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b | " ABSTRACT S

This thesis considers some of the design problems
gésociated wiﬁh a read-only-memory implementétion'of a
Residue Numbef System based Fast Fourier Transform processor.
The principal désign paraméters identified in. this work are
the radix of the FFT structure, the number range associated

: ' with. the pchessbr, the values of scale factors, the_manner 
'kin;whi%h scaling is distribﬁted throughout the processor,

thegoefficients associated with the integer conversion of

- I

twiddle factors and the.resolution, in terms éf bits, that
the related analogue-~to-digital converter provides. '

The value of'thé*optimal radix that minimizes the number
ofcascadéd mﬁltiplicéﬁions Within the FFT structure has been
found to equal four. 'U;ing this radix an expression.for the
theoretical upper bound for number growth in the FFT pfocessor
has been derived. Simulation studies have also been used to
determine the number growth associated with sample functio;s
that characterize typical inputs that would be applied to the Va

. Processor. | | ‘

The specification of a desired mean-squarea-error of the
frequency domain estimate computed by the FFT processor has
been found as a useful criterion of optimality for the design
procedure. A comprehensive study of quantization error sources
was required in order to provide the theoretical basis for

determining how the various design parameters influence the

error of the estimate. This analysis has ultimately led to
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" a design procedure in which the values of design parameters
that simplify the hardware.realization and meet a specified

error criterion can be determined.

L

*
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CHAPTER 1
INTRODUCTION | .

1.1 The Residue Number System and A ROM Oriented Implementatlon

The residue number system (RNS) has recelved varylng
degrees of attentlon from workers in the field during the last
two decades. In the early to mlddle 1960's, considerable work
was done on implementation of RNS arithmetic for genéral purpoée
computing [1]., [2] . After years‘of work much was learned -
about RNS arithmetic,'it was essentially abandoned for general
purpose computing because sign detection, magnitude comparison
and general division are difficult operations, although fast
and simple integer operatidns of addition and multiplication
were demonstrated [1] .

However, with the recent advanceé.in high density memories
technology that appears eminently suited to performing high
speed operations in the parallel RNS structure, interest in
RNS arithmetic has been revived. Although some current work
is being directed at the problem of building a generél floating
point arithmetic processor, using the RNS (3] , a number of
more immediate applications appear to lie in the direction of
special purpose digital signal processing hardware, where for
many of their opéfations a pure integer number system such as
RNS is all that is required.

Recent, independent, investigators have discussed the RNS

based realization of high speed digital filters. - Jenkins and

Leon [4] investigated RNS techniques for non-recursive filters,
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while Soderstrand [ 5] and Jullien [6] &iscﬁ;sed_ the implemen-
‘tations of recursive fi;ters. The concept of a read-only—
m;mory (RﬁM) oriented iﬁblgmentation'of thé fast Fourier
transform (FFT) based on the RNS has been described by TSeng,
Miller, Jullien et ai [71. Thelcommon feature that emerges
from these works, is the use of ROMs to provide paral}el
arréxﬁ of look-up tables for performing the RNS arithmetic

operations.

In order to apply RN. principles to hardware §£ructures,

it is necessary to convert nventional digital number
system into and out of the residue code. The conversion from .
binary -input into the residue code can be easily implemented
using- ROMs [6 ]. But the conversion from residue code into

an analog voltage or a binary code is, in general, more
difficult. A technique based on a pixed radix conversion to
éonvert residue code into a binary code has been discussed by
Baraniecka and Jullien [dO] . Two approaches to the design

of residue-to-analog conversion were described by Jenkins [8].

1.2 Conventional FFT Algorithms and Implementatiois

The FFT was first introduced by Cooley and Tuééy [9],
although it has a long complicated history as\gescribed by
Cooley, Lewis and Welch [lO] . The FFT algorithm is an
efficiént way of computing the -discrete Fourier transform
(DFT) of a time series data. Since the DFT is an important
computation in most digital signal processing problems, the
FFT algorithms have been explored very quickly. Detailed

explanation and derivation of the FFT algorithms can be found
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%E;fll] . Examples of applications to which the FFT has contri—:
buted werd also discussed in {11] .. |

In general, there are two basic versioms oﬁ_gpe FFT
algorithms, namely, the decimation-in-time (DIT) algorithm
and the'decimation-in-fréqﬁency {DIF) algorithm [ll] . Both
of the two Qersions have various stfuctures which require
ordered or scrambled input and generate scrambled or ordered
output. The radix-2 DIT algorithm with scrambled input.and
ordered outpaE\£?nd the DIF algorithm with ordered input and
scrambled output are two well-known ones, because their twiddle
factors can be easily generated recursively.

In fact, the radix-2 algorithms are special cases for
their simplicity. The efficiency of FFT coﬁputation can be
improved byusing ahigher radix algorithm. If the number of
samples, N, is an integer power of 2, then the Higher the radix
is, the better the efficiency is [12] . However, the program
"becomes more and more complicated for higher radix algorithms.
Thgs, in most appliéations only radix- 2, &4, or 8 has been
used; ' 1£, however, for some problems N is not an integer power
of 2, one can always append enough number of zeros to make
N an integer power of 2such thata radix 2, 4 or 8 algorithm
can be used. Alternatively, a mixed radix FFT algorithm
can be used, if N can be decomposed into. a product of some
small factors [13] . ' '

Recently, the concept of the conversion of a DFT to con-
volution has been used to develop two new algorithms, which

are called prime-factor FFT and Winograd Fourier transform



4

algorithms [14}, [15]. Using thesé algOrithm$, the number of
samples, N, must be a product of some relatively pairwise
prime factors. By:using the Chinese Remainder Theorem to
regroup the input data, these two new algorithms do mnot
require anyrtwiddle factors, while individual factors' DFTs
are written in a- very efficient way to minimize the number

of multiplications.

Since the development of the FFT algorithm by Cooley

and Tukey [1] , many- efforts have been spent on finding faster

hardware implementations. Due to the sequential operations of

a general purpose computer, software implementations can not

\

operate at a very high speed. For some problems,which have
an inherent real time céﬁstraint or have a large volume of
data, speed becomes verf important. Thus, a special purpose
hardware designed for performing the FFT algorithm is required.

Figure 1,1 shows a block diagram of a basic calculation
unit (BCU) and its auxiliary memories for a FFT processor.
The BCU performs the required r-point DFT operations and
twiddle factor multiplications, The data memory may consist
of several submemories, which depends on how it is realized.
In most implementatioms, the BCU is implemented using TTL logic.
Recently, some of the BCUs are implemented by mixing TTL logic
and ROMs [16] .

Based on the forms of the realizations, Bergland[l7]
divided the FFT hardwareprocessor ‘into four different ones,

’

namely, the sequential, cascade and parallel iterative proce-

ssors, and the array analyzer. In additiom, there is another

- T



type of realization, which Qill be céfied ﬁartial parallel
iterative professor. These five different'realizations are
shown in Figure 1.2. Table 1.1 alsé'shdws some of the features °
of the five different. reallzatlons, where.N iss.the total number
of stages. The first reallzatlon is the simplest but slowest
one. The costs of the fourth and fifth realizations are

very high, which limit their applications. For a higher
speed system, the second realization is usually used. For
efficient implemé%fation, the number of BCUs required in

the third realization, p, must be an. integer poﬁer of r.

When p is equal to r, they are called Dual-2 and Quad-4 pro-
cessor for radices of 2 and 4, respectively [18]. In-fac%,
when r € m € 2r, the third realization with p equal to r is
better than the second realization as far as both the speed
and cost are concerned.

Due to the hugh amount of literature, a complete survey
of FFT hardware implementations is mot attempted. In order
to show the tendency of FFT hardware realizarion, a discussion
of some rea;ization will now be given.

Bergland and Hale [19] first proposed a cascade FFT
processor to compute spectra, where the twiddle factors
were generated recursively. Using the principle introduced
by Stockham [20], 0'leary described a non-recursive digiéal
filter using cascade FFT [21], where two independent™data
can be transformed simultaneously. Groginsky and Works
[22] proposed a similar structure, and introduced a tech-

nique of pipelining, such that the new data can enter
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continuously into the processor, while the procesging of
earlier data is carried out. Veenkant [18] intéoaﬁéed*a
different type of realization which uses r BCUs to increase
the number of parallel operations at each.stage. X l. )

Pease [ 23] brought out an idea to use slow memory effi-
ciently by spliﬁting.maih memory into several submemories.
Corinthios [24 - 27] utilized Pease's idea and-feported a
series of improved realizations. He first proposed_atéequen—
tial processor with a wired-in design to minimize control

]
circuitry [24] . Two memories, input and output memories, were

used. The output memory collects the intermediate results

and feeds them back to the input memory, which becomes the

input data for the next stage. Using a binary counter to
control the ordering of feedback from the output memory, the
processor can receive input data in natural order and generate
output data in natural oner,,too. Then he developed a machine
oriented FFT algorithm [25] , where both the input and output
memories were partitioned into r submemories such that the
shuffle operations were carried as an inherent part of the feed-
back of each stage. Furthermore, the feedback was completely
eliminated by interchanging the role of the input and output
memories [26] . Finally, a radix-a 256-point FFT processor
was actually constructed, with a sampling frequency of l.é MHz
[27] . Specifically, a fixed-point arithmetic was used.

- Martinson and Smith [28] introduced a modified floating-
point arithmetic, which uses fewer components than the fixed-
point arithmetic with an equivalent performance level., They

also suggested that a ROM may be used to implemént a multiplier.
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 For example, a 5x5 bits multlpller with rounding to- 8 bits can

be 1mp1emented using 8K ROM. Liu and Peleéd [16] further utili-
zed the idea of trading memories for logical gates. A new.
approach, which uses the technique of "bit sliee".to store all
possible outcomes of arithmetic operationé into ROMs, was
developed \3

1. 3 Objectives of The Research

+ The FFT algorithm has been used to compute the DFT in a
number of diverse applications [29 - 31]. The hardware reali-
sations of these processors have ranged from general purpose

digital computer to dedicated larger scale lntegrated circuits.

.Recently, ROM lmplementatlons of the FFT have been con31dered

because of their potential for a hlgh speed parallel architec-
ture L7 ].

This thesis considers some of the design problems associa-
ted with a ROM implementation of a RNS based FFT processor;
Normally a ROM oriented scheme, based on ‘table look-up methods,
would not be feasibleAin a weighted magnitude system for any
realistic dynamic range, due to the number of possible combi-
nations. The use of the RNS allows a number to be represented
with respect to a number of moduli. The operatioms with respect
to the various moduli can be carried out independently of eech
other. The resulting small dynamic range makes it possible to
use ROM table look-up techniques and independent parallel opera-
tione capability provides the basis for a very high speed pro-

cessor. Since memory technology is evolving rapidly, the pro-

posed realization can take immediate advantage of any decreased

access times. : -
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Sihce; in general, a FFT can not‘be‘implemented exactly,
the specifiéation of a desired root-mean-square (BMS) error
of the frequency domain computed by the FFT processor can
be used as a criterion of optimality of the designfprocedure.
A comprehensive study of quantization error sources is required
in order to prévide the theoretical basis for determiniﬁg how
the various design parameters influence the error of the -
estimate.

There are quantization error problems associated with
the proposed RNS implemeﬁtation that have noﬁ‘been fully
treated in the literature. The most closely ;elated papers

[32] , [33)deal primarily with the radix-2 FFT'and consider

only fixed-goint arithmetic. This thesis presents an analysis
of radix-4 FFT quantization error based on a consideration
of scaling, integer éonversion, dynamic range of the number
system, number of stages and A/D quantization. This analysis
then leads to a design procedure in which the values of all
design parameters,that simplify the hardware fealization and
meet a specified error criterion,can be determined.

1.4 Organization of The Thesis

In Chapter 2, the mathematical concepts of the RNS is’
introduced through a discussion of its basic properties. It
is shown that the RNS is much more suitable for parallel
structure than the weighted magnitude representations (such
as the binary number system), because arithmetic operations
are fully independent digits. The implementation of residue

arithmetic using ROMs: is described, and the advantages using

4



‘ arravs of ROMs are also discussed; Following a brief des- g
crlptlon of.the FFT, a ROM orlented FFT structure is proposed | %
Also, all design paraméters are 1dent1f1ed in this chapter.

As residue arlthmetlc is carried out in the integer
number system, the maggmtudes of numbers increase very ra-
pldly after multlpllcatlon operation, and hence it lS neces-
sary to determine the radix of the FFT that minimizes the
ndmber of cascaded ﬁultip}ications for a given number of
samples. The optimal‘rédix is shown to be equal to 4 in
Chaﬁter 3. Other considerationsawhich include the number
growth at each'stage and different quantizatidn error soutees
in the FFT processors are also.discussed./

In Chapter 4 a quantization error analysis of the
radix-4 FFT is developed. Errors due to A/D quantization,
coefficient (tw?ddle factor) rounding and scaling quantization
are explicitly covered. A general expression for the relative
RMS output error has been derived whicd is a function of the
parameters associated with the desired realization. Certain
of the parameters have been set to practical values and a
simplified design procedure has been obtained. Finally, an
example is given to show how to use the design procedure.

A discussion of the theoretical and simulation results
is treated in Chapter 5. This chapter also contains a des-
-cription of some ramifications of the theoretically derived
expressions.

'In Chapter 6, the conclusions that can be qptained from

the research are summarized.



CHAPTER 2

THE RESIDUE, NUMBER SYSTEM AND.ITS
APPLICATION TG. A FFT PROCESSOR

2.1 Residue Number System Concepts

The-RNS [l] is of particular interest because of the
sepérabie nature of the arithmetic. The arithmetic .operations
qf addition and multiplicatibn can be easily carried out using
look-up tables [6]. In fact, using gurfent technology, all

the possible results of these arithmetic operations can be

stored -in high density ROMs. ' ¥

A number in the RNS is represented by the L-é@pie X =
(xl, Xoyeenes xL) where X; = X modulo m; 3 this is written
X5 =.|lei' If all the moduli,{'mi}, are relatively pairwise

prime, the range of numbers that camn be uniquely represented

o
_ in residue code is equal to the product of all moduli

M=_%Tm- , (2.1)
i=1 * o /\)
Thus, the RNS forms a ring of inﬁegéfé modulo M. If the gNS
does not have a sufficient range of ﬁumbers to represent the
result generated by arithmetig¢ operation from a finite set of
real integers, then the RNS will have overflow and the résult
will be a modulo M remainder of the éfue value,
In the RNS, binary oper;tioné of addition and multipli-

cation, modulo M, between two numbers X and Y have the follow-

ing propeyty'z = IX o YIM

12
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i
where o = + or *. In other words, the RNS does not have a

, |2'Imi =25 = |% 0 Vil - (2.2)

"carry mechanism and there is complete independence between

operations on the residues. This separable nature of the
arithmetic offers advantages to implementing multiplication
aﬁd addition in a high speed parallel manner. Moreover, if
tﬁg){mi} are made small enoﬁgh, then the results of opera-
tions, on all combinations of inputs, can be prestored in
ROMs, and, by combining a suffigient number of‘rings, a
viable dynamic raage, M, for the number systems can be gene-
rated. This allows compuﬁations performed over a large

dynamic fange to be realized, independently, in systems with

‘much smaller dynamic ranges. Figure 2.1 shows a block

diagram of a ROM for a modulus m;. In order to generate the

m; + m; possible input combinations (address), 2+b; input

terminals are necessary at the memory address decoder, where

bi is the number of bits required to represent the maximum

integer, m; - l, within the look-up tables of modulus m, .
L

Thus, if M = 11 m, , then the memories required in terms of
i=1 L

bits for the RNS is equal to Z:: bi-miz. The minimum memory
i=1

requirements for various moduli have been discussed in [6 ].
The sign of numbers in the RNS is not explicitly shown.

