University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2002

A framework for completely separating the presentation and logic
of Web-based applications.

Shuling. Nie
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Nie, Shuling., "A framework for completely separating the presentation and logic of Web-based
applications." (2002). Electronic Theses and Dissertations. 618.
https://scholar.uwindsor.ca/etd/618

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/618?utm_source=scholar.uwindsor.ca%2Fetd%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.9., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

A Framework for Completely Separating
the Presentation and Logic of

Web-based Applications

By
Shuling Nie

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science in Partial
Fulfillment of the Requirements for the Degree
of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2002
© 2002 Shuling Nie

i+l

oNfatloml Library gymue nal
isitions and sitions et
‘B\cuqmc Services nggltsno bi':Ii%graphiques
Ottawa O K1A ONG Otwa ON KT OFiA
Canada Canada
Your e Votre rélieence
Our Sle Notre rdidrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-67633-1

Canadi

ABSTRACT

The use of the Internet and the World Wide Web (WWW) has grown
at a phenomenal rate. The Web has become the solution for information
exchange, user interaction and business processing. However, building
dynamic, interactive and maintainable Web-based applications is not an easy
task. Technologies currently used for Web presentation generation do not
separate the presentation and logic. This requires people of two different
skill sets to be involved at the same time, therefore applications are difficult
to develop and maintain. In recent years, several frameworks have been
developed to remedy the problem. But they all have some limitations and
still cannot completely separate the application presentation from its logic.

The current study attempts to provide an approach of completely
separating the presentation and logic of Web-based applications by
extending the traditional Model-View-Controller architecture. The research
includes two parts. The first part provides a template language for
representing Web pages containing dynamic contents without including
application logic. The second part provides a framework that integrates the

dynamically generated information with the predefined Web templates to
generate Web page on the fly.

Key words:
Model-View-Controller, Abstract Model, Abstract Model View, Concrete

Model, Presentation, Logic, HTML, XML, Java Servlet, Web-based
application, web presentation generation

ACKNOWLEDGEMENTS

I am grateful to my supervisor Dr. Indra Tjandra for giving me an
opportunity to work in the exciting field of Web-based application. He is
always a source of inspiration to me, and provides tremendous support,
assistance and encouragement throughout my studies at the University of
Windsor.

I would like to thank the members of my committee, Dr. Purna
Kaloni, Dr. Xiaojun Chen, and Dr. Imran Ahmad for their valuable
suggestions, supports, comments, and for reading and evaluating my thesis.

I would like to acknowledge The Natural Sciences and Engineering
Research Council and The Ministry of Education of Ontario for providing
financial support during my graduate study. I would also like to thank the
administrative staff from our graduate study and our graduate secretary
Mary Mardegan for their kindly help and support.

I extend my gratitude to my family. I would like to thank my husband,
Qin Liu for his constant support, care and love. I would like to thank my
parents, who have always helped me, encouraged me throughout my studies.
[would also like to thank my lovely daughter, Angela Liu, who has been the
inspiration and happiness for me.

Finally, I would like to take this opportunity to thank all my friends

for their helps, encouragement, and company throughout my studies at the
University of Windsor.

TABLE OF CONTENTS

ABSTRACTc.ccuieieietecresseseccsioscnsesscssesssssssssssssesssssssssesasse il

ACKNOWLEDGEMENTS...cccccoctetetccnserescccscsesssesescns cecesesesens iV

LIST OF FIGURES.......ccctetetetererecesesesescscsnsesessssssssesssssssssssosses vii

LIST OF TABLES......cccccecttttatectcscacncecesesesesessesesssasesssesssssese weX
CHAPTER

1. Introduction..........cccccoceencececececccencene 00000000000000000000000000000 0000000 1

1.1 Motivations and Objectives.............ccoeveeiinieninennrnenineeeens 1

1.2 Organization of the Thesis...........cccoeeriiiniiiiiiiiiieenanne 3

2. Current Web Presentation Technologies........ccccceceererucniocceeencee S

2.1 World Wide Web Concept..........coooenininiiiiiiiiiiiniinenenane. 5

2.1.1 StaticWeb Page.......ccooniniiiiii e 6

2.1.2 Dynamically Generated Web Page........................... 7

2.2 The Hyper Text Markup Language (HTML)........................ 8

2.3 The Common Gateway Interface (CGI)...........cccecevveenenn.... 10

2.4 JavaServiet.......oooiiiiiii e 12

2.5 Problem with Traditional Serviet, CGI and CGI Like

Technologies.........coooiiiiiiiii s 13

2.6 Templating Frameworks..............ccooiiiiiiiniiiiniiiiiceenen. 15

2.6.1 Tag Based Templating Frameworks....................... 15

2.6.2 Script Based Templating Frameworks................... 16

2.7 The need for separating presentation from logic.................. 18

3. The Model-View-Controller Methodology.......cccccceeeneeciacacencecess 19
3.1 The MVC Concepts......cceueiineiieiiiiiiiiiieieieeneenaeeens 19

3.2 The Extended MVC Architectureccovvviinennnnennen. 20

3.2.1 Concrete Model and Abstract Model 21

3.2.2 Abstract Model View.........ccooiiiiiiniiiiiiiinieeinnes 23

3.2.3 Differences Between EMVC and MVC 24

3.24 TheController.........cccoimiiiiiiiiiiiiiiiiiiieeeeeene 24

4. The Development of AMV Template.....cccccevencerescenceseccesceseccens 26
4.1 HTML for Pure Presentation..............cccocvevevneeneneerecnennn. 26

42 XML ComplianCe.........cuvveiieineeneneenenninrnereenereeannnenan 28

4.3 Introduction of New Tags.......cccoevviiieininninieneenineancnennnn 29

4.3.1 Structure Tags.........ccooeiniiimeieenennenineeneenennrnenenss 30

4.3.2 Declaration Tags.........ccccoeviieiiiineeiiernrneenneennnn 31

4.3.3 Information Tags.........ccooeininiiiiiiniieiiiiennenenennnn. 32

434 LogicTags.....cccoouinimiiiiiiniieiiieieeeeeeeeeea 34

44 A Sample AMV Template...........ccoeenieiiiiiiiiiiiiiiiinn 35

S. The Framework.......cccccceecaceterecncnceccnces R, | .
5.1 The Components and Their Collaboration...........c...c.......... 38

5.2 The abstractController.............ccooeuiiiiiiiinieiicieneeenees 44

5.3 TheCommand patterncceeeueeniieeinirncrnecancccnncens 48

5.4 The Modelupdator............cccouiiiiiiiiiiiireceiereed 49

5.5 ThePageHandler.............ccoeoinnmiiimiiiiiiieeeeeeeenaens 50

5.6 The PageHandlerSkeletonGenerator...........cccoeevieeenenennnn. 54

5.7 The COMPOSET.....ccouiineieeeiieieeeeeieeaeienranerarsemesennenns 61

6. The Experiment............ cecsssscesasace crnssersaserurerisesesussersssssnsenas 68

6.1 Experiment Description.............cccoovuiiiiiniiiiiiiiiiiinnn 69

6.2 The Results of the Experiment............c.coceeieiiiiin.. 70
7. Contribution and Future Recommendation........ccccceccececcccccerecee 72
APPENDIX...cccccetccicceccscccccsccccceccccssssssssecsssssscsasccasssssssssss Y /-
REFERENCES......cccccceec.. cesese cocessscesscncns ceccceccsssseccnccscsessssssses 91
VITA AUCTORIS....cccccevreeecccccsscscssscccnccccsces cecescssssscccesassresssees 95

LIST OF FIGURES

Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 24
Fig. 2.5
Fig. 2.6
Fig. 3.1
Fig. 3.2
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10
Fig. 5.11
Fig. 5.12
Fig. 5.13
Fig. 5.14
Fig. 5.1§
Fig. 5.16

World Wide Web Concept.........coovveiiiiiiiiiiiinnnn... 6
Handle requests to static Web Pages.....................oooe 6
Handle Requests to Dynamically Generated Web Pages........ 7
Physical Structure of Java Servlet............c.coovvviiiiiiennt 12
The lifecycle of a Servlet..........ooevieiiiiiiiiiiiies 13
Code Segment of an External Program........................... 14
The traditional MVC architecture...............cooeveeenennnn. 20
The Extended MVC architecture............c..cccovevinnininnan. 20
The Components of the Framework.............................. 40
Collaboration of the Framework.........cc.ccocoeeiiiiiinnn.. 42
The Class diagram of abstractController......................... 47
The Command Pattern..............ooieiiiiiiiiiiiiiieeeeenens 48
The class diagram of abstractModelUpdator..................... 50
A graphic representation of an AMV template 51
Number Loops.ccoviiiiiiiiiiieieeieeeeeere s 52
Number Varmble inside Loop........cccoceieiiiiiiiiiiiinn 52
The class diagram of PageHandler................................ 53
The class diagram of PHSG...........cccooeveiiiiiiiiiiinnnnnen 55
The Nodes and Their Child of an AMV DOM Tree............ 62
Text and W3ChtmlElement as Child Node....................... 63
Varas Child Node..........coooiiiiiiiiiiiiciiiiiens 63
attribVaras Child Node............ccooeiiiiiniiiiiiiiiiiienaens 64
ifasChild Node.........cccoiiniiniiiiiiiiiriiciees 64
foreach as Child Node...........ccooeiiiiiiiiiiiiiiiiines 65

Fig. 5.17
Fig. 5.18
Fig. 6.1

myHtmlElement as Child Node............c..cocoiieeiiaaa.n.

Class diagram of Composer

J2EE ATCRItECHUTE.ooiiiiiieeieie e eeeeeeieeieneeeneens

LIST OF TABLES

Table 6.1 Degree of Presentation and Logic separation

.........................

CHAPTER 1 Introduction

During the past two decades, advances in computer technologies
combined with telecommunication technologies have led to the development
of the Internet and its most popular application, the World Wide Web
(WWW). The use of the Intemet and WWW has grown at a phenomenal
speed. While originally intended as a medium for distributing information in
a document-centric form, WWW has become much more than that. With the
introduction of dynamism, both on the client-side and the server-side, the
Web has emerged as a new platform for software applications serving a
variety of purposes. The multimedia capable, interactive, hardware and
software neutral, global reaching, cost effective, and around the clock
presence nature of the Web makes it the perfect solution for information

exchange, user interaction and business processing.

1.1 Motivation and Objectives

It has become a trend that enterprises use Web to accomplish their
day-to-day businesses. However, building a dynamic, interactive and
maintainable Web-based application is not an easy task. Interactive business
transactions as well as Web sites that are personalized on an individual basis
require applications to process user requests and generate corresponding
Web pages on the fly. Hyper Text Markup Language (HTML), the
publishing mother tongue used on the Web does not handle dynamic
content. Using current dynamic Web presentation generation technologies
(CGI, Servelts and CGI like technologies), the Web presentation is
embedded in the application logic. The application programmer must write

code to explicitly generate HTML code that constitutes the Web page. This

makes the development and maintenance very difficult because people of
two different skill sets must be involved at the same time. In recent years, |
several templating frameworks ([ASFa]J[ASFb][FSF][Sem][Sunb]) have

been developed to remedy this problem, where page designers use a

template language to develop the presentation. Upon request, the framework

interprets the template, integrates the dynamically generated information and

produces the Web page. Because all the template languages are HTML

based and allow regular HTML being used to develop templates (instead of
having application programs to generate them), the logic and presentation
are separated in some degree, but they are not completely separated. They

also have other limitations. Some frameworks are not very easy to use. Some

frameworks use completely new technologies so the page designers often

have to put into a great deal of effort in learning the new technologies,

instead of relying on technologies and languages that they are used to.

The goal of the current research is to develop a new framework that
can effectively and completely separate the presentation and logic of a Web-
based application. It includes a very simple template language that allows
the page designer to represent Web pages containing dynamic contents
totally independent of application logic, but still employs the technologies
and software that the designer is familiar with. It also includes a framework
that first allows the presentation and the logic to be developed
independently. It then allows them to be combined to dynamically construct
a Web page that presents to Web users upon request.

The main features of the current research include:

e Extend the traditional Model-View-Controller architecture and define
the concepts of Abstract Model and Concrete Model.

e Define the concepts of Abstract Model View (AMYV), thus allowing
all the presentation related issues to be encapsulated in the abstraction
of AMV.

¢ Introduce a simple template language, consisting of a small number of
XML tags, for describing dynamic contents of a Web page, so that the
presentation of a Web-based application can be developed totally
independent of the application logic, and it allows the page designer to
use the technologies and software that he is familiar with (no need for
learning brand new technologies).

e Design the framework based on the extended Model-View-Controller
architecture. Identify the components of the framework and their
collaborations. Develop and test the framework.

e Provide a tool that takes an AMV template file as input and generates
a Java skeleton file of the corresponding Abstract Model.

e Provide a tool combining the dynamically generated information and

the predefined AMV templates to generate Web pages that are sent to
Web clients.

1.2 Organization of the Thesis

This thesis is organized into several chapters.

Chapter 1 gives an introduction of how this research is motivated and
the objectives of this research.

Chapter 2 gives an overview of technologies currently used for the
Web presentation generation, and frameworks that have been developed in

recent years for separating presentation and logics of Web based
applications.

Chapter 3 first reviews the Model-View-Controller technology, then
extends the traditional MVC architecture, and defines the concepts of
Abstract Model, Concrete Model.

Chapter 4 introduces the template language and describes how to
develop the AMV template using the template language.

Chapter 5 describes the framework developed, its components,
collaborations and designing method.

Chapter 6 focuses on the experiment of using the proposed method, its
background and results.

Chapter 7 provides conclusions drawn from the work and
recommendations for future directions.

CHAPTER 2 Current Web Presentation Technologies

In this chapter I first review the concept of the Web and Web
presentation generation, followed by exploring some widely used, as well as
newly emerged Web presentation technologies, their concepts, basic
capabilities and constraints. Finally, I conclude with the need for effectively
and completely separating presentation from logic in Web-based application.

2.1 World Wide Web Concept

The World-Wide Web (WWW), invented by Tim Bemers-Lee in
1989, was initially a practicai project intended to bring about a global
information sharing ([LCG92]). The Web uses a client -server architecture,
with a Web browser sitting on the client side and a Web server sitting on the
server side (Fig. 2.1). The Web browser is an application that interacts with
both the user and the Web server. Its primary jobs are to transform the user
requests into HTTP requests, and transform HTTP responses into graphic
presentations that are displayed on the screen. The Web server is an
application whose primary jobs are to handle or delegate HTTP requests,
and to generate or route HTTP responses. Web clients and Web servers
share a set of standards for communication, including addressing scheme,
common network access protocols, data formats, which enable any browser

to communicate to any Web server on the Internet and make the share of
global information become possible.

