of the peak position vs. inverse thickness as a 

function of core index of refraction yields a linear expression of peak position as 

a function of both shell thickness and core index: 

( )λmax = + +
1

2 1t
mn b bcore

    (3.7) 

where t is the nanoshell thickness, b1 is the wavelength at which the solid sphere 

peaks, b2 is a constant based on how quickly the peak shifts only as a function of 

shell thickness.  Similar results are shown for silver nanoshells of 40nm and 60 

nm, with Figure 3.3 showing peak wavelength as a function of core index of 

refraction, with the same core/shell volume ratio.  Table 3.1 gives these 



 

  67  
 

phenomenological parameters for silver nanoshells up to 100nm in size.  As it 

has been previously shown12 that the peak position is also linearly dependant on 

external environment, this can also be included for any specific case.   

Material and Size       

  m b2 b1 (nm) 

Ag, 20 nm 290.2 209.1 343.7 

Ag, 40 nm 598.4   399.4 362.3  

Ag, 60 nm  1137.9  275.3  396.1  

Ag, 80 nm 1337.9  445.4   452.3 

Ag, 100 nm 1463.9  440.9  535.2  

Table 3.1. Calculated parameters for use in equation 3.7, from Mie calculations 

 

 It is no surprise that a dielectric core causes a red shift in the plasmon 

wavelength.  As pointed out by Prodan et. al.17, an interaction with a dielectric 

can be thought of as a reduction of the restoring force in the oscillation of the 

electrons due to polarization of the dielectric in response to the electric field.  A 

corresponding reduction of extinction cross-section is also observed with higher 

index of refraction, pointing to a relative decrease in induced surface charge 

caused by the polarization of the medium. 

 The use of dendrimers as a dielectric core, as used here, involves 

idealizing the dielectric response to a static value.  It has been shown24 that the 

optical properties of dendrimers vary slowly as a function of frequency, as do 

many organic compounds in the optical region.  The ability to make quantitative 

predictions for a range of dielectric cores, as above, allows not only for an 

accurate analysis of the plasmon response of the organic-metal hybrid for a 

specific value, but can take into account the frequency dependence of the core.  

Although dendritic materials are ideal for the creation of spherical metal shells, 

the analysis includes any organic-metal composites which have favorable 
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chemical, thermodynamic, or optical properties.  The dendrimers considered here 

are fluorinated dendritic thermoset polymers, based on hyperbranched 

fluorinated polymers25,26.   

Due to the extreme red-shifting properties of the nanoshells, materials not 

previously studied with optical techniques may be observed, giving new 

opportunities for surface-enhancing substrates, optical waveguides, and 

optoelectronic materials.  A recent study of nanoshells of MnO2 is an example9 of 

materials of great catalytic value.   For example, Ir nanoparticles absorb in the 

UV region, but due to red-shifting with decreasing shell thickness, the plasmon is 

broadened, and moved into the visible, as seen in Figure 3.4 for 20 nm radius Ir 

nanoshells in vacuum.   
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Figure 3.4. Extinction Cross Section of Ir nanoshells, outer radius 20nm, vacuum 
core. 
 
 The optical properties of silver, especially the low damping in the optical 

region, gives the ideal linear response of the peak wavelength, as a function of 

both shell thickness and core optical properties.  For other materials, such as Au 
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and Ir, the imaginary part of the index of refraction is not negligible, and the 

dependence of the peak wavelength on shell thickness is not as well behaved.  

As seen in Figure 3.4, the peak frequency shifts discontinuously due to the 

increased damping in regions of longer wavelength, and new peaks form due to 

differing resonance conditions brought on by the frequency dependant optical 

properties.  The use of Drude model dielectric functions will avoid these 

difficulties, and give idealized results, but are often not properly representative of 

the physical system being studied. 

 For any particular shell thickness, it is still possible to extract peak 

dependence as a function of the index of refraction of the core material.  Figure 

3.5 shows 40 nm external radius gold nanoshells, with a 34 nm inner radius, for 

vacuum, aqueous, silica, dendrimer, and polystyrene cores, with the inset 

showing the linear response of the peak frequency with respect to core material. 
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Figure 3.5. Plasmon response of Au nanoshells, 40 nm outer radius, 34 nm inner 
radius, for vacuum, aqueous, silica, dendrimer, and polystyrene cores. 
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An interesting case is when the optical properties of the core also change 

as a function of wavelength, as concentric shells of materials, such as silver/gold 

shell systems, or gold/silver27.   The optical absorption of such composites can 

be a strong indicator of structure.  As seen in Figure 3.6, for the same molar ratio 

between gold and silver, the optical absorption of the different core/coating 

configurations differ.  As there is no dielectric response to the applied 

electromagnetic field, the characteristic red shift observed for hollow particles 

does not appear.   For comparison, the optical extinction of binary composites 

with the same molar ratios is shown in Figure 3.7, with the optical properties of 

the mixture calculated through Maxwell-Garnet effective medium theory28,29, and 

then the Mie extinction of the effective dielectric function taken. 
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Figure 3.6.  Plasmon response of silver/gold and gold/silver core/shell systems.   
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Figure 3.7.  Plasmon response of silver/gold and gold/silver core/shell systems, 
contrasted with mixtures from effective medium theory, for 27% Ag by Volume. 
 
 Interestingly, the mixture of 27% silver gives very similar results to the 

silver/gold core/shell system.  For this structured system, the silver has hardly 

any effect, as the light mostly interacts with the gold shell, although the silver 

core does play a role.  If the silver is on the outer layer, however, the result is 

very different from the binary mixture, yielding a peak characteristic of a gold 

sphere, modulated by the larger gold core. 

For ideal materials, the surface plasmon response of nanoshells can be 

treated linearly using extended Mie theory.  Application of static results for coated 

spheres also allows for fast and accurate predictions, provided the materials 

have low damping and are small compared to the frequency of light.  Computed 

Mie extinction for realistic systems of gold and silver compare well to published 

experimental results. 
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 CHAPTER FOUR 

 DIPOLE APPROXIMATION AND THE COUPLED DIPLOLE EQUATIONS 

A. Non-Spherical Shapes Through the Dipolar Approximation 

 While the Mie solution to Maxwell’s equations is the exact electrodynamic 

result, it only applies to spherical particles, which limits the theory’s utility for 

many applications.  Aside from spheres and concentric spheres, treated in 

chapter 2 and 3, respectively, exact models exist for both infinite cylinders1 and 

ellipsoids of rotation2.  The use of a treatment of infinite cylinders, however, does 

not have much application for the nanometric particle geometries considered in 

this work.  The exact treatment for spheroids, on the other hand, is a far more 

difficult problem to solve, and outside the scope of this work.  Ellipsoidal particles 

are often observed in thin films3, however, and it is necessary to treat them in 

some fashion. 

 A fairly simple solution to this problem is to approximate the Mie 

equations for the case that x, the size parameter, is significantly smaller than 

unity:  in other words, the particle size must be much smaller than the 

wavelength of the incident light.  In practice, this corresponds to about 20 nm for 

applications using visible radiation.  As seen in Chapter 2, the results for 15 and 

20 nm spheres are very similar, excepting the increased cross-sections 

accounted for by the change in particle size.  Beyond this size, however, 

significant changes in peak position and bandwidth occur.   

 The dipole approximation has various names, depending on the historical 

view that one takes of the field.  The term dipole approximation comes from the 

fact that the equations can be derived by approximating the first term in the 

summation of the Mie solution, corresponding to the dipole moments1.  It is also 

often called the quasi-static approximation, as it can be alternatively derived 

through finding the polarizability of a particle within a static field as a function of 

frequency4,5.  It is also referred to as the Rayleigh approximation, or Rayleigh 

scattering, after Lord Rayleigh6, who first described the inverse fourth power 

relationship of the scattering to the wavelength.  The term Rayleigh scattering for 
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the phenomena is avoided here, as this is reserved for describing the elastic 

scattering from molecules, as opposed to Raman scattering. 

For the case of a sphere much smaller than the wavelength of light, the 

extinction and scattering cross sections are derived in full by Bohren and 

Huffman1 by taking power series approximations of the Bessel functions, to find 
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where x is the size parameter ka, a the radius, ε the dielectric function, and εm 

the dielectric function of the material in which the the particle is embedded.  The 

scattering cross section has the inverse fourth power term as described by 

Rayleigh.  The only other place where there is frequency dependence is in the 

polarizability term.  The size dependence only enters through the cross sectional 

area and the size parameter, and the polarizability does not depend on size.  

This means that regardless of size, the shape of the curve will always be the 

same, with the intensity scaled up or down for larger or smaller radii.   

 The correction for the small size used in the dipole model is the surface 

damping or surface scattering term, which modifies the dielectric function.  This 

term becomes important for sizes below 10 nm.7,8  It is not used in this case, 

although future work will take advantage of this correction to bring computational 

results closer to experiment. 

 One advantage of the dipolar approximation is the ability to treat ellipsoids 

of rotation in a uniform way.  An ellipsoid of rotation is an ellipsoid with two equal 

axes.  If the two equal axes are the major axis, then the shape is referred to as 

an oblate ellipsoid (pancake shaped), and if the equal axes are the minor axis, 

then it is a prolate ellipsoid (cigar shaped).  The polarizabilities in both cases are 

described by1 
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where a,b and c are the axes, and the L factors are the called geometrical factors 

here. The geometrical factors satisfy La + Lb + Lc=1.  The L’s are often referred to 

as the depolarization factors9, and depend upon geometry only, rather than the 

optical properties of the material.  For the prolate ellipsoid, b and c are the minor 

axes, and are equal, and the geometrical factor is: 
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Where e is the eccentricity of the particle.  For the oblate ellipsoid the 

geometrical factors may be determined by: 
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where the other required geometrical factor may be inferred from the summation 

of geometrical factors is equal to one.  The extinction cross section can be 

calculated by 

{ }αImkCext =       (4.5) 

An advantage of ellipsoids of rotation is the different possibilities of modeling a 

surface that arise due to the different axis possibilities.  For prolate ellipsoids on 

a surface, for example, the light may “see” two different axis if the ellipsoid has 

the major axis perpendicular to the incident wave.  The other possibility is that 

the major axis is parallel to the incident wave, so normally incident light with any 

polarization only has electric field components in the direction of one of the minor 

axes.  Similar considerations for oblate ellipsoids are also possible.   
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 Gold nanorods are a subject of investigation due to their plasmonic nature, 

biocompatibility, and desirable catalytic properties10-12.  The above equations are 

used to describe short, prolate gold nanorods with the major axis parallel to the 

substrate.  Figure 4.1 and Figure 4.2 represent the extinction cross section as a 

function of wavelength for the minor axis and major axis of a gold nanorod of 

major axis length 25 nm, and minor axis length 6.25, corresponding to a aspect 

ratio of 4. 

E
xt

in
ct

io
n 

C
ro

ss
 S

ec
tio

n 
(1

0-
11

 c
m

2)

Wavelength (nm)

0

1

2

3

4

200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000 

494nm

E
xt

in
ct

io
n 

C
ro

ss
 S

ec
tio

n 
(1

0-
11

 c
m

2)

Wavelength (nm)

0

1

2

3

4

200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000 

494nm

Wavelength (nm)

0

1

2

3

4

200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000 

494nm

 

Figure 4.1:  Extinction cross section of a gold nanorod of aspect ratio 4 
considering only the minor axis. 
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Figure 4.2  Extinction cross section of a gold nanorod of aspect ratio 4 
considering only the major axis. 
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 While there is a clear red shift of the major peak when comparing the 

major axis results to the minor axis, another important detail is the magnitude.   

The peak along the major axis is almost two orders of magnitude greater than the 

corresponding peak in the minor axis.  Clearly the major axis will dominate the 

extinction when they are considered together, as shown in Figure 4.3. 
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Figure 4.3.  Extinction cross section of a gold nanorod of aspect ratio 4. 

 The physical origin of the two peaks in Figure 4.2 requires careful 

examination of both the optical properties of gold, and as well, the geometry in 

this situation.  For an aspect ratio of 4, meaning that a/b=4, the square of the 

eccentricity is 15/16.  This gives a geometrical parameter of L=0.07541.  The 

resonance condition is: 
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For the calculated value of L, the real part of the dielectric function must be  -

12.26, which occurs at 672 nm, giving the main peak.  The smaller peak at 584 is 

slightly different, and is due to the fact that in the extinction, it is the imaginary 

part of the polarizability that is taken.  This peak originates from the absorption, 

rather than the scattering.  
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 Also, as seen in Figure 4.4, a variety of solvents can be used to move the 

plasmon resonance to different wavelengths, following the same trend as seen 

for spheres in Chapter 2, and requires no more discussion here.  Figure 4.5 

shows the changes in the spectra as the aspect ratio is varied, which is a change 

that cannot be assayed in spherical particles.  In particular, the second peak 

which arises as the aspect ratio is increased is due to absorptive processes. 
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Figure 4.4.  Extinction cross section of a gold nanorod of aspect ratio 4 in 
different media:  Vacuum(εm=1), Water(εm=1.33) (dotted), Benzene(εm=1.5) 
(dashed), and εm=1.75 (dot-dash). 
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Figure 4.5:  Extinction cross sections for gold spheres and nanorods, with major 
axis 25 nm, corresponding to sphere, aspect ratio of 2 (dotted), aspect ratio of 3 
(dashed), aspect ratio of 4 and aspect ratio of 6. 
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B.  Non-Spherical Shapes Through the Coupled Dipole Approximation 

The coupled dipole equations (CDE) have been used in calculating the 

optical properties of composite media, including larger particles.  In these larger 

particles, dipoles are arranged to mimic a more complicated system (such as 

those used in DDA 13,14, as well as fractal structures15), which could be applied to 

model aggregation, surface composition, or percolation.  The general nature of 

the solution allows for calculation of optical properties, as well as enhanced 

Raman and electric fields at any point in space.  

Following the theoretical development by Markel, Shalaev, and 

coworkers15, an arrangement of N monomers interacts with a plane wave of the 

form ( ) ( )trkieEtrE ω−⋅=
rrrrr

0, .  The local field induces a dipole moment for each 

monomer of li Ed
rr

0α= , where α0 is the isotropic polarizability, El the local field, 

and di the dipole moment of monomer i.  Each monomer simultaneously interacts 

with all other monomers, as well as with the external field.  The total dipole 

moment each monomer is: 
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where the greek indicies γ,β are the Cartesian coordinates, over which 

summation is implied.  The primed summation indicates the j=i is excluded from 

the sum.  Also, rij= ri-rj.  G is a tensor defining the interaction between particles.  

The elements of this tensor are given by 
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This system of equations is easiest to solve in complex vector space of 3N 

dimensions, with basis vectors of |iγ >.   In this 3N space, the equation for the 3N 

dimensional dipole moment vector is 

dGEd ˆ
00 αα +=

     (4.8) 

Ĝ is a 3N x 3N tensor with matrix elements given above, and the elements of E, 

the incident field, are given by 

rkieEEi
rr

⋅= αγ 0      (4.9) 

Defining Z as the inverse of the polarizability, some rearrangement yields 

EdGdZ =− ˆ1̂
     (4.10) 

These equations are a matrix equation of the form AX=Y, with complex 

elements where A is a known matrix, Y is a known vector. The unknown vector X 

is solved through the conjugate gradient method13. 

The polarizability of each particle is given by:  

2

1
0 +

−=
ε
εα V

      (4.11) 

Where α is the polarizability, ε is the frequency dependent dielectric function16, 

and V the volume of the dipole.   The radius of each sphere is calculated using 

a/R=1.61217, where a is the spacing between the particles, 40 nm in this case, 

and R the radius.  This value is less than the expected a/R=2, as the dipole 

response will not be homogeneous:  rather, it will be stronger in the region where 

the particles are in contact.  This value of a/R causes the dipoles to overlap, and 

interact more strongly.  It is this overlap between the individual dipolar modes of 

each particle that causes the coupling. 

 The coupled dipole moment program used is presented in Appendix A.  As 

a proof of principle, the program is first used to simulate something that is very 

well known, a sphere, basically using the coupled dipole program as a DDA 

program.   The sphere must first be discretized in some way, two examples being 

shown in Figure 4.6, where each miniature sphere represents a dipole. 
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Figure 4.6:  Spheres made up of 136 dipoles (left) and 304 dipoles (right).  

 The coupled dipole equations are used to simulate 10 nm silver spheres 

and 50 nm silver spheres, in order to ensure that the coupled dipole methodology 

is able to capture physical responses that are not explained within the dipolar 

model.   Since a 10 nm sphere can definitely be modeled with equation 4.1, while 

a 50 nm sphere, referring to Chapter 2, clearly can not be, this is a valid test for 

the coupled dipole model to be able to accurately simulate both cases.  The proof 

of principle is demonstrated in Figures 4.7 and 4.8. 
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Figure 4.7:  Extinction cross sections of 10 nm sphere using Mie (solid), CDE 
using 136 dipoles (dashed), CDE using 304 dipoles (dotted). 
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Figure 4.8  Extinction cross sections of 50 nm sphere using Mie (solid), CDE 
using 136 dipoles (dotted), CDE using 304 dipoles (dashed), CDE using 1024 
dipoles (dot-dashed) 
 
 In both cases, the 136 dipole expression of a sphere fails fairly miserably, 

as there is an oscillating tail, which is indicative of poor discretization.  In other 

words, the sphere isn’t spherical enough, and is bumpy rather than smooth, 

causing the light to scatter off each particle individually.  The 304 dipole model 

works much better in both cases, although the error in intensity is around 10%.  

The 1024 dipole model doesn’t fare any better in terms of intensity for the case of 

the 50 nm sphere, but accurately predicts the peak wavelength, with the coupled 

dipole equations giving 409 nm as opposed to the 405 nm given in Mie theory, 

yielding an error of approximately 1%, small enough to be confident of the 

convergence. 

 With the principle of the use of CDE to create complex objects now in 

place, it can be used to calculate virtually any shape.  Returning to the problem 

of gold nanorods, the dipolar model gave a good first order results, but failed to 

predict any changes in the spectra, besides intensity, as a function of size.  Also, 

the dipolar model is only appropriate for the smallest particles that are 

considered, whereas the CDE have shown themselves to be able to model 
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particles outside of the dipole approximation.  Figure 4.9 is an example of the 

discretization that can be done for a cylinder, breaking it up into 380 dipoles in 

this case, and Figure 4.10 shows the extinction of an aspect ratio 4 gold cylinder, 

with a major axis of 25 nm. 

  

  

Figure 4.9:  Discretization of a 380 dipole cylinder of aspect ratio 4. 
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Figure 4.10:  Extinction of a gold cylinder of major axis 25 nm, and minor axes 
6.25 nm.  
 

 As opposed to the dipolar model, which displayed a very narrow, but 

intense peak at 674 nm, the coupled dipole equations applied to a similar 
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cylinder give a much broader peak, with peak extinction of 791 nm, although the 

intensity is similar.  Although cylinders and ellipsoids have slightly different 

modes18, the resulting spectra is fairly similar, due to the closely related 

structures. 
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C. Interacting Particles 

While the single particle model has had success with experimental results, 

to gain a better understanding of the physical phenomenon, it is necessary to 

deal with nanostructure aggregates that support multiple surface plasmons.  

These aggregates produce spatial locations with extremely high local field (hot 

spots)19.  It can be said that the basic parameters guiding plasmonic response 

are: (1) the response function to polarization (dielectric function) that confines the 

materials to a few metals (mainly silver and gold), (2) the shape (particles, shells, 

rings, etc.), (3) size and (4)  the spatial geometry of nanostructure arrays or 

aggregates.20,21 

In this work, the CDE are used to calculate the enhanced field between 2 

particles using polarized light.   The addition of the field created by an oscillating 

dipole also allows for the calculation of enhancement in decay rate, a necessary 

component in the consideration of surface enhanced phenomena.  For simplicity 

of calculation, and to avoid long computation times, each particle is treated as a 

separate dipole.  While this certainly does not capture the full effect of a true 

interaction of realistic particles22,23, it does provide a rough approximation to the 

real interaction, which will be dealt with in detail in Chapter 5.   

The particles are arranged along the x axis, for simplicity.  The light is 

incident from the z direction, with polarization chosen to be along the axis of the 

particles.  This will excite only the coupled mode of the interacting particles, 

which will cause a shift in the resonance to lower energies compared to an 

isolated particle.  The particles are chosen to have a radius of 20 nm.  They are 

separated by a space of d, so that the center-to-center distance is 40nm+d.  A 

schematic of this arrangement is shown in Figure 4.11. 
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Figure 4.11  Schematic of particle arrangement for calculation of enhancement.  
The particles of radius R are separated by a distance d. 
  

The electric field is calculated through the addition of a non-interacting 

particle at the desired position, and the sum of the dipole moment vectors divided 

by the polarizability of each particle is taken at this point.  The enhancement of 

the electric field, M, is calculated by: 

inc

i
iinc

E

EE
M v

vv

∑+
=

     (4.12) 

For the 2 particle model described above, the field at a point located 

symmetrically between the spheres (at a distance d/2 from each particle) is 

shown in Figure 4.12.   
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Figure 4.12:  Field enhancement as a function of wavelength for 2 particle 
system.   
 

These field enhancements show a clear trend.  When the particles are 

well separated, the wavelength dependence is similar to that obtained for a 

single particle, with enhancement peaking at 490 nm.  As the particles are moved 

closer together, the peak enhancement increases and red shifts, due to the 

increased coupling between the particles, as well as the decreased particle-

molecule distance. 

As an example of the changes in the spectra brought about by having 

more than two particles, different configurations of 3 particles are considered. 

The particles are arranged with no space between them, with a radius of 20 nm.  

The incident light is chosen to come from the z direction, and the electric field 

polarized in the x direction.  For the case of 2 particles, they are arranged in a 

line along the x axis.  For 3 particles, there are two different configurations used:  

3a is with the third particle added in a triangular fashion, while 3b adds the 

particle to the right of particle 2.  These configurations are as seen in Figure 4.13. 
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Figure 4.13 :   Arrangements of particles. 1 and 2 represent the positions of a 
single particle and dimer respectively, while 3a and 3b refer to the two different 
configurations of a 3 particle system. 

The CDE, and equations for extinction and scattering cross sections as 

described by Markel et. al17 are applied and solved through the conjugate 

gradient method13.  The electric field is calculated through the addition of a non-

interacting particle at the desired position, and the sum of the dipole moment 

vectors divided by the polarizability of each particle is taken at this point.  The 

field enhancement M is also calculated. 

M is used in two different ways:  First, the dependence of the electric field 

at a variety of points is taken with respect to frequency.  Secondly, contour maps 

of the electric field at peak frequencies are generated over the region of space 

surrounding the particles. 

The extinction of 1, 2, and 3 particles, interacting as described above, is 

shown in Figure 4.14. 
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Figure 4.14:   Extinction cross section vs. Incident Wavelength for 1 (solid), 2 
(dashed), and 3 particles, in configuration 3a (dot-dash) and 3b (dotted). 

The extinction for the single particle peaks at 354 nm, as expected for a 

20 nm silver particle.  Two particles along the line of the incident electric field 

polarization show strong coupling to both the electric field and each other, 

resulting in a much stronger extinction that is red shifted to 426 nm.  Surprisingly, 

the addition of the third particle in configuration 3a causes a slight blue shift, to 

422 nm, with a negligible increase in extinction.  Examination of the dipole 

moment vectors in this case shows the creation of components in the y-direction, 

where in the 2 particle case, the response to the electric field is only in the x.  

Because these y components do not couple to the electric field, which is only in 

the x, they do not contribute to the extinction.  In a sense, the 3rd particle causes 

a damping of the system by inducing dipole moments which do not couple to the 

incident field. In configuration 3b, the trend from the 2 particle system is 

continued, with a shift more to the red, to 528 nm, as well as a substantial 

increase in extinction.  As 3a and 3b occupy the same volume, and have the 

same surface area, these very different spectra illustrate the sensitivity to 

geometry in nanoparticle extinction. 

The scattering results follow a similar trend, with the scattering peaking at 

the same wavelength as the extinction for 1 and 2 particles.  For configuration 
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3a, the scattering is strongest at 424 nm, and for 3b at 529 nm.  The scattering 

contribution to the total extinction also demonstrates an interesting trend.  For 1 

particle, the scattering is only 3.7% of the extinction, while for 2 it contributes 

12.7%.  The scattering contributions for the two different configurations of 3 

particles are 13.6% and 25.6% for 3a and 3b respectively, demonstrating that 

both extinction and scattering are strongly dependent on geometry. 
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Figure 4.15.   Electric field enhancement vs. Wavelength for 1 particle sampled at 
S1 (solid), 2 particles sampled at S1 (dashed), and 3 particles (dotted line), in 
configuration 3a sampled at S1, and 3b sampled at S2 and S4.  The inset shows 
detail of the single particle and configuration 3a from 300 to 450nm. 

