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b Abstract

Most of the objective functions that arise in nonlinear programming are compli-
cated comporntlons of transformed sums and products of a single var:able thet i s,
they are factorable. If a factorable function is twice differentiable, then its Hessian
matrix can be wr:tten in dyadic form. That i is, 1t can be expressed as a sum of rank
one matrices, i.e. outer products or dyads, and pairs of rank one matrices, - '

This thesis presents a new modification of Newton’ method for minimizing

factorable functions which exploits the fact that most of the dya:ds appear in pairs.

‘This-results in an improvement over the method given by Sisser [1982] id that it

avoids the unnecessary transformations required at each iteration.

In addition, the modification"presented in this thesis does not require an ordering
of the dyads at each iteration,\{dc:s-it require the calculation of an expensive
perturbation parameter in iWns aving an indefinite Hessian matrix.
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Chapter 1 - :
Introdué¢tion

1.1 Introduction

The purpose of this thesis is to present a new modification of Newton’s method - ‘
for the solution of the unconstrained minimization probleﬁ. The unconstrained
minimization problem is one of determining the values of several.variables that
will minimize a function of thése variables. A well known techrﬁque for solving
this problem is Newton’s method. However, Newton’s method involves the calcu-
lation and inversion of the Hessian, i.e. second derivative, matrix. This drawback
has lc}q to the development of Quasi-Nt;wton, or Variable metric, methods. These
methods use gradient, i.e. first derivative, information to approximate the Hessian
matrix. Recently, the concept. of a factorable function:has been used to overcome
the difficulties associated with calculating and inverting the Hessian matrix. This
has given rise to Sisser’s modified Newton method, which is competitive witil the
Quasi-Newton methods. Our new modification of Newton’s method, which can be .
thought of as an extension of Sisser’s method, takes further advantage of factorable

function to overcome difficulties associated with the Hessian.

-
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(i}

1.2 Survey

The unco;lstralned minimization problem is to obtain a set of \"1111cs for several vari-
-ables whxch minimize a function of those variables. Practlml applications of this
probl‘grt;x include nonlinear regression {Denms and Schnabel, 1083}, engincering de-
sign [Fratta et al., 1973], and mathematicdl programming [Fiacco and McCormick,
1968].

The nonlinear regression problem is important to fields such as physics, chem-
tistry, and medicine, etc. Dennis and.Sglma-bel [1983, p.6] describe a prob]o:ﬁ arising
in physics that involves fitting a bell shaped curve to twenty picces of solar spee-
troscopy data.

In Fratta et al (1973, p.97], a i;onlinear unconstrained, multicommodity flow

problem is descrxbed This problem has apphcatxon to the design of the ARPA

computer network.

-

The mathematlcal programming prdblem of minimizing a nonlinear function
subject to nonhnear equality constraints also has many practmal applications. Fi-
acco and McCormick [1968] show how this problem can. be solved by solving a
sequence of unconstrained minimization problems,

Due to the practical applications of the unconstrained minimization problem, &
considerable amount of effort has been expended on the development of efficient al-
gorithms for their solution. One of the best known methods is Newton's method. It
Has the advantage that if it converges, it does so at a superlinear, or even quadratic,
rate. Also, since Newton’s method requires the calculation of the Hessian matrix,
a further benefit is that the sufficient conditions for optimality can be verified.

Although Newton’s method is theoreticallyh ctive, it has at least three draw-
backs. The first is that to guarantee convergence, the initial estimate of the solution
must be “close” to the actual solution. The second is that if the Hessian matrix is
nof jmsitive definite, the Newton iteration may be undefined. The third drawback is
that the calculation and inversion of the Hessian can be cdmputationally cxpemivf.;:

These drawbacks have led to various modification of Newton’s method.
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In order to guarantce convergence for any initial estimate, line search techniques

~can be used at each iteration to determine a suitable step in the Newton direction

(sc¢ [Dennis and Schnabel, 1983] for a good discussion of currently used line search

- techniques). If the Hessian is not positive definite, it can be approximated by a

‘matrix which is positive definite. A  popular strategy [Gill et al., 1981] is to add to

the Hessian a sufficiently large positive multiple of the identity matrix. In order to

avoid calculations involving the Hessian matrices, Quasi-Newton method [Dennis
<

o\
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and More, 1977] have been developed. Essentially, these methods use gradient""'

information to build an approximation to the inverse Hessian at each point.

However, avoidance of the Hessian has resulted in certain limitations to the

minimization process. The methods using-actual Hessians are more reliable and

usually require significantly fewer iterations and function evaluations. Also, avail-
abilityr;of the Hessian allows an easy check to whether a possible solution satisfies
the necessary and sufficient conditions for a local minimum.

Recently, the concept. of factorable functions [McCormick, 1983] has led to a

- modification of Newton’s method {Sisser, 1982] which overcomes some of the diff-

culty in calculatlng the inverse Hessian matrix. McConmcL observed that most of
the objective functions that arise in nonlinear programrmng are complicated com-
positions of transformed sums and products of functions of a single variable, He
then formalized a class of functions, called fac.torable functions, based on his ob-
servation. He showed that 1f a factorable function is at least twice. differentiable,
its Hessian can be expressed in a special dyadic (outer product) form. This special
form prov:dcs an easy way to mampulate the actual Hessian. Also, the evaluatmn
of the gradient vectors and Hessian matrices require little additional calculatxon or
storage once the function itself has been evaluated.

In Jackson and McCormick [1986], the authors state that, since the discovery

of factorable functions, the theory of factorable programming has been further de--

veloped and refined in a variety :(;;vays. In particular, they mention that routines
from FACSUMT [Mylander et al., 1971; Pugh, i972; Ghaemi and McCormick, 1979]

have been separated out into the stand alone package FACTIN. The FACTIN pack- -

N

&



CHAPTER 1. INTRODUCTION . | 4
age can be used \Tuth any nonlinear programming s-*yétem fo automatically provide
the values of the function, gradient, and Hessian at particular & point. The basic
requirement for FACTIN is that the user write the problem in factorable form.

Jackson and McCorm:ck state further that FACTIN is just an input processor.
It contains no code that explmts the spec:a.l structure of factorable function, i.e.
the dyadic form of Hessian. _

A current version of the factorable programming system is c;lled FACTPROG.
It will require that a user be able to present the objective function in a natural
mathematlcal language. Then, it w1ll translate the input into factorable form and

process the mput to produce the dyadic form of the Hessian.

Sisser [1982] has taken the advantage of the dyadic form of the Hessian to develop

a modified Newton’s method for minimizing factorable functions. An iteration of
Sisser’s method proceeds as follows. The Hessian matrix, which is naturally given
as a diagonal matnx plus the sum of dyad pairs, is converted by a transformation
1nto a diagonal matrix plus an equivalent sum of symmetrlc dyads. If the dingonnl
matrix is not positive definite, the neg'ative and zero elements are replaced by a
value of one. A new symmet‘ric dyad is added for cach diagonal element that is
changed. Then, the string of symmetric dyads is arrang(;d in non-increasing order
according to their nonzero ‘eigenvalues.

The inverse Hessian is ogtaiﬁed by using the SMW updated formula [Sherman
and Morrison, 1949; Woodbury, 1950) to add the symmetrice dya_ds, once at a time, to
the diagonal matrix. This update formula provides a test which can be used before

a dyad is added to determine whether the resulting rlr)atnx will still be positive

definite. When adding a dyad causes the loss of positive definiteness, a lower bound

on the smallest eigenvalue of the Hessian will be computed in order to construct a
positive definite approximation to the ﬁ—o;sian.

Computatibnal results with Sisser’s method show that the factorable function
approach is competitive with the .other minimization algorithms, for gxample, the

- Quasi-Newton methods. The number of iterations and function evaluations‘required

by Sisser’s method is much less than the number required by the well known BFGS

)
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method. HoWyer, the computational effort required at each iteration of Sisser’s
, method is consi(l./rably larger. This is due to the transformations, the ordering,
- lRknd the indefinite Hessian strategy. Although Sisser’s method requires expensive
iferations, it does provide reliability in that it solved hard problems v.féhich other
methods could not solve. These favorable results indicate the advantages, and capa-
bilities, of the factorable function approach to unconstrained minimization problem.
.Tllllﬁ, the factorable function approach should be further investigated.

This thesis presents 2. new modification of Newton's method for minimizing
factorable functions. The new moaiﬁcation exploits the fact that most of the dyads
appear naturally in pairg.‘ This results in an improvement over Sisser’s method
in that tr:;nhforlllations required at each iteration are avoided. ' In addition, the
modification does not require an ordering of dyads, nor does it require the expensive
calculation of a perturbation parameter when the positive definite Ap.roperty of the

Hessian is destroyed.

1.3 Mathematical background

In this thesis we consider the unconstrained minimization problem given by
min{f(z)|z € R}, (1.1)

“where f : R®" — R is at least twice continuously difféfentiable. In particular, we

wish to determine a strong local minimizer for f(z). .

Definition 1.3.1 The point i is a strong local minimizer for (1.1) if there exists

an € >0 such.that f(2) < f(z) forallz € {z € R*| ||z -3 |<ez#2}). ~

The first-order necessary condition for # to E)e a strong local minimizer, or
simply, a 'minimizer, for (1.1) is given in Lemma (1.3.1), while the second-order
sufficient condition is given in Lemma (1.3.2). First, we define the gradient of f at

r by

: ' #M\ Vf(z) = (%@),...,%@)T,
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where the superscript “T” denotes matrix and vector transposition, and the Hessian
matrix of f at z by
af
-(7)]
Or,0z;

Hi(z) = V2 f(z) = [
where 1 < 4,7 <n.., )

-

Lemma 1.3.1 If the point £ € R" is a sirong local minimizer for (1.1), then
Vf(z)=0.

Lemma 1.3.2 If# € R" is such that Vf(£) = 0 and if Hy(z) is positive definite,

then I is a strong local minimizer for (1.1).

The algorithms for the solution of (1.1) considergd heréin attempt to find a
point  such that Vf(Z) = 0 and M,(%) is positive definite. They are all descent
methods in that they produce a sequence of iteratcs Trp1 = g+ prdy, where g is
some initial estimate of the minimizer #, d is a descent direction as defined below,

and py is a step size, such that f(zi41) < f(z4).

-

]

Definition 1.3.2 A vector d is said to be a descent direction for f(z) at the point
z if VF(z)Td < 0.

]
=g

The existence of a step size px > 0 is guaranteed by the following lemma.