Addressing scheme + Common Protocol + Format Negotiation

Fig. 2.1 World Wide Web Concept

2.1.1 Static Web Page

The Web was a static medium at the beginning. It served mainly as a
document repository with an improved means of navigation. All the Web
pages were developed before hand and stored locally. When a Web server
receives requests for such web pages, it reads a local file based on the
requested URL, and simply streams back the file to the client without any
modification (Fig 2.2).

Lecal
files

Web Server

Fig. 2.2 Handle requests to static Web Pages

2.1.2 Dynamically Generated Web Page

With the advent of Common Gateway Interface (CGI) in the National
Center for Super Computer Application ((NCSA]), the static nature of the
Web changed significantly. Instead of simply retrieving stored documents, a
Web page is generated "on the fly" in response to users’ interactions. So
Web pages can be personalized on individual basis. A modem Web server
usually supports various APIs that allow the Web server to delegate HT TP
requests to external programs and route Web page generated from external
programs to the user (Fig.2.3). The external programs communicate with
back-end applications, access and /or update databases that are dynamically
generated Web pages in an application-specific manner. A Web server’s
functionality is extended unlimitedly in this way.

Fig. 2.3 Handle Requests to Dynamically Generated Web Pages

The Web comes to life when it is interactive. Up to now, the ability to
deliver dynamic contents has been a prime factor in the growth of the Web
and an essential requirement of Web-based application ([Dew98]).

2.2 The Hyper Text Markup Language (HTML)

To accomplish global sharing, information must be represented
using a language that all computers can understand. The Hyper Text Markup
Language (HTML) is the publishing mother tongue used on the Web
([W3Ca]). HTML is a markup language that is used for typesetting,
hypertexting Web page content, extracting, and submitting data from a user
to a Web server. It tells Web browsers how information and certain user-
interface controls are to be displayed and handled. All Web pages, no matter
statically retrieved or dynamically generated, are finally represented in a
HTML format. HTML is the basis for all types of Web programming
([EG99)).

HTML uses a set of tags to accomplish its tasks. HTML tags are
enclosed within angle brackets, < and >. Most tags have a start tag and an
end tag. The start tag marks the beginning of a particular HTML element,
while the end tag marks its finish. Enclosed are text or other elements in the
Web page. End tags are differentiated from start tags by using a forward
slash (/). The tags may have attributes embedded within the beginning tag, in
the form of name-value pairs. A HTML tag with attributes looks like this:

<Tag attribnamel= valuel attribname2=value2>

Text and/or other tags

</Tag>
Some HTML tags are empty tags, (without any content). These tags are in
the form <Tag/>.

Existing HTML tags aim to accomplish two types of functions. The
first is to control the structure and display of the Web page. Tags dedicated
to this function allow Web browsers to identify components such as

formatted text, tables, images, hyperlinks and frames, and tell the browser
how to display various components. For example:

Hello
 indicates that “Hello” should appear in font Times New Roman with
red color.

<P> This is a paragraph </P> indicates that the text should be displayed as
one paragraph.

 The university of Windsor
indicates that this is a link to the home page of university of Windsor.

The other function provided by the existing HTML tags is that they
extract data from a user input and send it back to a server for processing.
Two tags used mostly for this function are <form> and <input>. The <form>
tag specifies how and where information is to be sent. The <input> tag,
which is enclosed inside <form> tag. describes user interface (UI) input
components. The Ul components include text-box. password. checkbox,
radio button etc. A <form> tag looks like this:
<form method = “post” action= “http://www.shuling.com/mainServlet”>

<input type = “text” name = “userid” size = “50"/>

<input type = “password” name = “password”/>

<input type = “submit” name = “send” value = “submit”/>
</form>
This simple form will display two GUI text-box and a button. One of the
text-box is for entering a user ID, the other is for entering a password. The
“submit” button is used for triggering a HTTP request. When the button is
pressed, the HTTP request will be sent using method “post” to the URL
specified in “action”. The “post” method passes user input from the HTTP

request body. The other method “get” passes user inputs by attaching them
in the URL.

The existing HTML tags themselves are sufficient to handle the
structure, display of document and the user input extraction. However,
HTML is static, it does not offer tags that deal with the dynamic content a
Web page. This is because that, firstly, HTML cannot denote a piece of
information whose content can only be decided at request time. For example,
using HTML, one cannot have the CURRENT time to be displayed because
the time to be displayed is decided only when a user makes a request to this
page. Secondly, HTML does not support selection. For example, there is no
way to express the following scenario: if one wants FRAGMENT1 to be
displayed if CONDITION is true, otherwise FRAGMENT?2 is displayed.
Thirdly, HTML does not support iteration. For example, using HTML one
cannot express “display FRAGMENT 7 times”.

This research works around the limitations of HTML by introducing a
very simple template language. This language is composed of a set of XML
tags that are capable of representing the dynamic content of a Web page.
The language is discussed in Chapter 4, the development of the AMV
template.

2.3 The Common Gateway Interface (CGI)

The Common Gateway Interface (CGI) (INCSA][TGH96]) is the
earliest solution for connecting a Web server and a back-end system, as well
as dynamically generating Web presentations. CGI is a standard for
interfacing external applications with information servers, such as HTTP or
Web servers. This interface allows a Web server to spawn an external
process, and pass off a HTTP request for processing. It lets the process to

10

generate HTML codes that constitute the Web page returned to the client.
When a CGI compliant Web server realizes that a HT TP request points to a
program instead of a static file, it sets a number of environment variables
representing the current state of the server, spawning a new process and
passing over the variables and standard input. The process then interprets the
input, communicates with the back-end system, and generates the response
page. The page is sent back directly to the client or is returned to the Web
server for redirection.

CGI has been a popular technique used for extending the server’s
capabilities and is still widely used today. Its success comes from its ability
to communicate with back-end applications written in any language, and its
ability to dynamically generate Web presentations. But CGI based
applications have some drawbacks. Performance and scalability become big
problems due to the need of spawning a new process on the Web server for
every client request. A CGI program (and probably also an extensive
runtime system or interpreter) needs to be loaded and started for each
request. Another problem is security. A CGI script can use the command
shell to execute operating system commands with user-supplied data. A bad
CGI script can thus crash the whole server. The third problem is that CGI
applications are platform-specific. It is very difficult to switch to other
servers without modifications. One more problem is that CGI has no direct
means of persisting state across application invocations. The programmer
has to put significant hand-coding effort into keeping the state of the
application and some expensive operations have to be executed repeatedly.

11

2.4 Java Servlet

The need for Web server to create dynamic Web pages has resulted in
the emergence of new technologies for dynamically generating Web
presentations. Java Servlet is one of those that are making headlines these
days.

Servlet is compiled Java class that can be loaded dynamically into and
run by a Web server ([Suna][Hal00][PC00]). It extends the Web server’s
functionality in a way similar to CGI script. Fig 2.4 shows the physical
architecture of Java Servlet. When a Web server realizes that the requested
resource is a Servlet, it informs a Servlet container (a container in which a
Servlet runs). The servilet container will load the requested Servlet if it has
not been loaded yet. The servlet container then creates an instance of the
Servlet as a thread, initializes the Servlet and funnels the HTTP request to it.
The servlet, which is capable of communicating with back-end system,

processes the request and generates a Web page that is send back to the
client.

Application
Server

DB

Fig. 2.4 Physical Structure of Java Servlet

There are a lot of advantages of using Serviet than CGI ([KK00]). Servlet
has better performances because Serviet runs inside a light-weighted thread

12

and stays in memory between requests. Fig. 2.5 shows the life cycle of a
Servlet. After being created and initialized, a Servlet waits for a request in
the memory (in ready state). It returns to the ready state after finishing
processing one request, and is ready to process further requests again
without the need of reloading and restarting (like the CGI does). It stays in
ready state until its destroy method is called (usually when the Web server
and Servlet container are shut down). This removes the overhead of creating
a new process for each request. Servlet also improves security, because
Servlet is run in the Java security Sandbox so it can be insulated from
disrupting the operating system or breaching security. Moreover, Servlet
contains all Java features such as platform independency. It is portable and
can be run unchanged on almost every major Web servers. Serviet API

supports for session management, which makes written stateful application
much easier.

service()
init() destroy(
Net Exist Ready

Fig. 2.5 The lifecycle of a Servlet

2.5 Problem with Traditional Serviet, CGI and CGI Like Technologies

As illustrated in Fig. 2.1, a Web server counts on external programs to
dynamically produce HTML codes that constitute a Web page. This means
that the external programs have two responsibilities. The first responsibility
is to process user data and generate the dynamic content of the Web page
(the logic part). The second responsibility of the external programs is to

13

generate HTML codes that constitute the Web page (often need to call
out.printin (“<HTMLtag>") explicitly). In another word, the external
program needs to take care of the look and feel (the presentation) of the Web
page. Fig. 2.6 is a segment of an extermal program that dynamically
generates a Web page displaying the average income of the current members
of a group. The segment includes application logics, which access the
database of backend system and calculate the average income of current
members. The segment includes presentation. It produces HTML codes that
constitute the web page. As we can see. the generation of dynamic Web
pages is a mixed process of generating HTML code (the Presentation),
accessing, and updating system state (the logic). This makes the
development and maintenance of external programs very difficult because
programmers of two different skill sets must be involved at the same time.
Moreover, it is very difficult to change the appearance of the Web page later.

/ logic
mt averagelncome = getAverage();
response.setContentType ("text/html”),
PrintWrniter cut = response. getWriter();
/f presentation
out.prmtin ("<HTML>\n" +
"<HEAD><TITLE>Average Income</TTTEL></HEAD>\n" +
"*<BODY>an"+
*The average mcome is:" + averagelncome +
} "</BODY></HTML>"),
private mt getAverage(){
/{ access database and calculate the average

Fig. 2.6 Code Segment of an External Program

14

2.6 Templating Frameworks

Because CGl-like technologies do not separate presentation from
logics, there are many solutions developed in recent years attempting to
solve this problem. Most of them are Servlet based templating frameworks,
where page designers use a template language to develop the presentation.
Usually a template is a combination of HTML and one or more of the
followings: scripts, standards or user defined tags, and other template
language elements. Application logics are embedded in HTML code or are
encapsulated using function calls or user-defined tags that are defined
outside the template. Upon request the framework interprets the template,
integrates the dynamically generated information, and produces the Web
page. These frameworks all allow regular HTML being used for presentation
and separate the logic and presentation in some degree. But they also have
some limitations, as I will discuss in this section shortly.

2.6.1 Tag Based Templating Frameworks

Depending on how the template language is defined, existing
templating frameworks can be roughly divided into two categories: tag
based or script based. If the template language consists mainly of tags or if it
uses mostly user defined tags to encapsulate logic, the templating framework
is considered to be tag based Java Server Page
(JSP)([Sunb][AABO00][Hal00]J[PC00]) and Apache Cocoon ([ASFa]) are
examples of tag based templating frameworks.

Extensible Server Page (XSP) is the template language of Cocoon.
JSP and XSP use custom tags to encapsulate application logic. The
definition of each user defined JSP tag is given in a separate Java tag handler

15

class.

The definition of each user defined XSP tag is given in a separate

XSLT (Xml Stylesheet Language for Transformations) stylesheet.

Templating frameworks that mostly use custom tags to encapsulate logic
have the following drawbacks:

2.6.2

They are completely new technologies, the page designer will have to

give up the old technologies that they familiar with and start from
scratch.

The presentation and logic are still mixed. Because no tags are
dedicated to the logic control of HTML code. So HTML fragment
(presentation) that needs logic controls (such as selection, repetition
control) will have to be embedded in custom tags (logic). So for
example, JSP tag handler class still generates HTML code; the custom
XSP tags defined in separated XSLT stylesheet still includes HTML
fragment. So the maintenance of the application is still very difficult.
Most WYSIWG (what you see is what you get) HTML editors do not
support the development of presentation using existing tag based
template language, which makes developing attractive, lively Web
presentations much more difficult.

Script Based Templating Frameworks
If the template language consists mainly of scripts, the templating

framework is considered to be script based. Velocity ([ASFb]) and
Webmacro ([Sem]) are examples of script based templating frameworks.
Velocity and Webmacro can separate the presentation and logic a great deal,

because their template languages provide selection and repetition logic
controls, which can be applied to HTML code in the template, the
application programmer no longer need to generate HTML code from

16

application program. But Velocity and Webmacro have the following
limitations:

e The template language of Velocity and Webmacro embed scripts in
HTML. They use special characters like $ or # to indicate that an
identifier is a template language keyword or a reference. Using this
approach, errors can occur easily. For example, if a page designer
misses a character accidentally, the keyword or the reference will be
interpreted as the content of the Web page. Or if the page designer
forgets to escape the special character when he should do, the
framework may report errors because it cannot interpret the identifier.

e Using the template languages of Velocity and Webmacro, the
dynamic information of the Web page is represented using variables
and references to properties and/or methods of Java class. The
development of the template still depends on the application logic in
some degree. For example. the interface of the Java classes must be
developed before hand; the page designer has to be familiar with all
the interfaces of the Java class that he will be using, and if the
interface changes, the template will have to be rewritten. In this sense,
the presentation and logic is not completely separated.

Freemarker ([FSF]) is another templating framework aiming to separate
the presentation and logic of Web based application. Its concept is similar to
Velocity and Webmacro, having its template language containing selection,
repetition and other control logics that can be applied to HTML code.
Freemarker is different from Velocity and Webmacro by having its controls
denoted using tags instead of scripts. But all the limitations of Velocity and
Webmacro still apply to Freemarker, because Freemarker uses script for

17

reference, and its template still has access to properties or methods of Java
class.

2.7 The Need for Effectively Separating Presentation and Logic

As mentioned above, existing solutions do not provide effective ways
for spliting presentation and logic for dynamic generation of Web
presentations. This makes application development and maintenance
difficult and causes poor performance and portability of the application. An
approach that can completely and effectively separate the presentation from
the logic and relieve page designers of logic burden and application

programmers of presentation burden is therefore very needed. The main goal
of this thesis is to provide such an approach.

18

CHAPTER 3 The Extended Model-View-Controller
Architecture

This thesis is based on the classic Model-View-Controller (MVC)
architecture ([Kas00][KP88]), a three-way separation of functionality among
application components. It is first used in Smalltalk for implementing
graphical user interface in late 1970’s and has been reused and adopted in
various GUI class library and application frameworks since.