The electric field as a function of incident wavelength is shown in Figure 5.  

In general, the peak wavelengths are slightly red shifted compared to the 

extinction, and the tails to the red extend out much further.  The single particle 

shows a peak at 356 nm.  The maximum enhancement has a magnitude of 20.4.  

For two particles, the peak is at 428 nm both at the center (S1), where the 

magnitude of the field enhancement is 121.1, and at the side (S2), where A=63.1.  

The field is approximately three times as high to the right of both particles than 

for a single particle, due to the increased dipole moment from the interaction.   In 

the center, the field is approximately doubled again relative to the outside, as the 

dipole moments of both particles are strongly felt.  For 3 particles, in 

configuration 3a, due to the damping mentioned above, the peak is blue shifted 
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to 426 nm.  The intensity drops slightly, compared to the enhancement for two 

particles, at the same positions.  The field enhancement for the 3rd particle shows 

why: a peak at 342 nm appears, as seen in the inset of Figure 3, corresponding 

to a response that is not fully coupled to the other two particles.  In this case, 

modes are created that correspond to both the single particle and the dimer.  In 

configuration 3b, however, the strongest enhancement is observed at 530 nm, 

with a magnitude of 331.2 at one of the inside positions (S2), and 147.4 to the 

right of all three particles (S4).  Again, there is a clear dependence on geometry 

for field strengths as well. 

Figures 4.16, 4.17, and 4.18 show contour maps of the electric field 

enhancement over the region of space surrounding the particles, at the peak 

frequencies calculated in Figure 4.15.  The color scale follows visible light, with 

violet and blue being the lowest enhancement, and red being the highest in each 

case.  The particle radius as shown in the figures is slightly smaller than 10 nm, 

to allow visibility of the fields at the surface, and between the particles.  The 

single particle shows the strongest enhancement in the direction of the field 

polarization, as expected.  For two particles, the enhancement is strongest in the 

region between the particles, with an intermediate enhancement around the 

outside of the system in the direction of incident field polarization. 
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Figure 4.16:  Electric field enhancement for 1 particle at 356 nm (left) and 2 
particles at 428 nm (right).  The scale is described in the text. 
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Figure 4.17:  Electric field enhancement for 3 particles in configuration 3a at 426 
nm (left) and 342 nm (right).  The scale is described in the text. 

For three particles, arranged as in 3a, there is a definite mode due to the 

dimer, as seen by the intense field between the bottom two particles.  This mode 

follows the same pattern as observed in the two particle system, as seen in 

Figure 4.17.  At 342 nm, while the strongest field is seen close to the geometric 

center of the 3 particle system, which is an off-resonance contribution from the 2 

particle mode, there is also a strong field in the direction of the incident field from 

the top particle, corresponding to a single particle feature. 

 

Figure 4.18:  Electric field enhancement for 3 particles in configuration 3b at 530 
nm.  The scale is described in the text. 

In configuration 3b, however, the strongest enhancement is localized 

between the particles.  As these particles are fairly close together, the phase 

difference in the dipole response is negligible between the particles, creating an 

almost symmetric response. 
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Examination of the electric field patterns in both wavelength and space 

allows for an understanding of the distribution of the field, and different modes, 

corresponding to different degrees of coupling in a system that can be probed.  

Single particle models have the benefits of analytical solution, while coupled 

particles provide a model for the aggregated nanoparticles responsible for SERS 

enhancement.  The CDE allow for computation optical properties as well as field 

strengths of these complex systems.  For even simple systems such as 2 or 3 

particles, field enhancements can increase by an order of magnitude from the 

increased interaction, relative to a single particle. 

The same notion can be applied to fractal aggregations of particles, a 

common occurrence when colloids are dispersed on a surface24.  Fractal patterns 

of colloids are created by self-avoiding random walks25, samples of which are 

seen in Figure 4.19. 

 

Figure 4.19:  Self-avoiding random walks of 100 particles. 
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As long as each individual particle is smaller than the wavelength of light, 

the different self-avoiding random walks can be calculated using CDE.  Extinction 

results for these four walks are shown in figure 4.19. 
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Figure 4.20:  Extinction cross section of 20 nm silver particles for the 
configurations seen in Figure 4.19. 
 

 The use of the quasi-static or dipolar model allows examination of 

plasmonics from several avenues.  First, it allows the use of approximate, closed 

form equations which have the virtues of being physically understandable as well 

as mathematically tractable.  Secondly, ellipsoids of rotation are possible, a 

shape which causes spectral variations due to the eccentricity, as well as 

providing greater extinction cross sections and field intensities.  Thirdly, by 

allowing a set of dipoles to interact gives rise to space discretization of complex 

particles, allowing virtually any imaginable shape to be calculated, as well as 

examination of the role of defects or protusions.  Lastly, the each individual 

particle can be treated as a dipole, and the effect of the system of particles can 

be treated through the coupled dipole equations. 
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 CHAPTER FIVE 
 

EXTENDED MIE THEORY 
 

A. Theory of Cooperative Scattering 

 The problem of scattering by multiple particles has an extensive history.  

Indeed, it is a topic still under investigation, creating a wide variety of notation 

and methods.  As there is no universal agreement as to a formalism, it is 

important to clearly define how the problem is to be approached in this case.   

 Although for this work, the desired outcome is field enhancements for 

surface enhanced Raman scattering, as well as extinction and scattering cross 

sections to aid in surface characterization, the outcomes from scattering by 

multiple particles have a wide variety of applications.   The desire to understand 

the interactions of nanometric particles has been motivated by recent 

developments in a number of areas, including surface enhanced Raman 

scattering, including single molecule detection1,2, subwavelength microscopy 

techniques, such as atomic force microscopy3 and scanning near-field optical 

microscopy4.  The latter is specifically of interest, as it has the ability to obtain 

absorption and scattering information with resolution in the nanometer range, and 

nanotechnology based on plasmonics5.  With the recent growth in computing 

power, it has become possible to approach problems that were not previously 

calculable within any reasonable time frame.  While these areas began as the 

study of simple scatterers with analytical solutions such as spheres and 

cylinders, the application of classical electromagnetism has moved on to more 

complicated particles.  While complex monomers are quite interesting in their 

response to an electromagnetic field, an important extension that should be 

made is to that of aggregation of simple scatterers.  While the calculation of the 

near field is a difficult and tedious process in any case, it is the simplest.  It 

remains an important theoretical problem in the field of plasmonics.   

 When the simple scatterer can be treated as a sphere, the result is Mie 

theory, as seen previously.  When there is an aggregation of spheres, the 

treatment is referred to as extended Mie theory.  The idea of extended Mie theory 
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is similar to that of any multiple particle scattering, wherein the scattering is 

calculated for each particle individually, and the solution expanded out using a 

complete basis (in this case the vector spherical harmonics) where the expansion 

coefficients are determined using the appropriate boundary conditions.  This 

expansion gives calculable equations only if the basis function symmetry is 

identical to the symmetry of the scatterer.  This is why this particular technique 

works only with a limited group of particles, which are  spheres, cylinders, and 

ellipsoids6.  For multiple particles, it is then necessary to transform the basis of 

one particle to another.  This problem has already been solved for spheres, with 

the necessary transformation being the addition coefficients for the vector 

spherical harmonics7. 

 While the basis of the theory for the scattering of multiple spheres has 

been available for slightly over a century, since the time of Mie, its realization has 

been much slower due to the inherent complexity of the task.  Fuller6 gives an 

excellent review of the problem, but a few of the historical highlights bear 

repeating here.  The addition coefficients, sometimes referred to as translation 

coefficients, for the spherical vector harmonics are grounded in the theory of the 

addition of angular momenta, of which much of the pioneering work was done by 

Clebsch8.   Although early attempts used the dipolar approximation to approach 

the problem of two spheres9, the exact solution could not be assayed until the 

development of the addition theorem for the spherical harmonics.  This was first 

done for the scalar spherical harmonics in 1954 by Friedman and Russek10, and 

then the vector spherical harmonics by Stein11 in 1961, and Cruzan7 in 1962.  

Cruzan’s work is of note, and is used here, as the addition coefficients have 

vector addition terms that are explicitly linked to the Clebsch-Gordon coefficients.  

Modern applications use the Wigner-3j symbol to represent the Clebsch-Gordon 

coefficients, and Cruzan was the first to make that connection.  It was only in 

work of Bruning and Lo12-14 that exact calculations for the special case of two and 

three particles along a single axis were comprehensively studied, along with 

experimental verification through backscattering measurements.  These authors 
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used matrix inversion to solve the set of linear equations that arise from this 

special case.   

 Although there have been many papers published on the subject, the 

majority of the work on cooperative scattering of particles has been within limits 

of the Rayleigh, or dipolar approximation6, although there are certainly 

exceptions focussing specifically on plasmonics15,16.  This is largely because 

these equations can be written in a closed form, and computation can be quickly 

done.  Many of these use the term ‘Mie theory’ to describe it, although care 

should be taken, as they are not Mie’s exact solution.  This is also true to near 

field calculations applied to SERS.  Initial work to apply extended Mie to surface 

enhanced Raman scattering was undertaken by Inoue and Ohtaka17, who 

successfully applied an integral approach to the problem using retarded Green’s 

functions for chains of spheres along a common axis.  Although elegant, this 

work was not developed further, and it remains to be seen whether this formalism 

could be extended to arbitrary configurations.   

 Aside from Inoue’s work, there are basically two methods of solution.  One 

is similar to the T-matrix approach from classical electromagnetism. This 

approach is seen where all the boundary conditions are solved simultaneously to 

obtain a large matrix, which is inverted to solve the system.  This is the method 

used by Bruning and Lo13.  The difficulty with this approach is that for more than 

two spheres, or for the strongly interacting spheres, a great many terms are 

required, leading to matricies with literally tens of thousands of elements to be 

inverted.  The second method is referred to as the order of scattering, which was 

formalized by Fuller and Kattawar18,19, and Fuller6,20.  This method makes 

intuitive sense, as it is more or less an iterative scheme.  In this calculation, the 

scattering is first calculated for each isolated sphere, and the scattered field of 

each particle is felt by all the other spheres, which is then re-scattered, and so 

on.  Although Fuller and Kattawar’s work initially called it “the consummate 

solution”18,19, later work by Fuller revealed that the iterative scheme is unstable in 

the vicinity of a single sphere resonance, termed a progenitor resonance.  This 

progenitor resonance may span a rather large frequency range, and so the use 
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of the term “consummate” was deemed “ill-advised”6.    Despite this problem, and 

other issues of convergence, the order of scattering method makes physical 

sense.  Recently, Hongxing Xu21,22, and Hongxing Xu and Li23 developed a new 

algorithm that is a combination of matrix inversion and order of scattering that 

appears to circumvent both problems: that of large matricies in a pure matrix 

inversion, and also convergence problems in order of scattering methods.  The 

methodology presented here is based on that of Xu and Li.  Although this hybrid 

method is successful in calculation of near field intensities, the calculation of 

extinction and scattering cross sections remains an outstanding problem. 

 The problem can be broken into 4 basic parts:  scattering by isolated 

spheres, calculation of the vector spherical harmonics, expanding the plane wave 

onto the vector spherical harmonics, and calculation of the vector addition 

coefficients for the vector spherical harmonics.  The most time consuming and 

problematic part of extended Mie theory is the vector addition coefficients, partly 

because it is the newest, and thus, most complicated:  the other three sections 

exist in a simpler form for the isolated particle.  The vector addition coefficients, 

as well as being dependant on both frequency as well as spatial coordinates, 

require the integral of the product of three associated Legendre functions, a 

problem solved by Gaunt24 for application to the helium atom, although again, the 

solution is extremely time consuming.  One of the many contributions to this field 

by Bruning and Lo13 was to devise a three term recurrence relation for the Gaunt 

integrals for the case of particles along a common z axis.  In the 1990’s, Yu-Lin 

Xu25-27 derived a recursion method for calculation of the Gaunt integrals for 

arbitrary configuration that compares well numerically to Gaunt’s solution, as well 

as taking less time computationally. 

 Following both the previous development of Mie theory in this work, as 

well as fitting in the new elements according to the formalism of Hongxing Xu22, 

the incident and scattered field for a set of L particles can be expanded into the 

vector spherical harmonics 
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   (5.1) 

where the superscripts s and i stand for scattered and incident, respectively, n 

and m are the angular momenta, and l the index over the sphere number up to L.  

The vector spherical harmonics |mnjp> are represented by basis kets,  where 

p=1 stands for Mj
mn and p=2 for Nj

mn, as derived in the previous section.  The j 

index denotes the kind of spherical Bessel function used, being j=1 for the 

regular spherical Bessel function jn(x), j=2 for the spherical Bessel function of the 

second kind yn(x), j=3 for the spherical Hankel function of the first kind, hn(x)= 

jn(x)+i yn(x), and finally, j=4 for the spherical Hankel function of the second kind, 

which is the complex conjugate of the j=3 case.  In any event, only the j=1 and 

j=3 are used, representing the Bessel functions required for the incident and 

scattered wave.  The last elements are the expansion coefficients iCl
mnp and 

sCl
mnp for the vector spherical harmonics |mnjp> centered at the l’th sphere.   

 As the vector spherical harmonics are well known at this point, the 

problem is reduced to finding the expansion coefficients sCl
mnp, which is indeed 

the most difficult aspect of this calcuation.  The scattered field expansion 

coefficients may be determined by summation of single scattering events using 

the order of scattering approach, and are functions of the incident coefficients 
iCl

mnp, the Mie coefficients al
n and bl

n, as shown previously, and lastly, the vector 

addition coefficients lhAµνmn and lhBµνmn.  The function is called Tl.  To summarize,  

( )µνµν
ννµν mnmn

lhhhh
q

i
l

Ll
mnp

s BAbaCTC ,,,,=    (5.2) 

where ν and µ designate angular momentum, analogous to n and m, 

respectively.  The variable q plays the same role as p.  Although the magnetic 

fields can also be written using the same sort of relations, the discussion will be 

limited to the electric field. 

 The vector spherical harmonics themselves, in spherical coordinates r, θ, 

φ, where r is the radius, θ the zenith angle measured from the positive z-axis, 

and φ the azimuthal angle, measured in the xy plane, are:13 
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Where j controls the type of Bessel function used in the equation.  These vectors 

can be simplified by recalling 
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which yields 
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which gives them a form explicitly the same as those derived previously, aside 

from a difference in normalization.  The normalization is taken care of by the 

expansion coefficients of the incident field.  As seen previously, the incident 
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electric field is expanded into the vector spherical harmonics.  The expansion 

coefficients can be inferred from 

mnjpmnjp

mnjp
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=     (5.6) 

These coefficients were first written explicitly by Inoue and Ohtaka17, although 

they have been reproduced elsewhere with differing phase21. 
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While this explicit form of the expansion coefficients is certainly unwieldy, a 

choice of k, the wavevector of the incident light, and the polarization of the 

incident electric field will make many of the terms collapse. 

Of the 3 parts that go into the calculation of the expansion coefficients of 

the scattered field, 2 are explicitly realized: the Mie coefficients from the previous 
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section, and the expansion coefficients of the incident field, which have also been 

written explicitly.  All that remains is to understand the vector addition coefficients 

for the vector spherical harmonics. 
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B. Addition Coefficients for the Vector Spherical Harmonics 

 The lhAµνmn and lhBµνmn terms used are those given by Cruzan7, as 

rewritten by Yu-Lin Xu25, defined as being the coefficients for translation from the 

l’th to the h’th coordinate system.  The purpose of the addition coefficients is to 

translate the vector spherical harmonics from one coordinate system to another. 
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This is the addition theorem for the vector spherical harmonics.  To calculate the 

scattered field expansion coefficients, it is necessary to calculate the vector 

addition coefficients.  They are: 
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Where rl,h, θl,h, and φl,h are the coordinates of the l’th sphere in the h’th 

coordinate system, and b(-m,n,µ,ν,p,p-1) is: 
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 In these equations, a(m,n,µ,ν,p) is the Gaunt coefficient, defined using the 

Wigner-3j symbol as  
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The Gaunt coefficients vanish when n+ν+p is odd, due to the triangular 

inequalities for the first symbol.  Also, p cannot be less than the absolute value of 
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m+µ.  If these conditions are not fulfilled, the Gaunt coefficient is zero.  The 

Wigner 3j symbols in this case are calculated using Maple 10, with a additional 

package written by Cooke28, which uses Racah’s formula to do the calculation 

exactly.   

 While these are not as time consuming to calculate when compared to 

other elements of the program, it can be difficult to make sure that they are free 

of error. 
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C. Calculation of the Near Field 

 The calculation uses a matrix formalism, which is to help the bookkeeping 

of the many indices required, although first, it is important to determine the 

dimensionality of the problem.  For every n, there are 2n+1 possible m states.  

While summation of n to infinity gives the exact result, the higher orders of n 

contribute less, and so the summation can be terminated at some finite n.  Of 

course, a problem is knowing when how many modes are necessary, as each n 

requires many more m values, with more complex calculations, leading to much 

longer computation times.  The dimensions of the required tensors initially go 

as∑
=

+
N

n

n
1

12 , where N is the final n value.  Including the different ‘p’ indices gives 

double that. So the final matrix dimensions are 6 for a dipolar calculation, 16 for 

dipolar and quadrupolar, 30 for including up to octapolar, and so on.  The initial 

definitions are: 
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where N in this case is the final n value, and M the final m.  The Z vectors hold 

the Mie coefficients, which do not depend on m, although the coefficients are 

repeated for each possible m value to give the Z vectors the same dimensions as 

X and Y.  The superscript D means that a matrix is actually formed from this 

vector, using the vector elements on the diagonal.  The matrices of the addition 

coefficients are 
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So these matrices and vectors have ∑
=

+
N

n

n
1

12 dimensions, and contain all the 

necessary information:  Mie coefficients, translation coefficients, expansion 

coefficients, and vector spherical harmonics.  We next write a set of matrices and 

vectors that include the two different ‘p’ possibilities, and therefore have 

∑
=

+
N

n

n
1

122  dimensions, which are slightly more succinct due to the initial 

definitions 
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All the remaining work is done using these 5 terms, all with 

∑
=

+
N

n

n
1

122 dimensions.  There is G, a row vector containing the incident 
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expansion coefficients, WE
1, a column vector containing the vector spherical 

harmonics with spherical Bessel functions of the first kind, WE
3, of the same type 

as WE
1, except using spherical Hankel functions of the first kind, and two 

matrices.  The first is S, a diagonal matrix containing all the Mie coefficients, and 

Ωlh, containing all the vector addition coefficients.  As the problem is limited to the 

electric field scattered by the spheres, vectors and matricies concerned with the 

field inside the spheres, as well as terms containing the magnetic field, are 

ignored. 

 The use of these terms becomes clear for the case of a single particle.  As 

it is the only scatterer, the scattered field coefficients are the incident field 

expansion coefficients mediated by the Mie terms, or 

GST =1       (5.15) 

which is a row vector.  The scattered field is  
E

s TW3
11 =E       (5.16) 

which is a 3 dimensional vector, as the row vector 1T acts on the column vector 

WE
3.  In WE

3, however, each element is a 3 dimensional vector, yielding a sum of 

electric field vectors, corresponding to the different n,m, and p possibilities.  In 

other words, this is a matrix representation of  

    ∑ ∑
−=

+=
N

n

n

nm
mn

i
nmn

i
ns mnCamnCb 3231 21
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which are the Mie results for a single sphere.  For two spheres, the situation 

becomes more complicated, and requires the use of the Ωlh matrices.  Using the 

concept of order of scattering, the scattering matrix T of one of the spheres is 

representative of the outgoing wave, and is the sum of the different orders of 

scattering as a result of its own scattering, and the scattering of the other sphere.  

The following picture should make the notion of order of scattering clear, 
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considering first the scattering by sphere 1. 

 

 
 
Figure 5.1:  Ray diagram of the scattering events considered in order of 
scattering method. 
 

There are 3 separate scattering events depicted in the above figure.  The first is 

the scattering of the incident light off the sphere, designated T1.  The second 

scattering event has 2 parts.  First, the light scatters off of sphere 2, called T2, 

some of which impinges on sphere 1, which is re-scattered.  This re-scattering 

process is represented by Ω21S1, where Ω21 is the translation matrix for the basis 

functions of sphere 2 in sphere 1’s coordinate system, and S1 are the Mie 

coefficients for sphere 1.  Multiplying matrices to the right gives the entire 

process the T2Ω21S1.  The third scattering event is a three-part process, starting 

with the light scattered by the first sphere, T1.  Although some of it escapes 

detection, some of it impinges on sphere 2, which is then re-scattered.  Using the 

same idea as the second scattering event, the result is T1Ω12S2.  The third step in 

the third scattering event is that this light is scattered again by sphere 1, yielding 

T1Ω12S2Ω21S1.   

1 2 

T 1 

T 2 

T 2 Ω 21 S 1 

T 1 

T 1 Ω 12 S 2 

T 1  Ω 12 S 2 Ω 21 S 1 

1 2 

T 1 

T 2 
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T 1 

T 1 Ω 12 S 2 

T 1  Ω 12 S 2 Ω 21 S 1 
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 The 0th order of scattering for the two spheres can therefore be written 
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which includes the first two scattering events described.  The 1st order of 

scattering includes the 3rd event, and a fourth event, which is not pictured, but 

can be inferred.  The total sum of the 0th and 1st order of scattering is  
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Designating the number of orders of scattering to be considered as Nos, the 

summation to arbitrary Nos is  
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Although this uses different notation, it is the same concept as the order of 

scattering described by Fuller6,18-20, with all the difficulties in convergence.  The 

hybrid matrix inversion-order of scattering formalism conceived by Xu21,22 makes 

a small change to the summation over the scattering orders.  The summation 
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has a closed form for the case of |A|<1 
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If we allow consideration of an infinite number of orders of scattering, this gives 
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which is a closed form for the summation over the orders of scattering: 
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So while this involves a matrix inversion for each case, it is an inversion of a 

matrix of only dimensions ∑
=

+
N

n

n
1

122 , no matter how many particles are 

considered.  Naturally, more particles will mean more matrix inversions, but they 

are always of the constant size.  This also sidesteps the convergence issues, as 

repeated matrix multiplications are no longer necessary.  An additional 

advantage is that an infinite order of scattering is considered, giving accuracy is 

that regard.   

The T matrix for each particle is then 
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The total electric field is given by the sum of the electric fields scattered by the 

two particles: 
EE
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 Li and Xu23 improved the formalism more, which creates a clearer way to 

do the calculation for 3 particles.  For the sake of brevity, matrices of double the 

size already considered are used, although the matrix inversion remains of the 

same dimension.  The two particle case considered can be written as 

( ) ( ) ( )

( )



















ΩΩ−ΩΩ−
Ω

ΩΩ−
Ω

ΩΩ−=Ψ

Ψ=

212121
2

121212
1212

212121
2121

121212
1

2

2
212

2
1

2

1
1

1
1

1
1

1
1

,,

SS
S

SS
SS

SS
SS

SS
S

GGTT

 (5.25) 

The scattering by a third particle must consider the scattering by light scattered 

from it, the re-scattering of light scattered by particle 1 and 2, and all subsequent 
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orders which is scattered back and forth. The scattering matrix of the third sphere 

is  
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Although the term to be inverted looks like it has twice the dimensions previously, 

it can be expressed as 
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So, while the shorthand of the equation looks like it implies extra dimensions to 

invert, it only collapses the sums of terms.  Once 3T3 is calculated, it is used to 

calculate the three particle scattering for the other two particles 3T1 and 3T2 by 
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 While Li and Xu generalize this approach for any number of particles, 

three is enough to generate the sort of hot spot required for surface enhanced 

Raman experiments.  The rest of this section is devoted to special cases of the 

above theory, which eases computation while being a suitable model for field 

enhancement. 
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D. Normal Incidence 

 For normal incidence, where the light is impinging from the -z axis, for 

example, the expansion coefficients simplify somewhat.  This is a common 

situation for surface enhancement, where the nanoparticles lie on a plane, 

forming a substrate, and the incident light approaches perpendicular to that 

plane.  The expansion coefficients for the incident light simplify for two reasons:  

First, the wavevector k is now defined to be in the + ẑ direction.  Also, no 

component of the electric field will be in the z direction, or Ez=0.  Applying this 

condition first simplifies the expansion coefficients to 
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The second condition, that the light is incident from the + ẑ  direction implies that 

θ in the spherical harmonics is identically zero.  Using the definition29 
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it is clear from this definition that complex conjugation has no effect on the 

associated Legendre polynomial Pm
n(cosθ).  The associated Legendre 

polynomials reparameterized in terms of angle have a generating function of 
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which is valid only for positive m.  Taking the first Pn(x)=cosθ, the possible 

associated Legendre polynomials are  
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Due to the presence of the sin function, P1
1(cosθ)=0.  The associated Legendre 

polynomial for m=0 will not be zero, as it is the Legendre polynomial Pn(cosθ) in 

that case.  However, for any m not equal zero, the P1
n(cosθ)=0, as can be seen 

for the m=1 case obtained by recursion: 
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The sin function in the generating function of the associated Legendre 

polynomials controls the exponent of the sin function in the result.  Unless m=0, a 

sin function will always be present, making the function 0 for θ=0.  The incident 

coefficients are zero for any case except m=-1 and m=1.  Although the azimuthal 

angle is undetermined in this case, it no longer has an effect in the equations, 

since the non-zero elements will always pass an m=0 into the spherical 

harmonic, making the complex exponent unity.  In other words, the required 

spherical harmonics in the incident field expansion coefficients now appear as 
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With the use of the Kronecker delta, this gives the coefficients as: 
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While not quite elegant yet, they are certainly in a much more tractable form with 

a very physical assumption.  An additional aid from this simplification is that there 

is no angular difference in the k for any of the particles, so that the G vector is 

the same for each particle.  Thus, for two particles, the T matrix is 
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Although many zeros will appear in the G vector, it does not necessarily reduce 

the number of terms in the T matrix.  For example, due to the matrices of addition 

coefficients, the term being multiplied by G is a matrix with no elements that are 

necessarily zero.  As such, the resulting T will also have no elements that are 

necessarily zero.  Note that this choice of coordinates makes the situation 

analogous to the single particle case, where m=±1 were the only choices.  It is 

not so simple here, of course, due to the multiple particle scattering.  

