University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1998

A data warehouse view selection scheme to accommodate
dimension hierarchies.

Xiaohong. Meng
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Meng, Xiaohong., "A data warehouse view selection scheme to accommodate dimension hierarchies."
(1998). Electronic Theses and Dissertations. 585.
https://scholar.uwindsor.ca/etd/585

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/585?utm_source=scholar.uwindsor.ca%2Fetd%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

()

UMI

A Data Warehouse View Selection Scheme

to Accommodate Dimension Hierarchies

by
Xiaohong Meng

A Thesis
Submitted to the College of Graduate Studies and Research
through the School of Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

1998

i~l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Welliington Street
Ottawa ON K1A ON4

Bibliotheque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Waellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre rédference
Our file Notre reférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-52611-9

Xiaohong Meng 1998
© All Rights Reserved

Abstract

A data warchouse is a central data repository that supports efficient execution of complex
business decision queries. Data warehouse views are aggregations or summary tables
holding millions of records integrated from a variety of source data systems. An n-
dimensional data cube is a multidimensional data model used to generate n different
perspectives of the measure aggregates of interest, and has 2" subviews. Query response
time can be significantly improved by pre-computing and storing needed warehouse
views. Owing to disk space constraints and increasing maintenance cost of materialized
views, pre-computation and storing of all of the required views may not be feasible.

Thus, many algorithms have been proposed for selecting only a subset of views of the
data cube most beneficial to materialize for better query response time. When taking the
warehouse dimension hierarchies into consideration, the view selection problem in a data
warehouse gets more complex. The objective of this thesis is to review and contribute a
solution to the view-selection problem to accommodate warehouse dimension hierarchies.
The proposed selection scheme recommends a set of warehouse views including the
dimension subviews with maximum benefits, to materialize in order to improve the query

response time in a data warehouse.

iv

1 my parents anc[my family, wit/L Lue.
7P 4 4

Acknowledgments

I first would like to express my thanks to my principal advisor, Dr. C. 1. Ezeife, for her
great advice and guidance on my thesis work. I would also like to express my thanks to
Dr. R. Frost and Dr. K. Hildebrandt, who served as internal and external readers on my
Master’s Committee, for their comments and suggestions on this thesis. Finally, [would
like to express my gratitude to my parents for their constant encouragement and support.
which made it possible for me to complete the study while working and raising my

children.

vi

Table of Contents

ADSITACE ..., iv
Acknowledgments ... Vi
T o) B IF- 1 o] L1 SO X
Listof FigQUures...........ooiiiie e Xi
T INtrodUCHION ... 1
1.1 DataWarehouse Model ... 3

1.1.1 Data Warehouse ArchiteCtureooooeeeeeeeeeeeeeeeeeeee e 3

1.1.2 Data Warehouse Design Methodologyccccoooiieiiiiiiiiiiieneeeee, 5

1.1.2 Aggregate Views and The Data Cubeccccccooeeiiiiiiiiiin. 7

1.1.3 DImMension HIGrarChi@scooue oo 8
1.2 The Thesis Objective and Scopeoooooviiiiieinaaaaenn.. 9
1.3 TheSiS OULING ... 10
2 Related Work on Warehouse View Selections............... 11
3 A View Selection Example.............c.oooovviiiiveneiiia .. 19

vii

3.1 A Simple University Data Warehouse 19

3.2 Cube Lattice and Dimension Hierarchiesc.ccccceeeei..... 21
3.3 Combined Cube LattiCe.........c.ovoniemie e, 24
3.4 Partial Combined Cube Lattice............coovmiimimiiieiieaan. 26

3.5 Applying View Selection Schemes to Example Warehouse ... 30

3.5.1 The Greedy Selection Scheme on Example Warehouse................... 30
3.5.2 Proposed Selection Scheme on Example Warehouse 32

3.6 Comparing the Proposed Selection Scheme with the Greedy

Scheme using Example Warehouseccoeiiiiiiiiiieiiie. 38
3.6.1 Query Response TiMeccooouiiiiiiiiiiii e 38
3.6.2 Calculation of Total Query Response Time for Greedy Selection.....39
3.6.3 Calculation of Total Query Response Time for Proposed Selection .40

4 Proposed View Selection Scheme................................. 41
4.1 The Cost/Benefit Model..................c...ooooiiiiiiiii 41
4.2 The Proposed View Selection Scheme and Algorithms 41
4.3 Implementation and Experimentation..................................... 45
4.3.1 Case | - Experimentation Lattice, Input and Output Data.................. 45
4.3.2 Case |l - Experimentation Lattice, Input and Output Data................. 50
4.4 Evaluation and CompariSONc.ovoueimieieiieeeeeaeeeea, 57
4.4.1 Evaluation and Comparison for Case | TestRuns 57
442 Evaluation and Comparison for Case ll TestRuns........................... 57

viii

4.4.3 Special Notes and Observations................ccooeeeiiiiiiiiiieiiiiieee, 58

5 Contributions and ConcluSIONSccovvviieia. 60
51 Contributions of the ThesSiScooovonimie e 60
5.2 CONCIUSIONS ... 60
B 3 FUIURE WOOTK ..o 61
REFEIENCES ... 62
APPENAIX A ... 66
AV4 | = I\ Lo (o] £ 13 68

List of Tables

Table 1 View Benefits at Each Round for Greedy Selection 32
Table 2 Definition of An m-join Subviewcoooiiiiiiiiii. 33
Table 3 Definition of Benefit of A View in the Proposed Selection Scheme35
Table 4 View Benefits at Each Round for Proposed Selection......................... 38
Table 5 Definition of (Total) Query Response Timeoooooiieeiieinn... 39
Table 6 Partial Combined Cube Lattice Algorithm..........................ccooooiiiiiiai... 43
Table 7 View-Selection-DH Greedy Algorithm..................................cccccooei... 44
Table 8 View Dependency Relationship for Case | Lattice................................ 47
Table 9 InputDataforCaselLattice...............ooooniiimiiiiiiiiiiia e, 47
Table 10 Output of View Benefits from Greedy Algorithm for Case | 48
Table 11 Output of View Benefits from Proposed Algorithm for Case |.............. 49
Table 12 View Dependency Relationship for Case H Lattice.............................. 52
Table 13 Input Datafor Case 1 Lattice.................oooiiiiiiiiiiiiiiii e 53
Table 14 Output of View Benefits from Greedy Algorithm for Case il 54
Table 15 Output of View Benefits from Proposed Aligorithm for Case |l....... .ee...55
Table 16 Comparison of Total Query Response Time for Different k Values in
CaSE | .. 57
Table 17 Comparison of Total Query Response Time for Different k Values in
CaS€ Il ..o e, 58

List of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Data Warehouse Architectureooooooeiiiiiiiiiiiiieeee 4
ASEar SCheMA ... 6
A Graphical Presentation of a 3-Dimensional Data Cube................... 8
A Time Dimension Hierarchy.................cccccccoooiiiiiiiiiiiiiiiiiee. 9
An Example ofa3-DDataCubecooooiiiiiiiiiiieiee . 12
Example Lattice with Space Cost...............cccoeoeeiiiiiiiiiiiii 14
The Star Schema for the University Data Warehouse....................... 21
The Cube Lattice for the University Warehouse............................... 22
The Dimension Hierarchies for the University Warehouse 24
The Combined Cube Lattice of the University Warehouse 26

The Partial Combined Cube Lattice of the University Warehouse30
Partial Combined Cube Lattice with rows, frequencies indicated34
Experimentation Lattice forCase |...................oooooviiiiiiiinieieeee, 46
Experimentation Lattice forCase Il.....................ccoii. 51

Xi

1 Introduction

A data warehousing system is designed to support on-line analytical processing (OLAP)
and decision support systems. Business executives, managers and analysts query huge
warehouse data for making better and faster decisions through warehouse user interface.
A data warehouse is a collection of subject oriented, integrated, non-volatile, and time
variant data [In96). The warehouse data is organized around major subjects of an
enterprise and not around its functions as the online transactional processing system
(OLTP) does. For example, an insurance company’s major subject areas might be
customer, policy, premium and claim. An integrated warehouse table can list the claim
made by each customer and premium paid by each customer for each policy over a period
of time. OLTP, on the other hand, stores customer data on premiums separately from
data on claims and stores only current data. The most important aspect of a data
warehouse is integration. The data coming from a number of source operational systems
is integrated before loading into the data warehouse. The integration process includes
encoding, transforming, merging, cleaning, and computing aggregates. The data
warehouse is non-volatile because updates of data generally do not occur in the
warehousing environment. Warehouse data is time variant since most of the data in the
warehouse consists of collections of historical information over a time horizon of 5 to 10
vears. It is a series of snapshots, taken at some moment in time. The key structure of data
warehousing always contains some element of time. In general, data warehouses are
created to provide users with data access and to support online analytic processing

(OLAP) and decision support systems.

Typically, the data warehouse is maintained separately from the operational databases in
an organization. The functional and performance requirements of a data warehouse are
quite different from those of the on-line transaction processing (OLTP) applications

traditionally supported by operational databases. Traditional operational systems are

organized around the applications of the company, which typically automate clerical data
processing tasks such as order entry and banking transactions. Since data warehouses
contain consolidated data, perhaps from several operational databases, over potentially
long periods of time, they tend to be orders of magnitude larger than operational
databases; enterprise data warehouses are projected to be hundreds of gigabytes to
terabytes in size. The workloads (applications accessing) in a data warehouse are query
intensive with mostly ad hoc, complex queries that can access millions of records and
perform many scans, joins, and aggregates. Query throughput and response times are

more important than transaction throughput [ChDa97].

The topic of data warehousing encompasses architectures, algorithms, and tools for
bringing together selected data from multiple databases or other information sources into
a single repository, the data warehouse, suitable for direct querying or analysis [Wi95].

Although the concept of data warehousing is already prominent in the database industry.
there are still many challenging issues in both research and industry. One such
challenging area is the data warehouse aggregate materialization problem, also referred to
as the view-selection problem. Many queries over data warehouses require aggregate
views or summary data, which can be obtained by joining many large tables. The size of
the data warchouse and the complexity of queries can cause queries to take very long to
execute, and this delay is unacceptable in most decision support systems. One technique
used to improve warehouse query response time is pre-computation and storing
(materialization) of aggregate views. However, as changes are made to the data sources,
all the warehouse views that depend upon this data must be updated to reflect the changed
state of the data sources [MuQuMu97, Zhetal95, Hu97]. Gray er al. presents the concept
of the data cube, a multidimensional representation of a set of aggregate measures. An n-
dimensional data cube has 2" subcubes. When taking warehouse dimension hierarchies
into consideration, the number of warehouse aggregate views can be huge. Storing all
these huge warehouse views may not be feasible owing to storage space constraints and

increased maintenance costs since all stored views need to be refreshed as updates are

being made in the source databases.

Defining ways to select an appropriate set of warehouse views to materialize is one of the
most important design decisions in designing a data warehouse. Since OLAP queries are
complex and the volume of data is large, there is a need to balance the time-space trade-
off in order to make the system usable. Carefully selecting and defining a set of views
and their indexes to materialize contributes to finding this needed balance between
maintenance cost, storage space and query response time [Ez97b]. Thus, given a set of
queries and some storage space constraint, the decision on which aggregate views to
materialize in a data warehouse to minimize response time and maintenance cost remains
a challenging research issue. The purpose of this thesis is to review and contribute a
solution to the warehouse view selection problem especially when the dimension

hierarchies are taken into consideration.

