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Abstract

Digital IIR filters find wide applications in fields such as speech processing,
image processing and noise/echo cancellation. In recent years, the design of

linear phase IIR filter becomes a very hot issue of research interest.

As we know, FIR filters designed to approximate a magnitude response that
has a narrow transition band between the passband and the stopband usually
require a large number of multipliers and they have a large delay also.
Hence we prefer to IIR digital filters that have less number of multipliers
than their corresponding FIR counterparts but one of disadvantages is that an
[IR filter cannot reach an exactly linear phase. The importance of the phase
response linearity of a digital filter was recognized in early years’ research
and Finite Impulse Response (FIR) filters provided a perfect solution to this
requirement. However, due to fundamental incompetence of FIR filters
stated before, approximately linear phase IIR filters became the focus of
research as a compromise between the implementation cost and the linearity

of the phase response.

About twenty years ago, most of researches on digital filters and signal
processing, when and if they discussed the design of digital filter, they
treated mainly the approximation of the magnitude response, or else, dealt
with magnitude and phase responses separately. For example, as we know,

the one of the most well known methods for solving the problem of IIR filter

III



phase linearity was based on the application of cascading the prototype IR

filter with an allpass phase equalizer.

In recent years, new methods have been proposed for the simultaneous
approximation of both the magnitude and group delay of IIR digital filter.
They have less number of multipliers than their corresponding FIR
counterparts and yet provide the required phase response. This topic is

covered all through this thesis.
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Chapter 1

Introduction

1.1 Background

The world of science and engineering is filled with signals: images from
remote space probes, voltages generated by the heart and brain, radar and
sonar echoes, seismic vibrations, and countless other applications. Digital
Signal Processing is the science of using computers to understand these
types of data. This includes a wide variety of goals: filtering, speech
recognition, image enhancement, data compression, neural networks, and

much more.

In signal processing, one of main functions of a filter is to remove unwanted
parts of the signal or to extract useful parts of the signal. An analog filter
uses analog electronic circuits made up from components such as resistors,
capacitors and op amps to produce the required filtering effect for
continuous-time signal processing such as voltage and current. A digital
filter is a digital system that can be used to filter discrete-time signals. It is
only a formula for going from one digital signal to another. It may exist as

an equation on paper, as a small loop in a computer subroutine, or as a



handful of integrated circuit chips properly interconnected. Generally a
digital filter uses a digital processor to perform numerical ¢ alculations on
sampled values of the signal. The processor may be a general-purpose

computer such as a PC, or a specialized DSP chip.

Compared with analog filters, digital filters have many advantages:
* Easily designed, tested, implemented and programmable;
Its operation is determined by a program stored in the
processor's memory. This means the digital filter can easily be
changed without affecting the circuitry (hardware). An analog

filter can only be changed by redesigning the filter circuit.

+ Stable with respect to time and temperature;
The characteristics of analog filter circuits (particularly
those containing active components) are subject to drift and are
dependent on temperature. Digital filters do not suffer from these

problems.

* Suitable for low frequency signals accurately;
Unlike their analog counterparts, digital filters can handle

low frequency signals accurately.

* Flexible and versatile;
Digital filters are very much more versatile in their ability
to process signals in a variety of ways; this includes the ability of
some types of digital filter to adapt to changes in the characteristics

of the signal.



However, digital filters also have shortcomings compared with analog filters
such as relatively narrower applicable frequency band. But as the speed of
DSP technology continues to increase, digital filters are being applied to
high frequency signals in the RF (radio frequency) domain, which in the past

was the exclusive preserve of analog technology.

Digital filter design is the process of deriving the filter’s function that
satisfies filter’s prescriptions such as magnitude response, phase response,
stability and so on. Normally digital filters can be classified to two types,
FIR (Finite Impulse Response) and IIR (Infinite Impulse Response). In filter
design literatures, the problem of designing linear phase FIR filters with
desired magnitude characteristics has been well studied. The design of IIR
filters with linear phase in the passband has been considered by many

researchers in the last two decades.

1.2 Some Methods of 1IR Digital Filter Design

The conventional technique is to first design an [IR filter that meets the
magnitude specification and then to employ allpass equalizers to linearize
the phase response. At present, the problem most attractive is the
simultaneous approximation of both magnitude and phase characteristics.
Benefited from researchers’ dedications, tremendous numbers of creative
approaches come out and some of them are popularly applied in digital filter

design. For the problem of linear phase IIR filter design, there are several



typical and effective ones adopted in this thesis such as: Thiran’s all pole
filter, Remez algorithm, Nonlinear optimization and allpass filters’

applications.
1.2.1 About Thiran’s All Pole Filter

At 1971, Thiran [1] developed an analytical method for deriving the all-pole
transfer function of the digital filter that approximates a constant group delay
in the maximally flat sense. Thiran’s expression for the digital transfer

function that approximates a maximally flat group delay is given by:

2n! 1
— 2n

o [T+
H(z")= o] 1.1

4 Ny 27+
Y -k
H{( ) (kjl,:! 21+k+iJz

Thiran also proved that for all finite positive values of 1, the resulting filter

would always be stable.

Thiran [2] had investigated the conditions under which the all pole transfer
functions approximated a constant group delay in the equiripple sense, but
the conditions gave rise to nonlinear equations that could not be solved in
general. Based on the achievement of Thiran, Deczky [3] gave a way of
approximating a constant group delay in the equiripple sense by using

Remez Exchange Algorithm.



The authors of [4] started with Thiran’s all pole transfer function that has a
constant group delay response in the maximally flat sense. They proposed
new methods for choosing the zeros of the numerator polynomial such that
the augmented transfer function exhibits a maximally flat magnitude

response in the passband and an equiripple response in the stopband.

Recent applications such as, Vesa Valimaki [5] proposed a novel method for
designing fractional delay allpass filters in his paper that implements
Thiran’s filters by truncating the coefficient vectors of them. The new
design formula for a fractional delay allpass filter is slightly modified for the

Thiran’s filter:

M
aA=(—1)"(MjH T k=1,2...,N  M>N(filter order) (1.2)

k fhot+k+n

The main advantages of the new method are thus the ease of the design
using closed-form formulas and the possibility to design high-order filters.
R. A. Gopinath [6] proposed an approach based on Thiran filters for group
delay flatness and Herrmann filters for magnitude flatness. D. Economou, C.
Mavroidis and 1. Antoniadis [7] designed a preconditioning approach, based
on the proper design of conventional low-pass IIR digital filters using the
method proposed by Thiran. At 2001, in one paper of Makundi, M.;
Valimaki, V.; Laakso, T.I [8], polynomial coefficients were obtained in
closed form using the Thiran allpass filter design method with modifications

which completely eliminated the division operations.



1.2.2 About Remez Algorithm

The Remez exchange algorithm (Remez 1957) was first studied by Parks
and McClellan (1972). Also denoted as Parks-McClellan method (PM), it is
not only the most widely used FIR filter design method, but also a popular
lIR filter design approach. I tisan iteration algorithm t hat accepts filter
specifications in terms of passband and stopband frequencies, passband
ripple, and stopband attenuation. The fact that designers can directly specify
all the important filter parameters and experience has shown that the
algorithm converges very fast, compared with other algorithms such as

linear programming, make this method very popular.

The algorithm can mainly be described as two steps.

I. The determination of candidate filter coefficients from candidate
"alternation frequencies, which involves solving a set of linear equations.
2. The determination of candidate alternation frequencies from the candidate

filter coefficients.

A description emphasizing the mathematical foundations rather than digital

signal processing applications is given by Cheney (1999).

Selesnick, .W.; Burrus, C.S [9] gave a complement for the Remez algorithm
for linear phase FIR filter design. It describes an exchange algorithm for the
frequency domain design of equiripple linear phase FIR filter where the
Chebyshev error in each band is specified. This algorithm combines several

algorithms including Remez algorithm. One contribution is that it modifies



the usual Remez algorithm so that it achieves a specified Chebyshev error in
one band and minimizes it in the other band. This is done by imposing an
affined relationship between 6, and d; and introducing two new parameters
Np, Ns, Obtaining a filter satisfying the following affine relationship between

d, and &s:

6,=K,6+n,
0, =K. 0+, (1.3)

In their paper, they also presented a flowchart and an illustration of iteration

procedures of the modified Remez algorithm.

Hegde, R and Shenoi, B.A [10], present two solutions to the problem of
designing linear phase FIR filters with a flat passband and specified
bandwidth. First, by deriving conditions to attain desired degrees of flatness
at ®=0 and/or w=m, they obtain an analytical solution. They then present an
iterative design procedure to obtain simultaneously a magnitude response
that 1s flat in the passband and equiripple in the stopband. An IIR filter
design is provided in another paper of theirs [11]. They also provided an
MFM-MFD filter [12] with equiripple in stopband in order to decrease the
transition band and obtain an equiripple magnitude response in the stopband
of the filter, while the flat magnitude and group delay response in the
passband are maintained. This is done by increasing the order of the mirror
image polynomial by purposely adding some zeros in the stopband region on

the unit circle.



Similar with the upper method, there are many methods that have something
in common but differ in the optimization criteria. All of them decouple the
design problem of simultaneously approximating the magnitude and group
delay by first generating an all pole transfer function that approximates the
group delay, in the maximally flat or equiripple sense or least pth sense, then
adding a numerator that is chosen to approximate the magnitude either in the
same sense of a different sense. For example, Hinamoto and Maekawa [13]

first optimize the coefficients of the all pole Transfer function

HED= D(i-‘>

such that it approximates the constant group delay in the least pth sense.
Then they augment it by adding a mirror image polynomial as the numerator

and optimize its coefficients such that

Nz
- D(z™")

H(:z™")

approximates the prescribed magnitude also in the least pth sense.

1.2.3 About Nonlinear Optimization

A.G.Deczky [14] considered a general transfer function and decomposed it
into a cascade of second-order sections (SOS structure). He developed an
algorithm for minimizing an error function that contains a weighted sum of

the error in the magnitude as well as in the group delay. Using the minimum



p-error criterion, this error function is successfully solved using the Fletcher-
Powell algorithm. Also in this paper, an important theorem guaranteeing the
existence of a stable optimum for a large class of synthesis problems is
stated and necessary modifications to the Fletcher-Powell algorithm to

assure stability are considered.

J.L.Sullivan and J.W.Adams [15] adopted new algorithm with simultaneous
optimization of the frequency response magnitude and the group delay and
obtained a dramatic improvement in the solution of this classic IIR digital
filter design problem. In this paper, the nonlinear optimization problem is
solved using the GME (generalized multiple exchange) algorithm combined
with the recursive quadratic programming concept. This new combination is
called the recursive generalized multiple exchange (RGME) algorithm.
With the same filter structure and the same specifications, they lowered the

group delay ripple significantly.