In general, the numbers in the range 0 to-%-- 1 are assigned

to be positive, and the numbers in the rangejé-to M-1 are

assigned to be negative such that Ixi + yilm. = 0 where
i




14.

N
Ao
Ty g0TNAOK v 04 WOE V 10 WV¥OVIQ ¥D0Td T°Z "DId
SN :
L
| ‘ ($95521ppY
T
o . |aeg3Trduy NAHEV..ﬂ 19p0v2q 1outastq FuweTw)
jo yoey aoy [ _ Lm | ¢
. I andang * £10WaK Kaowsy
s31g andang ‘q |
.,_" )
i




- 15

y; = -Xl and X denotés a‘positive ihteger. Since the
rules of ordlnary sxgned arithmetic wifll be preserved there
is no real need for an exp11c1t knowledge of the sxgn of a
number durlng arlthmetlc operatlons. For the signed RNS, the
range of positive and negative integers is reduced to approxi-
maeely one-half of the'toea; possible range of the residue
representation. ' - - \

The division process for residue code is'comelicated.
If we define scaling as division by a predetermined set of
constants, then this restricted operation is much easier than
general division. In order to scale efficiently, the scale
factor or predetermined set of.constants must be chosen to
be a product of some of the moduli used in the RNS [l ].

There have been many previous reports of high speed FFT

‘realizations [16 ], [27 ], [34-], however, these have used the

binary number s&stem in which to perform the required arith-
metic operations. This invariably leads to a proliferation
of binary adders and multipliers which have to be intercon-
nected in a pipeline arrangement, for high throughput; a.job
made difficult by the radically diffeeent structure of each
network. Im using an array of ROMs, an extremely simple
structure emerges that offers identical characteristicsjsor
any required operation and is.inherently simple to pipeline.
As an example, consider the problem of pipelining an array
designed to compute the function Z = (a* b} + (c+-d). Figure
2.2 shows the array for one of the moduli in the system.

3
The only control function required is a latch pulse. The
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buffers are used to provide both.power gain and delay. The
delay allows the (i + 1)-th stage to capture data before.the
address lines of the i-th stage change. The system through-

put rate is the inverse of the ROM access plus latch times.

- Conservatively 10 MHz, A further, hidden, advantage when

using ROMs, is that binary operations with constants can

be pre-calculated and stored in the ROM. This turns out to
v

be important when designing scaling arrays [6 ], and leads
to a significant hardware saving.

2.2 The Fast Fourier Transform

The DFT pair of the complex N point sequence {x(n)},

is defined as

N-1

X(k) = EE x(n) Wy k=0, 1,
n= LT
and
| ] Nel ke | )
x(n) =’E"EE% X(k) Wy n=0,1, ..... , N-1 (2.4)

e
where j = J—l, Wy = exp(- j2IYN), and {X(k)b(;;;\complex.

The FFT is simply an efficient methdd for computing the
DFT. 1In fact, when N is a composite number, the N-point DFT
can be computed as a collection of smaller DFT's in conjunc-
tion with additional coefficients commonly called twiddle
factors[35]. If N = r',where r and m are positive integers,
the factors of N are equal to r and the algorithm is called

a radix-r algorithm. When an N-point DFT is computed using .
(-4

\'_\
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a radix-r algorithm, a structure with m stages, where each
stage includes N/r basic r-point transforms results., The
basic ‘forms of ‘the resultant r-point transforms with DIT and

DIF are given by

r-1

i (K) = 2%y (0) 5w (2.5)
n= .
and
Sl nk .. tyk
x5, (k) = Zo x; (n) W (W), ‘ (2.6)
B § . .

respectively, where{gi(n)]denote the numbers at the input
of the i-th stage, and (WNt)n, (th)k are the appropriate
twiddle factors.

The basic calculation of the r-point transform, as shown
in equation (2.5), can be decomposed into two steps. First
the r-input points are multiplied by twiddle factors. Then
the r-point DFT is computed. The above procedure is reversed
for the DIF algorithm. Figures 2.3(a) and (b) show the simp-
lified representation; of the r-point transform DIT and DIF
algorithms, respectively.

2.3 A ROM Oriented FFT Structure

Since the RNS is an integer number system, all non-integer
coefficients in the FFT, which include twiddle factors and
non-trivial coefficients in the r-point DFT, must be converted
to integers. These can be done by introducing integer conver-

sion factors, Figure 2.4 shows the simplified integer

+ The DIT (or DIF) algorithms are based on the decomposition
of the DFT computation by forming successively smaller
subsequences of the input (or output) sequence.
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xi(O), . X ) xi+i(q)
- B N .
x; (1) — @ P k()
| 2 :
WN t r~point
x;(2) .ﬁ_{gy— » DFT X547 (2)
(r-1)t '
N
Xi(r-l) ". - ' (Y
: > Xig(r-1)
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FIG. 2.3 SIMPLIFIED REPRESENTATION OF AN r-POINT TRANSFORM
(a) DIT ALGORITHM =
(b) DIF ALGORITHM

S A R I P AR S



20

representaﬁions of r-point transform algorithms, where pi.is
the integer coﬁ&eréion factor for twiddle factors at the i-th
stage, which may be varied from stage to stage. It should

be noted that if there are non-trivial coefficients required
in the r-point DFT, then anﬁther integer conversién factor is
also needed. In Figﬁre 2.4, the superscript "." denotes an
integer value.

Without any loss of generality, we will assume that the
binary number from the A/D converter is treated as an integer
number; therefore; all the required arithmetic operations in
the FFT can be computed using integer arithmetic, after
introducing the integér conversion factors. In fact, the RNS
concepts maylbe applied to the integer based FFT,

From Section 2.1, it is clear that the residue arithmetic
can be efficiently implemented using table look-up ROM arrays,
if the {mi} are made small enough, and, by combining a suffi-
cient number of moduli, a large dynamic range can also be
generated. Thus, it is possible to have a ROM oriented FFT
strﬁcture, if the number range of the RNS is sufficient for
the dynamic range of the FFT. In practice, scaling operatlions
are used to scale down the number within the limited range of
the RNS.

In the RNS, scaling is difficult, because the digits do
not convey any immediate information about the maénitude of
the number. It is possible to scale fairly efficiently when
the scale factor is é product of some of the moduli, but even

in this case the hardware cost is fairly high [6]. If X is
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-the ofiginal-number, K the scale factor, and Y, the scaled
number, the scaling process can be represented by the follow-

ing rational system,

xx X wien  |R|6 o
e -
X ~ R ' '
Y= ¥ ™7 | (2.7)

¢
‘where X is an integer with the denominator, D, to normalize
its magnitude, and [ ]R denotes the integer round-off proce-
dure. A viable scaling procedure requires that the scale
factor must be pre~-determined (no dynamic normalization is
aliowed) and scaling operations must be kept to a minimum.
In order to satisfy both requirements, we will, in general,
perform several exact arithmetic operations before scaling.by
a pre-determined constant. In this case, the dynamic range
of the numerator may grow considerably after each operation.
In order to preserve the rational system, it is necessary to
increase the denominator to match the range growth of the
numerator when cascading multiplications. Since the denomi-
nators are known a priorl at every stage, one needs only to
analyze the operations. performed on the numerator. One can,
therefore, consider that the number system is purely integer.
Figure 2.5 shows a conceptual block diagram of the
proposed FFT structure with the indication of some parameters,
which will be discussed in the next section. From Figure

2.5, it is seen that the analog input must be first converted
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to binary digital form, and then to residue code. The
number of r-péint D%T's required depends on how the FFT is

‘realized.

2.4 Iderfification of Desien Parameters

In order to construct QHBDM’S;TEnted'FFT processor, all
the related design parameters have to be properiy-identified.,
Ffom the proposed structure,as shown in Figure 2.4, some of .
design parameters are explicitly indicated. There are,
however, several other parameters which can not be_directly.
shown in the proposed structure. The importance of_each

- parameter will be discussed in the following.

The most important paraméter of thg proposed structure
is the number range, M, of the RNS. This paraﬁeter can also
be fecognized as‘the maximum word length for a conventional I

binary number implementation. In fact, the memory require-
ments for the ROM oriented FFT structure depend mainly on
the value of M. '

The A/D converter width in bits, B, is the number of
bits used to represent the input.data. To have accurate
representations of analog input, a large number for B is-
required. Since this corresponds to a larger magnitude of
the digiéized input data, and the range of the RNS is limited,
a compromise between the accuracy and the magnitude of the
input data must be taken into consideration.

The integer conversion factor, P> is used to convert
the non;integer codfficients into integers. Without intro-

ducing this factor, it is not possible to have an Integer
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based FFT. The consideration given for thi A/D converter
quanﬁizatioﬁ.bita\glgy hold true here.

“'Scaling is imporEant, since in practice we are not™
interesged in computatiéﬁs modulo M, rath®r we require to
appro*iméte to calculations ﬁarried out in the infinite
" field of real (or complex) mumbers. For a fixed nﬁmber”tange,
a smaller scaleﬁ%actor requires more frequegt scaling opera-
tipné. The choice of the scale factor results in different
scaling distributions. In other words, we can use either
1argerlscale factor with less scaling operations or smaller
séale factor with more scaling operations.

In addition to theqabove mentioned ?arameters, there is
an inherent parameter of the FFT, which~islthe number growth
at each.stage. Once number growth has“been‘determingd,.it
can also be used to establish not only scale factor -but also

the manner in which gain in number growth is distributed

through the system.




" retained to full:éccuracy, the magnitude of numbers at sub-

- , "~ CHAPTER 3
-~ FFT PROCRSSOR CONSIDERATIONS

. -5 ¢ .
3.1 Optimal Radix Determination

Since integer based arithmetic is used to'pé:fdrm the--
required arithmgtic pﬁérations in the FFT, and exact integer
résgltérare“always'obtained from the basic_calﬁulatiéns/;;
addition; subtraction and multiplication in the RNS, thgn

the results at the output of each BCU in the FFT must : be

retained with full accuracy. As multiplication results are

sequent stages of the FFT‘increase_vefy rapidly due to the
cascaded integer multiplications. In the RNS,‘ﬁhe range of
numbers that can beé uniquely represented in residue code is
equal to the product of all moduli, and hence all numbers
must be properly scaled within the range of tﬁis number
system to prevent ovéfflows. :

In terms of using integer arithmetic, we are inﬁerested
in maximizing the ratio of the number of binary operations
to the number of scaling operations. This is especially
impqrtant when the RNS is used, as scaling operationé are
cumbersome to implement in hardware [6J . Since the magnitude
of numbers in the FFT are ingreasing mainly due to multipli-
cations, then a radix-r FFT *having a minimum number of
cascaded\multiplications is obviously desirable from a scaling
point of view.—In the FFT, the occurrance of multiplications'

are due to internal multiplications in the r-point DFT and

26 ~-
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" twiddle factor multiplications. When the radix of the FFT is
either 2 or 4, there will be no non-trivial internal coeffi-
01ents requlrlng multlpllcatlon operatlo;s in the r- point DFT.
This results from the fact that Wr ok in equations (2.3) and

i o (2.6) equals 0,%+ 1, ort j when r=2 or 4. It is thus.apparant
that 4 is the largest radix without internal multiplicati
‘occurring in the r-point DFT.
When the number of samples, N, is equal to a power of 2,
the FFT may be reaiized using radices of Zk, where k is a
non-negative integer. Table 2.1 shows the number of cascaded
multiplications for various values of r and N. The apalytic
relationships are shown in tﬁe last column. Here we assume
that the 8 and l6-point DFT;S in the .basic calculations of
the radix-8 and -16 FFT's are computed in the ‘same manner as

small-N WFTA's described by Silverman [15],{36]. Thus Table

2.1 has been generated on the basis that there is only one

multiplication level within the r-point DFT for r=8 and 16.
~
ﬁ\) For radices of 2 and 4, the numbers shown in Table 2.1

p\\—\ represent the number of cascaded twiddle factors only; while
for radices of 8 and 16, the numbers represent the sum of the
cascaded twiddle factors and cascaded internal multiplications
in the r-point DFT's.

From Table 2.1, it can be seen that the r;;;Z;E—of &
and 16 have the smallest number of casc%ded multiplications,
and thus the use of these radices will %}nimize the number
of scaling operations required. In general, the hardware

necessary to realize the BCU of a radix-16 FFT is much more
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comélex than for a radix-4 FFT. The choice between radix 4 or
16 from a speed and cost poiﬁt of view depends upon the manner
in which the FFT processor is realized. However, a radix-16
realization severly limits the.viébility of a processor due

" to the number of sampleé, N, ;hat can be sélected. Thus radix
4 is considered as the optimal realization radix? when the
number of samples, N, is a power of 2.

When the number of samples is not a power of 2, a mixed-
radix FFT, prime-factor FFT or Winograd Fourier transform may
be used. However, these algorithmsthave some disadvantages
in the hardware implementations, although they may require
less computation time than the radix-r FFT as far as-the
sthware implemengatioﬁs are concerned. The main disadvantaée
is that the baéic calculation at each stage is different,
which mdkes the hardware very difficult to be[pipelined.
Furtherm&re, the realizations for these algorithms are not
flexible, and, in fact, they must be realized in a cascade
form, which ig also due to the different structure of basic
calculation at each stage.

Now we can conclude thap radix 4 is the optimal realiza-
tion radix. 1f, however, the rumber of_famples is not a
power of 4, then we can append epough number of zeros to the
original data, and still perform a radix-4 algorithm,

3.2 Number Growth

In this section, some properties of the radix-4 FFT
will be examined. Specifically, the mean-square value and
the maximum magnitude of numbers at the output of each stage

W

will be determined. The mean-square bound, which is

~ —




30
indgpendent'of input data, can be_deté&mined exactly. While
the maximum magnitude can be determined both'thebretically

and experimentally for the worst cases only.

-3.2.1 Mean-square}Bound

In order to éhalyze the RMS-error in the rédix-a FFT,
the mean square value at &he ouﬁput of each stage must first
be known. It has been sﬁown in [32] that the mean square
value will increase by 2'for_a DIT radix-2. FFT. 1In the
following, we will derive the méan—square bound in a more

generalized manner.

Applying Parseval's theorem to equation (2.3), one obtains

N-1 s N- E o
Z'X(k)l =N.Z|x(n)l
k=0 . n=0 '
or . - : . \/
‘f%r* NZ-llx(k)|2=N-—%r Nillx(n).l2 (3.1)
k=0 n=0 -

Equation (3.1) indicates that the mean-square value of the
result is N times the mean-square value of the initial sequence.
Since there are m similar stages for a radix-r FFT (N=r™), we

can show-that the mean square value will ircrease by r at each

stage, as follows.

&
Letting yi(n) = xi(n)(th)n in equaﬁi@n (2.5), one obtains

[}
L
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(2
r-1 nk ° |
xi+1(k) = Z Yi(n) W, .(3.2)_
n=0 . '

Equation -(3.2) can be'recoénizedas a;j;qgg;mrDFT with y.(n)
and x;,,(k) as the input and output, respectively. Applying

Parseval's theorem again,one obtains

-1 -1 |
pu ERIGIEESS S PG & o
=0 | =

Since

A

y;(n) |2 =.

xi(n)IZ |(th)n|2

and|(WNt)n|2 = 1, then equation (3.3) becomes

r-1 2 r-1 . 2
S @)t S x| (3.4)
k=0 n=0

Equation (3.4) can be genéralized as

1 N-1 ) 1 N-1 2
- SRIO] R RS SN EHC R ERY
k=0 -n=0

Equation (3.5) shows that the mean-square value will increase
by r at the output of each stage for a radix-r DIT algorithm.
This property also holds for a radix-r DIF algorithm, and

the proof is shown in Appendix A.