Lemma 1.3.3 If d is a descent direction for f(z) at z, then there ezisis a p>0
such that

f(z + pd) < f(z)

for0< p < B,

. The descent methods to be considered have the form of the following model

algorithm. 7
Model algorithm

Let z, be given as a&q}gﬂ al estimate of the minimizer # and let Hy be a positive
definite matrix. Set k = 0. '
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1. Test for convergence: If ||V f(z;)|| = 0, stop with # = z,. Otherwise, goto
2.

2. Determine a search direction: Set d;, = —fI,;‘IVf(:rk).

3. Determine a optimal step size: Choose p; such that f(zx + prdy) =

min{ f{zx + pdi)| p > 0}.

4. Update: Sect 14y « z; + pidy, determine a positive definite matrix Hip,

and k «— k + 1. Goto Step'1

Some remarks are in order. In practice, the convergence criteria is replaced with
|V f(zx)]] < € where, for example, € = 107. The direction d;. is a descer‘1t direction
since Hy, and thus H o', is positive deﬁnilte. There are several difficulties aséociated
with acte;nlining the step size p;. For i;hstancel, the solution of the minimization
problem; min{f(zx + pdi)|p > 0}, nlla'ylnot exist. Even if the solution does exist,
there 1s no guarantee thz_i'z the best p ;:_\an be obtained. A reasonable solution to the
step size problem can be found:in Dennis and Schnabel [1983]. Their method is

summarized in the following Step 3'. : ‘
3' Determine a suitable step size: Set J=1p;=1,and a =10"%

(a) If f(:rk + p;di) < f(zs) + ap;V f(zi) T dy, then accept p; and set p; = p;.

| (b) If] > 1 then goto Step (c) elseset j = g+1 p;=[— Vf(:rk)Tdk]/[Z(f(:ck+
di) ~ f(z4) = Vf(zi)Tdy)], goto Step (a).

ﬁc) Set j=j7+4+1,p;=[-b+ \/b'*’ ~- 3aV f(z4)7d;]/[3a] where

. 1 1
a ’ — _L_ x ipj--ljz \ iﬂj—nj! %
(Pj—l - pJ'-?) Py—2 £j—1 b
b {pj-1) (pjc2)?

(e + pj-adi) — flzg) — Pj—lvf(l'k).rdk,
( .

flze + p,-_zdl';') — f(zi) = pj—2V f(z4)Tdx

k]

Goto Step (a).
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We note that we replace Step 3 with Step 3’ in our implementation of the

algorithm. .

Finally, for ease of presentation, we denote the function, gradient, and Hessian

of f(z), evaluated at some iterate zy, by

fk = f(mk)s
gx ' = Vf(zx), and
THe = Hy(zy),

respectively.
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Chapter 2
'NeWton’Js method

The concept behind Newton’s method 18 to approximate the function being mm]-
mized by a quadratic functlon and to minimize the quadratlc exactly. If the grad1ent
~ and the Hessian of the objective function are available, a quadratic model of the
function can be obtained by taking the first three terms of the Taylor’s series ex-

pansion about the current iterate, say z,. That is,
. T 1.z
flzx +.d) ~ fr +a°d + -2-d H;d. (2.1)

It is helpful to 'formulate the quadratic model in te;mé of d rather than the predicted
minimizer itself. The minimum of the right hand side of Equation (2.1) will be

achieved if d), is a minimizer of the quadratic function -
F(d) = ¢7d + %dT'de. (2.2)

A stationary point, d;, satisfies the first-order necessary condition

r

\

-

which are equivalent to the linear system

Hidy = —gs. O (24)

Fid

VF(dk) =0,. ' (2.3)

R
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* Thus, in the model algorithm A, =Hy,pp =1, and

Tppy = 2 + dy, k = 0,1, .... (2.5)
. -
When Newton s method works, the rate of convergence of the sequence of points, -

{zx} to : Z, is at least superlinear. Furthermore Newton’s method, when btartod close

T -

enough to 2 point whose gradient vanishes and whose Hessian satisfies a Lipschitz
condition, is guaranteed to converge with a rate of convergence that is at least

quadratic. ) —

Theorem 2.0.1 Suppose that the sequence {zyx} generated by Equation (2.5) con-
verges to £ € R™, where Vf(z) = 0 and Hy(2) exists. Then, Newton's method
converge at superlinear rate. If there ezists e, ¢ > 0 such that | Hy(E) = Hy(y) |1 <
ol 2=yl for all yE€ {a: eER"| | F—y < €}, then the rate of convergence is

-y
quadralic.

- . -

Proof: see [Dennis and Schnabel, 1983] or [Ortega and Rheinboldt, 19707 QED

In practlce, Newton s method may fail because either H; is not' pos:tnc definite

Ye ause px = 1 is not an acceptable step size. To overcome the first dlfﬁculty, one
P

opular strategy 1s to approximate H; by some positive definite matnx H,. The

search direction is then given by the solution of
A :

I;rkdk = —gk. ’ (2.0)

Thie use of the step 3’ in the model algorithm to choose p; overcomes the’second

Wk

problem. Note that step 3’ first attempts px = 1, and modifies p; only if it is
necessary to do so.

However, even if the above problems do not arise, Newton's method requires the
construction of Hy and, subsequently, the solution of Equation (2.6). These compu-
tationally expengjve operations are the main reasons that Qu;aéﬁ ewton methods
have become so popular. In the remainder of thesis we show ho‘;v the theory of -

factorable functions can be used to derive an implementation of Newton’s method

-

/‘
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that is competitive with the Quasi-Newton methods.

&

S
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- Chapter 3
Factorable functions

3.1 Factorable functions

‘The modifications of Newton’s method to be discussed in Chapters four and five
of this thesis are based on the concept of factorable functions introduced by Mc-
Cormick [1968]. McCormick makes the observation that most functions of several

variables which occur in nonlinear optimization are complicated compositions of

transformed sums and products of functions of a single variable. (McCormick points

out that exceptions to the class are, for example, functions that are given implicitly
rather then explicitly.) That is, the natural way of looking at a multivariable func-
tion is the way we look at the function when we would evaluate it for a particular

set of values. Consider the following example.

Example 3.1.1 Consider at Sisser’s function given by:

f(z1,22) = 3z] — 22222 4 324
Suppose (z1,z) is given. We summarize the way used to evaluate this function at
* this particular point in Table 3.1 4
The procedure for pug;g\the function in the form of a factorable function

parallels that required to evalyate the function, as observed in Table 3.1. Based on
.i '

12.

|
/
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. ‘<
/
Evaluation Step | Portion of Original Function | Note omEvaluation
— 1 Given f; = =,
- z; Given f =2z,
1 T4 Calculate f3 = f4
2 3z,4 Calculate f; = 3f,
3 z,? Calculate f5 = f2
4 z,? Calculate fg = f2
v 5 z%2,°? Calculate f; = fs - fo
6 21,2z, Calculate fg = 2f;
7 32,4 — 2r2,° Calculate fo = f4 — fa
8 xa* Calculate fio = £
9 3z,4 - Calculate f1; = 3fi,
10 3z — 22,22, + 31,1 Calculate fi; = fo + fi;

Table 3.1:/ Evaluation of Sisser’s function

this idea, we can formalize the definition of the factorable function in the following

way.

 Definition 3.1.1 Gonsider the function f = f(zy,...,z,). Let’s define the follow:-

ing rules.

1 f. is defined to be the i th Euclidean coordinate fori=1,...,n. Forinstance,

we have f; = z;. h

2 fi 1s formed using one of the following compositions where a(i),é’(i)_ <1 and

(a) fi= fop) +f6(i')& \

(b) fi=foy- foy ™
» (¢ fi=T [fa(:')] | |
A function f is said to be factorable if it can be formed according to rule 1 and
« 2. Thus, f = fn is defined as a factorable function provided f‘is factorable, The

. resulting sequence of functions {fi,--., fn} is called aFactored sequence for function

f and we refer to fy,..., fn as the factored sequence functions (FSF);

T; is a function of a single variable for i = n + 1,...,N

~x,
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Rule fi -V
1 I; _ €
2a | foriy + fapy Vfotiy + Vi
2b | foty - Sotny | fotiy - Viatay + Faiy - Vuii
2¢ V' Tifo) ' Ti[fo(i)] Vot

Table 3.2: Monadic gradients of the factorc‘Fsequence function
|

o

Rule fi | V2
1 ' Iy ~f . Onxn
2a | fotiy + foriy V2o + Vi
2 | fow Ja) | ol - Vst +Fot) - Voot + Viuy - Vg + Vg - Vi
2c Ti[fos) Ti[ foii g) - V? Joty + Vioi i) T[fa(:)] Vfa(.)

Table 3.3: Dyadic Hessians of the factored séquer}ce function

-+

We now shoyv’ﬁow to compute the gradlent and Hessian of a factored scqueuce

function. s

Using elementa.ry calculus, we eas:]y derive the gradients and Hessians corre-
sponding to FSF of Definition (3 1. 1) They are given in Tables 3.2 and 3.3, respec- -
tively. In the tables, T'[f], T{f), and e; are used to denote 8—}1, 3_!1‘,, and the 7th unit
vector in R", respectively. We say that the gradient is in monadic form and that
the Hessian is in dyadic form. ~

The next section outlines key properties of the monadic and dyadic forms of the

gradient and Hessian, respectively.

3.2 Properties of factorable functions

~In Tables 3.2 and 3.3, we observe that the computation of V[ f,, - fa(p] involves f_?(")
ang fc’z'\’; j'hich would ’alrea,dy been computed in Qrder to evaluate their product.
Also, the“éomputation of V£, - fo(] involves ¥ fo(iy and V f(;) which have been
coniputed in order o evaluate V{f, ) fai)]- Furthermore, V2T fotp) uses T fotiy]
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and V f,(;) which are previously necded in order to evaluate VT;[ f,( 5]
Thus factt}arable functions have two very special properties that can be exploited

to produce fgst and accurate algorithms. Those special properties are:

1 Once the gradients and Hessians are written in monadic and dyadic forms,

respectively, --they may be computed exactly, automatically, and efficiently.

2 The Hessians occur naturally as the sum of dyad pairs.

The first property has cased the task of providing derivatives of a nonlinear
programming problem to a computer code that is used to solve it. The se(;ond
property changes the wdy we look at the matrix operations required by computer
code, which in many cases, resul.ts in less computational effort. In order to motivate
what follows, the structure theorems of monadic gradients and dyadic Hessians are
given below. The structure theorem of monadic gradients is stated without proof,
The structure theorem of dyadic Hessians, however, plays an important role in this

work and, hence, the proof is given.