3.1 The MVC Concepts

The fundamental idea of MVC is to separate the underlying
information of the application domain (the Model) from the way that the
information is presented (the View), and the way a user interacts with the
Model and the View (the Controller). As illustrated in Fig. 3.1, the
Controller is the interface between the Model and the View. It is responsible
for accepting the user input, choosing the corresponding View, interpreting
user gestures, and mapping them to actions that should be performed by the
Model. The Model represents the data or knowledge about the underlying
application domain. It is responsible for providing data access to the View,
self-updating when data changes, and notifying the View and Controller
about its state of change. The View is the presentation of the Model. It is
responsible for displaying itself, forwarding user gestures to the Controller,
and updating itself when the Model changes. By isolating functional units
from each other, MVC allows application developers to develop and
maintain each particular unit independently, making each unit reusable and

pluggable.

19

User gesture

User input - :
Contreller Display view/ ptadel

Update Model ;04010
Act Access P

View

Update

Fig. 3.1 The traditional MVC architecture

A simple example: Let’s say that we have a program that can
transform a set of data into a diagram for statistic purpose when a user clicks
a button or hit a key strike combination. The data here is the model, the

diagram is the view, and the key strike combination or mouse click is the
controller.

3.2 The Extended MVC Architecture

Using MVC methodology one can easily figure out the reason that
traditional Web presentation generation technologies cannot completely
separate the presentation and logic. The presentation of Web-based
application can be thought of as the View in the MVC architecture. The
logic can be thought of as the Model in the MVC architecture. The
presentation and the logic are not completely separated because the function
units View and Model are not isolated from each other, but both are included
in the external program. While trying to apply the MVC architecture in the
domain of Web-based application, I found that it was necessary to extend the
traditional MVC architecture because the View of Web-based application

20

and its corresponding Model are different (see below) from the View and
Model of traditional usage. The extended MVC (EMVC) architecture is
described in Fig. 3.2.

Update \ UP9¥® Thodel ‘ypdate
-------- Acgcess

Fig. 3.2 The Extended MVC architecture

3.2.1 Concrete Model and Abstract Model

In the extended MVC architecture, the Concept Model is divided one-
step farther into a Concrete Model and an Abstract Model.

A Concrete Model models information that is persistent in the
application domain. The information is usually physically stored data, such
as customers’ accounts, customers’ orders etc. The model in a conventional
MVC architecture usage in many respects equals to the Concrete Model
defined here. The development of the Concrete Model has been studied in
depth by many researchers. It is usually done by identifying and
implementing the business objects and business process objects of the

21

domain. Enterprise JavaBeans (EJB) architecture is an excellent standard
architecture for the development of a Concrete Model.

An Abstract Model sits on top of the Concrete Model. It models a set
of arbitrarily grouped information including references to the Concrete
Model, and /or information generated by processing the reference to the
Concrete Model. For example, the dynamic information of a Web template
of a Web-based application is an Abstract Model. It may include references
to the Concrete Model, such as a specific product. It may also include
information obtained by processing the Concrete Model (e.g. all the products
that are currently in stock). The Abstract Model does not have an actual
correspondence in the physical storage. It only exists for a certain time.
However the Abstract Model does reflect information inherent in the
application domain (at a certain point) and should be separated from its
representation.

Because Abstract Model information that only exists temporarily is
often arbitrarily grouped, people usually do not realize the fact that the group
of information as a whole is also a Model and need to be separated from its
view. The Abstract Model is instantiated by the Controller when its View is
requested (for example, a user requests a Web page). After that, the Abstract
Model updates itself by accessing data of the Concrete Model. It is destroyed
when its View no longer needs to be updated.

The reason that existing Web page generation techniques do not
completely separate presentation from logic is that they all fail to separate
the Abstract Model from its View, where the Abstract Model encapsulates
the logic and the View encapsulates the presentation. The main purpose of
this thesis is to provide an approach that allows the separation of the
Abstract Model from its View in a Web-based application.

If there are well-designed and implemented Concrete Models in hand,
development of Abstract Model is easy. The information that constitutes an
Abstract Model can be identified by observing the corresponding template.
Then the Abstract Model is modeled by implementing methods that produce
desired information through accessing information of the Concrete Model.

3.2.2 Abstract Model View
An Abstract Model View (AMV) is the presentation and visualization
of an Abstract Model. In Web-based applications, each Web page is an
AMV. An AMV can be in one of two states: template state or show state. An
AMY in template state reflects the initial or null state of the Abstract Model.
An AMV in show state reflects the updated Abstract Model. When a user
requests a dynamically generated Web page (an AMV), the following
happen:
e The Controller maps the user request into actions that should be
performed by the Concrete Model.
¢ The Concrete Model performs the actions and updates itself.
e The Controller instantiates an Abstract Model.
e The Abstract Model updates itself by retrieving and /or processing
information from the Concrete Model.
e The Controller chooses an AMV (in template state).
e The Controller update AMV by integrating information in the
Abstract Model.
e The AMV (in show state) is presented.

3.2.3 Differences Between EMVC and MVC

The major difference between the EMVC and the traditional MVC is
that the view presented to the user does not interact directly with the
underlying system (the Concrete Model). The interaction between AMV and
Concrete Model is encapsulated in Abstract Model. So the AMV (the
presentation) and the application logic (the Concrete Model and the Abstract
Model) are completely independent of each other and can be developed and
maintained separately.

Using EMVC architecture, the development of Web based application
can be easily divided into four modules: AMVs that encapsulates
presentation; Concrete Model that encapsulates the logic of underlying
system; Abstract Model that encapsulates the interaction between views and
underlying system; Controller that handles the interaction between AMV,
Concrete Model and Abstract Model. By separating the function units from
each other, the development and maintenance of presentation and logic of
Web-based application can be completely separated. Chapter 4 of the thesis
provides a template language for representing AMV that is in template state.
Chapter 5 of the thesis provides an application framework developed based
on the EMVC. The framework includes the abstractions of the Abstract

Model, AMV, the Concrete Model and the Controller, and interactions
between them.

3.2.4 The Controller

One of the main responsibilities of a Controller is to interpret a user
input according to the control context of an application, and to trigger an
action that is to be performed by the Model. In the traditional MVC, one
View can have one Model but several Controllers, one for each type of user

24

interaction. In a Web-based application, all the user gestures are in the form
of HTTP request. So for each View (Web page) and Model (Abstract Model)
pair there is only one Controller needed. Specifically, views that have the
same control context can share the same Controller.

25

CHAPTER4 The Development of AMV Template

The EMVC architecture divides Web-based applications into four
ways: the Concrete Model, the Abstract Model, the AMV, and the
Controller. Due to the availability of more advanced techniques and
methodologies, development of the Concrete Model has become easier.
Development of the Abstract Model has also become straightforward.
However, the template languages of existing templating frameworks do not
provide an easy solution that allows the logic to be excluded completely
from template. The goal of this chapter is to develop a simple template
language that allows page designers to develop AMV templates without
including any application logic, and without giving up the technologies and
software that they have used for years for Web page designing.

4.1 HTML For Pure Presentation

The content of a dynamically generated page (the AMV) can be
divided into two categories. The first type is related to pure presentation
such as the page layout, multimedia usage etc. This is the format of the Web
page. The other type is the information that should be generated
dynamically. It is the direct reflection of an Abstract Model. The whole Web
page can be thought of as information presented in a format specified.

This thesis chooses to use HTML for pure presentation due to its
several advantages:

e HTML is simple
HTML is a very simple language, with a limited set of tags. It is easy
to learn and many Web developers have mastered it.

26

e HTML is efficient for presentation
HTML has been used from the time the Web was invented. It has a set
of well-designed tags proven to be sufficient to handle the
presentation of a Web page.
e HTML is widely supported
There are now a lot of software available for HTML based Web site
design and development. Most of them are very powerful and easy to
use. The Macromedia Dreamweaver, for example, has a WYSIWYG
editor that allows the developer to rapidly develop the look and feel of
a Web page without worrying about HTML code. It also provides an
easy JavaScript integration, CSS definition and Web site management.
Here is how my method works. The Web developer first develops a static
sample Web page using whatever useful tools (for example, a WYSISWG
HTML editor) in HTML. Then he makes the page XML compliance using
XML editor (such as XML spy). The Web developer then replaces the
information that should be generated later using the template language given
in this thesis. He also needs to provide a summary of all logic related
information of the template (using a <declaration> tag), so that the skeleton
of the Abstract Model can be easily constructed using a tool (PageHandler
Skeleton Generator or PHSG) provided in the framework. The resulting
template is an AMV in template state. The application programmers are
responsible for developing Concrete Model and Abstract Model. The given
framework takes care of the underlying logic of how to trigger the update of

the state of the system as well as trigger updating the AMV from template
state to show state.

27

4.2 XML Compliance

Extensible Markup Language (XML)X[Mar99]{Sunc][W3Cb]) is a
markup language that is fast becoming the standard for describing and

exchanging data. XML and HTML are both markup languages. The major
difference between them is that HTML is specific, whereas XML is general.
HTML uses a restricted set of tags that tell the browser how to display the
data marked, while XML allows users to develop their own tags to indicate
the nature of the data. This thesis uses XML to define a set of new tags that
are used to represent the dynamic content of a Web page in AMV templates.
Another merit of XML is that there is a series of standards, APIs
(Application Programming Interface) and software for processing XML
documents. By making the AMV template XML compliance, I can extract
information from an AMV template by using a XML parser without having
to interpret XML syntax. I can also modify the AMV template easily with
existing APIs. The task of integrating dynamically generated information
and the AMYV template thus becomes very simple.
The foilowing are standards that this thesis comes across:
e DOM (Document Object Model)
DOM API is used to convert a XML document into an object-oriented
hierarchical representation (a DOM tree). It allows the data to be
removed, modified or inserted randomly.
e SAX (Simple API for XML)
SAX API uses an event-driven approach whereby the developer
registers handlers with a SAX parser. The parser invokes the callback

methods whenever it encounters a new XML tag. This API is used for
serial accessing of XML documents.

28

e DTD (Document Type Definition)
A DTD specifies a set of elements that allow to be shown in the XML
document and the relations between the elements.

e JAXP (Java API for XML parsing)
JAXP provides a common interface for creating and using the
standard SAX, DOM, and XSLT (Extensible Stylesheet Language for
Transformation) APIs in Java. JAXP includes four packages:
Javax.xml.parsers provides a common interface for different vendor’s
parsers; org.w3.dom defines classes for components of a DOM;
org.xml.sax defines the basic SAX APIs; javax.xml.mransform defines
APIs that transform XML into other forms.

4.3 The Template Language

The template language is XML based. The idea is to represent pure
presentation using XHTML (extensible HTML or HTML that comply with
XML syntax), and represent dynamic content with a small set of predefined
XML tags. The sample HTML pages are first edited using XML editor like
XML Spy to make them XML compliance. Then the new tags introduced are
used to replace the dynamic content in the template. Unlike other tag based
template languages (JSP, XSP) that use custom tags to encapsulate
application logic, all the tags introduced are predefined, not application
specific, and can be used just like other HTML tags. The tags introduced
here can be divided into four categories: structure tags. declaration tags,
information tags and logic control tags.

29

4.3.1 Structure Tags

The structure tags are used to identify characteristics of a document. It
indicates which elements are included and how to process them. Two
structure tags defined here:

e <template> Tag

A <template> tag identifies that the document is an AMV template. It
is the root element of every AMV template. It contains two elements: the
<declaration> tag and the <html> tag. The <declaration> tag contains
information that will be used to construct an Abstract Model (section 5.5).
An example of <template> tag:

<template>
<declaration>
</declartion>
<html>

</html>
</template>

e <declaration> Tag

A <declaration> tag is used to identify a part of a document that
contains information that is needed to construct an Abstract Model. This tag
acts as a contract between the page designer and the application
programmer. The page designer uses this tag to communicate with the
application programmer about the dynamic information of the template. The
skeleton of an Abstract Model can be generated by using tool PHSG that is
capable of interpreting this tag. A <declaration> tag can include declaration
tags (section 4.3.2) <attrib>, <param>, <var> and <loop>. A <declaration>
tag looks like:

<declaration>
<attrib ../>
<param./>

30

<var ../>
<loop../>
</declaration>

4.3.2 Declaration Tags

Declaration tags are tags that can be included inside <declaration>
tag. They are used to describe information about the AMV template. They
can be one of the following tags.

e <attrib> Tag

A <attrib> tag is used to encapsulate information that is inherent to
the AMV, but should not be seen by Web users. It has three attributes, name,
the name of the attribute. value, the value of the attribute, and description,

which is used to add comments on the attribute. For example:

<attrib name = “requireLogin” value = “true” description= " whether the
use need to be logged in tc see this page/>

e <param> Tag
A <param> tag is used to indicate a parameter whose value can be
retrieved from a HTTP request. It usually represents form data that is used in
the Web page. It has two attributes: name, the name of the parameter, and
description, which gives the comment. It looks like this:

<param name = “fair_or_not” description= “the value of a checkbox
indicates whether the visitor thinks the grade is fair*/>

e <var>Tag
A <var> tag is used as a declaration for a piece of unknown
information (a variable) in the AMV template. It has four attributes: name,
loopid, loopvarid and description. The name attribute denotes an identifier
that represents the unknown information. The loopid attribute denotes the
position of the loop in which the unknown information is defined. Loops in
an AMV template are numbered according to the order they appear, starting

31

from 0. The value of loopid is such a number. If the variable is outside any
loop, the value of loopid is -1. The loopvarid attribute denotes the position
of the unknown information within the loop, in which the unknown
information is defined. All the unknown information that is defined in a loop
is numbered according to the order they appear, starting from 0. The value of
loopvarid is such a number. The value is -1 if the variable is outside any

loop. Please see section 5.4 for detailed explanation of how this works. An
example:

<var name= ‘studentGA”* loopid= "-1° loopvarid=~"-1" description= *all
the student who have grade A"/>

o <loop> Tag

A <loop> tag is used to represent an iteration used in the AMV
template. For each loop used inside the <html> tag, there must also be a
<loop> element in the <declaration> tag. The <loop> tag has four attributes.
The subject attribute denotes the subject of the loop. It refers to a list-
variable defined earlier. For example, the subject for loop “for all the
students with grade A” is “students with grade A™. The value of the subject
is the name of an already defined variable (e.g. studentGA). The varNum
indicates the number of variables in this loop. The id attribute is used to

denote the ID of the loop, and the comment aturibute is used for making
comments about the loop. For example:

<loop subject= “studentGA” varNum= *2” loopid = *0” comment ="This loop
go through all the student with grade a*/>

43.3 Information Tags

Information tags are place-holders for unknown information used in
<html> tag. They represent the initial or null state of an Abstract Model.