 A different choice of axis may elongate the calculation somewhat, but is 

often more useful, as different terms can simplify for a different choice of k.  For a 

different set-up consider the case where the light impinges from the - x̂ , making 

the wavevector point in the + x̂  direction.  This is a reasonable choice, as the 

azimuthal angle will be identically zero, and the zenith angle π/2.  Also, no 

component of the electric field will point in the x̂  direction.  The restriction on the 

azimuthal angle will cause the spherical harmonics to be wholly real, removing 

the need for complex conjugation.   
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Unfortunately, while there are a number of zeros for the Legendre polynomials 

for θ= π/2, it is not really worth pursuing.   
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E. Particles Along a Common Z-Axis 

 For the case of two or more particles along a single axis there is 

substantial improvement in the form of the addition coefficients.  As seen 

previously, the associated Legendre polynomials for the case of θ=0 are zero for 

any m except m=0.  This causes zeros for many terms in the addition 

coefficients.  For the case of two particles, it can therefore mean substantial 

improvements in computational time.  For the coefficients presented here, 
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this implies that µ=m.  These terms can then be rewritten: 
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where 
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 now becomes: 
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In the equation for Amν
mn the a(-m,n,m,ν,p) is  
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and the terms in Bmν
mn are 
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Using the recursion relations, Bruning and Lo12 showed that this is equivalent to: 
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which is a great simplification of Bmν
mn.  Further, the Legendre polynomials are 1 

for all p at θ=0, and have a value of (-1)p at θ=π.  Thus, switching the particle 

index is only a difference in sign.  So for θ=0 the coefficients are: 
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Thus, the only geometrical term of importance is the distance between the 

particles, as expected. 
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F. Field on a Point on the Z-axis 

 For the case considered previously, that of particles along a common axis, 

the addition coefficients for the spherical harmonics are simplified significantly.  

The highest field in many cases will be at the junction between the two particles, 

which is a point on the z-axis.  It is worthwhile simplifying the vector spherical 

harmonics to speed calculation for this point.  The vector spherical harmonics, 

using the Hankel functions are 
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We can assume without loss of generality in this case that one particle is at the 

origin, labelled particle 1, and the second on the positive z axis, labelled particle 

2.  The distance between the sphere surfaces is labelled d, and so the distance 

between particle centers, assuming identical particles, is 2r+d.  The zenith angle 

from particle 1 to the middle of the distance between them is identically zero, 

while the zenith angle for particle 2 to the same point is π.  Once again, the 

azimuthal angle is indeterminate. 

 As seen before, the associated Legendre polynomials are zero for θ=0 

except in the case of m=0.  The vector spherical harmonics, however, have 

additional terms that may affect this.  The argument opens by considering the 

first 2 (scalar) spherical harmonics29 
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Although the m=1 case is zero for θ=(0, π), there is a Ym
n term divided by sin θ 

which will not be zero.  When multiplied by m and divided by sin θ, this second 

type of term is 
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There is a further third type of term, the derivative of the spherical harmonic with 

respect to θ. These functions go as 
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And so, once again, these terms do not drop out so easily.  For n=2 there are 3 

m possibilities  
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Taking the second case, multiplied by m and divided by sin θ 
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And lastly, the differentiated terms are: 
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Lastly, for n=3 there are 4 m possibilities. 
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Considering the other two forms of the spherical harmonics as before: 
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The point of going through these first 9 spherical harmonics is to show that there 

are only results at m=0 and m=1, and therefore, for m=-1.  Higher orders of m 

follow the same trend, as the generating function explicitly has a sinθ term which 

controls the order of sinθ in each associated function.  Since dividing by sinθ and 

differentiation with respect to θ each reduce the order of sinθ by one, no matter 

what n value, the associated Legendre polynomial in the spherical harmonics for 

m greater than 2 will always be zero.   
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G. Asymptotic Expansion for Large Separation 

If the particles are situated far from each other, a simple form of the 

translation coefficients can be derived.  An asymptotic result would not only be 

useful to form approximate results quickly, but is also useful in verifying the 

validity of the numerical results for the translation coefficients.  Since the 

translation coefficients are both critical to the solution of the problem, and also 

require detailed calculation which may be prone to error, some method of 

verification would be highly desirable.  

The spherical Hankel functions, hn
(1)(x) of the first kind, sometimes called 

the spherical Bessel functions of the third kind, can be written as30 
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where k is an integer that is implicitly summed to n, and Γ is the gamma function. 

Since the argument of the gamma function is always a positive integer, this is 

simplified to Γ(n-k+1)=(n-k)!  For arbitrary n, this yields  
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The second term, which is proportional to the inverse of the argument, can be 

simplified by examination of the ratio of factorial terms: 
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And similarly for the third and higher order terms.  Thus, the Hankel function 

goes as 
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For large x, this function can be truncated.  Keeping only the constant term, this 

becomes 
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This asymptotic form is thus appropriate when x>>n2.  As x=kd, when d is the 

centre to centre distance between the spheres, this corresponds to  
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The Hankel functions appears in the translation coefficients, where they are of 

maximum order p=n+ν.   
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The translation coefficients are 
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Putting the asymptotic form in gives: 
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(5.64) 

The exponents of i can be simplified to give: 
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Due to the nature of the a(m,n,-m,ν,p) terms, which are zero if n+ ν +p is an odd 

number, p will uniformly be even or odd, as p= n+ν , n+ν-2,…,| n-ν|. We can pull 

out the (-1)p factor, and represent it as (-1)ν-n which will be positive for n+ν even, 

and negative for n+ν odd, as required.  We also can insert a Legendre 

polynomial, Pp(cosθ), into the sum, as it will be unity for all p for θ=0.  
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And again, cleaning up the exponentials involving i and (-1): 
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The Bmn
mν is slightly easier, and the procedure is clearer starting there.  A 

secondary definition will also make things simpler: 
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The Gaunt coefficient is defined by the linearization  
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The associated Legendre polynomials obey29 
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This yields 
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Examining the definition of the Legendre polynomial for positive m, 29 
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it can be seen that for θ=0 or π, B1, and thus, the Bmn
mν term will be zero for all 

m, as all the Pm
l(1) for m≠0 involve a (1-x)m/2, yielding zero.  Of course, in the 

case of m=0, the Bmn
mν term is also zero.  So for all m, Bmn

mν goes asymptotically 

to zero for the case of large separation.  A similar analysis of Amn
mν gives: 
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In this case, B1 has a simple form, as the Legendre polynomials are unity for 

cosθ=1: 
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The presence of the p(p+1) in the A1 factor causes problems with the 

summation.  However, in the recurrence relations7 for a(m,n,-m,ν,p) there are 2 

relations that can help: 
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Putting the second equation into A1 gives: 
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This can be simplified by using the first recursion relation: 
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Although this is becoming quite cumbersome, the goal of summation over 

magnetic angular momentum is zero is now achieved.  Using the linearization 

equation on first of these three terms gives 
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for the first term.  Note that this will cause a cancellation in the equation for 

Amn
mν.  For the second and third term: 
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The magnetic angular momentum on the second term can be flipped again 
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Finally, these can be expressed as with Kronecker delta in both cases, and the 

resulting expressions simplified. 
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A1 can thus be summarized as 
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This gives an elegant equation for Amn
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It is clear that m must be odd, so this can be re-written as  
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While it is true that Bmn
mν does go asymptotically to zero, it does so rather slowly, 

and it would be useful to obtain a more accurate form.  Retaining the second 

order term in the asymptotic expansion above gives: 
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This gives a starting point of  
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Which can be easily recognized as: 
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As seen above, due to the combination of m and δm,0, the B1 term does not 

contribute, and inserting the above result for A1 yields 
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Which is a result of the same order as Amn
mν, but will differ by a factor of m. 
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H. Rayleigh Regime for Identical Particles 

The Rayleigh regime, sometimes referred to as the static or dipolar 

approximation allows n=1 terms only.  This can be thought of as the first order 

scattering by two coupled particles.  With the other special cases considered 

above, this problem is almost calculable by hand, allowing verification of a 

computer program with a simple case.  A further assumption is identical particles, 

which again increases simplicity.   A schematic of this ideal case is shown below 

(Figure 5.2): 
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Figure 5.2. Schematic of two particles along z axis. 

For the case of particles along the z axis, with light impinging from the x 

direction, and further, linearly polarized so that electric field components are only 

along the z axis (along the particle axis, in other words), the expansion 

coefficients for the incident wave are: 
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In the Rayleigh approximation, n=1. 
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The total 6 terms (m=-1, m=0, and m=1) are: 
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The 6 required spherical harmonics are all low order, and can be found in 

Jackson29 
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which yields 
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For θ=0, the addition coefficients for the vector spherical harmonics are 
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The Gaunt coefficients will be zero when n+ν+p is an odd number, so only p=0 

and p=2 must be considered in the summation. 
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So there are only 3 possibilities, m=-1, m=0, and m=1.  These are explicitly 
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The Gaunt integrals in the Wigner 3j formalism are 
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First evaluate for the two different p cases. 
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And then evaluate for the 3 different m possibilities, giving the six total required 

Gaunt integrals. 

3
1

011

211

3
10

)2,1,1,1,1(

3
2

15
30

3
10

0

211

3
10

)2,1,0,1,0(

3
1

30
1

3
10

011

211

3
10

)2,1,1,1,1(

3
1

011

011

3

1
)0,1,1,1,1(

3
1

3

1

3

1
000

011

3

1
)0,1,0,1,0(

3
1

3
1

011

011

3

1
)0,1,1,1,1(

=








−
=−

==








−
=

==








−
=−

−=








−
−=−

=






−−=







−=

−==








−
−=−

a

mm
a

a

a

a

a

 (5.102) 

To give for the A’s 
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Note that the –m and m give equivalent results.  And for the B’s the results are: 
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The m=1 and m=-1 case give results that differ by a factor of -1. 

 As the spherical Hankel functions have a closed form, it is worthwhile 

simplifying these terms.  They are defined as30 
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For the two different combinations: 
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With the following adjustments to the notation, this gives  
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The matrices can now be built.  The hybrid order of scattering/matrix inversion 

method still gives an improvement in time, as, rather than a 12x12 matrix to be 

inverted, two 6x6 matrices are inverted instead.  also, Along the z-axis, the vector 

addition coefficients transform as13  
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meaning in this case, the A’s are the same, and the B’s change sign.   The 

matrices holding the vector translation coefficients are then: 

























−

−=Ω

























−

−

=Ω

















−
=















−
=

=
















=

11

01

11

11

11

11

11

11

01

11

12

11

01

11

11

11

11

11

11

01

11

21

11

11
12

11

11
21

12

11

01

11
21

00

00

00

00

000

00
00

000

00

00

00

00

;

00

00

00

00

000

00
00

000

00

00

00

00

00

000

00

;

00

000

00

00

00

00

A

A

A

B

B
B

B

A

A

A

A

A

A

B

B
B

B

A

A

A

B

B

B

B

B

B

A

A

A

A

A

 

(5.110) 

The S matrix, which is the same if the particles are identical, is diagonal 
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 So while the Rayleigh case in this formalism is still difficult, it is a far easier 

problem to begin with.  It also provides a valuable opportunity to check later 
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results, providing a starting point for the rather mathematically ornate general 

case. 

 

 In order to test the program, calculation of values for a special case 

through calculation by hand is a valuable tool for determination of mathematical 

or programming errors.  Choosing as an exemplar the case of 30nm silver 

spheres in contact, in the Rayleigh regime is as good a place to start as any 

other.  The scattered field on the surface of an isolated sphere peaks at a 

wavelength of 370 nm.  While slightly off resonance, evaluating numerically at 

377 nm is slightly easier, as kR and 2kR are both round numbers.  Silver has a 

complex index of refraction of 0.188+i1.64 at this point.  The wavenumber and 

Mie coefficients at this wavelength are: 
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Choosing the incident field to lie in the +z with a magnitude of unity, the 

expansion coefficients for the scattered field are: 
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The vector spherical harmonics for particle 1 are: 
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The required Hankel functions are: 
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which for z=kr, give values of  
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and the required spherical harmonics  
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and at θ=0 
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The vector spherical harmonics at z=30nm, which is on the surface of the sphere, 

numerically are  
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 The isolated sphere scattering matrix T is 
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and the electric field is therefore: 
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The majority of the scattered field is in the radial direction.  However, there is a 

small component in the θ direction as well, representing a small amount of 

scattering perpendicular to z.  The actual direction depends on our definition of φ.  

The transformation from spherical to Cartesian coordinates for θ=0 makes this 

explicit: 
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 Although the values of the scattered field are not determined due to the 

axis choice, they are correct up to a phase eiφ.  We are generally interested in the 

magnitude of the field in any case, however.  This is  
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If the incident field direction is switched to the y, the magnitude is 3.84, the 

contribution coming from the φ̂  direction. 

 For two interacting particles, the situation is more complicated, but much 

of the work is already done.  The A and B terms are: 
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As these terms have Hankel functions that are a function of the center to center 

distance, z=1 rather than 0.5, this makes them even easier to calculate. 
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Having Maple do the matrix multiplication and matrix inversion detailed 

previously, the scattering matrices for the two particle system, in column format 

for easier comparison are: 
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Examining these results, the largest contributor will be the m=0, p=2 case, which 

corresponds to the radial mode.  However, if we naively apply the vector 
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spherical harmonics at the corresponding θ=0 and θ=π, the latter giving a -1 in 

the associated Legendre polynomial, this term will cancel completely.  That is 

because the vector spherical harmonics are derived relative to the position of 

their particular sphere, rather than to a fixed coordinate system.  For example, if 

the radial part of the field for particle 1 points in the positive direction in its own 

reference frame (toward + ẑ ) at the desired point, then particle 2’s radial 

component will be pointing in the negative direction in its own reference frame.  

However, the unit vector r̂  in these for particle 2 points in the - ẑ  direction.  So it 

is best to do the field addition in the Cartesian frame. 

 Supressing the arbitrary phase factor to φ=0 gives the spherical to 

Cartesian coordinate matrix as for θ=0 
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while for θ=π it is  

 

































−

−
=

















φ
θ
ˆ

ˆ
ˆ

001

100

010

ˆ

ˆ

ˆ r

z

y

x

   (5.129) 

We can now put the vector spherical harmonics for the two particles into 

Cartesian space.  For the first particle: 
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For the θ=π we first add in the extra negative due to the  
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As the mathematical details were covered before, where in this case the only 

difference is that the scattered field of the two particles must be added, the 

magnitude of the scattered field is: 

38.102 =sE
     (5.132) 

Although this is not significantly larger, remember that due to the interaction 

between the particles, the peak value shifts.  As well, higher order moments for 

particles near each other contribute far more than that of the isolated particle. 
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I. Extinction Cross Sections and Field  Calculations 

 

 

 Extinction cross sections may be obtained by letting the scattered field Es 

interact with the incident field.  This is accomplished by the dot product of the 

incident field expansion coefficients with the scattering matrix T, or  

GTCext =  

Using the methodology described above for a system of two spheres along a 

common z axis, the extinction cross sections for two 30 nm silver spheres is 

presented in Figure 5.3, and the extinction cross sections for 20 nm spheres is 

given in Figure 5.4. 
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Figure 5.3:  Extinction cross section of two interacting 30 nm silver spheres, with 
surface separation of infinity (solid), 2 nm (dotted), 1 nm (dashed), and in contact 
(dot-dash) 
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Figure 5.4:  Extinction cross section of two 20nm particles at a distance of infinity 

(dotted), 8 nm, 4 nm (dashed), 2 nm (dot-dash), and in contact. 

 

For application to surface enhanced spectroscopy, the enhanced field is 

needed to estimate enhancement factors.  These are taken in two ways:  1) The 

enhancement factor of the field is calculated at a point for a variety of 

wavelengths, and 2)  the enhanced field is calculated at a variety of points on a 

grid for a single wavelength.  Both of these calculations have different tradeoffs.  

If the wavelength is varied, all of the addition coefficients for the vector spherical 

harmonics must be recalculated, as the Hankel functions contained therein must 

be recalculated, meaning that at every wavelength to be considered, the matrix 

inversion must be redone.  In both cases, the spherical harmonics themselves 

must be calculated for each individual desired point.  However, in the case of the 

spatial variation, to achieve sufficient resolution, a large number of points must 

be calculated. 
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Considering first variation with the frequency, the same conditions seen in 

Figure 5.4 are used, that of 20 nm spheres, which is presented in Figure 5.5.   

Unlike the extinction cross sections, in which the intensities were reasonably 

insensitive to changes in distance, the field enhancement is strongly dependant 

on particle separation.  In terms of field intensity, the optimal position is for 

particles in contact. 
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Figure 5.5:  Field enhancements for 40nm particles with varying surface 
separation. 

 

Comparing these results to those obtained for a two particle model in 

chapter 5, it is clear that the calculated enhancement of the local field is far 

stronger, and as well, red-shifted further.  New spectra details also arise, such as 

a quadrupolar band, and as well, smaller contributions from higher order 

moments.  While the dipolar model captures illustrates the trend, the full 

calculation using extended Mie theory clearly gives a full description of the full 

interaction. 

For applications in quantum optics, the enhanced damping of a radiating 

dipole is also calculated, as is fully described in Chapter 6.  The damping of an 

oscillating dipole located in the point equidistant from each particle is shown in 

Figure 5.6, along with the field enhancements. 
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Figure 5.6:  Enhancement for two 20 nm silver particles.  In contact, field 
enhancement (solid) and damping enhancement (dotted), at 2 nm surface 
separation, field enhancement (dashed) and damping enhancement (dot-dash) 

 

The formalism described above is first applied in the general case to 

obtain field intensities at points on a grid.  The calculations are up to and 

including 5th order terms for light that is normally incident from the +z direction.  

The particles are placed in the xy plane, so that θ=π/2.  For two 20 nm silver 

particles with surfaces 2 nm apart, the magnitude of the enhanced electric field 

appears as Figure 5.7. 
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Figure 5.7:  Electric field enhancement for 2 20nm silver particles. 
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The field is greatest in between the particles, and on the outside of the particles 

in the direction of the incident field.  It is significantly reduced perpendicular to the 

direction of polarization. 

Arrangements of three particles can be seen in Figure 5.8 and Figure 5.9,  

where in Figure 5.8 they are in a triangular formation so that all particles have a 

surface distance of 2 nm, while in Figure 5.9 they are in a line.  The direction of 

the electric field is the same in both cases. 

62 nm

96 nm

E0

62 nm

96 nm

E0

 

Figure 5.8:  Electric field enhancement for 3 20nm silver particles in a triangular 
formation. 
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Figure 5.9:  Electric field enhancement for 3 20nm silver particles in a straight 
line. 
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The arrangements of three particles, in the first, triangular case, does not differ 

much from that of two particles, except that there are now 3 areas of high 

intensity, at the closest junction between the particles in each case.  For three 

particles, however, there is a significant difference:  The magnitude around the 

central particle is almost an order of magnitude higher than around the outer 

particles. 

 These three particle results show the importance of aggregation and 

particle separation for surface enhanced spectroscopy, and as well, the extended 

Mie results show the need for the calculation of the near field directly, as the 

variations in intensity are not necessarily correlated with the far field extinction. 

 Extended Mie theory for interacting particles is mathematically ornate, and 

the calculation is computationally expensive.  However, the results are not 

dependent on issues such as grid size, a common problem when dealing with 

curved surfaces in a space descritization scheme.  The particles themselves are 

limited to spheres, although of arbitrary size.  The ability to compute spectral 

cross sections as well as scattered, and thus enhanced fields with arbitrary 

precision is a valuable tool for the study of interacting particles, an important 

component of surface enhanced phenomena. 



 

  151  
 

J. Bibliography 
 
 
(1) Goulet, P.; Pieczonka, N.; Aroca, R. Journal of Raman Spectroscopy 

2005, 36, 574-580. 
(2) Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chemical 

Reviews 1999, 99, 2957-2975. 
(3) Binnig, G.; Rohrer, H. Reviews of Modern Physics 1999, 71, S324. 
(4) Pohl, D. W.; Deck, W.; Lanz, M. Applied Physics Letters 1984, 44, 651. 
(5) Novotny, L.; Bian, R. X.; Xie, X. S. Physical Review Letters 1997, 79, 645-

648. 
(6) Fuller, K. A. Applied Optics 1991, 30, 4716. 
(7) Cruzan, O. R. Quarterly of Applied Mathematics 1962, 20, 33. 
(8) Clebsch, R. F. A. Crelle's Journal 1863, 61, 195-251. 
(9) Germogenova, O. A. Izv. Akad. Nauk SSR Ser. Geofiz 1963, XX, 648-653. 
(10) Friedman, B.; Russek, J. Quarterly of Applied Mathematics 1954, 12, 13-

23. 
(11) Stein, S. Quarterly of Applied Mathematics 1961, 19, 15-24. 
(12) Bruning, J. H.; Lo, Y. T. Antenna Laboratory Report, Technical Reports 

1969, 69-5. 
(13) Bruning, J. H.; Lo, Y. T. IEEE Transactions on Antennas and Propagation 

1971, AP-19, 378. 
(14) Bruning, J. H.; Lo, Y. T. IEEE Transactions on Antennas and Propagation 

1971, AP-19, 391. 
(15) Claro, F. Physical Review B 1984, 30, 4989. 
(16) Noguez, C.; Barrera, G. Physical Review B 1998, 57, 302. 
(17) Inoue, M.; Ohtaka, K. Journal of the Physical Society of Japan 1983, 52, 

3853-3864. 
(18) Fuller, K. A.; Kattawar, G. W. Optics Letters 1988, 13, 1063. 
(19) Fuller, K. A.; Kattawar, G. W. Optics Letters 1988, 13, 90. 
(20) Fuller, K. A. Journal of the Optical Society of America A 1994, 11, 3251. 
(21) Xu, H. Physics Letters A 2003, 312, 411-419. 
(22) Xu, H. Journal of the Optical Society of America A 2004, 21, 804. 
(23) Li, Z.; Xu, H. Journal of Quantitative Spectroscopy & Radiative Transfer 

2007, 103, 394–401. 
(24) Gaunt, J. A. Philosophical Transactions of the Royal Society of London 

Series A 1929, 228, 151-196. 
(25) Xu, Y.-L. Journal of Computational Physics 1996, 127, 285-298. 
(26) Xu, Y.-L. Journal of Computational Physics 1998, 139, 137-165. 
(27) Xu, Y.-L. Journal of Computational Physics 1997, 134, 200. 
(28) Cooke, D.; 1.0 ed.; GNU Public Licence: Hamilton, Ontario, 2006. 
(29) Jackson, J. D. Classical Electrodynamics; 3rd ed.; John Wiley and Sons: 

New York, 1999. 
(30) Handbook of Mathematical Functions with Formulas, Graphs, and 

Mathematical Tables.; 9 ed.; Abramowitz, M.; Stegun, I. A., Eds.; Dover 
Publications: New York, 1972. 