L
Y

Theorem 3.2.1 (The strugture theorem of monadic gradient)
Let f : R — Rbe a factorable function and {f1;--., fn} be the factored sequence

\Jor f. We have f = v and N >n. If f; is contmuously differentiable in R for

all i = 1,...,N, then Vf; can be expressed as the sum of n dimensional vectors,
i.e. monads, foralli=1,... N, that is
)
Vfi=d;+ Ec,-ju,-,- (3.1)
=1

where u; is o gradient of o factored sequence funciion, d; and c;; are composed of
a product of factored sequence functions and first derwatme of the single variable
transformation T: used in factored sequence, and m; is an integer. Also, d; is a

constant and u;; and c,, are functions of z € R".

N\

Theorerp 3.2.2 (The structure theorem of dyadic Hessians) i

Let f : R™ — R be a factorable function and let {fy,..., fn} be the factored sequence
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for f. We have f = fy and N > n. If f; is twice continuously differentiable in R™
foralli=1,...,N, then V2f; can be ezpressed as the sums of the outer product of
veclors, i.e. dyads, foralli=1,...,N, that is

Vifi=D;+ ii:[c.;(u;,-v.-ﬂ + v.-,-u‘?;)] (3.2)

i=1

where

D; = diag{d;;|j = 1,...,n}.

|
We note u;; and v;; are gradients of a factored sequence function, D; and c;; are
composed of a product of factored sequence functions and first and second derivatiygs
of the single variable transformation T, used in factored sequence, and ™m; i3 an

integer. Also, all Dy, uy, v, cij, and d;; are fﬁnctions of z € R™.

Proof: The proof is by induction on i. For i,< n + 1, we have that fi = z; which
implies that Vf; = ¢; and, hence, that V2f; = O“Kg'

For i = n + 1, we have o(i), 6(i) < n+ 1. We consider three cascs. In case
one, V?fi=Vif, o+ V2faty. Thus, V2 foy1 = Opyn. In case two, faxr = foi) faqa)-
Thus, o |

»

Vifarr = fay Vs + Fot) - Vo) + Vo - Vi + Vs - Vit

— T T
= €a(i) * €5(4) + €5(i) * €o(4)-

In this case, we get D; = 0,,x, and two dyads. In case three, we have o1, = T} fotir]-

Thus,

3

il

T.-[f,,(,-)] - fotiy + V faiiy - f’.'[fa(s‘)] : VfaT(.)

= €0y - Tilfory) - €Xyy-

‘v.zfn+1

In this case, we have a‘nor;zero matrix D;, where d;,(,-) = T,[ f,(.-)] and d;; = 0,5 #

0(2) " ’ ' FJ
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Now, for n41 < i < N, we suppose that Eciuétion (3.2) holds. We need to show
Equation (3.2) is also valid for i +- 1 < N. For simplicity, we use ¢ and & to denote
o(i+1) and &(i + 1). Hence, wethave ¢, & < i. From the indtction hypothesis, we
have‘ ~ _ o |
S Vif =D, + Z[c,j(u;_,-vg} + vojur )]

=1
SN T T
V2fo = Dy + ) [esj(usivl; + vs5ul;)]
. .2=1

As before, we consider three case. In case one, we have fisn = fo + f5. Thus, -

Vi = V3, +Vf,

’ Mgl . .
: T
= D+ E [Ci+1.j(ui+1,jv;+1.j + Ui+1.j“fT+1,j)]:
LY j=1

where

£

Dy, = Dy + Dy = diag{d,; + dy;lj =1,...,n}, »
' Ui, = u,; for j= '1, ceny m,,,
Vit1,j = Ugj forj: L...,mg,
Cit1,j =" Cqj fo)l‘j= L...,mg,
Uiplmedj = Uz TOrj=1,...,my,
© Vitlmeti = u&j for j =1, ',; . $m&;

c,'+1‘mg+_," = Czj for] = 1,...,m;,,

and myyy = m, + m;. In case two, we have fir1 = fofo-

Vifin = f, Vi + [V, + ViV + ViVST

mi1

_ﬂ, .
= Diy + Y [eiij(tipn vl + v ol )
i=1
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where

DH-'.I. = faD& + faDcr = diag{fadbj ?l‘ fdej]j = 1)' . .,ﬂ},
Uiy = ui,]-,v,-_,_,,_,- =gy and Cit1,j = f;,c?j fOI‘j = lv,.. vey My,
Uitl,mat+j = Uzss Vitl,mats = Vg and C:'+‘l,m,,+j = fac&j forj' = ‘1,. Sy My,
Uig1,5 = Vfa':vi-{-l,j = Vfs, -and Ciy1,; =1 _fOI‘j = Mg+ My + 1, \

and m;y; = m, + m; + 1. For the last case, we have firr1 = Tija[fo]- Thus, /

N -
-

— | . \
V2 finr = T lfo]V3 o + VfeTin [fa]Vf,T

mMi4l
= D+ Z [Ci+1..i(u£%1.j1’£-1.,‘ + vi+l.ju?ji-l.j)]1
i=1

where

Di—i-l - .H-][fo]Do = diag{j}%l[fa]dajlj =1,. ..,Tl},

Uiy, = Ugg,y Vit1,5 ’= Uoj and Ciy1,5 = ‘Tl‘.i.1[fg]CaJ' fOI‘ j = 1, ey My,
T, .
Uisr; = Vo, vip1,; = Vfo and ciyy,; = —'J';—['ﬁ'-] for j =m, +1,

and m;y; = m, 4T This completes the proof. QED
L For ease of presentation, we suppress the index of the last element in the factored

sequence, i.e. the given function f. We write the monadic gradient and the dyadic-

Hessian of the function f as follows:

e
Vf=d+ZCJ'UJ'_ /". N (33)
=R
Hy =V =D+3 [c(ujo] +vul)] (3.4)
=1 .

[N

Om;e the function value’fy= f(z) has been computed, the extra amount of work
required to compute the monadic gradient and dyadic Hessian involves only the
effort required to cz)mpute the T)’s, Ti’s, and T}’s. Also, as long as the gradient, and

Hessian are kept in monadic and dyadic form, the extra storage required is minimal.

‘ : .. : 5
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-

K

P

| Form | Computational requirement -

f et |n multiplications and addition, 1 exponential

T . R « qe . .
Vf | ae** | None extra in monadic form, n multiplications otherwise

. . Qa 2 ' a 1. . -
V2f | ae* =a” | None extra in dyadic form, ~ &- multiplications otherwise

- Table 3.4:. Example from McCormick [1983] P

Consider the example in McCormick [1983] which is given in Table 3.4. The

amount of computation required to evaluate the mionadic gradient and dyadic Hes-
-

sian of the function f = €'* is not much more than that requifed to compute the

value of the function itself. Morcover, the Hessian of such function is automatically

in dyadic form.
However, all the advantages of these special forms are lost when we obtain the

gradient and the Hessian in their usual forms. Fortunately, 1t is not always necessary

to do so. For example, Step 3’ of the model algorithm may require the calculation

of the directional derivative V f(zg + pso)Tso for several values of p. To do this, we ~

typically compute \% f(mg + pso) and then postmultiply it by sy for each different

value of p. If f is a factorable function, it may be more economical to keep the

< gradient in'its monadic form. We then have

-
Vf(zo+ pso)Tso = dTsq -+ Y- ci(xo + pso)uj(zo + ps0) T so

=1

The quantxty d¥so need only be computed once and further use can be made of it
later. Also it i 15] _very important to keep the Hessian in its dyadic form. For example,
using the SMW update formula [Sherman and Morrison, 1949; Woodbury, 1950)
recursively, we can obtain H~! without actually calculating H .

We lc(mclude this chapter with an example showing how to transform Sisser’s
function (Example 3.1.1) into its factorable form, and ho:.v to construct the corre-

sponding dyadic Hessian. The result is given in Table 3.5.

N

\

y S,



—,

CHAPTER 3. FACTORABLE FUNCTIONS

\a .
\
i |% Vi Vif; -
1|z e O2x2
2 | z, e 022 -
3| “4fRWVA (2f)VAV T
4 |3f3 (3)Vfs B6HVAVS
5| fF (2f1)VA (2)VAVST
6 | fi (2f2)V £ (2)\VAHVST
T(2F (2 (—OVAVST ‘
8 | oo fr | fVIit AV {(—4f)VAVIT -+ @fVAVST ¥
VEVE+ VYA |
9 |f3 (4fIV fr (12f)VEVE
10 [ 3f, (3)Vfs (B6fHVLVS]
Nifutfs |Va+Vfs (36f5)V 2V ] + (=4f)VAVS +-
. RIEVLEVE VAV + V5T |
12 [ fur + fio | ®fu1 + Vig (867 — 4f)VAVT + (36f +
- 2f)V VI + VAV + VeV T
Table 3.5: FSF’s, monads, and dyads of Sisser’s function
A\
~.



Chap’ter 4

Sisser’s method

ol

4.1 Sisser’s method

A modified Newton’s method for minimizing unconstrained factorable functions
which exploits the dyadic form of the Hessian was developed by Sisser around 1982.
We recall that the modified Newton iteration is given by

r7—1
Thy1 = T — Pka Gy

~

where H; = H, if H; is positive definite, otherwise
Bl =H, +ul, ‘ (4.1)
_‘_/ . .

for some p; > 0.

The dyadlc forrn of the'Hessian is used to determine when ;. may be indefinite.
Ifa pOSSIblllty of 1ndefimteness is detected, the dyadic form is used to determine a
suitable #k By using the identity,

. .- 4
wo’ +vul) = (Dl(u+v)(u+ o)~ (u-o)u—0)7),~  (42)
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L]
Sisser first transforms the dyadic form in Equation (3.4) into the form
! 2m l i
H=D+3Y_s;aa]. j (4.3)

=1

Also, Sisser orders the symmetric dyads in Equation (4.3) according to their

»

nonzero eigenvalues, that is, to satisfy 5

v

T T
$jQ5G; 2 Sj41a541 8541 (4.4)

For the diagonal matrix D, Sisser replaces each d; < 0 with a one. For cach clement
d; of D that is changed, a new dyad, (d; — 1)eje] where e; is the jth unit column
vector, is added to the collection of dyads in (4.3). This give us the dyadic form

7 H = D + ESJ'GJ'G?‘, - ’ (45)
i=1
where all the diagonal elements of D are positive and r > 2m, Sisser suggests

inverting the Hessian by means of the SMW inverse update formula, <
(A+saa’)™ =471 - A7 g(s7 + atA a) a4, (4.6)

where 4 is 2 nonsingular (n xn) matrix, a is n dimensional vector, and s is a nonzcro
scalar. To invert the Hessian, A will be equal to D initially and the r dyads in (4.5)
will be added, once at a time, by using (4.6) recursively. The formula (4.6) has the
advantage of providing a convenient test which can be used before a dyad is added
to determine whether ghe resulting matrix will still be pbsitiv;: definite. This test

is given by following lemma.