Same information tags used inside <html> share one <var> entry in the

32

<declaration> tag. There are several information tags defined, all of them
have four attributes: name, loopid, loopvarid and description. The
definitions of these attributes are the same as those in <var> element of
<declaration> tag.
o <conditionVar> tag

A <conditionVar> tag is used inside of a <if> tag. It represents a
variable whose value is used to decide the flow of control. If it is finally
evaluated to be true, then the <then> fragment will become a part of the final
AMV to be shown. Otherwise the <else> fragment will be displayed. For

example:

<if>
<conditionVar name= "“female” loopid= "-1" loopvarid= *-1"/>
<then> Ms.</then>
<else> Mr. </else>

<Af>

o <attribVar> Tag
Sometimes, the value of an attribute in a HTML tag can ako be
dynamic. For example, the URL of a product in stock. A <attribVar> tag is
used to represent such a value. A <attribVar> element is used between the
beginning tag and the ending tag of a HTML tag whose attribute value is
undecided. <attribVar> tag has one more attribute anrib. The value of attrib
is the name of the attribute (whose value is undecided) in the parent tag of

<attribVar>. For example:

<attribVar name= “itemurl” acttrib="href” loopid=~"-1~
loopvarid="-1-/>

e <var>Tag

A <var> tag inside <html> tag reserves spaces for general variables.
Same information tag can be used more than once inside a <html> tag,
if it denotes the same information. For example:

33

Cheer up,

<var name =“studentName”, loopid
Good luck,

<var name =‘studentName”, loopid

]
H

|
[y
.

, loopvarid = *-1->!

([}
s

|
=
]

., loopvarid = *-1->!

4.3.4 Logic Control Tags

Logic control tags are tags that used inside the <html> tag that
provide logic control information when updating an AMV from template
state to show state. They are mainly for two types of logics: the selection
logic and the repetition logic.

o <if>Tag

A <if> tag encapsulates selection logic. It contains three elements: a
<conditionVar> element defined earlier, a <then> element, and a <else>
element. If <conditionVar> is evaluated to be true later, the <then> segment
will become a part of the final view of an AMV, otherwise the <else>
segment will. For example:

<if>
<conditionVar name= “female” loopid= "“-1* loopvarid= "“-1"/>
<then> Ms.</then>
<else> Mr. </else>
</if>
e <then> Tag
A <then> tag contains a segment that is a part of the final view if the
condition is true. The segment used here and in the following text may

include one or more logic tags, information tags and other html tags defined
by W3C (World Wide Web Consortium).

o <else> Tag

A <else> tag contains a segment that is a part of the final view if the
condition is false.

34

o <foreach> Tag

A <foreach> tag encapsulates repetition logic. It contains segments
that may appear more than once in the final view. It has one attribute
controlVar, whose value is the name of an already defined list variable. This

attribute is used to denote which subject that the loop is working on. Here is
the example:

<H2> The following students have a grade of A:</H2>
<table>

<foreach controlvVar= “studentGA*>
<tIr>

<td><var name="studentName” loopid="0" loopvarid=~"0-"/>
</td>

<td><var name=“studentGrade” loopid-“0" loopvarid="1"/>
</td>
</tr>
</foreach>
</table>

The <html> tag in the AMV templates can contain two types of
elements, one type of tags are those defined by W3 Consortium, the other
type of tags are those that are just defined.

4.4 A Sample AMV Template

The following is an AMV template that is defined using HTML and
the newly introduced tags.

sample.xml
<?xanl version="1.0" encoding="ISO-8859-1"2>
<template>
<declaration>

<attrib name="requireLogin® value="true*/>

<param name="fair_or_not" description=*the value of the checkbox
indicate whether the visitor thinks the grade is fair"/>

<var name="date® description=*date of today" loopid="-1"
loopvarid="-1"/>

<var name=‘'requesterIP" description="where is this request come
from" loopid=*-1" loopvarid="-1"/>

<var name="studentGA" loopid="-1°" loopvarid="-1" description="all
the student who have grade A"/>

35

<var name="female® loopid="0" loopvarid="0" description=°whether
the student is female"/>
<var name="studentname” loopid="0" loopvarid="1" description="the
name of the student*"/>
<var name="studentgrade* loopid="0" loopvarid="2"
description="the grade of the student"/>
<var name="studenthomepage®” loopid="0" loopvarid="3*
description="the homepage of the student®*/>
<loop subject="studentGA* varNum="4" id="0" comment=" this loop go
through all the students with grade A*/>
</declaration>
<html>
<head>
<title>My Homepage</title>
</head>
<body>
<H1l> Hello! There</H1l>Today is :

<var name="date* loopid="-1" loopvarid="-1"/>

<p> This request is from IP : <var name="requesterIP*
loopid="-1" loopvarid="-1*/>

</p>
<p>Students with grade A in this class are:</p>
<table>
<foreach controlvVar="studentGA">
<if>
<conditionVar name="female" loopid="0" loopvarid="0"/>
<then>

<tr bgcolor="#CC33CC">
<td>Ms. <var name="studentname®” loopid="0"
loopvarid="1"/>
</td>
<td><var name="studentgrade" loopid="0"
loopvarid="2"/>
</td>
<td>

<attribVar name="studenthomepage*"
attrib="href* loopid="0" loopvarid="3"/>Her home page

</td>
</tr>
</then>
<else>
<tr bgcolor="#3333FF">
<td>Mr. <var name="studentname" loopid="0"
loopvarid="1+/>
</td>
<td>
<var name="studentgrade® loopid="0"*
loopvarid="2"/>
</td>
<td>

<attribvVar name="studenthomepage"
attrib="href" loopid="0" loopvarid="3"/>His home page

36

</td>
</tr>
</else>
</if>
</foreach>
</table>
<form action="displayvote">
<p>I think it's
<select name=*"fair_or_not*"size="1">
<option selected=*"true" value="fair">Fair
</option>
<option value="notfair">Not Fair</option>
</select>
</p>
<input type="SUBMIT" value="Submit*"/>
</form>
</body>
</html>
</template>

37

CHAPTERS The Framework

After defining the template language that can be used to develop Web
pages containing dynamic contents without including application logic in
chapter 4, I concentrate on the framework development in this chapter. The
design of the framework is based on the EMVC architecture introduced in
chapter 3. The purpose of the framework is to map function units of a Web-
based application into components whose development and maintenance can
be modularized, and to provide the logic for handling interactions between
the components. Comparing with other Servlet based templating frameworks
such as Velocity, Freemarker, Webmacro, the significant feature of the
framework is that it provides a single entry point for all the requests to Web
pages that have the same control context. This means there is no need to
write and deploy one Servlet for each Web page. The Controller (the single
entry point servlet) will intercept HTTP requests, choose proper AMV
template and generate the requested Web page. I will first give an overview
of the framework, its components and their collaborations. I will then give
detailed implementation of each component.

S.1 The Components and Their Collaboration

The framework is composed of several components (Fig. 5.1):
abstractController, concreteController, abstractModelUpdator,
concreteModelUpdator, ConcreteModel, concretemodel, PageHandler,
concretePageHandler, ExceptionMap, Composer, and
PageHandlerSkeletonGenerator. Among which, the abstractController
together with the concreteController are the direct map of the Controller in
the EMVC. The PageHandler together with the concretePageHandler are

38

the direct map of the Abstract Model of EMVC. The ConcreteModel
together with the concretemodel are the direct map of the Concrete Model of
EMVC. ConcreteModel is an interface with no methods or fields and serves
only to identify the semantics of being Concrete Model. The
abstractModelUpdator together with the concreteModelUpdator are
responsible for updating the Concrete Model. The ExceptionMap is used for
exception handling. It is used to map a particular exception to a Web page to
redirect to the Web client. The Composer is used by AbstractController to
combine information generated from a concretePageHandler and the AMV
template to produce the final page. The PageHandlerSkeletonGenerator is a

tool used for constructing skeleton of concretePageHandler (Abstract
Model) from an AMV template.

39

11

ConcreteExceptionMap

Fig. 5.1 The Components of the Framework

The collaboration of these components is:

The concreteController is a generalization of the abstractController,
the concretePageHandler is a generalization of the
abstractPageHandler, the concreteModelUpdator is a generalization
of the abstractModelUpdator. The abstract classes whose
implementations are given in the framework provide general logics
that may be applied to different applications. Operations whose logics
are related to a particular application are declared to be abstract n

abstract classes. The user of the framework provides concrete
implementation of these methods to handle logics that are related to a
specific application in concrete classes.

The PageHandlerSkeletonGenerator (see section 5.5) parses all the
Web page templates (the AMVs) and generates skeletons of the
concretePageHandlers for these templates. Application programmers
implement the concretePageHandler based on the skeleton.

41

spuauoduwio) ayy fo uonpioqoio)d z°s ‘314

I

()esodwiod _

|
_
|
(ino ___zmo. ooB_omonsoe Mmau _
| I |
| |
| “ >
ynse)
exLEoo ‘1senbauuy | I€ w
_ — Osipuey |
_ _ ougjSumaUY
_ _ (Osiepdn
_ e:f ‘e ju0a‘isenbafiiul |
_ _ _oooca.m.._.;o: .
_ _ _ ?25%2 isenbai)iedop
| _ _ 1< “ Oor—
ToE00UID]) || TBIPUEHB0EJBIBIIU0Y | | TOEPANPPONEIIUD) | | IBTPUEHRbEJOTAIIusY) TBUTETUS S BAIeS

42

Fig. 5.2 shows the interaction between the components.

The Serviet container instantiates and initializes the
concreteController. The concreteController loads all the AMVs into
its memory. It optionally instantiates a concreteExceptionMap, and
stores the concreteExceptionMap object in its context.

The concreteController intercepts a Http request. If the page that a
user requests has a corresponding model updator, the
concreteController instantiates a concreteModelUpdator and asks it to
update corresponding concretemodels (by calling its update method).
The concreteController instantiates a concretePageHandler,
initializes it with the HTTP request and Web context, and asks it to
update the Abstract Model (by calling its handle method). If there are
exceptions thrown during the updating of the Abstract Model, the
concretePageHandler can ask the ExceptionMap to map any
exception to a Web page to redirect.

The concretePageHandler returns a Hashtable that contains all the
dynamically generated information from the handle method.

If the concretePageHandler has not specified a redirect page, the
concreteController picks up an AMV template, passes the AMV and
the Hashtable object returned by the concretePageHandler to the
Composer. The Composer integrates the AMV with information in the
Hashtable object and prints out the Web page (the final view of
AMV) to the Web page requester.

43

e If the concretePageHandler has specified a redirect page, the
concreteController will redirect the user’s request to the specified
page.

5.2 abstractController and concreteController

The abstractController is actually a front end Servlet. It is a single
entry point for all the requests to pages that have the same control context.
Upon request, it is responsible for triggering the updating of Concrete Model
and Abstract Model, choosing appropriate AMV template, transforming the
AMYV template using information from Abstract Model, and generating Web
pages that are sent to the client. Operations related to control context of a
particular application are declared to be abstract in abstractController. The
user of the framework is supposed to provide a concreteController and
implement all the abstract methods inherited from abstractController.

As stated in section 3.2.3, for Web based applications, Views with the
same context can share the same controller because the user View
interaction and the Abstract Model AMYV interaction are the same. Since all
gestures of the user appear as Get or Post method of HTTP request, there
needs a way of identifying which view the user is requesting. This is done by
embedding a pageid in each HTTP request. A pageid name value string pair
needs to be hand coded in each hyperlink, for example
http://server/controllerpath?pageid=id. If a form is used, a hidden field
pageid can be used to carry the pageid information. The pageid information
is used by the abstractController to choose model updator, page handler and
the AMV template.

Fig. 5.3 is the class diagram of abstractController. There are seven
fields used in the class. templates is a Hashtable object. All the AMV

44

templates are parsed and loaded in memory as XML DOM Document
objects through method loadTemplate(), when the concreteController is
initialized. templates is used to map a page ID string to an Document object
that represents a AMV. The original Document tree obtained from parsing
AMYV template can be modified so that HTML node becomes the root of the
document tree. requireLogins is also a Hashtable object. It maps a page ID
string into a boolean value that indicates weather or not the user should log
in to see the requested page. It is initialized through method
setRequireLogin (). welcomePage, loginPage and errorPage are page ID
strings that are used to specify which page to be redirected in a special
situation (such as general error, requiring log in). They are initialized
through a corresponding ser method. exceptionmap is a ExceptionMap object
that knows how to map a particular exception to a page to redirect (using
method mapToPage()). It is an optional component for the framework. If the
exception handling logic is simple, the application does not have to have
concreteExceptionMap implemented. context is an ServietContext object that
encapsulates the Web context of the controller. The seven fields together
form the general context of the Web tier of a Web-based application. They
are all initialized at the time the Servlet engine loads the concreteController
(by calling the concreteController’s init method). The init method does
application specific initialization by calling concreteController’s
concretelnit method.

The getModelUpdator method is used to create and initialize a
concreteModelupdator if there is a model updator exists for the requested
page (model updator is not needed if a request to a page does not change the
underlying system). The getPageHandler method is used to create and
initialize a concretePageHandler. The factory method design pattern

45

([GoF94]) is used here for the creation of concreteModelUpdator
concretePageHandler. Usually the concreteController implementer can
store two Hashtable objects in context through concretelnit method. One is
used to store a page id and concreteModleUpdator class name string pair.
The other is used to store a page id and concretePageHandler class name
string pair. concreteController decides which model updator or page handler
to load by mapping the page id to a class name, then initializes it using
getClass().getClassLoader().loadClass(classNameString). newinstance();

doGet() method (Fig. 5.3) controls the flow of the Web-based
application. When the user makes a request, the concreteController extracts
the page ID using method getPageld. If the requested page requires log in,
the user will be directed to a login page if he has not logged in already. The
concreteController triggers Models to update themselves by calling upate
method on the concreteModelUpdator object and handle method on a
concretePageHandler object. If the concretePageHandler does not specify a
page to redirect the user, the concreteController will choose an AMV
template from the memory. It then asks a Composer to update the AMV and
prints out the final view to the Web user.