1.2.4 About Allpass Filters’ Applications

As stated before, at the beginning, allpass filters are used as ‘phase
equalizer’ by cascading with a filter that meets magnitude requirements. In
recent years, a number of digital filter structures composed of allpass
subfilters have been developed for various applications. Figure 1.1 shows

one of those applications composed of two allpass subfilters in parallel.



x(z)

Figure 1.1 Sum and difference of two allpass filters

The transfer function A,(z) and Axz) are allpass functions and from this

structure, two transfer functions can be obtained as:

RACIEY
Hi(2)=— = 53 [4,(2) + 4,(2)]
. _Yz(z)__l_ _
H,(z)= Yo —Z[Al (2)-4,(2)] (1.4

Two main advantages of using a parallel connection of allpass filters are:

* Low sensitivity of filter characteristics to some parameters
varying;
* The complementary filter can be obtained from the original one

with ease.

MRenfors and T. Saramaki [ 16] gave an example of a lowpass IIR filter
composed of two allpass filters and proposed that one of the allpass network
be chosen as a pure delay network. The pure delay term ensures a good

phase performance for the overall filter in the passband. This is due to “the

10



property that with small passband variation, the phase of the allpass section

is forced to closely follow the linear phase of the delay branch”.

Stancic, G and Djuric, B [17] proposed a method for synthesis of digital IIR
filters given by parallel connection of two allpass networks. This filter
shows low sensitivity in passband. The magnitude sensitivity in stopband is
considerably bigger than it in passband. However, it can be d ecreased b y
duplicating a pole of allpass network transfer function whose phase angle is
in transition region between passband and stopband. Finally the problem is
to minimize an error function where the weight function is constant for all

frequencies.

n/2

E:fjW(a)j.)[Zrz,.(a)j)—n+1]2 (1.5)

Artur Krukowski and Izzet Kale [18] presented in t heir paper a weighted
least square algorithm in which a flexible weighting function is adopted.
Choosing constant weights for the passband and stopband led to stopband
ripples decreasing monotonically with frequency while passband ripples
were monotonically increasing. Therefore an iterative method was applied
which was changing the weighting function according to the shape of the
envelop of the passband/stopband group delay ripples at every iteration. At
the beginning of this algorithm, the weight vector is initiated to be unity for

all frequencies and iteratively update it by an equation:

W) =0+W(OI-M+*()]-1 (1.0)

11



This paper also remarked that it’s important to monitor the group delay
ripples both in the filter passband and its stopband. This ensured that both
small passband ripples and high stopband attenuation are achieved. In this
paper, authors also showed us effect caused from different coefficients word

lengths.

1.3 Motivations

Digital Signal Processing is one of the most powerful technologies that will
shape science and engineering in the twenty-first century. Revolutionary
changes have already been made in a broad range of fields: communications,
medical imaging, radar & sonar, high fidelity music reproduction, and oil

prospecting, to name just a few.

Digital filters are a very important part of DSP. In fact, their extraordinary

performance is one of the key reasons that DSP has become so popular.

IR (Infinite Impulse Response) digital filters have significant advantages
over FIR (Finite Impulse Response) digital filters on resource economization
and computational speed. However, IIR filters are not used as widely as FIR
filters at present because of some problems such as phase linearity and
stability. Therefore, designing approximately linear phase IIR filters has

already become one of the hottest topics due to their valuable merits.

12



1.4 Objectives of the Thesis

This thesis looks at the IIR digital filter design problems with both
magnitude response and phase response at the same time. Appropriate
algorithms and approaches (Remez algorithm, Thiran’s method, Nonlinear
optimization methods, P CLS, A daptive weighting function and so on) are
applied to tackle different problems successfully. The work presented is
trying to creatively research and implement IIR digital filters in different

ways and figure out their various characteristics and appropriate usages.

1.5 Organization of the Thesis

In the following chapters, we illustrate three typical and efficient approaches
for linear phase IIR filter design. In chapter I, we introduce an analytical
design approach for magnitude response that is in maximally flat sense for
group delay response and equiripple sense for magnitude response both in
passband and stopband. The filter’s phase linearity and stability are
guaranteed because of adopting Thiran’s filter. In chapter I, one robust
structure IIR filter that is composed of allpass subfilters in parallel gives
another efficient approach for IIR filter design and shows many appealing
characteristics such as low sensitivity to coefficient quantization. In chapter

T, a general form nonlinear optimization algorithm is presented that gives

13



designers more flexibility for designing filter magnitude and phase response

simultaneously.
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Chapter 2

Maximally Flat Magnitude & Maximally Flat
Delay (MFM-MFD) Equiripple IR filter

2.1 Introduction

This design is an analytical method for directly designing IIR filters. In this
chapter, we consider the approximation of a constant group delay first and
then magnitude response of a one-dimensional IIR digital filter. We will
describe a method of designing an all-pole transfer function that
approximates the prescribed group delay in the maximally flat sense. Then
by augmenting it with a numerator polynomial such that it changes the group
delay of the all-pole transfer function only by a constant but changes the
magnitude such that the overall transfer function approximates the

prescribed magnitude.

2.2 Design Theory

2.2.1 Maximally Flat Group Delay Filters

15



Thiran [1] developed an analytical method for deriving the all-pole transfer
function of the digital filter that approximates a constant group delay in the

maximally flat sense.

Let 1T be the prescribed group delay, and let the all-pole transfer function be

chosen as

n

da;

H(z") =—°— 2.1)

~i

az
i=0

Then the error in the phase is

Z a, sin(iwt)
o(wt)=-wr —tan~ = (2.2)

n

Z a; cos(iwt)
Another form of the error derived from (2.2) is given as

Z":al. sin(iwt)
&(wt) = tan(6(wr)) = ~tan(wr) - Lo (2.3)

Z a; cos(imt)
i=0

which can be rewritten as

16



- sin(a)r)i a; cos(iomt) — cos(a)r)i a; sin(imt)
g(wt) = =0 = (2.4)

n
cos(@) ) a, cos(iwr)
i=0

Assuming that in the sequel the sampling period T is normalized to one
second so that w=2m and t denotes the delay which is the number of
sampling periods. Hence o will be the normalized frequency. Then (2.4)

reduces to

ia,. sin(i + 7)w
g(w) = ———— (2.5)
cos(a)z')z a; cos(iw)

The numerator is an odd function and the denominator is an even function

and therefore their expansion in power series gives

0
2k+1
P

glwy=*2——  (2.6)

2%k
q,@
pary

Since £(@) is an odd function, its Taylor series contains only odd powers of

o and hence is in the form,

s(w) = icka)““ (2.7)
k=0

17



where the coefficient ¢, is the k" derivative of £(@) evaluated at ©=0. The

coefficients can also be generated from the recursive relation

Cr 2*1‘{%( _ch—jqj] (2.8)

q,

For getting a maximally flat approximation of a constant group delay 1, we
need to make the first n derivatives of €(@) at ®=0 to be zero i.e. ¢=0 for

k=0,1,...,(n-1). From (2.6), (2.7), (2.8) we see that the equivalent condition

to be satisfied is pi=0 for 0<k <n-1. Using the Taylor series expansion

2k+1

X

(2k +1)

sinx = i(~1)" (2.9)

on (2.5) we get

n
Z a (i + 7)™

g(w)=i(—1)k JW o™ (2.10)

Hence the coefficient

n
Zai (i + 1)

Ck =(_1)k =0 (

2k+1) 11
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is zero when the numerator is zero. From the condition that the coefficients
¢ in (2.8) are zero for k=0,1,...,(n-1) (with ap=1), the condition for

maximally flat approximation of a constant group delay becomes

T2k+] +Zai(i+T)2k+’ =O
i=1
U (2.12)

Ya i+ =—c*" fork=01,.,n-1
i=1

Solving these linear equations for the coefficients @, in terms of two

Vandermonde determinants, Thiran shows that the coefficients are given by

a, = (—D{Zj H—ﬂ (2.13)

w0 2T+ k+i

Using the Gamma functions, he also shows that the polynomial

n

P(z7,7)=) a,z™* in the denominator of the maximally flat delay filter

k=0

function (2.1) can be expressed as

R,(z",r)zir(_n+k) IF'r+n+l)y TQr+k) =z

(2.14)
& T(-n)  TQr) TQr+k+n+l) Al

The author derives the numerator of (2.1) from its denominator evaluated on

|z=1 and shows that

19



n |
gaﬁo=§}g=317r—L——- (2.15)

= T @e+i)

i=n+l

Finally, Thiran’s expression for the digital transfer function that

approximates a maximally flat group delay is give by:

i{(_l)k(:)nn 2r+i }z‘k

o ;
pars =02t +k+i

H(z")=

(2.16)

n = theorder of the filter
T = thedesired group delay

Thiran has also shown that the above transfer function is stable for all finite
positive values of 7. Using the above formula, the coefficients of the

denominator polynomials of H(z”) can be obtained for the purpose of the

next step’s filter design.

2.2.2 Use of Mirror Image Polynomial

Mirror image polynomial (N(z2)=z?Nu(z), N.(z) is defined in (2.18)) is
adopted as the numerator polynomial in this design. The mirror image
polynomial o f' e ven order, used as the numerator, is a real function of .
Such a polynomial has zeros inside the unit circle |z|=1 and also the
reciprocal of these zeros which are outside the unit circle. It may also have

zeros on the unit circle. So the overall transfer function is not a minimum

20



phase transfer function (An LTI filter H(z)=B(z)/A(z) is said to be minimum

phase if all its poles and zeros are inside the unit circle |Z|=1).

Consequently, there are fewer restrictions between the magnitude and the
phase response. In other words, there is more flexibility for simultaneously
shaping the magnitude and phase responses. Therefore there exist many

different choices that have been proposed for solving this general problem.

2.3 Design Procedure

2.3.1 Maximally Flat Magnitude and Maximally Flat Delay (MFM-MFD)
Filter with Equiripple in Stopband [12]

2.3.1.1 Design Theory

The most general form, the transfer function of a one-dimensional IIR filter

1s of the form:

M
255 N Y be™
@) e >H(e")=2 (2.17)

N
i=

iaiz'i D(z) Zaie‘”“'
j 0

In this equation, in order to approximate a constant group delay in the
maximally flat sense, we choose the “Thiran’s polynomial” as D(z). The

coefficient vector “den” has been obtained from (2.16), then set
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N(z)=t"Na(z), where N,(z) is a mirror image polynomial given in the form:

-1 2 -2 p -p
Na(z)=b0+bl[z+2z J+bz(z ZZ J+...+bp(z zz j (2.18)

substituting z=¢/” in the above (2.18), (&)= 7 No(€®) where

N, (€)= b, +b, cos +b, cos(2w)+...+ b, cos(pw)  (2.19)

The numerator N(¢’®) adds a pure delay of p samples to that of the Thiran’s
all-pole filter because N,(€’) is a real valued function. The coefficients b;
have to be found such that H(¢’®) has a magnitude response with the desired

design requirements, besides having maximally flat group delay

characteristics.