-




T R T T e - by

T e i ey o — T T e

:32

3.2.2 Theoretical Worst Case Upper Bound

'In the proposed FFT processor the upper bound of number - -
growth must be derived in order to be able to avoid overflow'
problemsf Specifically, one would like to know the maximum
magnitude of both the real énd'imaginary‘parts that occurs
at the output of each stage.

Wo now consider the radix-4-DIT algorithm, When r=4

in equation (2.5),one obtains

3
X;41(K) = x; () (W5 W, (3.6)

n=

_\J—Erbm equation (3.6)one can compute a worst case upper bound

for the number growth at each srage. Recognizing that
- -

()" = cos2RBE _ j gip 2TME (39

LY
one can rewrite equation (3.6) as

' 3
x; 4 (k) = g {<Re(xi(n>>cos—2—’%& + Im(x, (n)) sin20E )
=0

. + j(Im(xi(n))cos—ZI%EE— - Re(xi(n))51n—gl§35—)} ¥Q:m'(3.8)

where Re(+) and Im(+) denote the real and imaginary parts of
the terms enclosed, respectively. Since, for a &4-point DFT,
each output point (real or imaginary part) is always computed
by adding or subtracting 4 input points, then, from eouation

(3.8),one obtains
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.Max {IRe(Xi+l(k))|, Ilm(xi+l(k))|} £;_
Max-{lée(xi(ﬁ))l , IIm(#i(n)ﬂ}jii {|cosgz%EEI+ IsinZikggl}-
. ‘ 0

n=

or

Max {IRe(xi+l(k))| 3 IIm(xi+l(k))|}_é i{‘cosgrﬂﬂ'il+ ISLHZ_TTNQ‘:“
Max {lRe(xi(n))I , Iiﬁ(xi(n))l} n=0 (3.9)

Similarly, one can show (see Appendix A) that the theoretical .
worst case upper bound associated with the DIF algorithm 1is

given as

v {lrern @ bl (e, s

Max {lRe(xi(n))l ) lIm(xi(n)ﬂ} (3 10;

It is seen from (3.9) and (3.10) that the. theoretical
worst case upper bound depends only on £he magnitudes of
twiddle factors which are themselves independent of the
magnitude of the input sequence. "It is also seen that the
upper bound associated with the DIF algorithm depends only
on one particular twiddle factor, while it depends on all
twiddle factors within one basic 4-point transform for the
DIT algorithm. The upper bounds computed according to (3.9)
and (3.10) are given in Table 3.1 for N ranging from 64 to

4096. From Table 3.1 it can be seen that the upper bound
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TABLE 3.1la
THEORETICAL WORST CASE UPPER BOUND OF

THE NUMBER GROWTH AT EACH STAGE OF A RADIX-4 DIT FFT

Stage No.
1 2 3 4 ) 6

N .
.64 5.027 | 5.042

256 +5.027 ) 5,042 | 5.058

1024 5.027{ 5.042 | 5,058 | 5.038

4096 5.027 | 5.042 | 5.058 ] 5.058 { 5.058

TABLE 3.1b

THEORETICAL WORST CASE UPPER BOUND OF
THE NUMBER GROWTH AT EACH STAGE OF. A RADIX-4 DIF FFT

tage No.

1 5 3 4 5
N
64 5.657 | 5.657 4
256 5.657 | 5.657 | 5.657, &
1024 *5.657 | 5.657 | 5.657 | 5.657 4
4096 5.657 { 5.657 | 5.657 | 5.657 | 5.657
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on number growth for a giﬁéh stage 1is in&ependent of the
hpmbér of samples, N. In addition, for‘any given value N,
the upper bound associated with the DIT algorithm is seen to
increase as the number of stages increase until, for all
practical purposes a maximum value is reached, and no worst
case upper boﬁnd for number gréwth greater than 5.058 was
seen to occur. For the casé of the DIF algorithm, the uéper
bound at each stage is kept to a constant value, 5.567, except
at the last stage where-it is equal to 4, The particulér
value, 5.567, is, in fact, due to a twiddle factor of angle
/4 ;ﬁh exists at every stage, but not at the last stage.
At the last stage, the twiddle factors are equél to 1 and
hence the upﬁer bound is equal to 4. X

If we compare the upper bounds between the DIT and DIF
algorithms, from Table 3.1(a) and (b), we see that overall
number growth is smaller for the DIT algorithm. Therefore,
inthe following, we will only consider the radix-4 DIT
algorithm. A detailed radix-4 DIT basic calculation is shown
in Figurel3.l. |

Scaling factors determined from the theoretical worst
case bound will definitely ensure the overflows do not occur
but‘at the same time unrealistically constrain the dynamic
range of the hardware.
3.2.3 Experimental Worst Case Upper Bound

Besides the theoretical upper bound developed in section

3.2.2 it is desirable to experimentally determine the number

growth that is associated with commonly occurring input sequences,

S S T
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FIG. 3.1 RADIX-4 DIT BASIC CALCULATION
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in order to obtain a more realistic value.

To facilitaﬁg tﬁe experimental determination of numbe£
growth, a radix-4 DIT FFT programlwés written and‘execuﬁéd-od
a large scalengéneral purpose digital computer. The number
of sampleé, N, 'was chosen to be 1024. Three different sets
of input sequeneeé,'inqludihg unifgrmly distributed pséudo
random numbers, sine waves plus pseudo random number, and
sﬁeech signals were used, |

- In one set of experiments, the inputs were comprised of
pseudo random numbers for both the real and imaginary com-
ponents. These comﬁonents were uncorrelated'and fell within
the sét (-1,;1) for the first case, and (0,1) for the second
case. The experimental upper bound on number growth deter-
mined for these two cases is shown in rows one and two, re-
spectively, of Tablé 3.2,

In the second set of experiments two sine waves plus
pseudo random numbers were used as the input sequences. The

general form of the input sequence is given by
a(n) + 0.5 sinddL + 0.25 sinfJb + 0.25 singr  (3.11)

where in the first case {a(n)} are pseudo random numbers
lying in the range ~0.5 £ a(n) £ 0.5 and in the second case
pseudo random numbers lying in the range 0 < a(n) < 1.

The experimental upper bound on number growth associated with

these two cases are shown in rows three and four, respectively,
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The number growth associated with typical. speech wave-
forms was also inveéti%ated. The,correspondiﬁg upper bound
on number growth is shown in the fifith row of %able 3.2,

- Each of the gxperimeﬁts delineated in Table 3.2 were
repeated sixty times. The upﬁer bounds shown in-Téble 3.2 -
represent M+ 307, whére)u‘and 0 are the mean values and
standarg deviations for the samples generated, respective%y.

From Table 3.2 it can be seen that an experimentally
determined upper bound on number érowth équal to 4 is quite
reasonable for the input sequences considered.

3.3 Quantization Error Sources

The subject of error in the FFT has been reported in a
number of papers. Error associated with the radix-2 FFT
floating-point arithmetic have been analyzed in [37] . Thé
error problems of FFTs using figed-point arithmetic were first
discussed by Welch [32] , where different methods to avoid
overflow were also examined. Recently, Brigham and Cecchini
[33] developed a nomogram for determining fixed-point FFT
system dynamic range. These papers were concerned primarily
with the error characteristics of radix-2 FFT's. There are
guantization problems associated with the proposed RNS imple-
mentatidn that have not been fully treated in the literature.

When the radix-4 FFT is implemented using the RNS, three
forms of quantiéatidn errors, A/D converter_quantization,
coefficient rounding and scaling errors are presente;.
Strictly speaking, there are ‘several different error sources

/épher than A/D quantization error in an A/D converter, such as
: ‘ i ‘

.

(34
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saturation and aperture e'rrorsl[38] R [39].' Sv-ince the input
to the A/Dv converter caﬁ‘ bé'prprTLy adjusted, quantization
‘error is usual‘ly considered to be the dc‘)minant qﬁe. The
coefficient rounding error is due to 'finite; precision (oxr '~
i'.nt:ager) representations of twiddle factors. The scaiing
i error is introduced by scaling to keep the data within the
limited dynamlc range. - .

’
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. _ - CHAPTER 4
_ A DESIGN PROCEDURE FOR A FFT PROCESSOR

4.1 Design Criteria

Fl

‘In the proposed FFT structure, overflow is mot tolerable
in the RNS. In section 2.4, all the design parameters

associated with the proposed processor havenbeen identified.

Further, the number growth at each stage in the FFT has been

Vstudied. Therefore when the number range is fixed, it is

always possible to determine the rest of the parameters using

. trial and error methods to avoid overflows. However, only

f
considering the overflow problem is not sufficient to

obtain an efficient design. In fact, the arbitrary choice
of paraméters may lead to a waste of memory réquirements.

It is well-known that when digital signal processing
elements are implemented with hardware, errors due to finite

word length always exist. In order to achieve an acceptable

level pf error for some chosen word length, the characteristics

of these errors must be known. In this thesis, we will
consider the relative RMS error at the output of the FFT
cessor as the design criterion.

4,2 General Design Parameter Relationships

4,2,1 Statistical Error Models
In this section quantization errors associated with A/D

conversion, twiddle factors and scaling operations are con-

sidered. In order to determine their effects on a FFT processor,

it 1is fiyst necessary to establish the error models being used

voal
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to cﬁéfgg£gr;zg‘each source of error.
1. A/D quantization error model

. There are a number of différent types of error that may
~—._. be introduced by an A/D converter [38], [3@.

Errors associated with quantization and saturation are
the most-coﬁmog)types. As the input level can always be
adjusted tomiﬁiyize-saturation effects, only quéntizétion
error Qill be consideredlhere. .

If sampled data is represented by B bits, including the
sign bits, and the input signal falls within the range f U

then the converter step size, Q, 1s equal to

2 Q= BT (4.1)

It is noted that Q = 1 in the integer number system. When
the quantization noise is assumed to be uniformly distributed
with zero mean value, the mean and variance of the converter

quantization error have been shown [39]t0 be

—_ o T

1 2
eQ=O,IeQ ='1-2-Q

1 ”
= 1-2— (4.2)
The statistical assumptions have been considered adequate to
represent quantization error, even though correlation effects
have been neglected, because for practical values of B the
magnitude of the quantization error introduced by the converter,

when cémpared with twiddle factor and scaling errors, is small,
13 .
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2, Twiddle .factor error model

| In the proposed realization of the FFT prqéessor, the
error associated with the integer representation_bf the |
twiddle factor must be consideréd. An integer conversion
factor; p;, must be introduced as shown in Figure 2.4,

In the ROM oriented impleﬁentatioh envisaged, the integer
conver§fbnafactor, Pi» for the twiddle factors,‘must be pre-
determined and the integer fepresentations of the twiddle
factors stored.ih ROMs. The errof associated with the integer

.conversion of a twiddle factor, c, is defined as

e; = Re (eI) +,j\Im (eI)

[

Pi® - [piCJR

(pi Re(c) -'[pi Re Ec)]R) + (pi Im(c) - EH-Im(C)]R)
' (4.3)

Il

where_[ ]R denotes the integer round-off procedure. The
round-off procedure is such that the errors Re(el) and Im(eI)'

are uniformly distributed in the range (-0.5, 0.5) and thus

and

F

._-? .

ler|? = Re(ep)? + (m(e,? = & Ny (4.4)
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3. Scaling error model

In the ROM oriented implementation COnsidéred, the
magnitude of the numbers that occur at each stage must be
known. The study of number growth given in'seétion 3.2.3
allows one to chodse a scale factor capéblé of éoﬁstraining
the number growth to a desired value.

The errors associated with a scaling}operation are either
round-off or trunction erToTs depending upon the nature of

,the hardware. There are two different scaling algorithms .
that have been developed for the look~up table appro?ch, the
original algorithm and the estimate algorithm1[6], The errors
due to the latter depend ﬁpon the specific moduli, Thgough~
out this thesis, we will assume that the formér is used.f The

output from this scaling procedure is

Y = [_é;]R ‘ | (4.5)

where X is the input, K is the scale factor.
In order to define scaling error, let V be the complex
integer to be scaled and K be the scale factor, where K is

a positive integer. The scaling error, eg, is given by

eg = Re(es) + ] Im(eS) = —%— - [_E_]R

[N

_ {ReI((V) ) [Rel({v)]R} gy {Im v) _ [Im Y)]R}“(a.e)

+ The staling algorithm generates a zero mean error by the
addition of one half the scale factor to the inpuEF\
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The samelround-off procedgré is used here as we- used in N
equation (4.3),;heﬁée,\Re(eS) and ﬁﬁ(es) have the same

probability distribution as Re(el) or'Im(eI) and the mean

and variance are given by
. . 1 : , | ‘
: es = (0 and |eS| = % ' (4-7)

respectively.

4,2,2 RMS Quantization Error Analysis

*

In this section an expression for the relative RMS errog,
o, is derived. If the true value QE\the DFT is given by
the complex sequence {X(k)} and the sequence generated by

the FFT processor is {i(k)} then the relative RMS error, o,

is given by.

1

a “ /2.
}E:[Be(x(k)) - Re(x(k))]2 + [Im(x(k)) - Im(X(k))]2 /

oly = .
2 (Re(xfON? + (Im(X()))?
(4.8)

J

The RMS error, c(l, shall now be devéloped in terms of
converter quantization error, twiddle factor error and scaling
error. In.this analysis, it is assumed that these three
sources of error are uncorrelated.

In the following analysis it is necessary to délineate
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4

a number of variables with special care.'_A.typical stage
in the radix-4 processor consists.of N/4 basic modules that
have the form shown in Figure 4.1. Each basic module has
twiddle factors and a 4-point DFT associated with it. The
variables associated with the analysis of the basic module

are glso included in Figure 4.1. A superscript indicates

. the stage number while the subscript indicates the appropriate
g _ L P Qj PPTOp

input or-output, The -symbols {X%N(n)} and {X%FT(H)} are
used to represent the true values of the complex sequence
that exist at the input to the twiddle factor ﬁultipliers.
and to the 4-point DFT of the i-th stage of the FFT processor,
respectively. Whereas, {;%N(n)] and .{;%FT(H)} are the
scaled integer representations of the corresponding computed
value. The error between tﬁo points is given by

o

Ery(®) = xiy(0) = 8 xiy(n). . (4.9)
or

i _ Ji 8 i
EDFT(n) B xDFT(n) - EE_ xDFT(n) (4.10)
where @ is a factor that takes into account the integer
conversions and scaling operatiéns.

1. Converter quantization error

The mean-square value of the_ input to the first stage

is defined as
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5 - -|>'~'%N(n)|z | . (4.11)

The error present at the input to the first :stage are due

to A/D converter quantization errors and thus from equations

(4.2) and (4.9) one has

e | |
EIN(n) =0 a'[ld. |EIN(n)| =‘2 -e—(;z = _é__,
(4.12)

since 6 equals 1 at the input to the first stage.