-Lemma 4.1.1 IfAisa (nxn) symmehtive definite matriz, then A+ saa”

will be positive definite if and only if .

C 144>,
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where a s a n-vector and s s a scalar.

Proof: Sce [Sisser, 1982]. QED

Since adding a dyad sja_,-aT with a positive scalar to a positive definite matrix
will result in a positive definite matrix, this test will be only applied when adding
those dyads with s; i < 0. Since the dyads have been arranged so that those with
positive scalar come first, we first build up a positive definite matrix and then add
those dyads with negative scalars. If positive definiteness has been retained after
all of the dyads have been added, we know that the original H is positive definite.
Also, we have obtained the matrix H™1. '

However, if we have found that we can no longer add dyads wit}lout losing the
positive definite property, a lower bound g on the smallest eigenvalue of H can be
computed and used in Equation (4.1). The dyadic form of the Hessian and the

following lemma enable us to determine such a p.

Lemma 4.1.2 Let A = A + saa” where A is o (n x n) symmetric mairiz, a be
a n-vector, and s be a nonzero scalar. If MA)min and M A)min are the smallest

eigenvalues of A and A respectively, then
MA) min = MA)min + sala.

Proof: See [Sisser, 1982] or [Wilkinson, 1965]. QED

Now, we will rewrite Equation (4.5) in the form

H= D+Zs,a,a + z s;a;a; + Z sja;al (4.7)

J=1 J=p+1 J=g+1

where s; > 0for j =1,...,p and s;<0forj=p+1,...,r. Suppose that the first
q dyads have been added to D, one at a time, and that the positive definite test
(rcfer to Lemma 4.1.1} has been passed each time. Upon adding the (g+ l)st dyad,
the positive definite test is failed. It then follows from Lemma (4.1.2) that ,\('H)m;n
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is bounded from below, i.e.
A(H)mgn 2 Z l.S.J'O.}‘aJ‘.
i=gH
- The suitable value for g is
p= Y |s;jlala; S C X))
. J=q+1 )
and the modified Hessian H will bti in the form .

HzD-f-Zs a,a + z 3;a;a; —{-z,ueJ,e:J + E sjaja;. (4.9)
i=pt+1 i= q+l '

We note that 3°7., ,ue,-e_,-T is equivalent to 4. Since p is positive and large c-ndugh to

ensure H will be positive definite, there is no need to test for positive definiteness
beforé adding the dyads such as ,ueje:{ forj=1,...,nand sjajaJT forj =gq+1,...,r.

Sisser realized tha®® better value for #-could be obtained by splitting the (g+1)st
and all subsequent dyads, and then absorbing parts of these ayads ‘without losing

positive definiteness. To determine such value, we take

p= 3 (1-p;)|s;|ala; (4.10)
- J=q+1
where p; represents the proportion of the Jth dyad that will be absorbed for j =
g+1,...,r. The value of p; is determined by

p,-=[—-——-——(6_1) ] - | (a.11)

s;aT A7l a;
where A7l represents the inverse of D plus the first (7 — 1) dyads, and § is chosen

experimentally (i.e. Sisser chooses § = 0.0005). The modified Hessian A in this
. , N

case will be in the fprm : " \

4
E aa + Z .sjaa + Z Ppjs;a;a; +Z,ue,e + Z (1- p,)s,aa
Jj=1 j=ptl J=q+1 i=g+1

(4.12)
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where p is obtained by Equation (4.10) and (4.11). Similarly, there is no need to test

H

the positive definiteness before adding the dyads such as p_,-.s_,-ch,-a_g~ for j = g+1,...,r

“pejel for j=1,...,n, and (1 — pj)sjajal for j = ¢+ 1,...,r. This is due to the

fact that f

3=

14 pjsja?Afllaj =6 >-0

and hence the p;s;aja] for j =q+1,...,r satisfies the positive definite test. The

scalar y is large enough to ensure H will be positive definite after adding the rest

of dyads. ' :
"The reason for splitting and absorbing parts of the remaining dyads is that the
value of y1 can be reduced. As a result, Sisser’s method will be less likely to produce

steepest descent steps.

4.2 Discussion of Sisser’s method

Sisser's method was compared to the BFGS Quasi-Newton method [1970], Gill and

Murray’s method [1977], and Sorensen’s method [1979] on a series of unconstrained’

test-problems. These problems are popular with authors of modified Newton meth-
ods since, starting from the standard point, they force the algorithm to proceed
through regions in which Hessian is indefinite. We note that some of test prob-
lems and computational results given by Sisser are also given in Chapter six and
Appendix A, . h

The amount of computation per iteration in Sisser’s method is considerably
greater than in the BFGS method. This is because of the transformations required
to obtain the dyads form (4.3), the preordering of dyads to satisfy (4.4), the expen-
sive computation of the lower bound g on the smallest eigenvalue of H when further
updates dgstroy positive definiteness, and the computation of 2~!. On the other
hand, Sisser’s method seems to'.require fewer iterations than the BFGS method.

Also, Sisser’s method appears to be competitive with both Sorenson’s and Gill and

>

Murray’s methods,

However, Sisser’s method had one clear advantage over BFGS method. It solved

¢

% w\

pOA
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all the recorded test problems. Thus, if reliability is a more important criterion
than execution time, Sisser’s method merits more consideration. In Chapter five,

we present a new modified Newton’s method that was motivated by our study of

Sisser’s method.



Chapter 5

A new modified Newton’s method

5.1 Introduction

In Chapter four, we have seen an indication of t\He advantages of-a-modification of
Newton’s method which was l;ased on a representation of the objective function in
factorable form. The advantages were essentially due to the resulting dyadic form
of the Hessian matrix.

Chapter four also 1nd1cated some disadvantages of Sisser’s modlﬁed Newton
method. They are (1) the transformation. of the given unsymmetric dyads into
symmetric dyads, (2) the subsequent ordering of the symmetric dyads according to
their nonzero eigenvalues, and (3) in the case of indefiniteness, the calculation of a
perturbation parameter,

Thﬁeldisadvantages result in a large computational cost for each Sisser iteration.
. However, Sisser’s method is still competitive with other unconstrained minimization
“ techniques, for example, the BFGS method [Broyden,1970; Fletcher, 1970), Gill and

Marry’s method [1974], and Sorensen s method [1977] Thus, a new method based
on factorable function, which significantly decrea.ses the™cost per iteration, would
be & valuable contribution to the field.

Sisser states that the main reasons for the transformation of unsymmetric dyads
into symmetric dyads are (1) to allow the use of the symmetric rank one update

formula in calculating the inverse Hessian, (2) to provide a mechanism to order the

27
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o

dyads, (3) to test the positive definiteness of the Hessian, and (4) to calculate the
.- .perturbation parameter,

a In this chaptgr, we show how Sisser’s method can be modified so that the trans-
~ formation of the dyads is unnecessary. In addition, we give ar gument:> to indicate
that it is both unnecessary to order the dyads and to calculate the pcrt.urbnt.ion

parameter. This results in a new modification of Newton’s for the solution of the

1
unconstrained minimization problem.
—

The modification is based on the observation that most of the dyads actually
appear naturally in pairs, and that the pairs are symmetric. By making use of a
symmetric rank two update formula [cf. Best and Caron, 1985] we can still ealeulate
the inverse Hessian. Furthermore, using the formulas given in Caron and Gould
[1986], we can still test the positive definitencss of the Hesslan matrix. In addition,
for dyad pairs or dyads which cause indefiniteness, these formulas automatically

provide a perturbation parameter for adjusting the dyad pairs or dyads so that

- . . . . —
positive definiteness is maintained. -

5.2 The dyadic form of the Hessian .

Let f(z) be a factorable function that is twice continuously différentiable. From

Theorem (3.2.2), we have that the Hessian can be written in the dyadic form

H=D + Z [ei(usoT + vjul)] | (5.1)

J—
where D is a diagonal matrix, Uy, Uz, . .., Uy are n-vectors; and where ¢, ¢c,,...,c,
are scalars. It is important to note that D, and uj,vjandc;, 7 =1,...,m, are

functions of z € R".

In general, there are some indices j such that u; and v; are linearly dependent.
In this case, the dyad pair cj(u;vl + v;ju] ) can be replaced with a single symmetric
dyad. We note that it is possible to later combine some of the single dyads into

dyad pairs. Thus, the Hessian can be written in the dyadic form
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+q tq+r
1= D+ Slastusol + o) 4 S Bl +oh]+ S byagd] (5.2)
j=1 j=p+1 J=ptg+1

where u; and v; are now linearly independént forall j =1,...,p4 g. We remark
that it is, in some sense, more natural tg(pse the dyadic form given in (5.2) rather
than the form given in (5.1). This is because terms of each of those dyad types, i.e.,
aj(u,vT + vuj ), Bi(ujul + v v]) and vja;a] arise naturally when deterrmrung the
dyadic Hcssmn (refer to the examples i in Appendix A).

Let T = {4,4,...,4,} besuch that d; < 0 if i € T and di>0ifi ¢TI Let D
be obtf;lined from D by replacing d; with d;, d; > 0, lfor each ¢ € 7 (note: Sisser’s

method set d; = 1 forall i € 7). Thus, we can now write

L]

piotr pHatr+s
H= D‘I"Z[‘I’J u_,v T +v; UT)]"I‘ Z [IBJ(U'J T+UJU )+ ): ['7.1‘1 aT]+ Z [5 ;0 bT
J=pi J=ptg+l J=prg+r+1

. (5.3)
where b; = e;,1s the ¢; th elementary column vector, §; = (d;J. - J,-J.), and where D

is positive definite. For simplicity/we rewrite (5.3) in recursive form, i.e.
H;j=H; ,+7,B;, J=1,...,p+q4+r+s (5.4)
where

(ujv}"+v_,:ﬁf) j=1,...,p
O

aja] i=p+e+l,...,ptqg+r

| 4;07 J=p+g+r+l,..p+qg+r+ts,
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a; - j=1,---,P
B; J=p+1l,...,p+g¢

e )

%o 'I=Pprgtlptgtr

6; j=p+q+r—{-—1,...,p+q+r+s,“

and Ho = D. Setting M = p+ q+r7+s, the dyadic Hessian is given by H = Hy,. It
is clear from Equatién (5.4) that 7;B; is either a symmetric rank two or a symmetric
rank one matrix forall j = 1,..., M. We note that this recursive form of the dyadic
Hessian will be used throughout this chapter. .