Theorem 1:

- N (ef‘")
I |HE) o =2 (2.20)
D(ej ) w=0
d*|\D(e’” k Jo
and | (k ) =dNa(f ) (2.21)
do do oo
w=0 -
d"lH(e’“’)
Then ——I =0 (2.22)
do
w=0
Theorem 2:
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N_(e’*)
)j H™)|, . =|—2— =0 2.23
A N T =
k Jjo
and LN g (2.24)
da) w=s
d*|H(e")
Then ————— =0 (2.25)
do

The equation 2./9 becomes 2.26 as below:

=N, (")

=0

{D(e-/‘“’)

=0

=by+b +b,+--+b, (2.26)
and the equation 2.2/ becomes 2.27:

dk]D(e-f“)

dw*

_d*N, (")
do*

oo

w=0

_ {(—l)k/Z[b1 +b,(2)" +...+bp(p)k]
0

We require that these coefficients satisfy another specification:

k even
k odd

the

magnitude o f H(¢’®) ata specified bandwidth @, is3 dB below the 0 dB

magnitude at @=0. So
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N, (™)
D(e’)

o |H @)oo, =0.7079

D=y,

by +b,cosw, +b, cos2w, +---+b, cos pw, = 0-707950(6‘;("" )

(2.28)

In order to decrease the transition band and obtain an equiripple magnitude
response in the stopband of the filter, while the flat magnitude and group
delay response in the passband are maintained. we increase the order of the
mirror image polynomial by purposely adding some zeros in the stopband

region on the unit circle.

Let the stopband region of the modified filter be denoted by ws<w<n, where
ws >ob. The desired magnitude response to be approximated by the

modified filter, over this stopband region, is given by

!H(,(c-””) ={ O, << (2.29)

In order to obtain an equiripple magnitude response over this stopband
region, the magnitude response ought to satisfy the following set of

equations:

]: (- i=12...m

where O L0 <, <<, < (2.30)

th (™) ~|H (™)

m is the amount of desired extrema in the stopband region. From

2z "N, (z)

H(z)= , and the equations (2.29) and (2.30), we get
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¥, e |=0 i=12,..,m (2.31)

~(=1)8|D(e™)

According to (2.19) and (2.31), we get

b, +b,cosw, +b, cos(2a),)+...+bp COS(pa),)+(—l)i+l§D(ej‘"’) =0
i=12,..,m : (2.32)

Hence the equation (2.28), (2.26), (2.27) and (2.32) can be expressed in a
matrix form (2.33).

Ab

I
U

(2.33)

matrix A and vectors b and d are as shown below:
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1 Cos @, cos2w, e COS pw, 0
1 1 1 1 0
o -() ) .
S O
E : 57 " : 53y
A O (_ I)M/Z(I)M (_ 1)/\1/-(2)1\/ (_1):\1/_([7).\/ 0 ( )
1 Cos ), coSs 20, COS P, D,
1 cos m, coSs 20, e COS pa, D, i
R cosw,, cos2w, e COS po, D,
b=[b, b b - b 5] (2.39)
d=|p, DO D® pv .. p o 0 .. o] (230
where D, =(=1)"|D(e™)| D =|D(e”)
W dDem)
D, =0.7079D(e™)| DV = ——-1
" dw' |

hu=0

We see that there are ((L+2m+3)/2) equations in (2.33) which are linear
equations in the (p+2) variables b0, b 1,...,b,,& By choosing p =((L+2m-
[)/2), we can obtain a unique solution to (2.33). So we get values ofthe
unknown variables by,b,,...,b,. According to N(z)=:"N,(z) and (2.18), there
comes out the numerator coefficients. But, notice that the values of w are
still initialized ones, not exactly the final optimal results at this time. The
locations of maximum deviations or extrema occur are not known in
advance. Hence the set of equations (2.33) have to be solved recursively,

using the Remez Exchange Algorithm (which will be stated in detail later)

by starting with an initial guess for extrema points: @;, @s... @,
Y
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2.3.1.2 Remez Exchange Algorithm

Initial guess of m
points. @, i=1,2,....m
within the stopband

Solve the equation
(2.33) to find the

numerator coefficients

Compute the magnitude response
of the function H(€®) and find
local maxima out over the entire
stopband

Extrema
Number>m

e P e

Form new @ vector
according to those
extrema’s positions

Best Result!!!
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2.3.1.3 Example:

A lowpass filter with passband flatness L=11 at »=0. and a bandwidth
®p=0.24m, stopband cutoff frequency ©s=0.32x, and an equiripple response
with a minimum attenuation of 30 dB in the stopband. The denominator is
chosen to be a 7™ order polynomial which provides a group delay 1=5. There

are 10 ripples within the stopband (m=10).

By using the Remez Exchange Algorithm:

The @ vector becoming convergent means that the SSE (sum of squared
error) between itself and its previous version o' (SSE=sum((®'-w).”2)) is
less than a specified value, for instance, 10°-6, or else, equals to zero while

they are exactly 1dentical.

1 10 0.41619549323e-002
2 10 2.91181054022¢-002
3 10 6.00922161085e-003
4 10 9.19178538126¢-005
5 10 1.47068566100e-007
6 10 0

7‘ 10 0

Table 2.1: The w vector’s convergence
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How the SSE of the @ vector approaches its best estimation is
illustrated by Table 1. After the 6™ loop, the ® vector becomes a constant
vector and positions of extrema have been fixed. At this time, the magnitude
response is illustrated at figure 2.1. Figure 2.2 is the enlarged version of its
stopband. Attenuation of stopband is about 31dB. Now the stopband is
exactly the “equiripple”. Figure 2.3 and 2.4 are Zero-Pole plot and group

delay response of this filter, respectively.

MFM-MFD Filter with equiripple in stopband

4 L
: attenuation in gtopband=31.0243dB :

1.2 }----e- e demenaen the widih of the transittan-bang=Q.08 -+ - -- - -- beeeee
: Eextrema in the 'stopbaﬁd=10 .

1 L wb=024 - -we=l):32- - - 4----=-de-e o N SOREEL
i : :ﬂlter 0rt§er=3[] ' 3 ' i i

AT A OV U S NS OO SN SN OO OO

2 ' H H ' ' '

c . . ) H . ‘

3 : :

S 06} SR S SRS O - LI S
A9 S S S S e
(] VSR SRR HONRS SURSS SHMSS S S R

0 ] i |

a 01 02 063 04 05 08 0O7 08 08 1
Normalized frequency

Figure 2.1 Magnitude response of MFM-MFD Filter with equiripple in stopband
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Figure 2.2 Magnitude response (stopband)
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Figure 2.3 Zero-Pole of MFM-MFD IIR Equiripple filter
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Figure 2.4 Group Delay of MFM-MFD IIR Equiripple filter

2.3.2 Maximally Flat Delay Filter (MFD) with Equiripple both in Passband
and Stopband

2.3.2.1 Design Theory

In the above design theory we specify only equiripple in stopband. But
actually with the same target of inserting equiripple in stopband, we can
choose inserting ripples into both passband and stopband while the

maximally flat delay response is maintained.
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By purposely adding some ripples in the passband region, we can narrow the
transition band, or else, with the same prescriptions, tremendously decrease

the order of the digital filter.

Let the passband region of the modified filter be denoted by 0<w<w,. The
desired magnitude response to be approximated by the modified filter is
given by

H ()] =1 0<w<o, (2.37)

In order to obtain an equiripple magnitude response over this passband
region, we require that magnitude response in passband satisfies following
conditions:

11, ") |=p*s Q=12

- |H (™)

where O<w <w, < <w, 2o, (2.38)

i 1s the number of desired extrema in the passband region. In (2.38), n is
even. The right part of this equation (2.38) becomes (-1)'¢ provide that n is

odd. Here assuming the first situation is default.

From H(z) =M, and the equations (2.37) and (2.38),

Z

“/V“ (ij‘ N+ (—-l)i” 51D(e i, )J__- 'D(e.iw, )
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According to (2.1/9) and (2.39), we get

by +b, cosw, +b, cos(2w, ) +...+b, cos(pw, )+ (-1)™ 5’D(eiw1 )l = ID(ej‘”f )l

=1,2,...,n

(2.40)

Hence the equation (2.28), (2.26), (2.40) and (2.32) can be expressed as:

Ab=d

(2.41)

matrix A and vectors b, d are shown below:

[1 cosw,

1 cosw,’

1 cosw,’

1 cosw,'
1 cosw,

1 cosw,

where D, =(-1)""'
D, =0.7079|D(e"*)

cosZw,
1
cos2w,’

cos2w,’
cos2w,’
cos 2w,

cos2w,

cos 2w,

n

D’

D(e’)

cospw, 0 0

1 0 0
cospw,' 0 D,
cos pw,’ D,

: (2.42)
cospw, 0 D,
cospw, D, 0
cospw, D, 0

: : 0
cospw, D, 0 |

5T (2.43)
D 00 - of (244
DO - lD(e_/'O )’
D,'=(-1)"'|D(e™")
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The symbol © and ©’ denotes stopband frequencies and passband

frequencies, respectively.

We see that there are (m+n+2) equations in (2.4/) which are linear
equations in the (p+3) variables b0, b1,...,b,,5, 6, . By choosing p=(m+n-
/), we can obtain a unique solution to (2.4/), unknown variables by,
bl,...b,. According to N(3)=z"N,(z) and (2./8), there comes out the
numerator coefficients. But, similar to the previous design, the values of @
at which the maximum deviations or extrema occur are not known in
advance. Hence the set of equations (2.4/) have to be solved recursively,

using the Remez Exchange Algorithm by starting with an initial guess for

the extrema points:@;, @;...w, in the passband and: w;, @;...®,, in the

stopband.

This method of obtaining equiripple both in the passband and stopband is
similar with but more complex than previous design during optimization
because both ripples in passband and stopband have to be processed

simultaneously.
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2.3.2.2 Remez Exchange Algorithm

Initial guess of m points, w,
i=1,2,....m within the stopband
(s, ) ad n points, ay, j=1,2,...,n
within the passband (0, ©b)

(2.41) to find the

numerator coefficients

Compute the magnitude response
of the function H(&®) and find
local maxima out over stopband
and passband

Extrema
Number>m|n
. respectivelv?

and form new o (or @’) vector
according to their new values

Retain m(or n) largest extrema

Form new w(or @’)
vector according to
those extrema’s position

NO

Best Result!!!

35



2.3.2.3 Example:

A lowpass filter with 4 ripples (n=4) in the passband and other specifications
are same as example 2.3.1.3. Bandwidth ©,=0.24n. stopband cutoff
frequency »¢=0.32m, and an equiripple response with a minimum attenuation
of 30 dB in the stopband. The denominator is chosen to be a 20™ order
polynomial which provides a group delay t1=5. There are 7 ripples within the

stopband (m=7).