.In the.first stage of a radix-4 DIT FFT, the twiddle
factors are equal.to 1 and hence the integer conversion
factor, py; is also equal to 1. Thué‘no multiplication

operations are assoclated with the first stage, and one has

Boop(n) = Efg(i) (4.13)

There are, however, four input points associated with each
complex output point. Therefore, the error associlated with

the output of the first stage 1s given by

ELyp( = Ebe(n) = Erg(m) = 0 (4.16)

and

IE(.%)UT(")I2 =4 DFT(“)I2 =4 IEIN(“)l2 ‘*/‘1}"
(4.15)
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The A/D converter quantlzatlon error 1ntroduced into the

input of the flrst stage continues to propagate through the
remalnlng stages. '
2, Twiddle factor error

For the second aﬁd subsequent stages the twiddle facdtors
are noxibnger trivigl and the errors introduced by integer
conversions mgst be considered. Let ¢ denote the true value

of a complex-twiddle factor in the second stage. From

(/

équation (4.10), one obtains

' ~9
E%FT(n) = X%FT(n> - Bg‘ * Xppr(m)

~2
= X%N(n)-c - 5%— xIN(n)-[pzc]R (4,16)
- where 8. = 5%— = 1. Since EéUT(n) = xéUT(n) - xéUT(n) =
IN(n) N(n), one can rewrite equation (4.16) as

-

E%FT(H) = xéUT(“)'C - 5%‘ (xéUT(n) - EéUT(n)).[pZC]R
(4.17)

Using eqﬁation (4.3) one can write equation (4.17) as
EZpr(m) == Egup() (=L = o)+ xL - (n)(—dy. (4.18)
DFT ouT Po ouUT Py *

1 and

Thus from equatiorn (4.18), by noting that lclz

er= 0, one obtains

EDFT(n) =90 (4,19)
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and
) 2 1 2, e | > leIIZ.
| lEDFT(n)| = 'IEOUT(n)| .' (_TP]; + 1)+ |xéUT(n)|2' .7
. . . ) . 2
1 2 1 2 'Ieﬂz
® IEOUT(n)l + l"o@\(n)l' . *—z—pz -
. . !
' 2 1, 402 1 1
=4 ¢ 2 €q + ? 'IxIN(n)l_ . -zr--;;;r-
SR S E o 2 | (4.20)

Py

However, since only 3 integer conversiouns associated with
the twiddle factors contribute round-off error as shown in

Figure 2.4, equation (4.20) can be written as

o 2
2 2 1 3 2 0
|EDFT(“)l =4t 73 T
. P2
2
_ .1 L C
. = 4 — * 7 7 (4.21)
Pa-

To generate the output of the second stage a 4-point

DFT must be computed and thus one obtains
EZ. (n) = 0 (4‘22)
OUT ‘ . *
and

2 2 2 2 ‘
|E0UT(nf)| =4 -IEDFT(n)I =4t e 2 (4.23)
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The operations aSSOClated with the third stage are

31mxlar to those assoc1ated with the second stage, hence

-

- ‘-v . :.“’_‘ .. . 2
R e N e Rty A
. p2 p3 ’ [T .

- .
3. 2 7,3
‘EQUT(n)l =4

- ,..'"’

This development tan bé generallzed such that the errors,

due to converter quanti®ation ¢ and to integer conver51on, at

3. Scaling error
'ﬁan order to prevent overflow due to number grewth it is
-necessary to introduce a scale factor K. Due to hardware
constraints associated with the realization of an RNS scaling
algorithm‘[ﬁ ] it is desiéable to use only one scale factor .
and vary the number of stages between scaling operatlons.
Let k; be the number of stages betwee;Wtﬂe (i-1) and i

~th scaling operation. Then

m = zg: Ky - | | (4.26)

gl ) i

2,

PRI SO £ ) =

-
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where q is the numbeér of scallng operations requlred to
produce a scaled output at the m—th stage of the processor.
In many app11Catlons full output prec151on rather than a

scaled output is desired at the output of the flnal stage .

* and hence a total of g-1 scaling operatlons-are performed.

These scaling schemes are also shown in Figure 4.2.
The error due to the first scaling-operatiOn can be
computed as ‘ ' . '
oL (o)
k. SN G .1 . -
_ A K *ouT
ES (n) = xOUT(n) - X — (4.27)
1 1 K .
T—'I—Pi :

}

'
%

Substituting equation (4.6) into equatlon (4 27) and using

the relationship between xOUT(n) and xOUT(n), one obtains

E_ (n) = Ekl (n)- - £ 2. (4.28)
) oUT _—_T;f—*__ :

T
i=1

Then*

- |k 2
Esl(n)|? = |E05T(n)|2 + 7<1-K — - (4.29)
TT P

i=1

In the above equation, the first term is the mean-square
error generated before the first scaling operation, as” given
in'equation (4.25), while the second term is the mean-square

error due to the first scaling operation.
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. At the output of the (kl +'k2);th stage (just before
the second scaling operation), the first term in equation
* ) . ’ji .
(4.29) will be propagated as discussed in the previous sectionm, -
and the second term will grow by a factor of(&fz..lﬁhus,

-the error becomes.

k,+k
| k +1<2t | k +1<2 1 k1+k2-2 ) 1 2_l
Eour () e T T2\ T2
- i=2 Pi
p
k 2 .
) K 1
+ 4 . ; - . (4-30
IS : )
ST T Pi
Ci=l

This development ‘can be extended to give - an expression for
the mean square . error at the output- of the final stage due

to converter quantization, integer conversion and scaling

with the form :

NE 1 - S -2 2
|EZI(I)1UT(T1)| =4n'1"—6—+4m2'-2'{z Pi }0"

i
D Kol i\r—_l
q-! k
k24 ! =1 -2  r=1 t ~2
tE ) S N B
’ i=1 . =1
(4.31)

'Note‘tha; p;=1 in equation (4.31).
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Then using equatidns (4.31), (4,11) and (3.1), ome can obtain

the total BMS relative error, \

—_—\ 172
A 2
o. = RMS (error) _ IEOUT(HH
1 ~ RMS (true result) 4 0,2 )
| >
> k
2 g1 h=1 d-h+l
= + 2P = 4
eor  © im i 6-4Mgt =1
‘ q-i 1/2
2k ' -
~2itel ) ' '
K hLi | Py, (4.32)

The relative RMS error, o;, expressed in equation (4.32) is

seen to be a fumttion of :

(a) 0'2, the mean-square value of the input to the first
stagey |

(b) m, the total number ‘'of stages in the FFT processor,

(c) P;» the integer conversion factor associated with the
twiddle factors in the i-th stage,

~(d) q, the number of scaling operations required to produce
a scaled output from the last stage of the processor,

(e) K, the scale factor used to pfevent overflow due ta
number growth (assumed constant for all scaling opéra-

tions), and

(£f) k., the number of stages between scaling operations.
i? . &

_k..- ‘_..,....é;.....

B

[
A i St S,

P A W MR S T Y
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4.3 A Simplified Design.- Procedure

- In the design of an FFT processo£ the rénge of the

number-sysﬁem being used .is: first determined. Then

the upper bound on number growth associated with each stage,

for ;ypical.input sequences 1is ,.establiéhed.' The rest
of the parameters P;s 4, k; and K can then be computed.

While equation (4.32) is a general expreé;ion,it does
not explicitly introduce the rangg of the }nteger number
system being used or the upper bound on number growth énalyzed
in section 3.2.i:;n addition, if equation (4.32) is to provide
the basis for a dééign procedure it is convenient to set
some parameters to practical values and make certain simplify;
ing assumptions. ’

In this section equation (4532).wiil be put in a form
that is less general but that leads to more design-oriented °
results. The following simplifications will be made.
First, the input signal, X%N(n),-is assumed to be a uniformly
distributed complex sequence with zero mean values for both
the real and imaginaryy parts. Then, if the accuracy of the

A/D converter is given as B bits the mean-square value Shbwn
' J

in equation (4.11) becomes ¢

"y

0t2 1 22B

= 7 (4.33)

Secondly, from Table 3.2, a practical upper bound on number

grdwth at each stage will be set equal to 4. As’a third

. simplifying assumption the integer cdpversion factor, P;>»
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will be'set equal te P for i = 2, 3, ..., m and pp = L.
In other words, all tw1ddle factors are represented with
equal accuracy.

On the basis of the last two simplifications it is.
A

reasonable to Testrlct the number of possible scaling schemes

to oneg—~n which the number of stages between scaling opera--

tions is .cbnstant._, This simplification Stlll allows the -
number of stages before the first scaling operation, and
“after q~l scaling operations, to be variable. With these
81mpllflcatlons it is convenient to con51der two general

classes of scaling schemes.

Let the first class of scaling schemes be given by
ki £m, ky =k =....=k_ =k §§.34)

and the second class by

ky<m ky = kgeee=k__ =k
and | F
1 £k <k (4.35)
Also, on the basis of the last two assumptions aed the fact

that the scale factor, K, is a constant for all scaling

operations, one can then set the scale factor equal to
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K = (4P)K (4.36),

I1f M represents the range 6f the RNS allowed in the FFT

2B-1 ¢ the maximum magnitude of
s

the input along with a consideration of number growth, it
. \ - .o . a

follows that

M _ . 1™, ,B-1
— =4 + (4P) 25+

| | A
or e . - r
' TN
k, = k-1 ‘ Y
M=4Llopl .28 (4.37)
Equation (4?37) can also be rewritten as ) —_—

M

B = logy (—— =T ) (4.38)

4 - P
such that B is eXpressed as a function of the value of M

and P for the specified scaling scheme.

In order to simplify the notatiomn 1et the texm, —-—2—,

60
in equatlon (4.32) be represented by cX Slmlla;ly, let
m
1 > P: 2o 2 and the last term equal X 2, Thus
2 _ 2 2 2

These three terms will mow be expressed in terms of the
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appropriate parameters, .
Uslng equation (4.33) the relative error due to A/D

converter quantization ig given by
2_ 1 ' L )
O(Q | -2—2-5— ] (4.40)

’; Ih'fact, the above resull ’ can be dlrectly obtalned by knowing
the error present at the 1nput to the flrst stage. Dividing

,E N(n), in equatlon (4. 12) by 0', one obtalns

Y

: IS ATRYR
T B f o1
o 60 ~
o1
-5 | (4.641)

Equatlons (4.40) and (4. 41)° J_ndlcate that the output relatlve
error due to the error pPresent in the input is equal to the
input relatlve error,

Using equation (4.37) one can write equation (4.40) as

2_ B 2(k -1)

o(Q = 4 (4.42)

Since P; =P, 122 one can wrlt’e the relative error due to

integer .conversion as

o %=l ~;2 (4.43)
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Using equations (&4.34), (4.35) and Qﬁ.B?);‘ist can be

written as

' 2k+k .
where | | = ' : .
AP T .
. - =k
K1 ~
A= < -
m-k -k +e |
A -1 -
k < k - 4.45)
\ l{.k' -1 ! q < ( )

[

takes into atcount the two gemeral classes of scaling schemes,
"Combining equations (4.42), (4.43) and (4.44), one can

write equation (4.39) as

—
-
2k 2(k,-1) 2k+k
2 1 -2 1 m-1 1 . 1, y-2 p2k
" =4 M4 + S5 2 + A "4 M“P
: o (4.46)

"Thus the relative mean-square error, dl, is expressed as

a function of the maximum magnitude, M, the integer conver-

' sion constant, P, and the scaling schemes as given by kl,

k and kq.
By differentiating equation (4.46) with respect to P,

and equating the results to zero one obtains

-

2k

3 2k+k
2(ky - 1) + &

1 + 2k ~A- 4

IM- 1‘

—2 sz-l - O

- (4.47)
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Equation (4. 47) can be used to determine the value of P,
expressed as a functlon of M, that mlnlmlzes the reietlve
error, txl, for a glven écallng scheme. The results can not
be put in a closed form expre551on that is practically, useful

However, for a given value of N, .a given desired level of

relative:error and a given spec'fled scaling scheme, it is

possible te tabulate the j

terrelationships that define the

'correspondlng value of Mjand P. A kno e of M and P
allow one to compute the correspondlng valye of the scale
factor, K, and the required A/D converter accuracy, B. .For
N = 1624 and various scaling schemes these relationships
have been tabulated in Table 4.1.

The results developed in this section can be used as
the besis of a design ﬁrocedure fdr.the proposed FFT precessdr,
We will assume tﬁar N = 1024, Now, the design proceﬁure is
given as follows: | )

(1) Specify the level of relative error, (ﬂl, thet is
acceptable for the processor.

(2) Select a desrred scaling scheme.

(3) Compute the requlred range of the number system, M,
using the relationship given in Table 4.1.

(4) Select a set of relatively prime moduli which gives a
product, of all moduli, M, close to the computed M
from (3).

(5) :Compute the integer conversion constant, P, using the

4
relationship given in Table 4.1.

ey
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(6) From the chosen_éet of moduli in (4), select some of
them to obtain a scale factor, K , close to (hP)k. The
integer conversion constant for the stages after the

first scaling operation is equal to

1/k : -
(X,)

T

(7) Substitute M_ and P into equation (4.38) and solve for
B. Round B to an integer, B . Substitute M and By
intothe saﬁe equation and solve for P. The integer:

conversion constant for the stages before the first

scalipg operation is equal to [P]R.-

For a Specified level of relative error, it is always
possible ito select a set of relaﬁively prime moduli such
that their product is close to the required value of M.
However, this may not be true for the selection of the scale
factor, because the 'scale factor must be determined from the
fixed chosen moduli. As a general comment, 1; is better to ™\
choose some smaller moduli to form the moduli set such that

it has more flexibility to obtain the desired value of the

f —

scale factor.

4.4 Other Considerations

4,4.1 Op'timal Scaling: gcheme
 Since the scaling scheme must be specified to use Table
4.1 it is desirable to determine which 5caling scheme will

generate the smallest relative error for a given value of M.
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Figure 4.3 shows.plots of number range versus relative RﬁS.
error for various scaling schemes.. The values ploﬁtea were
computed using the funcﬁional relationships between M and
oy for the variogs scaling schemes sﬁown in Table 4.1.

In Figure 4.3 the lowest curve, representing scaling schemes

kl =1, k=1and k; = 2, k = 1, indicates the smallest value

.of error for a given number system range. It is desirable to

choose the‘scaling schemes k; = 2, k = 1 as”the better of the

two candidates since this scheme requires one less scaling

-

operation and also requires less A/D converter accuracy for

a given error.

When th? FFT is implemented with har&ware, one always
wants to minimize the cost for a given acceptable perfor-
mance, such as output error. This consideration can be
stated as: 1if the errors of different schemes are the same,
which one will require the least number of look-up ROM tables

to implement? The answer to zﬁgﬁquestion is not straight-

forward., In fact, the total number of look-up tables required\L\\

for implementation will depepd on how the FFT is realized.
As mentioned in section 1.2, there are five different rea-

lizations. We will only consider the first three realiza-.

_tions, since they represent a medium cost/speed trade off.

The sequential processor requires ome BCU and 8 (4x2)
scaling arrays. Thus no extra scaling arrays are required,
even if there are two or more scaling operations. Therefore,

—_ -

the scaling scheme with smaller -M and smaller K-owill be our i
choice for the hardware realization. Figufe 4.4 shows the

N

\



FIG. 4.3 RELATIVE RMS OUTPUT ERROR VS NUMBER RANGE FOR VARIOUS
SCALING SCHEMES; N=1024 '
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-plers of ecaling factor versué‘relative ﬁMS-er;zr.; The
values. plotted were computed u31ng the relatlonshrps between

. M, P,/ K and_c:(.lu From Figure 4,4 it 1s seen that” the scaling

'x{scﬁemes kl = 4 and k =3, k=1 uSe the smallest R for a

given error, but they require very larée M as shown in _

figﬁre’& 3. Since the total ﬁumber of look-up tables required

depends malnly on the value of M, we then, again, consider

el

that the two scaling schemes, 1= 1, k=1 and Ky =2,k = 1
are better condidates. Based on the prev1ousl Jnentioned
adyantages for the echeme kl = 2, k =.1 as comparing to the
‘scheme k, =1, k = 1, the best scheme for sequential reali-
zation is still kl =2, k=1,

Since the total number oﬁ look-upltables required for
the Quad- 4 proces@Eﬁ is just four times those in the sequen-
tlal processoxr, therest scheme for tHe Quad 4 processor 1is.
ky = 2, k =1, . _ I
~— i For' the case of cascede realization, it requires m BCUs
and 8(q-1) scaling arrays, where q-1 is the nﬁmber of scei;ng
‘operations for m stages. From‘Figure 3.1, it is seen that
there are-34 operations involved in a basic calculation. In
addition,when the FFT is iﬁplemented using the, integer number
system, it is neceseary to multiply-the first ﬁwo\EN}nts,
Re(x (O)) and Im(x (0)), by the integer conversion factor,

p;» as shown in Flgure 2 4. Thus, there are total 36 opera-
tions required in the BCU. “Since each operatlon can be .