The inverse of the Hessian can be obtained using the dyadic form given by >

Equation (54) as follows :

——
(4]
o

—

H'=(H;+7B)7Y, j=1,....M
" | 4
where Hy' = D! and H~! = Hil. Foreachj=1,... , M, we can calculate HJ-"

using the symmetric rank two update formula given in next section.

¢

5.3 Symmetric rank two update

Best and Caron [1985] give a form of the Sherman-Morrison-Woodbury update
formula which can be used to obtain the inverse of the dyadic Hessian. It is presented

in the following lemma, which is given without proof.

Lemma 5.3.1 Let u and v be linearly independent ntvectors, ¢ and A be scalars,
and H be a singular (n x n) matriz. Then H = H + c{un” + AvoT) is nonsingular

if and only if o o

~

p=1+uTH  u+ M TH e+ AuTH  uoTH 1y — (vTH 'u)?)c? £ 0.

Ifp#0, then
A7 = 47T + T + Tac?),
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where T, = H-\,
T, = [«TH1u + MWTH1y)H? = [H'wuTH ! 4 AH ooTH -1,
and T3 = Au'H'woTH 'v-— (iJTH"Iu)z]H‘]—
> | . AoTHYwHuuTH-! 4 oTH! uH vo"H )¢ Y
AM@THE w)(H 'vuTH1 4 H- T 1)),
Lemma (5.3.1) can be used direEtly in Equation (5.5) provided that 7,;B; is of-

the type B,-(u,—u;r + vjvJT), 7_,-(1_,-(1}", or 6J-b_,-b}'. In order to handle updates of the

type a;(u;v] + vju;r), we require the following lemma, which is easily derived from

Lemuna (5.3.1).

Lemma 5.3.2 Let/u and v be linearly independent n-vector,- cbea 3calﬁr, and H -
be a nonsingular (n x n) matriz. Then H = H + ¢(uoT +- vuT) is nonsingular if and

only if ' r
¥ =1+20TH e - [(WTH ' u)(vTH 1v) —-V(UTI:I‘.Iu)z]c2 # 0.

If 9 #0, then
H™' = 47T + Tye + Tac?),
where Ty = H™,
T = 2pTH 'WH - [.H‘lu*uz"rf.f.'1 + H 'uwoTH-Y),

and T3 = [WTHW[H v TH Y+ [vTH‘iv][H"] uuT H-1]—
[(WTH u)(oTH v) — (vTH ) )H-1—
WTH W[ H w0 ! + H-ouTH 1],

Proof: Using the identity given in Equation (4.2), the result follows from previous

lemmz. QED
, Th?ﬁlgorithm used to obtain the inverse of dyadic Hessian is given as follows.

Algorithm 5.3.1
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1 Set, Hg' «~ D71, j 1
2 If 3 > M then stop with H! = Hit
§ Set H:' — (H;_, + B;)™Y [ Apply with Lemma (5.3.1) or (5.8.2) j

4 Setj— j+1 and goto 2

We recall that in order for the search dircction, dy = —-H,c gk, obtained in step
2 of the model algorithm (refer to Sect?xon 1.3) to be a descent direction, we want
H; to be positive definite. If H is positive definite, then we can set Hy, = Hy = H.
However, if H is not positive definite i}ﬁg{?l:hl\e to modify A]gonthm (5.3.1) so

that Hyy is some positive definite approximation to H. Then, we can set Hy, == Hy,.

&
This is discussed in Section 5.6.

In order to do this we use the results giveh in the next section to determine
whether or not H; is positive definite for all 5. Clearly, if this is the case, then ‘H
is positive definite. However, we note that while this condition is sufficient, it is

certainly not necessary. That is, H may be positive definite even though some of

the H; are not.

.
5.4 Positive sémideﬁnite interval

The problem of finding a positive semidefinite interval for a parametric matrix has
‘ been well studied by Caron and Gould [1986]. They show that if we are given two
symmetric n X n matrices H and B such that H is positive semidefinite and B is
of rank one or two, we can determine two real number 7 <0 and 7 > 0 such that
H + 7B is positive semidefinite if and only if 7 € [+, 7]. -

This pro{rides us an easy way to test the positive definiteness of the matrix
H; = H;_, + 7;B; before we add 7;B; to Hj_y (refer to Equation 5:4). Also, this
mterval automatically provides a perturbation parameter for adjusting the matrix
7iB; such that positive definiteness is maintained (see Section 5.6).

The following lemmas give formulas for the positive semidefinite interval [7,7].
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::k
. s

Lemma 5.4.1 Let u and v be linearly independent n-vectors, v be a scalar, and
> .
H be a symmetric, positive definite (n x n) matriz. Then, the positive semidefinite

interval for the matriz H = H +7(uuT + voT) is given by [#,7) where

T = 400 and

=2 [—u-TH"]u.— vTH™ 1y — \/(uf'rH"u*—’-/v?"'f;{‘_‘v)2 + 4(UTH"1'U.)2]

-1

~e

Also, we have
1 H is positive semidefinite if and only if T = 7.

2 H is positive definite if and only if 7 > 7.

Proof: Sce Table one of Caron and Gould [1986]. QED

We note that Lemma (5.4.1) allows the n -vector v'=0.

~ 4 . -

¢

h
Lemma 5.4.2 Let v and v be linearly-independent n-vectors, v be_a scalar, and
H be a symmetric, positive definite (n x n) matriz. Then, the positive s,eimideﬁnite\

interval for the matriz H = H + r(uvT + vuT) is given by [#,7] where

—

-1

= [_uTH“.lu + \/(uTH-lu)(vTH"“v)] and

-1

o= [—uTH'lu—\/(uTJ-I“u)(vTH‘lv)]—l

&
Also, we hawe

1 H is positive semidefinite if and only if T = or 7= 7 .

2 H is positive definite if and-o;tly ifre(7,7).

Proof: Apply the identity (4.2), the result follows from the equation given in Table
one of Caron and Gould {1986]. QED

As we have stated before, we want H ;1 to b;a Ppositive defifiite for all j. A naive
strategy for handling an update which destroys the positive definite property is to
adjust the update according to some parameter determined either by Lemma.i(S 4.1)

or (5.4.2). This naive strategy is given below. . : - 4

j. | R
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Algorithm 5.4.1

1 Set Hy' — D717 =1
2 If 7 > M then stop with Hy}
3 Determine [7;, 7] for (H;.1+ 7B;)
4 If 7; € (75, 7;) then goto 5
Set H* — (H;o1 4 7;B;)™!
Setje—j+1
Goto 2 ’
5 Choose T; € (‘f‘j, %J)
‘S(Zf. HJ_I — (Hj—l + 'J_'jBJ')"I
Setj—j+1
Goto 2

We note that if B; is of type (u; u + v;v T), a,aJ , or b;d¥ i the poéitive defi-
niteness test will only ﬂeded when the corresponding 7; < 0. It should also be
noted that 7; and #; are easily-calculated using only matrix-vector products. This
is because H; 21y not H;_y, is available in Algorlthm (5.4.1).

One disadvantage of this strategy is that it does not guarantee H "= H\" even
if the Hessian is positive definite. To resolve this problem, we neé.d a strategy for

ordering the dyad pairs and the single dyads.

5.5 Ordering

’

If the Hessian is positive definite, then wheéther or not H; is positive definite for each
7 depends on the order~f which the dyads are added in Equation (5.4). Consider

the followi ing example.
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Example 5.5.1 Let

10 g 0 0 -6 0 00
D= y By = ,Ba = , end By =

0 3 0 —4 6 O 0 2
> Clearly, in order that each H;,j = 1,2,3, be positive definite, the dyads must be
added in any order except (By, By, Bs),(By, B3, By), and (B2, By, Bs).

Sisser overcomes the problem of ordering by first performing a “Static” ordering
and then a “dynamic” ordering. The sta;tic ordering is done to ensure that inequal-
itics (4.4) are satisfied, and is completed‘ before the updates begin. The dynamic
ordering is performed during the inverse update algorithm, i.e. Sisser’s version of
Algorithm (5.4.1). The dynr;l.mic ordering essentially avoids nonpositive definite
updates until no positive definite updates remain.

We point out that Sisser’s static ordering is a heuristic. Consider the following

example.

Example 5.5.2 Let

11.00005 0 | - -1 02 }
D= yBr = , and By =
0 2 0.2 —0.04 0 —145

0

The nonzero eigenvalues M(By) and A(B,) of By and B, are —1.04 and —1.05
respectively. According to static ordering used by Sisser, we first add B, to D and -

'~ then B,. Clearly, the matriz (D 4 B,) is not positive definite. However, we have-

that (D + B;) is positive definite.

As we will see in the next section, we can also provides a static ordering s;:heme.
However, another example can be constructed to show that , as with Sisser’s static
ordering, it is simply a heuristic. That is, it may or may not work. Thus, it is not
used in our method. This gives us a further saving in computational cost at each
iteration. We note that Sisser’s method can also drop the static ordering scheme to

achieve the same savings. d
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The essential ordering is the dynamic ordering. It is equivalent to Sisser’s dy-

namic ordering and is described in section 5.5.2 .

5.5.1 Static orderigg

Equivalent to Sisser’s static ordering, i.e. inequalities (4.4), we can order the sym-

>

/ metric dyad pairs and symmetric dyads according their smallest eigenvalues. We

require the following lemma.

Lemma 5.5.1 Letu and v be linearly independent n-vectors, and ¢ be a nonzero

scalar. For any n-vectors x and y, the nonzero esgenvalues of the matriz o(zv” +

yuT) are

A= (%) [vT:c +uly+ \/(vT:r: —uTy)? 4 4uvaTy] .