1 4 7 0.25544448675435

2 4 7 0.21778383887520
34 7 0.0976347031 1402

4 4 7 0.02982785830217

s 4 7 0.00101653792888

6 4 7 1 882477646081789¢-005
7 4 7 0

Table 2.2: o and ©’ vector’s convergence
Letting SSE=sum(( @new- @,10)."2)+sum((@ e~ @ '10)."2), table 2.2 illustrates

o and ®' becoming convergent gradually. Figure 2.5, 2.6 and 2.7 are results

for this example.
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MFD Filter with equiripple magnitude
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Figure 2.5 Magnitude Response of MFD filter with equiripple in pass and stop band
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37



Zero-Paole Plot
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Figure 2.7 Zero-Pole Plot of MFD filter with Equiripple in pass and stop band

2.3.3 Comparisons between Two Kinds of Filters

Compared Figure 2.5 with Figure 2.1, by inserting several ripples into the
passband, we obtained almost the same characteristics as only inserting
ripples into stopband, for some aspects even better. For example, Figure
2.10 shows that the flat band (passband) in this example is wider than its
corresponding one which has an unsatisfactory ripple at the passband edge,
although at ©=0, 1t is perfectly flat. In most applications, no matter for
magnitude or group delay responses, the most attractive characteristic is the
average flatness over passband/stopband since partial perfection 1is

meaningless. In Figure 2.11, we find that the group delay, unlike that of
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MFD and equiripple in stopband filter, is state-of-the-art flat all through the
entire passband. At the same time, the delay introduced by the numerator
polynomial is also decreased (from 15 to 10) because of the reduction of the

filter order.

The most inspiring achievement is a tremendously decreased filter order
(from 30 to 20). This advantage is most important and valuable in the
modern industrial applications. As we stated many time in this thesis, the
main purpose of trying to research and develop IIR filters is pursuing a much

lower order than FIR filters.
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Figure 2.8 Magnitudes comparison
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2.4 Conclusion

This project 1s to design a Maximally Flat Magnitude-Maximally Flat Delay
1IR filter with equiripple in stopband and a Maximally Flat Delay IIR filter
with equiripple in stopband and passband. Its procedure is mostly analytical
and its implementation is explicit. By purposely inserting several zeros into
the MEM-MFD filter’s stopband and properly settling those zeros’ position,
we can compress the width of transition band efficiently. By trying different
values for L and ws, wb, the number of extrema, we are able to get a lot of

high quality IIR equiripple filters. When the variable z” is replaced by —z”,
g P
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the magnitude of the lowpass filter with a passband cutoff frequency wb
changes to that of a highpass filter with a cutoff frequency wb '=zwb. This

method can tremendously enlarge the application range of this project.

The second filter is extension of the first one give in [12]. By replacing the
flat passband by an equiripple one, the performance of the IIR filter is
remarkably improved, for example, a narrower transition band and/or a
much lower filter order. It is a wise choice to make numerator and
denominator have identical length for the purpose of attaining better filter

performance without an undesirable filter order increase.

There always exists tradeoff among all those requirements, such as transition
bandwidth, filter order, group delay flatness, attenuation in the passband
and/or stopband, and so on. For instance, in example given in 2.3.2.3,
reducing transition band from 0.08 to 0.06 results in degradations both in
passband and stopband (see Figure 2.12). Contrarily, better passband and
stopband attenuations cost a broader transition band from 0.08 to 0.10

(Figure 2.13).

By carefully adjusting those parameters of this analytical algorithm, we can

always obtain a top-ranking filter that meets reasonable requirements.
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MFD Filter with equiripple magnitude

1 ] [ I
L] 1] L} L]
. 1 L} L]
L] 1 1] L]
. L] L} 1
. R A PR .
L] L} L] 1
: : : ,
L] L} L} L]
1] L} L} L]
I R G e L
ve) ' v h
p 88
B 1
o K o . .
[32] n@« ] ' ' ’
- - i = s (aiaatalladed r
~— 9 o ' ¢ v
2] [ 1 ' 3
S L "
M 1] c 1] ' '
--w--2-.2. 8. 2 r
c = o '
@ w & 3§ )
a = ' '
o 9 © 4] W. (] '
o ® E m, - 0 :
I¢....o.lq.-umu|ﬂm.- S ©) P - P, -
c £ £ .m 24 o
— - hasl '
— = o~ '
= m O & = 3 |-
8 8 o T E I 5
—EE g gegoE
3 = 2 E Y 5 !
M % 2 [ [ _B [ )
= £ 2 % = 2 .
l...lna.nrﬂﬂu|:..n&~|»hmuu...urﬂ L
‘ :
' ‘ .
H . H

dewccund

B . e el el R T T Sy Sy Gy PP IR

[Ep—
)
'
i
‘
'
'
'
-
'
'
'
'
'
'

4o mmm

1.4

.
i

@ @

[am )

12 peeeeee
1

o
apnyufiepy

0.2~

02 03

0.1

Normalized frequency

Figure 2.12 Magnitude degradations in passband and stopband caused by a narrower transition

band

MFD Filter with equiripple magnitude

T T I T T T
L] L] L] L} t 1]
L] . L] L} L} 1]
. L] . L} L} 1
L} L] 1] » L} L}
= = - - - -- damaoan- Ao ww - e - - -—--- e on e L LR
1 L} 1 1 L} 1]
L] L} . L] , r
1] 1 . L} 1 1]

1] 1 : : : :
R, by = AU D — L S [, Locmmeen Lecmena
& , : . , :

o 8 - ' : : :

T 55 : " : :

5 T : : : :

- - B T L T L L R uprpn

o % 277 : ‘ r i

R 2 ad [1:] v ) ) t )

g ]

9 .mu M b oo ; : :

— L] L} L] L}
L. 4.8 8. 2. 2. o R beeeees eeoeas

[~ = @ ' ' ' '

E m. 2 9 o ' ' :

[= I ’

2 5 8 2 o & . " "

e & m, Hooo : . ,
.llldqllﬂHlldhil ||8ll_a ||||||| uu lllllll “- ||||||| ﬂ llllll

s =58 2dg | : “

e ' ' '

= m a ¢« < 3 LN ' '

SR R S - R L H
S gy - - BN . L o e R R TPy PR,

ETETETRTE Y " "

S § ¢ 2% o " .

= = 2 % % = '

l.-ﬂ.--ﬁ.--t--.ﬁuu.&.. R T et T

: : : : :
S L g i S P Feeemaes Poeeoe-
A SR S S Eemean Y S

: : . ,

H ! : : !

-t ™ — @« w -t o™

— — o [an] ] o

apniubep

0.9

a8

07

0.4
Normalized frequency

03

0.2

0.1

Figure 2.13 Magnitude improvements in passband and stopband caused by a broader transition

band

43



By using Symbolic Math Toolbox of Matlab, the quality and accuracy of this

program have been promoted evidently.
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Chapter 3

Designh of Approximately Linear Phase IIR
Digital Filter Using Allpass Sections in

Parallel

3.1 Introduction

In recent years, a number of digital filters composed of allpass subfilters
have been developed for various applications. An important application of
allpass networks is in the realization of a class of approximately linear phase
IIR filters proposed by Renfors and Saramaki [16]. They showed how a
simple parallel connection of an allpass digital filter with a chain of delay
elements of certain length can be used for designing filters that possess,
inherently, an approximately linear phase in frequency-selective designs.
Compared to linear phase FIR digital filters the filter can generate only an
approximately linear phase but with a shorter signal delay. This network,
called approximately linear phase filter composed of allpass filters in
parallel in this chapter, belongs to the major family of allpass-based IIR

digital filters consisting of two allpass networks.
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Allpass-based digital filters are characterized by numerous attractive
features that may even seem to be of contradictory nature in view of other

available structures. Listed below are the most important ones.

L. Parallelism of the structure can be utilized to speed up the

processing rate.

2. In allpass-based realization of an IIR filter, if possible, the poles
are distributed between two allpass subfilters. Assume that the two
subfilters are real and of orders M and N. Since the numerator of
the original system function should be symmetric, we need
approximately 1.5(M+N) multipliers for the direct-form
realization. On the other hand, a real allpass filter, can be
canonically realized with the same number of multipliers as its
order. Therefore, the parallel allpass realization requires only

M-+N multipliers

3. Low coefficients sensitivity. Quantizing filter coefficients can
have serious effects on the performance of digital filters. As a
result of coefficient quantization, the frequency response of the
filter with quantized coefficients can be significantly different from
the desired filter without quantized coefficients. In some cases, the
performance of the quantized filter can make it unsuitable. Figure
3.1, 3.2 and 3.3 give an illustration for this problem. Figure 1 is an
elliptic IIR lowpass filter implemented in direct form II structure.

After being quantized with 16-bit word length, its performance has
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been too bad to applicable (Figure 2). Moreover, zero-pole

shifting might give risks of instability (Figure 3.3).
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Figure 3.1 Infinite coefficients accuracy filter
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Low sensitivity filter architectures, or robust architectures as they
are sometimes called, are interesting because they can reduce the
effects of coefficient quantization. By being inherently less
sensitive to coefficient quantization, these filter architectures
withstand the quantization process and result in filters that retain
the performance of the original filter. This is illustrated in Figure
3.4. Converting structure from direct form to lattice coupled-
allpass form, the word length effect has been weakened to a

neglectable level.

Magnitude Response

H T ] ¥ T I 1 X Y
: . . : , | — Filter #1: Reference magnitude
i | —— Filter #1: Guantized magnitude
yy L .a‘.. : L R l l- 1 ¥
A e Pt ST T I S i
. ; ; . : ‘
. * 1 1
: ) , . . .
Ty e e e O N S S
X . : ' :
] t 3 ' 1
- . X N X :
g SIS R S [N | O T TS AR AP
» ; N :
- 1 s '
> 1 i N
2 : . X
= ; . . X ‘
ANy S Jammmm o S N R |
= . : : ; : .
‘ , , '
; : : ' ;
AN b e - P A NI PR DI S .
N : : , , ;
; : . ;
I B SO S AR S R 2 S SR -
: N N : : N ; ;
1 ; : H , :
) ; : '
t i) 3 [ ' t ] ¥ ]
140 | u [ ! | | | ! L
3 [ 02 0.3 0.4 0.5 06 07 08 g9 1

Normalized Frequency (xx red/sample)
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Generally, filter architecture sensitivity ranges from high to low as

below:

o Direct forms
o Lattice forms

o Allpass forms

This is because allpass subfilters can be realized structurally
lossless. Thus, they will remain allpass in spite of multiplier
quantization and their sum or difference is a bounded real filter.
Consequently, the overall structure becomes of very low sensitivity
in the passband and reasonably low sensitivity in the stopband.
This means that we need fewer bits per multiplier coefficient and

the economic advantage is twofold.

. The complementary filter is obtained from the original one by
simply changing the sign of one of the allpass sections. Therefore,
a complementary filter pairs, for example, lowpass/highpass,

bandstop/bandpass, can be implemented from the unique structure.