1mplemented using L look-up tables foran andullnu bersystmn,

then ‘the number of took-up tables reguired for a radix-4 BCU
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' V, g, % s

‘ ié 36L.T When the number dg}scaling moduli is S, it was Shown
in [e]that_the number of look-up tables for a scaling array
s (L—l)(S+—%—) - Sz. Therefore the number of look-up tables

required for cascade realizatidm is

T = 16L + (m-1) ¢ 36L + 8(q-1)((L-1) + (S+5=) - §%)

o ' ' (4.48)
whereéthe first term takes the consideration that Ghe twiddle
factors at the‘ff}st-stage argmequal to one. It is noted ﬁhat
thg memory required for'input/ogtput conversion, temporéryl
storage, and coefficient storage-is not considered. From

Figure 4.3 and Figure 4.4 four schemes with smaller M and

smaller K are chosen to compare the values of T, when
4 .

dl =-—(-).Ol. These four schemes are shown in Table 4.2. Also
in this table are shown the moduli used for the number system,
the scaling factor, and ths value of T. For the results in
Tablé 4.2, the first.scheme, kl‘= 2, k =4, requires the

least numbér of look-up taEles.

" The total iookfup table requirements shown in Table 4,2
appear' to be quité large. The typical data rates we are
antiﬁipating, however, are of such a magnitude that-the number -
of ROMs is quite justified and, in fact, represents a fairly
cost effective solution. Since we are operating an independent

radix-4 butterfly in hardware at each stage in the FFT array,

+ If all the p.'s are equal, then the multiplicatioﬁ by p;
can be precalcﬁlgted in the look-up tables. Therefore, ofily
. 34L look-up tables are required.

4
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and we are assuming that the results of each ROM are‘iatched

to allow pipelining, then the data rate is given by 8ﬁz'L,

where T; is the access time of each ROM plﬁs output data
latch time.- A conservative estimate,for”ti,.using current
hardware, 1is lbO nS. We éﬁonld; therefore, be'éble to
produce data rates through the array ;f at least 80 MHz.
Based ﬁponrthe above consiéerationé, we feel that the
scaling scheme, kl=2, k=1 may be best choice for both
error minitization and minmuﬁ/:;;ih:} hardware realization.

The choice between the selections of different realizations

-

w1ll however, depends on the designer's demand. For complete-
ness, Table 4.3 gives the optimum functional relatlonshlps
between.dl, M and P for various N from 64 to 4096, when
the scheme kl=2, k=l is uéed.
4.4.2 Scale Facggr Considerations
As we mentioned in section 4.3, it is usually difficult
to have the chosen ;cale.factor close to the derived value.
If, however, the chosen value of the scale fagtor deviates

from the derived value by a very large amount, then

the use of the corresponding values of the integer comversion

consténf and the A/D guantization bit, according to the design
procedure given in';ection 4.3, no longer minimizes the relative
error,cil. In\fhis section, we will modified the third simpli-
fying assumption made in section 4.3 such that we have more
flexibility to determine the values of some parameters.

From equation (&4.38), it can be seen that the required

]

A/D quantization bits, B, is related to the values of M and
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the integér:cﬁnversion factors at the stages before the first '’
scaling opé;ation{ pirfor'i é.kl. It is alSpfknown that the
scale factor depends ohiy on the integer conversion factors

at thé‘stages-between scaling operations. Thus by letting

the values of Py ié kl be variable and not.équal to P, we
can decouple the relationship between p;, i & ky (or B) and
P;» 1 > ky(or K). ?y doing so, even if the derived vaiue of

K can not be obtained, tﬁe errors,‘due'to thg—A/D quantization
and the integer conversion before the first scaling_gpg;agidn,

-

can still be minimized by choosing proper values of P, 1 < ky

and B, which are now independent of the value of the K, In

other words, a suboptimum structure is easily obtained.

From the previous analysis, we concludeg tﬁat the best
scheme is ky = 2, k = 1, which generated the smallest error
for a fixed value of M. In this section we will assume that
this best scheme is used. For this scheme there are two
stages before the first scaling operation, and hence the
integer conversion factor at the second stage, P9 will be
treated as a variable, and the rest ofpthe integer conversion
factors is set equal to a constant P, i.,e., P3 = Py = +++= Py
=P. Recall that p; = 1. f-

Since p, # P, equat%ons (4.42) and (4.43) should be



=5 | - (4.50)

Substituting ky = 2 and k = 1 into €quation (4.44), one
obtains

I EAN Gt VI i

S M- -

~

- (4.51)

Combining equations (4.49), (4.50) and (4.51), equation (4.39)
becomes
o 2_2P2 1 v me2 | af™? - De?
y 2

+ . / (4.52)
L gp,°  se M

From equation (4.52), it is interesting to see that the first
two terms depend on pZ; while the last two terms depend on
P. Thus, when M is fixed, O(l can be minimized with respect
to py and P separately. The corresponding .values of Py and

P are given as follows for N equal to 1024,

1

Py = 0.1486 Mz (4.53)
1 -

b = 0.0913 M% o (4.54)

Also, the minimum value of O(l is

1
o =10.06M 2 T (4.55)
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As a comparison, Table &4.4-shows the corresponqiﬁgly

- derived values of some parameters by minimizing the relative

error, lxl, for two different cases, p,=P and pz#P. From
Table 4.4 it is seen that the second éase requires smaller
A/D quanéization bits, B, and'larger integer conversiocn,
factor at thé'secondvstage s Pg, tham the first case.

It is élso seen that the sé%ond_case produces slightly -
smaller error than the first case for a given value of M.

" In fact, a most important advantage_fbr the modified second
case is that the relative error, cXi, is minimized with
respect tompzand P separately. Thus{ the error with respesat
to p,ois still minimized even if the derived value of P or K
can not be.ob}ained exactly.

In addition, it is best to have an expression to show
the effects of the variation of the value of the scale factor,
K, on the output error. Let cXKz denote the last two terms

“in equation (4.52)

4

4 m=-2 2
dKZ _ m-% + 4 (4 ‘2— l) P (4.56)

Substituting P = —%— into equation (4.56), one obtains

4 ,,m-2 2 '
K M '
‘When M and m are fixed, -equation (4.575 can be uséd to minimize

the value of O(K by choosinga proper value of K. As an example,

Figure 4.5 shows the plot of CXK versus K for M=10" and m=5.
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From Figure 4.5, it can be seen that if the desired value’
of K can not be obtained, one may choose aiﬁaiue of K
either .larger ox smallef than the desired value to minimize.
the error, Ag. For a practical realizatioh, one would
.like to use the number of look-up tables as sﬁall as possible
to implement- the scaling:array. However, thé relationship
between the magﬁitude of the scale factor and the required
number of look-up tébles is not trivial, and, in fact, the
number of lookwup-tables required for the scaling array
depends on both the total number of moduli used in the
system and the numbeF of moduli used for the scale factor [6].
Moreover, the .error, o(K,'will be affected by changing the ;
derived value of K to the.closest suitable value. Thus, a
trade off between the error, O(K, and the required number
of look-up tables with respect to a chosen scale factbt
‘must be taken into consideration. p,

The design procedure for this case is similar to the
previous one given in section 4.3, but the values of M and P
are computed using equations (4.54) and (4.55), respectively.
.In step (6), the plot of O(K versus K for the chosen number
range, M, must first be drawn, and based on the plot we
choose a suitable scale factor to compromise thd above
mentioned trade off.

4.4.3 Sequential Realization Consideratiors
The seduéntial realization is the simplest and slowest

"one, but its cost is the lo

st. If speed is not very

important for some applications, t bt the sequential realization
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may be a good ch01ce for its 51mpllc1ty and lower cost.

In sectlon 4.4, l we considered that the scheme k;= 2,
k=ﬁ, is better than the scheme kl=1, k=1 for the sequential
reaiizatioh, because the latter requires larggr A/D converter
a quantization bits and also one maré scaling operation. In
this' section, we will compare tﬁe‘two s;hemes froﬁ a different

point of view. L o -

L]
——————

Since only one calculation unit is’used to perform the
required arithmetic operations in the seqﬁential realiza%ién,
then, for efficient realization, if is best to have an identical
structure for each stage in the FFT. When the scheme'kl=2
k=1, is used, there are two staées before the first scaling

operation and then scaling after each followxng stage. Thus,
the structure of the first stage is dlfferent‘from the other
stages, and special circuitry is required to control this
scheme. Insteéd, when the scheme kl=l, k=1, is used, there
is‘a scaling operation after each stage. In other words, the
structure of each stage, includingrscaling operation, 1is
identical. This indicates that the scheme k;=1, k=1 is more
suitable than the scheme kl=2, k=1 for the sequential reali-
zation, as far as simple structure is comcerned.  In additiom,
: Qe can also modify this scheme such the requirement of a large
number 6f:A/D converter quantization bits can be eliminated.
This modification will be discussed in the following.

Since the twiddle factors in the first stage of the DIT
algorithm are equal to one, themn, iﬁ order to have a scaling

operation after the first stage, -the magnitude of input to
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the first stage must be very large. Thus, a very'large'numbet h
of A/D converter ouantization bits is usually required for the
scaling scheme kl=l, k=1. This sho}tcoming can be eliminat?di
by introducing'some'dumm§ coﬁétano integers in- the first-
stage such ‘that all -input points to Ehe first.stage'are preQ
multlplled by a constant integer, G, and then 4- -point DFTs
are computed Spec1f1cally, the constant integers, G, are
stored in the real parts and zeros are stored in the 1mag1nary .
parts, which form the art1f1c1al" tw1ddle factors as shown
in Figure 4.6T It is noted that no error will be e introduced
ofter the multiplivation by on integer. he

The determination of a desired constant integer, G, to
minimize the output error, of;, can be seen in Appendix B.
Here some relationships between G, P, M and til are given
in the following

. 1
G = py = P3 = P, = P5 = P = 0.0979 M?

and | - (4.58)

1
o, = 10.21 M °
If we compare the relationships given in equation (4.58)

to those given in Table 4.1 for the same scaling scheme k1=l,

k=1l. we see that they are exactly the same. However, the

\'\V/éiéﬁ

fo

quired number of A/D converter quantization bits are different

] ' } 4
r the two cases, and are given by: -
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= 0.5 log, M + 1.35 ' (4.59)

and

B=log, M-2 (4.60)

for the modified scheme with P1=G and original scheme with

p;=1, :é§pectively. "It can be easily shown that when M = %04,

iogz M-~ 220.5logy M +.1.35 (4.61)
| ' ' '
Since the required number range, M, is usually larger than
104, then the modified scheme uses less, A/D quantization bits
with the same error as compare to the original séheme. In
other words, the reduction of A/D converter quantization bits
does not increase the error, dlﬁ This is because the error
due to A/D quantization, CXQZ, is ﬁegligible as shown in
the last column of Table 4.1.

We now conclude that the scaling scheme kl=1, k=1
accompanied by the "artificial"” twiddle factors in the first
stage is much more suitable for sequential realization. In

éddition3 the concept of storing constant integers in the

first stage can be applied to spectral estimation, where the

input to the FFT is usually weighted by some window function

to reduce leakage effects, i.e. the window coefficients can

also be stored in the first stage and treated as twiddle factors.

N
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4.5 An Example Design Problem

'To‘illustraée_how to use the design procedure given in
the previous sections, we will consider the following example.
An acceptable level of relative error, cil, is set to be
equal'to_0.0l, and the scaling scheme kl=2, k=1 is used.
From Table 4.1 the corresponding value of M is given by
the relationship
1
2

o, = 10.18 M

1
?

and thus M is found to be equal to 1.036 x 106. A possible
set of moduli which satisfies the number range is {32, 31,
29, 13, 3}. Then

M = 32x31x29x13x3 = 1.122 x 10°

Using the value of M, and relationship betwesn M and P

given in Table 4.1, the integer conversion factor is calcu-

lated by
\ ‘.\ l B ~
P = 0.0982 M2
. y
) 2

L.04 x 10

Then, using equation (4.36), the scale factor, K, is found
to be edual to 4.161 x 102. From the chosen set of moduli,

{32, 31, 29, 13, 3} , the scaling moduli can be {31, 13}
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which gives K_ = 403, . The Qalue‘of K, may be not close
enough to thé derived vaiue, 4.161 x 102. This can bgk
poésibly improved by either selecting a different set of
moduli or using the method described in section 4.4.2. For
this example, we will use the chosen scéle factor, 403, and
continue the design procedure to determine the rest of the
parameters.

The integer conversion constant for the stage after the

first scaling operation is equal to
= = = o =
P3 = Py = P5 = [‘T]R‘wl
‘s : . L ,
Substituting M_ and P into equation (4.38), one obtains
B = 9.40
or » -
B, = 9 bits
Finally, using equation (4.37) or (4.38), the integer
conversion constant for the second stage is

found to be

P, = 137 -
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Based on the calculated parameters,.we also compute the

relative RMS error using the general expression as shown in

equation (&.32)

di = 0.00979 -
Va
which is' slightly less than the specified error, 0.0l. The
reason is that a larger value of the number range, Mo, than

the required value has been used. ' ””
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DISCUSSION OF RESULTS

5.1 Introduction

The quantization error associated with the radix-4 DIT
FFT processor has been_analygsd in Chapter 4, This analysis
has led to a practically useful design procedure.

In order to justify our predicted error results, the
proposed FFT processor will be simulated by computer. Based
on the simulated processor, relative output RMS error will
be measured for several different inpﬁt sequences, and also
compared with the predicted results.

Finally, some ramifications of our theoretically derived
error expressions-will be described.

5.2 Simulation of The FFT Processor '

In the RNS, exact integer results are always obtained
from the basic operations of addition, subtraction and multi-
plication, hence these operations can be easily simulated by
usiﬁg entirely integer arithmetic. However, for a given range
of the RNS, M, and a given scaling scheme, the correspénding
required values of integer conversion and scale factors, and
the A/D converter quantization bits, accordiﬂg to the derived
theoretical interrelationships, .need not be integers.
Although, in practice, they must be integers. In addition,
it is not necessary to consider the range of the RNS, M,
as a product of some relatively pairwise prime moduli, since

this requirement is not explicitly shown in the

85
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theoretical expressions. Therefore, for the purpose of

~ comparison between theoretical and experimental results,

we used M in ascending powers of 10, and the residue arithmetic
was simulated using doﬁbie precision floating point arithmetic
instead of using exa@t integer arithmetic. To justify our.
simulated residue arithmetic using floating point arithmetic,
a preliminary comparison between the error results obtained
using exact integer arithmetic and using floating point-
arithmetié has been made, and it was found that the difference
between themwas negligible;' .

To facilitate the experimental simulation, two radix-4
DIT FFT programswere written, which can be seen in‘Appendix
C. One was written in double precision floating point for
arithmetic operations and also for the representations of
twiddle factors. The results from this program were considered
to be true results. In the other program, the arithmetic
operations were performed using double precision floating

point arithmetic, but the residue scaling scheme was incor-

porated and quantization errors due to A/D converter, integer

conversion and scaling operation were properly simulated.

