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Abstract

A data warehousing system is a single data repository, which integrates already existing
information from different data sources belonging to an enterprise over a long time period.
One of the main tasks in building a data warehouse is to ensure that data drawn from several
data sources contain no structural and semantic conflicts before being loaded into the data
warehouse. Representing the same real world object in numerous ways is just one form of
data disparity (dirt) to be resolved in a data warehouse. Data cleaning is a complex process,

which uses multidisciplinary techniques to remove all the conflicts inherent in warehouse
data.

This thesis proposes two data cleaning algorithms. The first algorithm, designed for initial
data warehouse cleaning, uses the token keys composed from record fields for comparison of
records. The second algorithm is designed to subsequently clean an existing data warehouse
in a timely fashion. The algorithms achieve optimal cleaning correctness in a good time.

Key Words: Data Warehousing System, Data Cleaning, Pre-data Warehouse Cleaning Algorithm,

Post-data Warehouse Cleaning Algorithm, “Dirty Fields”, Data Disparity, Semantic and Structural
Conflicts.
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CHAPTER 1
Introduction

1 Data Warehousing Background

A data warehouse is a consolidated database, which contains a huge integrated amount
of data organized around major subject areas of an organization that span over a period of
time to serve a historic purpose [Ma96]. W.H Inmon [In96] defines data warehouse as a
collection of integrated, subject-oriented, time-variant and nonvolatile databases designed
to aid decision support functions. Data warehouse data come from numerous data sources.
These data sources are normally built to satisfy the day-to-day activities of an enterprise.
Hence, the data contained in these operational data sources do not have time stamps (not
historical), and are updateable (volatile), since they are designed around functions (not
subject-oriented). In other words, a data warehouse is primarily built to integrate operational
databases and other legacy systems over a long period of time for decision support and
analytical data querying purposes [BS97, CD0O, In96].

It is apparent from the above definitions of a data warehouse that the data contained in
a data warehouse are drawn from different sources. The different data sources might have
been implemented on different computer hardware and software platforms [Ez01]. For
example, a branch of a bank in a given city, say Windsor, may have a number of units. One
unit may be in charge of the checking accounts, which is mounted on an XML technology
shown in Figure 1.1 and deployed on an IBM PC-based computer. Another unit, in charge of
savings accounts may maintain its data in a relational data model-based source shown in
Figure 1.2, which runs on an Apple Macintosh PC. The bank may yet have another unit,
which takes care of the credit card businesses and may have its data stored in a flat file
deployed on a Unix-controlled mini computer. Apart from the differences in hardware, data
model and software, there are likely to be differences in designs and data formatting or
representation. Figures 1.1 and 1.2 are two different data sources, which use different data
management models to describe the same domain objects. Some pieces of information
contained in such function-oriented data sources undergo frequent updates to reflect
customers’ activities. For example, the information about customers’ occupations, addresses,
and telephone numbers may most likely change from time to time, though not frequently.



However, such data as the customers’ balances will definitely change from transaction to
transaction.

<CheckingAccounts>

<Customer>
<Cid>1001</Cid>
<Cname>S John </Cname>
<Cbirth> 12-25-1970 </Cbirth>
<Cphone>256-1234 </Cphone>
<Caddress> 995 Sunset Avenue, n9b 3p4 </Caddress>
<Coccupation> Student </Coccupation>
<Csex> Male </Csex>

</Customer>

<Customer>
<Cid> 1003</Cid>
<Cname>A D Diana</Cname>
<Cbirth>10-11-1972</Cbirth>
<Cphone>566-5555</Cphone>
<Caddress>Church Street. # 4, n8k 6t6</Caddress>
<Coccupation>Politics</Coccupation>
<Csex>Female</Csex>

</Customer>

</CheckingA ccounts>
Figure 1.1: An Instance of an XML Data Source

Id Name Birth Phone Address Occupation

S001 | John SmithO | 25-Dec-70 | 5605678 Sunset # 995 N9B3P4 Student

S002 | Tim E Ohans 01-Jan-75 | 2566416 ABCD St. 695 n% 2t7 Researcher

m(z[z|f

S003 | Colette Johnen | 08-Aug-64 | 123-4567 | 600 XYZ apt Sa5 N7C4K4 | Business

Figure 1.2: An Instance of a Relational Model Data Source

Generally, function-oriented data sources have a number of common characteristics
[SF97], as follows: (1) they contain raw (atomic) and updateable (volatile) data, (2) they are
inconsistent (not integrated) in the way they represent information (e.g., the data source in
Figure 1.1 represents the gender of customers as a string, while that of Figure 1.2 represents
the gender of the clients as a single character), (3) they are not designed for complex data
analyses and reports (because they are not subject-oriented), (4) they do not store historic data
that is needed for data analyses and decision support.

Consequently, such application-driven data sources can only adequately answer
simple and one-dimensional queries, such as: (1) how much does a given customer have in his




or her checking accounts? (2) Which customers have balance greater than the overall average?
(3) How many students maintain savings accounts?

If such one-dimensional queries are all that a profit-making enterprise needs in order
to gain competitive advantage over rival organizations then it is not worthwhile building data
warehouses [Ez0O1]. The fact however, is that one-dimensional queries (usually posed on
single-point data sources) can no longer meet the needs of today’s business, which requires
inputs from many, but integrated data sources. For the bank in our example to break even in
our highly competitive society, it needs multidimensional queries in order to know (1) when
in a year customers withdraw huge amounts from their accounts, (2) the pattern and trend in
customers’ needs, (3) season-by-season analysis of customers’ transactions, (4) when in a
year does the credit card unit make the greatest profits, etc. Data warehousing is the only
option since it has historical, integrated, subject-oriented, nonvolatile and summarized data of
an enterprise [In96, Ki96a]. A data warehousing system therefore is the most appropriate
option in situations where: (1) large amounts of heterogeneous data are created so rapidly that
real-life query processing is impracticable, (2) processing and mining enterprise data is a
resource-intensive job that is better carried out off-line in order not to interfere with the daily
business operations, (3) there are frequently asked questions, which would be better stored in
data warehouse for improved performance and efficiency.

Data warehousing is one of the fastest growing client-server applications [SF97], and
its applicability is widespread, namely: (1) manufacturing for shipment ordering and customer
support, (2) retail for user profiling and inventory management, (3) financial services for
claims, credit card and risk analyses as well as fraud detection, (4) transportation for fleet
management, (5) telecommunications for call analysis and fraud detection, (6) hospitals
(healthcare) for patients’ cases and outcomes analyses [CD97].

However, a data warehouse should deliver the right information, in the right place, at
the right time and at the right cost. The extent to which a data warehouse meets the above
objective depends exclusively on the “cleanness of data it contains”. It is widely believed
among data cleaning researchers that the data from various data sources are “dirty” in nature,
hence must be cleaned before loading them into the data warehouse. Data cleaning is a
process that adopts statistical methods and other techniques to eliminate variations in data
contents, as well as to reduce data redundancy aimed at improving the overall data



consistency [De97]. It is a computerized means of examining databases, detecting missing and
incorrect data, and correcting errors [SL95]. Data cleaning is naturally difficult to automate,
and it has been realized that the more “dirty” the source data are, the much harder it is to
automate their cleaning with a predetermined set of tools [GF01a].

The rest of chapter one is organized as follows. Section 1.1 focuses on data warehouse
architecture, while data source integration is the central theme of section 1.2. Types of
integration and components of an integrated system are discussed in subsections 1.2.1 and
1.2.2 respectively, while numerous integration problems are described in subsection 1.2.3. A
detailed discussion of data cleaning is done in section 1.3. The thesis motivation is given in
section 1.4, while thesis problems and contributions are given in sections 1.5 and 1.6
respectively. Chapter 1 concludes with the outline of the rest of the thesis in section 1.7.

1.1 Data Warehouse Architecture

Figure 1.3 shows a simplified data warehouse architecture consisting of external data
sources, extraction, integration and transformation software, optional Operational Data
Store (ODS), Data warehouse, data warehouse metadata and a number of front-end tools.
Each of these components is described next.

The data in a data warehouse come from external data sources. The data contained in
these sources could be structured (with metadata), semi-structured (self-describing) or
unstructured (without metadata, e.g., flat files), and may be in different formats (though may
be referring to the same real-life objects). For example, the Cid field in the XML-based data
source of Figure 1.1 contains integer values. The same attribute (Id) in relational database
source of Figure 1.2 is of alphanumeric type.

Data Extraction, Integration and Transformation Modules are a set of programs
that extract data from the underlying data sources and integrate them into the desired format
of the data warehouse. For instance, the Cid and the Id could be integrated to Customerld of a
data warehouse. Other roles performed by the integration and transformation modules are
information filtering, data aggregation or summarization, data cleaning and merging. Example
of data summarization include: (1) getting the total amount of money customers in savings
accounts deposited in a given week, (2) deriving total monthly deposits from weekly deposits,
(3) getting an annual deposit from monthly deposits. Summarization could be summing up



similar values along one or several business dimensions. Examples of integration and
transformation programs are wrappers and mediators described in section 1.2.2 of this
thesis.

Operational Data Store (ODS) is optional in the data warehouse. If available in a
data warehouse architecture, ODS is used as a staging area for the data warehouse and the
data from ODS undergo further transformation before loading into the warehouse. Unlike data
in a data warehouse, data in ODS is (1) current and up-to-date, (2) at a detailed level (not
summarized) and (3) volatile or dynamic. Like data warehouse data, ODS contains data that
are subject-oriented and integrated.

Data Warehouse is a repository that contains huge, subject-oriented, integrated and
historical data, which can be an off-the-shelf or special purpose database management system.
It contains a reconciled, consolidated and materialized view of information residing in several
data sources [CD00].

Metadata is a directory that describes data in a data warehouse to users of the data
warehouse. It is data about data and provides information about the tables in the data
warehouse, number of rows in each table, etc.

Front-end tools are application systems, such as OLAP, DSS (Decision Support
System), EIS (Executive Information System), data mining tools, information delivery
systems, etc., used to mine and query the data warehouse for business decision-making.

OLAP. DSS. EIS. Renort. Data Mining

Transformation >| Data Warchouse | Metadata

“ Data Extraction, Integranon and Cleaning

S ==

Figure 1.3: The basic architectural components of a data warehousing system




1.2 Database Integration

Database integration [TL99, ZH95] is a process that takes a number of databases as
input and produces as output a single unified description of the input schemas and the
associated mapping of information to support the integrated schema. Database integration is
critical in the construction of data warehousing [AC93]. There are a number of reasons why
an organization would want to integrate its data sources. These include: (1) Information
sharing need - complex reasoning situations demand the solicitation of information from two
or more different sources [Su94], (2) Intra- (or inter-) organizational information access
facilitates the execution of functions, which may not be achieved by individual and isolated
data sources [Gu89], (3) Many important scientific and engineering applications need input
from multiple data sources in order to enhance productivity [BO86] and (4) It is an
established fact that decision-makers more often than not need information from multiple
sources.

Database integration process is a challenging task due to heterogeneities that
characterize the underlying sources. Database heterogeneity within an organization stems
from a number of reasons — (1) needs differ from one organizational unit to another, (2)
different designers solve real-life problems differently, (3) different designers, most of the
times, have differing perceptions of the same real-world entity and (4) operational
environments and implementation platforms (hardware, software and models) differ across
different departments of an enterprise. The numerous problems springing from data source
heterogeneity are discussed in section 1.2.3.

1.2.1 Types of Integration

Four types of database integration discussed in the literature are — Virtual integration,
materialized integration, schema integration and instance integration.

Virtual Integration — each of the participating systems retains its autonomy, but a
global schema connects all the data sources. The global schema or view provides a
representation of relevant data according to users’ needs. With the global schema, users
indirectly query the underlying data sources without having to know or understand their
respective schemas. There is also an interface, which is a front-end tool that grants the users
the flexibility of simultaneously retrieving data from the constituting data sources. This way,



the users of the system are freed from leaming more than one query language, but are still
permitted access to varied resources. One noticeable obstacle in virtual integration design is
the high cost involved in accessing the dispersed sources. This form of integration is rarely
used in data warehousing system.

Materialized Integration — this form of integration maintains a replicated view of the
data at the sources [GM95, In96], and is a typical integration technique in use for information
systems re-engineering and data warehousing [CG98]. One formidable obstacle to grapple
with using materialized integration is the cost involved in view refreshment, because the
views must be updated from time to time in response to changes at the base sources [CG98].

Schema Integration - involves merging of two or more database schemas into one
integrated database schema [BL86, De89, LF97a]. The big task facing schema integration
designers is to resolve the attendant problems arising from naming, structural, key and
constraint conflicts (LT95, LT97].

Instance Integration - involves deciding that several instances from various sources
refer to the same entity followed by merging [KS91]. The main instance integration task is
how to reconcile partial or inconsistent data values from the matching instances [Le96].

Data warehousing system may involve some (if not all) of these types of integration
depending on the nature of the data sources as well as the data warehouse design objectives.

1.2.2 Components of Data Integration System

Figure 1.4 shows a simplified, but representative architecture of a data integration
system. The typical architecture of a data integration system is described in terms of two types
of modules, namely, wrappers and mediators [U197]. Wrappers and mediators play such
significant roles in data source integration that it is worthwhile to describe each in detail.

Wrappers are software modules that are able to access a data source and retrieve its
data in a form that is coherent with the logical specification of the source. A wrapper (also
called translator) is a software layer that translates the information from a specific data source
into some standard form understood by the data integration system. For instance, a wrapper
will convert the XML -based data model shown in Figure 1.1 to the relational data model of
the data warehouse. The same “data model” conversion will be performed on any other data
source whose data model is not originally relational. The indication is that every data source



that is not relational model will have a wrapper module for conversion. In other words, once
the data source is screened through the wrapper layer, it would have assumed a data model
close to (if not the same as) the data model of the target system. Thus, wrappers provide a
common query language, which allows user queries to be converted into source-specific
queries. Wrappers are usually equipped to detect changes in the sources and propagate the
changes to the mediators. Wrappers play an enviable role in data integration. The application
programmers are relieved the burden of having to redesign the entire system when the
underlying data sources change, because only the wrapper module would be recoded if there
is a change in the internal model of the constituting sources. This way, the layers above the
wrappers will not be affected by the change. Thus, wrappers are designed to access a source,
extract the relevant data, and present such data in a specified format and/or data model.

Mediators are software modules that receive as input sets of data from either
wrappers or other mediators, refine the data by integrating and resolving conflicts, and
produce another set of data as output, which correspond to the desirable result of a given
query. The most pronounced task of mediators is to perform object fusion [PA97]. Object
fusion entails grouping together information (from the same or different sources) about real-
world entity. Fusing information from several sources invoives “refinement” by way of
removing redundancies, and resolving inconsistencies in data. For example, an attempt to
integrate the XML-based source of Figure 1.1 and the relational model source of Figure 1.2
will need a mediator (or mediators) that would reconcile some of the inconsistencies
noticeable in Figures 1.1 and 1.2. In a nutshell, a mediator plays the essential role of
collecting, combining and cleaning data produced by different wrappers or mediators.

Mediators and wrappers are inevitable in an integration system due to the structural
and semantic problems (described next) associated with database integration.

1.2.3 Data Integration Problems

Many problems arise when collapsing two or more data sources into a unified schema.
Data integration problems could be schema integration problems [LG96], entity identification
problems [WMB89], record linkage problems [FS69], instance identification problems [WM89]
or semantic integration problems [SB91]. In a data warehouse arena, the numerous data
semantic and/or schematic conflicts encountered when merging two or more data sources are



referred to as data cleaning problems [HS98, Mo098] or merge/purge problems [HS95a,
HS98].

Application tools

1\

Data warehouse

-

Mediator 1 Mediator 2 Mediator n

1 i 1

Wrapper 1 Wrapper 2 see Wraﬁper n

T T T
= == =

Figure 1.4: A Simplified Integration Architecture
Key: —™> information flow

One of the causes of integration problems is missing or partial information, which in
turn makes the databases incomplete [Le96, TW84]. Another cause of integration problems is
that semantics of data are usually implicit and ambiguous in data sources, and the
integration complexity grows exponentially as the number of data sources increases [LF97a].
However, it is widely believed that all the semantic and non-semantic problems must be
solved for a meaningful sharing of information across multitudes of data sources. The causes
of integration problems are either due to semantic or structural incompatibilities.

Semantic incompatibility

This is the case when there is a disagreement about the meaning, interpretation or
intended use of the same or related data. For example, there is semantic discordance between
database DB, and database DB, when:

DB, has a 30-character-name field with the given name first, and DB, has a 20-character-
name field with the family name first, and the two are to be coalesced.