In this project, a digital filter that consists of two allpass filters in parallel is

considered. One of them is a pure delay that ensures a good phase

performance for the overall filter in the passband. Remez algorithm is used

on different objective functions (error functions) for minimizing them in

equiripple sense. The first design minimizes an error function of the direct

phase response of the objective allpass filter. The second error function is

an indirect phase response of that allpass filter. The general idea of those
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two procedures is identical but from results, we still can tell some

differences.

Because either magnitude or phase response can be regarded as minimizing
objective in this application, using different combinational analyses of them

on different frequency bands is reasonable for meeting various requirements.

3.2 Design Theory

Let’s consider a digital filter that consists of two allpass filters in parallel

shown in figure 3.5.

Figure 3.5 Two Allpass Filters in Parallel

The transfer function A;(z) and A,(z) are allpass functions and from them,

two transfer functions can be obtained as:
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G =22 1

FENE A,(2) + 4,(2)] (3.1)
_ Y,(z) _ l _
)= 2==3 [4,(2) - 4,(2)] (3.2)

Since A;(z) and A,(z) are assumed to be allpass functions with real

coefficients, they can be written as

A(z) = S ~(N=n) D, (Z_l)

3.3
D,(Z) 3:3)
and
g DZ(Z—‘)
A (z) =z D.(2) (3.4)
Therefore

T (N-n) - - ; N
G(z):l z77"D(z")D,(z)+z'D,(2)D,(z") (3.5)
2 D,(2)D,(z) )

[ -(N-1) -1 ot 18]
H(z):% z D,(z")D,(z)-2z"D,(z)D,(z") (3.0)
D,(z)D,(2) |

[f we represent them as
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P2 2.

G(z) = Do) "=D(z) (3.7)
iqﬂ'”
00 =
H(z) = YT (3.8)

Then we can show that the following conditions are satisfied.

Property (1) P(z")=z"P(z). Hence pn=pN_;,. The coefficients of P(z) are

symmetric.

Property (2) Q(z'])=-ZNQ(z). Hence q,=-qn.,- The coefficients of Q(z) are

anti-symmetric.
Property (3) P(z)P(z)*+Q(z)Q(z)=D(z)D(z""). Hence |G(e"*)/+H()]*=1.

G(z) and H(z) are said to form a power complementary pair.

o 1y 60 oo
Property (4) lG(e’ )' :Eieﬂ%( ) 4 /0@ <1

_ _1_!1 + /B @-8:)
2

Assuming that the above four conditions are satisfied and the derivation of
(3.1) and (3.2) can be obtained below.

Consider P(z)P(z’l)+Q(Z)Q(z'l)=D(z)D(z'l). Using Properties (1) and (2) we
get

P(z)z" P(z) - 2" Q(2)0(z) = D(z)D(z™") (3.9)
P(z2)-0%*(z)=D(2)z7"D(z™) (3.10)
[P(z) + 0(2)][P(2) - O(2))= 2" D(z)D(z™") (3.11)
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Since [P(z")+0(z™)]= 2" [P(2) - 0(2)], we get
[P(2)+0(2)] 27" [Pz +0(z™)|= =V D(z)D(z™) (3.12)
and also the result that the zeros of [P(z)-Q(z)] are reciprocals.

We shall assume that G(z) is asymptotically stable. Hence from Property (4)
we infer that G(z) has no poles on the unit circle. In other words, the zeros
of D(z) are within the unit circle and the zeros of D(z"') are outside the unit
circle. So also the zeros of [P(z)+Q(z)] are not on the unit circle. Let us

assume that D(z) has r zeros z, (k=1,2,...,r) that are outside the unit circle.

Thus we will assume the polynomial D(z) in the form

oy =[10-2"2 )] l1-z"2") (3.13)

k=1 k=r+l

then we can also derive

[P(2)+ 0(D)][P(2) - 0(2)]= 2" D(z)D(z ™) =

ﬁ(l-z"zk)ﬁ(l—z“zk")fl(z“ —zk)ﬁ( 1) (3.14)

A=t k=r+1 k=1 k=r+1

Thus we identify
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N

[P(z)+Q(z)]=af[(1—z-‘zk)n(1—z“zk") (3.15)

k=r+t

r

(-z"z)[T"-2") @16

=1 k=r+l

[P(z) - 0(2)]

_1
ay
then

N -1 -1

G+ H(z) - POHOG) -z,

=ad 3.17
D(z) “ﬂlh-z-'zk*) 1) G17

N -1

G(2)- H(z)=FE=0@) 1 1 2" -2

1
D(z) ;kl:,!,il—z_lzk 5_;/12(2) (3.18)

From the power complementary property, we must have o>=1. Therefore,

o=1 so that
6o =34+ 4] (1)
H(z) = %[Am = 4, (2)] (3.20)

So here proved that when the four Properties listed above are satisfied, we
can synthesize G(z) as the sum of two allpass functions. Indeed, it has been
shown that the four Properties are both necessary and sufficient conditions
[19].

3.3 Design Procedure

3.3.1 Allpass Sections in Parallel
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When A,(7) is chosen as a pure delay [16] network function, we obtain

H.(2) =—;—[Al(z)+z“M] (3.21)

H,(z) = %[A,(z) —z] (3.22)

A(z)=z" 22 (3.23)

In this project, we consider a lowpass filter (3.21) in which we select

N=M+I.
H(z)= %[Al(z) 427 ] (3.24)

The complementary highpass filter is obtained just simply changing the sign
of the pure delay filter in (3.24).

3.3.2 Use of Direct Phase Error Function

3.3.2.1 Design Description
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Assuming amplitude tolerances in passband and stopband are §, and §,,

respectively. Illustrated as Figure 3.6, this lowpass filter’s magnitude

specifications can be expressed as:

1-6, <[H(e™)| <1 foroe0,m] (3.25)
|H(e'™) <3, foroe(o,z] (3.26)
Magnimde
A
y 613 fdealfompass
Lo — ¥ filter magnitude
LA
1
P
) N @
Figure 3.6 Magnitude Response Tolerances
Let A;(z) be denoted as
A(z)=z"" @(w) is the phase response of A, (3.27)

From (3.22), the filter’s magnitude is derived as steps below:
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H(z)= %[Al(z) + Z—M]
= %[z(”(”) + Z"M]

= %[cos[go(a))]+ J* sin[go(a))]+ cos(Ma))~ J* sin(Ma))]

H(z) = —é-‘cos[(p(a))]+ cos(Mw)+ j* {sin[p(w)] - sin(Mw))]

= %\/2 +2%* (cos[go(a))]cos(Ma))— sin[gn(a))]sin(M(u))

cos—lz—[w(a)) + Ma)]l (3.28)

According to figure 3.6 and (3.28), we notice that, approximately, g(w)+Mw

equals to O in passband and -m in stopband, respectively. Also from

property (4),

‘]{(e/m) _ _1_’e,i91(w) + /0@ _ l‘l + ¢ /01(@)=0:(0)

‘ 2 2

1 0, (w) = 6, (w) in passband (3.29)
0 G(w)-0,(@)=Ck+ 1) k=0+142,.. instopband

For an allpass filter described by (3.23), the phase can be derived as:

N
> asin(io)
plo)=-No+2tan™ L (3.30)

Zaicos(ia))

i=0

Construct an error function to be minimised:
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E(w) = p(w) - D(w) (3.31)
the desired phase response is

-Mw forwe[0,w,] (3.32)

Dlw) = {—Mla)—ﬂ' forwelw,, 7] (3.33)

Then the approximation target is to minimize the maximum of absolute
values of the error function E(w). It is able to optimize both the magnitude

and phase response simultaneously. This target can be fulfilled using Remez

Algorithm .

E(w,))=¢(w,)-Dw;)=(-1)’§ (3.34)

d is ripple height:8p in passband and 8s in stopband
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3.3.2.2 Design Procedure

| Initial guess of N+ 1
| points, w, i=1,2,....N+1
within vassband and

Solve the equation

(3.34) to find the
coefficients for the A,

Find the N+1 local extrema
of E(w,) whose absolute

values are the largest.

S

Store the abscissae o
the extrema in a new
vector Moo

Best Result!!!
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3.3.2.3 Example 1:

A lowpass filter with passband bandwidth ®,=0.6m, stopband cutoff

frequency ®=0.75m, and an equiripple response with a minimum attenuation
of 40 dB in the stopband. Allpass filter A;’s order is N=11 and choose
M=N-1.

By using the Remez Exchange Algorithm:

Defining @ vector gets convergence when the maximum difference between
the new extrema frequencies vector and the old one is less than & (for
instance, 0.001. We can also implement either a strict or loose convergent
condition by using a smaller or larger €. The result would be different

according to different convergent requirements)

Magnitude response and group delay response are plotted as figure 3.7 and

3.8, respectively.
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Linear Phase IR Filter Camposed of Alipass Subfilters
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Figure 3.7 Magnitude Response of Example 1

Linear Phase IR Filter Composed of Allpass Subfilters
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3.3.3 Use of Indirect Phase Error Function

3.3.3.1 Design Description

Instead of approximating the error function in (3.34), we can formulate an

equivalent problem as described below. Consider

F(zy="22 = - (3.35)
Za"z
n=0
N .
Z a,e’™
F(ejm) =ej(M-N)(U ';V;O_____ eIZ(p (336)
Z ane—j(un
n=0
where
N . M-N
Z a_sin(n+ Yo
¢ = tan™ =L = tan" ®(w) (3.37)
M -
Za cos(n + )@

We note that ¢ is one half of the phase difference between A,(z) and pure
delay z™. As discussed in 3.3.2, approximately, this difference equals to 0

in passband and -x in stopband, respectively. Therefore the desired value of
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¢ 1s 0 in the passband and -7/2 in the stopband. Hence the design problem is

to find the coefficients a, such that the following conditions are satisfied.

D(w)=0 in passband
1

— =0 in stopband (3.38)
D(w)

Then using Remez algorithm to realize the minimization of (3.3 8)

y 1
Z a, sin(n — E)a)i
D(w,) = 22 = -1)'s, in passband
Z a, cos(n— E)a)i
= | (3.39)
i Z a, cos(n— E)wj
= 20 =(=1’§ in stopband
O(w,) - . 1 )
: Za" sin(n — E)G)j

L n=0

0, and &, are ripple heights in the passband and stopband respectively.
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3.3.3.2 Design Procedure

[nitial guess of | points, w;
Ji=1,2...l in the stopband (ws, )
and k points, @y, j=1,2... k in the
nassband (0.wb)

Solve the equation
(3.39) to find the

coefficients a: and os.

b

Compute the function @(w) and
1/ w) and find local maxima
over stopband and the passband,
respectively.

Retain m(or n) largest extrema
and form new w(or w’) vector
according to their new values

Extrema
Number>ill
, respectively?

Form new w(or w’)
vector according to
those extrema’s position
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3.3.3.3 Example 2

Use same specifications as the Example 1. The magnitude and group delay

response are shown as below.