AbstractController

mplstes : Hashtable
uireLogins : Hashtable
eicomePage : String
inPage : String
rPage : String
xceptionmap : ExceptionMap
ntext : ServietContext

: void
cretelnit() : void

jsLoggedin(request : HitpServietRequest) : boolean
tModelUpdator{request : HitpServietRequest) : ModeiUpdator
tPageHandier(nextPage : String) : PsgeHandler
irect(page : String, request : HitpServietRequest, response : HitpServietResponse) : void
tPageld(request : HitpServietRequest) : String
oPost(response : HitpServietResponse, reguest : HttpServietRequest) : void
‘oGel(roquost : HitpServietRequest, rasponse : HitpServietResponse) : void
T <

4 AN X
doGet{...X{ AN N
try{ \ ConcreteController :
Hashtabie resuits = new Hashtable(); AN J
String nextPage =getPageld(request); AN
booiean requirelogin = o
Boolean.getBoolean((String)(requireLogins.get(nextPage))): init(y BN
response.setContentType(“text/htmi™); context = getServietContext();
out = response.getWriter(): concreteinit();
if (requirelogin &4& !isLoggedin(request)) loadTempiates();
redirect(loginPage. request. response); setErrorPage();
Exception excep = nuil; setWelcomePage():
try(setLoginPage();
ModelUpdator mu = getModeiUpdator(request); setRequirelogins():
if (mu t= nuil) }
mu.update();
Jcatch(Exception e){
excep = @;

System.err.printin(*ModeiUpdator°+e);

}
PageHandier ph = getPageHandier(request);
if (excep != null)
resuits = ph.handle(excep);
eise
results = ph.handle();
String redirectPage = (String)results.get(“redirect™);
outflush();
if (redirectPage != null)
redirect(redirectPage, request. response);
else(
Document origdoc = (Document)tempiates.get (nextPage);
Document doc=null;
doc =(Document)arigdoc.cloneNode(true);
Composer cpsr = new Composer{doc. resuits.out);
cpsr.compose();

}

Jcatch (Exception e){
System.err.printin("doGet™+e);
redirect (errorPage. request. rasponse);

Fig. 5.3 The Class diagram of abstractController

53 The Command Design Pattern

The concreteController is responsible for mapping the user requests
to actions that can be performed by the model. However, it is undesirable for
the concretecontroller to be aware of details of which operations are to be
performed by which models. A Command design pattern is used here to
solve this problem.

Design patterns represent proven solutions to specific problems arisen
during object oriented software design. The landmark book Design Patterns
([GoF94]) defines design patterns as “descriptions of communicating objects
and classes that are customized to solve a general design problem in a
particular context”. Fig. 5.4 is a UML diagram that depicts the participants
of a Command pattern.

Invoker S| __Command
WExecute()
Zr Execute({ o
| Receiver _ConcreteCommand receiver.action(): ;
Waction(Execute(} !

Fig. 5.4 The Command Pattern

In the Command pattern, instead of letting an invoker to invoke
actions from a receiver (remember different requests may need to invoke
different actions from different receiver), a Command interface is used to

encapsulate a request to the receiver. The binding of which receiver should

48

perform which action is defined in Execute() method of ConcreteCommand,
a generalization of Command interface. This enables the invoker to send
requests to different receivers using a uniform interface.

ModelUpdator and PageHandler are both designed using the
command pattern, where ModelUpdator and PageHandler are interfaces
(Command) that encapsulate requests. The controller calls the update()
method on ModelUpdator to trigger actions be performed by appropriate
Concrete Models. The concretecontroller calls handle() method to let the

Abstract Model invoke appropriate methods to retrieve the dynamic
information.

5.4 The ModelUpdator

Model updator (Fig. 5.5) is used to encapsulate the request for
updating underlying system. The concreteModelUpdator implementer is
responsible for providing concrete update method, which extracts data from
user requests and invoke actions that can be performed by concretemodels.
Method concretelnit method is used to include application specific
initialization of concreteModelUpdator. The application programmer needs
to provide one concreteModelUpdator for each template, to which the
request will result in changes in the state of the underlying system. If the

request to a page does not change the state of the underlying system, Model
updator is not needed.

49

abstractModelUpdater

iequest : HitpServietRequest
@licontext : ServietContext

Wupdate(request : HitpServietRequest) : void
.nit(request : HttpServietRequest, context : ServietContext)

ncretelnit()

ConcreteModeiUpdater

Fig. 5.5 The Class diagram of abstractModelUpdator

5.5 The PageHandler

A PageHandler is the direct map of the Abstract Model of an EMVC.
It is responsible for modeling the dynamic information of an AMV template.
It is also the interface that encapsulates the request for updating the Abstract
Model.

The information that a concretePageHandler needs to model can be
divided into two categories. The first type of information is used inside of a
loop (called varinsideLoop) in an AMV template. The second type of
information is used outside of any loop (called varQutsideLoop) in the AMV
template. The concretePageHandler models these two types of information
in such a manner that the information can be directly associated with a
particular reserved space in the AMV template without ambiguity.

Consider modeling the dynamic information of AMV template in the
following diagram (Fig. 5.6). This template is used to generate a Web page
about the information of the Universities in the city that the Web user lives.

50

CityName cityLocation
Univ = 3l the Univ. in the city

—— foreachUniv
UniviName UniviLocation
Dept = ail the Dept. of the Univ
-foreachDept

deptName deptLocation
Prof = all the Profs in the dept.
~foreachProf

profName profOffice

Fig. 5.6 A graphic representation of an AMV template

At the time of a request, all the unknown information in the AMV has
been decided. Modeling varOutsideLoop is straightforward. A unique name
inside the AMV template can identify a piece of unique information without
any problem. For example, if I request this page, cityName refers only to
Akron, cityLocation refers only to northeast Ohio. I can use Univ[0] to
identify the University of Akron, and use Univ/1] to refer to the Kent State
University etc. But, let us assume that we want to denote the information
“the name of a professor in a department at a university in the city where the
Web user lives”. How can this be accomplished? If we use a Multi-
dimensional array, then the question becomes how many dimensions are
needed? What if the AMV template has ten or more levels of nested loop?

To denote any unknown information in an AMV template, I use a
three-way numbering system. First [number each loop in the AMV template

(Fig.5.7), according to the order that they appear in the AMV template,
starting from 0.

5t

CityName CitylLocation
Univ = all the Univ. in the city
— foreachUniv (ioop0)
UniviName Univi.ocation
Dept = all the Dept. of the Univ
-foreachDept(icop 1)
deptName depticcation
Prof = all the Profs in the dept.
lrforeacnProf (loop2)—

profName profOffice

Fig. 5.7 Number Loops

e Second I number all the unknown information defined inside a loop.
The information is defined in the loop if its appearance in the loop is
also the first time in the AMV template. Information defined inside a
loop is numbered according to the order they appear. starting from 0

(Fig. 5.8).

cityName cityLocation
Univ = all the Univ. in the City

—~—foreachUniv (10op0)
UnivName (0) UnivLocation (1)
Dept = all the Dept. of the Univ (2)

-foreachDept(loop 1)
deptName (0} deptiocation (1)
Prof = all the Prafs in the dept. (2)
Irfcrea:rProf(be)-—

profName (D) profOffice (1)

Fig. 5.8 Number Variable inside Loop

52

By using this method, all varlnsideLoop of an AMV template can be
represented using a three dimensional array:
loopVars [loopPosition] [variablePosition] [index]. In the given example,
loopVars[2] [0] [x] can be used to denote a professor’s name in a department
at a university in the city where the Web user resides. The loopid attribute of
all the information tags and <var> declaration tag gives the position of the
loop that the unknown information is defined. The loopvarid attribute gives
the position of unknown information within that loop.

Serializable

I’\\
lya
1
-

PageHandler

i
illiresults - Hashtable

uest : HttpServietRequest
ntext : ServietContext

EioopVars : String({0

nit(request : HitpServeletRequest, context : ServietContext) : void
telnit() : void

L

andle() : Hashtable
andle(e : Exception) : Hashtable
A

b o o = e S i — S ——— o -

tpd
T
1
J

E ConcmePageHanderE
L i

Fig. 5.9 The class diagram of PageHandler

Fig. 5.9 is the class diagram of PageHandler. ConcreteController
calls the handle methods of PageHandler to obtain the dynamic information

of an AMV template. Each handle method returns a Hashtable object results,

which encapsulates all the dynamically generated information. results can
contain three types of information: varinsideLoop, varOutsideLoop, and a

53

page to be redirected. For each varOutsideLoop, there will be a name
(information identifier) value (the value evaluated for the information) pair
entry in results. If there are varinsideLoops, there will be one name
(loopVars) value (a three dimensional array) pair entry in results. If the
concretePageHandler decides that the user should be redirected to another
page, there will be one name (redirect) value (the page id to redirect to) pair
entry in results.

There are two handle methods defined in PageHandler. One of which
takes an Exception object as an argument. The exception is thrown during
the Concrete Model updating. Because the exception is also a gesture that
affects the Abstract Model, the Abstract Model can perform proper actions
(such as set appropriate page to redirect) based on the nature of the
exception.

5.6 The PageHandlerSkeletonGenerator

In section 4.3.1, each AMV template contains a declaration element.
This element acts as a contract between the Abstract Model and the AMV. It
helps the Abstract Model implementer to identify which information needs
to be modeled, and provides information that will affect the modeling, such
as the parameters and attributes of the Web page. By doing this, the Abstract
Model developer is isolated from the presentation of the Web page. The
current study provides a tool PageHandlerSkeletonGenerator (PHSG) that
extracts information from an AMV template and generates a skeleton for the
concretePageHandler Java class. The PHSG generates several entries in the
skeleton file based on elements in the declaration part of an AMYV template.

Pagelandiler

1.1

PageHandle:SkéletonGenerator

‘reﬁx : String

Blout : Printwriter
EhandieMethodString : String
BlvarDeciString : String
Loops : Integer
BoopVarNumString : String
iNameString : String

oadDocument(tempiateFile : File) : Element
ElhandleAttribute(deciElement : Element) : void
handieParameter(deciElement : Element) : void
leVarDeclaration(deciElement : Element) : void

BhandieLoopDeclaration(deciElement : Element) : void
WBcrintFirstPart() : void

WwriteVarDeclaration() : void

MwriteHandleMethod() : void

lvarsOutsidelLoop(name : String, description : String, loopid : int, loopvarid : int) : void!
InsideLoop(name : String, description : String, loopid : int, loopvarid : int) : void

Fig. 5. 10 The class diagram of PHSG

Fig. 5.10 is the class diagram of PHSG:

e Method varsOutsideLoop() deals with element
<var name= “varname” loopid=*-1* loopvarid="-1"/>

in the declaration. It generates one method signature:

private void set_varname() {
String key ="varname”
// get value

results.put (key, wvalue);

55

}
This method will be called from the handle method to obtain the value
of one VarOutsideLoop(whose name is varname)

o Method varsinsideLoop() deals with element
<var name= “varname” loopid=*x" loopvarid="y”/>,
where x not equals to -1, y not equals —1. It generates one
method signature:
public String get_LoopxVary (Integer index) {

String value=...;
return value;

}
This method will be called from the handle method to obtain value of
Of one VarinsideLoop (which is in loop x, position y with index index)

o Method handleAttribute() deals with element
<attrib name= "“attribname” value="attribvalue”/>
in the declaration. It generates one declaration entry:

String attribname = attribvalue;

e Method handleParameter() deals with element <param

name="paramname” /> in the declaration. It generates a declaration:

String paramname;
It also generates an entry in method concretelnit:

Paramname = request.getParameter (“paramname”) ;

e After processing all the loop elements in the declaration using method
handleLoopDeclaration(), the PHSG writes several declarations in the
skeleton, for example:

56

int numbLoops =1;
int{] loopVarNum ={2};
//This array stores the control object of each loop

String([] loopControlvVarName={"customer"};

Where numLoops is used to denote the number of loops in the AMV
template; loopVarNum/i] is used to store the number of variables
used inside loop i; LoopControlVarNameli] is used to store the name
of the variable that controls the iteration of loop i.

e The skeleton for handle() method is also generated using method
writeHandleMethod(). It includes two parts:

- To invoke method to get value from any variables outside any loop
and map the name of that variable to its value in results (the AMV).
For example: set_varl();

set_vara();

- To invoke a method to get the value of varinsideLoop if there are
some. This is done by first declaring a three dimensional varying
length array loopVars, then setting the value of each element in the
array through a method call ger_loopxVary and finally putting the
loopVars name value pair into results. The following is the generated
segment for handling loop.
String(l{][] loopVars = new String[numLoops](](]:

for (int i=0; i<loopVars.length; i++)

loopvars(il] = new String(loopVarNum{i]l(]:;
for(int i=0; i<loopVars.length; i++){

Object[] subjects =((0Object[])

results.get(loopControlvVarName(i])):;
int loopObjLength;

if (subjects != null)

loopObjLength = subjects.length;
else

57

loopObjLength = 0;
for (int j=0; j<loopVars[i].length; j++)
loopVars([i] {j]l= new String(loopObjLengthl]:;

e e set value of array element----—-—------
for(int i=0; i<loopVars.length; i++)
for (int j=0; j<loopVars{il.length;j++)
for (int k=0; k<loopVars(i] [j].length; k++){
Class[] formalArg = { new Integer(k).getClass()}:
String methodName ="get_Loopivarj;
Method method =null;
try(
method = this.getClass() .getMethod(methodName,
formalArg) :
Object{] actualArg ={new Integer(k)};
if (method != null)
loopVars(il {j] [k]=(String)

(method.invoke (this, actualArgqg)):
}catch(Exception e) (

System.err.println(e);
}
}
results.put(*"loopVars\", loopvars) ;

As can be seen from the above description. The basic logic of
concretePageHandler has been generated by the PHSG. The following are a
list of things that the implementer does while implementing the class:

- Providing method bodies and adding more methods and fields if

necessary

- Modifying handle() method accordingly (add some data flow logic).