Proef: Let T be a nonsingular matrix, z,y,u, and v be n-vectors, and ¢ be a
nonzero scalar. Suppose that v and v are linearly independent. To determine the

nonzero eigenvalues of e(zv” + yu”), we set det[A] — e(zvT + yuT)] = 0. Since

det(T7'AT) = det(T~")det(A)det(T) = det( A),

we have ®

det[AI — c(zvT + yuT)) = det[A] — T 'z0TT — T 'y

LEs

Now, we choose T' to satisfy tl:_e%uations

T

vIT = el and «'T = er

, A
where e; are the unit coordinate vectors. Let T~'z = a and T-'y = b, where a =

(a1,...,a,)Tand b = (by,...,b,)7 are n-vectors. Then, the determinant becomes.

det[Al — cae] — che]] = det[hey — ca, Aeg — cb,/\e;;, R Y

= An-?[(/\ - CG;)(A - Cbg) - Czazbll.
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Since (‘(0 -

ay = efa=elT 'z =7z,
a; = ela= egT"l:z: = uTs,
b = elb= e;rT‘]y =v7y, and
by = elb=elT 1y =Tz,

/'\

we have that the nonzero eigenvalues are roots of (A~ co"z)(A—cuTy) - FuTzvTy =

0. Thus, the nonzero eigenvalues are given by

A= (%) [uTn: +uly+ \/(‘UT:L‘ - uTy)? + 4uT:wTy] .
This conipletes the proof. QED
The above lemma eg/ables us to determine the nonzero eigenvalues for the dyad

pairs and pairs defined-in Equation (5.4). It is clear from Lemma (5.5.1), the

formula for the nonzero eigenvalues gives the largest and smallest eigenvalues of the
matrix e(zvT + yuT). Let A B)mez and A(B)min represent the largest and smallest

cigenvalues of a matrix B, respectively. Suppose that c is greater than zero. Then,

we have
T T — (&Y |.T T T T,;\2 Ty T
)\(c(:cv + yu ))mu— (-2-) [ T+u y+\/(v z—uly)? 4+ 4ulzy y] (5.6)
and
A (c(:rvT + yu'*r))min = (:?c_) [vT:c +uly - \/(va —uTy)? + 4uT:rva] . (8.7)

This gives us the -following results,
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<
. _
1 Let z = u and y = v. Then, :
)

A (c(uvT + vuT))

I

cluTot Y u |l v ]

and (58)
A(c(uvT-f-vuT))min = clulo= |l ufl) v ]
2 Letx =v and y = u »Then,
A (c(uuT + va))mmr = (%) {uTu +oTv 4 \/(uTu —vTv)? 4 4u7'u]
and (5.9)
i A (cuuT + va))m_ = (g-) [uTu +vTv - WTu —vTy)? 4 4uTu]
3 Let z =0 and y = u. Then,
A (cuuT)m . = c-[u-Tu]
N and (5.10)
Ay A (‘cuuT)_ml_n =0

- From Wilkinson [1965] or Shuzhi [1987}, we have the following lemma.

Lemma 5.5.2 Let H,A, and B be (n x n ) symmetric matrices. We denote the
sets of eigenvalues of H,H, and B by {A(H);},{MH),}, and {A(B);}, respectively

and where all three sets are arranged in non-increasing order. IfH=H+ B, then

T

A(B)w < A(H); = MH)i £ M(Bh

K foralli=1,...,n.
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Lemma (5.5.2) implies that when B is added to H , all of its eigenvalues are changed
by an amount which lies between the smallest and the greatest eigenvalues of B .-

Consider the smallest eigenvalue, we have

’\(H)min 2 ’\(E)min + A(B)min : . (5.11)

Assume thﬂa‘t H is positive definite, i.e. A(I?)m,-ﬂ >0.1Itis obvipusly that the matrix
H will not lose the positive definiteness when B is not indeﬁnite ie. )-\(B)mm >0.
Now, we suppose B isindefinite. Then, the possxblhty for losing positive definiteness
of the matrix H = H + B will increase when A(B )mm becomes smaller and smal]er
‘This unghcs the order of the dyad pairs and dyads should be arranged by means of
the following relation (c.f- Equatlon 5.4).

’\(TJ )mm 2 )\(TJ+1BJ+1)mm ) J = 1 M ) (5.12)

: “Zme Equatxon (5.8 - 5.10), the smallest eigenvalues of the dyad pairs and dyads

be casﬂy obtained. To illustrate this idea, we give the following example.

Example 5.5.3 Let

10 0 1.2 0 -08
D= 1Bl - . y and Bg =

01 1.2 0 -08 0O
Wit'hout any static ordering, we have that (D + B,) s indefinite and (D + By +
B,) u positive definite. The smallest eigenvalues A(B1)min 6nd A(B;)min of B1 and
By are -1.2 and —0.8 respectively. According to static ordering given by inequality
(5.12), we first add B, to D and then By . Clearly, the matriz (D + B,) is positz:ve
definite and so is (D + B, + By).

' Now, the algorithm (5.4.1) can b€ modified as follows.

Algorithm 5.5.1

1 Obtain the order /\(TJ‘BJ'),,,;“ > z\(Tj+1.Bj+1)n;,'n.f0T ] = 1, ‘e ,ﬂ’f
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2 Set Hi' « D5 1

$Ifj> M then stop with Hy}

4 Determine [7;, 7] for (H;_, + 7B;)
§ If m; & (75, 7;) then goto 6
Set HJ_I — (Hj_l + TjB_,:)_l . 4
Setje—j+1
Goto 2 '
6 Choose 7; € (%5, %)
Set Hi' — (H;_, + 7;B,)!
Setj —j+1
Goto 2

5.5.2 Dynamic ordering

A new scheme can be used to obtain an implicit, i.e. dynamic,ordering. If, for some
7, it was determined, using Lemmas (§4i) and (5.4.2), that H;' was not positive
definite, this update would be delayed and another update performed. A necessary
condition for a nonpots.itive definite H is that, for some j, all remaining updates
result in an indefinite H;. However, ti}EjS\DOt a sufficient condition. CorL%idcr the

following example.

Example 5.5.4 Let’

1.0 0 1.3 0 —-1.1
D 2= ,Bl = ) and Bg ==

01/ 1.3 0 —~1.1 0
| Obviously, we have (D +.B1) and (D + B,) are indefinite but (D + B, +;>‘B2) is

positive de_)'i‘m'te.J

In order to handle all the remainilng updates which cause indefiniteness, those up-

ates w d‘ii)\e adjusted according to some parameter determined by Lemmas (5.4. 1)
'.'. )" \
s AN
. oa N g
N )
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The Examples (5.5.1 - 5.5.4) show that the dynamic ordering scheme can obtain
the same order as the static scheme. This implies that only the dynamic scheme need
be used. Hdwcver, the dynamic scheme may be required independent of whether or
not the static scheme is used. Therefore, only the dynamic ordéring scheme is used
in our new modified Newton’s method. The inverse update algorithm is now given

o

Algorithm 5.5.2

1 Main() : Dynamic ordering : T

set goahead «— false ; moretogo «— true.
set pick(j) « false, Vi;  ar.
- set H' « D1
while (M > 0)
set gupdate « false : -
for 5. «~ 1,.... M
if " pick (j) then
goto sub
end if
if update then _
set M « M —1 ; gupdate 4— true.
set pick(j) « true; goaﬁead « falge A
end if -
end for
if " gupdate then
set goahead +— ‘true
end if“ | ‘ - .
if M =1 then
set moretogo + false

end if
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end while

Stop with H}

2-sub() : Positize definiteness test and Symmetric rank two update

set 7 «— T},
. Determine [7;, 7).
if 7;¢[#,7] then -
if " goakead then
Return fo main
" else -
Choose 7; € (¥, 7;)
end i_f
end if v
if (7; =% or 1; = 7;) and " moretogo then
Choose T; € (¥, 7;)
end if \
set H' «— (H +7B;)™Y; upciate — true
Return to main. |

I

\ Note: the symbol "is defined to be the logical NOT operation.
: . o

5.6 Axstrategy Yor indefinite matrix ’

Algorithm (5.4.1),. (5.5.1), and (5.5.2)., all require the c}?oig;f a perturbation pa-
rameter, 7 € [7, 7], when we can no longer add dyad pairs or dyz'ids:without Iosir?g
positivé definiteness. Computational results show that the choice of such a param-
eter has little effect in solving the minimization problem. This is because. those
update strategies do provide a positive definite matrix and hence a descent direc-

tion can be obtained. However, it does affect the updates for remaining, if any,
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{j .
dyad pairs and dyads. In order to minimize the need of adjustment, it is suggested

that we choose a parameter which will give, in some sense, the “most™ positive

_ definite matrix after the update. As a result, the remaining dyad pairs and dyads:

may not need to be modified.
Based on this argument, the perturbatlon parameter is chosen to be the midpoint

of the pos;twe definite interval, For the dyad pairs and dyads in which have the

method, our modification will not bias search direction towards the steepest descent
direction. J

We recall from Section 5.2 that if the given diagonal matrix D is indefinite, then
all of its nonpositive diagonal elements must be replaced by poéitive value, say d.
Again, computational results show that some care must be taken in choosing d. In

particular, d should depend on the matrix D. In our implementation, we choose
maz{ |d; || j=1,...,n} +1.

L}
5.7 Conclusion

This ch\eter presented, via Algorithm (5.5.2), a new modification of Newton’s
method for minimizing factorable functions. The method explmts the fact’ that
most of the dyads qppezixhnaturally.in pairs. ’\I‘—}Ps avoids the transformation re-

qluired by Sisser’s method in eacly iteration to convert the given'dyhd pairs to a

' string of symmetric dyads. The explicit ordering has been shown to be unnecessary

when implicit ordering is used. To test the positive definiteness, we use the tech-
nique of pOSltIVG semidefinite mterva,l Since this techmque automatically provides
a perturbation pa.rameter for- handhng updates which destroy the positive definite
property, 1t overcomes the fact that Sisser’s method requires the expensive calcu-
lation of the perturbation parameter. Avoidance of splitting dyads which cause

indefiniteness, our method results in significant computational savings.

~
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Based on the gbove argumen‘ts, the cost per iteration of this new modification
shoulduke significantly less than the cost required for Sisser’s iteration. It should
be noted that Sisser’s method could also be modified so that it avoids the static
ordering and the calculation of the perturbation parameter. However, it cannot
avoid the transformation. ~

g E

R S )



Chapter 6
Computational results

Our new modification of Newton’s method was implemented using the computer
language PL/I on the IBM 4381 P13 processor (VM/CMS) at University of Wind-
sor. The ¢omputational results are compareél to the I'eS‘L}l_tS given in Sisser [1982]
| for a scri.es of two dimensional test problems, The FSF (Fac:forable Sequence Func-
tions), Monads, and Dyads of each test problems are given in Appendix A. T_hé
computatiox}gl results are listed in Table 6.1 along with Sisser’s results. We should
note that the given comparison between our new modification and Sisser’s modifica-
tion (10@5 not provide the complete picture. In particular, al comparison of <_=,\xecution
time is not possible, as Sisser used a different computervto generate his test results.
Hoﬁ'e\'er, some pertinent remarks can be-made. We nofe that, as with Sisser’s
method, our method sblved all the test problems, while BFGS failed on Test Prob- -
lerq 2. We r:equired about the same number of iterations to solve the problems as
did Sisser. However,-our itefations would be _signiﬁcantly less costly. Finally, our

method 6utperformed Sisser’s method on the last test problem.