 

  152  
 

CHAPTER SIX 
 

QUANTUM OPTICAL MODEL OF SURFACE ENHANCED SPECTROSCOPY 
 

A. Unified Surface Enhanced Spectroscopy Through Quantum Optics 

 

Most models for SEF focus on the plasmonics, and treat the molecule as a 

classical dipole.  While the plasmonics models increasingly give more realistic 

results for the plasmon observed in the system, the treatment of the molecule, 

and thus the molecule-metal system, is not always as well developed.  In their 

2005 paper, Johansson, Xu, and Kall1 present a unified model of enhanced 

Raman scattering and enhanced fluorescence within the context of quantum 

optics.  This model is easily modified to include the field enhancement (M) and 

decay enhancement (Md), which may be calculated through plasmonics 

methodology.   

This model assumes only 2 electronic states, with the ground, |g>, and 

excited, |e>, states having energies ħωg and ħωe respectively.  Also, a dipole 

moment is defined, where p0=ldipe, where e is the elementary charge, and ldip the 

dipole length.  The energies and the dipole moment are all that are required to 

characterize the electronic states in this model.  Finally, there is assumed to be a 

single vibrational mode of energy ħωvib, which has Nvib states in each of the 

electronic states.  Thus there is a total of N=2 Nvib states, |g,n=1..Nvib> and 

|e,m=1..Nvib>.  The equation of motion of the NxN density matrix ρ is: 

[ ] ρρρρ
phtrmol LLHH

dt

d
i +++= ,'

1
h

  (6.1) 

The Hamiltonian is made up of 2 terms, the molecular (Hmol) and the molecule-

field interaction (H’).  Ltrρ is a damping term in the density matrix due to 

transitions spontaneous emission of photons2, but also includes non-radiative 

processes and vibrational damping. Lphρ represents damping due to phase 

relaxation.  This parameter allows broadening of the bands, which may be 

experimentally due to either other vibrational states or temperature broadening. 
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The diagonal molecular Hamiltonian is a sum of electronic and vibrational 

energies: 
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The interaction Hamiltonian, H’, is off diagonal.   
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Where p0 is the dipole moment, E0 the incident electric field, and M(ωL) the field 

enhancement at the frequency of the laser line.  f(n,m) is the Frank-Condon 

factor, defined as: 
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Where α is the dimensionless displacement between states. 

The Ltrρ and Lphρ terms are evaluated using an NxN operator σij, in which all 

matrix elements are zero except the ij element.  The Ltrρ term is then2: 

[ ]∑ −+
Γ

−=
jk

jkkjkjjkkjjk
kj

tr

i
L ρσσσρσρσσρ 2

2
  (6.5) 

Γkj is the damping rate due to spontaneous transitions from state j to state k.   

This is calculated using Fermi’s golden rule: 

( ) 22

03
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32

),(
3

mnfp
c

M d
kj επ

ωω
h

=Γ    (6.6) 

where ω is the frequency of the transition, ω=ωge + (m-n)ωvib, defining ωge= ωe- 

ωg, and Md the enhancement of the decay rate due to interaction between the 

molecule and the metal particle.  It should be noted that Ltrρ as written does not 

include any temperature effects, such as thermal excitation, and is therefore a 

zero temperature case. 

Lastly, Lphρ is: 
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∈

+−=
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This problem is made more amenable by representing the density matrix as a 

vector of  N2 dimensions, such as  

( )NNN ρρρρρρρ ,..,,,...,, 221212111=r
   (6.8) 

Equation 6.1, once solved, can be expressed as: 

ρρ rt
r

h L
dt

d
i =      (6.9) 

where L
t

 is an N2x N2 tensor that couples the time evolution of a matrix element 

with all the matrix elements at time t.  The time independent form of L
t

 is: 

titi eLeL Ω−Ω=
tt tt

'      (6.10) 

where Ω
t

is a diagonal tensor with elements referring to populations or intraband 

coherences are zero.  Upwards coherences have a value of ΩL, while downwards 

coherences are - ΩL.     

The differential cross section is given by 
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where: 

2

2
00Ec

Iin

ε=      (6.12) 

G0 and ρ0 represent a stationary Green’s tensor and initial density matrix, 

respectively.  The initial density matrix can be obtained by solving the system of 

N equations given by: 

( ) 0' 0 =Ω− ρ
tt

L      (6.13) 

It is also required that the trace of the initial density matrix is unity. 

The Green’s tensor is defined as 

∑=
rs

rsrsjkjk G )0(, ρρ     (6.14) 

While each matrix element is given by:  

( ) ( )[ ] 1

0 'ˆˆ1̂ˆ −
−Ω++= LiiG δωω   (6.15) 

The combination of plasmonics calculations to model the enhancing particles, 

and rigorous molecular treatment allow for a comprehensive model.  The 
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quantum optic model of Kall and colleagues1,3 gives a unified treatment of a 

model molecule with two electronic states, and an arbitrary number of vibrational 

levels.  Although more complete methods are possible, (e.g., by adding different 

vibrational bands), this method includes the most important elements, and allows 

coupling to calculated plasmonic results. 

 As this treatment differs from the standard resonance fluorescence 

treatments in standard quantum optics2,4,5, it is worthwhile demonstrating the 

solution for a system with 2 vibrational levels, or 4 states in all.  The molecular 

Hamiltonian is: 
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Setting the ground state energy to zero, and considering the basis kets to be 
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gives for the molecular Hamiltonian a form of: 
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The interaction Hamiltonian is more difficult, but still tractable. 
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The third term in the Hamiltonian uses operators σab, which in this case is 

a 4x4 matrix with all elements zero except for ab.  A useful relation for these 

operators is  

bcadcdab δσσσ =     (6.21) 

This allows for reasonably fast evaluation of these operators without writing out 

the matricies.  This equation controls the spontaneous transitions from state j to 

state k, due to vibrational damping and radiative damping.  Due to the use of the 

zero temperature limit, upwards transitions are not allowed.  Thus, j>k in the 

summations.   Writing these summations explicitly gives: 
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The first two terms are simplified using the expression above 
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While this calculation yields a 4x4 matrix with all non-zero elements, and cannot 

nothing useful can be extracted from the full form, it is worthwhile examining what 

each term means.  The second summand is the k=1, j=3 term which controls the 

spontaneous transition from the excited electronic state to the ground electronic 

state.   
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The first two terms cause a loss of population of state 3, as well as a loss of 

coherence between state 3 and all other states.  The third term, on the other 

hand, increases the population of state 1, without an increase any coherence.  It 

is worthwhile pointing out that the population gained by state 1 is the same as the 

loss of population of state 3.   

 The last term introduces phenomenological dephasing.  These are simpler 

to calculate, involving only one operator and one density matrix element.  This 

term is 
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So while this term is a decay in the coherence between the electronic states, it 

does not effect the populations directly. 

In order to calculate the energy transfer to the spheres by the molecule, or 

what can be considered the enhancement in the damping, the electromagnetic 

field impinging on the spheres is given by an oscillating dipole, rather than a 

plane wave.  We will consider a dipole on the z axis, for the case of 2 spheres 

also on the z axis.  For an oscillating dipole of the form
tiepz ω−

0ˆ the oscillating 

dipole wave expansion coefficients are1 
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    (6.27)  

which puts the expansion coefficient into the same notation as the extended Mie 

treatment, although the coupling coefficient c requires some arithmetic.  The c 

term is given as 
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Although the notation is different in this work, the A
~

 terms are in fact the 

translation coefficients for the vector spherical harmonics, as the authors define 

them as  
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where C in this case is the Gaunt coefficient.  As before, this term will be zero for 

all m≠µ for θ=0,π, due to the associated Legendre polynomial in the spherical 

harmonic term.  Expanding out the summations over j gives 
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both of which require m=0.  The remaining two terms for m=0 are  
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For a result of  
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The Gaunt integrals are slightly differently defined, and as they appear in 

differently than before, they are worth defining. 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( )( )










−






+++=

ΩΩΩΩ−=ΩΩΩΩ= ∫∫
−

Mmm

LllLlllLl
C

YYYdYYYdC

LM
mlml

m
l

M
L

m
l

mm
l

M
L

m
l

LM
mlml

'

'

000

'

4
1'21212

1

',',,

'
'

'
'

*

',',,

π

(6.34) 

So using these expansion coefficients, the field is re-calculated at the 

point where the molecule is located, and the Poynting vector is calculated using 

the square of the scattered field.  As a free oscillating dipole emits power as 
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where PMie is the spatial integral of the Poynting vector.  Because the constants 

in front of the expansion coefficient are multiplicative factors for the vector 

spherical harmonics, we can clean up some of the constants by considering the 

square of the constants in the expansion coefficients 
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where the expansion coefficients are now c2,1,0,p,n,m.  This implies that to calculate 

the damping, the same formalism as usual is used as usual, except that the 

damping expansion coefficients only act on the m=0 component of the results, 

which contribute to the radial part of the vector spherical harmonics. 
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B. Quantum Optical Results from Coupled Particles 

To obtain spectra, equation 6.11 is used, with the elements of the Green’s 

tensor obtained from equation 6.15 and 6.9, and the initial density matrix 

elements from equation 6.13.   Enhanced spectra are calculated using the results 

from CDE, as shown in the Chapter 4.  The results are seen in figure 6.1. 
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Figure 6.1.  Scattering and Fluorescence cross sections for d=0, 1, 2, and 4 nm.  
The parameters used are: ħωL=2.45 eV, : ħωge=2.35 eV, ħωvib=0.16 eV, 
γph=1x1014 Hz, α=0.5, and E0=1x104 N/C. 
 

There are 4 elements that appear in the spectra.  First, there is a Rayleigh 

scattered band at the laser line, in this case 2.45 eV, and two smaller bands 

shifted by 0.16eV.  The small band at 2.29 eV represents a Stokes process in 

Raman scattering, while the band at 2.61 is from an anti-Stokes process.  Finally, 

there is a broad fluorescence centred at the ground-electronic band gap, at 2.35 

eV.  All of these bands are expected, as these are the parameters that were put 

into the program.  Interestingly, there is a shoulder to the fluorescence, centered 
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at 2.51 eV.    This represents fluorescence to the upper vibrational state in the 

ground electronic state.  Tabulated values of these intensities are given in table 

6.1. 

d Fluorescence Rayleigh Stokes 

Anti-

Stokes 

0 1.25 9.880 1.260 0.420 

1 14.20 6.040 0.712 0.192 

2 20.20 2.790 0.395 0.111 

4 16.10 0.609 0.079 0.009 

Table 6.1: Differential cross section results.  Intensities are in units of 10-18 
cm2/(meV sr). 
 

The enhanced Raman scattering and fluorescence at close particle-

molecule distances show an almost complete quenching of the fluorescence, 

with a strong Raman enhancement.  The fluorescence reaches a maximum 

around d=2 nm, while at intermediate distances the quenching effect is reduced, 

resulting in fairly strong fluorescence with moderate Raman.  Past the optimal 

distance, both the fluorescence and Raman enhancement decay. 

This quantum optical approach gives the proper treatment to the molecule 

by treating it as a quantum object.  Serious drawbacks at this time include the 

assumption that there is only one vibrational mode, and that eventually, electron 

transfer effects from the particle to the molecule need to be included.  Even this 

initial work, however, shows results that follow the same trend as experiment. 
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CHAPTER SEVEN 

SURFACE ENHANCED INFRARED ABSORPTION (SEIRA)  

A.  Introduction to Surface Enhanced Infrared Absorption 

Although the majority of this dissertation is focused on plasmonics applied 

to the visible region of the spectrum, the same models can be applied to obtain 

results in the infrared region.  The approximate models described previously 

apply better in the infrared, due to the long wavelength.  This chapter is mostly 

from Aroca, R. F.; Ross, D. J.; Domingo, C. Applied Spectroscopy 2004, 58, 

324A-338A. 1, and used with permission, although that paper contains an 

extensive discussion of applications that does not appear here. 

The discovery of surface-enhanced Raman scattering (SERS)2-4 opened 

the field of surface-enhanced spectroscopy, including linear and non-linear 

optical phenomena5,6. In particular, the realization of surface-enhanced infrared 

absorption (SEIRA)7 permitted one to speak of a unified field of surface-

enhanced vibrational spectroscopy (SEVS), supported by the enhanced Raman 

and infrared techniques.  Since the enhancement factor in the absorption seems 

modest when compared with those of SERS, the SEIRA effect has not received 

the attention of SERS.   

The initial sporadic activity on the subject of SEIRA was largely 

concentrated in Japan and a look at the early work can be found in Osawa’s 

review8. In the 90’s SEIRA received its share of attention, and there were several 

reports for both the practical and theoretical aspects of the phenomena9-12.  

Since the bulk of SEIRA work is recent, there is still value in demonstrating the 

effect itself.  In particular, it is helpful to examine the SEIRA spectra that can be 

obtained for the same system on different enhancing surfaces.  The effect has  

been observed on island films of the coinage metals and a few other surfaces, 

most notably, Pt12, Sn13, Pd and Ru14,15.  Recently, infrared enhanced absorption 

was demonstrated for anthracene coating polar dielectric nanoparticles of silicon 

carbide and aluminum oxide with 100 fold enhancement16.  In the latter 

experiments, SEIRA is explained as being the result of the enhanced optical 

fields at the surface of the particles when illuminated at the surface plasmon 
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(phonon) resonance frequencies.  It is pointed out that this phonon resonance 

effect is analogous to plasmon resonance that is the basis for surface enhanced 

Raman scattering and SEIRA in metals.  

The role of surface plasmons has been well documented and there is 

abundant literature on the subject. A review of the plasmon literature directly 

related to SEIRA and SERS is available17.  Recently, the first study was reported 

on metal films with architectures designed to produce surface plasmons in the 

infrared region, permitting a comparison of SEIRA results for these films and 

those where plasmons are not detected18.  The authors observed SEIRA in the 

region of a surface plasmon using engineered surfaces. When these results were 

compared to SEIRA on evaporated metal films, equivalent results were obtained. 

 The experiments have always been tailored to attain enhanced optical 

fields and thereby the explanation is given in terms of electromagnetic (EM) 

models. In his broad review on SEIRA, Osawa8 discusses these models, which 

can quantitatively explain both the effect, and its applications to the study of 

electrochemical reactions. Following, and by analogy with, the interpretation 

accepted for SERS, it has been suggested that electromagnetic and chemical 

contributions are responsible for the observed infrared enhancement.  One 

cannot stretch this analogy too far, because the hypothetical chemical 

contributions to SERS includes additional multiplicative effects.  These effects 

include charge transfer, which leads to resonance Raman scattering19,20.   

Computations of the EM enhancement using effective medium theories 

have been reviewed21 and there is no question that there is a key contribution 

from enhanced local fields to SEIRA.  There is an increase in the rate of 

absorption per unit volume that is proportional to the energy density of the field at 

the appropriate frequency. The enhanced local field augments this energy 

density at the surface of particles where the adsorbed molecule resides.  This 

local field varies according to several factors, size, shape and the dielectric 

function, among others22,23. The enhancement varies from point to point and the 

average value is expected to match the observations.  
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There are further consequences for the observed infrared spectrum from 

molecules adsorbed at these local fields.  The local field may be highly polarized. 

Moscovits5 has illustrated the implications of having a perpendicular polarized 

field, or a tangentially polarized field, in determining the surface selection rules. 

The latter is discussed, separately, below, using a physisorbed molecule as a 

study case. In addition, the local field changes the dipole moment of the 

adsorbed molecule (that one can call chemical effect) in a fashion similar to what 

is seen in electrochemistry24, producing a variation in the dipole moment 

derivatives and hence in the infrared intensity.   

 Griffiths and coworkers12 reported a peculiar property in the symmetry of 

the SEIRA band shape of the CO on platinum. The band asymmetry has been 

studied in Griffiths’ group, and has been observed in both Ag and Au island films. 

The effect can be simulated using the dielectric function of the metal and the 

substrate. However, the “Fano band” shape has attracted attention due to a 

possible link of the observations with the dynamic interaction of the adsorbate 

vibrations with electron-hole pair excitations25.  Expressions for an isolated 

vibrational mode, for a molecule adsorbed on a metallic surface in the presence 

of electron-hole damping producing asymmetric line shape, have been derived 

by Landgreth26.    

The enhancement factors found in SEIRA can range up to 103, but are 

usually found to be in the 10 – 100 region at best.  Compared to the very large 

enhancements observed in SERS up to 1010, this effect is not nearly as dramatic, 

and has attracted less interest.  However, even this small enhancement can be 

used to detect monolayers of films10.  Although SEIRA does not yield the 

enhancement necessary for single-molecule detection as SERS does27,28, SEIRA 

is a viable means of enhancing the infrared signal from adsorbed molecules on a 

variety of metals, semimetals, semiconductors and polar dielectric 

nanostructures. 

 The electromagnetic enhancement on rough metal surfaces has been 

extensively discussed for radiation in both the visible and near infrared regions of 

the spectrum29, while there has been less work done for middle and far infrared 
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regions.  Computational approaches for SERS electromagnetic enhancement 

(EM)30,31 are often applicable to SEIRA, and these can be roughly divided into 

three types:  isolated particle models, finite numbers of particle models, and 

surface and film models.   

A simple model for a rough surface is that of a collection of non-interacting 

spheroids (See reviews and references therein)5,32,33.  For a spheroidal particle, 

the induced field is uniform, but not necessarily parallel to an arbitrarily applied 

field, excepting the case of a sphere.  The sense of depolarization is that the field 

inside the particle is less than the applied field, and the term is applied to the 

induced field, which points in the direction opposite the applied field.  In surface 

enhanced spectroscopy, however, the internal field is greater than the applied 

field.  Previous research has attempted to explain the SEIRA effect in terms of 

surface plasmons in the infrared spectral region18.  The study used tuned 

surfaces to give large islands, which have a plasmon resonance in the near to 

middle infrared.  Calculations of field enhancement using the modified long 

wavelength approximation gave good agreement with observed plasmons on a 

variety of substrates18.  

A successful electromagnetic study of enhancement factors in the 

ultraviolet, visible and near infrared, for a variety of materials, showed very weak 

field enhancement in the near infrared compared to the visible34.   This technique 

can be extended to the full infrared region, although the result should be similar 

to the static case due to the long wavelengths.   We have adapted this method to 

calculate the field enhancement for silver and tin in the fingerprint region of the 

infrared and the results are shown in Figure 7.1.  The model consists of 

spheroids embedded in a medium of unity dielectric constant, with lengths of 90 

and 30 nm for major and minor axes respectively.  The dielectric functions of the 

metals are taken from the Handbook of Optical Constants35.  These values for Ag 

and Sn are plotted in Figure 7.2. 
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Figure 7.1. Enhancement factor of the electromagnetic field for spheroids in 
vacuum, with lengths of 90 and 30 nm for major and minor axes respectively. 
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Figure 7.2.  Real and Imaginary parts of the dielectric function for Silver and Tin.  

Recently, an experimental study of the enhanced infrared absorption of 

anthracene on dielectric particles, namely SiC and Al2O3, reports enhancements 

on the order of one hundredfold16.  The author argues that this enhancement can 

be explained on the basis of the surface field enhancements due to phonon 

resonance.  The field enhancements on the surface for these systems can also 
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be calculated.  Figure 4.3 shows the enhancement factor for SiC averaged over 

the surface of a particle with the same computational parameters as above.  The 

sharpness of the resonance agrees with the argument of phonon contributions, 

as phonons, compared to plasmons, have much less damping36.  
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7.3. Enhancement factor for SiC averaged over the surface of a particle with the 
same computational parameters as those in Figure 7.1 
 

Although this model is very useful for giving a prediction of enhancement 

factors, it neglects the inhomogeneous nature of a film or colloids, and as well 

does not account for any chemical contributions to the enhancement.  A full 

discussion of the problems in any electromagnetic calculation in surface 

enhanced vibrational spectroscopy can be found in the review by Moskovits5. 

A more advanced model than that of the isolated particle is a finite number 

of particles interacting in a well-defined way. Due to the complexity of these 

calculations, however, their use has not been popular for SERS enhancement 

calculations, and has not been applied to SEIRA. 
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B. Effective Medium Theory  

The electromagnetic SEIRA enhancement may be calculated using 

effective medium theories (EMT), which uses the effective optical property of a 

heterogeneous material.  The substrates used in SEIRA are usually metal island 

films, or granular materials (such as semi-metals or semiconductors).  Effective 

medium theory is a formalism used to model these discontinuous surfaces so 

that they may be characterized by a set of effective electrical properties, such as 

conductivity or dielectric function9,10,21,37.  In the case of SEIRA the effective 

property represents an average for the metal films, the substrate and the organic 

coat.  Finding the dielectric function for the surface enhanced sample involves 

finding the effective optical properties of the mixture of these components. The 

spatial average of the dielectric function of the sample comprised of substrate, 

metal islands, and analyte is achieved using one of effective medium formalism38-

42.  A general review, including electrical properties, has been written by 

Bergman and Stroud43. 

Two of the most used formalisms for effective medium calculations are the 

Maxwell-Garnet and the Bruggeman methods.  The general form of the Maxwell-

Garnet model can be given as40: 

3 2

3

i i
i

h
i i

i

f

f

α
ε ε

α

+
=

−

∑

∑
 

Where α  is the polarizability of the inclusions, and i is the index over different 

particles.  This allows for the distribution of particle shapes and sizes to be 

included in the calculation, as opposed to simple spheres.  ε  is the effective 

dielectric function, and ε h  is the dielectric function of the host material, in which 

the particles are embedded, while f represents the volume fraction of the 

inclusions. 

 The Bruggeman model is a self-consistent theory which includes a greater 

amount of interaction between inclusions44.  The self-consistency enters through 

the use of the Bruggeman condition, hε ε→ , which requires that the solution be 
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a dielectric function of a host that has the same optical properties as the effective 

medium. This formalism can be expressed in general as: 

3(1 )

3(1 ) 2h

f f

f f

αε ε
α
′− +=
′− −  

where α ' is the polarizability of the inclusions with the “Bruggeman” condition 

applied. 

There are several reports where EMT’s have been used to model SEIRA 

experiments10,12,37.  Osawa8 models island films as a set of ellipsoids of rotation, 

where the symmetry axis is normal to the substrate. In the present calculations, 

the polarizability of a coated ellipsoid is used, with depolarisation factors derived 

by Stoner45.  Since the inhomogeneities in the layer are much smaller than the 

wavelength of the incident light, it is assumed the mixed film is a continuous 

layer, with parallel sides, so Fresnel’s equations may be used to calculate the 

reflectance and transmittance46.  In general, discontinuous metal films consist of 

islands, which may be modeled as ellipsoids of revolution or spheroids of uniform 

shape and size41.  There are 2 different types of ellipsoids of revolution: oblate, 

where the 2 larger axes are equal, and prolate, where the 2 smaller axes are 

equal.  Normann and coworkers40 claim that prolate spheroids with the rotation 

axis parallel to the plane provide the best description of electron micrographs as 

well as the best fit between measured and computed spectra. 

The dielectric function, denoted mε ,for the bulk metals, was taken from the 

Handbook of Optical Constants of Solids35. Islands have a major axis of length a, 

minor axis b, and an aspect ratio defined as b/a=η .  A geometry  for the metal 

islands can be found by fitting computed UV-Visible plasmon spectra to 

measured data in the same region. The characteristic plasmon resonances for 

metals in this region lead to strong absorption bands for most noble metals, and 

these spectral features are strongly dependent on the shape and size of the 

metal particles.  

Additional considerations of the inhomogeniety of the size and shape of 

the particles can be taken into account by using a distribution.  Since real films 

are not made up of surfaces with particles of only one size and aspect ratio, a 
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distribution of the axis of particles which make up a film makes a better model for 

the surface40.  It has been found that a log-normal distribution provides the best 

fit for electron microscopy data47.  The log-normal distribution is given by: 

 ( ) ( ) ( )

2

1/ 2

ln
1 1

( ) exp
2 ln2 ln

s

s
LN s

ss

x

x
f x

σπ σ

   
   
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  
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Where sσ is the standard deviation of the length of the minor axis, sx the length of 

the minor axis, and sx the average length of the minor axis.  In general, a larger 

deviation will result in a broader plasmon, since contributions from many different 

shapes will form the spectra.  The use of a distribution over aspect ratios in this 

way provides a better fit to experimental data, although does not change the 

physical interpretation. 