1.1 Data Warehouse Model

Data warehousing technologies have evolved in the last decade and have been
successfully applied in many industries including manufacturing, telecommunications,
financial services, retail stores and health care [ChDa97]. This section discusses briefly
the typical data warehousing architecture, its components, tables in a star schema.

aggregate views modeled as data cube and dimension hierarchies.

1.1.1 Data Warehouse Architecture

Figure 1 shows a typical data warehouse architecture. It consists of the following
components: Information sources, Extractor/Monitor, Integrator/Loader, Data
Warehouse/Data Marts, Information Delivery/OLAP Tools, and Administration Tools

[ChDa97]. The information sources can be conventional database systems, or external

sources such as flat files, news wires, HTML and SGML documents, knowledge bases
and legacy systems. The extractor is the component responsible for extracting data from
multiple information sources while the monitor is responsible for automatically detecting
changes of interest in the source data and reporting them to the integrator. The integrator
is responsible for installing the information in the warehouse, which may include
transforming and filtering the information, summarizing it, or merging it with
information from other sources. The loader is responsible for loading data into the data
warehouse and periodically refreshing the warehouse to reflect updates at the sources.

The data warehouse is the central repository of large volume of integrated. consolidated.
and summarized data. In addition to it, there may be several departmental data marts.
Data in the warehouse and data marts are stored and managed by one or more warehouse
servers, which present multidimensional views of data to a variety of front end
information delivery tools: query tools, report writers, analysis tools, and data mining
tools. Finally, there are also tools for monitoring and administering the warehousing

system.

ilnformation Delivery

OLAP

AT e e ¥ Sl T T G R TR

Integration:
merging,

)il

Administration
& Monitoring

Figure | Data Warehouse Architecture

1.1.2 Data Warehouse Design Methodology

Entity Relationship (ER) diagrams and normalization techniques are popularly used for
database design in OLTP environments. However, the database designs recommended by
ER diagrams are inappropriate for decision support systems where efficiency in querying

and in loading data are important [ChDa97].

There are two major types of data warehouse design models: the entity model and the
dimensional model. The entity model is a normalized relational database modeling
approach that emphasizes the elimination of data redundancies in the design. It produces
a database that is complete and easily maintained, making this approach suitable for a
data warehouse that is intended for data archiving. The dimensional modeling approach
results in a database design that is consistent with paths by which users wish to enter and
navigate the data warehouse. Frequently requested aggregates or calculated measures are
stored in the database, creating useful data redundancies that make it possible to avoid

performance-inhibiting repetitive calculations every time a report is prepared.

Dimensional modeling uses fact tables that store time-series historical data, indexed on
dimensional keys, and are described in corresponding dimension tables. Each fact table
has an indexed primary key composed of several columns, each of which logically
corresponds to a major business dimension such as time period, product, or market. Each
dimension key must be represented and described in a corresponding dimension table.
which logically joins to the fact table(s) through identical primary key columns. Each
dimension table should incorporate multiple attribute columns containing text and codes

that further describe the key.

The popular design option in the dimensional data model is the star schema, which is

used by most data warehouses to represent the multidimensional data model. The basic
premise of the star schema is that information can be classified into two groups: facts and
dimensions. Facts are the core data elements being analyzed; dimensions are attributes
about the facts. The database consists of a single historical fact table within each
category, which contains detail and summary data, and a single dimension table for each
dimension indicated in the fact table. The primary key of the fact table contains only one
key column from each dimension. Each dimension table consists of columns that
correspond to attributes of the dimension. In the typical star schema, the fact table is
much larger than any of its dimension tables. Figure 2 shows an example of a star

schema.
There are other design options available in the dimensional data-modeling approach, such

as partial star schema, fact partitioning schema, dimension partitioning schema and

snowflake schema [Ta97]. We are not going to discuss them further in this thesis.

Date

Time_key
day
month
year

(Dimension Table)

Product Sales Store
Product_key Product_key Store_key
name i‘_‘l’n"-:‘y name
cate; ime_key address

gory units_sold
(Dimension Table) (Fact Table) (Dimension Table)
Figure 2 A Star Schema

1.1.2 Aggregate Views and The Data Cube

Aggregation is the process of summarizing granular, or detail, data and physically storing
the aggregations as warchouse views along common business hierarchies. In order to
answer aggregate queries quickly, a warehouse often stores a number of summary tables,
which are materialized views that aggregate the data in the fact table possibly after
joining it with one or more dimension tables. Aggregating detail data in advance
decreases access times, and speeds up processes such as rolling up and drilling down. A
roll-up analysis presents an aggregation first in the lowest level detail but proceeds to
present it in a more general level detail (e.g. computing the total sales per day first, then
per month, finally per year). A drill-down analysis presents summaries from the coarsest
level detail to the lowest level detail (e.g. computing the total sales per year and then per

month and finally per day).

Typically, warehouse queries are interested in some measure aggregate value such as total
sales along many dimensions. The data cube is a special data structure defined by Gray er
al. in [Gretal96] for representing multi-dimensions of an aggregate attribute. An n-
dimensional data cube represents 2" aggregate views for a set of n group-by attributes in
the main warehouse fact table. Each cell of this data cube is an aggregate view along one
or more dimensions. For example, Figure 3 is a graphical presentation of a 3-dimensional
data cube with the average grade as the measure aggregate value along the three
dimensions: student(S), course(C) and term (T) in a university data warchouse, this 3-D

data cube has eight (2° = 8) subcubes.

Student (S)
A

SC

Term (T)

Course (C) Average(Grade)

Figure 3 A Graphical Presentation of a 3-Dimensional Data Cube

1.1.3 Dimension Hierarchies

In most real-life applications, dimensions of a data cube consist of more than one
attribute, and the dimensions are organized as hierarchies of these attributes. The
dimension attributes on both warehouse fact and main cube aggregate tables are foreign
keys, each foreign key attribute may have associated with it a dimension hierarchy
specifying attributes for describing it. Data in dimension tables often represent
dimension hierarchies. A dimension hierarchy is essentially a set of functional
dependencies among the attributes of the dimension table. Hierarchies are very
important, as they form the basis for two very commonly used querying operations:
rolling up and drilling down, as described earlier in section 1.1.2. Hierarchies introduce
query dependencies that we must account for when determining what queries to

materialize. For example, the time dimension in a data warehouse can have the following

attributes: day, week, month, and year. Since months and years cannot be divided evenly
into weeks, if we do the grouping by week we cannot determine the grouping by month or

year. This time dimension hierarchy is shown in Figure 4.

Day (D)
Week (w) Month (m)
Yecar (y)
none
Figure 4 A Time Dimension Hierarchy

1.2 The Thesis Objective and Scope

A data warehouse is a repository of integrated information available for querying and
analysis. It usually contains many warehouse views, referred to as materialized views,
derived from the data in the sources. This thesis will investigate the view-selection
problem in a data warehousing environment. That is, given a set of common queries and
some storage space constraints, the goal is to select an appropriate set of materialized
views to minimize total query response time. In particular, this thesis will present a view
selection scheme for warehouse views that accommodates dimension hierarchies. This
selection will not only consider the warehouse views grouped-by on primary key
dimension attributes but also on non-primary key dimension attributes. The thesis first

reviews and studies the related work in this area before presenting a warehouse view

selection technique that accommodates dimension hierarchies in a data warehousing
environment. Examples are used to demonstrate this selection technique. The proposed
selection technique is implemented and results of the experimentation conducted are
reported. The proposed scheme is compared with the greedy algorithm introduced in
[HaRaUl96] to show that it has a better query response time than the latter. The scope of
the thesis is limited to focusing on the selection of the warehouse aggregate views
including both main subviews and dimension subviews, while leaving the consideration

of indexes as a future work.

1.3 Thesis Outline

The thesis is organized as follows. Chapter 2 reviews the related work on warehouse
view selections. Chapter 3 presents an example based on a simple university
warehousing system which keeps track of student grades. It shows how a combined cube
lattice and a partial combined cube lattice can be generated to accommodate dimension
hierarchies. It also demonstrates how decisions can be made about selection of views
using some common queries. Chapter 4 presents the View-Selection-DH Greedy scheme
for selecting warehouse views to accommodate dimension hierarchies. The performance
of the proposed algorithm is compared with that of the greedy algorithm. Finally the
conclusions and contributions of the thesis as well as future work are outlined in Chapter
5. The sample data for the fact table and dimension in the university data warehouse

system are listed in Appendix A.

10

2 Related Work on Warehouse View Selections

This chapter presents a review and study of related work and researches being done

recently on warehouse view selections.

Gray et al. overcomes one limitation of the standard SQL aggregate functions and
defines the data cube operator for generating aggregation of n-dimensions in [Gretal96].
The SQL aggregate functions and the group by operator only produce zero-dimensional
or one-dimensional answers. Multidimensional database system applications (OLAP)
require viewing the data from many different business perspectives (dimensions) and
need the n-dimensional generalization of these operators. A data cube is a
multidimensional representation of a set of aggregate measures in a database. Each cell
of the data cube corresponds to a unique set of values for the different dimensions. An n-
dimensional data cube is a multidimensional data model used to generaie » different
perspectives of the measure aggregates of interest, and has 2" subviews. Along with the
data cube operator, Gray et al. also introduces the notion of ALL in the domain of each
dimension. As an example shown in Figure 5. sales of automobiles can be organized by
several dimensions, such as by model, color, and year of sale. The 3-D data cube on the
right of Figure 5 can be built from the fact table at the left by the following CUBE
statement:

Select Model, Year, Color, SUM(sales) AS Sales

From Sales

Where Model in (‘Ford’, ‘Chevy’)

and year Between 1990 and 1992
Group By Model, Year, Color With Cube;

This 3-D data cube has a total of eight (2° = 8) subcubes to represent sum of sales
grouped by (1) nothing (2) model (3) year (4) color (5) model and year (6) model and

11

color (7) year and color, and (8) model, color and year.

DATA |CUBE
Model Year Color Sales
Chevy 1980 Biue €2
Chevy 1980 Red [
Chevy 1990 White (1}
Chevy 10086 ATl 84
Ch::y 1991 :l.n‘- ::
S:Gy :::: White L1
AT 13 M AN LT Nt LT Nt
Model lYear | Color! Sales EhevyTies Ned 37
Chewlioo0red 5 | e wer o
Chevy}1990 | white | 87 Chevy TAN Sius oz
Chevy[1990 | biue {62 crev—Tau Whis i
Chevy[1991 jred |54 Chevy _[ATI ATi Tod
Chevy[1991 | white | 95 LA N KK 1 L N1 L)
Chevy{1991 | blue |49 Ford 7880 White (Y3
Chevy[1992 |red |31 S L L — LT —
Chevy[1992 | white | 54 Ford T8 XX 2
Chevy[1992 | biue |71 Pt
Ford ({1990 |red {64 :w: :: :'"a' :;
Ford [1990 | white | 62 Fova 53 white— Tz
Ford (1990 |blue |63 Ferd I8 AT EL
Ford 1991 jred |52 Ford AT Red XH
Ford H991 |white|9 Ford ATl White 133
Ford [1991 |blue |55 oy —
Ford /1992 [red (27 AT 1998 TRed L1}
Ford 11992 |white |62 i e hn
Forg 11992 lbiye 139 S T a1
X1 1991 W hite 110
ATt 1991 AH 314
ANl 1992 Blue 110
ATl 1992 Red L1
ATl 1992 W hite 116
Al 1992 Al 284
Al ANl Blue 338
Al AT Red 2313
Al ATl W hite 369
All Al ATl 841
Figure 5 An Example of a 3-D Data Cube

Implementation of a multi-dimensional data cube can be accomplished in three ways: 1)
physically materialize the whole data cube; 2) materialize nothing; 3) materialize only
part of the data cube. In [HaRaUl96], Harinarayan et al. presents a lattice framework and
introduces the greedy algorithm for selecting a set of views to materialize in order to

improve the query response time.

