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Particle collectrorn efficiencies of watler dropleis ware

celoultated v numerically integrating the generallsed particile

aguation of motion using & variable step-size Runge-hutte method.

Teonsiderations were given to the collection mechanisms of

thermophoresis. diffusiophoresis, inertial impactiorn, and wake

~apture, ac well as the effects of drop.deformation. The computations
were carried out for & droplet temperature of 10°C with saturated guc
temperatures of 20°C, 35°C, 65°C, and 95°C. The_ temperature, water
vapor, and velocity distributions around the collector were deiermined
by direct numerical intégration of the mppropriate governing partial

differential equation using a convenient orthogonal grid generation

technique.

—

The results of this investigation show that:

dépostion of fine particles (0,1lpm ¢ rp ¢ 5pm) can be
significantly enhanced by phoretic forces

flux sitiom of fine particles can be related to
Reynolds number through the prpportiqnality:
, -0.78
, Eflux a Nre

the flux deposition of fine particles on the rear of |
the collector is significant for low Reynolds numbers

wake capture is relatively insignificant,‘although
definite mechanisms were established in terms of the
interasctions of flux forces and the hydrodynamic forces
of the fluid motion. :

e
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droj. deformation can improve the collection of larger
particles br 1nertiml impaction as & result of an
inoreasse in prcjected aree over that of an unageformec
droplet. '

dror deformatior. car. improve the collection of smaller

particles pe & result of increased hyvdrodynamic affecte
ot. suth particlies. -

Comparisons with the simplified calculetions ol Pilet and Prem

490 show that, at low Reyvnolds numbers, inaccuracies can result from

the assumption of thin boundary layers in which temperature and vapor

concentrations gradients are constant. In addition, their assumption

of potential flow proved to be unrealistic for the specified .

conditions

vi
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1. INTRODAKCTION

Many 1ndustrial processer emit tﬁuﬂdul fine particulatsy muteria. .
The neec to control emissions of fine particles into the environmen:
hac led t¢ the design anc application of & variety of particulale
matter control devices. One of the most effective and economical
methods of cleaning dirty gas‘strgams involves contact w:tl water
sprays. Examples of devices that apply this method of particle
collection are venturi scrubbers and countercurrent spray tOwers.

A number of experimental and theoretical studies have been
conducted on wet collection devices. A fundamental parameter thal
determines the effectiveness of a tvpical unit is the single droplét
collection efficiency. Reliable experimental sing?e drop collection
data are difficult to obtain. Even when they aré availaple they can ‘
be épplied only in a qualitative manner [47]. Consequently,
researchers turn to theoretical and numerical'approachés to study

‘mechanisms responsible for collection of particles b& water droplets.

The phenomensa. known to affect the collection of aerosol particles

by water droplets are [47,53]:

- inertianl impaction

= interception ‘ .
+ thermophoresis

+« diffusiophoresis

« wake capture

» Brownian motion

« turbulent diffusion

* molecular attraction

+ electrical interactions



[ ]

Lerge particles (r : bum; are c;aptured: primerily by inertiel
impactior: and interception while small par:iclés are collected as &
result of phoretic forees, wake capture and Brownian motiorn [1E€,29].

The Alr Quelity Group at the Universitir of Windsor, Department of
Tnemicel Engineering has bee'n involved in t.pt' gevelopment of wet
worubber technology. Asc part of this program, thie investigation was
¢ provide = rig’orous model for the prediction of single dropiet
éollection efficiencies. Emphasis was focused on particle sizes
varving from 0.1pm to Zpm in radius because of the reported difficulty
associated with the removal of these perticles [31]. This size range
is commonly referred to as the Greenfield gap after the earliest
reéeamher to identify it [16}. It has been shown that no lsingle
mechanism is responsibie for the capture.of particles in this size
range [29].

The principal mechanisms considered in this study are:

. inertial impection
. thermophoresis
+« diffusiophoresis.

For the particle size range under consideration in é.his, investigation,
Brownian diffusion can be neglected becam;-.e it has been shown to be
unimportant for particles with radii greater than 0.05.m [47).
Previous models used crude representations of the flow field,
tempetature distributions, and vapor distributions .amund the

collecting droplet. In this study, these quantities were determined



using accurate nuperical methods to extenc the -reliability of the

model.

The formation of & weke has long been knowr Lo promote capture !

L)

small particles [14]). The numerical methoar usec quring this

investigation allowed wuke capture to be studieo 1n terms of i

interactions with phoretic forces. In amaditiorn, the generalizec

numerical model facilitated estimation of tl:\E' affects of drop

deformation on cc;llection efficiency. This phenomenon occurs with
free falling droglets whose radii are greater than 2000im [41,42].
This drop size is within the optimm size range for countercurrent

scrubber operations {mean drop redius of 1000um to 2000pm) [31].

h ]

+



2. LITERATURE SURVEY

Tne importance of particulate matter removal from stack gases has
made single droplet collection efficiency the focus of many
experimental and theoretical studies. A large body of literature

ex1ste Decause particulate matter collection has relevance tc both the

control of industrial perticulate matter emissions with spray

scrubbers and the scavenging of atmospheric amserosol particles by
clouds and rain dr6plets [39]. ,

Lengmuir and Blodgett (25) were perhaps the earliest researchers
who computed collection efficiences using a model assuming potential
flow {(high Reynolds numbers) or Stoges flow (low Re&nolds numbgrs)
with the dominant collection mechanism being-inertial impection. To
evaluate colleétipn efficiencies at intermediate Reynolds numbers, )
Langmuir [24) later propbégﬁ-ﬁ séhépe‘of interpolation between the two
limiting flow éonditions; :Unfoftupﬁte1§,-this'approach‘appears to be

based on intuition since no rigorous amnalysis has ever been given.
Other authors. such as Johnstone and Roberts [22], Ranz and WOng {44],
Pemberton [37], Fonda and Herne [11], and Mlcheal and Norey [32], made
refinemgnts to the basic calculations of Langmuir. Some experimental
verification was also provided. All of these investigators restricted
themselves to the single mechanism of inertial impaction under ideal
flow conditions.

Wu [53) was one of the earliest to consider the effects of flows

Bt intermediate Reynolds numberg on collection efficiencies of
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spherical obstacles. 1r his approach, bourgary laver flow
T

\-

approximations were used to model the {low of the fluid around the
collector. Wu reported that his calculations agreed reasonably well
with experimental data. Improvements were made for the effects of
intermediate Reynolds numbers by Beard and Grover [3]. These authors
solved the steady state Navier-Stokes equations in spherical
coordinates to provide collection efficiences of solid spheres,
asguming that only inertial impaction was significant. The results of
their calculations were correlated and an equation.ﬁas proposed for
the prediction of collection efficiency as a function of Reynolds
number. Tardos et. al. [48] and Ellwbod et. al. [9] also considered
the effects of intermediate Reynolds numbers by using the flow field
proposed by Hameleic et. al. [lé]. Ellwood also provided a convenient
scheme for %pterpolating between Stokes and potegiial fl&u efficiences
on the basis of a rigorous nonlinear regreasion of the intermediate
Reynolds number data. -

Greenfield [15] appears to be the first to consider the
contributions of several mechanisms to collection efficiencies. He
gssumed that Brownian diffusion, ineftial impec;ion, and turbulence
were responsible for scavenging of particles by rain drops. Grover
et. al. [16] combined the effects of inertial impaction, phoretic
forces, and electrical forces in their consideration of raindrops
faliing at their terminal velocities. Their flow field was determined
in a manner similar to that of Béard and Grover [3]. The temperature

difference between the droplet surface and the gas was due



1¢ the effect of ventilation on the droplet. Leong eti. al. [29]
developed & model similar to that of Grover. al. where consideration
wac given only tc phoretic forces. The works of Leong et. al. and
Grover et. el. were applied oniy to the case of evaporating raindrops
where the two phoretic forces oppose each other.

P1lmt and Prem [391 ﬁnd Mehta [51] developed models for micron
‘and submicron particle collection by phoretic forces, inertial
'lmpaction. and‘Brounian diffusion. Their models are more applicable
to industrial wet collectors because their temperature differences
were much larger than those associated with rain scavenging. Although
botg research groups assumed potential flow‘conditions and that the
temperature, vapor, and partic;late distributions were linear in thin
boundary layers, there appears to be an inconsistency between the two
models because predicted efficiencies differ by as.much as 40%: The
work of Ganguli [14] is similar to that of Mehta and Pilat and Prem.
He consider:; only micron sized particles. In this particle size

" range, all of the models agree reasonably well.



3. PARTICLE COLLECTION

The collection of particles by moving liquid drops depemds on
number of competing factors which may either enhance or retard the
. capture of a particle. The underlying principle ol most of the_
collection mechanisme is acceler;tion of the particle towmrds the
collector. The mechanisms considered to be reSponéible for pa}ticle
collection by free falling d;oplets in a countercurrent scubber are

inertial impaction, interception, thermophoresis, and diffusio-

phoresis.

3.1 Efficiency Definition

when considering the definition for collection efficiency, the
basis upon which a particie is captured by a moving droplet must be
establishgd. The process of particle capture is very complex since
consideration should be given to intéracticns between drops, between:
particles,'and between drops and particles [53]. In thié stﬁdy,
particle-particle and droplet—droplet interactions are neglected and
coﬁsidération is given only to the interaction between a single
particle and a single water droplet. :

The collision efficiency is defined as the ratio of the number of
particles predicted to strike the collector to the number of particles
flbwing through the projected area of the collector. For deformed
collectors, this projected area is defined as the projected area of a

sphere of eqﬁivalent volume. Particle collision will occur from

-~



wotnin an aren defined by, trajectories tnet would be traced br
particles that just graze the collector .gs shown in Figure 2.1. If Y
is the maximum verticle displacement from the collector centerline

that will allow the particle to collide with the collector, the

droplet collection efficiency is given by :

——

where .
a, = the volume radius of the collector

A particle, upon colliding with the collector, may have one of

the following ,fates:

. the particle could bounce off the surface of the collector

. the particle could penetrate and pass through the collector;
: exiting at some other point

» the particle could penetrate the surface and be captured by
the collector {(coalescence}.

The particular fate of a given particle is a function of many

variables but the dominant ones, as given by Wu [53], are:

+ nature of the surface forces
« wettability of the particle
« impact velocity of the particle

« angle of contact of the particle..



. FIGURE 3.1: Collection Efficiency Definition
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Taking into acount the action of all of these variables would be _
. difficult but essential to the determination of the acpual collection
efficiency. Fortunately, Grover et. al. [16] poia;‘ggi‘that neariy
1) particles that collide with a water dropfére retainéF by it and
the collision efficiency can be taken to be identicéidfg the

collection efficiencyr.

3.2 Inertial Impaction

The collection of particles due to inertial impéction is the
result of the.particle's resistance to flow around the collector with
the fluid. This resistance is due to the inertial effects of the
;article mass. It can be shown that inertial impaction alone is &

function of a dimensionless parameter, K, called the Stokes number (9]

gefined as:

2p r2U
K=z PP®
E“"f'&o f
where
Pp = the particle density
rp = the particle radius
= the undisturbed gas velocity

He = the fluid visoosity
o volume radius of the collecting body
£ Cunningham correction factor.

N4
-

On the basis of Newton's law of motion, a particle with a very

lafge mass would deviate only slightly from its staight path as the

T
. F T
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fluid flows around the collecior. Consequently, the particle can
easily strike the collector. The converse is true if the particle has
;éro mass; it will follow the fluid around the collector and by-pass
the obstacle to fluid flow. Using these two limiting cases, 1t 1is

evident that collection should increase with increasing mass (or

increasing K) when considering inertial impaction alope.

3.3 The Interception Mechanism

The interception mechanism accounts for real particle
dimensions. This mechanism can be included in a model through the

escape condition for the particle. This condition specifies that:

« the particle is captured if its center-line‘position is
within one particle radius, rp, of the collector surface

» the particle otherwise escapes capture.

Exclusion of this mechanism means that the particle is considered to
be a point mass.
The efficiency of particle collection by the interception

mechanism is & function of the dimensionless interception parameter:

T

Nr = B

o -
It haes been shown that interception is significant as a collection
mechanism only when the radius of the collecting element is of the

gsame order of magnitude ss the particles being collected, or Nr has a

value close to unity [1]. According to Lin and Lee [30], a particle



effecte the flow field of éﬁector at values of Nr greater than

0.1. Under such conditions, special modeling techniques must be [ 2.8
introduced. From & practical standpoint, the value of Nr is expected
10 be less than 0.1 sinée.liquid drops in most gas cleaning devices
never mpproach the submicron size {1]. For such small values of Nr,

it has been shown that j.nterceptrion plays a negligible reole in

particle collection and can be negected [1,9).

3.3 Phorectic Forces -~

Thermophoresis and diffusiophoresis are phoretic forces that
result from the interaction of gas molecules ;an the surface of the
particle. These‘?o}cgs are iﬁlportaht to this work because they can
increase the potential for fine particle collection. A detailed
;liscussion of theoretical and experimental aspects of these forces has
been provided by Alias [1]. |

b

3.4.1 Thermophoresis

Thermophoresis describes the phenomenon responsible for
pa.rt;icles moving in the direction of the lower temperature in a fluid
medium with a.feulpemtur-e gradient {28]. This process can be
understood more readily by the use of a simple model. Refering to
Figure-3.2, consider a pérticle smw in a gas which is contained
‘between two plates, one of which is heated. The gas molecules on one
side of the particle will be at a higher temperature than the ones on

the other side. Consequently, the mol_ecules from the hotter side will
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impart more momentum to the particle as they collide with it than
those approaching from the cooler side. This imbalance in momentum -

transfer will cause the pérticle to move towards the cooler plate,

-

I. - _. L ] . .. L ] . - . - . L ] ’.. -
T~ J . ! ". .
- ) ! L ] .. - .‘: .* )
. . \ ™~ PARTICLE -e A - .« .
.(. ./ [ ] - [ ] L - - L ]
. - LI . .- R )
./ L] [ ] [ ) t - ._’ L] [ Bt i
¢——— HOT SIDE -~ . . . » COOL SIDE ——

» —— GAS MOLBCULE

FIGURE 3.2: A Simplified Model of Thermophoresis

From the mbove example, it is clear that the particle motion is '

-affected by the difference in the velocities of molecules approaching

from the hot and cool sides. Thus, the particle motion is related to
the temperature difference or the temperature gradient across the

particle. The thermophoretic force, f‘t. on a particle in a uniform
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{luig 1z giver. by Brock |D] es:

v . . _ .
. GRAETor P Eo/E o€ o e
t Fhy X ioE N ll-i-Zh 7E_+2C. Nen | °f T

‘ rr L m 7p Tt

-t.he dimensionless Knudsun number
A

F
r

mean free path of the gas
the particle radius

dimensionless constant

:

dimensionless constant

He = viscosity of fluid

Pp = density of fluid

Tf = absolute fluid temperature

Kf = thermal conductivity of the fluid

E = thermal conductivity of the particle .

In general, this equation has limitations [1] but it can be applied to
fhe entire range of perticle sizes normally emomtered in gas
cleaning devices as long as Kp is not too large [16,50}. For air, Cm
varies between 1.0 and 1.3 while C, ranges between 1.9 and 2.6 (20].
in this work, the values of Cm and Ct were taken to be 1.00 and 2.50
respectively. These values are used most o:rmuly in the literature
(16,31] o o o
It is cﬁst.omry to write the thermophoretic force in terms o.f'a.

t.hermophoretic velocity by eqmt.iné Equation 3.4.1 to the viscous drag’

g -
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equutlon ascording to!

ra

where _
ft = the thermoporetic velocity

Cf = the Cunningham correction fastor

As a result, the thermophoretic velocity is defined as:
Bnyf 1 hf/hp+Ct-Nkn B ]
£ 3.4.2

v, - - [ H . o
t [prTf 1+3Cm Nkn 1+th/hp+&Ct-Nkn

3.4.2 Diffusiophoresis

A diffusiophoretic force mcts on a particle in an isothermal
gas mixture with a concentration gradient. As in the case of .
thermophoresis, a simple model can be used to illustrate the process
of diffusiophoresis. Réfering to Figure 3.3, consider a particle
suspended in a gas through which a dilute vapor is diffusing from one
side. As diffusing vapor ﬁolecules strike the surface of the particle
they impart momentum to it. This action u?ll cause the particle to
move in the direction of the diffusing vapor. Clearly, if a gas
stream has & relatively high concentration of water v§por.-particle
collection will be enhanced by the diffusion of the water vapor to a

cool droplet surface.
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FIGURE 3.3: A Simplified Model of Diffusiophoresis

A diffusiophoretic velocity can be defined in the same manner as
the thermophoretic velocity. The diffusiophoretic force can be

defined as:

6mpr V :
= . _Hpd 3.4.4
d _Cf_-

The diffusiophoretic velocity in the free molecular regime,

(10 ¢ Nkm ¢ «), is given by Waldman [50] as:



V.= - 1 lEs 3.4.4
e T M+ ME T2 !
iz T
where

Ml = the molecular weight of component 1

'-.2 = the molecular weight of component 2

vy G the mole fraction of component 1

7, = Ahe mole fraction of component 2

S
212 *

the‘>iiffusivity of component i in cgmponent 2
o~

The theoretical limitation of this equation does not allow the entire
‘renge of particles sizes to be considered in a model. However, as
pointed out by Schmitt and Waldman [16), it is accurate withingx for
particles larger than the mean free path length of the gas.

Consequently, Equation 3.4.4 can by applied to particles with Nkn less

than unity.

3.4.3 Combined Phoretic Forces

To calculate the trajectory of a particle, the total force on
the particle must be determined. This total exerted force is simply
the sum of all of the individual force terms, includipg _t,he forces
resulting from thennoph.oresis and diffusiophoresis. A problem exists
because Equation 3.4.2 was derived for t;he case with no concentration
gradients and Equation 3.4.4 was derived for the case where the gas
has a uniform temperature. In other words, one phoretic force was
derived assuming the othér is abaent.

Strictly speaking, there are coupling terms in the general

v
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.- . T,
expressions for the thermophoretic and diffisiophoretic forces [16].
Adding Equations 3.4.2 and 3.4.4 means that these coupling terms are
neglected. As pointed out by Annis and Mason [2]}, if the mole |
fruction of the diffusing vapor is much less than the mole fraction of
the gae through which it diffuses, the qncoupled phoretic force terms
are additive. In this investigation, it was assumed that thermole

fraction of the diffusing water vapor is small compared to the mole

fraction of the gas.



4. MATHEMATICAL MODELS

Frequently, the solution of an engineering problem requires the
applicatién of mathematicael relationships Lo sj:ﬁ;ulate the behevion- of )
the svstem. The éomplexity of the fofmulation clearly depends upon

the problem itself, but, more importantly, i-t depends upon the
simplifying assumptions involved. Advances in a given model are often
the result of relaxing limiting assumptions, thus increasing the level
of complexity of the model. The analyst must be careful to avoid the
situation where ltl'-le additional gein in accuracy is only marginal but
the mbdel is no longer competitive with simpler ones.

To modell the capture of aerosol particles it is important to
understand the influence of several important physical variables. It
is clear -that the particle motion will be affected by the flow of the
fluid over the body of the gollector; thus, an ability to model the
flow of the fluid accurately is essential. When the collecting -pody
is a water droplet, it has been shown that under cermih conditions
the collector shape can no longer be considered spherical [41,42] .‘
Consequently there is a need to describe the flow of a fluid over .an
arbitrary body shape. '

As mentioned earlier, the presence of vapor and temperature
gradients around the collector would influence the path of a moving

particle. As a result, some appreciation of the distribution of these

variables around the collecting body becomes essential.
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4.1 General Urthogonal Coordinates

In sclving the various fluid mechanics equations, es well as
the equations that govern perticle dynamics, it would be convenient to
have a coordinate system that coincides with the collector surface.
For example, if the collector is spherical in shape, the surface would
; coincide with the surface generated in spherical polar coordinates
(r,e,ﬂﬂ by setting the radius (r) to unity. With this'simplification
it is possible to write all of the hydrodynamic equations in spherical
coordinates for a model of particle collection. In general, actual
collectors can deviate from spherical shapes, as occurs with water
droplets at high velocities or cylindricai fibres after a particulate
film has accumulated [13].

'I'he\ generation of boundary conforming coordinates is accomplished
by devising a schem‘e for transforming the irregular Cartesian physical
domain into a regular computational domain as shown‘ in Figure 4.1.

This transformation can be stated in general terms as:

= x(a 2,:1 )
= y(al,az.a3)
z = z(al,az,a3)
or
r = rla) T 4.1.1
where r = xX-ity-j+z-k
a = 1 elmz e2+03 e3
éi = a unit vector in the direction of nrcreas:mg a,

For example, the transformation equations for spherical polar
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FIGURE 4.1:

'y

Orthogonal Transformation

FIGURE 4.2:

General Unit Tangent Vector

21
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- moordinates are given by:

b
1]

a -sin(azj-cos(GS)

1
¥ o= al-sm(az} -sm(a3)
z = al‘cos(az)
- . 12 4e.Z =
where a r er é e9+¢ e‘

The relationship between r and a is assumed

. to be single-valued

. to have continuous derivatives so that the correspondence
between the coordinates is unique..

Wiﬁh respect to Figure 4.2, consider & coordinate line along

which only a varies. A tangent to the curve ;(ai) is given by:

lim r(ai+6ai)-—r(ai) iy
5a . —) 5., T 3a.
1l . 1 1

Also, f Figure 4.2, a unit vector in the direction of incressing ai
. .
ig:

- - =1 :

- _ar|ar

vl 4.1.3
1 1

At this point it is necessary to impose the condition where the

a; coordinate lines are mutually perpendicular in the physical domain.



Consequently, at s position r, the tangents to these orthogonal

coordina&s\lines are themselves mutually perpendicular; therefore:
~

1
]
fl

0 izj

Q.

M,

Qr

HIl G

or

1t
o

iwj 4.1.4

d
|

In general, it can be shown by a simple chain rule that a

’ . -
differential increment in r is given by

4.1.5

o
M
B

-

An increment of arc length, given a differential increment in r, is

given by:

Lo R 2]

(ds)

5
2
. 3

(da. 4.1.6
izl j=1 °%H J

Equation 4.1.6 allows the introduction of some standard terminology.

The arc length increment depends on the dot product of the tangent

vectors to the coordinate curves. These dot products form a symetric

covariant metric tensor as follows [49]):

87 £12 £y3

€5, Bpgy Eo3
€31 B3z £33
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a
Hi

la
H

where gij =

B
5

Earlier it was mssumed. that the & coordinate lines were mutually

orthogonal in the physical plane; therefore, by Equation 4.1.4, all of

the off-diagonal terms in the transformation metric tensor are zero.
Often, quantities called coordinate scale factors (hi! are introduced
for ccnveniénce when the coordinate system is orthogonal. These scale

factors are given by: ' it

=J .. 4.1,

b |

At this point, all the information necessary to develop a general

model has been given. Differential operators; such as

o the gradient (w¢)
e the divergence (v-4)

. the curl (vxe)

have equivalent forms to their Ca.rtesian counterparts in this new
coordinate S}"stem. Appendix A contains the necessary differential
operators for further model development. A more extensive and

detailed development of genera.}.ized coordinate transformations is

provided by Thampson [49].



4.2 Eguaticn of Particle Motion

The equation of particle motion can be readilf derived from
Newton's law of motion when-seve:al simplifications are made.
Fundamental assumptions specify that:

et

+« the particle size is so small in comparison to the
collector size that it will not influence the
collector flow field

e particle-particle interactions are negligible

* heat and mass transfer between the particle and fluid
are negligible

» the particle is spherical in shap€.

Generally, many more assumptions must be made to completely define a
physical model, but they are not needed in the formulation of the
equation of particle motion.

A simple force balance on & particle leads to the relationship: |

= F + 4.2,1
mp A i Fe
where A = particle acceleration vector

drag force vector

external force vector

T
[
'da tb.rj E

particle mass

The drag force on an object can be expressed as:

= -1 Cdim o vn L T
= c—-l -V )Iu-V_ |A 4.2.2
’Fdrag r £ v P)I PLP :
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fluid density

dreg coefficient
projected perticle areas

vhere

Hon

tH

fluid velocity vector

particle velocity vector

@I }8"0
- 'd i g )

Knudaen-wWeber correction factor

The Knudsen-Weber correction factor, Cf. must‘be introduced into
the familiar drag force expression (Equation 4.2;2) in order to
correct for the reduction of the drag force from the theoretical value
when the particle size is of the order of the meaﬁ'frge path lenggh of
the gas. Thie deviation from ﬁheory results whén such small particles
experience velocity slip at the surface because the fluid is no %pnger
& continuous medium with respect to the particle [53]. The correction
ig a function of the dimensionless Knudsen number (Nkn) and itse final

form is [1,53]:

_ ~1
Cf =1+ Nkn(l.257 + O.40exp[—1.1NkQ 1 4.2.3
where Nkn = Knudsen mumber |
_ A
- - -f:p . '.
A = mean free path length of the gas
rp = particle radius

Equations 4.2.1 and 4.2.2 can be combined and rearranged into a

dimensionless form by making the following substitutions:



[Sv]
g |

where U = the undisturbed gas velocity

8

H
n

volume radius of qolleétor

time
dimensionless time

dimensionless acceleration vector

g1 30
non

f = dimensionless extgrnal force vector

m

£
1]

dimensionless fluid'velocity vector
dimensionless particle velocity vector

<l
"

Combining equation 4.2.1 and 4.2.2 and making the appropriate

substitutions yeilds:

5 - -

B = wpr (u. - vp ) + fe 4.2.4
where- K = Stokes number
-2
_ CfppUmrp
5y c
pp = particle density
By = fluid viscosity

The deviation of the particle from Stokesian behavior is taken

A
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intc account by the factor v which is givén by:

' Cd Nre

T = P

-3
where Nrep = particle keynolds number.

3

The value of 1 has been expressed in the form:

Nre

.1 =1 +'TU92+ 0.15 Nreg'6 4.2.5

-

by using the expression for the drag c¥§fficient given by Dickinson
and Marshall [9]. '
'Equations 4.2.3 and 4.2.4 can be solved simultaneously given any

external force, ?e’ to produce particle irajectories. It should be

‘ :
noted that the particle acceleration vector has a complicated form in

a generalized coordinate system. The particle acceleration vector, as

derived in Appendix B, is given by:

W n d al . 3 h1 d al, . 9a h1 d al d oy
1 1 dtz 60.1 dt Mz at t
2
Pa ANz N9 % 4.2.6
9% o h. [dal? ah"d d
e =h "‘2+ 2 &% .o 2 G € %
Il v vl [ i3 T |aE
h. o h, [d a.]1? .
-1 4.2.7
o gt
2 72 T) .

*
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where g =8

4.3 Fluid Flow Eguations

* Fundamental to the evaluation of particle trajectories is the
establishment of the velocity field around the collector. The fluid,
like the particle, must obey several conservation laws at every point

in the fluid. These laws involve

. the conservation of mass
. " iy,
. the conservation of linear momentum.

.