The introduction of the organic layer to the metal surface can be 

represented in two ways.  The first is to assume that the molecule forms a thin 

layer uniformly coating the surface. The net dipole moment p may be given 

by46,48: 

locVEp α=            

where α  is the polarizability, V is the volume of the inclusion, and Eloc is the local 

field, made up of the incident field and the enhanced field from the particle.  For a 

coated spheroid with one axis parallel to the incident electric field, the 

polarizability is given by 48,49.  

( )( 1 (1 1 )) ( )( (1 2 ) 2 )1

2 ( 2 (1 2 ))( 1 (1 1 )) ( )( ) 2 (1 2 )
d h m i d i m d d i h i

i d i h i m i d i m d d h i i

L L Q L e L

L L L L Q L L

ε ε ε ε ε ε εα
ε ε ε ε ε ε ε ε

− + − + − − +=
+ − + − + − − −∑  

Where mε is the dielectric function of the metal, dε the dielectric function of the 

organic layer, hε the dielectric function of the host medium. Q is the volume ratio 

of the ellipsoid, defined by
Vcoat

Vcore
Q = , i is the index over the axes of the inclusion, 
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and L1i and L2i are the geometrical factors corresponding to the core ellipsoid 

and the coated ellipsoid, respectively. 

Basic to the definition of ellipsoids is the geometrical factor. The 

geometrical factor is a measure of the curvature perpendicular to a specific axis 

of the ellipsoid, and has a value 0<L<1.   The geometrical factors for the major 

axis of an oblate are41: 
1/ 22 2

1
1 2 2

( ) ( ) 1
tan ( ) , ( )

2 2 2

g e g e e
L g e g e

e e

π −  − = − − =           
 

and for the major axis of a prolate: 

2

1 2

1 1 1
( 1 ln )

2 1

e e
L

e e e

− += − +
−

         

where e is the eccentricity of the spheroid. 

 The second method of introducing organic molecules to the metal surface 

is to model the inclusions directly embedded in the organic matrix.  This model is 

better suited to thicker layers of organic, since a coating around a particle poorly 

describes this case.  In this model the polarizability is given by:  

∑ ε−ε+ε
ε−ε=α

i dmid

dm

)(L2

1
        

with the same notation as above, excepting that only one geometrical factor is 

needed. 

  For the Bruggeman EMT, the Bruggeman condition is also applied to 

obtain α ′ 8.  The reaction field equations for both the Maxwell-Garnet and the 

Bruggeman theory with coated ellipsoid polarizability as outlined above for 

application to SEIRA calculations.   

 The Bruggeman EMT tends to give higher enhancements, and has often 

been used to explain some of the larger experimentally observed enhancements.  

This is due to the higher degree of interaction involved in Bruggeman EMT as 

compared to Maxwell-Garnet, although Maxwell-Garnet seems to give results 

that are more in-line with isolated particle results and most experiments.  

Bruggeman EMT has been used to verify some experimental results,  however, 
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these experiments also used molecules which chemisorbed, and so some of the 

observed enhancement may be due to the chemisorption of the molecule onto 

the surface42. 

 Effective medium theory is popular for SEIRA as enhancement factors can 

be calculated without any difficulties regarding the nature of the enhancement.  

Although useful, effective medium theory does not give any insight as to the 

mechanism of the phenomenon.   As an example of effective medium 

calculations in use, Figure 7.4 shows the Maxwell-Garnet calculation for a 

collection of prolate ellipsoids, with a major axis of 90 nm and a minor axis of 30 

nm, and uniformly coated with a 1 nm thick layer of the analyte.   The analyte in 

these model calculations is 3,4,9,10-perylene-tetracarboxylic-dianhydride, or 

PTCDA, a well-known organic dye50, presented fully in appendix B. The dielectric 

function for the organic is taken from the absorption by means of a Lorentz model 

using the 1300 cm-1 band of PTCDA, and applied as a constant across the whole 

range of the calculation.  This gives the effect of the metal.  The result is very 

similar to those of the field calculations from a single particle, increasing towards 

the visible range of the spectrum, but the enhancement for tin is slightly higher 

than for silver in this case.  
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Figure 7. 4. Maxwell-Garnet computation for a collection of prolate ellipsoids, with 
a major axis of 90 nm and a minor axis of 30 nm, coated with a 1 nm thick layer 
of PTCDA. 
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C. SEIRA of PTCDA 

As a study case to illustrate the application of the selection rules in the 

spectral interpretation of the FTIR transmission, reflection-absorption infrared 

spectroscopy (RAIRS) and SEIRA, we have selected the 3,4,9,10-perylene-

tetracarboxylic-dianhydride (PTCDA) dye, a molecule with 38 atoms (C24H8O6), 

108 vibrational degrees of freedom and 46 infrared active fundamental 

vibrations51 distributed in 10 b3u(x) + 18 b2u(y) + 18 b1u(z) symmetry species.  The 

molecule is a flat rectangle of 14.2 Å for the long axis (z) and 9.2 Å on the short 

axis (y) as shown in Figure 7.5.   
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Z, B1u
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X, B3u
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Figure 7.5: Planar, D2h PTCDA molecule. 

Since the molecule has a centre of symmetry (D2h group), the mutual 

exclusion rule applies.  RAIRS is an infrared technique that takes advantage of 

the large E0 component at the reflecting surface.  In the present study case the 

samples for RAIRS were prepared by evaporating first 100 nm of Ag onto a 

Corning 7059 glass slide, held at 200 oC under high vacuum. Fifty nanometers of 

perylene tetracarboxylic anhydride (PTCDA) were then evaporated onto this 

smooth silver surface52. The RAIRS spectra were obtained by using a Spectra-

Tech variable angle reflectance accessory set such that the incident beam 

impacted the surface at 800 from the normal.  

 The reference is the transmission spectrum of the solid dispersed in a KBr 

pellet that is equivalent to a random distribution of the PTCDA molecules, i.e. a 
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random molecular orientation. To help the vibrational analysis a calculation of the 

vibrational frequencies and intensities is carried out.  To illustrate the agreement 

between the experiment and DFT computations, the transmission FTIR of a 

PTCDA pellet and the B3LYP/6-31g(d) results obtained using Gaussian 9853, 

where a scaling factor of 0.961454 was used, are shown in Figure 7.6.  It can be 

seen that there is a good agreement between the calculated and observed 

vibrational intensities. The latter is in spite of the condensed matter effects on the 

observed infrared spectra, and that the computations are performed within the 

harmonic approximation. The spectrum of the KBr pellet can be now compared 

with the RAIRS spectrum of a 50 nm PTCDA film deposited onto smooth 

reflecting silver mirror. The RAIRS results are shown in Figure 7.7, where the 

calculated vibrational intensities for the b3u species are also included to facilitate 

the assignment.  According to the surface selection rules, only the vibrational 

modes having nonzero dipole moment derivative components perpendicular to 

the surface should be active in RAIRS. Hence, from the RAIRS spectrum of the 

PTCDA molecule it can be extracted that it is preferentially oriented with its x-axis 

(out-of-molecular plane) perpendicular to the metal surface, a flat-on molecular 

orientation. Similar results were obtained for PTCDA films of 20 nm mass 

thickness52. The fact that the in-plane vibrations are still seen, is an indication 

that in this relatively thick film (50 nm mass thickness) there is a certain degree of 

randomness.   
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Figure 7.6:  DFT B3LYP/6-31g(d) computation results, and the transmission FTIR 
spectrum of  PTCDA in a KBr pellet. 
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Figure 7.7: RAIRS spectrum of a 50 nm PTCDA film deposited onto 
smooth reflecting silver mirror and calculated vibrational intensities for the b3u 
species. 

 
The experimental conditions for the deposition of the SEIRA metal surface 

are the same as for the RAIRS experiment, except, of course, for the mass 

thickness.  The spectroscopic results for a 50 nm mass thickness PTCDA film 
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deposited on silver islands and on a KBr crystal are shown in Figure 7.8. For 

comparison, the spectrum of the KBr pellet is included as a reference.  If one 

assumes the same molecular orientation in the PTCDA films deposited onto 

smooth silver film and KBr crystal, the transmission spectrum of the film on KBr, 

where the electric field is polarized parallel to the surface, should give a strong 

absorption for the in-plane mode and a weak signal for the out-of-plane modes 

(b3u).  Since the latter is observed (Figure 7.8), the transmission spectrum of the 

PTCDA film on the KBr crystal is in agreement with the RAIRS results pointing to 

a preferential flat-on molecular orientation in the evaporated films.  The SEIRA 

spectrum shown in Figure 7.8 is strikingly different from the RAIRS spectrum and 

clearly does not show the same selection rules.  Since in the infrared spectral 

region, one would also expect that the local optical field on the surface of the 

silver island film is perpendicular to the surface (as in RAIRS), the simplest 

explanation would be to assume that the PTCDA molecules are not oriented flat-

on the metal island.  Instead, there is a random distribution of orientations and 

the vibrational intensities are much closer to that of the free molecule (or KBr 

spectrum).   
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Figure 7.8. Transmission spectra. PTCDA pellet, SEIRA spectrum, and 50 nm 
film on KBr crystal. 
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Figure 7.9. SEIRA spectrum of the 10 nm PTCDA film on 15 nm silver island film. 
RAIRS spectrum of the 10 nm PTCDA film on smooth silver mirror, and  
transmission FTIR spectrum of the 10 nm PTCDA film on KBr crystal. 
 

Since the films used in the previous experiments were relatively “thick”, we 

repeat the experiments using a PTCDA film of 10 nm mass thickness.  The 

transmission spectrum of the neat PTCDA film on the KBr crystal and the SEIRA 

spectrum of the 10 nm PTCDA film on 15 nm silver island film were recorded 

under identical experimental conditions using the Bomem DA3 vacuum bench 

instrument. The RAIRS spectrum of the 10 nm PTCDA film on smooth silver 

mirror was recorded in the Bruker instrument with p-polarized light. The results 

are shown in Figure 7.9.  It can be seen that the selection rules observed in the 

RAIRS spectrum unmistakably point to a flat-on molecular orientation of PTCDA 

with a strong relative intensity for the out-of-plane b3u. Notably the SEIRA 

spectrum does not follow the RAIRS pattern. However, the relative intensity of 

the out-of-plane modes has increased with decreasing film thickness hinting to 

proportional increase of PTCDA molecules oriented flat-on the silver islands.  
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The PTCDA case presented here is of interest for researchers trying to extract 

molecular orientation information using SEIRA. In such cases it is advisable to 

carry out the RAIRS experiments55,56 with the same species as a reference point 

for the SEIRA results.  In conclusion, the observation of strict adherence to 

surface selection rules in RAIRS may not be mimicked by the SEIRA spectrum. 
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CHAPTER EIGHT 
QUANTUM CHEMISTRY FOR MOLECULAR SYSTEMS 

A. Nanostructures and the Observed Spectra in SER(R)S  

The observed SER(R)S spectra of any molecule that is near or attached to 

a silver or gold nanostructure, and can sustain localized surface plasmon 

resonances1,2 carries the quantum fingerprints of the molecular system.  This is 

modulated by the molecule-nanostructure interactions and the electronic 

resonances (including resonances with charge-transfer electronic transitions) that 

may result from laser excitation. There is a wealth of information to be extracted 

from measured vibrational band parameters.  The observed spectrum is the 

electromagnetically enhanced Raman spectrum of the physisorbed molecule, as 

well as a host of chemical products, such as: the chemisorbed molecule, newly 

formed molecular complexes, photodissociation products, dimers, and molecular 

ions.  This variety of products being observed simultaneously can make the 

spectral interpretation quite challenging3.  In order to interpret this data, it is 

necessary to go back and look at the origin of the Raman scattering that is 

coupling with the plasmon resonance, and revisit the theory behind our detailed 

knowledge of the electronic ground state and its vibrational states for molecular 

systems.   

The classical theory of Rayleigh and Raman scattering is based on the 

concept that scattered light is generated by oscillating electric dipoles induced by 

the electric field of the electromagnetic radiation. The simplest relationship for a 

frequency-dependent induced electric dipole p in a linear approximation is 

p Eα= , where both p and E are vectors and the polarizability α is a first rank 

tensor4. This is indeed the first term, and also the largest, of power series in E, 

where the polarizability is the first coefficient follow by higher rank tensors (the 

hyperpolarizability [tensor of second rank] and second hyperpolarizability) that 

give rise to nonlinear Raman effects. In this thesis we are only concerned with 

the linear term, i.e., the origin of the Raman scattering induced by low power 

lasers. The three components of the induced dipole moment vector p are: 
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x xx x xy y xz z

y yx x yy y yz z

z zx x zy y zz z

p E E E

p E E E

p E E E

α α α
α α α
α α α

= + +

= + +

= + +

        (8.1) 

In matrix form: 

x xxx xy xz

y yx yy yz y

zx zy zzz z

p E

p E

p E

α α α
α α α
α α α

    
    =     
    
    

       (8.2) 

Here, the equilibrium polarizability matrix can be written as 0α . To solve 

the mechanical problem, we set a fixed the system of coordinates in the 

molecule, such that the molecule is free to vibrate but the rotational motions are 

left out5-7. We therefore have a fixed equilibrium configuration for a stable 

molecule in a given electronic state, which provides us with an equilibrium value 

of both the polarizability tensor and the dipole moment. The infinitesimal 

variations of this equilibrium configuration with internal vibrations will give rise to 

the Raman and infrared intensities. The variation of the polarizability tensor 

elements with the vibrational modes can be expressed in a Taylor series with 

respect to a set of vibrational coordinates termed normal modes of vibration4; 

( )
2

0
,0 0

1
...

2k k l
k k lk k l

Q Q Q
Q Q Q

ρσ ρσ
ρσ ρσ

α α
α α

 ∂ ∂ 
= + +     ∂ ∂ ∂   

∑ ∑     (8.3)   

Notice that (8.3) applies to each of the elements in the polarizability tensor (8.2). 

The first term in (8.3) is the value of the polarizability tensor element at 

equilibrium. Q, represents the normal coordinate of vibration, and for a non-linear 

molecule there are 3N-6 of them, where N is the number of nuclei. The first 

derivatives are responsible for the Raman intensities of the fundamental 

vibrational modes (3N-6 of them), while the second derivatives correspond to 

combinations and overtones in the Raman spectrum. This introduces the 

nomenclature:  ( )'

0
k

kQ
ρσ

ρσ

α
α

∂ 
=  ∂ 

.  These derivatives form a new “derived 
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polarizability tensor” for each vibrational mode: 
k

'
α . For each vibrational mode “k” 

the total tensor (including the equilibrium tensor element) is; 

 

( ) ( ) ( )'

0
+ α k

kk
Q

ρσ
αρσ ρσα=        (8.4) 

Within the harmonic approximation, the time dependence of the normal 

coordinates may be expressed by: ( )0 cosk k kQ Q tω= , because the incident 

electric field can be a simple plane wave: ( )0 0cosE E tω= . In both cases, we 

neglected the phase factors for simplicity. The corresponding induced dipole 

moment p, can now be written for each vibrational mode in terms of the 

polarizability tensors: 

( ) ( ) ( )'
0 0 0 0 0 0+αcos cos cos

k k kp E t E Q t tα ω ω ω=     (8.5) 

Using the trigonometric identity for the product of cosines, we get three oscillating 

dipole components: 

( ) ( ) ( )0 0 0k kp p p pω ω ω ω ω= + − + +       (8.6) 

The first term in (8.6) gives rise to Rayleigh scattering, the second to Stokes  

Raman scattering and the third to anti-Stokes Raman scattering. Notably, the 

tensor 0α  or  Rayleighα scattering tensor is always different from zero; in other 

words, Rayleigh scattering is always observed. The emission from any of the 

other two induced dipole requires that at least one of the elements in the derived 

polarizability tensor or Raman tensor (
k

'
α or Ramanα ) would differ from zero.   

There is another important development that arises from the phase factor 

that we neglected in the treatment: 

( )0 cosk k k kQ Q tω δ= +          (8.7) 

It can now be seen from (8.4) that the Rayleigh scattering is in phase with the 

incident electromagnetic wave. However, for an ensemble of molecules, the 

Raman scattering allows for an arbitrary phase relationship with the incident 

radiation. The latter is a consequence of fixing the system of coordinates on each 
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molecule whose orientations are not fixed and the kδ  are different for different 

molecules. Therefore, the Raman scattering of the ensemble is incoherent, i.e., 

each molecule is an emitter independent of its spatial position. 

The most challenging aspect of these computations is how to explain the 

activity of the Raman vibrational frequencies. For this, it is necessary to recourse 

to the quantum mechanical treatment of the interacting molecule in Raman 

scattering, although the electromagnetic wave is treated classically. Because the 

nuclei are much heavier than the electrons, in a first approximation it is assumed 

that they are at rest.  This enables us to later introduce their motion as a 

perturbation. This approach is the termed the adiabatic approximation, and 

allows to separate the nuclear from the electronic motions8. When solving the 

Schrödinger, the perturbation will be part of the potential energy operator. For a 

given electronic state, one can solve the vibrational wave equation with a 

Hamiltonian containing the kinetic operator of the nuclei and a potential energy 

operator. Assuming simple harmonic motion of the nuclei about their equilibrium 

positions, the solutions of the QM problem of the harmonic oscillator can be 

used, and the wavefunction can be written as a product of monovibrational 

wavefunctions, each a function of one normal coordinate: 

( )1 1 2 2( )... ( )...Vibrational k k k
k

Q Q Qψ ψ ψ ψ ψ= = ∏      (8.8)  

The Hamiltonian of fundamental vibrational modes is a sum of harmonic 

oscillators Hamiltonians: 

23 6
2

2
1

1ˆ
2

N

k k
k

H Q
Q

ω
−

=

 ∂= − + ∂ 
∑h        (8.9) 

 

The total energy of the molecule will depend on the quantum numbers of each of 

the harmonic oscillators: 0,1,2,...kv = ,  

1

2vibrational k k
k

E vω  = + 
 

∑h        (8.10) 
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One of most important properties of the vibrational states is that they can be 

classified according to their symmetry properties, and this will allow a simple 

solution for the determination of the Raman active vibrations (or infrared active 

modes); the results will be the vibrational selection rules. Vibrational transitions 

are between two vibrational states connected by an operator.  Let k landψ ψ  be 

the vibrational eigenfunctions of a lower and an upper vibrational state (non-

degenerate). Then the transition associated with an electric dipole moment 

operator p̂ will be allowed if and only if the matrix element; ˆkl l kp p dvψ ψ∗= ∫ , is 

different from zero. This is the general selection rule for the dipole moment 

transitions.  For a given equilibrium configuration each vibrational state and the 

operator belong to an irreproducible representation of the molecular symmetry 

point group. Therefore, the vibrational transition between non-degenerate states 

is allowed if the triple product contains the totally symmetric representation of the 

point group, otherwise is forbidden. In terms of the symmetry species the 

selection rule can be formulated using the direct product:  

( ) ( ) ( )ˆl k p totally symetricψ ψΓ × Γ × Γ =      (8.11) 

For practical applications, the reduction of direct products can be read 

directly from character tables as infrared activity and Raman activity7. In other 

words, the irreducible representation for transition dipoles ( )µΓ components in 

the infrared spectrum and the transition polarizability components ( )αΓ are all 

given in the character tables. For instance, for the D2h point group we can see in 

the corresponding character table, 

( ) 1 2 3u u uB B BµΓ = + + , and 

( ) 1 2 33 g g g gA B B BαΓ = + + +  

Notice that if the character tables are used as given, the implicit 

assumption is that there is no preferred molecular orientation in space, (i.e., 

random molecular orientation). A fixed molecular orientation at the metal surface 

(as could come about in SERS), will be sensitive to the state of polarization 

(direction of the electric field vector in space) of the incident electromagnetic 
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radiation.  This gives rise to the “surface selection rules” 9, which are comparable 

to the situation encounters in solid state for crystal structures10. The surface 

selection rules will be discussed later for specific applications. In a common 

Raman scattering one uses a monochromatic radiation from a laser source, an 

essentially non-divergent beam completely characterized by its frequency, its 

polarization, its direction of the propagation vector and the irradiance. The 

polarization properties of elastic and inelastic scattering for different geometries 

are fully developed in Raman books and the results collected in very useful 

tables4,10. 

Using the quantum mechanical machinery (second order perturbation 

theory), one can get the expressions for the first order transition electric dipole 

moment  (analogous to (8.1)), and the corresponding transition polarizability 

components for Rayleigh and Raman scattering4.  

A simplified form of the transition polarizability components is; 

( )
, 0 0

ˆ ˆˆ ˆ1
kl

r k l rk r rl r

l p r r p kl p r r p k

i i

σ ρρ σ
ρσα

ω ω γ ω ω γ≠

 
 = + − − + +  

∑
h

    (8.12) 

Where rk r kω ω ω= − , and r – is an intermediate state. 

When the intermediate state is larger than kω ,  but is not in resonance with any 

of the electronic states of the molecular system, we have the normal Raman 

scattering (RS). However, when the intermediate state is in resonance with an 

electronic state, the physical phenomenon is called resonance Raman scattering 

(RRS)11.  

It can be seen from the expressions of the transition polarizability 

components (or derived polarizability tensor) that the ( )
klρσα  or 

0kQ
ρσα∂ 

 ∂ 
(in the 

classical approach) are extremely sensitive functions of the electron density (i.e., 

the equilibrium polarizability is a volume) of the molecule. In other words, these 

functions act as a ’sensor’ for intramolecular and intermolecular interactions. Any 

perturbation of the molecular electronic density will result in changes of the 
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vibrational frequencies (due to changes in the potential energy operator of the 

vibrational Hamiltonian) and the intensities. Changes in the equilibrium 

configuration may completely change the spectral pattern due to broken 

symmetries.  

In all SERS experiments, the interaction of the metallic nanostructure and 

the target molecule is a ‘necessary condition’ for the observation of plasmon 

enhanced scattering. The ‘necessary condition’ refers to the molecule being 

under the influence the local field of the nanostructure, i.e., there is molecule-

plasmon coupling. As it known from surface chemistry, there is a broad range of 

electronic interactions that will affect the transition polarizability components. At 

one end is the chemisorption, or complex formation, at the surface of the 

nanostructure.  This produces a very different SERS spectra when compared 

with that of the molecule in a given phase (gas, liquid or solid), whichever is used 

as a reference. A molecule in the near field of a nanostructure that is not forming 

a chemical bond at the surface, may show minor changes in frequency and 

intensity due to the physical interactions with the nanostructure. All of these 

observed changes in SERS experiments are encompassed under the generic 

term of “chemical effects”, “chemical contributions to SERS. It should be pointed 

out that, in addition to these changes due to electronic interactions, there are two 

important factors that may determine the observed SERS spectra.  The first is 

that the dispersion of transition polarizability components, i.e.,   ( )ρσα ω   is a 

function of the incident radiation and the observed intensity pattern in the SERS 

spectra could be that of pre-resonance or in resonance with the excitation 

frequency. The latter will be, of course, RRS. The most studied of these cases is 

that of excitation in resonance with a charge transfer electronic transition.  

The second factor that can be used to determine observed SERS spectra 

is the use of polarized light for the incident radiation, and the use of analysers for 

the scattered light.  This provides polarized spectra with a wealth of information 

on molecular orientation, and in the case of SERS, information about the 

directionality of the plasmon resonances. There are a number of factors that may 

alter the observed SERS spectra, particularly when working in ultrasensitive 
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chemical analysis or single molecule detection that are the object of active 

discussion in the literature12.     

What follows is an illustration of the computational approach to obtain the 

vibrational spectra and the effect of aggregation (alanates, section B), surface-

enhanced vibrational spectra in the Raman (SERS) in section C, and in the 

infrared (SEIRA) in section D. These are three selected examples taken from my 

extensive work on the subject during my doctoral studies.  
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B. Materials for Hydrogen Storage 

During the development of this dissertation, a large number of molecular 

structures were calculated in tandem with the modeling of nanostructures. To 

illustrate some of this effort and the corresponding computational machinery 

used, we include here an example of the quantum mechanical computational 

work where the computational work of clusters is the important part of the 

modeling13.  Hydrogen-based fuel cells are seen as a viable alternative to 

industrial society’s reliance on oil, while at the same time minimizing pollution 

and global warming.  Although high cost has been an impediment to market 

penetration of this technology, hydrogen sources are under extensive 

investigation for viability in fuel cells.  Hydrogen is attractive as a fuel due to the 

clean combustion with air with very a high amount of energy delivered per unit of 

mass.  The main issues with hydrogen as a fuel source are in terms of storage 

and safety, as very high pressures are needed to reduce hydrogen to a solid 

form14.  Due to the need for safe and efficient storage of hydrogen, the use of 

co8.Bmplex metal hydrides in hydrogen storage applications is becoming more 

attractive.  With increased interest in hydrogen storing materials for applications 

such as fuel cells, improvements must be made on current technology to allow 

for compact, lightweight, and low-cost hydrogen production, while avoiding the 

difficulties associated with compressed or liquid hydrogen. 