The errors introduced by three different sources are all
round-off errors, which can be simulated using the following
FORTRAN statements,

X=X*2,D0**(B-1)+DSIGN(0. 5D0,X)

C=C*P+DSIGN(0.5D0,C)

X=X/K+DSIGN(0.5D0,X)

where B, P and K denote the A/D converter quantization bits,
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integer conversion factor and scale factor, respectively, and -

-Al for A2<0
DSIGN(A1l,A2) ={ 0 for A2=0
Al for A2>0

Moreover, before performing apy scaling operation, a magnitude
Lest routine was executed to detect if any number had magnitude
larger Ehan M/2, which is the maximum magnitude in the signed
BRNS. This is important, since the numbers in the RNS are.
performed over a finite range, M, and if there is an overflow
~ the complete error simulation is flawed.

5.3 Comparison of Theoretical and Simulation'Results

In order to chafacterize different types of‘input
sequences, we will first define some terminologiés which are
useful to interpret experimental results. Since the level
of the input to the A/D converter can be properly adjusted
.such that the maximum magnitude of the input. is correspond-
ing to Ehe max imum integer from the output of the A/D converter,
ﬁEB_l, then it is best to define a nominal mean square value “
of the input sequénce as a function of B, Let 0&2 denote
the actual mean square value of a input sequence, then the
nominal mean square value, 652, is defined as

(5.1)

where Xnax is the maximum magnitude of the input sequence.
As an example, we consider that the input sequence is a

uniformly distributed random number between -A and A for
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both the real and imaginary parts, then

2 3,,3

oo A L 2 2 (5.2)
. 3(At+A) 3 _
and ' 5
2 g2 .2 ,2B"lo 2B
o, = — A% o ( yo = ——g— . | (5.3)

From equation (5.3), it is'seen that the defined nominal mean
square value is independent of the actual~range'of the input
sequence. Since the theoretical relative RMS error was
derived based on the assumption that the input mean square
value is equal to —23— ,qEEén an adjustment of the theoretical
-prédiction can be madg, if the ratio of the assumed nominal
mean square value, ——BE , to the nominal mean square value of
the input sequence, (ynz, is known. We now define an adjusting

factor as

2B/6
oo [22° (5.4)
o

n

such that the adjusted relative ﬁMS error is equal to the
product of the adjusting factor, D, and the theoretical
predicted RMS error, o(l.

Similarly, we define a nominal mean value of an imput
sequence to be the ratio of the actual mean value to the
maximum magnitude of the sequence, which is also independent

of the actual range of the input sequence. In additionm,
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'the correlation coefficient between the real and imaginary

parts of the input to the FFT processor 1s defined as

Re(xly(n)) » In(xp(n)) = ReCxpy(m)) * Tm(xy))
Z

— - Ty 1/2
{[(RecxiN(nmz - Relly @) J° ((TmGy 2 - TaGekym) ]}

. | . (5.5)
where‘-lé}’él. If P=0, the real and imaginary parts are
uncorrelated.

Four different types of input sequences, including
uniformly distributed psgudo random numbers, sine waves
plus péeudo random numbers and speech signals, which were
used to study the experimental upper bound on number growth
in section 3.2.3, were also used as experimegtal input
sequences. It is noted that the real and imaginary parts of
the inputs to the FFT processor contain the same type of
sequence in the experiments.

The first and second inbut sequences were pseudo random
numbers. Both of them have the same nominal mean‘square
values which are very close to the assumed value, ——;ﬁ.

The only difference between them is the nominal mean value,
where it is approximately equal to zero in the first case,
and is equal to 0.5 in the second case. They are denoted

as 5q and 82 in Table 5.1, respectively; Since the corre-
lation coefficients are very small as shown in Table 5.1, the
real and imaginary parts of 5, and Szwereconsidered-to be

uncorrelated.

The third type of input sequencewas @ sine waves plus
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- 'zero-mean pseudo random numbers, which was given in equabmgn

(3 '11) and denoted as Sy in Table 5.1. The nominal mean
value is close to zero, and the nominal mean square value 1s
slightly smaller than _ZéE_ Also, this sequence 1s well-
correlated, because F=0.69 as shown in Table 5.1. |

The lasttypeef.exﬁerimental sequence was a tYplcal speech
waveform. It is denoted as S, in Teble 5.1. From Table 5.1,
it can be seen that the nominal miean value is also close to
zero, but the nominal mean square value is only about half
the value of agéé. In addition, from Table 5.1, it is seen
that P =0.20 for Sy thus the real and imaginary parts of
this input are slightly correlated.

Each of the values delineated in Table 5.1 was taken from
the ensemble average value. The adjusting factors -~for each
sequence are also shown in the last column of Table 5.1.

The first experiment was to have the random numbers, Si,
as the input sequence, since it satisfied the first simplify-
ing assumption made in section 4.3. Simulation results were
used to establish a relationship between the error, O(l;
and the range of the number system, M, being used. These
results are shown in Figure 5.1. The corresponding results
predicated by the theoretically derived relationships tabulated
in Table 4.1 have also been plotted in Figure 5.1. ‘The small
error between the theoretical and the simulation results |
shown in Figure 5.1 for variouslscaling schemes indicates that

equation (4.46) and the subsequent relationships tabulated in

Table 4.1 can be used with confidence in the practical design
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.. sequence. As we can see from Table 5.{,;the only difference

94 . S
of a FFT progéssora

In the second experiment, we chose S,y as the ingut

between Sy and.sé is their nominal-mean values.,6 The simula- ._ (8
tion and corresponding_thgorétical fesﬁlﬁsﬁerepﬂotted’in T
Figure 5.2‘f0r both Sl‘and‘Sz. ‘qum Figﬁfe 5.2, it is éeeﬁ
that the simulation fesults of S, lie below.thé thgo:etical
curve. The reason may be that tﬁe_actﬁal mean value of the
errors asséciated‘wifh_the.inﬁegef conversion of the twiddlé "
factors, ers is.nof zero as assﬁmed in the stétistical eFfo:
modeis. _This will not affect the previous results using zero
meaﬁ input sequence, Sq, because for inputs with‘this‘property, }

xéUT(n) = O-except at the last stage. Thus equationms (4.19)

"and (4.20) can still be obtained by using xéUT(n) = 0, and .

]

EéUT(n) = 0. For a hon-zerc mean input, equations '(4.19)
and (4.20) are mot correct unless EE = 0. Although a closed
form to show the effect of non-zero mean value of the input
sequence can mnot be obtained, the theoretically derived
expression may =~ serve as a péssimistic bound for non-zero
mean input. _ : _ '
So far, we have only consideréd the cases of uncorrelated
input sequences, S; and 82. ?he.domparison between theoretical

and simulati esults.for correlated input sequence with

zero-mean e, S, is shown in Figure 5.3. The adjusted
thedbretical results are also shown in Figure 5.3. From
Figure 5.3, it is seen that the simulation results lie slightly

below the adjusted theoretical results. This is possibly
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~ due to the correlation of the real énd iméginéry.components
of.the input sequemnce, which Qili ﬁroduce correlated huaﬁti-
zation erfﬁr. Hoﬁever, even though the correlation coefficient,

f, is as high as 0.69, the effect is not significant. Thus

‘our theoretiéal results éccompanied by the adjustint factor
are quite accurate. for predicting errors of a correlated
inpu£ sequence, .

Figure 5.4 shows the results of transforming speech:
signal, Sa. Since the real and imaginafy parts of this iﬁput
sequence is correlated, the simulation results should lie
below the adjusted theqreticai results. This is'verifieﬁ in
Figure 5.4.. -

In section 4.5.2, wé ha;? discussed a modified scheme

which allows p, to be 'variab¥e and leads to a better result.

The simulation and tﬁeoretical results associated“with the
modified scheme were plotted in Figure 5.5 for the input
sequences, S5, and 84. Again, the simulation and theoretical
results for S| are in good agreement, and the simulation
results of S, lie slightly below the theoretical results.

By storing some dummy constant integers in the first
stage, identical structures for each stage is obtained for the
scaling scheme k=1, k=1, The theoretical and simulation
results of transforming S, 82 and S4 using this scheme are
shown in Figure 5.6, which are similar to the previous results.

In addition to the above e&beriments, where both real and
imaginary parts were comprised the same type of imput sequence,

we have also considered the case where only real parts contained

-
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data, whilé‘imaginary parts were filled up with zeros. For

this case, the prédicted results for-Sl’and'SZ'also have

to be édjusted. The adjusted factors for §;,:5, and S5 are

1.414, 1.414.and 1.711, respectively.. Figure 5.7 shows the

results of trgpsfqrming S1 and S,. From Figure 5.7, it is
seen that the simulation results of S,  still lie slightly
below the resuits of 5. From the previous experience, there
was always a very good agreement between the gimulation and
predicted results for S;. But, from Figure 5.7, it is seen
that there is aismall error between them. The reason is
é%at the adjusting factor defined in equation (4;§) is not
suitable for a real input FFT. The derivation of a more
reasonable adjusting factor can be seen in Appendix D. The
newly adjusted results are also shown in Figure 5.7. Again,
we obtain a very good agreement between experimental and
correctly adjusted theoretical results (D=1,22). The results
of transforming the real input sequence, 53, are shown in
Figure 5.8. From Figure 5.8, it i;\géeQbEhat the correctly
adjusted results (D=1.48) is much closer to the experimental
results than the previously adjusted results (D=1.71).
Finally, the experimental upper bound at each stage for
real input sequences Sy, S, and 53 is also shown in Table 5.2.
If we compare the bounds in Table 5.2 to Table 3.Z, we see
that they are close each other. Therefore, 4 is also a-

reasonable bound for the real input FFT.
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5.4.1 Fixed-point Arithmetic Number System

5.4 Ramifications

In the experimental simulation, we had the number range,
M, in ascending power of 10, since the requirement 6f M to -
be a product of some relatively pairwise prime moduli is not
.explicitly shown in the theoretical expressions. In fact,
- our derived error expression can be applied to any integer
based arithmetic number system. Since the most common integ%;/h\\\\.L
based aritﬁmetic number system is the fixed-point arithmetic
number system, we will, in the folfo&ing, discuss how the
error results can be applied to it.

First, some similaritieé between our error analysis and
other workers' fixed-point error anmalysis will be iﬁdicated.
In -our analysis, scale factors were chogen on a pripri.basis
and the position of scaling\af?ﬁys was pfedetermined. Thus,
the scaling scheme and scale factor-were prefixed, that is
similar to the first scheme, shifting fight one bit ét every
iteration, as described in [32] , or the so-called automatic
array scaling in [33 ]. Furthermore, we considered that
several exact arithmetic operations were performed before
scaling by @ predetermined constant. In other words, the
results at the output of the BCU were retained to full
accuracy. This type of arithmetic unit for radix-2 FFT has
also been considered in [33].

When the FFT is implemented using fixed—boint arithmetic,
it is more convenient to express the number range, integer

-

conversion factors and scale factor in terms of number of
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: b

bits. 1f the scale factor is equal to 2 °

, then the'scaling'
process can pe-implemented'by—shifting f;ght bg bits. To
illustrate the design procedﬁre‘for the fixed-point arithmetic
using our theoretical error eXpressiQPs, we ﬁill consider the

r following ef%mple. The error,.o(l, ié specified as 0.0i,

and the scaling scheme kl=2, k=1 is used for m=5. From Table

4,1, the corresponding value of M is given by the relationship

N .
20 -7
oy = 10.18 M

and hence M=(10{18/£x1)2‘= 1.036x 106. Since at least 20 bits
are required to represent the value, 1.036x106, then ﬁhe
chosen value of M, My is

220 6

M = = 1.049x10".

o

2

The integer conversion constant, P, can be determined using’
the relationship, P=0.0982 M2 given in Table 4.1. Thé
value of P is found to be 100.56. Since there is one stage

between scaling operation, then

K = 4P = 402,24 v
The corresponding number of bits for the value, 402.24, is
8.65 bits. » The choice can be 8 or 9 bits. We will assume

that 9 bits is used. Therefore, we obtain
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y“which indicates that 7 bits are used té represent the twiddle
factors.” After the values of M and P have been determiﬁed,;
the required number of A/D converter quanEization bits can
be calculated using equation (4.38). For this example,
B=9 bits. '

Since the required word length for different units were
given in the fixed-point radix-4 FFT descfibed in [27], then
alcomparison between our chosen word length and that given
in [27]'can be made, which is shown in Table §.3. The scaling
scheme used in [27]is a conditional array scaling+, which
employs different normalizétion procedures at each stége. This
type of scaling scheme should produce less output error than
the fixed scheme. From Table 5.3, it can be seen that the
required word length for different parameters or umits are
comparable for two schemes. Thus our design procedure can
also be.used to select proper word length for a fixed-point
FFT.

In the above fixed-point implementations, we consider
that the results at the output of the twidd%? factor multi-
plications retain with fuli word length. In addition, there
is another method, which is quite often used to implement the
fixed-point FFT. That is, the results at the output of

twiddle factor multiplications are rounded to a certain number

+ In [27], it is called automatic array scaling, but according
to [33], it should be called a conditional scaling scheme.

B
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of bits.  The 1atter generates larger error but. requlres less
word length than the former.'

Since exact integer results are always 'obtained from the

multiplication operation of the BNS, our derived results based -

on the RNS can be easily adopted to the first type of fixed-
point FFT, Fof the secend type, our results can not beldsed
directly. However, the change associated with ‘the rounding
{effects is not too difficult, which is given in Appendix E.
5.4.2 The DIF Algorlthm

In section 3. 2, we conSLdered that Lhe DIT algorithm
is betEer than the DIF algorithm, because the overall worst
case uéper bound is larger for the DIF algorlthm 1,
however, the DIF algorithmis to be used, can our error analysis
also be applied to it? The answer is yes, although some
modifications are required,

From Figure 2.3, it can be seen that the basic structures
for the DIT and DIF algo?ithms are different., Thus, in order
to apply our error results to the DIF algorithm, the structure
of the DIF algorithm must be changed such that it will be
similar to the DIT algorithm. This can be done if the twiddle
‘factor.multiplications in the DIF basic calculation are treated
as pargiof the following stage. This is shown in Figure 5.9.
It is noted that the twiddle factors in the first stage of
the modified DIF algorithm are equal to one. Since the twiddle
factor multiplier are equally distributed over the &4 input
points, this algorithm was termedthe symmetriclélgorithm in[25].
Table 5.4 also shows the experimental upper bounds for 5
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. .' 112
different inputs used in section 3.2, .From Table 5.4, it can
be seen that 4 is also a reasonable upper bound on number

growth at each stage of the mgdified radix-4 DIF FFT.



CHAPTER 6
CONCLUSIONS

This thesis hdas considered some of the design problems
associated with a ROM implementation of a RNS based FFT
processor. The specificétion of a desired RMS error of the

frequency domain estimate cdmputed by the FFT processor has
been used as a criterion of optimality for the design proce-
dure, .

Based on the minimum number of cascaded muitiplications,
it was found that a radix-4 FFT structure was the most viable
choice. Since the RNS is an integer based number system, the
results from the operations of addition, subtraction and multi-
plication are exact. However, due to a limited number range
in the RNS, all numbers must be properly scaled to avoid
overflows. Theoretical and simulation studies of number growth
in the radix-4 FFT processor indicated that growth by a factor
of 4 at each stage can be used as the basis for scaling.