In order to/accurately predict the flow of a Newtonian fluid at

. intermediate Reynolds numbers the Navier-Stokes equations must be

solved. These equations, which relate to the conservation of linegr

mommentumn, take the following form:
DU _ - . Hp- - - 25 .
PsoT— = -vp + 13—1:7(17-U) _+ He® 4.3.1
This vector equation is subject to the constraint

3ap

ra‘r_f + 9-(p0) = 0 4.3.2

‘which results from the conservation of mass.

In the derivation of Equation 4.3.1 it has been assumed that the

viscosity, Hei is constant. In addition, it would be convenient to
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assume that the density is constant since this condition would lead to
considereble simplifications. For moderate temperature differences
betweer, the collector and the gag stiream, the dependence of viscosity
‘and density on temperature can be neglected because the local velues
cf these guantities should approximate the temperature averaged
values. For example, if the tempermture of the fluid and the
collector are 65°C and 10°C respectively, the maximum deviation of
viscosity and qgnsity from the avéraged quantities is approximately
7%. The compressibility of the gas due to inertial effects can be
neglected because the velocities of the'collectors considered are much
less than the speed of sound [53].

Using these simplifications and applying the dimensionless

transformation discussed in Section 4.2 it follows that:

du_ -, .12 - - = 2 2- :
5T ° -vip +2u )+ ux{wm) + e’ U 4.3.3
veu=z=0 4.3.4
where ' * = P ' .
P = —_— -
Nre = fluid Reynolds number
_ prUwaO
K
Du_du, =-=-_d3u_ 1-2 = =-~-
and e 3€_.+ {(u-v)u = 5 + 2vu - ux{wxu) 4.3.5

The form of the subgtantial derivative as.given in Equation 4.3.5 must

be used for Equation 4.2.3 to be applicable to géneral orthogonal



coordinates [4].

The form of the momentum equation used to solve for the fluid
flow involves the vorticity/stream function formulation. This
equation is obtained by taking the curl of Equation 4.3.3 to remove
the pressure term and introducing the stream function. Appendix A
cqntains all of the necessary differential operators in general
orthogonal coordinates to per:mit.formulat.ion of Equation 4.3.4 as:

3 (u,h,h.,)} & {u,h. h,) _
o 17273 +—acx 213 =0

1 2

assuming that the velocity component in the a., direction is zero (this
represents the case of either planar or axisymetric flow). Equation

4.2.4 is satisfied everywhere if the stream function, *, is introduced

as: }

\

o

I A
17 Rh, 5, ' "2 TRh;

Qs
-+

&

4.3.5

i
w
[
ne
[
—

—~

Removing the pressure term from Equation 4.3.3 and using Equat.‘ion

4.2.5, the final form of the vorticity transport equation becomes :

a (Dr) 3 |avr f 2 4

af -0 A
- D» 4.3.6
X . h1h2 aa.l 332 &:z-éal .
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. Dy
wilih f = v
h3
¢ = - %_ Dy
3

where 2 nonzerc component of vorticity

.
o Mpe [P e e [F1 .
Biha| 9 |P1Ra 9% 3%y |Poha 3%

L]

U1 w

s

Equation 4.3.6 is a convenient scalar relationship that can be
used to solve for incompressible, planar or axisymetric flow of a

Newtonian fluid over an arbitrarily shaped body.

4.4 Heat and Mass Transfer Fquations

It has been already established that a particle trajectory can .

be influenced by the presence of a vapor or temperature gradient. A
good estimate of these quantities is, therefore, required when ’
determining whether or not an aerosol particle is captured. Again,
conservation laws can be applied to produce the governing eqtiations.‘

Applying the principle of conservation of total energy {kinetic
_and internal) to an ideal fluid and removing the kinetic energy term
with the dot product of velocity, {u) with Equation 4.3.1, the
following expression is obtained:

P = =50 + ¢ + 9 (kT) 2.4.1

where internal energy

viscous disaipation (usually neglected)}

-6 n
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k. = thermal conductivity

~1
1

fluid temperature

The assumption of constant density along with constant thermal

conductivity allows Equation 4.4.1 to be written as [4]:

DT _. 2 o
s prpD'r' kfv T . 3.4.2

where CP = the fluid heat capacity
Finally, after applying the dimensionless transformation of Section
4.2 and introducing the stream function, the steady state energy

equation takes the form:

2 1 1 72
2 [a [PPasan],s MMy
Npep| da1| By 931 | % By %%
T -T,
where n = p—1
c = -
T, = undisturbed fluid temperature
Tc = collector temperature

Peclet number for heat }:mnsfer

Nre - Npr
Prandtl number

prf
]Ef

g 3

An equation for the convective diffusion of a component of a gas

mixture can be dérived by applying a simple mass balance and using

N
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Ficks law of diffusion. Assuming that the diffusing component is
dilute and that it has a constant diffusivity the following equation

is obtained [41]:

Dt = 2, °C, 4.4.4
vhere C, = the molar concentration of component 1
2,, = the molar diffusivity of component 1

Equations 4.4.2 and 4.4.4 are very éimilar and have identical

dimensionlegs forms with the following definitions:

Cx - Cx
o
n= Cr—:-c:—- : \
C o« . .
Cip = concentration of component 1 in the \.mcl_ixsturbed
fluid T
Cie = concenfration of component 1 on the collector
Npem = Peclet number for mass transfer
= Nre:Nsac
Nac = Schmidt number
. e

me::

Having varying concentrations of a component in a gas mixture
‘would affect the fluid flow through the density and viscosity.
Hoﬁever, as pointed out by Woo [51], the assumption of constant
physical properties has been shown to introduce very little error for

water drops evaporating in air.



5. COORDINATE GENERATION

The solution of the coupled set of equetions discussed in Chapter
4 1s & formidable task. The Navier-Stokes equatfons. being nonlinear,
have so far proven to be insoluble for the problem of planar or
axisymmetric flow around sphfroids and no closed solutiﬁn exists for
the entire range of all para.meters {14,34]. Since the remaining
transport equations, as well as the part:{cle chmamic equations, are
coupled to the Navier-Stokes equations, analytical solutions are
scarce. Consequently, numerical algorithms must be'implemented to
sclve these equations.

Preséntly, there are a number of different ﬁechniques for solving
both linear and nonlinear partial differential equations. The most
popular are finite difference and finite element approaches. - The
application of finite elements has been vary prevalent because the
method is not restricted by coordinate _geometry. As a result it is a
viable candidate for determining the flow characteristics around
deformed water droplets. Finite difference techniques -m‘e relatively
simple to apply but are generally somewhat dependent on coordinate
geometry. It is usual to choose a fixed coordinate system in whith to
work. Recent developments in the application of numerical grid
generation have enabled analysts to produce competitive finite
difference codes for ﬁmbl in arbitrary domains.

The concept of grid generation for solving problems im quite‘

simple. A set of boundary conforming coordinates is established and

35



36

3

used much like polar or oblate speroidal coordinates are used to éolve
a problem. The flexibility lies in the fact that the coordjmuzs (or
grids) are generated numerically allowing the same numerical code to
solve problems for many arbitrarylregions. Thompson et. a&l. [48] have
compiled extensive literature on the subject, with general-izations
for ponorthogon.&l grids.

In thic work, the method of orthogonal grid generation has been
chosen for use in the model. This choice is a direct result of

gseveral distinct advantages realized since:

e extensive literature now exists on the topic of grid

generation with its application to fluid dynamic problems /)

. the badic schemes are relatively simple to apply becauae
finite diference techniques are well established

. there is & great deal known about the convergence and
stability of finite difference algorithps

. there has been considerable work done in the area of optimal
behavior of iterative schemes which is important to problems
which are nonlinear [B]

. the condition of orthogonality greatly reduces the

complexity of equations and derivative boundary conditions
[33,40].

In Chapter 4, a brief discussion was given on general orthogonal

coordinates and their implementation in the governing eqpatidh through

the scale factors. In this chapter the emphasis will be focussed on
the development of a scheme that can be used to obtain the required

orthogonal transformation. Discussions will be limited to the



generation of two dimensionel orthogonal grids since the problem of
interest can be viewed in two dimensions.

Restricted to a planar grid, the general transformation metric

tensor is given by:

where - g.. = S _ .

Orthogonality requires

2ig T Bpp = O
Therefore: \
AXOX Ay oy
. + . =0 5.1
3a; 34, = 34

Equation 5.1 is a general statement of orthogonality. There can exist
many different schemes to force Equation 5.1 to be true. Authors,
.such as Haussling and Coleman [19]; Pope [40); Hung and Brown [20];
and Ryskin and Leal [45], have proposed algorithms for generating .
boundary conforming orthogonal coordinate systems. The method used in
this work is based on the algorithm first proposed by Mobely and
Stewart [33]. | .

The fundamental basis of the algorithm is the exisﬂenoe of a
conformal mapping between the physical region of interest and a

rectangular domain as shown in Figure 5.1. For the mapping to be
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conformal the transformation must satisfy the Cauchy-Riemann

equations:
QX Y
—— T —y (a)
%@y %%y
5.2
a X o3
e N {b)
8az 3y
¥ 012
/—— J- - .
‘PHYSICAL COMFPUTATIONAL
PLANE PLANE
TRANSFORMATION
/—\. 1- | !
X I - T —t dl
1 I

FIGURE 5.1: Transformed Computational Domain

Since Equations 5.2 satisfy Equation 5.1, the transformation is
orthogonal. ) -
Globally, when a conformal mapping ig made, straight lines in the
physical plane are mapped into curves. As a result distances may be
distorted. In infinitesimal regions, angles are preserved; parallel

lines are still parallel; and squares will be mapped into squares.

A
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This fact is easily seen when Equations 5.2 are substituted into
Equations 4.1.7. The two scale fact.ors'(h1 and h2) are equal which
means that equal increments in. the ) and <, directions correspond to
two equal displscements in the physical plane [23].

In applications where there will be large deviations in the flow
field, it would be desirable to 'pack’ the grid lines in the regions
where these deviations will occur to achieve better resolution. A
direct result of the scale factors bging equal is the loas of control
over the grid spacing. An algorithm could be devised on the basis of
Equations 5.2 but this would be severly limiting:

To make the transformation éasier to handle numerically, it is
useful to assign a size to the computational réctangle. Asauﬁing that
there are (1) points in the ey direction and (J) points in the @,

direction, & convenient size would be:

7

—
I~

%

1< a,
a2

ay = My

I~
L4}

gso that

It
—

As pointed out by Thompson [49]; if the computational rectangle is
completely specified (ie. all four sides are fixed) the problem is
overdetermined. The Riemann Mapping Theorem states that a conformal
mapping is uniquely determined by specifying any three real parameters
[49). This overspecification can be overcome by multiplying either

the «, or the a, axis by an adjustable parameter (s) to allow the
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computational plane to be fixed while the conformal pisne is open

ended. As a result Equations 5.2 become:

J X 3y
S0 T —% a)
1 %% :
5.3
X Iy
2 —_— T =B b)
2 oay
where
ai = s-al
O - H
az = al

It should be noted that Equations 5.3 no longer fepfesenﬁ a conformal
mapping but it is still an orthogonal mapping since it satisfies
Equation 5.1.

By differentiating Equations 5.3 with respect to af and ag it is

eagily shown that x and y must satisfy:

2 2
23 X 9 X
8. + =0 (a)
1 2
5.4
2 2
23 y, 0 Y
s --—-2-+ — = 0 {b)
6u? aa§

in the computational plane.

At this point, the scheme is still limited by a lack of conirol
over the grid spacing. The method used by Mobley and Stewart [33]
involved the introduction of packing functions for a? and a§ according

to:



4]

T ai’ = f(al)

£
0
]

= g(az)

where f and g are monotonically incressing functions of the new
computational variables oy and Gp- Trhe transformation in qu_._xations
5.5 can be viewed as a simple coordinate stretch of the intermediate
variblet._a a'i' and as and monotonicity ensures that the mapping is .still

one to one.

The new forms of Equations 5.3 are:

3 x 'ay
Stom— T —pt—— (a)}
aa.l -4 acx.z
5.6
3 x g' ay
— =G — (b) ‘
3a, ™ 3y
It can be shown that x and y must satisfy:
' /
2{x} =0 a)
5.7
2(y) = 0 b)
vhere :
¢ = 52 az 32 " o + [f’]z az g" [f’]z d
- . - e bl S -y e
. aazl 'f""éd_l £ | 'hzz £ |8 o,

L]

Clesrly, Equations 5.6 satisfy Equation 5.1 to produce an orthogonal
mapping with some control gained over the grid spacing through the

stetching functions f and g

\

b
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/
The boundary conditions for Equations 5.7 are obtained from

Equations 5.6. These latter equations were developed to achieve an
orthogonal mapping of an arbitrary domain into a rectangle. By
implication, these equations must hold true on the boundaries [33].

According to Equations 5.6, it can be shown that, if y is specified on
o X
1 Ay

Therefore, a Neuman (derivative) boundary condition must be specified

an a, boundary, a—l is known which means that is known.

] o

for x. The converse is true if x is specified.‘ "This condition
illustrates the fact that Equations 5.7 are not explicitly coupled in
f.he ;nterior but ﬂx&t they ere coupled by the boundary conditions.’
Figure $.2 provides an examp]..e of ‘a typical problem statement in both
the physical and computational planes. Only the corner points of the
transformation can by ful‘ly -defj_.neci since both x and y cannot be
expressed on 8 given éomput.ational boundary.

One final condition must be used to define the constant ’é’ .
This constant can be determined from either relationship of Equations
) S.G‘by inpegfating along'a line 6f constant @, Or &,. An example of

this approach is illustrated by:

| 1:1
| f'(a‘l) 3y
8- {x{i,a,)-x(1,a,}] = . fom dO 5.8
- @27 2 o -“1 g'la.zi aaz 1
12 .

In & numerical procedure, it is possible to ‘choose’ any a, grid line to

perform the integration.
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Ac mentioned earlier, the packing fumctions 'f’' and 'g' can be
used to obtain any desired density of grid lines in = regi-on. Very
fine grids are required to model variables that Me quickly.
Mobley and Stewart [33] have proposed four general ‘pe.cking functions
16 mocomplish various grid line ‘density distributions. These

functions are:

zl(ai) = e 5.9
zz(ai) = ,N£1+2-s!:1:-1}11"‘ =T -siln;h'1 [é;- ai-ﬁgl]] 5 10
zgta,) = N;1+2_S’:;1_1,(a)-sin" [%{__?-[ai—%l]] | 5,11
(a2-1) . )
zqtcxi) = exp[ma—“-ln(m] - 5.12

I~e .
; N = the maximum a; dimension
Equations 5.9 through 5.12 peffom_;te following tasks when applied to

-

the a rdinate lines:

» zl

presents no packing.

; /-' Z, packs the grid lines close to a, =l and @, = N leaving
the centre sparce. The magnitude of 'a’ determines the
degree of packing.

* 2 packs the grid lines towards the cesitre leaving the edges

sparce. The magnitude of 'a’ determines the degree of
packing.
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. z4packsthezrids lines eithert.owardscxizlorcxizr\'

depending on whether 'a’ is positve or negative. Again, the
magnitude of 'a’ determines the degree of pecking.

The affect of applying these packing functions is demonstrated in

Figures 5.2a and 5.3b for the trivial case of transforming a unit

v

square into a rect.aﬁgle. .
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FIGURE 5.3b: Grid Packing in a Unit Square
(flay) = zz(al) i a = 5.00)

(g(a2) = z4(a2) e = -1.0)

i

FIGURE 5.3a: Grid Packing in a Unit Square
(f(al) = za(al) ; a = 0.95)

& (z(az) = 24(“2) i a=1.00
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6. COMPUTATIONAL PROCEDURE

The Navier-Stokes, convective diffusion, and coordinate
g,nehﬁtlon eguations in Chapters 4 and 5 are resolved to a set of
nonlinear algebraic equations by the epplicaticn of thd method of
finite differences. These algebraic eqi?tlona are solved using a new
iterative procedure proposed by Ehrlich EB]. fhls scheme 1s i1deal for
a general model because the dependence on parameter estimation is
reducgd when compared to standard rélaxation schemes. Once the
‘various flow variables are determined, the particle dynamic equations
of Chapter 4 are solved by the fifth-order, variablerstep-size, Runge-
Kutta-Fehlberg algorithm to determine pérticle trajectories.

The governing equations are coupled to the particle dynamic
equations but the entire equation set need not be solved
simultaneously. Generally, the Navier-Stokes equation, Equation
4.3.1, is coupled to the energy equation, Equation 4.4.1, an@ the
diffusich.equation, Equation 4.4.4, through the density and viscosity.
The assumption of constant physical properties uncoupleé these
equations, thus allowing the flow field to be visualized before
determining the temperature and vapor distributions. The eguations
are connected such that the following sequence of caleulations can be

used:

¢+ Equations-5.1.7 a and b are solved to generate the
correspondence between the computational and physical
planes. -

47
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. the incompressible Navier-Stokes equation, Equation 4.3.6,
is solved to produce steady state velocity profiles (Note:
Forcing the vorticity to be zero at high Reynolds numbers
resulted in a potential flow solution?.

. the convective diffusion equation (Equation 4.4.3) is
solved to provide tempersture and vapor distributions.

. finally the particle dynamic equation (Equation 4.Z.3) is_
solved. '

Finite Difference Approximations

[op)
N
-

The partial differential equations developed earlier are
applied tc every interior grid point q151+a262. All of the spatial .
+

derivatives are evaluated by disqrete numerical approximations. The

mth derivative of f(xi) is approximated in the form:

dr fFix)  §=1
x I pftxg ) 6.1.1

m Jzk J

dx
where the pj's are determined by means of Taylor series expansions for
the neighboring points, f(xi+j)' about the point f(xi). 'In this work,
the interior derivatives are ﬁpproximated by second-order central-

difference expressions which are given as:

. .~

N o i1, i-1, _ 1

3"_1: 4y = o2z =gl 5P, . 612
¢ -

¢ o i, g+l "i,j-1 _ 1

__E-z 420 = Vi - = 24°i,j+1'°i,j—1) 6.1.3

R



2 ¢ —2¢. +e, )
A e 4% e = 1+1,3 z i, 1-1,0
z 11 Z
o Aal
= (e, —20. . 1.4
‘ i+1,j 2 1,3 i-1,] 6.1.4
2 . . =2¢. .+¢_
LR o _ i, g+l 2 i,J 1,J-1
.._,2__-‘: A22¢> = Vi
3ar, 4,
s -
= (¢ -2¢. 4. . ) 6...5

1,J+1 1,) 1,j-1

It should be noted that Aa1:Aa2:1 because of the boundary conditions
employed in the construction of the grid.

When approximating derivative boundary conditions, the second-
order central-difference operator cannot always be applied.
Conseﬁﬁén;}y, it should be replaced with the appropriate {forward or
backward) second-order one-sided difference approximation. These

difference operators are given as:

FORWARD
~3¢. .+4¢. —, .
O ® . Lty - i, Ti+1,) i+42,)
X 1 e 200
1 1
: ) |
P
-3¢, . +4¢. . —$. .
3 b vy - 1.0 T i,j41 i,j42
‘_2 2 24a.,
21, . -
7 e e o1



BACKWARD
KT 4
¢ ¢ 4T = 1,3 =10 1-4,0
oa, oL A
1 1 p
- 1(3¢ ‘¢. 6 1 8
TN T, T -2, o
[ - .
a 08 e = 1,57, -1, -2
aa, 2 - —aa .
2 2
1
=3¢, ¢ . L. .1.9
Z(d i3 4"1,3-1“’1,‘)—2’ 6.1

Finally, a scheme has been used to solve Equation 4.3.6 which

will involve first-order one-sided differences. These operators are

given as.
»
FORWARD
a e ' i*1,3 1,J
8-a.T::: A1¢ = &1 = ‘i+1,j_¢i,j 6.1.10
I S
I ep _ 1,J+1 "1,
a_a";’ a5 = % 'i,_j+1—°i,,j '6.1.11
BACEWARD :
¢, .~¢.
a —a o i,9 Ti-1,5 _
ET'—" Al' ——-——Z-l-—-—-—-- ‘i,j_¢i—1"} » 6-1-12
_ 6, . .
2* . 254 = i, 1,91 L, e 6.1.13
2 mz 1,J 1IJ_1
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£.1.1 Coordinate Generation Algorithm

The coordinate generation scheme proposed in Chapter 5 has

beeg used to determine the grid scale factors, hi' presented in

N
Chapter 4. Once these quantities are known at each grid point,
“151*’“2‘;2' the rest of the modelling equations can be applied.

- A question that arises is whether the analytical evalumtion of
these scale factors is more accurate than the numerical g.valuation.
Thompson et. al. [49] addressed this problem and proved that the
numerically evaluated scale factors produced & more accurate mumerical
truncation than the analytical scale factors, essuming the same
differencing was used for both the function derivative and the scale
factor evalution. Consequently, the numerical evaluation of grid
scale factors is preferable even when analytical expressions are
known. This approach makes good sense since the analytical scale
factors are continuous transformations and are intended for continuous
grids, not discrete ones.

Additional advantages are gained by forcing the coordinates to be
orthogonal. 'In Chapter 4, it was emphasized that the transformation
metric tensor is greatly simplified by forcing the-transformation to
be orthogonal, thereby reducing the c;applexity of the tranaformed
modeiling equations. This simplification is not only a matter of
convenience but it has some numericsl significance as shown by Mobley
et. ai. [33].

Considér the evaluation of the normal derivative to a line of

constant a, assuming that the coordinate transformation is not



orthogonal. Then:

o f _ 7 . _ 1 e f o f
—— = n-vf = "'“"_[222 =, ~ B Ba_] 6.1.14

where

If the transformation is orthogenal this expression reduces to!:

- g N
a_._ = n-vf = zz-ga_f = Hiﬁ 6.1.15
an g 1 1 1

rd

The use of Eqmtior; 6.1.14 could produce numerical errors since it
couples the deritvatives in both the a, and the o, directions. If, as’
a result, differences are taken between two large numbers,
significance would be lost because of the format in which real mmbers
are handled in digital computers [33].

The first step in solving Equations 5.7 numerically is to apply
the cdntral-difference operators to prodt;oe an algebraic

approximation. The difference.apprcrxi.mti&n to Equations 5.7 is:

2 2
. G| = F| - s =
9] 18] %, oat [ 5] o, 2 [

R [1_;;] S [1.‘,';'.] 6.1.16
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where '
r=xi+yj
_ fl'
-1
o
G = ET.
f'
5 = ?- !

The method used to solve Equation 6.1.16 is the one-step block
successive over-relaxation algorithm with each grid point having its
own acceleration parameter ©i; [35]. For this procedure, the

' :

{k+l)}-th approximation to the vector J_CJ. is obtained from th k-th

approximation according to:

(& - @, 6.1.17
= J J J
where
T = tridiagonal matrix
o F 2 F
= B(1+2—|“2(1+[5/5] )11-2')
:_cJ. = the vector of x; j that corresponds to the grid
line a, = j ’
v, ; = grid point acceleration factor
i, = residual vector formed by bringing all terms in

a difference equation to the riﬁht hand side.

The acceleration factor 'wi ; is determined by the method proposed by
’ .

Erlich [8] as shown in Appendix C. Although having an acceleration

factor for each grid point requires some extra work, it ultimately

saves time since it provides a near optimal iteration procedure. In

addition, the ©; .'s usually don’t need to be updated every iteration.



After the interior points, ].{i,ji."yi,,jj' have been \'I}.]i&ted, the
boundary condition, either relationship from Equations 5.6, is applied
to the a, boundaries; that is a, equal 1 and I. This boundary
condition is approximated numerically by using second-order central
°diff;:rencing in the a, direction and second-order one-sided o k/

differencing in the a, direction as follows:

For a, =1
Lasex = -2y 6.1.18
2792 %i,j 7474, -1
For a; = I : ! -
1ax. = B4ty 6.1.19
g7 2 71,3 T"'dl i,J =)

Similarly, for the a, boundary the following difference approximations

?

are made:
I;‘or cxz =1

1 o = .. B iee '

?dzxi’d = ~rprdy yi,j : 6.1.20
For az = J

1

oo - _.8B .-
R ILE=V H | 6.1.21

Through trial and error, it was determined thatthe boundafiy
conditions produced instabilities in the numerical solution of
Equation 6.1.16. Consequently, the boundary values were da.n:pened '

using the formula:
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Pl
x??i = ﬁ-x?f§+(1-ﬂ}-xg’ja\\\gf 6.1.22
where ‘
£ = a dempening factor takgge™o be 0.5 %
x};ﬁ = the new updated x boundary value -
3B+l - the unaccelerated Gauss-Siedel iterate

i,J

A similar formula wes used for the yi g boundary values.
. ]

Finally, ‘the ‘parameter ’'s’ was determined from Equation 5.8 using
a second-order trapezoidal rule to perform the 'required integration.

This equation takes the form:

| £1{1)aly, +f1(1)a8y; .
s+ [x(L,5)-x(1,5)1 -8’ = 21,70
i=I-1 .
+ I £(i)aly, . 6.1.23
i=2 271,

Equation 6.1.23 can be applied to any'az-grid line to update 's' in an
iterative procedure. In this work, Equation 6.1.23 wes applied to all
a, grid lines and the parameter 's’ is updated with %n overall grid
averaged value. In addition,.Equation'6.1.22 was applied to the ’s’
pa;ameter with g equal to 0.5 in order to reduce numerical
oscillaetions.

The problem of ‘interest in this investigation required the
v .

‘generation of a grid about a droplet which is deformed but has,

essentially, an approximate spherical shape. It would be convenient -

if the problem could be defined in polar coordinates since tﬁfdfﬁypiéi//\\\
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- . j. )
shape will deviaie from a circular cross-section. To do this, the
Cauchy-Riemann equations must be expressed in polar coordinates

according to:

ar 9, &
@, - Taa,
1 2
C o ex. ool
. . %y % .
or '
a8 _ 3 {(In[l/r])
28 .2 (a)
60.1 _ 60.2
6.1.24
o8 _ _a (In[l/r))
3, - T ®)

Is

Equatiohs 6.1.24 are of tne same form as Equations 5.2. For this

reascn, all of the work done for problens stated in Cartesian

coordinates ¢an be appl;ed to problems stated in polar coordinates.
The grid scale factors, hi’ must. be evaluated to complete this

portioh of the model. When the problem is, planar and restricted to

the x-y Cartesian plane the evaluation ié’j A . The

transformation equations for such a S written as
X = x(al,aé) ‘ ,
. y = }T(allaz) 6-1-25
: - d,

3 is given by:



=~

Bl

o
(9]

The grid scale factors, hl and h2, are numerically determined using
second-order centra} differencing in the interior. The followihg

formulee can be use for their evaluation:
a T

N 2 %
(sl T
““ﬁx )+(Ak:,lJ . 6.1.27

.

i}

b ' S
. ) .
On the al boundary, se@ond—order one-sided differencing was used for

hi as follows:

For a

1 71 . B
- e, 2 + 4+ 2%
hl = [(d1 ki,j) +(A1 yi,J) ] ?.1.28
For al =1
- .- 2 _— 2% .
h1 = [(A1 xi,j) +(d1 }i.j) ] 6.1.29

/

Similarly, second-order one-sided differencing was used on the <,

boundaries for determining h2 as follows:

[F]
[

For a2<

=2
"

00. 2 LR ) 2%
[{42 xi,j) +(42 yi,j) ] . 6.1.30

1]
L.-
§

For a2

=3
]

o [(dé'x )+(A yl,J)l " 6.1.31

v



For the case where the problem is axisymmetric, & grid can be
generated in three dimensional space by r-ot.atmg a ts:ro dimensional
boundary conforming grid about the x-axis as shown 1n Figure 6.1. It
must be recognized that this rotation is defined such that a right-
handed coordinate system is generated; that is, ei'EZ. = eq. Clearly,

from the geometry of the situation, the axisymmetric grid has the

following coordinate transformation:

¥
1

= xtal,a2)

Y(ulyaz)-cos(ﬂ 6.1.32

w
n

1]

y(cl.az)-sin(OJ
N

™

From Equations 6.1.32, the axisymmetric grid scale factors are:

6.1.33

Equations 6.1.33 show that h, and h, can be determined using Equations

6.1.27 to 6.1.3]1 while h3 is nothing more than the y coordinate

generated using Equation 6.1.16.
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FIGURE 6.1:

Rotated Axisymmetric Grid
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-

£.1.2 YNavier-Stokes Algorithm

The. Navier-Stokes equation, Equation 4.3.6, can be written as

two simultaneous second-order partial differential equations using the

F
stream function, ¥, and vorticity, ¢, as follows:

3 2 _ - 2. 2. 2
ST(th, = |L{¥) + RFED (h3) f (e)
' 6,1.34
D7y :-hgf (b)
vwhere
f = modified vorticity function
_ _.5 N
Ry
L(?):h:i I -] 3 * o
h1h2 aal oaz aaz aal
i _
2 . b ls [P2 o L2 hy 2
h1h2_ aal h1h3 aal aa2 h2h3 oa2 )

Inythis work the steady'staté sclution of Equation 4.3.6 is required;
There are two basic methods by which this solution can be achieved.