\

45
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Table 6.1: Table of Corﬁparison

= number of function evaluation

Test Complexity | Complexity [ New Sisser BFGS
problem of  New |of Sisser’s | modifica- | (c: d) (c:dy™

' modifica-" | modifica- tion (c : : .

tion (a/b) | tion (a/b) |d)
Sisser’s func- | (2/3) (2/1) (14:15) {(15:21) |(22:30)
| tion, n =2

Rosenbrock’s | (2/0) (2/0) (27:28) [(27:28) |(:%)-.
chff  fune- | . :
tion, n = 2 L :
Rosenbrock’s | (1/0) (1/0) (24:33) |(21:28) |(32:52)
function, : :
n=2 _ .
Hyperbola- | (4/2) (4/2) (7:11) |(6:9) |(9:14)
circle func- :
tion, n =2 7 _ :
Beale’s func- | (9/1) (9/1) (8:10) |[(7:9) (13:21)
‘tion, n = 2 .
Gottfriend’s | (6/6) (6/3) (14:21) [(9:12) |(18:26)
function, N
n=2 : R
Powell’s (4/6) (4748) (36:45) | (74 - (=:-)
badly scaled | - 139) '
function, ' N
n=2

— = no record | v

* = line search difficulty

‘a = number of original dyads
where . .

b = number of times modification was used ,

¢ = number of iterations

d
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Chapter 7,

—

" Concluding remarks

7.1 Intﬂrgduction | .

This chapter serves as both a summary of the contributions of this thesis, and asa

guide to-future research projects.

——

7.2 Contribution of Thesis J

The main contributions of this thesis are listed below.

» : S .
1 This thesis provides a new modification of Newton’s m&thod for the minimiza-

tion of factorable functions. The new method Exkgs{dvantage of the fact that
4 the Hessian can be expressed as a diagonal matrix plus a sum pédyads, many'
of which appear in pairs. The method has the foll:owing advantage over the

modification given by Sisser.

(a) The ‘iransfo'rmations (4.2) for converting the given dyads into symmetric .

dyads is avoided. This reduces the c'omputational cost of every iteration.
A’

(b) The static ordering of dyads (4.4) is eliminated. This further reduces the
computational cost of every iteration. B

(c) The calculation of a perturbation parameter (4.10,4.11) is avoided. This

reduces the computational costs of iteralons at which nonpositive defi-

4
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nite updates occur.
2 This thesis provides a proof for the structure theorem of dyadic Hessians.
3 This thesis provides a rank two static ordering scheme.

4 “I'his ihesis provides a new meihod for obtaining a positive definite approxi-
mation to an nonpositive definite Hessian. The new approximation appears

to be good in that all the test problems were solved.

7.3 Future re_seérch directions

This section provides a guide to research projects related.to the work of L.his thesis.
There are, more or less, two main directions. The first is the investigation of
questions raised, but not answered, by this thesis. The second is the investigation
of new problems related to the work of this thesis. The following is a list of open

questions.

1 What is the best strategy for choosing r in the positive definite interval?

2 What is the best strategy for choosing the number d which replaces the non-

-

positive entries in D?

3 How can we determine whether or not the actual Hessian is positive definite

when all rerﬁaining dyads cause a loss of positive definiteness?

New. problems related.to this thesis are discussed below.

1 Jackson and McCormitl:k showed that the factorable function approach allows
the use of higher than second order derivatives. They have a so-called polyadic
structure. How lcaﬁ we use the special polyadic structure to modify. higher
order methods, e:g., Hélley’s method, for the solution of the minimization

* problem?

2 Can the factorable function approach be used to obtain efficient implementa-

tion of interior point linear programming algorithms?
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A

3 Can the factorable function approach be used to obtain new results in sensi-

tivity analysis?

7.4 Summary

This thesis further highlights the advantages of the factorable functions approach

to nonlinear programming. While this thesis makes using Newton’s method more

[

feasible, it also raises questions which must yet be answered.
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Ap*pe\nd-ix A

FSF, Monad, and Dyad

A.1 Sisser’s function, n-= 2

F(z1, ) = 3z{ — 2222 + 324

Starting point: (1,0.1).

A.2 Rosenbrock’s cliff function, n =2 -

ey, 22) = ((21 - 2)/100)? ~ (2, — z,) + exp[20(z; — z,)]
Starting point: (0,—1). )

A.3 Rosenbrock’s function, n = 2

f(z1,22) = (1 — 27)? + 100(z, — £7)?

. Starting point: (—1.2,1).
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j | Portion-of
. Oﬁginal function B
1 [z
- 2 |z
3 {zf
4 3:1:1l
S .'Ef s
6 | z2
7 | 222
8 | —2z3z2
9 |z}
10 | 3z3
11 | 3z + (—22223
12 | f(z1,22)
7S V§; Vi ’
1 =z €1 O2x2
2 | z2 € | O2x2
13| A (4f)Vhi (2f)VAVH
4 |2fz (3)Vfs -~ (36FHVAVST
51 ff (2f)VA ()VAVST
6 | f} (2f2)V 2 (2VAEVFT
T A | (2Vh [ (OVAVST
8 | fe- fr feV i+ iV fs [ (—4fs)VAVIT + (2f)VLVST
o L (vf7vfe +stvf7)
9 [ |[@Vh | (RVAYA
10| 3fs (3)V fq 86V, VT
1 [ fa+fs [Vi+ VS BEWVEVE + (- 4f6)vflvf1
’ } (2f7)vfzvf2 +(vf7vfs +vf6vf7)
12 fu+ fo | Vi +Vhe |(36fF - 4fs)VAHV T (3617 +
PNV (VA POV

P

Table A.1: Sisser’s function, n = 2
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b 7 | Portion of
Original function
1 |z
2 |z,
3|z, -3
4 (223
5 | (a2)?
6 | —z,
{/7 (z1 — z2)
« [ 8] ~(z1—x2)
V9 | (B2 — (1 — )
10 | 20(z, — z2) )
11 | exp[20(z; ~ z3)]
12 | fz1,22)
{7 |5 Vi V2 f;
1|z e - . 0242
2 |z, €2 02x2 N
3[Hh-3 |VA 02x2 \ >
4 [()fs | (Z5)VSs 02x2 {/f
5 | f2 (2f4)V s VAV
6 [(-1)2 [(-1)Vf O2xz
T|ht+tfe |VA+VSs Oz2x2
8 [ —f7 (-1)Vf O2x2 =
9 | fs+fs |Vfs+Vf )V T
10 | 20f; 20V f7 022
11 | exp(f1o0) | (exp(f10))V fro-| exp(f10)}V fr0V £,
12| fo+ fu | Vie+ Vfy (Z)Vf4Vf.,Tj+ (exp( f10))V f10V £

Table A2 Rosenbrock’s cliff function, n>2\

}
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“
7 | Portion of
Original function
1 |z '
2|z,
3 |1—-z
4 1 (1—z,)?
) 5 | 22
6 —zf
7T |z — 22 \ i
8 | (zp — 23)? \
9 | 100(z, — 22)° o~
10 | F(z1,%3) | ///
ilfi Vi Vi - |
1|z € O2x2
2 |z 23 02x2
3 (1-fA [(-1)VA [0
’ 4 1 f3-° |CRIVSAE |(2VAEVST
5| f7 VA |QVAVS
6 |-fs J(-1)Vfs |(-2)VAVST
T\ fatfe V2 + Ve | (=2)VAVST
8 | ff CfIVE [ (—4f)VAVE + (2)VHVFT
9 1100fs [(100)Vfs |(—400f;)V iV T + (2000g4, V57
10| fotfo | Vit V'l (F40f)VAVIT + (00VLVFT +
(2)Vf:VST

Table A.3: Rose;xbrock‘s function, n =2

t.l'
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A.4 Hyperbola-circle function, n = 2

flz1,22) = (T2 — 1)? + (22 + 22 — 4)?
Starting point: (0,1).

A.5 Beale’s function, n =2

f@1,22) = [1.5 < 21(1 — 22)]? + [2.25 — z,(1 — z2)]? + [2.625 — (1 = 2))?
Starting point: (1,1). ‘

LAY

1
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7 | Portion of -
Original function
1 F
2 |z,
3 |22
4 12,1
5 | (z132 —1)?
6 | zj >
| 7 |z3
8 | 22+ 12
9 |zf+z2-4
10 | (22 + 22 — 4)?
11 | f(z1,22) &
Tl I Vi V3 f;
1 |z ey O2x2
2 |z, €2 O2x2.
3 |Ah-fo |AVR+RVA VAV +VVFE
4 | fa—1 |Vfs Vify .
5112 (2f)V 4 QREANVAVIT + VLV ¢
(2)VAV T
6 | |CAVA . | @QVAVA
T\ (22)V VLV
8 | fet+fr |Vfe+ VS O)VAVH + VLV
9 1 fs—4 | VS @)VAVA + VALV
10 | f3 (2f5)V fs (4f)VAVA  + VARV +
’ | " (VYIS
11 [ fs+ fio | Vs + Vi E;;gggg?g?; i gfzgfzp +
N @i gt

Table A.4: Hyperbola-circle function, n'= 2
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o

Portion of.

| Original function

] t

Ty

1—-.7:2

.'C](]. - .1‘12)\‘

1.5 — (1 — z,)

(1.5 — z,(1 — z,))?

2

2

Ll ~J|D |||~

z;(1 — z3)

—
(=

(2.25 — z;(1 ~ 22))

—
[

(2.25 — z;(1 — 22))?

i
"

3
Ly

—
w

(1—=3)

’I—l
B

z1(1 - z3)

—
[#34

2.625 — z,(1 — z3)

—
[=2]

(2.625 — (1 — z3))?