A general expression for ﬁredicting the relative RMS error
at the output of the FFT processor has been derived. By making
a number of simplifying assumptions, it has been possible to
develop a number of expressions that can be used directly in
the practical design of the FFT processor described in the
thesis. The design procedure allows one to specify éhe‘rela—
tive RMS output error, (XI, and then determine the appropriate
values of the number system range, M, the number of A/D quan-

tization bits, B, the scale factor, K, and the integer

113
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cénversion'factor, P. Since the scaling scheme must be speci-
fied in the design procedure, it was found that the scaling.
scheme that provides two-stages before the first scaling
operation'and then scaling after each following stage, was
the best scheme, as far as the values of M, K and B were
concerned. ’

The use of RNS, constrains the scale factora K, to be
a prbduct of somelof the moduli used in the éystem rather
than the exact value given by the derived functional relation-
ships betwéen M, K and txl. Since the values of the A/D quan-
tizationbits, B,'and the integer conversion factor, P, are
normally functions of K; They will be affected by changing
the derived value of K to the closest suitable value. However,
by letting the integer conversion factor at the second stage,
Py, be a variable, a modified scheme that eliminates the joint
dependency of B and P, on K has been developed.

It is known that the simplest and cheapest realization of
a FFT processor is a sequential realization. For this type of
realization, only one computation unit is required, hence it
is best to have similar computations in each stage. Obviously,
the best candidate for this realization is the scaiing scheme
that requires one scaling operation at the output of each’ stage.
Unfortunately, this scheme needs a very large number bf A/D
converter quantization bits because of the lack of twiddlé
factors in the first ;tage. This problem can be resolved by

introducing some dummy constant integers to serve as twiddle

factors. This concept can also be applied to the case of
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storing windowing coéfficients In spectrum analyzer ap?lications.
The theoretical results derlved for various scaling |

schemes were verified for various types of input signals

using 31mulatlon.techn1ques{ Although the analysis developed

in this thesis was based on the aSsumption that the input
sequence was a set of uhiformly distributed pseudo-random

numbers, it has been shown that the theoretical expressions [ .

associated with some of the adjusting factors can still predic£
the relative RMS output error for other typeslof input signals

accurately,

The design expressions derived in this thesis are related .
to a radix-4 DIT FFT using the RNS, however these relationships
can be extended directly to the modified radix-4 DIF FFT case.
In addition, the design expressions are also applicable to any
integer based arithmetic system including a binary fixed-point

representation.
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APPENDIX A

‘NUMBéR_GROWTH AT EACH STAGE OF A RADIX-4 DIF FFT

-

A.1 Mean-Square Bound of A Radix-r D$F FFT
In this section, we will show that the mean-square
value at the output of each stage will increase by r for a

radix-4 DIF algorithm.

_ The basic form of the r-point transform with DIF is

given by
-1 | k '
xger () = (5w () W (y©) A
n=0

where {xi(n)} denote the number at the input of the i-th
k

stage, and (WNt) are the appropriate twiddle factors.

By letting
r-1
y (0 = § xy(n) W (A.2)
n=0

in equation (A.l), one obtains
£ k ,
xi+l(k) = yi(k)(WN ) | (A.3)

Taking the squared value of both sides in equation (A.3),

one obtains

K 2
x4 (0|2 = |3 00| % |<th> I

117
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or

|xi+1'(k>|2=|§i<k$|2ﬂ I O

2
-k .
where I(WNt) | = 1. Since equation (A.2) represents

an r-point DFT, then

r-1

=l 2 2 < ,
il EACI KD Il (N (A.5) |
k=0 n=0 1

Substituting equation (A.4) into equation (A.5), one has

= (k) 2L 8 ) (A.6)
DI TSI R W LG '
k=0 n=0
Equation (A.6) can be generalized as
J -
1 Q= x ---(lc-)l2 = £ 5 X (n)‘2 (A.7)
~ ) |*i 2 N :
k=0 n=0 -

This complete the proof.

A.2 Theoretical Worst Case Upper Bound on Number Growth
7

for A Radix-4 DIF FFT

Since equation (A.é) can be recognized as a 4-point
DFT with x;(n) and yi(k) as the input and output, respectively,

then one should have

Max[

Re(yi(k))l , IIm(yi(k))I} £y Max[

Re(xi(n))l, IIm(xi(n))l]
(A.8)

y

i
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| Substituting (WNt)k = cos27rkt -j éingzkkg_into equatign

N
(A.3), one obtains |

Y

Xi41(K) = {Re(.yi(k)) c:osg'{;l—IEE + Im(y, (k)) si 27tl;kt].

N
(4.9)

+ 3 {Im(yi(k))' cos?TTKE _ Re(y. (k) sirﬁﬂ_t}, (
Equation (A.9) can be written as

Max{IRe(xi+l(k))|, lIm(xi+l(k))}é ./”

bIax{lRe(yiék))I, IIm(yi(k))l}'{ cosg£§L + |sm2—”§5”

Combining (A.10) and (A.8), one obtains

ool ol e

Ma‘x{IRe(xi(n))l s |Im(xi(n))|} (A.11)

i
—tn



APPENDIX B

_ %N ERROR ANALYSIS OF
2 A SEQUENTIALLY KEALIZED RADIX-4 DIT FFT

In this appendix, the optimum functional relationships
between some parameters‘assoéiated with the storing of some’
constant integers in the first stage of the FFT will be
derived. The scaling scheme k1=l, k=1 is conéidered to be
used. -

Since the stored integers in the first stage can be
treated as twiddle factors, we will consider that the multi-
plication by a constant is part of the required operations
in the first stage, Thus, the constant iﬁteger, G, can also

be denoted as Py-

Similar to the scale factor consideration discussed in

section 4.4.2, we may let G=pl#P, and Pp=P3=...p, ~P. However,
by doing so, we found that an extreme condition, G=p;=1, will

minimize the error, ‘*1- Thus we obtained the same relation-

ships between M, P and Cil as given in Table 4.1. Therefore
in the following we will comsider that all p;'s are equal
to a constant, including the value of G.

From equations (4.40) and (4.41),one can easily obtain
the relative output mean square error due to A/D converter

quantization, o(Qz, as’

2
2 1 4P -
* = ) a ( M.)z (B.1)

120
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Since the multiplication'by a constant integer, piof G, does

o,
not introduce any error, then

2 1 <& 1 mel |
A" =g —3 =% (B.2)
j=» P; - BF ’

The error due to scaling operations, <X52, will have the same’
form as that in equation (4.32) but bl=G=P%l. Using the

simplifing assumptions made in section 4.3, omne has

| 2
o 2= 4 (4@ -1y —2(4;) (B.3)

Adding equatioms (B.l), (B.2) and (B.3) togetﬁer, one obtains

2 2 2 2
otl =dQ + o7+ T
BT SRR = S SRS S '—-Z-(‘*P)z (B.4)
M° 8P* 3 M

The optimal value of P is obtained by minimizing the error,

Xy which gives

~ 1
P = 0.0979 M% (B.5)

\\\\ for m=5. Also, the minimum error is

1
o, = 10.22 M z (B.6)
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~ . APPENDIX C | ®
- SIMULATION DETAILS

] ) . ' - {,
The predicted RMS relative output error- assoclated with

the radix-4 DIT FFT-described in this thesis, has been

two programs are .given here. The first program was writtén

~

in double precision floating point for arithmetic operations

and alsofor the representations of twiddle factors. The

results from this program‘were considered to be true restlts:
The second program was also written in double preﬁision
floating point to simulate integer arithmetic, but .the
residue scaling scheme was iﬁcorporatEd ana'qugytization

errors were simulated.
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a8

ekt kP RCIGL #bhb bbbk
THIS FROGRAM COMFUTES, THE RADIA-3 1T FFT USING

--'UUELE FRECIZION FLOATING-FOINT ARITHMETIC

EEGG

Tl

Doy
E_-I-

At

10

XYalq
S

’UEEC&YFINE FERUIRED: ZCRAME. FFT4D
DOUBLE PRECISTION ALiGZds Bolazds

A 1= THE REAL FART OF THE INPUT

E IS THE IMAGINARY FART OF THE 1HFUT
INTEGEF MNAME /&L, TACLO240,. 1ECLE245
DIMENSION T{LlEzdE . Dilasd

TOPIRIC SBELS A E

EQUIWALENCE ©1f. Che TIB. DD
OBRTHIN INPUT DATH FROM A FROPER r;‘h
CBWRITEX A8, SIROSY
FORMATY - ©. T~ INFUT DETA FILE NEHE = <. 20
PERD Y L. SHELY CHAMEC T, IT=1, &5
FORMAT SR .
ACCERT "DATHA: INTEGER?ZS. SHGL FRECIZION(42=". IEYL
ACCERT "# OF RECORLS (1824 FOINTS: = " NREG
OEEM 1. NEME, LEN=1824+1EYL, REC=NREC
STORE OUTELT DATH IN THE FILE. TRUE
ACCERT "§ OF RECORDS TG BE PROCESZED = . HREU
OFEM =, "DFL TRUE". ATT="C", LEN=J5E, REC=NREL
BCCERT "FIRFST RECORL TO BE FROCESZED = ", 1F1IRAT
OO SEG 1L00F=1, NRED. 2 : '
METTEYA@, 1060 1LO0F
FORMAT ¢ Lk, "FECTED = . 14,7
TLOOPL=1LO0F+1F 1FST- 1
IFCIEYL BG40 G0 o Zod
REACC L, REC=1LO0FLY C1fCIo. 1=1, L0z4n
FEAD L, FEC=ILOOFL+1 ¢IECT . 1=1. LAZ4:
DO 266 1=1. L2
fvTn=1ATT"
Brln=IECT "
S0 TO S
READC L, REC=1LO0FL <001 a, 1=1, LBzaD
FEADC L, BEC=1LO0PL+L 0 B 1o =1, 1EEE
DO o9BE 1=1. 1024 :
T T R
1= T .
CRALLACRAME S0
{ FFT4DC =, 15 .
MPITE«Z, REC=ILOOF S 00 I0=p0 T, 1=1, 1e290

l,zﬂFITEf- REC=ILOOR+L0 (D(I}=E(1391=i:1@é4}

(451G

CONT INUE ' )
CLOSE 1 )
CLO=E =2

STOF

ERD

~\
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SUBRCGUTINE SCRAMBINS) . : T
THIS SUBROUTINE FERFORMS THE REGUIRED SCRAMEBLING . s
FROCEDURE FOR RADIN-4 DIT OF DIF ALGORITHM

NS 15 THE MUMEER OF STAGES :

DOUBLE PRECISION FAdLGZ40, Boi@zgn, R ]
A 15 THE REAL FART OF THE INFUT ;
B IS THE IMAGINARY FART OF THE INFUT F
COMMON Bl M E . : 3
INTEGER LT3 :

ECUTYWALENCE (L7 Ly, (LS. LOZhn, {LS. LaZo o, (L. L{dan, :
ALLE LS00 LE LA, (L1 LT o0 ‘ j
DG 76 J=1.7 : ) i
L + T..I__4 " \
IFCI-NEY 71, 7o 73 ;
Lo Ta=dab NE+1—T10 . . , ;
CONT TNUE : |

TH=1 :
DO osE JI=1.L%Z0 Lt

LO SR J3=J2, L3, LS

DO &H T4=17. L4, LT ,

DO SR T5=74, L5 L

D& Te=I1% L&, LS

DO &8 JR=J6.L7V. L&

IFCJN . GE. IR GO TO &2

R=f{ JHD

A TR =F TR

Fiv TR =R

R=E TN

B JH =B IR

B{JRY=F

THL=TH+LE

TRA= TR+

DO oAf T=y. 0

IFCTRL L LE. JHL» G0 10 &3

Re=F1 THL

JFICTMHL =R TR

A TRL =R

R=EB 7 .INL

B THL =B TR

B TR =F

JHL=JH1+LE .
JR1=JR1+1 N
CONT TNUE /
TH=TH+1

CONT TNUE

RETLIRN

END:
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SUBROUTINE FFT4DCNS, 15N

THIS SUBRAUTINE FERFORMZ THE RALIXK-4 DIT FFT MITH
SCRAMELED . INFUT AND- ORGERED GUTFUIT

¥ IS5 THE REAL PFART OF THE IHPUT

¥ I5 THE IMAGINARY FART OF THE IRFUT

NS 15 THE NWUMBER OF STAGES N = <P

IZHN=1 FOR FFT; I5N=-1 FOR INWERZE FFT
DOUBRLE PRECISION T1. 72, T3 T4. TS T TV, TE
DOUELE FPRECISION HMJO18Z40, Yolbzdd | _
DOUBLE FPRECIZION ARG SCL. FIZ. OL. 02, L3 2k 2.
COMMON ABLs wo Y - '
H=:dsuM=

FIZ2=15N+3 DE+DATANCL, Dl

DO =6 L=1.NE
LEd=d# L ~-10
LE=4+_E1
SCL=FIZALE

DO 2E J=1, LE1L

[Fy]
1.)

[y

T ARG=SCL# T4 0

Co=DCOs ARG . )
SI=DSIMNCHRGD

SE=D ool \

Co=1. —-52+54

SE=CL52

S3=2 (&

CE=Clwl ST~1

SRSl TTHL D

DD 2 I=J0MLE

I1=1+LE1
Z=T1+LEdl
1Z=I2+LEL
(R EETS ERFISREES EREE-S)
TE=PIT LR L= TS
LEERTS SRS R SRRt
IEETS R TP §=:
TS=HCTTawIE
TE=Y{ 130w CE-N
TE=WOT TS
Trae =T
TI=TL+TS
T1=T1-TS
KLID=TE+TS
K{I1Zn=TE-T3
TE=Y{134+T4
Ta= 1T
TI=TZ+Te
TE=T2-TE
WL I=TEHTS
W TZI=TE-TE )
IFCISH  EQ. -1 GO TO 1@
WL TLS=TT+TE
YT =Ta-T1
YCIZNSTA+TL
RLIZ=TF-TS
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GO TO 28
KCILN=TP-TS

WCIAd=T4+T1

PCIZD=T4-T1

KEIZI=TV+TE

COMT INUE : : R
CONT ITNUE '

RETURN

END

dhkaokk PROG S d kbbb

THIS PROGRAM SIMULATES THE RESIDUE ARITHMETIC
(OR INTEGER ARITHMETIC)» RADIX-4 DIT ALGORITHM
RSS0QCIATEDR MITH THE SCRLIMG ZCHEME. AND ALS0
COMFUTES THE RELATIWYE QUTFUT RMS ERROR. ALFHAL
SUBRCOUTINE REGQUIRELDL: SCRAME. INTFFT. HALFHAL
BOUBLE FRECISION AC19290. BllEzd i M Ko M
DOUELE FRECISION FMAx, FRCL, THETH. FLS3

INTEGEER TAC1@Z40, IBC10240, NAME &, I Ex, @
DIMEMNSION C18245, DI1AZE0 )

CoMMOoON SBiS AL B

COMMONSBZS PR M2 KT

EQUINVAHLENCE <IA.CH. CIE, Db

GETRIN INFUT DATA FROM A FROFPER FILE
WRITE {16, 2E06

FORMATCS <2 3. “INPUT DATA FILE NAME = .23

- RERD11, 26612 CNAMECIN, I=1. &0

1060

—_

=
b,
[

1~

FORMAT &R

ACCERT "DATA: INTEGER{Z»., SHGL FERECIS1I0HCS »=", TEYL
ARCCEFT "# OF RECORDS " MNREELD

OFPEN 1. HAME. LEN=16Z4:+I1BYL. REC=NREC

STORE QUTPUT DATA IMN THE FILE:EXFT -
ARCCEFT "“# OF RECORDS TGO BE FROCESSED =", HREC
GPEM 2. "DFL:EXPT". ATT="0C". LEN=4@3¢c, REC=NFEC
OFEM Z. "DFL: TRUE", LEN=482&, REC=NFEC

ACCEFT "FIRST RECORD TO BE FROCESZEL = ". IFIRST
IBTAIN DESIRED FARAMETERS FROM FILE :DFARA

EN 4, "DFL:DFARA"

M RS THE NUMBER RANGE OF THE FHS

K 1% THE SCALE' FRCTOR

ADE TE E A CONVERTER QUANTIZSATION BITS o
Fuls ARE INTEGEFR CONVERSION EHRCTORS .