The following is the skeleton that PHSG generated for the sample
AMYV template mentioned earlier:

S===sSss==sS=s======== Sample,Java SEE===sS=SSSSSSSS=SS==SSSSSS

import shuling.thesis.Webappframework.PageHandler;
import Java.lang.reflect.Method;
import Java.util.Hashtable;

public class sample extends PageHandler(
/* date of today Loopid=-1 loopvarid=-1 */
private void set_date() {
String key = *date*;
...// get value
.../ /results.put(key,value);

58

/* where is this request come from Loopid=-1 loopvarid=-1 */
private void set_requesterIP(){
String key = "requesterIP";
...// get value

...//results.put(key,value);
}

/* all the student who have grade A Loopid=-1 loopvarid=-1 */
private void set_studentGA() {
String key = *"studentGA*;
...// get value

...//results.put(key,value);
}

/* whether student is female Loopid=0 loopvarid=0 */
private String get_LoopOvVar(Q(Integer index) {

String values=...

return value;

}

/* the name of the student Loopid=0 loopvarid=1l */
private String get_LoopOvVarl(Integer index) {
String value=...
return value;
}

/* the grade of the student Loopid=0 loopvarid=2 */
private String get_LoopOVar2(Integer index){
String value=...
return value;
}

/* the homepage of the student Loopid=0 loopvarid=3 */
private String get_LoopOVar3 (Integer index) {
String value=...
return value;
}

Hashtable results = new Hashtable():
String requirelLogin = "true";

//Param to be extracted from request:

//the value of the checkbox indicate whether the visitor think the
grade is fair
String fair_or_not;

int numLoops =1;

int([] loopVarNum ={4};

//This array stores the control object of each loop
String{] loopControlVarName={"studentGA"};

public void concretelInit(){

fair_or_not = request.getParameter("fair_or_not"):;

59

public Hashtable handle() {
set_date() ;
set_requesterIP():;
set_studentGAa();

String{] (][] loopVars = new String{numbLoops]([](]:
for (int i=0; i<loopVars.length; i++)
loopVars[i] = new String(loopVarNumf{ill[]:;
for(int i=0; i<loopVars.length; i++){
Object([] subjects =((Object(])
results.get (loopControlvarName({i])):;
int loopObjlLength:
if (subjects != null)
loopObjLength = subjects.length:
else
loopObjLength = 0;

for (int j=0; j<loopVars[i].length; j++)
loopvars{i] [jl= new String[loopObjLengthl];

}

for(int i=0; i<loopVars.length; i++)
for (int j=0: j<loopVars{i)].length;j++)
for (int k=0; k<loopVars([i][j].length; k++){
Class(] formalArg = { new
Integer (k) .getClass()};
String methodName ="get_Loop"+i+"Var"+j;
Method method =null;
try{
method =
this.getClass () .getMethod (methodName, formalArg):;
Cbject([] actualArg ={new Integer(k)}:
if (method != null)
loopVars[i] [j] [k] =(String)
(method.invoke(this, actualArg)):
}catch (Exception e){
System.err.println(e):;
1
}
results.put("loopVars", loopVvars) ;
// set redirect...
return results;
}

public Hashtable handle(Exception e){

.o

return results;

5.7 The Composer

The AMV template and the dynamically generated information
(encapsulated in result returned from handle method) need to be integrated
in order to generate the final view. The concreteController does this by
calling the compose() method of a Composer object The concreteController
first calls composer’s constructor Composer(Document doc, Hashtable
results, PrintWriter out) to create a Composer object. Where doc is a DOM
object that is constructed from an AMV template, results is the Hashtable
object returned from the handle method of concretePageHandler, out is a
printWriter that can be used to write to clients. The basic idea is that
Composer modifies the DOM tree by replacing the unknown information
with data from results, transforms the modified DOM tree to XML format,
and sends to the client through out.

In the provided framework, all AMV templates are parsed and loaded
as XML DOM trees in the memory, where the templates are modified
slightly so that the root of each document tree is a HTML element (<html>).
The following diagram (Fig. 5.11) shows nodes that may appear in the DOM
tree and their potential child nodes (if any):

61

|-~ var

[---- attribVar
myHtmlElement —|—- if

|---- foreach

|---- myHtmiElement

|--— Text

|-— W3CHtmlElement

|---- controlVar
if -=-|---- then
|---- else

then ---|--- myHtmIElement
else —-|---- myHtmlElement

|---- myHtmiElement
|--— Text
|---- W3ChtmiElement

W3ChtmiElement---|--- W3ChtmlElement

Fig. 5.11 The Nodes and Their Children of an AMV DOM Tree

In the diagram, W3ChtmlElement and myHtmlElement both refer to
tags that can appear in a HTML document according W3C’s HTML DTD.
The difference is that W3ChtmlElement can only have W3ChtmiElement or
Text as child nodes, while myHtmlElement can in addition have tags that 1
introduced in section 4.3 as child nodes.

Here is how the composer accomplishes the integration: starting from
the root, the composer recursively modifies each child node until there are
only Text nodes and tags defined by W3C.

The document itself is a myHtmlElement. The composer modifies it
by going through all of its child nodes:

62

e If a child node is a Text node or a W3CHtmlElement, the Composer
skips it and begins to exam the next child node (Fig. 5.12).

<myHtmiFlement> E <myHtmiElement>
/\ T ? /\
Text <W3CHtmElement> I Text <W3CHtmiElement>
Betre : Afer

Fig. 5.12 Text and W3ChtmlElement as Child Node

e If the child node is a var node, the composer retrieves the value that
corresponds to the var from results (the Hashtable object returned by
concretePageHandler). It constructs a Text node based on the value,
and it replaces the var node with the Text node (Fig. 5.13).

(e — g inmor] |
b al

|
|
resulls |
i
'

ra
Vi
<myHuT|Emn?6 <myH
7
<var neme=" date” loopid="-1" —_—r> Aug. 18,2001
loopverid="-1"/> |
i AD
Befre

Fig. 5.13 Var as Child Node

o If the child node is an anribVar node, the composer gets the value
corresponding to the results. It sets the value of the corresponding
attribute of its parent, it then removes the arrribVar node from the

parent (Fig. 5.14).

63

=)

Wﬂhﬂmuﬂ sttributeA=*® w‘l"&l " results
g b"> <myHtmiElement attributeA="values"
s t sitributeB ="b">
<attribVer name="n® attrib="sttributeA"> v
loopidm"-1" loopvasid=".1°/> !
!
Befbre : Afer

Fig. 5.14 attribVar as Child Node

e If the child node is an if node, the composer will retrieve the value
corresponding to its conditionVar child node. If the value is evaluated
to be true, its zhen child node is sent to be modified, otherwise its else
child node is sent to be modified. The if node is then replaced by the
modified node returned (Fig.5.15).

|
lokl } l
<oyHinFlement> 1~ [‘1 -m N <myHtmlFlement>
I P - results { |
3 " - |
|
<condﬁm?umc- ok” <w <else> . 4 * ch:ldnu
loopid="-1° locpveride®.1*/> | modifis
|
A |
slse’ :
| Afer

Fig. 5.15 if as Child Node

e If the child node is a foreach node, the composer first constructs a
new document object. This object acts as a template to hold a new
node that will be used to replace the foreach node. The composer
determines the number of iterations that should take place from the
value corresponding to foreach node’s controlVar attribute (which is

an array) from results. Then, for each iteration, the composer clones
the foreach node, modifies all the child nodes of the cloned node and
inserts the modified child nodes to the new document. A
DocumentFragment objecte is then constructed from the new
document and is used to replace the foreach node (Fig.5.16).

A 2

-—eeww e an dh em s Em E Gw Em -

Fig. 5.16 foreach as Child Node

e Ifitisa myHtmlElement, it is replaced by a modified myHtmlElement

(Fig.5.17).
<myHtm{Element> ' <myHtmiElement>
- ’ xesulu [
i % <myHtmiElement>
<myHunlﬂmem>, (modified)
Befhre

Fig. 5.17 myHtmlElement as Child Node
Fig. 5.18 is the class diagram of the composer. The

concreteController uses constructor Composer(Document doc, Hashtable
results, PrintWriter out) to create a Composer object. Where doc is a clone
of a document representing an AMV, so that the original AMV templates do
not change from request to request. results is the Hashtable object returned
from concretePageHandler. out is a PrintWriter object obtained by calling

65

getWriter() method on a HttpResponse object. When the compose method is
called, the composer calls method handleMyHtmiTag(). handleMyHtmlTag
which in turn calls handleForeach, handlelf handleVar or
handleMyHtmiTag to recursively modify its child node. Finally the
document tree contains only 7ext node and W3ChtmlElement. Recall that
Javax.xml.transform package defines APIs that allow the transformation of
XML into other forms. The composer uses this package to transform the

modified DOM tree into a XML document and prints it to the Web user. The
following is the code segment:

import Javax.xml.transform.TransformerFactory;
import Javax.xml.transform.dom.DOMSource;
import Javax.xml.transform.stream.StreamResult;
import Javax.xml.cransform.Transformer;

try{
TransformerFactory tFactory = TransformerFactory.newlnstance();
Transformer transformer = tFactory.newTransformer():;
DOMSource source = new DOMSource (doc):;
StreamResult output = new StreamResult (out):;
transformer. transform(source, output) ;
}catch(Exception e) {

e.printStackTrace() ;
}

Fig. 5.18 Class diagram of Composer

67

CHAPTER 6 The Experiment

The Java 2 Platform, Enterprise Edition (J2EE)[Sund]) is a fully
featured development framework introduced by Sun Microsystems. It is
designed to simplify complex problems with development, deployment, and
management of multi-tier enterprise applications. The mission of J2EE is to
provide a platform-independent, portable, multi-user, secure, and standard
enterprise-class platform for both client-side and server-side deployments
written in Java.

The J2EE applications are typically composed of three tiers: the client
tier, the middle tier and the enterprise information system (EIS) tier. Fig. 6.1
illustrates such an architecture. The client tier provides user interface and
user interaction. The middle tier provides client services and business logic
for an application. The middle tier may consist of one or more subtiers. Web
tier supports client services through Web containers. EJB tier supports
business logic component services through Enterprise JavaBeans (EJB)
containers. The EIS tier in the backend provides access to existing
information systems. EJB technology is a very good technology for
implementing Concrete Model. However, the Web presentation technology

JSP is not so wonderful due to its inability to separate the presentation and
logic.

68

irewall ——
F EJB Contamer

\ < Informaﬁo:
A Z Systems
RDBMS,

v!

8

Web g}gl- Legacy
Contamer » Hcation
,r (Serviets, JavaMai (Appcaton)
JSP pages
HTML, XML)
) —
Chent Tier Middle Tier EIS Tier

Fig. 6.1 J2EE Architecture ([Kas00])

6.1 Experiment Description

The J2EE Blueprints program provides the official "blueprints" for
building enterprise applications ([Kas00][Sune]). It offers very useful
practice guidelines and architectural recommendations for developers to
build portable, scalable, and robust applications using the latest J2EE
technologies. It is no doubt the best sample application that illustrates the
design and development of Web-based application using J2EE technologies.
J2EE Blueprints contains three applications. The major one is Java Pet Store
(JPS). JPS is a sample e-commerce application, presenting users with
various views of pets for sale; processing orders; managing user accounts
and shopping sessions etc.

Since the goal of this thesis is to provide a framework for separating
the presentation and logic of a Web-based application, instead of

69

implementing an actual application. I feel that it is sufficient to modify an
existing non-trivial application that uses JSP as a major Web presentation
generation technique, unplug its Web presentation part, rewrite the Web
presentation using the template language introduced, and rebuild an
equivalent application using the proposed framework. Because JPS is well
designed and implemented, it maximizes the modularity and reusability of
the components. It allows the replacement of part of the application without
affecting the whole application. It uses JSP pages as the major component of
Web-tier to handle user requests and dynamically generates Web pages. It is
chosen as the test base of the experiment. The goals of the experiment are:
e To re-implement the Web presentation of JPS using the template
language introduced in Chapter 4.
e To model the dynamic information of each Web template (implement
concretePageHandlers).
e To implement a concreteController for JPS.
e To use the framework proposed in Chapter 5 to integrate the new Web
presentation and the EJB-tier and EIS-tier of JPS.

6.2 The Results of the Experiment:
e AMY templates encapsulate all the presentation.
First the sample pages are obtained by running the original JPS
application, so that they can keep the exactly same Web presentation
as the original JPS. Then each page is modified using a XML editor
(XML spy 3.5 is used here). The page is made to comply with XML
standards. For example, is changed to . The dynamic part of
the page is replaced by tags introduced in section 4.3. It proves that

70

HTML tags in addition to tags introduced are sufficient to represent
any type of Web templates. The implementation of Web presentation
(AMV template) is completely separated from the application logic.

e ConcretePageHandler encapsulates logic.

All the templates are processed by the PHSG to generate skeletons for
concretePageHandler. Since most of the logics have been taken care
of in the skeleton. The implementation is done by simply filling in
method bodies, and adding some flow controls in handle method. It
proves that none of the presentation is generated in
concretePageHandler. All the logics related to dynamic information

are contained in concretePageHandlers.

e The framework can integrate the presentation and the logic.
A concreteController is implemented. and the proposed framework is
used to integrate the components. The resulting application provides
exactly the same Web presentation, and functions equivalently.
The extent of presentation and logic separation using Serviet, JSP, and
proposed method is given in table 6.1.

Traditional CGI, Servlet and Existing Templating Proposed
CGI like Framework method
No Some 100%

Table 6.1 Degree of Presentation and Logic separation

71

CHAPTER 7 Conclusions and Future work

This thesis provides a new approach for completely separating
presentation and logic in a Web-based application. For the first time, it
extends the traditional model-view-controller architecture and gives the
definition of the Abstract Model and Abstract Model View. It provides a
template language that allows the presentation of a Web-based application
be developed independently, and provides a framework that integrates the
dynamically generated information with the predefined Abstract Model
View template for generating Web page that is sent to the client. Unlike the
tag based templating frameworks such as JSP and XSP that use totally new
Web presentation methodology, the template language provided here is
based on widely accepted standards in HTML and XML. This allows Web
developers to use existing techniques and tools to develop Web
presentations. Also unlike the script based templating frameworks such as
Webmaro and Velocity that embed special character identified scripts in
HTML code, which is error prone. The current template language is tag
based. Most importantly, the template language allows the page designer to
develop and maintain Web page template totally independent of application
logic.

This thesis is intended to serve as a proof of a concept. There is still a
great deal of room for improvement. For example:

e A DTD can be developed and used to check the validation of an AMV
template.

72

JSP has an “include” directive that allows the content of the resource
be included in the specified place of a JPS page. So a similar tag can
be introduced to give this function.

A tool that helps the development of AMV template can be
developed. This tool can automatically fix the HTML file generated
from HTML editor and make the HTML file comply with XML. The
tool can check the consistency between the declaration tags and tags
used in <html>.

The composer uses recursion to combine the dynamically generated
information and the AMV template. A non-recursion solution may be
used to save space.

The proposed framework is a general framework. It is more concerned
with the identification of components and their interactions of Web
based applications than the detailed Web application development.
The turbine ([ASFc]) framework, a tool for building web applications,
provides a collection of re-usable components that application
programmers can use to rapidly build Web applications. These two
frameworks are not contradictory, but they compensate each other.
Slightly modifications can make these two frameworks work together,
which could be an interesting future project.

73

APPENDIX

The following is the source code for the Java classes that have been

developed for the framework. The Java classes used for testing the
framework (rewriting JPS) are not included because of the length of code.