To define the lattice framework and propose the greedy algorithm, a simple linear cost

model is used in [HaRaUl96]. The assumption is the cost of answering a query is

12

proportional to the number of rows examined. The lattice framework shows the
dependencies between subviews of the data cube. It imposes a partial ordering on the
queries. The paper also proposes a technique for combining the main cube lattice and

dimension hierarchies into a combined cube lattice.

In this paper, the space cost is the number of rows in the view. The greedy algorithm
starts by selecting the top level view into a set S. Then the benefit of each of the
descendant cube views relative to the selected set S is calculated. The benefit of a view, v
not in the S is computed as the sum of all positive differences between the sizes of the
smallest parent u already in the set S of each view v’s descendant view w including v
itself and the size of view v. If the size difference between the smallest parent u of a
descendant view w of v and the size of view v is negative, the benefit of view w is
considered zero. The benefits of all remaining views in the lattice are computed each

time and the view with the highest benefit is included in the set S.

For example, consider the cube lattice of Figure 6. Eight views, named a through A, have
space costs as indicated on the figure. The top view a, with cost 100, must be chosen.

Suppose we wish to choose three more views. The first choice will be view b because it
has the highest benefit of 250 among all the views, which represents the cost reduction of
(100-50)*S for each of the descendant views d e, g, h and b itself. Once view b is
picked, the benefit of each remaining view is calculated again and the one with the
maximum benefit is selected for materialization. As a result, the greedy algorithm selects
the three subviews b, f and d as the first, second, and third choice in addition to the top

view a to materialize in this example.

13

Figure 6 Example Lattice with Space Cost

This paper investigates the problem of deciding which set of views in the data cube to
materialize in order to minimize query response times but it does not consider any
indexes during the selection. The future work is to define more realistic cost models; use
data cubes stored in MDDB systems instead of relational database systems; and generate

dynamic materialization.

Gupta in [Gu97] proposes a framework for the general problem of selecting views to
materialize in a data warehouse. Given some storage space constraint, the problem is to
select a set of derived views to minimize total query response time and the cost of
maintaining the selected views. Gupta introduces the AND-OR view graph in this paper
and presents some polynomial-time heuristics for selection of views to optimize total
query response time. In particular, the greedy algorithm, the greedy-interchange
algorithm and the inner-level greedy algorithm are discussed for some of the special cases
of the general data warehouse scenario as below.

1) Selection of views in an AND view graph, where each query/view has a unique

evaluation

14

2) Selection of views in an OR view graph, where any view can be computed from any
one of its related views
Gupta also extends the algorithms to the case when there is a set of indexes associated

with each view and discusses the heuristic for the general case of AND-OR view graphs.

In most commercial OLAP systems today, the summary tables (subviews of the data
cube) are materialized first, this is followed by the selection of appropriate indexes on
them. In [Guetal97], Gupta et al. states that this two-step process can perform very
poorly and the selection of both the summary tables and indexes should be done together
for the most efficient use of space. This paper extends the greedy algorithm introduced in
[HaRaUl96] and presents a family of algorithms of increasing time complexities to select
both views and indexes to materialize in order to improve OLAP query performance.

The algorithms with higher complexities have better performance bounds. In particular,
[Guetal97] presents the r-greedy algorithm and shows how it works with different values
of r. It also shows that the inner-level greedy algorithm of moderate complexity can

perform fairly close to the optimal.

Gupta et al. argues that indexes are useful in reducing query costs and that a data cube
with n group-by attributes has associated with it about 3n! possible indexes, 2n! of which
are fat indexes. The fat indexes use more than one key combination. For example, the
index /ps indicates the search key of this index is a concatenation of the p and s
dimensions. The order of the dimensions in the indexes matters. That is, index Ips is

completely different from index /.

Careful selection of aggregate views and some of their most used indexes to materialize
in a data warehouse reduces the warehouse query response time as well as warehouse
maintenance cost under some storage space constraint. In [Ez97a] Ezeife defines a
uniform approach for selecting both warehouse views and indexes based on a

comprehensive cost model. Specifically, the approach considers the top view of a data

15

cube as the main class object, and all its 2" subviews as its attributes. The top view of the
data cube is the view with all the group-by attributes which is called the base level view.

Then the net benefits of keeping each of its subviews are computed using a cost/benefit
model and stored in a matrix. Using the application access frequency to these subviews,
application usage of these subviews and their computed net benefit matrix as well as the
cube lattice, the scheme produces a view affinity matrix which shows how closely any
pair of views are needed together by warechouse applications. The algorithm applies
vertical clustering techniques, the Bond Energy algorithm (BEA) to generate the clustered
view affinity matrix, which is now partitioned to generate two non-overlapping view
fragments. The partitioning process aims at finding the best point along the diagonal of
the clustered affinity matrix to split the views so as to minimize the incidence of sets of
applications needed to cross-reference views/indexes in a different group. Then a
fragment cleaning operation is applied to drop any view that is not used by any
application as recorded in the application usage matrix information. Thereafter, the total
benefit of each cleaned fragment is computed and the fragment with the highest total

benefit is selected as the one containing all subviews that should be materialized.

Once a subcube of the data cube is selected, to select its indexes, the subcube in turn is
made the main class object while the list of its indexes are made its attributes. Then the
appropriate three matrices of index usage, index net benefit and index application
frequency are used to define fragments of indexes to materialize. In all cases, a selected
and cleaned fragment may need to be refragmented if the available storage space is less

than the total space requirement for the views in this fragment.

In [Ez97b], Ezeife provides an extension to the vertical partitioning scheme proposed in
[Ez97a] for handling views and indexes to accommodate dimension hierarchies. [Ez97b]
introduces a dimension view interclass dependency graph (IDG) and a cost/benefit model
that includes the joins on dimension tables needed to generate dimension views. This

approach accommodates views that are grouped on dimension attributes of subjects and

improves system performance by cutting off the enormous amount of time spent

performing joins with dimension tables. The steps involved in identifying the set of

views/indexes to materialize are summarized below:

1. Generate a combined cube lattice from the cube lattice and the dimension hierarchy
lattices.

2. Generate an interclass dependency graph (IDG) to determine the join factor of a
dimension view.

Generate the three matrices: view/index usage matrix (VUM), application frequency

(3]

matrix (AFM), and the net benefit matrix (NBM) using the cost/benefit formulae.

4. Compute the view/index affinity matrix (VAM).

S. Based on the view/index affinity matrix, generate a clustered view/index affinity
matrix using the Bond Energy algorithm (BEA).

6. Using the vertical partition algorithm on the clustered affinity matrix to generate non-
overlapping fragments of views/indexes.

7. Perform fragment cleaning operation to drop every view not accessed by a query.
Select fragment with higher total net benefits.

9. Repeat steps 3 to 8 for the cube class object with all selected views included in its

original views.

Ezeife and Baksh in [EzBa98] investigate the problem of reducing the size of warehouse
views through horizontal fragmentation. They present a horizontal partitioning scheme
for selecting warehouse views. The partitioning scheme first horizontally fragments the
data cube views starting with the base level view. This horizontal fragmentation scheme
enhances the one defined in [OzVa91] by taking more realistic approach because it uses
access frequency of queries to attach an importance value to the predicates arising from
the queries. The importance value (IP) of each predicate is defined by multiplying the
cardinality of the predicate by application access frequency. The selection algorithm
incorporates the benefits of fragmenting the parent view to select subsequent views tc

materialize. For every selected parent view, a re-computed size of the parent view,

17

derived from access of its fragments by queries, is used to select further views with the

greedy algorithm. Every selected view is in turn partitioned and the size is re-computed.

[Ez98] enhances the performance of the partition-seiection scheme for views presented in
[EzBa98] by defining an algorithmic component named the fragment-advisor, which
recommends the best set of fragments of a materialized view that answers any warehouse
aggregate query. The input to the scheme are partition attribute, analysis attribute,
measure attribute and set of predicates of the query as well as the set of materialized

views with their fragments.

Baralis er al. in [BaPaTe97] proposes another technique to perform the selection of views
to materialize in a multidimensional database. It states that the elements of the
multidimensional lattice represent the solution space of the problem. Some view
selection techniques proposed in the past do not scale well when the number and
complexity of dimensions increase. Their proposed technique reduces the solution space

by considering only the relevant elements of the multidimensional lattice.

Johnson and Shasha in [JoSh96] state that a two-step process of picking subcubes first,
followed by the selections of indexes, is typically adopted in commercial OLAP systems.
They propose an ad hoc approach in dividing the space and in picking indexes. Indexes

are built on the most frequently used dimensions.

18

3 A View Selection Example

This chapter uses a simple university database to show how a combined cube lattice can
be defined from the cube lattice and dimension hierarchies. It introduces the concept of
partial combined cube lattice and shows how a partial combined cube lattice can be
generated from the combined cube lattice and common warehouse queries. It also
presents the proposed view selection scheme, although the formal presentation and
discussion of the proposed algorithm is made in Chapter 4. This chapter demonstrates
how the warehouse views in a partial combined cube lattice can be selected for
materialization using both the greedy algorithm and the proposed selection scheme to
improve query response time under some storage space constraints. A comparison of the
total query response time based on the selection using both algorithms and relevant

definitions used in the thesis are presented as well.

3.1 A Simple University Data Warehouse

The university database keeps track of the grade information for students in all the
academic terms. It has information on students, the courses they have taken and the term
in which the courses are offered. This university data warehousing system is designed
using the star schema model, which uses a main fact table and multiple dimension tables.
The fact table holds all the integrated, time-variant data while the dimension tables
describe the foreign key attributes of the fact tables. The fact table in this warehouse is

given below:
grade(student_id (S), course_no (C), term(T), grade)

In addition to the fact table, the following three dimension tables are stored in the

19

warehouse with the student_id, course_no and term as the primary keys in each of the

dimension tables, respectively:

student(student_id (S), name (n), gender (g))
course(course_no (C), course_name (d))

terminfo(term (T), year (y), season(o))

Here, a single letter abbreviation is used for each dimension attribute. A single upper-
case letter is used to denote the primary key attribute for each dimension, and a lower-

case letter is used to denote the non-primary key attributes for each dimension.

To demonstrate how aggregate views can be selected in a data warehouse, we will use the
university data warehouse example with the sample fact table and corresponding

dimension table data as shown in Appendix A.

For the fact table grade(student_id (S), course_no (C), term(T), grade), the domain of
student_id is c0001, c0002, ..., ¢9999. The domain of course_no is cs60-100, cs60-101.
..., €s60-799. The term in which the courses are offered is recorded as yyyyW. yyyyF,
YyyyS to indicate Winter, Fall, and Summer term in each year respectively. The sample
fact table data shown in Appendix A only has 25 records although table holds millions of

rows in reality.
The warehouse is designed using the star schema as shown in Figure 7. The fact table

grade has a composite primary key, which consists of the three primary keys on the three

dimension tables.