Devising a general solution to handle semantic conflicts is not usually feasible [Be91].
Different authors use different terms to express problems in semantics. For instance, there is
data value conflict [LF97b], value conflict or data inconsistency [AK95], semantic
discrepancy [SB91], or semantic discordance [Ha00] when:

Two data sources have attributes A, and A, respectively, which refer to the same property,
say, Date of birth of a particular person, but with different values in them, say “/0-10-75" in
A, and “November, 19 1957 in A,
Data heterogeneity [BL86] or type conflict [De89, PSU98] exists between Record R, in data

source A and Record R in data source B when:

R4 and Rg refer to the same real-life object, but R, is of type entity in database A and Rg
is of type relationship in database B, or R, is an attribute in A but Rp is an entity in B.

There is also data heterogeneity between databases A and B if:

There is an attribute, say, Event-Dates in A and an antribute, say, Activity-Dates in B, which
are meant 1o serve the same purpose but Event-Dates antribute is declared as an integer, e.g.,
120199, to mean same as Dec-01-1999 contained in Activity-Dates of B, which is of type date.

There is therefore data heterogeneity between the “Cid” fields of the XML-based source of
Figure 1.1 and the “Id” field of the relational model source of Figure 1.2, since the former
contains integer values, while the latter contains alphanumeric values.

A process that identifies and resolves the semantic discrepancy is called semantic
reconciliation [SB91]. Semantic reconciliation means the same as data cleaning or
scrubbing in data warehousing arena. All the aforementioned types of conflicts could be
caused by: (1) Name differences [Ch98], i.e., Synonyms (e.g., 99% in one data source and
“A+” in another) and homonyms (e.g., “John Smith” in data source A and “John Smith” in
source B may be referring to different persons), (2) Abbreviations (e.g. “ACM” versus
“Association of Computing Machinery™), (3) Different scales or units of measurements
(e.g., one database might indicate weights in “kilograms™ (Kg), while another may indicate
the same in “tons”, “Fahrenheit” may be a unit of temperature measurement in one source,
while “Celsius” may be used in another), (4) Recording (or typo) errors (misspellings
including transpositions) — e.g., “Distributed” might be misspelled as “Distribted”, “66031”
instead of “66013” is an example of transposition, (5) Incomplete or missing information -
Null, Unknown, Not Applicable, Not available entries in some columns of various databases
(e.g-, City = null), (6) Mis-fielding (e.g., the value of “Canada” in a “province” field), (7)
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Noise or Contradicting data — values outside the accepted range of a given attribute
domain (e.g., “31* September 19999” in a date field, “-$3500.50¢” in a salary field), (8)
Differing representations (e.g., “M™ for “male” gender in one data source, “F” for female
gender in another source, “0” for “male” in another, “1” for female in yet another source),
(9) Format differences, mismatched attribute domain, e.g., Date could be formatted as
“DD/MM/YY” in one data source and as “MM/DD/YY” in another or even as
“YY/DD/MM” yet in another, (10) Dummy values, e.g., “999” in the age field or
*“$999,999.99” in the monthly salary field of an employee, (11) Multipurpose Fields - Data
field may be used for multiple purposes which have varying meanings across different units
of an organization, (12) Inconsistent value naming conventions — arising from different
field entry format and use of abbreviations or acronyms (e.g., “pages” versus “pp”), (13)
Type mismatch, e.g., Customer Id# declared as an “string” in the checking accounts data
source, but as an “integer” in the savings accounts database, (14) Embedded values —
Muttiple values found in a single (free-form) field, e.g., “Ohanekwu Tim, WODD Systems
Administrator” in a “job description” field, (15) Values spread across fields — this is
common when two slots (Addrl and Addr2) are provided for addresses, e.g., Addrl: 695
Randolph”, Addr2: “Avenue, Windsor”, (16) Scanning errors, e.g., “I” for “1” and vice
versa, (17) Keypunch errors, e.g., “O” for “P”, “R” for “T™.

Structural incompatibility

Structural incompatibility on the other hand arises when attributes are defined
differently in different databases. For example, a situation where entity or attribute names
may be labeled differently among different databases, e.g. “Company” versus “Comp-
name”, has to do with structural disparity, and is appropriately termed “schema-level
integration problem™ in [BL86, LA86]. There are a lot of structural heterogeneities in
Figures 1.1 and 1.2 since almost all their attributes are labeled differently (e.g., “Name” in
Figure 1.2 versus “Cname” in Figure 1.1).

Most of the data cleaning problems are due to semantic-related discrepancies.

Structural heterogeneity belongs to a different area of database research, and therefore will
not be discussed further in this thesis.
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1.3  Data Cleaning
1.3.1 Definition, Objectives and Significance of Data Cleaning

Pre-data warehouse data are dirty, and must be cleaned if the data warehouse is to be
trusted. Most (if not all) of the conflicts enumerated above are responsible for “dirtiness” in
pre-data warehouse data. From the data warehouse standpoint, “995 Sunset Avenue, n9b 3p4”
contained in “Caddress” field of Figure 1.1 and “Sunset # 995 N9B3P4” contained in
“Address” field of Figure 1.2 are dirty. Converting one to the other in order to achieve
consistency is a form of data cleaning. Using different identifying data formats to refer to
potentially the same customers in different sources is subtle dirt in Figures 1.1 and 1.2. Data
cleaning consists of removing inconsistencies and errors from source data sets [GF0la]. Data
cleaning determines whether two or more records referring to the same real-life entity, but
represented differently are the same followed by any (or combination) of the following
activities: (1) collapsing them to get a consolidated whole, (2) unifying them to enhance
joining operations and (3) retaining only one copy of the duplicates. By unification, it is
meant generating one representative identity number for all the tuples that refer to the same
entity. Example, “122570JOS™ may be a unifying Warehouse Id for record one in Figure 1.1
and record one in Figure 1.2. Data cleaning is a process that identifies and corrects incomplete
and incorrect information in databases [SL95].

The central objective of cleaning data is to realize consistent and correct data [LT00],
and is more than simply updating a record with good data. A serious data cleaning involves
decomposing and reassembling data [Ki96b], and may involve semantic enrichment
[PS98], which is a process of acquiring additional information (from external source file e.g.
companies’ registry, birth registry, etc) in order to fix some ambiguities. It is also a complex
process that uses different techniques to solve the diverse data cleaning problems. Data
cleaning aspect of data warehousing project is so important that its omission is like “puilding
a new and costly car and putting a 10-year old engine without testing it” [Ma99]. It is also
likened to a polluticn treatment plant downstream on a river to clean up toxins dumped
upstream [Ne98]. The danger of omitting data cleaning aspect in data warehousing project is
highlighted with an example.
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Example: An information-based company built a data warehouse with the XML-based
system of Figure 1.1 and the relational model system of Figure 1.2 constituting the underlying
data sources. The data from the sources were loaded into the data warehouse without
cleaning. The data warehousing system was queried as follows:

“Get all the customers who maintain both savings and checking accounts”
Obviously, this query will fail to identify customer with Id “1001” in Figure 1.1 as being the
same as the customer with Id “S001” in Figure 1.2. This kind of false result will definitely
lead to wrong analysis, which in turn leads to wrong decisions, such as incorrect customer
behavior analysis. Similarly, it would be prohibitively costly allowing a typographical error of
“$10050” instead of “$100.50” in the “deposit™ field of a customer. Another consequence of
omitting data cleaning is waste of memory resources in that many copies (duplicates) of the
same entity (represented differently) are stored, thereby adding to the response time of the
system. The overall cost of allowing “dirt” into data warehouse is the emergence of a

gigantic but worthless artifact that cannot be trusted, and which has little or zero
utilization.

1.3.2 Data Cleaning Tasks

Three main types of data cleaning tasks are identifiable.
(1) Duplicate detection and elimination. This is when a number of records have been
identified as referring to the same entity. The task is to eliminate all except one.
03] Duplicate detection and merging. This is the case when a number of matching
records are seen as a partial source of information. The main task is to combine pieces of
information from each matching records to obtain one record with complete information.
3) Entity Unification. This is needed in situations where two or more records referring
to the real-life entity are identified with different unique keys. The task is to generate a
common identification code for the matching records.

The present work is concerned with tasks (1) and (3), which is described fully in chapter 3.
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1.3.3 Data Cleaning Phases

Data cleaning is a many-phased process. Each phase involves a definite task. Six data
cleaning phases are recognized in [Ki96b], namely, elementizing, standardizing, verifying,
matching, householding and documenting.

The data to be cleaned are parsed or tokenized during the Elementizing phase, while
the Standardizing stage is concerned with standardizing some of the tokens, e.g., “Dr.” may
be standardized to “Doctor” (if the domain is medicine), “Str” to “Street”. The Verifying step
attempts to verify the consistency of the standardized tokens from Standardizing stage, while
the Matching phase consists of finding other records that are identical to a given token or
group of tokens. The Householding stage focuses on grouping elements belonging to the
same household. More often than not, other information (internal and/or external) sources are
consulted to ascertain whether two or more elements belong to the same household. The
Documentation step involves documenting the results of the previous phases in a metadata
mainly for future cleaning exercise.

Similar data integration phases are described in [BL86, LT95] as follows -
preintegration, comparison, conformation, merging and restructuring. In Pre-integration or
investigation phase, the source schemas are inspected to decide on the integration policy.
The comparison phase comprises further schema analyses and comparisons to determine the
correspondence among concepts and possibly spot out schema conflicts. It is also called
schema-conditioning phase. The main task in conformation phase is to resoive any conflicts
arising from schema (as well as other) discrepancies. This phase can be further split into more
steps as the development environments demand. In the merging and restructuring phase,
schemas (also records) are superimposed. The superimposition of schemas or records may
lead to an intermediate schema or record, which may still go through a number of fine-tuning
before the desired quality is arrived at.

Comment: it should be pointed out that the phases described above should not be hard-and-
fast. They should serve as guides other than rules, because the diversity and unpredictable
natures of data cleaning problems demands flexibility rather than hard-and-fast rules.
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1.3.4 Where to Apply Data Cleaning

There are three places where data cleaning techniques can be applied, namely, at the
application level, at the integration level, and right inside the data warehouse.

The proponents of Data Cleaning at the application level believe that once data is
clean at the operational or legacy level, they need not be cleaned elsewhere. At first glance,
the argument above sounds valid, but a careful analysis will refute the idea altogether,
because, even though there is nothing wrong in cleaning data at the operational level, but the
question is whether it is worth doing, since operational data are needed for day-to-day
activities only. Besides, some disparities in application data may not be discovered until there
is need to merge them with data from other sources. The truth is that data cleaning elsewhere
is unavoidable no matter how clean the operational data are.

Data cleaning at the integration level entails passing data from numerous sources
through the data cleaning layer (i.e., screened or scrutinized) aimed at fixing any anomalies
and inconsistencies inherent in the data sources. The data that emerges is cohesive and
consistent to be loaded to the warehouse. The bulk of data cleaning task is performed at this
level, and this level seems to be the best place to clean data.

Data cleaning inside the data warehouse is unavoidable since data therein are
collected over a spectrum of time (usually between five and ten years); hence the data changes

over time (or even become obsolete), and therefore must be cleaned occasionally.

14 Thesis Motivation

The direct proportionate dependency of runs on the number of fields in the algorithm
described in [HS95b, HS98] was blamed on the extraction of keys from “dirty” fields. The
penalty is the use of a time consuming transitive closure to combine results from different
runs. [LH99] proposed an algorithm that uses external data sources (such as birth registry,
patients data, company registry, etc.) to preprocess the “dirty” fields before extracting tokens
from them. The use of external sources is not feasible in many cases based on a number of
reasons: (1) Information contained in some external sources is so confidential that their
accessibility is outlawed. (2) Even when some external sources are available, their
accessibility is via a network and accessing the external source as many times as there are
number of rows in the dirty dataset could be prohibitively slow and costly. (3) The
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fundamental requirement for their algorithm that the primary key of the dirty dataset must
agree with the primary key of the external sources is a serious setback considering the fact
that most data sources exist independent of others.

1S  Thesis Problems

In this work, we are interested in providing a better solution to some well-known
problems in data cleaning arena. Three most prominent problems are:
(1) Given a large dataset of records containing various types of “dirt”, how to achieve an
optimal cleaning correctness (high recall) in a good response time.
(2) Given a large dataset of records containing various types of “dirt”, finding a technique
whose performance behavior depends less on threshold.
(3) Given an already cleaned data warehouse, how to carry out subsequent data cleaning in a
less costly manner (in terms of time, computation and resources).

1.6  Thesis Contributions
The present work has contributed in a number of ways:

(1) Using both “exact” and “similarity” match techniques on the short lengthened token keys
for record comparison significantly improves the recall ratio and greatly reduces the false
positive matches.

(2) Reducing the number of runs on the dataset to a constant of 2 irrespective of the number
of fields used for cleaning. This is better than proportionally varying the number of runs
according to the number of fields used, as is the case in [HS95a, HS95b, HS98].

(3) Provision of a subsequent data cleaning solution in a timely and less costly fashion.

1.7  Outline of Thesis

The rest of the thesis proposal is organized as follows. A comprehensive description of
existing data cleaning algorithms is given in chapter 2. The proposed algorithms are presented
in chapter 3, while chapter 4 focuses on data cleaning performance issues. The thesis
concludes in chapter 5 where some conclusions were reached.
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CHAPTER 2
Previous and Related Work

In this chapter, previous and related work are described and discussed. The description
will be presented in two broad sections. Section 2.1 covers the related cleaning algorithms before

the data warehouse era, while section 2.2 covers the related algorithms that emerged after the
data warehousing technology.

2.1  Data Cleaning Algorithms Prior to the Data Warehousing Era

The task of using matching techniques to decide if records match has been recognized as
a research problem in both medical and business arenas since the 1950s. Most of the earliest
medical research appeared under the name “record linkage” and were mostly concerned with
identifying medical histories for the same person in different databases [NK59, NK62]. Both
works agree that combining pieces of information from different sources to determine a complete
whole is unavoidable when the main identifying attribute (e.g. Social Security Number) is
missing or wrongly represented. The first work in business circle to detect duplicates of records
appeared in 1973 [YG73]. The work by Senator et al. [SG95] highlights that record matching is

relevant for fraud detection and money laundering. Two earliest algorithms are described in more
detail below.

2.1.1 Duplicates Elimination in Large Data Files

Bitton et al. [BD83] originated the idea of sorting on some designated fields to bring
potentially identical records together in a large data file. Two algorithms were described in their
work. The first algorithm uses two way external merge sort, while the second variant uses one-
way external merge sort to achieve the bringing of potentially identical records to close
proximity. The first algorithm proceeds in two stages:

Stage 1: Sort the entire file on some (or part) of chosen fields

Stage 2: Sequentially scan the sorted file and compare a given record with any other record in
the file. The matching technique used in this stage was not disclosed, but exact matching and
similarity matching techniques are the two main options.
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The second (more advanced) algorithm improves the first by gradually eliminating the duplicates
as sorting proceeds. By tying both operations together, the number of steps involved, is reduced,
hence the execution time, though at the expense of simplicity. The algorithm compares two input
tuples and only one record is written to the output run if they are identical, while the duplicated
copy is discarded by simply advancing the appropriate pointer to the next record.

Discussion: The algorithms described in [BD83] are precursory to most of the data cleaning
work that emerged subsequently. However, two serious demerits reduced their desirability. The
first downside is that the fields on which sorting is based may themselves be inconsistent, hence
will fail to bring identical records together. Another weak point is that each record is compared
with any other record in the dataset, a time consuming process that requires N — N * 1/2 record
comparisons (N being the number of records in the dataset).

2.1.2 Algorithm For Structural and Semantic Incompatibilities in Databases

A probability-based algorithm that solves inconsistencies arising from structural and
semantic incompatibilities in databases is described in [CS91]. One strong characteristic of this
work is that it can match records from several databases even when their primary keys are
structurally and semantically incompatible. Specifically, this algorithm handles two problems:
Synonym problem: Two or more databases using different primary keys to identify the same
real-life entity.
Homonym problem: Two or more databases identifying different real-life entities with similar
identifiers.
In both cases, matching records on their primary keys alone can produce false results. This
algorithm reduced such matching errors by involving other fields of the records being compared.
The solution to synonym problem is hinged on the following reasoning:

IF two or more records describe the same real world entity, most of their other
common attributes would agree even when their primary key attributes do not.

Homonym problem is handled with a reasoning of the following nature:

IF two records agree in their primary key attributes, other common attributes might
differ (significantly) if the instances do not refer to the same object or entity.
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The probabilistic algorithm solves the semantic and structural incompatibilities in three main
steps. First, the useful attributes common to the data sources are determined. The values in the
selected attributes are compared in the second step. The comparison values are estimated using
the Bayesian probability model in the final step. Each step is briefly described next.