Linear Phase IIR Filter Composed of Allpass Subfilters
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Figure 3.9 Magnitude Response of Example 2
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Linear Phase IIR Filter Composed of Allpass Subfilters
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Figure 3.10 Group Delay response of Example 2

3.3.4 Use of Magnitude Response Approximation

3.3.4.1 Design Description

In this structure, we have known that, by approximating phase response of
subfilter Al in order to satisfy

p(w) =-Mo in passband
p(w)=-Mwo -7 instopband (3.40)
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we are able to obtain not only approximate phase linearity (both in passband
and stopband, although stopband phase linearity is unnecessary), but also
approximately satisfactory magnitude response described below:

| H(w)|=1 in passband
| H(w)|=0 in stopband (3.41)

This procedure is reversible according to (3.28). In another word, if only the
subfilter Al is properly designed such that the resultant filter magnitude

response fits magnitude response condition (3.41), the filter’s phase response
satisfies linearity condition (3.40).

According to (3.24),

H(z) =—;—[AI (2)+27]

N N N N
Za"z" Za”z'” Zanz”'N+Zan2_"'M
1 1
- Z—N n={ +Z-—M n=0 —_| n=0 n=0
N N N
2 -n Z -n 2 -n
a,z a,z a,z

n=0 n=0 n=0

i a, cos{(n — N)w] + jﬁ: a, sin[(n — N)w]

n=0

+ zN:an cos{(n + M)w] - jian sin[ N + M)o]

n=0 n=0

(3.42)

N | —

N N
> a,cos(nw) + Y. a, sin(nw)
n=0 n=0
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(3.43)

1/2
ut+v?
x2+y?

1
|H (2)|= 5(
where

u= i a, {cos[(n ~ N)o]+cos[(n+ M)a)]}
y= y a, {sin[(n - N)o] - sin[(n + M)w]}
X = 3 a

n

cos(nw)

n

N
y= Za" sin(nw)
=0

The design problem becomes finding the coefficients a, such that (3.41) is

satisfied.

This problem can be solved also using the Remez Exchange Algorithm. We

evaluate |[H(w)| and use Remez Exchange Algorithm on (3.44).

{1 _ |H(a), )l = (=1)’ 5, in the passband (3.44)

|H (@,)|=(-1)'3, in the stopband

69



3.3.4.2 Design Procedure

Initial guess of | points, o,

,i=1,2...1 in the stopband (ws, 1)
and k points, @, j=1,2...k in the
passband (0.wb)

Solve the equation
(3.44) to find the

coefficients a: and Js.

Compute the function |H(w)| and
find out local maxima over
stopband and passband

Retain m(or n) largest extrema
and form new w(or w’) vector
according to their new values

Extrema
Number>kl|l
, respectively?

Form updated w(or w’)
vector according to
those extrema’s position

Best Result!!!
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3.3.4.3 Example 3

Use same specifications as the Example 1. The magnitude and group delay

response are shown as below.

Magnitude
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Linear Phase IIR Filter Composed of Allpass Subfilters

T T I ( I l l l T
attenuation in atopband =40.0021 (d
! ' attenuatron in assband 0.00 13103(::!8) :
U [ St --.---I ------ = PP [ R
' Fliter Order—21' : : :
: : : i 5 SN RO s S
oo
i i | | i i i i |
0 a1 02 03 04 05 06 07 g8 09

Normalized frequency

Figure 3.11 Magnitude response of example 3
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Figure 3.12 Group delay response of exampic 3

3.3.5 Examples for Combinational Magnitude Response and Phase

Response Approximations

[t is reasonable to split filter’s responses as two individual parts, passband
and stopband, in spite of magnitude response or phasc response, and using
either magnitude approximation described in 3.3.3 or phase approximation
described in 3.3.2 to carry out filter optimizations. There are four
combinational possibilities:
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~ Approximation  Approximation ~ Example No

_M_j'vu'séd’;ihfpassband;‘.‘ used in'stopband  in this chapter

| Pse Phase 2
2 Magnitude Magnitude 3
3 Phase Magnitude 4
4 Magnitude Phase 5

Table 3.1 Possible approximation combinations

The first and the second combinations have been illustrated in example 2

and example 3, respectively. For the third method, combining passband part

of (3.39) and stopband part of (3.44) together creates (3.45) and similarly,
for the forth method, (3.46) comes from combination of stopband part of

(3.39) and passband part of (3.44).

N 1
>, sin(n- i)w[
D, ) === =(-1)'6, in the passband
I 4
Za” cos(n — l)a)[ (345)
n=0 2
H(w,)|=(=1)'J, in the stopband
L= {H(w)|=(-1)'8, in the passband
Z“: 1
a, cos(n——=)w,
1 " / ‘ . 3.46
m = 2=t 12 =(-1)’6  in thestopband ( )
(@) Z a, sin(in— ;)a)j

n={)

Followed same flow chart and specifications of example 2 and 3, by

replacing objective equations to be solved with the corresponding one, we
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are able to come up with other filters illustrated as figure 13.14 (example 4),

and figure 15, 16 (example 5).

Linear Phase IR Filter Composed of Ailpass Subiiisrs
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Figure 3.13 Magnitude response of example 4
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Figure 3.16 Group delay responsc of example 3

There are two interrelated parameters that need to be optimized in above

designs, dp and 8s. Normally, for a fixed specification-set, the optimized
Op-0s pair is unique. For the purpose of increasing design tlexibility, it 1s
recommended to specify one of them and optimize the other one together

with filter coefficients. The resultant filter could satisfy different Magnitude-

Groupdelay requirement combinations.

Taking example 4, phase-magnitude approximation for passband and
stopband respectively, as an illustration:

Let ds ranges from 0.01 to 0.018 with step 0.001. Trend curves of

attenuation in passband (magnitude response) and group delay are illustrated

as figure 3.17.
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4 Trend Curve with Respect to deltas
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Figure 3.17 Trend curves for passband attenuation and group delay with respect to delta_s

By specifying attenuation in stopband is 40dB, for example, let 6s=0.01 in
example 3 and 4, and comparing attenuations in passband and group delay
responses for example 2,3,4,5 in figure 3.18, it is evident that those using
phase approximation are able to get better phase response but worse
magnitude response; in the same way, using magnitude approximation can
obtain better magnitude response but worse phase response.
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3.4 Conclusion

In this project, several methods for synthesis of linear phase digital 1IR
filters, which are composed of allpass subfilters, are described and
illustrated. By modifying the sign of one of allpass subfilters, we can get the
complement highpass/lowpass filter pair. This kind allpass filter structure is
convenient for research and development l?ecause within certain frequency
section, designers only need to pay attention to either phase or magnitude
optimization because of their correlativity. As long as one of them reaches
its optimization objective, the other one is simultaneously optimized.
Moreover, because both magnitude approximation and phase approximation
(direct or indirect) can be used in this design, designers are able to flexibly
adopt different combinations on different frequency sections in order to meet

various design requirements.

79



Chapter 4

Non-linear Optimization with 3imultaneocus
Magnitude and Group Deiay Response

Specifications in lIR Fiiter Design

4.1 Introduction

The classical IR digital filter design method is to find a transfer function
that approximates the specified magnitude response and then find an allpass
transfer function which when cascaded with that transfer function gives rise
to an overall group delay characteristic that approximates the specified

constant group delay.

The most popular optimality criterion for digital filters is minimax
(Chebyshev) in each band. In particular, the Remez (Parks-McClellan)
algorithm is very popular for both FIR and [IR digital filter design.
Minimax and least squares optimization problems are two special cases of a
more general class of optimization problems. We refer to problems in this
ceneral class as Peak-Constrained Least Squares (PCLS) optimization
problems [20]. In PCLS optimization we minimize the total squared error

subject to constraints on the peak error.
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In this article, we design an IIR digital filter using PCLS idea that has an
“equalized” group delay without the use of allpass equalizer sections, and it
can simultaneously optimize the magnitude response and group delay. This

algorithm uses all of the filter coefficients available to optimize the filter.

4.2 Design Theory

4.2.1 Optimization Overview

Optimization techniques are used to find a set of design parameters,
x={x;x,....x,}, that can in some way be defined as optimal. In a simple case
this may be the minimization or maximization of some system characteristic
that is dependent on x. In a more advanced formulation the objective
function, f(x), to be minimized or maximized, may be subject to constraints

in the form of equality constraints, or inequality constraints:

G(x)y=0 (@(=1..,m)
G0 (i=m, +1,..,m) (4.1

and/or parameter bounds, x/, xu.

A General Problem (GP) description is stated as

minimize
JS(x) (4.2)

xeWR
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subject to

G(x)=0 (=L..,m)
G(x)<0 (i=m,+1,..,m)

X, fx=<x,

where x is the vector of design parameters, f{x) is the objective function that
returns a scalar value, and the vector function G(x) returns the values of the

equality and inequality constraints evaluated at x.

An efficient and accurate solution to this problem is not only dependent on
the size of the problem in terms of the number of constraints and design
variables but also on characteristics of the objective function and constraints.
When both the objective function and the constraints are linear functions of
the design variable, the problem 1s known as a Linear Programming (LP)
problem. Quadratic Programming (QP) concerns the minimization or
maximization of a quadratic objective function that is linearly constrained.
For both the LP and QP problems, reliable solution procedures are readily
available. More difficult to solve is the Nonlinear Programming (NP)
problem in which the objective function and constraints may be nonlinear
functions of the design variables. A solution of the NP problem generally
requires an iterative procedure to establish a direction of search at each
major iteration. This is usually achieved by the solution of an LP, a QP, or

an unconstrained subproblem.

4.2.2 Constrained Optimization
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Unlike FIR filter design, in IIR digital filter design, filter stability has to be
thought much of. This design requires that all poles must locate in the unity
circle so that all poles’ radii must less than 1. Constrained optimization is

adopted in this design for satisfying this requirement.

In constrained optimization, the general aim is to transform the problem into
an easier subproblem that can then be solved and used as the basis of an
iterative process. A characteristic of a large class of early methods is the
translation of the constrained problem to a basic unconstrained problem by
using a penalty function for constraints, which are near or beyond the
constraint boundary. In this way the constrained problem is solved using a
sequence of parameterized unconstrained optimizations, which in the limit
(of the sequence) converge to the constrained problem. These methods are
now considered relatively inefficient and have been replaced by methods
that have focused on the solution of the Kuhn-Tucker (KT) equations. The
KT equations are necessary conditions for optimality for a constrained
optimization problem. If the problem is a so-called convex programming
problem, that is, f{x) and Gi(x), i=1,...,m, are convex functions, then the KT

equations are both necessary and sufficient for a global solution point.

Referring to GP equation, the Kuhn-Tucker equations can be stated as

Vf(x*) + ix * VG, (x*)=0

i=1
A* G (x*)=0 i=1,..,m
A*,20 i=m,+1,..,m 4.3)
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The first equation describes a canceling of the gradients between the
objective function and the active constraints at the solution point. For the
gradients to be canceled, Lagrange Multipliers (A, 1=1,...,m) are necessary
to balance the deviations in magnitude of the objective function and
constraint gradients. Since only active constraints are included in this
canccling operation, constraints that are not active must not be included in
this operation and so are given Lagrange multipliers equal to zero. This is

stated implicitly in the last two equations.