20

Term

Term
year

(Dimension Table)

Grade
Student Course
name - . Tou rse_no c . name
gender erm
Grade
(Dimension Table) (Fact Table) {(Dimension Table)
Figure 7 The Star Schema for the University Data Warehouse

3.2 Cube Lattice and Dimension Hierarchies

Consider the average grade as the measure aggregate value in this university warehouse
example. There are three dimensions in the university data warehouse upon which we
can perform business analysis. The data cube for this example is a 3-dimensional cube on
average grade and has eight (2° = 8) main subviews, which have group-by attributes on
the primary key attribute of each dimension: student, course and term. The cube lattice
of these eight main subviews, which are denoted by the attributes in the group by clause
as follows is given as Figure 8.

SCT - student_id, course_no, term

SC - student_id, course_no

ST - student_id, term

CT - course_no, term

S - student_id

21

C - course_no
T - term

() - none

SCT
SC CT
S l
‘ S - Studentld
C - CourseNo
T - Term
Figure 8 The Cube Lattice for the University Warehouse

Among these subviews, the very top one, which has group-by attributes on all the

dimension keys is called the base level view. The very bottom one, which has only one

row and denoted as (), is called the ALL view. These two views can be generated from

the SQL statements below:

SCT: select student_id, course_no, term, avg(grade) as avg_grade

from grade
group by student_id, course_no, term;
ALL: select avg(grade) as avg_grade

from grade;

The subview SC corresponds to the following SQL statement and can answer this query:

What is the average grade achieved by each student for each course in the university?

SC: select student_id, course_no, avg(grade) as avg_grade

from grade

22

group by student_id, course_no;

Here, some lattice notations in the context of warehouse views and queries as described
in [HaRaU196] are used. Consider two queries Q, and Q,. We say that Q, is dependent
on Q, if and only if query Q, can be answered using the results of query Q,. and this
dependency relation is denoted as Q, <Q,. The <operator imposes a partial ordering on
the queries. In order to be a lattice, any two elements on the lattice must have a least

upper bound and a greatest lower bound according to the <ordering.

We denote a lattice with a set of elements L and dependence relation <by (L. <. For
elements a and b of a lattice (L, <, a b means that a < b and a b. The ancestors and
descendants of an element of a lattice (L, <, are defined as follows:

Ancestor(@)={b|a <b }

Descendant(a)={ b | b <a }

In the cube lattice shown in Figure 8 the base level view is SCT. The view SC can be
derived using only the results of view SCT as shown in the following SQL statement.
Thus, SC is said to be dependent on SCT, denoted as SC < SCT. Assume SCT view has
the following columns: student_id, course_no, term, and avg grade. The SC view can be
achieved from this SCT view instead of from the fact table grade as follows.

Select student_id, course_no, avg(avg_grade) as average_grade
from SCT
group by student_id, course_no;

The dimension hierarchies for the university warehouse are given in Figure 9.

23

3.3

In many situations, queries demand grouping by attributes on non-primary key attributes
other than the primary key for each dimension. For example, the following query will

need to group-by on the attributes student id (S) and course _name (n), and the query is

Studentld (S)

/\

(n) Name Gender (g)

\/

none

S - Studentld
n - Name
g - Gender

Figure 9

Combined Cube Lattice

denoted as Sn.

The following view can be generated to answer this query:

What is the average grade achieved by each student for the courses “Data

Structure’” and ' File Structure” in 97W term?

CourseNo (C)

CourseName(d)

none

C - CourseNo
d - CourseName

Term (T)

Year (y) Season (0)

none

T -Term
y - Year
o - Scason

The Dimension Hierarchies for the University Warehouse

select student_id, course_name, avg(grade) as avg_grade

from grade g, coursec

where g.course_no = c.course_no
and c.course_name in (‘Data Structure’, ‘File Structure’)

group by student_id, course_name;

24

In the above example, if the view Sn is materialized, it can be used to answer the query
directly and this avoids the need to perform table join between the fact table grade and
the dimension table course. Thus, the system performance can be improved considerably.
In order to consider the dimension hierarchies in the view-selection problem, we first
need to generate the combined cube lattice based on the cube lattice for the fact table and

the dimension hierarchies.

The combined cube lattice is a direct product of the cube lattice for the fact table and the
dimension hierarchies as stated in [HaRaUl96]. Here, we give further description of the
steps to generate the combined cube lattice similar to those used in {Ez97b]. Starting
with the base level view (i.e. SCT), we first list all the possible main subviews which
have group-by on the primary key attributes as denoted by capital letters in our university
warehousing example, and all the dimension subviews, which have group-by on the non-
primary key attributes, then connect edges downward from a parent view or node to its
child view or node according to the lattices, to either reduce one group-by attributes (i.e.
SCT -> SC), or substitute one dimension attribute with the non-primary key attribute (i.e.
SCT -> SdT). Repeat the connecting process for all the views. If the edge is drawn due
to the substitution of a dimension attribute, we label that edge with a corresponding
lower-case letter of the primary key attribute. This lower case letter on the edge between
the parent and child views indicates that a table join is required to derive the child view
using the result of the parent view. We call this lower case letter the table join link. The
top element in the combined cube lattice is always the base level view. The bottom
element in the combined cube lattice is always the ALL view, which is denoted as ().

The combined cube lattice of the university warehouse for combining only the two

dimensions student and course is given as Figure 10.

25

SCT

S$=8tdld. C=CoursecNo., T=Term. n=StdName. g=Gender. d=CourseName

Figure 10 The Combined Cube Lattice of the University Warehouse

(combined for only dimensions S and C)

Notice that for the 3-dimensional university data warehouse example, there are a total of
24 views in this combined cube lattice when only the dimension hierarchies student (S)
and course (C) are included. As mentioned before, an n-dimensional data cube has 2"
main subviews. As the dimension n gets large in a data warehouse. the number of main
subviews will grow exponentially. For example, a four-dimensional data cube has 2*=16
main subviews, a five-dimensional data cube has 2°= 32 main subviews. When
considering all the dimension attributes for the n dimensions, the total number of views in
the combined cube lattice will increase even faster. Thus, the view-selection problem to
accommodate the dimension hierarchies in a data warehouse is much more complex than

just considering the main subviews.

3.4 Partial Combined Cube Lattice

This thesis introduces the concept of partial combined cube lattice in order to reduce the

26

number of warehouse views considered in the view-selection problem when dimension
hierarchies are taken into account in a data warehouse. Although the total number of
views in a combined cube lattice can be very large, only a portion of them need to be
considered in the warehouse view-selection process due to either storage space

constraints or business requirements.

In a data warehouse system, we can always identify a set of common warehouse queries
as those that have either of the following characteristics: (1) high access frequency (which
are accessed most frequently) or (2) a critical or high query value (which requires a fast
response time). Note that some queries that have a critical or high query value and are

included in the set of common queries may have low access frequencies.

The steps to generate the partial combined cube lattice are described as follows. On the
combined cube lattice, given a set of common warehouse queries, identify and mark all
the smallest views except the ALL view, which can be used to answer these common
queries. From each of the marked views, highlight the edge from this view v to its
ancestor views including the table join link denoted by a lower case letter, and mark all of
its ancestor views as well. Repeat this marking process for all the ancestor views of view
v until no more views are left to be marked. Then remove all the nodes that have not
been marked as well as any dangling edges from the combined cube lattice. The resuitant

(marked) combined cube lattice is the partial combined cube lattice.

It is obvious that the top element of the partial combined cube lattice is always the base
level view. For the purpose of reducing the views to be considered, we do not include the
ALL view in the partial combined cube lattice even if the ALL view is in the list of views
accessed by common queries. As described in a later section, the proposed view selection
scheme always materializes the ALL view along with the selected the set. The
importance of generating the partial combined cube lattice is to allow only relevant

views, which is a subset of views in the combined cube lattice to be considered in the

27

selection process and to provide scalability for the proposed selection technique. The
views appearing on the partial combined cube lattice are called the candidate views. Note
that each leaf node on the partial combined cube lattice are the views associated with a
warehouse query, and each non-leaf node on the partial combined cube lattice may or

may not be associated with a warehouse query.

Consider some of the warehouse queries and views with corresponding SQL statement to
answer these queries in the university data warehouse below.
QI: (ST) Get the list of all students who have maintained an average grade of 90 or
above in any term.

Select student_id, term, avg(grade) as avg_grade

From grade

Group by student_id

Having avg(g.grade) >= 90;
This query can be answered by the results of view ST.

Q2: (CT) Get the average grade for each cs60-300 level or above course each term.
Select course_no, term, avg(grade) as avg_grade
From grade
Where course_no > = ‘cs60-300’
Group by course_no, term;

This query can be answered by the result of view CT.

Q3: (Sd) Get the average grade for each student on each course taken, listed by
student id and course name.

Select g.student_id, c.course_name, avg(g.grade) as avg_grade
From grade g, coursec

Where g.course_no = c.course_no

Group by g.student_id, c.course_name;

This query can be answered by the view Sd.

28

Q+4: (SdT) Get the average grade for each female student on each course name taken

in each term.
Select g.student_id, c.course_name, g.term, avg(g.grade) as avg_grade
From grade g, course ¢, student s
Where g.course_no = c.course_no
and g.student_id = s.student_id
and s.gender =‘F’
Group by g.student_id, c.course_name, g.term;,

This query can be answered by the result of view SdT.

Q3: (gdT) Get the average grade for both male and female students on each course

name in each term.

Select s.gender, c.course_name, g.term, avg(g.grade) as avg_grade
From grade g, course c, students

Where g.course_no = c.course_no

And g.student_id = s.student_id

Group by s.gender, c.course_name, g.term;

This query can be answered by the view gdT.

Q6: (nCT) Get the average grade for each student on each course in any term, listed

by student name, course number and the term offered.

Select s.name, g.course_no, g.term, avg(g.grade) as avg_grade
From grade g, students

Where g.student_id = s.student_id

Group by s.name, g.course_no, g.term;

This query can be answered by the view nCT.

Suppose the above six queries are the common warehouse queries that are accessed in the

university data warehouse and their corresponding access frequencies are as follows:

Q1 Q2 Q3 Q4 Q5 Q6

80 90 100 75 80 85

29

The partial combined cube lattice for the university data warehouse example has all the
candidate views as shown in Figure 11. The number of rows in each of the candidate
views is enclosed in the parenthesis beside the view. They are obtained using the sample

fact table and the dimension tables data listed in Appendix A.

SCT (25)

SC (20) SdT (25) gCT (17)

Sd (20) ST (19) gdT (17)

CT (12)

Figure 11 The Partial Combined Cube Lattice of the University Warehouse

3.5 Applying View Selection Schemes to Example Warehouse

Before presenting the proposed view selection scheme in this thesis, we first apply the
greedy selection scheme introduced in [HaRaUl96] directly to the university data
warehouse example. The thesis identifies some limitations in the greedy selection
scheme and introduces the proposed approach for selecting the warehouse views to

accommodate dimension hierarchies.

3.5.1 The Greedy Selection Scheme on Example Warehouse

The greedy selection scheme presented in [HaRaUl96] simply computes the benefit of a

view by considering how it can improve the space cost of evaluating itself and other

30

views, which depend on it. The scheme starts by selecting the base level view into a set.
Then the benefit of each of the candidate views is calculated. The view with the
maximum benefit considering the views that are already in the set is selected for
materialization. In order to show the difference between the greedy selection scheme and
the proposed selection scheme, the definition used in the greedy selection scheme to
calculate the benefit of a view is given below. Let C(v) be the cost of view v. After
selecting some set S of views, the benefit of view v relative to S denoted as Brv. S) is
defined as follows:
i. For each w <v, define the quantity By, by
Let u be the view of least cost in S such that w < u.
if C(v) <C(u), then B,, = C(u) - C(v), otherwise By, =0

o

Define B(v. S) = ¥, .. Bw

Apply the greedy selection scheme to the partial combined cube lattice of Figure 11.