Step 1: Determination of common attributes: Given two relation schemas, say R and S, the
attributes common to both R and S are determined by taking schematic intersection, (RNS) of R
and S. For example, given two relational schemas — CUSTOMER {Cust#, Lname, Fname,
Address, City, State, Zip, Total-Purchase-year-to-date, Date-last-purchased} and CREDIT
{SSN, Lname, Fname, Address, City, State, Zip, Credit-Rating}, which are intended to be
merged in order to create a list of customers with good credit rating, the useful common

attributes are determined from CUSTOMER N CREDIT = {Lname, Fname, Address, City,
State, Zip.

Step 2: Entity-Join (E-join) Comparison: The values of each pair of common attributes are
compared for a match using the entity join. The result, M of the E-join of two relations r(R) (with
tuples e, k = 1, ..., i) and r(S) (with tuples, si, k = 1, ..., j) on the join attribute, a; € R, S is
expressed as:
M=r@R) D>< r(S)=r(R) x r(S), such that r;[a;] = s;[a;] (i.e., the similarly named attributes in
r(R) and r(S)), where = indicates equivalence. An instance of M from RS and joined on
{Lname, Fname, Address, City, State, Zip} attributes may look thus:

R = {-, Smith, John, 51* street, New York, NY, 10006, -, -}

S = {-, Smith, Jorn, 51¥ street, New York, NY, 10006, -}.
The non-common attributes are not relevant and therefore were replaced with “-*.

Step 3: Comparison value estimation: The outcome of the E-join comparison is used in the
comparison value estimation. A comparison value is assigned depending on the number of
matches between the pair of attributes. A value of I shows a match, while 0 means no match.
That is, given two database schemas, R and S with useful common attributes fa,j=1,..,n} g
{R N S}. Lett= {r;, s;}; ri € r(R), s; € r(S). Note that {r;, s;} is a pair of tuples belonging to {R N
S}, where r; is a tuple from R and s; is a tuple from S. A vector ¥(t) = {vi(t), Y2(t);.... Ya(t)} is
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defined to hold the number of common attributes between R and S. For example, comparing R
and S yields strings of 1s and Os as follows:

Smith | John | 51% street | New York | NY | 10006
Smith | Jomn | 51% street | New York | NY | 10006
1 0 1 1 1

Therefore, Y(R, S) =[1,0,1,1,1,1].

A tuple probability, Ptuple(t) is finally used to determine the correctness or otherwise of
the record comparison. Ptuple(t), is a number between 0 and 1 and is a conditional probability
that join attributes are matched correctly or otherwise. Intuitively, the tuple probability on
[1,0,1,1,1,1] will be close to 1, meaning that the two records taken from two different sources
may be actually referring to the same person.

Discussion: The probabilistic algorithm described above uses ““exact string matching” technique,
hence can only match two strings when they agree character-to-character. The implication is that
it cannot solve inconsistencies arising from the use of “abbreviations or acronyms”, e.g., “Dept”
versus “Department”. The use of the Bayesian probability theorem for final decision is also
questionable and amounts to waste of effort and time as the strings of Is and Os that emerge after

attribute comparisons are sufficient to decide whether the records are the same or not.

2.2  Data Cleaning Algorithms in Data Warehouse Era
2.2.1 Sorted Neighborhood Method (SNM)

SNM described in [HS95a, HS98] tackles the data cleaning (merge/purge) problems that
arise when data are drawn from two or more sources. How SNM solves the merge/purge problem
is summarized as follows: (1) Pool all the data sources into a single list of N size, (2) Create sort
keys from some chosen fields of the dataset, (3) Sort the entire dataset based on the sort keys, (4)
Partition the dataset such that all the records having exact keys are clustered together, (5)
Compare records in each cluster and merge records if they are the same. Each phase is briefly
described below. The two variants of SNM are described as well.
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Key-extraction phase: This phase requires O(N) operations (N being the size of the
dataset). The keys are extracted from the designated fields or portions of fields. For example,
given the following table:

Rec. No. First-Name | Last-Name Address SSN
1 Sal Stolfo 123 First Street 45678986
2 Sal Stiles 123 Forest Street 45654321
3 Sal Stolpho 123 First Street 45688987
4 Sal Stolfo 123 First Street 45678987

The keys are obtained by concatenating the first three consonants of a last name with the first
three letters of the first name, followed by the address number and all of the consonants of the
street name, followed by the first three digits of the SSN, resulting in the following table.

Rec. No. Key
1 STLSAL123FRST456
2 STLSALI123FRST456
3 STLSAL123FRST456
4 STLSAL123FRST456

Sorting Phase: The records in the dataset are sorted on the “keys” so that potentially identical

records should be brought to close proximity. The time complexity for this phase is O(N log N).
Comparison and merging phase: A window of fixed size, w, is moved through the
sequential list of records thereby limiting records comparisons to the records in the window. That
is, each time a new record enters the window; the new entrant is compared with the previous w —
1 record to find a match. The first record in the window slips out of the window. The comparison
of records during this stage to determine their equivalence is a complex inferential process that
takes into consideration more information from the records being considered than the keys used
to bring them close together. The equational theory is employed to dictate the logic of domain
(not just value or string) equivalence. Rule-based model is used to determine if records close
together are the same. A typical rule-based system is of the following nature:
Given two records r; and >,
IF ri.Lastname = r.Lastname AND their first names differ
slightly AND r;. Address = r>.Address THEN
r; is equivalent to rz
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This phase has a time complexity of O(wN), where w is the size of the window and N is the
number of records to be compared.
The Single-pass and Multi-pass variants of SNM

The single-pass variant entails applying SNM once on the dataset. Its effectiveness
largely depends on how powerful the first portion of the key is to discriminate one record from
the other. The Multi-pass is the alternative approach in which several independent runs of the
SNM are applied on the dataset with the head portion of the keys varied at each run. The
argument in favor of this scheme is that no single key is adequate enough to bring all duplicates
together. One run may use the student’s contact address as the head of the key, the next run may
be based on key in which the head comes from the student’s ID#, and so on. Each run would
yield a set of pairs of records that could be merged using transitivity rule of the form:

Transitivity Rule
If record X was identified as record Y’s equivalence in one of the
independent passes, And record Y was identified as an equivalence of
record Z in another pass, Then record X is equivalent to record Z

Discussion: The combination of clustering and window scanning techniques is one of the
enviable features of SNM. Clustering and window-restricted comparison obviously limits the
number of comparison to items in the cluster and window. The idea of sorting on keys extracted
from the chosen fields is also a plus to this algorithm. However, a number of demerits are
identifiable. First, the fields from where the keys are extracted are dirty themselves, implying
that the keys obtained from them are also dirty. The direct consequence of this is that the single-
pass variant would not catch all the identical records. For example, date of birth written as
“12976” in database A, but appeared as “91276” in database B might not be brought to a close
neighborhood if date of birth is the head portion of the key. The multi-pass variant is too
complex in principle and time. “Dusting” the fields before extracting keys will definitely reduce
the number of passes needed to capture all the identical records in a large dataset.

2.2.2 Duplicate Elimination Sorted-Neighborhood Method (DE-SNM)
DE-SNM presented in [HS95b] improves SNM described previously. Its design is hinged
on the observation that most of the duplicate records detected by the scanning window always



have equivalent sort keys, hence it is more efficient to find the matching records during the
sorting phase, and retaining only one member (called the prime representative) for comparison.
Another improvement is the splitting of the sorted dataset into two lists — duplicate list and no-
duplicate list. The duplicate list contains all the records with exact duplicate keys, while no-
duplicate list contains all the other records. The duplicate list is screened through a small
window, which may result in further splitting of the original list into two smaller lists - the list of
matched records and a list of unmatched records. The list containing the unmatched records is
merged with the original no-duplicate list and a second window scan is performed. Figure 2.1
summarizes the DE-SNM operations. DE-SNM also has single-pass and multi-pass versions.

Input
Database
Unmatched tuples —
o e [ ™
Sort-merge Duplicates TP Windowscan e —
s <
elimination

Merge Regular
B Window Scan

Figure 2.1: Duplicate Elimination Sorted Neighborhood Method

Discussion: DE-SNM inherits most (if not all) of the downsides of the SNM since the keys upon
which sorting is based are extracted from fields, which are not preprocessed.

2.2.3 Data Value Conversion Rules

The set of rules described in [HW97] is designed to tackle context dependent conflicts,
which are forms of data value conflicts due to systemic disparities stemming mainly from
conflicting assumptions or interpretations in different data sources. In other words, these rules
can be used to describe quantitative relationships among the attribute values from numerous data
sources. Specifically, data value conversion rules remedy a situation where two attributes A; and
A,, which characterize the same property of an object in two data sources D; and D», but the
content c; in A, differs from the content c; in A,. Besides, the rules can equally handle aggregate



conflicts, which arise when an aggregate is used in one data source to indicate a set of values in
another.
Generally, these rules adopt the datalog notation, thus:
Head €= Body

The head predicate represents a relation in one data source, while the body is a conjunction of a
number of predicates, which can either be inbuilt arithmetic predicates or aggregate functions or
extensional relations present in the underlying data sources. In some cases (when conflicts are
caused by synonyms), lookup tables are created to be part of the conversion rules. An example
below helps to clarify the description given above.

Example: integrating data sources having different representations

Two data sources S.student with schema (sid, sname, major) and S.employee with
schema (eid, ename, salary) are to be integrated into S.student_employee with schema (id, name,
major, salary). The above task can be achieved through the following conversion rule:
S.student_employee (id, name, major, salary) €= S.student (id, name, major),

S.employee (eid, name, salary), S.same_person (id, eid).

The relation S.same_person shows the correlation between the student data source and the
employee database. Example of this is where a professor used grades (e.g. A+, A, A-, etc.) to
express students’ performances in one database DS; while another professor used raw scores
(e.g. 100, 93, 89, etc.) to express students’ performances in the second database DS,. The
following conversion rule is valid if the information contained in DS; and DS; are to be merged.
DS|.student_grade (id, name, grade) €= DS, (id, name, score), score_grade (score, grade).
The score_grade (score, grade) in the above rule is a lookup table that defines the relationship
between scores and grades thus:

Score_grade (>=95, ‘A+’)
Score_grade (>=87, ‘A”)
Score_grade (>=80, ‘A-*)

Score_grade (>= 36, ‘F’)

2.24 The Field Matching Algorithms
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Two algorithms are described in [ME96] to tackle problems of deciding if two field
values are semantic alternatives. These are “the basic field matching algorithm” and “a recursive
field matching algorithm™.

2.2.4.1 Basic Field Matching Algorithm

This algorithm proceeds in two steps: (a) The extraction and sorting of the atomic strings
of each field and (b) The atomic strings’ comparison — the number of matches is noted and used
in computing the basic matching score, whose value indicates whether or not the fields being
matched are the same. The fields are first conditioned by stripping them of the common or stop
words, such as {for, the, of, on, &, -, /}. Two atomic strings are taken to be a match if they are

the same string or if one is a prefix of the other. The example below is meant to exemplify the
description of this matching scheme.

Example: Consider a field whose value is “Comput. Sci. & Eng. Dept. University of California,
San Diego” and another field B with content “Department of Computer Science, Univ. Calif.,
San Diego”.
The preliminary stage involves removal of stop words from A and B thus:
A (without stop words) — “Comput. Sci. Eng. Dept., University California, San Diego”.
B (without stop words) — “Department Computer Science, Univ. Calif. San Diego”.
The next step is to sort the emerging atomic sirings as follows:
A (sorted) - California Comput. Dept. Diego Eng. San Sci. University
B (sorted) — Calif. Computer Department Diego San Science Univ.
There are 6 string; k {Comput. Sci, San, Diego, Univ. Calif.} in “A” that match some strings in
“B”. The overall matching score is computed using the following formula.
The overall matching score = k/(JA| + [B])
— g

=6/8+7) ={(6x2)/15}=0.38
2

The high value from the above computation implies that A and B are likely the same entity.

Discussion: The basic field-matching algorithm does not take into consideration abbreviations
that are not prefixes. Also, it has no solution to a scenario where one word, e.g., “ACM”,
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abbreviates two or more words, e.g., “Association of Computer Machinery”. The greater part of
its time complexity comes from the sorting phase, which requires O(n log n), where n is the
number of atoms common to the comparable tokens.

2.24.2  Recursive Field Matching Algorithm

This algorithm uses the recursive structure of typical textual fields. A degree of 1.0 is
assigned if one string matches the other exactly or if one abbreviates the other. A degree of 0.0 is
assigned if there is no match. Four patterns are used to resolve or match abbreviations.
@a) The abbreviation is a prefix of its expansion, e.g. “Univ.” abbreviates “University”, (b)
The abbreviation combines a prefix and a suffix of its expansion, for instance, “Dept.” is a match
for “Department”, (c) The abbreviation is an acronym for its expansion, example, “UCSD”
abbreviates “University of California, San Diego” and (d) The abbreviation is a concatenation of

prefixes from its expansion; for instance, “Caltech™ and “California Institute of Technology™ are
matches.

Discussion: The recursive field-matching algorithm has a quadratic time complexity, meaning
that every sub-field in A must be compared with every sub-field in B. The worst case arises
when each atomic string in A compares with each atomic string of B.

2.2.5 External Source-enabled Field-preprocessing Algorithm

The data cleaning algorithm described in [LH99] introduces the idea of pre-processing
the fields upon which sorting would be based prior to the sorting phase. It can be said to be an
improvement over the SNM and DE-SNM described earlier on. It is believed that the chances of
bringing potentially identical records to close neighborhood are increased by first pre-processing
the individual fields before sorting. The task of cleaning data is carried out in five steps, namely,
(a) Scrubbing of dirty data fields, (b) Tokenizing and sorting data fields, (c) Sorting of records,
(d) Comparison of records, and (e) Merging of matched records

Scrubbing of dirty data fields: The pre-processing task is accomplished with an (or

some) external data source(s). How this is done is shown in Tables 2.1-1, 2.1-2 and 2.1-3.
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SSNO Name Age
0273632T | Koh Yiak Heng | 43

'ﬂzzg

SSNO Name Age | Sex
3635290Y | Tan Kah Seng 16
Table 2.1-1: External Data Source Table 2.1-2: “Dirty” Record in Database
SSNO Name Age | Sex
0273632T | KohYiakHeng (43 | M

Table 2.1-3: “Cleaned” record in the database

The “dirty” record in the database is simply replaced with the corresponding record from the
external source file, which can be a birth registry, credit card database, etc.

Tokenizing and sorting data fields: This involves splitting of field values into
meaningful tokens. Example, consider three name fields taken from different sources, A with
value “Liu Kok Hong”, B with value “Liu K.H” and C with value “Yap Kooi Shan”. Tokenizing
each yields: A: {Liu, Kok, Hong}, B: {Liu, K, H}, C: {Yap, Kooi, Shan}. Sorting within field in
ascending order yields: A: {Hong, Kok, Liu}, B: {H, K, Liu}, C: {Kooi, Shan, Yap}.

Sorting of records: The entire database is sorted on the sorted tokens of the pre-
processed fields. Example, sorting on the name field of the preceding example yields:

B HK Liu
A Hong, Kok, Liu
C Kooi, Shan, Yap

Comparison of records: Records are compared to determine if they match. A window
of fixed size w is used to limit comparison to only records in the window. The concept of field
weightage (a value assigned by the user that indicates the relative importance of a field to
computing the degree of similarity between two records) is used to compute the degree of
similarity between two records. The computation of records’ degree of similarity is an essential
task in this phase. The degree of similarity shows the extent to which two records match or
otherwise. Different kinds of similarity matching are used. These are, exact string matching,
single-error matching, abbreviation matching and prefix substring matching.



(a) Exact string matching — A value of 1 is returned if string A exactly matches string B;
Otherwise 0 is returned, (b) Single-error matching — The matching task includes: checking for
additional characters, missing characters, substituted characters and transposition of adjacent
characters (c) Abbreviation matching — An external source file containing the standard
abbreviation of words may be consulted. Token A could be considered a likely abbreviation of
token B if and only if either or both of the following conditions hold: (i) 4 are encapsulated by B
(ii) all the characters in A appear in the same order as in B. The result of abbreviation matching
is 1 only when one token is found to be an acronym of the other, (d) Prefix substring matching
— This is concerned with finding two similar tokens where one is a leading substring of the other.
The result is 1 if all the characters in one are found in the other. Example, a prefix substring
matching between “Tech” and “Technology” (DoSre) returns a degree similarity of 1, since all
the characters in “Tech” are found in “Technology”. However, DOStechnology = 0.4, considering
that there are 6 characters in “Technology” that cannot be found in “Tech.” Generally, if the
length of the first string is x, then 1/x is subtracted from 1, (i.e. the maximum degree of
similarity) for each character not found in the second. For instance, the Degree of Similarity
(DoS) of token “cat” relative to token “late” is:
DoScsr =1 — 1/3 =0.67 (1/3 is as a result of character “c” in cat that is not found in /ate).
Conversely, DoS of token “late” relative to token “cat” is: DoSpe=1-(1/3 + 1/3) = 1-
2/3 = 0.33. (2/3 indicates that two characters — “I” and “e” in “late” are not found in
“cat”).
The results of the above series of comparisons are used to compute the similarity between the
entire fields — called field similarity. Fields sunilarmw and the assigned fields weightage are in
turn used to calculate the record similarity. The formula used to compute the field similarities is
given in proposition 1, while that for record similarity is expressed in proposition 2.