—
-]

(1.5~ 21(1 = 2,))? + (2.25 — z,(1 — 22))?

et
G0

f(-"v"l;-"v"z)

Table A.5a: Beale’s function, n_:—- 2
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{

i|f Vf; Vif;
1 n € | O2x2 -
2 'xg €2 02)(2 /F\
31-f, (-1.0)- Vf; Oax2 e Y
41hHfs HhVfa+ £V i VAV + VT
5 (15— fi | (-1.0)Vf, (=IVAVIT + V£V
6 | f2 (2fs)V fs (=2f) VAV + ViV +
(QLstvfsT -
772 OIAZA ONIATH
8 [1-5 |CL0Vie  |[(-2VAVA
9 | fivfe flvfs+fsvfi\ (=2/)VLEVIT + VAVIE + VsV T
10 |2.25—fy {{-1.0}Vf, (2f1)vf2vfz + (-IXVAVST +
: MV £V D)
111 | ffo (2f10)V fro (2)VVIEL + (4f1/r0)V 2V T
(=2f1 VAV ST + VsV
12 | £ (3fIVf2 (8f2)VVfT |
13 |1 — fiz (—1.0)V fi, (—6£)VHVfL
14| fi-fia HViia+ AsVA | (VAVST + VAVFE) +
_ : (=61 f)VLRV T
15 | 2.625 ~ fi4 { (~1.0)V fi, (-10)(VAisVIE + VAVL) +
. RECHYANZNZ ‘
116 | f (2fi5)V fis (=25)(VAHsVA + VAVFE) +
(12f1£2515)V Vi + (2)V 15V
17 | fe+ f Vis+Vfu (=260 VAV + VHEVED  +
| @QVEV  + (@VAVL +
(4f1f10)vfzvf2 +(‘2f10)(vf1vfs
V1V
18 | fir+ fie Vfiz+ Vfie (=20 VAV + Vfavf1 ) 4+
@UVEVT+ mevfw) + (4f1fr0 +
12f1f2f15)vfzvf2 4
(=2fi)(VAVSE + VYT +
(-2fs)(VHsVT + VAVE) +
i @OV |

N

Table Aﬁ{)b:‘ Beale’s function, n = 2~

//
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7 | Portion of Original function
1l |n |
2 | &2
3 |3z, i
4 | z; 4+ 3z,
5 |1—m
6 |(zy43z2)(1— 1)
7 | —0.1136(z; + 322)(1 ~ 1)
. 8y — 0.1136(z + 372)(1 — 24)
/ 9 | [z1 —0.1136(x{ + 3z3)(1 ~ z,)?
' 10 | 2z,
W[
12 | (2z; — z5)
13 [ (1 —=z,)
14 | (22, — z,)(1 ~ z3)
15 | 7.5(2z; — 2,)(1 — zq)
‘ 16 | 25 + 7.5(2z1 — 73)(1 — 22}
17 | [22 + 7.5(2z1 — 23)(1 — z,)}?
18 )

' f($1:$2)

Table A.6a: Gottfriend's" function, n = 2

A.6 Gottfriend

' :f(zl,:rz) = [zq — 0.1136(z; + 3z,)(1 —— )] + [z2 4 7.5(221 — z2)(1 — z5)]2

Starting point: (0.5,0.5).

A.7 -Powell’s badly scaled fﬁnction, n=2

f(z1,22) = (10%2123 — 1)? 4 (exp(—z3) + exp(—z2) — 1.00001)?

Starting point: (0,1).

,

’s function, n = 2
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59

| 7 {f; Vi Vi f;

1 |z, er. O2x2

2 [z2 ez = | Ozx2

3 [3f (3)Vf, O2x2 R

4 1 iths VhA+Vf, | Oz2x2

S |1—-f -Vh _ O2x2 ,

6 | fa-fs fsV s+ f:V £, (VIVST+ ViV

7| 011365 | (-0.1136)Vf; | (<0.1136) (VA VT + VAV /T

8 |ith |VA+VSH T (-01136)(VA VST + VSV D)

9 | f3 (2f8)V fs (0. 2272f8)(vf4vf5 + V)fsqu ) +
VfViT

10 [ (2)A (2}VA O2x2

11 | —f, -V f; Oax2

12 { fio+ fun | Vio+ Vi, Oax2

1B11+ M Vi 02x2 - -

14 fiz- fia faViia+ f12vf13 (ViH2VIE+ VisViL)

15 | 7.5 /14 (7.5)V fiq (75) (V12 VFE + VsV L)

16 (fatfis |VHR+Vfis: (1.5} (V 12V IS + V13V L)

17 | fie | (2fi6)V fre (15f16)(vf1zvf13 + Vflavff;) + |
(2QVAVIE

18 fo+ fir Vis+Vfiz (—0.2272f5)(Vf VT + stvf ) +
(15f16)(V faa,
Vi + Vflavfn) + (2)(Vfavfs
VeV fis)

' Table A.6b: Gottfriend’s function, n = 2
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7

7 | Portion of
Orjginal function
1 |z,
2 |ze °
3 | 2129
) 4 | 10%zz,
5 [10%z,2, -1
6 | (10%z 2, — 1)
7 |e™™
8 |e™™ ,
? 9 [e™™ e
10 | e™™ 4+ e~%2 —1.0001
11 | (7™ + e~=2 — 1.0001)?
112 | f(z1,22)
|G Vi Vi
1|z €1 022 )
2 |z € Oz2x2
3| hAh-f flvf2+f2vfl Vf:vfzr-i"vfz +gf17
1 | 107f; 1 (105 104(VAVSET + V£,V D
5 fi—1 Vfs W0YVAVS] + VAV
6 | f2 (2fs)V s (2 x W ENVAVS + VAEVT) +
. (2)VfV T , -
7 |eh (—e= VS ehVAaVIT
8 |ef= (—e )V f, e v f, VT §
91 frt+fs Vi+Vfs e NVAVI + e VYT
10 | fo—1.0001 | V £, e hVAVIT + e ViV ST
11| ffo (2f10)V fro (2fre~)VAHVST +
Choe )V EVET + (2)V £10V f],
12 | fe+ fn Vie+ Vi (2 x W SNVAVT + VAEVST) +
- @IVEVIT + (2hoe?)VAVST +
(2f10e™ )V 2V T 4+ (2)V £10V £L

Table A.7: Powell’s badly scaled function, n =2

G0



Bibliography

(1] M.J. Best and R.J. Caron [1985]. “A ‘parameterized Hessian Quadratic Pro-
gramming Probiem”, Annals of Operation Researches, pp. 373-394.

[2] C.G. Broyden [1970]. “The Convergence of a Class of Double Rank Minimiza-
tion Algorithm, 2, The new Algorithm”, Journal of the Institute of Mathe-
matics and Its Application, Vol. 6, pp. 222-2311.

[3] R.J. Caron and N.I.M. Gould [1986]. “Finding a positive Semideﬁniteﬁlnterval
for A parametric Matrix”, Linear Algebra, Vol. 76, pp. 19-29.

[4] J. E. Dennis, JR. and J. J. Moré [1877]. “Quasi-Newton Methods, Motivation
and Theory”, SIAM Preview, Vol.19, No.1, pp.46-89..

\'2 ' [5] J. E. Bénais, JR. and R. B. Schnabel [1983]. Numerical Methods for Un-

consirained Optimization and Nonlim_aa.r Egquations, Prentice Hall, Englewood

Cliffs, New Jersey. . .

‘ . ’ A g

N : . .

[6] A.V.Fiaccoand G. P. McCormick [1968]. Nonlinear Programming: Sequential
Unconstrained Minimization Technigues, John Wiley & Sons, New York. _

(‘.
~ [7] R. Fletcher [1970]. “A New Approach to Variable - Metric Algorithms”, Com-

puter Journal, Vol. 13, pp. 317-322.

[

[8] L. Fratta, M. Ger}a, and L. Kleinrock [1973]. “The Flow Deviation Method:




k]
#

BIBLIOGRAPHY -~ | ' 62

[9] A. Ghaemi and G. P. McCormick {1979]. “Factorable Symbolic SUMT: What
is it? How is it used?”, The George Washington University, Washington, D.
. C., Institute for Management Science and ‘Erigineering, Technical Paper Serial
T-402.

Y

[10] P.E. Gill and W. Murray. (1974). “Newton-Type Methods for Unconstrained
and Linearly Constrained Optimization”, Mathematical R;‘_Egrammihg, Val.

-

7, pp- 311-350. : .

A

[11] P. E. Gill, W. Murray, and M. H. Wright [1981). Practical Optimization, Aca-

demic Press New York. _ *

[12] R. H. F. Jackson and G. P. McCormick [1986]. “The Polyadic Structure of
Factorable Function Tensors with Application to Higher-Order Minimization

:I‘echmques Journal of Optimization Theory and Applications, Vol. 15, No.1,
" pp.63-94.

-~

(13] R. H. F. Jackson and G. P. McCormick [1988]. “Secomd-Order Schsitivity

Analysis in Factorable Programming”, Mathematical Programming, Vol.41,

" pp.1- 27.

[14] G. P. McCormick [1983]. Nonlinear programming: Theory, Algorithm, and
Application, John Wiley & Sons, New York.

[15] W. C. Mylander, R. Holmes, and G. P. McCormick [1971]. “A Guide to
SUMT- VERSION 4: The Compﬁter Program Implementing The Sequential

Unconstrained Minimization Technique for Nonlinear Programming”, RAC-
P-63, Mclean, Virgina. v
[16] J. M. Ortega and'W. C. Rheinboldt [1970]. Iterative Solution of Nonlinear

Equations in Several Variables, Academic Press, New York.

N

[17] R. E. Pugh [1972]. “A Language for Nonlinear Programming Problems”,
Mathematical Programming, Vol.2, pp. 176-206

S J



BIBLIOGRAPHY 63

(18] J. Sherman and W. J. Morrison {1949}. “Adjustment of An Inverse Matrix
Corresponding to A Change in One Element of A Given Matrix”, Annals of
Mathematical Statistics, Vol.20, pp.124-127.

[19] D. S. Shuzhi [1987). Numerical Algebra, Zhing Wah University Pr&js,-'China,

Chinese edftion.

(20] F. S. Sisser [1982]. “A Modified Newton’s Method for Minimizing Factorable
Functions” ,‘ Journal of Optimization Theory and Applicatioﬁs, Vol.38, N6.4,
pp. 461-482, ' '

™

[21] D.C. Sorensen [1977]. “Updating the Symmietric Indefinite Factorization with
Applications in a Modified Newton's Method”. Argonne National Laboratory,
- Report No. ANL-77-49.

[22] M. Woodbury [1950]. “Inverting Modified Matrices”, Princeton Cniversity,

Princeton, New Jersey, Statistical Research Group, Memorandum, No.42.

N

i S



: Vita Auctoris

The author was born in Hong Kong on November 15, 1962,
He received his high school diploma from the Victoria Park Secondn.fy_Sclmo]
of Toronto in 1983. o

He received his B.Cs. in Honours Computer Science from the University of

Windsor in 1987.

L.

t

64

<_7_‘*\}



	A new modified Newton's method for minimizing factorable functions.
	Recommended Citation

	tmp.1363353483.pdf.rzMHV