Suppose we want to choose three views in addition to the base level view to materialize.

We must make three successive choices of views. When calculating the benefit, we begin
with the assumption that each view is evaluated using the base level view SCT and
therefore has a cost of 25. The benefits of each view calculated at each round for our
example are tabulated in Table 1. It can be seen from the table that the winner of the
second round is the view gCT, which has the highest benefit of 24. If view gCT is
materialized, we reduce its cost and that of each of its descendant views gdT and CT by
8. Since the space costs of view SdT and view nCT are the same as that of the base level
view SCT, there is no benefit gained by materializing either of them. For the third round.
the benefits of each candidate views are calculated considering the set of materialized
views as {SCT, gCT}. The winner for the second round is the view SC with a maximum
benefit of 10. When calculating the benefit for view gdT in the second round, its smallest
ancestor view gCT with a space cost of 17 is used, therefore the benefit is (17-17)*1=0.

Similarly, the benefit of view CT is calculated from its smallest ancestor view gCT

instead of the base level view SCT, resulting (17-12)*1=5. For the fourth round, view ST

31

is the winner with a maximum benefit of 6. Thus. the greedy selection for our example is
the following views: SCT, gCT. SC and ST.

View Second Round Third Round Fourth Round

sC (25-20)-2=10 (25-20)°2=10

SdT (25-25)"4=0 (25-25)°3+0=0 ~(25.25)2+0+0=0
nCT (25-25)2=0 (25-25)*1+0=0 (25-25)"1+0=0

gCT (25-17)3=24

B R " e BN A X 15
Sd (25-20)*1=5 (25-20)*1=5 (20-20)*1=0
ST (25-19)*1=6 (25-19)*1=6 (25-19)*1=6
gdT (25-17)*1=8 (17-17)*1=0 (17-17)*1=0
CcT (25-12)*1=13 (17-12)*1=5 (17-12)*1=5
Table | View Benefits at Each Round for Greedy Selection

From the above example, when applying the greedy selection [HaRaU196] directly to the
warehouse views the following limitations have been observed: No consideration was
given to the common warehouse queries and their access frequencies. Each view on the
lattice is treated equally irrespective of whether it is a main subview or a dimension
subview. The number of rows in a view is the only factor considered for making the
selection decision. When calculating the benefit gain of a dimension subview, there is no
consideration given to time spent on table joins required to answer the dimension

subview with its ancestor views.

3.5.2 Proposed Selection Scheme on Example Warehouse

This thesis proposes a view selection scheme that takes into consideration of the

following elements:

32

e The common warehouse queries and their access frequencies

e The candidate views associated with a query are treated differently from other views.

They are given a higher weight factor to increase their chance of being selected.

e The dimension subviews are treated differently from other views. They are also given
a higher weight factor to increase their chance of being selected because of the need

to perform table joins if they are not selected.

e The number of table joins involved in deriving a dimension subview from one of its

ancestor views is also taken into account when calculating the benefit of a view.

Before presenting the proposed selection scheme, consider the definition of an m-join

subview in Table 2 below.

Definition of An m-join Subview
Let a and b be the two views on a given lattice (L, <, and a is dependent on b, that is. a
b. if the minimum number of table joins required to drive a from b is m, where m is an

integer, then we call a an m-join subview of b.

Table 2 Definition of An m-join Subview

For example, on the partial combined cube lattice in Figure 11, view Sd is a 1-join

subview of SC, but it is a 0-join subview of SdT.

Notice that some of the candidate views on the partial combined cube lattice are
associated with a query with known access frequencies while others are not. To apply the
proposed selection technique, the following method to determine the access frequency of

the views that are not associated directly with a query is used.

Let u be a candidate view on the partial combined cube lattice that is not associated with

33

a query, and u is the immediate (smallest) ancestor of the following views: v;, vs, ... v,.
If the access frequencies of these views are f{v;), f(vy), ... f(v,) respectively, then the

access frequency of u is the maximum of the frequency set.

That is, Sw) =max { f{v)), f(va), ... fivy) }

Now, the access frequencies of the candidate views: SC, gCT, and SCT are as follows.
f(SC) =max{f(Sd)} = max{100} =100
f(gCT) = max {f(gdT), f(CT)} = max {80, 90} = 90
f(SCT) = max{f(SC). f(SdT), f(nCT), f(gCT), f(ST)} = max {100, 75, 85. 90, 80}= 100

For convenience, we will denote the candidate views on the partial combined cube lattice
in the form of WV(rows, frequency) if view V is not associated with a query or V(rows,

Jrequency, Op) if view V is associated with a query as shown in Figure 12.

SCT (25.100)

SC (20, 100) sqT (25.75.Q,

e

Sd (20, 100, Q,) ST (19.80.Q,)

gCT (17.90)

nCT (25,85, Q,

gdT (17.80.Q0) 1 (12.90.Q.)

Figure 12 Partial Combined Cube Lattice with rows, frequencies indicated

Now, the thesis introduces the formula and definition that are used in the proposed
selection scheme to calculate the benefit of a view relative to a selected set as shown in
Table 3. This definition consists of three parts. The first part calculates the benefit of the

view itself. The number of table joins required to derive the view from its smallest

34

ancestor view in the selected set as well as whether the view itself is a query-associated
view are considered when calculating the benefit. The second part calculates the benefits
of all of its descendant views that are not already selected into the set. Again, the
numbers of table joins required to derive the dimension subview from its ancestor views
are considered when calculating the benefit. The third part takes the summation of the

first two parts as the benefit of a view relative to a selected set.

Definition of The Benefit of A View
Let C(v) be the cost of view v, and let F(v) be the access frequency of view v. The benefit

of view v relative to some selected set S, which we denote as B(v,S), is defined as:

For view v itself, define the quantity B, by
Let u be the view of least space cost in S such that v< ,
and v is k-join dimension subview of u,
Let C(u) be the space cost of view u,
If C(v) <C(u), then By, = [C(u) - CV)]*F(v)*(k + 1 + 1),
where /=1 if view v is associated with a query, otherwise /=0,
Otherwise, By =0.
For each view w <v, and w ¢ S, define the quantity B,,_, by
Let x be the view of least space cost in S such that w < x,
Let C(x) be the space cost of view x,
and w is m-join dimension subview of x.
Let F(w) be the access frequency of view w,
and view w is n-join dimension subview of v
If C(v) < C(x), then By,_y = [C(x) — CV)]*F(w)*(m—n+ 1),
Otherwise, B,y_y =0.

Deﬁne B(V,S) = BV + 2";<v Bw<v.

Table 3 Definition of Benefit of A View in the Proposed Selection Scheme

35

The proposed selection scheme is briefly described here. It starts by selecting the base
level view into a set. Then the benefit of each candidate view on the partial combined
cube lattice is calculated using the new definition of the benefit of a view in Table 3. The
views with the maximum benefits in each round considering the views that are already in

the set are selected for materialization.

Now. apply the proposed selection scheme to our university warehouse example with the
partial combined cube lattice shown in Figure 12. Suppose we again want to select three
(3) views to materialize in addition to the base level view SCT. The detailed calculation

of the benefit for each view is listed below.

The first round:

S={SCT}

The base level view SCT is selected into the set S.

The second round:

B(SC, S) = Bgc . Bgy_sc = (25-20)*100*1 + (25-20)*100*(1-1+1)=1000

B(SdT, S) = Bsyr . Bsq sq7 + Bsr.sar + Bgaresar =0

B(nCT, S) = Bycr+Berencr =0

B(gCT, S) = Bycr+Berger «Bogrger
= (25-17)*9%(1+1) + (25-17)*90*(0-0+1) + (25-17)*80*(2-1+1)
=1440 + 720 + 1280 = 3440

B(Sd, S) = Bg,=(25-20)*100*(1+1+1) = 1500

B(ST, S) = Bsr=(25-19)*80*(1+1) = 960

B(gdT, S) = Bygr=(25-17)*80*(2+1+1) = 2560

B(CT, S) = B;r=(25-12)*90*(1+1) = 2340

S ={SCT, gCT}

36

The view gCT with a maximum benefit of 3440 is obviously the winner for the second

round.

The third round:

B(SC, S) = Bsc . Bsy_sc = (25-20)*100°1 + (25-20)*100*(1-1+1)=1000
B(SdT, S) = Bsqr . Bsg.sar + Bsr.sar « Bgarosar =0

B(nCT, S) =B.cr.Bcroncr =0

B(Sd, S) = Bs,= (25-20)*100*(1+1+1) = 1500

B(ST, S) =Bg,=(25-19)*80*(1+1) = 960

B(gdT, S) = Byyr=(17-17)80*(1+1+1) = 0

B(CT, S) =Bcr=(17-12)*90%(1+1) = 900

S={SCT, gCT, Sd }

The winner for the third round is view Sd with a maximum benefit of 1500.

The fourth round:

B(SC, S) = Bsc = (25-20)*100*1=500
B(SdT, S) = Bsgr . Bsr_sor + Bgaresar =0
B(nCT, S) =8B,cr.Beroncr =0

B(ST, S) = Bgy=(25-19)*80*(1+1) = 960
B(gdT, S) = Byr=0

B(CT, S) =Ber=(17-12)*90%(1+1) = 900

S ={SCT, gCT, Sd, ST }

From above calculation, the fourth choice is view ST with a maximum benefit of 960.
Thus, the selection of views using the proposed technique is the following views: SCT,

gCT, Sd, and ST. The benefit of each view calculated using the proposed selection
technique is listed in Table 4.

37

View Name Second Round Third Round Fourth Round
SCT
SC
SdT 0 0 0
nCT 0 0 0
gCT 3440
Sd 1500
ST 960
gdT 2560 0 0
CT 2340 900 900
Table 4 View Benefits at Each Round for Proposed Selection

The proposed technique produces a different selection set from the greedy selection made
earlier. Since the major purpose of the warehouse view selection scheme is to improve
the warehouse query response time. in the following section. the total query response
time of the six common queries using the greedy selection is compared with the one using

the selection resulting from the proposed scheme.

3.6 Comparing the Proposed Selection Scheme with the Greedy Scheme
using Example Warehouse

3.6.1 Query Response Time

Before the query response times of the two underlying selection schemes are compared,
query response time needs to be defined. In this thesis, the query response time is defined

as the number of rows of the smallest view used to answer the query multiplied by the

38

unit response time of answering one row in the system. If a table join is involved in
answering a query, the number of rows of the smallest view to answer the query is
doubled to accommodate the extra time taken for the table joins. If two table joins are
involved in answering a query, the number of rows of the smallest view to answer the
query is tripled. The definition of query response time and total query response time is

listed in Table 5.

Definition of (Total) Query Response Time
Let C(v) be the space cost (number of rows) of the smallest view v which can be used to
answer a query Q, let ¢ be the unit response time to answer one row in the system, and let
k be the number of table joins involved to answer query O using view v, then the query
response time RT for Q is defined as follows.