The first approach is to solve Equation 6.1.34 as an unsteady
state problem or as a pseudo—unsteaﬁs; te problem by introducing a
fictitious time derivative into Equatign 6.1.34 b [38]. The exact
"solution of Equation 6.1.34 b, or ité modified form, need not be known
at.any given time because only the steady state solution is of

interest. Strictly spesking, the steady state solution occurs as
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but frow a practical point the steady state solution is reached in a
finite time as the time deriyatives approach a small vaiue. The
disadventsge of this scheme is related to the finite time often beihg
too long to meke the method practical [238].

The second method, (which has been sdopted in this work),
involves the solution of Equations 6.1.34 iteratively with the time
derivative removed. These equations are approximated at each grid

point according to:

<

2 2,2 .
6.1.35

2 2
D7 = h3f, | (b)

‘where the operators:

§

. L(?i'j)
2

L] D "

are evaluated numerically. Solutions for flows over a rigid sphere

-

have been obtained by Jenson {21} and Hameleic and Hoffman [17] by
replacing: = - ﬂ;

e L{v, .
(1,,;)
2

« D
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by second-order central difference operators:

. Loy, )
i,

b

2
«» D°

AT

The case of flow over an ellipsoid was considered by Epstien [10],
while LeClair et. al. [28] solved for the flow inside and around fluid
spheres. Use of second-order difference operators, although accurate,
creates problems of stability and convergenc;e at highef Reynolds
numbers as a result of the centred\operator. Lo(?i,j) which causes loss
of diagonal dominance in the iteration matrix [38].

The resolution of the loss of dimsgonal dominance is through
replacement of the centred operator, L°(®. .) , with a noncentred

1,3
{upwinded) operator L"(?i j) [38]. This operator has the form: .
. ' .

{

h
- - 3 0 - o =
L (?i,,j) = H;HE[(Al?i,,jMz (Az?i’J.)Al] 6.1.36

]
i

where ' ' ,\
(1-€5 ) (14€° ) :

Ge—gtla P g sy k=12

From Equation 6.1.36, it is evident that when:

. ‘}i{ j = 1, 48 is firast-order backward differenced ”
. ‘}i‘ ;® 0, 4 is second-order central differenced
k
- €. =

-1, Ai is first-order forward differenced.
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After applying the required difference operators, the following

diffq?ence equations can be used to solve Equations 6.1.35: -

RS TR RS T PO AR TR A L UL W RS WRON:
= hihyhf, 6.1.37
where
IS SRR [h1]
hohy 7 3a,|hohg
.2 1 [ By ]
hhy  Z8a;|hhy )
2° = 2 h2 hl ]
. hihy Bohg
a.=h2+1_a [hz]
Rihy ~ Z3a kR,
o1 [ By ]
hohy © Z 3a, |h Ry
bif, . +bif. . BOf. 4bif. . bl L =0 6.1.38

JgT1,J-1 "i7i-1,) i,J i 1+1,J Joi, g+l

where
o
h ' - h 1 .
- 1 123 i ] 2 Nre , 2
b = - yt— h - ¥, .(l+e€] )
J HZH3 Z 2a., _5553 - 3i,j-1 I 1i,j i,J
h - h
- 2 19 2 ] 2 Nre , 1
bt = -yt —— h + . .(l+e, )
i .5153 z acxl _5153 | 31-1,,j ¥ 21,J - 1,_3.
© <o hzha h1h3 re . 2 o )
- h, 2. ..J 473,574, 5411, 5



' h h
. 2 13 [ 2 2 Nre ,
o = + h - 2. {1-€] )
S (U j_l RiRsl] 3541, ol :
h h )
1 193 1 Nre 2
bt = + ___[ h +_3_4°?_ (1-€7 )
_“2“3 Zroa, |hhs] 13 50 R )
and
h h. -
d J J {1 8 REK: R
aa. {h.h ] " h.h {H. aa.(hg) h aa.:hl) h ac.(hB)J
1171773 R i 1 i 3 i
°h 4%h 4%h
J i) _ 111 3
" h.h,| h. h n }
i3 J b 3

At this point, the development of a criterion for determining EE j is

now possible on the besis of Equation 6.1.38. To ensure diagonal
dominance, it is desirable to have the magnitude of the diagonal term,
bo, in the iteration matrix as large as possible., This magnitude is

-

achived if the following criteria sre used [38]:

1..- Oup
ei,j = 91gn(dzfi’j)
6.1.39
2 0
Gi,j = sign( Al?i’j)

'It should be noted that, ;n the application of Equation 6.1.39, the
solution of Equation 6.1.34 becomes first-order. However, second
order accuracy can be achived by setting e‘i"‘j equal to zero. The
purpose of introducing ck

i,J
. /
converge very rapidly in the initial stages to provide, essentially, a

is to provide an 7&gorithm that will

re?sdnable starting point for the second-order iteratioh.

The method used to solve algebraic Equations 6.1.37 to 6.1,39 ia



successive substitution. These equations are rearranged to give the

Gauss-Siedel iterate: *

;k+1

S = Fie.
1,) £

i,5-1%5-1,50 %000, 5%1, 5e1) 82190

The Gauss-Siedel iterate is accelerated using the formula:

°k+l = ol.‘: +pw, .(0k+1—¢k

o . . ) 6.1.41
1,J 1,J 1,J 1,7 1,0

where
W, j is the acceleration parameter

1,

Jii is a dampening factor.

The values for w were determined by the method described in section
6.1.1 and sumnarized in Appendix C. This method of determining the
values for w is intended for problems with Dirichlet boundary
‘conditions. The effects of the Neuman boundary conditions in this
problem are not taken into account when determining w [8). The
introduction of g in Equation 6.1.41 was required to reduce the
numerical oscillations that oocured with over-estimated w's. A value
of 0.7 for g was found to produce convergence in all cases congidered.
At very high Reynolds numbers the Navier-Stokes equations becane
increasingly unstable. This instability causes their solution to
become impractical and uneconomical [38]}. Consequently, at Reynolds
numbers above 400, the potential flow solution was used to approximate
the flow field. This solution was obtained by setting the vorticity,

(or fi .j)' to zero in Equation 6.1.37. The resulting difference
’



66

" equation was solved using the block-successive overrelaxation
elgorithm defined b:-‘ Equation 6.1.17. ‘

When so(ijhg Equations 6.1.33, it is necessary to have boundary
condltlons that specify all values of * and ¢ (or ) on the boundaery

completely enclosing the region of flow. This region is formed by:

. the surface of the collector
. the axis of symmetry
. the region were the influence of the collector is zero

{vhich is at/infinite distance from the collector}.
g

This final boundary at infinity is numerically impractical.

Therefore, it is approximated by assuming that there is a spherical
wall enclosing the collector w£ere. for all intents and purposes, the
influence of the collector is zero and straight flow is imposed. The
work of LelClaire et. al. [27], who prov%g;d.extensive data on the \,g
effect of the location of this wall, was used in this investigation as
a guideline.

Strictly speaking, when considering the flow of a fluid around a
fluid bedy, the flow field around the collector is coupled to the
circulation inside the fluid body. This coupling is through the
boundary conditions that must be imposed at the‘fluid—fluid interface.

These conditions are:

. the continuity of tangential velocity

. the continuity of tangential stress.



1eClair et. al. [28] considered sclutions of the Navier-Stokes
equatioﬁs under these conditions: Fortunately, as pointed out by wWu

[53], the affect of internal circulation in the air-water droplet

. -
system contributes negligibly to particle collection. Therefore, the

collector can be modelled as a rigid body. . \

-

7'anr—: boundary conditions for a rigid body for both ¥ and ¢ are:

For < =1 {the axis of symnetry)
*=0and ¢ = 0

For aq = I (the axis of symmetry)
v=0and ¢ = 0

For a, = 1 {the collector surface) : v

+-0and ¢ = -}1‘_1)2?
3

For a, =J {the outer wall at rm)

*=oy’and ¢ =0

Ihebomﬁmvoorﬁitionforgatdzeq\mltolwasdete ined by a
second-order method given by Preyet [38]. It takes the following form
in general orthogonal coordinates:

1,3 1.2 6.1.42
23 |

°
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.
Appiic&tibn of Equation 6.1.42 induced oscillations into the
numeric:?hsolution which reduced the rate of convergence. This
problem was alleviated by relaxing the boundarv values of ci,j with
Equation 6.1.23, by taking § to be 0.3. 1In addition, the convergence

rate was increased by applying Equation 6.1.42 only every four

iterations.

6.1:3 Convective Diffusjon Algorithm

The convective diffusion equation, Equation 3.4.3, was solved
using & method similar to that of Woo et. al. [52] to produce hoth
temperature and vapor. distributions around the collecﬁor. This
equation was approximated by using second-order central differeébe

operators to give the following difference equation:

=0 6.1.43

- E

PR + +
830, 5-17®3i7501, 578 74, 51217541, 578574, 541
where ]
- e hihy 15 aPay Npe o,
h2 flaaz_ h2 | . 171,35
oM 1 e, mpe o,
, TR TR %%, ;

>}
1

b3 Npe
I ]' 7“2

n
=2
L
[
8-04
ok
e
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T T

Chhs s PPay npe
a’. = S + A%
' h, Z oa, | n, T 11,
and
3 Ehj]_ hJ [1 2 p-le ol 2 ny
sa;[hiBgt ~ Rybg|By Fa; " by se it hy a3
h. °h. 4%, 4%h
- d [dl J i1 713 —
hiEB hj hi~\; _h3
with

{(Nre:Nsc) for mass transfer

Npe
' {Nre-Npr) for heat transfer

"o

Equation 6.1.43 was sqlved in the same manner as Equations 6.1.37 and
6.1.38. The Gu%ss—Siedel iterate was obtgined according to Equation
6.1.40. This v;lue was accelerated using Equation 6.1.41. Again, the
introduction of p was required because the derivative boundary
conditions are neglected when detenmininé the wi,j,s' An adequatg
value of g was found to be 0.7.

v
The boundary conditions used to solve Equations 3.4.3 are:

For a, =1 {the axis of symmetry)
: .
-———- no heat or mass transfer or —-
99y
3
For a, = I {the axis of symmetry)
no heat or mass transfer or %al, i
o "1
For'a2 =1 | {the collector surface)

. 7 =1 s
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For a, = J . {the the outer wall at rm)

n=1

'I‘he flrst two derlvatlve boundm:'v conditions wust be approximated by

second-order om:hsz.ded operators as follows:

«43'p =0 6.1.44
4y ;=0 6.1.45

-

{I‘he boundary values obtamed by Equatlons 6.1.45 were dampened
using Equat.lon 6.1.22 to increase the solution convergence rate. As
in the application of E,quation 6.1.42, a higher convergence rate was

_obtained by applying the above equations only every fourth iteration.

6~2 Particle Dynamic Equations .

To determine the cold ion efficiency of a collector,
Equations 4.2.3 must ée'inté-l.ted with Equatigne 4.2.6 and 4.2.7 to.
}’1F."ld the llmltmg traJec ory fa ;;ar?:icle These eqtmtions wene
mtegrated numer;\.cally us:.ng -a variable step—suze a.lgorlchm to

accommodate the large change in the radlqs of curvature of the
. 5 k ,

3 .
trajectory as the particle approaches the collector. The fifth-order
. . : . : 'y
variable step-size Runge-Kutta-Fehlberg method provided the means of

‘ T
mt.emtmg Equatlons 4.2.3 (6]. c ) )

The Fehlberg method was chosen beca.use it modJ.fles the step—s:.ze

automatlcally when requued Add.ltlonally, t.he m.lnber of function

——
_ 0

- e : ) K . f
J - - . .- Il ' : ’ *
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evaluations i1s kept to & minimun. At & given time level, the step-
size is controlled by an estimate of the error which is determined
from the difference between an approximation of order four and fjve.
An algor{ﬁhm using arbitrary fourth and fifth-order approximations :
would require ten-function evaluntions while the Fehlberg algorithm
requires only six [6].

_The particle equations of motion, Equations 4.2.3, require
initiaf’conditions for integration. These conditions are provided by
assuming that the partiplefis initially suspended in the gas stream at
the outer béundary wall (at &2 = Ji. A position alon€ the outer wall
mﬁst be determined such that the pa;ticle will just graze the
collector. These boundary conditions take the following form in

genefal orthogonal coordinates:

—
At £t = 0
a, = at (the value of «, for the limiting trajectory)
1 i ‘-dﬁ)_“ (2 1 ¢
a, = J | < (the outer wall located at r )

2
v. 2.2 ¥ (the initial particle velocity in.the a
/I\YHI% 9%y - ' 1

direction)
. -1 av s . : . .
Vo = HEEE*SE; {the initial p&rt%cle velocity in the A, .

dMrection) . ' '

. .
The limiting triifctg:y was determined by first assuming minimm and
maximum values of a; and applying the method of bisection to reduce

g

S



the intemal to an acceptable level. With reference to Figure €.2,
the extreme values of ai are adjusted according to the following

criteria:

- if the particle strikes the collector at g, less than or
equal to.l, the value of =1 minimum is set equal to az.'

‘e if the particle does not hit the collector, the value of

al meximum is set equal to ai
In this work, it is assumed that the particle is collected when it
strikes the collector surface.

Integration of Equation 4.2.3 requires some variables tc be

interpolated between grid nodes as shown in Figure §.3. This

.interpolation is accomplished by using the following bilinear

approximation:

- B ) . . g‘.

¢a1'“2 = A1+A2 cx1+A3 azfA4 a,d, 6.2.1
where ,

L continuous representation of the discrete -
1’72
"~ varible ¢.
~

The four constants, A,, are determined from the.known values of ¢ at
o - ‘ \

the four corner points shown in Figure 6.3. It should be recognized

“that the location of the grid cell is defined by the indices of the

corner point (i,j). The boundary conditions employed in the ‘grid

" -

e,

LY



FIGURE 6.2: Trajectory Integration Procedure

— I — — T
‘. T
i, jg+1 . i+l, j+1
r
" ‘ GRID CELL |
- | Hlepep! b
e —

’ . T,
£y ' i1,

FIGURE 6.3: Crid Point Interpolation
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construction algorithm defined in section 6.1.1 allow 'i’' and 'j’ to

be determined by: ) .

i=int(a )
6.2.2

J = int(.a2 }

Onee the value of aj has been obtained, the corresponding value

of the 'y’ coordinate is required to determine the collection

efficiéncy according to Equation 3.1.1. 'This value was determined by

- L]
linear interpolation on the outer boundary.
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7. RESULTS AND DISCUSSIONS

This investigation provides a comprehensive analysis of single

=

drop collection of particlés by:

«  inertial impaction
» ., phoretic forces
. wake capture.

J

Emphasis has been'fc;cusse-d on a particle size range known as the
Greenfield gap (0.1pm ¢ rp ¢ 2um) because no single collection‘
mechanlsm is' dominant in this ;:qgion. Temperatures were chosen to X
model typical coimtercurrent scrubber operating conditions in which
the gas is fully saturated.

' Several separate and distinct fluid mechanics problems were
solved before particle t.m,jectorfy. calculations were performed. The

Y

preliminary calculations involved:

. the generation of a grid to represent the computationai
. the est.abllshment. of the
collector

flu.'Ld ve1001ty profile around the

« the determination of the tanpemture and vapor distributions
sround the collector.

To ensure the integrity of the model as a whole, each step of the

calculation procedure was\validated before computing ‘the final

L 4

particle trajectories. '

¢
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7.1 Orthogona] Grids

Orthogonal grids were génerated for droplets of various sizes
renging between 50um snd 4000um in radius. Droplets with redii, 8,
smaller thap 620um are essentially sphereical in shape. Significant
deformation does not occur until the dropiet radius is larger than
1800.m [41,43}. .The grid generation procedure provides a convenient
method of effectively distributing grids lines around these droplets
for better resolution of the flow field and temperature/vapor
distributions. The. shapes of the ‘deformed droplets were determined by
the semi-empirical equation provided by Pruppacher and Pitter f42].
The method used to generate t.hn;.- grid system wes ‘described J.n Seqtioh
6.1.1. The alé;rithm was formulated into a FORTRAN 77 computer
progra.m which is provided in Appendix D.

The different packing configurationslk;ere_obtained through the
use of the pt-adltihg_fuctions f(a,) and £(a,) described in Chapter 5.
Table 7.1 provides a' summary of the various grid d_'im;ansions and
packinz'functions used in this_study.

Where possible, the ey grid lines where packed-'close to the axis

of symmetry of the collector by letting:

f(al) < zz(al) ; with a ='5.0.

The objective was to account for the large deviations in the fluid and

particle trajectories in this region close to the collector. This

-

N : | ‘ -



~TABLE 7.1:

Grid Dimensions and Packing Functions

—Nre I xJ L ) f{%?gl 2(02)

30 | 69 x 79 | 70.0 | z, la)) a:S.OO' z,(a,)

1‘00_ 69 x 71 | 12.0 | zy(a;) ; 85.00 | z (a,)

200 | 61 x 79 | 12.0 | z ¢ta;) zyta,)

300 | 61 x 79 | 12.0 zl(al)“" z,lay) ; 8=0.20
400 | 69 x 79 | 12.0 éltal) zy(a,) ; 80.20
3600' | 69 x 71 | 12.0 | z,(a)) ; 875.00 | z (a,)  g-
4900 | 69 x 71 | 1.0 z,(a)) ; 85.00 ‘zl(az)

t ‘potential flow conditions were solved for this Nre

F -
i i




pecking configuration also allows more mccurate modelling of the
formation of standing eddies behind the collector. At higher Reynolés
numbers, (Nre > 100), the standing eddy extended into the region of
sparce a, grid lines. To‘alleviate ﬁhis loss of resolution, no
packing was used in the a, directi;nn for Nre greater than 100 when the
viscous fluid model was used.

Packing in the a, direction was generally not required on account
of the polar coordinate conformﬁl mapping equations, Equations 6.1.24.
No pa;king in the a, direction would result in an approximately equal
distribution of o, coordinate lines in the ldg-polar, ln(r}), plane.
Consequently, the @, grids lines will be naturally distributed in an
exponential fa;Lion with the highést density occurring near\the
collector. For Reynol r8 of 300 and 400, additional pecking
clogse to the collector surface was used to model the steep gradients
that occur as a result of the thih viscous boundary layer [26,51].

This was accomplished by letting:

« Blog) = zlay} with a = 0.2. : | L

. &,
The iterative nature of the procedure required an initial guess

for the entire solution. This initial guess was based on the

multi-directional transfinite interbolatioﬁ technique provided by

e

by

Thompson et. al. [49]. The iteration process was carfied out until a

- 4

.. convergence criterion between successive iterations was satisfied.

!
This criteridn is given Yy:

L
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In the literature, there appears to be no standerd for evalusting
the error in an orthogonal grid. A measure of the angle of
intersection between nodes might be a viable estimate, but this can be
misleading. The true angle of ifftersection of grids lines would be a
function of the type of diffemc:‘ma used to determine the gfid scale
factors, hi' That is to say, if a problem is solved with second order
differencing and id scale factors (hi) are determined by second
order differencing, then adjacent grid points must be connected ui\t.h
second order curves. This approach would result in the measurement of:
the angle ':'Ef intersection of two parabolas at a node.

A s_ec‘ond measure of the error in a grid can be determined from
the transformaticn metric tensor discussed in Chapter 5. It Has
emphasized that the diagonal terms in this tensor are zero if the

transformation is orthogonal. The determinant of the metric tensor is

given by:
, Zorthogonal - f11°822 . ~

The determinant of the metric tensor for a general transformation is:

. 2
Boeneral - B11 8227 (E12)
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Figure 7.1.

80

Since these quantities should be equél if the transformation is

orthogonal, a siﬁple measure of the error, for an orthogonal grid could

!
be:
ggeher&l .
Rzmax||] - —m——— 7.1.6
gorthogonal
where .

R = the residuasl of the transformation

Figure 7.1 provides an example of an orthogonal grid for a
deformed droplet with an equivalent volume radius, 8 equal to

3000m. The «, grid lines are packed close to the axis of symmetry to

1
allow more accurate modelling of the fluid flow in the depression that
exists in the front of the collector. Using Equation 7.1.6 as a
measure of the deviation from orthogonality, the grid is very nearly

orthogonal because:
e R = 0.0003.

This Jthogonality is also confirmed by a simple visual inspection of
' ~

by
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7.2 Collector Flow Field

'I‘he governing equations for viscous flow around e rigid body

are the Navier-Stokes equ.atlons which were dlscusaed in Section 4.3:
These equations were used to determine the flow flelds around
collectors for Re‘ynolds numbers between 1.54 and 400. This range in
Reynolds numbers corresponds to collector diameters varying between
100z and 1240um assuming that they are falling at their terminal
velocities [42]. For Reynolds numbers above 400, potentifa.l flow
conditions have been shown to provide good t_a.r:proximtion;?, to the flow
fields when determining perticle collection {3,9].
7.2.1 Viscous Flow Model

| The method used to solve the equations zovemim‘: viascous flow
was the hybrid first—_second order algerit.hm, described in Sec'tion
6.1.2. 'Ihis-alxorithm utilizes the upwinded hybrid method proposed by
Peyret [38] to produce the difference equations which are solved by
‘the variable relaxation factor method of Enrlich [8]. It was
‘formulated into a FORTRAN 77 computer program which is prpvided'in
Appendix E. : '

As descr:.bed in Chap r 6, the first order” algor:.thm was use to

~

produce an initial guess for order algorit.hm Th:.e procesa
was accomplished by: 1

1

« assuming the potential flow solution for an initial gﬁess

"._.-("’f‘ ) '
~ .
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-

« running the code with ei.: j determined from equatiéns 6.1.39.

¥

(this converges very quickly)
. after a finite number of iterations ( 100 wes used in all

cases) gli{ j was set to zero to obtain a second ordem

?
accurate solution.

The final solution was obtained when the convergence ‘criterion,
" Equation 7.1.1, was reached.

The algebraic difference equations representing tbe vorticity
component .of the Navier-Stokes equations, Equation 6.1.38, requ:.red
severe maderrelaxatlon. This condition was expected since it has been
peported extensively in the literature [26,38,51]. The application of
the varying rela:-mtlon factor parameter, o, - y produced much faster
convergence when.compared to the methods of block-amcesswe
relaxatlon and standard relaxation with a single relaxation rnrame?er

{0 }. The solution of Eq\mtmns 6.1.37 and 6.1.38 would require

optm.m
that 0, He updated every iteration because the coefficients of
"Equation 6.1.38 are not linear. 'ThJ.B\ continual updating would consune’
a great dea.l of computer time. However, itiwas found that little of; ‘
the optimal convergence behavior was lost when the LI value?'wem“ .
updated every 10th iteration. o
‘g:ébiiity,bf'Ehrlich'a method to adapt to thelvaring £low
conditiona'is illustrated in Table 7.2. . This table prov:l,des the
‘mxlmtn and minimm values of ui )5 at convergenoe. Clearly
demonstrated is the rednction of the mnimm relaxation factor wiﬂx

mcrea.sﬁt Reynolds nmumber. This decrease occurs because the




TABLE 7.2:

Calculated Maximmm and Minimm Relaxation Factors
for Navier-Stokes Algorithm

Nre ©ax ®oin LeClair
I -
1.54 ‘ 1.9127‘= 1.339 || 1.000
1.856 | 0.811 | —
30 1.912 | 1.339 || 1.000
1.871 | 0.068 || 0.050
100° 1.913 | 1.378 || 1.000
1.897 | 0.197 || 0.100
200 1.916 | 1.584 | 1.000
1.916 | o0.111 || 0.100
300 1.920 1.601 1.000
S
1.917 { 0.076 || ©0.070
400" 1.920 | 1.601 || 1.000
1.915 | 0.057

t r was reduced at this point
t determined by trial and error

84




number is the coefficient of r.hé operator L°(?i,‘).). Increasing
Re‘_vnolds nunsbers mean that the off diagonal terms produced b:\r L°(?i,j}
are becoming larger. As a result, the iteration matrix becqnes poorly
conditioned -(loss of diagonal dominance). In addition, Table 7.2
illustrate good agreement between the trial and error valuex; of -
Uoptin:un found by LeClair [26) for similar grid sizes. Since the
variable relaxation method requires no trial and error guessing by the
user it is ideal as a general numerical model.

For the Reynolds number range considered for the viscous flow
model, it is accepted that water droplets at their tem:l.ml velocities
are atill spherical [41,42]. Figure 7.2 illustrates the solution for
the stresm function, ?, for a 433um radius droplet at its terminal
Reynolds nmumber of 200. Clearly depicfed in this illustration is the
formation of a standing eddy or vortex behined the sphere. A complete
set of solutions for the stream function, *, and the vorticity
function, ¢, for various Reynolds numbers can be found in Appendix I.

The flow model can be validated by comparison with rigorous |
gtudies of viscous flo# around spheres. Unfortunately, it‘is not
posaible to compare entire flow fields but several important
parameters can be used establish the validity of the solution. These

parsmeters are:

. The angle of flow separation (0.).

The angle of'flow separation is defined as the angle
at vhich the line of zero ? intersécts the sphere
gsurface as shown in Figure 7.2. This angle can-be
determined from the point where the surface vorticity
distribution is zero [51].

%
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. The vortex length (L).
The vortex length is defined as the distance from t.he
rear stagnation point where there is zero velocity
a¥ong the x-axis [51]. This length is no‘du.nz more
than the distance from the rear of the cdollector to the
point where ? equal to zero intersects the x-axis as
showm in Figure 7.2.

. The surface vorticity distribution (¢ ane"

This is the distribution of ¢ along the surfa.ce of the
sphere.