Complex metal hydrides, with the form ABH4, where A is one of the alkali 

metals, and B is a group III atom, have been widely studied in solution as proton 

acceptors in organic chemistry applications.  The first synthesized was LiAlH4 in 

1947 by Schlesinger15, followed by other variations. Their vibrational spectra in a 

variety of solvents have been reported 16.  The alanate’s structure and synthesis 

have been studied by a variety of techniques. Although the energetics, spectra, 

and reactivities of the complex metal hydrides are well known in solution, only 

recently has work been done on these materials in the solid state.  Badanovic 

and Schwickardi17 showed the potential use of the NaAlH4 material having a 

                                                 
8.B The work in this section, 8.B, is the outcome of joint research with M. D. Halls, G. A. Nazri, and R. F. 
Aroca. 
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reversible absorption and desorption pathways for hydrogen through the use of a 

Ti catalyst.  Considerable effort has been made to improve efficiency of the 

process through the use of techniques such as ball milling18 in combination with 

differing additives19.  The potential for NaAlH4 for this use has also caused it to 

be studied structurally through X-ray diffraction through the decomposition 

stages20, and as well theoretical studies of the crystalline structure21. 

 The currently accepted process involves one intermediate phase along the 

absorption/desorption pathway, in the form of Na3AlH6.  The reaction is 22: 

  22634 H
2

3
AlNaHHAl

3

2
AlHNa

3

1
NaAlH ++⇔++⇔   (8.13) 

This represents a theoretical 5.6% capacity of hydrogen by mass.   

 Quantum chemical computations for each stage in the process can reveal 

structural and thermodynamic information necessary to properly characterize and 

improve the use of complex metal hydrides for the storage of hydrogen.  Using 

infrared and Raman spectroscopy, the vibrational signature of the complex can 

be well characterized, which will further aid identification of the products and 

intermediate phases.  A well understood vibrational fingerprint of NaAlH4 material 

can be used as a probe for further absorption/desorption studies. 

 Sodium and lithium aluminum hydrides were studied previously using 

neutron scattering23, revealing strong librational structure down to 92 cm-1.  

Additionally, Raman and infrared spectra has been recorded for various AlH4
- 

salts16.   Raman spectra of librational modes in crystals have been studied in 

similar crystalline systems24.  Strong Raman-active librational modes are 

expected due to the large polarizability change occurring from the highly dipolar 

NaAlH4 monomers moving in the extended lattice. 

 Shirk and Shriver16 studied infrared and Raman of NaAlH4 in both the solid 

phase and in ether solutions.  The lower limit to the frequency range of their 

Raman study was approximately 450 cm-1, and a tentative assignments for the 

vibrational spectra in solution was offered, but difficulties were found in the solid 

phase due to band broadening.   The lower frequency region was well studied by 

Temme and Waddington, by inelastic neutron scattering and FT-IR23.  These 
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measurements cover a frequency range from approximately 50 cm-1 to 1000 cm-

1, and assignments for the librational and torsional modes in that region of the 

spectrum were made.  There is still a need for reliable assignment over the 

complete frequency range to guide in situ measurements during the 

decomposition process of metal hydrides. 

 In the current work, characteristic band assignments of the observed 

Raman scattering spectra are made on the basis of cluster based density 

functional calculations  and comparison to previous measurements by Raman 

and neutron scattering16,23.  A cluster of molecules is built up to provide a 

description of the intermolecular interactions and how they modify the vibrational 

signature.  The Raman spectra of the larger clusters can then be analyzed in 

reference to the spectrum of the monomer.  Additionally, changes in structure 

and energyies of the monomer are examined in detail to help identifying trends in 

the cluster and solid. 

 Raman spectra were obtained with a Renishaw Research Raman 

Microscopy System RM2000 equipped with a Leica microscope (DMLM series).  

The excitation laser line used for the measurement was 633 nm and the laser 

power was of the order of 1 mW at the surface of the sample.   

 Sodium aluminum hydride was purified by re-crystallizing commercial 

NaAlH4. NaAlH4 was dissolved in THF and filtered through a glass frit. The 

filtered material was concentrated in rotaryvap under vacuum. The pure NaAlH4 

was precipitated by adding pentane to the concentrated NaAlH4 in THF. The fine 

precipitate was washed with excess pentane and dried at 25 oC under vacuum.  

The purified NaAlH4 was also studied by X-ray diffraction in an 

environmental sample holder to protect the sample form exposure to air.  The 

crystal structures were studied by powder x-ray diffraction using a Siemens 5000 

x-ray goniometer equipped with CuKα radiation, operating at 40kV anodic voltage 

and 30mA current. The patterns were recorded over a range of 2θ angles from 5 

to 85 degrees, and compared with the x-ray powder files for phase identification.  

All peaks were indexed to the tetragonal structure with lattice parameters of 

a=5.03 ºA, c=11.38 ºA with an excellent fit to the space group C6
4h (I41/a). 
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Computations were performed using the Gaussian 98 suite of programs25. 

Density function theory calculations were carried out with using the hybrid 

functional B3-LYP, corresponding to Becke’s 3-parameter exchange functional26 

along with the correlation functional developed by Lee, Yang and Parr 27.  The 

basis set used was a double split-valence gaussian basis set28,29, augmented by 

one set of diffuse functions on heavy atoms, and also by one set of polarization 

functions on all atoms, or 6-31+g(d,p).  Geometrical convergence was obtained 

with at least a tight criterion, without symmetry restrictions imposed.  For 

comparison with experimental spectra, simulated Raman spectra were created 

with a gaussian bandshape.  For all cluster sizes, zero point corrected energies 

and optimized geometrical parameters were obtained, in addition to numerical 

Raman intensities for each normal mode.   

To obtain approximate vibrational frequencies and Raman intensities, 

including neighbor interactions, clusters of NaAlH4 were generated by 

successively adding additional monomers to geometrically optimized systems.  

The optimized structure for a cluster of eight monomers is shown in Figure 8.1. 

 

Figure 8.1.  Eight monomer cluster of NaAlH4 optimzed at the B3-LYP/6-
31+G(d,p) level of theory. 
 

 The Raman spectrum of NaAlH4 excited at 633 nm is shown in Figure 8.2.  

The spectrum can be broken up into three spectral regions, corresponding to 

different types of vibrational modes.  The first is a high frequency region, 
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consisting of a group of bands between 1500 cm-1 and 1900 cm-1, corresponding 

to the Al-H stretching modes of the NaAlH4 monomer.  Secondly, a middle region 

comprised of the various bending modes, which runs from 600 cm-1 to 900 cm-1.  

Finally, a low frequency region which is made up of the various librational and 

torsional modes exists below 600 cm-1 
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Figure 8.2.  Raman scattering of NaAlH4 using the 633 nm excitation line. 

 

Notable are the Al-H symmetric and anti-symmetric peaks at 1769 cm-1 

and 1680 cm-1 respectively.  Also prominent are the peaks at 174 cm-1 and 117 

cm-1, with a shoulder appearing at 108 cm-1.  The higher frequency spectra is in 

good agreement with previously published Raman investigations of metal 

hydrides16, although this study did not probe below 450 cm-1.  However, neutron 

scattering has shown strong librational activity in this region, and our findings are 

in good agreement, excepting that some frequencies observed by neutron 

scattering will be infrared active only. 
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 Computation of structures and frequencies for a single monomer of 

sodium aluminum hydride is similar to that of an earlier study of LiAlH4
30, finding 

three separate isomers of NaAlH4.  The lowest energy is a bidentate structure 

with a C2V symmetry.  A tridentate form with an energy of  0.02 eV above the 

bidentate with a C3V was also found.   An energetic monodentate was found to 

have an enthalpy 0.56 eV above that of the bidentate, and had one doubly 

degenerate negative frequency, due to the C3V symmetry.  Symmetry restrictions 

were placed upon the monodentate during geometry optimization to obtain this 

optimized form, and further optimizing without symmetry caused collapse to the 

more stable bidentate.  The geometrical parameters and relative energies of all 

three configurations of NaAlH4 are given in Table 8.1. 

Bond Lengths (Å) Bidentate  Tridentate  Monodentate  

AlH1 1.69 1.66 1.71 

AlH2 1.69 1.66 1.61 

AlH3 1.60 1.66 1.61 

AlH4 1.60 1.58 1.61 

NaH1 2.10 2.30 1.86 

NaH2 2.10 2.30 4.22 

NaH3 2.68 2.30 4.22 

NaH4 2.68 4.17 4.22 

Al-Na 2.81 2.58 3.57 

    

Relative Energy (eV) 0.00 0.02 0.56 

Table 8.1. Geometric parameters and relative energies for monomers of NaAlH4, 
in bidentate, tridentate, and monodentate configurations.  (Lower numbered 
hydrogen are those bonded to Na in all three cases.) 
 

 The Al-H bond lengths for the different isomers of NaAlH4 can be 

compared to the calculated results for LiAlH4(18) as the alkali atom will not have 

a strong effect.  The same trend in bond lengths occurs for both species, with the 

longest Al-H bond length occurring in the monodentate isomer, and the shortest 

in the tridentate.  Numerically, they are very similar, with the monodentate bond 
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length for LiAlH4 to be 1.62 Å with a BP86 density functional, compared to 1.61 Å 

in this work.  Similarly, for the bidentate, the free Al-H bond length is 1.603 Å for 

the lithium aluminum hydride, and 1.60 Å for the sodium.  The reported value of 

1.592 Å for the LiAlH4 is also very close to this value of 1.58 Å.  This very similar 

structural feature also implies, given that the masses of these atoms are the 

same, that the vibrational frequencies of the Al-H stretching bands will be also 

very close for these two molecules. 

 Clusters of up to eight molecules in size were calculated.  With an 

increase in cluster size, the vibrational spectra became increasingly complex due 

to splitting of individual bands.  However, with larger modeled size clusters, 

coalescence of the spectrum occurred with overlapping multiple bands, 

increasing agreement with the observed Raman spectra.  Figures 8.3, 8.4 and 

8.5 show the computed high, middle, and low frequency regions, respectively, of 

the simulated Raman spectra and relative intensities for one to eight molecules, 

and compared to the measured Raman from a 633 nm excitation line. 
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Figure 8.3.  Simulated and experimental Raman spectra for the high frequency 
region of NaAlH4 using the largest cluster model and the 633nm laser line, top 
and bottom trace respectively. Inset: Calculated high-frequency Raman for the 
one, two, four, six, and eight monomer models. 
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Figure 8.4.  Simulated and experimental Raman spectra for the middle frequency 
region of NaAlH4 using the largest cluster model and the 633nm laser line, top 
and bottom trace respectively. Inset: Calculated mid-frequency Raman for the 
one, two, four, six, and eight monomer models. 
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Figure 8.5.  Simulated and experimental Raman spectra for the low frequency 
region of NaAlH4 using the largest cluster model and the 633nm laser line, top 
and bottom trace respectively. Inset: Calculated low-frequency Raman for the 
one, two, four, six, and eight monomer models. 
  

For the largest cluster, boundary conditions were applied to simulate the 

solid, by constraining the cluster surface hydrogens.  The boundary conditions 
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bring the finite sized cluster much closer in result to the vibrational signature of 

the bulk.  Additionally, frequency convergence is strong with the largest cluster, 

with bands not shifting more than 3 cm-1 from 6 to 8 molecules, although many 

new bands appeared due to distortions.  The internal vibrational modes can be 

assigned with the aid of the theoretical results, with results summarized in Table 

8.2. 

Table 8.2:. Wavenumbers and vibrational assignments of observed Raman 
bands of NaAlH4.  a  633 nm excitation line.   b Harmonic frequencies scaled 
uniformly by 0.965.   c From Shirk et al. [Ref 3].   d From Temme et al. [Ref 10]. 
 

 The high frequency region, shown in Figure 8.3, shows excellent 

agreement between the largest cluster and the experimental spectrum.  This 

region is comprised of the symmetric and antisymmetric stretching modes of Al-H 

at 1769 cm-1 and 1680 cm-1.  Coalescence of the calculated spectra towards the 

formation of similar bands to those observed is very clear.  This region agrees 

Observeda 

(cm-1) 
Relative  
Intensity 

B3-LYP/6-
31+G(d,p) 
Frequencyb 

(cm-1) 
Relative 
Intensity 

Previous 
Ramanc 

(cm-1) 

Neutron 
Scatteringd 

(cm-1) 
Band 
Assignments 

1769.2 1.00 1767.6 1.000 1763 1790 Al-H Symmetric 
 Stretch 

1680.5 
 

0.34 
 

1714.1 
 

0.490 
 

1686  Al-H Anti-
Symmetric 
 Stretch 

847.5 
 

0.06 
 

882.9 
 

0.051 
 

 861 Al-H-Na 
Symmetric  
Bend. 

811.8 
 

0.07 
 

809.2 0.019 
 

824 799 Al-H-Na 
Bending 

764.9 
 

0.15 
 

746.0 
 

0.062 
 

767 764 Al-H-Na 
Bending 

510.7 
 

0.06 
 

409.2 
 

0.006 
 

 494 Torsion 

419.4 
 

0.27 
 

350.5 
 

0.011 
 

  Torsion 

174.1 
 

1.10 
 

185.4 
 

0.007 
 

 178 Collective 
Vibration 

116.2 
 

0.40 
 
 

144.7 
 

0.003   Collective 
Vibration 

107.5 
 

0.18 
 

126.72 0.006 
 

  Collective 
Vibration 
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very well with the data published previously, although the band at 1680 cm-1 was 

not resolved in neutron scattering. 

The Raman active frequencies in the middle frequency region can be 

characterized as Al-H-Na bending type modes, with the peaks appearing at 811 

cm-1 and  764 cm-1 with a shoulder at 847 cm-1.  This calculated spectrum for the 

largest cluster corresponds well to the observed, with some difference in relative 

intensities.   

  The low frequency is quite rich with torsional and librational Raman 

active bands. The simulated spectrum can be compared to the experimental 

spectrum in this region to corroborate the assignments of observed bands.  It is 

reasonable to expect that agreement in this spectral region may be worse than at 

higher wavenumbers since the vibrations here are characterized by long-range 

collective modes that may be poorly represented in a truncated cluster. The weak 

modes at 518 cm-1 and 426 cm-1 correspond well with torsional modes observed 

previously23, which indicate that the AlH4
- ions are strongly locked into their lattice 

due to their high frequency.  These torsional modes are computed to be at 

Raman active 216 cm-1 for two molecules, and between 350 cm-1 and 400 cm-1 

for the larger model systems, illustrating an improvement in agreement with 

increasing cluster size. The lattice vibrations reported by neutron scattering with 

a peak at 178 cm-1 are in strong agreement with the observed Raman band at 

174 cm-1.  The small peaks computed in that region, from 120 cm-1 to  200 cm-1 

are collective, librational-type motions, with the most symmetric at 185 cm-1.   

 On the basis of these assignments, the Raman spectrum of NaAlH4 can 

be used to track changes in structure and concentration through non-destructive 

methods.  The Al-H stretching peaks, which are easily observed at low laser 

power, will drop in intensity during the formation of the intermediate Na3AlH6, for 

which the Al-H stetching modes could be observed at a lower frequency due to 

the increased interaction with Na atoms..  The intensity and frequency of the 

librational bands, especially the observed band at 174 cm-1 are strongly 

dependant on the local environment, and during sample heating give an 

indication of the lattice strength. 
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 Raman spectra of NaAlH4, an important material for solid hydrogen 

storage applications, was taken with a 633 nm excitation line.  Complete band 

assignments down to the librational level were made, corroborated by previously 

reported assignments, providing a consistent interpretation of the vibrational 

activity in the solid state.  Characterizations were made of the basis of cluster 

based density functional theory calculations. In agreement with previous 

theoretical studies on similar systems, the bidentate structure of NaAlH4 

monomer is found to be the most stable, with a slightly more energetic tridentate 

structure, and a monodentate transition structure at a very high relative energy.  

With increasing cluster sizes, the computational results progressively improve in 

agreement with the experimentally recorded vibrational and librational spectra of 

NaAlH4.  
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C.  SERS Study Case 

 In surface enhanced spectroscopy, while it is the nanoparticle which 

provides the enhancement, it is the molecular system, modified by its interactions 

with the nanoparticle, which controls the actual spectrum that is observed, in 

addition to polarizations effects.  To provide a clear example of some of the 

differences that can arise through SERS, an example of the chemical effects on 

a spectra are presented for two small molecules.  The optimized geometries, and 

minimum energies for the group state are first calculated, and then the vibrational 

frequencies and Raman intensities.  The chemical effect is modelled by 

examination of the silver salt of each of the two molecules, mimicking chemical 

adsorption onto the enhancing substrate.   

 The molecules: syringic acid and p-coumaric acid are shown in figure 8.6. 

These molecules were selected as they have similar structures, as they both 

have a phenyl ring as well as a OH group.  The active site for adsorption to silver, 

however, is the carboxyl group, or COOH group.  As the carboxyl group is 

directly off the ring in the case of syringic acid, and separated from the ring by 

two carbon atoms in p-coumaric, there is a natural expectation that the strongest 

Raman bands, corresponding to the ring breathing modes, will be modulated by 

the interaction with silver in different ways in the two cases.  Syringic acid has a 

total of 24 atoms (C9O5H10), for a total of 66 vibrational modes, while p-coumaric 

acid has 20 atoms (C9O3H8) and 54 vibrational modes.   

 

Figure 8.6:  Syringic acid (left) and p-coumaric acid (right).  
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 The molecules are first calculated using the Gaussian 03 suite of 

programs31, at the B3LYP/6-311g(d,p) level of theory.  Geometry optimization is 

done with tight convergence criteria without symmetry restrictions imposed.  

Harmonic frequencies and infrared and Raman intensities are taken, and scaled 

uniformly by a factor of 0.966932.  The calculated Raman bands are given a full 

width at half-maximum value of 5 cm-1, and figure 8.7 presents the full Raman 

spectra for p-coumaric acid and syringic acid. 
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Figure 8.7:  Calculated Raman spectra of:  P-coumaric acid (top) and syringic 
acid (bottom). 
 
 Before the interaction of a silver atom and the molecule is examined, it is 

first necessary to have a good understanding of the spectra of the molecules.  

Starting with the highest frequency, each molecule has two O-H stretching 

modes, in the 3650 cm-1 region, followed by a set of C-H stretching modes 

centered around 3070 cm-1.  Although figure 8.7 has an arbitrary y axis so that 

the full spectrum in each case can be seen as clearly as possible, it is worthwhile 

noting that the C-H stretching modes for the two molecules are approximately 

equal in intensity, giving an idea of the scale difference.  For the p-coumaric acid, 

the C-H modes are relatively weak, meaning that the rest of the spectrum of p-

coumaric is quite a bit stronger than syringic acid.  Syringic acid also has a group 

of modes centered at 2950 cm-1 corresponding to CH3 stretching vibrations.  Both 
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molecules also have a intense mode close to 1733 cm-1, which is the C=O 

stretch in the COOH group.  However, given the relative scale difference, this is 

quite a bit stronger in the p-coumaric case. 

A character table for the fingerprint region (between 800 cm-1 and 1800 

cm-1) two molecules is given in table 8.3, organized by frequency of the mode for 

syringic acid.  Where possible, the table is organized so that vibrations of the 

same character are matched between the two molecules, rather than naively 

organizing both molecules by frequency.  This causes some of the Raman 

frequencies for p-coumaric acid to be out of order, although the spectral 

differences between the molecule are clearer. 

In the fingerprint region, both molecules have vibrational bands that the 

other does not due to the differences in structure.  Syringic acid, for example, has 

a variety of C-H bending modes involving the CH3 groups that p-coumaric does 

not have.  The most intense bands observed in both molecules belong to the 

C=C stretching modes of the chain leading to the carboxyl group.   Both 

molecules also have C-H bending modes with moderate intensity in the 1100  

cm-1 range, although in the p-coumaric case one of them is coupled to a C-O 

stretching mode that causes a greater intensity. 
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Syringic Acid P-Coumaric Acid   

Frequency 
(cm-1) 

Raman 
Intensity 
(Å4/AMU) 

Frequency 
(cm-1) 

Raman Intensity 
(Å4/AMU) Character 

831.8 0.23 784.3 1.58 C-H wag 

856.0 0.41 816.2 0.90 C-H wag 

896.4 1.29 842.4 27.40 ip ring deformation with C-O stretch 

    868.4 9.55 oop C-C bend with C-H wag 

910.1 7.66     C-C stretch 

    883.5 4.25 C-O stretch in carboxyl group 

1083.6 3.38 912.2 2.15 C-H wag 

    989.7 1.52 C-H wag 

1033.8 10.45     O-CH3 stretch 

1133.3 2.31     CH3 bending 

1134.6 3.06     CH3 bending 

    1090.8 5.09 C-H scissor 

    1139.4 313.63 C-H bend and C-O stretch in carboxyl 

1139.0 45.73 1154.3 45.55 C-H and O-H bend 

1170.0 5.56 1159.1 4.11 C-H and O-H bend 

1175.8 7.23 1196.8 40.94 C-H and O-H bend 

1200.1 0.67     C-H and O-H bend 

1236.6 3.41     C-H and O-H bend with ring deformation 

    1247.7 354.09 C-H bend and C-C stretch 

    1262.0 4.38 C-O stretch and C-H bend 

1268.8 6.01     C-H and O-H bend 

    1283.1 9.08 C-H bend 

1289.3 11.47     C-H and O-H bend with C-O stretch 

    1310.6 5.74 C-H bend and C-C stretch 

    1326.3 39.44 C-H and O-H bend 

    1335.0 23.08 C-H and O-H bend, and C-C stretch 

1340.6 46.54     C-C stretch, C-O stretch, O-H bend 

1378.2 2.27     Ring deformation and O-H bend 

1411.8 3.31     CH3 umbrella and O-H bend 

    1424.1 37.24 C-H and O-H bend, and C=C stretch 

1439.2 6.52     CH3 umbrella and O-H bend 

1442.5 17.90     CH3 bend 

1444.0 16.41     CH3 bend 

1445.6 2.59     CH3 bend with ring deformation 

1456.0 7.43     CH3 bend 

1457.9 6.60     CH3 bend 

1493.9 6.22     C-O stretch and ring deformation 

1574.7 174.32     C-O stretch and ring deformation 

1594.7 1.35 1495.2 32.32 C-H bend and C=C stretch 

    1566.4 156.77 O-H bend and C=C stretch 

    1596.8 984.65 C=C stretch 

    1623.7 582.60 C=C stretch 

1732.2 109.15 1733.4 434.66 C=O stretch 

Table 8.3:  Character table of syringic and p-coumaric acid.  Acronyms include ip: 
in-plane, and oop: out of plane.  
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 To model chemical adsorption to a silver nanoparticle, it is assumed that 

these molecules will attach through the COOH group, the most chemically 

reactive site on both molecules.  The structure is changed by the removal of the 

hydrogen atom, and the addition of a silver atom, making this group COOAg.  

The optimized structure for both molecules is shown in figure 8.8 

 

Figure 8.8:  Structure of syringic acid (left) and p-coumaric (right). 

 The basis set used previously, 6-311g(d,p) is not implemented in 

Gaussian for silver, as the many electrons present would cause the calculation to 

become quite long.  An effective core potential (ECP) is used to replace the 

chemically inert atoms, in this case the ECP developed by Hay and Wadt33 at 

Los Alamos National Laboratories, called the Lan ECP, which includes relativistic 

effects.  The double zeta basis set computed by the same authors for the outer 

orbitals (4d, 5s, and 5p) is also used, the Lanl2dz basis.  The basis set for the 

molecule is split, so that the Lanl2dz+ECP is only used on the silver atom, and 

the rest of the molecule uses the same 6-311g(d,p) as before.  In this way, 

changes in the spectra of the rest of the molecule can be attributed to electronic 

structure changes due to the presence of the silver atom, rather than basis set 

choice.  The Raman spectra of syringic acid and syringic silver salt are presented 

in figure 8.9, where the spectra for the silver salt is offset vertically by +50 

Å4/amu.   