RTog=C) * (1+k) * ¢
The total query response time TRTp of the system is the sum of all the query response

time for each query. That is, Total Query Response Time

TRTg = ‘\;'RTQ,’= ‘\;'(C(vi) *(1+k)*t=1 *Z(C(vi) * (1+k))

Table 5 Definition of (Total) Query Response Time

3.6.2 Calculation of Total Query Response Time for Greedy Selection

Greedy Selection: S = {SCT, gCT, SC, ST}
Queries can be directly answered from the set S of materialized views: Q,
Queries can be answered from S without table joins: Q,

Queries can be answered from S with table joins: Q;, Q,, Q; and Q,

Total query response time = RTq, + RTg, + RTqy; + RTg, + RTgs + RT

39

= [C(ST) + C(gCT) + C(SC)*2 + C(SCT)*2 + C(gCT)*2 + C(SCT)*2] * ¢
=19+ 17 +20%2 +25*2 + 17*2 + 25%2) * t
=210t

3.6.3 Calculation of Total Query Response Time for Proposed Selection

Proposed Selection: S = {SCT, gCT, Sd, ST}
Queries can be directly answered from the set S of materialized views : Q, and Q,
Queries can be answered from S without table joins: Q,

Queries can be answered from S with table joins: Q,, Qs and Q,

Total query response time = RT,,, + RT,, + RTy; + RTy + RTgs + RTg
= [C(ST) + C(gCT) + C(Sd) + C(SCT)*2 + C(gCT)*2 + C(SCT)*2] * t
=(19+17+20+25%*2+ 17*2 +25*2) *t
= 190t

From the above comparison, we can see the proposed selection resulted in better total

query response time, approximately 9.53% improvement in this example.

40

4 Proposed View Selection Scheme

4.1 The Cost/Benefit Model

To answer a query Q using a view V, we need to process view F table. The space cost for
answering Q is a function of the number of rows of the table ¥ used to answer Q. In this
thesis. the simple cost/benefit model is chosen. That is, the space cost for answering Q is

the number of rows of the table ¥ that must be processed to construct the result of Q.
Space Cost of answering Query Q = (V]

If a query QO can be answered by both view F; and view Vj. and let F(Q) be the access

frequency of the query, the benefit gain of answering the query Q using view Vj versus

view V; is the difference of the space costs of answering the query with the two views

multiplied by the access frequency of the query.

Benefit Gain=k * [|V}| - |V] * F(Q) where & is constant factor

This cost/benefit model is used to define the benefit of a view in the proposed warehouse

view selection scheme.
4.2 The Proposed View Selection Scheme and Algorithms

The proposed view selection scheme to accommodate dimension hierarchies in a data

warehouse is described below.

Given a set of common warehouse queries and their access frequencies, all views on the

41

combined cube lattice, and some storage space constraints, we first construct a partial
combined cube lattice by following steps described in Chapter 3. The views contained in
the partial combined cube lattice are the only relevant views that are considered for
selection. The scheme starts by selecting the base level view into a set. Then the benefit
of each of the remaining candidate views on the partial combined cube lattice is
calculated using the new definition of the benefit of a view listed in Table 3. The view
with the maximum benefit considering the views that are already in the set is selected for
materialization. The selection process is repeated until the number of views to be selected

is reached under the storage space constraints.

It is recommended that the 4ALL view be materialized always although it is not included
on the partial combined cube lattice as a candidate view because it has only a single value

and the space cost is minimal.

The algorithm proposed here is called View-Selection-DH Greedy algorithm, which is a
modified version of the greedy algorithm. The input to the algorithm is a set of common
warehouse queries and their access frequencies, the combined cube lattice and the storage
space constraint. The output of the algorithm is a set of selected views to be materialized

in a data warehouse.

The first step of the algorithm is to generate the partial combined cube lattice from a
given set of common queries and the combined cube lattice. Only the views appearing on
the partial combined cube lattice are considered in order to reduce the number of relevant
views being considered in the view-selection process. The algorithm for generating the
partial combined cube lattice is presented in Table 6. In this thesis, the space cost of a
view is the number of rows in the view. Suppose that there is a limit & on the number of
views, in addition to the base level view that we may select due to the storage space
constraint. After selecting some set S of views, the benefit of view v relative to S, which

we denote B(v,S), is defined earlier in Table 3. The proposed View-Selection-DH Greedy

42

algorithm for selecting a set of k views to materialize in addition to the base level view is

given in Table 7.

Algorithm Partial_CombCubeLattice (Q, L, L’)

Input: A set of common warehouse queries Q,= {Q,, Q,, ... Q,}
The combined cube lattice L;={ V,, V,, ... V_}

Output: Partial combined cube lattice L’ < L,

Begin

L’ « & // initial the empty set of partial combined cube lattice L" //
Identify the set of smallest views V,={ V., V,, ... V_}to
Answer the set of common queries Q; = {Q,, Q,, ... Q,}
// exclude the ALL view //
for each view u € V,
if uis the ALL view,
then V,=V,—u
V, « O // initial the empty set of ancestor views V_ //
For each view v € V,
Begin
V, = ancestor (v)
L’=L"uV,
End
// the resulting lattice is the partial combined cube lattice L //
return L’
End

Table 6 Partial Combined Cube Lattice Algorithm

Algorithm
Input:

Output:
Begin

End

View-Selection-DH Greedy (S)

A set of common warehouse queries Q; = {Q,, Q,, ... Q,}
And their access frequencies F, = {F, F,, ... F.}

The combined cube lattice L; = { V|, V,, ... V. }

A set of selected views S ¢ L,

S « O { initial the empty set of S }

// construct partial combined cube lattice L’ //

L’; = Partial_CombCubeLattice(Q;,L;, L")

Let V; be the set of all candidate views on the partial combined
cube lattice L,

S = { base level view}

for i=1tokdo

begin
foreachviewv e V; and v ¢ S do
Compute B(v, S), the benefit of view v relative to S as
described in Table 3.
Let Vs be the view such that B(Vs, S) = Max(B(v, S))
S=SUVs
End
V, « the ALL view
S=SuV,

Return S //the resulting set S is the selection of views for materialization//

Table 7 View-Selection-DH Greedy Algorithm

44

4.3 Implementation and Experimentation

The greedy algorithm [HaRaUl96] has been considered as a benchmark in the warehouse
view selection area. Harinarayan ef al. has shown that the greedy algorithm has a
performance guarantee of at least 63% of the optimal solution, that is, for no lattice
whatsoever does the greedy algorithm give a benefit less than 63% of the optimal benefit.
In order to compare the proposed View-Selection-DH greedy algorithm with the greedy
algorithm. the View-Selection-DH greedy algeorithm has been successfully implemented.
Several runs of the implemented programs against the university data warehouse system
have been conducted. To examine the behavior of the proposed selection scheme. two
experimentation lattices are used during the test runs. The first experimentation lattice
has a fewer candidate views than the second experimentation lattice. When determining
the common warehouse queries, the access frequency is not the only factor to consider,
but the value of a query is also taken into consideration. Our experimentation examples
also include some queries that have lower access frequencies but have high query values

in the common query set.

4.3.1 Case | - Experimentation Lattice, Input and Output Data

The experimentation lattice for Case I is shown in Figure 13. The ancestor/descendant
view dependency relationship on this lattice and the number of table joins required to
derive each of the subviews from its ancestor views are represented in Table 8. The third
column on Table 8 represents the view numbers of the ancestor views and the number of
table joins required to derive the descendant view from each of the ancestor views. Each
pair of the ancestor view number and the number of table joins required are separated by
the delimiter “&” in this column. For example, the subview Sd with a view number of 6

has three ancestors with the view number 1, 2, and 3, and the numbers of table joins

45

required to derive the subview Sd from each of the ancestor views are 1, 1 and O,
respectively. The input data for this lattice is shown in Table 9. A “1” in the IsQuery
column of Table 9 indicates that the view is directly associated with a common
warehouse query. The last column of the table indicates the query access frequencies.

The output benefits calculated for each view in each round for both the greedy algorithm
and the proposed algorithm are tabulated in Table 10 and Table 11, respectively.

/ S
SdT T

A “}\A% <.<
<X, X

Sd CT

Figure 13 Experimentation Lattice for Case |

46

ViewName No &ancestorl, k-join&ancestor?2, k-join..&ancestorh, k-join
SCT 1

sC 2 &1,0

sSdT 3 &1,1

nCT 4 &1,1

gCT 5 &1,1

sd 6 &1,182,1&3,0

nC 7 &1,1&2,1¢&4,0

gC 8 &l1,1&2,1:5,0

ST 9 &1,0&3,0

ndT 10 &1,2&3,164,1

gdT 11 &1,24&3,185,1

CT 12 &1,0&4,145,0

S 13 &1,0&2,0&3,046,089,0

gd 14 §1,282,283,145,1456,148,1611,0
daT 15 &1,163,0&4,165,1410,0&11,0&12,1
gT 16 &1,1&3,185,0&%,14611,0

Table 8 View Dependency Relationship for Case | Lattice

ViewNo NumOfRow Name NumOfAncestor IsQuerry Frequency
1 25 SCT 0 C 75
2 20 scC 1 1 75
3 25 SdT 1 ¢ S0
4 25 nCT 1 0 a5
5 17 gCT 1 1 60
6 20 Sd 3 0 45
7 20 nC 3 1 40
B3 11 gC 3 0 45
9 139 ST 2 1 S0

i90 25 ndT 3 o] 35
it 17 gdT 3 1 45
12 12 CT 3 1 65
13 5 S 5 1 10
14 11 gd 7 1 45
15 12 dT 7 1 35
16 10 gT 5 1 45
Table 9 Input Data for Case I Lattice

47

View View #2 X ol #5 #6 #7 #8 #9
No. Name Round | Round | Round | Round | Round | Round | Round | Round
1 SCT it :
2 s 3 [z
3 SdT o ¢]
4 nCT 0 0 0 0 0 0 0 o
5 gCcT 56 et
6 Sd 15 0
7 nC 5 5 0 0
8 gC 28 12 12 12
9 ST 18 12 7 6
10 ndT 0 0 0 0
11 gdT 32 0 0 0 0 0 0 0
12 CT 26 10 10
13 S 20 20 15
14 ad 14 6 6
15 dT 13 5 5
16 aT 15 7 7
Table 10 Output of View Benefits from Greedy Algorithm for Case [

48

View View #2 3 2 5 #6 #7 #8 #9
No. Name Round | Round | Round | Round | Round | Round | Round | Round
1 SCT o " ‘ E
2 Sc 11675 | 1225 e me

| SeSEs s fe
3 SdT 0 0 o o
4 nCT 0 0] o 0
5 gCT 5120 e
6 Sd 950 0
7 nC 600 600 o] 0 o] o 0 0]
8 gC 2520 540 540 540 270 270 270 270
S ST 930 660 610 610 610 610 610 BE
10 ndT 0 0 0 0 0 0 0 :“0 -
11 gdT 3800 0 0 0 0 0 0] 0
12 CT 2145 825 825
13 S 400 400 300
14 qd 2520 810 810 810 j{}; i
15 daT 1365 525 525 0 k 0
16 aT 2025 630 630 630 630

Table 11 Output of View Benefits from Proposed Algorithm for Case |

49

From the output results listed in Table 10 and Table 11, we get the following selections
for both the greedy selection and the proposed selection for different k values (number of

materialized views).
When k =4, Greedy Selection S={1,5,2,13}
Proposed Selection S°={1,5,2,12}
When k = 5, Greedy Selection S={1.5.2.13.8}
Proposed Selection S’ ={1,5,2,12, 14}
When k = 6, Greedy Selection S=1{1,5,2,13.8,12}
Proposed Selection S’ ={1.5,2,12, 14, 16}
Whenk =7, Greedy Selection S=1{1,5,2,13,8,12, 16}
Proposed Selection S’ =({1,5,2,12,14,16,9}
When k = 8, Greedy Selection S={1,5,2,13,8,12, 16,9}
Proposed Selection S’ ={1,5,2,12,14,16,9, 13}
When k =9, Greedy Selection S={1,5,2,13.8,12,16,9, 3}

Proposed Selection S’ ={1,5.2,12,14,16,9, 13, 8}

4.3.2 Case |l - Experimentation Lattice, Input and Output Data

The experimentation lattice for Case II is shown in Figure 14. The ancestor/descendant

view dependency relationship on this lattice and the number of table joins required to

50

derive each of the subviews from its ancestor views are represented in Table 12. The
third column on Table 12 represents the view numbers of the ancestor views and the
number of table joins required to derive the descendant view from each of the ancestor
views. Each pair of the ancestor view number and the number of table joins required are
separated by the delimiter “&” in this column. The input data for this lattice is shown in
Table 13. A “1” in the IsQuery column of Table 13 indicates that the view is directly
associated with a common warehouse query. The last column of the table indicates the
query access frequencies. The output benefits calculated for each view in each round for
both the greedy algorithm and the proposed algorithm are tabulated in Table 14 and Table

15. respectively.