Proposition 1: Formula for Field Similarities

Given a field in Record X with tokens t,;, ..., tx, and a corresponding field in record Y with
tokens tyi, ..., tym- Token t,; is compared to the corresponding token t,;. If DoS ., ..., DOS 1,
DoS y, ..., DoS ym, are the maximum degree of similarities for tokens t,, ..., tx, and tyl, ...,

tym respectively, then the field similarity of X and Y denoted by Sime (X, Y) is mathematically
expressed as follows:

Sime (X. =" iai t + Z™ iz L) / (n+ m)




Proposition 1 is explained with the following example. Consider two records X and Y. X has a
name field with the following tokens (sorted), E T Ohanekwy, while Y has a name field with the
following tokens (sorted), Emenike Timothy Ohanekwu. Each token from X is compared with

corresponding token from Y, and the degrees of similarities (DoS) are presented in the following
table.

X: Xt Y: Vi DoS,; Dosyl
E Emenike 1.0 1.0-(6/N=0.14
X: x, Y:v; DoS,. DoS,;
Ohanekwy Ohanekwu 1.0—(1/8) =0.875 1.0-(1/8) = 0.875
X: x3 Y:vs DoS,3 DoS,;
T Timothy 1.0 1.0-(6/7=0.14

The field similarity of X and Y Simg (X, Y) from the above table are based on the formula given
under proposition 1, i.e. Simp (X, Y) = (Z" i «1 txi + £” i =1 tyi) / (n + m) becomes:

1.0+0.875+1.0 +0.14 + 0.875 + 0.14
3+3
4.03/6=0.672

Proposition 2: Formula for Record Similarity

Suppose a database has fields Fy, F, ..., F, with field weightages W), W, ..., W, respectively.
Given records X and Y, let Simg, (X, Y), ..., Simg, (X, Y) be the field similarities computed from
proposition 1. Then record similarity for X and Y is expressed as follows:

X% i Simg; (X, Y) * Wi

Assuming that records X and Y in the example given under proposition 1 have address fields,
which are used for cleaning as well. Let the field weightages assigned by the user to the name
and address fields be 0.55 and 0.45 respectively. Assuming that the address field similarity of X
and Y had been computed as 0.46. Then record similarity for X and Y, 3" =1 Simg; (X, Y) * Wi
is:

0.672 * 0.55) + (0.46 * 0.45) = 0.58



Merging of records: The last step is to merge matching records. Two records are duplicates and
hence merged if the record similarity exceeds a certain threshold, say 0.8. How the threshold is
determined was not disclosed in [LH99].

Discussion: The pre-processing stage introduced in this algorithm is a big plus, though the use of
external data source is not feasible in many instances. Also, leaving the decision at to whether
records being compared match or not to the end of the time consuming and processor-intensive
processes has a great time overhead. This algorithm could be improved in a number of ways: (1)
incorporating pre-processing procedure into the algorithm would eliminate or minimize the need
to consult external source files, (2) Decision as to whether two records do not match can be

determined at much earlier stage of their comparison, (3) Reducing the length of strings in
records being compared, etc.

2.2.6 IntelliClean: A Knowledge-based Intelligent Data Cleaner

Expert System technique is used in the data cleaning algorithm described in [LT00]. The
algorithm achieves its data cleaning task in three stages, namely, Pre-processing stage,
Processing stage and Validation and Verification stage.

Pre-processing stage — Conditioning and scrubbing of records are the main tasks of this
stage. These include “data type checks”, ‘“format standardization” as well as fixing of
inconsistencies raised by the use of abbreviations or different coding schemes (e.g., “M” for
male versus “F” for female). Reference functions and look-up tables are used in this stage. The
conditioned records from this stage are fed to the next stage.

Processing stage — This stage contains an Expert System (ES) engine, which has a set of
rules, which form the Knowledge Base mounted on Java Expert System Shell (JESS) language.
Generally, a rule is of an “IF <condition> THEN <action>" form. The knowledge base
consists of a number of rules, which can be grouped as follows: (i) Duplicate Identification Rules
— These are rules that contain conditions for identifying duplicate of records, (ii) Merge/Purge
Rules — The rules in this category stipulate how to merge records found to be duplicates, (iii)
Update Rules — These rules specify what events can lead to data updating, (iv) Alert Rules —
Contain conditions that raise alarm when satisfied.
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Any of the above rules could be fired opportunistically when the ES engine receives data
from the first stage. High Certainty Factor (CF) is assigned to rules that have high tendency to
identify true duplicates. Prior to merging operation, users assign Threshold value (TH) to groups
of records, which indicate their confidence that there will be a merge. CF and TH are compared
before any merge. Any merge that will result in a CF less than TH will be refused. Sorted
Neighborhood Method is also used to bring potential duplicates together. The duplicate records
that satisfy the conditions will fire the merge/purge rules.

Validation and Verification stage — Manual methods may be needed in a situation
where the merge/purge rules fail to detect some duplicate cases. Wrong merges and incorrect
updates could be reversed. All these could be aided by the information held in a log report file,
which keeps track of all the actions of the system as well as what causes a given rule to fire.
Another activity in this stage is the removal or adjustment of any rule discovered to consistently
merge records wrongly or update data incorrectly.

2.2.7 An Adaptive Duplicate Detection Algorithm

An algorithm that aids in detecting approximately record duplicates is presented in
[M097, Mo00]. The main contribution of this algorithm is the replacement of the fixed sized
window of [HS95a, HS98] with a priority queue whose size varies (expands or shrinks) in
response to the size and homogeneity of the discovered clusters in the database being scanned.
The use of variable sized window provides a solution to the limitations of fixed sized window
version, which are: (a) Insufficient number of comparisons made when there are more duplicate
records than the size of the window, which leads to some duplicates passing undetected, and (b)
Unnecessary comparisons are made when there are few or no duplicates.

The use of variable sized window significantly reduces (about 75%) the number of comparisons
while competing favorably with the work in [HS95a, HS98] in terms of accuracy.

How this algorithm works is summarized as follows: the entire database is sorted and
scanned with a priority queue of record subsets belonging to the last few clusters detected. The
priority queue contains a fixed number of sets of records each of which contains one or more
records from a detected cluster. A cluster of records would be saved in the priority queue only
when such contributes to the variability of the cluster being represented. In trying to determine a
match for a record, say Ry, the priority queue is scanned starting from the head (the cluster with
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highest priority). The cluster to which Ry belongs is compared with each known cluster in the
queue. There are three cases:

Case 1: Cluster-based comparisons are successful: In this case, Ry is found to be a member of a
known cluster in the priority queue. The decision is to combine the incoming cluster of which Ry
is a member with the matching cluster in the queue. The matching cluster becomes the highest
priority cluster and therefore is moved to the head. The process continues with the next record,
Ry+1 in the sorted dataset.

Case 2: Cluster-based comparisons are unsuccessful: In this, the incoming cluster to which Ry
belongs does not match any of the clusters in the priority queue, which leads to record-based
comparison. Record-based comparison entails iterating through each cluster comparing each
member of the cluster, R;, with Ri. Union (R;, Ry) operation is used to combine the clusters of R;
and Ry if Ry is found to match any record R;. Besides, Ry may be included as a member of the
cluster, which R; is a member of. If the comparison between R; and Ry did not return a high score
then other members of that cluster are skipped while the next priority cluster is checked. The
intuition is that if there is no match between R; (which is the first record in a given cluster) and
Ry then there is high probability of failure if comparison is done with the rest of the members
(Rixn, >=1) of the cluster. The next member of a cluster is considered in an unsuccessful

comparison only when the comparison score between R; and Ry is very close to the matching
threshold.

Case 3: Record based comparison is unsuccessful: This is the case when Ry is not found to
‘match any record in all the clusters of a priority queue. The action is to create a one-member
cluster for Ry, which is given the highest priority, as such becomes the head cluster. The cluster
with the lowest priority is dropped from the priority queue if the creation of a new cluster
increases the size of the queue beyond expectable limit.

2.2.8 The AJAX: the Extensible Data Cleaning System
The AJAX models the data cleaning logic as a directed graph of data transformations,
which starts from some input source data and terminates by returning clean data. AJAX is



designed to accept as input a set of possibly erroneous and inconsistent data flows (e.g., files
consisting of fixed-size records or relational tables) and return a set of consistent, error-free and
formatted data flows. AJAX is designed to handle data cleaning problems in the context of a data
warehouse construction and specifically in a telecommunication system domain. Another
distinguished contribution of AJAX is the provision of a declarative and extensible language for
specifying the desired transformations. The language specification comprised SQL statements
enabled with a set of specific primitives. The declarativeness and extensibility of AJAX makes it
easy to deploy and maintain. Another side of the system’s extensibility is the involvement of the
user during the data cleaning process. There are two points where the user is needed, namely, (a)
exceptional situations that may arise during the data cleaning process, and (b) inspection of the
intermediate results. AJAX incorporates a data lineage mechanism, which is used to explain the
actions of the system. With the help of the lineage component, the user can backtrack within a
data cleaning program execution in order to disclose the input records that generate a given
output. The knowledge gained during system backtracking serves to refine the data cleaning
criteria as well as to iterate the cleaning procedures. Metadata annotations dynamically generated
during the running of the data cleaning system help to support the data lineage process.
Therefore, AJAX is both iterative and interactive. AJAX uses a lot of optimization techniques,
which are not discussed in this thesis, but which are fully described in [GF00, GFO1a, GF01b].

2.2.9 The Potter’s Wheel System

Another data cleaning framework called Potter’s Wheel is presented in [RHO0]. It
integrates both transformation and discrepancy detection in a single interactive framework. This
framework allows users to gradually build transformations by composing and debugging
transforms in a stepwise fashion on a spreadsheet-like interface. It also allows the effect of any
change or transformation by the user to be displayed immediately for either acceptance or
rejection. It is not possible to describe all the data cleaning operations of this system. However,
a selected few are described next.

Divide operation: this performs a conditional column division and is employed to solve
problems where both first and last names are mapped unto the first name column of another.
Figure 2.2 shows how the “divide operation™ solves the problem of this nature. This operation
simply separates the occurrence of both “the first and last names™ on one column from where



each name occurs in a column. Adding another column for only records having their first and last
names together does this.

Horizontal transforms: this is used to solve higher-order schematic heterogeneities,
which arise when information is stored partly in data values, and partly in the schema. An
example of a higher-order heterogeneity is where a student’s grades are outlined in one row per
course in one schema, and in multiple columns in another. A number of operations are employed
in horizontal transformation. One operation is called “split”, which splits value in one column
into two or more columns. Another operation is called “fold”, which converts a single row into
multiple of rows. Figure 2.3 shows how both “split” and *“fold” operations are used to solve a
problem called a “high-order” disparity.

Stewart, Bob ’ St Bob
Anna Davis ewart, -
. Anna Davis
DoleJerry Divide DoleJ
Joan Marsh eITy
Joan Marsh

Figure 2.2: The divide operation of the Potter’s Wheel system

Family { Members Family Family
Latimer | George, Anna [o o) | Latimer | George | Anna Latimer | George |
Smith | Joan Smith | Joan Fold )1'Latimer [ Anna
Bush John, Bob Bush John Bob Smith | Joan
Smith
Bush John
Bush Bob

Figure 2.3: Fold and Split operations of Potter’s Wheel System

The split arrow in Figure 2.3 is an operation that separates family members listed in a single
column into individual members, where each member occupies a column. This increases the
number of columns. The fold arrow reduces the number of columns, but increases the number of

rows. It is an operation that create separate row for each family member occurring in a separate
column.



CHAPTER 3
A Pre and Post Data Warehouse Cleaning Technique

This chapter gives comprehensive descriptions of the two data cleaning algorithms proposed
in this thesis. The first algorithm is called “Pre-data Warehouse cleaning Algorithm”
(PreWA), which is designed to clean data the first time a data warehouse is being constructed.
The second algorithm, “Post-data Warehouse cleaning Algorithm” (PosWA) is designed for
subsequent cleaning tasks on an existing data warehouse. Section 3.1 describes the problem

domain. A detailed description of PreWA is covered in section 3.2, while PosWA is presented
in section 3.3.

3.1 The Problem Domain

A good example of domain where PreWA and PosWA are needed is a financial
institution such as a bank, where different units handle different transactions. For example, a
savings account unit keeps track of the transactional activities of the customers in savings
account. Another unit may solely be responsible for keeping the records of the activities of
customers in the checking account. Assume that customers’ personal information in the
savings account is kept in a data source called SA, which is shown as Table 3.1-1 and that
customers’ personal information in the checking account is maintained in another data source
called CA shown as Table 3.1-2. Assumed also that the customers’ transactional activities are
kept for a short period of time (e.g., 7 days) in two separate sources, TSA (for SA customers)
and TCA (for CA customers). Instances of TSA and TCA are shown as Table 3.1-3 and Table
3.1-4 respectively. Both tables show the customer’s identity numbers, the nature of their
transactions (e.g., depositing money, withdrawing money, etc.), transaction time, and the
amount of money involved in each transaction.

Data warehouse is needed in this arena so that the customers’ transactional records
could be kept for a longer period of time (e.g., 5 to 10 years). Building a data warehouse for
the first time from the above sources requires initial cleaning, which is not obvious when the
sources are viewed in isolation. Subsequent cleaning on a standing warehouse is unavoidable
considering the fact that, (1) the data warehouse needs to be refreshed with the transactional
activities done after the initial cleaning tasks and (2) the data warehouse could be expanded to
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accommodate new units (e.g., the credit card unit), which were not part of the original data
warehouse.

Although a banking environment is the primary implementation domain of our
algorithms, yet they can work well in other domains such as bibliography, hospital, and
transport.

Cid CName CBirth CSex CPhone CAddress
S001 John Smith O 25-Dec-70 | M | (519)111-1234 Sunset # 995 N9B3P4
S002 | Tim E. Ohanekwu | 10-Jan-75 | M 2566416 ABCD St. No. 695 n9b 2t7
S003 Colette Jones 08/Aug/64 | M 123-4567 600 XYZ apt 5a5 N7C4K4
S004 | Ambrose A. Diana | Nov/11/72| F 5196669999 4 Church Rd. N8K6t6
S005 Smith John 30-Oct-78 F 519 560 3626 182 Jesus Ave M9B3J7
Table 3.1-1: SA, Savings Account Customers
Cid CName CBirth Sex Phone Address
1001 S. John 25-12-1970 | M 1111234 995 Sunset Ave, n9b 3p4
1002 Jon Cole 08-08-1964 | M Null XYZ No. 600 apt 585 n7c 4k4
1003 | Ambo D. Dian 10-11-1972 F 566-5555 Church St. # 4 n8k 6t6
1004 | Ohanekw TE 1-1-75 M | 5192566416 # 695 abed street N9B2T7
1005 | Edema Tom Obi | 23-Mar-1967 | M 977-5950 98 Jesus Rd. M8C 884
Table 3.1-2: CA, Checking Account Customers

Cid Activity DateAndTime Amount

S005 Deposit 1/1/02, 9.30AM 500

S001 Deposit 11/1/02, 4.30PM 1000.50

S005 Withdraw 15/3/02, 1.45PM 125

S004 Withdraw 6/4/02, 11.00AM 325.50

Table 3.1-3: TSA, a Short-lived Activity History For SA Customers

Cid Activity DateAndTime Amount
1001 Deposit 2/1/02, 12.00PM 650
1004 Withdraw 5/3/02, 5.00PM 150
1005 Deposit 8/4/02, 9.45AM 1000
1002 Withdraw 15/2/02, 10.00AM 250
1003 Deposit 8/4/02, 7.00PM 450.50

Table 3.1-4: TCA, a Short-lived Activity History For CA Customers

36



3.1.1 The Data Warehouse Schema

Subject orientation is one of the most basic characteristics of a data warehousing
system, meaning that data in it are organized around the major subject areas of the
organization. For the banking environment in our example, the subjects of interest are, (1) the
customers, (2) the nature of transactions carried out, (3) the source of the transaction (account
type) and (4) the transaction time. Each of these subject areas constitutes a dimension table
(DT) of the data warehouse. The data warehouse also contains huge fact table (FT). The
primary key from each of the dimension tables appears as a foreign key in the fact table. This
is what gives the data warehouse the star schema. Figure 3.1 shows the schemas of each of the
dimension tables, while the star schema of the data warehouse is shown in Figure 3.2.
Subsequent discussion in this thesis will be based on the customer dimension table instance
shown as Table 3.1-5 and an instance of a fact table shown in Table 3.1-6.