-

Experi.nenta.lly and numerically determined results can be found for
these quantities in the open literature.

Tables 7.3 and 7.'4 are comparisons of the angles of flow |
separation, 6_, and vortex .lenzths. L, determined in this study with
nuperical and experimental results cited by LeClair (26]. Figure 7.3
illustrates the results of current ¢ . detemimticms.' A
comparison of typical ¢ surface evaluations with rigorous data of .
LeClair [27] is provided in Figure 7.4. The good agreement between
the data validates the present model and demonstrates its sbility to ..
predict the complex flow behavior behind a collector. It is
interesting to note that the mvi.nesa.;_i_n the surface vorticity,

¢ , at higher Reynolds numbers is not the result of numerical

surface _ ,
instabilities. Rather, it indicates the beginning of the formation of

a secondary vortex behind the collector. This behavior has been
obeerved experimentally. However, an extremely high resolution grid
would be needed to document this phenomena mmerically for & sphere

[51].

\



TABLE 7.3: Comparison of Angle of Flow Separation (o)

| Aale of Separation (6.1 |
Nre Present Gaxner' ? Tenad.a.' : L.eClaire?
30 - 23° —_— 26°
100 51° 51° 53°
200 60° 61° —_— 63°
300 66° 65° S 67°
400 - 70 71° | — . 73°

"y These data sets were taken from LeClaire [26]
¢t Experimental data

TABLE 7.4: Comparison of Vortex Lenxth {L)

_ Eddy Length [L/2A,) g

"

+ These data sets were taken from LeClaire [26]

Nre Present Taneda" heCla.irc'z1
30 0.154 0.125 . 0.155
1100 0.882 | 0.920 0.950

t Experimental data

88
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T.2J.2 Potentj E
The method used to solve the equations governing potential or
irrotational flow involved the block-successive relaxation algorithm
described in Section 6.1.2. Similar-to the viscous model, the
potential model employs the variable relaxation factor method to solve
the algebraic difference equations. This algorithm was formulated
into a FORTRAN 77 computer program that is provided in Appendix F. |
The solutions to pﬁblm involving irrotational flows are known
to be straight forward and rarely present rumerical difficulties [38].
With straight flow as an initial guess to the velocity field, the
iterative précedure described in Section 6.1.2 converged very rapidly.
The system never required more than 350 iterations to reach the
¢convergence c.riteriox; def ined by Equﬂtior: 7-1.1. L4
- This portion of the model was validated by comparison to the
analytical solution for potential flow around a Bphere |
LD

+= é-[rz - é;-]ainzto) 7.2.1

“The results of the numerical solution agreed with the analytical
 results within 0.1% evervwhere in the solution domain.
Fizure 7.5 provides an illustration of the stream fmhcticrﬁ ’,
for the irrotational flow field arownd a deformed droplet with an

equivnimt volume radius, ao,‘ equal to 3000zm. This pattern

»

L]
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corresponds to a terminal Reynolds Number of 3600

7.3 Convective Diffusion Model '

"The convective diffusion eqtntion. Equation 4.4._3, was solved
to provide temperature and vapdr distributions around the collector.
This equation was solved using the standard point relaxation method
with varisble relaxation factors s outlined in Section 6.1.3. The
algorithm is provided in Appendix G in the form of a FORTRAN i
computer program. Calculations were made for Reynolds numbers ranging
between 1.54 and 400 with both the Prandtl number and Schmidt number
set to 0.7.

The similarity between Equations 4.4.3 and 6.1.35a suggest that
the nuperical systems should behave similarly. As with the viscous
flow model, severe underrelaxation was .required, but ;.he Ehrlich
method ﬁaptd very well. 'I:able 7.5 provides a summary ofghemxmn
and minimum relaxation factors required to solve the linear system of
algebraic equations that represent forced convection or forced
diffusion. The data reinforce the sbility of the varisble relaxation
method to automatically adapt and ve ‘i11conditioned matricies

resulting from finite difference tions.



TABLE 7.5: Calculated Maximm and Minimum Relaxation Factors
for the Convective Diffusion Algorithm

~ Nre w mak T ®oin

1.54 | 7| 1.971 | 0.985

30 | n | 1.970 | 0.095

) . 100"f » | 1.998 | 0.268
’ 200 | p | 1.990 | 0.155

300 | g | 1.995 0.106

400 | o | 14852 | 0.081

t r, was reduced at this point
= &

-Figure 7.6 is a contour plot 17}1 equal Lmrement.a of the
dimensionless temperature or vapor, 1, for. a 433:m ‘radius droplgt. at
its t.emiml.Reynolds number of 200. Appendix I contains simiiar
coﬁtour plots for the various ReynoldQ nunbers considered in this
work. | )

In Figure 7;6,._the closely s;nced contours at t.he-front of the
collector indicate high temperature gradients. lAB the fluid flows
from the front of the smeret,ouards the rear along.the surface, it is
cooled by conduction from the collector. ' As a result, the contours
:;:read out indicating a reduction in the temperature gradients towards
‘the rear of the collector. The fluid leaves the oolleétpr at the

pomt of flow separation, as shown in Figure 7.2. By this time it is

I . .
-
. .
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] well cooled. As a result, the contours. are drawn out ne;ar the :point -
of flow separation indicating very low temperature gradients.

‘ High temperature gradients occur at the rear of .the collector in
the presence of e wake Secause the fluid is moving directly towards
the rear of the body. Since the centre of the wake is well circulated
it produces the uniform temperatures indicated by the large distances
between the contours in Figure 7.6. A-As a resGlt, there are low |
tempere;ture.gmdienta at the centre of the wake. It should be noted
that the discussion pertaining to temperature gradients also applies
to the vapor gradients surrounding a droplet on. which condensation

To ensure that the .solutions obtained fof this portion of the
model were valid, comparisons were made with pertihent data available
in the literature. ‘Woo and Hamielec [52] have. made extensive
numerical studies of the rates of evaporation and heat transfer from
spheres wl:u.ch were shown bo be in exr._‘:ellént Mt. with |
experimental data. Their local Nusselt number, Nu,, or Sherwood
m.mber, Nahe, was related to the dimensionless temperature or vapor

gradient according to:

]

=3

Nu - Nah - _m.m - -.%_; 7.301_
, 2 -

&

at the surface of the sphere. The results of curremt Nu, or Nsh,
evaluations as functions of polar angle along ‘the surface of the -

sphere are illustrated in Figure 7.7/? Figure 7.8 pravides ;:._
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comparison of the new data with the results of Woo and HRamielec [5';2].
The good agreement indicates that the model used in this investigation
accurately predicts the-’ heat trﬁnsfer and condensation rates
associated with water droplets.
7.4 Flux Depostion Model .
The method used to solve for the flux deposition efficiency of
fine particles involved trial and error calculation of particle
trajectories. The tr;xiectériearwere evalunted by integrating the
generalized particle equations ::>f motion with the variable step-size —
Runge-Kutta-Fehlberg met.hod discussed in Section 6.3. This algorithm
was formulated into a FORTRAN 77 computer program which is provided in
Ap}:;endix H. .
The calibration of 'this complex numerical model should, -ideally,
involve comperison with experimental data. However, evaluations of
single droplet collection efficiencies for suhnicror.a particles by
phoretic forces are not readily available in the lit.emt:xre. This
scarcity of data has been reported by other authors [14,31]. The lack
| of experimental data forces the calibmtim to be done by camparison
with existing numerical moc.iela. |
The formilation of the inertial terms in the model can be tested
by inserting the potential flow field and generating t.he well known
golution for the case where flux forces are sbsent [22,24,25,32,37].
Figure 7.9 illustrates the calculated collection efficiencies for this

case which are shown to be in emel;mt agreement with the data
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provided by Fonda and Herne [111].

pilat and Prem [39] and Mehta [31] provided identical models for
determining the collection of fine particulate matter by flux forces.
Correct foml.h!.t.\ilon of the flux terma in this' current model can be
tested by inserting the simplified flow field, temperature
distribution, and vapor distribution assumed by thesel authors and
recalculating their data. Flzure 7.10 prov1des Y ccm;nrism\of their
results with those of t.his__investization. The calculations were made
for 100um diameter droplets at 10°C and 60°C falling at their terminal
velocities of 30cm/a in a gas at 65°C. Interception was included
because of the small size of the collector.

Figure 7.10 ghows excellent agreement between the recalculated
and original data of Pilat and Prem. The data provided by Mehta
clearly fall well below those of Pilat and Prem and thia study. The
differences mst be due to ood.ms errore since his fundamental
assumptions and modelling approaches where identical to those of Pilat
and Prem.

megoodmm;numca@rimmmpmm 7.9 and
7.10 indicate that the {nertial and flux terms are correctly’
formulated in general orthogonal coordinates. Therefore, application
of more accur_nt.é velocity, temperature, and vapor ‘distributions will
result in valid particulate matter deposition rates. Additionally,
the ‘agreement with the data of Pilat and Prem reinforces the fact that
Brownian motion need not be included for the particle size range

considered in this investigation when flux foroes are preaént.
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. 2
7.5 General Results
Particle collection efficiencies were calculated for a range of
collector radii varying between 50um and 4000:m. Accurate velocity,
temperature, and vapor distributions were determined numerically as
discussed in the previous sections. The particle sizes ranged between
0.04um and 10un to include particles in the 'G’t;enfield gap’. 'Ihé

mechanisms assumed to be responsible for particle collection were:

o

» for 8, ¢ 6201 inertial impaction
thermophoresis
diffusiophoresis
wake capture

inertial impaction
{with drop deformation)

« for a2 620Lm

The scrubber was assumed to operate with water at 10°C while the gas
t.'empemture varied betwsen 20°C and 95°C.
The physical properties assumed for the calculations in this

investigation were:

= 1.817x10™° kg/m-n

h
L]
'

= 1.188 kg/m°

°
o]
|
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kf = 0.028514 J/m-8-°C . -
cp = 1000 J/kg-°C
mel = 1.0138 bar
PARTICLE
_ 3
P, = 1050 kg/m
kp = 0.49 J/m-8-°C

The diffusivity of water in air [31] and the saturation water vapor

preasure [36) were determined fram ‘the following empirical

correlations:
- 2.111:10“5[tave]1275 75,1
12 - . e
Piotal L2151 -
where |
?,, B [mzla]
) o
ave - [ K]‘
p = p .10lki-t /) 7.5.2
sat (o]
where _ . X
Kk = -5.1514x102¢3+0.9533x10 026, 244210 2t+4.39553
t = [°K]
t = 647.6%
o )

P_ = 220.9 bar

The general results of this investigation were obtained for the

case where condensation occurs on cool water droplets moving in warm
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humid ges streams. To perform the calculations, the following

gimplifying assumptions were made:

1) The water droplet was assumed to be at a constant
temperature during the time that a particle was passing the
collector. )

' 2) The amount of water condensing on the collector during the

time that a particle was passing the collector was small ~
compared to the droplet volume. ’

As a worst case, .only 0.012 seconds (a.p.pmximtely) were required for
a particle to pass a 100um diameterq‘dmplet. falling at its terminal
velocity from a point where the gas is not disturbed (70 collector
radii upatream).

" Steady state conditions are implied in the above assumptions.
However, this does nc;tiean that the collector cannot change size or
temperature as it moves down the length of the scrubber. Rather, the
implication is that the conditions around the collector can be
modelled in terms of a pseudo steady state system. Changes to the
condition of the droplet are considered to be gradual so that it is
always in equilibrium with its surroundings.

The physical aspects of the problem suggest that water condensing
on the surface of the droplet will raise the surface temperature
slightly due to the latent heat of vaporization. At the same time, a
small smount of heat will be conducted to the droplet from the free

gas stream. The rise in au:rfaoe temperature should be reduced by the



.

‘action of internal circulation inside the collector. 1In addition,” if-
the droplet has a large enough mass, its temperature should remain
constant during the shot time required for a particle to pass the
collector. _

Figureg 7.11 to 7.16 depict the results of particle collection
efficiency calculations for a water temperature of 10°C and a gas
temperature range between 20°C and 95°C. From these illustrations, it
is evident that particle collection efficiencies can be increased .
significantly by the actions of phoretic forces. The increases can be '
as large as several orders of ma;nitm!.é and they are most Mt at
lower Reynolds numbers. It is not aurpriainz that efficiencies are
greater than unity in some msta‘noes This condition simply implies
that some particles are collet;ted from an area greater than the
projected area of the oollect.ﬁr due to the influence of flux forces.

The data presented in Figures 7.11 to 7-.lé demonstrate only
trends for the various parameters involved in determination of
collection effiencies. Flux depostion rates are influenced primarily

«  the complex flow behavior resulting from the formation of &
vortex.

A}

e the effects of changing Reynolds number
« the effects of increasing particle mass _k_

e« the role of droplet deformation. _ s

»

Clearly, geveral of these parameters influence cne another, as

"
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demonstrated by the effects of Reynolds number on vortex formation.
However, each pammetei; ha.s. a distinct individual influence that
merits further discussion. Droplet deformation does not affect flux
deposition because of the extreme Reynolds nmpers involved. However,
it has been included because of the simplicity with which tlris

generalized model could account for it.

7.5.1 Collection in the Wake -

The collection mechanisms accounted for, as mentioned
earlier, are inertial impaction, thermophoresis, diffusiophoresis, and
wake capture; wake capture is determined by predicting the complex
flow behavior behind the collector as discussed in Section 7.‘2. The
‘existence of wake capture has long been known to exist for fine
_particulate matter [14]. Neither the magnitude nor the mechanism of
rear deposition under the influerlce of flux forces appears to have
beén discussed in the literature.

Figure 7.17 illustrates the wake capture of a 0.3,m radius
particle by a droplet for a Reynolds number of 100 when the gas and
droplet’ temperatures are 95°C and 10°C respectively. 'fhe same
limiting trajectory J':B superimposed on the temperature/vapor:
distribution and the velocity field which is described in terms of the
' gtream function, . From this representation, a definite mechanism
can be visualized for wake capture when flux forces are weak in some
regions ar; stroné in others. The.clmns.els in the strengths of the

flux forces are illustrated in Figure 7.18 in terms of the
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1

dimensionless radial component of the flux velocity and the fluid
velocity.

Referring to Figures 7.17 and 7.18, the flux velocities are small
at point A and a particle ia.moved to the collector predominantly by
the Ihydrodymmic effecta. As the pa.rti;le is carried close to the
collector, high flux forces at peint B help to move the particle
towards the collector and into the wake region. Near the point of
flow separation, as discussed earlier, the flux forces are reduced.
As a result, the particle is carried away from the collector in the
. wake at point C. The total absence of flux forces in the wake causes
the particle to follow the fluid, essentially, until it is pushed back
towards the collector at point D. As the particle comea into ciose
proximity of t.he. collector, the high flux forces, resulting from the
‘reverse flow, capture the pa.fticle near point E.

‘'The sequential steps respbnsible for rearAcapture consist of the

particle:

) being carried close to the collector by hydrodynamic forces.
*+ being pulled into the wake region-by flux forces

+ being moved around and back towards the collector by the
hydrodynamic forces in the wake due to the total absence of
fiux forces

« finally being collected by the strong flux foroes that exist
near the collector surface due to the reverse flow of the
fluid.
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The presence of the wake lhas two effects relative to the capture of a
particle. The wa;ke can influence the p&rﬁicle motion directly ‘t.hrouzh
hydrodynam forces and- 1t. can influence particle motion through its
affects on t.he temperature/vapor d.lstr1h1t1cm. In nez].ons where the
wake produces low temperature/vapor gradients, the flux forces will be
reduced.

| 'kﬁes‘olution of the question of whether the presmc;e oé the wé.ke
e.ctually e.nhances flux deposition of particles is very canpl:.ca‘bed
For higher Reynolds numbers, the low temperature/vapor gradients in
the wake ‘rezlcn‘are more pronounced as shown in Figure 7.6. If the
wake was not present, the resulting higher and more uniform gradients
could ‘produce higher collection efficiencies than possible through the
combined action of the wake and flux forces. _

‘Figures 7.19 and 7.20 dennnstmte another type of wake capture
that can occur The data sets are presented in s similar manner as
the data shosm in Figures 7.17 and 7.18 except that the particle size
is :mcreased to a 0.5um radius. It is easy to imagine a emall (nearly
m.aslesé) particle being forced into a wake and circulating forever in
the abaé_rne of other forces. 'Iﬁe decaying spiral ;henonenon Bppears
to be the result of the complex interaction of a wesk oscillating flux
force and the fluid drag.

With reference to Figure 7.20, the magnitude of the oscillating
.flux velocity: is generally larger when the particle is moving mea.y
from the collector (negative values are directed towards the

collector). As a result there is a larger reduction in the particile'
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velocity when it is being dragged away by the fluid than the increase
when it is moving towards the rcollector. The reduction in particle
velqcitsl moves it aloser to the centre of the vortex where the fluid
veloci:ties are lower. Imagining that the particle has now moved into
a 'ring’ of slower moving fluid, it appéara that as the particle moves
towards the collector its velocity is enhanced by the flux velocity
which would normally pull the particle closer_to the collector or into
a ‘ring’ of higher fluid velocity. However, since the velocity
enhancement is less when the particle moves towards the collector,. the
flux force is not strong enough to move the particle as far out of the
slower ’.rinx' of fluid as it has been moved in earlier during the
preceeding half cycle.

The net result of .t.he cycling is a constant rechnt.ion of fluid
velocity and particle velocity. In addition, although it is difficult
to see from Figure 7.20, the flux force decays as the particle moves
towards the well mixed centre of the vortex. Eventually, the particle
stops in the centre of the vortex where t._here are no forces acting on
The mechanism of wake capture has been demonstrated in this
investigation but its relative importance has not been considered yet.
Figure 7.21 illustrates the ratio of the number of particles captured
“on the front of the collector to the total collected considering
particles of 0.1um and 0.5um radius being collected on a droplet at
10°C from a za.;a.t 65°C. The smmll particle sizes and relatively

large temperature difference were chosen to promote rear capture.
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when the Reynolds number is low, the fraction captured on the rear of
the collector is as high as 50X. For higher Reynolds mumbers most of
the deposition occurs on the front of the collector. Althoukh i&has
been shown that there is potential for the wake to capture particles,
its relative importance to flux deposition is low because most of the
particles do not reach the wake.
>

7.5.2 The Effects of Revnolds Number

' The role that Reynolds number plays in producing higher
collection efficier;cies through inertial impaction has been well
documented in the literature [3,9,24,48]. The effects of Reynolds
number on flux deposition rates is not as straight forward because of
the ‘complex intera.ctiqr; of wake formatiom, increased inertial forces
on the particle, and boundary layer thickness. ‘

The collection efficiencies shown in Figures 7.11 through 7.16
appear to be relatively constant for particle radii, rp, less than
lum. Similar trends were noticed by Pilat and Prem (39]. This
constant value decreases dramatically with increases in Reynolds
number foE' a given temperature. This decrease is illustrated in
Figure 7.22 which depicts the dependence of collection efficiency of
small particles on Reynoldil number for various temperatures., When
considering an explanation for this behavior, two factors must\be

considered:
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e An increase in Reynolds number would reduce the
thermal /diffusive boundary layer as shown in Figure 7.23.
Consequently, flux deposition is retarded because the region
in which the particle can be affected by t.he flux forces
will be smaller.

- .

. This same reduction in boundary layer thickmess would
increase the temperature/vapor gradients as shown in both
Figures 7.7 and 7.23. Consequently, flux deposition should
increase because of the increased flux forces in this
boundary layer. Also, there is a greater inertial force .
moving the particle to the sphere at higher Reynolds
numbers. '

The data in Figure 7.22 appear to support the first of these
considerations as the"controllinz factor that goverms flux depositiqr}.
An unexpected result that ia.preéélmt in Figure 7.22 is the
remarkably linéar relationship between the collection efficiency of

small sut:;ic;on particulate and the Reynolds number. Thia linear
rélz‘i.tionship sn 'a l‘og-log plot suggests a correlation of the form:

13
E = a-Nre . . 7.5.3

where 'a’ and ’b’ are, zeneraily’, functions of the droplet and gas
.tempﬂra.tures It is cleerly evident from Figure 7.22 that the slopes
of the llnes for d:i.fferent temperatures are relatively constant Thm
trend suggests t.hnt ’b_’ is a oonstant that is independent of the
temperatures of the gas and the collector. Therefore, a generalized
expression for the flux deposition of small particles can be uri&n

as a product of two functions according to:
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} x G{Nre) 7.5.4

= F(Td,Tf |

where
-0.78 -

G = Nre
In Equation 7.5.4, the function F reflects the change in flux

deposition due to an increz;se in the temperature difference between
'd'me‘ gas and the collector. The function G represents the change in
the deposition rate as & result of changes in Reynolds number. The
simple form for the affect of Reynolds nusber on flux deposition can
be explained through earlier findings. Since the amount of collection
at the rear of the collector is asmall when the '-fa.ke-is most prominent,
the simple expression for the aff_t_e__ct of Reynoldé number is the result
of the reduction of the uniform portion of the thermal/diffusive -

boundary layer.
e

7.5.3 The Effect of Particle Masas

_ The calculated particle collection efficiencies in Figures

7.11 to 7.16 generally exhibit minima when particle radii are ;f the
order of l,un to 5um. The existence of such minimum collection
efficiencies for flux deposition has been reported in the literature
[16,39]. Flgm'e 7.24 illustrates the dependence of collection
effiency on pnrtlcle size for a droplet Hlth a Reynolds number of 30
in a gas stream at various temperatures. The minimm collection
efficiency at each temperature can be clearly identified. It is

evident that there is a shift to smaller particle sizes as the

temperature decreases.
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The minimm collection efficiency occurs as a result of
increasing masses of particles with imcreasing sizes. This trend can
be explained readily in terms of the illustration provided in Figure
7.25. The trajectories were computed for a 0.lpm, 5um, and a 10m
radius particle released from the same point, 70 collector radii
upstream. For a 170um radius droplet at 10°C in a gas stream at 95°C,
these particles are collected with efficiencies of 117%, 76%, and S2%
respectively. X

The smallest particle (0.lum) is influenced by the flow of the
gas stream most significantly of the three sizes as the fluid
initially draws it up and away from the collector. However, as the
particle approaches the collector its low mass offers little
res‘ista.m:e to the strong radial flux forces. Consequently, it
‘collides wit_h the droplet. The net result of the particle having a
low mass is a relatively high collection efficiency.

The 5um particle, having a slightly larger mass, is not affected
to the same extent as t.he‘smller particle was by the sweeping
tangential component of the gas velocity as it flows around the
collect.or-. This particlé is actually brought into a region where the
flux gadients are larger as indicated by its trajectory in Figure
7.25. However, its slightly larger mass offers enough resistance to
acceleration in the mdiai direction by flux forces. This resistance
allows the particle to be swept past the collector. As a result there
is a decrease in co}lect.ion efficiency for an increase in mass.

The largest particle (10um) is affected very little by the

r ¥
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Q
sweeping tanjential component of the gas flow as indicated by its

almom; straight path in Figure 7.25. The increased inertia allows the
large particle to be captured on the front of the collector.
Consequently, the collection efficiency increases for larger
particles.

The shift in the location of the minimm towards larger particle
gsizes with increasing gas temperatures is due to the increase in flux
forces at the waist of the collector. Thie increased flux force would
capture particles that were able to escape at a lower temperature.
Consequently, the location of the minimm collection efficiency will

ghift to a larger particle size for an increase in temperature.

7.5.4 The Effect of Drop Deformation

Droplet deformation has been shown to be insignificant until
the droplet radius, a, is approximately greater than 1800m {41,421~
Droplets whose radii are greater than 1800um start to form a concave
depression at the front as jllustrated in Figure 7.5. Strictly
apeaking, for such large drope the flow around the collector can no
longer be considered steady because of the occurence of vortex
shedding [51]. A time dependent three dimensional model would be
needed to account for the fluctuations that would occur in the .‘
collection efficiency as a result of this vortex aheddinz Hquaever,

)ké benefits of such a comprehensive study, providing time dependent.
collection efficiencies, would be of limited practical use since only

time averaged vmlues of efficiency are required. Si.mplif‘ic:ation of
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this complex behavior was achieved by assuming that potential flow
conditions exist around the droplet. This assumption should produce -
values of collection efficiencies that approximate time averaged
values. This approach is supported by comperisons between potential
flow solutions and experimental data for high Reynolds numbers [44].
In addition, a review of the numerical solutions provided by Degani
and Tardos [7] shows that fluctuations in the time dependent
collection efficiencies are not very significant.

The primary collection’ mechanism for flows at high Reynolds
numbers is inertial impaction due to the extremely small
thermal/diffusive boundary layer. Figure 7.26 illustrates
efficiencies calculated for water droplets whose radii are 3000pum
{Nre = 3600) and 4000im (Nre « 4900). Since the collection efficiency
duti.- to inertial i;npaction is a function of Stokes number (K) only,
these calculations arg compared to the potential flow solution for a
spherical collector with (K) as the independent parameter.

Figure 7.26 shows that deformation of water droplets is
résponsible for a significant increase in the collection efficiency
f‘:: large particles over the potentié.l flow solution for a spherical
collector. However, the greatest relative increase in collection
efficiency is for particles smaller than 10um in radius (K < 2). For
example, the collection efficiency of a 20um particle colliding with a
4000um collector is 1.38 times higher than the potential flow value
for a sphere of the same size. A Sum particle is collected 1.68 times

more efficiently by deformed collectors which is a larger relative
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increase in collection efficiency.

The explanation for this increase in efficiency is provided in
Figure 7.27 which illustrates the trajectories of two particles. The
larger, 20im, particle is captured at the waist of.the collector. Its
increase in.efficiency is due to the increased dimension of the
collector at the waist..‘ However, the smaller, S5um, particle is
collected on the protrusion at the front of the collector. Its
improvement in collection efficiency is due to the increased dif-

f icul_ty tﬁat amall particles have in escaping the blunt frontside of
the collect,or.. As. illustrated by the atrﬁamlines in Figure 7.5, the
fluid deviates insigm‘.f;icantly from a straight path until a point very
close to the collector. This flow behavior indicates that there is a
larger radial component of velocity (relative to the velocity around
an undeformed droplet) created as the fluid flows into the depressed .
frontal area. This increased radial velocity reduces the time during
which the tangential velocity can carry a particle past the collector.

The net result is in an increase in collection efficiency.

7.6 Comparison with Existing Models

As pointed out in Section 7.4, the only data available in the
literature for comparison purposes are those of Pilat and Prem [39].
" Their results are useful for determining the eff?cﬁv::neas of complex
modelling methods because of the simplicity of their model. In

developing their model, Pilat and Prem assumed that:
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. potential flow conditions described the flow field around
the collector

. inertial impaction, thermophoresis, diffusiophoresis,
Brownian diffusion, and interception were responsible for
the collection of particles

- the temperature, vapor, and particle distributions were

linear in a thin boundary layer.

The calculations of Section 7.4 were repeated with the rigorous
model proposed in this investigation. The _results are shown in Figure
7.28. It is evident that Pilat and Prem generally overestimated.
collection efficiencies by as much as 70% for a water temperature of
10°C. 'I‘h;er-e are two distinct reasons for the difference between the
data of Pilat and Prem and this investigation.