Figure 14 Experimentation Lattice for Case Il

ViewName no &ancestorl,k-joinsancestcr2,k-3oin .. &ancestorN,k-join

SCT 1

SC 2 &1,0

SdT 3 &l,1

nCT 4 51,1

gCT S &1,1

sd € 61,182,163, 0

nC 7 &1,1&2,184,0

gC 8 &1,1&2,1&5,0

ST 9 &1,083,0

ndT 10 &61,283,164,1

gaT 11 &1,283,145,1

CT 12 &1,06&4,165,0

S 13 &1,0&2,06&3,066,0&9,0

nd 14 &1,282,283,154,146,147,161C,0

gd 15 &1,2&2,263,1&5,146,188,1611,0

C 16 41,0&2,064,0&5,087,0&8,0&12,0

dT 17 &1,1&3,0&4,165,14&10,0&11,0&12,1

nT 18 §1,163,164,0&9,1610,0

gT 19 €1,143,165,0&9,1611,0

n 20 §1,1&2,14&3,164,1586,1&7,0&9,1610,0613,1614,0418,0
g 21 &1,182,183,1465,06056,188,0&9,1611,0&13,1615,0419,0
ad 22 &1,182,163,0&4,185,166,0&7,148,1&1C,0&11,0&12,1&14,0&15,0&16,1&17,0
T 23 &1,0&3,0&4,0&5,049,0810,0&11,0612,0&17,0&418,061%,0

Table 12 View Dependency Relationship for Case [I Lattice

52

ViewNo NumO£{Row Name NumOfAncestor IsQuerry Frequency
1 25 SCT 0 0 90
2 20 sC 1 0 75
3 25 SdT 1 1 80
4 25 nCT 1 c 90
5 17 gCT 1 1 85
€ 20 Sd 3 1 70
7 20 nC 3 0] 5SS
8 11 gcC 3 1 75
9 19 ST 2 o] 85

10 25 ndT 3 1 90
il 7 gdT 3 1 65
12 12 cT 3 1 45
13 5 S 5 0 40
14 20 nd 7 0] 55
15 11 gd 7 1 50
16 6 C 7 0 55
17 12 dT 7 G 55
i8 19 nT 5 1 85
19 10 gT S 0 30
20 S n 11 1 40
21 2 g 11 1 30
22 & d 15 1 55
23 6 T 11 20
Table 13 Input Data for Case II Lattice

53

View | View | #2 #3 #4 #5 [w6 [%7 #8 #9 #10
No. Name Round | Round | Round | Round | Round | Round Round Round Round
1 SCT : 3 o ; ; - -
2 SC 55 S T 20
3 SdT 0 0 0 0
4 nCT o 0 0 0 0 0 0 0 0
5 T |88 [l :
Farm] e LA i

6 Sd 35 20 10 10 0
7 nC 25 15 10 10 0
8 gC 70 30 24 14 14
9 ST 42 24 12 12 12
10 ndT 0 0 0 0 0
11 gdT 56 0 0 0 0 0 0 0 0
12 CT 65 25
13 S 60 52
14 nd 15 10
15 qd 42 18
16 (o} 38 22
17 a7 339 15
18 nT 18 12 6 6 6 6 0 0 0
19 aT 45 21 14 9 9 9 g 9
20 n 20 20 0 0 0 0 0 0 0
21 g 23 15 3 3 3 3 3 3 3
22 d 19 1 11 6 6 5 5 0 0
23 T 19 1" 11 6 6 6 6 6 4

Table 14 Output of View Benefits from Greedy Algorithm for Case II

54

View View #2 #3 #4 #5 #6 7 #8 #9 #10
No. Name Round | Round | Round | Round { Round | Round | Round | Round | Round
1 scT : : , 3 2 e s
r:?‘ e] ““hﬁv:;-&’.th < ~W, ‘ 4 fias .:—..,.»:r: p,gg:;w.:‘g' %%ﬁ T;;',ff_n.f._, s :‘.n;.
2 SC 3000 1675 1475 1475 650 650 650 650
3 SdT (o] 0 0 o} 0 0 0 0
4 nCT 0 o] 0 0 0 0 0 0 0
5 oCT | 7880 [rmiocfiemafe s v"‘"";
6 Sd 3200 2000 1800 1800 ;* SEeirTd o R m-ﬂ;wﬁ
R _n‘:_r%u. ; 21 b
PRSI S T 5 :‘.
7 nC 2050 1500 1100 1100 550
8 gC 6930 2040 2040
9 ST 1980 1500 1260
10 ndT 0 0 o] 0 o] V] 0 0 0
11 qdT 6160 0 0 0 0 0 (o] 0 0
12 CT 3575 1375 1375 825 825 825
13 S 2200 1600 800 800 600 600
14 nd 1775 1225 825 825 0 0 0 0 0
15 gd 5180 1740 1740 0 0 0 0 0 0
16 (o4 2090 1210 1210 550 550 550 550 275 275
17 dT 3120 1200 1200 650 650 650 0 0 0
18 nT 2130 2010 1530 1530 1530 -
19 aT 2100 560 560 380 380
20 n 2400 2400
21 g 2070 900 900 540 540 540 540 540 540
22 d 3135 1815 1815 825 825 825 825
23 T 760 | 440 | 440 | 440 | 440 | 440 | 240 | 240 | 240
Table 15 Output of View Benefits from Proposed Algorithm for Case |1

55

From the output results listed in Table 12 and Table 13, we get the following selections
for both the greedy selection and the proposed selection for different k values (number of

materialized views).
When k =4, Greedy Selection S={1,5,13.12}
Proposed Selection S’ ={1, 5, 20, 8}
When k =5, Greedy Selection S=1{1,5.13.12.2}
Proposed Selection S’ ={1,5, 20, 8, 6}
When k =6, Greedy Selection S={1,5,13,12,2, 8}
Proposed Selection S’ ={1,5,20,8,6.18}
When k =7, Greedy Selection S={1,5,13,12,2.8.9}
Proposed Selection S’ ={1,5,20,8,6, 18, 12}
When k = 8. Greedy Selection S={1,5,13,12,2.8,9, 16}
Proposed Selection S’ = {1, 5,20,8,6, 18, 12, 22}
When k =9, Greedy Selection S={1,5,13,12,2,8,9, 16, 19}
Proposed Selection S’ ={1,5,20,8,6, 18, 12,22,2}
When k = 10, Greedy Selection S=1{1,5,13,12,2,8,9, 16, 19, 23}

Proposed Selection S™={1,5,20,8,6,18,12,22,2, 13}

56

4.4 Evaluation and Comparison

4.4.1 Evaluation and Comparison for Case | Test Runs

The total query response time for different k values (number of materialized views) using
both the greedy algorithm and the proposed algorithm are calculated and the results are
tabulated in Table 16. The proposed algorithm provides slightly better total query
response time than the greedy algorithm for this example. The last column of the table
indicates the improvement ratio of the total query response time using the proposed
algorithm versus the greedy algorithm. The average improvement ratio is approximately

3.07% in the test runs of the Case I lattice.

k Value Greedy Algorithm Proposed Algorithm improvement
Total Query Response | Total Query Response | Ratio = (T,-T,)/T,
Time (T,) Time (T,) *100%
4 243t 243t 0
5 231t 220t 476
6 216t 213t 1.39
7 209t 206t 1.44
8 203t 192t 5.42
9 203t 192t 5.42
Table 16 Comparison of Total Query Response Time for Different k Values in Case |

4.4.2 Evaluation and Comparison for Case Il Test Runs

The total query response time for different k values (number of materialized views) using

both the greedy algorithm and the proposed algorithm are calculated and the results are

57

tabulated in Table 17. The proposed algorithm provides consistently better total query
response time than the greedy algorithm for this example. The last column of the table
indicates the improvement ratio of the total query response time using the proposed
algorithm versus the greedy algorithm. The average improvement ratio is approximately
10.68% in the test runs of the Case II lattice and it is much higher than the one resulted in

the test runs of the Case I lattice.

k Value Greedy Algorithm Proposed Algorithm improvement
Total Query Response | Total Query Response | Ratio = (T,-T)/T,
Time (T,) Time (T,) * 100%

4 395t 381t 3.54

5 385t 361t 6.23

6 365t 318t 12.88

7 353t 308t 12.75

8 343t 294t 14.29

9 341t 294t 13.78

10 337t 299t 11.28
Table 17 Comparison of Total Query Response Time for Different k Values in Case 11

4.4.3 Special Notes and Observations

From the comparison results in Table 16 and Table 17, the Case II test runs provided
better performance results than the Case I test runs. Many factors contribute to these
results. For instance, the Case II experimentation lattice includes almost all the possible
views in the university data warehouse. The common warehouse query sets (query
associated views and access frequencies) are different between these two cases. The view
deeper down the partial combined cube lattice has more ancestor views. The number of
table joins required to derive a dimension subview is also a major factor contributing to

the final performance results. However, based on the experimentation conducted, we

58

cannot provide a systematic prediction on what degree each of the factors affects the

performance of the selection scheme. This can be considered for future work.

The proposed selection technique is a static design as is the greedy selection scheme.

When common warehouse queries are changed or the warehousing system design is
changed, the proposed selection technique will have to be applied again to select a new
set of views for materialization. Both the proposed View-Selection-DH Greedy
algorithm and the greedy algorithm are polynomial time algorithms. Using a big "O"
notation, the performance bound is O(n2) where n is the number of possible views in the
data warehouse. However, the generation of the partial combined cube lattice involves
some overhead cost in the overall view selection process due to some extra time taken in
its generation. Although this overhead cost in generating the partial combined cube
lattice has to be considered, it is believed that the performance gain using the proposed
selection technique outweighs the overhead cost especially when a system is fairly stable

and the selection technique does not have to be applied very frequently.