Row | WID Name Sex Phone DBirth Address

1 S001 John Smith O M (519) 111-1234 25-Dec-70 Sunset # 995 N9B3P4

2 $002 | Tim E. Ohanekwu M 2566416 O0l-Jan-75 ABCD St. No. 695 n9b 2t7
3 S003 Colette Jones M 123-4567 08/Aug/64 600 XYZ apt 5a5 N7C4K4
4 S004 | Ambrose A. Diana F 5196669999 Nov/11/72 4 Church Rd. N8K6t6

5 S005 Smith John F 519 560 3626 30-Oct-78 182 Jesus Ave M9B3J7

6 1001 S. John M 1111234 25-12-1970 995 Sunset Ave, n9b 3p4
7 1002 Jon Cole M Null 08-08-1964 XYZ No. 600 apt 585 n7c 4k4
8 1003 Ambo D. Dian F 566-5555 10-11-1972 Church St. # 4 n8k 6t6

9 1004 Ohanekw T E M 5192566416 1-1-78 # 695 abcd street N9B2T7
10 1005 Edema Tom Obi M 977-5950 23-Mar-1967 98 Jesus Rd. M8C 884

Table 3.1-5: An Instance of (yet to be cleaned) Customer Dimension Table

Row WID | Trans-code | Account-code Trans-time Amount
1 S005 D SA 570A 500
2 1005 D CA 585A 1000
3 1004 w CA 1020P 150
4 S005 w SA 825P 125
5 1001 D CA 720P 650
6 S004 w SA 660A 325.50
7 1002 w CA 600A 250
8 S001 D SA 990P 1000.50
9 1003 D CA 1140P 450.50

Table 3.1-6: An Instance of (yet to be cleaned) Fact Table
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Fact-table (WID, Trans-code, Account-code, Trans-time, Amount)
Customers (WID, Name, Sex, Phone, DBirth, Address)
Transactions (Trans-code, Trans-name)

Accounts (Account-code, Account-name)

Times (Trans-time, Day, Month, Year)

Figure 3.1: Schemas of the Fact and Dimension Tables

3.1.2 The Dirt to Clean

Tables 3.1-5 and 3.1-6 contain data that show most of the data cleaning problems
identified in chapter 1, and for which PreWA is being designed to clean. The dirt present in
each table is described under different subsections.

Figure 3.2: The Data Warehouse Star Schema

3.1.2.1 Dirt in the Customer Dimension Table

Two levels of dirt are identifiable from Table 3.1-5. These are field or attribute level
dirt and record level dirt. By field level dirt, we mean “dirt” that occurs in each field of a
given record. Record level dirt means collective fields’ dirt on a given row of Table 3.1-5.

Field Level Dirt: One form of field level dirt apparent in WID field is “type mismatch”, i.e.,
“string type” (e.g., S001) versus “integer type” (e.g., 1001). This leads to a subtle kind of
synonym problem, because a given customer may be represented with different warehouse id
(WID). The name field also presents a number of dirt, which includes: (1) inconsistent name
values, e.g., “Colette Jones” in the name field of row 3 of Table 3.1-5 may be the same as
“Jon Cole” in the same field of row 7, “S. John” (row 6) may be the same person called “John
Smith O” (row 1). This is a different representation of the same entity, which is a synonym
problem. (2) Typographical errors, e.g., “Ohanekw”™ (row 9) instead of “Ohanekwu” (row 2),
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“Ambo” (row 8) instead of “Ambrose” (row 4). (3) There is also a possibility of the same
name referring to two or more different entities, e.g., “John Smith” occurring in many rows
may actually be referring to different persons. This gives rise to a homonym problem. There is
also dirt in other fields of Table 3.1-5. A clear example of dirt in the “phone” field is format
difference, e.g., “(999)-9999999” versus *“999-999-9999” versus “9999999999” versus
“9999999" versus *“999-9999 versus “999 999 9999 versus “9-999-999-9999”. The format
difference is responsible for the different representations of the same telephone number, e.g.,
“2566416” (row 2) versus “5192566416” (row 9). Format difference is present in the
“DBirth” field as well. The “Address” field contains some obvious dirt due to different
addressing schemes, e.g., “Sunset # 995 N9B3P4” (row 1) versus “995 Sunset Ave, n9b 3p4”
(row 6). The implication of field level dirt is that “no particular field is clean enough to

determine record duplicates”.

Record Level Dirt: The combination of all the fields’ dirt produces record level dirt. For
example, row 1 of Table 3.1-5 is a record with the following content (excluding the Row and
WID fields), “John Smith O, M, (519) 111-1234, 25-Dec-70, Sunset # 995 N9B3P#". This appears
to be the same person as row 6, with the following content (excluding the Row and WID
fields), “S. Jokhn, M, 1111234, 25-12-1970, 995 Sunset Ave, n9 3p4”. An obvious implication of

record level dirt is “that duplicates are not easily determined”.

3.1.2.2 Dirt Present in the Fact Table

There is only field level dirt in Table 3.1-6 visible in the WID field. The type
mismatch and lack of value uniformity in this field leads to the synonym problems in which
the same customer is identified with different WID, thereby making it difficult (if not
impossible) to decide all the transactions carried out by the same customer.

3.1.3 The Initial Data Cleaning Tasks

A number of initial data cleaning tasks to be carried out on Tables 3.1-5 and 3.1-6 are
identified and described under different subheadings, as follows.

Data Cleaning Tasks on the Customer Dimension Table: Three main initial cleaning tasks to
be performed on Table 3.1-5 by PreWA are: (1) duplicate detection, (2) duplicate elimination
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and (3) proper identity generation. Duplicate detection task entails the combination of
(pieces of) information from two or more fields to determine if two or more records showing
the same or nearly the same features refer to the same entity or not. Duplicate elimination
task is concerned with the retention of only a copy of the records detected to be the same.
Proper identity generation task involves generating the identity on the WID field from the
two or more fields that could be used to uniquely distinguish records. For example,
“122570JOS” (generated from the combination of some tokens of both the “DBirth” and
“Name” fields) is a proper WID for row 1 of Table 3.1-5. A target customer dimension table
after the initial cleaning process on Table 3.1-5 is shown as Table 3.1-7.

Row WID Name Sex Phone DBirth Address
1 122570JOS John Smith O M (519) 111-1234 25-Dec-70 Sunset # 995 N9B3P4
2 1175EOT Tim E. Ohanekwu M 2566416 01-Jan-75 ABCD St. No. 695 n9b 2t7
3 8864CJ3 Colette Jones M 123-4567 08/Aug/64 600 XYZ apt 5a5 N7C4K4
4 111172ADD | Ambrose A. Diana F 5196669999 Nov/11/72 4 Church Rd. NSK6t6
5 103078JS Smith john F 519 560 3626 30-Oct-78 182 Jesus Ave M9B3J7
6 3236TEOT Edema Tom Obi M 977-5950 23-Mar-1967 98 Jesus Rd. MSC 884

Table 3.1-7: A Target Customer Dimension Table without Duplicates

Data Cleaning Tasks on the Fact Table: We need to establish a link between the customer
dimension table and the fact table such that it will be possible to determine all the transactions
carried out by a given entity. This is not possible with Tables 3.1-5 and 3.1-6 because
different WIDs (e.g., S001 and 1001) are used to represent the same entity (John Smith O and
S. John). One implication of this is that it is impossible to know that “John Smith O” with
savings account also operates a checking account. This is also the case with “Tim E.
Ohanekwu”, “Ambrose A. Diana”, etc. The solution to this problem is to use the same identity
value for the same real world entity. For example, “122570JOS” will be used for all the
occurrences of “S001” and “1001” in the fact table to reflect the fact that “John Smith O™ and
“S. John™ are the same person. The same is done for records “S002” and “1004”, “S004™ and
“1003”, etc. The target fact table is shown as Table 3.1-8.




Row WID Trans-code | Account-code Trans-time Amount
1 103078JS D SA S7T0A 500
2 32367EOT D CA S85A 1000
3 1175EOT w CA 1020P 150
4 103078JS w SA 825P 125
5 122570J0S D CA 720P 650
6 111172ADD w SA 660A 325.50
7 8864CJ w CA 600A 250
8 122570308 D SA 990P 1000.50
9 111172ADD D CA 1140P 450.50

Table 3.1-8: A Target (cleaned) Fact Table

3.2  PreWA: Pre-data Warehouse cleaning Algorithm

PreWA is designed for cleaning data the first time a data warehouse is constructed. It
takes dirty tables (such as Tables 3.1-5 and 3.1-6) and returns cleaned tables (such as Tables
3.1-7 and 3.1-8). PreWA accomplishes the cleaning tasks in a number of steps.

Step 1: The selection of fields by a user: This is the step where a user plays the role of
selecting some fields that can uniquely distinguish one record from another. The cleaning of
the data will be based on the fields selected by the user. Thus, the user is expected to select a
good combination of fields that would perfectly differentiate records. The combination of
fields that would uniquely identify records varies from one domain to another. For example,
the “name” field, “DBirth” field and “address” field could be a perfect combination in our
banking domain. On the other hand, the “author” field, the “title” field, the “volume-number”
field and the “journal” field could perfectly identify publications in a bibliographic domain. In
all cases, fields like “gender”, “age” and “salary” will not be adequate for the cleaning
process.

Step 2: Extraction of Token Keys: Each of the fields selected by the user is decomposed into
its constituting important members. For example, a date element, (e.g., “19-Dec-1978”) is
decomposed into three members: (19) day, (Dec) month and (1978) year, which are the
important members, while characters like “-*, “/ are not useful. Generally, characters like
S, LT, (€Y, <, «, are considered unimportant in date, address, and telephone values.
Titles like “Pastor”, “Mr.”, “Ms”, and “Dr” may be excluded in name values, while stop
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words like “the”, “of”, “for”, “in™ are considered unimportant in publication titles. Further
operations (e.g., conversion, further decomposition, etc.) on some members may be necessary
before the re-composition operation. For example, “Dec” is converted to its numeric
equivalence (12), while “1978” is further decomposed into the century (19) and year (78)
parts. The century part is discarded. Thus, the surviving members from the original value (19-
Dec-1978) are 19, 12 and 78. These are sorted in ascending order and recomposed to form the
token key (121978) for a given record on the date field. Different rules are used to extract

token keys for different types of fields. Further description of each of the token extraction
functions is given in section 3.2.1.

Step 3: Sorting of the Token Key Table: Two tables are produced from the original token key
table that emerged after step 2. The first table emerges by sorting the token key table on the
token key field extracted from the most discriminating field (e.g., the DBirth field), while the
second table comes from sorting the token key table on the token key field extracted from the
next most discriminating field (e.g., the name field). Sorting the token key field of choice on
ascending order produces both tables. Further discussion on this step is provided in subsection
3.2.2

Step 4: Duplicates detection and elimination and WID Generation: There are three sub-steps
here. The first is concerned with determining if records in closest proximity refer to the same
entity or not. PreWA adopts both the exact matching and the similarity matching techniques
for duplicate detection task. The exact-matching technique will consider two records as a
match only when both match “character-to-character”. In contrast, similarity matching does
not insist that two records match “character-to-character” to be considered the same. Instead,
all the (or substantial number of) characters in one must be contained in the other. Thus,
“Tim” and “Timothy™ are not the same when the exact matching scheme is used, but the two
tokens would be identified as the same when the similarity-matching scheme is used.
Duplicate elimination is the second sub-step and is simply concerned with the retention of one
copy of the records detected to be the same. The third sub-step is to generate a WID for
records by joining the two token keys used for sorting in step 3. More comprehensive
description of step 4 (including duplicate detection rules and propositions) is given in
subsection 3.2.3.



3.3: PreWA (Input: Dirty tables e.g., Tables 3.1-5 and 3.1-6)
Output: Clean Tables, e.g., Tables 3.1-7 and 3.1-8
BEGIN
Step 1:
Display a list of fields for a user to select at least two fields that could be
combined to differentiate records from a pool of records. Also, select a proper
field description from the field description options for each of the fields selected.

Step 2:
For each field selected do
Decompose the value into n (n >= 1) token member(s); apply further
operations (e.g., conversion, further decomposition) to some members if
necessary; extract some (or all the) parts of the members, sort them in a
certain order (e.g., ascending) and combine them to get a single token key for
the value
Step 3:
Sort the token key table on two token key fields extracted from the two most
discriminating fields

Step 4:
For all the records in immediate neighborhood do
Apply duplicate detection procedures
If two or more records are found to be duplicates then
Apply WID generator for duplicates, eliminate duplicate copies,
and apply results to the tables
Else

Apply WID generator for non-duplicates, and apply results to the
tables

Figure 3.3: Main Steps of PreWA

Figure 3.3 shows the formal and compact version of the four steps given above. Three
definitions of “immediate neighborhood” in step 4 of Figure 3.3 are given depending on the
position of a record in a dataset where the number of records is greater than 1. A given record
R could be in any of the following three positions: (1) first, (2) last and (3) anywhere between
first and last position. A record R in the first position, fp, has only one neighboring record NR
at position fp +1. A record R in the last position, Ip, has only one neighboring record NR at
position Ip — 1. A record R at neither the first nor last position, mp, has two neighboring
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records NRs at positions mp -1 and mp + 1. These definitions are employed in the duplicate
detection phase covered in sub-section 3.2.3.1.

3.2.1 Extraction of Token Keys

Token keys are extracted from some parts or subparts of the sorted tokens. Three
types of token keys are identified in this thesis, namely, numeric token keys (obtained from
numeric-dominated attribute values), alphabetic token keys (obtained from alphabetic-

dominated fields) and alphanumeric token keys (extracted from fields consisting of both
numeric and alphabetic members, e.g., address field).

Numeric Token Keys: These keys consist of only digits (0 — 9) and are likely obtained from
numeric fields like “telephone numbers”, “dates of birth”, “employee ids”, “student ids”,
*social insurance numbers” (SSN). Three functions are defined to extract token keys from any
numeric fields. For example, a “zelephone-token-extractor” is a function that takes values in
any of the following forms, “(519) 256 6416, 51925664167, “1-519-256-6416", “2566416”,
“256-64167, “256 6416”, etc., and returns the last 7 digits, namely, “2566416”. Similarly, a
“date-token-extractor” is a defined function that extracts token keys from date-formatted
values (like dates of birth, dates of publications, dates of employment, etc.). In other words,
this function takes values of any of the following forms: “12-10-78, “10th, Dec, 1978,
“10th, December, 78”, “December, 10th, 78", etc., and returns numeric token key of the
following nature: 101278. Extracting token keys from other regularly formatted numeric
fields (e.g., SSN, student id, etc.) is achieved by yet another function called “regular-numeric-
token-extractor”, which when fed with values of the following nature: “999-666-666", “(999)
(666) (666)”, “999 666 666 etc. returns a numeric token of the form: 999666666.

Alphabetic Token Keys: These keys consist only of alphabets (aA — zZ) and are obtained
from fields consisting of only alphabets, e.g., “name of persons”, “company names”, “journal
names”, “publication titles”, etc. A function called “alphabet-token-extractor” is defined to
take alphabet-dominated values like “Mr. Ohanekwu Tim Emenike” and return alphabetic
token key of the form: “EOT". Each letter in “EOT" is taken from the first letter of the token



members: “E” from Emenike, “O” from Ohanekwu and “T” from Tim. The letters in the
emerged token key are sorted in a given order (ascending in this case).

Alphanumeric Token Keys: The keys in this category may consist of both numeric and
alphabetic parts. Such keys can be obtained from field values that contain both numbers and
strings. A good example is an “address” field. A function called “alphanumeric-token-
extractor” is defined, which (1) decomposes a given alphanumeric value into a number of
members, (2) scans through the set of members and selects only tokens that are either numeric
or alphanumeric in nature, (3) further decomposes each of the alphanumeric part to its
numeric and alphabetic parts, and (4) sorts the set of tokens in certain order (e.g., ascending)
to get an alphanumeric token key. Applying the above sub-steps on “600 XYZ blvd apt 5a5
N7C4K4” yields “55 600 744 A NCK”.

Example: Given that Table 3.1-5 is the table from which a user selects fields for cleaning.
Assuming that the user selects three fields, namely, “Name”, ‘DBirth” and “Address”.

Applying the token key extraction procedures already described would result in a token key
table shown as Table 3.2-1.

Row | WID | NameKey | DBirthKey AddressKey
1 S001 JOS 122570 934995NBP
2 S002 EOT 1175 927695NBT
3 S003 cl 8864 74455600AKNC
4 S004 ADD 111172 4866NKT
5 S005 IS 103078 937182JMB
6 1001 IS 122570 934995NBP
7 1002 c 8864 744585600KNC
8 1003 ADD 101172 4866NKT
9 1004 EOT 1175 927695NBT
10 1005 EOT 52367 88498MCS

Table 3.2-1: Token Keys Table
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Extracting tokens from n number of fields in N number of records requires time in the order
of (nN), while sorting within tokens takes Log,N time. Hence step 2 has overall time
complexity of @(NLogN).