 There are a number of differences that are immediately apparent.  First, 

the C=O stretching mode at 1732 cm-1 appears to have disappeared.  Because 

the silver interacts with both oxygen atoms symmetrically, there is no true C=O 
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anymore, and portions of this band are mixed with other vibrations, including a 

ring deformation, making a stronger band at 1496 cm-1.  The electron density is 

shared more equally between the two oxygen atoms, and thus, the vibration is 

lowered in frequency.  The band at 1139 cm-1 is also removed, as it 

corresponded to the O-H bending mode of the carboxyl group.  Other changes 

include a weakening and red-shifting of the 1340 cm-1 vibration which included 

an O-H bend in the carboxyl group.  New vibrations in the Raman spectrum of 

the salt include a moderately strong mode 400 cm-1, corresponding to a distortion 

of the ring, a C-O2 scissoring mode coupled with distortions of the ring at 748 cm-

1.  Similar to the 748 cm-1 but also including C-C stretch for the carbon in the 

COOAg group is a new vibration at 938 cm-1. 
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Figure 8.9:  Raman spectra of syringic acid (bottom) and syringic silver salt (top).  
The spectrum of the syringic salt is offset for clarity. 
  

In figure 8.10 the p-coumaric acid and its silver salt are shown.  As the p-

coumaric acid spectrum is dominated by a few intense modes, the differences 

are easier to see.   Again, all vibrations associated the O-H bending modes have 
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either changed or vanished.  Interestingly, the strongest vibrations of the 

molecule, the C=C bands, are considerably stronger due to the presence of the 

silver, almost doubling in intensity, while they are still very clearly the same 

vibration, as they have not shifted significantly in frequency.  The C-C stretching 

vibration at 1247 cm-1, which is the stretching of the bond between the ring and 

the first carbon in the chain leading the COOH group, is red-shifted and 

strengthened. 
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Figure 8.10:  Raman spectra of p-coumaric acid (bottom) and p-coumaric silver 
salt (top).  The spectrum of the syringic salt is offset for clarity. 
 
 The differences in the spectra between the molecule and the salt are 

highlighted by taking a difference, in this case defined as salt-acid, so that new 

bands in the salt are positive, and bands that were removed are negative.  This is 

shown in figure 8.11.  The differences in the spectra can be summarized as: 1)  

When the substitution of hydrogen for silver is close the ring, it is the ring modes 

that are most affected 2)  When the substitution takes places farther from the 
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ring, it is in the atoms closest to the substitution point that undergo the most 

change.  
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Figure 8.11:  Difference spectra of p-coumaric (top) and syringic (bottom). 

 The study of syringic acid is in cooperation with Dr. E. Clavijo, who ran 

infrared, Raman and SERS spectra.  This allows for comparison of the calculated 

Raman of syringic acid and the associated salt with experimental spectra of the 

molecule in solution as well as the SERS experiment.  Tables 8.4 and 8.5 show 

the Raman and infrared experimental and computational results for the molecular 

and SERS cases. 
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Calculated Intensity 
Å4/amu 

Observed 
514.5 nm 

Ag-complex  Intensity 
Å4/amu 

   SERS Vibrational assignment 

137.1 1.15 151  (7)    Structural deformation 
177.7 1.14 178  (14)    O-CH3 bending 
203.5 2.17 205  (7)    CH3 torsion 
255.2 0.72 224  (7)    O-CH3 bending 
285.0 0.39 295  (7)    CH3 torsion 
332.3 2.33 359 (18) 353.2 15.0 365 (10) Structural deformation 
363.0 11.15 383  (38)    Structural deformation 
476.5 2.29 484  (5)    O-H bending 
532.0 2.57 544  (8) 522.2 3.2 550 (13) Ring deformation 
592.3 5.04 585  (14)    O-H bending 
645.2 6.48 687  (19)    O-C-OH scissoring 
753.2 0.09 760  (1) 747.4 65.6 753(11) C-H wag 
782.7 14.15 803  (30)    Ring deformation 
856.0 0.41 842  (2)    C-H wag 
896.4 1.29 909  (10)    ip ring deformation with C-O 

stretch 
910.1 7.66 937  (22) 936.6 46.2 949 (11 ) C-C stretch 
1033.8 10.45 1032  (37) 1038.7 18.6 1038 (12) O-CH3 stretch 
1083.6 3.38 1102  (21)    C-H wag 
1133.3 2.31 1115  (8) 1100.2 14.4 1109(15) CH3 bending 
1134.6 3.06 1152  (7)    CH3 bending 
1139.0 45.73 1178  (31)    C-H bend 
1170.0 5.56 1185  (19)    C-H bend 
1175.8 7.23 1198  (66)    C-H bend 
1236.6 3.41 1238  (6)    C-H and O-H bend with ring 

deformation 
1289.3 11.47 1260  (13)    C-H and O-H bend with C-O 

stretch 
1340.6 46.54 1322  (27)    C-C stretch, C-O stretch, O-H 

bend, and ring deformation 
1378.2 2.27 1369  (24)    Ring deformation  
1411.8 3.31 1388  (12) 1349.5 24.0 1389 (86) CH3 umbrella  
1439.2 6.52 1424  (13)    CH3 umbrella and O-H bend 
1442.5 17.90 1443  (17) 1437.315 4.3498 1444(30  ) CH3 bend 
1456.0 7.43 1454  (10)    CH3 bend 
1457.9 6.60 1469  (17)    CH3 bend 
1493.9 6.22 1520  (5) 1494.8 19.3 1523 (35 ) C-O stretch and ring 

deformation 
1574.7 174.3 1593  (81) 1574.2 187.2 1591 (100) C-O stretch and ring 

deformation 
1594.7 1.35 1658 (1)    C-H bend and C=C stretch 
1732.2 109.15 1698 (100)    C=O stretch 
2905.6 132.23 2834  (6)    C-H stretch in CH3 
2912.2 144.51 2859  (6)    C-H stretch in CH3 
2962.3 55.26 2937  (8)    C-H stretch in CH3 
2971.4 53.57 2944  (14)    C-H stretch in CH3 
3033.1 134.94 2974  (8)    C-H stretch in CH3 
3034.3 128.05 3036  (29)    C-H stretch in CH3 
3120.1 41.09 3099  (6)    C-H stretch 
3127.7 48.08 3119  (2)    C-H stretch 
3638.0 92.05 3378  (3)    O-H stretch 

Table 8.4:  Observed and calculated Raman wavenumbers (cm-1) of syringic acid 
and its Ag-complex and  SERS on Ag colloids.  Experimental relative intensities 
are given in parenthesis. 
 



 

  212  
 

IR ( sol) 
cm-1 

     IR 
(dioxano) 

Calculated 
cm-1 

Intensity 
Km/mol 

   Vibrational assignment 

 528 w 514 
 

28.7 
 

Ring deformation with O-H bend 

 578 m 566 
 

2.3 
 

Ring deformation with C-H and O-H bend 

 592 m 592 
 

52.6 
 

Ring deformation with O-H bend 

 669 m 660 
 

7.9 
 

Ring Deformation 

683 m 687 vs 645 
 

107.1 
 

O-C-OH scissoring 

 769 s 753 
 

64.2 
 

C-H wag 

 864 m 856 
 

13.4 
 

C-H wag 

 908 m 910 
 

13.7 
 

Ring Deformation 

1117 vs 1116 vs 1112 
 

334.0 
 

C-O Stretch and O-H bend 

1181 s 1178 vs 1139 
 

433.2 
 

C-C stretch and O-H bend 

1203 vs 1210 vs 1200 
 

228.8 
 

C-O stretch and O-H bend 

 1247 s 1269 
 

143.3 
 

C-C stretch,  O-H bend, and C-H bend 

 1265 m 1237 
 

39.7 
 

C-C stretch,  O-H bend, and C-H bend 

 1320 s 1289 
 

28.5 
 

C-C stretch,  O-H bend, and C-H bend 

 1370 vs 1341 
 

379.9 
 

C-C stretch,  O-H bend, and C-H bend 

 1389 vs 1378 
 

49.1 
 

C-C stretch,  O-H bend, and C-H bend 

 1420 vs 1412 
 

94.1 
 

C-C stretch,  O-H bend, and C-H bend 

1464 m 1461 vs 1494 
 

134.6 
 

C-C stretch and C-H bend 

1516 s 1523 s 1575 
 

37.6 
 

C-C stretch and C-H bend 

1614 s 1620 s 1595 
 

141.6 
 

C-C stretch and C-H bend 

1717 vs 1699 vs 1732 
 

347.8 
 

C=O stretch 

 2942 m 2906 
 

51.7 
 

C-H stretch in CH3 

 2974 m 2912 
 

45.6 
 

C-H stretch in CH3 

 3030 m 3033 
 

23.2 
 

C-H stretch in CH3 

 3083 m 3034 
 

21.3 
 

C-H stretch in CH3 

3269 m 3239 s 3120 
 

2.8 
 

C-H stretch 

3364 m 3374 s 3128 
 

1.4 
 

C-H stretch 

Table 8.5:  Observed and calculated infrared spectra of syringic acid in 
wavenumbers (cm-1). : vs – very strong; s – strong; m – medium; w – weak , vw –
very weak 
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 The experimental SERS spectrum as tabulated in table 8.4 is much 

simpler than the spectrum of the molecule, and it consists of only a few bands. 

This is particularly striking for syringic acid as can be seen in figure 8.12. 

 

Figure 8.12.  Raman and SERS spectra of syringic acid. 

This is due to the directionality of the enhancement, for which the largest 

contribution is perpendicular to the nanoparticle surface.  The calculations of the 

syringic acid salt with the y-axis placed from the center of the molecule to the Ag 

atom are done, so that the yy elements of the polarizability tensor should be the 

Raman terms that are most strongly enhanced.  The calculated spectrum of the 

yy tensor elements is shown in figure 8.13, which is in good agreement with the 

tabulated values in table 8.4. 
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Figure 8.13:  Raman intensity of yy elements of polarizability tensor of p-syringic 
acid. 
 

The SERS spectra of the coumaric acid are also in good agreement with 

the modeled spectra using the silver complex. The SERS and the Raman are 

shown in figure 8.14 

 

Figure 8.14:  Raman and SERS spectra of coumaric acid.
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D.  PTCDA 

The vibrational analysis of 3,4,9,10-perylene-tetracarboxylic-dianhydride 

(PTCDA) dye is presented here, as a supplement to the use of the molecule in 

SEIRA, detailed in chapter 7.  PTCDA is a molecule with 38 atoms (C24H8O6), 

and thus 108 (3N-6) vibrational degrees of freedom, although, as said before, the 

molecule has an inversion centre, causing only 46 of the vibrations to be infrared 

actve.  Calculations were performed at the B3LYP/6-31g(d) level of theory, using 

the Gaussian 98 suite of programs25.  Harmonic frequencies and infrared 

intensities were also taken, with the frequencies uniformly scaled by a factor of 

0.961434. Table 8.4 includes the scaled frequencies, infrared intensities,  

symmetry group, and character of the major infrared bands.  6 bands with 

relative intensities less than 0.001 are neglected. 

 The calculated spectrum is seen in figure 8.12.  It can be roughly divided 

into 5 spectral regions:  1) delocalized deformations of the PTCDA backbone, the 

chromophore.  2)  C-H bending 3) C-C stretching, or deformations of the rings 4) 

C=0 stretching 5) C-H stretching.  Although there are a few bands which do not 

conform to this classification, most modes associated with each spectral region 

can be generalized.   This can be seen in figure 8.12, where these regions are 

labelled. 

There are 10 b3u modes, corresponding to out of plane vibrations of 

PTCDA.  The two highest regions of intensity are the C=C stretching modes (2), 

and the C=O stretching modes (3), none of which can be b3u.  The highest 

intensity b3u mode is number twenty, with a relative intensity of 1%.  The higher 

intensity in-plane modes, including the stretching vibrations, are distributed 

between the b1u  and b2u symmetry groups. 
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Table 8.6:  Calculated Infrared frequencies and intensities for PTCDA at 
B3LYP/6-31g(d) level of theory.  oop and ip are acronyms designating “out of 
plane” and “in plane”, respectively. 
 

Scaled 
Frequency 
(cm-1) 

Infrared 
Intensity 
(Km/mole) 

Relative 
Intensity Symmetry Character 

36.4 5.69 0.004 b3u oop chromophore deformation along long axis 
129.7 2.46 0.002 b3u oop chromophore deformation along short axis 
135.3 6.67 0.005 b2u ip chromophore deformation 
183.1 6.78 0.005 b3u oop chromophore deformation along short axis 
206.2 4.88 0.003 b3u oop chromophore deformation along long axis 
333.9 3.16 0.002 b2u ip chromophore deformation 
362.3 38.82 0.027 b1u O=C-C-C-H scissoring 
426.5 12.66 0.009 b2u ip chromophore deformation 
432.3 17.44 0.012 b1u ip chromophore deformation 
491.2 3.90 0.003 b1u ip chromophore deformation 
557.9 11.32 0.008 b3u oop chromophore deformation 
593.4 2.16 0.002 b2u ip chromophore deformation 
621.3 6.14 0.004 b1u ip chromophore deformation 
702.3 58.25 0.041 b3u oop chromophore deformation with C-H wag 
738.2 12.13 0.009 b2u ip chromophore deformation 
742.2 15.84 0.011 b3u oop chromophore deformation 
779.1 18.54 0.013 b1u ip chromophore deformation 
831.7 72.56 0.051 b3u Fully symmetric C-H wag oop 
921.8 2.51 0.002 b2u H-C-C-H scissoring 
954.7 1.39 0.001 b3u oop C-H wag 

1028.6 503.42 0.356 b2u C-O stretch 
1106.5 297.76 0.211 b1u H-C-C-H scissoring 
1126.4 66.41 0.047 b1u ip C-H wag 
1127.8 89.63 0.063 b2u C-H rocking ip with C-C stretch 
1217.7 78.84 0.056 b2u C-H rocking ip with C-C stretch 
1271.9 770.81 0.545 b1u  C-H rocking ip with C-C stretch 
1278.6 9.99 0.007 b2u C-C stretch 
1331.0 17.66 0.012 b1u  C-C stretch with C-H wag ip 
1386.6 74.74 0.053 b1u  ring deformation with C-H rocking ip 
1401.2 19.63 0.014 b1u ring deformation with C-H rocking ip 
1460.7 1.23 0.001 b2u ring deformation with C-H rocking ip 
1495.9 31.23 0.022 b2u ring deformation with C-H rocking ip 
1567.2 32.19 0.023 b1u ring deformation with C-H rocking ip 
1581.6 550.33 0.389 b1u ring deformation 
1581.6 19.49 0.014 b2u ring deformation 
1750.9 740.76 0.524 b2u C=O stretch 
1782.1 1414.26 1.000 b1u C=O stretch 
3097.5 6.73 0.005 b1u C-H stretch 
3104.0 1.41 0.001 b2u C-H stretch 
3121.2 12.35 0.009 b2u C-H stretch 
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Figure 8.15.  Computed infrared spectrum of PTCDA at B3LYP/6-31g(d), with 
classification of bands according to character.   
 

 The quantum mechanical calculations presented in this chapter form a 

vital part of surface enhanced spectroscopy.  Ab initio Raman and infrared 

frequencies, intensities, and symmetry groups are a natural part of vibrational 

spectroscopy, and a complete vibrational analysis is the usual first step towards 

understanding the changes in the spectra that may be brought about by packing 

(alanates), chemical interactions (syringic and p-coumaric acids), and selection 

rules (PTCDA).  The three examples presented here provide the molecular part 

of the process that includes light, nanoparticles, and molecules, known as 

surface enhanced spectroscopy. 
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CONCLUSION 

The study of the localized surface plasmon resonances, known as the field 

of plasmonics, is an exciting mix of the old and the new.  The basic theory has 

been around for a century, but it is only with modern technology that the 

experiment and theory have blossomed.  The basic tools of plasmonics is 

classical electrodynamics, but the understanding and visualization of the 

plasmon comes from rigorous and high level computation, made possible by 

modern computing power.  At the same time, there is unprecedented 

development of nanoparticle synthesis methods, both chemical and physical, as 

well as a host of scanning probe microscopy methods, electron microscopy and 

near field microscopy that have sufficient resolution to be able to detect and 

characterize these nanostructures.  Experimentally, plasmon resonances of a 

single nanoparticle have been measured and the near field of nanostructured 

materials can be probed. The experiments are also pointing to the unique 

electromagnetic properties of aggregated nanostructures, nanoholes and 

nanojunctions.  The latter is an enormous challenge to advance our 

understanding of these phenomena. Clearly, experiment and theoretical 

modeling implemented through computation are progressing together at a rapid 

pace. 

Surface-enhanced spectroscopy combines three elements: the 

electromagnetic radiation, the molecular system and the nanostructure. The 

interaction of the electromagnetic radiation with the molecular system leads to 

the molecular spectra. The computational tools for this task has been used and 

illustrated for a variety of molecular systems and clusters. The interaction of 

electromagnetic radiation with nanostructures has been approached using 

classical electrodynamics to account for the enhanced properties in the near field 

and the far field (scattering, extinction and absorption). Here, a set of programs 

for the computational work were developed in-house and they are an important 

part of the results of this dissertation.   While this work can be summarized well 

by the title, the problem of optical properties of nanoparticles does not have a 

“one size fits all” solution.  Spatial descritization methods such as DDA certainly 
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have a place, they represent the ability to model, although some fundamental 

features of the physical phenomena may be lost in the drive to provide model 

results.  The Mie solution, and variations upon it presented here, provides a 

sound theoretical basis, although these theories themselves are not without 

serious limitations.  The basic notion of this work was to attack the problem from 

both of these directions, and to develop a continuum of techniques for the 

understanding of plasmon resonances properties. 

The difficulty is further compounded when studying the coupling of the 

molecule with the nanostructured material under the excitation of the 

electromagnetic radiation: the case of surface enhanced vibrational 

spectroscopy.  While a molecular excitation may be treated as a classical 

oscillator, given a bandshape, and modeled, it is important to look for a better 

method.  Unfortunately, the molecule is a quantum object, and understanding the 

interaction between a particle containing millions of atoms, and perhaps tens of 

millions of electrons, and a molecule is not possible within a quantum framework.  

While there have been studies of molecule-small cluster interactions,1,2 these are 

only the beginning of what is required to treat nanoparticle-molecule interactions 

in a consistent way.  Rather than attempt to treat them together, in this work, the 

molecule and the particle are treated separately:  the particle through classical 

electrodynamics, obtaining field enhancements, and the molecule through 

quantum optics or quantum chemistry.  The use of quantum chemistry reveals 

changes in the spectra due to chemical effects, while the quantum optics 

provides a framework for understanding the spectrum within a unified formulation 

including both electronic and vibrational transitions. 

The use of the exact methodology here has been employed to model 

nanoshells grown specifically as SERS substrates3, and as well, the approximate 

methods, including the use of coupled dipole equations to treat SERS due to 

interacting particles4.  In addition, the use of quantum chemical methods is a 

valuable aid to the understanding of vibrational spectra of a variety of 

molecules5,6, and enhanced spectra, especially detailing the additionally 
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complexity brought about by considering surface selection rules7,8, effects of 

clustering9, and adsorption to a metal10. 

Surface enhanced spectroscopy is enjoying an exponential growth, and its 

applications encompass biology, medicine, chemistry, physics and materials 

science. The analytical applications in trace analysis and single molecule 

detection are flourishing, and at the same there are valuable contributions to 

basic science, particularly in the development of macroscopic physics.  

Manipulating molecules and nanostructures is now a reality.  However, there is a 

new physics in the nanometer length scales, new properties and many physical 

and chemical concepts of macroscopic behaviour waiting to be redefined.   With 

the new developments in instrumentation and theory, the increasing research 

efforts in the nanoscale seems to indicate that the future looks bright indeed. 
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APPENDICIES 

A.  Coupled Dipole Equation Program for C++. 
//Uses c++ due to the math library.  make sure to run c++. 
//compiler name is g++ on most linux machines. 
//This version is for the non-static case. 
//VERSION 2.2. 
#include<stdio.h> 
#include<stdlib.h> 
#include<cmath> 
#include<complex> 
#include <time.h> 
using std::complex; 
//long double inner_prod(complex<long double> *a,int size); 
int main(void) 
{ 
const long double pi=3.14159; 
//Variable Definition 
time_t start,end;long double dif; 
int N; 
int alpha;int beta; 
int dim_a;int dim_b; 
long double R_diff[3]; 
long double R_abs; 
long double E[3]; 
long double n[3]; 
long double E_3_mag_sq; 
int i;int j;int wavelengther; 
int wavelengths; 
time (&start); 
//File operations. 
FILE *input;FILE *output; 
 
if ((input=fopen("input.txt","r"))==NULL) 
 printf("Unable to open input deck\n Please see readme."); 
else 
{ 
if ((output=fopen("output.txt","w"))==NULL) 
 printf("Unable to open output file.  \n Please see readme."); 
else 
{ 
printf("Welcome to Daniel's CDE program\n"); 
fprintf(output,"Welcome to Daniel's CDE program\n\n"); 
fprintf(output,"This Program is the Property of Daniel J. Ross, 
Theoretician of Theoreticians.\n"); 
fprintf(output,"Look on This Program, Ye Experimentalists, and 
Despair.\n\n"); 
//Read all variables from input deck. 
//Number of particles. 
fscanf(input, "%d\n",&N); 
fprintf(output,"Number of particles=%d\n\n",N); 
//Can now define everything that depends on the number of particles. 
long double R[N][3]; 
complex<long double> E_3N[3*N]; 
complex<long double> x_old[3*N]; 
fprintf(output,"       Particle Positions\n"); 
fprintf(output,"    x       y       z\n"); 
//Positions of particles. 
for (i=0;i<N;i++) 
 { 
 fscanf(input, "%Lf%Lf%Lf",&R[i][0],&R[i][1],&R[i][2]); 
 fprintf(output,"%Lf %Lf %Lf \n", R[i][0],R[i][1],R[i][2]); 
 } 
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//E-field in 3 space. 
fscanf(input,"%Lf %Lf %Lf",&E[0],&E[1],&E[2]); 
fprintf(output,"\nEfield in 3 space = %Lf %Lf %Lf\n",E[0],E[1],E[2]); 
//n in 3 space (unit vector of k) 
fscanf(input,"%Lf %Lf %Lf",&n[0],&n[1],&n[2]); 
fprintf(output,"\nUnit propogation vector in 3 space = %Lf %Lf 
%Lf\n",n[0],n[1],n[2]); 
//read in polarizability and wavelength.  First read in number of 
frequencies. 
fscanf(input,"%d",&wavelengths); 
fprintf(output,"number of wavelengths = %d\n\n",wavelengths); 
fprintf(output,"Extinction coefficient (cm^2) and wavelength (nm)\n"); 
printf("\nStarting CG algorithm.  Please be patient.\n\n"); 
for (wavelengther=0;wavelengther<wavelengths;wavelengther++) 
 { 
 double pol_r;double pol_i;double lambda; 
 fscanf(input,"%lf %lf %lf",&pol_r,&pol_i,&lambda); 
 //calculate inverse polarizability directly. 
 complex <long double> pol(pol_r/(pol_r*pol_r+pol_i*pol_i),-
pol_i/(pol_r*pol_r+pol_i*pol_i)); 
 //fprintf(output,"\nFirst frequency at Polarizability = %lf+%lfI\n 
at wavelength %lf nm\n", real(pol),imag(pol),lambda); 
 long double k1=2*pi/lambda; 
 complex <long double> C[3*N][3*N]; 
 long double k_r; 
 //Build the interaction matrix. 
 for (i=0;i<N;i++) 
  { 
  complex <long double> 
exponent_term1(0.0,k1*n[0]*R[i][0]+k1*n[1]*R[i][1]+k1*n[2]*R[i][2]); 
  for (alpha=0;alpha<3;alpha++) 
   { 
   dim_a=3*i+alpha; 
   E_3N[dim_a]=E[alpha]*exp(exponent_term1); 
   for (j=0;j<N;j++) 
    { 
    R_abs=sqrt((R[i][0]-R[j][0])*(R[i][0]-
R[j][0])+(R[i][1]-R[j][1])*(R[i][1]-R[j][1])+(R[i][2]-R[j][2])*(R[i][2]-
R[j][2])); 
    for (beta=0;beta<3;beta++) 
    { 
    //First calculate A and B 
    dim_b=3*j+beta; 
    if (i==j) 
     { 
     C[dim_a][dim_b]=0; 
     } 
    else 
     { 
     k_r=k1*R_abs; 
     if (alpha==beta) 
      { 
      R_diff[alpha]=R[i][alpha] 
R[j][alpha]; 
      complex <long double> 
exponent_term(0.0,k_r); 
      complex <long double> 
A_term(pow(k_r,-1)-pow(k_r,-3),pow(k_r,-2)); 
      complex <long double> 
A=A_term*exp(exponent_term); 
      complex <long double> B_term(-
pow(k_r,-1)+3.0*pow(k_r,-3),-3.0*pow(k_r,-2)); 
      complex <long double> 
B=B_term*exp(exponent_term); 
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      C[dim_a][dim_b]=k1*k1*k1*(-A-
B*R_diff[alpha]*R_diff[beta]/(R_abs*R_abs)); 
      }      
     else 
      { 
      R_diff[alpha]=R[i][alpha]-
R[j][alpha]; 
      R_diff[beta]=R[i][beta]-R[j][beta]; 
      complex <long double> 
exponent_term(0.0,k_r); 
      complex <long double> B_term(-
pow(k_r,-1)+3.0*pow(k_r,-3),-3.0*pow(k_r,-2)); 
      complex <long double> 
B=B_term*exp(exponent_term); 
      C[dim_a][dim_b]=k1*k1*k1*(-
B*R_diff[alpha]*R_diff[beta]/(R_abs*R_abs)); 
      } 
     } 
      