‘The first relates to the assumption of potential flow by Pilat
and Prem. They considered a collector diameter of 100um. This size
corregsponds to a temuml Reyriolds number of 1.54 which is much too .
Jow for~Potential flow conditions. Rigorous numerical determination
of the flow field during this inv-stigation I:hich is provided in
‘Appendix I) indicates that it would be more realistic to assume
viscous_flow arommd the sphere. As a result of viscous flow
conditions, lower collection efficiences than determined by Pilat and
Prem are to be expected {3,9,25]. This decrease is due mainly tc the
reduction in the radial component of velocity. Since the particle is
not driven to the surface as quickly, it‘e.xpérierms a longer contact
with the tangential velocity that sweeps it away around the collector.

The second reason for the difference in the two collection
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efficiencies is related to the massumed temperature/vapor
distributions. Figure 7.29 comperes the linear, symmetrical, profile
assumed by Pilat and Prem with the numerically generated profile at
the waist of the collector. The validity of the Pilat and Prem

profile is very restricted because:

. the flux gradients are overestimated in the thin boundary
layer

. the flux gradients do not exist outside the thin boundary
‘ layer

assumed to associated with the collectdr_'.

Overestimation of the flux gradients leads to an overestimation
of particle collection. The exaggerated flux forces in the thin
boundary layer, assumed by .Pilat and Prem, would exert an
overestimated flux force on a particle in this region. Consequently,
a particle would be more easily captured relative to a particle that
was influenced by the actual temperature/vapor distribution.
Overestimation of flux gradients appears to be responsible for the
d;fferem:es in the data campared in Figure 7.28.

On the other hand, absence of flux gradients outside the boundary
layer would suggest that the model of Pilat and Prem would

underestimate flux deposition. As showm in Figure 7.29, the more

" acurate temperature/vapor distribution of the present model would

predict flux. forces outaside the boundary layer assumed by Pilat and

Prem. As a result, a particle could be collected from outaide the
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bounc%gf-y layer if thér? waé a high enough temperature difference
between the droplet and the gas. Due to the sbsence of flux forchee,
it was impossible for collection to occur from the region outside the
 boundary layer in the Pilat and Prem study. Consequently, for the
collector size studied by Pilat and Prem, the maximup possible
fzollection efficiency, under any circumstance, by flux forces is

essentially:

. E = 1.7°x100 = 296%

This value of 1.7 is nothing morg_'timn the dimensionless distance from
the centre of the collector 'to thé outer edge of the boundary layer as
1llustrated in Figure 7 29. .

" A specific examplg of a situation where the model of Pilat and
- Prem would underestimate collection efficiency severely is provided in
Figure 7.11. The illustration provides data for the most extreme
conditiops of this investigation. For a gas temperature of 95°C, very
fine pﬁrticulate @atter is coilected theoretically with an efficiency
close to 1600X. The model of Pilat and Prem would predict only 296X.

The high value prédicted by the present model is related directly |

to the effects of diffusiophoresias. High vapor n'adletf"ts are
generated by the ex-ponmtia.l dependence of gas Baturat.ionf,yapor
pressure on gas temperature according to qunt.iox-l 7 52 Clearly,

this drop size would not maintain its collection efficiency for very

long because the extrane conditions would cause it to increase in size
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and change in temperature. It should be reemphasized that the
changing corditions are not a defidiency in thie or any steady atate

model. The changes can be modelled as a series of psuedo steady state
.

. conditions along the length of the counter current scrubber.

The equations used by Pilat and Prem to predict the temperature

distribution illustratgd in Figure 7.29 was [39]:

2.8 .
o - -

s 050375 7.6.1

(2.40.557-Nre" ““Npr~ '~ ')

where
Axh = ig the effective film thickness due to heat transfer

£ .

However, Equation 7.6.1, as pointed out by Johnstone and Roberts {[22],
was developed‘ originally for predicting overall heat transfer rates
from spheres and not necessa.rlly for evaluating temperature
dlstrlbutlons. At low Reynolds numbers, when there is no well defined
thermal boundary r, Equation 7.6.1 predicts the correct
temperature distfibution only near the surfaéae of the collector. | The
mmerical model developed in this study would be needed for the
evaluation of temperature gradients well removed from the sphere
surface. Figure 7.29 shows there is excellent agreement between
temperature gradients calculsted using Equation 7.6.1 and the
numerical procedure for the region vary close to the t:ollect.orl'
surface. . These well developed boundary layers exist at higher
Reynolds numbers. o | ‘ ‘

Since well developed boundary layers are expectcd to occur at

higher Reynolds numbers where te.mperature variations in t.he bulk of
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the fluid are small [4]._ Equation 7.6.1 shogld be applicable to the
prediction of temperature gradients over a greater distance than at
lower Reynolds numbers. This capebility 1s demonstrated in Figure
7.30 which provides a comparison of the dimensionless temperature
distributions, 7, at the vmiat of the collector with & Reynolds nmumber
of 300 as predicted by the rigous method of this investigation. and .
Equation 7.6.1. The data indicate that the model of Pilat and Prem
would predict the col.lection of fine particles accurately at high
Reynolds numbers. Unfortunately, at high Reynolds numbers the flux
deposition of fine particulate matter becomés less important.

In short, the model of Pilat and Prem is applicable only in the
high Reynolds number region where fine particle collection becomes
rela.t;ively unimportant. For low Reynolds numbers more realistic
determinations of velocity and temperature/vapor distributions are

reguired.
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8. OONCLIUSIONS

The generalized model developed in this study has been shown to
be accurate through a step-by-step calibr'ation‘ procedure. The
numerical methods applied produce & quick reliable code which canp be
applied to microcomputer modelling since all calculations where
performed on an IBM AT system with a math coprocessor. This .
configuation ie used‘ in industry quite widely.

The general results of this investigation indicate that flux
forces can increase the collection of fine particulate material
d.m.maticéily with increases in temperature of a saturated gas.
Increases in Reynolds number decreésza collection of fine part.icles
gsignificantly. The constancy in the collection efficiency of small

j
particles by flux forces indicates that flux deposition can be related
to Reynolds number through the following proportionality:
Eﬂux « Nre-0'78

Wake capture of fine particles was also taken into account by
ﬁmnerical similation of the flow field of the collector. Although
definite mechanisms for collision on the rear of the coliector and
capture in the wake itself were established, mkercapture appears to
be relatively unimportant as a collection mechanism for the opérat.ing
conditions assumed in thié inveatiéat.ion.

Generally, minimm collect:ion efficiencies were observed over

S
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the entire range of temperatures and Reynolds numbers considered.
These minima were attributed to the influence of particle masses on

the relative magnitudes of the inertial force and the flux forces near

- the collector.

Estimation of the effect of drop deformation was obtained by
mumerically generating the potehtial flow field around a high Reynolds
number colléctor. Analysis shows that collection of micron sized
@ticles can be significant.ly{‘%nhanced. Increased collection of
large particles (rp > 10um) is simply due to the ir;crezmed dimension
of the d.ropIet at the waist. | However, increased collection of smaller
par'ti.cles (rp < 101m) can be explained in terms of the difficulty they
have m escaping from the concave depression at the front of the
d;plet.

The only model available in the literature for the assumed
operating- com:l.itiorﬂ‘:s is that of Pilet and Prem [39]. This model was
developed using assumptions that are too restrictive for general
considerations. Overestimations of colléction'efficierxcies were

observed at low Reynolds numbers and low temperature dif ferences.

They were attributed to:

« overedtimation of hydrodynamic forces on the particle from
the assumption of potential flow

. overestimation of flux gradients near the collector due to

‘the assumption of a thin thermal and diffusive boundary
layer

The underestimations by the Pilat and Prem model at low Reynolds
. o
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nunbers and high temperature differences were attributed to:

. underestimation of flux gradients well removed from the
collector due to the assumption of a thin thermal and
diffusive boundary layer

-

6.1 Recomendations for Future St?dx
This investigation has demonstrated that there is a need for
the implementation of more comialex modelling procedures if single
droplet c;)llection efficiencies are to be predicted accurately.
Several deficiencies have been found in the literature pertaining to
the collection of submicron and micron sized partfcles.
Previous evaluations of ovefali countercurrent scrubber

performance characteristics were based on simplified single drop

. collection efficiency models such the one developed by Mehta {31].

Due to the inaccuracies that can be associated with simplified models,
a rigorous reevaluation of optimum overall performance parameters is
essential with emphasis focussed on fine particle collection. |

In this investigation collection of particles smaller than 0.05um
in radius was not considered. Brownian motion is a dominant
collection mchanmm for particles of t.hiéa suize. Present models
appear to consider the effects of Brownian lpotion to be limi'bed- to a
thin boundary layer in which particle distributions are linear

{31,39]. However, it has been shown that the distribution of

U
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particles is governmed by [12]:

. - zpv 7 .1.1

where

9p = the particie diffusion coefficient

\

-

- This convective diffusjon equation can be solved readily by the
ﬁethods discussed in this report. Consequently, accurate
determination of the collection of extremely fine masgless particles
can be performed. However, since 2p is 8 function of particle size, a
general model would be cumbersome, therefore future work should focus
on the development éf accurate design curves.

Fine particle collection by-turbulent diffusion is kpown to occur
in high speed flows [29,47], but very little data appear in the f
literature. Greenfield [15] is one of the few to have studied this
mechanism. Unfortunately, as pointed out by Grover et. al. 1161, the
method for accounting for the effects of turbulence was very crude.
The lack of/;ophistication is due to the relatively early time period
when the investigation took place. It is only recently that reliable
turbulent models have been developedh[BB]. Future studies should
involve the application of much improved models, such as the (&,¢)
model or the Large-Eddy simulation Todel [38], teo fine particle
collection. °

The Navier-Stokes model developed in this study was applied to

hY
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essentially spherical collectors because drop deformation does not
occur until the flow at the front of tﬁe collector is nearly potential
in nature. It is still adventageous to use numerical grid generation
for geometries that have analyticai represgentations, but the code will
be underutilized. The phenomenon of particulate film formation on '
cylindrical elements in filters is known to deform the collector
significantly and cause an increase in collection effici_ency (1373.
when meterials form a semipermeable film on the collector
consideration must be given to flow through a porous medium. The code
developed during this study can be applied readily to flows around
deformed cylinders as discussed in Chapter 6. LeClair {26) has
providedﬁ the theory for modelling flow through porous media at
intermediate Reynolds numbefs. It can be applied to the case of a
semipermiable film on a cylinder using a modified version of the |
Navier-Stokes code developed in this study.

The final recommendation concerns the applicability of a

generalized model to every day use. The rigorous model of this study

was developed on a microcomputer. ‘A combination of" a number of
techniques; such as the hybrid first-second order upwinded
differencing scheme, the variable relmcr;tion factor, and block
r:elaxationl; were applied to produce a quick and reliable code. The
basis of all of the proceedures was the general orthogonal mapping
strategy. However, other techniques that offer all the advant.s‘g;s of
the ones used in this study are ava.ilable.‘ One of the most

interesting schemes is the 'true’ /spectral method which ias becoming
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more popular for fluid flow problems. It has been reported that this

method is generally 10 to 30 times faster than the {inite difference
technidues or finite element methods when considering stream

fucntion/vorticity function formulation of the Navier-Stokes equations

[38}. Predictions with the rigorous perticle collection model could

enefit significantly from the apparent increase i speed that the

!
"true' spectral method provides.,

afsg
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,,ﬂvfxy/’//[—\

a particle acceleration [dimensionless]

A particle gcceleration‘[m/szl

a volume fadius of the collector {m}

Ce Cunningham correction factor [dimensionless]

Cp heat capacity of the fluid [J/kg-°C]

C1 é;i?o£§r concentration of water vapor [mole/m3]

'C;w mo%af concentration of water ;apor in the undisturbed gas
stféam [mole/ma]

Clc molar concentration of water vapor on the surface of the
céllector [mole/m3]

210 diffusivity of water in air [mzls]

éi- unit vector in the direction of ai‘increasing

E droplet collection efficiency [dimensionless]

F, diffusiophoretic force (kg-m/a}

F drag force [kg-m/szl

drag .
?e --external force-[diménsionless]
?e 'external'force [kg m/s°)



Npr
Nr

Nre
Nsc

Nsh
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w7
'

. . Z
thermophoretic force (kg -m/s7]
trarlsformat;on metric tensor element
grid scale factor

Stokes nLﬁnb&r [dimensionless]

thermal conductivity of the fluid [h‘/u}-'C]

thermal conductivity of the particle [W/m-°C]

vortex length [m]

r
molecular weight of water [kg/mole]
molécular weight of air [kg/mole]

Knudsen number {dimensionless]

Peclet number for heat transfer {dimengionless]

Peclet mn:nbér for mass transfer [dimensionlegs]

Prandt]l number [dimensionless]

interception parameter {dimensionless]
Reynolds number [dimensionless]
Schmidt number [dimensionless]

Local Sherwood number [dimeﬁsionless]
Local Nusselt number- [dimensionless]
position vector [dimensionless]
particle radius {m]

time [dimensionless]

time [s]
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T iteration matrix

Te f‘luid temperature [ °K] .

Gb fluid [dimensionless] N\

U fluid velocity [(m/s]

v particle velocity [dimensionless]

Y particle velocity [m/s]

\—Jd perticle velocity due to diffusiophoresis [m/s]
V’t p‘arti'cle velt.)citj' due to thermophoresis [(m/s]
Greek letters o .

ay transfm:med boundary conforming coordinates

p' | dampemng factor '[d.imensioniess]

n tanpératuxe or vapor disf.ribution [dimensionless]) |
pe density of. fluid [kg/m’]

pp density of particle [kg/ma]

L | mole- fraction of water @mr [dimensionless]

Ty mole fraction of air [dimensionless])

.A mean free path length of the fluid molecules [m]
Hye viecosity of flui_d [kg/m-sl
. acceleration fa.c£or Tdimensionless]

g



» stream functicn [dimensionless]

I angle of flow separation [degrees}

N 157

[

vorticity function [dimensionless]

7y

S

Notation

’
Scalar quantities appear as normal faced characters (no bold) such as
the fluid viscosity He- .
Vector quantities appear as bold faced characters with a bar over the

top such as the particle velocity v.

Matrices appear as bold faced characters with a bar below such as the
iteration matrix T.
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This appendix describes the differentisl operators in generalized
orthogonal coordinates required to transform partial differential

equations from the physical plane to the computational plane.

Basic Defindtions

a scalar function in the physical domain

e
1

F = F e +F2e2+F3e3 is a vector function in the physical

domain. Derivatives of this function will be given in
terms of the components of F in the direction of a,
-
increasing as opposed .to the i, j, and k directions in the
physical plane.
aa oa.,

hi © [[2‘::] i

are scale factors between the physlcal plane ardd the
computational plane.

%

The Transformed Operators

The gradient of f g ’\

2 1

2 2
+[a ”'] +12 z] 7 i-1,2,3

- laf . "2af 33 f
vf = A —— 4 * e A.l
hy da, " B,y hy 3ay - o

L2

The divergence of F

-z 1
v-F = Hiﬁ_ﬁ_[h_(hzh )+_(h1h3F2)+-bq—(h th )] A.2
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The curl of F

hye, hge, hje,

- = _ ) 3 )

vxF = H n2h3 oa daz 3“3 A3
hiFy hyFy hiF, |

The laplacian of f
20 - [a ZBaf] 2 [h1h3_a f]+
Rihohg[8a, TRy~ 8 sa,| hy o,

3 lhz_a fH A.Q
aa3 Aﬁa oa3

An additional identity that is useful when using the vorticity
transport equation (4.3.6) under the assumption of axisymetric or

planar flow conditions is:

The curl(curl(fé3n

- e o= €3 2 '
vxvx(fes) H} -D (h f) A.5

h

h

2 4 3 1 o
vhere D™ = . ]+ [ . ]]
1Ry 8ay] 9a, {hohy oay

hhy [""‘1 [5
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in general, the contravariant acceleration of a particle in the

direction of increasing %, ai:, is given, by [45]%

! 2

d det_ d
ak-__.,_c}‘+rk-paq B.1
t-dt" pq dt  dt .

where the Christoffel symbols, I'I;q, are given by:

[t}

r=3
kr{o 3 a3
STl =~ B
Pq 2 |3a aa aar :
r=1 q P
Note: gl‘] and gij are the contravariant and covariant metric

tensor components respectively.

If the system is orthogonal then the off diamgonal elements of the

transformation metx:'i‘c tensor are zero. Therefore:
gkr =0, ker

This oonditiofl allows Equation B.2 to be wriiten as:

) 2 g 3
~ 1 Fok , ° Fak ¥ B.3

P e 33 N 5

As mentioned earlier, n}: is the contravariant component of’
acceleration. The physical component of acceleration , ak, igs defined

by:
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_ k
= hk-at B.4

2 2
IR TR U £ Wit ®' da]7,2 8119 9%
17 L. B {|€ % (At ee, At dt
1 2 Bppldxp a5
?aal at—
a2 o 2. [da.1® & £..[da. da
2 %2, 1|1 E11{9% . 221991 9%
IR gZZL Z 3a, +{dt 3, |dt ‘_dt
\ 2
L 1° B2 dax,, .
7 3a, dt '

<

3, |dt dt

3 by [da, da,
1

B.8




As an example, if cylindrical coordinates (r,6,z} were used the

following relationships would be obtained:

1 2
2 2
1 _d r rde
8 = 4 dt
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Optimal Acceleration Factor
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RS i V)

Optimal accelefation parameters are presented for difference’

g}g_t_x_\ations resulting from the use of & five-point stencill. These ‘
acceleration parameters ©i,3 are 'calcu‘laf,ed by the method proposed by
Ehrlich [8] which is based on the Jacobi spectral radius p; of the
linéarized eqquatidn. For the five-point difference equation: |

”" .
B1%4y, 54025, 54120001 57805, 51 %0N, 5 T B, c.1

the Jacobi spectral radius is

_ 2/ g n f 7 I ;
Py = a_;[ alaaoces(m)-t- 8,8, cos(m)] c.2
v . | .
where .
I = maximun number of x's in the i direction
J = maximun number of x’s in the Jj direction

The optimal acceleration parameter is-obtained by:

A

- ¥

letting Py = Pt -l-pi
_ _ 2 2
and defining A= PP
' _ 2 2
B=pp
A = AZ_ 2_ .
b= AZ-B



1 [[3b+(a+b )

® =
A -A"E

167 .

2,1/2,1/3; 1 2,1/2 1 1/3

~[3b-(a+bZ)1al’ 3 {a+eZ)+b] 173

Thep . )

C le-(e%+am) By
W, ., = - )
i,d P
I G vk
i, 7. 7 ’

It shov.xél.d- be pointed

than one in mﬁgnituie for

s

+A2+38244A22}

if A > B

Fil

if A2 ¢ B -

out that it 1s necessary for P to be less

convergence [8].

e d
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8!t¥ttttt!3t!t!ttttl!txttZtt!!XI!ttttt!!txttttttttttt!t!!t!tttt!xt!t!tt

parameter {pi=3.141593)

dimension x(80,80),y(80,80),xi(80) jeta({80)
character filex40

coamon a,b

write(*,%) 'BEntersmax. no. of iterations:’

resd(%,¥) imax
write(?®,¥)} ’Enter total no. of i grid lines:’

read(¥,%) ni

write{%,%) ’Enter total no. of J grid lines:
read(%,%) nj -

write(t,%) ’Enter tplerame

- read(x,%x) tol

write(%,%) ’Radius of outer bouﬂaryl’
read(%,%) a
b=a .

t INITIALIZE THE VALUES OF THE CORNER POINT3

} 4

P nﬂsmummmmmmmmmm
3 ARBITRARY DCMATN

b 4

t BY: KEVIN ELLWOCD

% DEPT. OF CHRMICAL ENGINEERING:

z UNIVERSITY OF WINDSOR

x smmas

4 N

£ NOTE: msmmmmmmmmmnmv
: * FROM A CARTESIAN COCRDINATE SYSTEM CR A POLAR OOCRDINATE
x SYSTEM. THE PROBLEM OF THE DEFORMED DROPLET WAS FORMULATED
t IN POLAR COCRDINATE FCORM. '

b 4 , . .
xtttttt!ttttttt#ttxttttxtt!xttttttt!ttttttttttttttttttttttttxxtttttttt
* VARIABLES:

3 X - MATRIX OF X AS A FUNCTION OF I,J

% Y - MATRIX OF Y AS A FUNCTION OF 1,J

% NI - TOTAL NO. OF XI (I) COCRDINATE LINES

% NJ - TOTAL NO. OF ETA (J) COORDINATE LINES

t TOL - COMPUTATIONAL TOLERANCE

% IMAX - MAX. NO. OF ALLOWABLE ITERATIONS

x A - SPMI MAJOR AXIS OF ELLYPSE ENCLOSING THE DROPLET
* B ~ SFMI MINCR AXIS OF ELLYPSE ENCLOSING THE DROPLET

4
X
b 4
X
b 4

z
x
4
X
p 3
%
: 4
E
x
 {
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x(1,1)=pi

x(1,nj)=pi

x{ni,1)=0.0

x(ni,nj}=0.0

call ibound( pi,pi,¥(1,1),¥{1,nj) ) ' ;
call ibound( 0.,0.,y{ni,1),y{ni,nj) ) )

call grid{ x,y,ni,nj,tol,er,imax,it )

+ RELATE THE CARTESTAN GRID TO THE POLAR OOCRDINATE GRID

10

do 10 i=1,ni
do 10 j=1,nj
tx=exp( -y(i,Jj) )*cos( x(i,Jj) )
ty=exp( -y(i,j) )%sin( x(i Jy )
x(i,j)=tx
¥(i,j)=ty
continue

* SAVE THE GRID TO THE DISK

20

[ R 2]

»

write(%,3) 'Enter filename to store grid:’

read(%,20) file

open( unit=1,status="new’,file=file, form="unformatted’ }
write(1) ni,nJ,((x(i,J),i:i,ni),j=1,nJ),

& ((Y(i)j)ri=1:ni)sj=lrnj)
close( umit=1,status="'keep’
stop
format(ad0)
end

subroutine grid{( x,y,ni,nj,tol,er,imax,it }

THIS SUBROUTTNR CONFORMALLY MAPS AN ARBITRARY DOMAIN IN
CARTESIAN (OR POLAR) mmmmommmmm
(X1,ETA) R (I,J)

NOTE: THE ccmm POINTS OF (X,Y) MUST BE INITIALIZFD _

% THR RESULTING SIMULTANEOUS ELLIPTIC P.D.E'S ARR SOLVED BY
* BLOCK SUCCESSIVE OVERRELAXATION (B.S.O.R) :

% VARIABLES:

z X - MATRIX OF X AS A FUNCTION OF I1,J

% Y - MATRIX OF Y AS A FUNCTION OF I,J

% NI - TOTAL NO. OF XI (I} COORDINATE LINES

% NJ ~ TOTAL NO. OF ETA (J) COORDINATE LINES

s TOL -~ COMPUTATIONAL TOLERANCE

% IMAX - MAX., NO, OF ALLOWABLE ITERATIONS
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NO. OF ACTUAL ITERATIORS
ACCELERATION FACTOR FCR GRID VARIABLES
ACCELERATION FACTCR FOR CONFCRMAL MODUAL (S)
CONFORMAL MODUAL OF THE SYSTEM

L AR )
‘mat‘q

-

SUBROUINES CALLED:

»

JBOUND - CALCULATES Y=A{X) ALONG J = 1 & NJ

JBOUND - CALCULATES X=B{Y) ALONG I = 1 & NI

TPACK - CALCULATES PACKING FUNCTION DERIVATIVES IN THE
1 COCRDINATE STRETCH

JPACK - CALCULATES PACKING FUNCTION DERIVATIVES IN THE

J OOORDINATE STRETCH

SOLVES TRIDIAGONAL MATRIX PRODUCED IN S.L.O.R.