Class AbstractController.java

package shuling.thesis.webappframework:;

import
import
import
import
import

import
import
import

javax.servlet.http.HEttpServletr;
javax.servlet.http.HttpServletRequest;
javax.servlet.http.HttpServletResponse:;
javax.servlet.ServletException;
javax.servlet.ServletContext;

java.io.PrintWriter;
java.util.Hashtable;
org.w3c.dom.Document;

/* This class contain logics that handle interaction between
controller,abstract model, abstract model view and concrete model*/

public

abstract class AbstractController extends HttpServlet(

//map a pageid to a DOM tree (represent an AMV template) in memory

protected Hashtable templates:;

//page to redirect for general errors

protected String errorPage;

/ /welcome page

protected String welcomePage;

//page to redirect when log in is needed

protected String loginPage:

//map a pageid to a boolean value that indicates whether the
requested page require log in

protected Hashtable requireLogins;

//the context of the servlet

protected ServletContext context;

//the printWriter used for generating http response

protected PrintWriter out;

1/

This method initialize the controller

public void init(){

context = getServletContext():;

//3do any application specific initialization here
concretelInit();

//lcad AMV templates in memory

loadTemplates();

setErrorPage() ;

setWelcomePage() ;

74

setLoginPage();
setRequirelLogins() ;
}

// Application specific initialization goes to here

abstract protected void concretelInit();

// This method Loads the AMV templates in memory

abstract protected void loadTemplates();

// This method sets the value of errorPage

abstract protected void setErrorPagel():

// This method sets the value of welcomePage

abstract protected void setWelcomePagel():

// This method sets the value of loginPage

abstract protected void setLoginPage():

// This method sets the value of requireLogins

abstract protected void setRequireLogins():

// This method extracts pageld from request

abstract protected String getPageld(HttpServletRequest request);

// This method checks whether the customer has signed in

abstract protected boolean isLoggedIn(HttpServletRequest request);

// This method creates and initialize a concrete pageHandler for
the requested AMV and returns it

abstract protected PageHandler getPageHandler (HttpServletRequest
request) ;

// This method creates and initialize a concreteModelupdator for
updating Concrete Model

abstract protected ModelUpdator getModelUpdator (HttpServletRequest
request) ;

public void doGet (HttpServletRequest request, HttpServletResponse
response) throws ServletException(

try(

// Every Http request contains an id of the page a client
requests

String nextPage =getPageld(request):

// check whether the client need to sign in to see the
requested page

boolean requirelogin =
Boolean.getBoolean((String) (requireLogins.get (nextPage))):

// set header

response.setContentType("text/html");

//PrintWriter out = response.getWriter();

out = response.getWriter():

// redirect the client to the login page if he is required to
login but has not signed in
if (requirelogin && !isLoggedIn(request))
redirect(loginPage, request, response):

Exception excep = null;
try(
// get modelupdator for updating Concrete Model
ModelUpdator mu = getModelUpdator (request);
if (mu != null)
mu.update() ;
}catch(Exception e){

75

excep = e;
System.err.println(*ModelUpdator "+e);
}
// get Abstract Model
PageHandler ph = getPageHandler (request):
// hashtable is used to hold all the dynamic generated

information (updated AMV)

Hashtable result = new Hashtable():

// handle method updates the Abstract Model
if (excep != null)

results = ph.handle(excep):
else

results = ph.handle():

String redirectPage = (String)results.get(“"redirect”);
out.flush();
// redirect the client to page specified in “redirect*
if (redirectPage != null)

redirect (redirectPage, request, response);
else(

// make a copy of the AMV template

Document origdoc = (Document)templates.get (nextPage);

Document doc=null;

doc =(Document)origdoc.cloneNode (true);

Composer cpsr = new Composer (doc, results,out);

// combine the AMV template and the Abstract Model to

generate the web page

}

public void doPost(HttpServletRequest request,

cpsr.compose();
}
}catch (Exception e){
System.err.println("doGet"+e);
redirect (errorPage, request, response);

response) throws ServletException(

1

doGet (request, response);

// Redirect “page®" to Web client
protected abstract void redirect(String page,HttpServletRequest
request, HttpServlietResponse response)throws ServletException;

Class Composer.java

HttpServlietResponse

package shuling.thesis.webappframework;

import
import
import
import
import

org.w3c.dom.Element;
org.w3c.dom.Document;
org.w3c.dom.DocumentFragment ;
org.w3c.dom.NodeList;
org.w3c.dom.Node;

76

import org.w3c.dom.Text:

import org.w3c.dom.CharacterData;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;
import javax.servlet.http.HttpServletResponse;

import java.util.Hashtable;
import java.io.PrintWriter;
import java.io.File;

/* This class is used to combine the dynamically generated information
of a web page (the abstract model) and the AMV template and generate
the final page that is sent to client */
public class Composer(

// dynamically generated information

private Hashtable results;

// cloned AMV template

private static Document doc;

private Element root;

string(l1(] (] loopVars;

PrintWriter out;

DocumentFragment tempNode;

Document foreachbDoc;

public Composer (Document doc, Hashtable results,PrintWriter out) {
this.doc = doc:

this.results = results;
this.out=out;
root = doc.getDocumentElement{);

loopvars = (Stringl[](](])results.get("loopVars");
}

public Composer(String fileName) (

cry {
DocumentBuilderFactory docBuilderFactory =
DocumentBuilderFactory.newInstance();
DocumentBuilder parser =
docBuilderFactory.newDocumentBuilder();
Document origdoc = parser.parse(new File(fileName));
doc =(Document)origdoc.cloneNode (true);
root = doc¢.getDocumentElement():;
Node declNode=
root.getElementsByTagName (*declaration®) .item(0);
root.removeChild(declNode) ;
root = (Element)root.getElementsByTagName ("html").item(0):;
}catch (Exception err){
System.err.println(err.toString());
}

results = new Hashtable():

}

public void compose() (

Node htmlNode = doc.getElementsByTagName("html").item(0);
handleMyHtmlTag(htmlNode,-1);

Node newhtmlNode = doc.importNode (htmlNode, true);

Node templateNode =doc.getElementsByTagName(*"template®).item(0);
doc.removeChild(templateNode) ;

// make the updated HTML node the root node

doc.appendChild (newhtmlNode) ;

try{
TransformerFactory tFactory =
TransformerFactory.newInstance() ;
Transformer transformer = tFactory.newTransformer():
DOMSource source = new DOMSource (doc);
StreamResult output = new StreamResult (out):;
/*transform the DOM tree to a XML document and send it to the
client*/
transformer. transform(source, output) ;
}catch(Exception e) {
e.printStackTrace();
}
}
/* This method recursively update each child node of the HTML node
until the children are all W3C allowed elements*/
private Node handleMyHtmlTag(Node root, int subjectid) (
Node current = root.getFirstChild():

while (current != null){
Node next = current.getNextSibling():;
String currentName= current.getNodeName();

if (current instanceof Element) {

// if the child node is a <var>

if (currentName.equals(*"var")){
Node newNode = handleVar (current, subjectid);
//replace <var> with its value
root.replaceChild(newNode, current);
current = next;
continue;

}

// if the child node is <attribvar>

if (currentName.equals("attribvar®))(
// get its value
Node attribValue = handleVar (current, subjectid):
// get the attribute name in the parent tag
String attribName =

((Element)current) .getAttribute("attrib");
// set the value of the attribute in the parent tag
((Element)root) .setAttribute (attribName,
((Text)attribvValue) .getDatal()):;

// remove <attribVar> tag
Node toRemove = current;
current = next;
root.removeChild (toRemove) ;

78

continue;
}
// if the child node is <if>
if (currentName.equals("if*))({
Node newNode = handleIf(current, subjectid):
root.replaceChild (newNode, current);
current =next:;
continue;
}
// if the child node is <foreach>
if (currentName.equals("foreach"))(
Node newNode=handleForeach(current, subjectid):
root.replaceChild (newNode, current) ;
current =next;
continue;

lelse{ // if the child node is html tags that may contain
introduced tags and other html elements

handleMyHtmlTag (current, subjectid):;
current =next;
continue;
}
lelse

current = next;

}

return root;

}

private Node handleForeach(Node foreachNode, int subjectId) {

DocumentBuilderFactory factory=
DocumentBuilderFactory.newlnstance():;

try(
// create a new document as the temporary holder

DocumentBuilder builder = factory.newDocumentBuilder():
foreachDoc = builder.newDocument();

Element foreachroot = foreachDoc.createElement (" foreachDoc");
foreachbDoc.appendChild(foreachroot) ;

if(foreachNode instanceof Element) {
Element foreachCondElement =(Element)foreachNode;
String controlVarName =
foreachCondElement.getAttribute("controlvar®);
// get the array whose elements shall be gone through
Object[] subjects = (Object{])results.get(controlVarName) ;
int length = subjects.length;

// a DocumentFragment object to hold the updated child
node

DocumentFragment fragofSubject:;

for(int i=0; i<length:; i++)(
fragofSubject = doc.createDocumentFragment();
// clone the foreachnode
Node clonedNode = foreachNode.cloneNode(true) ;

/* operate on the cloned node so that the original node
does not change*/

79

Node current = clonedNode.getFirstChild();
while (current != null){
Node next = current.getNextSibling():;
String currentName= current.getNodeName () ;
if (current instanceof Element){
if (currentName.equals(*var")){
Node newNode = handleVar (current,i):
fragofSubject.appendChild(newNode) ;
current = next;
continue;
}
if (currentName.equals("if")){
Node newNode = handleIf(current, 1i):
fragofSubject.appendChild(newNode) ;
current =next;
continue;
}
if (currentName.equals("foreach")) (
Node newNode= handleForeach(current,i):
fragofSubject.appendChild(newNode) ;
current =next;
continue;
lelse(
Node newNode =handleMyHtmlTag(current, i);
fragofsSubject.appendChild(newNode) ;
current =next;
continue;
}
lelse(
fragofSubject.appendChild(current) ;
current = next;

}

fragofSubject.normalize();
Node toappend=
foreachDoc.importNode (fragofSubject, true) ;
// append the document fragment to the new document
foreachroot.appendchild(toappend) ;

}
}
}catch(Exception e){
System.err.printlin(e);
}
/* in the original document, create a document fragment and
copy all the child nodes of the new document to it*/
tempNode = doc.createDocumentFragment();
NodeList list =
foreachDoc.getElementsByTagName { "foreachDoc") .item(0) .getChildNodes () ;
for (int i=0; i<list.getLength(); i++){
Node anode =doc.importNode(list.item(i), true);
tempNode. appendChild(anode) ;
1
tempNode.normalize();
return tempNode;

80

}

/* return the updated child nodes of <then> if the <conditionvVar>
evaluated to true

return the updated child nodes of <else> if the <conditionvar>
evaluated to false*/
private Node handleIf(Node ifNode, int subjectId)(

if(ifNode instanceof Element) {
Element ifElement = (Element)ifNode;

Node varNode =
ifElement.getElementsByTagName(“"conditionVar®).item(0);

String value = ((CharacterData)handleVar (varNode,
subjectId)) .getDatal();

bocolean istrue = value.equals("true®):

Node
thenNode=ifElement.getElementsByTagName("then") .item(0) ;

if (istrue)
return handleThenElse(thenNode, subjectId):
else(
Node elseNode =
thenNode.getNextSibling() .getNextSibling() ;
return handleThenElse(elseNode, subjectId):
}

}
return null; //throw exception

}

// return the value of the <var>

private Text handleVar (Node varNode, int subjectId) {
Text textNode= doc.createTextNode(""):;

int loopvarid =-1;
if(varNode instanceof Element) {
Element varElement=(Element)varNode;
int loopid =
Integer.parselnt(varElement.getAttribute("loopid")):;
String value;

if (loopid != -1){ // var inside loop
loopvarid =
Integer.parselnt (varElement.getAttribute("loopvarid")):;
value = loopVars({loopid] {loopvarid] [subjectId];
}
else({ //var outside any loop
String name= varElement.getAttribute(*"name®);
value = (String)results.get(name);
}
textNode = doc.createTextNode(value):;
}
return textNode;
}
// return the updated child nodes of <then> or <else>//
private Node handleThenElse (Node node, int subjectId) (

DocumentFragment frag = doc.createDocumentFragment();

handleMyHtmlTag (node, subjectId):

NodelList child = node.getChildNodes():

for (int i=0; i< child.getlLength()}; i++){
Node cld= child.item(i);
frag.appendChild(cld.cloneNode(true));//Note: must clone,

otherwise the node is moved!
}
return frag:;

public static void main(String[] args)({
String fileName= args{0];
Composer cp= new Composer(fileName) ;
cp.compose () ;

Class ExceptionMap.java

package shuling.thesis.webappframework;

import java.util.Hashtable;

import javax.servlet.http.HttpServlietRequest:
import javax.servlet.ServletContext;

import java.io.PrintWriter:;

/* this class map an exception to the id of a page that the client
should be redirected to */

public abstract class ExceptionMap implements java.io.Serializable(
private Hashtable map;

public ExceptionMap () (
map = getMap():;

1

abstract protected Hashtable getMap():

public String mapToPage (Exception e){
String classname = e.getClass () .getName();
return (String) (map.get({classname));

Class ConcreteModel.java

package shuling.thesis.webappframework;

82

/* interface that is used to identify the semantics of being Concrete
Model*/

public interface ConcreteModel{
}

Class ModelUpdator.java

package shuling.thesis.webappframework;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.ServletContext:;

/* this class is used to map the Http request to actions that should be

performed by proper concrete models*/
public abstract class ModelUpdator implements java.io.Serializable{

protected HttpServletRequest request;
protected ServletContext context:

public ModelUpdator(){

}
public abstract void update() throws Exception;

public void init(HttpServletRequest request, ServletContext
context) {

this.request =request;
this.context = context;
concretelnit();

}

protected abstract void concretelInit();

Class PageHandler.java

package shuling.thesis.webappframework;

import java.util.Hashtable;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.ServletContext:;

import java.io.PrintWriter:;

/* This is the base class of all pagehandlers, all the subclass must
provide concrete "handle®" method to set the values for all the
dynamically. This class corresponds to the abstract command in the
command pattern */
public abstract class PageHandler implements java.io.Serializable(

protected Hashtable results;

protected HttpServletRequest request;

protected ServlietContext context:;

protected PrintWriter out:

83

public PageHandler () (

results = new Hashtable():;
}
/* if the concrete model has been updated successfully */
public abstract Hashtable handle() throws Exception;
/* if the concrete model has not been updated successfully */
public abstract Hashtable handle(Exception e);

public void init(HttpServletRequest request, ServletContext
context, PrintWriter out){

this.request =request;
this.context = context:;
this.out =out;
concretelInit{);
}
protected abstract void concretelnit();

Class PageHandlerSkeletonGenerator.java

package shuling.thesis.webappframework;

import java.io.BufferedReader;
import java.io.PrintWriter;
import java.io.FileReader:
import java.io.FileOutputStream;
import java.io.FileInputStream;
import java.io.File:

import org.xml.sax.InputSource;
import org.w3c.dom.Element;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;

import org.xml.sax.SAXException:
import org.xml.sax.SAXParseException;
import org.xml.sax.SAXException;

import javax.xml.parsers.DocumentBuilderFactory:;
import javax.xml.parsers.DocumentBuilder:

import java.io.BufferedReader:

import java.io.FileInputStream;