    } 
   } 
  } 
 } 
//fprintf(output,"\nThe interaction Matrix, C\n"); 
for (i=0;i<3*N;i++) 
 { 
 for (j=0;j<3*N;j++) 
  { 
  if (i==j) 
   C[i][j]=pol; 
  //fprintf(output,"%Lf %Lfi ",real(C[i][j]),imag(C[i][j])); 
  } 
 //fprintf(output,"\n"); 
 } 
//fprintf(output,"\n\nEfield in 3N space is:\n"); 
for (i=0;i<3*N;i++) 
 { 
 //fprintf(output,"%Lf%+f ",real(E_3N[i]),imag(E_3N[i])); 
 } 
//fprintf(output,"\n\n"); 
 //The CG algorithm  
 //Variable declaration first. 
complex <long double> z[3*N]; 
complex <long double> x_new[3*N]; 
complex <long double> w_old[3*N];complex <long double> w_new[3*N]; 
complex <long double> g_old_part[3*N];complex <long double> 
g_new_part[3*N]; 
complex <long double> g_old[3*N];complex <long double> g_new[3*N]; 
complex <long double> p_old[3*N];complex <long double> p_new[3*N]; 
complex <long double> v_old_part[3*N];complex <long double> 
v_new_part[3*N]; 
complex <long double> v_old[3*N];complex <long double> v_new[3*N]; 
long double alpha_N; 
long double alpha_D; 
long double alpha; 
long double beta_N; 
long double beta_D; 
long double beta; 
complex <long double> x_diff; 
if (wavelengther==0) 
{  
 //fprintf(output,"\n Born guess for first point"); 
 for (i=0;i<3*N;i++) 
  { 
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  complex <long double> erect_pol(pol_r,pol_i); 
  x_old[i]=erect_pol*E_3N[i]; 
  /*fprintf(output,"\n%Lf 
%Lf\n",real(x_old[i]),imag(x_old[i]));*/ 
  } 
} 
for (i=0;i<3*N;i++) 
 { 
 z[i]=0.0; 
 w_old[i]=0.0; 
  for (j=0;j<3*N;j++) 
  { 
  z[i] += conj(C[i][j])*E_3N[j]; 
  w_old[i] +=C[i][j]*x_old[j]; 
  } 
 //fprintf(output,"%Lf+%Lf ",real(z[i]),imag(z[i])); 
 } 
 for (i=0;i<3*N;i++) 
  { 
  g_old[i]=0.0; 
  g_old_part[i]=0.0; 
  for (j=0;j<3*N;j++) 
   g_old_part[i] +=conj(C[i][j])*w_old[j]; 
  g_old[i]=z[i]-g_old_part[i]; 
  p_old[i]=g_old[i]; 
  } 
 //fprintf(output,"\n\n"); 
 for (i=0;i<3*N;i++) 
  { 
  v_old[i]=0.0; 
  for (j=0;j<3*N;j++) 
   v_old[i] +=C[i][j]*g_old[j]; 
  } 
 /*fprintf(output,"Punching CG vectors initial vectors in column 
format\n"); 
 fprintf(output,"        x0                  g0                w0                 
v0\n"); 
 for (i=0;i<3*N;i++) 
  { 
  fprintf(output,"%Lf %LfI  ",real(x_old[i]),imag(x_old[i])); 
  fprintf(output,"%Lf %LfI  ",real(g_old[i]),imag(g_old[i])); 
  fprintf(output,"%Lf %LfI  ",real(w_old[i]),imag(w_old[i])); 
  fprintf(output,"%Lf %LfI  ",real(v_old[i]),imag(v_old[i])); 
  fprintf(output,"\n"); 
  }*/ 
 int counter=0; 
 x_diff=1.0;  
 while (real(x_diff)>0.002) 
  { 
  counter++; 
  alpha_N=0.0; 
  alpha_D=0.0; 
  beta_N=0.0; 
  beta_D=0.0; 
  for (i=0;i<3*N;i++) 
   { 
   x_new[i]=0.0; 
   w_new[i]=0.0; 
   g_new_part[i]=0.0; 
   g_new[i]=0.0; 
   p_new[i]=0.0; 
   v_new_part[i]=0.0; 
   v_new[i]=0.0; 
   x_diff=0.0; 
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 alpha_N+=real(g_old[i])*real(g_old[i])+imag(g_old[i])*imag(g_old[i
]); 
  
 alpha_D+=real(v_old[i])*real(v_old[i])+imag(v_old[i])*imag(v_old[i
]); 
   } 
  beta_D=alpha_N; 
  alpha=alpha_N/alpha_D; 
  if (alpha_D==0.0)  
   { 
   alpha=0.0; 
   } 
  for (i=0;i<3*N;i++) 
   { 
   x_new[i]=x_old[i]+alpha*p_old[i]; 
   w_new[i]=w_old[i]+alpha*v_old[i]; 
   x_diff+=abs(alpha*p_old[i]); 
   } 
  for (i=0;i<3*N;i++) 
   { 
   g_new_part[i]=0.0; 
   for (j=0;j<3*N;j++) 
    { 
    g_new_part[i]+=conj(C[i][j])*w_new[j]; 
    } 
   g_new[i]=z[i]-g_new_part[i]; 
   } 
  for (i=0;i<3*N;i++) 
   { 
  
 beta_N+=real(g_new[i])*real(g_new[i])+imag(g_new[i])*imag(g_new[i]
); 
   } 
  beta=beta_N/beta_D; 
  if (beta_D==0.0)  
   { 
   beta=0.0; 
   } 
  for (i=0;i<3*N;i++) 
   { 
   p_new[i]=g_new[i]+beta*p_old[i]; 
   v_new_part[i]=0.0; 
   for (j=0;j<3*N;j++) 
    { 
    v_new_part[i]+=C[i][j]*g_new[j]; 
    } 
   v_new[i]=v_new_part[i]+beta*v_old[i]; 
   g_old[i]=g_new[i];//Reassignment of 'new' to old, to 
restart iteration. 
   v_old[i]=v_new[i]; 
   x_old[i]=x_new[i]; 
   w_old[i]=w_new[i]; 
   p_old[i]=p_new[i]; 
   } 
  /*fprintf(output,"Punching CG vectors vectors at each 
iteration, in column format\n"); 
  fprintf(output,"alpha%d= %Lf, beta%d= %Lf, x_diff=%Lf 
\n",counter-1,alpha,counter-1,beta,real(x_diff)); 
  fprintf(output,"beta_N=%LE beta_D=%LE \n",beta_N,beta_D); 
  fprintf(output,"        x%d                  g%d                
p%d             w%d                 
v%d\n",counter,counter,counter,counter,counter); 
  for (i=0;i<3*N;i++) 
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   { 
   fprintf(output,"%Lf %LfI  
",real(x_old[i]),imag(x_old[i])); 
   fprintf(output,"%Lf %LfI  
",real(g_old[i]),imag(g_old[i])); 
   fprintf(output,"%Lf %LfI  
",real(p_old[i]),imag(p_old[i])); 
   fprintf(output,"%Lf %LfI  
",real(w_old[i]),imag(w_old[i])); 
   fprintf(output,"%Lf %LfI  
",real(v_old[i]),imag(v_old[i])); 
   fprintf(output,"\n"); 
   } 
  fprintf(output,"\n");*/ 
  } 
 long double C_ext_term;long double C_ext; 
 C_ext_term=0.0; 
 for (i=0;i<3*N;i++) 
  C_ext_term+=imag(x_new[i]*conj(E_3N[i])); 
 E_3_mag_sq=E[0]*E[0]+E[1]*E[1]+E[2]*E[2]; 
 C_ext=C_ext_term*8.00000*pi*pi/E_3_mag_sq/lambda/100000000000000; 
 //fprintf(output,"The extinction cross section at %Lf is (in cm2): 
\n",lambda); 
 fprintf(output,"%lf %Le\n",lambda,C_ext); 
 printf("The number of iterations at frequency %lf is 
%d\n",lambda,counter); 
}//This brace closes the frequency iteration.  
fprintf(output,"Attempt to have a good day\n"); 
time (&end); 
dif = difftime (end,start); 
fprintf(output,"\nThe program took %.2f seconds to run",dif); 
printf("Don't look here.  look for output.txt\n"); 
}//This brace closes the if statement for file closing. 
} //This brace closes the if statement for file opening. 
return 0; 
} 
/*long double inner_prod(complex<long double> *a,int size) 
{//This function is for the magnitude of the unknown size complex vector 
 long double ip=0.0f; 
 for (int i=0;i<size;i++) 
  ip+=100*real(a[i])*real(a[i])+100*imag(a[i])*imag(a[i]); 
 return ip/100; 
}*/ 
 
 
//requires input deck in same directory, called input.txt 
//input file contains N, blank line, particle list in carts. 
//output will be called output.txt 
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B. Mie Scattering, Extinction, and Near Field  Calculations in Maple 
 

The purpose of this worksheet is to do Mie calculations for metal 
nanospheres.  The result is either integrated scattering cross sections, 
extinction cross sections, and when the difference is taken, absorption 
cross sections.  Finally, this also calculates field intensities, both 
frequency dependent, and a map over a surface. 
The assumptions take here are: 
 
Non-Magnetic material, 
Well seperated Spheres. 
 
Also, if the size factors get too big, the calculation will start taking 
long periods of time, but this program is very useful for spheres in the 
nm range, for optical wavelengths. 
> restart; 
We define the region of interest, v is in nm.We define the particle 
size, the index of refraction of the host medium.  Then bring in the 
dielectric function, and take the square root to get the index of 
refraction.  Also compute all size factors, and set the number of terms 
for convergence, from B&H.  
> reader:=readdata("c:/daniel/input 
data/silveruv.int",2):vstart:=350;vstop:=700;radius:=10;N0:=1;for v from 
vstart to vstop do e1:=reader[v-199,1]+I*reader[v-
199,2];m1[v]:=sqrt(e1)/N0;k[v]:=evalf(2*Pi*N0/v);x1[v]:=k[v]*radius;mx[v
]:=x1[v]*m1[v];od:x_max:=k[vstart]*radius;nend:=round(x_max+4*x_max^(1/3
)+1); 
Define the Associated Legendre polynomials, and thus the spherical 
harmonics by recursion. 
> LegendreP2[0,0]:=1;LegendreP2[1,0]:=cos(theta);LegendreP2[1,1]:=-
sin(theta);for n from 2 to nend+1 do LegendreP2[n,n]:= simplify((-
1)^n*doublefactorial(2*n-1)*(sin(theta))^n);LegendreP2[n,n-
1]:=cos(theta)*(2*(n-1)+1)*LegendreP2[n-1,n-1];for m from 0 to n-2 do 
LegendreP2[n,m]:=simplify(1/(n-m)*(cos(theta)*(2*n-1)*LegendreP2[n-1,m]-
(n+m-1)*LegendreP2[n-2,m]));od;od:for n from 1 to nend+1 do for m from 1 
to n do LegendreP2[n,-m]:=LegendreP2[n,m]*(-1)^m*(n-m)!/(n+m)!;od;od;for 
n from 0 to nend+1 do for m from -n to n do LegendrePD[n,m]:= 
diff(LegendreP2[n,m],theta); dummy[n,m]:=sqrt((2*n+1)/4/Pi*(n-
m)!/(n+m)!)*LegendreP2[n,m]*exp(I*m*phi);dummy2[n,m]:=sqrt((2*n+1)/4/Pi*
(n-
m)!/(n+m)!)*LegendrePD[n,m]*exp(I*m*phi);LegendreP3[n,m]:=unapply(Legend
reP2[n,m],theta);Legendre_o_s[n,m]:=LegendreP3[n,m](theta)/sin(theta);Le
gendre_o_sin[n,m]:=unapply(Legendre_o_s[n,m],theta);LegendreP3D[n,m]:=un
apply(LegendrePD[n,m],theta);Y[n,m]:=unapply(dummy[n,m],theta,phi);YD[n,
m]:=unapply(dummy2[n,m],theta,phi);Y_o_sin_times_m[n,m]:=unapply(m*Y[n,m
](theta,phi)/sin(theta),theta,phi);od:od: 
Define plane wave expansion coefficients,  
> theta1:=0;phi1:=0;for n from 1 to nend do for m from -n to n do 
C[m,n,1]:=simplify(2*Pi*I^n/n/(n+1)*(-(I*E0[1]-E0[2])*sqrt((n+m+1)*(n-
m))*(-1)^(m+1)*Y[n,-m-1](theta1,phi1)-(I*E0[1]+E0[2])*sqrt((n-
m+1)*(n+m))*(-1)^(m-1)*Y[n,-m+1](theta1,phi1)+2*I*m*E0[3]*(-1)^m*Y[n,-
m](theta1,phi1))); 
C[m,n,2]:=simplify(2*Pi*I^n/n/(n+1)*(n*sqrt((n+m+1)*(n+m+2)/(2*n+1)/(2*n
+3))*(I*E0[1]-E0[2])*(-1)^(m+1)*Y[n+1,-m-1](theta1,phi1)-n*sqrt((n-
m+1)*(n-m+2)/(2*n+1)/(2*n+3))*(I*E0[1]+E0[2])*(-1)^(m-1)*Y[n+1,-
m+1](theta1,phi1)-(n+1)*sqrt((n-m-1)*(n-m)/(2*n-1)/(2*n+1))*(-
I*E0[1]+E0[2])*(-1)^(m+1)*Y[n-1,m+1](theta1,phi1)-(n+1)*sqrt((n+m-
1)*(n+m)/(2*n-1)/(2*n+1))*(I*E0[1]+E0[2])*(-1)^(m-1)*Y[n-1,-
m+1](theta1,phi1)+2*I*E0[3]*(n*sqrt((n+m+1)*(n-m+1)/(2*n+1)/(2*n+3))*(-
1)^m*Y[n+1,-m](theta1,phi1)-(n+1)*sqrt((n+m)*(n-m)/(2*n-1)/(2*n+1))*(-
1)^m*Y[n-1,-m](theta1,phi1))));od;od; psi:=(n,x)-
>(sqrt(Pi*x/2)*BesselJ(n+1/2,x)):chi:=(n,x)-
>(sqrt(Pi*x/2)*BesselY(n+1/2,x)): j1:=(n,x)-
>(sqrt(Pi/(2*x))*BesselJ(n+1/2,x)): psiD:=(n,x)-
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>1/4*2^(1/2)/(Pi*x)^(1/2)*BesselJ(n+1/2,x)*Pi+1/2*2^(1/2)*(Pi*x)^(1/2)*(
-BesselJ(n+3/2,x)+(n+1/2)/x*BesselJ(n+1/2,x)): chiD:=(n,x)-
>1/4*2^(1/2)/(Pi*x)^(1/2)*BesselY(n+1/2,x)*Pi+1/2*2^(1/2)*(Pi*x)^(1/2)*(
-BesselY(n+3/2,x)+(n+1/2)/x*BesselY(n+1/2,x)):                                 
xiD:=(n,x)->psiD(n,x)+I*chiD(n,x):                                      
unassign('n','x','dummy');     h1[0]:=unapply(-
I*exp(I*x)/x,x):xi[0]:=unapply(-I*exp(I*x),x):                        
h1[1]:=unapply(-exp(I*x)*(1+I/x)/x,x): xi[1]:=unapply(-
exp(I*x)*(1+I/x),x):h1D[0]:=unapply(exp(I*x)*(x+I)/x^2,x):xiD[0]:=unappl
y(simplify(h1[0](x)+x*h1D[0]),x): h1D[1]:=unapply(-exp(x*I)*(x^2*I-2*x-
2*I)/x^3,x):xiD[1]:=unapply(simplify(h1[1](x)+x*h1D[1]),x):h1D2[1]:=unap
ply(h1[1](x)+x*h1D[1](x),x):for dummy from 1 to nend do 
h1[dummy+1]:=unapply(simplify((2*dummy+1)/x*h1[dummy](x)-h1[dummy-
1](x)),x); xi[dummy+1]:=unapply(simplify(x*h1[dummy+1](x)),x); 
h1D[dummy]:=unapply(simplify(1/2*(h1[dummy-1](x)-h1[dummy](x)/x-
h1[dummy+1](x))),x); 
xiD[dummy]:=unapply(simplify(h1[dummy](x)+x*h1D[dummy](x)),x); 
h1D2[dummy]:=unapply(simplify(h1[dummy](x)+x*h1D[dummy](x)),x):od: 
Calculate Mie Coefficients.  Calculate terms numerically first, as they 
are repeated.  Writing these down seems anticlimatic after the previous 
definitions, but that work makes this section easy. 
> for v from vstart to vstop do for n from 1 to nend do 
Pmx:=evalf(psi(n,mx[v]));Px:=evalf(psi(n,x1[v]));PDx:=evalf(psiD(n,x1[v]
));PDmx:=evalf(psiD(n,mx[v]));Xx:=evalf(xi[n](x1[v]));XDx:=evalf(xiD[n](
x1[v])); a_mie[v,n]:=(m1[v]*PDx*Pmx-Px*PDmx)/(m1[v]*XDx*Pmx-Xx*PDmx); 
b_mie[v,n]:=(m1[v]*Px*PDmx-PDx*Pmx)/(m1[v]*Xx*PDmx-XDx*Pmx);od;od; 
Calculate the cross sections. 
> for v from vstart to vstop do for n from 1 to nend do 
Cterm[n,v]:=10^(-
14)*evalf(2*Pi/k[v]^2)*(2*n+1)*((abs(a_mie[v,n]))^2+(abs(b_mie[v,n]))^2)
; Exterm[n,v]:=10^(-
14)*evalf(2*Pi/k[v]^2)*(2*n+1)*Re(a_mie[v,n]+b_mie[v,n]);od; 
unassign('dummy');Csca[v]:=sum(Cterm[dummy,v],dummy=1..nend);Cext[v]:=su
m(Exterm[dummy,v],dummy=1..nend);Cabs[v]:=Cext[v]-
Csca[v];od:Sca_plot:=[seq([v,Csca[v]],v=vstart..vstop)]:Ext_plot:=[seq([
v,Cext[v]],v=vstart..vstop)]:Abs_plot:=[seq([v,Cabs[v]],v=vstart..vstop)
]: 
> plot([Ext_plot,Sca_plot,Abs_plot]); 
>writedata("E:/diss/organized/5_results/Mie_isolated/silver_30nm_ext.prn
",Ext_plot,float);writedata("E:/diss/organized/5_results/Mie_isolated/si
lver_30nm_sca.prn",Sca_plot,float);writedata("E:/diss/organized/5_result
s/Mie_isolated/silver_30nm_abs.prn",Abs_plot,float); 
Field Spectra Calculations.  Choose the point of interest, and the 
electric field.  The light, by default, is from the z, which is assumed.  
The field is calculated only the xy plane. 
>with(LinearAlgebra):unassign('dummy');dimen:=sum(2*dummy+1,dummy=1..nen
d);E0:=Vector(3,[1,0,0]);point_of_int:=Vector(3,[radius,0,0]);rf:=Norm(p
oint_of_int,2);phi:=arctan(point_of_int[2],point_of_int[1]);theta:=Pi/2;
spher_to_cart:=Matrix(3,[[sin(theta)*cos(phi),cos(theta)*cos(phi),-
sin(phi)],[sin(theta)*sin(phi),cos(theta)*sin(phi),cos(phi)],[cos(theta)
,-sin(theta),0]]):                                                                                      
for v from vstart to vstop do T[v]:=Vector[row](2*dimen); for p to 2 do 
for n to nend do if p=1 then mie_term:=b_mie[v,n];else 
mie_term:=a_mie[v,n];fi;for m from -n to n do T[v][dimen*p-
dimen+n*(n+1)+m]:=evalf(mie_term*C[m,n,p]);od;od;od;for n from 1 to nend 
do for m from -n to n do 
VSH3[v,m,n,1]:=evalf(Vector(3,[0,I*Y_o_sin_times_m[n,m](theta,phi)*h1[n]
(k[v]*rf),YD[n,m](theta,phi)*h1[n](k[v]*rf)]));VSH3[v,m,n,2]:=evalf(Vect
or(3,[n*(n+1)*h1[n](k[v]*rf)/k[v]/rf*Y[n,m](theta,phi),-
h1D2[n](k[v]*rf)/k[v]/rf*YD[n,m](theta,phi),I*Y_o_sin_times_m[n,m](theta
,phi)*h1D2[n](k[v]*rf)/k[v]/rf]));for dummy from 1 to 2 do 
VSH3_cart[v,m,n,dummy]:=spher_to_cart 
.VSH3[v,m,n,dummy];od;od;od;WE3:=Matrix(2*dimen,3):for p from 1 to 2 do 
for n from 1 to nend do for m from -n to n do for dummy from 1 to 3 do 
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WE3[dimen*(p-
1)+n*(n+1)+m,dummy]:=simplify(VSH3_cart[v,m,n,p][dummy]);od;od;od;od;Es[
v]:=T[v] 
.WE3;Es_mag[v]:=Norm(Es[v],2);od:Es_spec:=[seq([v,Es_mag[v]],v=vstart..v
stop)]:writedata("E:/diss/organized/5_results/Mie_isolated/silver_30nm_f
ield.prn",Es_spec,float); 
Field Calculations:  Map.  At a specific frequency, calculate field at 
points on a grid.  Because of the symmetry, we only need a 1/4 grid.  
The radius must be an integer or half integer. 
> v:=350;T[v]:=Vector[row](2*dimen); for p to 2 do for n to nend do if 
p=1 then mie_term:=b_mie[v,n];else mie_term:=a_mie[v,n];fi;for m from -n 
to n do T[v][dimen*p-
dimen+n*(n+1)+m]:=evalf(mie_term*C[m,n,p]);od;od;od;unassign('dummy');di
men:=sum(2*dummy+1,dummy=1..nend);E0:=Vector(3,[1,0,0]);for x from 0 to 
2*radius do print(x);for y from 0 to 2*radius do 
phi:=arctan(y,x);rf:=evalf(sqrt(x^2+y^2));if rf>radius then 
spher_to_cart:=evalf(Matrix(3,[[cos(phi),0,-
sin(phi)],[sin(phi),0,cos(phi)],[0,-1,0]])):for n from 1 to nend do for 
m from -n to n do 
VSH3[v,m,n,1]:=evalf(Vector(3,[0,I*Y_o_sin_times_m[n,m](theta,phi)*h1[n]
(k[v]*rf),YD[n,m](theta,phi)*h1[n](k[v]*rf)]));VSH3[v,m,n,2]:=evalf(Vect
or(3,[n*(n+1)*h1[n](k[v]*rf)/k[v]/rf*Y[n,m](theta,phi),-
h1D2[n](k[v]*rf)/k[v]/rf*YD[n,m](theta,phi),I*Y_o_sin_times_m[n,m](theta
,phi)*h1D2[n](k[v]*rf)/k[v]/rf]));for dummy from 1 to 2 do 
VSH3_cart[v,m,n,dummy]:=spher_to_cart 
.VSH3[v,m,n,dummy];od;od;od;WE3:=Matrix(2*dimen,3):printlevel:=1;for p 
from 1 to 2 do for n from 1 to nend do for m from -n to n do for dummy 
from 1 to 3 do WE3[dimen*(p-
1)+n*(n+1)+m,dummy]:=simplify(VSH3_cart[v,m,n,p][dummy]);od;od;od;od;Es_
vec:=T[v] .WE3;Es_mag[x,y]:=Norm(Es_vec,2);else 
Es_mag[x,y]:=0;fi;od;od;for y from 0 to 2*radius do 
Eenh_spec1[round(y)]:=[seq([x,Es_mag[x,y]] 
,x=0..2*radius)];saver:=cat('"e:/diss/organized/5_results/Mie_isolated/a
g1_377_r30_"',y,".prn");writedata(saver,Eenh_spec1[y],float);od: 
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