59

5 Contributions and Conclusions

5.1 Contributions of the Thesis

The thesis contributes to data warehouse view-selection area by originally introducing the
concept of the partial combined cube lattice to reduce the number of the views to be
considered for materialization in a data warehousing environment. An algorithm is
presented to construct the partial combined cube lattice from a given set of common
warehouse queries and the combined cube lattice. As the number of warehouse
dimensions increases, the number of main subviews on a cube lattice increases
exponentially. When taking warehouse dimension hierarchies into consideration in the
view selection problem, the total number of subviews on the combined cube lattice gets
even larger. Generating the partial combined cube lattice allows us consider only the
relevant views for matenalization and provides scalability for the proposed selection
technique. Another major contribution of the thesis is defining the benefit of a view
relative to a selected set using a simple but practical cost/benefit model. This definition
overcomes the limitations of the benefit definition given in [HaRaUl96]. It incorporates
many important factors such as common warehouse queries and access frequencies,
dimension subviews with degree of table joins, that must be considered in the warehouse
view materialization problem. Overall. this thesis contributes a solution for the view
selection problem in a data warehousing environment to accommodate dimension
hierarchies by providing a new selection technique, the View-Selection-DH Greedy

algorithm.

5.2 Conclusions

This thesis investigates the view selection problem in a data warehousing environment

60

and reviews recent work in the related area. It proposes a new technique to select the
warehouse views to accommodate dimension hierarchies. The lattice framework with
complex groupings involving dimension hierarchies is used to establish the combined
cube lattice, which in turn is used to generate the partial combined cube lattice. The
introduction of the partial combined cube lattice allows us consider only the relevant
views on the lattice and ensures the scalability of the selection technique in a warehouse
environment when the number of dimensions and their attributes become large.

Examples to demonstrate the warehousing concept and the warehouse view selection
scheme are given. The proposed selection technique improves data warehousing system
performance but some overhead cost is involved when generating the partial combined
cube lattice. The benefits of the proposed algorithms are demonstrated by comparing
with the greedy algorithm that the proposed selection scheme has resulted in better total

query response time than the greedy algorithm from the experimentation conducted.

53 Future Work

Some of the future work for this view selection scheme are to:

1) compare the performance of the proposed selection technique with the performance of
optimal solution that matenalizes all views. This comparison forms a basis for a
more realistic comparison with the performance of the greedy algorithm. Performing
a more theoretical comparison that possibly proves this approach has a performance
improvement higher than 63% of the optimal performance achieved by the greedy
proves in a more concrete way that the approach performs better than the greedy.

2) further evaluate the performance of the proposed selection technique hopefully in a
much larger data warehouse environment and predict what factors highly affect the
total benefit of the system with this approach.

3) include indexes in the view selection process and generate dynamic warehouse view

materialization techniques in a data warehousing environment.

61

References

[ADS96]

[Agetal96]

[BaPaTe97]

[ChDa97]

[ChSh94]

[Ez97a]

[Ez97b]

[EZ98]

Archer Decision Sciences, Star Schema 10]. White Paper. Available at
URL http://members.aol.com/nraden/str101.htm

S. Agrawal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R.
Ramakrishnan and S. Sarawagi. “On the Computation of Multidimensional
Aggregates” In Proceedings of the 22nd International Conference on
VLDB, Mumbai (Bombay), India, Sept. 1996.

E. Baralis, S. Paraboschi, and E. Teniente. “Materialized Views Selection
in a Multidimensional Database”. Proceedings of the 23 VLDB
Conference, page 156-165, Athens, Greece, 1997.

S. Chaudhuri and U. Dayal. “An Overview of Data Warehousing and
OLAP Technology™ ACM SIGMOD Record 26(1). March 1997.

S. Chaudhuri and K. Shim. “Including Group-By in Query Optimization™.
In Proceedings of the 20" International Conference on VLDB, pages 354-
366, Santiago, Chile, 1994,

C. Ezeife. “A Uniform Approach for Selecting Views and Indexes in a
Data Warehouse”. Proceedings of the 2nd International Database
Engineering and Applications Symposium (IDEAS 97), pages 151-160,
IEEE Publication, Montreal, August 1997.

C. Ezeife. “Accommodating Dimension Hierarchies in a Data Warehouse
View/Index Selection Scheme’, Proceedings of the 6th International
Conference on Information Systems Development - Methods and Tools,
Theory and Practice, pages 195-211, Boise, Plennum Press Publishers,
August 1997.

C. Ezeife. “Optimizing Partition-Selection Scheme for Warehouse Views”,
submitted to the Information Systems Magazine, University of Economics

in Wroclaw, Poland, and Loyola University, Chicago, October 1998

62

[EzBa98]

[Gretal96]

[Gu97]

[Guetal97]

[GuHaQu95]

[Hu97]

[HaRaUl96]

[In96]

[JoSh96]

[Ki96]

C. Ezeife and S. Baksh. “A Partition-Selection Scheme for Warehouse
Views”, Proceedings of the 9" International Conference on Computing and
Information (ICCI 98), Winnipeg, Canada, IEEE Computer Society
Publication, pages 9-16, June 17-20, 1998

J. Gray, A. Bosworth, A. Layman, H. Pirahesh. “Data Cube: A Relational
Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-
Totals”, Proceedings of the 12th International Conference on Data
Engineering, pages 152-159, 1996.

H. Gupta. “Selection of Views to Materialize in a Data Warehouse .
Proceedings of the International Conference on Database Theory, Athens.
Greece, January 1997.

H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. “Index Selection
Jor OLAP”. Proceedings of the International Conference on Data
Engineering, Binghamton, UK, April 1997.

A. Gupta, V. Harinarayan, and D. Quass. “Aggregate-Query Processing
in Data Warehousing Environments”. Proceedings of the 21%
International VLDB Conference, pages 358-369, 1995.

N. Huyn. "Multiple-View Self-Maintenance in a Data Warehousing
Environments." To appear in the Proceedings of the 23¢ VLDB
Conference, Athens, Greece, 1997.

V. Harinarayan, A. Rajaraman, J. Ullman. "Implementing Data Cubes
Efficiently.” Proceedings of ACM SIGMOD International Conference on
Management of Data , Montreal, Canada, June 1996.

W. H. Inmon. Building the Data Warehouse. John Wiley & Sons. Inc.,
Second Edition, 1996

T. Johnson and D. Shasha. “Hierarchically Split Cube Forests for
Decision Support: description and tuned design” 1996. Draft.

Ralph Kimball. The Data Warehouse Toolkit. John Wiley & Sons, Inc.,
1996

63

[LaQuAd97] W. Labio, D. Quass, B. Adelberg. "Physical Database Design for Data

Warehousing". Proceedings of the International Conference on Data

Engineering, Binghamton, UK, April 1997.

[MuQuMu97] I. Mumick, D. Quass, B. Mumick. "Maintenance of Data Cubes and

[OzVa9l]

[Roetal96]

[SaAgGu96]

[ShSrAg97]

[Shetal96]

[STG95]

[Ta97]
[TiCh96]

[TPC93]

Summary Tables in a Warehouse." Proceedings of the ACM SIGMOD
Conference, Tuscon, Arizona, May 1997.

M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems.
Prentice Hall, 1991

K. Ross, P. Deshpande, J. Naughton, and K. Ramaswamy. “Materialized
View Maintenance and Integrity Constraint Checking: Trading Space for
Time”. SIGMOD Conference, pages 47-458, 1996.

S. Sarawagi, R. Agrawal and A. Gupta, "On Computing the Data Cube".
Research Report 10026, IBM Almaden Research Center, San Jose,
California, 1996.

K. Shim, R. Srikant, R. Agrawal, "High-dimensional Similarity Joins".
Proceedings of the 13th International Conference on Data Engineering,
Birmingham, U.K., April 1997.

A. Shukla, P. Deshpande, J. Naughton and K. Ramasamy. “Storage
Estimation for Multidimensional Aggregates in the Presence of
Hierarchies” In Proceedings of the 22" International Conference on
VLDB, pages 522-531, Mumbai, September 1996.

Stanford Technology Group, Inc. Designing the Data Warehouse on
Relational Databases. White Paper.

R. Tanler. The Intranet Data Warehouse. John Wiley & Sons, Inc., 1997
S. Tideman and R. Chu. “Building Efficient Data Warehouses:
Understanding the Issues of Data Summarization and Partitioning”.
Proceedings of the 2lst Annual SAS Users Group International
Conference, SUGI 21, Vol. 1, page 520-527, 1996.

The Benchmark Handbook for Database and Transaction Processing

64

[Wi95]

[YaLa95]

[Zhetal95]

Systems. 2™ Edition. J. Gray (ed.). Morgan Kaufmann Publishers, 1993 or
at http://www.tpc.org/

J. Widom, "Research Problems in Data Warehousing." Proceedings of the
4" International Conference on Information and Knowledge Management
(CIKM), November 1995.

W.P. Yan and P. A. Larson. “Eager Aggregation and Lazy Aggregation”.
Proceedings of the 21* International VLDB Conference, pages 345-357,
1995.

Y. Zhuge. H. Garcia-Monlina. J. Hammer. and J. Widom. “View
Maintenance in a Warehousing Environment.” SIGMOD Conference.

pages 316-327, 1995.

65

Appendix A

-- Fact Table: grade --

STUDENT COURSE_NO TERM GRADE
C0001 Cse60-212 1996w 950
C0001 CsS60-255 1297w 92
CO0C01 CS60-255 1998F 70
C0001 Cs60-315 1997F 95
C0001 Cs60-330 1997F 87
C0002 CsS60-254 1996F 93
C0002 C(Cs60-254 1996w 60
C0002 CsS60-315 1997F °8
C0C02 CS60-330 1997F 85
C0002 Cs60-367 1998w 90
CO0003 Cs60-212 19%6W 91
COC03 Cse60-254 19S6wW 88
C0003 Cs60-255 1997w 89
C0003 Cs60-315 1996F 70
CO0C03 Cs60-315 1997F 94
C0003 Cs60-330 1997F 90
C0004 Csé0-212 1996w 85
C0004 CsS60-254 1996w 92
C0004 CsS60-255 1997w 86
C0004 Cs60-330 1996F 70
C0004 Cs60-2330 1997F 95
C0C0S (Cse60-212 1996w 70
C0005 Cs60-212 1897w 96
COGCS5 (Cs60-254 1996w 90
CO0005 Cs60-255 1996F 87

-—~ Dimension Table: student --

STUDENT NAME

C0001 Linda Sharon
C0002 Scott Johnson
C0003 Edward Green
C0004 John Smith
C0005 Mary Clark

MEIZEm

66

-- Dimension Table: course --

COURSE_NO COURSE_NAME

CsS60-104
CsS60-212
CSe0-254
CS60-255
Cs60-315
C560-3390
Cse60-367

Computer Concepts

C++ Programming

Data Structures

File Structures

Database Management Systems
Operating Systems

Computer Networks

-—- Dimension Table: term --

1986w
1997F
1997w
1988F
1998w
1999F
1999W
2000F
2000w

YEAR SEASON

1892 Winter
1993 Fall
1993 Winter
1994 Fall
18924 Winter
1995 Fall
1995 Winter
1596 Fall
18396 Winter
1997 Fall
19987 Winter
1998 Fall
1998 Winter
1999 Frall
1999 Winter
2000 Fall
2000 Winter

67

Vita Auctoris

NAME: Xiaohong Meng

PLACE OF BIRTH: lJilin Province, P. R. China

YEAR OF BIRTH: 1962

EDUCATION: GMI Engineering and Management Institute, Flint, Michigan
1985 — 1989 B. Sc.
University of Windsor, Windsor, Ontario

1993 — 1998 M. Sc.

68

	A data warehouse view selection scheme to accommodate dimension hierarchies.
	Recommended Citation

	tmp.1363276810.pdf.GScsH