The solution of the KT equations forms the basis to many nonlinear
programming algorithms. These algorithms attempt to compute directly the
Lagrange multipliers. Constrained quasi-Newton methods guarantee
superlinear convergence by accumulating second order information
regarding the KT equations using a quasi-Newton updating procedure. These
methods are commonly referred to as Sequential Quadratic Programming
(SQP) methods since a QP subproblem is solved at each major iteration (also
known as Iterative Quadratic Programming, Recursive Quadratic

Programming, and Constrained Variable Metric methods).

4.2.3 Sequential Quadratic Programming (SQP)

SQP methods represent state-of-the-art in nonlinear programming methods.
Schittowski [21], for example, has implemented and tested a version that
outperforms every other tested method in terms of efficiency, accuracy, and

percentage of successful solutions, over a large number of test problems.
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Given the problem description in GP (4.2), the principal idea is the
formulation of a QP subproblem based on a quadratic approximation of the

Lagrangian function.

n

Lix. Ay = f(x)+ Y A -g,(x) (4.4
i=]

Here Eq 4.2 is simplified by assuming that bound constraints have been
expressed as inequality constraints. The QP subprobicm is obtained by

linearizing the nonlinear constraints.

minimize |, ) .
3 1"H,d+Vf(x, ) d

denR”
Vg, (x, )Td +g,(x,)=0 i=1...m.
Vg (x, )Td +g,(x,)<0 I=m, + L. (4.5)

This subproblem can be solved using any QP algorithm ([or instance,
Quadratic Programming Solution). The solution is used to form a new

iterate

Y, =X, tad, (4.0)

The step length parameter o is determined by an appropriate line search
procedure so that a sufficient decrease in a merit function is obtained (see
['pdating the Hessian Matrix). The matrix /4, is a positive definite

| g , : |

approximation of the Hessian matrix of the Lagrangian function (Eq. 4.4).
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H, can be updated by any of the quasi-Newton methods, although the BFGS
method (see Updating the Hessian Matrix) appears to be the most popular.

A nonlinearly constrained problem can often be solved in fewer iterations
than an unconstrained problem using SQP. One of the reasons for this is that,
because of limits on the feasible area, the optimizer can make well-informed

decisions regarding directions of search and step length.

4.2.4 SQP Implementation

The typical SQP implementation consists of three main stages, which are

discussed briefly in the following subsections:

e Updating of the Hessian matrix of the Lagrangian function
e Quadratic programming problem solution

e Line search and merit function calculation

4.2.4.1 Updating of the Hessian Matrix

At each major iteration a positive definite quasi-Newton approximation of
the Hessian of the Lagrangian function, H, is calculated using the BFGS

method where Al (i=1,...,m) is an estimate of the Lagrange multipliers.
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Qk(]kr _ Her/\'

T T
Qe sp S s,

[{/\'H :H/\‘ + (4'7\’

S, =N X

o+l

g =Vf{x, )+ Z;Lz’ Vg, (x) - (Vf(-"k )+ Z 4, Vg ()
i=l =l

Powell [22] recommends keeping the Hessian positive «efinite even though
it may be positive indefinite at the solution point. A positive definite Hessian
is maintained providing ¢,’s; is positive at cach update and that H is
initialized with a positive definite matrix. When ¢, s is not positive, g is
modified on an element by element basis so that ¢+ ). The general aim of
this modification is to distort the elements of ;. which contribute to a
positive definite update, as little as possible. Theretore. in the initial phase of
the modification, the most negative element of ¢ s, is repeatedly halved.
This procedure is continued until ¢'s; is greater than or equal to 1e-5. If
after this procedure, g,’s; is still not positive. ¢ is modified by adding a

vector v multiplied by a constant scalar w, that 1s.

( ‘/

i

L=, vy (4.8)
where

V= Vg,(xm ) g,(.’CM )_ Vgl(l}' ) g,(-\',( )
i1 (q,), - w<0and
(q), (s,), <0(i=1,..m)

vo=0 otherwise

and w is systematically increased until ¢, s, becomes positive.,
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4.2.4.2 Quadratic Programming Solution

At each major iteration of the SQP method a QP problem is solved of the

form where A; refers to the ith row of the m-by-n matrix A.

minimize 1, .
g(dy==d Hd +c'd 4.9)
denR 2
Ad=bh i=1,..,m,
Ad <b, i=m, +1,...m,

The solution procedure involves two phases: the first phase involves the
calculation of a feasible point (if one exists); the second phase involves the
generation of an iterative sequence of feasible points that converge to the

solution. In this method an active set is maintained, 4, , which is an

estimate of the active constraints (i.e., which are on the constraint
boundaries) at the solution point. Virtually all QP algorithms are active set
methods. This point is emphasized because there exists many different
methods that are very similar in structure but that are described in widely

different terms.

4, is updated at each iteration, &, and this is used to form a basis for a search
direction ¢, . Equality constraints always remain in the active set, 4, . The
notation for the variable, d,, is used here to distinguish it from d, in the
major iterations of the SQP method. The search direction, d,, is calculated

and minimizes the objective function while remaining on any active
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constraint boundaries. The feasible subspace for «, is formed from a basis,
Z; whose columns are orthogonal to the estimate ot the active set 4, (ie.,
A, Z;=0). Thus a search direction. which is formed from a linear summation

of any combination of the columns of Zj, is guaranteed 1o remain on the

boundaries of the active constraints.

The matrix Z 1s formed from the last m-/ columns ot the QR decomposition
. . =T . . .
of the matrix 4, ', where / is the number of active constramts and / < m.

That is, Z; 1s given by

Z, =0+ 1:m] (4.10)

—r R
where  Q, 4, {}

Having found Z;, a new search direction d, is sought that minimizes g(d)
where d, 1s in the null space of the active constraints. that is. d, is a linear

combination of the columns of Z;: ¢, = Z; p for some vector p.

Then if we view our quadratic as a function of p. by substituting for 4, , we
[ D) g %

have
W;):%p"‘zk"‘szp+c"‘2kp (4+.11)

Differentiating this with respect to p yields
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Vo(p)=Z,"HZ,p+7Z, ¢ (4.12)

V4(P) is referred to as the projected gradient of the quadratic function
because it is the gradient projected in the subspace defined by Z,. The term
z,'HZ, is called the projected Hessian. Assuming the Hessian matrix H is
positive definite (which is the case in this implementation of SQP), then the
minimum of the function q(p) in the subspace defined by Z, occurs when

Vg(p) =0, which is the solution of the system of linear equations
Z'HZp=-Z"c (4.13
A step 1s then taken of the form

X, =N, az}k where c?k =ZkTp (4.14)

At each 1teration, because of the quadratic nature of the objective function,

there are only two choices of step length o.. A step of unity along 4, is the

exact step to the minimum of the function restricted to the null space of 4, .

If such a step can be taken, without violation of the constraints, then this is

the solution to QP (Eq. 2.10). Otherwise, the step along d, to the nearest

constraint is less than unity and a new constraint is included in the active set

at the next iterate. The distance to the constraint boundaries in any direction

d, is given by
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B (Aix/\’ B b/ )

A,c;’k

(1’ :1,,..,117)

E
»

“=min

which is defined for constraints not in the active set. and where the direction

d. is towards the constraint boundary, i.c..  Ad. -0, =1._m

When n independent constraints are included in the active set. without
location of the minimum, Lagrange multipliers. /; are colculated that satisfy

the nonsingular set of linear equations

A4 =c (4.10)

if'all elements of 4, are positive, ., is the optimal solution ot QP (Eq. 2.10).
However, if any component of 4, is negative. and it does not correspond to
an equality constraint, then the corresponding clement is deleted from the

active set and a new iterate is sought.

The algorithm requires a feasible point to start. It the current point from the
SQP method is not feasible, then a point can be found by solving the linear

programming problem

mininize
CERven” 4
dx=bh i=1...m,
dv—-r<h, i=m,+1..m, (4.17)

9]



The notation 4; indicates the ith row of the matrix 4. A feasible point (if one
exists) to Eq. 2.17 can be found by setting x to a value that satisfies the
equality constraints. This can be achieved by solving an under- or over-

determined set of linear equations formed from the set of equality
constraints. If there is a solution to this problem, then the slack variable 7 is

set to the maximum inequality constraint at this point.
The above QP algorithm is modified for LP problems by setting the search
direction to the steepest descent direction at éach iteration where g; is the

gradient of the objective function (equal to the coefficients of the linear

objective function).
d, =-2,2"g, (4.18)

[f a feasible point is found using the above LP method, the main QP phase is
entered. The search direction d, is initialized with a search direction d,

found from solving the set of linear equations
Hd, =-g, (4.19)

where g, is the gradient of the objective function at the current iterate x,

(1.e., Hx, +c¢).

[f a feasible solution is not found for the QP problem, the direction of search

for the main SQP routine d, is taken as one that minimizes v .
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4.2.4.3 Line Search and Merit Function

The solution to the QP subproblem produces a vector /.. which is used to

form a new iteration

v, =x, +ad, (4.20)
The step length parameter « is determined in order to produce a sufficient

decrease in a merit function. The merit function used by Han [23] and

Powell [24] of the form below has been used in this impiementation.

vy = f(v) +Zr[ g, (x)+ Z/'I -max':‘O.gl(.\‘):' (420
(=]

p=m o+

Powell recommends setting the penalty parameter
1 . A
ro=(r,,), =max /1,,5((@), +A) 7 i=1..m {4.22)

Fhis allows positive contribution form constraints that are inactive in the QP
solution but were recently active. In this implementation. nitially the

penalty parameter 7, is set to

)
S Vg,

where || || represents the Euclidean norm.
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This ensures larger contributions to the penalty parameter from constraints
with smaller gradients, which would be the case for active constraints at the

solution point.

4.2.5 Deczky’s and Lawon’s methods

Deczky [25] considered a general transfer function in the cascaded SOS

(second-order section) form:

N l+a,z +va,z
H(:):k“Hl Tz _ToaE (4.24)

and he also developed an algorithm for minimizing an error function that
both contains a weighted sum of the error in the magnitude and in the group

delay. This error function will be discussed below.

Lawon [20] showed that minimax (Chebyshev) optimization problems could
be reformulated in terms of equivalent weighted least-squares (WLS)
optimization problems. As an example we consider the following minimax

approximation problem where D(x) is the desired function and F(x) is the

approximating function,.

Minimize : Maximum | F(x) - D(x)|; a<x<b} (4.25)
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The problem in (4.25) could be reformulated as the following weighted least

squares minimization problem.
Minimize: FE = Jb W(x)| F(x)—D(x)|" dx (4.20)

The trick here is to find the appropriate 1F/x) that makes {4.23) equivalent to
(4.26).  The “Lawon algorithm™ actually is an ierative procedure for

determining W(x).