B

[ IR I IR IR

BANDIT

parameter (pi=3.141593) =

dimension x(80,80),y{80,80),g(80),gp(80), f(80) fp(80}) ,w(80)
dimension £x(80),fy{80),a{80),b(80),c(80),xi(80),eta({80)
common /accel/ coex,cose

errfn{er,unew, uold}-amaxl( er,aba( unew—uold }/{abs( unew }+1.) )

nim=mi-1
njm=nj-1
nim2=-ni-2
njm2-nj-2

* INITIALIZE VARTABLES FOR PACKING CONTROL -

do 5 i=1,ni
rxi=float( i )
call ipack{ rxi,f0,f1,f2,ni )
xi{i)=f0
fp(i)=f1
, f(i)=f2/f1
5 continue
do 10 j=1,nj
. reta=float( J )
call jpack( reta ‘ol‘]-!‘z nj )
eta(j)=g0
gp(J)=gl
g(J)=g2/¢1
10 ,oontinue

& INITIALIZE BOUNDARY BY LINEAR INTERPOLATION

do 15 4=2,nia
ril=(xi(i)-xi(1)}/(xi(ni)-xi(1))
ri2=(xi(ni)-xi(i))/(xi(nd)-xi(1})
x{i,1)=rilsx(ni,1)+ri2*x(1,1)
x(i,nj)=ril¥x(ni,nj)+ri2sx(1,nj)
e, 811 ibound( x(1,1) ,x(1,03),7(1,1),7(1,n8) ) .
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15 continue
do 20 j=2,njm
rjl={eta(j)—-eta{l))/{eta(nj)-eta(l))
rj2=(eta(nj)-eta(j))/(eta(nj)-eta(l})
¥(1,j)=rjixy(1,nj)+rj2sy(1,1)
v(ni, j)=rjl*y{ni,nj)+rj2*y(ni, 1)}
call jbound( y(l.J),Y(ni,J).x(l J)sx(ni, J) )
20 continue

* USE TRANSFINITE “NIFRPOLATION AS AN INITIAL QUESS

do 25 i=1,ni
ril=(xi{i)-xi(1))/(xi(ni)-xi(1})
ri2=(xi(ni}-xi(i))/{xi(ni)-xi(1))

) x11=rilsx{ni,1)+ri2x(1,1)
yll=rilsy(ni,1)+ri2sy(1,1)
xlmzriltx{ni,nj)}+ri2sx(1,nj)
yim=ril*y(ni,nj)+ri2*y(1,nj)
dan=x{i,nj)-xlm
ax1=x(i,1)-x11
dym=y(i,nj)-yim ,
dyl=y(i,1)-y11 . .
do' 25 j=1,nj '

< rjl=(eta(j)-eta(1))/(eta(nj)-eta(l))
rje=(eta(nj)-eta(j))/(eta(nj)—eta(l))
x1=rilsx{ni, j)+ri2sx(1,J) , _
Ylﬂiltﬂni-.i)-*rizty(l:i) h &
x2=rjl1*dmtrj2sdxl
y2=rjlxdymirj2zdyl
< x(i,J)=xl+2
' ¥{i,J)=yl+y2
25 - continue

* SET VECTCRS FOR TALL TO TRID

do 30 i=2,nim
a({i-1)=1.+f(i)}/2.
c{i-1)=1.-f(i
3C continue ,

% MAKE AN INITTAL GUESS FOR THE CONPORMAL MODUAL

sum=(fp(1)*%(y(1,3)-y(1,1))+fp(ni)*(y(ni,3)-y(ni, 1))} /4.
do 35 i=2,nim -
F-u--lmlﬂf]:'(i)*(3'(1 3)-y(i,1))/2.
35 - continue

_ s=su/{ (x{ni, 2§-x(1,2) ) *gp(2)) o
T SOLVE THB.E[LIP’I‘IQ SYSTRMPAR X & Y USING B.S.0.R IN T DIRECTION

-
AN i
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cosx=cos{ pi/(float( nim2 }+1.) )
cose=coa( pi/(float{ njm2 )+1.) )
ws=0.5
it=0
er=10.%tol
40 1f((er1ttol)or(1t¢eimx))mw45
vaax=0.0
wmin=2.0
snew=0.0
“erx=0.0 . P
ery=0.0
erxs=0.0
erys=0.0
ers=0.0
it=it+l
al=stp
do 50 J=2,njm

cjm=1.+g(j)/2.
gpri=gp(J)
do 55 i=2,niw
im=i-1
del=(fp(i)/gpj/e)*x2 .
a2=(fp(i)/gpj)**2
bl=-alxf{i)
b2=-a2%g(j)
* call omega( al,a2,bl,b2,0.0,w )
wiax=amax1( woax,w )
wmin=aminl( wain,w )-
ww{im)=w
(b(im)--z LX(1.4del)
. £x{im)=—dels(cijmex(i, jm)+cjpsx(i,Ip))
fy(im)=-del*(cjmsy(i, jm)+cjp¥y(i,Ip))
55 ‘ contime
' fx{1)=fx(1)-a{l1)2x(1,J)
fy(1)=fy(1)-a{1)sy(1,J)
fx{nim2)= fx(ninZ)-o(n.i.nZ)tx(m.J)
fy(nin2)=fy(nim2)-c(nim2)*y(ni, j)-
call bendit( a,b,c,fx,nim2 )
call bandit{ a,b,c,fy,nis2 )
sun=(fp(1)*(y(1, Jp)-!(ly.i-))+fp(!ﬂ)‘hr(ni.3p)-7(n1,.h)))/4-

% RELAX THE GRID POINTS ALONG GRID LINE J

do 60 i=2,nim
- im=3-1
xij=ww(im)sfx(im)+(1. -W(llv)-}‘ld.i J)
yij=w(im)sfy(im)+(1.-wwi(im))3y(1,])
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em=errfn{ erx,xij,x{i,j} )
ery=errfn{ ery,yij,¥{i,J) }
¥(1,3)=yij

sum—sum+fp(i)¥{y(i, Jp)—Y(l.Jm))/z

60 . continue
snew-snew+sum/ng/(X(nl.J) -x(1,J4))
continue
‘\\___, * UPDATE COORDINATES CEHTKXIE#JTTC)EOUNDARIES
w=0.5

do 65 i=2,nim
xjl=-s3gp(1l)/fp(i)*(y{i+l,1)-y(i-1,1)}/2.
xjn=—s*gp(nj)/fp(i)¥(y(i+l,nj)-y(i-1,nj)}/2.
x1=(4.¥x(1,2)-x(1,3)-2.%xj1)/3.
xn=(4.*¥x{i,njm}-x{i,njm2)+2.3xjn)/3.
xl=owrxli+(1.-w)¥x(i,1)
xn=wixn+ (1. -w)x{i,nj)
‘erxs=errfn( erxs,x1,x{i,1} )
erxszerrfn{ erxs,xn,x{i,nj) )
x{i,1)=x1
x(1i,n))=xn
65 continue
de 70 j=2,njm
yil=—fp(l)/gp{J)/8*¥(x(1,j+1)-x(1,j-1))/2.
yin=-fp(ni)/gp(Jj)/s¥(x{ni, j+1}-x(ni,)-1))/2.
yi=(4.%y(2,j)-¥y(3,5)-2.3yil1)/3.
yn=(4.*y{nim, j)-y(nim2, j)+2.%yin)/3.
ylswkyl+(1l.-w)3y(1,]}
yn=wiyn+(1l.-w)¥y(ni,J) -
erys=errfn{ erys,yl,y(1,3) ) -
eryszerrfn( erys,yn,y(ni,j) )

Y(lr.j)=y1
y{ni,j)=yn
70 . continue

* UPDATE MONCTONIC VARIATION ON BOUNDARIES

do 75 i=2,nim
call ibound( x(i,1),x(i,nj),y(i, 1),y(i,ng) )
75 continue . ’
do 80 j=2,njm
-" call jbound( ¥(1,3),y(ni,J), x(luJ):X(nl:J) )
80 continue

¥ COMPUTE NEW AVERAGE CONFORMAL MODULE

. —~ . '
& snew=snew/float( njm2 ) ‘ '
. snew=ws¥snewt+(1l.-wB) %8 . (i::/

. - \ ) A '
\-.\_'\ - =4 . ;.
r . tha 0 -
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erszerrfn{ ers,snew,s }
erzamaxl( erx,ery,ers,erxs,erys )}
szanew

write(%,3¥} ’'============ iteration !
write(%*,*) 'local error in x tranaformation:
write($,¥) 'local error in y transformation:
write{(%,*) ’local error in conformal modual:
write(%,%) 'local error on x surface -
write(*,%) 'local error on y surface

global error:

write(®,%) ’
write(x,%) ’'omega -max. :’,wmax
write(s,*) '’ -min. :’,wmin
go to 40
return
end

subroutine bandit( a,b,e,f,n )}

t The solution is overwritten into f -

L.

T

10

dimension a(n),b(n),c(n);f(n);x(ldo)

Perform forward elimination

np=n+1 '
nm=n-1 /s__,ELJ
x(1)=c(1)/0(1)

£(1)=f(1)/b(1) .

do 5 j=2,nm
z=1./tb(j)-a{j)sx{j-1))
x(Jj)=c(j)*=z
F0)=(£(J)-a(j)sf(j-1}) 3%z

continue

z=1./{b{n)-a(n)*x(nm})

f(n)=({f{n)-a(n)*f(nm) )%z

Perform bacikward substitution

-,
do 10 ji=2,n
J=np-jl
£3)=f(J)-x(j)*sf(j+1)
continue
return
end

subroutine omega( al,az,bl,bZJp,w )

[y
This subroutine solves the tridiagonal system b{a,b,c) = f

* This sqﬁroutina evaluates the acceleration factor at

175
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¥ each grid point by the method of Erlich

t In this version complex roots were ingnored
3 only purely imaginary of real rocts were oconsidered

common /accel/ cosx,ocose
d=abs( c-2.%({al+a2) )}
f=4.%xal%al-blxbl
£=4.2a2ta2-b2sb2
cl=sqrt( abs{ £ ) )/d
c2=sqrt( abs( g ) )/d
rj=cl¥cosx+ciicose
if {({ f.ge.0. ).and.({ g.ge.0. )) then
" w=2./(l.+sqrtd l.-rjerj })
else .

w=2./(1. +9qrt.( 1.+rj%rj ))
end if
return
end

N ibroutine ibound( x1,x2,71,72 )

% This subroutine defines the surface of the collector and
) * the out wall in polar ocoordinates at j=1 and nj

: rezl c{10}
T cosmon a,b
data c¢/-7089.e-5,0.0,-21070.e~5,6482. e—5 -1023.0~6,-283.e-5,
#127.e-5,-15.e-5, -57.e-—5 +22.e~5/
r=1.4c(1) )
do 5 n=3,10
T=r+c{n)*cos( float( n-1 )zx1 )
5 contioue
- ylzalog{ 1./r )
r=asb/sqrt( atassin( x2 yaE24b¥btoog( x2 )x52-)
y2=alog( 1./r )
return
end

subroutine jbound({ y1,¥2,x1,x2 ).

% This subroutine defines the boundaries at i=1 and ni
% in this case it is the axis of symmetry of the collector
* in polar coordinates

x1=3.1415926535

x2=0,

return o
ernd
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subroutine ipack( xi,f0,f1,f2,n1 )

. ’ % .
t This subroutine supplies the packing function in the i
* direction (along the surface of the body)

data a/5.0/ .
asinh(x)=alog( x+sqrt( xtx+{.0 ) )
r=float{ ni+l }/2.0 > ,
q=float( ni-1 )/2.0 N
u=a/q¥(xi-r) -

fO=r+q/aginh( a )%asinh( u )

fiza/asinh( a }/aqrt{ usuil. )
f2=-atatu/q/asinh( a )/{ u¥uti. )££l.5
returmn ' :

end

subroutine jpack( eta,g0,gl1,g2,nj )

t This subroutine supplies the packing function in the j
% direction (perpendicular to the surface of the body)

g0=eta
g1=1.0
g£2=0.0
return



Appendix E

The Navier-Stokes Algorithm
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= r

tzxtxxzxxxxtxxx:txxxiuuzxxxxxxxxxxtnutxxxzxxxnxutxtxx:z:ntxxxxxx

x . %
¥ This program solves the steady, incompressible, viscous flow x
x over an arbitrary body that is defined in the program NETWORK., *
3 : ) %
4 - ' By: EEVIN ELLWOCD X
3 : DEPT. QF CHEMICAL ENGINEERING x
x UNIVERSITY OF WINDSOR %
3 ) 1987 ' %
N . ‘ x
x NOTE: This program is set up for axisymmetric flows but planar x
3 flows can be solved by setting h3 = t
b 3 b S
R EE R R ER R RIS E RN E R R R R R RS KRR LR R EX AL TTR TS RIS EK
* VARIABLES:

4 D 4 - MATRIX OF X AS A FUNCTION OF I,J -

% Y - MATRIX OF Y AS A FUNCTION OF I,J

3 NI - TOTAL NO. OF ALFAl (I) COORDINATE LINES

x NJ — TOTAL NO. OF ALFAZ (J) COORDINATE LINES

x TOL - COMPUTATIONAL TOLERANCE

x IMAX - MAX. NO. OF ALLOWABLE ITERATIONS

x S. - MATRIX CONTAINING STREAM FUNCTION

3 v - MATRIX CONTAINING VORTICITY FUNCTION

% H'S - ARE THE GRID SCALE FACTORS

SUBROUINES CALLED:

L]

SOLVE SOLVES THE NAVIER-STOKES EQUATIONS
SCALE -~ CALCULATES THE GRID SCALE FACTORS
BOUND ASSIGN DIRICHLET BOUNDARY CONDITIONS
INTER ASSIGNS' AN INITIAL GUESS

§

program navier

external para,zero,rel,dif

dimension s(80,80), v(80,80), x(80,80), y(80,80)

"o M M

dirension h1(80,80),h2(80,80),h3(80,80) ~—
x*tt*tttt*t!tt***ttt!ttt!tt*t*ttttt**ﬂ*tt*!!tttt-t***x**t*t***xtttttttt
% 3
t For axisymme ¢ ————=> h3(i,J) = y(ij) %
* For planar flow - ———-> h3(i,j) = 1.0 . ¥
. 1 ) . . . %

X!t*!*t*tttt¥tt*/ttt**ttit*t!tt*tt*t!tt**ttt*t*t*#t*****ttt¥¥ttttt¥*t!t* > ‘.-_

L)
-

equivalence ( h3,y )
character file¥40,pick*40
data 1f1ag,tol,re,max,1er,1up,nu,1o/1 5.e-4,30.,150,1,5, 1 2/
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call cls

10 if ( iflag.ne.l ) stop

. write(¥,%) ' Fm===-=====n=ﬁ’
write(*,sx) ’ .| Read grid data '
write(%,3) ’ 2.} Initialize solution from file * Yo,
write(%,%) ? 3.| Initialize solutiom to 0.0 _ !
write(%,%), ' 4.| Initialive solutjon to straight flow |’
write(*,x) ' | 5.].Set parameters (relsxation eto...) '
write(x,z) ’ 6.] Solve system - '
write(s,%x) ? 7.] Save system :
write{sx,x) ? d.| Exacute a dosa comsand '
write(s,s) ’ x.| BExit progrem '
write(%,z) ’ B T ———

?

write(s, %) ‘Bnter choice:’

read(%,20) pick :

call cls \
if ( pick(1:1).eq.’l’ ) then *

write(s,%) '"Enter grid filemame:’
read(%,20) file
open{ unit:s1,status=’old’,file=file, for-:'mfor-atted’ )
read(1) ni,nj,((x(i,j),i= lunl).J 1,nj),

L Losed X ((Y(i,dzéi:ll):n%)..i=1.nj)
cloge( unit=1,status= N :
call scale( x,,h1,h2,ni,nj ) S
call cls ‘ ; .

. end if :
if ( pick(1:1}.eq.’2’ ) then

write(%,%) ’'Bnter filename for 1nitm11mt.im.
read(%,20) file -
open( unit=2,status='o0ld’,file=file,form="unformatted’ )}
. read(2) re,nn,jj.((B(i,j),i:l,m)..i:l,'.jj),

v

& . ({v(1,3),4i=1,mn),j=1,Jd)
if {{ on.ne.ni ).or.{ jj.ne.nj )) then ~
write(%,%) ’Warning... initialization file mnismatoh’
end if
close( mit:Z,stat\m:’keep’ )
call cls
end if

_ _if plck(l 1). eq.’3’ } thm . h
- - . call inter( s,v,x,y,ni,nj,zero } . .
~L’.‘:_/ . , call cls .
. s ol : end if _ .
T if ( pick(1:1). eq.’4’ } then ' ,
call inter( 81V:x;Ylnitwsm )
: - “call cls
’ end if . ' .
if ( pick(1l:1). eq.’5' ) then N
write(%,3) '"Enter the order of approximation (1 or 2y:"
-read(%,%)} io . ) .
Ny vrite(s,%) ’Enter tolerance:’

LAY ¢ & '
. ‘ . Lo

/e

1

‘e
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read(¥,%} tol
write(z,t) ’Enter update frequency for omega:

read{¥,3) iup
write(f,%) ’BEnter update frequency for surface vorticity:’
read(¥,2) nu
write{%,%) ’Enter surface relaxation factor:’'
read(%¥) wl
write(%,¥) 'BEnter reynolds number:’ ‘ *

read(%,%) re
write(®,%) 'Error —> 1. relative or Z. absolute (1 or 2):’
read(t,%} ier
call cls
end if
if { pick(1:1).eq.’6’ ) then
call bound{ s,v,X,¥,ni,nj )
if ( ier.eq.l ) then
cail solve{ io,s,v,hl,h2,h3,ni,nj,re,tol,nu,iup,wl,rel )
else
call solve( io,s,v,hl,h2,h3,ni,nj,re,tol,nu,iup,wl,dif )
erd if '
call cls .
end if ’ o
if ( pick(1:1).eq.’'7’ ) then
write(*,%) '"Enter filename to save solution:
sread (%,20) file
open{ unit=2,status="new’,file=file,fors="' mformttad' )
write(2) re,ni,nj,((s(i,j).i:l.ni),j:l,nJ),

& ((v(iij)lizlfni)l3=1an)
close( unit=2,status='keep’
. call cls
end if

if ({ pick(1l:1).eq.’d’ ).or.( pick(1l:1).eq.’D’ }) then
pause 'Enter dos commend’

end if -
if (( pick({1:1).eq.’x’ ).or.{ pick(l:1l).eq.’x’ )) ifleg=0
call cls '

go to 10

20 format{a40)
end

subroutine solve( io,s,v,hl,h2,h3,ni,nj,re,tol,nu,iup,wl,errtn )

Py S T80 302c222822383333 ¢332 3142333222223 2222223 3333233233328 22823823

b 4 b 4
T This subroutine solves the Navier-Stokes equatiomn s
4 : b S

tttttttt!‘ltt!t!853tttttttt!t!&ttttttt!ll!!!ttt!ttt!ttltt!tt!lttttttttt

dinension B(Bd,SO), £(80,80), v(80,80),wss(80,80),wfs(80,80)
dimension h1(80,80),h2{80,80),h3(80,80),key(8),nis(2),nif(2)
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parameter (pi=3.141593)
common COSX,Cose
data alfa/0.7/

njm=nj-1

nim=ni-1
nim2=-niji-2 i;ﬂ
njm2=-nj-2 '
nis(1)=2 AN
- nis(2)=3 :
nif{l)=zint( nim/2 )*2 ' ~
nif{2)=zint{ ni/2 )%2-1
cosx=cos{ pi/(float{ nim2 J+1.) )
cose=cos p1/(float( njm2 )+1.) )

t Initializing modified vorticity function f ; f = ~vorticity/h3

do 5 j=1,nj
do 5 i=2,nim
f(l.J)=-V(i.j)/h3(1.j)
5 continue
it=0
er=10.%tol ‘
wamax=0.0 ' ,
weamin=2.0
_key(4)=0
10 if (( er.lt.tol ).or.( key(4).eq.1 )) go to 15
key(4)=0 . -
inocel=mod(it,iup)
it=it+l
ers=0.0
erf=0.0
if { imocoel.eq.0 ) then
wimax=0.0
wimin=2.0
erd if

% Update  on the axis of symetry using L'Hopitﬁls rule because v/h3 = 0/0
do 40 j=2,njm '
% Update f on izl by forward differencing
h3i=4.%h3(2, j)-h3(3,J)
viz4.%h3(2, j)*£(2,3)-h3(3, J)tf(3 J)
f(1,j)=vi/h3i
$ Update f on i=ni by baclomrd differencing

h3i=h3(nim2, j}-4.%h3(nim, j)
vizh3(nim2, j)*f(nim2, j)—4.5h3{nim, j)tf(nln.a)
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f{ni,j)=vi/h3i
40 continue
do 50 1=1,2
do 20 j=£,njm
mj=mod{ J+1-1,2 )+1
Jp=i+l
Jm=j-1
do 25 immnis{mj),nif{mj),2
ip=i+l
im=i-1
ha=h1(i,j)
hb=h2(i, j)
he=h3(1,J)
hli=(hl(ip,J}-hl{im,j))/2.
h2i=(h2(ip,j}-h2(im, j))/2.
h3i={h3{ip,j)-h3(im, J))/2.
h1j=(h1(i,jp)-h1(i, jm)}/2. : -
h2j=(h2(i, jp}-h2(i, jm})/2.
h3j=(h3(i,jp)-h3(i,jm})/2.
h213=hb/ha/hc ’
h123=ha/hb/hc
a3=hathbthc
h213i=h2i/hb-hli/ha-h3i
h123j=hlj/ha-h2j/hb-h3j

1 Calculating coeficients of differencefequations for stream functiaon

ajm=h123%(1.-0.53%h123j)
aim=h213%(1.-0.5%h213]
ao=2.¥(h213+h123)
aip=h213%(1.+40.5%h2131)
ajp=h123%(1.40.5%h123j)

t Calceulating local acceleration factors by the method of L.W. Ehrlich

if ( it.eq.1 ) then - .
call omega({ ajm,aim,ao0,aip,ajp,w )
wes(i,j)=w
wsmax—amaxl( wemax,wss{i,j) )
wesmin=aminl{ wsmin,wss(i,j) )

end if

waswas{i, j) .

sun=a jmss(i, jm)+aimte(im, j)+aipsa(ip, j)+aip*a(i, jp)

8ij=(sun—a3sf(i,j))/ao

s8ij-wassij+(1l.-ws)28(i, )

ers=errfn( ers,sij,s(i,j) )

s(i,j)=8iJ

Bi:-(B“-P:j)“B(il-.j))/z-

sz(s(iljp)-s(ilh))fz'



184

t Calculating coeficients of difference equations for vorticity function

if ( io.eq.l ) then

eizsign{ 1.,s8j }

ej=sign( 1.,-8i )
else

ei1=0.0

. ej=0.0

end if
ajm=ajm*h3(i, m)¥¥2-re/4. 3813(1 +ej)
aim=aimth3(im, j)$¥2+re/4.23)%(1.+ei)
ao=2./h123+2./h213+re/2.8(eitsj—ej¥sl)
aip=aipth3(ip,.j)**2-re/4.38j%(1.-ei)
ajp=ajpth3{i, jp)*¥x2+re/4.2s8it(1l.~ej)

t Calculating local acceleration factors by the method of L.W. Bhrlich

25
20
50

* Update

36

if { iaccel.eq.0 ) then
call omega{ ajm,aim,ac,aip,ajp,w )
wfa{i,j)=w
wfmax=amax1( wfmax,wfa{i,J) )
wfmin=aminl{ wfmin,wfa{i,j) )
end if
wf—wfs(i, j)*alfa
sum=ajmef (i, jm)+aimtf{im, j)+aipsf(ip, j)+ajp*f(i,jp)
fij=sum/a0
£ij=wlfefij+(1.-wf)xf{i,j)
erf-errfu( erf,fij,f(i,J) )}
£{1,J)=1iJ
continue
continue
continue

vorticity on body surface

weurf=aminl( wfmin,wl )

if ( mod{ it-1,m ).eq.0 ) then

ersurf=0.0

viex=0,0

do 35 i=2,nim
vor=(8.¢s8({i,2)-8(i,3)}/2./(h2(i,1)%h3(i,1})332
vor=wsurfsvor+(1.-wsurf)}&f(i,1) o
ersurf=errfn( ersurf,vor,f(i,1) )
£{i,1)=vor
vort=-vorth3(i, 1)
1f(ahs(vort)ttahs(vmx))then

vmax=vort .

end if

continue

end if
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call statkb({ key )

erzamaxl{ ers,erf,ersurf )

write(*,200}) it

write{*,210) ers,erf,ersurf,er

write(¥,220) wamax,wfmax,wsmin,wfmin

write(3,%) '"Max. surfaceé vorticity:',vmax
go to 10

t Calculste actual vorticity
15 do 45 j=1,njm

do 45 1=Z,nim
v{i,j)=-f{1,))*h3(1,J)

45 continue
return
200 format(1x,14(’="),*! iteration no. ',13,1x,14{'="})
210 format{1lx, 'local error in stream function :',ell d,/,

&1x,’'local error in vorticity function:’,ell.q,/,
&1x,'local error in surface vorticity :’,ell.4,/,22x,
&'global error:’,ell.4,/)
220 format(15x, 'stream func. vorticity func.’,/,1lx,
. &'omegs - max.: 1, f7.4,8x,17.4,/,1x,
&’ - min.: 1,f7.4,8x%,17.4,/)
end ‘ :

.

subroutine bound( s,v,x,¥y,ni,nj )

P Pt P T I S T332 2222200322223 2232222222222 22222220

X 3
t This subroutine assigns the Dirichlet boundary conditions 4
% 3

3222222 e sttt e e PRSP 2222233232222 22 2222 R 222022
dimension s(80,80),v(80,80),x(80,80),y(80,80)

* Assume the fluid is in steady parallel flow

do 5 j=1,nj
8{1,j)=0.
g{ni, j)=0.
vil,5)=0.
v{ni, j)=0.
5 continue
do 10 i=1,ni —
s{i,1l})=0.
8(i,nj)=0.5%y(i,nj)*%2
v(i,nj)=0. '
10 continue
return
end



subroutine inter( s,v,x,y,ni,nj,func )

!tt!tt!t!t!t!ttttXttlttftt!!!!tt!8!8!:3!tt!8!!!!!!:;3!!*:!!&!!8!3!3

3 Y
t This subroutine assigns the value of 'func’ as an initial guess %
z 4

P 2333233333322 338323233¢22223313 3332822823233 ¢+3¢2220322223223 22212

dimension s({80,80),v{80,80),x{80,80),y(80,80)
do 5 i=2,ni-1
do 5 j=2,nj-1
xe=x(i, )
yy=v{i,J) .
8(i,j)=func( x¢,y7 }
v{i,j)=0.0
5 continue
return
end

subroutine scale{ x,y,hl,h2,ni,nj }
dimension x(80,80),7(80,80),h1(80,80),h2(80,80)

EESEEILLISTS LSRRI RIS ESTEAEREETLTETLRATREASATALTLITASATIRTLXLE

p S 3
* This subroutine calculates the scale factors Hl & HZ2 from 3z
* the orthogonal grid defined by X & Y *
4 - 4

32237383332 3332333333¢33¢232t233-23222 2332023031422 233 22 2223222 208

do § j=1,nj
xi=(-3.2x(1,j)+4.%x(2,j)-x(3,]))/2.
yi={-3.%y(1,j)+4.235(2,5)-¥(3,J)}/2.
hl{1,j)=sqrt(xisxi+yityi)
10 i=2,ni-1
xi={x(i+l,j)-x(i-1,J))/2.
yi=({y(i+1,j)-y(i-1,J)}/2.
h1{i, j)=sqrt({ xisxi+yisyi )
10 continue
xiz{3.#x(ni, j)-4.%x{ni-1, J)+x(ni-2,j})/2.
.yi=(3.%y(ni,j)—4.8y(ni-1, ) +y(ni-2,j})/2.
. hl{ni,j)=sqrt( xisxi+yisyi )
5 continue
do 15 i=1,ni
xj=(-3.tx(i,1)+4.2x(i,2)-x(i,3))/2.
yi=(-3.%y(i,1)+4.2y(1,2)-y(1,3))/2.
h2(i,1)=aqrt{ xj*xj+yjsyJ )
do 20 j=2,nj-1
x3=(x(i,j+1)-x(i,j-1})/2.
vi=(y{i,j+1)-y{i,j-1})/2.
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h2(i,j)=sqre( xjrxj+yj*yJ )

20 continue
xJj=(3.3x(i,nj)-4.¥x(i,nj-1)+x(i,nj-2))/2.
yi=(3.35y(i,nj)-4.%5(i,nj-1)+y{i,n3-2))/2.
hZ2(i,nj)=sqrt( xj¥xj+yjsyj )

15 continue

"return

end

subroutine cls
write{x,10)

10 format{*'1')
return
end

function para{ x,y )
para=0.5%y%:2
return

end

function zero( x,y )
zero=0.0

return

end

subroutine omega( ajm,aim,a0,aip,ajp,w )

12 $3333322339222233333323323302222 2333224302 v2 22233 2¢ 2222222222232 22"

X
* This subroutine calculates the acceleration factors for each x
* grid point %
b 4 > X

S 43Rttt 282210222t 3 3337222233222 2732208023222 322 22222222 28

complex u
CO8X , cose
data t/.3333333/
* f-aim¥*aip
g=ajmiajp
u=2.%{ceqrt{ ceplx{ f ) )}scoexi+caqrt{ csplx{ g } )%cose)/a0
urzreal{ u )
uizaimeg( u )
aa-uriurtui tui
aaZ-an¥an -
bb=urtur-ui fui
a=anZ2-bbsbb
b=aaZ-bb :
c=aqrt( abe{ at+btb } )
e=(3.tbic)*({abe(at{c-b)))sst-{3.5b-c)*s(aba(as(ctb})) x5t
bar={e+naZ2+3. thbsbb-4. taa2%bb) / (an2232-an2%¥bb)



if { aaZ.gt.bb ) then

w=-{bar-sqrt{ bart:2+4.%bar })/2.
else

w=—{bartsqrt( bartt2+4.tbar ))/2.
end if
return
end

function rel{ er,unew,ucld )
rel=amaxl{ er,e?s( unew—uold )/(abs( unew )+1.)})
returmn :

end

function dif{ er,unew,uold )
dif-amax1{ er,abs( unew-uocld ) )
retum

end

188



Apperdix F

Fotential Flow Algorithm
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P R It eI 22222 2222232722333 3023222222232 222223222 4

} 4
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b 3
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x
3
x

¥ VARIABLES:

OO O MM N

L3

SUBROUINES C

E IR

By:

This program solves the steady, irrotational flow over an
arbitrary body that is defined in the program NETWORK.