¢ IS THE MUMEER OF SCALING COFERATICONS REQUIRED
TO PROWIDE SCALED QUTFUT

KI<CI» IS THE NUMEBER OF STAGES BETHWEEN (I1-13-TH
AMND 1-TH SCALIMNG COFERATICONS
READCA M. KL ADE. (PCIs. 1=, So, G (KICT o, I=1. &)
IFCM LT, &@3.G0 TO 2935

MRITE L2, 6656 M, K. A (PCIN, I=1. 50

WRITECL2, TFvro (KI(I 1—1 0- '

)
CE.
'l

ease FORMAT(ZH, "M=".El4. 7 <E14. 7.7 B=7,F6. 2.

F14P29F33P4JP5=“nquha F?.utﬁ
'l:

FORMAT (Z¥, KL, K2, ... KE=". Ae 1200
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M2 IS5 THE MAXIMUM MAGNITUDE OF THE SIGHED RNS

Mz=HM. 2. D&

FhMf=6. D&

DO s686 ILOOP=1.HREC. 2
HRITECLS, 106> ILQCF

A FORMATCAN, “RECORD = =, I4.0

ILOOPL=ILO0F+IFIRST-1

IFCIBYY (ECL 4> GO TO Z@E '
READ (L, REC=ILOQAFLY CIACIL, I=1, 160240
RERAD{L, REC=ILOOFP1+1D {IBCIS, I=1.d1@240
DO 26 I=1. 1024

ALTH=IRCID

B{IXx=IEB{TD

GO TO 4a% :

READ L, REC=ILOOFLY <C{I%, IT=1. 160240
READ (L, REC=ILOCFL+LY D00, I=1, 168240
DO a@E I=1. 1024

AT =0T

ECIL=0010

DO 446 I=1, 1624

IFCFMAY LT, DABRSCACINNY FMAK=DABSCRCTI N2
IFCFMAE LT, DABS(RII M) FMAX=DABSCBCL 22

FROL=2, Dfew ADE—-L1, DG FMAS
DO 415 I=1, 1024 -
BT =R T FACL+DE TGN 6, SOE, F 1o

IFCDABSCORCT Dy LT ZEFET. Ll HOI=10INTIRCINS

BEC1a=Ed 0 «FACLHDESIGN @, SDE, BC10

IFCDARBSCE Iy LT ZEVET. Der BCI=IDINTBILID

CHLL SCRAMECSD
CHLL IMWTEFTCS. L0

THE TASk s Qe L R L B 2 Dol O e S F ACL D
MEITE(Z. RECSILOOR: (OO Is=A:1 3 +THETH, 1=1. 1@Z4)
WRITEZ, REC=ILOOF+L1Y (DOI=BCl v THETA, 1=1. 1884

CALL ALFHALCHREDD
GO T 1Epa

CLOSE
CLUOSE
CLOSE
CLOSE
STOF
EMD

LoLE L e

SUBROUTINE IHTFRTOMES. 12H

THIS SLEROUTINE SZIMULATES JTHE 20lALING
MT=HUMEER OF 2THGEZ

15M=1 FOF FFT. 15M=-i FUOR ITWERZE FT
¥ IS THE FERL FART OF THE I1HEWT

v 15 THE IMAGIHARY FART® OF THe 1HE

HLHEME:
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DOUBLE PRECISTON #1240, fCle2ds, FoSis Ko ha ‘ f
INTEGER KIGSh, Pl P PE GL G2, O . -
LOUBLE FRECTSION Ti, T2 T3 T4 TS TE, TV T&
DOVBLE FRECISION ARG, SCL. FIZ. CL. G2 C3. 51 3
COMMON SEL M7 1
COMMONABZS Fo bl M2 KD .
H=4aNS v : - - - ]
Plz=g DESDATHNC L Do ' - - s
KE=1 : ' ‘ _ "

|_l'
fv
[F)]
1.}

LL=t i
1OVER=0 : . ]
IFCISN . EQ. 1D G0 TO 106 ]

DO 6 I=1.N
R ST O
106 DO 26a5 L=t N5

LEA =g L~4 0

LE=S+lEl

PRCTINC = PR i 23

Do Eah J=1.LEL

IFCT CEQ L G0 TO Zod

0 Y KT e 3 .

EA=DEINARGD H
i
\
|
FL lL+F L'+u TGRS DL ;
El=StwF L DS TGN e Do, S0 :
Fo=Cimfo L, RS TGOS Do, LoD i

> wfrc R DD TG B T e
7 TP R TEN R Sl s
OF=24FCL A0S TIDNY 0 SDon =5 o
oEe D I I=3.M.LeE :

It=1+LEL E
IZ=11+LEL ;

1= 2+LEL )

TECL  EGL b ARD P10 L L G Toe ki :

IFY3 G 40 GO 70 2L

TA= TP+ ¢ T +0L

To=wv TL R L—i0 Tl kel '

Tosw TonaR ey 12 w0l

Ty 12 R -t [k

=i T2 kBT T T

TE="r s 1T i T3 G 3

GOOTO 226 - ;
TAE TA=NC T LD

To=N T P L)

TS0 I L .

Td=v 1T e oL -

TE=M TZ I kE L

Ta=  IZ R L

U U

et is s e
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S e S ' ,
LD = AN L SN S ' :

Gf.-.i TO 240

£TE TL=NA T4 - -
Ta=vells : -
CTE=WC s
Ta=ye1zn ;
TE=R 1T
TE=y 1T

a0 TE .

T3=T
T1=T1-T% .
METIETERTT

Te=TZ-T&
WY =TEwTT
I B LI .
T =TTHTA
YeTl=Ta-T1
WO TT AT TR
VI =TY+TL
=Of COMNTTHIE
TEST THE PRI R L UL
TR B U P S R I B S TV ON S8 I IO ST PRt 3 SX W
Db e T=1. L
TRODEES Sy Ty ST, M LUWER= LUVER+L
TEVDAEESOY Toa  GT. M TUWER=1OWER+L
A0t COHT TR
TECL B0 HS s sl 0 T
IFCLL L L T I T I I IR TR
(T S|
DD S I=1.H
ST mt TR TR TG G S T :
TE/DRESI T LT DA Ll S T s TN T L
T T R RS Y F N Bt TR PR SO
SEMOTFEC AT T LT Saiey Dt ol e o
L=y
GOOOTO B
sEE L=+
AGH  COHT THUE
' TECTTMN B0 10 Gl he eElk
[ w=6 I=1. M
RIS ST I
asG COMNTINUE
aan IFCIOVER  HE. @) WRITESLE, 1iiiis 1OWER

=t
A11 FORMATCLH, MARHING  CWERFLOM: OOCUR 7. 1%, © 0 TIMES TS

FETUFN
EHD -
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SUBRQUTINE ALFHALINREC)
' THIS SUERGUTINE COMFUTES THE RMS ERROR
DIMENSION AC18z4d5, B2
DOUBLE FRECISION El. EC26D>. SUMCZE:
DO S5 ILOOR=1, NREC :
READCS REC=ILOOP Y JHIJ2. J=1, 10245 .
READCE, REC=ILQOPY (BCID, J=1,
ECILOOP =6 DO
SUMCILOOR =6 DA
O 48 I=1, 1624
EXILOOP=CACI>—BCT 2 24a2+E ILAOF D
SUMCILOOP =T a2+ SUMTLOOR
4 CONTINUE
CEA=DIORTCECILOOR Y SSUMILOOF 3
MREITELLZ, 56 ILOOF, EL
S8 FORMATC 4R, "RECORD = <, 14, © RMSCERROR? SRMS
ACRESULT Y= 7, Dld, T2
S92 CONTINHUE
El=0. D
DO gl J=1, NREC. = . .
Ed=DRORTIECI+HLIHECIF 3 CSUMCI D +5UMIT+4 0 D 3 +EL
B8 CONTINUE
El=Els+2 DESFLOATINRECH >
MRITECLE. V@AY EL
Ve FOREMAT (4, "AVERAGE = 7. D14, T
RETUREN - .
ENL

-

[
],...'..
@
oy
L



APPENDIX D-
AN ERROR ANALYSIS OF A RADIX-4 DIT FFT WITH REAL INPUT

In this appendix, we will coﬁsiaer the case that only
the real parts of the input ?ontain data, while the imaginary
parts are filled up with zeros. For this case, the expre-
ssion derived in equation (4.32) is no. longer valid.

Since the imaginary parts of the input contain all

zeros, there will be 'mo A/D quantization error for them

Therefore, the error present at the input to the first stage
2 1

IE%N(n)I 2 g =Tz - (D.1)

should be halved, i.e.

In the first stage of a radix-4 DIT FFT, no multiplications
are required, and hence the error at the output of the
first stage is governed by the 4-point DFT. For the case
of complex input, equation (4.15) indicated that the output
mean-sguare error is 4 times the input error, because there
are 4 input points associated with each output point for
the 4-point DFT. When the imaginary parts of the input are
equal to zetro, there are, in the average sense, only 2
input points associated with each output point. Thus one

should have

1 2 el 2 1 2 1
IEOUT(“)I =2 |EDFT(“)| = 2'IEIN(T‘)I =5 -

(D.2)
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When we compare equation (D.2) to equation (4.15), we can
see’that the overall RMS error due to A/D Quantization is
Am-l. —%; where m i§‘the total number of stages. Further-.
more, the errors due to integer conversion and scaling
rounding will be the same as thpse derived in equation (4.31).

Let JTRZ denote the mean square value of the real
input sequence, then

0% = 0% = 3 2%P | (D.3)

where (72 was de.iﬁed in equation (4.33). Using similar

technique described in section 4.3, one obtains

' %k, -2 2(k,-1)
(sz)R A T (D.4)
(g = 25 : (D.5)-
8p° .
and
- 2tk -2 2k
(o(S J)p = 2¢At4 . "M P (D.6)

where A was defined in equation (4.45), and the subscriﬁt
R refers the term to the real input FFT, which will also
be used throughout this appendix. ' )
Combining equations (D.4), (D.5) and (D.6), onme obtains

the optimum functional relationsﬁips between M, (P)R, (cxl)R

as follows,

AT
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1
(A)p = 12.11 M Z (D.7)
and
1
(P)g = 0.0825 M2 ' (D.8)
for k,=2, k=1 and N=1024.

1
If, however, we choose the parameters for a real input

FFT according to the functional relationships givén in Table
4.1, instead of using equations (D.7) and (D.8), then the
predicted error using Table 4.1 and also an adjusting factor
is still not correct. In the following, we will derive
another adjusting factor, DR’ when the inéut contalins only
the real parts.

Comparing equations (D.4), (D.5) and (D.6) to equations
(4,42), (4.43) and (4.44), one obtains

2 1
(dQ )R = TdQ (D.9)

|
* R
Hl\)

(ol 5)g = (D.10)

and

I
[
153

[

(g s - (D.11)
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From the last column of Table 4.1, it is seen that

d82'>> sz and 2 . A 2 (D'.--lZ)' :

for k=2, k=1. Therefore ome should have the following

relationships,

(A P)g = 207> o(czl2 >> (g )
or

( dsz)R» ( oth)R (D.13)
and

( dIZ)R = dsz (D.14)

Now the adjusting factor, Dp, can be calculated by

(o )t osDy [ os™r2 s’
o+ s 2 dg

It should be noted that the adjusting factor, 1.22 is correct

only when (YRZ = I%— 22B. Otherwise, it is given by
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g e AT TR ST T W TR LS
R RE K (el It e R s

_ number may be rounded to 8 bits. Since the word length

APPENDIX E

AN ERROR ANALYSIS OF A ROUNDING EFFECT ON
THE OUTPUT OF THE TWIDDLE FACTOR MULTIPLICATIONS

Opne common method of the fixed-point FFT implemenfations

.is to round the results at the output of twiddle factor

multiplications to a smaller number of bits. For example,

the result of an 8-bits number multiplied by another 8-bit

of the rounded number drops very rapidly, the scaling ope-
ration, which is placed between stégesLto prevent overflow,
becomes almost unnessary. In fact, tﬂg-worst case bit growth
frﬁm the rounded output to the output of the 4-point DFT

in the same stagg is only 2 bits. Thus if 2 extra bits are
provided to allow numbers to grow up between multiplications,
the scaling operation is not required. This is éhe case that
will be considered in the following.

Since thé errors due to rounding and scaling operations
are all round-off errors, we can aléo consider that the
rounding operation after multiplication is a kind 6f scaling
operation. ‘Therefore there is a scaling operation at each
stage except the first stage, and there are total m-1 scaling
operations. This scaling scheme is similar to the scheme,

kl=l’ k=1 as described in Chapter &4.

The errors due to A/D quantization and integer conver-

_ sion are independent of scaling schemes. Hence, from

equation (&.32), one has

. ' g + 135
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AR SRR T L e

»

A P e v et .
- B R o T s ST BTl n v e e e ar e A

o 136 SR
e N
%4 = gp? | e - (E-1) -
S 1
and
9 1 Y _

6 L]
" It is noted we assume p2=p3=...=pméP, and pl=l. L
From equation (4.29), it is seen that the mean square

error due to the. first scaling operation is

K2 A
'—TE__—__"

—rT'p

Slnce the roundlng operation 1is “executed before computing

"the 4-point DFT, its-mean square error will enlarge by &
at the output of the 4-point DFT. Therefore the relative

mean square rounding error will be in the form

Setant
2 1
dS ) am 62 (E:EB)

Adding equations (E.1), (E.2) and (E.3), one obtains the

~overall relative mean square error as ¢
m-1.
- K
> et
2 1 m-1 , i=1l ' :
oA % =ty + x4 : (E.4)
R Y- 2 P o
N ) VA .“
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We will again assume that \ - o e
2B . o
2_ 2° ‘ ‘
o = = | | ) (E.5)
and K = 4P , (E.6)

Furthermore, the relationship between B and M is given by
Lk

B.osp =M (E.7)

- + -

Using equations (E.S), (E.6) and (E.?)A one can rewrite

equation (E.4) as

2 o2
A2 16P%  mel o, mel gy 16D
1 v ey R
L
2 . B
=_%')%_+8-(4‘“1 1)—%&— (E.8)

-

such that (Xlzis a function of M and P. When m=5, the optimum

results are

1

P = 0.0625 M? E.9)
I's ) 1 \ o

o) = 15.98 M 2 ) S (E.10)

Equations (E.9) and (E.10) can be used.to choose optimum
Parameters for the considered fixed-point FET implementation.

However the parameters M a<d_K should be caref@illy interpreted,



"to be 2553604, Becéuse 22 Qiizuére required to represent
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which will be given through the following example.. First we
will aﬁ%ume that the tolerable RMS error is equal to 0.0l,i.e.,

<ﬁi=0.01. Then from equation (E;lO) the value of M is found

22

2553604, we will choose M to be2””. Then using equations

(E.9) and (E.6), it is found that

and . | C ’ v//
p =2/,

Finally, the required A/D quantization bit can be determined
using equation (E.7)}, which gives

v

In this fixed-point implementation, the number of bits
required to'}gpresent the number range, M, is, in fact, the.
number of full bit at the output of the multiplication. Since
the scale factor is represented by 9 bits, the results at

the output of twiddle factor multiplications are rounded to

13 (=22-9) bits. ,
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