3.2.2 Sorting the Token Keys Table

One novel idea being introduced in this thesis is the use of the (short lengthened)
token keys for record comparison purposes. Previous algorithms (HS95a, HS95b, HS98) use
the extracted keys to bring likely duplicates to a close neighborhood only, though the keys are
also used for clustering in [HS95b, HS98]. The concept of tokens mentioned in [LH99] differs
significantly from ours in that their tokens are much longer than ours. It had long been
discovered that sorting is the surest way to bring same record together [BD83]. Two tables,
Tables 3.2-2 and 3.2-3 are produced by respectively sorting Table 3.2-1 on the two most
discriminating token key fields. Table 3.2-2 is the outcome of sorting Table 3.2-1 on the
“DBirthKey” field, while Table 3.2-3 results from sorting Table 3.2-1 on the “NameKey”
field. The decision to sort the token keys table on the two most powerful token fields hinges
on the fact that a singular token field may fail to bring potential duplicates together due to
digit or letter differences in the tokens. These are the cases with records 4 and 8 in Table 3.2-1
and records 1 and 6 in Table 3.2-2. Records 4 and 8 are not in proximity due to a digit
difference in the DBirthkey token upon which the sorting is based. The presence of a letter in
the NameKey token of record 1 and its absence in record 6 is responsible for the spreading
apart of the two possible duplicates. This means that there will be a maximum of 2
independent passes during the duplicate detection and elimination phase considered next. This
is a significant improvement over multi-pass version of the algorithms in [HS95b, HS98]
where the number of runs varies proportionally to the number of fields selected for cleaning.

The sorting of token key table in step 3 has a time complexity of (LogoN), N being the
number of records in the dataset.



Row | WID | NameKey | DBirthKey AddressKey
2 | S002 EOT 1175 927695NBT
9 1004 EOT 1175 92769SNBT
3 S003 CJ 8864 74455600AKNC
7 1002 CJ 8864 744585600KNC
10 | 1005 EOT 52367 88498MCS
8 1003 ADD 101172 4866NKT
5 S005 IS 103078 937182JMB
4 | S004 ADD 111172 4866NKT
1 S001 JOS 122570 934995NB P
6 1001 JS 122570 934995NB P

Table 3.2-2: Token keys Table sorted on the DBirthkey token field

Row | WID | NameKey | DBirthkey AddressKey
4 | S004 ADD 111172 4866NKT
8 1003 ADD 101172 4866NKT
3 | So03 c 8864 74455600AKNC
7 1002 CJ 8864 744585600KNC
2 | S002 EOT 1175 927695NBT
9 1004 EOT 1175 927695NBT
10 | 1005 EOT 52367 88498MCS
1 | soo1 JOS 122570 934995NBP
S | So0s JS 103078 937182JMB
6 | 1001 JS 122570 934995NBP

Table 3.2-3: Token keys Table Sorted on the NameKey field

3.2.3 Duplicate Detection, Elimination and WID Generation

This step comprises three sub-steps: (1) duplicates detection, (2) duplicate elimination
and (3) generating of the warehouse identity.

3.2.3.1 Duplicate Detection

This is accomplished by comparing neighboring records on Tables 3.2-2 and 3.2-3.
The motivation to use the token keys for record comparison is predicated on the following

valid argument:

If the token keys are sufficiently strong enough to bring duplicates together, then they can

equally be used to determine record match
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The above argument is more formally expressed as proposition 1:

Proposition 1:

Two or more records from different sources within the same application domain would
most likely have the same or nearly the same token keys if such keys were extracted from
the most uniquely identifying attributes of the records.

PreWA Record Matching Path: An illustration of the pathway followed by PreWA in an
attempt to determine if two records being compared match or not is given next. Given two
records, R, and R; being compared. R, and R, have m pairs of token key fields as follows:
Riti, Rita, ..., Ritm; Raty, Raty, ..., Raotny

The first task is for PreWA to determine a similarity match count (SMC), which indicates the
number of corresponding token key pairs that match perfectly. The value of SMC determines
whether the match is (1) perfect, (2) near perfect, (3) maybe and (4) no match at all.

A Perfect Match: SMC equals the number of fields used for cleaning. The conclusion is that
R; and R; are the same. Perfect match could also be on field (token) level basis, which is
explained as follows. Given an n-character token t; belonging to R; and an n-character token

t2 for R», there is a perfect match between tokens t; and t; if both are the same at all points.
Mathematically:

Riti=Retyi=1,..,n

Thus, there is a perfect match on the AddressKey token of records S002 and 1004 of Tables
3.2-2 and 3.2-3 since S00292769sn8T; = 1004 92769snmT;. Similarly, there is a perfect match on
record level between records S002 and 1004 because all the corresponding fields match
perfectly since S002oT, 1175, 9276958813 = 1004 0T, 1175, 92769sNBT}. A similarity matching
function on S002 and 1004 returns a similarity match ratio (SMR) of 1.0. Generally, a perfect

match has an SMR of 1.0.How the SMR is determined is explained in the “maybe a match”
section.



Near Perfect Match: SMC is not equal to the number of fields used in cleaning, but close to it.
For any two records R, and R; to be considered a “near perfect match”, their SMC must lie
somewhere between 0.67 and 0.99. Two records, R; and R, showing a “near perfect match”
features are taken as the same. It becomes evident with the help of the above definition of a
“near perfect match™ that records S003 and 1002 in both Tables 3.2-2 and 3.2-3 are near
perfect match (hence the same entity) since 2 out of 3 token key fields match perfectly
thereby recording a similarity match count (SMC) of 2/3 (0.67). The SMR function on the

three token key fields of S003 and 1002 returns an SMR of 0.94. How this figure is obtained
is given below.

Maybe a Match: Record R; “may be a match” to record R, if at least one of their
corresponding tokens match perfectly. Formally, given two adjacent records R, and R, with n
pairs of token keys (Riti, Rita, ... Rity; Roty, Rota, ... Rotn), R; may-be a match to R; if at least
one of these is true: R,t; = Rat; Or R;it; = R,t; Or ... Rit, = Ryty. Maybe a match is not
sufficient to conclude that R, is identical to R>, but is an indicator that the records being
compared may be referring to the same entity. Similarity matching function is applied on the
tokens that did not match. The size of the similarity match ratio will determine whether R;
and R will be considered the same of not.

Similarity Match Ratio: Given two tokens t; and t, with m characters and n characters
respectively. Assuming that n = § and m = 6. The Similarity Match Ratio (SMR) is the
number of common characters in t; and t, divided by the average length of m and n. That is,
SMR = (number-of-common-characters in t; and t;) / (n + m)/2.

Example: It is evident from Table 3.2-3 that there is a maybe match situation for S00S and
1001 since their NameKey tokens match perfectly. The SMR function is applied to the other
two token key pairs that did not match, namely, DBirthKey and AddressKey token keys. The
SMR = 6/15 = 0.4. The conclusion from the fow value of SMR is that S005 is not the same
person as 1001, though their NameKey tokens are the same. PreWA can only match both
records only when their SMR is as high as 0.8 or greater. High SMR is necessary in PreWA in
order to avoid false matches at a “maybe match™ situation.
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No match at all: This is the case where SMC is 0, i.e., no token key pair match for R; and R..
Formally, given records R; and R» with n pairs of token keys as follows: {(Rit;, Rati), (Rit,
Rat) ... (Rits ... Raty)}. Ry does not match R; at all if: Rit; # Rxt; And Rit; # Rpt; And ...
Rit, # Ryty. Thus, PreWA will conclude that two records are not identical if their SMC is 0.

The best case for the duplicate detection is when the detection process ends at either a
“perfect match™, “near perfect match™ or “not a match at all”. The time required is n * (N-1),
where n is the number of token fields, while N is the total number of records in a dataset. The
worst_case is when duplicate detection reaches “maybe a match” stage, in which the time
required is n * (N-1) + m/, where m is the number of tokens fields involved in the similarity
match, while / is the longest length of the tokens.

Duplicate Detection Resuits: The results of applying the duplicate detection procedures
discussed so far separately on the sorted token key tables (Tables 3.2-2 and 3.2-3) are shown
as Tables 3.2-4 and 3.2-5. Table 3.2-4 is the result of applying the duplicate detection
procedures on Table 3.2-2 (token keys table sorted on the DBirthKey), while Table 3.2-5

emerges when the same procedures are applied on Table 3.2-3 (token keys table sorted on the
NameKey).

The entries on the “Identified-As-Record-Above” and “Identified-As-Record-Below”
columns of Tables 3.2-4 and 3.2-5 are explained as follows. Each record, R at a given row, j
(where j is neither the first nor the last row) has two neighbors at rows j-1 (above) and j+1
(below). There are three possible entries in the “Identified-As-Record-Above” and
“Identified-As-Record-Below™ columns: (1) “/” means that the record at the row j does not
match the neighboring record at either rows j-1 or j+1, (2) “NA” means that the record at row
J is either the first or last record, therefore has no neighbor at either row j-1 or j+1 and (3) “an
integer value™ means that the record at row j is a match to the record at either row j-1 or j+1
whose Row value equals the integer value. For example, record S001 occupies position 9 (j =
9) in Table 3.2-2. Its two neighbors are records at positions j-1 (i.e., record S004) and j+1
(i.e., record 1001). The comparison of S001 and S004 shows that they are not a match, hence
the entry “/” on the “Identified-As-Record-Above” of Table 3.2-4 of record S001. However,
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the comparison of “S001™ and “1001” reveals that both refer to the same entity, hence the

entry “6” on the “Identified-As-Record-Below” of Table 3.2-4 of record S001.

Row WID | Identified-As-Record-Above | Identified-As-Record-Below
1 S001 / 6
2 S002 NA 9
3 S003 / 7
4 S004 / /
5 S00Ss / /
6 1001 1 NA
7 1002 3 /
8 1003 / /
9 1004 2 /

10 1005 / /

Table 3.2-4: The Result of Duplicate Detection Procedures on Table 3.2-2

Row | WID | Identified-As-Record-Above | Identified-As-Record-Below
1 S001 / /
2 S002 / 9
3 S003 / 7
4 S004 NA 8
5 S005 / /
6 1001 / NA
7 1002 3 /
8 1003 4 /
9 1004 2 /
10 1005 / /

Table 3.2-5: The Result of Duplicate Detection Procedures on Table 3.2-3

The Integration of the Duplicate Detection Resuits: Tables 3.2-4 and 3.2-5 are combined
resulting in Table 3.2-6. Simultaneously scanning Tables 3.2-4 and 3.2-5 and collecting the
items on the “Identified-As-Record-Above” and “Identified-As-Record-Below” columns
yields the entries on the ResultSet-0 of Table 3.2-6. Further operation is applied on the
ResultSet-0 column culminating in the more integrated version shown in ResultSet-1 column.
A procedure containing a number of rules examines each set on the ResultSet-0 column and
removes duplicates, and entries like*/” and “NA”. The number of elements in each set of the
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ResultSet-1 column could be zero (null set), one or more depending on the entries on the
“Identified-As-Record-Above” and “Identified-As-Record-Below” columns of Tables 3.2-4
and 3.2-5. The “Row™, “WID” and “ResultSet-1" columns of Table 3.2-6 are used for the
duplicate elimination and WID generation task explained next. The time required to collect

the entries in ResultSet-0 is N, while the next step resulting in the entries in ResultSet-1
requires Nk.

Row WID ResultSet-0 Result Set-1
1 S001 .6,/ {6}
2 S002 {NA,9,/,9} {9}
3 S003 ,7,1,T} N
4 S004 {/,/,NA, 8} {8}
5 S005 .1,0,1} {}
6 1001 {1,NA, /, NA} {1}
7 1002 {3,/,3,1} {3}
8 1003 ,1,4,1 {4}
9 1004 {2,/,2,1} {2}
10 1005 0.0,1,1 0

Table 3.2-6: Result of the Integration of Tables 3.2-4 and 3.2-§

Thus the integration of duplicate detection results has a time complexity of N + Nk, where N
equals the number of records, while k is the number of entries in ResuitSet-0 column.

3.2.3.2 Duplicate Elimination and WID Generation

The procedure that scans through Table 3.2-6 in order to collect duplicates, eliminate
duplicates and generate WID is shown in Figure 3.4. Let us explain Figure 3.4 using the
concept of linked list shown in Figure 3.5. All the nodes (except the rightmost ones) consist of
two parts, the row part and the record Id part. The first node on each line of Figure 3.5 is the
starting node, while the last node is the stopping node. Note that there are two loop-
terminating conditions: (1) the value on the first part of the last node equals the value on the
first part of the first node, and (2) the value on the first part of the last node is null. The
rightmost node on each line shows the duplicate list for each loop. For example, the topmost
node shows that records “S001” and “1001” are duplicates, while the lowest node shows that
record “1005™ has no duplicate. One WID is generated for the element(s) on the duplicate list.
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For Each Row k in Table 3.2-6 that is not 0 do
(1) Put the token keys of k in a duplicate list and replace Row[k] value with 0
(2) Add the record pointed to by the integer value on the ResultSet of k into the duplicate list if
non-empty otherwise go to step (5) below
(3) For the record pointed to do
(4) Check if the value on the ResultSet is {}
If “Yes” then
(5) WID Generation Procedure:
Generate WID for the records in the duplicate list; Remove duplicate copies
from the dimension tables if the number of records in the duplicate list is
more than 1 and update the retained copy with the value of the WID; Apply
the generated WID to the corresponding records in the fact table; Update the
log tables accordingly; Set duplicate list to null

Else if “No” then
If value equals k then

(6) Go to step (5) above
Else

(7) Repeat step (2)
Figure 3.4: Duplicate Elimination and WID Generating Procedure

Spart Stoe

—> | Jsao1 > 6[1000 F— 1 pv———
—> 5 Jeom > 9[1004 |—>1 > S002. 1004
{3 coozs = 7100 —>1 3 $003. 1002
> 4 Jsona > = [1003 F—> 4 $004. 1003
> s |soos > S005
—>1 10 1005 > 1005

Figure 3.5: Linked List Version of Duplicate Collection and Elimination Procedure




Row CID | NameKey | DBirthKey AddressKey WID
1 S001 JOS 122570 93499SNBP 122570J0S
2 S002 EOT 1175 927695NBT 1175EOT
3 S003 a 8864 74455600AKNC 8864C)
4 S004 ADD 111172 4866NKT 111172ADD
5 S005 JS 103078 937182IMB 103078JS
6 1001 IS 122570 93499SNBP 122570JOS
7 1002 a 8864 744585600KNC 8864CJ
8 1003 ADD 101172 4866NKT 111172ADD
9 1004 EOT 1175 927695NBT 1175EOT
10 1005 EOT 52367 88498MCS 52367EOT

Table 3.2-7: A Log Table Generated by PreWA

The WID is obtained by concatenating the two most discriminating token keys used in sorting
the token key table as already described. If the duplicate list has more than one element then
the WID is generated from the first element. The record used for generating the WID is
retained in the customer dimension table (Table 3.1-5), while the others are deleted from it.
The fact Table (Table 3.1-6) is updated appropriately. At this point, the initial data cleaning
will have been successfully accomplished and the duplicate-free dimension table (see Table
3.1-7) and a cleaned fact table (see Table 3.1-8) would be produced. In addition, a log table
(Table 3.2-7) is generated and saved. Table 3.2-7 has CID column that contains the original
customer id prior to cleaning process, as well as a WID column that contains the generated
Warehouse Ids for the corresponding records. Table 3.2-7 also has token keys columns for the
token keys extracted from the selected fields. Table 3.2-7 is required for the PosWA
operations. The duplicate Elimination and WID generation has a time complexity of ®(N),

while the generation of Table 3.2-7 requires ©(nN), where n is the number of fields and N is
the number of records.



3.3 PosWA: Post-data Warehouse cleaning Algorithm

A data warehousing system should be both refreshable and expandable. Expandability
of the data warehouse is necessitated by the fact that the underlying data sources may increase
from time to time. For example, the initial data warehouse cleaned in section 3.2 has two
starting data sources, SA and CA. The management of the bank may decide to include the
credit card unit to the data warehouse. Two main options readily come to mind. The first
option is to start the cleaning process from the scratch each time a new unit is added to the
data warehouse. This option is fraught with a number of overheads and is not feasible at all,
because it is both economically and computationally expensive. The second option is to reuse
some of the resources generated by PreWA (e.g., Table 3.2-7) to accommodate any new
entrant to the data warehouse. There is the problem of refreshing the already cleaned
warehouse with subsequent transactions from Savings Accounts (SA) and Checking Accounts
(CA) sources. The question we are seeking answer to is: given existing customer, say, “Tim E
Ohanekwu” already having a WID of 1175TOE and token keys of “TOE”, “1175” and
*92769SNBT", is there a way to use the information about this customer to quickly clean new
records belonging to him? In this section, we detail a description of an algorithm called
“PosWA”, which can be used for subsequent cleaning of a standing data warehouse.