/* This class takes template file names from the command line and

generate corresponding page handler java skeleton files. The developer

can implement page handler class base on the file generated.The

assumption that the template files follow xml syntax and rules for AMV

template */

public class PageHandlerSkeletonGenerator{

//prefix of the file name to genetate, it's the same as the prefix

of the template file
private static String prefix = *";
//printWriter to write to the file generated

private static PrintWriter out;

//String for method "handle" in generated java file
private static String handleMethodString:

private static String concreteInitString:;

//String for variable declaration in generated java file

private static String varDeclString:

private static int numLoops:; // number of loops in the

template file declaration
private static String loopvarNumString="":
private static String loopObjNameString="":;

’

//Suppose all the AMV template files are in the same directory of

this file
public static void main(String{] args){

for (int i=0; i<args.length; i++){

handleMethodString = * public Hashtable handle() {\n";

varDeclString ="";

concreteInitString =" public void concretelInit() {\n*";

numLoops =0;

int endIndex = args{i].lastIndexOf("."):;
prefix = args(i].substring(0, endIndex) ;
System.out.printin("prefix"+prefix);

try(
String skeletonfileName = prefix +*.java";
System.out.println("SKELE"+skeletonfileName) ;

// create the java file with the same prefix of the amMv

template file

out = new PrintWriter (new FileOutputStream(new

File(skeletonfileName))):
}catch (Exception e) {

System.err.println(e.getMessage());
}

printFirstPart();
Element root = loadDocument (new File(args(il)):
root.normalize();

// declaration node of AMV template has all the
needed

Node declarationNode =
root.getElementsByTagName ("declaration®) .item(0);

Element declElement = (Element)declarationNode:;

handleAttribute(declElement);

handleParameter (declElement) ;

handlevVarDeclaration(declElement) ;

handleLoopDeclaration(declElement) ;

writeVarDeclaration():;
out.println(concretelnitString);
writeHandleMethod();
}
}
//load and parse the AMV template file

public static Element loadDocument (File templateFile) {

information

85

Decument doc = null;
try {
DocumentBuilderFactory docBuilderFactory =
DocumentBuilderFactory.newlInstance() ;
DocumentBuilder parser =
docBuilderFactory.newDocumentBuilder() ;
doc = parser.parse(templateFile);
Element root = doc.getDocumentElement():
root.normalize();
return root;
} catch (Exception err) {

System.err.println(err.toString());
}

return null;

}

/* This method handles attributes, which are information that

should not be known by the client, but needed for updating Abastract
Model */

private static void handleAttribute(Element declElement) {
NodeList attriblist
=declElement.getElementsByTagName ("acttrib") ;
if(attribList!= null && attriblist.getLength() >0){
Element attribElement;
String attribName;
String description:
String attribDeclsString:;
String attribvalue;
for(int i=0; i<attriblist.getLength(); i++){
attribDeclString ="";
attribElement =(Element) (attribList.item(i}):
attribName = attribElement.getAttribute(“"name");
description = attribElement.getAttribute(“*description”);
attribValue = attribElement.getAttribute("value");

if (description.length()>0)
attribDeclString += * //"+description +"\n"*;

// write a "String attribName = attribValue" entry in the
generated file

attribDeclString += " String "+attribName+* = \""+
attribvalue + *"\";\n";

varDeclString += attribDeclsString:;
}

}

/* This method extract names of parameters that should be found in
the request*/

private static void handleParameter (Element declElement) {
NodeList paramList = declElement.getElementsByTagName ("param”);
if (paramList!= null && paramList.getLength() >0){
Element paramElement;
String paramName:
String description:
String paramDeclString:;
for(int i=0; i<paramList.getLength(): i++){
paramDeclString ="";
paramElement =(Element) (paramList.item(i)):

86

paramName = paramElement.getAttribute(*name”);

description = paramElement.getAttribute("description”);

parambDeclString += "\n //Param to be extracted from
request:\n”";

if (description.length()>0)

paramDeclString += " //"+description +"\n*;

paramDeclString += * String "+paramName+";\n";

varDeclString += paramDeclString;

concretelnitString += * *+paramName+" =
request.getParameter (\ " "+paramName+"\") ;\n";

}
}
concretelnitString += * ...\n I\n*;

}

/*for each variable,generate a method skeleton which shall be
implemented later to set the value of the variable */
public static void handleVarDeclaration(Element declElement) {
NodeList varList = declElement.getElementsByTagName ("var”):

if(varList != null && varList.getLength()>0){
for(int i=0; i< varList.getLength(); i++){
Element varDeclaElement = (Element) (varList.item(i)});
String name = varDeclaElement.getAttribute("name");
String description =
varDeclaElement.getAttribute("description”);
String loopidString =
varDeclaElement.getAttribute(*loopid*);
String loopvaridstring =
varDeclaElement.getAttribute("loopvarid®);
int loopid =
Integer.parselnt (varDeclaElement.getAttribute("loopid")):;

String comment =" /* * + description +"
Loopid="+loopidsString+" loopvarid="+loopvaridString+" */*;
if (loopid == -1)
varsQutsideLoop (name, comment) ;
else(

int loopvarid =
Integer.parselnt (varDeclaElement.getAttribute(*loopvarid"));

varsInsideLoop (name, comment, loopid, loopvarid):;
}

}
}

/*For variables outside loop, generate a "set_vVarName" method
skeleton */

public static void varsOutsideLoop(String name, String comment) {

out.println(comment) ;
out.println(* private void set_"+name +"(){");

out.println(* String key = \""+name +"\";");
out.println("® ...// get value *):;
out.println(" ...//results.put(key,value):");

out.printin(* I\n");
out.flush();

handieMethodString +=" set_" + name +"{);\n";
}

/* For variables inside loop, generate a "get_loopXVarY" method */
public static void varsInsideLoop(String name, String comment, int
loopid, int loopvarid){
out.println(comment) ;
out.printlin(" public String get_Loop"+loopid
+*Var"+loopvarid+" (Integer index){("):;

out.println(* String value=...");
out.println("* return value;");
out.println("* I\n*):
out. flush();

}

/tt

* This method generates some variable declartions in the resulting
java file

* loopNum is the number of loops in the template file

* loopVarNum(i] is the number of variables for loop i

* loopSubjName(i] is name of the variable that controls loop i

* assume that the loopid start from 0, the declaration of the loop
is placed by the order

* of the loopid

*/

public static void handleLoopDeclaration(Element declElement) {

NodeList looplList = null;
loopList=declElement.getElementsByTagName("loop");

if(loopList != null && looplList.getLength()>0) {

loopVarNumString = * int(] loopVarNum ={";

loopObjNameString=" //This array stores the control object
of each loop\n":

loopObjNameString +=" String{] loopControlvarName={(":;
for(int i=0; i< loopList.getLength(); i++){

numLoops ++;

String name = **";

String subject=""; //var that controls the loop

int varNum; //How many variables are declared
inside the loop

Element element = (Element) (loopList.item(i));
subject = element.getAttribute("subject”);
varNum = Integer.parselnt(
element.getAttribute(*varNum®));
loopVarNumString += varNum +*,";

r

loopObjNameString += "\""*+subject+"\",";

88

// generate the beginning part of the java file

public static void printFirstPart() {

out.println("package

shuling.thesis.myPetstore.pageHandlers;\n");

out.println(*import

shuling.thesis.webappframework.PageHandler;");
out.println("import java.lang.reflect.Method;"):
out.println("import java.util.Hashtable;\n"):;

out.println(*public class "+prefix+" extends PageHandler{");

out.flush();
}

// generate the variable declaration of the java file

public static void writeVarDeclaration() {

if (numLoops >0)
varDeclString += *

\n int numloops =" + numLoops +";\n";

if (loopVarNumString.length({)>0)

loopVarNumString=

loopvVarNumString.substring(0, loopVarNumString.length(})-1)+ *}:;\n";
if (loopObjNameString.length()>0)

loopObjNameString

loopObjNameString.substring (0, loopObjNameString.length()-1)+"};\n";
varDeclString += loopvVarNumString:
varDeclString += loopObjNameString;

out.println(varDeclsSt
out.flush();
}

ring):;

// generate handle method skeleton of the java file

public static void writeHandleMethod() {
ocut.println(handleMethodString);

if (numLoops >0){
out.println("
String[numLoops]{1(1:");
out.printlin("
out.println(*
Stringl(loopvVarNum(i]i[];"):

out.println(*"
out.println("

out.printlin(*"
out.println("
out.println("
out.println(*"
out.printlin("
out.println("
j++)*);
out.println("
String{loopObjLengthl;\n *);
out.println("

string(l1 (][] loopVars = new

for (int i=0; i<loopVars.length; i++)");
loopvVars(i] = new

for(int i=0; i<loopVars.length; i++){"):
Object{] subjects

=((Object(]l)results.get(loopControlvVarName(i]));");

int loopObjLength;*):;

if

(subjects != null)"):;
loopObjLength = subjects.length;*);

else");

loopObjLength = 0;:\n");

for (int j=0; j<loopvVarsii].length;

I\n");

loopVars([il {jl= new

89

out.println(*"
out.println("

j<loopVars[i] .length;j++)");

out.println("

for(int i=0; i<loopVars.length; i++)")
for (int 3j=0;

for (int k=0;

k<loopVars(i] (j].length; k++){");

out.println("

Integer (k) .getClass()};");

out.println ("

=\"get_Loop\"+i+*"Var*+j;");

out.println("
out.println("
out.printlin(*

Class[] formalArg = { new
String methodName
Method method =null;");

try(*):
method =

this.getClass () .getMethod (methodName, formalArg):;"):

out.println("

Integer(k)}:"*);

out.println(”
out.println("

Object[] actualArg ={new

if (method != null)");

loopVars([i] {j] [k]l=(String) (method.invoke(this, actualArg)):");

}

out.println(*
out.println("
out.println(”
out.printlin("
out.println("®

out.println(*
out.println("
out.println(*
out.println("*
out.println("
out.println("”
out.println("
out.println("

}catch(Exception e) (")
System.err.println(e);")
) 2l B+
")
results.put(\"loopVars\", loopvVars):;");

// set redirect...");

N

return results;"):

I\n");

public Hashtable handle (Exception e)(*):;

")

out.println(*}\n");

out.flush();

-ee)

return results;"):;

.
’

REFERENCES

[ASFa] Apache Cocoon Homepage. Apache Software Foundation. Online:
http://xml.apache.org/cocoon

[ASFb] Apache Velocity Homepage. Apache Software Foundation. Online:
http://jakarta.apache.org/velocity/

fASFc] Apache Turbine Homepage. Apache Software Foundation. Online:
http://jakarta.apache.org/turbine/

[AABO0O] Avedal, Karl; Ayers, Danny; Briggs, Timothy etc. Profession JSP.
Wrox Press Inc. 2000

[Dew98] Dawna Travis Dewire. Thin Clients. McGraw-Hill publishing 1998
[EG99] Eddelbiittel, Dirk; Goffe, William L. Display and Interactive

Languages for the Internet: HTML, PDF, and Java. Computational
Economics. Volume: 14, Issue: 1/2, October 1999, pp. 89-107

[FSF] Freemarker Homepage. Free Software Foundation, Inc. Online:

http://freemarker.sourceforge.net/
[GoF94] Erich Gamma, Richard Helm,Ralph Johnson, and John Vlissides;

Design Patterns: Elements of Reusable Object-Oriented Software; Addison
Wesley; October 1994

91

[Hal00] Marty Hall. Core Servlets and JavaServer Pages. Prentice Hall PTR,
Upper Saddle River, NJ 07458, 2000

[Kas00] Nicholas Kassem etc. Designing Enterprise Applications with the
Java 2 Platfrom, Enterprise Edition. Addison-Wesley Publishing. 2000

[KK00] zusammen mit S. Kuhlins: "Java Servlets vs. CGI - Implications for
Remote Data Analysis" Studies in Classification, Data Analysis, and
Knowledge Organization Vol. 16, Springer-verlag, Heigelberg, 2000, pp.
227-236

[KP88] Krasner, Glenn; Pope, Stephen "A Description of the Model-View-
Controller User Interface Paradigm in the Smalltalk-80 system." Journal of
Object Oriented Programming, 1988. vol. 1, no. 3, pp. 26-49

[LCG92] T. Berners-Lee et al, "World Wide Web: The Information

Universe", Electronic Networking: Research, Applications and Policy, 1(2),
1992

[Mar99] Benoit Marchal. XML By Example. QUE 1999
[NCSA] Common Gateway Interface Home Page. National Center for

Supercomputing Applications. Online:
http://hoohoo.ncsa.uiuc.edu/cgi/intro.html

92

[PCO00] Perrone, Paul; Chaganti, Venkata. Building Java Enterprise Systems
with J2EE. SAMS, Macmillan USA 2000

(Sem] WebMacro Homepage. Semiotek Inc. Online:
http://www.webmacro.org/

[Suna] Java Servlet Homepage. Sun Microsystems, Inc. Online:
http://java.sun.com/products/serviet

[Sunb] Java Server Pages Homepage. Sun Microsystems, Inc. Online:
http://java.sun.com/products/jsp/

[Sunc] Java Technology & XML. Sun Microsystems, Inc. Online:
http://java.sun.com/xml/index.html

[Sund] Java 2 Enterprise Edition Home Page. Sun Microsystems, Inc.
Online: http://java.sun.com/j2ee/

[Sune] J2EE blueprints Homepage. Sun Microsystems, Inc. Online:
http://java.sun.com/blueprints/

[TGH96] Tittel, Ed; Gaither, Mark; Hassinger, Sebastain. CGI Bible. Foster
City, CA : IDG Books Worldwide, 1996

[W3Ca] HyperText Markup Language Home Page. World Wide Web
Consortium. Online

http://www.w3.org/MarkUp/

93

[W3Cb] Extensible Markup Language (XML) World Wide Web Consortium
http://www.w3.org/ XML/

VITA AUCTORIS

Shuling Nie, female, was born on November 1, 1973 in Sichuan
China. She got her associative degree in Accounting from the Southwest
Finance and Economics University in Chengdu China in 1995. She got her
Bachelor degree in Computer Science from the University of Windsor in
1999. She is expecting to get her Masters degree in Computer Science from
University of Windsor in January 2002.

95

	A framework for completely separating the presentation and logic of Web-based applications.
	Recommended Citation

	tmp.1363353483.pdf.vNfeZ