KEVIN ELLWOOD

DEPT. OF CHEMICAL ENGINEERING
UNIVERSITY OF WINDSOR

1987

NOTE: This program is set up for exisymetric flows but planar
flows can be solved by setting h3 = 1

t!ttttXttt!tttt!tttttt!ttttttt*tt!t!t!tttt!Xti!!tttttt!!ttt!t!tttttt*

X - MATRIX OF X AS A FUNCTION OF I,J

Y - MATRIX OF Y AS A FUNCTION OF I,J

NI - TOTAL NO. OF ALFAl (1) COORDINATE LINES
. NJ - TOTAL NO. OF ALFAZ (J) COORDINATE LINES

TOL - COMPUTATIONAL TOLERANCE

- MAX. NO. OF ALLOWABLE ITERATIONS
S - MATRIX OONTAINING STREAM FUNCTION
H'S - ARE THE GRID SCALE FACTORS

SOLVE - SOLVES THE NAVIER-STOKES PQUATIONS
SCALE - CALCULATES THE GRID SCALE FACTORS
BOUND - ASSIGN DIRICHLET BOUNDARY CONDITIONS
INTER - ASSIGNS AN INITIAL GUESS

external para,zero,rel,dif

dimension s(80,80), x(80,80), y(80,80)

dimension hl(80,80),h2(80,80),h3(80,80)
equivalence ( h3,y )

character filex40,pick*40

data iflag,tol,re,max,v,ier/1,5.e-4,30.,150,0.0,1/

call cls
10 if (iflag.ne.l
write(s,1)
write(x,%)
write(s,%)
write(*,¥)
write(*,x)
write(#,%)
write(x,¥)
write(s,¥)

) B

- W W W w W w

Y
top
M
1. Read grid data

2. | Initialize solution’ from file

3. Initialize soluticn to 0.0

4, Initialize solution to straight flow
5. | Set parameters (relaxation etc...)
6. Solve system

3
X
k4
1
X
b 3
4
4
4
b 4
x
b <

v
- w W W W . W e

7. Save system
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write(s,z) ' &0\ | Bxdt program '
write(s,3) ' !
write(x,s) ' Enter choioe:’

read(%,20) pick

call cls

if (pick(1:1l).eq.’1’ ) then
write(s,3) ’Enter grid filename:’
read(%,20) file
open( unit=1,status=’old’,file=file,form='unformatted’ )
read(l) ni,nJ, ((X(l.J).l-l pi}),Jj=1,nj), :
((y{i,3),1i=1,ni},j=1,nj}
cleaa{ unit=1,status="keep’ )
call scale( x,y,hl hz,m,m )
call cls
end if :
if (pi (1:1).eq.'2’) then
(5,3) 'Rnter filemame for initialieation:’
nead(t 20) file
open{ unit=2,status='old’ file-flle,fm-'mfomtt.ed' }
read(2) re,m,jj,({s(i,J),i=1,0n),j=1,33)
if ((m.ne.ni).or.(jj.ne.ru)) then
write(®,¥) ’Warning... initialieation file miamatch’
end if
close( unit=2,status="keep’ )
call cls
end if
if (pick(1:1).eq.’3") the.n
call inter( s,x,y,ni,nj,zero )
call cls
end if
if (pick(1:1).eq.'4’) then
call inter( s,x,¥,ni,nj,para )
call cls
end if
if (pick{1:1).eq.’'5’) then
write(%,%) 'Enter tolerance:’
read(%,¥) tol
write(s,s) ’Enter max. no. iterations:’
m(:'*) max
write(%,%) ’Enter reynolds oamber:’
read(%,2) re
write(%,%) 'Error —> 1. relative or 2. absolute (1/2)’
read{¥,%) ier
call cls
end if—
if (pick(1:1).eq.’6’) then
call bound( s,x,y,ni,nj )
if ( ier.eq.1 ) then
call solve( s8,h1,h2,h8,ni,nJj, t.ol.mx,i.t rel )
elge
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call solve( s8,hl,h2,h3,ni,nj,tol, max,lt dif )
end if
eall cle
end if
if (pick(1:1).eq.’7’) then
write(%,%) 'Enter filename to save solution:’
read(%,20) file

open( unit=2,status='new’,file=file,fors="unformatted’ )
wr1te(2) re mlMl((B(llJ) i=1,ni}, j=1,nj),

& . ({v,i=1,ni),j=1,nj) ‘
close( unit=2,status='keep’ ) %
call cls

end if
if ((pick(1:1).eq.’x’).or. (pxd{(l 1) .eq.’x’)) iflag=0
call cls
go to 10 °
20 format(ad0)

end
subroutine solve( 3,h1,h2,b3,ni,nj,tol,mx,it,errfn )
P 3231323233373 2871332 23¢7 22ttt rtttetteiisetcetstrtetotdtodictattistsy

3 4 %
% This subroutine solves the difference equations representing L
* potential flow by the block-successive overrelmmtion method L 3
* with each grid pomt having its own relmaxation factor x
t X
3 b ¢

!tttt!tttt!!t!ttttttt!tltt!tttttt!ttttt!ttttttttttttttlttt!!tttlttttt

dimension 8(80,80),h1(80,80),h2(80,80),h3(80,80)
dimension a(100),b(100),c(100),£(100),ws{80,80)
COmDON CO8X ,C068e

data pi/3.1415926/

njm=nj-1

nim=ni-1

nim2mi-2

njm2=nj-2

wemax=0.0

wsmin=2.0

coax=cos ( pi./(float( nim2 )+1. ) )

cose=cos( pi/(float{ njm2 )+1.) )

£ Scan grid for local asccelation factors

do 25 j=2,njm
Jp=j+1
Ja=j-1
do 25 i=2,nim
ip=i+1
im=j-1



25

20

/’dl

e

—TTT

ha=h1{i,J)

hb=h2(i,j) -

be=h3(i, §)
hli=(h1(ip,j)}-hl{im,Jj))/2.
b2i=(h2{ip,j)-h2{im,j))/2.
h3i=(h3{ip, j)-h3(im,j))/2.
hlj=(h1(i, jp)-hl1{i, jm}}/2.
h2j=(h2(i, jp)-h2(i, jm))/2.
h3j=(h3(i, jp)-h3{i,jm))/2.
h213=hb/ha/hc . .,
h123=ha/hb/hc - A
h2131-h21/hb—h11/ha—h31/hc
h123j=hlj/ha-h2j/hb-h3j/hc
ajm=h123%(1.-0.5%h123j)
aim=hk213%(1.-0.5th213i)
ro=2.%(h213+h123)
aip=h213x(1.+0.5%h213i)
ajp=h123%(1.40.58h123j)

“B(j- j)-'(m{ &Jl.ain.tlo:&lp:&m )

wemax=amax1( wamex,ws(i,j) )

wemin=aminl( wsmin,ws(i,j) )

continue
it=0

er=10.%to]

if ({ er.lt.tol ).or.{.it.gt.max )) return

it=it+l
er=0.0

do 30

J=2,njm

Jp=gtl
Jm=j-1

do

35 i=2,nim

ip=i+1

im=i-1

ha=h1(1, j}

hb=h2(i, })

he=h3(i, j)
hli=(h1(ip,j}-h1(im,J))/2.

. h2i=(h2(ip,j)-h2(im,j}}/2.

h3i=(h3(ip, j)-h3(im,J))/2.
h1j=(h1(i,jp)-b1{i, jm))/2.
h2j=(h2(i, jp)-h2{i, jm)}/2.
h3j=(h3(i,Jjp)-h3(i,jm})/2.

/hb/he

h21 1-h21/hb-hli/ha-h31)'hc
hi2 j"hlJ/lB—th/hb—th/ho
3%(1.-0.5%h1233)
h213%(1,-0.5%h213i)
a0=2.%(h213+h123) -
aip=h213%(1.+0.58h2131)

T 193
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ajp=h123%(1.40.5¢h123j)

a{im)=aim

b{im}=-ao . .
c{im)=aip

f(im) —aJ-*s(1.J-)-ﬂJp*B(1.Jp)-alm*s(1-,3)-01959(1P,J)
f{im)= (f(1-)+aoxa(1,J))*wstl.a)

35 continue
4 Co‘ﬁ@. f for boundary conditions at i=]l and i=ni

£(1)=f(1)-a(1)3s(1,])
f(nim2)=f(nim2)-c(nin2)$s(ni, j)

; Solve the- tridiagonal matrix
call bandit( a,b,c,f,nim2 );
* Relax solution along the entire gridline
do 40 i=2,nim
im=i-1

pei=s{i,j)+f(im)
er=errfn( er,psi,a(i,Jj) )

a(i,J ) :mi
40 i continue
30 continue

write(%,200) it,max
write(%,210) ’stream ' er,wsSEax , wsmin
go to 20 r
return .
200 format{lx,11(’=’),’iteration no. ',i3,’ of ’,i3,11('="))
210 format(lx,a9,' function - local error:’,ell.4,/,2lx,’- omega’,
%' max. ',f7.3,/,29%,’min. ’',f7.3)
end .

subroutine bound{ 8,x,¥y,ni,nj )
_dimmsim s(80,80),x(80,80},y(80,80).

o]
% Assune the fluid is in steady parallel flow

do 5 j=1,nj,
8{(1,3)=0.
. 8(ni, j)=0.
5 cantinue .
: do 10 i=1,ni¥
a(i,1)=0.
8(i,nj)=0.5%y(i,nj)*s2
10 continue
return
end



subroutine inter( 8,x,y,ni,nj,func )
dimension s8(80,80),x({80,80),y(80,80)
do 5 i=2,ni-1
do 5 j=2,nj-1
xx=x(i,J)
¥y=y(i,J)
s{i,j)=func( xx,yy )}
5 continue
return
end

subroutine scale{ x,¥,hl,h2,ni,nj )
dimension x(80,80),y(80,80),h1(80,80),b2(80,80)

t This subroutine calculates the scale factors hl & hZ from
3 the orthogonal grid defined by x & ¥

do 5 j=1,nj
xi=(-3.%x(1,j)+4.3x(2,)-x(3,4))/2.
yi=(-3.%y(1,5)+4.3y(2,J)-¥(3,J)) /2.
hi(1,j)=sqrt{ xitxi+yityi )
do 10 i=2,ni-1
xi={x{i+1,j)-x(i-1,]j))/2.
yi:(Y(i"'lsj)-Y(i‘lrJ))/z- -
h1(i,j)=sqrt{ xitxi+yisyi )
10 continue
xi=(3.*x(ni,j)-4.x(ni-1, j)+x(ni-2,j))/2.
yi=(3.3y(ni,j)4.3¥(ni-1,j)+y(ni-2,j})/2.
hl(ni,j)=aqrt{ xi¥xi+yityi )
5 continue
do 15 i=1l,ni
xj={-3.%x(i,1)+4.3x(i,2)-x(i,3})/2.
yi=(-3.xy(i,1}+4.8y(i,2)-¥(i,3))/2.
h2(i,1)=sqrt{ xj¥xj+yjsyJ }
do 20 j=2,nj-1
xa-(x(l J+1)-x(i.J-1))/2
vi=(y(i,j+1)-y(i,j-1))/2.
h2(1i,j)=eqrt{ xjsxj+yjsyJ }
20 continue
xj=(3.%x(i,nj)-4. *x(i.n.i-l)*x(i n}-2))/2.
yi=(3.2y(i,nj)-4.%y(1i,nj-1)+y{i,nj-2))/2.
. h2(i,nj)=sqrt( xJjsxj+yJjsyj )
15 continue
return
end
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subroutine bandit{ a,b,c,f,n )
1 'Ihis.suhroutine solves the tridiagonal system B( a,b,c )} = f
3 The solution is overwrittemn into f

dimension a(n),b(n),c(n),f(n),x(100)

t Perform forvmrd elimination

{

np-n+1
nom=n-1
- x(1)=c(1)/b{1)
£{1)=f(1}/b(1)
do 5 j)=Z2,nm
z=1./{b{j)-a(j)#x(j-1)) | %
x(Jj)=c(Jj)te
f(j)=(f{j)r-a(j)xf(j-1))s=z
5 - continue
z=1./(b(n)-a{n)3x(nm))
f(n)s(f(n)-a{n)*f{nm) )%z

f Perform baclkward substitution

do 10 jl1=2,n
J=np-j1
£{J)=0{J)-x(j)ef(j+1) -
10 continue '
return
end

subroutine cls
write(%,10)

10 format(’1")
return '
end

function para{ x,y )

para=0.53%y%%2

return

end

function zero{ x,y ) ‘ Fuibl,
zero=0.0
eturn
end
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function omega( &.‘im,&in:lona-ipn&ip )

t This subroutine evaluatea the acceleration factor for each
% grid point by the method of Ehrlich (8]

caxEplex u

common CO8X ,Cos8e

data t/.3333333/

fraip¥aim

g=ajptajm

u=2.3%(csqrt( cuplx({ f ) )tcoanﬂcsqrt( cmplx({ g ) }socoee)/ao
ur=real{ u ) .
 uizaimag( u )

assuriur+ui fui

aa2=ankan

bb=urfur-ui tui

a=paZ-bbibb

b=aa2-bb

c=aqrt( abe{ a+btb ) )
e=(3.%b+c)s(aba({at{c-b)) ) sxt-({3.3b—c)*{abs(ak(ctb)} ) ¥1t
bar=(e+aa2+3.2bbtbb-4.%an2tbb)/{aa23¥2-an22bb)

if ( aa2.gt.bb ) then

omega=- (bar-sqrt( barts2+i.sbar })/2.
else
cmega=- (bar+sqrt{ bart:2+4.3bar )}/2.

end if _ )
return :

end

function rel( er,unew,uold )
rel-amax1{ er,aba( unew—uold }/(abs( unew )+1 })
return

end

function dif( er,unew,uold )
dif-amaxl( er,abs{ unew—mld ) )
return

end



Apperdix G

The Convective Diffusion Algorithm
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L R

10

K ) 189

SUBROUINES CALLED:

SOLVE SOLVES THE OONVECTIVE DIFFUSION BQUATION
SCALE - CALCULATES 'THE GRID SCALE FACTORS

BOUND - ASSIGN DIRICHLET BOUNDARY CONDITIONS
LINEAR - ASSIGNS AN INITJAL GUESS

external para,zero,rel,dif -
dimension t(80,80), s(80,80), x{80,80), y{80,80)
dimengion h1(80,80),h2(80,80),h3(80,80)
equivalence ( h3,y )
character file®40,pick¥40

i flag,tol,pe,max,ier/1,5.e-4,30.,150,1/
call ¢&ls ’

if { iflag.ne.l ) stop
write(x,¥) ! —e ———
write(z,s) '’ 1.| Read grid and stream function data

- write(x,s} ’ 2 Initialize solution from file
write(t,s} '’ 3.| Initialize solution to be linear
write(,%) ' 4,| Set parameters (tolerance etc...)

%

% This program solves the steady convective diffusion equation

¥ for an arbitrarily shape body that is defined in the program

3 NETWORK. The stream fuction is read in and could be the

x result of a potential calculation from program POTENT or

X a viscous flow calculation form program NAVIER.

%

4 By: KEVIN ELLWOOD

x DEPT. OF CHFMICAL ENGINEERING

3 UNIVERSITY OF WINDSOR

3 1987

x 3 il

t NOTE: This program is set up for axisymetric flows but planar

4 flows can be solved by setting h3 = 1

t

PRSI T IIEET LR T IR IR ERERIRIEXERLE SRR s NSRRI RETIRILNTIRILLE
" £ VARIABLES:

4 X - MATRIX OF X AS A FUNCTION OF I,J

t Y - MATRIX OF Y AS A FUNCTION OF 1,J

S NI - TOTAL NO. OF ALFAl (I) COORDINATE LINES

] NJ - TOTAL NO. OF ALFA2 (J) COORDINATE LINES

x TOL - COMPUTATIONAL TOLERANCE

. s ~ MATRIX OONTAINING FUNCTION

% T - TEMPERATURE OF V DISTRIBUTION

% H'S - ARE THE GRID SCALE FACTORS

P32 322332332223233323333333233 23322203333 P22 222222202222 )

: 4
x.
I
3
b ¢
b

3
3
b 4
1
1
3
3
b 3
¥
X

7



write(t,3)
“rite(:lx)
write(¥,%)

write(s,%)

- w W w w

write(s, ) Enter choice:’
read(%,20) pick
call cls
if ( pick(1l:1).eq.’1’ ) then
write(%,%) 'Enter grid fileoame:’
read(%,20) file ‘
open|( unit=1,status="old’,file=file, form="unformatted’ )
read(1) ni,nj,((x(i,J),i=1,ni),j=1,nJ),
((y(i,j),i:l,ni),jzl,nj)
close{ unit=1,status="keep’ )
call BCﬂlE( X,y’hlythni’nj )
write(%,2) 'Enter stream function filename:’
read(%,20) file
open({ unit=1,status='old’,file=file, form="unformatted’ )
read(1) re,nn,jj,((B(i.j),i=1,nn),j=1.jj)
if ({ m.re.pi ).or.{ jj.ne.nj )} then
.write(%,%) ’Warning... initialigation file miamatch’
end if -
cloge( unit=1,status="keep’ )
call cls - : '
end if - :
if ( pick(1:1).eq.’2' ) then
write(%,t) ’'Enter filename for initializatiom:’
read(%,20) file
open( unit=2,status='old’,file=file,fors="unformatted’ )
read(2) pelnnljj:((t(iaj)rizlsnn)|j=13jj)
if ({ pn.ne.ni ).or.{ Jj.ne.nj )) then
write(%,¥) ’Warning... initialigation file mismatch'’
erd if
close{ wnit=2,status='keep’ )
call cls )
end if
if ( pick(1l:1).eq.’3' ) then
call bound( t,ni,nj )
call linear( t,ni,nj )
erd if
if ( pick(1:1).eq.’4’ ) then
write(*,3) 'Enter tolerance:’
read(%,%) tol
write(%,t) 'Enter frequency to update boundaries:’
read(%¥,%) nu
write(%,%) ’Enter boundary relaxation factor:'’
read(%,%) wb
write(%,%) ’Enter dampening factor:’
read($,%) alf
write(%,%) 'Enter peclect mmber:’

- W w W
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read(*,3) pe
write(3,%) 'Error --> 1. relative or Z. mbsolute {1 or 2):’
read({s,t) ier
call cls
end if
if { pick{l:1}.eq.’'5" )} then
— call bound{ t,ni,nj )
if ( ier.eq.1l ) then
call solve{( t,s,hl,h2,h3,ni,nj,pe,tol,nu,wb,it,alf,rel )

else
call solve({ t,s,hl,h2,h3,ni,nj,pe,tol,nu,wb,it,alf,dif )
end if .
call cls - A
end if

if ( pick{l:1}.eq.'6’ ) then
. write(*,%) ’Enter filename to save solution:’
read(%,20) file
open{ unit=2,status='new’,file=file,form="unformatted’ )
write(2) mlnilnj!((t(ilj)I'izllni)ljzltm)
close{ unit=2,status="keep' )
call cls
end 1if .- :
if (( pick{l:1).eq.’'x’ ).or.( pick(l:l).eq.’'x’ )) iflag=0
call cls
go to 10 _
20 format(540)
end

subroutine solve( t{B,hl,h2,h3,ni.nj,pe,tol,nu,wb,it,alf,errfn )

3323332222222 3333333232232323233233 22 22282333232 3333 3338353322222

3 %
% This subroutine soclves the convective diffusion equation z
%t by the variable relaxation factor by Erhlich [8] 3
x : 3

FEEEPEESERNESE LRSS SRAREEXERITISITRLILEALLEILIARLARAIINILLELLTLTLLRS

dimension t(80,80), 8(80C,80), w(B80,80)

dimension h1{80,80),h2(80,80),h3(80,80),key(8),njs(2),n)f(2)
COmmon CO8’X,COBe ! .
njm=nj-1 - -
nim=ni-1 :
nim2=ni-2

njm2=nj-2

njs(l)=2

njs(2)=3

njf{l)=int( njm/2 )*2

njf(2)=int( nj/2 )*2-1

cosx=cos{ pi/(float{ ni )+1.} )

cose=zcoa( pi/(float{ njmZ )+1.) )



it=0 .
er=10.3to0l
vwmax=0.0
wmin=2.0

t calculate aocceleration factore for the temperatures

do 20 j=2,njm
Jp=Jj+1
jm=j-1
do 25 i=2,nim
ip=i+l
im=i-1
ha=hl(3i,Jj)
hb=h2(i,J)
hc=h3{i,j)
h231p=h2(ip, j)*h3({ip, J)/hl{ip,J)
h231m=h2(im, j)*h3(im, j)/h1(im,j)
h132p=hi1(i, jp)th3(i, jp)/h2(1,jp)
h132m=h1(i, jm)*h3(i, jm)}/h2(i,jm)
h231i=0.5%(h231p-h231m)
h132j=0.5*(h132p-h132m)
h231=hbthc/ha
hl32z=hathc/hb
b1=0.5%h231i-pe/8.%(8{i, jp)-o{i, jm))
b2=0.5%h132j+pe/8.%(8(ip,J)-8(im, j))
ajm=h132-b2
aim=h231-bl
80=2.3%{h231+h132)
aip=h231+bl
ajp=hl132+b2
w(i,j)=omegn( ajm,8im,n0,aip,ajp )
wnax=amax1{ wmax,w(i,Jj) )
wmin=aminl{ wwin,w(i,Jj) )
. w(i,j)=w(i,j)salf
25 continue
20 cantinue
key{4)=0
10 if {( er.lt.tol ).or.{ ksyﬂ)eql))mtols
key(4)=0
it=it+l
er=0.0
if { mod( it-lm)er)erb:OO
do 50 1=1,2
do 30 J:n,)a(l) njf(l) 2
Jp=j+l
Jm=j-1
do 35 i=2,nim
ip=i+l
im=j-1



35
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ha=hl(i,})
hb=h2(1i,Jj)
he=h3(i,J)
h231p=h2(ip,J)*h3(ip,J}/hl{ip,J)
h231m=h2(im,j)*h3(im, j) /h1(im,j)
h132p=h1(i,Jjp}¥h3(i,jp}/h2(i, jp)
h132m=h1{i,jm)*h3(i,jm)/b2(1, jm}
h231i=0.5%(h231p-h231m)
h132)=0.5%(h132p-h132m)
h231=-hbshc/ha
h132=hathc/hb
b1=0.5%h231i-pe/8.%(8(i, jp}-8{i,jm))
b2=0.5%h132j+pe/8.%(s{ip,j)-8(im, j))
ajm=h132-b2
.aim=h231-bl
ao=2.%(h231+h132)
aip=h231+bl
ajp=hl132+b2 )
sus=ajmst (i, jm) +aimst{im, j) +aip¥t(ip, j+ajp3t(i, jp)
tij=sum/ao
tij=w(i,j)stigH(1.-(i,J))3t(i, )
er—errfn( er,tij,t(i,j) )
t(i,J)=tij

continue

* Update boundaries for zero flux

30
50

15
200

if ( mod{ it-1,nu ).eq.0 ) then
t1=(4.%t(2,j)-t(3,3))/3.
tl=bsti+(1l.wb)et(l,J)
tn=(4.3t{nim, j)-t(nim2,§))/3.
tn=wbxtn+(1.-wb)st({ni, j)
erb=errfn( erb,tl,t(1,j) )
erb=errfn{ erb,tn, t(ni,,)) )
t(1,j)=t1
t(ni,j)= =tn
end if ‘
continue
continue ]
write(®,200) it
write{(x,%) ’'local e ‘in tesmperature:’ ,er
write{¥,3) 'local’e bmxﬂm'y :',erb
write(s,5) 'omega -max.:’,wmax :
write(x,x} ’ -mn.: ', vmin
er—amaxl{ er,erb )
call statkb( key )
go to 10
return -~
format(1x,14(’=’),’ iteration no. ',13,1x,14(’="))
end



subroutine bound( t,ni,nj )
dimension t(80,80)

: the equations are made dimensionless with respect to the surface tesp.

do 10 i=1l,ni . o
t{i,1)=1.0 '
t(i,nj)=0.0

10 contimue
returmn
end

subroutine linear( t,ni,nj )
dimension t(80,80)
do 5 j=2,nj-1
rjl=float{j-1)/float{nj-1)
rj2= float(nq—a)/float(nj-l)
do 5 i=1,ni
t(1.J)-rJl*t(1.nJ)+rJ2*t(1.1)
5 continue
return

end
Bubroutine scale( x,y,hl,h2,ni,nj )

133212232833 28322332321 1373223332 23333223223 8232 ¢3+332 4322222222822

3 L3
* This subroutine solves evaluates the grid qéale actors x
t The grid is defined as the ordered pair x t\y x
p ¢

ttt!tt!3*:3t:tlxttttttt!tt*:ttttt‘tt*tt‘xttt:tt:;iit*ttttxttt**’t‘*ttl
dimension x(80,80)},y(80,80),h1{80,80),h2{80,80)

* THIS SUBROUTINE CALCULATES THE SCALE FACTORS Hl & HZ2 FROM
* THE ORTHOGONAL GRID DEFINED BY X & Y

(- a. *x(l,.J)M x(2,j)-x(3,J}))72.

(-3.%y(1,5)+4.3¥(2,J)-¥(3,4}))/2.
hl(1 J)"qut(xﬂxiﬂri*n)
do 10 i=2,ni-1"

n'(xtiﬂ,.))-x(l-l J))/Z-
yi=(y(i+1,j)-y(i-1,J))/2.
hi(i,Jj)=sqrt{ xisxi+yisyi )}

10 continue
xi=(3.#x(ni,j)—4.sx(ni-1,j)+x(ni-2,3))/2.
Yi=(3-ty{nioJ)-4.‘7(ni‘1|j)+y(ni'2lJ))/20
hl(ni,j)=sqrt({ xitxi+yidyi )

)

do 5 j=1
xi=
yi=
(
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5 continne
— do 15 i=1,ni
xj={-3.%x(i,1)+4.¥x{1,2)-x(i,3))/2.
yi=(-3.%y(i,1)+4.3y(i,2)-¥(1,3)}/2.
h2(i,1)=aqrt( xJ¥xj+yJi*yJ )
do 20 j=2,nj-1
)Qj:(x(i,j+1)-x(i,j-1))/2.
yi=(y(i,j+1)-y(i,j-1))/2.
h2(1,j)=sqrt( xj*xj+7j*yd )
20 continue
"xj={3.tx(i,nj)-4.%x(i,nj-1)+x{i,nj-2})/2.
vi=(3.3y(i,nj)~4.3y(i,nj-1)+y(i,nj-2))/2.
h2(i,nj)=sqrt{ xjrxj+yi*yJ )
15 continue
return
end

subroutine cls
write(x,10)

10 format{’1’)
return
end

function omega( ajm,aim,a0,aip,ajp )

3ttt!31:*ttttt_t!tttttt!ttttttttttt8!888!uttxttttttttttt!!!tttttt!!ttlx

3 z
* This subroutine calculates the acceration factors for each L4
* grid point X
x _ i

220383323282t 23¢3 232232 ¢2¢222233233+33¢3333 3223402 +332 2224322333231

camplex u

common cosX,cose

data t/.3333333/

fzaip*aim

g=ajp¥ajm

u=2.*%{caqrt{ cmplx( f ) )}%coex+csqrt( cmplx( g )} Y*cose}/no
ur=real{ u )

uizaimeg({ u )

aa=urtur+uitui

an2=an¥an

bb=ursur-ui tui

a=an2-bb¥bb

b=aa2-bb

c=sqrt( abs( a+btb ) )

e=(3.th+c)s(abs(a¥(c-b)) ) s¥t-(3. tb—c)*{abs(as{ctb))) st
bar=({e+aa2+3.¥bb¥bb-4 . %aa2tbb) / (an23%%2-aa2%bb)

if ( an2.gt.bb ) then -7
© omega=-(bar-sqrt( ba.r!tZM tbar ))/2.



else
anega=- {bar+sqrt( barst2+4.tbar ))/2.
end if
return
end

function rel( er,unew,uwld )

rel=amax1( er,abs{ umew—uold )/(abs( unew )+1 ))
returm

end

Junction dif{ er,unew,ucld )
"dif-amax1{ er,abs{ unew-uold ) )
return

end
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Appendix H -

Flux Deposition Algorithm



PROGRAM:
Calculates particle collection efficieacies. *

DESCRIPTION:
This program calculatee the trajectory of particles moving towa.n‘ls
bodies of arbitrary shapes. 'Ihegrldrepreemtmthebodyms -
generated previously using the progran *NETWORK.FCR'.
The particle trajectory can be effected by:

1.) inertial effects of the fluid

2.) thermophoretic forces

3.) diffusiophoretic forces.