Assumptions: We assume that the data to refresh and/or expand the existing data warehouse
with are fetched from Table 3.3-1. Table 3.3-2 is another table that gives the personal
information of the records in Table 3.3-1. The contents of Table 3.3-1 reflect the activities

carried out after the last refreshing or expanding operations on the data warehouse. PosWA
will be halted if this table is empty.

CID Source Activity Amount Time Date
S001 SA W 250 T79A 1/4/02
1006 CA D 500 717P 3/3/02
S001 SA D 300 771A 5/4/02
1001 CA w 100 915P 7/4/02
CC001 CC D 250.50 1015P 1/4/02
CC002 CC W 100 666A 10/4/02
1006 CA D 300 611P 8/4/02
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CID Name Sex Birth Address

S001 John Smith O M 25-Dec-70 Sunset # 995 N9B3P4

1006 Florence Mike F 23-Nov-66 334 Rankin M7V 2J2

1001 S. John M 25-12-1970 995 Sunset Ave, n9b 3p4
CC001 John Smith M December 25 1970 No. 995 Sunset Ave N9b 3p4
CC002 | Zach Young F Jul-30-68 345 AP St P6C 6K1

Table 3.3-2: The Personal Information of the Records in Table 3.3-1.

3.3.1 Detailed Description of PosWA

The description of PosWA is summarized in Figure 3.6 and is explained further with an
example as follows.

3.2-3: PosWA (Inputs: Table 3.3-1, Table 3.3-2)
Outputs: Expanded Warehouse Tables
Given a dataset, TA of records (such as Table 3.3-2)

(1) For each entry, R in TA do

(1.1) Compose token keys for R in the same way as in PreWA )
(1.2) Form a cluster, ¢ from the WH log table (Table 3.2-7) such that the record(s) in
¢ has (have) same token keys as the ones composed in step 1.1 above.

(1.3) Examine ¢
If ¢ has no element then

(1.3.1) Form token key(s) from other selected field(s) (if applicable);
Form the WID accordingly; Insert R from Table 3.3-2 into the
customer dimension table; Insert transactions belonging to R into the
fact table; Update the WH log table accordingly.

Else if ¢ has more than 1 element then

(1.3.2) Form token key(s) from other selected field(s) (if applicable);
Use similarity match function to determine which record in cisR
and insert transactions into the fact table with the WID of existing
record that matched R.

Else if c has only one element then

(1.3.3) Insert transactions into the fact table with the WID of the
existing record that matched R

Figure 3.6: Procedure for Subsequent Data Warehouse Cleaning by PosWA

56




Example: The procedure contained in Figure 3.6 is exemplified as follows. The inputs are

Tables 3.3-1 and 3.3-2. The TA (dataset) is Table 3.3-2.

Let us go through the algorithm with the first record in Table 3.3-2.

1.1 WID Composition: Form token key, t; from the Name field is “JOS” and the token key, t
from the Birth field is “122570”. The Warehouse ID, WID, for this record is t; + t; =
*“122570JOS™.

1.2 Cluster Formation: A table, c is obtained by querying the WH log table as follows.

Select * From Table 3.2-7 Where NameKey = t; and DBirthKey =t;
The cluster formation above returns a table shown below.

Row | CID | NameKey | DBirthKey AddressKey WID
1 S001 JOS 122570 934995NBP 122570J0S

1.3 Determine number of elements in the table returned by the query in 1.2 above. Since there
is one entry in the table, control is transferred to section 1.3.3.
1.3.3 Warehouse Table Update: Only the fact table will be affected with all the transactions
belonging to record “S001” in Table 3.3-1.
The outcomes of following through with other rows in Table 3.3-2 will expand the
Customers dimension table (Table 3.1-7), the fact table (Tabie 3.1-8) and the log table (Table
3.2-7) with the records respectively shown in Table 3.3-3, Table 3.3-4 and Table 3.3-5.

Row WID Name Sex Phone DBirth Address
7 112366FM | Florence Mike F 23-Nov-66 | 334 Rankin M7V 2J2
8 73068YZ Zach Young F Jul-30-68 345 AP St P6C 6K1

Table 3.3-3: The Customer Dimension Table after PosWA’s operation on Tables 3.3-1 and 3.3-2
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Row WID Trans-code | Account-code Trans-time Amount
10 122570JOS w SA T79A 250
11 122570J0S D SA T71A 300
12 112366FM D CA 717P 500
13 122570JOS w CA 915P 100
14 122570J0OS D CcC 1015P 250.50
15 73068YZ \' CcC 666A 100
16 112366FM D CA 611P 300

Table 3.3-4: The Fact Table after PosWA’s operation on Tables 3.3-1 and 3.3-2

ow CID | NameKey | DBirthKey AddressKey WID
11 1006 M 112366 722334IMV 112366FM
12 | CC001 IS 122570 934995NBP 122570JOS
13 | CC002 YZ 73068 661345KPC 73068YZ

Table 3.3-5: The Log Table after PosWA’s operation on Tables 3.3-1 and 3.3-2
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CHAPTER 4
Implementation and Performance Analyses

In this chapter, we present some results of the experiment conducted to analyze
the performance of PreWA and PosWA as well as two other data cleaning algorithms,
namely, the “Basic Field Matching Algorithm (BFMA) [ME96] and the algorithm that
uses external sources for field preprocessing (External-based) [LH99]. First, we describe
the implementation environments in section 4.1. The parameters used to measure the
performances of data cleaning algorithms are given in section 4.2. Four case experimental

results are presented and analyzed in section 4.3. Finally, we give the limitation of
PreWA and PosWA in section 4.4.

4.1 The Implementation Environments

We consider the hardware and software platforms on which PreWA, PosWA and
other two comparable algorithms were implemented.

Hardware platforms: All the experiments were performed on a Pentium III with
733 MHZ, 128 RAM and 20.4 GB hard drive.

Software platforms: (1) Operating system: PreWA and PosWA were implemented
on a computer controlled by Windows 2002 Professional. (2) Database Management
System (DBMS): Both input and output data were stored in a database managed by
Oracle 8i DBMS. (3) Programming language: The original implementation programming
language for PreWA and PosWA is Java (SDK 1.3).

Input data: The data cleaned by PreWA and PosWA were real data taken from
telephone directory and other official documents such as medical directory containing
names of medical personnel. Some names were also taken from the list of research
students in the database laboratory of the University of Windsor. We added some missing
fields in the sample data to get the desired metadata. We also carefully introduced a wide
range of “dirt” into the data. The dirt introduced include: (1) typographical errors, (2)
transposition errors, (3) inconsistent use of initials in names, (4) different addressing
schemes, (5) synonyms, (6) homonyms, (7) data duplications and (8) data format
differences
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4.2  Performance Measures for Data Cleaning Algorithms

The degree to which data quality could be improved is a clear effectiveness
measure of any algorithmic solution to data cleaning problems. The two most popular
performance measures are: recall (also known as percentage hits) and false-positive error
(referred also as false merges). The third parameter used to measure performance is the
response time. In this thesis, we introduced the “reverse false-positive error” as one of
the criteria to measure performances. Another parameter we used in this thesis to measure
performances is “performance dependency on threshold”. Each of these is described
below.

Recall: this is the percentage of duplicate records correctly identified by a given
data cleaning algorithm. In other words, given “m” number of duplicates in a dataset, if
the algorithm identifies “n” number of duplicates then the recall is: (n/m) x 100.
Therefore, the recall for Table 3.2-2 is 6/8 * 100 = 75%, while the recall for Table 3.2-3
is 6/8 * 100 = 75%, meaning that sorting on name token key produced the same result as
sorting on date of birth token key. However, there is a 100% recall when both tables are
combined. 4 good data cleaning algorithm should have high recall.

False-positive Error (FP-E): this is the opposite of precision ratio and indicates
the percentage of records wrongly identified as duplicates. Formally, false-positive error
= (number of wrongly identified duplicates / total number of identified duplicates) x 100.
There is no false-positive error on the matching results shown in Tables 3.2-2 and 3.2-3.
A good data cleaning algorithm should have a very low (better if zero) false-positive
error.

Reverse False Positive-Error (RFP-E): in this thesis, we coin out a definition
for a situation where a given cleaning algorithm fails to identify duplicate records. This is
what we term “Reverse Faise Positive-Error* (RFP-E), and is formally defined as:
(number of duplicates not identified / total number of duplicate) x 100. Both Tables 3.2-2 and
3.2-3 have RFP-E of 25%, but their combination has RFP-E of 0%. 4 good data cleaning
algorithm should have a very low (better if zero) RFP-E.

Response time is defined in data cleaning context as the time lapse between when
the data cleaning algorithm is applied on the “dirty” dataset and when the cleaning is
done. Response time is largely affected by the frequency of secondary storage or external



source access. The more frequent external sources are accessed, the longer the response
time. The length of strings involved in the record comparison phase could partly affect
the response time. The longer the records, the more time it takes to compare them, hence
the longer the response time. 4 good data cleaning algorithm should have relatively short

response time.

Of all the criteria described above, the recall is the most significant. Most data
cleaning algorithms sacrifice response time for recall, FP-E and RFP-E. The argument in
favor of this is valid, namely, “it is far better to arrive at a correct result in a longer time
than getting spurious result in a very short time”. Nonetheless, it is still possible to
achieve a correct result in a short period of time. Achieving an (or near) optimal cleaning
correctness in good response time is the main target of PreWA and PosWA.

4.3  Four Case Experiments

In order to evaluate the performance of PreWA as well as to compare its
performance with two other data cleaning algorithms, we conducted four different
experiments. First, we started with input of small size containing some trivial “dirt”. We
gradually increased the size of the input data as well as the nature of “dirt”. For each
experiment, we varied the threshold trice, starting from a low threshold (0.25) then
medium threshold (0.44) to high threshold (0.80). Each of the four case experiments is
described below.

Case 1: 20 rows of records, 4 pairs of duplicates and other trivial dirt: the result of
running the three algorithms on three different thresholds is shown in Table 4.1-1. This
table shows the results on the “recall”, “false positive error”, “reverse false positive
error” and the response time of the three algorithms being compared.

Case 2: 40 rows of records, 7 pairs of duplicates and slightly less trivial dirt:
running the algorithms on the input data this time produced the result shown in Table 4.1-
2

Case 3: 80 rows of records, 10 pairs of duplicates and much less trivial dirt: we
present the outcomes of running the three algorithms in this scenario in Table 4.1-3.

Case 4: 120 rows of records, 14 pairs of duplicates and nontrivial dirt: Table 4.1-4
contains the results recorded for the three algorithms under case 4.
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Recall | FP-E | RFP-E | Time (Sec)
Case 1 | Threshold = 0.25
PreWA 4 0 0 3
BFMA 3 5 1 3
External-based 2 12 2 4
Case 2 | Threshold = 0.44
PreWA 4 0 0 3
BFMA 3 1 1 3
External-based 3 2 I 4
Case 3 | Threshold = 0.80
PreWA 4 0 0 3
BFMA 0 0 4 3
External-based 0 0 4 4
Table 4.1-1: 20 Rows of Records at Varied Thresholds
Recall | FP-E | RFP-E | Time (Sec)
Case 1 | Threshold = 0.25
PreWA 7 1 0 5
BFMA ) 4 2 5
External-based 5 17 2 6
Case 2 | Threshold = 0.44
PreWA 7 1 0 5
BFMA 6 0 1 5
External-based 5 3 2 6
Case 3 | Threshold = 0.80
PreWA 7 0 0 5
BFMA 1 0 6 5
External-based 0 0 7 6

Table 4.1-2: 40 Rows of Records at Varied Threshold
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Recall | FP-E | RFP-E | Time (Sec)

Case 1 | Threshold = 0.25

PreWA 10 3 0 7
BFMA 7 12 3 7
External-based 7 58 3 9

Case 2 | Threshold = 0.44

PreWA 10 2 0 7
BFMA 7 2 3 7
External-based 8 6 2 9

Case 3 | Threshold = 0.80

PreWA 10 0 0 7
BFMA 1 0 9 7
External-based 0 0 10 9

Table 4.1-3: 80 Rows of Records at Varied Threshold

Recall | FP-E | RFP-E | Time (Sec)

Case 1 | Threshold = 0.25

PreWA 12 9 2 8
BFMA 8 19 6 9
External -based 8 111 6 11

Case 2 | Threshold = 0.44

PreWA 13 7 1 8
BFMA 8 3 6 9
External-based 8 13 6 11

Case 3 | Threshold = 0.80

PreWA 14 0 0 8
BFMA I 0 13 9
External-based 0 0 14 11

Table 4.1-4: 120 Rows of Records at Varied Threshoid
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The recalls of the three algorithms at the three thresholds are graphically shown in
Figures 4.1, 4.2, and 4.3. The patterns of FP-E and RFP-E are also shown in Figures 4.4
and 4.5 respectively.
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Analvses of Resuits

It is evident from the tables given under the four experimental cases that PreWA
reaches its optimal cleaning correctness at a threshold of 0.80 at all points in the four
experiments. PreWA records its worst performance at the fourth experiment when the
threshold is 0.25. The other two algorithms reached their best at a threshold of 0.44.
PreWA also has a better performance at a threshold of 0.44 than any of the other
algorithms. The results also show that the performance of PreWA is steady over the
varied thresholds. In other words, the performance behavior of PreWA very slightly
fluctuates as the threshold varies. The reason for this is that PreWA uses both an “exact”
and a “similarity” match technique in record matching and the “similarity” match is only
invoked at a “maybe match” scenario. This is not the case with the other two algorithms,

which use a similarity match technique at all points, hence their performances depend so
much on the threshold.

44 The Limitations of PreWA and PosWA

Our algorithms will fail to detect duplicates if their values at the token key fields
used to sort the token key table differ.



CHAPTERS
Conclusions and Future Research

S.1 Conclusions

Two data cleaning algorithms are described in this thesis. The first is designed to
clean data the first time a data warehouse is built. The idea of using the token keys for
record comparisons was introduced. Previous algorithms primarily use the keys extracted
from the most discriminating fields of records for sorting and clustering purposes. The
second algorithm is designed for subsequent or incremental cleaning of an existing data
warehouse in a timely manner. The results of the experimental runs show (1) that the
performance of PreWA does not depend on threshold, and (2) PreWA achieves the
desired cleaning correctness in a good time. PosWA also achieved a 100% recall and 0%
false positive error.

Conclusively, PreWA, in comparison to the Basic Field Matching Algorithm
[ME96] and the algorithm in [LH99] has (1) a recall, which is very close to 100%, (2)
negligible false positive and reverse false positive errors, and (3) a good response time. It
also reduces the number of tables obtained from the token key table to a constant of 2 no
matter the number of fields selected for cleaning, thereby greatly improving the
algorithms in [HS95, HS98], where the number of extracted token key tables varies
proportionally to the number of fields used for data cleaning.