In this chapter, we use Deczky's IR filter design algorithm as an engine to

design a constrained least-square IR filter and determine the weighting

functions needed for PCLS filters by using idea of Lawon’s aleorithm.
o o

4.3 Design Procedure

4.3.1 Formulation of the PCLS Optimization Probiem for IR Fiiters

The Deczky’s general IIR filters form (4.24) can also be expressed in zero-

pole form:
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2 2
ﬁ 27 =2r,cos(4,)z +r,

2 2
= 27 =2r, cos(@, )z +r,

H(z)=k, (4.27)

where

k, gain constant;
r,, ith zero radius;
¢.. ith zero angle;
r,; ith pole radius;

¢, ith pole angle;

N number of quadratic sections.

The magnitude response is shown below:

{ 2r, cos(gp—@,)+r,” }”2{1—2rm.cos(¢+¢oi)+r0i2}l/2

H(A,¢) =k Z - (4.28)
=1 {1 =2r, cos(¢p - ¢p,.) +r, }] {1 - 2rp,. cos(¢g + ¢pi) + rp,.2 }”2

where A is the coefficients vector defined as
"1 = [rl)l ’ ¢ol ? "/Jl 4 ajpl »T T I'ai 4 ¢01 4 r/)i ’ ¢/}i LR kO ] (429)
The equation for the group delay is
rL) = i[ —r,cos(p-¢,) 4 l-r,cos(g+4,) 2

= 1=2r,cos(@p—9¢,)+r,” 1-2r,cos(g+¢,)+r,

l-r,cos(p—4,)  1-r,cos(¢+¢,) ] (4.30)

1—7r cos(p—g@,)+r,’ 1-2r,. cos(g + ¢, )+r

oi

Deczky developed an algorithm for minimizing an error function that

contains a weighted sum of the error in the magnitude as well as in the group

delay. The error function is given by
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0 _ .
J(hy=(1- @ZW, ﬂH(e-”’" ) -[G(e“’" )H

0 P
+AY Ve (@)~ t(w,) - ()] (4.31)
i=1
Where o; represent a set of Q discrete frequencies. 1, ., is the overall group

delay of the designed filter, 1. is the desired aroup defay and 1, 1s called
“the nominal delay” which is a constant value dulv chose to reach a

mintmum value for the error function.

When p=2, this algorithm becomes the weighted least squares approximation

and p=co0, minimax algorithm.

When 2=1 is chosen, the problem reduces to that of approximating the group

delay only, without considering its magnitude distortion and vice versa.

This algorithm (4.31) can be used for PCLS optimization by finding

appropriate weighting functions, as discussed in the next section.

4.3.2 Weighting Function and Tolerances Updates Strategy

At the beginning, we sample the objective filter with hoth magnitude and
group delay response over several sampling frequency points. For each
sampling frequency point, identical weight value is initialized. We consider

the computation of the magnitude and group delay weighting functions,
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W(k+1,ei”) and V(k+1,e’w , respectively, corresponding to iteration k+1,
based on the results from iteration k. For the sake of concision, the update
strategy for magnitude response weighting function is introduced here only.

Similar approach can be derived for group delay.

At iteration k we apply the weighting function W(k,¢'®) to minimize the
corresponding weighted squared error (4.31) and obtain the resulting
H(k,¢®). Assuming that the peak stopband error specification is Js and for

passband, &, and denoting the value of the i-th weighting function

component in W at iteration k+1 as W(k+1, i).
We update the weighting function according to the following general rules:

I) Make W(k+1, i) larger than Wk, i) if Hy(k, i)> 8s;
2) Make W(k+1,i) smaller than Wk, i) if H(ki)< 8s, but the
limitation is Cs.

3) No change for Wk, i) if Hy(k, i)=5s.
The same rules applied on the passband:

4) Make W, (k+1, i) larger than W,(k, i) if |H,(k, I)-1|> Sp;
) Make W, (k+1, i) smaller than W,(k, i) if |H,(k, i)-1|< 8p, but the
limitation is Cp.

6) No change for |H,(k, i)-1|= 5p.
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We then consider in detail about implementing the above rules. We first

discuss the stopband updates of the weighting function.

o

s

1 (k.)—-G -0,
n;<k+1,f):3{1+(’f( -G-o ﬂowx(m (432

The weight updating factor {H is processed by a

saturation function, minimum at “a”, for the purpose ol avoiding intensive

alteration on weight value. Normally set a=0.5 from experiences.

Weighting function update approach for passband is similar:

(4+.33)

H (ki)~G-0,
W k+1Li)=Bp|l+| — Lol (k.o

()p

lFor stopband G=0, passband G=1. This is the ideal magnitude response for

a lowpass filter.

In order to constrain magnitude response within transition band, some points
sampled in transition band are also taken into consideration. Therefore the
overall designed magnitude response //¢) in (4.21) includes not only
passband and stopband sampling points, but also several points in transition
band. The numbers of points are proportional to corresponding bandwidth,

In another word, the wider this band, the more points are sampled 1 it.
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For updating the group delay weighting function, only passband
performance is taken into account. Assuming that the peak group delay
error specification is & and denoting the value of the i-th weighting value in
V at tteration k+1 as V(k+1, i). Its weighting function is updated according

to:

Pk 1) = 3{1 +(T" “‘”’5‘ % 20 H P (k, ) (4.34)

t

Tolerance parameters ds, dp, and & can be constants all through the whole
optimization, or ¢lse they are subject to be updated 1oop by 1oop prior to
updates of w eighting functions. An e fficient update strategy is critical for
reducing algorithm convergence difficulties. Update strategies of this design

can be stated as:

(N 0=FEla

E : maximum deviation value

(2) o =avrg(D)«

D :deviation values set for sampling frequencies (4.35)

A carefully chosen o is crucial for optimization converges and filter

performances balance.

Now basic steps of this algorithm can be summarized as:

I. Choose a set of Q discrete frequency points, w;, i=1,2...Q, over

whole frequency axes (0=>1, normalized frequency);
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2. Initialize weighting functions of magnitude and group delay

such that all discrete weights have the same constant value.

3. Minimize the weighted square error defined in (4.31) and get

results for magnitude response H and group delay response 1.

4. Compute tolerance parameters dp, &, and & by either method

in (4.35), then update weighting functions according to the

strategies described by (4.32), (4.33). and (4.34).

5. Compare the resultant weighting function with the previous
one, stop iteration if their difference is small enough, otherwise

go to step 3.

4.3.3 Design Example

We now investigate the design of'a 12" order 1IR filter to meet the following
specifications: fp=0.57, £5=0.7m, let 2=0.5, p=2 so that this is a least square
error optimization problem,o in passband: stopband and transition band for
magnitude response are 1.2, 1.0 and 1 .0, respectively. « for group delay

response is 1.8; The second method is used in (4.23).

At the beginning, we use the uniform weighting function for both the

magnitude and group delay square error calculation. Figure 4.1 shows the

resultant response and refreshed weightine function after the 1% iteration.
o o
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Figure 4.2 and 4.3 are of the 3" iteration and 6 iteration. According to
these pictures, we demonstrated that with weight values of those peak error
points increasing, both in magnitude and group delay responses, peak errors
are constrained effectively. Weight peaks generally exist at band edges

because, obviously, those maximal errors always present at band edges.

After several iterations, the objective filter could be hard to achieve further
improvement without increasing the filter order. We have to increase order

of this kind of filters in order to get a better performance.
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Figure 4.1 Optimization procedures (Iteration 1)
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Magnitude Response Group Delay Response
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Figure 4.2 Optimization procedures (Iteration 3)
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Figure 4.3 Optimization procedures (Iteration 6)
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Figure 4.4 Optimization trend

As stated before, A is the parameter for adjusting tradeoff between
magnitude response and group delay response. How magnitude response and
group delay response behave with respect to A are illustrated by figure 4.4,
4.5 and 4.6.
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Figure 4.5 A and magnitude response deviations in passband
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4.4 Conclusion

In this chapter we showed how to design IIR digital filters according to the
PCLS optimality criterion. This method is mainly based on nonlinear
programming techniques, Deczky’s method, to approximate given

magnitude response and group delay simultaneously.

The method outlined in this chapter for the synthesis of IIR digital filters
using a weighted minimum p-error criterion has been applied to a large class
of problems. Thus filters having arbitrary magnitude, arbitrary group delay
using allpass sections, and combined magnitude and group delay
specifications, as well as allpass group delay equalizers, were synthesized

using this method.
This method is highly flexible at balancing magnitude and group delay

performances by modifying A in (1.31) or relevant weighing function and

tolerances updating strategy.
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Chapter 5

Conclusions

This thesis explored and implemented a few methods for approximations of
both linear phase and prescribed magnitude response of IIR filters. These
methods based on nonlinear programming need more computation than
those based on linear programming. For these research-purposed filters
under a prerequisite of stability, their evaluations are mainly based on filter

order, frequency response (magnitude and phase) and robustness.

By comparing two methods described in Chapter 2, we get the conclusion
that introducing some ripples into MFD filters both in passband and
stopband can remarkably increase filter’s performance and efficiency. This
18 a kind of linear programming problem that can be solved without much
computation time. From these points of view, it is very attractive and for
this reason, they have been explored in greater details than others. It is a
wise choice to make numerator and denominator have identical length
because it boosts filter performance without an undesirable filter order

increase.

Based on properties of paralleled allpass filters stated in Chapter 3, this
design problem can be solved by different approaches mainly based on
phase and magnitude response approximation and there are advantages and

disadvantages in results with respect to different approximation
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combinations. Among those examples, “phase optimization in passband,
magnitude optimization in stopband (example 4)”, and “magnitude
optimization in passband, phase optimization in stopband (example 5)” are
creatively introduced by this thesis. Besides their inherent low sensitivity,
this and relative structures are widely applied in IR filter design because of

their high performance and efficiency.

The nonlinear optimization approach described in Chapter 4 is easily to get
an almost perfect group delay response or lincar phase with few filter order,
but it is hard for attaining a satisfactory magnitude response compared with
the former two methods even after weighting more on magnitude in error
function. Therefore this kind of filters can be good candidate for some
applications that are very strict with phase response but not magnitude
response. In IIR digital filter design areas. this is a quite explicit approach
that doesn’t require much theoretic deduction and the future work should be

focused on magnitude response improvements.

Onc of Remez Exchange Algorithm steps is the determination of candidate
filter coefficients from candidate "alternation frequencies.” which involves
solving a set of linear equations (Chapter 1) or nonlinear minimization
problems (Chapter III and Chapter IV). Normally those alternation
frequencies come from locations of extrema, under one constraint “whose
magnitudes are larger than ripple height” (refer to [10]. [ 1], [12]), over the
frequency domain. However, this constraint has been removed for Remez
Algorithm applications in this thesis because from lab experiences, I think it

Is not necessary, or even harmful for optimization procedures. The number
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of interrupted cases caused by “ripples are less than s pecified number” is

extremely reduced by eliminating this constraint.
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