By: Kevin Ellwood
Dept. of Chem. Eng.

1987

oM MM MO MW M MM M MM MR MMM M N

University of anlsor - R

program collect
parameter ( pi=3.141593,r=8314. )

"dimension - x( 80, 80}, y¥y{ 80, 80)

dimension hl{ 80, 80), h2( 80, 80), h3{ 80, 80)

dimension v1{ 80, 80), vZ{ 80, 80)

dimension t( 80, 80), wv{( 80, 80)

dimension vf1( 80, 80),vf2( 80, 80)

dimension rp(20),z(4) : .

real kf,kp,kfp,mf,md,lamb,nre,nsc,npr,nkn,nr

equivalence ( h3,y ),( ri,=(1) ),( rj,z(2) )

character input$340,output$40,grid$40, flowssd0, temp$s40,vapss40

external statel,state2

common /prop/nkn,nre,nsc,nr, st,kfp, tfd, ptot,pwf, ped, =d,nf ,cun
common /grid/x,¥y,/gspeed/hl,h2,/flux/vfl,vf2, /speed/vl,v2

cammon /terp/ni,nj

t Input the physical data for the system . .

open{ wnit=1,file=’ ' }

read(1,10) grids

read(1,10) flows

read{1,10) temp$ o .
read(1,10) vap$ ’ . .
read(1,10) outputs N

réad(1, %) lf.dellfnﬂwf:kfscpf-tf-w:linpmt:wﬁﬂ
read{1,%) md,td,al,tod,pod

N R R LR R R N AN I N N
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read(1,%) denp,kp

read(1,%) mnsize,{rp(i),i=l,nsize)
read(1,3%) hmax,hmin,tol

close{ wmit=1 )

Read in grid data

write(%,%) "Reading grid data.. ;........ ’

open( unit=1,status='aold’,file= fom-'unfcmnttad' )
read(1) ni,nj, ((X(l,j),l I,M) J= 1.‘”))

& ((y(i,j),i=1,ni), j=1,nJ)}

close{ wmnit=1 )}

Calculate grid speeds

write(%,3) ’Calculating scale factors...’
call scale( x,y,h1,bh2,ni,nj )

Read in flow data

write(*,%) 'Reading flow data...........’

open{ unit=1,status= old',file-flcnd form="unformatted’ )
read(1) re,m,j}, ((t(i,j),i=1,m)},j=1,4J) .
cloge( uwnit=1 )

Calculate velocity profile

write(%,t) 'Calculating fluid velocity..’
call velocity( ni,nj,t,h1,h2,h3,v1,v2 }

Read in temperature data

write(%,%) 'Reading temperature data....’

open{ unit=1,status="old’,file=temp$, form="unforma tad' )
read(1) pe,mn,jJj,{{t(i,J),i=1,m),j=1,J3) 7
clogse{ unit=1 )

Read in vapor data

write(%,%) 'Reading vapor data..... ceeee!

open( unit=1,status="old’,file=vap$, fore="unformatted’ )
read(1) pe,nn,jJ,({v(1,3),i=1,on},J=1,5J)

close( unit=1 )

Calculate related physical data

tav=(td+tf)/2.0

lamh=viscf/denfteqrt{ pitmf/2./r/tf )
nre=2.a0xdenftul/viscft
df=2.171e-5%{tav/273.)351.75/ptot

J

S
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nsc=viscf/denf/awf
npr=cpftviscf/kf
ped=peat( td,tcd,pod )
psf=psat( tf,tcd,pod )
pf=psf*rh/100.
‘kfp=kf/kp

tfd=tf/td

open( unlt-l file=output$ )}

write(l,%) ’'=s=o==oo=-c==c === ===c====?
write({1,3) ' ...DD@JSIC&HESCMFPS...’
write(1,*) "Reynolds No. ',nre

write{1,%¥) ' Schmidt No. ’,nsc

write(1,%) ' Prandtl No. ',npr

write(l,%¥) ’'===z=z==== ’
write(l,%) ' ... FLUTD DATA ... {units are MES}'
write(1,%) ’Molecular wt. ',mf

write(1l,%¥) 'Density air ',denf

write(1,%) 'Viscosity air ’,viscf

write{1,%) 'Thermo. cond. ',kf

write(1,%) ’'Heat capacity ’,cpf

write{1,%) 'Temperature r,tf,' K

write{1,%) 'Relative hum. ’,rh,’” %’

write(1,%) 'Path length ’,lamb

write(1,¥) ’Sat. press. ', psf,’ bex’

write(1,¥) 'Total press. ’,ptot,’ bar’

write(1,%) 'Diffusivity ’,dwf

write(1,%) '’ = ==?
write(1,3) ’ ... DROPLET DATA ...’

write(1,3) 'Molecular wt. ’',md

write(1,3%) ’'Temperature ’,td

write{l; ) ’Sat. press. ',ped,’ bar’

write(1,%) ’'Volume radius ’,al

write(1,%) ’'Terminal vel. ',u0

write(1,¥) e = ==
write(1,%) ' .+« PARTICLE DATA ...’

write{1,*) 'Denaity ! derp

write{1,%) ’'Thermo. cord. ’,kp

write(1,%) ’ '

% Set bounds on i coordinate
do 25 i=1,ni
25 continue

40 imax=i
imin=1

t Calculate particle trajectories
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do 30 i=1,nsize
h={hmax+hmin) /2.
nr=rp({i}/ad
nkn=lamb/rp(i)
alfa=1.257+0.4%exp(-1.1/nkn)
cun=1.0+alfa¥nkn
st=cuntdenptulirp(i)$32/9. fviscf/a0
iflag=0
if { 8t.1t.0.006 ) iflag=1
ris=float{ imin )
rib=float( imax )
write(1,%) "Radiue ',rp{i)
write(l,%) 'Cumingham No.’',oun
write(1,t) 'Stokes No. ', 8t

% Calculate flux velocities due to temperature and vapor fluxes
) write(?,¥) ’Calculating flux velocity...’
call vflux( t,v,hl1,h2,ni,nj,vf1,vf2 )

50 trial={rib-ris)/2.0+ris

time=0.0

- rj=float{ nj-1 )

ri=trial -

call interp{ y,ri,rj,ystart )
effic=ystartxx2

write(%,*) 'Y-gtart ' ,yatart
write(x,%) 'Efficiency ',effic

if ( (rib-ris).le.0.001 ) go to 200
npoints=1

* Assume the particle in initially moving with the gas (imbedded)
~
call interp( vl,ri,rj,vpl )
call interp( v2,ri,rj,vp2 )
call interp{ hil,ri,rj,ha )
call interp{ h2,ri,rj,hb )

t Initialize particle contravariant velocity components ) '

E>
-g&,'i):vpl/ha
~ 4)=ve2z/md
t.ﬁf;l_tegmte the particle equations of motion over 1 time step

100: if ( iflag.eq.0 ) then

t Call with state egations for large stokes nusbers
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]

call rk5( statel,time,h,4,z,tol,bmax,hmin )
else ‘

t Call with state equations for smell stokes mumbers
- \
call rk5( state2,time,h,2,2,tol,hmax,bmin )
end if

t Check for the condition where the particle croseses the
axis of symetry. If it has crossed then the symetry property
t is used to transpose the particle into the propper damain.

L]

if { ri.gt.float{ ni ) ) then
riz2.#float{ ni )-ri
- z{3)==2(3)
__end if
npoints=npoints+l
call interp( x,ri,rj,xx )

call interp{ y,ri,rj,yy ) N

t If ﬂmepartlclehasmtpwsedtheoollectornmihasmthlt
t it then the integration is continued.

if (npoints.gt.9999) then
rj=0
write(1,%¥) ’The particle was trapped’
end if
if { ( rj.gt.1.0 ).and.( xx.1t.7.0 ) } go to 100
if { rj.1e.1.0 ) then
ris=trial
else
rib=trial
end if
go to 50
200 write(1,%) *Y-start !, yatart
write{1,3) 'Efficiency ', effic
write(l,3} ' !
30 contime '

close( unit=1 )

stop
10 format (ad0) . !
end

subroutine scale( x,y,hl1,h2,ni,nj )
dimension x(80,80),y(80,80),h1(80,80),h2(80,80)

t This subrouitne calculates the scale facrors hl & h2 from
%t the orthogooal grid defined by x & ¥.
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do 5 Jj=l,nJ
xi=(-3.3x(1,j)H. tx(Z.J)-X(S,J))/Z
yi=(-3.3y(1,j)+4.%5(2,5)-¥(3,J) }/2.
hi(1,j)=sqrt{xitxi+yityi}

do 10 i=2,ni-1
xi=(x(i+l,j)-x(i-1,j))/2. <

yi=(y{i+1,Jj)-y(i- l.a))/z
h1(i,j)=sqrt{ xitxi+yi¥yi )
contime

xi=(3.#x(ni,j}4.%x(ni-1, j)+x(ni-2,3))/2.
yi=(3.%y(ni,j}-4.sy(ni-1,j)+y(ni-2,j)}/2.
hi{ni,j)=sqrt{ xitxi+yityi )

continue

do 15 i=1,ni
xj=(-3.¥x{i,1)+4.%x(i,2)-x(1,3)}/2.
Y.J"-‘(—B.ty(i.1)*-4.*?(1;2’-7(-‘1:3))/2-
h2(i,1)=sqrt( xj¥xj+yisyJj }

do 20 j=2,nj-1
xj= (x(l,J+1)—X(1,J 1))/2.
yi=(y{i,j+1)~y(i,j-1))/2.
h2(i,j)=sqrt{ xj*xj+yisyJ )
continue

%32 (3.8x(1,nj)~4. $x(1,nd-1)+x(i,nj-2) ) /2.
v5=(3.33(i,nj)—4.83(i,nj-1 4y (i,n3-2) ) /2.
h2(i,nj)=aqrt{ xj¥xj+yj*yJ )

contime

return
end

subroutine vflux( t,v,h1,h2,ni,nj,vf1,vf2 )

% This subroutine calculates the flux velocity in geneml
t orthogonal ccordinates.

T Note: 1-)M(t)=(tti/h1!tsj/h2)

X
b 4
4

2.) 2nd order central differencing is used exept on the
coordinate boundaries where secand order one sided
differencing is used. 3

dimension t( 80, 80), v({ 80, 80),vf1( 80, 80),vf2( 80, 80)
dimension h1{ 80, 80)},h2( 80, BO)

rea) nkn,nre nac,kfp,nd mf,nr

common /prop/nkn,nre,nsc,nr,st,kfp,tfd, ptot, pwf, pod,nd ,nf,cum
data om,ct/.75,2.16/
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do 5 j=1,n)
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at=-1.5% (kfptctinkn)/(1.+2.3kfp+2. kctinkm)/(1.43. *co¥nim)

ti=(-3.0xt(1,j)+4.0%t(2,5)-t(3,5)}/2.0
viz(-3.0%v(1, j)+4.0%v(2,5)-v(3,§))/2.0
phit=(1.-tfd)/(tfd+t(1,j)*(1.-tfd))

p=pf+v(l, j)*(ped-pwt)

yw=pw/ptot

ad=-sqrt{ md )/(ywssqrt( md )+(1l.-yw)3sqrt{ =f })
phid={pad-pwf)/(ptot-pw)
vf1{1,j)=2.%(at*phitsti+adtphidsvi/nac)/nre/hl(1,j}

do 10 i=2,ni-1
ti=(t(i+1,j)-t(i-1,3))/2.0
viz{v(i+l,j)-v(i-1,3))/2.0
phit=(1.-tfd)/(tfd+t(i,j)%(1.-tfd))
pe=pwf+v(i, j) ¥ (pad-pwf})
yw=pu/ptot
ad=-sqrt( md }/(ywstsqrt( md }+(1.-yw)3¥sqrt( mf })
phid=(ped-pwf)/(ptot-pw) o
vf1{i, j)=2.s(atsphitsti+adtphidsvi/nac)/mre/hi(i, )
continue ’

ti=(t(ni-2,])-4.0%t(ni-1,j)+3.0%t(ni, §))/2.0
viz{v(ni-2,j)-4.0%v(ni-1,j)+3.0%v(ni, j)}/2.0

© phit={1.-tfd)/(tfd+t(ni,j)*(1.-tfd})

p=pwf+v(ni, j)*(ped-pwl) .

yw=p+/ptot _ :

ad=-sqrt{ md }/{ywssqrt( md }+(1l.-yw)kaqrt( =f })
phid=(ped-pwf)/(ptot-pw)

vf1(ni, j)=2.t(atsphitsti+adsphidsvi/nec)/nre/h1(ni, j)

continue

do 15 i=1,ni

tj=(-3.08t(i,1)+4.0%t(i,2)-t(i,3))/2.0
vj=(-3.0%v{i,1)+4.0%v(i,2)-v(i,3)}/2.0
phit=(1.-tfd)/(tfa+t({i,1)%{1.-tfd))
pw=puf+v(i, 1) *(ped-pf}

yw=psi/ptot .

ad=-sqrt{ »d )/(ywssqrt( md )+(1.-yw)3aqrt( =f )}
phid={pad-puf)/(ptot-pw)

vf2(i,1)=2,%(atsphitst j+adtphidsvj/nec) /mre/h2(i,1)

do 20 j=2,nj-1
tj=(t(i,J+1)-t(i, j-1))/2.0
vi={v(i, j+1)-v(i,j-1)}/2.0
phit=(1.-tfd)/(tfd+t(i,j)x(1.-tfd))
pr=pwf+v(i, j) ¥ (ped-pwl)
yw=pw/ptot X
ad=-sqrt{ md )/(ywtsqrt( md }+(1.-yw)ssqrt( =mf ))
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phid=(psd-pwf)/(ptot-p=}
vf2(1,))=2. !(attphltttJ+ad!ph1dt\J/nsc)/nre/h2(1 ER)
continue

tj=(t{i,nj-2)-4.0%t{i,nj-1)+3.0%t(i,nj})/2.0

vjz(v(i,nj-2)-4.0%v(i,nj-1}+3.0%v(i,nJ))/2.0

phit=(1.-tfd)/(tfd+t(i,nj}¥(1.-tfd))

pe=pwi+v(i,nj)*(psd-pwt)

yw=pw/ptot

adz-sqrt( md )/(ywssqrt{ md )+(1.-yw)3sqrt{ mf ))

phid=(psd-pwf)/(ptot-pw)

vf2(i,nj)=2.%(attphit*tj+adsphidsvj/nsc}/nre/hd{1,nj)
continue

return
end {
subroutine velocity{ ni,nj,s,hl,h2,h3,v1,v2 )

This subroutine calculates the velocity vector curl{ 0,0,8 ) =
in general orthogonal axisymmetric coordinates.

Note: 1.) ( v1,v2 ) = ( s,J /h2/h3 , -8,1 /h1/h3 )

2.) 2nd order central differencing is used exept on the
coordinate boundaries where second order ane sided
differencing is used

3.) 1’hopitals rules is used on the boundary as both the
scale factor h3 and s,i vanishes.

dimension hl¢ 80, 80)},h2( 80, 80),h3({ 80, 80)
dimension v1{ 80, 80),v2{ 80, 8(), s( 80, 80)

do 5 j=1,nj
sii=s(1,j)-2.0%8(2,))+8(3,j)
h3i=(-3.0th3(1,j)+4.0%h3(2,5)-h3(3,3))/2.0
v2(1,j)=-8ii/h3i/h1{1,])

do 10 i=2,ni-1
si={s(i+1,j)-s8(i-1,j))/2.0
v2{i,j}=-8i/h3(i,j)/hi(1,J)
continue

gii=s(ni-2,j)-2.0%s8(ni-1,j)+s{ni, j)
h3i=(h3({ni-2,j)-4.0%h3(ni-1,j)+3. 0¥h3(n1 Jyy/2.o
v2(ni, j)z-8ii/h3i/hl(ni, j)

continue

do 15 i=2,ni-1
8j=(-3.0%8(i,1}+4.0%8(i,2)-a(i,3))/2.0
vi(i,1)=8j/h2(i,1)/h3(i,1)

215

(vl,vZ2,0)
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do 20 j=2,nj-1
gj=(8(1,j+1)-s(i, 3-1})/2.0 .
v1{i,j)=8j/h2{i,j}/b3(1,]J)
continue

sz(a(i,nj—Z)—4.0ts(i,nj-1)+3.018(i,nj))/2.0
v](i,rgj):s.j/hZ(i,nj)/hB(i,nJ)
continue

do 25 j=1,nj
vi{ni, j)=0.0
v1(1,3)=0.0

continue

return
end

function psat( t,te,pc )
real k

t This function calculates saturation preesures for a givem t

”»

L 2N ]

L]

tc and pc are critical pressure and temperature
t ard tc = Eelvin, peat is in units of pc

k=-5.1514e-9%t%23+9,9533e—6%t3t—6.2442e-35t+4.89553
psat:pptlcxz(kt(1.0-tc/t))

return

end

subroutine interp{ s,ri,rj,si)j )

This subroutine produces an interpolated value sij for the
function 8 at the point ri,rJ.

Bilinear interpolstion is used between the 4 corner points.

dimension s( 80, 80)

commnon /terp/nt,nj

izint( ri )

if ( 1.1t.1 ) i=1

if { i.ge.ni ) i=i-1

ip=i+l

J=int{ rj ) -
if ( j.1t.1 ) j=1 !
if ( Jj.ge.nj } Jjo=ni-1

Jp=j+1

ajl=s(ip,J)-s(i,J)
bil=a(i,j)-float( 1 )tajl



aj2=s(ip,Jjp)-s(i,Jjp)

bj2=s8{i, jp)-float{ i )3aj2 ]
aa=aj2-ajl -
ba=ajl-float( j )%aa

ab=bjZ2-bjl

bb=bjl-float( j )sab

a=aa¥rj+ba

b=absrj+bb

sij=atri+b

return

end

subroutine idot( s,ri,rj,si )

* This subroutine procuces an interpolated value si for the
t derivative of the fimction 8 (ie. 8,i ) at the point ri,rj.

3 Bilinear interpolation is used between the 4 cormer points.

dimension s{ 80, 80)
compon /terp/ni,nj
izint{ ri )

if ( i.1t.1 ) i=1

if { i.ge.ni ) i=-ni-1l
ip=i+l

J=int( rj )

if ( J.1t.1 ) jg=1

if ( j.ge.nj ) j-ni-1
Jp=j+l

ajl=g(ip, j}-8(i,J)
aj2=s{ip,.jp)-8{i, jp)
a=nj2-njl ’
b=ajl-float{ j )%a -
gi=a%*rj+b

return

end

subroutine jdot{ s,ri,rj,aj )

t This subroutine produces an interpolated value si for the
% derivative of the fimction 8 (ie. 8,i } at the point ri,rjJ.

t Bilinear interpolation is used between the 4 corner pointa.

dimension s{ 80, 80)
common /terp/ni,nj
i=int( ri }

if ( i.1t.1 ) i=1

if ( i.ge.ni } i=ni-1
ip=i+l

217
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J=int{ rj )

if ( j.1t.1 } j=1

if {( j.ge.nj ) Jj=ni-1
Jp=j+1
&11=B(i!3p)_3(i v J)
ai2=s(ip,jp)-s{ip,J) |
a=aiZ-ail
b=ail-fleoat( i1 )%a
gjzalri+b

returm

end

subroutine rk6( vector,t,h,n,x,tol,hmax,hmin )
real k(6,4),fac(5,5),ft(5),sx(4),xdot(4),x(4)

z @ssigninx data to dumy variableg

data ft/.25,.375,.9230769,1.0,0.5/

data fac/.25,.09375,.879381,2.032407,-.2962963,0.,.28125,
.4 -3.277196,-8.,2.,2%0.,3.320892,7.173489,-1.381676,

& 3%0.,-.2058967, .4529727,4%0.,-.275/

data wl,w2,w3,wd,w5/2.777778e-3,-2.9941520-2,-2.91998%-2,
& 0.02,3.636364e-2/

data vi, v2 v3,v4,v5/.1185185,.5189864, .5061315,~.18,3.636364e-2/
dl=8m0d( x(1),1.0 )

dj=amod{ x(2),1.0 )

d=aminl( di,dj,1.0-di,1.0-dj )

tsav=t

5 nflag=0
call vector{ t,n,x,xdot )}

do 10 i=1,n
ax{i)=x(i)
k{1, 1)-htxdot(i)
10 continue

do 20 j=2,6
Jm=j-1
t=tasav+ft(jm)sh

do 30 i=1,n
x(i)=ex(1) d

do 30 1=1,jm
x(i)=x{i)+fac{jm,1)sk(1,i)
30 continoe
call vector( t,n,x,xdot } .

do 20 i=1,n
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k{Jj,1)=h¥xdot{i)
20 continue

r=0.0

do 40 i=1,n
rr=abs{ wl#k(1,i)+w2‘k(3,i)+w3¥k(4,i)+w4tk(5,i)+w5tk(6,i) Y/h
r=amaxl( r,rr }

- 40 continue

% del=0.84%(tol/r)**.25
if (( r.le.tol ).or.{ d.1t.0.05 )) then
nflag=1
t=tesav+h

do 50 i=i,n
x(i)=sx{i)+v1xk(1,i)+v2¥xk(3,1)+v3sk(4,1)+vask(5,i)+vd*k(6,1)
50 continue

end if .
if { 4.1t.0.05 } return

t Try to adjust h

if ( del.le.0.1 ) then
h=ht.1
else
h=aminl( delzh,4.%h )
end if '
if ( h.gt.hmax ) h=hmax
if ( h.lt.hmin ) then
_rwrite(t,GO) hmin,h
end if
if { nflag.eq.l ) return

do 70 i=1,n
x{1)=ax(1)
70 continue
t=tsav
go to 5 .
60 format(' Warning.. hmin exceeded hmin:’,f7.4,' h:’,f7.4)
end '

subroutine statel{ t,n,z,zdot }

* Thig subroutine provides the 4 coupled o.d.e's that describe the
t particles trajéctory in the orthogonal coordinate system represented
* by the vectors hi(i,j). ( Devéloped for large Stokes numbers )



dimension hl( 80, 80), h2{ 80, 80)

dimension v1( 80, 80), v2( 80, 80)

dimension vfl( 80, 80),vf2( 80, 80)

dimension z{ 4),zdot( 4)

real nkn,nre,nsc,nr,kfp,md,mnf

common /gspeed/hl,h2,/fiuwx/vEl,vi2,/epeed/vl,v2
common /prop/nkn,nre,nsc,nr,st,kfp, tfd, ptot, pwf, psd,nd ,mf ,cun
data c8/1.0/

ri=z(1)

rj=z{2)

z3=z{3)*z(3)

zd=z{4)%z(4)

z34=2.%z(3)xz{4)

* First, all necessary quatities must be obtained from nodal values '
t by bilinear interpolation.

call interp( hl,ri,rj,ha ) -

call interp( h2,ri,rj,hb )

call interp( vl,ri,rj,um )

call interp( v2,ri,rj,ub )

call interp( vfl,ri,rj,vfa )

call interp( vf2,ri,rj,vfb )

call idot{ hl,ri,rj,hli )

call idot( h2,ri,rj,h2i )

call jdot{ hl,ri,rj,hlj )

call jdot{ h2,ri,rj,h2j )

vpl=z(3)tha

vp2:=z(4)%hb . ’ -
™, habsha/hb: ‘

st2=2.%at

* Evaluate derivatives -,

zdot(1)=2(3)

zdot(2)=2(4)

zdot (3)=(~-z3thli-g34shl j+z43%h2i /hab+ (ca¥ (ua~vpl )+vfa) /8t2) /ha
zdot(4)=(2z3%h1jxhab-z34%h2i-z43h2j+(cs* {ub-vp2)+vib)/st2) /hb
return ‘

end

subroutine state2( t,n,z,zdot )

t This subroutine provides the 2 coupled o.d.e’s that describe the
t particles trajectory in the orthogonal coordinate. system represented
* % by the vectors hi(i,j). ( Developed for st —> 0.0)

dimension h1( 80, 80), h2( 80, 80)
dimension v1{ 80, 80), vZ{ 80, 80)
dimension vf1{ 80, 80),vf2( 80, 80G)
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’

dimension z{ 4),zdot( 4)

real nim,nre,nsc,nr,kfp,nd,mf

comnon /gspeed/hl,h2,/flhux/vEl,vE2, /speed/vl,v2

common /prop/nkn,nre,nsc,nr,st,kfp, tfd,ptot,pwf, pad,nd,nf ,cun
data ca/1.0/

ri=z{1l)

rj=z{2)

* First, all necessary quatities must be obtained from nodal values °
%t by bilinear interpolation.

call interp( hl,ri,rj,ha )
call interp( h2,ri,rj,hb )
call interp{ vi1,ri,rj,ua )
call interp( v2,ri,rj,ub )
call interp( vfl,ri,rj,vfa )
call interp{ vf2,ri,rj,vib )

t Fvaluate derivatives
"l zdot(1)=(uatvfa)/ha
“ zdot (2}={ub+vib)/hb
return
end

function density( t,p,tc,pc,m: )
real mw
data r/0.08315/
a=27./64.srirttc/pc
berstc/8. /pc
vo=r¥t/p
10 vn=b+rit/(pta/vo/vo)

er=abs{ (vn-vo)/vn )

—  VvOo=vn

» if ( er.gt.0.0001 ) go to 10
density=m«/vn _

* retum - -
end ‘ ‘

function visocos( t )
% Vigcosity of gas { t = k ) ( visocosity = Eg/m/s8 )
viscoe=1.71601e—-6%tx%,4946-1, 02968e—5

return
end



Appendix I ‘

Solutions for Viscous Flow and Convéct_ive Diffusion Equations
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-'FIGJLL}_._Q,; Temperature/Vapor Contours {7) for Reynolds Number of 100

{10 Equal increments between 0 and 1)
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