52 Future Work
The present work has to do with the cleaning of data stored in a relational
database system, which is highly structured. In our next work, we shall design a

ubiquitous data cleaning algorithm that will be good for structured, semi-structured and
unstructured data.
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Appendix A: Sample Outputs From PreWA

The Fact Table Before PreWA
WID | TransType | AccType | TransTime | AmountinTrans
1001 D CA T11A 245.5
1005 A\ CA 911P 500
S002 D SA 1020P 120
S001 W SA 555A 300
1003 W CA 455P 2504
1004 D CA 1099P 350.5
SO10 W SA 651A 100
S009 D SA 655P 150
1009 W CA 601P 55.55
1007 W CA 497A 50
1008 D CA 447A 120.5
1008 W CA 532P 50.5
S001 D SA 877P 1000
S006 D SA 788A 550
S003 D SA 989A 600
S003 \\ SA 998P 150
1007 D CA 1001P 750.5
The Fact Table after PreWA
WID TransType | AccType | TransTime | AmountinTrans
122570JOS D CA T11A 245.5
1979EOT W CA 911P 500
117SEOT D SA 1020P 120
122570JOS W SA 555A 300
111172ADD W CA 455P 250.4
117SEOT D CA 1099P 350.5
T2356FS W SA 651A 100
42074DJO D SA 655P 150
31687EK W CA 601P 55.55
123182RR W CA 497A 50
21580EK D CA 447A 120.5
21580EK W CA 532P 50.5
122570J0OS D SA 877P 1000
101275CO D SA T88A 550
8864CJ D SA 989A 600
8864CJ W SA 998P 150
123182RR D CA 1001P 750.5
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The Customer Dimension Table before PreWA (Input)

CID CNAME SEX CPHONE CBIRTHDATE CADDRESS
S001 John Smith O M 519-111-1234 25-Dec-70 Sunset # 995, N9B3P4
S002 | Tim E Ohanekwu M 5603626 01-Jan-75 Randoph St. No. 685
n9b 2t7
S003 Colette Johnen M 123-4567 08-Aug-64 600 XYZ apt 5as
N7C4K4
S004 | Diana D Ambrosion | F 5196669999 11-Nov-72 Church Rd. #4 NS8K6T6
S005 John Smith M | (519)-560-3626 30-Oct-78 182 Jesus Ave M9B3J7
S006 | Ogunbiyi Clement M 519-9856488 October, 12,1975 | # 182 Josephine Windsor
NIB 2K8
S007 Udechukwu M 254-9851 14-9-1973 Electa Hall, Rm. 223M
Ajimobi Patricia Road N9B 3P4
Windsor
S008 Sachwani Lubna F 519) 258-8272 19/May/75 Rm. 213A, Electa Hall
Patricia Rd. Widsor N9
34P
S009 Duru Juliet Oby F 519-566-7890 20/April/74 Josephine Ave No. 18
Windsor M9C 4Y9
S010 Smith Florence F 677-8990 23-Jul-1956 2423 Northwood Str.
Windsor K9R4H6
1001 S. John M 1111234 25-12-1970 995 Sunset Ave n9b 3p4
1002 Jon Collete M 08-08-1964 XYZ, No. 600 apt 585
n7c 4k4
1003 D Diana Ambros F 566-5555 10-11-1972 Church St. # 40, n8k 6t6
1004 | Ohans E. Timothy M 519-256-6416 01/01/1975 No. 695 Randolph
Avenue Windsor Ontario
N9B2T7
1005 Tim Emeka Obi M 9856298 9-1-79 666 Rankin M9C 4Y8
Windsor ON
1006 Om Khan F 971-0371 Dec, 20, 1982 530 Janette Close
Windsor J2G5S9
1007 Ross Robert M 591-948-1565 31-Dec-82 1518 StLuke Str. Widsor
A8V 9G1
1008 Kenneth Ewans M 519-688-9008 Feb/15/80 1023 Watson Rd. K8B
509
1009 Evans Kim F 977-5950 16-Mar-1987 Watson Avenue No.
1020 Windsor K9C 1P9
1010 Adams Chris M 591.978-3616 03/Jan/1981 Manchester Rd. # 685
Windsor L8B 5T6




The Customer Dimension Table After PreWA

CID CNAME SEX | CPHONE CBIRTHDATE CADDRESS
122570J0S John Smith O M | 519-111-1234 25-Dec-70 Sunset # 995,
N9B3P4
1175SEOT | TimE Ohanekwu | M 5603626 01-Jan-75 Randoph St. No. 685
n9b 2t7
8864CJ Colette Johnen M 123-4567 08-Aug-64 600 XYZ apt 5as
N7C4K4
111172ADD Diana D F 5196669999 11-Nov-72 Church Rd. #4
Ambrosion N8BK6T6
103078JS John Smith M (519)-560- 30-Oct-78 182 Jesus Ave
3626 M9B3J7
101275CO Ogunbiyi M | 519-9856488 | October,12,1975 # 182 Josephine
Clement Windsor N9B 2K 8
91473AU Udechukwu M 254-9851 14-9-1973 Electa Hall, Rm.
Ajimobi 223M Patricia Road
N9B 3P4 Windsor
51975LS Sachwani Lubna F | 519)258-8272 19/May/75 Rm. 213A, Electa
Hall Patricia Rd.
Widsor N9 34P
42074DJO Duru Juliet Oby F | 519-566-7890 20/April/74 Josephine Ave No.
18 Windsor MSC
4Y9
72356FS Smith Florence F 677-8990 23-Jul-1956 2423 Northwood Str.
Windsor K9R4H6
1979EOT Tim Emeka Obi M 9856298 9-1-79 666 Rankin M9C
4Y8 Windsor ON
122082K0 Om Khan F 971-0371 Dec, 20, 1982 530 Janette Close
Windsor J2G5S9
123182RR Ross Robert M | 591-948-1565 31-Dec-82 1518 StLuke Str.
Widsor A8V 9G1
21580EK Kenneth Ewans M | 519-688-9008 Feb/15/80 1023 Watson Rd.
K8B 509
31687EK Evans Kim F 977-5950 16-Mar-1987 Watson Avenue No.
1020 Windsor K9C
1P9
1381AC Adams Chris M | 591-978-3616 03/Jan/1981 Manchester Rd. #
685 Windsor L8B
ST6
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Record CIDs Their WID Their Row Nos.

S001, 1001 122570308 L11
S002, 1004 117SEOT 2,14
S003, 1002 8864CJ 3,12
S004, 1003 111172ADD 4,13

Number of Pairs of Duplicates Detected is: 4

Cleaning Process Completed. Please, see WIDTABLE, CleanedCustomersTable and TheFactTable for
the cleaning results.

The Comprehensive Warehouse Log Table (WIDTABLE) Generated After PreWA

CID NAMEKEY | BIRTHKEY | ADDRESSKEY WID
S005 JS 103078 937182JMB 103078JS
S006 CO 101275 928182KNB 101278CO
S007 AU 91473 934223MNBP 91473AU
S008 LS 51975 934213ANP 51975LS
S009 DJO 42074 91849MCY 42074DJO
S010 FS 72356 9462423HKR 72356FS
1005 EOT 1979 948666MCY 1979EOT
1006 KO 122082 259530JGS 122082KO
1007 RR 123182 8911518AVG 123182RR
1008 EK 21580 8591023KBO 21580EK
1009 EK 31687 9191020KCP 31687EK
1010 AC 1381 85668SLBT 1381AC
S001 JOS 122570 934995NBP 122570JOS
1001 JS 122570 934995NBP 122570JOS
S002 EOT 1175 92768SNBT 117SEOT
1004 EOT 1175 927695NBT 1175EOT
S003 CJ 8864 74455600AKNC 8864CJ
1002 CJ 8864 744585600KNC 8864CJ
S004 ADD 111172 866NKT 111172ADD
1003 ADD 101172 84066NKT 111172ADD
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Appendix B: Sample Outputs From PosWA

Input: Personal Information Source to Refresh/Expand the Warehouse With

CID CNAME SEX | BIRTHDATE PHONE ADDRESS
CD001 Emenike T Oha M January 1 1975 | 519-2566416 | 696 abc avenue, N9B
217
CD003 | Florence Joyce Johns F 5-Aug-77 566-4085 1223 Windsor ave
M1J 8H4
S001 Tim E Ohanekwu M 0l-Jan-75 2566416 ABCD St. No. 695
n9b 2t7
1005 Elema Tom Obi M 23-Mar-1967 9856298 98 Jesus Rd. M8C 8S4
Sot1 Angela Rose M F Dec-25-78 253-3003 490 Rand N9B2T6
Windsor
1011 Favors Mandela F Jan-3-73 416-234-5678 | Railway St. Toronto
G7VIRS
CD002 Ray Uchenna O M June-04-1966 254-9853 # 2 XY Rd. H8U 2F4
1001 S. John M 25-12-1970 1111234 995 Sunset Ave n9%b
3p4
S012 Michael Rocky M 16-12-53 971-6588 Mill St. 788 Nj92x2

Input: Transactional Data to Refresh/Expand the Warehouse With

CID SOURCE | TRANSTYPE | AMOUNT | TRANSTIME
CD001 [ CD D 500.99 889A
CD003 | CD D 150.00 651P
S001 SA D 200.50 S67A
CD001 [ CD W 145.99 900P
S001 SA W 100.50 657P
1005 CA D 12345 182A
1005 CA W 223.00 482pP
CD003 | CD W 50.00 659P
CD001 {CD W 100.99 809P
SO11 SA D 500.00 431P
1011 CA D 550.00 SI12A
CD002 | CD D 450.50 774P
1001 CA D 150.50 345P
S012 SA D 560.00 423A
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The Fact Table before PosWA

WID TransType | AccType | TransTime | AmountinTrans
122570JOS D CA T11A 245.5
1979EOT W CA 911P 500
117SEOT D SA 1020P 120
122570JO0S W SA 555A 300
111172ADD W CA 455P 250.4
1175EOT D CA 1099P 350.5
72356FS W SA 651A 100
42074DJO D SA 655P 150
31687EK \ CA 601P 55.55
123182RR A\ CA 497A 50
21580EK D CA 447A 120.5
21580EK W CA 532P 50.5
122570JOS D SA 877P 1000
101275CO D SA 788A 550
8864CJ D SA 989A 600
8864CJ W SA 998P 150
123182RR D CA 1001P 750.5
The Warehouse Log Table before PosWA
CID NAMEKEY | BIRTHKEY | ADDRESSKEY WID
S005 JS 103078 937182JMB 103078JS
S006 CO 101275 928182KNB 101278CO
S007 AU 91473 934223MNBP 91473AU
S008 LS 51975 934213ANP S51975LS
S009 DJO 42074 91849MCY 42074DJO
S010 FS 72356 9462423HKR 72356FS
1005 EOT 1979 948666MCY 1979EOT
1006 KO 122082 259530JGS 122082K0
1007 RR 123182 8911518AVG 123182RR
1008 EK 21580 8591023KBO 21580EK
1009 EK 31687 9191020KCP 31687EK
1010 AC 1381 856685LBT 1381AC
S001 JOS 122570 934995NBP 122570J0S
1001 JS 122570 934995NBP 122570JOS
S002 EOT 1175 927685NBT 1175EOT
1004 EOT 1175 92769SNBT 117SEOT
S003 C) 8864 74455600AKNC 8864C)
1002 CJ 8864 744585600KNC 8864CJ
S004 ADD 111172 866NKT 111172ADD
1003 ADD 101172 84066NKT 111172ADD
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The Customers Dimension Table Before PosWA

CID CNAME SEX CPHONE CBIRTHDATE CADDRESS
122570JOS John Smith O M | 519-111-1234 25-Dec-70 Sunset # 995,
N9B3P4
1175EOT | Tim E Ohanekwu | M 5603626 01-fan-75 Randoph St. No. 685
n9b 2t7
8864CJ Colette Johnen M 123-4567 08-Aug-64 600 XYZ apt 5a5
N7C4K4
111172ADD Diana D F 5196669999 11-Nov-72 Church Rd. #4
Ambrosion N8K6T6
103078JS John Smith M (519)-560- 30-Oct-78 182 Jesus Ave
3626 M9B3J7
101275CO Ogunbiyi M 519-9856488 | October,12,1975 # 182 Josephine
Clement Windsor N9B 2K8
91473AU Udechukwu M 254-9851 14-9-1973 Electa Hall, Rm.
Ajimobi 223M Patricia Road
N9B 3P4 Windsor
51975LS Sachwani Lubna F 1 519)258-8272 19/May/75 Rm. 213A, Electa
Hall Patricia Rd.
Widsor N9 34P
42074DJO Duru Juliet Oby F 519-566-7890 20/April/74 Josephine Ave No.
18 Windsor M9C
4Y9
72356FS Smith Florence F 677-8990 23-Jul-1956 2423 Northwood Str.
Windsor K9R4H6
1979EOT Tim Emeka Obi M 9856298 9-1-79 666 Rankin M9C
4Y8 Windsor ON
122082K0O Om Khan F 971-0371 Dec, 20, 1982 530 Janette Close
Windsor J2G589
123182RR Ross Robert M | 591-948-1565 31-Dec-82 1518 StLuke Str.
Widsor A8V 9G1
21580EK Kenneth Ewans M | 519-688-9008 Feb/15/80 1023 Watson Rd.
K8B 509
31687EK Evans Kim F 977-5950 16-Mar-1987 Watson Avenue No.
1020 Windsor K9C
1P9
1381AC Adams Chris M | 591-978-3616 03/Jan/1981 Manchester Rd. #
685 Windsor L8B
5T6
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The Fact Table After PosWA

TransType AccType TransTime | AmountinTrans
123182RR D CA 1001P 750.5
122570JOS D CA 458P 150.5
1979EOT D CA 185P 123.45
1979EOT w CA 458P 223
1373FM D CA 517A 550
1175EOT w CD 920P 145.99
1175EOT w CD 899P 100.99
#6660RU D CD T72A 450.5
5877F)] D CD 625P 150
S5877F)] w CD 649P 50
122570J0OS D SA 367A 200.5
122570JOS w SA 665P 100.5
122578AMR D SA 437P 500
122570JOS D CA T11A 245.5
1979EOT w CA 911P 500
1175EOT D SA 1020P 120
122570JOS w SA 555A 300
111172ADD w CA 455P 250.4
117SEOT D CA 1099P 350.5
712356FS w SA 651A 100
¥2074DJO D SA 655P 150
31687EK w CA 601P 55.55
123182RR w CA 497A 50
21580EK D CA 447A 120.5
R1580EK w CA 532p 50.5
122570J0OS D SA 877P 1000
101275CO D SA 788A 550
8864CJ D SA 989A 600
121653MR D SA 429A 560
8864CJ A\ SA __998P 150
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The Customer Dimension Table After PosWA

CID CNAME SEX | CPHONE CBIRTHDATE CADDRESS
122570J0S John Smith O M | 519-111-1234 25-Dec-70 Sunset # 995,
N9B3P4
1175EOT | Tim E Ohanekwu | M 5603626 01.Jan-75 Randoph St. No. 685
n9b 2t7
8864CJ Colette Johnen M 123-4567 08-Aug-64 600 XYZ apt 5a5
N7C4K4
111172ADD Diana D F 5196669999 11-Nov-72 Church Rd. #4
Ambrosion N8K6T6
103078JS John Smith M (519)-560- 30-Oct-78 182 Jesus Ave
3626 M9B3J7
101275CO Ogunbiyi M 519-9856488 | October,12,1975 # 182 Josephine
Clement Windsor N9B 2K8
91473AU Udechukwu M 254-9851 14-9-1973 Electa Hall, Rm.
Ajimobi 223M Patricia Road
N9B 3P4 Windsor
51975LS Sachwani Lubna F | 519)258-8272 19/May/75 Rm. 213A, Electa
Hall Patricia Rd.
Widsor N9 34P
42074DJO Duru Juliet Oby F | 519-566-7890 20/April/74 Josephine Ave No.
18 Windsor M9C
4Y9
72356FS Smith Florence F 677-8990 23-Jul-1956 2423 Northwood Str.
Windsor K9R4H6
1373FM Favors Mandela F | 416-234-5678 Jan-3-73 3 Railway St.
Toronto G7VIRS
46660RU Ray Uchenna O M 254-9853 June-04-1966 # 2 XY Rd. H8U 2F4
5877F1) Florence Joyce F 566-4085 5-Aug-77 1223 Windsor ave
Johns M1J 8H4
122578AMR | Angela Rose M F 253-3003 Dec-25-78 490 Rand N9B2T6
Windsor
1979EOT Tim Emeka Obi M 9856298 9-1-79 666 Rankin M9C
4Y8 Windsor ON
122082K0 Om Khan F 971-0371 Dec, 20, 1982 530 Janette Close
Windsor J2G5S9
123182RR Ross Robert M | 591-948-1565 31-Dec-82 1518 StLuke Str.
Widsor A8V 9G1
21580EK Kenneth Ewans M | 519-688-9008 Feb/15/80 1023 Watson Rd.
K8B 509
31687EK Evans Kim F 977-5950 16-Mar-1987 Watson Avenue No.
1020 Windsor K9C
1P9
1381AC Adams Chris M | 591-978-3616 03/Jan/1981 Manchester Rd. #
685 Windsor LSB
5T6
121653MR Michael Rocky M 971-6588 16-12-53 Mill St. 788 Nj92x2
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The Warehouse Log Table After PosWA

CID ASCN DBIRTHKEY ADDRESSKEY WID

S006 co 101275 928182KNB 101275CO
S007 AU 91473 934223MNBP 91473AU
S008 LS 51975 934213ANP S1975LS
S00S JS 103078 937182JMB 103078JS
S009 DJO 42074 91849MCY 42074DJO
S010 FS 72356 9462423HKR 72356FS
1005 EOT 1979 948666MCY 1979EOT
1006 KO 122082 259530JGS 122082K0O
1007 RR 123182 8911518AVG 123182RR
1008 EK 21580 8591023KBO 21580EK
1009 EK 31687 9191020KCP 31687EK
1010 AC 1381 85668SLBT 1381AC
S001 JOS 122570 93499SNBP 122570JOS
1001 IS 122570 93499SNBP 122570JOS
S002 EOT 1175 927685NBT 1175EOT
1004 EOT 1175 92769SNBT 1175EOT
S003 CJ 8864 74455600AKNC 8864CJ
1002 a 8864 744585600KNC 8864CJ
S004 ADD 111172 866NKT : 111172ADD
1003 ADD 101172 84066NKT 111172ADD
1011 M 1373 715GVR 1373FM
CDO002 ORU 4666 824FHU 46660RU
CD003 F1J 5877 1841223HMJ S877F1]
SO11 AMR 122578 926490NBT 122578AMR
S012 MR 121653 922788NIX 121653MR
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